Contents

Preface

Audience viii
Documentation Accessibility viii
Related Resources viii
Conventions ix

1 About Oracle Machine Learning for Python

What Is Oracle Machine Learning for Python? 1-1
Advantages of Oracle Machine Learning for Python 1-2
Transparently Convert Python to SQL 1-4
About the Python Components and Libraries in OML4Py 1-5

2 Install OML4Py Client for Linux for Use With Autonomous Database

3 Install OML4Py for On-Premises Databases

OML4Py On Premises System Requirements 3-1
Build and Install Python for Linux for On-Premises Databases 3-1
Install the Required Supporting Packages for Linux for On-Premises Databases 3-4
Install OML4Py Server for On-Premises Oracle Database 3-6
 Install OML4Py Server for Linux for On-Premises Oracle Database 19c 3-6
 Install OML4Py Server for Linux for On-Premises Oracle Database 21c 3-11
Verify OML4Py Server Installation for On-Premises Database 3-13
Grant Users the Required Privileges for On-Premises Database 3-13
Create New Users for On-Premises Oracle Database 3-14
Uninstall the OML4Py Server from an On-Premises Database 19c 3-16
Install OML4Py Client for On-Premises Databases 3-16
 Install Oracle Instant Client and the OML4Py Client for Linux 3-16
 Install Oracle Instant Client for Linux for On-Premises Databases 3-17
 Install OML4Py Client for Linux for On-Premises Databases 3-18
Verify OML4Py Client Installation for On-Premises Databases 3-21
4 Install OML4Py on Exadata

About Oracle Machine Learning for Python on Exadata
Configure DCLI to install Python across Exadata compute nodes.
 Install Python across Exadata compute nodes using DCLI
 Install OML4Py across Exadata compute nodes using DCLI

5 Get Started with Oracle Machine Learning for Python

Use OML4Py with Oracle Autonomous Database
Use OML4Py with an On-Premises Oracle Database
 About Connecting to an On-Premises Oracle Database
 About Oracle Wallets
 Connect to an Oracle Database
Move Data Between the Database and a Python Session
 About Moving Data Between the Database and a Python Session
 Push Local Python Data to the Database
 Pull Data from the Database to a Local Python Session
 Create a Python Proxy Object for a Database Object
 Create a Persistent Database Table from a Python Data Set
Save Python Objects in the Database
 About OML4Py Datastores
 Save Objects to a Datastore
 Load Saved Objects From a Datastore
 Get Information About Datastores
 Get Information About Datastore Objects
 Delete Datastore Objects
 Manage Access to Stored Objects

6 Prepare and Explore Data

Prepare Data
 About Preparing Data in the Database
 Select Data
 Combine Data
 Clean Data
 Split Data
Explore Data
 About the Exploratory Data Analysis Methods
 Correlate Data
7 OML4Py Classes That Provide Access to In-Database Machine Learning Algorithms

- About Machine Learning Classes and Algorithms 7-1
- About Model Settings 7-3
- Shared Settings 7-4
- Export Oracle Machine Learning for Python Models 7-7
- Automatic Data Preparation 7-10
- Model Explainability 7-12
- Attribute Importance 7-18
- Association Rules 7-21
- Decision Tree 7-28
- Expectation Maximization 7-35
- Explicit Semantic Analysis 7-50
- Generalized Linear Model 7-55
- k-Means 7-66
- Naive Bayes 7-71
- Neural Network 7-80
- Random Forest 7-89
- Singular Value Decomposition 7-98
- Support Vector Machine 7-104

8 Automated Machine Learning

- About Automated Machine Learning 8-1
- Algorithm Selection 8-6
- Feature Selection 8-8
- Model Tuning 8-11
- Model Selection 8-15

9 Embedded Python Execution

- About Embedded Python Execution 9-1
 - Comparison of the Embedded Python Execution APIs 9-1
- Embedded Python Execution Views 9-5
10 Administrative Tasks for Oracle Machine Learning for Python
Preface

This publication describes Oracle Machine Learning for Python (OML4Py) and how to use it.

Audience

This document is intended for those who want to run Python commands for statistical, machine learning, and graphical analysis on data stored in or accessible through Oracle Autonomous Database or Oracle Database on premises using a Python API. Use of Oracle Machine Learning for Python requires knowledge of Python and of Oracle Autonomous Database or Oracle Database on premises.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

Related documentation is in the following publications:

• Oracle Machine Learning for Python API Reference
• Oracle Machine Learning for Python Known Issues
• Oracle Machine Learning for Python Licensing Information User Manual
• REST API for Embedded Python Execution
• Get Started with Notebooks for Data Analysis and Data Visualization in Using Oracle Machine Learning Notebooks
• Oracle Machine Learning AutoML User Interface
• REST API for Oracle Machine Learning Services

For more information, see these Oracle resources:
Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
About Oracle Machine Learning for Python

The following topics describe Oracle Machine Learning for Python (OML4Py) and its advantages for the Python user.

- What Is Oracle Machine Learning for Python?
- Advantages of Oracle Machine Learning for Python
- Transparently Convert Python to SQL
- About the Python Components and Libraries in OML4Py

What Is Oracle Machine Learning for Python?

Oracle Machine Learning for Python (OML4Py) enables you to run Python commands for data transformations and for statistical, machine learning, and graphical analysis on data stored in or accessible through an Oracle database using a Python API.

OML4Py is a Python module that enables Python users to manipulate data in database tables and views using Python syntax. OML4Py functions and methods transparently translate a select set of Python functions into SQL for in-database execution.

OML4Py is available in the following Oracle database environments:

- The Python interpreter in Oracle Machine Learning Notebooks in your Oracle Autonomous Database. For more information, see Get Started with Notebooks for Data Analysis and Data Visualization in Using Oracle Machine Learning Notebooks.

 In this environment, all the required components are included, including Python, required Python libraries, and the Python interpreter in Notebooks.

- An OML4Py client connection to OML4Py in an on-premises Oracle Database instance.

 For this environment, you must install Python, the required Python libraries, and the OML4Py server components in the database, and you must install the OML4Py client. See Install OML4Py for On-Premises Databases.

Designed for problems involving both large and small volumes of data, OML4Py integrates Python with the database. With OML4Py, you can do the following:

- Develop, refine, and deploy user-defined Python functions and machine learning models that leverage the parallelism and scalability of the database to automate data preparation and machine learning.

- Run overloaded Python functions and use native Python syntax to manipulate in-database data, without having to learn SQL.

- Use Automated Machine Learning (AutoML) to enhance user productivity and machine learning results through automated algorithm and feature selection, as well as model tuning and selection.

- Use Embedded Python Execution to run user-defined Python functions in Python engines spawned and managed by the database environment. The user-defined functions and
data are automatically loaded to the engines as required, and when data-parallel and task-parallel execution is enabled.

Advantages of Oracle Machine Learning for Python

Using OML4Py to prepare and analyze data in or accessible to an Oracle database has many advantages for a Python user.

With OML4Py, you can do the following:

- **Operate on database data without using SQL**
 OML4Py transparently translates many standard Python functions into SQL. With OML4Py, you can create Python proxy objects that access, analyze, and manipulate data that resides in the database. OML4Py can automatically optimize the SQL by taking advantage of column indexes, query optimization, table partitioning, and database parallelism.
 OML4Py overloaded functions are available for many commonly used Python functions, including those on Pandas data frames for in-database execution.

 See Also: [Transparently Convert Python to SQL]

- **Automate common machine learning tasks**
 By using Oracle’s advanced Automated Machine Learning (AutoML) technology, both data scientists and beginner machine learning users can automate common machine learning modeling tasks such as algorithm selection and feature selection, and model tuning and selection, all of which leverage the parallel processing and scalability of the database.

 See Also: [About Automated Machine Learning]

- **Minimize data movement**
 By keeping the data in the database whenever possible, you eliminate the time involved in transferring the data to your client Python engine and the need to store the data locally. You also eliminate the need to manage the locally stored data, which includes tasks such as distributing the data files to the appropriate locations, synchronizing the data with changes that are made in the production database, and so on.

 See Also: [About Moving Data Between the Database and a Python Session]

- **Keep data secure**
 By keeping the data in the database, you have the security, scalability, reliability, and backup features of the database for managing the data.

- **Use the power of the database**
 By operating directly on data in the database, you can use the memory and processing power of the database and avoid the memory constraints of your client Python engine.

- **Use current data**
 As data is refreshed in the database, you have immediate access to current data.

- **Save Python objects to a datastore in the database**
 You can save Python objects to an OML4Py datastore for future use and for use by others.
See Also: About OML4Py Datastores

- **Build and store models in the database**

 Using Embedded Python Execution, you can build native Python models and store and manage them in an OML4Py datastore.

 You can also build in-database models, with, for example, an `oml` class such as the Decision Tree class `oml.dt`. These in-database models have proxy objects that reference the actual models. Keeping with normal Python behavior, when the Python engine terminates, all in-memory objects, including models, are lost. To prevent an in-database model created using OML4Py from being deleted when the database connection is terminated, you must store its proxy object in a datastore.

 See Also: About Machine Learning Classes and Algorithms

- **Score data**

 For most of the OML4Py machine learning classes, you can use the `predict` and `predict_proba` methods of the model object to score new data.

 For these OML4Py in-database models, you can also use the SQL `PREDICTION` function on the model proxy objects, which scores directly in the database. You can use in-database models directly from SQL if you prepare the data properly. For open source models, you can use Embedded Python Execution and enable data-parallel execution for performance and scalability.

- **Run user-defined Python functions in embedded Python engines**

 Using OML4Py Embedded Python Execution, you can store user-defined Python functions in the OML4Py script repository, and run those functions in Python engines spawned by the database environment. When a user-defined Python function runs, the database starts, controls, and manages one or more Python engines that can run in parallel. With the Embedded Python Execution functionality, you can do the following:

 – Use a select set of Python packages in user-defined functions that run in embedded Python engines
 – Use other Python packages in user-defined Python functions that run in embedded Python engines
 – Operationalize user-defined Python functions for use in production applications and eliminate porting Python code and models into other languages; avoid reinventing code to integrate Python results into existing applications
 – Seamlessly leverage your Oracle database as a high-performance computing environment for user-defined Python functions, providing data parallelism and resource management
 – Perform parallel simulations, for example, Monte Carlo analysis, using the `oml.index_apply` function
 – Generate PNG images and XML representations of both structured and image data, which can be used by Python clients and SQL-based applications. PNG images and structured data can be used for Python clients and applications that use REST APIs.

 See Also: About Embedded Python Execution
Transparently Convert Python to SQL

With the transparency layer classes, you can convert select Python objects to Oracle database objects and also invoke a range of familiar Python functions that are overloaded to invoke the corresponding SQL on tables in the database.

The OML4Py transparency layer does the following:

- Contains functions that convert Python pandas.DataFrame objects to database tables
- Overloads Python functions, translating their functionality into SQL
- Leverages proxy objects for database data
- Uses familiar Python syntax to manipulate database data

The following table lists the transparency layer functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.create</td>
<td>Creates a table in a the database schema from a Python data set.</td>
</tr>
<tr>
<td>oml_object.pull</td>
<td>Creates a local Python object that contains a copy of data referenced by the oml object.</td>
</tr>
<tr>
<td>oml.push</td>
<td>Pushes data from a Python session into an object in a database schema.</td>
</tr>
<tr>
<td>oml.sync</td>
<td>Creates a DataFrame proxy object in Python that represents a database table or view.</td>
</tr>
<tr>
<td>oml.dir</td>
<td>Return the names of oml objects in the Python session workspace.</td>
</tr>
<tr>
<td>oml.drop</td>
<td>Drops a persistent database table or view.</td>
</tr>
</tbody>
</table>

Transparency layer proxy classes map SQL data types or objects to corresponding Python types. The classes provide Python functions and operators that are the same as those on the mapped Python types. The following table lists the transparency layer data type classes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.Boolean</td>
<td>A boolean series data class that represents a single column of 0, 1, and NULL values in database data.</td>
</tr>
<tr>
<td>oml.Bytes</td>
<td>A binary series data class that represents a single column of RAW or BLOB database data types.</td>
</tr>
<tr>
<td>oml.Float</td>
<td>A numeric series data class that represents a single column of NUMBER, BINARY_DOUBLE, or BINARY_FLOAT database data types.</td>
</tr>
<tr>
<td>oml.String</td>
<td>A character series data class that represents a single column of VARCHAR2, CHAR, or CLOB database data types.</td>
</tr>
</tbody>
</table>
The following table lists the mappings of OML4Py data types for both the reading and writing of data between Python and the database.

Table 1-3 Python and SQL Data Type Equivalencies

<table>
<thead>
<tr>
<th>Database Read</th>
<th>Python Data Types</th>
<th>Database Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Boolean</td>
<td>If ornumber == True, then NUMBER (the default), else BINARY_DOUBLE.</td>
</tr>
<tr>
<td>BLOB</td>
<td>bytes</td>
<td>BLOB</td>
</tr>
<tr>
<td>RAW</td>
<td></td>
<td>RAW</td>
</tr>
<tr>
<td>BINARY_DOUBLE</td>
<td>float</td>
<td>If ornumber == True, then NUMBER (the default), else BINARY_DOUBLE.</td>
</tr>
<tr>
<td>BINARY_FLOAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAR</td>
<td>str</td>
<td>CHAR</td>
</tr>
<tr>
<td>CLOB</td>
<td></td>
<td>CLOB</td>
</tr>
<tr>
<td>VARCHAR2</td>
<td></td>
<td>VARCHAR2</td>
</tr>
</tbody>
</table>

About the Python Components and Libraries in OML4Py

OML4Py requires an installation of Python, a number of Python libraries, as well as the OML4Py components.

- In Oracle Autonomous Database, OML4Py is already installed. The OML4Py installation includes Python, additional required Python libraries, and the OML4Py server components. A Python interpreter is included with Oracle Machine Learning Notebooks in Autonomous Database.
- You can install OML4Py in an on-premises Oracle Database. In this case, you must install Python, the additional required Python libraries, the OML4Py server components, and an OML4Py client. See Install OML4Py for On-Premises Databases.

Python Version in Current Release of OML4Py

The current release of OML4Py is based on Python 3.9.5.

This version is in the current release of Oracle Autonomous Database. You must install it manually when installing OML4Py on an on-premises Oracle Database.

Required Python Libraries

The following Python libraries must be included.

- cx_Oracle 8.1.0
- cycler 0.10.0
- joblib 1.1.0
- kiwisolver 1.1.0
- matplotlib 3.3.3
- numpy 1.21.5
- pandas 1.3.4
Pillow-8.2.0
pyparsing 2.4.0
python-dateutil 2.8.1
pytz 2019.3
scikit-learn 1.0.1
scipy 1.7.3
six 1.13.0
threadpoolctl 2.1.0

All the above libraries are included with Python in the current release of Oracle Autonomous Database.

For an installation of OML4Py in an on-premises Oracle Database, you must install Python and additionally the libraries listed here. See Install OML4Py for On-Premises Databases.
Install OML4Py Client for Linux for Use With Autonomous Database

You can install and use the OML4Py client for Linux to work with OML4Py in an Oracle Autonomous database.

OML4Py on premises runs on 64-bit platforms only. For supported platforms see OML4Py On Premises System Requirements.

The following instructions tell you how to download install Python, configure your environment, install manage your client credentials, install Oracle Instant Client, and install the OML4Py client:

1. Download the Python 3.9.5 source and untar it:

```bash
wget https://www.python.org/ftp/python/3.9.5/Python-3.9.5.tar.xz
```

```
tar xvf Python-3.9.5.tar.xz
```

2. OML4Py requires the presence of the `perl-Env`, `libffi-devel`, `openssl`, `openssl-devel`, `tk-devel`, `xz-devel`, `zlib-devel`, `bzip2-devel`, `readline-devel`, `libuuid-devel` and `ncurses-devel` libraries. Confirm that they exist and install any that are missing, as follows.

```bash
rpm -qa perl-Env
rpm -qa libffi-devel
rpm -qa openssl
rpm -qa openssl-devel
rpm -qa tk-devel
rpm -qa xz-devel
rpm -qa zlib-devel
rpm -qa bzip2-devel
rpm -qa readline-devel
rpm -qa libuuid-devel
rpm -qa ncurses-devel
```

If nothing is returned, install via yum:

```bash
sudo yum install perl-Env libffi-devel openssl openssl-devel tk-devel xz-devel zlib-devel bzip2-devel readline-devel libuuid-devel ncurses-devel
```

Note:

RPMs must be installed under sudo, or root.
3. To build Python, enter the following commands, where \texttt{PREFIX} is the directory in which you installed Python-3.9.5. Use \texttt{make altinstall} to avoid overriding the system default’s Python installation.

\begin{verbatim}
export PREFIX=`pwd`/Python-3.9.5
cd $PREFIX
./configure --prefix=$PREFIX --enable-shared
make clean; make
make altinstall
\end{verbatim}

4. Set environment variable \texttt{PYTHONHOME} and add it to your \texttt{PATH}, and set environment variable \texttt{LD_LIBRARY_PATH}:

\begin{verbatim}
export PYTHONHOME=$PREFIX
export PATH=$PYTHONHOME/bin:$PATH
export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH
\end{verbatim}

Create a symbolic link in your $PYTHONHOME/bin directory. You need to link it to your python3.9 executable, which you can do with the following commands:

\begin{verbatim}
cd $PYTHONHOME/bin
ln -s python3.9 python3
\end{verbatim}

You can now start Python with the \texttt{python3} script:

$ python3

\texttt{pip} will return warnings during package installation if the latest version is not installed. You can upgrade the version of \texttt{pip} to avoid these warnings:

\begin{verbatim}
python3 -m pip install --upgrade pip
\end{verbatim}

5. Install the Oracle Instant Client for Autonomous Database, as follows:

Download the Oracle Instant Client for your system. Go to the Oracle Instant Client Downloads page and select Instant Client for Linux x86-64. For more instruction see Install Oracle Instant Client for Linux for On-Premises Databases.

For instruction on installing the Oracle instant client for on-premises see Install OML4Py Client for On-Premises Databases.

If you have root access to install an RPM on the client system. Alternatively, you can also download the zip file installer, unzip the file, and add the location of the unzipped file to \texttt{LD_LIBRARY_PATH} as done in next section.

\begin{verbatim}
wget https://download.oracle.com/otn_software/linux/instantclient/1914000/oracle-instantclient19.14-basic-19.14.0.0.0-1.x86_64.rpm
rpm -ivh oracle-instantclient19.14-basic-19.14.0.0.0-1.x86_64.rpm
export LD_LIBRARY_PATH=/usr/lib/oracle/19.14/client64/lib:$LD_LIBRARY_PATH
\end{verbatim}
If you do not have root access to install an RPM on the client system.

```bash
wget https://download.oracle.com/otn_software/linux/instantclient/1914000/instantclient-basic-linux.x64-19.14.0.0.0dbru.zip
```

```bash
unzip instantclient-basic-linux.x64-19.14.0.0.0dbru.zip
export LD_LIBRARY_PATH=/path/to/instantclient_19_4:$LD_LIBRARY_PATH
```

6. Download the client credentials (wallet) from your Autonomous database. Create a directory for the Wallet contents. Unzip the wallet zip file to the newly created directory:

```bash
mkdir -p mywalletdir
unzip Wallet.name.zip -d mywalletdir
$ cd mywalletdir/
$ ls
README       ewallet.p12   ojdbc.properties  tnsnames.ora
cwallet.sso  keystore.jks  sqlnet.ora        truststore.jks
```

7. Update `sqlnet.ora` with the wallet location. If you're working behind a proxy firewall, set the `SQLNET.USE_HTTPS_PROXY` environment variable to `on`:

```bash
WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY="mywalletdir")))
SSL_SERVER_DN_MATCH=yes
SQLNET.USE_HTTPS_PROXY=on
```

8. Add proxy address information to all service levels in `tnsnames.ora`, and add the connection pools for all service levels. If you are behind a firewall, enter the proxy address and port number to all service levels in `tnsnames.ora`. You will also need to add three new entries for the AutoML connection pools as shown below.

```bash
Note:
If the proxy server contains a firewall to terminate connections within a set time period, the database connection will also be terminated.
```

For example, `myadb_medium_pool` is another alias for the connection string with `SERVER=POOLED` added to the corresponding one for `myadb_medium`.

```bash
myadb_low = (description=(retry_count=20)(retry_delay=3)
(address=(https_proxy=your proxy address here)(https_proxy_port=80)
(protocol=tcp)(port=1522)(host=adb.us-sanjose-1.oraclecloud.com))
(connect_data=(service_name=qtraya2braestch_myadb_medium.adb.oraclecloud.com)
```

Chapter 2
(security=(ssl_server_cert_dn="CN=adb.us-sanjose-1.oraclecloud.com,OU=Oracle ADB SANJOSE,O=Oracle Corporation,L=Redwood City,ST=California,C=US"))

myadb_medium = (description= (retry_count=20)(retry_delay=3) (address=(https_proxy=your proxy address here)(https_proxy_port=80) (protocol=tcps)(port=1522)(host=adb.us-sanjose-1.oraclecloud.com)) (connect_data=(service_name=qtraya2braestch_myadb_medium.adb.oraclecloud.com)) (security=(ssl_server_cert_dn="CN=adb.us-sanjose-1.oraclecloud.com,OU=Oracle ADB SANJOSE,O=Oracle Corporation,L=Redwood City,ST=California,C=US")))

myadb_high = (description= (retry_count=20)(retry_delay=3) (address=(https_proxy=your proxy address here)(https_proxy_port=80) (protocol=tcps)(port=1522)(host=adb.us-sanjose-1.oraclecloud.com)) (connect_data=(service_name=qtraya2braestch_myadb_medium.adb.oraclecloud.com)) (security=(ssl_server_cert_dn="CN=adb.us-sanjose-1.oraclecloud.com,OU=Oracle ADB SANJOSE,O=Oracle Corporation,L=Redwood City,ST=California,C=US")))

myadb_low_pool = (description= (retry_count=20)(retry_delay=3) (address=(https_proxy=your proxy address here)(https_proxy_port=80) (protocol=tcps)(port=1522)(host=adb.us-sanjose-1.oraclecloud.com)) (connect_data=(service_name=qtraya2braestch_myadb_medium.adb.oraclecloud.com)(SERVER=POOLED)) (security=(ssl_server_cert_dn="CN=adb.us-sanjose-1.oraclecloud.com,OU=Oracle ADB SANJOSE,O=Oracle Corporation,L=Redwood City,ST=California,C=US")))

myadb_medium_pool = (description= (retry_count=20)(retry_delay=3) (address=(https_proxy=your proxy address here)(https_proxy_port=80) (protocol=tcps)(port=1522)(host=adb.us-sanjose-1.oraclecloud.com)) (connect_data=(service_name=qtraya2braestch_myadb_medium.adb.oraclecloud.com)(SERVER=POOLED)) (security=(ssl_server_cert_dn="CN=adb.us-sanjose-1.oraclecloud.com,OU=Oracle ADB SANJOSE,O=Oracle Corporation,L=Redwood City,ST=California,C=US")))

myadb_high_pool = (description= (retry_count=20)(retry_delay=3) (address=(https_proxy=your proxy address here)(https_proxy_port=80) (protocol=tcps)(port=1522)(host=adb.us-sanjose-1.oraclecloud.com)) (connect_data=(service_name=qtraya2braestch_myadb_medium.adb.oraclecloud.com)(SERVER=POOLED)) (security=(ssl_server_cert_dn="CN=adb.us-sanjose-1.oraclecloud.com,OU=Oracle ADB SANJOSE,O=Oracle Corporation,L=Redwood City,ST=California,C=US")))

9. Set TNS_ADMIN environment variable to the wallet directory:

export TNS_ADMIN=mywalletdir

10. Install OML4Py library dependencies. The versions listed here are the versions Oracle has tested and supports:

 - pip3.9 install pandas==1.3.4
 - pip3.9 install scipy==1.7.3
 - pip3.9 install matplotlib==3.3.3
• pip3.9 install cx_Oracle==8.1.0

• pip3.9 install threadpoolctl==2.1.0

• pip3.9 install joblib==0.14.0

• pip3.9 install scikit-learn==1.0.1 --no-deps

• pip3.9 uninstall numpy

• pip3.9 install numpy==1.21.5

• Install OML4Py client:
 Download OML4Py client installation zip file, go to the Oracle Machine Learning for Python Downloads page on the Oracle Technology Network. For more instruction see Install OML4Py Client for Linux for On-Premises Databases

 unzip oml4py-client-linux-x86_64-1.0.zip

 $ perl -Iclient client/client.pl

 Oracle Machine Learning for Python 1.0 Client.

 Copyright (c) 2018, 2022 Oracle and/or its affiliates. All rights reserved.
 Checking platform Pass
 Checking Python Pass
 Checking dependencies Pass
 Checking OML4P version Pass
 Current configuration
 Python Version 3.9.5
 PYTHONHOME /opt/Python-3.9.5
 Existing OML4P module version None
 Operation Install/Upgrade

 Proceed? [yes]
 Processing ./client/oml-1.0-cp39-cp39-linux_x86_64.whl
 Installing collected packages: oml
 Successfully installed oml-1.0

 Done

• Start Python and load the oml library:

 $ python3
 >>> import oml

• Create a database connection. The OML client connects using the wallet. Set the dsn and automl arguments to the tnsnames alias in the wallet:
oml.connect(user="oml_user", password="oml_user_password", dsn="myadb_medium", automl="myadb_medium_pool")

To provide empty strings for the user and password parameters to connect without exposing your Oracle Machine Learning user credentials in clear text:

oml.connect(user="", password="", dsn="myadb_medium", automl="myadb_medium_pool")
Install OML4Py for On-Premises Databases

The following topics tell how to install and uninstall the server and client components required for using OML4Py with an on-premises Oracle Database.

Topics:
- OML4Py On Premises System Requirements
- Build and Install Python for Linux for On-Premises Databases
- Install the Required Supporting Packages for Linux for On-Premises Databases
- Install OML4Py Server for On-Premises Oracle Database
- Install OML4Py Client for On-Premises Databases

OML4Py On Premises System Requirements

OML4Py on premises runs on 64-bit platforms only. Both client and server on-premises components are supported on the Linux platforms listed in the table below.

Table 3-1 On-Premises OML4Py Platform Requirements

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Hardware Platform</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux x86-64 7.x</td>
<td>Intel</td>
<td>64-bit Oracle Linux Release 7</td>
</tr>
<tr>
<td>Oracle Linux x86-64 8.x</td>
<td></td>
<td>64-bit Oracle Linux Release 8</td>
</tr>
</tbody>
</table>

Table 3-2 On-Premises OML4Py Configuration Requirements and Server Support Matrix

<table>
<thead>
<tr>
<th>Oracle Machine Learning for Python Version</th>
<th>Python Version</th>
<th>On-Premises Oracle Database Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.9.5</td>
<td>19c, 21c</td>
</tr>
</tbody>
</table>

Build and Install Python for Linux for On-Premises Databases

Instructions for installing Python for Linux for an on-premises Oracle database.

Python 3.9.5 required to install and use OML4Py.

These steps describe building and installing Python 3.9.5 for Linux.
1. Go to the Python website and download the Gzipped source tarball. The downloaded file name is Python-3.9.5.tgz

   ```
   wget https://www.python.org/ftp/python/3.9.5/Python-3.9.5.tgz
   ```

2. Create a directory $ORACLE_HOME/python and extract the contents to this directory:

   ```
   mkdir -p $ORACLE_HOME/python
   tar -xvzf Python-3.9.5.tgz --strip-components=1 -C $ORACLE_HOME/python
   ```

 The contents of the Gzipped source tarball will be copied directly to $ORACLE_HOME/python

3. Go to the new directory:

   ```
   cd $ORACLE_HOME/python
   ```

4. OML4Py requires the presence of the perl-Env, libffi-devel, openssl, openssl1-devel, tk-devel, xz-devel, zlib-devel, bzip2-devel, readline-devel, libuuid-devel and ncurses-devel libraries. You can confirm that those libraries are present by issuing the following commands:

   ```
   rpm -qa perl-Env
   rpm -qa libffi-devel
   rpm -qa openssl
   rpm -qa openssl-devel
   rpm -qa tk-devel
   rpm -qa xz-devel
   rpm -qa zlib-devel
   rpm -qa bzip2-devel
   rpm -qa readline-devel
   rpm -qa libuuid-devel
   rpm -qa ncurses-devel
   ```

 If the libraries are present, then those commands should return messages such as the following. Depending on the version of Linux that you are using, such as version 7.3 or 7.5, the exact messages differ slightly.

   ```
   perl-Env-1.04-2.el7.noarch
   libffi-devel-3.0.13-19.el7.i686
   libffi-devel-3.0.13-19.el7.x86_64
   openssl1-devel-1.0.2k-19.0.1.el7.x86_64
   tk-devel-8.5.13-6.el7.i686
   xz-devel-5.2.2-1.el7.x86_64
   zlib-devel-1.2.7-17.el7.x86_64
   zlib-devel-1.2.7-17.el7.i686
   bzip2-devel-1.0.6-13.el7.x86_64
   bzip2-devel-1.0.6-13.el7.i686
   readline-devel-6.2-11.el7.i686
   readline-devel-6.2-11.el7.x86_64
   ```
libuuid-devel-2.23.2-61.e17_7.1.x86_64
ncurses-devel-5.9-14.20130511.e17_4.x86_64

The actual value returned depends on the version of Linux that you are using.
If no output is returned, then install the packages as sudo or root user.

```
sudo yum install perl-Env libffi-devel openssl openssl-devel tk-devel xz-devel zlib-devel bzip2-devel readline-devel libuuid-devel ncurses-devel
```

5. To build Python 3.9.5, enter the following commands, where PREFIX is the directory in which you installed Python-3.9.5. The command on the Oracle Machine Learning for Python server will be:

```
cd $ORACLE_HOME/python
./configure --enable-shared --prefix=$ORACLE_HOME/python
make clean; make
make altinstall
```

izador:
Be sure to use the --enable-shared flag if you are going to use Embedded Python Execution; otherwise, using an Embedded Python Execution function results in an extproc error.

Be sure to invoke make altinstall instead of make install to avoid overwriting the system Python.

6. Set environment variable PYTHONHOME and add it to your PATH, and set environment variable LD_LIBRARY_PATH:

```
export PYTHONHOME=$ORACLE_HOME/python
export PATH=$PYTHONHOME/bin:$PATH
export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH
```

pip will return warnings during package installation if the latest version is not installed.
You can upgrade the version of pip to avoid these warnings:

```
python3 -m pip install --upgrade pip
```

7. Create a symbolic link in your $ORACLE_HOME/python/bin directory to link to your python3.9 executable, which you can do with the following commands:

```
cd $ORACLE_HOME/python/bin
ln -s python3.9 python3
```
You can now start Python by running the command `python3`. To verify the directory where Python is installed, use the `sys.executable` command from the `sys` package. For example:

```
$ python3
Python 3.9.5 (default, Feb 22 2022, 15:13:36)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-44.0.3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> print(sys.executable)
/u01/app/oracle/product/19.3/dbhome_1/python/bin/python3
```

This returns the absolute path of the Python executable binary.

If you run the command `python3` and you get the error `command not found`, then that means the system cannot find an executable named `python3` in `$PYTHONHOME/bin`. A symlink is required for the OML4Py server installation components. So, in that case, you need to create a symbolic link in your `PREFIX/bin` directory to link to your `python3.9` executable as described in Step 6.

Install the Required Supporting Packages for Linux for On-Premises Databases

Both the OML4Py server and client installations for an on-premises Oracle database require that you also install a set of supporting Python packages, as described below.

Installing required packages on OML4Py client machine

The on-premises OML4Py client requires the following Python packages:

- `numpy 1.21.5`
- `pandas 1.3.4`
- `scipy 1.7.3`
- `cx_Oracle 8.1.0`
- `scikit-learn 1.0.1`
- `matplotlib 3.3.3`

Use `pip3.9` to install the supporting packages. For OML4Py client installation of all the packages, run the following command, specifying the package:

```
pip3.9 install packagename
```

These command installs the required packages:

```
pip3.9 install pandas==1.3.4
pip3.9 install scipy==1.7.3
pip3.9 install matplotlib==3.3.3
pip3.9 install cx_Oracle==8.1.0
pip3.9 install threadpoolctl==2.1.0
pip3.9 install joblib==0.14.0
pip3.9 install scikit-learn==1.0.1 --no-deps
```
pip3.9 uninstall numpy
pip3.9 install numpy==1.21.5

This command installs the `cx_Oracle` package using an example proxy server:

```
pip3.9 install cx_Oracle==8.1.0 --proxy="http://www-proxy.example.com:80"
```

![Note:]
The proxy server is only necessary if the user is behind a firewall.

Installing required packages on OML4Py server machine

On the OML4Py server machine, all these packages must be installed into `$ORACLE_HOME/oml4py/modules` so they can be detected by the Embedded Python Execution process. Run the following command, specifying the package and target directory, `$ORACLE_HOME/oml4py/modules`:

```
pip3.9 install packagename --target=$ORACLE_HOME/oml4py/modules
```

These command installs the required packages:

```
pip3.9 install pandas==1.3.4 --target=$ORACLE_HOME/oml4py/modules
pip3.9 install scipy==1.7.3 --target=$ORACLE_HOME/oml4py/modules
pip3.9 install matplotlib==3.3.3 --target=$ORACLE_HOME/oml4py/modules
pip3.9 install cx_Oracle==8.1.0 --target=$ORACLE_HOME/oml4py/modules
pip3.9 install threadpoolctl==2.1.0 --target=$ORACLE_HOME/oml4py/modules
pip3.9 install joblib==0.14.0 --target=$ORACLE_HOME/oml4py/modules
pip3.9 install scikit-learn==1.0.1 --no-deps --target=$ORACLE_HOME/oml4py/modules
pip3.9 uninstall numpy
pip3.9 install numpy==1.21.5 --target=$ORACLE_HOME/oml4py/modules
```

This command installs the `cx_Oracle` package using an example proxy server:

```
pip3.9 install cx_Oracle==8.1.0 --proxy="http://www-proxy.example.com:80" --target=$ORACLE_HOME/oml4py/modules
```

Verify the Package Installation

Load the packages below to ensure they have been installed successfully. Start Python and run the following commands:

```
$ python3
Python 3.9.5 (default, Feb 22 2022, 15:13:36)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-44.0.3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> import pandas
>>> import scipy
>>> import matplotlib
```
>>> import cx_Oracle
>>> import sklearn

If all the packages are installed successfully, then no errors are returned.

Install OML4Py Server for On-Premises Oracle Database

The following instructions tell how to install and uninstall the OML4Py server components for an on-premises Oracle Database.

- Install OML4Py Server for Linux for On-Premises Oracle Database 19c
- Install OML4Py Server for Linux for On-Premises Oracle Database 21c
- Verify OML4Py Client Installation for On-Premises Databases
- Grant Users the Required Privileges for On-Premises Database
- Create New Users for On-Premises Oracle Database
- Uninstall the OML4Py Client for On-Premises Databases

Install OML4Py Server for Linux for On-Premises Oracle Database 19c

Instructions for installing the OML4Py server for Linux for an on-premises Oracle Database 19c.

To install the OML4Py server for Linux for an on-premises Oracle database, run the server installation Perl script.

Prerequisites

To install the on-premises OML4Py server, the following are required:

- A connection to the internet.
- Python 3.9.5. For instructions on installing Python 3.9.5 see Build and Install Python for Linux for On-Premises Databases.
- OML4Py supporting packages. For instructions on installing the required supporting packages see Install the Required Supporting Packages for Linux for On-Premises Databases.
- Perl 5.8 or higher installed on your system.

Note:

Perl requires the presence of the perl-Env package.

- To verify if the perl-Env package exists on the system, type the command:

  ```bash
  rpm -qa perl-Env
  ```
If it is installed, the return value will contain the version of the perl-Env RPM installed on your system:

```bash
rpm -qa perl-Env
perl-Env-1.04-2.el7.noarch
```

If perl-Env is not installed on the system, there will be no return value, and you can install the package as root or sudo using the command:

```bash
yum install perl-Env
```

- Write permission on the directories to which you download and install the server components.

Download and Extract the Server Installation File

Download the on-premises OML4Py server installation file and extract its contents.

1. If the directory `oml4py` does not exist in the `$ORACLE_HOME` directory, then create it.

   ```bash
   mkdir $ORACLE_HOME/oml4py
   ```

2. Download the installation file for your system.

 a. Go to the Oracle Machine Learning for Python Downloads page on the Oracle Technology Network.

 b. Accept the license agreement and select Oracle Machine Learning for Python Downloads (v1.0).

 c. Select Oracle Machine Learning for Python Server Install for Oracle Database on Linux 64 bit.

 d. Save the file to the `$ORACLE_HOME/oml4py` directory.

3. To extract the installation file to `$ORACLE_HOME/oml4py` directory, use the command:

   ```bash
   unzip oml4py-server-linux-x86_64-1.0.zip -d $ORACLE_HOME/oml4py
   ```

 The files are extracted to the `$ORACLE_HOME/oml4py/server` subdirectory.

View the Optional Arguments to the Server Installation Perl Script

To view the optional arguments to the server installation script, change directories to the `$ORACLE_HOME/oml4py` directory.

Display the available installation options with the following command:

```bash
perl -Iserver server/server.pl --help
```

The command displays the following:

Oracle Machine Learning for Python 1.0 Server.

Copyright (c) 2018, 2022 Oracle and/or its affiliates. All rights reserved.
Usage: server.pl [OPTION]...
Install, upgrade, or uninstall OML4P Server.

-i, --install install or upgrade (default)
-u, --uninstall uninstall
-y never prompt
--ask interactive mode (default)
--pdb NAME PDB name
--perm PERM permanent tablespace to use for PYQSYS
--temp TEMP temporary tablespace to use for PYQSYS
--no-db do not configure the database; only install the
 oml module and libraries associated with
 Embedded Python Execution
--no-embed do not install the Embedded Python Execution
 component
--no-automl do not install the AutoML metamodels

By default, the installation script installs both the Embedded Python Execution and
AutoML components. If you do not want to install these components, then you can use
the --no-embed and/or the --no-automl flag.

If you do not specify a permanent tablespace or a temporary tablespace in the Perl
command, then the installation script prompts you for them.

If you only want to install the oml modules and Embedded Python Execution libraries
with no database configuration, use the --no-db flag. The --no-db flag is used when
OML4Py is installed in a database with multiple nodes, such as Oracle RAC. The
OML4Py server requires a complete database configuration on the first node, but the
oml module and Embedded Python Execution libraries must be installed on each
node.

Run the Server Installation Perl Script

The installation Perl script creates the PYQSYS schema and user. It uses the
permanent and temporary tablespaces that you specify to store OML4Py database
objects and tables and other server elements. The PYQSYS user is locked to protect
the system objects stored in the PYQSYS schema.

By default, the installation Perl script runs in interactive mode and installs the
Embedded Python Execution components.

1. You need to set the PYTHONPATH environment variable prior to running the server
 installation script so that Python can find the installed oml modules:

 export PYTHONPATH=$ORACLE_HOME/oml4py/modules

2. From the $ORACLE_HOME/oml4py directory, run the server installation script. The
 following command runs the script in interactive mode:

 $ perl -Iserver server/server.pl

 Enter temporary and permanent tablespaces for the PYQSYS user when the script
 prompts you for them.

3. When the installation script displays Proceed?, enter y or yes. The output of a
 successful installation is as follows:
bash-4.4$ perl -Iserver server/server.pl

Oracle Machine Learning for Python 1.0 Server.

Copyright (c) 2018, 2022 Oracle and/or its affiliates. All rights reserved.

Checking platform Pass
Checking ORACLE_HOME Pass
Checking ORACLE_SID Pass
Checking sqlplus Pass
Checking ORACLE instance Pass
Checking CDB/PDB Fail
 ERROR: cannot install OML4P in a root container
 PDB to use for OML4P installation [list]:
 ORCLPDB
 PDB to use for OML4P installation [list]: ORCLPDB
Checking CDB/PDB Pass
Checking OML4P Server Pass
Checking Python Pass
Checking module dependencies Pass
Checking Python libraries Pass
Checking OML4P version Pass

Choosing PYQSYS tablespaces
 PERMANENT tablespace to use for PYQSYS [list]:
 SYSTEM
 USERS
 PERMANENT tablespace to use for PYQSYS [list]: SYSTEM
 TEMPORARY tablespace to use for PYQSYS [list]: TEMP

Current configuration
 ORACLE_HOME /u01/app/oracle/product/19.3/dbhome_1
 ORACLE_SID orcl
 PDB ORCLPDB
 Python Version 3.9.5
 PYTHONHOME /opt/Python-3.9.5

 Existing OML4P data and code None
 Existing OML4P AutoML component .. None
 Existing OML4P embed component ... None
 Existing OML4P module version None

 PYQSYS PERMANENT tablespace SYSTEM
 PYQSYS TEMPORARY tablespace TEMP

 Operation Install/Upgrade

 Proceed? [yes]yes

 Copying embedded python libraries ... Pass
 Processing ./server/oml-1.0-cp39-cp39-linux_x86_64.whl
 Installing collected packages: oml
 Successfully installed oml-1.0
 Configuring the database Pass

 Done

An OML4Py user is a database user account that has privileges for performing machine
learning activities. To learn more about how to create a user for Oracle Machine learning
for python click Create New Users for On-Premises Oracle Database
Verify the Server Installation

You can verify the database configuration of OML4Py as oracle user by doing the following:

1. On the OML4Py server database instance, start SQL*Plus as the OML user logging into the PDB, in this example, PDB1.

 $ sqlplus oml_user/oml_user_password$PDB1

2. Run the following command:

 SELECT * FROM sys.pyq_config;

The expected output is as follows:

bash-4.4$ sqlplus / as sysdba;

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Jan 31 12:49:34 2022
Version 19.3.0.0.0

Copyright (c) 1982, 2019, Oracle. All rights reserved.

Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.3.0.0.0

SQL> alter session set container=PDB1;
Session altered.

SQL> select * from sys.pyq_config;

NAME---

VALUE---

PYTHONHOME /u01/app/oracle/product/19.3/dbhome_1/python

PYTHONPATH /u01/app/oracle/product/19.3/dbhome_1/oml4py/modules

VERSION
1.0

NAME---

VALUE---

PLATFORM
ODB
DSWLIST
oml.*;pandas.*;numpy.*;matplotlib.*;sklearn.*

3. To verify the installation of the OML4Py server for an on-premises database see Verify OML4Py Server Installation for On-Premises Database.

Install OML4Py Server for Linux for On-Premises Oracle Database 21c

Instructions for installing the OML4Py server for Linux for an on-premises Oracle Database 21c.

You can install OML4Py by using a Python script included in your 21c database or by using the Database Configuration Assistant (DBCA).

Install OML4Py By Using a Python Script

To install the on-premises OML4Py server, the following are required:

• A connection to the internet.
• Python 3.9.5. For instructions on installing Python 3.9.5 see Build and Install Python for Linux for On-Premises Databases.
• OML4Py supporting packages. For instructions on installing the required supporting packages see Install the Required Supporting Packages for Linux for On-Premises Databases.
• Perl 5.8 or higher installed on your system.

Note:
Perl requires the perl-Env package. You can install the package as root with the command yum install perl-Env.

To check for the existence of perl-Env, run the following command. The version will vary depending on your Operating System and version:

```
rpm -qa perl-Env
perl-Env-1.04-395.el8.noarch
```

• Write permission on the directories to which you download and install the server components.

Note:
The following environment variables must be set up.

• Set environment variables: Set PYTHONHOME and add it to your PATH
• Set ORACLE_HOME and add it to your PATH
• **Set LD_LIBRARY_PATH**

  ```
  export PYTHONHOME=/PREFIX
  export PATH=$PYTHONHOME/bin:$ORACLE_HOME/bin:$PATH
  export ORACLE_HOME=/ORACLE_HOME_HERE
  export LD_LIBRARY_PATH=$PYTHONHOME/lib:$ORACLE_HOME/lib:
  $LD_LIBRARY_PATH
  ```

To install the OML4Py server for Linux for an on-premises Oracle Database 21c, run the server installation Python script `pyqcfg.sql`.

1. At your operating system prompt, start SQL*Plus and log in to your Oracle pluggable database (PDB) directly.

2. Run the `pyqcfg.sql` script. The script is under `$ORACLE_HOME/oml4py/server`.

 To capture the log, spool the installation steps to an external file. The following example uses the PDB PDB1 and gives example values for the script arguments.

   ```
   $ sqlplus / as sysdba
   SQL> spool install.txt
   SQL> alter session set container=PDB1;
   SQL> ALTER PROFILE DEFAULT LIMIT PASSWORD_VERIFY_FUNCTION NULL;
   SQL> @$ORACLE_HOME/oml4py/server/pyqcfg.sql
   
   define permtbl_value = SYSAUX --> Specify a permanent tablespace  
   for the PYQSYS schema
   define temptbl_value = TEMP --> Specify a temporary tablespace
   define orahome_value = /u01/app/oracle/product/21.3.0.0/dbhome_1  
   > Specify the ORACLE_HOME directory
   define pythonhome = /opt/Python-3.9.5 --> Specify the PYTHON_HOME  
   directory
   ```

3. Open the `install.txt` file to see if any errors occurred.

Install OML4Py With the Database Configuration Assistant (DBCA)

You can install OML4Py by using DBCA. For complete instruction on using DBCA, see Database Configuration Assistant Command Reference for Silent Mode.

The basic syntax to install OML4Py is:

```
dbca -configureOML4PY
```

You can include the following parameters:

- `-oml4pyConfigTablespace` to configure the tablespace of the PYQSYS schema for OML4Py. The default tablespace is SYSAUX.
- `-enableOml4pyEmbeddedExecution` to enable the embedded Python component of Oracle Machine Learning for Python. The default value is `TRUE`.

3-12
Verify OML4Py Server Installation for On-Premises Database

Verify the installation of the OML4Py server and client components for an on-premises database.

1. In your local Python session, connect to the OML4Py server and invoke the same function by name. In the following example, replace the values for the parameters with those for your database.

```python
import oml
oml.connect(user='oml_user', password='oml_user_password', host='myhost', port=1521, sid='mysid')
```

2. Create a user-defined Python function and store it in the OML4Py script repository.

```python
oml.script.create("TEST", func='def func():return 1 + 1', overwrite=True)
```

3. Call the user-defined function, using the `oml.do_eval` function.

```python
res = oml.do_eval(func='TEST')
res
```

4. When you are finished testing, you can drop the test.

```python
oml.script.drop("TEST")
```

Grant Users the Required Privileges for On-Premises Database

Instructions for granting the privileges required for using OML4Py with an on-premises database.

To use OML4Py (OML4Py), a user must have certain database privileges. To store and manage user-defined Python functions in the OML4Py script repository, a user must also have the PYQADMIN database role.

User Privileges

After installing the OML4Py server on an on-premises Oracle database server, grant the following privileges to any OML4Py user.

- CREATE SESSION
- CREATE TABLE
- CREATE VIEW
- CREATE PROCEDURE
- CREATE MINING MODEL
- EXECUTE ON CTXSYS.CTX_DDL (required for using Oracle Text Processing capability in the algorithm classes in the `oml.algo` package)
To grant all of these privileges, on the on-premises Oracle database server start SQL as a database administrator and run the following SQL statement, where `oml_user` is the OML4Py user:

```
GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW, CREATE PROCEDURE, CREATE MINING MODEL, EXECUTE ON CTXSYS.CTX_DDL to oml_user;
```

Script Repository and Datastore Management

The OML4Py script repository stores user-defined Python functions that a user can invoke in an Embedded Python Execution function. An OML4Py datastore stores Python objects that can be used in subsequent Python sessions. A user-defined Python function in the script repository or a datastore can be available to any user or can be restricted for use by the owner only or by those granted access to it.

The OML4Py server installation script creates the PYQADMIN role in the database. A user must have that role to do the following:

- Store user-defined Python functions in the script repository.
- Drop user-defined Python function from the repository
- Grant or revoke permission to use a user-defined Python function in the script repository.
- Grant or revoke permission to use the objects in a datastore.

To grant this role to a user, on the on-premises Oracle database server start SQL as a database administrator and run the following SQL statement, where `oml_user` is your OML4Py user:

```
GRANT PYQADMIN to oml_user;
```

Create New Users for On-Premises Oracle Database

The `pyquser.sql` script is a convenient way to create a new OML4Py user for an on-premises database.

About the pyquser.sql Script

The `pyquser.sql` script is a component of the on-premises OML4Py server installation. The script is in the `server` directory of the installation. The `sysdba` privilege is required to run the script.

The `pyquser.sql` script grants the new user the required on-premises Oracle database privileges and, optionally, grants the PYQADMIN database role. The PYQADMIN role is required for creating and managing scripts in the OML4Py script repository for use in Embedded Python Execution.

The `pyquser.sql` script takes the following five positional arguments:

- Username
- User's permanent tablespace
- User's temporary tablespace
- Permanent tablespace quota
• PYQADMIN role

When you run the script, it prompts you for a password for the user.

Create a New User

To use the pyquser.sql script, go the server subdirectory of the directory that contains the extracted OML4Py server installation files. Run the script as a database administrator.

The following examples use SQL*Plus and the sysdba user to run the pyquser.sql script.

Example 3-1 Creating New Users

This example creates the user oml_user with the permanent tablespace USERS with an unlimited quota, the temporary tablespace TEMP, and grants the PYQADMIN role to the oml_user.

```
sqlplus / as sysdba
@pyquser.sql oml_user USERS TEMP unlimited pyqadmin
```

Enter value for password: <type your password>

For a pluggable database:

```
sqlplus / as sysdba
alter session set container=<PDBNAME>
@pyquser.sql oml_user USERS TEMP unlimited pyqadmin
```

The output is similar to the following:

```
SQL> @pyquser.sql oml_user USERS TEMP unlimited pyqadmin
Enter value for password: welcome1
old   1: create user &&1 identified by &password
new   1: create user oml_user identified by welcome1
old   2: default tablespace &&2
new   2: default tablespace USERS
old   3: temporary tablespace &&3
new   3: temporary tablespace TEMP
old   4: quota &&4 on &&2
new   4: quota unlimited on USERS
User created.
old   4:     'create procedure, create mining model to &&1';
new   4:     'create procedure, create mining model to pyquser';
old   6:   IF lower('&&5') = 'pyqadmin' THEN
new   6:   IF lower('pyqadmin') = 'pyqadmin' THEN
old   7:     execute immediate 'grant PYQADMIN to &&1';
new   7:     execute immediate 'grant PYQADMIN to pyquser';
```

PL/SQL procedure successfully completed.
This example creates the user oml_user2 with 20 megabyte quota on the USERS tablespace, the temporary tablespace TEMP, and without the PYQADMIN role.

```
sqlplus / as sysdba
@pyquser.sql oml_user2 USERS TEMP 20M FALSE
```

Enter value for password: <type your password>

Uninstall the OML4Py Server from an On-Premises Database 19c

Instructions for uninstalling the on-premises OML4Py server components from an on-premises Oracle Database 19c.

Uninstall the On-Premises OML4Py Server for Linux

To uninstall the on-premises OML4Py server for Linux, do the following:

1. Verify that the `PYTHONHOME` environment variable is set to the Python3.9 directory.

   ```
echo $PYTHONHOME
   
   echo $PYTHONPATH
   
   If it is not set to the proper directory, set it.
   
   export PYTHONPATH=$ORACLE_HOME/oml4py/modules
   
   3. Change directories to the directory containing the server installation zip file.

   cd $ORACLE_HOME/oml4py

   4. Run the server installation Perl script with the `-u` argument.

   perl -Iserver server/server.pl -u

   When the script displays Proceed?, enter y or yes.

Install OML4Py Client for On-Premises Databases

Instructions for installing and uninstalling the on-premises OML4Py client.

For instructions on installing the OML4Py client on Autonomous Database, see Install OML4Py Client for Linux for Use With Autonomous Database

Install Oracle Instant Client and the OML4Py Client for Linux

Instructions for installing Oracle Instant Client and the OML4Py client for Linux for an on-premises Oracle database.
To connect the OML4Py client for Linux to an on-premises Oracle database, you must have Oracle Instant Client installed on your local system.

Install Oracle Instant Client for Linux for On-Premises Databases

Instructions for installing Oracle Instant Client for Linux for use with an on-premises Oracle database.

The OML4Py client requires Oracle Instant Client to connect to an Oracle database. See the Oracle Support Note "Client / Server Interoperability Support Matrix for Different Oracle Versions (Doc ID 207303.1)".

To install Oracle Instant Client, the following are required:

- A connection to the internet.
- Write permission on the directory in which you are installing the client.

To install Oracle Instant Client, do the following:

1. Download the Oracle Instant Client for your system. Go to the Oracle Instant Client Downloads page and select Instant Client for Linux x86-64.
2. Locate the section for your version of Oracle Database. These instructions use the 19.14.0.0 version.
3. In the Base section, in the Download column, click the zip file for the Basic Package or Basic Light Package and save the file in an accessible directory on your system. These instructions use the directory /opt/oracle.
4. Go to the folder that you selected and unzip the package. For example:

   cd /opt/oracle
   unzip instantclient-basic-linux.x64-19.14.0.0.dbru.zip

   Extracting the package creates the subdirectory instantclient_19_14, which contains the Oracle Instant Client files.
5. The libaio package is also required. To see if libaio resides on the system run the following command.

   $ rpm -qa libaio
   libaio-0.3.112-1.el8.i686
   libaio-0.3.112-1.el8.x86_64

   The version will vary based on the Linux version. If nothing is returned from this command, then the libaio RPM is not installed on the target system.

   To install the libaio package with sudo or as the root user, run the following command:

   sudo yum install libaio

   Note:
   In some Linux distributions, this package is called libaio1.
6. Add the directory that contains the Oracle Instant Client files to the beginning of your `LD_LIBRARY_PATH` environment variable:

```bash
export LD_LIBRARY_PATH=/opt/oracle/instantclient_19_14:$LD_LIBRARY_PATH
```

Install OML4Py Client for Linux for On-Premises Databases

Instructions for installing the OML4Py client for Linux for use with an on-premises Oracle database.

Prerequisites

To download and install the on-premises OML4Py client, the following are required:

- A connection to the internet.
- Write permission on the directory in which you are installing the client.
- Perl 5.8 or higher installed on your system.
- Python 3.9.5. To know more about downloading and installing Python 3.9.5, see Build and Install Python for Linux for On-Premises Databases

To use the OML4Py client to connect to an on-premises Oracle database, the following are required:

- Oracle Instant Client must be installed on the client machine.
- The OML4Py server must be installed on the on-premises database server.

Download and Extract the OML4Py Client Installation File

To download and extract the OML4Py client installation file, do the following:

1. Download the client installation zip file.
   a. Go to the Oracle Machine Learning for Python Downloads page on the Oracle Technology Network.
   b. Accept the license agreement and select Oracle Machine Learning for Python Downloads (v1.0).
   c. Select Oracle Machine Learning for Python Client Install for Oracle Database on Linux 64 bit.
   d. Save the zip file to an accessible directory. These instructions use a directory named `oml4py`, but you can download the zip file to any location accessible to the user installing the `oml4py` client.

2. Go to the directory to which you downloaded the zip file and unzip the file.

```bash
cd oml4py
unzip oml4py-client-linux-x86_64-1.0.zip
```

The contents are extracted to a subdirectory named `client`, which contains these four files:

- `OML4PInstallShared.pm`
• oml-1.0-cp39-cp39-linux_x86_64.whl
• client.pl
• oml4py.ver

View the Optional Arguments to the Client Installation Perl Script

In the directory that contains the downloaded the installation zip file (oml4py in these instructions), run the client installation Perl script with the --help option to display the arguments to the client installation Perl script.

The following command displays the available installation options:

$ perl -Iclient client/client.pl --help

Oracle Machine Learning for Python 1.0 Client.

Copyright (c) 2018, 2022 Oracle and/or its affiliates. All rights reserved.
Usage: client.pl [OPTION]...
Install, upgrade, or uninstall OML4P Client.

-i, --install             install or upgrade (default)
-u, --uninstall           uninstall
-y                        never prompt
--ask                     interactive mode (default)
--no-embed                do not install embedded python functionality
--no-automl               do not install automl module
--no-deps                 turn off dependencies checking
--target <dir>            install client into <dir>

By default, the installation script installs the Embedded Python Execution and AutoML modules. If you don't want to install these modules, then you can use the --no-embed and --no-automl flags, respectively.

Also by default, the installation script checks for the existence and version of each of the supporting packages that the OML4Py client requires. If a required package is missing or does not meet the version requirement, the installation script displays an error message and exits. You can skip the dependency checking in the client installation by using the --no-deps flag. However, to use the oml module, you need to have installed acceptable versions of all of the supporting packages.

For a list of the required dependencies, see Install the Required Supporting Packages for Linux for On-Premises Databases.

Run the OML4Py Client Installation Script

To install the OML4Py client, do the following:

1. In the directory that contains the extracted client installation Perl script, run the script. The following command runs the Perl script in the current directory:

   $ perl -Iclient client/client.pl

Alternatively, the following command runs the Perl script with the target directory specified:

   perl -Iclient client/client.pl --target path_to_target_dir
The --target flag is optional, if you don’t want to install it to the current directory.

When the script displays Proceed?, enter y or yes.

If you use the --target <dir> argument to install the oml module to the specified directory, then add that location to environment variable PYTHONPATH so that Python can find the module:

```
export PYTHONPATH=path_to_target_dir
```

The command displays the following:

```
$ perl -Iclient client/client.pl
Oracle Machine Learning for Python 1.0 Client.
Copyright (c) 2018, 2022 Oracle and/or its affiliates. All rights reserved.
Checking platform Pass
Checking Python Pass
Checking dependencies Pass
Checking OML4P version Pass
Current configuration
 Python Version 3.9.5
 PYTHONHOME /opt/Python-3.9.5
 Existing OML4P module version None
 Operation Install/Upgrade
Proceed? [yes]
Processing ./client/oml-1.0-cp39-cp39-linux_x86_64.whl
Installing collected packages: oml
Successfully installed oml-1.0
```

2. To verify that oml modules are successfully installed and are ready to use, start Python and import oml. At the Linux prompt, enter python3.

```
python3
```

```
At the Python prompt, enter import oml
```

```
import oml
```

The output is similar to the following:

```
$ python3
Python 3.9.5 (default, Feb 23 2022, 17:12:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-44.0.3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import oml
```
In Python, after importing the oml module, you can display the directory in which the client is installed. At the Python prompt, enter:

```python
ome._path_
```

**Connect to the OML4Py Server**

Start Python, import `oml`, and create a connection to your OML4Py server using an appropriate password, hostname, and system identifier. The following example uses `oml_user` as the user and has example argument values. Replace the username and other argument values with the values for your user and database.

```python
import oml
oml.connect(user='oml_user', password='oml_user_password', host='myhost', port=1521, sid='mysid')
```

After connecting, you can run any of the examples in this publication. For example, you could run **Example 5-8**.

**Note:**

To use the Embedded Python Execution examples, you must have installed the OML4Py client with the Embedded Python Execution option enabled. To use the Automatic Machine Learning (AutoML) examples, you must specify a running connection pool on the server in the `automl` argument in an `oml.connect` invocation.

**Verify OML4Py Client Installation for On-Premises Databases**

Verify the installation of the OML4Py client components for an on-premises Oracle database.

1. In your local Python session, connect to the OML4Py server and invoke the same function by name. In the following example, replace the values for the parameters with those for your database.

```python
import oml
oml.connect(user='oml_user', password='oml_user_password', host='myhost', port=1521, sid='mysid')
```

2. Create a user-defined Python function and store it in the OML4Py script repository.

```python
oml.script.create("TEST", func='def func():return 1 + 1', overwrite=True)
```

3. Call the user-defined function, using the `oml.do_eval` function.

```python
res = oml.do_eval(func='TEST')
res
```
4. When you are finished testing, you can drop the test.

    oml.script.drop("TEST")

Uninstall the OML4Py Client for On-Premises Databases

Instructions for uninstalling the OML4Py client.

**Uninstall the On-Premises OML4Py Client for Linux**

To uninstall the on-premises OML4Py client for Linux, from the directory containing the client installation zip file, run the client installation Perl script with the `-u` argument:

    perl -Iclient client/client.pl -u

When the script displays *Proceed?*, enter `y` or `yes`.

If the client is successfully uninstalled, you'll see the following message:

    Uninstalling oml-1.0:
    Successfully uninstalled oml-1.0
Install OML4Py on Exadata

The following topics tell about OML4Py on Exadata and how to configure DCLI and install python, OML4Py across Exadata.

Topics:
- About Oracle Machine Learning for Python on Exadata
- Configure DCLI to install Python across Exadata compute nodes.

About Oracle Machine Learning for Python on Exadata

Exadata is an ideal platform for OML4Py. The parallel resources of Python computations in OML4Py take advantage of the massively parallel grid infrastructure of Exadata.

Note:

The version of OML4Py must be the same on the server and on each client computer. Also, the version of Python must be the same on the server and on each client computer. See table number 3-2 OML4Py On Premises System Requirements for supported configurations.

To install OML4Py on Exadata:

1. On all compute nodes:
   - Install Python
   - Verify and configure the environment
   - Install the OML4Py supporting packages
   - Install the OML4Py server components
2. On the first node only:
   - Install the OML4Py Server components including the database configuration.
   - Create an OML4Py user, if desired. Alternatively, configure an existing database user to use OML4Py. See Create New Users for On-Premises Oracle Database.

You can simplify the Python installation on Exadata by using the Distributed Command Line Interface (DCLI).

Configure DCLI to install Python across Exadata compute nodes.

Using Distributed Command Line Interface (DCLI) can simplify the installation of OML4Py on Exadata.
With DCLI, you can use a single command to install Python across multiple Exadata compute nodes. The following example shows the output of the DCLI help option, which explains the basic syntax of the utility.

**Example 4-1  DCLI Help Option Output**

```
$ dcli -h

Distributed Shell for Oracle Storage

This script executes commands on multiple cells in parallel threads. The cells are referenced by their domain name or ip address. Local files can be copied to cells and executed on cells. This tool does not support interactive sessions with host applications. Use of this tool assumes ssh is running on local host and cells. The -k option should be used initially to perform key exchange with cells. User may be prompted to acknowledge cell authenticity, and may be prompted for the remote user password. This -k step is serialized to prevent overlaid prompts. After -k option is used once, then subsequent commands to the same cells do not require -k and will not require passwords for that user from the host.

Command output (stdout and stderr) is collected and displayed after the copy and command execution has finished on all cells. Options allow this command output to be abbreviated.

Return values:
0 -- file or command was copied and executed successfully on all cells
1 -- one or more cells could not be reached or remote execution returned non-zero status.
2 -- An error prevented any command execution

Examples:
dcli -g mycells -k
dcli -c stds2s2,stds2s3 vmstat
dcli -g mycells cellcli -e alter iormplan active
dcli -g mycells -x reConfig.scl

Usage: dcli [options] [command]
```

Options:
- --version     show program's version number and exit
- --batchsize=MAXTHDS limit the number of target cells on which to run the command or file copy in parallel
- -c CELLS      comma-separated list of cells
- --ctimeout=CTIMEOUT Maximum time in seconds for initial cell connection
- -d DESTFILE   destination directory or file
- -f FILE       files to be copied
- -g GROUPFILE  file containing list of cells
- -h, --help    show help message and exit
- --hidestderr  hide stderr for remotely executed commands in ssh
Configure the Exadata environment to enable automatic authentication for DCLI on each compute node.

1. Generate an SSH public-private key for the root user. Execute the following command as root on any node:

   $ ssh-keygen -N '' -f /.ssh/id_dsa -t dsa

   This command generates public and private key files in the .ssh subdirectory of the home directory of the root user.

2. In a text editor, create a file that contains the names of all the compute nodes in the rack. Specify each node name on a separate line. For example, the nodes file for a 2-node cluster could contain entries like the following:

   $ cat nodes
   exadb01
   exadb02

3. Run the DCLI command with the -k option to establish SSH trust across all the nodes. The -k option causes DCLI to contact each node sequentially (not in parallel) and prompts you to enter the password for each node.

   $ dcli -t -g nodes -l root -k -s "\-o StrictHostkeyChecking=no"

   DCLI with -k establishes SSH Trust and User Equivalence. Subsequent DCLI commands will not prompt for passwords.

Install Python across Exadata compute nodes using DCLI

Instructions for installing Python across Exadata compute nodes using DCLI.
These steps describe building and installing Python for Exdata.

1. Go to the Python website and download the Python 3.9.5 XZ compressed source tarball and untar it. The downloaded file name is `Python-3.9.5.tar.xz`

   ```bash
 $ wget https://www.python.org/ftp/python/3.9.5/Python-3.9.5.tar.xz
 $ tar xvf Python-3.9.5.tar.xz
   ```

2. OML4Py requires the presence of the `perl-Env libffi-devel openssl openssl-devel tk-devel xz-devel zlib-devel bzip2-devel readline-devel` and `libuuid-devel` libraries. Install these libraries using the command:

   ```bash
 # dcli -t -g nodes -l root "yum -y install perl-Env libffi-devel openssl openssl-devel tk-devel xz-devel zlib-devel bzip2-devel readline-devel libuuid-devel"
   ```

3. Set the `PYTHONHOME` environment on each node:

   ```bash
 # dcli -t -g nodes -l oracle "export PYTHONHOME=$ORACLE_HOME/python; export PATH=$ORACLE_HOME/python/bin:$PATH; export LD_LIBRARY_PATH=$ORACLE_HOME/python/lib:$LD_LIBRARY_PATH; export PIP_REQUIRE_VIRTUALENV=false"
 # dcli -t -g nodes -l oracle "tar xvfz $ORACLE_HOME/Python-3.9.5.tar.xz -C $ORACLE_HOME/python"
 # dcli -t -g nodes -l oracle "cd $ORACLE_HOME/python; ./configure --enable-shared --prefix=$ORACLE_HOME/python"
 # dcli -t -g nodes -l oracle "cd $ORACLE_HOME/python; make clean; make"
 # dcli -t -g nodes -l oracle "cd $ORACLE_HOME/python; make altinstall"
   ```

4. Create a symbolic link in your `$PYTHONHOME/bin` directory. You need to link it to your python3.9 executable, which you can do with the following commands:

   ```bash
 # dcli -t -g nodes -l oracle "cd $PYTHONHOME/bin"
 # dcli -t -g nodes -l oracle "ln -s python3.9 python3"
   ```

5. Set environment variable `PYTHONHOME` and add it to your `PATH`, and set environment variable `LD_LIBRARY_PATH`:

   ```bash
 # dcli -t -g nodes -l oracle "export PYTHONHOME=$ORACLE_HOME/python"
 # dcli -t -g nodes -l oracle "export PATH=$PYTHONHOME/bin:$PATH"
 # dcli -t -g nodes -l oracle "export LD_LIBRARY_PATH=$PYTHONHOME/lib:$LD_LIBRARY_PATH"
 # dcli -t -g nodes -l oracle "export PIP_REQUIRE_VIRTUALENV=false"
   ```

6. You can now start Python by running the command `python3`. For example:

   ```bash
 # dcli -t -g nodes -l oracle "python3"
 exadb01: Python 3.9.5 (default, Feb 10 2022, 14:38:12)```
Install OML4Py across Exadata compute nodes using DCLI

Instructions for installing OML4Py across Exadata compute nodes using DCLI.

To install OML4Py on Exadata using DCLI, follow the steps:

1. First install the OML4Py supporting packages to $ORACLE_HOME/oml4py/modules on each node. The OML4Py supporting packages must be installed individually on each compute node. DCLI cannot be used because it uses the system default Python and cause conflicts with the Python installed for use with OML4Py.

 $ pip3.9 install pandas==1.3.4 --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 install scipy==1.6.0 --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 install matplotlib==3.3.3 --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 install cx_Oracle==8.1.0 --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 install threadpoolctl==2.0.0 --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 install scikit-learn==1.0.1 --no-deps --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 install joblib==0.14.0 --target=$ORACLE_HOME/oml4py/modules
 $ pip3.9 uninstall numpy
 $ pip3.9 install numpy==1.21.5 --target=$ORACLE_HOME/oml4py/modules

2. Set the PYTHONPATH environment variable to the location of the OML4Py modules:

 $ export PYTHONPATH=$ORACLE_HOME/oml4py/modules

3. Download the installation file for your system.
 a. Go to the Oracle Machine Learning for Python Downloads page on the Oracle Technology Network.
 b. Accept the license agreement and select Oracle Machine Learning for Python Downloads (v1.0).
 c. Select Oracle Machine Learning for Python Server Install for Oracle Database on Linux 64 bit.
 d. Save the file to the $ORACLE_HOME/oml4py directory.

To extract the installation file to $ORACLE_HOME/oml4py directory, use the command:

 $ unzip oml4py-server-linux-x86_64-1.0.zip -d $ORACLE_HOME/oml4py

The files are extracted to the $ORACLE_HOME/oml4py/server subdirectory.
4. On the first node, from the $ORACLE_HOME/oml4py directory, run the server installation script. The following command runs the script in interactive mode:

```
$ perl -Iserver server/server.pl
```

To run the server script in non-interactive mode, pass the parameters for the pluggable database, and permanent and temporary tablespaces to the script:

```
$ perl -Iserver server/server.pl -y --pdb PDB11 --perm SYSTEM --temp TEMP
```

Run the server script with the --no-db flag on all remaining compute nodes. This sets up the OML4Py server configuration and skips the database configuration steps already performed on the first node:

```
$ perl -Iserver server/server.pl --no-db
```
5

Get Started with Oracle Machine Learning for Python

Learn how to use OML4Py in Oracle Machine Learning Notebooks and how to move data between the local Python session and the database.

These actions are described in the following topics.

• Use OML4Py with Oracle Autonomous Database
• Use OML4Py with an On-Premises Oracle Database
• Move Data Between the Database and a Python Session
• Save Python Objects in the Database

Use OML4Py with Oracle Autonomous Database

OML4Py is available through the Python interpreter in Oracle Machine Learning Notebooks in Oracle Autonomous Database.

For more information, see Get Started with Notebooks for Data Analysis and Data Visualization in Using Oracle Machine Learning Notebooks.

Use OML4Py with an On-Premises Oracle Database

After the OML4Py server and client components have been installed on your on-premises Oracle database server and you have installed the OML4Py client on your local system, you can connect your client Python session to the OML4Py server.

To connect an OML4Py client to an on-premises Oracle database, you first import the oml module and then connect as described in the following topics.

About Connecting to an On-Premises Oracle Database

OML4Py client components connect a Python session to the OML4Py server components on an on-premises Oracle database server.

The connection makes the data in an on-premises Oracle database schema available to the Python user. It also makes the processing power, memory, and storage capacities of the database server available to the Python session through the OML4Py client interface. To use that data and those capabilities, you must create a connection to the Oracle database server.

To use the Automatic Machine Learning (AutoML) capabilities of OML4Py, the following must be true:

• A connection pool must be running on the server.
• You must explicitly use the automl argument in an oml.connect invocation to specify the running connection pool on the server.
Note:

Before you can create an AutoML connection, a database administrator must first activate the database-resident connection pool in your on-premises Oracle database by issuing the following SQL statement:
EXECUTE DBMS_CONNECTION_POOL.START_POOL();

Once started, the connection pool remains in this state until a database administrator explicitly stops it by issuing the following command:
EXECUTE DBMS_CONNECTION_POOL.STOP_POOL();

Note:

Because an AutoML connection requires more database resources than an oml.connect connection without AutoML does, you should create an AutoML connection only if you are going to use the AutoML classes.

Note:

• Only one type of connection can be active during a Python session: either a connection with AutoML enabled or one without it enabled. You can, however, terminate one type of connection and initiate the other type during the same Python session. Terminating either type of connection results in the automatic clean up of any temporary objects created in the session during that connection.

If you want to save any objects that you created in one type of connection before changing to the other type, then save the objects in an OML4Py datastore before invoking oml.connect again. You can then reload the objects after reconnecting.

• The oml.connect function uses the cx_Oracle Python package for database connectivity. In some cases, you might want to use the cx_Oracle.connect function of that package to connect to a database. That function has advantages such as the following:
 – Allows multiple connections to a multiple databases, which might be useful in an running Embedded Python Execution functions
 – Permits some SQL data manipulation language (DML) operations that are not available in an oml.connect connection

For information on the cx_Oracle.connect function, see Connecting to Oracle Database in the cx_Oracle documentation.

OML4Py Connection Functions

The OML4Py functions related to database connections are the following.
Table 5-1 Connection Functions for OML4Py

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.connect</td>
<td>Establishes an OML4Py connection to an Oracle database.</td>
</tr>
<tr>
<td>oml.disconnect</td>
<td>Terminates the Oracle database connection.</td>
</tr>
<tr>
<td>oml.isconnected</td>
<td>Indicates whether an active Oracle database connection exists.</td>
</tr>
<tr>
<td>oml.check_embed</td>
<td>Indicates whether Embedded Python Execution is enabled in the connected Oracle database.</td>
</tr>
</tbody>
</table>

About Oracle Wallets

An Oracle wallet is a secure software container that stores authentication and signing credentials for an Oracle Database.

You can create an OML4Py connection to an Oracle Database instance by specifying an Oracle wallet. For instructions on creating an Oracle wallet, see Managing the Secure External Password Store for Password Credentials in *Oracle Database Security Guide*.

The Oracle wallet must contain a credential that specifies a *tnsnames.ora* entry such as the following:

```python
waltcon = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=myhost)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=myserv.example.com)))
```

To be able to use an Oracle wallet to create an OML4Py connection in which you can use Automatic Machine Learning (AutoML), the wallet must also have a credential that has a *tnsnames.ora* entry for a server connection pool such as the following:

```python
waltcon_pool = (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp)(HOST=myhost)
(PORT=1521))(CONNECT_DATA=(SID=mysid)(SERVER=pooled)))
```

Note:

Before you can create an AutoML connection, a database administrator must first activate the database-resident connection pool in your on-premises Oracle database by issuing the following SQL statement:

```sql
EXECUTE DBMS_CONNECTION_POOL.START_POOL();
```

Once started, the connection pool remains in this state until a database administrator explicitly stops it by issuing the following command:

```sql
EXECUTE DBMS_CONNECTION_POOL.STOP_POOL();
```

For examples of creating a connection using an Oracle wallet, see Example 5-6 and Example 5-7.
Connect to an Oracle Database

Establish an OML4Py connection to an on-premises Oracle database with oml.connect.

The oml.connect function establishes a connection to the user’s schema in an on-premises Oracle database.

The syntax of the oml.connect function is the following.

oml.connect(user=None, password=None, host=None, port=None, sid=None, service_name=None, dsn=None, encoding='UTF-8', nencoding='UTF-8', automl=None)

To create a basic connection to the database, you can specify arguments to the oml.connect function in the following mutually exclusive combinations:

- user, password, dsn
- user, password, host, port, sid
- user, password, host, port, service_name

The arguments specify the following values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>A string specifying a username.</td>
</tr>
<tr>
<td>password</td>
<td>A string specifying the password for the user.</td>
</tr>
<tr>
<td>host</td>
<td>A string specifying the name of the host machine on which the OML4Py server is installed.</td>
</tr>
<tr>
<td>port</td>
<td>An int or a string specifying the Oracle database port number on the host machine.</td>
</tr>
<tr>
<td>sid</td>
<td>A string specifying the system identifier (SID) of the Oracle database.</td>
</tr>
<tr>
<td>service_name</td>
<td>A string specifying the service name of the Oracle database.</td>
</tr>
<tr>
<td>dsn</td>
<td>A string specifying a data source name, which can be a TNS entry for the database or a TNS alias in an Oracle Wallet.</td>
</tr>
<tr>
<td>encoding</td>
<td>A string specifying the encoding to use for regular database strings.</td>
</tr>
<tr>
<td>nencoding</td>
<td>A string specifying the encoding to use for national character set database strings.</td>
</tr>
<tr>
<td>automl</td>
<td>A string or a boolean specifying whether to enable an Automatic Machine Learning (AutoML) connection, which uses the database-resident connection pool. If there is a connection pool running for a host, port, SID (or service name), then you can specify that host, port, SID (or service name) and automl=True. If the dsn argument is a data source name, then the automl argument must be a data source name for a running connection pool. If the dsn argument is a TNS alias, then the automl argument must be a TNS alias for a connection pool specified in an Oracle Wallet.</td>
</tr>
</tbody>
</table>
To use the AutoML capabilities of OML4Py, the following must be true:

- A connection pool must be running on the server.
- You must explicitly use the `automl` argument in an `oml.connect` invocation to specify the running connection pool on the server.

Note:

Before you can create an AutoML connection, a database administrator must first activate the database-resident connection pool in your on-premises Oracle database by issuing the following SQL statement:

```sql
EXECUTE DBMS_CONNECTION_POOL.START_POOL();
```

Once started, the connection pool remains in this state until a database administrator explicitly stops it by issuing the following command:

```sql
EXECUTE DBMS_CONNECTION_POOL.STOP_POOL();
```

Only one active OML4Py connection can exist at a time during a Python session. If you call `oml.connect` when an active connection already exists, then the `oml.disconnect` function is implicitly invoked, any temporary objects that you created in the previous session are discarded, and the new connection is established. Before attempting to connect, you can discover whether an active connection exists by using the `oml.isconnected` function.

You explicitly end a connection with the `oml.disconnect` function. If you do not invoke `oml.disconnect`, then the connection is automatically terminated when the Python session ends.

Examples

In the following examples, the values of the some of the arguments to the `oml.connect` function are string variables that are not declared in the example. To use any of the following examples, replace the username, password, port, and variable argument values with the values for your user and database.

Example 5-1 Connecting with a Host, Port, and SID

This example uses the `host`, `port`, and `sid` arguments. It also shows the use of the `oml.isconnected`, `oml.check_embed`, and `oml.disconnect` functions.

```python
import oml

oml.connect(user='oml_user', password='oml_user_password', host='myhost',
             port=1521, sid='mysid')

# Verify that the connection exists.
oml.isconnected()

# Find out whether Embedded Python Execution is enabled in the
# database instance.
oml.check_embed()

# Disconnect from the database.
oml.disconnect()
```
Verify that the connection has been terminated.
oml.isconnected()

Listing for This Example

```python
g>>> import oml
g>>> oml.connect(user='oml_user', password='oml_user_password',
host='myhost',
    port=1521, sid='mysid')
g>>> # Verify that the connection exists.
    ... oml.isconnected()
    True
g>>> # Find out whether Embedded Python Execution is enabled in the
    ... # database instance.
    ... oml.check_embed()
    True
g>>> # Disconnect from the database.
    ... oml.disconnect()

g>>> # Verify that the connection has been terminated.
    ... oml.isconnected()
    False
```

Example 5-2 Connecting with Host, Port, and Service Name

This example uses the `host`, `port`, and `service_name` arguments.

```python
import oml

oml.connect(user='oml_user', password='oml_user_password',
host='myhost',
    port=1521, service_name='myservice')
```

Example 5-3 Connecting with a DSN Containing a SID

This example uses the `dsn` argument to specify a SID.

```python
import oml

mydsn = "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=myhost)(PORT=1521))\n   (CONNECT_DATA=(SID=mysid)))"
    oml.connect(user='oml_user', password='oml_user_password', dsn=mydsn)
```
Example 5-4 Connecting with a DSN Containing a Service Name

This example uses the dsn argument to specify a service name.

```python
import oml

myinst = "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=myhost)\(PORT=1521))\(CONNECT_DATA=(SERVICE_NAME=myservice.example.com))))"

oml.connect(user='oml_user', password='oml_user_password', dsn=myinst)
```

Example 5-5 Creating a Connection with a DSN and with AutoML Enabled

This example creates an OML4Py connection with AutoML enabled. The example connects to a local database.

```python
import oml

mydsn = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=myhost)\(PORT=1521))\(CONNECT_DATA=(SID=mysid))))"

dsn_pool = "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=myhost)\(PORT=1521))\(CONNECT_DATA=(SERVICE_NAME=myservice.example.com)\SERVER=POOLED))))"

oml.connect(user='oml_user', password='oml_user_password', dsn=mydsn, automl=dsn_pool)

# Verify that the connection exists and that AutoML is enabled.
# oml.isconnected(check_automl=True)
```

Example 5-6 Connecting with an Oracle Wallet

This example creates a connection using the dsn argument to specify an Oracle wallet. The dsn value, waltcon in the example, must refer to the alias in the database tnsnames.ora file that was used to create the appropriate credential in the wallet.

```python
import oml

oml.connect(user='', password='', dsn='waltcon')
```

See Also:

About Oracle Wallets

Example 5-7 Connecting with an Oracle Wallet with AutoML Enabled

This example connects using an Oracle wallet to establish a connection with AutoML enabled by using the dsn and automl arguments. The example then verifies that the connection has AutoML enabled. The dsn and automl values, waltcon and waltcon_pool in the example,
must refer to aliases in the database tnsnames.ora file that were used to create the appropriate credentials in the wallet.

import oml

oml.connect(user='', password='', dsn='waltcon', automl='waltcon_pool')
oml.isconnected(check_automl=True)

Move Data Between the Database and a Python Session

With OML4Py functions, you can interact with data structures in a database schema. In your Python session, you can move data to and from the database and create temporary or persistent database tables. The OML4Py functions that perform these actions are described in the following topics.

- About Moving Data Between the Database and a Python Session
- Push Local Python Data to the Database
- Pull Data from the Database to a Local Python Session
- Create a Python Proxy Object for a Database Object
- Create a Persistent Database Table from a Python Data Set

About Moving Data Between the Database and a Python Session

Using the functions described in this topic, you can move data between the your local Python session and an Oracle database schema.

The following functions create proxy oml Python objects from database objects, create database tables from Python objects, list the objects in the workspace, and drop tables and views.

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.create</td>
<td>Creates a persistent database table from a Python data set.</td>
</tr>
<tr>
<td>oml.cursor</td>
<td>Returns a cx_Oracle cursor object for the current OML4Py database connection.</td>
</tr>
<tr>
<td>oml.dir</td>
<td>Returns the names of the oml objects in the workspace.</td>
</tr>
<tr>
<td>oml.drop</td>
<td>Drops a persistent database table or view.</td>
</tr>
<tr>
<td>oml_object.pull</td>
<td>Creates a local Python object that contains a copy of the database data referenced by the oml object.</td>
</tr>
<tr>
<td>oml.push</td>
<td>Pushes data from the OML Notebooks Python session memory into a temporary table in the database.</td>
</tr>
<tr>
<td>oml.sync</td>
<td>Creates an oml.DataFrame proxy object in Python that represents a database table, view, or query.</td>
</tr>
</tbody>
</table>

With the oml.push function, you can create a temporary database table, and its corresponding proxy oml.DataFrame object, from a Python object in your local Python session. The temporary table is automatically deleted when the OML Notebook or OML4Py client connection to the database ends unless you have saved its proxy object to a datastore before disconnecting.
With the `pull` method of an `oml` object, you can create a local Python object that contains a copy of the database data represented by an `oml` proxy object.

The `oml.push` function implicitly coerces Python data types to `oml` data types and the `pull` method on `oml` objects coerces `oml` data types to Python data types.

With the `oml.create` function, you can create a persistent database table and a corresponding `oml.DataFrame` proxy object from a Python data set.

With the `oml.sync` function, you can synchronize the metadata of a database table or view with the `oml` object representing the database object.

With the `oml.cursor` function, you can create a `cx_Oracle` cursor object for the current database connection. You can use the `cursor` to run queries against the database, as shown in Example 5-13.

Push Local Python Data to the Database

Use the `oml.push` function to push data from your local Python session to a temporary table in your Oracle database schema.

The `oml.push` function creates a temporary table in the user’s database schema and inserts data into the table. It also creates and returns a corresponding proxy `oml.DataFrame` object that references the table in the Python session. The table exists as long as an `oml` object exists that references it, either in the Python session memory or in an OML4Py datastore.

The syntax of the `oml.push` function is the following:

```python
oml.push(x, oranumber=True, dbtypes=None)
```

The `x` argument may be a `pandas.DataFrame` or a list of tuples of equal size that contain the data for the table. For a list of tuples, each tuple represents a row in the table and the column names are set to COL1, COL2, and so on.

The SQL data types of the columns are determined by the following:

- OML4Py determines default column types by looking at 20 random rows sampled from the table. For tables with less than 20 rows, it uses all rows in determining the column type.

 If the values in a column are all `None`, or if a column has inconsistent data types that are not `None` in the sampled rows, then a default column type cannot be determined and a `ValueError` is raised unless a SQL type for the column is specified by the `dbtypes` argument.

- For numeric columns, the `oranumber` argument, which is a `bool`, determines the SQL data type. If `True` (the default), then the SQL data type is `NUMBER`. If `False`, then the data type is `BINARY_DOUBLE`.

 If the data in `x` contains `NaN` values, then you should set `oranumber` to `False`.

- For string columns, the default type is `VARCHAR2(4000)`.

- For bytes columns, the default type is `BLOB`.

With the `dbtypes` argument, you can specify the SQL data types for the table columns. The values of `dbtypes` may be either a `dict` that maps `str` to `str` values or a list of `str` values. For a `dict`, the keys are the names of the columns.
Example 5-8 Pushing Data to a Database Table

This example creates \texttt{pd_df}, a \texttt{pandas.core.frame.DataFrame} object with columns of various data types. It pushes \texttt{pd_df} to a temporary database table, which creates the \texttt{oml_df} object, which references the table. It then pulls the data from the \texttt{oml_df} object to the \texttt{df} object in local memory.

```python
import oml
import pandas as pd

pd\_df = pd.DataFrame({'numeric': [1, 1.4, -4, 3.145, 5, None],
                      'string': [None, None, 'a', 'a', 'a', 'b'],
                      'bytes': [b'a', b'b', b'c', b'c', b'd', b'e']})

# Push the data set to a database table with the specified dbtypes
# for each column.
oml\_df = oml.push(pd\_df, dbtypes = {'numeric': 'BINARY\_DOUBLE',
                      'string':'CHAR(1)',
                      'bytes':'RAW(1)'}

# Display the data type of oml\_df.
type(oml\_df)

# Pull the data from oml\_df into local memory.
df = oml\_df.pull()

# Display the data type of df.
type(df)

# Create a list of tuples.
lst = [(1, None, b'a'), (1.4, None, b'b'), (-4, 'a', b'c'),
       (3.145, 'a', b'c'), (5, 'a', b'd'), (None, 'b', b'e')]

# Create an oml.DataFrame using the list.
oml\_df2 = oml.push(lst, dbtypes = ['BINARY\_DOUBLE','CHAR(1)','RAW(1)'])

type(oml\_df2)
```

Listing for This Example

```python
>>> import oml
>>> import pandas as pd

>>> pd\_df = pd.DataFrame({
                           'numeric': [1, 1.4, -4, 3.145, 5, None],
                           ...  
                           'string': [None, None, 'a', 'a', 'a', 'b'],
                           ...  
                           'bytes': [b'a', b'b', b'c', b'c', b'd', b'e']})

>>> # Push the data set to a database table with the specified dbtypes
>>> # for each column.
... oml\_df = oml.push(pd\_df, dbtypes = {'numeric': 'BINARY\_DOUBLE',
... `string':'CHAR(1)',
... `bytes':'RAW(1)'}
```
```python
>>> # Display the data type of oml_df.
... type(oml_df)
<class 'oml.core.frame.DataFrame'>

>>> # Pull the data from oml_df into local memory.
... df = oml_df.pull()

>>> # Display the data type of df.
... type(df)
<class 'pandas.core.frame.DataFrame'>

>>> # Create a list of tuples.
... lst = [(1, None, b'a'), (1.4, None, b'b'), (-4, 'a', b'c'),
...        (3.145, 'a', b'c'), (5, 'a', b'd'), (None, 'b', b'e')]

>>> # Create an oml.DataFrame using the list.
... oml_df2 = oml.push(lst, dbtypes = ['BINARY_DOUBLE','CHAR(1)','RAW(1)'])

>>> type(oml_df2)
<class 'oml.core.frame.DataFrame'>

Pull Data from the Database to a Local Python Session

Use the pull method of an oml proxy object to create a Python object in your local Python session.

The pull method of an oml object returns a Python object of the same type. The object contains a copy of the database data referenced by the oml object. The Python object exists in-memory in the Python session in OML Notebooks or in your OML4Py client Python session.

**Note:**
You can pull data to a local pandas.DataFrame only if the data can fit into the local Python session memory. Also, even if the data fits in memory but is still very large, you may not be able to perform many, or any, Python functions in the local Python session.

**Example 5-9  Pulling Data into Local Memory**

This example loads the iris data set and creates the IRIS database table and the oml_iris proxy object that references that table. It displays the type of the oml_iris object, then pulls the data from it to the iris object in local memory and displays its type.

```python
import oml
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()

oml_iris = oml.create(iris, table = 'IRIS')
```
Create a Python Proxy Object for a Database Object

Use the `oml.sync` function to create a Python object as a proxy for a database table, view, or SQL statement.

The `oml.sync` function returns an `oml.DataFrame` object or a dictionary of `oml.DataFrame` objects. The `oml.DataFrame` object returned by `oml.sync` is a proxy for the database object.

You can use the proxy `oml.DataFrame` object to select data from the table. When you run a Python function that selects data from the table, the function returns the current data from the database object. However, if some application has added a column to the table, or has otherwise changed the metadata of the database object, the `oml.DataFrame` proxy object does not reflect such a change until you again invoke `oml.sync` for the database object.
To conserve memory resources and save time, you should only create proxies for the tables that you want to use in your Python session.

You can use the `oml.dir` function to list the `oml.DataFrame` proxy objects in the environment for a schema.

The syntax of the `oml.sync` function is the following:

```python
oml.sync(schema=None, regex_match=False, table=None, view=None, query=None)
```

With the `schema` argument, you can specify the schema in which to create a Python environment and proxy objects. Only one environment for a given database schema can exist at a time. If `schema=None`, then objects are created in the current user's schema.

To create an `oml.DataFrame` object for a table, use the `table` parameter. To create one for a view, use the `view` parameter. To create one for a SQL `SELECT` statement, use the `query` parameter. You can only specify one of these parameters in an `oml.sync` invocation: the argument for one of the parameters must be a string and the argument for each of the other two parameters must be `None`.

Creating a proxy object for a query enables you to create an `oml.DataFrame` object without creating a view in the database. This can be useful when you do not have the `CREATE VIEW` system privilege for the current schema. You cannot use the `schema` parameter and the `query` parameter in the same `oml.sync` invocation.

With the `regex_match` argument, you can specify whether the value of the `table` or `view` argument is a regular expression. If `regex_match=True`, then `oml.sync` creates `oml.DataFrame` objects for each database object that matches the pattern. The matched tables or views are returned in a dict with the table or view names as keys.

**Example 5-10 Creating a Python Object for a Database Table**

This example creates an `oml.DataFrame` Python object as a proxy for a database table. For this example, the table `COFFEE` exists in the user's schema.

```python
import oml

Create the Python object `oml_coffee` as a proxy for the database table `COFFEE`.
oml_coffee = oml.sync(table = 'COFFEE')
type(oml_coffee)

List the proxy objects in the schema.
oml.dir()
oml_coffee.head()
```
Listing for This Example

```python
>>> import oml

>>> # Create the Python object oml_coffee as a proxy for the
... # database table COFFEE.
... oml_coffee = oml.sync(table = 'COFFEE')
>>> type(oml_coffee)
<class 'oml.core.frame.DataFrame'>

>>> # List the proxy objects in the schema.
... oml.dir()
['oml_coffee']

>>> oml_coffee.head()
 ID COFFEE WINDOW
0 1 esp w
1 2 cap d
2 3 cap w
3 4 kon w
4 5 ice w
```

Example 5-11   Using the regex_match Argument

This example uses the `regex_match` argument in creating a `dict` object that contains `oml.DataFrame` proxy objects for tables whose names start with C. For this example, the COFFEE and COLOR tables exist in the user's schema and are the only tables whose names start with C.

```python
Create a dict of oml.DataFrame proxy objects for tables
whose names start with 'C'.
oml_cdat = oml.sync(table="^C", regex_match=True)

oml_cdat.keys()
oml_cdat['COFFEE'].columns
oml_cdat['COLOR'].columns
```

Listing for This Example

```python
>>> # Create a dict of oml.DataFrame proxy objects for tables
... # whose names start with 'C'.
... oml_cdat = oml.sync(table="^C", regex_match=True)

>>> oml_cdat.keys()
dict_keys(['COFFEE', 'COLOR'])

>>> oml_cdat['COFFEE'].columns
['ID', 'COFFEE', 'WINDOW']

>>> oml_cdat['COLOR'].columns
['REGION', 'EYES', 'HAIR', 'COUNT']
```
Example 5-12  Synchronizing an Updated Table

This example uses `oml.sync` to create an `oml.DataFrame` for the database table `COFFEE`. For the example, the new column `BREW` has been added to the database table by some other database process after the first invocation of `oml.sync`. Invoking `oml.sync` again synchronizes the metadata of the `oml.DataFrame` with those of the table.

```python
oml_coffee = oml.sync(table = "COFFEE")
oml_coffee.columns
After a new column has been inserted into the table.
oml_coffee = oml.sync(table = "COFFEE")
oml_coffee.columns
```

Listing for This Example

```python
>>> oml_coffee = oml.sync(table = "COFFEE")
>>> oml_coffee.columns
['ID', 'COFFEE', 'WINDOW']

>>> # After a new column has been inserted into the table.
... oml_coffee = oml.sync(table = "COFFEE")
>>> oml_coffee.columns
['ID', 'COFFEE', 'WINDOW', 'BREW']
```

Create a Persistent Database Table from a Python Data Set

Use the `oml.create` function to create a persistent table in your database schema from data in your Python session.

The `oml.create` function creates a table in the database schema and returns an `oml.DataFrame` object that is a proxy for the table. The proxy `oml.DataFrame` object has the same name as the table.

**Note:**

When creating a table in Oracle Machine Learning for Python, if you use lowercase or mixed case for the name of the table, then you must use the same lowercase or mixed case name in double quotation marks when using the table in a SQL query or function. If, instead, you use an all uppercase name when creating the table, then the table name is case-insensitive: you can use uppercase, lowercase, or mixed case when using the table without using double quotation marks. The same is true for naming columns in a table.

You can delete the persistent table in a database schema with the `oml.drop` function.
Caution:

Use the oml.drop function to delete a persistent database table. Use the del statement to remove an oml.DataFrame proxy object and its associated temporary table; del does not delete a persistent table.

The syntax of the oml.create function is the following:

```python
oml.create(x, table, oranumber=True, dbtypes=None, append=False)
```

The `x` argument is a pandas.DataFrame or a list of tuples of equal size that contain the data for the table. For a list of tuples, each tuple represents a row in the table and the column names are set to COL1, COL2, and so on. The `table` argument is a string that specifies a name for the table.

The SQL data types of the columns are determined by the following:

- OML4Py determines default column types by looking at 20 random rows sampled from the table. For tables with less than 20 rows, it uses all rows in determining the column type.
  - If the values in a column are all None, or if a column has inconsistent data types that are not None in the sampled rows, then a default column type cannot be determined and a `ValueError` is raised unless a SQL type for the column is specified by the `dbtypes` argument.
  - For numeric columns, the `oranumber` argument, which is a bool, determines the SQL data type. If `True` (the default), then the SQL data type is NUMBER. If `False`, then the data type is BINARY DOUBLE.
  - If the data in `x` contains NaN values, then you should set `oranumber` to `False`.
- For string columns, the default type is VARCHAR2(4000).
- For bytes columns, the default type is BLOB.

With the `dbtypes` parameter, you can specify the SQL data types for the table columns. The values of `dbtypes` may be either a dict that maps str to str values or a list of str values. For a dict, the keys are the names of the columns. The `dbtypes` parameter is ignored if the `append` argument is True.

The `append` argument is a bool that specifies whether to append the `x` data to an existing table.

Example 5-13  Creating Database Tables from a Python Data Set

This example creates a cursor object for the database connection, creates a pandas.core.frame.DataFrame with columns of various data types, then creates a series of tables using different oml.create parameters and shows the SQL data types of the table columns.

```python
import oml

Create a cursor object for the current OML4Py database connection to run queries and get information from the database.
cr = oml.cursor()
```
import pandas as pd

df = pd.DataFrame({'numeric': [1, 1.4, -4, 3.145, 5, 2],
                  'string': [None, None, 'a', 'a', 'a', 'b'],
                  'bytes': [b'a', b'b', b'c', b'c', b'd', b'e']})

# Get the order of the columns
df.columns

# Create a table with the default parameters.
oml_df1 = oml.create(df, table = 'tbl1')

# Show the default SQL data types of the columns.
_ = cr.execute('select data_type from all_tab_columns where table_name = ' +
'tbl1' + ')
cr.fetchall()

# Create a table with oranumber set to False.
oml_df2 = oml.create(df, table = 'tbl2', oranumber = False)

# Show the SQL data type of the columns.
_ = cr.execute('select data_type from all_tab_columns where table_name = ' +
'tbl2' + ')
cr.fetchall()

# Create a table with dbtypes specified as a dict mapping column names
# to SQL data types.
oml_df3 = oml.create(df, table = 'tbl3',
                    dbtypes = {'numeric': 'BINARY_DOUBLE',
                               'bytes': 'RAW(1)'}
)

# Show the SQL data types of the columns.
_ = cr.execute('select data_type from all_tab_columns where table_name = ' +
'tbl3' + ')
cr.fetchall()

# Create a table with dbtypes specified as a list of SQL data types
# matching the order of the columns.
oml_df4 = oml.create(df, table = 'tbl4',
                    dbtypes = ['BINARY_DOUBLE', 'VARCHAR2', 'RAW(1)'])

# Show the SQL data type of the columns.
_ = cr.execute('select data_type from all_tab_columns where table_name = ' +
'tbl4' + ')
cr.fetchall()

# Create a table from a list of tuples.
lst = [(1, None, b'a'), (1.4, None, b'b'), (-4, 'a', b'c'),
       (3.145, 'a', b'c'), (5, 'a', b'd'), (None, 'b', b'e')]

oml_df5 = oml.create(lst, table = 'tbl5',
                    dbtypes = ['BINARY_DOUBLE', 'CHAR(1)', 'RAW(1)'])

# Close the cursor
cr.close()
# Drop the tables.
```python
oml.drop('tbl1')
oml.drop('tbl2')
oml.drop('tbl3')
oml.drop('tbl4')
oml.drop('tbl5')
```

### Listing for This Example

```python
>>> import oml

>>> # Create a cursor object for the current OML4Py database
... # connection to run queries and get information from the database.
... cr = oml.cursor()

>>> import pandas as pd

>>> df = pd.DataFrame({'numeric': [1, 1.4, -4, 3.145, 5, 2],
... 'string' : [None, None, 'a', 'a', 'a', 'b'],
... 'bytes' : [b'a', b'b', b'c', b'c', b'd', b'e']})

>>> # Get the order of the columns.
... df.columns
Index(["numeric", "string", "bytes"], dtype='object')

>>> # Create a table with the default parameters.
... oml_df1 = oml.create(df, table = 'tbl1')

>>> # Show the default SQL data types of the columns.
... _ = cr.execute("select data_type from all_tab_columns where table_name = 'tbl1'"")
... cr.fetchall()
[('NUMBER',), ('VARCHAR2',), ('BLOB',)]

>>> # Create a table with oranumber set to False.
... oml_df2 = oml.create(df, table = 'tbl2', oranumber = False)

>>> # Show the SQL data types of the columns.
... _ = cr.execute("select data_type from all_tab_columns where table_name = 'tbl2'"")
... cr.fetchall()
[('BINARY_DOUBLE',), ('VARCHAR2',), ('BLOB',)]

>>> # Create a table with dbtypes specified as a dict mapping column names
... # to SQL data types.
... oml_df3 = oml.create(df, table = 'tbl3',
... dbtypes = {'numeric': 'BINARY_DOUBLE',
... 'bytes':'RAW(1)'})

>>> # Show the SQL data type of the columns.
... _ = cr.execute("select data_type from all_tab_columns where table_name = 'tbl3'"")
```
>>> cr.fetchall()
[('BINARY_DOUBLE'), ('VARCHAR2'), ('RAW')]

>>> # Create a table with dbtypes specified as a list of SQL data types
... # matching the order of the columns.
... oml_df4 = oml.create(df, table = 'tbl4',
...                      dbtypes = ['BINARY_DOUBLE', 'CHAR(1)', 'RAW(1)'])

>>> # Show the SQL data type of the columns.
... _ = cr.execute("select data_type from all_tab_columns where table_name = "tb14"")

>>> cr.fetchall()
[('BINARY_DOUBLE'), ('CHAR'), ('RAW')]

>>> # Create a table from a list of tuples.
... lst = [(1, None, b'a'), (1.4, None, b'b'), (-4, 'a', b'c'),
...        (3.145, 'a', b'c'), (5, 'a', b'd'), (None, 'b', b'e')]

>>> oml_df5 = oml.create(lst, table = 'tbl5',
...                      dbtypes = ['BINARY_DOUBLE', 'CHAR(1)', 'RAW(1)'])

>>> # Show the SQL data type of the columns.
... _ = cr.execute("select data_type from all_tab_columns where table_name = "tb15"")

>>> cr.fetchall()
[('BINARY_DOUBLE'), ('CHAR'), ('RAW')]

>>> # Close the cursor.
... cr.close()

>>> # Drop the tables
... oml.drop('tbl1')
>>> oml.drop('tbl2')
>>> oml.drop('tbl3')
>>> oml.drop('tbl4')
>>> oml.drop('tbl5')

Save Python Objects in the Database

You can save Python objects in OML4Py datastores, which persist in the database.

You can grant or revoke read privilege access to a datastore or its objects to one or more users. You can restore the saved objects in another Python session.

The following topics describe the OML4Py functions for creating and managing datastores:

- About OML4Py Datastores
- Save Objects to a Datastore
- Load Saved Objects From a Datastore
- Get Information About Datastores
- Get Information About Datastore Objects
- Delete Datastore Objects
- Manage Access to Stored Objects
About OML4Py Datastores

In an OML4Py datastore, you can store Python objects, which you can then use in subsequent Python sessions; you can also make them available to other users or programs.

Python objects, including OML4Py proxy objects, exist only for the duration of the current Python session unless you explicitly save them. You can save a Python object, including `oml` proxy objects, to a named datastore and then load that object in a later Python session, including an Embedded Python Execution session. OML4Py creates the datastore in the user’s database schema. A datastore, and the objects it contains, persist in the database until you delete them.

You can grant or revoke read privilege permission to another user to a datastore that you created or to objects in a datastore.

OML4Py has Python functions for managing objects in a datastore. It also has PL/SQL procedures for granting or revoking the read privilege and database views for listing available datastores and their contents.

Using a datastore, you can do the following:

- Save OML4Py and other Python objects that you create in one Python session and load them in another Python session.
- Pass arguments to Python functions for use in Embedded Python Execution.
- Pass objects for use in Embedded Python Execution. You could, for example, use the `oml.glm` class to build an Oracle Machine Learning model and save it in a datastore. You could then use that model to score data in the database through Embedded Python Execution.

Python Interface for Datastores

The following table lists the Python functions for saving and managing objects in a datastore.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oml.ds.delete</code></td>
<td>Deletes one or more datastores or Python objects from a datastore.</td>
</tr>
<tr>
<td><code>oml.ds.dir</code></td>
<td>Lists the datastores available to the current user.</td>
</tr>
<tr>
<td><code>oml.ds.load</code></td>
<td>Loads Python objects from a datastore into the user’s session.</td>
</tr>
<tr>
<td><code>oml.ds.save</code></td>
<td>Saves Python objects to a named datastore in the user’s database schema.</td>
</tr>
</tbody>
</table>

The following table lists the Python functions for managing access to datastores and datastore objects.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oml.grant</code></td>
<td>Grants read privilege permission to another user to a datastore or a user-defined Python function in the script repository owned by the current user.</td>
</tr>
</tbody>
</table>
Save Objects to a Datastore

The `oml.ds.save` function saves one or more Python objects to a datastore. OML4Py creates the datastore in the current user’s schema.

The syntax of `oml.ds.save` is the following:

```python
oml.ds.save(objs, name, description=' ', grantable=None,
 overwrite=False, append=False, compression=False)
```

The `objs` argument is a dict that contains the name and object pairs to save to the datastore specified by the `name` argument.

With the `description` argument, you can provide some descriptive text that appears when you get information about the datastore. The `description` parameter has no effect when used with the `append` parameter.

With the `grantable` argument, you can specify whether the read privilege to the datastore may be granted to other users.

If you set the `overwrite` argument to `TRUE`, then you can replace an existing datastore with another datastore of the same name.

If you set the `append` argument to `TRUE`, then you can add objects to an existing datastore. **The `overwrite` and `append` arguments are mutually exclusive.**

If you set `compression` to `True`, then the serialized Python objects are compressed in the datastore.

**Example 5-14  Saving Python Objects to a Datastore**

This example demonstrates creating datastores.

```python
import oml
from sklearn import datasets
from sklearn import linear_model
import pandas as pd

Load three data sets and create oml.DataFrame objects for them.
wine = datasets.load_wine()
x = pd.DataFrame(wine.data, columns = wine.feature_names)
y = pd.DataFrame(wine.target, columns = ['Class'])

Create the database table WINE.
oml_wine = oml.create(pd.concat([x, y], axis=1), table = 'WINE')

Load three data sets and create oml.DataFrame objects for them.
diabetes = datasets.load_diabetes()
```

---

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oml.revoke</code></td>
<td>Revokes the read privilege permission that was granted to another user to a datastore or a user-defined Python function in the script repository owned by the current user.</td>
</tr>
</tbody>
</table>
x = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
y = pd.DataFrame(diabetes.target, columns=['disease_progression'])
oml_diabetes = oml.create(pd.concat([x, y], axis=1),
    table = "DIABETES")

oml_diabetes.columns

boston = datasets.load_boston()
x = pd.DataFrame(boston.data, columns = boston.feature_names.tolist())
y = pd.DataFrame(boston.target, columns = ['Value'])
oml_boston = oml.create(pd.concat([x, y], axis=1), table = "BOSTON")

# Save the wine Bunch object to the datastore directly,
# along with the oml.DataFrame proxy object for the BOSTON table.
oml.ds.save(objs={'wine':wine, 'oml_boston':oml_boston},
    name="ds_pydata", description = "python datasets")

# Save the oml_diabetes proxy object to an existing datastore.
oml.ds.save(objs={'oml_diabetes':oml_diabetes},
    name="ds_pydata", append=True)

# Save the oml_wine proxy object to another datastore.
oml.ds.save(objs={'oml_wine':oml_wine},
    name="ds_wine_data", description = "wine dataset")

# Create regression models using sklearn and oml.
# The regr1 linear model is a native Python object.
regr1 = linear_model.LinearRegression()
regr1.fit(boston.data, boston.target)
# The regr2 GLM model is an oml object.
regr2 = oml.glm("regression")
X = oml_boston.drop('Value')
y = oml_boston['Value']
regr2 = regr2.fit(X, y)

# Save the native Python object and the oml proxy object to a datastore
# and allow the read privilege to be granted to them.
oml.ds.save(objs={'regr1':regr1, 'regr2':regr2},
    name="ds_pymodel", grantable=True)

# Grant the read privilege to the datastore to every user.
oml.grant(name="ds_pymodel", typ="datastore", user=None)

# List the datastores to which the read privilege has been granted.
oml.ds.dir(dstype="grant")

Listing for This Example

>>> import oml
>>> from sklearn import datasets
>>> from sklearn import linear_model
>>> import pandas as pd

>>> # Load three data sets and create oml.DataFrame objects for them.
>>> wine = datasets.load_wine()
>>> x = pd.DataFrame(wine.data, columns = wine.feature_names)
>>> y = pd.DataFrame(wine.target, columns = ['Class'])

>>> # Create the database table WINE.
... oml_wine = oml.create(pd.concat([x, y], axis=1), table = 'WINE')
... oml_wine.columns

['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium',
'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins',
'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline', 'Class']

>>> diabetes = datasets.load_diabetes()
>>> x = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
>>> y = pd.DataFrame(diabetes.target, columns=['disease_progression'])

>>> oml_diabetes = oml.create(pd.concat([x, y], axis=1),
...                           table = "DIABETES")
... oml_diabetes.columns

['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6',
'disease_progression']

>>> boston = datasets.load_boston()
>>> x = pd.DataFrame(boston.data, columns = boston.feature_names.tolist())
>>> y = pd.DataFrame(boston.target, columns = ['Value'])

>>> oml_boston = oml.create(pd.concat([x, y], axis=1), table = "BOSTON")
... oml_boston.columns

['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
'PTRATIO', 'B', 'LSTAT', 'Value']

>>> # Save the wine Bunch object to the datastore directly,
... # along with the oml.DataFrame proxy object for the BOSTON table.
... oml.ds.save(objs={'wine':wine, 'oml_boston':oml_boston},
...             name="ds_pydata", description = "python datasets")

>>> # Save the oml_diabetes proxy object to an existing
... # datastore.
... oml.ds.save(objs={'oml_diabetes':oml_diabetes},
...             name="ds_pydata", append=True)

>>> # Save the oml_wine proxy object to another datastore.
... oml.ds.save(objs={'oml_wine':oml_wine},
...             name="ds_wine_data", description = "wine dataset")

>>> # Create regression models using sklearn and oml.
... # The regr1 linear model is a native Python object.
... regr1 = linear_model.LinearRegression()
... regr1.fit(boston.data, boston.target)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

>>> # The regr2 GLM model is an oml proxy object.
... regr2 = oml.glm("regression")
... X = oml_boston.drop('Value')
... y = oml_boston['Value']
... regr2 = regr2.fit(X, y)

>>> # Save the native Python object and the oml proxy object to a datastore
... # and allow the read privilege to be granted to them.
Load Saved Objects From a Datastore

The `oml.ds.load` function loads one or more Python objects from a datastore into a Python session.

The syntax of `oml.ds.load` is the following:

```python
oml.ds.load(name, objs=None, owner=None, to_globals=True)
```

The `name` argument specifies the datastore that contains the objects to load.

With the `objs` argument, you identify a specific object or a list of objects to load.

With the boolean `to_globals` parameter, you can specify whether the objects are loaded to a global workspace or to a dictionary object. If the argument to `to_globals` is `True`, then `oml.ds.load` function loads the objects into the global workspace. If the argument is `False`, then the function returns a `dict` object that contains pairs of object names and values.

The `oml.ds.load` function raises a `ValueError` if the `name` argument is an empty string or if the owner of the datastore is not the current user and the read privilege for the datastore has not been granted to the current user.

**Example 5-15  Loading Objects from Datastores**

This example loads objects from datastores. For the creation of the datastores used in this example, see Example 5-14.

```python
import oml

Load all Python objects from a datastore to the global workspace.
sorted(oml.ds.load(name="ds_pydata"))

Load the named Python object from the datastore to the global workspace.
oml.ds.load(name="ds_pymodel", objs=["regr2"])

Load the named Python object from the datastore to the user's workspace.
oml.ds.load(name="ds_pymodel", objs=["regr1"], to_globals=False)
```
Listing for This Example

```python
>>> import oml

>>> # Load all Python objects from a datastore to the current workspace.
... sorted(oml.ds.load(name="ds_pydata"))
['oml_boston', 'oml_diabetes', 'wine']

>>> # Load the named Python object from the datastore to the global workspace.
... oml.ds.load(name="ds_pymodel", objs=['regr2'])
['regr2']

>>> # Load the named Python object from the datastore to the user's workspace.
... oml.ds.load(name="ds_pymodel", objs=['regr1'], to_globals=False)
{'regr1': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)}
```

Get Information About Datastores

The `oml.ds.dir` function provides information about datastores.

The syntax of `oml.ds.dir` is the following:

```python
oml.ds.dir(name=None, regex_match=False, dstype='user')
```

Use the `name` parameter to get information about a specific datastore.

Optionally, you can use the `regex_match` and `dstype` parameters to get information about datastores with certain characteristics. The valid arguments for `dstype` are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Lists all of the datastores to which the current user has the read privilege.</td>
</tr>
<tr>
<td>grant</td>
<td>Lists the datastores for which the current user has granted read privilege to other users.</td>
</tr>
<tr>
<td>granted</td>
<td>Lists the datastores for which other users have granted read privilege to the current user.</td>
</tr>
<tr>
<td>grantable</td>
<td>Lists the datastores that the current user can grant the read privilege to.</td>
</tr>
<tr>
<td>user</td>
<td>Lists the datastores created by current user.</td>
</tr>
<tr>
<td>private</td>
<td>Lists the datastores that the current user cannot grant the read privileges to.</td>
</tr>
</tbody>
</table>

The `oml.ds.dir` function returns a `pandas.DataFrame` object that contains different columns depending on which `dstype` argument you use. The following table lists the arguments and the columns returned for the values supplied.
### dstype Argument

<table>
<thead>
<tr>
<th>dstype</th>
<th>Columns in the DataFrame Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>DSNAME, which contains the datastore name</td>
</tr>
<tr>
<td>private</td>
<td>NOBJ, which contains the number of objects in the datastore</td>
</tr>
<tr>
<td>grantable</td>
<td>DSIZE, which contains the size in bytes of each object in the datastore</td>
</tr>
<tr>
<td></td>
<td>CDATE, which contains the creation date of the datastore</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTION, which contains the optional description of the datastore</td>
</tr>
<tr>
<td>all</td>
<td>All of the columns returned by the user, private, and grantable values, plus this additional column:</td>
</tr>
<tr>
<td></td>
<td>DSOWNER, which contains the owner of the datastore</td>
</tr>
<tr>
<td>granted</td>
<td>GRANTEE, which contains the name of the user to which the read privilege to the datastore has been granted by the current session user</td>
</tr>
</tbody>
</table>

#### Example 5-16  Getting Information About Datastores

This example demonstrates using different combinations of arguments to the `oml.ds.dir` function. It demonstrates using `oml.dir` to list some or all of the datastores. For the creation of the datastores used in this example, see Example 5-14.

```python
import oml

Show all saved datastores.
oml.ds.dir(dstype="all")[['owner', 'datastore_name', 'object_count']]

Show datastores to which other users have been granted the read privilege.
oml.ds.dir(dstype="grant")

Show datastores whose names match a pattern.
oml.ds.dir(name='pydata', regex_match=True)\n [['datastore_name', 'object_count']]
```

#### Listing for This Example

```bash
>>> import oml

>>> # Show all saved datastores.
>>> oml.ds.dir(dstype="all")[['owner', 'datastore_name', 'object_count']]
 owner datastore_name object_count
 0 OML_USER ds_pydata 3
 1 OML_USER ds_pymodel 2
 2 OML_USER ds_wine_data 1

>>> # Show datastores to which other users have been granted the read privilege.
>>> oml.ds.dir(dstype="grant")

datastore_name grantee
```

---

Chapter 5

Save Python Objects in the Database

5-26
Get Information About Datastore Objects

The `oml.ds.describe` function provides information about the objects in a datastore.

The syntax of `oml.ds.describe` is the following:

```python
oml.ds.describe(name, owner=None)
```

The `name` argument is a string that specifies the name of a datastore.

The `owner` argument is a string that specifies the owner of the datastore or `None` (the default). If you do not specify the owner, then the function returns information about the datastore if it is owned by the current user.

The `oml.ds.describe` function returns a `pandas.DataFrame` object, each row of which represents an object in the datastore. The columns of the `DataFrame` are the following:

- `object_name`, which specifies the name of the object
- `class`, which specifies the class of the object
- `size`, which specifies the size of the object in bytes
- `length`, which specifies the length of the object
- `row_count`, which specifies the rows of the object
- `col_count`, which specifies the columns of the object

This function raises a `ValueError` if the following occur:

- The current user is not the owner of the datastore and has not been granted read privilege for the datastore.
- The datastore does not exist.

**Example 5-17 Getting Information About Datastore Objects**

This example demonstrates the using the `oml.ds.describe` function. For the creation of the datastore used in this example, see Example 5-14.

```python
import oml

Describe the contents of the ds_pydata datastore.
oml.ds.describe(name='ds_pydata')
```

Listing for This Example

```python
>>> import oml
```
Delete Datastore Objects

The `oml.ds.delete` function deletes datastores or objects in a datastore.

Use the `oml.ds.delete` function to delete one or more datastores in your database schema or to delete objects in a datastore.

The syntax of `oml.ds.delete` is the following:

```python
oml.ds.delete(name, objs=None, regex_match=False)
```

The argument to the `name` parameter may be one of the following:

- A string that specifies the name of the datastore to modify or delete, or a regular expression that matches the datastores to delete.
- A list of `str` objects that name the datastores from which to delete objects.

The `objs` parameter specifies the objects to delete from a datastore. The argument to the `objs` parameter may be one of the following:

- A string that specifies the object to delete from one or more datastores, or a regular expression that matches the objects to delete.
- `None` (the default), which deletes the entire datastore or datastores.

The `regex_match` parameter is a `bool` that indicates whether the `name` or `objs` arguments are regular expressions. The default value is `False`. The `regex_match` parameter operates as follows:

- If `regex_match=False` and if `name` is not `None`, and:
  - If `objs=None`, then `oml.ds.delete` deletes the datastore or datastores specified in the `name` argument.
  - If you specify one or more datastores with the `name` argument and one or more datastore objects with the `objs` argument, then `oml.ds.delete` deletes the specified Python objects from the datastores.

- If `regex_match=True` and:
  - If `objs=None`, then `oml.ds.delete` deletes the datastores you specified in the `name` argument.
  - If the `name` argument is a string and you specify one or more datastore objects with the `objs` argument, then `oml.ds.delete` deletes from the datastore the
objects whose names match the regular expression specified in the `objs` argument.

- If the `name` argument is a list of `str` objects, then the `objs` argument must be a list of `str` objects of the same length as `name`, and `oml.ds.delete` deletes from the datastores the objects whose names match the regular expressions specified in `objs`.

This function raises an error if the following occur:

- A specified datastore does not exist.
- Argument `regex_match` is `False` and argument `name` is a list of `str` objects larger than 1 and argument `objs` is not `None`.
- Argument `regex_match` is `True` and arguments `name` and `objs` are lists that are not the same length.

Example 5-18  Deleting Datastore Objects

This example demonstrates the using the `oml.ds.delete` function. For the creation of the datastores used in this example, see Example 5-14.

```python
import oml

Show the existing datastores.
oml.ds.dir()

Show the Python objects in the ds_pydata datastore.
oml.ds.describe(name='ds_pydata')

Delete some objects from the datastore.
oml.ds.delete(name='ds_pydata', objs=['wine', 'oml_boston'])

Delete a datastore.
oml.ds.delete(name='ds_pydata')

Delete all datastores whose names match a pattern.
oml.ds.delete(name='_pymodel', regex_match=True)

Show the existing datastores again.
oml.ds.dir()
```

Listing for This Example

```python
>>> import oml

>>> # Show the existing datastores.
... oml.ds.dir()

datastore_name object_count size date description
0 ds_pydata 3 26214 2019-05-18 21:04:06 python datasets
1 ds_pymodel 2 6370 2019-05-18 21:08:18 None
2 ds_wine_data 1 1410 2019-05-18 21:06:53 wine dataset

>>> # Show the Python objects in the ds_pydata datastore.
... oml.ds.describe(name='ds_pydata')

object_name class size length row_count col_count
0 oml_boston oml.DataFrame 1073 506 506 14
```
Manage Access to Stored Objects

The `oml.grant` and `oml.revoke` functions grant or revoke the read privilege to datastores or to user-defined Python functions in the script repository.

The `oml.grant` function grants the read privilege to another user to a datastore or to a user-defined Python function in the OML4Py script repository. The `oml.revoke` function revokes that privilege.

The syntax of these functions is the following:

```python
oml.grant(name, typ='datastore', user=None)
oml.revoke(name, typ='datastore', user=None)
```

The `name` argument is a string that specifies the name of the user-defined Python function in the script repository or the name of a datastore.

The `typ` parameter must be specified. The argument is a string that is either 'datastore' or 'pyqscript'.

The `user` argument is a string that specifies the user to whom read privilege to the named datastore or user-defined Python function is granted or from whom it is revoked, or `None` (the default). If you specify `None`, then the read privilege is granted to or revoked from all users.

**Example 5-19  Granting and Revoking Access to Datastores**

This example displays the datastores to which the read privilege has been granted to all users. It revokes read privilege from the `ds_pymodel` datastore and displays the datastores with public read privilege again. It next grants the read privilege to the user `SH` and finally displays once more the datastores to which read privilege has been granted. For the creation of the datastores used in this example, see Example 5-14.

```python
import oml
```
# Show datastores to which other users have been granted read privilege.
oml.ds.dir(dstype="grant")

# Revoke the read privilege from every user.
oml.revoke(name="ds_pymodel", typ="datastore", user=None)

# Again show datastores to which read privilege has been granted.
oml.ds.dir(dstype="grant")

# Grant the read privilege to the user SH.
oml.grant(name="ds_pymodel", typ="datastore", user="SH")
oml.ds.dir(dstype="grant")

**Listing for This Example**

```python
>>> import oml
... # Show datastores to which other users have been granted read privilege.
... oml.ds.dir(dstype="grant")
 ... datastore_name grantee
 0 ds_pymodel PUBLIC
... # Revoke the read privilege from every user.
... oml.revoke(name="ds_pymodel", typ="datastore", user=None)
... # Again show datastores to which read privilege has been granted to
... other users.
... oml.ds.dir(dstype="grant")
Empty DataFrame
Columns: [datastore_name, grantee]
Index: []
... # Grant the read privilege to the user SH.
... oml.grant(name="ds_pymodel", typ="datastore", user="SH")
... oml.ds.dir(dstype="grant")
 datastore_name grantee
 0 ds_pymodel SH
```

**Example 5-20    Granting and Revoking Access to User-Defined Python Functions**

This example grants the read privilege to the MYLM user-defined Python function to the user SH and then revokes that privilege. For the creation of the user-defined Python functions used in this example, see Example 9-11.

```python
List the user-defined Python functions available only to the current user.
oml.script.dir(sctype='user')

Grant the read privilege to the MYLM user-defined Python function to the user SH.
oml.grant(name="MYLM", typ="pyqscript", user="SH")

List the user-defined Python functions to which read privilege has been
```
granted.
oml.script.dir(sctype="grant")

# Revoke the read privilege to the MYLM user-defined Python function
# from the user SH.
oml.revoke(name="MYLM", typ="pyqscript", user="SH")

# List the granted user-defined Python functions again to see if the
# revocation was successful.
oml.script.dir(sctype="grant")

**Listing for This Example**

```python
>>> # List the user-defined Python functions available only to the
current user.
oml.script.dir(sctype='user')
 name script
 0 MYLM def build_lm1(dat):
 from sklearn import lin...

>>> # Grant the read privilege to the MYLM user-defined Python function
to the user SH.
oml.grant(name="MYLM", typ="pyqscript", user="SH")

>>> # List the user-defined Python functions to which read privilege
has been granted.
oml.script.dir(sctype="grant")
 name grantee
 0 MYLM SH

>>> # Revoke the read privilege to the MYLM user-defined Python
function from the user SH.
oml.revoke(name="MYLM", typ="pyqscript", user="SH")

>>> # List the granted user-defined Python functions again to see if
the revocation was successful.
oml.script.dir(sctype="grant")
Empty DataFrame
Columns: [name, grantee]
Index: []
```
Prepare and Explore Data

Use OML4Py methods to prepare data for analysis and to perform exploratory analysis of the data.

Methods of the OML4Py data type classes make it easier for you to prepare very large enterprise database-resident data for modeling. These methods are described in the following topics.

- Prepare Data
- Explore Data
- Render Graphics

Prepare Data

Using methods of OML4Py data type classes, you can prepare data for analysis in the database, as described in the following topics.

About Preparing Data in the Database

OML4Py data type classes have methods that enable you to use Python to prepare database data for analysis.

You can perform data preparation operations on large quantities of data in the database and then continue operating on that data in-database or pull a subset of the results to your local Python session where, for example, you can use third-party Python packages to perform other operations.

The following table lists methods with which you can perform common data preparation tasks and indicates whether the OML4Py data type class supports the method.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>append</td>
<td>Appends another oml data object of the same class to an oml object.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ceil</td>
<td>Computes the ceiling of each element in an oml.Float series data object.</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>concat</td>
<td>Combines an oml data object column-wise with one or more other data objects.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
### Table 6-1 (Cont.) Methods Supported by Data Types

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>oml.Boolea n</th>
<th>oml.Byte s</th>
<th>oml.Floa t</th>
<th>oml.Strin g</th>
<th>oml.DataFrame</th>
</tr>
</thead>
<tbody>
<tr>
<td>count_pattern</td>
<td>Counts the number of occurrences of a pattern in each string.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>create_view</td>
<td>Creates an Oracle Database view for the data represented by the OML4Py data object.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>dot</td>
<td>Calculates the inner product of the current oml.Float object with another oml.Float, or does matrix multiplication with an oml.DataFrame.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>drop</td>
<td>Drops specified columns in an oml.DataFrame.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>drop_duplicates</td>
<td>Removes duplicated elements from an oml series data object or duplicated rows from an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>dropna</td>
<td>Removes missing elements from an oml series data object, or rows containing missing values from an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>exp</td>
<td>Computes element-wise e to the power of values in an oml.Float series data object.</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>find</td>
<td>Finds the lowest index in each string in which a substring is found that is greater than or equal to a start index.</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>floor</td>
<td>Computes the floor of each element in an oml.Float series data object.</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>head</td>
<td>Returns the first n elements of an oml series data object or the first n rows of an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>KFold</td>
<td>Splits the oml data object randomly into k consecutive folds.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Table 6-1  (Cont.) Methods Supported by Data Types

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>len</td>
<td>Computes the length of each string in an oml.Bytes or oml.String series data object.</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>log</td>
<td>Calculates an element-wise logarithm, to the given base, of values in the oml.Float series data object.</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>materialize</td>
<td>Pushes the contents represented by an OML4Py proxy object (a view, a table, and so on) into a table in Oracle Database.</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>merge</td>
<td>Joins another oml.DataFrame to an oml.DataFrame.</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>replace</td>
<td>Replaces an existing value with another value.</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>rename</td>
<td>Renames columns of an oml.DataFrame.</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>round</td>
<td>Rounds oml.Float values to the specified decimal place.</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>select_types</td>
<td>Returns the subset of columns that are included or excluded based on their oml data type.</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
</tr>
<tr>
<td>split</td>
<td>Splits an oml data object randomly into multiple sets.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>sqrt</td>
<td>Computes the square root of each element in an oml.Float series data object.</td>
<td>❌</td>
<td>❌</td>
<td>✓</td>
<td>✓</td>
<td>❌</td>
</tr>
<tr>
<td>tail</td>
<td>Returns the last $n$ elements of an oml series data object or the last $n$ rows of an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Select Data

A typical step in preparing data for analysis is selecting or filtering values of interest from a larger data set.
The examples in this section demonstrate selecting data from an `oml.DataFrame` object by rows, by columns, and by value.

The examples use the `oml_iris` object created by the following code, which imports the `sklearn.datasets` package and loads the `iris` data set. It creates the `x` and `y` variables, and then creates the persistent database table `IRIS` and the `oml.DataFrame` object `oml_iris` as a proxy for the table.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data, columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x: {0: 'setosa', 1: 'versicolor',
 2: 'virginica'}[x], iris.target)),
 columns = ['Species'])

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')
```

The examples are in the following topics:

- Select the First or Last Number of Rows
- Select Data by Column
- Select Data by Value

Select the First or Last Number of Rows

The `head` and `tail` methods return the first or last number of elements.

The default number of rows selected is 5.

**Example 6-1  Selecting the First and Last Number of Rows**

This example selects rows from the `oml.DataFrame` object `oml_iris`. It displays the first five rows and ten rows of `oml_iris` and then the last five and ten rows.

```python
Display the first 5 rows.
oml_iris.head()

Display the first 10 rows.
oml_iris.head(10)

Display the last 5 rows.
oml_iris.tail()

Display the last 10 rows.
oml_iris.tail(10)
```
Listing for This Example

```python
>>> # Display the first 5 rows.
... oml_iris.head()

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

>>> # Display the first 10 rows.
... oml_iris.head(10)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

>>> # Display the last 5 rows.
... oml_iris.tail()

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>6.3</td>
<td>2.5</td>
<td>5.0</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>1.8</td>
</tr>
</tbody>
</table>

>>> # Display the last 10 rows.
... oml_iris.tail(10)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.7</td>
<td>3.1</td>
<td>5.6</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>6.9</td>
<td>3.1</td>
<td>5.1</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>6.8</td>
<td>3.2</td>
<td>5.9</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>2.3</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>2.5</td>
<td>5.0</td>
<td>1.9</td>
</tr>
<tr>
<td>7</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>2.3</td>
</tr>
<tr>
<td>9</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Select Data by Column

Example 6-2 Selecting Data by Columns

The example selects two columns from oml_iris and creates the oml.DataFrame object iris_projected1 with them. It then displays the first three rows of iris_projected1. The
example also selects a range of columns from `oml_iris`, creates `iris_projected2`, and displays its first three rows. Finally, the example selects columns from `oml_iris` by data types, creates `iris_projected3`, and displays its first three rows.

```python
# Select all rows with the specified column names.
iris_projected1 = oml_iris[:, ["Sepal_Length", "Petal_Length"]]
iris_projected1.head(3)

# Select all rows with columns whose indices are in the range [1, 4).
iris_projected2 = oml_iris[:, 1:4]
iris_projected2.head(3)

# Select all rows with columns of oml.String data type.
iris_projected3 = oml_iris.select_types(include=[oml.String])
iris_projected3.head(3)
```

Listing for This Example

```python
>>> # Select all rows with specified column names.
... iris_projected1 = oml_iris[:, ["Sepal_Length", "Petal_Length"]]
>>> iris_projected1.head(3)
    Sepal_Length  Petal_Length
 0       5.1         1.4
 1       4.9         1.4
 2       4.7         1.3

>>> # Select all rows with columns whose indices are in range [1, 4).
... iris_projected2 = oml_iris[:, 1:4]
>>> iris_projected2.head(3)
    Sepal_Width  Petal_Length  Petal_Width
 0          3.5         1.4         0.2
 1          3.0         1.4         0.2
 2          3.2         1.3         0.2

>>> # Select all rows with columns of oml.String data type.
... iris_projected3 = oml_iris.select_types(include=[oml.String])
>>> iris_projected3.head(3)
      Species
 0        setosa
 1        setosa
 2        setosa
```

Select Data by Value

Example 6-3 Selecting Data by Value

This example filters `oml_iris` to produce `iris_of_filtered1`, which contains the values from the rows of `oml_iris` that have a petal length of less than 1.5 and that are in the Sepal_Length and Petal_Length columns. The example also filters the data using conditions, so that `oml_iris_filtered2` contains the values from `oml_iris` that have a petal length of less than 1.5 or a sepal length equal to 5.0 and
oml_iris_filtered3 contains the values from oml_iris that have a petal length of less than 1.5 and a sepal length larger than 5.0.

Select sepal length and petal length where petal length
is less than 1.5.
oml_iris_filtered1 = oml_iris[oml_iris["Petal_Length"] < 1.5,
 ["Sepal_Length", "Petal_Length"]]

len(oml_iris_filtered1)
oml_iris_filtered1.head(3)

Using the AND and OR conditions in filtering.
Select all rows in which petal length is less than 1.5 or sepal length
sepal length is 5.0.
oml_iris_filtered2 = oml_iris[(oml_iris["Petal_Length"] < 1.5) |
 (oml_iris["Sepal_Length"] == 5.0), :]

len(oml_iris_filtered2)
oml_iris_filtered2.head(3)

Select all rows in which petal length is less than 1.5 and
sepal length is larger than 5.0.
oml_iris_filtered3 = oml_iris[(oml_iris["Petal_Length"] < 1.5) &
 (oml_iris["Sepal_Length"] > 5.0), :]

len(oml_iris_filtered3)
oml_iris_filtered3.head()

Listing for This Example

>>> # Select sepal length and petal length where petal length
>>> ... # is less than 1.5.
>>> ... oml_iris_filtered1 = oml_iris[oml_iris["Petal_Length"] < 1.5,
>>> ... ["Sepal_Length", "Petal_Length"]]

24

>>> oml_iris_filtered1.head(3)
 Sepal_Length Petal_Length
 0 5.1 1.4
 1 4.9 1.4
 2 4.7 1.3

>>> ### Using the AND and OR conditions in filtering.
>>> ... # Select all rows in which petal length is less than 1.5 or
>>> ... # sepal length is 5.0.
>>> ... oml_iris_filtered2 = oml_iris[(oml_iris["Petal_Length"] < 1.5) |
>>> ... (oml_iris["Sepal_Length"] == 5.0), :]

30

>>> oml_iris_filtered2.head(3)
 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
 0 5.1 3.5 1.4 0.2 setosa
 1 4.9 3.0 1.4 0.2 setosa
 2 4.7 3.2 1.3 0.2 setosa

>>> # Select all rows in which petal length is less than 1.5
>>> ... # and sepal length is larger than 5.0.
... oml_iris_filtered3 = oml_iris[(oml_iris['Petal Length'] < 1.5) &
... (oml_iris['Sepal Length'] > 5.0), :]

>>> len(oml_iris_filtered3)
7

>>> oml_iris_filtered3.head()

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
<td>3.9</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>5.2</td>
<td>3.4</td>
<td>1.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Combine Data

You can join data from oml.DataFrame objects that represent database tables by using the append, concat, and merge methods.

Examples of using these methods are in the following topics.

- Append Data from One Object to Another Object
- Combine Two Objects
- Join Data From Two Objects

Append Data from One Object to Another Object

Use the append method to join two objects of the same data type.

Example 6-4 Appending Data from Two Tables

This example first appends the oml.Float series object, num1 to another oml.Float series object, num2. It then appends an oml.DataFrame object to another oml.DataFrame object, which has the same column types.

```python
import oml
import pandas as pd

df = pd.DataFrame({
    'id': [1, 2, 3, 4, 5],
    'val': ['a', 'b', 'c', 'd', 'e'],
    'ch': ['p', 'q', 'r', 'a', 'b'],
    'num': [4, 3, 6.7, 7.2, 5]
})

oml_df = oml.push(df)

# Append an oml.Float series object to another.
num1 = oml_df['id']
num2 = oml_df['num']
num1.append(num2)

# Append an oml.DataFrame object to another.
x = oml_df[['id', 'val']]  # 1st column oml.Float, 2nd column oml.String
y = oml_df[['num', 'ch']]  # 1st column oml.Float, 2nd column oml.String
x.append(y)
```
Listing for This Example

```python
>>> import oml
>>> import pandas as pd

>>> df = pd.DataFrame({"id" : [1, 2, 3, 4, 5],
...                    "val" : ["a", "b", "c", "d", "e"],
...                    "ch" : ["p", "q", "r", "a", "b"],
...                    "num" : [4, 3, 6.7, 7.2, 5]})

>>> oml_df = oml.push(df)

>>> # Append an oml.Float series object to another.
... num1 = oml_df['id']
>>> num2 = oml_df['num']
>>> num1.append(num2)
[1, 2, 3, 4, 5, 4, 3, 6.7, 7.2, 5]

>>> # Append an oml.DataFrame object to another.
... x = oml_df[['id', 'val']]
>>> y = oml_df[['num', 'ch']]
>>> x.append(y)

<table>
<thead>
<tr>
<th>id</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>4.0</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>7</td>
<td>6.7</td>
</tr>
<tr>
<td>8</td>
<td>7.2</td>
</tr>
<tr>
<td>9</td>
<td>5.0</td>
</tr>
</tbody>
</table>
```

Combine Two Objects

Use the `concat` method to combine columns from one object with those of another object. The `auto_name` argument of the `concat` method controls whether to invoke automatic name conflict resolution. You can also perform customized renaming by passing in a dictionary mapping strings to objects.

To combine two objects with the `concat` method, both objects must represent data from the same underlying database table, view, or query.

Example 6-5 Combining Data Column-Wise

This example first combines the two `oml.DataFrame` objects `x` and `y` column-wise. It then concatenates object `y` with the `oml.Float` series object `w`.

```python
import oml
import pandas as pd
from collections import OrderedDict

df = pd.DataFrame({"id" : [1, 2, 3, 4, 5],
                   "val" : ["a", "b", "c", "d", "e"],
                   "ch" : ["p", "q", "r", "a", "b"]})
```
"num" : [4, 3, 6.7, 7.2, 5])

oml_df = oml.push(df)

Create two oml.DataFrame objects and combine the objects column-wise.
x = oml_df[['id', 'val']]
y = oml_df[['num', 'ch']]
x.concat(y)

Create an oml.Float object with the rounded exponential of two times
the values in the num column of the oml_df object, then
concatenate it with the oml.DataFrame object y using a new column
name.
w = (oml_df['num'] * 2).exp().round(decimals=2)
y.concat({'round(exp(2*num))': w})

Concatenate object x with multiple objects and turn on automatic
name conflict resolution.
z = oml_df[:, 'id']
x.concat([z, w, y], auto_name=True)

Concatenate multiple oml data objects and perform customized
renaming.
x.concat(OrderedDict([('ID', z), ('round(exp(2*num))', w), ('New_', y)]))

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from collections import OrderedDict

>>> df = pd.DataFrame({'id' : [1, 2, 3, 4, 5],
... 'val' : ['a', 'b', 'c', 'd', 'e'],
... 'ch' : ['p', 'q', 'r', 'a', 'b'],
... 'num' : [4, 3, 6.7, 7.2, 5]})
>>> oml_df = oml.push(df)

>>> # Create two oml.DataFrame objects and combine the objects column-wise.
... x = oml_df[['id', 'val']]
>>> y = oml_df[['num', 'ch']]
>>> x.concat(y)
 id val num ch
 0 1 a 4.0 p
 1 2 b 3.0 q
 2 3 c 6.7 r
 3 4 d 7.2 a
 4 5 e 5.0 b

>>> # Create an oml.Float object with the rounded exponential of two times
... # the values in the num column of the oml_df object, then
... # concatenate it with the oml.DataFrame object y using a new column
... # name.
... w = (oml_df['num'] * 2).exp().round(decimals=2)

... w = (oml_df['num'] * 2).exp().round(decimals=2)
>>> y.concat({'round(exp(2*num))':w})
 num ch round(exp(2*num))
 0 4.0 p 2980.96
 1 3.0 q 403.43
 2 6.7 r 660003.22
 3 7.2 a 1794074.77
 4 5.0 b 22026.47

>>> # Concatenate object x with multiple objects and turn on automatic
... # name conflict resolution.
... z = oml_df[:, 'id']
>>> x.concat([z, w, y], auto_name=True)
 id val id3 round(exp(2*num)) num5 ch
 0 1 a 1 2980.96 4.0 p
 1 2 b 2 403.43 3.0 q
 2 3 c 3 660003.22 6.7 r
 3 4 d 4 1794074.77 7.2 a
 4 5 e 5 22026.47 5.0 b

>>> # Concatenate multiple oml data objects and perform customized renaming.
... x.concat(OrderedDict([('ID',z), ('round(exp(2*num))',w), ('New_',y)]))
 id val ID round(exp(2*num)) New_num New_ch
 0 1 a 1 2980.96 4.0 p
 1 2 b 2 403.43 3.0 q
 2 3 c 3 660003.22 6.7 r
 3 4 d 4 1794074.77 7.2 a
 4 5 e 5 22026.47 5.0 b

Join Data From Two Objects

Use the merge method to join data from two objects.

Example 6-6 Joining Data from Two Tables

This example first performs a cross join on the oml.DataFrame objects x and y, which creates
the oml.DataFrame object xy. The example performs a left outer join on the first four rows of x
with the oml.DataFrame object other on the shared column id and applies the suffixes .l
and .r to column names on the left and right side, respectively. The example then performs a
right outer join on the id column on the left side object x and the num column on the right side
object y.

import oml
import pandas as pd

df = pd.DataFrame({"id" : [1, 2, 3, 4, 5],
 "val" : ["a", "b", "c", "d", "e"],
 "ch" : ["p", "q", "r", "a", "b"],
 "num" : [4, 3, 6.7, 7.2, 5]})
oml_df = oml.push(df)
x = oml_df["id", 'val']
y = oml_df["num", 'ch']

Perform a cross join.
xy = x.merge(y)
Perform a left outer join.
x.head(4).merge(other=oml_df[['id', 'num']], on="id",
suffixes=['.l','.r'])

Perform a right outer join.
x.merge(other=y, left_on="id", right_on="num", how="right")

Listing for This Example

```python
>>> import oml
>>> import pandas as pd

>>> df = pd.DataFrame({"id" : [1, 2, 3, 4, 5],
...                    "val" : ["a", "b", "c", "d", "e"],
...                    "ch" : ["p", "q", "r", "a", "b"],
...                    "num" : [4, 3, 6.7, 7.2, 5]})

>>> oml_df = oml.push(df)

>>> x = oml_df[['id', 'val']]  
>>> y = oml_df[['num', 'ch']]

>>> # Perform a cross join.
... xy = x.merge(y)

>>> xy
  id_l val_l  num_r ch_r
0   1     a    4.0    p
1   1     a    3.0    q
2   1     a    6.7    r
3   1     a    7.2    a
4   1     a    5.0    b
5   2     b    4.0    p
6   2     b    3.0    q
7   2     b    6.7    r
8   2     b    7.2    a
9   2     b    5.0    b
10  3     c    4.0    p
11  3     c    3.0    q
12  3     c    6.7    r
13  3     c    7.2    a
14  3     c    5.0    b
15  4     d    4.0    p
16  4     d    3.0    q
17  4     d    6.7    r
18  4     d    7.2    a
19  4     d    5.0    b
20  5     e    4.0    p
21  5     e    3.0    q
22  5     e    6.7    r
23  5     e    7.2    a
24  5     e    5.0    b

>>> # Perform a left outer join.
```
Clean Data

In preparing data for analysis, a typical step is to transform data by dropping some values.

You can filter out unneeded data by using the drop, drop_duplicates, and dropna methods.

Example 6-7 Filtering Data

This example demonstrates ways of dropping columns with the drop method, dropping missing values with the dropna method, and dropping duplicate values with the drop_duplicates method.

```python
import pandas as pd
import oml

df = pd.DataFrame({'numeric': [1, 1.4, -4, -4, 5.432, None, None],
                  'string1': [None, None, 'a', 'a', 'a', 'b', None],
                  'string2': ['x', None, 'z', 'z', 'z', 'x', None])

oml_df = oml.push(df, dbtypes = {'numeric': 'BINARY_DOUBLE',
                                 'string1': 'CHAR(1)',
                                 'string2': 'CHAR(1)'}

# Drop rows with any missing values.
oml_df.dropna(how='any')

# Drop rows in which all column values are missing.
oml_df.dropna(how='all')

# Drop rows in which any numeric column values are missing.
oml_df.dropna(how='any', subset=['numeric'])

# Drop duplicate rows.
oml_df.drop_duplicates()

# Drop rows that have the same value in column 'string1' and 'string2'.
oml_df.drop_duplicates(subset=['string1', 'string2'])
```
Drop column 'string2'
ml_df.drop('string2')

Listing for This Example

```python
>>> import pandas as pd
>>> import ml

>>> df = pd.DataFrame({'numeric': [1, 1.4, -4, -4, 5.432, None, None],
...                    'string1' : [None, None, 'a', 'a', 'a', 'b', None],
...                    'string2': ['x', None, 'z', 'z', 'z', 'x', None])

>>> oml_df = ml.push(df, dbtypes = {'numeric': 'BINARY_DOUBLE',
...                                  'string1': 'CHAR(1)',
...                                  'string2': 'CHAR(1)'})

>>> # Drop rows with any missing values.
... oml_df.dropna(how='any')
numeric string1 string2
0   -4.000       a       z
1   -4.000       a       z
2    5.432       a       z

>>> # Drop rows in which all column values are missing.
... oml_df.dropna(how='all')
numeric string1 string2
0    1.000    None       x
1    1.400    None    None
2   -4.000       a       z
3   -4.000       a       z
4    5.432       a       z
5      NaN       b       x

>>> # Drop rows in which any numeric column values are missing.
... oml_df.dropna(how='any', subset=['numeric'])
numeric string1 string2
0    1.000    None       x
1    1.400    None    None
2   -4.000       a       z
3   -4.000       a       z
4    5.432       a       z

>>> # Drop duplicate rows.
... oml_df.drop_duplicates()
numeric string1 string2
0    5.432       a       z
1    1.000    None       x
2   -4.000       a       z
3      NaN       b       x
4    1.400    None    None
5      NaN    None    None

>>> # Drop rows that have the same value in columns 'string1' and
```
string2'.

>>> oml_df.drop_duplicates(subset=['string1', 'string2'])
 numeric string1 string2
 0 -4.0 a z
 1 1.4 None None
 2 1.0 None x
 3 NaN b x

>>> # Drop the column 'string2'.

>>> oml_df.drop('string2')
 numeric string1
 0 1.000 None
 1 1.400 None
 2 -4.000 a
 3 -4.000 a
 4 5.432 a
 5 NaN b
 6 NaN None

Split Data

Sample and randomly partition data with the `split` and `KFold` methods.

In analyzing large data sets, a typical operation is to randomly partition the data set into subsets for training and testing purposes, which you can do with these methods. You can also sample data with the `split` method.

Example 6-8 Splitting Data into Multiple Sets

This example demonstrates splitting data into multiple sets and into k consecutive folds, which can be used for k-fold cross-validation.

```python
import oml
import pandas as pd
from sklearn import datasets
digits = datasets.load_digits()
pd_digits = pd.DataFrame(digits.data,
                       columns=['IMG'+str(i) for i in range(digits['data'].shape[1])])
pd_digits = pd.concat([pd_digits,
                       pd.Series(digits.target,
                                  name = 'target')],
                       axis = 1)
oml_digits = oml.push(pd_digits)

# Sample 20% and 80% of the data.
splits = oml_digits.split(ratio=(.2, .8), use_hash = False)
[len(split) for split in splits]

# Split the data into four sets.
splits = oml_digits.split(ratio = (.25, .25, .25, .25),
                          use_hash = False)
[len(split) for split in splits]
```
Perform stratification on the target column.
splits = oml_digits.split(strata_cols=['target'])
[split.shape for split in splits]

Verify that the stratified sampling generates splits in which
all of the different categories of digits (digits 0~9)
are present in each split.
[split['target'].drop_duplicates().sort_values().pull()
for split in splits]

Hash on the target column.
splits = oml_digits.split(hash_cols=['target'])
[split.shape for split in splits]

Verify that the different categories of digits (digits 0~9) are
present
in only one of the splits generated by hashing on the category
column.
[split['target'].drop_duplicates().sort_values().pull()
for split in splits]

Split the data randomly into 4 consecutive folds.
folds = oml_digits.KFold(n_splits=4)
[(len(fold[0]), len(fold[1])) for fold in folds]

Listing for This Example

```python
globals()``
>>> [split.shape for split in splits]
[(1285, 65), (512, 65)]

>>> # Verify that the stratified sampling generates splits in which 
... # all of the different categories of digits (digits 0~9) 
... # are present in each split.
... [split['target'].drop_duplicates().sort_values().pull() 
... for split in splits]
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]

>>> # Hash on the target column
... splits = oml_digits.split(hash_cols=['target'])
>>> [split.shape for split in splits]
[(899, 65), (898, 65)]

>>> # Verify that the different categories of digits (digits 0~9) are present
... # in only one of the splits generated by hashing on the category column.
... [split['target'].drop_duplicates().sort_values().pull() 
... for split in splits]
[[0, 1, 3, 5, 8], [2, 4, 6, 7, 9]]

>>> # Split the data randomly into 4 consecutive folds.
... folds = oml_digits.KFold(n_splits=4)
>>> [(len(fold[0]), len(fold[1])) for fold in folds]
[(1352, 445), (1336, 461), (1379, 418), (1325, 472)]

---

**Explore Data**

OML4Py provides methods that enable you to perform exploratory data analysis and common statistical operations.

These methods are described in the following topics.

**About the Exploratory Data Analysis Methods**

OML4Py provides methods that enable you to perform exploratory data analysis.

The following table lists methods of OML4Py data type classes with which you can perform common statistical operations and indicates whether the class supports the method.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>corr</td>
<td>Computes pairwise correlation between all columns in an oml.DataFrame where possible, given the type of coefficient.</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>count</td>
<td>Computes the number of elements that are not NULL in the series data object or in each column of an oml.DataFrame.</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>crosstab</td>
<td>Computes a cross-tabulation of two or more columns in an oml.DataFrame.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>cumsum</td>
<td>Computes the cumulative sum after an oml.Float series data object is sorted, or for each float or Boolean column after an oml.DataFrame object is sorted.</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>describe</td>
<td>Computes descriptive statistics that summarize the central tendency, dispersion, and shape of an oml series data distribution, or of each column in an oml.DataFrame.</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>kurtosis</td>
<td>Computes the kurtosis of the values in an oml.Float series data object, or for each float column in an oml.DataFrame.</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>max</td>
<td>Returns the maximum value in a series data object or in each column in an oml.DataFrame.</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>mean</td>
<td>Computes the mean of the values in an oml.Float series object, or for each float or Boolean column in an oml.DataFrame.</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>median</td>
<td>Computes the median of the values in an oml.Float series object, or for each float column in an oml.DataFrame.</td>
<td>✗</td>
<td>✗</td>
<td>✅</td>
<td>✗</td>
<td>✅</td>
</tr>
<tr>
<td>min</td>
<td>Returns the minimum value in a series data object or of each column in an oml.DataFrame.</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>nunique</td>
<td>Computes the number of unique values in a series data object or in each column of an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>pivot_table</td>
<td>Converts an oml.DataFrame to a spreadsheet-style pivot table.</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>sort_values</td>
<td>Sorts the values in a series data object or sorts the rows in an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>skew</td>
<td>Computes the skewness of the values in an oml.Float data series object or of each float column in an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>std</td>
<td>Computes the standard deviation of the values in an oml.Float data series object or in each float or Boolean column in an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>sum</td>
<td>Computes the sum of the values in an oml.Float data series object or of each float or Boolean column in an oml.DataFrame.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Correlate Data

Use the `corr` method to perform Pearson, Spearman, or Kendall correlation analysis across columns where possible in an oml.DataFrame object.

For details about the function arguments, invoke `help(oml.DataFrame.corr)` or see Oracle Machine Learning for Python API Reference.

**Example 6-9  Performing Basic Correlation Calculations**

This example first creates a temporary database table, with its corresponding proxy oml.DataFrame object `oml_df1`, from the pandas.DataFrame object `df`. It then verifies the correlation computed between columns A and B, which gives 1, as expected. The values in B are twice the values in A element-wise. The example also changes a value field in `df` and creates a NaN entry. It then creates a temporary database table, with the corresponding proxy.
oml.DataFrame object oml_df2. Finally, it invokes the corr method on oml_df2 with skipna set to True (the default) and then False to compare the results.

import oml
import pandas as pd

df = pd.DataFrame({'A': range(4), 'B': [2*i for i in range(4)]})
oml_df1 = oml.push(df)

# Verify that the correlation between column A and B is 1.
oml_df1.corr()

# Change a value to test the change in the computed correlation result.
df.loc[2, 'A'] = 1.5

# Change an entry to NaN (not a number) to test the 'skipna'
# parameter in the corr method.
df.loc[1, 'B'] = None

# Push df to the database using the floating point column type
# because NaNs cannot be used in Oracle numbers.
oml_df2 = oml.push(df, oranumber=False)

# By default, 'skipna' is True.
oml_df2.corr()

Listing for This Example

>>> import oml
>>> import pandas as pd
...>
>>> df = pd.DataFrame({'A': range(4), 'B': [2*i for i in range(4)]})
>>> oml_df1 = oml.push(df)
...
>>> # Verify that the correlation between column A and B is 1.
... oml_df1.corr()
   A  B
  A  1  1
  B  1  1
>>> # Change a value to test the change in the computed correlation result.
... df.loc[2, 'A'] = 1.5
>>> # Change an entry to NaN (not a number) so to test the 'skipna'
... # parameter in the corr method.
... df.loc[1, 'B'] = None
>>> # Push df to the database using the floating point column type
... # because NaNs cannot be used in Oracle numbers.
... oml_df2 = oml.push(df, oranumber=False)
>>> # By default, 'skipna' is True.
Cross-Tabulate Data

Use the `crosstab` method to perform cross-column analysis of an `oml.DataFrame` object and the `pivot_table` method to convert an `oml.DataFrame` to a spreadsheet-style pivot table.

Cross-tabulation is a statistical technique that finds an interdependent relationship between two columns of values. The `crosstab` method computes a cross-tabulation of two or more columns. By default, it computes a frequency table for the columns unless a column and an aggregation function have been passed to it.

The `pivot_table` method converts a data set into a pivot table. Due to the database 1000 column limit, pivot tables with more than 1000 columns are automatically truncated to display the categories with the most entries for each column value.

For details about the method arguments, invoke `help(oml.DataFrame.crosstab)` or `help(oml.DataFrame.pivot_table)`, or see Oracle Machine Learning for Python API Reference.

Example 6-10 Producing Cross-Tabulation and Pivot Tables

This example demonstrates the use of the `crosstab` and `pivot_table` methods.

```python
import pandas as pd
import oml

x = pd.DataFrame(
 {'GENDER': ['M', 'M', 'F', 'M', 'F', None, 'F', 'M', 'R', 'R', 'R', 'R'],
 'SPEED': [40.5, 30.4, 60.8, 51.2, 54, 29.3, 34.1, 39.6, 46.4, 12, 25.3, 37.5],
 'ACCURACY': [.92, .94, .87, .9, .85, .97, .96, .93, .89, .84, .91, .95]
 }
)
x = oml.push(x)

Find the categories that the most entries belonged to.
x.crosstab('GENDER', 'HAND').sort_values('count', ascending=False)

For each gender value and across all entries, find the ratio of entries with different hand values.
x.crosstab('GENDER', 'HAND', pivot = True, margins = True, normalize = 0)

Find the mean speed across all gender and hand combinations.
x.pivot_table('GENDER', 'HAND', 'SPEED')
```
# Find the median accuracy and speed for every gender and hand combination.
x.pivot_table('GENDER', 'HAND', aggfunc = oml.DataFrame.median)

# Find the max and min speeds for every gender and hand combination and
# across all combinations.
x.pivot_table('GENDER', 'HAND', 'SPEED',
            aggfunc = [oml.DataFrame.max, oml.DataFrame.min],
            margins = True)

Listing for This Example

```python
>>> import pandas as pd
>>> import oml

>>> x = pd.DataFrame({
 'GENDER': ['M', 'M', 'F', 'M', 'F', 'M', 'F', 'F',
 None, 'F', 'M', 'F'],
 'HAND': ['L', 'R', 'R', 'L', 'R', None, 'L', 'R',
 'R', 'R', 'R', 'R'],
 'SPEED': [40.5, 30.4, 60.8, 51.2, 54, 29.3, 34.1,
 39.6, 46.4, 12, 25.3, 37.5],
 'ACCURACY': [.92, .94, .87, .9, .85, .97, .96, .93,
 .89, .84, .91, .95]
})
>>> x = oml.push(x)

>>> # Find the categories that the most entries belonged to.
... x.crosstab('GENDER', 'HAND').sort_values('count', ascending=False)

<table>
<thead>
<tr>
<th>GENDER</th>
<th>HAND</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>R</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>R</td>
</tr>
</tbody>
</table>

>>> # For each gender value and across all entries, find the ratio of entries
with different hand values.
... x.crosstab('GENDER', 'HAND', pivot = True, margins = True,
 normalize = 0)

<table>
<thead>
<tr>
<th>GENDER</th>
<th>count_(L)</th>
<th>count_(R)</th>
<th>count_(None)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000</td>
<td>1.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>1</td>
<td>0.166667</td>
<td>0.833333</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>0.400000</td>
<td>0.400000</td>
<td>0.200000</td>
</tr>
<tr>
<td>3</td>
<td>0.250000</td>
<td>0.666667</td>
<td>0.083333</td>
</tr>
</tbody>
</table>

>>> # Find the mean speed across all gender and hand combinations.
... x.pivot_table('GENDER', 'HAND', 'SPEED')

<table>
<thead>
<tr>
<th>GENDER</th>
<th>mean(SPEED)_(L)</th>
<th>mean(SPEED)_(R)</th>
<th>mean(SPEED)_(None)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>46.40</td>
<td>NaN</td>
</tr>
</tbody>
</table>
```
>>> # Find the median accuracy and speed for every gender and hand combination.
... x.pivot_table('GENDER', 'HAND', aggfunc = oml.DataFrame.median)

<table>
<thead>
<tr>
<th>GENDER</th>
<th>median(ACCURACY)_L</th>
<th>median(ACCURACY)_R</th>
<th>median(ACCURACY)_None</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0.890</td>
</tr>
<tr>
<td>NaN</td>
<td>0.96</td>
<td>0.870</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>0.91</td>
<td>0.925</td>
<td>0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>median(SPEED)_L</th>
<th>median(SPEED)_R</th>
<th>median(SPEED)_None</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaN</td>
<td>46.40</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>34.10</td>
<td>39.60</td>
</tr>
<tr>
<td>2</td>
<td>45.85</td>
<td>27.85</td>
</tr>
</tbody>
</table>

>>> # Find the max and min speeds for every gender and hand combination and across all combinations.
... x.pivot_table('GENDER', 'HAND', 'SPEED',
...                aggfunc = [oml.DataFrame.max, oml.DataFrame.min],
...                margins = True)

<table>
<thead>
<tr>
<th>GENDER</th>
<th>max(SPEED)_L</th>
<th>max(SPEED)_R</th>
<th>max(SPEED)_None</th>
<th>max(SPEED)_All</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>46.4</td>
<td>NaN</td>
<td>46.4</td>
</tr>
<tr>
<td>1</td>
<td>34.1</td>
<td>60.8</td>
<td>NaN</td>
<td>60.8</td>
</tr>
<tr>
<td>2</td>
<td>51.2</td>
<td>30.4</td>
<td>29.3</td>
<td>51.2</td>
</tr>
<tr>
<td>3</td>
<td>51.2</td>
<td>60.8</td>
<td>29.3</td>
<td>60.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>min(SPEED)_L</th>
<th>min(SPEED)_R</th>
<th>min(SPEED)_None</th>
<th>min(SPEED)_All</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaN</td>
<td>46.4</td>
<td>NaN</td>
<td>46.4</td>
</tr>
<tr>
<td>1</td>
<td>34.1</td>
<td>12.0</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>40.5</td>
<td>25.3</td>
<td>29.3</td>
</tr>
<tr>
<td>3</td>
<td>34.1</td>
<td>12.0</td>
<td>29.3</td>
</tr>
</tbody>
</table>

## Mutate Data

In preparing data for analysis, a typical operation is to mutate data by reformatting it or deriving new columns and adding them to the data set.

These examples demonstrate methods of formatting data and deriving columns.

```python
import pandas as pd
import oml

Create a shopping cart data set.
shopping_cart = pd.DataFrame({
 # Insert the data here.
})
```
'Item_name': ['paper_towel', 'ground_pork', 'tofu', 'eggs', 'pork_loin', 'whole_milk', 'egg_custard'],
'Item_type': ['grocery', 'meat', 'grocery', 'dairy', 'meat', 'dairy', 'bakery'],
'Quantity': [1, 2.6, 4, 1, 1.9, 1, 1],
'Unit_price': [1.19, 2.79, 0.99, 2.49, 3.19, 2.5, 3.99]
})

oml_cart = oml.push(shopping_cart)

# Add a column 'Price' multiplying 'Quantity' with 'Unit_price',
# rounded to 2 decimal places.
price = oml_cart['Quantity']*(oml_cart['Unit_price'])
type(price)

price

oml_cart = oml_cart.concat({'Price': price.round(2)})

# Count the pattern 'egg' in the 'Item_name' column.
egg_pattern = oml_cart['Item_name'].count_pattern('egg')
type(egg_pattern)

oml_cart.concat({'Egg_pattern': egg_pattern})

# Find the start index of substring 'pork' in the 'Item_name' column.
pork_startInd = oml_cart['Item_name'].find('pork')
type(pork_startInd)

oml_cart.concat({'Pork_startInd': pork_startInd})

# Check whether items are of grocery category.
is_grocery=oml_cart['Item_type']=='grocery'
type(is_grocery)

oml_cart.concat({'Is_grocery': is_grocery})

# Calculate the length of item names.
name_length=oml_cart['Item_name'].len()  
type(name_length)

oml_cart.concat({'Name_length': name_length})

# Get the ceiling, floor, exponential, logarithm and square root
# of the 'Price' column.

oml_cart['Price'].ceil()
oml_cart['Price'].floor()
oml_cart['Price'].exp()
oml_cart['Price'].log()
oml_cart['Price'].sqrt()

---

Listing for This Example

```python
>>> import pandas as pd
>>> import oml

>>> # Create a shopping cart data set.
... shopping_cart = pd.DataFrame({
... 'Item_name': ['paper_towel', 'ground_pork', 'tofu', 'eggs', 'pork_loin', 'whole_milk', 'egg_custard'],
... ... 'Item_type': ['grocery', 'meat', 'grocery', 'dairy', 'meat', 'dairy', 'bakery'],
... 'Quantity': [1, 2.6, 4, 1, 1.9, 1, 1],
... 'Unit_price': [1.19, 2.79, 0.99, 2.49, 3.19, 2.5, 3.99]
... })
...```
```python
>>> oml_cart = oml.push(shopping_cart)
>>> oml_cart
Item_name   Item_type    Quantity  Unit_price
0   paper_towel   grocery       1.0        1.19
1  ground_pork      meat       2.6        2.79
2      tofu    grocery       4.0        0.99
3         eggs     dairy       1.0        2.49
4    pork_loin      meat       1.9        3.19
5   whole_milk     dairy       1.0        2.50
6  egg_custard    bakery       1.0        3.99

>>> # Add a column 'Price' multiplying 'Quantity' with 'Unit_price',
... # rounded to 2 decimal places.
... price = oml_cart['Quantity']*(oml_cart['Unit_price'])
>>> type(price)
<class 'oml.core.float.Float'>
>>> price
[1.19, 7.254, 3.96, 2.49, 6.061, 2.5, 3.99]
>>> oml_cart = oml_cart.concat({'Price': price.round(2)})

>>> # Count the pattern 'egg' in the 'Item_name' column.
... egg_pattern = oml_cart['Item_name'].count_pattern('egg')
>>> type(egg_pattern)
<class 'oml.core.float.Float'>
>>> oml_cart.concat({'Egg_pattern': egg_pattern})
Item_name   Item_type    Quantity  Unit_price  Price  Egg_pattern
0   paper_towel   grocery       1.0        1.19   1.19            0
1  ground_pork      meat       2.6        2.79   7.25            0
2      tofu    grocery       4.0        0.99   3.96            0
3         eggs     dairy       1.0        2.49   2.49            1
4    pork_loin      meat       1.9        3.19   6.06            0
5   whole_milk     dairy       1.0        2.50   2.50            0
6  egg_custard    bakery       1.0        3.99   3.99            1

>>> # Find the start index of substring 'pork' in the 'Item_name' column.
... pork_startInd = oml_cart['Item_name'].find('pork')
>>> type(pork_startInd)
<class 'oml.core.float.Float'>
>>> oml_cart.concat({'Pork_startInd': pork_startInd})
Item_name   Item_type    Quantity  Unit_price  Price  Pork_startInd
0   paper_towel   grocery       1.0        1.19   1.19             -1
1  ground_pork      meat       2.6        2.79   7.25              7
2      tofu    grocery       4.0        0.99   3.96             -1
3         eggs     dairy       1.0        2.49   2.49             -1
4    pork_loin      meat       1.9        3.19   6.06              0
5   whole_milk     dairy       1.0        2.50   2.50             -1
6  egg_custard    bakery       1.0        3.99   3.99             -1

>>> # Check whether items are of grocery category.
... is_grocery=oml_cart['Item_type']=='grocery'
```
The `sort_values` function enables flexible sorting of an `oml.DataFrame` along one or more columns specified by the `by` argument, and returns an `oml.DataFrame`.

Sort Data

```python
>>> type(is_grocery)
<class 'oml.core.boolean.Boolean'>
>>> oml_cart.concat({'Is_grocery': is_grocery})

<table>
<thead>
<tr>
<th>Item_name</th>
<th>Item_type</th>
<th>Quantity</th>
<th>Unit_price</th>
<th>Price</th>
<th>Is_grocery</th>
</tr>
</thead>
<tbody>
<tr>
<td>paper_towel</td>
<td>grocery</td>
<td>1.0</td>
<td>1.19</td>
<td>1.19</td>
<td>True</td>
</tr>
<tr>
<td>ground_pork</td>
<td>meat</td>
<td>2.6</td>
<td>2.79</td>
<td>7.25</td>
<td>False</td>
</tr>
<tr>
<td>tofu</td>
<td>grocery</td>
<td>4.0</td>
<td>0.99</td>
<td>3.96</td>
<td>True</td>
</tr>
<tr>
<td>eggs</td>
<td>dairy</td>
<td>1.0</td>
<td>2.49</td>
<td>2.49</td>
<td>False</td>
</tr>
<tr>
<td>pork_loin</td>
<td>meat</td>
<td>1.9</td>
<td>3.19</td>
<td>6.06</td>
<td>False</td>
</tr>
<tr>
<td>whole_milk</td>
<td>dairy</td>
<td>1.0</td>
<td>2.50</td>
<td>2.50</td>
<td>False</td>
</tr>
<tr>
<td>egg_custard</td>
<td>bakery</td>
<td>1.0</td>
<td>3.99</td>
<td>3.99</td>
<td>False</td>
</tr>
</tbody>
</table>

>>> # Calculate the length of item names.
... name_length=oml_cart['Item_name'].len()
>>> type(name_length)
<class 'oml.core.float.Float'>
>>> oml_cart.concat({'Name_length': name_length})

<table>
<thead>
<tr>
<th>Item_name</th>
<th>Item_type</th>
<th>Quantity</th>
<th>Unit_price</th>
<th>Price</th>
<th>Name_length</th>
</tr>
</thead>
<tbody>
<tr>
<td>paper_towel</td>
<td>grocery</td>
<td>1.0</td>
<td>1.19</td>
<td>1.19</td>
<td>11</td>
</tr>
<tr>
<td>ground_pork</td>
<td>meat</td>
<td>2.6</td>
<td>2.79</td>
<td>7.25</td>
<td>11</td>
</tr>
<tr>
<td>tofu</td>
<td>grocery</td>
<td>4.0</td>
<td>0.99</td>
<td>3.96</td>
<td>4</td>
</tr>
<tr>
<td>eggs</td>
<td>dairy</td>
<td>1.0</td>
<td>2.49</td>
<td>2.49</td>
<td>4</td>
</tr>
<tr>
<td>pork_loin</td>
<td>meat</td>
<td>1.9</td>
<td>3.19</td>
<td>6.06</td>
<td>9</td>
</tr>
<tr>
<td>whole_milk</td>
<td>dairy</td>
<td>1.0</td>
<td>2.50</td>
<td>2.50</td>
<td>10</td>
</tr>
<tr>
<td>egg_custard</td>
<td>bakery</td>
<td>1.0</td>
<td>3.99</td>
<td>3.99</td>
<td>11</td>
</tr>
</tbody>
</table>

>>> # Get the ceiling, floor, exponential, logarithm and square root of the 'Price' column.
... # of the 'Price' column.
... oml_cart['Price'].ceil()
[2, 8, 4, 3, 7, 3, 4]
>>> oml_cart['Price'].floor()
[1, 7, 3, 2, 6, 2, 3]
>>> oml_cart['Price'].exp()
[3.2870812073831184, 1408.1048482046956, 52.45732594909905, 12.061276120444719, 3.7543685928694, 12.182493960703473, 54.05488936332659]
>>> oml_cart['Price'].log()
[0.173953307123438, 1.981001468866583, 1.3762440252663892, 0.912287104766162, 1.80170980081223, 0.9162907318741551, 1.3837912309017721]
>>> oml_cart['Price'].sqrt()
[1.0908712114635715, 2.692582403567252, 1.98997487421324, 1.57797338380595, 2.4617067250182343, 1.581138830084198, 1.99749845543818]
Example 6-11  Sorting Data

The following example demonstrates these operations.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

Create the IRIS database table and the proxy object for the table.
ml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Modify the data set by replacing a few entries with NaNs to test how the na_position parameter works in the sort_values method.
Iris = ml_iris.pull()
Iris['Sepal_Width'].replace({3.5: None}, inplace=True)
Iris['Petal_Length'].replace({1.5: None}, inplace=True)
Iris['Petal_Width'].replace({2.3: None}, inplace=True)

Create another table using the changed data.
ml_iris2 = oml.create(Iris, table = 'IRIS2')

Sort the data set first by Sepal_Length then by Sepal_Width in descending order and display the first 5 rows of the sorted result.
ml_iris2.sort_values(by = ['Sepal_Length', 'Sepal_Width'], ascending=False).head()

Display the last 5 rows of the data set.
ml_iris2.tail()

Sort the last 5 rows of the iris data set first by Petal_Length then by Petal_Width. By default, rows with NaNs are placed after the other rows when the sort keys are the same.
ml_iris2.tail().sort_values(by = ['Petal_Length', 'Petal_Width'])

Sort the last 5 rows of the iris data set first by Petal_Length and then by Petal_Width. When the values in these two columns are the same, place the row with a NaN before the other row.
ml_iris2.tail().sort_values(by = ['Petal_Length', 'Petal_Width'], na_position = 'first')

oml.drop('IRIS')
oml.drop('IRIS2')
```
Listing for This Example

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
... columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
... {0: 'setosa', 1: 'versicolor',
... 2:'virginica'}[x], iris.target)),
... columns = ['Species'])

>>> # Create the IRIS database table and the proxy object for the table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Modify the data set by replacing a few entries with NaNs to test how the na_position parameter works in the sort_values method.
... Iris = oml_iris.pull()
>>> Iris['Sepal_Width'].replace({3.5: None}, inplace=True)
>>> Iris['Petal_Length'].replace({1.5: None}, inplace=True)
>>> Iris['Petal_Width'].replace({2.3: None}, inplace=True)

>>> # Create another table using the changed data.
... oml_iris2 = oml.create(Iris, table = 'IRIS2')

>>> # Sort the data set first by 'Sepal_Length' then by 'Sepal_Width' in descending order and displays the first 5 rows of the sorted result.
... oml_iris2.sort_values(by = ['Sepal_Length', 'Sepal_Width'], ascending=False).head()

 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
0 7.9 3.8 6.4 2.0 virginica
1 7.7 3.8 6.7 2.2 virginica
2 7.7 3.0 6.1 NaN virginica
3 7.7 2.8 6.7 2.0 virginica
4 7.7 2.6 6.9 NaN virginica

>>> # Display the last 5 rows of the data set.
... oml_iris2.tail()

 Sepal_Length Sepal_Width Petal_Length Petal_Width Species
0 6.7 3.0 5.2 NaN virginica
1 6.3 2.5 5.0 1.9 virginica
2 6.5 3.0 5.2 2.0 virginica
3 6.2 3.4 5.4 NaN virginica
4 5.9 3.0 5.1 1.8 virginica

>>> # Sort the last 5 rows of the iris data set first by 'Petal_Length' then by 'Petal_Width'. By default, rows with NaNs are placed after the other rows when the sort keys are the same.
```
>>> oml_iris2.tail().sort_values(by = ['Petal_Length', 'Petal_Width'])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.3</td>
<td>2.5</td>
<td>5.0</td>
<td>1.9</td>
</tr>
<tr>
<td>1</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>NaN</td>
</tr>
</tbody>
</table>

```python
>>> # Sort the last 5 rows of the iris data set first by 'Petal_Length'
... # and then by 'Petal_Width'. When the values in these two columns
... # are the same, place the row with a NaN before the other row.
... oml_iris2.tail().sort_values(by = ['Petal_Length', 'Petal_Width'],
... na_position = 'first')

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Petal_Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.3</td>
<td>2.5</td>
<td>5.0</td>
<td>1.9</td>
</tr>
<tr>
<td>1</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>6.2</td>
<td>3.4</td>
<td>5.4</td>
<td>NaN</td>
</tr>
</tbody>
</table>
```

```python
>>> oml.drop('IRIS')
>>> oml.drop('IRIS2')
```

**Summarize Data**

The `describe` method calculates descriptive statistics that summarize the central tendency, dispersion, and shape of the data in each column.

You can also specify the types of columns to include or exclude from the results.

With the `sum` and `cumsum` methods, you can compute the sum and cumulative sum of each Float or Boolean column of an `oml.DataFrame`.

The `describe` method supports finding the following statistics:

- Mean, minimum, maximum, median, top character, standard deviation
- Number of not-Null values, unique values, top characters
- Percentiles between 0 and 1

**Example 6-12  Calculating Descriptive Statistics**

The following example demonstrates these operations.

```python
import pandas as pd
import oml

df = pd.DataFrame({'numeric': [1, 1.4, -4, 3.145, 5, None],
 'string' : [None, None, 'a', 'a', 'a', 'b'],
 'bytes' : [b'a', b'b', b'c', b'c', b'd', b'e']})

oml_df = oml.push(df, dbtypes = {'numeric': 'BINARY_DOUBLE',
 'string':'CHAR(1)',
 'bytes':'RAW(1)'})

Combine a Boolean column with oml_df.
```
oml_bool = oml_df['numeric'] > 3
oml_df = oml_df.concat(oml_bool)
oml_df.rename({'COL4': 'boolean'})

# Describe all of the columns.
oml_df.describe(include='all')

# Exclude Float columns.
oml_df.describe(exclude=[oml.Float])

# Get the sum of values in each Float or Boolean column.
oml_df.sum()

# Find the cumulative sum of values in each Float or Boolean column after oml_df is sorted by the bytes column in descending order.
# oml_df.cumsum(by = 'bytes', ascending = False)

# Compute the skewness of values in the Float columns.
oml_df.skew()

# Find the median value of Float columns.
oml_df.median()

# Calculate the kurtosis of Float columns.
oml_df.kurtosis()

Listing for This Example

```python
>>> import pandas as pd
>>> import oml

>>> df = pd.DataFrame({'numeric': [1, 1.4, -4, 3.145, 5, None],
... 'string' : [None, None, 'a', 'a', 'a', 'b'],
... 'bytes' : [b'a', b'b', b'c', b'c', b'd', b'e']})

>>> oml_df = oml.push(df, dbtypes = {'numeric': 'BINARY_DOUBLE',
... 'string': 'CHAR(1)',
... 'bytes': 'RAW(1)'}

>>> # Combine a Boolean column with oml_df.
>>> oml_bool = oml_df['numeric'] > 3
>>> oml_df = oml_df.concat(oml_bool)
>>> oml_df.rename({'COL4': 'boolean'})

 bytes numeric string boolean
 0 b'a' 1.000 None False
 1 b'b' 1.400 None False
 2 b'c' -4.000 a False
 3 b'c' 3.145 a True
 4 b'd' 5.000 a True
 5 b'e' NaN b True

>>> # Describe all of the columns.
>>> oml_df.describe(include='all')

 bytes numeric string boolean
```
>>> # Exclude Float columns.
... oml_df.describe(exclude=[oml.Float])

<table>
<thead>
<tr>
<th></th>
<th>bytes</th>
<th>string</th>
<th>boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>unique</td>
<td>5</td>
<td>NaN</td>
<td>2</td>
</tr>
<tr>
<td>top</td>
<td>b'c'</td>
<td>NaN</td>
<td>a</td>
</tr>
<tr>
<td>freq</td>
<td>2</td>
<td>NaN</td>
<td>3</td>
</tr>
<tr>
<td>mean</td>
<td>NaN</td>
<td>1.3090</td>
<td>NaN</td>
</tr>
<tr>
<td>std</td>
<td>NaN</td>
<td>3.3646</td>
<td>NaN</td>
</tr>
<tr>
<td>min</td>
<td>NaN</td>
<td>-4.0000</td>
<td>NaN</td>
</tr>
<tr>
<td>25%</td>
<td>NaN</td>
<td>1.0000</td>
<td>NaN</td>
</tr>
<tr>
<td>50%</td>
<td>NaN</td>
<td>1.4000</td>
<td>NaN</td>
</tr>
<tr>
<td>75%</td>
<td>NaN</td>
<td>3.1450</td>
<td>NaN</td>
</tr>
<tr>
<td>max</td>
<td>NaN</td>
<td>5.0000</td>
<td>NaN</td>
</tr>
</tbody>
</table>

>>> # Get the sum of values in each Float or Boolean column.
... oml_df.sum()

<table>
<thead>
<tr>
<th></th>
<th>numeric</th>
<th>boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>6.545</td>
<td>3.000</td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
<td></td>
</tr>
</tbody>
</table>

>>> # Find the cumulative sum of values in each Float or Boolean column
... # after oml_df is sorted by the bytes column in descending order.
... oml_df.cumsum(by = 'bytes', ascending = False)

<table>
<thead>
<tr>
<th></th>
<th>numeric</th>
<th>boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5.000</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4.145</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5.545</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6.545</td>
<td>3</td>
</tr>
</tbody>
</table>

>>> # Compute the skewness of values in the Float columns.
... oml_df.skew()

<table>
<thead>
<tr>
<th></th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>skew</td>
<td>-0.6838</td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
</tr>
</tbody>
</table>

>>> # Find the median value of Float columns.
... oml_df.median()

<table>
<thead>
<tr>
<th></th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>median</td>
<td>1.4</td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
</tr>
</tbody>
</table>

>>> # Calculate the kurtosis of Float columns.
... oml_df.kurtosis()

<table>
<thead>
<tr>
<th></th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>kurtosis</td>
<td>-0.5826</td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
</tr>
</tbody>
</table>
OML4Py provides functions for rendering graphical displays of data.

The `oml.boxplot` and `oml.hist` functions compute the statistics necessary to generate box and whisker plots or histograms in-database for scalability and performance.

OML4Py uses the `matplotlib` library to render the output. You can use methods of `matplotlib.pyplot` to customize the created images and `matplotlib.pyplot.show` to show the images. By default, rendered graphics have the same properties as those stored in `matplotlib.rcParams`.

For the parameters of the `oml.boxplot` and `oml.hist` functions, invoke `help(oml.boxplot)` or `help(oml.hist)`, or see Oracle Machine Learning for Python API Reference.

Generate a Box Plot

Use the `oml.boxplot` function to generate a box and whisker plot for every column of `x` or for every column object in `x`.

**Example 6-13 Using the oml.boxplot Function**

This example first loads the wine data set from `sklearn` and creates the `pandas.DataFrame` object `wine_data`. It then creates a temporary database table, with its corresponding proxy `oml.DataFrame` object `oml_wine`, from `wine_data`. It draws a box and whisker plot on every column with the index ranging from 8 to 12 (not including 12) in `oml_wine`. The arguments `showmeans` and `meanline` are set to `True` to show the arithmetic means and to render the mean as a line spanning the full width of the box. The argument `patch_artist` is set to `True` to have the boxes drawn with Patch artists.

```python
import oml
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets

wine = datasets.load_wine()
wine_data = pd.DataFrame(wine.data, columns = wine.feature_names)
ml_wine = oml.push(wine_data)
oml.graphics.boxplot(ml_wine[:,8:12], showmeans=True,
 meanline=True, patch_artist=True,
 labels=ml_wine.columns[8:12])
plt.title('Distribution of Wine Attributes')
plt.show()
```

The output of the example is the following.
The image shows a box and whisker plot for each of the four columns of the wine data set: Proanthocyanins, Color intensity, Hue, and OD280/OD315 of diluted wines. The boxes extend from the lower to upper quartile values of the data, with a solid orange line at the median. The whiskers that extend from the box show the range of the data. The caps are the horizontal lines at the ends of the whiskers. Flier or outlier points are those past the ends of the whiskers. The mean is shown as a green dotted line spanning the width of the each box.

Generate a Histogram

Use the `oml.hist` function to compute and draw a histogram for every data set column contained in `x`.

**Example 6-14 Using the oml.hist Function**

This example first loads the wine data set from `sklearn` and creates the `pandas.DataFrame` object `wine_data`. It then creates a temporary database table, with its corresponding proxy `oml.DataFrame` object `oml_wine`, from `wine_data`. Next it draws a histogram on the proline column of `oml_wine`. The argument `bins` specifies generating ten equal-width bins. Argument `color` specifies filling the bars with the color purple. Arguments `linestyle` and `edgecolor` are set to draw the bar edges as solid lines in pink.

```python
import oml
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
wine = load_wine()
wine_data = pd.DataFrame(wine.data, columns = wine.feature_names)
oml_wine = oml.push(wine_data)
oml.graphics.hist(oml_wine['proline'], bins=10, color='red', linestyle='solid', edgecolor='white')
plt.title('Proline content in Wine')
plt.xlabel('proline content')
plt.ylabel('# of wine instances')
plt.show()
```
The output of the example is the following.

The image shows a traditional bar-type histogram for the Proline column of the wine data set. The range of proline values is divided into 10 bins of equal size. The height of the rectangular bar for each bin indicates the number of wine instances in each bin. The bars are red with solid white edges.
OML4Py Classes That Provide Access to In-Database Machine Learning Algorithms

OML4Py has classes that provide access to in-database Oracle Machine Learning algorithms.

These classes are described in the following topics.

- About Machine Learning Classes and Algorithms
- About Model Settings
- Shared Settings
- Export Oracle Machine Learning for Python Models
- Automatic Data Preparation
- Model Explainability
- Attribute Importance
- Association Rules
- Decision Tree
- Expectation Maximization
- Explicit Semantic Analysis
- Generalized Linear Model
- k-Means
- Naive Bayes
- Neural Network
- Random Forest
- Singular Value Decomposition
- Support Vector Machine

About Machine Learning Classes and Algorithms

These classes provide access to in-database machine learning algorithms.

Algorithm Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Algorithm</th>
<th>Function of Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.ai</td>
<td>Minimum Description Length</td>
<td>Attribute importance for classification or regression</td>
<td>Ranks attributes according to their importance in predicting a target.</td>
</tr>
<tr>
<td>Class</td>
<td>Algorithm</td>
<td>Function of Algorithm</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>oml.ar</td>
<td>Apriori</td>
<td>Association rules</td>
<td>Performs market basket analysis by identifying co-occurring items (frequent itemsets) within a set.</td>
</tr>
<tr>
<td>oml.dt</td>
<td>Decision Tree</td>
<td>Classification</td>
<td>Extracts predictive information in the form of human-understandable rules. The rules are if-then-else expressions; they explain the decisions that lead to the prediction.</td>
</tr>
<tr>
<td>oml.em</td>
<td>Expectation Maximization</td>
<td>Clustering</td>
<td>Performs probabilistic clustering based on a density estimation algorithm.</td>
</tr>
<tr>
<td>oml.esa</td>
<td>Explicit Semantic Analysis</td>
<td>Feature extraction</td>
<td>Extracts text-based features from a corpus of documents. Performs document similarity comparisons.</td>
</tr>
<tr>
<td>oml.glm</td>
<td>Generalized Linear Model</td>
<td>Classification</td>
<td>Implements logistic regression for classification of binary targets and linear regression for continuous targets.</td>
</tr>
<tr>
<td>oml.km</td>
<td>k-Means</td>
<td>Clustering</td>
<td>Uses unsupervised learning to group data based on similarity into a predetermined number of clusters.</td>
</tr>
<tr>
<td>oml.nb</td>
<td>Naive Bayes</td>
<td>Classification</td>
<td>Makes predictions by deriving the probability of a prediction from the underlying evidence, as observed in the data.</td>
</tr>
<tr>
<td>oml.nn</td>
<td>Neural Network</td>
<td>Classification</td>
<td>Learns from examples and tunes the weights of the connections among the neurons during the learning process.</td>
</tr>
<tr>
<td>oml.rf</td>
<td>Random Forest</td>
<td>Classification</td>
<td>Provides an ensemble learning technique for classification of data.</td>
</tr>
<tr>
<td>oml.svd</td>
<td>Singular Value Decomposition</td>
<td>Feature extraction</td>
<td>Performs orthogonal linear transformations that capture the underlying variance of the data by decomposing a rectangular matrix into three matrices.</td>
</tr>
<tr>
<td>oml.svm</td>
<td>Support Vector Machine</td>
<td>Anomaly detection</td>
<td>Builds a model that is a profile of a class, which, when the model is applied, identifies cases that are somehow different from that profile.</td>
</tr>
</tbody>
</table>

**Repeatability Results**

You can use the `case_id` parameter in the `fit` method of the OML4Py machine learning algorithm classes to achieve repeatable sampling, data splits (train and held aside), and random data shuffling.

**Persisting Models**

In-database models created through the OML4Py API exist as temporary objects that are dropped when the database connection ends unless you take one of the following actions:
• Save a default-named model object in a datastore, as in the following example:

```python
regr2 = oml.glm("regression")
oml.ds.save(regr2, 'regression2')
```

• Use the `model_name` parameter in the `fit` function when building the model, as in the following example:

```python
regr2 = regr2.fit(X, y, model_name = 'regression2')
```

• Change the name of an existing model using the `model_name` function of the model, as in the following example:

```python
regr2(model_name = 'myRegression2')
```

To drop a persistent named model, use the `oml.drop` function.

### Creating a Model from an Existing In-Database Model

You can create an OML4Py model as a proxy object for an existing in-database machine learning model. The in-database model could have been created through OML4Py, OML4SQL, or OML4R. To do so, when creating the OML4Py, specify the name of the existing model and, optionally, the name of the owner of the model, as in the following example.

```python
ar_mod = oml.ar(model_name = 'existing_ar_model', model_owner = 'SH', **setting)
```

An OML4Py model created this way persists until you drop it with the `oml.drop` function.

### Scoring New Data with a Model

For most of the OML4Py machine learning classes, you can use the `predict` and `predict_proba` methods of the model object to score new data.

For in-database models, you can use the SQL `PREDICTION` function on model proxy objects, which scores directly in the database. You can use in-database models directly from SQL if you prepare the data properly. For open source models, you can use Embedded Python Execution and enable data-parallel execution for performance and scalability.

### Deploying Models Through a REST API

The REST API for Oracle Machine Learning Services provides REST endpoints hosted on an Oracle Autonomous Database instance. These endpoints allow you to store OML models along with their metadata, and to create scoring endpoints for the models.

### About Model Settings

You can specify settings that affect the characteristics of a model.

Some settings are general, some are specific to an Oracle Machine Learning function, and some are specific to an algorithm.
All settings have default values. If you want to override one or more of the settings for a model, then you must specify the settings with the **params parameter when instantiating the model or later by using the set_params method of the model.

For the _init_ method, the argument can be key-value pairs or a dict. Each list element's name and value refer to a machine learning algorithm parameter setting name and value, respectively. The setting value must be numeric or a string.

The argument for the **params parameter of the set_params method is a dict object mapping a str to a str. The key should be the name of the setting, and the value should be the new setting.

**Example 7-1 Specifying Model Settings**

This example shows the creation of an Expectation Maximization (EM) model and the changing of a setting. For the complete code of the EM model example, see Example 7-10.

```python
Specify settings.
setting = {'emcs_num_iterations': 100}
Create an EM model object
em_mod = em(n_clusters = 2, **setting)
Intervening code not shown.
Change the random seed and refit the model.
em_mod.set_params(EMCS_RANDOM_SEED = '5').fit(train_dat)
```

**Shared Settings**

These settings are common to all of the OML4Py machine learning classes.

The following table lists the settings that are shared by all OML4Py models.

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODMSDETAILS</td>
<td>ODMS_ENABLE</td>
<td>Helps to control model size in the database. Model details can consume significant disk space, especially for partitioned models. The default value is ODMS_ENABLE.</td>
</tr>
<tr>
<td>ODMSDISABLE</td>
<td></td>
<td>If the setting value is ODMS_ENABLE, then model detail tables and views are created along with the model. You can query the model details using SQL.</td>
</tr>
<tr>
<td></td>
<td>ODMSDISABLE</td>
<td>If the value is ODMS_DISABLE, then model detail tables are not created and tables relevant to model details are also not created.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The reduction in the space depends on the algorithm. Model size reduction can be on the order of 10x.</td>
</tr>
<tr>
<td>ODMS_MAX_PARTITIONS</td>
<td>1 &lt; value &lt;= 1000000</td>
<td>Controls the maximum number of partitions allowed for a partitioned model. The default is 1000.</td>
</tr>
<tr>
<td>Setting Name</td>
<td>Setting Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
<td>Indicates how to treat missing values in the training data. This setting does not affect the scoring data. The default value is ODMS_MISSING_VALUE_AUTO.</td>
</tr>
<tr>
<td></td>
<td>ODMS_MISSING_VALUE_MEAN_MODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ODMS_MISSING_VALUE_DELETE_ROW</td>
<td></td>
</tr>
<tr>
<td>ODMS_PARTITION_BUILD_TYPE</td>
<td>ODMS_PARTITION_BUILD_INTRA</td>
<td>Controls the parallel building of partitioned models. ODMS_PARTITION_BUILD_INTRA builds each partition in parallel using all slaves.</td>
</tr>
<tr>
<td></td>
<td>ODMS_PARTITION_BUILD_INTER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ODMS_PARTITION_BUILD_HYBRID</td>
<td></td>
</tr>
<tr>
<td>ODMS_PARTITION_COLUMNS</td>
<td>Comma separated list of machine learning attributes</td>
<td>Requests the building of a partitioned model. The setting value is a comma-separated list of the machine learning attributes to be used to determine the in-list partition key values. These attributes are taken from the input columns, unless an XFORM_LIST parameter is passed to the model. If XFORM_LIST parameter is passed to the model, then the attributes are taken from the attributes produced by these transformations.</td>
</tr>
<tr>
<td>ODMS_TABLESPACE_NAME</td>
<td>tablespace_name</td>
<td>Specifies the tablespace in which to store the model. If you explicitly set this to the name of a tablespace (for which you have sufficient quota), then the specified tablespace storage creates the resulting model content. If you do not provide this setting, then the your default tablespace creates the resulting model content.</td>
</tr>
<tr>
<td>ODMS_SAMPLE_SIZE</td>
<td>0 &lt; value</td>
<td>Determines how many rows to sample (approximately). You can use this setting only if ODMS_SAMPLING is enabled. The default value is system determined.</td>
</tr>
</tbody>
</table>
### Table 7-1 (Cont.) Shared Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_ENABLE</td>
<td>Allows the user to request sampling of the build data. The default is ODMS_SAMPLING_DISABLE.</td>
</tr>
<tr>
<td></td>
<td>ODMS_SAMPLING_DISABLE</td>
<td></td>
</tr>
<tr>
<td>ODMS_TEXT_MAX_FEATURES</td>
<td>1 &lt;= value</td>
<td>The maximum number of distinct features, across all text attributes, to use from a document set passed to the model. The default is 3000. An oml.esa model has the default value of 300000.</td>
</tr>
<tr>
<td>ODMS_TEXT_MIN_DOCUMENTS</td>
<td>Non-negative value</td>
<td>This text processing setting controls how many documents a token needs to appear in to be used as a feature. The default is 1. An oml.esa model has the default value of 3.</td>
</tr>
<tr>
<td>ODMS_TEXT_POLICY_NAME</td>
<td>The name of an Oracle Text POLICY created using CTX_DDL.CREATE_POLICY.</td>
<td>Affects how individual tokens are extracted from unstructured text. For details about CTX_DDL.CREATE_POLICY, see Oracle Text Reference.</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>PREP_AUTO_ON</td>
<td>This data preparation setting enables fully automated data preparation.</td>
</tr>
<tr>
<td></td>
<td>PREP_AUTO_OFF</td>
<td>The default is PREP_AUTO_ON.</td>
</tr>
</tbody>
</table>
| PREP_SCALE_2DNUM           | PREP_SCALE_STDDEV           | This data preparation setting enables scaling data preparation for two-dimensional numeric columns. PREP_AUTO must be OFF for this setting to take effect. The following are the possible values:
|                            | PREP_SCALE_RANGE            | PREP_SCALE_STDDEV: A request to divide the column values by the standard deviation of the column and is often provided together with PREP_SHIFT_MEAN to yield z-score normalization. PREP_SCALE_RANGE: A request to divide the column values by the range of values and is often provided together with PREP_SHIFT_MIN to yield a range of [0,1]. |
| PREP_SCALE_NNUM            | PREP_SCALE_MAXABS           | This data preparation setting enables scaling data preparation for nested numeric columns. PREP_AUTO must be OFF for this setting to take effect. If specified, then the valid value for this setting is PREP_SCALE_MAXABS, which yields data in the range of [-1,1]. |
| PREP_SHIFT_2DNUM           | PREP_SHIFT_MEAN             | This data preparation setting enables centering data preparation for two-dimensional numeric columns. PREP_AUTO must be OFF for this setting to take effect. The following are the possible values:
|                            | PREP_SHIFT_MIN              | PREP_SHIFT_MEAN: Results in subtracting the average of the column from each value. PREP_SHIFT_MIN: Results in subtracting the minimum of the column from each value. |
Export Oracle Machine Learning for Python Models

You can export an oml model from Python and then score it in SQL.

Export a Model

With the export_sermodel function of an OML4Py algorithm model, you can export the model in a serialized format. You can then score that model in SQL. To save a model to a permanent table, you must pass in a name for the new table. If the model is partitioned, then you can optionally select an individual partition to export; otherwise all partitions are exported.

Note:

Any data transformations you apply to the data for model building you must also apply to the data for scoring with the imported model.

Example 7-2 Export a Trained oml.svm Model to a Database Table

This example creates the x and y variables using the iris data set. It then creates the persistent database table IRIS and the oml.DataFrame object oml_iris as a proxy for the table.

This example preprocesses the iris data set and splits the data set into training data and test data. It then fits an oml.svm model according to the training data of the data set, and saves the fitted model in a serialized format to a new table named svm_sermod in the database.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop('IRIS')
 oml.drop('IRIS_TEST_DATA')
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

df = oml.sync(table = "IRIS").pull()
```
# Add a case identifier column.
df.insert(0, 'ID', range(0, len(df)))

# Create training data and test data.
IRIS_TMP = oml.push(df).split()
train_x = IRIS_TMP[0].drop('Species')
train_y = IRIS_TMP[0]['Species']
test_dat = IRIS_TMP[1]

# Create the iris_test_data database table.
oml_test_dat = oml.create(test_dat.pull(), table = "IRIS_TEST_DATA")

# Create an oml SVM model object.
svm_mod = oml.svm('classification',
                 svms_kernel_function =
                 'dbms_data_mining.svms_linear')

# Fit the SVM model with the training data.
svm_mod = svm_mod.fit(train_x, train_y, case_id = 'ID')

# Export the oml.svm model to a new table named 'svm_sermod'
# in the database.
svm_export = svm_mod.export_sermodel(table='svm_sermod')
type(svm_export)

# Show the first 10 characters of the BLOB content from the
# model export.
svm_export.pull()[0][1:10]

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> try:
...    oml.drop('IRIS')
...    oml.drop('IRIS_TEST_DATA')
...except:
...    pass

>>> # Create the IRIS database table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> df = oml.sync(table = "IRIS").pull()
>>> # Add a case identifier column.
... df.insert(0, 'ID', range(0, len(df)))

>>> # Create training data and test data.
... IRIS_TMP = oml.push(df).split()
>>> train_x = IRIS_TMP[0].drop('Species')
>>> train_y = IRIS_TMP[0]['Species']
>>> test_dat = IRIS_TMP[1]

>>> # Create the iris_test_data database table.
... oml_test_dat = oml.create(test_dat.pull(), table = "IRIS_TEST_DATA")

>>> # Create an oml SVM model object.
... svm_mod = oml.svm('classification',
...                   svms_kernel_function =
...                   'dbms_data_mining.svms_linear')

>>> # Fit the SVM model with the training data.
... svm_mod = svm_mod.fit(train_x, train_y, case_id='ID')

>>> # Export the oml.svm model to a new table named 'svm_sermod'
... # in the database.
... svm_export = svm_mod.export_sermodel(table='svm_sermod')

>>> type(svm_export)
<class 'oml.core.bytes.Bytes'>

>>> # Show the first 10 characters of the BLOB content from the
... # model export.
... svm_export.pull()[0][1:10]
'b'\xff\xfc|\x00\x00\x02\x9c\x00\x00\x00\x00'

Import a Model

In SQL, you can import the serialized format of an OML4Py model into an Oracle Machine
Learning for SQL model with the DBMS_DATA_MINING.IMPORT_SERMODEL procedure. To that
procedure, you pass the BLOB content from the table to which the model was exported and
the name of the model to be created. The import procedure provides the ability to score the
model. It does not create model views or tables that are needed for querying model details.
You can use the SQL function PREDICTION to apply the imported model to the test data and
get the prediction results.

Example 7-3 Import a Serialized SVM Model as an OML4SQL Model in SQL

This example retrieves the serialized content of the SVM classification model from the
svm_sermod table. It uses the IMPORT_SERMODEL procedure to create a model named
my_iris_svm_classifier with the content from the table. It also predicts test data saved in the
iris_test_data table with the newly imported model my_iris_svm_classifier, and compares the
prediction results with the target classes.

-- After starting SQL*Plus as the OML4Py user.
-- Import the model from the serialized content.

DECLARE
    v_blob blob;
BEGIN
    SELECT SERVAL INTO v_blob FROM "svm_sermod";
    dbms_data_mining.import_sermodel(v_blob, 'my_iris_svm_classifier');
END;
/

-- Set the output column format.
column TARGET_SPECIES format a15
column PREDICT_SPECIES format a15

-- Make predictions and display cases where mod(ID,3) equals 0.
SELECT ID, "Species" AS TARGET_SPECIES,
PREDICTION(my_iris_svm_classifier USING "Sepal_Length",
"Sepal_Width",
"Petal_Length", "Petal_Width")
AS PREDICT_SPECIES
FROM "IRIS_TEST_DATA" WHERE MOD(ID,3) = 0;

-- Drop the imported model
BEGIN
    DBMS_DATA_MINING.DROP_MODEL(model_name => 'my_iris_svm_classifier');
END;
/

The prediction produces the following results.

<table>
<thead>
<tr>
<th>ID</th>
<th>TARGET_SPECIES</th>
<th>PREDICT_SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>24</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>27</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>33</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>36</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>39</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>48</td>
<td>setosa</td>
<td>setosa</td>
</tr>
<tr>
<td>54</td>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>57</td>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>93</td>
<td>versicolor</td>
<td>versicolor</td>
</tr>
<tr>
<td>114</td>
<td>virginica</td>
<td>virginica</td>
</tr>
<tr>
<td>120</td>
<td>virginica</td>
<td>virginica</td>
</tr>
<tr>
<td>132</td>
<td>virginica</td>
<td>virginica</td>
</tr>
</tbody>
</table>

13 rows selected.

Automatic Data Preparation

Oracle Machine Learning for Python supports Automatic Data Preparation (ADP) and user-directed general data preparation.

The `PREP_*` settings enable you to request fully automated (ADP) or manual data preparation. By default, ADP is enabled (`PREP_AUTO_ON`). When performed manually, data preparation requirements of each algorithm must be addressed.
When you enable ADP, the model uses heuristics to transform the build data according to the requirements of the algorithm. Instead of ADP, you can request that the data be shifted and/or scaled with the PREP_SCALE_* and PREP_SHIFT_* settings. The transformation instructions are stored with the model and reused whenever the model is applied. The model settings can be viewed in USER_MINING_MODEL_SETTINGS.

**PREP_* Settings**

The values for the PREP_* settings are described in the following table.

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREP_AUTO</td>
<td>PREP_AUTO_ON</td>
<td>This setting enables fully automated data preparation. The default is PREP_AUTO_ON.</td>
</tr>
<tr>
<td></td>
<td>PREP_AUTO_OFF</td>
<td></td>
</tr>
<tr>
<td>PREP_SCALE_2DNUM</td>
<td>PREP_SCALE_STDDEV</td>
<td>This setting enables scaling data preparation for two-dimensional numeric columns. PREP_AUTO must be OFF for this setting to take effect. The following are the possible values. PREP_SCALE_STDDEV: A request to divide the column values by the standard deviation of the column and is often provided together with PREP_SHIFT_MEAN to yield z-score normalization. PREP_SCALE_RANGE: A request to divide the column values by the range of values and is often provided together with PREP_SHIFT_MIN to yield a range of [0,1].</td>
</tr>
<tr>
<td></td>
<td>PREP_SCALE_RANGE</td>
<td></td>
</tr>
<tr>
<td>PREP_SCALE_NNUM</td>
<td>PREP_SCALE_MAXABS</td>
<td>This setting enables scaling data preparation for nested numeric columns. PREP_AUTO must be OFF for this setting to take effect. If specified, then the valid value for this setting is PREP_SCALE_MAXABS, which yields data in the range of [-1,1].</td>
</tr>
<tr>
<td>PREP_SHIFT_2DNUM</td>
<td>PREP_SHIFT_MEAN</td>
<td>This setting enables centering data preparation for two-dimensional numeric columns. PREP_AUTO must be OFF for this setting to take effect. The following are the possible values: PREP_SHIFT_MEAN: Results in subtracting the average of the column from each value. PREP_SHIFT_MIN: Results in subtracting the minimum of the column from each value.</td>
</tr>
<tr>
<td></td>
<td>PREP_SHIFT_MIN</td>
<td></td>
</tr>
</tbody>
</table>
Model Explainability

Use the OML4Py Explainability module to identify the important features that impact a trained model's predictions.

Machine Learning Explainability (MLX) is the process of explaining and interpreting machine learning models. The OML MLX Python module supports the ability to help better understand a model's behavior and why it makes its predictions. MLX currently provides model-agnostic explanations for classification and regression tasks where explanations treat the ML model as a black-box, instead of using properties from the model to guide the explanation.

The global feature importance explainer object is the interface to the MLX permutation importance explainer. The global feature importance explainer identifies the most important features for a given model and data set. The explainer is model-agnostic and currently supports tabular classification and regression data sets with both numerical and categorical features.

The algorithm estimates feature importance by evaluating the model's sensitivity to changes in a specific feature. Higher sensitivity suggests that the model places higher importance on that feature when making its predictions than on another feature with lower sensitivity.

For information on the `oml.GlobalFeatureImportance` class attributes and methods, call `help(oml.mlx.GlobalFeatureImportance)` or see Oracle Machine Learning for Python API Reference.

Note:

For using model explainability on-premises requires an AutoML connection. To use the Automatic Machine Learning (AutoML), you must specify a running connection pool on the server in the `automl` argument in an `oml.connect` invocation. To learn more about how to use AutoML see About Connecting to an On-Premises Oracle Database.

Example 7-4  Binary Classification

This example uses the Breast Cancer binary classification data set. Load the data set into the database and a unique case id column.

```python
import oml
from oml.mlx import GlobalFeatureImportance
import pandas as pd
import numpy as np
from sklearn import datasets
```
bc_ds = datasets.load_breast_cancer()
b_data = bc_ds.data.astype(float)
X = pd.DataFrame(b_data, columns=bc_ds.feature_names)
y = pd.DataFrame(bc_ds.target, columns=['TARGET'])
row_id = pd.DataFrame(np.arange(b_data.shape[0]),
                    columns=['CASE_ID'])
df = oml.create(pd.concat([X, y, row_id], axis=1),
                table='BreastCancer')

Split the data set into train and test variables.

train, test = df.split(ratio=(0.8, 0.2), hash_cols='CASE_ID',
                        seed=32)
X, y = train.drop('TARGET'), train['TARGET']
X_test, y_test = test.drop('TARGET'), test['TARGET']

Train a Random Forest model.

model = oml.algo.rf(ODMS_RANDOM_SEED=32).fit(X, y, case_id='CASE_ID')
"RF accuracy score = {:.2f}".format(model.score(X_test, y_test))

Create the MLX Global Feature Importance explainer, using the binary f1 metric.

gfi = GlobalFeatureImportance(mining_function='classification',
                               score_metric='f1', random_state=32,
                               parallel=4)

Run the explainer to generate the global feature importance. Here we construct an
explanation using the train data set and then display the explanation.

explanation = gfi.explain(model, X, y, case_id='CASE_ID', n_iter=10)
explanation

Drop the BreastCancer table.

oml.drop('BreastCancer')

Listing for This Example

>>> import oml
>>> from oml.mlx import GlobalFeatureImportance
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn import datasets
>>> bc_ds = datasets.load_breast_cancer()
>>> b_data = bc_ds.data.astype(float)
>>> X = pd.DataFrame(b_data, columns=bc_ds.feature_names)
>>> y = pd.DataFrame(bc_ds.target, columns=['TARGET'])
>>> row_id = pd.DataFrame(np.arange(b_data.shape[0]),
                        columns=['CASE_ID'])
... columns=['CASE_ID'])
>>> df = oml.create(pd.concat([X, y, row_id], axis=1),
...     table='BreastCancer')
>>> train, test = df.split(ratio=(0.8, 0.2), hash_cols='CASE_ID',
...     seed=32)
>>> X, y = train.drop('TARGET'), train['TARGET']
>>> X_test, y_test = test.drop('TARGET'), test['TARGET']
>>> model = oml.algo.rf(ODMS_RANDOM_SEED=32).fit(X, y,
...         "RF accuracy score = {:.2f}".format(model.score(X_test,
...         y_test))
'RF accuracy score = 0.95'
>>> gfi = GlobalFeatureImportance(mining_function='classification',
...     score_metric='f1', random_state=32,
...     parallel=4)
>>> explanation = gfi.explain(model, X, y, case_id='CASE_ID',
...     n_iter=10)
>>> explanation
Global Feature Importance:
[0] worst concave points: Value: 0.0263, Error: 0.0069
[1] worst perimeter: Value: 0.0077, Error: 0.0027
[2] worst radius: Value: 0.0076, Error: 0.0031
[3] worst area: Value: 0.0045, Error: 0.0037
[4] mean concave points: Value: 0.0034, Error: 0.0033
[5] worst texture: Value: 0.0017, Error: 0.0015
[6] area error: Value: 0.0012, Error: 0.0014
[7] worst concavity: Value: 0.0008, Error: 0.0008
[8] worst symmetry: Value: 0.0004, Error: 0.0007
[9] mean texture: Value: 0.0003, Error: 0.0007
[10] mean perimeter: Value: 0.003, Error: 0.0015
[11] mean radius: Value: 0.0000, Error: 0.0000
[12] mean smoothness: Value: 0.0000, Error: 0.0000
[13] mean compactness: Value: 0.0000, Error: 0.0000
[14] mean concavity: Value: 0.0000, Error: 0.0000
[15] mean symmetry: Value: 0.0000, Error: 0.0000
[16] mean fractal dimension: Value: 0.0000, Error: 0.0000
[17] radius error: Value: 0.0000, Error: 0.0000
[18] texture error: Value: 0.0000, Error: 0.0000
[19] smoothness error: Value: 0.0000, Error: 0.0000
[20] compactness error: Value: 0.0000, Error: 0.0000
[21] concavity error: Value: 0.0000, Error: 0.0000
[22] concave points error: Value: 0.0000, Error: 0.0000
[23] symmetry error: Value: 0.0000, Error: 0.0000
[24] fractal dimension error: Value: 0.0000, Error: 0.0000
[25] worst compactness: Value: 0.0000, Error: 0.0000
[26] worst fractal dimension: Value: 0.0000, Error: 0.0000
[27] mean area: Value: -0.0001, Error: 0.0011
[28] worst smoothness: Value: -0.0003, Error: 0.0013
Example 7-5  Multi-Class Classification

This example uses the Iris multi-class classification data set. Load the data set into the
database, adding a unique case id column.

```python
import oml
from oml.mx import GlobalFeatureImportance
import pandas as pd
import numpy as np
from sklearn import datasets
iris_ds = datasets.load_iris()
iris_data = iris_ds.data.astype(float)
X = pd.DataFrame(iris_data, columns=iris_ds.feature_names)
y = pd.DataFrame(iris_ds.target, columns=['TARGET'])
row_id = pd.DataFrame(np.arange(iris_data.shape[0]),
columns=['CASE_ID'])
df = oml.create(pd.concat([X, y, row_id], axis=1), table='Iris')

Split the data set into train and test variables.

train, test = df.split(ratio=(0.8, 0.2), hash_cols='CASE_ID',
seed=32)
X, y = train.drop('TARGET'), train['TARGET']
X_test, y_test = test.drop('TARGET'), test['TARGET']

Train an SVM model.

model = oml.algo.svm(ODMS_RANDOM_SEED=32).fit(X, y, case_id='CASE_ID')
"SVM accuracy score = {:.2f}".format(model.score(X_test, y_test))

Create the MLX Global Feature Importance explainer, using the \texttt{f1_weighted} metric.

```python
# gfi = GlobalFeatureImportance(mining_function='classification',
# score_metric='f1\_weighted',
# random_state=32, parallel=4)
```

Run the explainer to generate the global feature importance. Here, we use the test data set.
Display the explanation.

 explanation = gfi.explain(model, X_test, y_test,
 case_id='CASE_ID', n_iter=10)
 explanation

Drop the Iris table.

```python
oml.drop('Iris')
```
Listing for This Example

```python
>>> import oml
>>> from oml.mlx import GlobalFeatureImportance
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn import datasets

>>> iris_ds = datasets.load_iris()
>>> iris_data = iris_ds.data.astype(float)
>>> X = pd.DataFrame(iris_data, columns=iris_ds.feature_names)
>>> y = pd.DataFrame(iris_ds.target, columns=['TARGET'])
>>> row_id = pd.DataFrame(np.arange(iris_data.shape[0]),
                        columns=['CASE_ID'])
>>> df = oml.create(pd.concat([X, y, row_id], axis=1), table='Iris')

>>> train, test = df.split(ratio=(0.8, 0.2), hash_cols='CASE_ID',
                        seed=32)
>>> X, y = train.drop('TARGET'), train['TARGET']
>>> X_test, y_test = test.drop('TARGET'), test['TARGET']

>>> model = oml.algo.svm(ODMS_RANDOM_SEED=32).fit(X, y,
                                           case_id='CASE_ID')
"SVM accuracy score = {:.2f}".format(model.score(X_test, y_test))
'SVM accuracy score = 0.94'

>>> gfi = GlobalFeatureImportance(mining_function='classification',
                        score_metric='f1_weighted',
                        random_state=32, parallel=4)

>>> explanation = gfi.explain(model, X_test, y_test,
                           case_id='CASE_ID', n_iter=10)

>>> explanation
Global Feature Importance:
[0] petal length (cm): Value: 0.3462, Error: 0.0824
[1] petal width (cm): Value: 0.2417, Error: 0.0687
[2] sepal width (cm): Value: 0.0926, Error: 0.0452
[3] sepal length (cm): Value: 0.0253, Error: 0.0152

>>> oml.drop('Iris')
```

Example 7-6 Regression

This example uses the Boston regression data set. Load the data set into the database, adding a unique case id column.

```python
import oml
from oml.mlx import GlobalFeatureImportance
import pandas as pd
import numpy as np
from sklearn import datasets

boston_ds = datasets.load_boston()
boston_data = boston_ds.data
X = pd.DataFrame(boston_data, columns=boston_ds.feature_names)
```
y = pd.DataFrame(boston_ds.target, columns=['TARGET'])
row_id = pd.DataFrame(np.arange(boston_data.shape[0]),
 columns=['CASE_ID'])
df = oml.create(pd.concat([X, y, row_id], axis=1), table='Boston')

Split the data set into train and test variables.

train, test = df.split(ratio=(0.8, 0.2), hash_cols='CASE_ID', seed=32)
X, y = train.drop('TARGET'), train['TARGET']
X_test, y_test = test.drop('TARGET'), test['TARGET']

Train a Neural Network regression model.

model = oml.algo.nn(mining_function='regression',
 ODMS_RANDOM_SEED=32).fit(X, y, case_id='CASE_ID')
"NN R^2 score = {:.2f}".format(model.score(X_test, y_test))

Create the MLX Global Feature Importance explainer, using the r2 metric.

gfi = GlobalFeatureImportance(mining_function='regression',
 score_metric='r2', random_state=32,
 parallel=4)

Run the explainer to generate the global feature importance. Here, we use the test data set.
Display the explanation.

explanation = gfi.explain(model, df, 'TARGET',
 case_id='CASE_ID', n_iter=10)
explanation

Drop the Boston table.

oml.drop('Boston')

Listing for This Example

```python
>>> import oml
>>> from oml.mlx import GlobalFeatureImportance
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn import datasets

>>> boston_ds = datasets.load_boston()
>>> boston_data = boston_ds.data
>>> X = pd.DataFrame(boston_data, columns=boston_ds.feature_names)
>>> y = pd.DataFrame(boston_ds.target, columns=['TARGET'])
>>> row_id = pd.DataFrame(np.arange(boston_data.shape[0]),
                        columns=['CASE_ID'])
>>> df = oml.create(pd.concat([X, y, row_id], axis=1), table='Boston')

>>> train, test = df.split(ratio=(0.8, 0.2), hash_cols='CASE_ID')
```
...seed=32)
>>> X, y = train.drop('TARGET'), train['TARGET']
...X_test, y_test = test.drop('TARGET'), test['TARGET']
...model = oml.algo.nn(mining_function='regression',
... ODMS_RANDOM_SEED=32).fit(X, y,
... case_id='CASE_ID')
..."NN R^2 score = {:.2f}".format(model.score(X_test, y_test))
'NN R^2 score = 0.85'
...gfi = GlobalFeatureImportance(mining_function='regression',
... score_metric='r2', random_state=32,
... parallel=4)
...explanation = gfi.explain(model, df, 'TARGET',
... case_id='CASE_ID', n_iter=10)
...explanation
Global Feature Importance:
[0] LSTAT: Value: 0.7686, Error: 0.0513
[1] RM: Value: 0.5734, Error: 0.0475
[2] CRIM: Value: 0.5131, Error: 0.0345
[3] DIS: Value: 0.4170, Error: 0.0632
[4] NOX: Value: 0.2592, Error: 0.0206
[5] AGE: Value: 0.2083, Error: 0.0212
[6] RAD: Value: 0.1956, Error: 0.0212
[7] INDUS: Value: 0.1792, Error: 0.0199
[8] B: Value: 0.0982, Error: 0.0146
[9] PTRATIO: Value: 0.0822, Error: 0.0069
[10] TAX: Value: 0.0566, Error: 0.0139
[11] ZN: Value: 0.0397, Error: 0.0081
[12] CHAS: Value: 0.0125, Error: 0.0045

>>> oml.drop('Boston')

Attribute Importance

The oml.ai class computes the relative attribute importance, which ranks attributes according to their significance in predicting a classification or regression target.

The oml.ai class uses the Minimum Description Length (MDL) algorithm to calculate attribute importance. MDL assumes that the simplest, most compact representation of the data is the best and most probable explanation of the data.

You can use methods of the oml.ai class to compute the relative importance of predictor variables when predicting a response variable.

Note:
Oracle Machine Learning does not support the scoring operation for oml.ai.
The results of `oml.ai` are the attributes of the build data ranked according to their predictive influence on a specified target attribute. You can use the ranking and the measure of importance for selecting attributes.

For information on the `oml.ai` class attributes and methods, invoke `help(oml.ai)` or see *Oracle Machine Learning for Python API Reference*.

```
See Also:

• About Model Settings
• Shared Settings
```

Example 7-7 Ranking Attribute Significance with `oml.ai`

This example creates the \(x \) and \(y \) variables using the iris data set. It then creates the persistent database table `IRIS` and the `oml.DataFrame` object `oml_iris` as a proxy for the table.

This example demonstrates the use of various methods of the `oml.ai` class.

```python
import oml
import pandas as pd
from sklearn import datasets

# Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
    columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
    {0: 'setosa', 1: 'versicolor',
    2:'virginica'}[x], iris.target)),
    columns = ['Species'])

try:
    oml.drop('IRIS')
except:
    pass

# Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

# Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_x = dat[0].drop('Species')
train_y = dat[0]['Species']
test_dat = dat[1]

# Specify settings.
setting = {'ODMS_SAMPLING':'ODMS_SAMPLING_DISABLE'}

# Create an AI model object.
```

Oracle

7-19
ai_mod = oml.ai(**setting)

Fit the AI model according to the training data and parameter
settings.
ai_mod = ai_mod.fit(train_x, train_y)

Show the model details.
ai_mod

Listing for This Example

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                   columns = ['Sepal Length','Sepal Width',
...                            'Petal Length','Petal Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target))

>>> try:
...    oml.drop('IRIS')
... except:
...    pass

>>> # Create the IRIS database table and the proxy object for the
table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
>>> train_x = dat[0].drop('Species')
>>> train_y = dat[0]['Species']
>>> test_dat = dat[1]

>>> # Specify settings.
... setting = {'ODMS_SAMPLING':'ODMS_SAMPLING_DISABLE'}

>>> # Create an AI model object.
... ai_mod = oml.ai(**setting)

>>> # Fit the AI model according to the training data and parameter
... # settings.
>>> ai_mod = ai_mod.fit(train_x, train_y)

>>> # Show the model details.
... ai_mod
```

Algorithm Name: Attribute Importance
Mining Function: ATTRIBUTE_IMPORTANCE

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ALGO_NAME</td>
<td>ALGO_AI_MDL</td>
</tr>
<tr>
<td>1 ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>2 ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>3 ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>4 PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 NUM_ROWS</td>
<td>104</td>
</tr>
</tbody>
</table>

Attributes:
Petal_Length
Petal_Width
Sepal_Length
Sepal_Width

Partition: NO

Importance:

<table>
<thead>
<tr>
<th>variable</th>
<th>importance</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Petal_Width</td>
<td>0.615851</td>
<td>1</td>
</tr>
<tr>
<td>1 Petal_Length</td>
<td>0.362519</td>
<td>2</td>
</tr>
<tr>
<td>2 Sepal_Length</td>
<td>0.042751</td>
<td>3</td>
</tr>
<tr>
<td>3 Sepal_Width</td>
<td>-0.155867</td>
<td>4</td>
</tr>
</tbody>
</table>

Association Rules

The `oml.ar` class implements the Apriori algorithm to find frequent itemsets and association rules, all as part of an association model object.

The Apriori algorithm is efficient and scales well with respect to the number of transactions, number of items, and number of itemsets and rules produced.

Use the `oml.ar` class to identify frequent itemsets within large volumes of transactional data, such as in market basket analysis. The results of an association model are the rules that identify patterns of association within the data.

An association rule identifies a pattern in the data in which the appearance of a set of items in a transactional record implies another set of items. The groups of items used to form rules must pass a minimum threshold according to how often they occur (the support of the rule) and how often the consequent follows the antecedent (the confidence of the rule). Association models generate all rules that have support and confidence greater than user-specified thresholds.

Oracle Machine Learning does not support the scoring operation for association modeling.

For information on the `oml.ar` class attributes and methods, invoke `help(oml.ar)` or see Oracle Machine Learning for Python API Reference.
Settings for an Association Rules Model

The following table lists the settings applicable to association rules models.

Table 7-3 Association Rules Models Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSO_ABS_ERROR</td>
<td>0<ASSO_ABS_ERRORMAX(ASSO_MIN_SUPPORT, ASSO_MIN_CONFIDENCE)</td>
<td>Specifies the absolute error for the association rules sampling. A smaller value of ASSO_ABS_ERROR obtains a larger sample size that gives accurate results but takes longer to compute. Set a reasonable value for ASSO_ABS_ERROR, such as the default value, to avoid too large a sample size. The default value is 0.5 * MAX(ASSO_MIN_SUPPORT, ASSO_MIN_CONFIDENCE).</td>
</tr>
<tr>
<td>ASSO_AGGREGATES</td>
<td>NULL</td>
<td>Specifies the columns to aggregate. It is a comma separated list of strings containing the names of the columns for aggregation. The number of columns in the list must be <= 10. You can set ASSO_AGGREGATES if you have specified a column name with ODMS_ITEM_ID_COLUMN_NAME. The data table must have valid column names such as ITEM_ID and CASE_ID which are derived from ODMS_ITEM_ID_COLUMN_NAME. An item value is not mandatory. The default value is NULL. For each item, you may supply several columns to aggregate. However, doing so requires more memory to buffer the extra data and also affects performance because of the larger input data set and increased operations.</td>
</tr>
<tr>
<td>ASSO_ANT_IN_RULES</td>
<td>NULL</td>
<td>Sets Including Rules for the antecedent: it is a comma separated list of strings, at least one of which must appear in the antecedent part of each reported association rule. The default value is NULL.</td>
</tr>
<tr>
<td>ASSO_ANT_EX_RULES</td>
<td>NULL</td>
<td>Sets Excluding Rules for the antecedent: it is a comma separated list of strings, none of which can appear in the antecedent part of each reported association rule. The default value is NULL.</td>
</tr>
</tbody>
</table>
Table 7-3 (Cont.) Association Rules Models Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSO_CONF_LEVEL</td>
<td>0 ASSO_CONF_LEVEL 1</td>
<td>Specifies the confidence level for an association rules sample. A larger value of ASSO_CONF_LEVEL obtains a larger sample size. Any value between 0.9 and 1 is suitable. The default value is 0.95.</td>
</tr>
<tr>
<td>ASSO_CONS_IN_RULES</td>
<td>NULL</td>
<td>Sets Including Rules for the consequent: it is a comma separated list of strings, at least one of which must appear in the consequent part of each reported association rule. The default value is NULL.</td>
</tr>
<tr>
<td>ASSO_CONS_EX_RULES</td>
<td>NULL</td>
<td>Sets Excluding Rules for the consequent: it is a comma separated list of strings, none of which can appear in the consequent part of a reported association rule. You can use the excluding rule to reduce the data that must be stored, but you may be required to build extra models for executing different Including or Excluding Rules. The default value is NULL.</td>
</tr>
<tr>
<td>ASSO_EX_RULES</td>
<td>NULL</td>
<td>Sets Excluding Rules applied for each association rule: it is a comma separated list of strings that cannot appear in an association rule. No rule can contain any item in the list. The default value is NULL.</td>
</tr>
<tr>
<td>ASSO_IN_RULES</td>
<td>NULL</td>
<td>Sets Including Rules applied for each association rule: it is a comma separated list of strings, at least one of which must appear in each reported association rule, either as antecedent or as consequent. The default value NULL, which specifies that filtering is not applied.</td>
</tr>
<tr>
<td>ASSO_MAX_RULE_LENGTH</td>
<td>TO_CHAR(2<= numeric_expr <=20)</td>
<td>Maximum rule length for association rules. The default value is 4.</td>
</tr>
<tr>
<td>ASSO_MIN_CONFIDENCE</td>
<td>TO_CHAR(0<= numeric_expr <=1)</td>
<td>Minimum confidence for association rules. The default value is 0.1.</td>
</tr>
</tbody>
</table>
Table 7-3 (Cont.) Association Rules Models Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSO_MIN_REV_CONFIDENCE</td>
<td>TO_CHAR(0<= numeric_expr <=1)</td>
<td>Sets the Minimum Reverse Confidence that each rule should satisfy. The Reverse Confidence of a rule is defined as the number of transactions in which the rule occurs divided by the number of transactions in which the consequent occurs. The value is a real number between 0 and 1. The default value is 0.</td>
</tr>
<tr>
<td>ASSO_MIN_SUPPORT</td>
<td>TO_CHAR(0<= numeric_expr <=1)</td>
<td>Minimum support for association rules. The default value is 0.1.</td>
</tr>
<tr>
<td>ASSO_MIN_SUPPORT_INT</td>
<td>TO_CHAR(0<= numeric_expr <=1)</td>
<td>Minimum absolute support that each rule must satisfy. The value must be an integer. The default value is 1.</td>
</tr>
</tbody>
</table>
| ODMS_ITEM_ID_COLUMN_NAME | column_name | The name of a column that contains the items in a transaction. When you specify this setting, the algorithm expects the data to be presented in native transactional format, consisting of two columns:
 - Case ID, either categorical or numeric
 - Item ID, either categorical or numeric |
Table 7-3 (Cont.) Association Rules Models Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODMS_ITEM_VALUE_COLUMN_NAME</td>
<td>column_name</td>
<td>The name of a column that contains a value associated with each item in a transaction. Use this setting only when you have specified a value for ODMS_ITEM_ID_COLUMN_NAME, indicating that the data is presented in native transactional format. If you also use ASSO_AGGREGATES, then the build data must include the following three columns and the columns specified in the AGGREGATES setting. · Case ID, either categorical or numeric · Item ID, either categorical or numeric, specified by ODMS_ITEM_ID_COLUMN_NAME · Item value, either categorical or numeric, specified by ODMS_ITEM_VALUE_COLUMN_NAME If ASSO_AGGREGATES, Case ID, and Item ID columns are present, then the Item Value column may or may not appear. The Item Value column may specify information such as the number of items (for example, three apples) or the type of the item (for example, macintosh apples).</td>
</tr>
</tbody>
</table>

See Also:
- About Model Settings
- Shared Settings

Example 7-8 Using the oml.ar Class

This example uses methods of the oml.ar class.

```python
import pandas as pd
from sklearn import datasets
import oml

# Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
                 columns = ['Sepal_Length','Sepal_Width',
                 ...
```
'Petal_Length', 'Petal_Width'])

y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2: 'virginica'}[x], iris.target)),
 columns = ['Species']))

try:
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training data.
train_dat = oml.sync(table = 'IRIS')

Specify settings.
setting = {'asso_min_support': '0.1', 'asso_min_confidence': '0.1'}

Create an AR model object.
ar_mod = oml.ar(**setting)

Fit the model according to the training data and parameter # settings.
ar_mod = ar_mod.fit(train_dat)

Show details of the model.
ar_mod

Listing for This Example

>>> import pandas as pd
>>> from sklearn import datasets
>>> import oml
>>> iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
... columns = ['Sepal_Length', 'Sepal_Width',
... 'Petal_Length', 'Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
... {0: 'setosa', 1: 'versicolor',
... 2: 'virginica'}[x], iris.target)),
... columns = ['Species'])
>>> try:
... oml.drop('IRIS')
... except:
... pass
>>> # Create the IRIS database table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>>
>>> # Create training data.
... train_dat = oml.sync(table = 'IRIS')

>>> # Specify settings.
... setting = {'asso_min_support':'0.1', 'asso_min_confidence':'0.1'}

>>> # Create an AR model object.
... ar_mod = oml.ar(**setting)

>>> # Fit the model according to the training data and parameter settings.
... ar_mod = ar_mod.fit(train_dat)

>>> # Show details of the model.
... ar_mod

Algorithm Name: Association Rules

Mining Function: ASSOCIATION

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_APRIORI_ASSOCIATION_RULES</td>
</tr>
<tr>
<td>ASSO_MAX_RULE_LENGTH</td>
<td>4</td>
</tr>
<tr>
<td>ASSO_MIN_CONFIDENCE</td>
<td>0.1</td>
</tr>
<tr>
<td>ASSO_MIN_REV_CONFIDENCE</td>
<td>0</td>
</tr>
<tr>
<td>ASSO_MIN_SUPPORT</td>
<td>0.1</td>
</tr>
<tr>
<td>ASSO_MIN_SUPPORT_INT</td>
<td>1</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEMSET_COUNT</td>
<td>6.000000</td>
</tr>
<tr>
<td>MAX_SUPPORT</td>
<td>0.333333</td>
</tr>
<tr>
<td>NUM_ROWS</td>
<td>150.000000</td>
</tr>
<tr>
<td>RULE_COUNT</td>
<td>2.000000</td>
</tr>
<tr>
<td>TRANSACTION_COUNT</td>
<td>150.000000</td>
</tr>
</tbody>
</table>

Attributes:
Petal_Length
Petal_Width
Sepal_Length
Sepal_Width
Species

Partition: NO

Itemsets:

<table>
<thead>
<tr>
<th>ITEMSET_ID</th>
<th>SUPPORT</th>
<th>NUMBER_OF_ITEMS</th>
<th>ITEM_NAME</th>
<th>ITEM_VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.193333</td>
<td>1.0000000</td>
<td>Petal_Width</td>
<td>.2000000000000001</td>
</tr>
<tr>
<td>1</td>
<td>2.173333</td>
<td>1.0000000</td>
<td>Sepal_Width</td>
<td>3</td>
</tr>
</tbody>
</table>
The `oml.dt` class uses the Decision Tree algorithm for classification.

Decision Tree models are classification models that contain axis-parallel rules. A rule is a conditional statement that can be understood by humans and may be used within a database to identify a set of records.

A decision tree predicts a target value by asking a sequence of questions. At a given stage in the sequence, the question that is asked depends upon the answers to the previous questions. The goal is to ask questions that, taken together, uniquely identify specific target values. Graphically, this process forms a tree structure.

During the training process, the Decision Tree algorithm must repeatedly find the most efficient way to split a set of cases (records) into two child nodes. The `oml.dt` class offers two homogeneity metrics, gini and entropy, for calculating the splits. The default metric is gini.

For information on the `oml.dt` class attributes and methods, invoke `help(oml.dt)` or see `Oracle Machine Learning for Python API Reference`.

Settings for a Decision Tree Model

The following table lists settings that apply to Decision Tree models.
Table 7-4 Decision Tree Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| CLAS_COST_TABLE_NAME | table_name | The name of a table that stores a cost matrix for the algorithm to use in building and applying the model. The cost matrix specifies the costs associated with misclassifications. The cost matrix table is user-created. The following are the column requirements for the table.
 - Column Name: ACTUAL_TARGET_VALUE
 Data Type: Valid target data type
 - Column Name: PREDICTED_TARGET_VALUE
 Data Type: Valid target data type
 - Column Name: COST
 Data Type: NUMBER |
| CLAS_MAX_SUP_BINS | 2 <= a number <= 2147483647 | Specifies the maximum number of bins for each attribute. The default value is 32. |
| CLAS_WEIGHTS_BALANCED | ON | Indicates whether the algorithm must create a model that balances the target distribution. This setting is most relevant in the presence of rare targets, as balancing the distribution may enable better average accuracy (average of per-class accuracy) instead of overall accuracy (which favors the dominant class). The default value is OFF. |
| TREE_IMPURITY_METRIC | TREE_IMPURITY_GINI | Tree impurity metric for a Decision Tree model. Tree algorithms seek the best test question for splitting data at each node. The best splitter and split value are those that result in the largest increase in target value homogeneity (purity) for the entities in the node. Purity is measured in accordance with a metric. Decision trees can use either gini (TREE_IMPURITY_GINI) or entropy (TREE_IMPURITY_ENTROPY) as the purity metric. By default, the algorithm uses TREE_IMPURITY_GINI. |
| TREE_TERM_MAX_DEPTH | 2 <= a number <= 100 | Criteria for splits: maximum tree depth (the maximum number of nodes between the root and any leaf node, including the leaf node). The default is 7. |
Table 7-4 (Cont.) Decision Tree Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREE_TERM_MINPCT_NODE</td>
<td>$0 \leq a \text{ number} \leq 10$</td>
<td>The minimum number of training rows in a node expressed as a percentage of the rows in the training data. The default value is 0.05, indicating 0.05%.</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_SPLIT</td>
<td>$0 < a \text{ number} \leq 20$</td>
<td>Minimum number of rows required to consider splitting a node expressed as a percentage of the training rows. The default value is 0.1, indicating 0.1%.</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_NODE</td>
<td>A number ≥ 0</td>
<td>Minimum number of rows in a node. The default value is 10.</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_SPLIT</td>
<td>A number > 1</td>
<td>Criteria for splits: minimum number of records in a parent node expressed as a value. No split is attempted if the number of records is below this value. The default value is 20.</td>
</tr>
</tbody>
</table>

See Also:
- About Model Settings
- Shared Settings

Example 7-9 Using the oml.dt Class

This example demonstrates the use of various methods of the oml.dt class. In the listing for this example, some of the output is not shown as indicated by ellipses.

```python
import oml
import pandas as pd
from sklearn import datasets

# Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
    columns = ['Sepal Length', 'Sepal Width',
                'Petal Length', 'Petal Width'])
y = pd.DataFrame(list(map(lambda x:
                            {0: 'setosa', 1: 'versicolor',
                             2: 'virginica'}[x], iris.target)),
    columns = ['Species'])

try:
    oml.drop('COST_MATRIX')
    oml.drop('IRIS')
```

ORACLE

7-30
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_x = dat[0].drop('Species')
train_y = dat[0]['Species']
test_dat = dat[1]

Create a cost matrix table in the database.
cost_matrix = [['setosa', 'setosa', 0],
 ['setosa', 'virginica', 0.2],
 ['setosa', 'versicolor', 0.8],
 ['virginica', 'virginica', 0],
 ['virginica', 'setosa', 0.5],
 ['virginica', 'versicolor', 0.5],
 ['versicolor', 'versicolor', 0],
 ['versicolor', 'setosa', 0.4],
 ['versicolor', 'virginica', 0.6]]

cost_matrix = oml.create(
 pd.DataFrame(cost_matrix,
 columns = ['ACTUAL_TARGET_VALUE',
 'PREDICTED_TARGET_VALUE', 'COST']),
 table = 'COST_MATRIX')

Specify settings.
setting = {'TREE_TERM_MAX_DEPTH': '2'}

dt_mod = oml.dt(**setting)

Fit the DT model according to the training data and parameter
settings.
dt_mod.fit(train_x, train_y, cost_matrix = cost_matrix)

Use the model to make predictions on the test data.
dt_mod.predict(test_dat.drop('Species'),
 supplemental_cols = test_dat[:, ['Sepal_Length',
 'Sepal_Width',
 'Petal_Length',
 'Species']])

Return the prediction probability.
dt_mod.predict(test_dat.drop('Species'),
 supplemental_cols = test_dat[:, ['Sepal_Length',
 'Sepal_Width',
 'Petal_Length',
 'Species']],
 proba = True)

Make predictions and return the probability for each class
on new data.
dt_mod.predict_proba(test_dat.drop('Species'),
 supplemental_cols = test_dat[:, ['Sepal_Length',
 'Sepal_Width',
 'Petal_Length',
 'Species']],
supplemental_cols = test_dat[:,
 ['Sepal_Length',
 'Species']].sort_values(by = ['Sepal_Length',
 'Species'])

dt_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])

Listing for This Example

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> # Create the IRIS database table and the proxy object for the
table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> try:
...    oml.drop('COST_MATRIX')
... except:
...    pass

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
>>> train_x = dat[0].drop('Species')
>>> train_y = dat[0]['Species']

>>> # Create a cost matrix table in the database.
... cost_matrix = [['setosa', 'setosa', 0],
...                ['setosa', 'virginica', 0.2],
...                ['setosa', 'versicolor', 0.8],
...                ['virginica', 'virginica', 0],
...                ['virginica', 'setosa', 0.5],
...                ['virginica', 'versicolor', 0.5],
...                ['versicolor', 'versicolor', 0],
...                ['versicolor', 'setosa', 0.4],
...                ['versicolor', 'virginica', 0.6]]
>>> cost_matrix = oml.create(
...    pd.DataFrame(cost_matrix,
...                 columns = ['ACTUAL_TARGET_VALUE',
...                             'PREDICTED_TARGET_VALUE',
...                             'COST']))
```
... table = 'COST_MATRIX')
>>> # Specify settings.
... setting = {'TREE_TERM_MAX_DEPTH': '2'}
>>> # Create a DT model object.
... dt_mod = oml.dt(**setting)
>>> # Fit the DT model according to the training data and parameter
... # settings.
... dt_mod.fit(train_x, train_y, cost_matrix = cost_matrix)

Algorithm Name: Decision Tree

Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_DECISION_TREE</td>
</tr>
<tr>
<td>CLAS_COST_TABLE_NAME</td>
<td>"OML_USER"."COST_MATRIX"</td>
</tr>
<tr>
<td>CLAS_MAX_SUP_BINS</td>
<td>32</td>
</tr>
<tr>
<td>CLAS_WEIGHTS_BALANCED</td>
<td>OFF</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>TREE_IMPURITY_METRIC</td>
<td>TREE_IMPURITY_GINI</td>
</tr>
<tr>
<td>TREE_TERM_MAX_DEPTH</td>
<td>2</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_NODE</td>
<td>.05</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_SPLIT</td>
<td>.1</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_NODE</td>
<td>10</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_SPLIT</td>
<td>20</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
</tbody>
</table>

Attributes:

Petal_Length
Petal_Width

Partition: NO

Distributions:

<table>
<thead>
<tr>
<th>NODE_ID</th>
<th>TARGET_VALUE</th>
<th>TARGET_COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>setosa</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>versicolor</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>virginica</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>setosa</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>versicolor</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>virginica</td>
<td>33</td>
</tr>
</tbody>
</table>
Nodes:

<table>
<thead>
<tr>
<th>parent</th>
<th>node.id</th>
<th>row.count</th>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>36 setosa</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>2</td>
<td>68 versicolor</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>0</td>
<td>104 setosa</td>
</tr>
</tbody>
</table>

split

0	(Petal_Length <=(2.4500000000000002E+000))
1	(Petal_Length >(2.4500000000000002E+000))
2	None

surrogate

0	Petal_Width <=(8.0000000000000004E-001))
1	Petal_Width >(8.0000000000000004E-001))
2	None

full.splits

0	(Petal_Length <=(2.4500000000000002E+000))
1	(Petal_Length >(2.4500000000000002E+000))
2	None

>>> # Use the model to make predictions on the test data.
... dt_mod.predict(test_dat.drop('Species'),
... supplemental_cols = test_dat[:, ['Sepal_Length',
... 'Sepal_Width',
... 'Petal_Length',
... 'Species']])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Species</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>setosa</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>virginica</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>46</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>47</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>virginica</td>
</tr>
</tbody>
</table>

>>> # Return the prediction probability.
... dt_mod.predict(test_dat.drop('Species'),
... supplemental_cols = test_dat[:, ['Sepal_Length',
... 'Sepal_Width',
... 'Species']],
... proba = True)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Species</th>
<th>PREDICTION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>virginica</td>
<td>versicolor</td>
<td>0.514706</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>virginica</td>
<td>versicolor</td>
<td>0.514706</td>
</tr>
<tr>
<td>46</td>
<td>6.5</td>
<td>virginica</td>
<td>versicolor</td>
<td>0.514706</td>
</tr>
<tr>
<td>47</td>
<td>5.9</td>
<td>virginica</td>
<td>versicolor</td>
<td>0.514706</td>
</tr>
</tbody>
</table>
>>> # Make predictions and return the probability for each class
>>> # on new data.
>>> dt_mod.predict_proba(test_dat.drop('Species'),
... supplemental_cols = test_dat[:,
... ['Sepal_Length',
... 'Species']]).sort_values(by = ['Sepal_Length',
... 'Species'])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Species</th>
<th>PROBABILITY_OF_SETOSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.4</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>4.4</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>6.7</td>
<td>0.0</td>
</tr>
<tr>
<td>43</td>
<td>6.9</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>6.9</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>7.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROBABILITY_OF_VERSICOLOR</th>
<th>PROBABILITY_OF_VIRGINICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>1</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>0.000000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>0.514706</td>
</tr>
<tr>
<td>43</td>
<td>0.514706</td>
</tr>
<tr>
<td>44</td>
<td>0.514706</td>
</tr>
<tr>
<td>45</td>
<td>0.514706</td>
</tr>
</tbody>
</table>

>>> dt_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])
0.645833

Expectation Maximization

The oml.em class uses the Expectation Maximization (EM) algorithm to create a clustering model.

EM is a density estimation algorithm that performs probabilistic clustering. In density estimation, the goal is to construct a density function that captures how a given population is distributed. The density estimate is based on observed data that represents a sample of the population.

For information on the oml.em class methods, invoke help(oml.em) or see Oracle Machine Learning for Python API Reference.

Settings for an Expectation Maximization Model

The following table lists settings for data preparation and analysis for EM models.
<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_ATTRIBUTE_FILTER</td>
<td>EMCS_ATTR_FILTER_ENABLE</td>
<td>Whether or not to include uncorrelated attributes in the model.</td>
</tr>
<tr>
<td></td>
<td>EMCS_ATTR_FILTER_DISABLE</td>
<td>Whether or not to include uncorrelated attributes in the model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When EMCS_ATTRIBUTE_FILTER is enabled, uncorrelated attributes are not included.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: This setting applies only to attributes that are not nested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default value is system-determined.</td>
</tr>
<tr>
<td>EMCS_MAX_NUM_ATTR_2D</td>
<td>TO_CHAR(numeric_expr >= 1)</td>
<td>Maximum number of correlated attributes to include in the model.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: This setting applies only to attributes that are not nested (2D).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default value is 50.</td>
</tr>
</tbody>
</table>
Table 7-5 (Cont.) Expectation Maximization Settings for Data Preparation and Analysis

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_NUM_DISTRIBUTION</td>
<td>EMCS_NUM_DISTR_BERNOULLI</td>
<td>The distribution for modeling numeric attributes. Applies to the input table or view as a whole and does not allow per-attribute specifications. The options include Bernoulli, Gaussian, or system-determined distribution. When Bernoulli or Gaussian distribution is chosen, all numeric attributes are modeled using the same type of distribution. When the distribution is system-determined, individual attributes may use different distributions (either Bernoulli or Gaussian), depending on the data. The default value is EMCS_NUM_DISTR_SYSTEM.</td>
</tr>
<tr>
<td></td>
<td>EMCS_NUM_DISTR_GAUSSIAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMCS_NUM_DISTR_SYSTEM</td>
<td></td>
</tr>
<tr>
<td>EMCS_NUM_EQUIWIDTH_BINS</td>
<td>TO_CHAR(1 < numeric_expr <= 255)</td>
<td>Number of equi-width bins that will be used for gathering cluster statistics for numeric columns. The default value is 11.</td>
</tr>
<tr>
<td>EMCS_NUM_PROJECTIONS</td>
<td>TO_CHAR(numeric_expr >= 1)</td>
<td>Specifies the number of projections to use for each nested column. If a column has fewer distinct attributes than the specified number of projections, then the data is not projected. The setting applies to all nested columns. The default value is 50.</td>
</tr>
<tr>
<td>EMCS_NUM_QUANTILE_BINS</td>
<td>TO_CHAR(1 < numeric_expr <= 255)</td>
<td>Specifies the number of quantile bins to use for modeling numeric columns with multivalued Bernoulli distributions. The default value is system-determined.</td>
</tr>
<tr>
<td>EMCS_NUM_TOPN_BINS</td>
<td>TO_CHAR(1 < numeric_expr <= 255)</td>
<td>Specifies the number of top-N bins to use for modeling categorical columns with multivalued Bernoulli distributions. The default value is system-determined.</td>
</tr>
</tbody>
</table>

The following table lists settings for learning for EM models.
Table 7-6 Expectation Maximization Settings for Learning

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_CONVERGENCE_CRITERION</td>
<td>EMCS_CONV_CRIT_HELDASIDE</td>
<td>The convergence criterion for EM. The convergence criterion may be based on a held-aside data set or it may be Bayesian Information Criterion. The default value is system determined.</td>
</tr>
<tr>
<td></td>
<td>EMCS_CONV_CRIT_BIC</td>
<td></td>
</tr>
<tr>
<td>EMCS_LOGLIKE_IMPROVEMENT</td>
<td>TO_CHAR(0 < numeric_expr < 1)</td>
<td>When the convergence criterion is based on a held-aside data set (EMCS_CONVERGENCE_CRITERION = EMCS_CONV_CRIT_HELDASIDE), this setting specifies the percentage improvement in the value of the log likelihood function that is required for adding a new component to the model.</td>
</tr>
<tr>
<td>EMCS_MODEL_SEARCH</td>
<td>EMCS_MODEL_SEARCH_ENABLE</td>
<td>Enables model search in EM where different model sizes are explored and the best size is selected. The default value is EMCS_MODEL_SEARCH_DISABLE.</td>
</tr>
<tr>
<td></td>
<td>EMCS_MODEL_SEARCH_DISABLE</td>
<td></td>
</tr>
<tr>
<td>EMCS_NUM_COMPONENTS</td>
<td>TO_CHAR(numeric_expr >= 1)</td>
<td>Maximum number of components in the model. If model search is enabled, the algorithm automatically determines the number of components based on improvements in the likelihood function or based on regularization, up to the specified maximum. The number of components must be greater than or equal to the number of clusters. The default value is 20.</td>
</tr>
<tr>
<td>EMCS_NUM_ITERATIONS</td>
<td>TO_CHAR(numeric_expr >= 1)</td>
<td>Specifies the maximum number of iterations in the EM algorithm. The default value is 100.</td>
</tr>
<tr>
<td>EMCS_RANDOM_SEED</td>
<td>Non-negative integer</td>
<td>Controls the seed of the random generator used in EM. The default value is 0.</td>
</tr>
<tr>
<td>EMCS_REMOVE_COMPONENTS</td>
<td>EMCS_REMOVE_COMPS_ENABLE</td>
<td>Allows the EM algorithm to remove a small component from the solution. The default value is EMCS_REMOVE_COMPS_ENABLE.</td>
</tr>
<tr>
<td></td>
<td>EMCS_REMOVE_COMPS_DISABLE</td>
<td></td>
</tr>
</tbody>
</table>

The following table lists the settings for component clustering for EM models.
Table 7-7 Expectation Maximization Settings for Component Clustering

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUS_NUM_CLUSTERS</td>
<td>TO_CHAR(numeric_expr >= 1)</td>
<td>The maximum number of leaf clusters generated by the algorithm. The algorithm may return fewer clusters than the specified number, depending on the data, but it cannot return more clusters than the number of components, which is governed by algorithm-specific settings. (See Table 7-6.) Depending on these settings, there may be fewer clusters than components. If component clustering is disabled, then the number of clusters equals the number of components. The default value is system-determined.</td>
</tr>
<tr>
<td>EMCS_CLUSTER_COMPONENTS</td>
<td>EMCS_CLUSTER_COMP_ENABLE EMCS_CLUSTER_COMP_DISABLE</td>
<td>Enables or disables the grouping of EM components into high-level clusters. When disabled, the components themselves are treated as clusters. When component clustering is enabled, model scoring through the SQL CLUSTER function produces assignments to the higher level clusters. When clustering is disabled, the CLUSTER function produces assignments to the original components. The default value is EMCS_CLUSTER_COMP_ENABLE.</td>
</tr>
<tr>
<td>EMCS_CLUSTER_THRESH</td>
<td>TO_CHAR(numeric_expr >= 1)</td>
<td>Dissimilarity threshold that controls the clustering of EM components. When the dissimilarity measure is less than the threshold, the components are combined into a single cluster. A lower threshold may produce more clusters that are more compact. A higher threshold may produce fewer clusters that are more spread out. The default value is 2.</td>
</tr>
</tbody>
</table>
Table 7-7 (Cont.) Expectation Maximization Settings for Component Clustering

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_LINKAGE_FUNCTION</td>
<td>EMCS_LINKAGE_SINGLE</td>
<td>Allows the specification of a linkage function for the agglomerative clustering step. EMCS_LINKAGE_SINGLE uses the nearest distance within the branch. The clusters tend to be larger and have arbitrary shapes. EMCS_LINKAGE_AVERAGE uses the average distance within the branch. There is less chaining effect and the clusters are more compact. EMCS_LINKAGE_COMPLETE uses the maximum distance within the branch. The clusters are smaller and require strong component overlap. The default value is EMCS_LINKAGE_SINGLE.</td>
</tr>
<tr>
<td></td>
<td>EMCS_LINKAGE_AVERAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMCS_LINKAGE_COMPLETE</td>
<td></td>
</tr>
</tbody>
</table>

The following table lists the settings for cluster statistics for EM models.

Table 7-8 Expectation Maximization Settings for Cluster Statistics

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_CLUSTER_STATISTICS</td>
<td>EMCS_CLUS_STATS_ENABLE</td>
<td>Enables or disables the gathering of descriptive statistics for clusters (centroids, histograms, and rules). When statistics are disabled, model size is reduced. The default value is EMCS_CLUS_STATS_ENABLE.</td>
</tr>
<tr>
<td></td>
<td>EMCS_CLUS_STATS_DISABLE</td>
<td></td>
</tr>
<tr>
<td>EMCS_MIN_PCT_ATTR_SUPPORT</td>
<td>TO_CHAR(0 < numeric_expr < 1)</td>
<td>Minimum support required for including an attribute in the cluster rule. The support is the percentage of the data rows assigned to a cluster that must have non-null values for the attribute. The default value is 0.1.</td>
</tr>
</tbody>
</table>

See Also:

- About Model Settings
- Shared Settings
Example 7-10 Using the oml.em Class

This example creates an EM model and uses some of the methods of the oml.em class.

```python
import oml
import pandas as pd
from sklearn import datasets

# Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
                columns = ['Sepal_Length','Sepal_Width',
                           'Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
                           {0: 'setosa', 1: 'versicolor',
                            2:'virginica'}[x], iris.target)),
                columns = ['Species'])

try:
    oml.drop('IRIS')
except:
    pass

# Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

# Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_dat = dat[0]
test_dat = dat[1]

# Specify settings.
setting = {'emcs_num_iterations': 100}

# Create an EM model object
em_mod = oml.em(n_clusters = 2, **setting)

# Fit the EM model according to the training data and parameter # settings.
em_mod = em_mod.fit(train_dat)

# Show details of the model.
em_mod

# Use the model to make predictions on the test data.
em_mod.predict(test_dat)

# Make predictions and return the probability for each class # on new data.
em_mod.predict_proba(test_dat,
supplemental_cols = test_dat[:,
                           ['Sepal_Length', 'Sepal_Width',
                           'Petal_Length']].sort_values(by = ['Sepal_Length',
                           'Sepal_Width', 'Petal_Length',
                           'PROBABILITY_OF_2', 'PROBABILITY_OF_3'])
```

Chapter 7
Expectation Maximization
Change the random seed and refit the model.
em_mod.set_params(EMCS_RANDOM_SEED = '5').fit(train_dat)

Listing for This Example

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> try:
...    oml.drop('IRIS')
... except:
...    pass

>>> # Create the IRIS database table and the proxy object for the
... # table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
... train_dat = dat[0]
... test_dat = dat[1]

>>> # Specify settings.
... setting = {'emcs_num_iterations': 100}

>>> # Create an EM model object.
... em_mod = oml.em(n_clusters = 2, **setting)

>>> # Fit the EM model according to the training data and parameter
... # settings.
... em_mod = em_mod.fit(train_dat)

>>> # Show details of the model.
... em_mod

Algorithm Name: Expectation Maximization

Mining Function: CLUSTERING

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_EXPECTATION_MAXIMIZATION</td>
</tr>
</tbody>
</table>
Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_ATTRIBUTE_FILTER</td>
<td>EMCS_ATTR_FILTER_DISABLE</td>
</tr>
<tr>
<td>EMCS_CONVERGENCE_CRITERION</td>
<td>EMCS_CONV_CRIT_BIC</td>
</tr>
<tr>
<td>EMCS_NUM_QUANTILE_BINS</td>
<td>3</td>
</tr>
<tr>
<td>EMCS_NUM_TOPN_BINS</td>
<td>3</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERGED</td>
<td>YES</td>
</tr>
<tr>
<td>LOGLIKELIHOOD</td>
<td>-2.10044</td>
</tr>
<tr>
<td>NUM_CLUSTERS</td>
<td>2</td>
</tr>
<tr>
<td>NUM_COMPONENTS</td>
<td>8</td>
</tr>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
<tr>
<td>RANDOM_SEED</td>
<td>0</td>
</tr>
<tr>
<td>REMOVED_COMPONENTS</td>
<td>12</td>
</tr>
</tbody>
</table>

Attributes:
Petal Length
Petal Width
Sepal Length
Sepal Width
Species

Partition: NO

Clusters:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>CLUSTER_NAME</th>
<th>RECORD_COUNT</th>
<th>PARENT</th>
<th>TREE_LEVEL</th>
<th>LEFT_CHILD_ID</th>
<th>RIGHT_CHILD_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>NaN</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Taxonomy:

<table>
<thead>
<tr>
<th>PARENT_CLUSTER_ID</th>
<th>CHILD_CLUSTER_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Centroids:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>MEAN</th>
<th>MODE_VALUE</th>
<th>VARIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Petal_Length</td>
<td>3.721154</td>
<td>None</td>
<td>3.234694</td>
</tr>
<tr>
<td>1</td>
<td>Petal_Width</td>
<td>1.155769</td>
<td>None</td>
<td>0.567539</td>
</tr>
<tr>
<td>2</td>
<td>Sepal_Length</td>
<td>5.831731</td>
<td>None</td>
<td>0.753255</td>
</tr>
<tr>
<td>3</td>
<td>Sepal_Width</td>
<td>3.074038</td>
<td>None</td>
<td>0.221358</td>
</tr>
<tr>
<td>4</td>
<td>Species</td>
<td>NaN</td>
<td>setosa</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>Petal_Length</td>
<td>4.902941</td>
<td>None</td>
<td>0.860588</td>
</tr>
<tr>
<td>6</td>
<td>Petal_Width</td>
<td>1.635294</td>
<td>None</td>
<td>0.191572</td>
</tr>
<tr>
<td>7</td>
<td>Sepal_Length</td>
<td>6.266176</td>
<td>None</td>
<td>0.545555</td>
</tr>
<tr>
<td>8</td>
<td>Sepal_Width</td>
<td>2.854412</td>
<td>None</td>
<td>0.128786</td>
</tr>
<tr>
<td>9</td>
<td>Species</td>
<td>NaN</td>
<td>versicolor</td>
<td>NaN</td>
</tr>
<tr>
<td>10</td>
<td>Petal_Length</td>
<td>1.488889</td>
<td>None</td>
<td>0.033016</td>
</tr>
<tr>
<td>11</td>
<td>Petal_Width</td>
<td>0.250000</td>
<td>None</td>
<td>0.012857</td>
</tr>
<tr>
<td>12</td>
<td>Sepal_Length</td>
<td>5.011111</td>
<td>None</td>
<td>0.113016</td>
</tr>
<tr>
<td>13</td>
<td>Sepal_Width</td>
<td>3.488889</td>
<td>None</td>
<td>0.134159</td>
</tr>
<tr>
<td>14</td>
<td>Species</td>
<td>NaN</td>
<td>setosa</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Leaf Cluster Counts:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Attribute Importance:

<table>
<thead>
<tr>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_IMPORTANCE_VALUE</th>
<th>ATTRIBUTE_RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petal_Length</td>
<td>0.558311</td>
<td>2</td>
</tr>
<tr>
<td>Petal_Width</td>
<td>0.556300</td>
<td>3</td>
</tr>
<tr>
<td>Sepal_Length</td>
<td>0.469978</td>
<td>4</td>
</tr>
<tr>
<td>Sepal_Width</td>
<td>0.196211</td>
<td>5</td>
</tr>
<tr>
<td>Species</td>
<td>0.612463</td>
<td>1</td>
</tr>
</tbody>
</table>

Components:

<table>
<thead>
<tr>
<th>COMPONENT_ID</th>
<th>CLUSTER_ID</th>
<th>PRIOR_PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.115366</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.079158</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.113448</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.148059</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.126979</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.134402</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>0.105727</td>
</tr>
</tbody>
</table>
Cluster Hists:

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>variable</th>
<th>bin.id</th>
<th>lower.bound</th>
<th>upper.bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Petal_Length</td>
<td>1</td>
<td>1.00</td>
<td>1.59</td>
</tr>
<tr>
<td>1</td>
<td>Petal_Length</td>
<td>2</td>
<td>1.59</td>
<td>2.18</td>
</tr>
<tr>
<td>2</td>
<td>Petal_Length</td>
<td>3</td>
<td>2.18</td>
<td>2.77</td>
</tr>
<tr>
<td>3</td>
<td>Petal_Length</td>
<td>4</td>
<td>2.77</td>
<td>3.36</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>137</td>
<td>Sepal_Width</td>
<td>11</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>138</td>
<td>Species:'Other'</td>
<td>1</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>139</td>
<td>Species:setosa</td>
<td>2</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>140</td>
<td>Species:versicolor</td>
<td>3</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>


Rules:

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>rhs.support</th>
<th>rhs.conf</th>
<th>lhr.support</th>
<th>lhs.conf</th>
<th>lhs.var</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>104</td>
<td>93</td>
<td>0.892157</td>
<td>Sepal_Width</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>104</td>
<td>93</td>
<td>0.892157</td>
<td>Sepal_Width</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>104</td>
<td>99</td>
<td>0.892157</td>
<td>Petal_Length</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>104</td>
<td>99</td>
<td>0.892157</td>
<td>Petal_Length</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>36</td>
<td>36</td>
<td>0.972222</td>
<td>Petal_Length</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>36</td>
<td>36</td>
<td>0.972222</td>
<td>Sepal_Length</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>36</td>
<td>36</td>
<td>0.972222</td>
<td>Sepal_Length</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>36</td>
<td>36</td>
<td>0.972222</td>
<td>Species</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>lhs.var.support</th>
<th>lhs.var.conf</th>
<th>predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93</td>
<td>0.400000 Sepal_Width &lt;= 3.92</td>
</tr>
<tr>
<td>1</td>
<td>93</td>
<td>0.400000 Sepal_Width &gt; 2.48</td>
</tr>
<tr>
<td>2</td>
<td>93</td>
<td>0.222222 Petal_Length &lt;= 6.31</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>0.222222 Petal_Length &gt;= 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>26</td>
<td>35</td>
<td>0.134398 Petal_Length &gt;= 1</td>
</tr>
<tr>
<td>27</td>
<td>35</td>
<td>0.094194 Sepal_Length &lt;= 5.74</td>
</tr>
<tr>
<td>28</td>
<td>35</td>
<td>0.094194 Sepal_Length &gt;= 4.3</td>
</tr>
<tr>
<td>29</td>
<td>35</td>
<td>0.281684 Species = setosa</td>
</tr>
</tbody>
</table>

[30 rows x 9 columns]

```python
>>> # Use the model to make predictions on the test data.
```
... em_mod.predict(test_dat)

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

>>> # Make predictions and return the probability for each class on new data.
>>> em_mod.predict_proba(test_dat, supplemental_cols = test_dat[:,
  ['Sepal_Length', 'Sepal_Width',
  'Petal_Length']]).sort_values(by = ['Sepal_Length',
  'Sepal_Width', 'Petal_Length',
  'PROBABILITY_OF_2', 'PROBABILITY_OF_3'])

   Sepal_Length  Sepal_Width  Petal_Length  PROBABILITY_OF_2  \
0        4.4          3.0           1.3      4.680788e-20
1        4.4          3.2           1.3      1.052071e-20
2        4.5          2.3           1.3      7.751240e-19
3        4.8          3.4           1.6      5.363418e-19
...        ...          ...           ...               ...   
43       6.9          3.1           4.9      1.000000e+00
44       6.9          3.1           5.4      1.000000e+00
45       7.0          3.2           4.7      1.000000e+00

   PROBABILITY_OF_3
0       1.000000e+00
1       1.000000e+00
2       9.999922e-01
3       1.000000e+00
...      ...          ...           ...              ...   
43      3.295578e-97
44      6.438740e-137
45      3.853925e-89

>>> # Change the random seed and refit the model.
>>> em_mod.set_params(EMCS_RANDOM_SEED = '5').fit(train_dat)

Algorithm Name: Expectation Maximization

Mining Function: CLUSTERING

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_EXPECTATION_MAXIMIZATION</td>
</tr>
<tr>
<td>CLUS_NUM_CLUSTERS</td>
<td>2</td>
</tr>
<tr>
<td>EMCS_CLUSTER.Components</td>
<td>EMCS_CLUSTER.COMP_ENABLE</td>
</tr>
<tr>
<td>EMCS_CLUSTER.STATISTICS</td>
<td>EMCS_CLUSTER.STATS_ENABLE</td>
</tr>
<tr>
<td>EMCS_CLUSTER_THRESH</td>
<td>2</td>
</tr>
</tbody>
</table>
Chapter 7
Expectation Maximization

Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCS_ATTRIBUTE_FILTER</td>
<td>EMCS_ATTR_FILTER_DISABLE</td>
</tr>
<tr>
<td>EMCS_CONVERGENCE_CRITERION</td>
<td>_EMCS_CONV_CRIT_BIC</td>
</tr>
<tr>
<td>EMCS_NUM_QUANTILE_BINS</td>
<td>3</td>
</tr>
<tr>
<td>EMCS_NUM_TOPN_BINS</td>
<td>3</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERGED</td>
<td>YES</td>
</tr>
<tr>
<td>LOGLIKELIKHOOD</td>
<td>-1.75777</td>
</tr>
<tr>
<td>NUM_CLUSTERS</td>
<td>2</td>
</tr>
<tr>
<td>NUM_COMPONENTS</td>
<td>9</td>
</tr>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
<tr>
<td>RANDOM_SEED</td>
<td>5</td>
</tr>
<tr>
<td>REMOVED_COMPONENTS</td>
<td>11</td>
</tr>
</tbody>
</table>

Attributes:

- Petal_Length
- Petal_Width
- Sepal_Length
- Sepal_Width
- Species

Partition: NO

Clusters:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>CLUSTER_NAME</th>
<th>RECORD_COUNT</th>
<th>PARENT</th>
<th>TREE_LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>104</td>
<td>NaN</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>36</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>NaN</td>
<td>2</td>
<td>68</td>
<td>1.0</td>
<td>2</td>
</tr>
</tbody>
</table>

ORACLE
<table>
<thead>
<tr>
<th>PARENT_CLUSTER_ID</th>
<th>CHILD_CLUSTER_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

**Centroids:**

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>MEAN</th>
<th>MODE_VALUE</th>
<th>VARIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Petal_Length</td>
<td>3.721154</td>
<td>None</td>
<td>3.234694</td>
</tr>
<tr>
<td>1</td>
<td>Petal_Width</td>
<td>1.155769</td>
<td>None</td>
<td>0.567539</td>
</tr>
<tr>
<td>2</td>
<td>Sepal_Length</td>
<td>5.831731</td>
<td>None</td>
<td>0.753255</td>
</tr>
<tr>
<td>3</td>
<td>Sepal_Width</td>
<td>3.074038</td>
<td>None</td>
<td>0.221358</td>
</tr>
<tr>
<td>4</td>
<td>Species</td>
<td>NaN</td>
<td>setosa</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>Petal_Length</td>
<td>1.488889</td>
<td>None</td>
<td>0.033016</td>
</tr>
<tr>
<td>6</td>
<td>Petal_Width</td>
<td>0.250000</td>
<td>None</td>
<td>0.012857</td>
</tr>
<tr>
<td>7</td>
<td>Sepal_Length</td>
<td>5.011111</td>
<td>None</td>
<td>0.113016</td>
</tr>
<tr>
<td>8</td>
<td>Sepal_Width</td>
<td>3.488889</td>
<td>None</td>
<td>0.134159</td>
</tr>
<tr>
<td>9</td>
<td>Species</td>
<td>NaN</td>
<td>setosa</td>
<td>NaN</td>
</tr>
<tr>
<td>10</td>
<td>Petal_Length</td>
<td>4.902941</td>
<td>None</td>
<td>0.860588</td>
</tr>
<tr>
<td>11</td>
<td>Petal_Width</td>
<td>1.635294</td>
<td>None</td>
<td>0.191572</td>
</tr>
<tr>
<td>12</td>
<td>Sepal_Length</td>
<td>6.266176</td>
<td>None</td>
<td>0.545555</td>
</tr>
<tr>
<td>13</td>
<td>Sepal_Width</td>
<td>2.854412</td>
<td>None</td>
<td>0.128786</td>
</tr>
<tr>
<td>14</td>
<td>Species</td>
<td>NaN</td>
<td>versicolor</td>
<td>NaN</td>
</tr>
</tbody>
</table>

**Leaf Cluster Counts:**

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

**Attribute Importance:**

<table>
<thead>
<tr>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_IMPORTANCE_VALUE</th>
<th>ATTRIBUTE_RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petal_Length</td>
<td>0.558311</td>
<td>2</td>
</tr>
<tr>
<td>Petal_Width</td>
<td>0.556300</td>
<td>3</td>
</tr>
<tr>
<td>Sepal_Length</td>
<td>0.469978</td>
<td>4</td>
</tr>
<tr>
<td>Sepal_Width</td>
<td>0.196211</td>
<td>5</td>
</tr>
<tr>
<td>Species</td>
<td>0.612463</td>
<td>1</td>
</tr>
</tbody>
</table>

**Components:**

<table>
<thead>
<tr>
<th>COMPONENT_ID</th>
<th>CLUSTER_ID</th>
<th>PRIOR_PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Cluster Hists:

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>variable</th>
<th>bin.id</th>
<th>lower.bound</th>
<th>upper.bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Petal_Length</td>
<td>1</td>
<td>1.00</td>
<td>1.59</td>
</tr>
<tr>
<td>1</td>
<td>Petal_Length</td>
<td>2</td>
<td>1.59</td>
<td>2.18</td>
</tr>
<tr>
<td>2</td>
<td>Petal_Length</td>
<td>3</td>
<td>2.18</td>
<td>2.77</td>
</tr>
<tr>
<td>3</td>
<td>Petal_Length</td>
<td>4</td>
<td>2.77</td>
<td>3.36</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>137</td>
<td>Sepal_Width</td>
<td>11</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>138</td>
<td>Species:'Other'</td>
<td>1</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>139</td>
<td>Species: setosa</td>
<td>3</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>140</td>
<td>Species:versicolor</td>
<td>2</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

[141 rows x 7 columns]

Rules:

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>rhs.support</th>
<th>rhs.conf</th>
<th>lhr.support</th>
<th>lhs.conf</th>
<th>lhs.var</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>104</td>
<td>93</td>
<td>0.894231</td>
<td>Sepal_Width</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>104</td>
<td>93</td>
<td>0.894231</td>
<td>Sepal_Width</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>104</td>
<td>99</td>
<td>0.894231</td>
<td>Petal_Length</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>104</td>
<td>99</td>
<td>0.894231</td>
<td>Petal_Length</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>68</td>
<td>68</td>
<td>0.955882</td>
<td>Sepal_Length</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>68</td>
<td>68</td>
<td>0.955882</td>
<td>Sepal_Length</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>68</td>
<td>68</td>
<td>0.955882</td>
<td>Species</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>68</td>
<td>68</td>
<td>0.955882</td>
<td>Species</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lhs.var.support</th>
<th>lhs.var.conf</th>
<th>predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93</td>
<td>0.400000</td>
</tr>
<tr>
<td>1</td>
<td>93</td>
<td>0.400000</td>
</tr>
<tr>
<td>2</td>
<td>93</td>
<td>0.222222</td>
</tr>
<tr>
<td>3</td>
<td>93</td>
<td>0.222222</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>26</td>
<td>65</td>
<td>0.026013</td>
</tr>
<tr>
<td>27</td>
<td>65</td>
<td>0.026013</td>
</tr>
<tr>
<td>28</td>
<td>65</td>
<td>0.125809</td>
</tr>
<tr>
<td>29</td>
<td>65</td>
<td>0.125809</td>
</tr>
</tbody>
</table>
Explicit Semantic Analysis

The `oml.esa` class extracts text-based features from a corpus of documents and performs document similarity comparisons.

Explicit Semantic Analysis (ESA) is an unsupervised algorithm for feature extraction. ESA does not discover latent features but instead uses explicit features based on an existing knowledge base.

Explicit knowledge often exists in text form. Multiple knowledge bases are available as collections of text documents. These knowledge bases can be generic, such as Wikipedia, or domain-specific. Data preparation transforms the text into vectors that capture attribute-concept associations.

ESA uses concepts of an existing knowledge base as features rather than latent features derived by latent semantic analysis methods such as Singular Value Decomposition and Latent Dirichlet Allocation. Each row, for example, in a document in the training data maps to a feature, that is, a concept. ESA has multiple applications in the area of text processing, most notably semantic relatedness (similarity) and explicit topic modeling. Text similarity use cases might involve, for example, resume matching, searching for similar blog postings, and so on.

For information on the `oml.esa` class attributes and methods, invoke `help(oml.esa)` or see Oracle Machine Learning for Python API Reference.

Settings for an Explicit Semantic Analysis Model

The following table lists settings for ESA models.

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESAS_MIN_ITEMS</td>
<td>A non-negative number</td>
<td>Determines the minimum number of non-zero entries required in an input row. The default value is 100 for text input and 0 for non-text input.</td>
</tr>
<tr>
<td>ESAS_TOPN_FEATURES</td>
<td>A positive integer</td>
<td>Controls the maximum number of features per attribute. The default value is 1000.</td>
</tr>
<tr>
<td>ESAS_VALUE_THRESHOLD</td>
<td>A non-negative number</td>
<td>Sets the threshold to a small value for attribute weights in the transformed build data. The default value is 1e-8.</td>
</tr>
<tr>
<td>FEAT_NUM_FEATURES</td>
<td>TO_CHAR(numeric_expr &gt;=1)</td>
<td>The number of features to extract. The default value is estimated by the algorithm. If the matrix rank is smaller than this number, then fewer features are returned.</td>
</tr>
</tbody>
</table>
Example 7-11    Using the oml.esa Class

This example creates an ESA model and uses some of the methods of the oml.esa class.

```python
import oml
from oml import cursor
import pandas as pd

Create training data and test data.
dat = oml.push(pd.DataFrame(
 {'COMMENTS': ['Aids in Africa: Planning for a long war',
 'Mars rover maneuvers for rim shot',
 'Mars express confirms presence of water at Mars south pole',
 'NASA announces major Mars rover finding',
 'Drug access, Asia threat in focus at AIDS summit',
 'NASA Mars Odyssey THEMIS image: typical crater',
 'Road blocks for Aids'],
 'ID': [1, 2, 3, 4, 5, 6, 7]})).split(ratio=(0.7,0.3), seed = 1234)
train_dat = dat[0]
test_dat = dat[1]

Specify settings.
cur = cursor()
cur.execute("Begin ctx_ddl.create_policy('DMDEMO_ESA_POLICY'); End;"")
cur.close()

odm_settings = {'odms_text_policy_name': 'DMDEMO_ESA_POLICY',
 '"ODMS_TEXT_MIN_DOCUMENTS": 1,
 '"ESAS_MIN_ITEMS": 1}

ctx_settings = {'COMMENTS':
 'TEXT(POLICY_NAME:DMDEMO_ESA_POLICY)(TOKEN_TYPE:STEM)'}

Create an oml ESA model object.
esa_mod = oml.esa(**odm_settings)

Fit the ESA model according to the training data and parameter settings.
esa_mod = esa_mod.fit(train_dat, case_id = 'ID',
 ctx_settings = ctx_settings)

Show model details.
esa_mod

Use the model to make predictions on test data.
esa_mod.predict(test_dat,
 supplemental_cols = test_dat[:, ['ID', 'COMMENTS']])
```
esa_mod.transform(test_dat,
    supplemental_cols = test_dat[:, ['ID', 'COMMENTS']],
    topN = 2).sort_values(by = ['ID'])

esa_mod.feature_compare(test_dat,
    compare_cols = 'COMMENTS',
    supplemental_cols = ['ID'])

esa_mod.feature_compare(test_dat,
    compare_cols = ['COMMENTS', 'YEAR'],
    supplemental_cols = ['ID'])

# Change the setting parameter and refit the model.
new_setting = {'ESAS_VALUE_THRESHOLD': '0.01',
    'ODMS_TEXT_MAX_FEATURES': '2',
    'ESAS_TOPN_FEATURES': '2'}
esa_mod.set_params(**new_setting).fit(train_dat, 'ID', case_id = 'ID',
    ctx_settings = ctx_settings)

cur = cursor()
cur.execute("Begin ctx_ddl.drop_policy('DMDEMO_ESA_POLICY'); End;")
cur.close()

Listing for This Example

>>> import oml
>>> from oml import cursor
>>> import pandas as pd

>>> # Create training data and test data.
... dat = oml.push(pd.DataFrame(
...   {'COMMENTS':
...      ['Aids in Africa: Planning for a long war',
...      'Mars rover maneuvers for rim shot',
...      'Mars express confirms presence of water at Mars south pole',
...      'NASA announces major Mars rover finding',
...      'Drug access, Asia threat in focus at AIDS summit',
...      'NASA Mars Odyssey THEMIS image: typical crater',
...      'Road blocks for Aids'],
...      'YEAR':
...      'ID':
...      [1,2,3,4,5,6,7]})).split(ratio=(0.7,0.3), seed = 1234)
>>> train_dat = dat[0]
>>> test_dat = dat[1]

>>> # Specify settings.
... cur = cursor()
>>> cur.execute("Begin ctx_ddl.create_policy('DMDEMO_ESA_POLICY'); End;")
>>> cur.close()

>>> odm_settings = {'odms_text_policy_name': 'DMDEMO_ESA_POLICY',
...    "ODMS_TEXT_MIN_DOCUMENTS": 1,
...    "ESAS_MIN_ITEMS": 1}
>>> ctx_settings = {'COMMENTS':
...                 'TEXT(POLICY_NAME:DMDEMO_ESA_POLICY)(TOKEN_TYPE:STEM)'}

>>> # Create an oml ESA model object.
... esa_mod = oml.esa(**odm_settings)

>>> # Fit the ESA model according to the training data and parameter settings.
... esa_mod = esa_mod.fit(train_dat, case_id = 'ID',
...                       ctx_settings =  ctx_settings)

>>> # Show model details.
... esa_mod

Algorithm Name: Explicit Semantic Analysis

Mining Function: FEATURE_EXTRACTION

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ALGO_NAME</td>
<td>ALGO_EXPLICIT_SEMANTIC_ANALYS</td>
</tr>
<tr>
<td>1 ESAS_MIN_ITEMS</td>
<td>1</td>
</tr>
<tr>
<td>2 ESAS_TOPN_FEATURES</td>
<td>1000</td>
</tr>
<tr>
<td>3 ESAS_VALUE_THRESHOLD</td>
<td>0.00000001</td>
</tr>
<tr>
<td>4 ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>5 ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>6 ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>7 ODMS_TEXT_MAX_FEATURES</td>
<td>300000</td>
</tr>
<tr>
<td>8 ODMS_TEXT_MIN_DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>9 ODMS_TEXT_POLICY_NAME</td>
<td>DMDEMO_ESA_POLICY</td>
</tr>
<tr>
<td>10 PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM_ROWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Attributes:

COMMENTS
YEARM

Partition: NO

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>COMMENTS.AFRICA</td>
<td>None</td>
<td>0.342997</td>
</tr>
<tr>
<td>1</td>
<td>COMMENTS.AIDS</td>
<td>None</td>
<td>0.171499</td>
</tr>
<tr>
<td>2</td>
<td>COMMENTS.LONG</td>
<td>None</td>
<td>0.342997</td>
</tr>
<tr>
<td>3</td>
<td>COMMENTS.PLANNING</td>
<td>None</td>
<td>0.342997</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>24</td>
<td>COMMENTS.ODYSSEY</td>
<td>None</td>
<td>0.282843</td>
</tr>
<tr>
<td>25</td>
<td>COMMENTS.THEMIS</td>
<td>None</td>
<td>0.282843</td>
</tr>
<tr>
<td>26</td>
<td>COMMENTS.TYPICAL</td>
<td>None</td>
<td>0.282843</td>
</tr>
<tr>
<td>27</td>
<td>YEAR</td>
<td>2018</td>
<td>0.707107</td>
</tr>
</tbody>
</table>
>>> # Use the model to make predictions on test data.
... esa_mod.predict(test_dat,
...                 supplemental_cols = test_dat[:, ['ID',
...                     'COMMENTS']])

<table>
<thead>
<tr>
<th>ID</th>
<th>COMMENTS</th>
<th>FEATURE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NASA announces major Mars rover finding</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>NASA Mars Odyssey THEMIS image: typical crater</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Road blocks for Aids</td>
<td>5</td>
</tr>
</tbody>
</table>

>>> esa_mod.transform(test_dat,
...                     supplemental_cols = test_dat[:, ['ID', 'COMMENTS']],
...                     topN = 2).sort_values(by = ['ID'])

<table>
<thead>
<tr>
<th>COMMENTS</th>
<th>TOP_1</th>
<th>TOP_2</th>
<th>TOP_2_VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA announces major Mars rover finding</td>
<td>0.647065</td>
<td>1</td>
<td>0.590565</td>
</tr>
<tr>
<td>NASA Mars Odyssey THEMIS image: typical crater</td>
<td>0.766237</td>
<td>2</td>
<td>0.616672</td>
</tr>
<tr>
<td>Road blocks for Aids</td>
<td>0.759125</td>
<td>2</td>
<td>0.632604</td>
</tr>
</tbody>
</table>

>>> esa_mod.feature_compare(test_dat,
...                         compare_cols = 'COMMENTS',
...                         supplemental_cols = ['ID'])

<table>
<thead>
<tr>
<th>ID_A</th>
<th>ID_B</th>
<th>SIMILARITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0.946469</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.871994</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.954565</td>
</tr>
</tbody>
</table>

>>> esa_mod.feature_compare(test_dat,
...                         compare_cols = ['COMMENTS', 'YEAR'],
...                         supplemental_cols = ['ID'])

<table>
<thead>
<tr>
<th>ID_A</th>
<th>ID_B</th>
<th>SIMILARITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0.467644</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.377144</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0.952857</td>
</tr>
</tbody>
</table>

>>> # Change the setting parameter and refit the model.
... new_setting = {'ESAS_VALUE_THRESHOLD': '0.01',
...                'ODMS_TEXT_MAX_FEATURES': '2',
...                'ESAS_TOPN_FEATURES': '2'}

>>> esa_mod.set_params(**new_setting).fit(train_dat, case_id = 'ID',
... context_settings = ctx_settings)

Algorithm Name: Explicit Semantic Analysis

Mining Function: FEATURE_EXTRACTION
Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_EXPLICIT_SEMANTIC_ANALYS</td>
</tr>
<tr>
<td>ESAS_MIN_ITEMS</td>
<td>1</td>
</tr>
<tr>
<td>ESAS_TOPN_FEATURES</td>
<td>2</td>
</tr>
<tr>
<td>ESAS_VALUE_THRESHOLD</td>
<td>0.01</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>ODMS_TEXT_MAX_FEATURES</td>
<td>2</td>
</tr>
<tr>
<td>ODMS_TEXT_MIN_DOCUMENTS</td>
<td>1</td>
</tr>
<tr>
<td>ODMS_TEXT_POLICY_NAME</td>
<td>DMDEMO_ESA_POLICY</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM_ROWS</td>
<td>4</td>
</tr>
</tbody>
</table>

Attributes:

- COMMENTS
- YEAR

Partition: NO

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>COMMENTS.AIDS</td>
<td>None</td>
<td>0.707107</td>
</tr>
<tr>
<td>1</td>
<td>YEAR</td>
<td>2017</td>
<td>0.707107</td>
</tr>
<tr>
<td>2</td>
<td>COMMENTS.MARS</td>
<td>None</td>
<td>0.707107</td>
</tr>
<tr>
<td>3</td>
<td>YEAR</td>
<td>2018</td>
<td>0.707107</td>
</tr>
<tr>
<td>4</td>
<td>COMMENTS.MARS</td>
<td>None</td>
<td>0.707107</td>
</tr>
<tr>
<td>5</td>
<td>YEAR</td>
<td>2017</td>
<td>0.707107</td>
</tr>
<tr>
<td>6</td>
<td>COMMENTS.AIDS</td>
<td>None</td>
<td>0.707107</td>
</tr>
<tr>
<td>7</td>
<td>YEAR</td>
<td>2018</td>
<td>0.707107</td>
</tr>
</tbody>
</table>

```python
>>> cur = cursor()
>>> cur.execute("Begin ctx_ddl.drop_policy('DMDEMO_ESA_POLICY'); End;")
>>> cur.close()
```

Generalized Linear Model

The `oml.glm` class builds a Generalized Linear Model (GLM) model.

GLM models include and extend the class of linear models. They relax the restrictions on linear models, which are often violated in practice. For example, binary (yes/no or 0/1) responses do not have the same variance across classes.

GLM is a parametric modeling technique. Parametric models make assumptions about the distribution of the data. When the assumptions are met, parametric models can be more efficient than non-parametric models.
The challenge in developing models of this type involves assessing the extent to which
the assumptions are met. For this reason, quality diagnostics are key to developing
quality parametric models.

In addition to the classical weighted least squares estimation for linear regression and
iteratively re-weighted least squares estimation for logistic regression, both solved
through Cholesky decomposition and matrix inversion, Oracle Machine Learning GLM
provides a conjugate gradient-based optimization algorithm that does not require
matrix inversion and is very well suited to high-dimensional data. The choice of
algorithm is handled internally and is transparent to the user.

GLM can be used to build classification or regression models as follows:

- **Classification**: Binary logistic regression is the GLM classification algorithm. The
  algorithm uses the logit link function and the binomial variance function.

- **Regression**: Linear regression is the GLM regression algorithm. The algorithm
  assumes no target transformation and constant variance over the range of target
  values.

The `oml.glm` class allows you to build two different types of models. Some arguments
apply to classification models only and some to regression models only.

For information on the `oml.glm` class attributes and methods, invoke `help(oml.glm)` or see
*Oracle Machine Learning for Python API Reference*.

### Settings for a Generalized Linear Model

The following table lists the settings that apply to GLM models.

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS_COST_TABLE_NAME</td>
<td><code>table_name</code></td>
<td>The name of a table that stores a cost matrix for the algorithm to use in scoring the model. The cost matrix specifies the costs associated with misclassifications. The cost matrix table is user-created. The following are the column requirements for the table.</td>
</tr>
</tbody>
</table>
|                              |               | - Column Name: `ACTUAL_TARGET_VALUE`  
|                              |               |    Data Type: Valid target data type  
|                              |               | - Column Name: `PREDICTED_TARGET_VALUE`  
|                              |               |    Data Type: Valid target data type  
|                              |               | - Column Name: `COST`  
|                              |               |    Data Type: NUMBER  |
| CLAS_WEIGHTS_BALANCED        | ON OFF        | Indicates whether the algorithm must create a model that balances the target distribution. This setting is most relevant in the presence of rare targets, as balancing the distribution may enable better average accuracy (average of per-class accuracy) instead of overall accuracy (which favors the dominant class). The default value is OFF.  |
### Table 7-10  (Cont.) Generalized Linear Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS_WEIGHTS_TABLE_NAME</td>
<td>table_name</td>
<td>The name of a table that stores weighting information for individual target values in GLM logistic regression models. The weights are used by the algorithm to bias the model in favor of higher weighted classes. The class weights table is user-created. The following are the column requirements for the table.</td>
</tr>
</tbody>
</table>
|                               |                                                    | • Column Name: TARGET_VALUE  
|                               |                                                    |     Data Type: Valid target data type  
|                               |                                                    | • Column Name: CLASS_WEIGHT  
|                               |                                                    |     Data Type: NUMBER   |
| GLMS_BATCH_ROWS               | 0 or a positive integer.                           | Number of rows in a batch used by the SGD solver. The value of this parameter sets the size of the batch for the SGD solver. An input of 0 triggers a data-driven batch size estimate. The default value is 2000. |
| GLMS_CONF_LEVEL               | TO_CHAR(0<numeric_expr<1)                          | The confidence level for coefficient confidence intervals. The default confidence level is 0.95.                                             |
| GLMS_CONV_TOLERANCE           | The range is (0, 1) non-inclusive.                 | Convergence tolerance setting of the GLM algorithm. The default value is system-determined.                                           |
| GLMS_FTR_GEN_METHOD           | GLMS_FTR_GEN_CUBIC  
|                               | GLMS_FTR_GEN_QUADRATIC                              | Whether feature generation is cubic or quadratic. When you enable feature generation, the algorithm automatically chooses the most appropriate feature generation method based on the data. |
| GLMS_FTR_GENERATION           | GLMS_FTRGENERATION_ENABLE  
|                               | GLMS_FTRGENERATION_DISABLE                           | Whether or not feature generation is enabled for GLM. By default, feature generation is not enabled.                                     |
| GLMS_FTR_SEL_CRIT             | GLMS_FTR_SEL_AIC  
|                               | GLMS_FTR_SEL_ALPHA_INV  
|                               | GLMS_FTR_SEL_RIC  
<p>|                               | GLMS_FTR_SEL_SBIC                                      | Feature selection penalty criterion for adding a feature to the model. When feature selection is enabled, the algorithm automatically chooses the penalty criterion based on the data. |
| GLMS_FTR_SELECTION            | GLMS_FTR_SELECTION_DISABLE                           | Enable or disable feature selection for GLM. By default, feature selection is not enabled.                                             |
| GLMS_MAX_FEATURES             | TO_CHAR(0 &lt; numeric_expr &lt;= 2000)                  | When feature selection is enabled, this setting specifies the maximum number of features that can be selected for the final model. By default, the algorithm limits the number of features to ensure sufficient memory. |</p>
<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLMS_NUM_ITERATIONS</td>
<td>A positive integer.</td>
<td>Maximum number of iterations for the GLM algorithm. The default value is system-determined.</td>
</tr>
<tr>
<td>GLMS_PRUNE_MODEL</td>
<td>GLMS_PRUNE_MODEL_ENABLE GLMS_PRUNE_MODEL_DISABLE</td>
<td>When feature selection is enabled, the algorithm automatically performs pruning based on the data.</td>
</tr>
<tr>
<td>GLMS_REFERENCE_CLASS_NAME</td>
<td>target_value</td>
<td>The target value used as the reference class in a binary logistic regression model. Probabilities are produced for the other class. By default, the algorithm chooses the value with the highest prevalence (the most cases) for the reference class.</td>
</tr>
<tr>
<td>GLMS_RIDGE_REGRESSION</td>
<td>GLMS_RIDGE_REG_ENABLE GLMS_RIDGE_REG_DISABLE</td>
<td>Enable or disable ridge regression. Ridge applies to both regression and classification machine learning functions. When ridge is enabled, prediction bounds are not produced by the PREDICTION_BOUNDS SQL function.</td>
</tr>
<tr>
<td>GLMS_RIDGE_VALUE</td>
<td>TO_CHAR(numeric_expr ( r &gt; 0 ))</td>
<td>The value of the ridge parameter. Use this setting only when you have configured the algorithm to use ridge regression. If ridge regression is enabled internally by the algorithm, then the ridge parameter is determined by the algorithm.</td>
</tr>
<tr>
<td>GLMS_ROW_DIAGNOSTICS</td>
<td>GLMS_ROW_DIAG_ENABLE GLMS_ROW_DIAG_DISABLE</td>
<td>Enable or disable row diagnostics. By default, row diagnostics are disabled.</td>
</tr>
<tr>
<td>GLMS_SOLVER</td>
<td>GLMS_SOLVER_CHOL GLMS_SOLVER_LBFGS_ADM GLMS_SOLVER_QR GLMS_SOLVER_SGD</td>
<td>Specifies the GLM solver. You cannot select the solver if GLMS_FTR_SELECTION setting is enabled. The default value is system determined. The GLMS_SOLVER_CHOL solver uses Cholesky decomposition. The GLMS_SOLVER_SGD solver uses stochastic gradient descent.</td>
</tr>
<tr>
<td>GLMS_SPARSE_SOLVER</td>
<td>GLMS_SPARSE_SOLVER_ENABLE GLMS_SPARSE_SOLVER_DISABLE</td>
<td>Enable or disable the use of a sparse solver if it is available. The default value is GLMS_SPARSE_SOLVER_DISABLE.</td>
</tr>
<tr>
<td>ODMS_ROW_WEIGHT_COLUMN_NAME</td>
<td>column_name</td>
<td>The name of a column in the training data that contains a weighting factor for the rows. The column datatype must be NUMBER. You can use row weights as a compact representation of repeated rows, as in the design of experiments where a specific configuration is repeated several times. You can also use row weights to emphasize certain rows during model construction. For example, to bias the model towards rows that are more recent and away from potentially obsolete data.</td>
</tr>
</tbody>
</table>
Example 7-12  Using the oml.glm Class

This example demonstrates the use of various methods of the oml.glm class. In the listing for this example, some of the output is not shown as indicated by ellipses.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table and the proxy object for the table.
ml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_x = dat[0].drop('Petal_Width')
train_y = dat[0]['Petal_Width']
test_dat = dat[1]

Specify settings.
setting = {'GLMS_SOLVER': 'dbms_data_mining.GLMS_SOLVER_QR'}

Create a GLM model object.
glm_mod = oml.glm("regression", **setting)

Fit the GLM model according to the training data and parameter
settings.
glm_mod = glm_mod.fit(train_x, train_y)

Show the model details.
glm_mod

Use the model to make predictions on the test data.
```

See Also:

• About Model Settings
• Shared Settings
glm_mod.predict(test_dat.drop('Petal_Width'),
    supplemental_cols = test_dat[:,
    ['Sepal_Length', 'Sepal_Width',
    'Petal_Length', 'Species'])

# Return the prediction probability.
glm_mod.predict(test_dat.drop('Petal_Width'),
    supplemental_cols = test_dat[:,
    ['Sepal_Length', 'Sepal_Width',
    'Petal_Length', 'Species']],
    proba = True)

glm_mod.score(test_dat.drop('Petal_Width'),
    test_dat[:, ['Petal_Width']])

# Change the parameter setting and refit the model.
new_setting = {'GLMS_SOLVER': 'GLMS_SOLVER_SGD'}
glm_mod.set_params(**new_setting).fit(train_x, train_y)

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> try:
...    oml.drop('IRIS')
... except:
...    pass

>>> # Create the IRIS database table and the proxy object for the
... table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
>>> train_x = dat[0].drop('Petal_Width')
>>> train_y = dat[0]['Petal_Width']
>>> test_dat = dat[1]

>>> # Specify settings.
... setting = {'GLMS_SOLVER': 'dbms_data_mining.GLMS_SOLVER_QR'}

>>> # Create a GLM model object.
... glm_mod = oml.glm("regression", **setting)

>>> # Fit the GLM model according to the training data and parameter settings.
... glm_mod = glm_mod.fit(train_x, train_y)

>>> # Show the model details.
... glm_mod

Algorithm Name: Generalized Linear Model

Mining Function: REGRESSION

Target: Petal_Width

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_GENERALIZED_LINEAR_MODEL</td>
</tr>
<tr>
<td>GLMS_CONF_LEVEL</td>
<td>.95</td>
</tr>
<tr>
<td>GLMS_FTR_GENERATION</td>
<td>GLMS_FTR_GENERATION_DISABLE</td>
</tr>
<tr>
<td>GLMS_FTR_SELECTION</td>
<td>GLMS_FTR_SELECTION_DISABLE</td>
</tr>
<tr>
<td>GLMS_SOLVER</td>
<td>GLMS_SOLVER_QR</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLMS_CONV_TOLERANCE</td>
<td>.0000050000000000000004</td>
</tr>
<tr>
<td>GLMS_NUM_ITERATIONS</td>
<td>30</td>
</tr>
<tr>
<td>GLMS_RIDGE_REGRESSION</td>
<td>GLMS_RIDGE_REG_ENABLE</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJUSTED_R_SQUARE</td>
<td>0.949634</td>
</tr>
<tr>
<td>AIC</td>
<td>-363.888</td>
</tr>
<tr>
<td>COEFF_VAR</td>
<td>14.6284</td>
</tr>
<tr>
<td>CONVERGED</td>
<td>YES</td>
</tr>
<tr>
<td>CORRECTED_TOTAL_DF</td>
<td>103</td>
</tr>
<tr>
<td>CORRECTED_TOT_SS</td>
<td>58.4565</td>
</tr>
<tr>
<td>DEPENDENT_MEAN</td>
<td>1.15577</td>
</tr>
<tr>
<td>ERROR_DF</td>
<td>98</td>
</tr>
<tr>
<td>ERROR_MEAN_SQUARE</td>
<td>0.028585</td>
</tr>
<tr>
<td>ERROR_SUM_SQUARES</td>
<td>2.80131</td>
</tr>
<tr>
<td>F_VALUE</td>
<td>389.405</td>
</tr>
<tr>
<td>GMSEP</td>
<td>0.030347</td>
</tr>
<tr>
<td>HOCKING_SP</td>
<td>0.000295</td>
</tr>
<tr>
<td>J_P</td>
<td>0.030234</td>
</tr>
<tr>
<td>MODEL_DF</td>
<td>5</td>
</tr>
<tr>
<td>MODEL_F_P_VALUE</td>
<td>0</td>
</tr>
<tr>
<td>MODEL_MEAN_SQUARE</td>
<td>11.131</td>
</tr>
<tr>
<td>MODEL_SUM_SQUARES</td>
<td>55.6552</td>
</tr>
<tr>
<td>NUM_PARAMS</td>
<td>6</td>
</tr>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
<tr>
<td>RANK DEFICIENCY</td>
<td>0</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>ROOT_MEAN_SQ</td>
<td>0.16907</td>
</tr>
<tr>
<td>R_SQ</td>
<td>0.952079</td>
</tr>
<tr>
<td>SBIC</td>
<td>-348.021</td>
</tr>
<tr>
<td>VALID_COVARIANCE_MATRIX</td>
<td>YES</td>
</tr>
</tbody>
</table>

[1 rows x 25 columns]

Attributes:
Petal_Length
Sepal_Length
Sepal_Width
Species

Partition: NO

Coefficients:

<table>
<thead>
<tr>
<th>name</th>
<th>level</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>None</td>
<td>-0.600603</td>
</tr>
<tr>
<td>Petal_Length</td>
<td>None</td>
<td>0.239775</td>
</tr>
<tr>
<td>Sepal_Length</td>
<td>None</td>
<td>-0.078338</td>
</tr>
<tr>
<td>Sepal_Width</td>
<td>None</td>
<td>0.253996</td>
</tr>
<tr>
<td>Species versicolor</td>
<td>None</td>
<td>0.652420</td>
</tr>
<tr>
<td>Species virginica</td>
<td>None</td>
<td>1.010438</td>
</tr>
</tbody>
</table>

Fit Details:

<table>
<thead>
<tr>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJUSTED_R_SQUARE</td>
<td>9.496338e-01</td>
</tr>
<tr>
<td>AIC</td>
<td>-3.638876e+02</td>
</tr>
<tr>
<td>COEFF_VAR</td>
<td>1.462838e+01</td>
</tr>
<tr>
<td>CORRECTED_TOTAL_DF</td>
<td>1.030000e+02</td>
</tr>
<tr>
<td>ROOT_MEAN_SQ</td>
<td>1.690704e-01</td>
</tr>
<tr>
<td>R_SQ</td>
<td>9.520788e-01</td>
</tr>
<tr>
<td>SBIC</td>
<td>-3.480213e+02</td>
</tr>
<tr>
<td>VALID_COVARIANCE_MATRIX</td>
<td>1.000000e+00</td>
</tr>
</tbody>
</table>

Rank:

6

Deviance:

2.801309

AIC:

-364

Null Deviance:

58.456538

DF Residual:
98.0

DF Null:

103.0

Converged:

True

>>> # Use the model to make predictions on the test data.
... glm_mod.predict(test_dat.drop('Petal_Width'),
...                 supplemental_cols = test_dat[:,
...                 ['Sepal_Length', 'Sepal_Width',
...                 'Petal_Length', 'Species'])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Species</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>setosa</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>virginica</td>
</tr>
<tr>
<td>43</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>44</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>45</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>virginica</td>
</tr>
</tbody>
</table>

>>> # Return the prediction probability.
... glm_mod.predict(test_dat.drop('Petal_Width'),
...                 supplemental_cols = test_dat[:,
...                 ['Sepal_Length', 'Sepal_Width',
...                 'Petal_Length', 'Species']),
...                 proba = True)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Species</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>setosa</td>
<td>0.113215</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>setosa</td>
<td>0.162592</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>setosa</td>
<td>0.270602</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>setosa</td>
<td>0.248752</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>6.7</td>
<td>virginica</td>
<td>2.089876</td>
</tr>
<tr>
<td>43</td>
<td>6.7</td>
<td>virginica</td>
<td>1.893790</td>
</tr>
<tr>
<td>44</td>
<td>6.5</td>
<td>virginica</td>
<td>1.909457</td>
</tr>
<tr>
<td>45</td>
<td>5.9</td>
<td>virginica</td>
<td>1.932483</td>
</tr>
</tbody>
</table>

>>> glm_mod.score(test_dat.drop('Petal_Width'),
...                 test_dat[:, ['Petal_Width']])
0.951252

>>> # Change the parameter setting and refit the model.
... new_setting = {'GLMS_SOLVER': 'GLMS_SOLVER_SGD'}
... glm_mod.set_params(**new_setting).fit(train_x, train_y)

Algorithm Name: Generalized Linear Model

Mining Function: REGRESSION
Target: Petal_Width

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GLMS_CONF_LEVEL .95</td>
</tr>
<tr>
<td>1</td>
<td>GLMS_FTR_SELECTION DISABLE</td>
</tr>
<tr>
<td>2</td>
<td>GLMS_FTR_SELECTION DISABLE</td>
</tr>
<tr>
<td>3</td>
<td>GLMS_SOLVER GLMS_SOLVER_SGD</td>
</tr>
<tr>
<td>4</td>
<td>ODMS_DETAILS ODMS_ENABLE</td>
</tr>
<tr>
<td>5</td>
<td>ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>6</td>
<td>ODMS_SAMPLING ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>7</td>
<td>PREP_AUTO ON</td>
</tr>
</tbody>
</table>

Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GLMS_BATCH_ROWS 2000</td>
</tr>
<tr>
<td>1</td>
<td>GLMS_CONV_TOLERANCE .0001</td>
</tr>
<tr>
<td>2</td>
<td>GLMS_NUM_ITERATIONS 500</td>
</tr>
<tr>
<td>3</td>
<td>GLMS_RIDGE_REGRESSION GLMS_RIDGE_REG_ENABLE</td>
</tr>
<tr>
<td>4</td>
<td>GLMS_RIDGE_VALUE .01</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADJUSTED_R_SQUARE 0.94175</td>
</tr>
<tr>
<td>1</td>
<td>AIC -348.764</td>
</tr>
<tr>
<td>2</td>
<td>COEFF_VAR 15.7316</td>
</tr>
<tr>
<td>3</td>
<td>CONVERGED NO</td>
</tr>
<tr>
<td>4</td>
<td>CORRECTED_TOTAL_DF 103</td>
</tr>
<tr>
<td>5</td>
<td>CORRECTED_TOT_SS 58.4565</td>
</tr>
<tr>
<td>6</td>
<td>DEPENDENT_MEAN 1.15577</td>
</tr>
<tr>
<td>7</td>
<td>ERROR_DF 98</td>
</tr>
<tr>
<td>8</td>
<td>ERROR_MEAN_SQUARE 0.033059</td>
</tr>
<tr>
<td>9</td>
<td>ERROR_SUM_SQUARES 3.23979</td>
</tr>
<tr>
<td>10</td>
<td>F_VALUE 324.347</td>
</tr>
<tr>
<td>11</td>
<td>GMSEP 0.035097</td>
</tr>
<tr>
<td>12</td>
<td>HOCKING_SP 0.000341</td>
</tr>
<tr>
<td>13</td>
<td>J_P 0.034966</td>
</tr>
<tr>
<td>14</td>
<td>MODEL_DF 5</td>
</tr>
<tr>
<td>15</td>
<td>MODEL_F_P_VALUE 0</td>
</tr>
<tr>
<td>16</td>
<td>MODEL_MEAN_SQUARE 10.7226</td>
</tr>
<tr>
<td>17</td>
<td>MODEL_SUM_SQUARES 53.613</td>
</tr>
<tr>
<td>18</td>
<td>NUM_PARAMS 6</td>
</tr>
<tr>
<td>19</td>
<td>NUM_ROWS 104</td>
</tr>
<tr>
<td>20</td>
<td>RANK_DEFICIENCY 0</td>
</tr>
<tr>
<td>21</td>
<td>ROOT_MEAN_SQ 0.181821</td>
</tr>
<tr>
<td>22</td>
<td>R_SQ 0.944578</td>
</tr>
<tr>
<td>23</td>
<td>SBIC -332.898</td>
</tr>
<tr>
<td>24</td>
<td>VALID_COVARIANCE_MATRIX NO</td>
</tr>
</tbody>
</table>

[1 rows x 25 columns]

Attributes:

Petal_Length
Sepal Length
Sepal Width
Species

Partition: NO

Coefficients:

<table>
<thead>
<tr>
<th>name</th>
<th>level</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  (Intercept)</td>
<td>None</td>
<td>-0.338046</td>
</tr>
<tr>
<td>1  Petal_Length</td>
<td>None</td>
<td>0.378658</td>
</tr>
<tr>
<td>2  Sepal_Length</td>
<td>None</td>
<td>-0.084440</td>
</tr>
<tr>
<td>3  Sepal_Width</td>
<td>None</td>
<td>0.137150</td>
</tr>
<tr>
<td>4  Species</td>
<td>versicolor</td>
<td>0.151916</td>
</tr>
<tr>
<td>5  Species</td>
<td>virginica</td>
<td>0.337535</td>
</tr>
</tbody>
</table>

Fit Details:

<table>
<thead>
<tr>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  ADJUSTED_R_SQUARE</td>
<td>9.417502e-01</td>
</tr>
<tr>
<td>1  AIC</td>
<td>-3.487639e+02</td>
</tr>
<tr>
<td>2  COEFF_VAR</td>
<td>1.573164e+01</td>
</tr>
<tr>
<td>3  CORRECTED_TOTAL_DF</td>
<td>1.030000e+02</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>21 ROOT_MEAN_SQ</td>
<td>1.818215e-01</td>
</tr>
<tr>
<td>22 R_SQ</td>
<td>9.445778e-01</td>
</tr>
<tr>
<td>23 SBIC</td>
<td>-3.328975e+02</td>
</tr>
<tr>
<td>24 VALID_COVARIANCE_MATRIX</td>
<td>0.000000e+00</td>
</tr>
</tbody>
</table>

Rank:

6

Deviance:

3.239787

AIC:

-349

Null Deviance:

58.456538

Prior Weights:

1

DF Residual:

98.0

DF Null:
The `oml.km` class uses the k-Means (KM) algorithm, which is a hierarchical, distance-based clustering algorithm that partitions data into a specified number of clusters.

The algorithm has the following features:

- Several distance functions: Euclidean, Cosine, and Fast Cosine distance functions. The default is Euclidean.
- For each cluster, the algorithm returns the centroid, a histogram for each attribute, and a rule describing the hyperbox that encloses the majority of the data assigned to the cluster. The centroid reports the mode for categorical attributes and the mean and variance for numeric attributes.

For information on the `oml.km` class attributes and methods, invoke `help(oml.km)` or see Oracle Machine Learning for Python API Reference.

**Settings for a k-Means Model**

The following table lists the settings that apply to KM models.

### Table 7-11 k-Means Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUS_NUM_CLUSTERS</td>
<td>TO_CHAR(numeric_expr &gt;= 1)</td>
<td>The maximum number of leaf clusters generated by the algorithm. The algorithm produces the specified number of clusters unless there are fewer distinct data points. The default value is 10.</td>
</tr>
<tr>
<td>KMNS_CONV_TOLERANCE</td>
<td>TO_CHAR(0&lt; numeric_expr &lt;1)</td>
<td>Minimum Convergence Tolerance for k-Means. The algorithm iterates until the minimum Convergence Tolerance is satisfied or until the maximum number of iterations, specified in KMNS_ITERATIONS, is reached. Decreasing the Convergence Tolerance produces a more accurate solution but may result in longer run times. The default Convergence Tolerance is 0.001.</td>
</tr>
<tr>
<td>Setting Name</td>
<td>Setting Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>KMNSDETAILS</td>
<td>KMNSDETAILS_ALL</td>
<td>Determines the level of cluster detail that is computed during the build. KMNSDETAILS_ALL: Cluster hierarchy, record counts, descriptive statistics (means, variances, modes, histograms, and rules) are computed. KMNSDETAILS_HIERARCHY: Cluster hierarchy and cluster record counts are computed. This is the default value. KMNSDETAILS_NONE: No cluster details are computed. Only the scoring information is persisted.</td>
</tr>
<tr>
<td>KMNSDISTANCE</td>
<td>KMNS_COSINE</td>
<td>Distance function for k-Means. The default distance function is KMNS_EUCLIDEAN.</td>
</tr>
<tr>
<td>KMNSITERATIONS</td>
<td>TO_CHAR(positive_numeric_expr)</td>
<td>Maximum number of iterations for k-Means. The algorithm iterates until either the maximum number of iterations is reached or the minimum Convergence Tolerance, specified in KMNS_CONV_TOLERANCE, is satisfied. The default number of iterations is 20.</td>
</tr>
<tr>
<td>KMNSTEMIN_PCT_ATTR_SUPP</td>
<td>TO_CHAR(0 &lt;= numeric_expr &lt;= 1)</td>
<td>Minimum percentage of attribute values that must be non-null in order for the attribute to be included in the rule description for the cluster. If the data is sparse or includes many missing values, a minimum support that is too high can cause very short rules or even empty rules. The default minimum support is 0.1.</td>
</tr>
<tr>
<td>KMNSNUM_BINS</td>
<td>TO_CHAR(numeric_expr &gt; 0)</td>
<td>Number of bins in the attribute histogram produced by k-Means. The bin boundaries for each attribute are computed globally on the entire training data set. The binning method is equi-width. All attributes have the same number of bins with the exception of attributes with a single value, which have only one bin. The default number of histogram bins is 11.</td>
</tr>
<tr>
<td>KMNSRANDOM_SEED</td>
<td>Non-negative integer</td>
<td>Controls the seed of the random generator used during the k-Means initialization. It must be a non-negative integer value. The default value is 0.</td>
</tr>
<tr>
<td>KMNSSPLIT_CRITERION</td>
<td>KMNS_SIZE</td>
<td>Split criterion for k-Means. The split criterion controls the initialization of new k-Means clusters. The algorithm builds a binary tree and adds one new cluster at a time. When the split criterion is based on size, the new cluster is placed in the area where the largest current cluster is located. When the split criterion is based on the variance, the new cluster is placed in the area of the most spread-out cluster. The default split criterion is the KMNS_VARIANCE.</td>
</tr>
<tr>
<td></td>
<td>KMNS_VARIANCE</td>
<td></td>
</tr>
</tbody>
</table>
Example 7-13 Using the oml.km Class

This example creates a KM model and uses methods of it. In the listing for this example, some of the output is not shown as indicated by ellipses.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor', 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_dat = dat[0]
test_dat = dat[1]

Specify settings.
setting = {'kmns_iterations': 20}

Create a KM model object and fit it.
km_mod = oml.km(n_clusters = 3, **setting).fit(train_dat)

Show model details.
km_mod

Use the model to make predictions on the test data.
km_mod.predict(test_dat,
 supplemental_cols =
 test_dat[:, ['Sepal_Length', 'Sepal_Width',
 'Petal_Length', 'Species']])
```
km_mod.predict_proba(test_dat,
    supplemental_cols =
    test_dat[:, ['Species']].sort_values(by =
    ['Species', 'PROBABILITY_OF_3']
)

km_mod.transform(test_dat)

km_mod.score(test_dat)

Listing for This Example

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
... columns = ['Sepal_Length','Sepal_Width',
... 'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
... {0: 'setosa', 1: 'versicolor',
... 2:'virginica'}[x], iris.target)),
... columns = ['Species'])

>>> try:
... oml.drop('IRIS')
... except:
... pass

>>> # Create the IRIS database table and the proxy object for the table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
>>> train_dat = dat[0]
>>> test_dat = dat[1]

>>> # Specify settings.
... setting = {'kmns_iterations': 20}

>>> # Create a KM model object and fit it.
... km_mod = omlkm(n_clusters = 3, **setting).fit(train_dat)

>>> # Show model details.
... km_mod
```

Algorithm Name: K-Means

Mining Function: CLUSTERING

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALGO_NAME</td>
</tr>
</tbody>
</table>
Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERGED</td>
<td>YES</td>
</tr>
<tr>
<td>NUM_ROWS</td>
<td>104.0</td>
</tr>
</tbody>
</table>

Attributes: Petal_Length
Petal_Width
Sepal_Length
Sepal_Width
Species

Partition: NO

Clusters:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>ROW_CNT</th>
<th>PARENT_CLUSTER_ID</th>
<th>TREE_LEVEL</th>
<th>DISPERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>104</td>
<td>104</td>
<td>NaN</td>
<td>0.986153</td>
</tr>
<tr>
<td>1</td>
<td>68</td>
<td>1.0</td>
<td>2</td>
<td>1.102147</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>1.0</td>
<td>2</td>
<td>0.767052</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>2.0</td>
<td>3</td>
<td>1.015669</td>
</tr>
<tr>
<td>4</td>
<td>31</td>
<td>2.0</td>
<td>3</td>
<td>1.205363</td>
</tr>
</tbody>
</table>

Taxonomy:

<table>
<thead>
<tr>
<th>PARENT_CLUSTER_ID</th>
<th>CHILD_CLUSTER_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Leaf Cluster Counts:

<table>
<thead>
<tr>
<th>CLUSTER_ID</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
</tr>
</tbody>
</table>

>>>

Chapter 7
k-Means
Naive Bayes

The `oml.nb` class creates a Naive Bayes (NB) model for classification.

The Naive Bayes algorithm is based on conditional probabilities. Naive Bayes looks at the historical data and calculates conditional probabilities for the target values by observing the frequency of attribute values and of combinations of attribute values.

Naive Bayes assumes that each predictor is conditionally independent of the others. (Bayes’ Theorem requires that the predictors be independent.)
For information on the `oml.nb` class attributes and methods, invoke `help(oml.nb)` or see `Oracle Machine Learning for Python API Reference`.

**Settings for a Naive Bayes Model**

The following table lists the settings that apply to NB models.

---

**Table 7-12 Naive Bayes Model Settings**

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| CLAS_COST_TABLE_NAME        | `table_name`  | The name of a table that stores a cost matrix for the algorithm to use in building the model. The cost matrix specifies the costs associated with misclassifications.
|                             |               | The cost matrix table is user-created. The following are the column requirements for the table. |
|                             |               | - Column Name: ACTUAL_TARGET_VALUE  Data Type: Valid target data type |
|                             |               | - Column Name: PREDICTED_TARGET_VALUE Data Type: Valid target data type |
|                             |               | - Column Name: COST Data Type: NUMBER |
| CLAS_MAX_SUP_BINS           | `2 <= a number <= 2147483647` | Specifies the maximum number of bins for each attribute. |
| CLAS_PRIORS_TABLE_NAME      | `table_name`  | The name of a table that stores prior probabilities to offset differences in distribution between the build data and the scoring data. |
|                             |               | The priors table is user-created. The following are the column requirements for the table. |
|                             |               | - Column Name: TARGET_VALUE Data Type: Valid target data type |
|                             |               | - Column Name: PRIOR_PROBABILITY Data Type: NUMBER |
| CLAS_WEIGHTS_BALANCED      | `ON`          | Indicates whether the algorithm must create a model that balances the target distribution. This setting is most relevant in the presence of rare targets, as balancing the distribution may enable better average accuracy (average of per-class accuracy) instead of overall accuracy (which favors the dominant class). The default value is `OFF`. |
|                             | `OFF`         | |
| NABS_PAIRWISE_THRESHOLD    | `TO_CHAR(0 <= numeric_expr <= 1)` | Value of the pairwise threshold for the NB algorithm. |
|                             |               | The default value is 0. |
| NABS_SINGLETON_THRESHOLD   | `TO_CHAR(0 <= numeric_expr <= 1)` | Value of the singleton threshold for the NB algorithm. |
|                             |               | The default value is 0. |

---

**See Also:**

- About Model Settings
- Shared Settings
Example 7-14 Using the oml.nb Class

This example creates an NB model and uses some of the methods of the oml.nb class.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x: {0: 'setosa', 1: 'versicolor', 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop(table = 'NB_PRIOR_PROBABILITY_DEMO')
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training and test data.
dat = oml.sync(table = 'IRIS').split()

train_x = dat[0].drop('Species')
train_y = dat[0]['Species']
test_dat = dat[1]

User specified settings.
setting = {'CLAS_WEIGHTS_BALANCED': 'ON'}

Create an oml NB model object.
bmrk_mod = oml.nb(**setting)

Fit the NB model according to the training data and parameter # settings.
bmrk_mod = nb_mod.fit(train_x, train_y)

Show details of the model.
bmrk_mod

Create a priors table in the database.
priors = {'setosa': 0.2, 'versicolor': 0.3, 'virginica': 0.5}
priors = oml.create(pd.DataFrame(list(priors.items()),
 columns = ['TARGET_VALUE',
 'PRIOR_PROBABILITY']),
 table = 'NB_PRIOR_PROBABILITY_DEMO')

Change the setting parameter and refit the model
```

Chapter 7
Naive Bayes
# with a user-defined prior table.
new_setting = {'CLAS_WEIGHTS_BALANCED': 'OFF'}
nb_mod = nb_mod.set_params(**new_setting).fit(train_x, 
                     train_y, 
                     priors = priors)

nb_mod

# Use the model to make predictions on test data.
nb_mod.predict(test_dat.drop('Species'), 
                supplemental_cols = test_dat[:, ['Sepal_Length', 
                                                 'Sepal_Width', 
                                                 'Petal_Length', 
                                                 'Species']])

# Return the prediction probability.
nb_mod.predict(test_dat.drop('Species'), 
                supplemental_cols = test_dat[:, ['Sepal_Length', 
                                                  'Sepal_Width', 
                                                  'Species']], 
                proba = True)

# Return the top two most influential attributes of the highest probability class.
nb_mod.predict(test_dat.drop('Species'), 
                supplemental_cols = test_dat[:, ['Sepal_Length', 
                                                  'Sepal_Width', 
                                                  'Petal_Length', 
                                                  'Species']], 
                topN_attrs = 2)

# Make predictions and return the probability for each class on new data.
nb_mod.predict_proba(test_dat.drop('Species'), 
                     supplemental_cols = test_dat[:, ['Sepal_Length', 
                                                        'Species']]).sort_values(by = 
                     ['Sepal_Length', 
                      'Species', 
                      'PROBABILITY_OF_setosa', 
                      'PROBABILITY_OF_versicolor'])

# Make predictions on new data and return the mean accuracy.
nb_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])

Listing for This Example

```python
>>> import oml
click
>>> import pandas as pd
click
>>> from sklearn import datasets
click
>>> iris = datasets.load_iris()
click
>>> x = pd.DataFrame(iris.data,
click columns = ['Sepal_Length','Sepal_Width',
```
>>> y = pd.DataFrame(list(map(lambda x:  
...                            {0: 'setosa', 1: 'versicolor',  
...                             2:'virginica'}[x], iris.target)),  
...                  columns = ['Species'])

>>> try:
...    oml.drop(table = 'NB_PRIOR_PROBABILITY_DEMO')
...    oml.drop('IRIS')
... except:
...    pass

# Create the IRIS database table and the proxy object for the table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

# Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
... train_x = dat[0].drop('Species')
... train_y = dat[0]["Species"]
... test_dat = dat[1]

# User specified settings.
... setting = {'CLAS_WEIGHTS_BALANCED': 'ON'}

# Create an oml NB model object.
... nb_mod = oml.nb(**setting)

# Fit the NB model according to the training data and parameter settings.
... nb_mod = nb_mod.fit(train_x, train_y)

# Show details of the model.
... nb_mod

Algorithm Name: Naive Bayes

Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_NAIVE_BAYES</td>
</tr>
<tr>
<td>CLAS_WEIGHTS_BALANCED</td>
<td>ON</td>
</tr>
<tr>
<td>NABS_PAIRWISE_THRESHOLD</td>
<td>0</td>
</tr>
<tr>
<td>NABS_SINGLETON_THRESHOLD</td>
<td>0</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
</tbody>
</table>
Attributes:
Petal_Length
Petal_Width
Sepal_Length
Sepal_Width

Partition: NO

Priors:

<table>
<thead>
<tr>
<th>TARGET_NAME</th>
<th>TARGET_VALUE</th>
<th>PRIOR_PROBABILITY</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Species</td>
<td>setosa</td>
<td>0.333333</td>
</tr>
<tr>
<td>1</td>
<td>Species</td>
<td>versicolor</td>
<td>0.333333</td>
</tr>
<tr>
<td>2</td>
<td>Species</td>
<td>virginica</td>
<td>0.333333</td>
</tr>
</tbody>
</table>

Conditionals:

<table>
<thead>
<tr>
<th>TARGET_NAME</th>
<th>TARGET_VALUE</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
<th>CONDITIONAL_PROBABILITY</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>152</td>
<td>Species</td>
<td>virginica</td>
<td>Sepal_Width</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Species</td>
<td>virginica</td>
<td>Sepal_Width</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Species</td>
<td>virginica</td>
<td>Sepal_Width</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Species</td>
<td>virginica</td>
<td>Sepal_Width</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

[156 rows x 7 columns]

```python
df = oml.create(pd.DataFrame(list(priors.items()),
columns = ['TARGET_NAME',
```
... 'PRIOR_PROBABILITY']
...
    table = 'NB_PRIOR_PROBABILITY_DEMO')

>>> # Change the setting parameter and refit the model
... # with a user-defined prior table.
... new_setting = {'CLAS_WEIGHTS_BALANCED': 'OFF'}
>>> nb_mod = nb_mod.set_params(**new_setting).fit(train_x,
...                                               train_y,
...                                               priors = priors)
>>> nb_mod

Algorithm Name: Naive Bayes

Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_NAIVE_BAYES</td>
</tr>
<tr>
<td>CLAS_PRIORS_TABLE_NAME</td>
<td>&quot;OML_USER&quot;.&quot;NB_PRIOR_PROBABILITY_DEMO&quot;</td>
</tr>
<tr>
<td>CLAS_WEIGHTS_BALANCED</td>
<td>OFF</td>
</tr>
<tr>
<td>NABS_PAIRWISE_THRESHOLD</td>
<td>0</td>
</tr>
<tr>
<td>NABS_SINGLETON_THRESHOLD</td>
<td>0</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
</tbody>
</table>

Attributes:

- Petal_Length
- Petal_Width
- Sepal_Length
- Sepal_Width

Partition: NO

Priors:

<table>
<thead>
<tr>
<th>TARGET_NAME</th>
<th>TARGET_VALUE</th>
<th>PRIOR_PROBABILITY</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>setosa</td>
<td>0.2</td>
<td>36</td>
</tr>
<tr>
<td>Species</td>
<td>versicolor</td>
<td>0.3</td>
<td>35</td>
</tr>
<tr>
<td>Species</td>
<td>virginica</td>
<td>0.5</td>
<td>33</td>
</tr>
</tbody>
</table>

Conditionals:

<table>
<thead>
<tr>
<th>TARGET_NAME</th>
<th>TARGET_VALUE</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
<th>ATTRIBUTE_VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td>( ; 1.05]</td>
</tr>
<tr>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td>(1.05; 1.2]</td>
</tr>
<tr>
<td>Species</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td>(1.2; 1.35]</td>
</tr>
</tbody>
</table>
3  Species  setosa  Petal_Length  None
(1.35; 1.45]
...  ...  ...  ...  ...
...  
152  Species  virginica  Sepal_Width  None
(3.25; 3.35]
153  Species  virginica  Sepal_Width  None
(3.35; 3.45]
154  Species  virginica  Sepal_Width  None
(3.55; 3.65]
155  Species  virginica  Sepal_Width  None
(3.75; 3.85]

<table>
<thead>
<tr>
<th>CONDITIONAL_PROBABILITY</th>
<th>COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.027778 1</td>
</tr>
<tr>
<td>1</td>
<td>0.027778 1</td>
</tr>
<tr>
<td>2</td>
<td>0.083333 3</td>
</tr>
<tr>
<td>3</td>
<td>0.277778 10</td>
</tr>
<tr>
<td>...</td>
<td>...  ...  ...</td>
</tr>
<tr>
<td>152</td>
<td>0.030303 1</td>
</tr>
<tr>
<td>153</td>
<td>0.060606 2</td>
</tr>
<tr>
<td>154</td>
<td>0.030303 1</td>
</tr>
<tr>
<td>155</td>
<td>0.060606 2</td>
</tr>
</tbody>
</table>

[156 rows x 7 columns]

>>> # Use the model to make predictions on test data.
... nb_mod.predict(test_dat.drop('Species'),
...                     supplemental_cols = test_dat[:, ['Sepal_Length',
...                                                     'Sepal_Width',
...                                                     'Petal_Length',
...                                                     'Species']])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Species</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>setosa</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>virginica</td>
</tr>
<tr>
<td>43</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>44</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>45</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>virginica</td>
</tr>
</tbody>
</table>

>>> # Return the prediction probability.
>>> nb_mod.predict(test_dat.drop('Species'),
...                     supplemental_cols = test_dat[:, ['Sepal_Length',
...                                                     'Sepal_Width',
...                                                     'Species']],
...                     proba = True)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Species</th>
<th>PREDICTION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
>>> # Return the top two most influence attributes of the highest probability class.
>>> nb_mod.predict(test_dat.drop('Species'),
...                supplemental_cols = test_dat[:, ['Sepal_Length',
...                                                 'Sepal_Width',
...                                                 'Petal_Length',
...                                                 'Species']],
...                topN_attrs = 2)

        Sepal_Length  Sepal_Width  Petal_Length   Species  PREDICTION
     0          4.9          3.0          1.4   setosa   setosa
     1          4.9          3.1          1.5   setosa   setosa
     2          4.8          3.4          1.6   setosa   setosa
     3          5.8          4.0          1.2   setosa   setosa
     42         6.7          3.3          5.7  virginica  virginica
     43         6.7          3.0          5.2  virginica  virginica
     44         6.5          3.0          5.2  virginica  virginica
     45         5.9          3.0          5.1  virginica  virginica

TOP_N_ATTRIBUTES

0 <Details algorithm="Naive Bayes" class="setosa
1 <Details algorithm="Naive Bayes" class="setosa
2 <Details algorithm="Naive Bayes" class="setosa
3 <Details algorithm="Naive Bayes" class="setosa
...
42 <Details algorithm="Naive Bayes" class="virgin
43 <Details algorithm="Naive Bayes" class="virgin
44 <Details algorithm="Naive Bayes" class="virgin
45 <Details algorithm="Naive Bayes" class="virgin

>>> # Make predictions and return the probability for each class on new data.
>>> nb_mod.predict_proba(test_dat.drop('Species'),
...                      supplemental_cols = test_dat[:, ['Sepal_Length',
...                                                 'Species']]).sort_values(by =
...                                                 ['Sepal_Length',
...                                                 'Species',
...                                                 'PROBABILITY_OF_setosa',
...                                                 'PROBABILITY_OF_versicolor'])

        Sepal_Length  Species  PROBABILITY_OF_SETOSA   
     0          4.4      setosa           1.000000e+00
     1          4.4      setosa           1.000000e+00
     2          4.5      setosa           1.000000e+00
     3          4.8      setosa           1.000000e+00
     42         6.7   virginica           1.412132e-13
     43         6.9  versicolor           5.295492e-20
     44         6.9   virginica           5.295492e-20
     45         7.0  versicolor           6.189014e-14
Neural Network

The `oml.nn` class creates a Neural Network (NN) model for classification and regression.

Neural Network models can be used to capture intricate nonlinear relationships between inputs and outputs or to find patterns in data.

The `oml.nn` class methods build a feed-forward neural network for regression on `oml.DataFrame` data. It supports multiple hidden layers with a specifiable number of nodes. Each layer can have one of several activation functions.

The output layer is a single numeric or binary categorical target. The output layer can have any of the activation functions. It has the linear activation function by default.

Modeling with the `ore.nn` class is well-suited for noisy and complex data such as sensor data. Problems that such data might have are the following:

- Potentially many (numeric) predictors, for example, pixel values
- The target may be discrete-valued, real-valued, or a vector of such values
- Training data may contain errors – robust to noise
- Fast scoring
- Model transparency is not required; models difficult to interpret

Typical steps in Neural Network modeling are the following:

1. Specifying the architecture
2. Preparing the data
3. Building the model
4. Specifying the stopping criteria: iterations, error on a validation set within tolerance
5. Viewing statistical results from the model
6. Improving the model

For information on the `oml.nn` class attributes and methods, invoke `help(oml.nn)` or `help(oml.hist)`, or see *Oracle Machine Learning for Python API Reference*. 
### Settings for a Neural Network Model

The following table lists settings for NN models.

### Table 7-13 Neural Network Models Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS_COST_TABLE_NAME</td>
<td>table_name</td>
<td>The name of a table that stores a cost matrix for the algorithm to use in scoring the model. The cost matrix specifies the costs associated with misclassifications. The cost matrix table is user-created. The following are the column requirements for the table.  &lt;br&gt;• Column Name: ACTUAL_TARGET_VALUE  &lt;br&gt;   Data Type: Valid target data type  &lt;br&gt;• Column Name: PREDICTED_TARGET_VALUE  &lt;br&gt;   Data Type: Valid target data type  &lt;br&gt;• Column Name: COST  &lt;br&gt;   Data Type: NUMBER</td>
</tr>
<tr>
<td>CLAS_WEIGHTS_BALANCED</td>
<td>ON</td>
<td>Indicates whether the algorithm must create a model that balances the target distribution. This setting is most relevant in the presence of rare targets, as balancing the distribution may enable better average accuracy (average of per-class accuracy) instead of overall accuracy (which favors the dominant class). The default value is OFF.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>NNET_ACTIVATIONS</td>
<td>A list of the following strings:  &lt;br&gt;• &quot;NNET_ACTIVATIONS_ARCTAN&quot;  &lt;br&gt;• &quot;NNET_ACTIVATIONS_BIPOLAR_SIG&quot;  &lt;br&gt;• &quot;NNET_ACTIVATIONS_LINEAR&quot;  &lt;br&gt;• &quot;NNET_ACTIVATIONS_LOG_SIG&quot;  &lt;br&gt;• &quot;NNET_ACTIVATIONS_TANH&quot;</td>
<td>Defines the activation function for the hidden layers. For example, &quot;&quot;NNET_ACTIVATIONS_BIPOLAR_SIG&quot;, &quot;&quot;NNET_ACTIVATIONS_TANH&quot;&quot;. Different layers can have different activation functions. The default value is &quot;&quot;NNET_ACTIVATIONS_LOG_SIG&quot;&quot;. The number of activation functions must be consistent with NNET_HIDDEN_LAYERS and NNET_NODES_PER_LAYER.</td>
</tr>
<tr>
<td>NNET_HELDASIDE_MAX_FAIL</td>
<td>A positive integer</td>
<td>With NNET_REGULARIZER_HELDASIDE, the training process is stopped early if the network performance on the validation data fails to improve or remains the same for NNET_HELDASIDE_MAX_FAIL epochs in a row. The default value is 6.</td>
</tr>
<tr>
<td>NNET_HELDASIDE_RATIO</td>
<td>0 &lt;= numeric_expr &lt;= 1</td>
<td>Defines the held ratio for the held-aside method. The default value is 0.25.</td>
</tr>
<tr>
<td>Setting Name</td>
<td>Setting Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NNET_HIDDEN_LAYERS</td>
<td>A non-negative integer</td>
<td>Defines the topology by number of hidden layers. The default value is 1.</td>
</tr>
<tr>
<td>NNET_ITERATIONS</td>
<td>A positive integer</td>
<td>Specifies the maximum number of iterations in the Neural Network algorithm. The default value is 200.</td>
</tr>
<tr>
<td>NNET_NODES_PER_LAYER</td>
<td>A list of positive integers</td>
<td>Defines the topology by number of nodes per layer. Different layers can have different number of nodes. The value should be a comma separated list non-negative integers. For example, '10, 20, 5'. The setting values must be consistent with NNET_HIDDEN_LAYERS. The default number of nodes per layer is the number of attributes or 50 (if the number of attributes &gt; 50).</td>
</tr>
<tr>
<td>NNET_REG_LAMBDA</td>
<td>TO_CHAR(numeric_expr &gt;= 0)</td>
<td>Defines the L2 regularization parameter lambda. This can not be set together with NNET_REGULARIZER_HELDASIDE. The default value is 1.</td>
</tr>
<tr>
<td>NNET_REGULARIZER</td>
<td>NNET_REGULARIZER_HELDASIDE, NNET_REGULARIZER_L2, NNET_REGULARIZER_NONE</td>
<td>Regularization setting for the Neural Network algorithm. If the total number of training rows is greater than 50000, then the default is NNET_REGULARIZER_HELDASIDE. If the total number of training rows is less than or equal to 50000, then the default is NNET_REGULARIZER_NONE.</td>
</tr>
<tr>
<td>NNET_SOLVER</td>
<td>NNET_SOLVER_ADAM, NNET_SOLVER_LBFGS</td>
<td>Specifies the method of optimization. The default value is NNET_SOLVER_LBFGS.</td>
</tr>
<tr>
<td>NNET_TOLERANCE</td>
<td>TO_CHAR(0 &lt; numeric_expr &lt; 1)</td>
<td>Defines the convergence tolerance setting of the Neural Network algorithm. The default value is 0.000001.</td>
</tr>
</tbody>
</table>
| NNET_WEIGHT_LOWER_BOUN      | A real number                                                                | Specifies the lower bound of the region where weights are randomly initialized. NNET_WEIGHT_LOWER_BOUN and NNET_WEIGHT_UPPER_BOUN must be set together. Setting one and not setting the other raises an error. NNET_WEIGHT_LOWER_BOUN must not be greater than NNET_WEIGHT_UPPER_BOUN. The default value is -sqrt(6/(l_nodes+r_nodes)). The value of l_nodes for:  
  - input layer dense attributes is (1+number of dense attributes)  
  - input layer sparse attributes is number of sparse attributes  
  - each hidden layer is (1+number of nodes in that hidden layer)  
  The value of r_nodes is the number of nodes in the layer that the weight is connecting to. |
Table 7-13  (Cont.) Neural Network Models Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNET_WEIGHT_UPPER_BOUND</td>
<td>A real number</td>
<td>Specifies the upper bound of the region where weights are initialized. It should be set in pairs with NNET_WEIGHT_LOWER_BOUND and its value must not be smaller than the value of NNET_WEIGHT_LOWER_BOUND. If not specified, the values of NNET_WEIGHT_LOWER_BOUND and NNET_WEIGHT_UPPER_BOUND are system determined. The default value is ( \sqrt{6/(l_{nodes}+r_{nodes})} ). See NNET_WEIGHT_LOWER_BOUND.</td>
</tr>
<tr>
<td>ODMS_RANDOM_SEED</td>
<td>A non-negative integer</td>
<td>Controls the random number seed used by the hash function to generate a random number with uniform distribution. The default values is 0.</td>
</tr>
</tbody>
</table>

See Also:

- About Model Settings
- Shared Settings

Example 7-15  Building a Neural Network Model

This example creates an NN model and uses some of the methods of the oml.nn class.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training and test data.
dat = oml.sync(table = 'IRIS').split()
```
train_x = dat[0].drop('Species')
train_y = dat[0][['Species']]
test_dat = dat[1]

# Create a Neural Network model object.
nn_mod = oml.nn(nnet_hidden_layers = 1,
                nnet_activations= """NNET_ACTIVATIONS_LOG_SIG""",
                NNET_NODES_PER_LAYER= '30')

# Fit the NN model according to the training data and parameter settings.
nn_mod = nn_mod.fit(train_x, train_y)

# Show details of the model.
nn_mod

# Use the model to make predictions on test data.
nn_mod.predict(test_dat.drop('Species'),
                supplemental_cols = test_dat[:, ['Sepal_Length', 'Sepal_Width',
                                                'Petal_Length', 'Species']])

nn_mod.predict(test_dat.drop('Species'),
                supplemental_cols = test_dat[:, ['Sepal_Length', 'Sepal_Width',
                                                'Species']], proba = True)

nn_mod.predict_proba(test_dat.drop('Species'),
                      supplemental_cols = test_dat[:, ['Sepal_Length',
                                                        'Species']].sort_values(by = ['Sepal_Length', 'Species',
                                                        'PROBABILITY_OF_setosa', 'PROBABILITY_OF_versicolor'])

nn_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])

# Change the setting parameter and refit the model.
new_setting = {'NNET_NODES_PER_LAYER': '50'}
nn_mod.set_params(**new_setting).fit(train_x, train_y)

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                columns = ['Sepal_Length','Sepal_Width',
                            'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                                {0: 'setosa', 1: 'versicolor',
                                2:'virginica'}[x], iris.target)),
...                columns = ['Species'])

>>> try:
...    oml.drop('IRIS')
... except:
... pass

>>> # Create the IRIS database table and the proxy object for the table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
... train_x = dat[0].drop('Species')
... train_y = dat[0]['Species']
... test_dat = dat[1]

>>> # Create a Neural Network model object.
... nn_mod = oml.nn(nnet_hidden_layers = 1,
...                 nnet_activations= ""'NNET_ACTIVATIONS_LOG_SIG'",
...                 NNET_NODES_PER_LAYER= '30')

>>> # Fit the NN model according to the training data and parameter
... # settings.
... nn_mod = nn_mod.fit(train_x, train_y)

>>> # Show details of the model.
... nn_mod

Algorithm Name: Neural Network

Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALGO_NAME ALGO_NEURAL_NETWORK</td>
</tr>
<tr>
<td>1</td>
<td>CLAS_WEIGHTS_BALANCED OFF</td>
</tr>
<tr>
<td>2</td>
<td>LBFGS_GRADIENT_TOLERANCE .000000001</td>
</tr>
<tr>
<td>3</td>
<td>LBFGS_HISTORY_DEPTH 20</td>
</tr>
<tr>
<td>4</td>
<td>LBFGS_SCALE_HESSIAN NNET_ACTIVATIONS 'NNET_ACTIVATIONS_LOG_SIG'</td>
</tr>
<tr>
<td>5</td>
<td>NNET_HIDDEN_LAYERS 1</td>
</tr>
<tr>
<td>6</td>
<td>NNET_ITERATIONS 200</td>
</tr>
<tr>
<td>7</td>
<td>NNET_NODES_PER_LAYER 30</td>
</tr>
<tr>
<td>8</td>
<td>NNET_TOLERANCE .000001</td>
</tr>
<tr>
<td>9</td>
<td>ODMS_DETAILS ODMS_ENABLE</td>
</tr>
<tr>
<td>10</td>
<td>ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>11</td>
<td>ODMS_SAMPLING ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>12</td>
<td>PREP_AUTO ON</td>
</tr>
</tbody>
</table>

Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 NNET_REGULARIZER</td>
<td>NNET_REGULARIZER_NONE</td>
</tr>
</tbody>
</table>

Global Statistics:
<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CONVERGED</td>
</tr>
<tr>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>1</td>
<td>ITERATIONS</td>
</tr>
<tr>
<td></td>
<td>60.0</td>
</tr>
<tr>
<td>2</td>
<td>LOSS_VALUE</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>NUM_ROWS</td>
</tr>
<tr>
<td></td>
<td>102.0</td>
</tr>
</tbody>
</table>

Attributes:
- Sepal_Length
- Sepal_Width
- Petal_Length
- Petal_Width

Partition: NO

Topology:

<table>
<thead>
<tr>
<th>HIDDEN_LAYER_ID</th>
<th>NUM_NODE</th>
<th>ACTIVATION_FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNET_ACTIVATIONS_LOG_SIG</td>
</tr>
</tbody>
</table>

Weights:

<table>
<thead>
<tr>
<th>LAYER</th>
<th>IDX_FROM</th>
<th>IDX_TO</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
<th>ATTRIBUTE_VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Petal_Length</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NaN</td>
<td>29.0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>NaN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>NaN</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>NaN</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td>NaN</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Virginica</td>
<td>-22.650606</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Setosa</td>
<td>2.402457</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Versicolor</td>
<td>7.647615</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Virginica</td>
<td>-9.493982</td>
<td>242</td>
</tr>
</tbody>
</table>

[243 rows x 8 columns]
>>> # Use the model to make predictions on test data.
>>> nn_mod.predict(test_dat.drop('Species'),
...     supplemental_cols = test_dat[:, ['Sepal_Length', 'Sepal_Width',
...                                      'Petal_Length', 'Species']])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Species</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>setosa</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>virginica</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>46</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>47</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>virginica</td>
</tr>
</tbody>
</table>

>>> nn_mod.predict(test_dat.drop('Species'),
...     supplemental_cols = test_dat[:, ['Sepal_Length', 'Sepal_Width',
...                                            'Species']], proba = True)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Species</th>
<th>PREDICTION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>setosa</td>
<td>setosa</td>
<td>1.000000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>virginica</td>
<td>virginica</td>
<td>1.000000</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>virginica</td>
<td>virginica</td>
<td>1.000000</td>
</tr>
<tr>
<td>46</td>
<td>6.5</td>
<td>virginica</td>
<td>virginica</td>
<td>1.000000</td>
</tr>
<tr>
<td>47</td>
<td>5.9</td>
<td>virginica</td>
<td>virginica</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

>>> nn_mod.predict_proba(test_dat.drop('Species'),
...     supplemental_cols = test_dat[:, ['Sepal_Length',
...                                            'Species']]).sort_values(by = ['Sepal_Length', 'Species',
...                                           'PROBABILITY_OF_setosa', 'PROBABILITY_OF_versicolor'])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Species</th>
<th>PROBABILITY_OF_SETOSA</th>
<th>PROBABILITY_OF_VERSICOLOR</th>
<th>PROBABILITY_OF_VIRGINICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>setosa</td>
<td>1.000000e+00</td>
<td>3.491272e-67</td>
<td>3.459448e-283</td>
</tr>
<tr>
<td>1</td>
<td>setosa</td>
<td>1.000000e+00</td>
<td>8.038930e-58</td>
<td>2.883999e-288</td>
</tr>
<tr>
<td>2</td>
<td>setosa</td>
<td>1.000000e+00</td>
<td>4.57318e-218</td>
<td>2.043282e-293</td>
</tr>
<tr>
<td>3</td>
<td>setosa</td>
<td>1.000000e+00</td>
<td>1.203417e-215</td>
<td>2.040723e-283</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>virginica</td>
<td>1.328042e-36</td>
<td>1.000000e+00</td>
<td>5.063405e-55</td>
</tr>
<tr>
<td>45</td>
<td>virginica</td>
<td>1.000000e+00</td>
<td>1.000000e+00</td>
<td>5.063405e-55</td>
</tr>
</tbody>
</table>
>>> nn_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])
0.9375

>>> # Change the setting parameter and refit the model.
... new_setting = {'NNET_NODES_PER_LAYER': '50'}
>>> nn_mod.set_params(**new_setting).fit(train_x, train_y)

Algorithm Name: Neural Network

Mining Function: CLASSIFICATION

Target: Species

Settings:

setting name   setting value
0              ALGO_NAME          ALGO_NEURAL_NETWORK
1              CLAS_WEIGHTS_BALANCED  OFF
2              LBFGS_GRADIENT_TOLERANCE .000000001
3              LBFGS_HISTORY_DEPTH  20
4              LBFGS_SCALE_HESSIAN  LBFGS_SCALE_HESSIAN_ENABLE
5              NNET_ACTIVATIONS  'NNET_ACTIVATIONS_LOG_SIG'
6              NNET_HELDASIDE_MAX_FAIL  6
7              NNET_HELDASIDE_RATIO  .25
8              NNET_HIDDEN_LAYERS  1
9              NNET_ITERATIONS  200
10             NNET_NODES_PER_LAYER  50
11             NNET_TOLERANCE .000001
12             ODMS_DETAILS  ODMS_ENABLE
13             ODMS_MISSING_VALUE_TREATMENT  ODMS_MISSING_VALUE_AUTO
14             ODMS_RANDOM_SEED  0
15             ODMS_SAMPLING  ODMS_SAMPLING_DISABLE
16             PREP_AUTO ON

Computed Settings:

setting name   setting value
0              NNET_REGULARIZER  NNET_REGULARIZER_NONE

Global Statistics:

attribute name   attribute value
0                CONVERGED yes
1                ITERATIONS  68.0
2                LOSS_VALUE  0.0
3                NUM_ROWS  102.0

Attributes:

Sepal_Length
Sepal_Width
Petal_Length
Petal_Width

Partition: NO
Toplogy:

<table>
<thead>
<tr>
<th>HIDDEN_LAYER_ID</th>
<th>NUM_NODE</th>
<th>ACTIVATION_FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>NNET_ACTIVATIONS_LOG_SIG</td>
</tr>
</tbody>
</table>

Weights:

<table>
<thead>
<tr>
<th>LAYER</th>
<th>IDX_FROM</th>
<th>IDX_TO</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>Petal_Length</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>1</td>
<td>Petal_Length</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>2</td>
<td>Petal_Length</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>3</td>
<td>Petal_Length</td>
<td>None</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>399</td>
<td>1</td>
<td>49.0</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>NaN</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>NaN</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>NaN</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TARGET_VALUE</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None 10.606389</td>
</tr>
<tr>
<td>1</td>
<td>None -37.256485</td>
</tr>
<tr>
<td>2</td>
<td>None -14.263772</td>
</tr>
<tr>
<td>3</td>
<td>None -17.945173</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>399</td>
<td>virginica -22.179815</td>
</tr>
<tr>
<td>400</td>
<td>setosa -6.452953</td>
</tr>
<tr>
<td>401</td>
<td>versicolor 13.186332</td>
</tr>
<tr>
<td>402</td>
<td>virginica -6.973605</td>
</tr>
</tbody>
</table>

[403 rows x 8 columns]

Random Forest

The `oml.rf` class creates a Random Forest (RF) model that provides an ensemble learning technique for classification.

By combining the ideas of bagging and random selection of variables, the Random Forest algorithm produces a collection of decision trees with controlled variance while avoiding overfitting, which is a common problem for decision trees.

For information on the `oml.rf` class attributes and methods, invoke `help(oml.rf)` or see Oracle Machine Learning for Python API Reference.
## Settings for a Random Forest Model

The following table lists settings for RF models.

### Table 7-14  Random Forest Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| CLAS_COST_TABLE_NAME       | table_name    | The name of a table that stores a cost matrix for the algorithm to use in scoring the model. The cost matrix specifies the costs associated with misclassifications. The cost matrix table is user-created. The following are the column requirements for the table.  
  - Column Name: ACTUAL_TARGET_VALUE  
    Data Type: Valid target data type  
  - Column Name: PREDICTED_TARGET_VALUE  
    Data Type: Valid target data type  
  - Column Name: COST  
    Data Type: NUMBER |
| CLAS_MAX_SUP_BINS           | 2 <= a number <= 254 | Specifies the maximum number of bins for each attribute. The default value is 32. |
| CLAS_WEIGHTS_BALANCED      | ON/Off        | Indicates whether the algorithm must create a model that balances the target distribution. This setting is most relevant in the presence of rare targets, as balancing the distribution may enable better average accuracy (average of per-class accuracy) instead of overall accuracy (which favors the dominant class). The default value is OFF. |
| ODMS_RANDOM_SEED           | A non-negative integer | Controls the random number seed used by the hash function to generate a random number with uniform distribution. The default values is 0. |
| RFOR_MTRY                  | A number >= 0 | Size of the random subset of columns to consider when choosing a split at a node. For each node, the size of the pool remains the same but the specific candidate columns change. The default is half of the columns in the model signature. The special value 0 indicates that the candidate pool includes all columns. |
| RFOR_NUM_TREES             | 1 <= a number <= 65535 | Number of trees in the forest The default value is 20. |
Table 7-14  (Cont.) Random Forest Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFOR_SAMPLING_RATIO</td>
<td>( 0 &lt; \text{ a fraction } \leq 1 )</td>
<td>Fraction of the training data to be randomly sampled for use in the construction of an individual tree. The default is half of the number of rows in the training data.</td>
</tr>
<tr>
<td>TREE_IMPURITY_METRIC</td>
<td>TREE_IMPURITY_ENTROPY</td>
<td>Tree impurity metric for a decision tree model.</td>
</tr>
<tr>
<td></td>
<td>TREE_IMPURITY_GINI</td>
<td>Tree algorithms seek the best test question for splitting data at each node. The best splitter and split value are those that result in the largest increase in target value homogeneity (purity) for the entities in the node. Purity is measured in accordance with a metric. Decision trees can use either gini (TREE_IMPURITY_GINI) or entropy (TREE_IMPURITY_ENTROPY) as the purity metric. By default, the algorithm uses TREE_IMPURITY_GINI.</td>
</tr>
<tr>
<td>TREE_TERM_MAX_DEPTH</td>
<td>( 2 \leq \text{ a number } \leq 100 )</td>
<td>Criteria for splits: maximum tree depth (the maximum number of nodes between the root and any leaf node, including the leaf node). The default is 16.</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_NODE</td>
<td>( 0 \leq \text{ a number } \leq 10 )</td>
<td>The minimum number of training rows in a node expressed as a percentage of the rows in the training data. The default value is 0.05, indicating 0.05%.</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_SPLIT</td>
<td>( 0 \leq \text{ a number } \leq 20 )</td>
<td>Minimum number of rows required to consider splitting a node expressed as a percentage of the training rows. The default value is 0.1, indicating 0.1%.</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_NODE</td>
<td>A number ( \geq 0 )</td>
<td>Minimum number of rows in a node. The default value is 10.</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_SPLIT</td>
<td>A number ( &gt; 1 )</td>
<td>Criteria for splits: minimum number of records in a parent node expressed as a value. No split is attempted if the number of records is below this value. The default value is 20.</td>
</tr>
</tbody>
</table>

See Also:

- About Model Settings
- Shared Settings
Example 7-16 Using the oml.rf Class

This example creates an RF model and uses some of the methods of the oml.rf class.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])

y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop('IRIS')
 oml.drop(table = 'RF_COST')
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

dat = oml.sync(table = 'IRIS').split()
train_x = dat[0].drop('Species')
train_y = dat[0]['Species']
test_dat = dat[1]

cost_matrix = [['setosa', 'setosa', 0],
 ['setosa', 'virginica', 0.2],
 ['setosa', 'versicolor', 0.8],
 ['virginica', 'virginica', 0],
 ['virginica', 'setosa', 0.5],
 ['virginica', 'versicolor', 0.5],
 ['versicolor', 'versicolor', 0],
 ['versicolor', 'setosa', 0.4],
 ['versicolor', 'virginica', 0.6]]

cost_matrix = \
 oml.create(pd.DataFrame(cost_matrix,
 columns = ['ACTUAL_TARGET_VALUE',
 'PREDICTED_TARGET_VALUE',
 'COST']),
 table = 'RF_COST')

Create an RF model object.
rf_mod = oml.rf(tree_term_max_depth = '2')

Fit the RF model according to the training data and parameter
```
# settings.
rf_mod = rf_mod.fit(train_x, train_y, cost_matrix = cost_matrix)

# Show details of the model.
rf_mod

# Use the model to make predictions on the test data.
rf_mod.predict(test_dat.drop('Species'),
    supplemental_cols = test_dat[:, ['Sepal_Length',
                                     'Sepal_Width',
                                     'Petal_Length',
                                     'Species']])

# Return the prediction probability.
rf_mod.predict(test_dat.drop('Species'),
    supplemental_cols = test_dat[:, ['Sepal_Length',
                                     'Sepal_Width',
                                     'Species']],[
    proba = True]

# Return the top two most influential attributes of the highest probability class.
rf_mod.predict_proba(test_dat.drop('Species'),
    supplemental_cols = test_dat[:, ['Sepal_Length',
                                     'Species']],
    topN = 2).sort_values(by = ['Sepal_Length', 'Species'])

rf_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])

# Reset TREE_TERM_MAX_DEPTH and refit the model.
rf_mod.set_params(tree_term_max_depth = '3').fit(train_x, train_y, cost_matrix)

**Listing for This Example**

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
... columns = ['Sepal_Length','Sepal_Width',
... 'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
... {0: 'setosa', 1: 'versicolor',
... 2:'virginica'}[x], iris.target)),
... columns = ['Species'])

>>> try:
... oml.drop('IRIS')
... oml.drop(table = 'RF_COST')
... except:
```
>>> # Create the IRIS database table and the proxy object for the
>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
... train_x = dat[0].drop('Species')
... train_y = dat[0]['Species']
... test_dat = dat[1]

>>> # Create a cost matrix table in the database.
... cost_matrix = [['setosa', 'setosa', 0],
...                 ['setosa', 'virginica', 0.2],
...                 ['setosa', 'versicolor', 0.8],
...                 ['virginica', 'virginica', 0],
...                 ['virginica', 'setosa', 0.5],
...                 ['virginica', 'versicolor', 0.5],
...                 ['versicolor', 'versicolor', 0],
...                 ['versicolor', 'setosa', 0.4],
...                 ['versicolor', 'virginica', 0.6]]

>>> cost_matrix = \
...   oml.create(pd.DataFrame(cost_matrix,
...                           columns = ['ACTUAL_TARGET_VALUE',
...                                      'PREDICTED_TARGET_VALUE',
...                                      'COST']),
...              table = 'RF_COST')

>>> # Create an RF model object.
... rf_mod = oml.rf(tree_term_max_depth = '2')

>>> # Fit the RF model according to the training data and parameter
... # settings.
>>> rf_mod = rf_mod.fit(train_x, train_y, cost_matrix = cost_matrix)

>>> # Show details of the model.
... rf_mod

Algorithm Name: Random Forest

Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALGO_NAME</td>
</tr>
<tr>
<td>1</td>
<td>ALGO_RANDOM_FOREST</td>
</tr>
<tr>
<td>2</td>
<td>CLAS_COST_TABLE_NAME</td>
</tr>
<tr>
<td></td>
<td>&quot;OML_USER&quot;.&quot;RF_COST&quot;</td>
</tr>
<tr>
<td>3</td>
<td>CLAS_MAX_SUP_BINS</td>
</tr>
<tr>
<td>4</td>
<td>CLAS_WEIGHTS_BALANCED</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>ODMS_Details</td>
</tr>
<tr>
<td></td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>6</td>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
</tr>
<tr>
<td></td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>7</td>
<td>ODMS_RANDOM_SEED</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>ODMS_SAMPLING</td>
</tr>
<tr>
<td></td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
</tbody>
</table>
Chapter 7
Random Forest

Computed Settings:

setting name     setting value
0     RFOR_MTRY     2

Global Statistics:

attribute name     attribute value
0     AVG_DEPTH     2
1     AVG_NODECOUNT  3
2     MAX_DEPTH     2
3     MAX_NODECOUNT  2
4     MIN_DEPTH     2
5     MIN_NODECOUNT  2
6     NUM_ROWS     104

Attributes:
Petal_Length
Petal_Width
Sepal_Length

Partition: NO

Importance:

<table>
<thead>
<tr>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
<th>ATTRIBUTE_IMPORTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Petal_Length</td>
<td>0.329971</td>
</tr>
<tr>
<td>1</td>
<td>Petal_Width</td>
<td>0.296799</td>
</tr>
<tr>
<td>2</td>
<td>Sepal_Length</td>
<td>0.037309</td>
</tr>
<tr>
<td>3</td>
<td>Sepal_Width</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

```python
>>> # Use the model to make predictions on the test data.
... rf_mod.predict(test_dat.drop('Species'),
... supplemental_cols = test_dat[:, ['Sepal_Length',
... 'Sepal_Width',
... 'Petal_Length',
... 'Species']])

Sepal_Length Sepal_Width Petal_Length Species PREDICTION
0 4.9 3.0 1.4 setosa setosa
1 4.9 3.1 1.5 setosa setosa
2 4.8 3.4 1.6 setosa setosa
3 5.8 4.0 1.2 setosa setosa
...
42 6.7 3.3 5.7 virginica virginica
43 6.7 3.0 5.2 virginica virginica
44 6.5 3.0 5.2 virginica virginica
45 5.9 3.0 5.1 virginica virginica
```
>>> # Return the prediction probability.
... rf_mod.predict(test_dat.drop('Species'),
...     supplemental_cols = test_dat[:, ['Sepal_Length',
...     'Sepal_Width',
...     'Species']],
...     proba = True)

               Sepal_Length Sepal_Width     Species  PREDICTION  PROBABILITY
0            4.9          3.0      setosa      setosa     0.989130
1            4.9          3.1      setosa      setosa     0.989130
2            4.8          3.4      setosa      setosa     0.989130
3            5.8          4.0      setosa      setosa     0.950000
...           ...          ...         ...         ...          ...
42            6.7          3.3   virginica   virginica     0.501016
43            6.7          3.0   virginica   virginica     0.501016
44            6.5          3.0   virginica   virginica     0.501016
45            5.9          3.0   virginica   virginica     0.501016

>>> # Return the top two most influential attributes of the highest
... # probability class.
>>> rf_mod.predict_proba(test_dat.drop('Species'),
...     supplemental_cols = test_dat[:, ['Sepal_Length',
...     'Species']],
...     topN = 2).sort_values(by = ['Sepal_Length',
...     'Species'])

                   Sepal_Length     Species       TOP_1  TOP_1_VAL       TOP_2  TOP_2_VAL
0            4.4      setosa      setosa   0.989130  versicolor  0.010870
1            4.4      setosa      setosa   0.989130  versicolor  0.010870
2            4.5      setosa      setosa   0.989130  versicolor  0.010870
3            4.8      setosa      setosa   0.989130  versicolor  0.010870
...           ...         ...         ...        ...         ...         ...
42            6.7   virginica   virginica   0.501016  versicolor  0.498984
43            6.9  versicolor   virginica   0.501016  versicolor  0.498984
44            6.9   virginica   virginica   0.501016  versicolor  0.498984
45            7.0  versicolor   virginica   0.501016  versicolor  0.498984

>>> rf_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])
0.76087

>>> # Reset TREE TERM MAX DEPTH and refit the model.
... rf_mod.set_params(tree_term_max_depth = '3').fit(train_x, train_y,
... cost_matrix)

Algorithm Name: Random Forest
Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_RANDOM_FOREST</td>
</tr>
<tr>
<td>CLAS_COST_TABLE_NAME</td>
<td>&quot;OML_USER&quot;.&quot;RF_COST&quot;</td>
</tr>
<tr>
<td>CLAS_MAX_SUP_BINS</td>
<td>32</td>
</tr>
<tr>
<td>CLAS_WEIGHTS_BALANCED</td>
<td>OFF</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_RANDOM_SEED</td>
<td>0</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>RFOR_NUM_TREES</td>
<td>20</td>
</tr>
<tr>
<td>RFOR_SAMPLING_RATIO</td>
<td>.5</td>
</tr>
<tr>
<td>TREE_IMPURITY_METRIC</td>
<td>TREE_IMPURITY_GINI</td>
</tr>
<tr>
<td>TREE_TERM_MAX_DEPTH</td>
<td>3</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_NODE</td>
<td>.05</td>
</tr>
<tr>
<td>TREE_TERM_MINPCT_SPLIT</td>
<td>.1</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_NODE</td>
<td>10</td>
</tr>
<tr>
<td>TREE_TERM_MINREC_SPLIT</td>
<td>20</td>
</tr>
</tbody>
</table>

Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFOR_MTRY</td>
<td>2</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG_DEPTH</td>
<td>3</td>
</tr>
<tr>
<td>AVG_NODECOUNT</td>
<td>5</td>
</tr>
<tr>
<td>MAX_DEPTH</td>
<td>3</td>
</tr>
<tr>
<td>MAX_NODECOUNT</td>
<td>6</td>
</tr>
<tr>
<td>MIN_DEPTH</td>
<td>3</td>
</tr>
<tr>
<td>MIN_NODECOUNT</td>
<td>4</td>
</tr>
<tr>
<td>NUM_ROWS</td>
<td>104</td>
</tr>
</tbody>
</table>

Attributes:

Petal_Length
Petal_Width
Sepal_Length

Partition: NO

Importance:

<table>
<thead>
<tr>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
<th>ATTRIBUTE_IMPORTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Petal_Length</td>
<td>None</td>
<td>0.501022</td>
</tr>
<tr>
<td>1 Petal_Width</td>
<td>None</td>
<td>0.568170</td>
</tr>
<tr>
<td>2 Sepal_Length</td>
<td>None</td>
<td>0.091617</td>
</tr>
<tr>
<td>3 Sepal_Width</td>
<td>None</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Singular Value Decomposition

Use the oml.svd class to build a model for feature extraction.

The oml.svd class creates a model that uses the Singular Value Decomposition (SVD) algorithm for feature extraction. SVD performs orthogonal linear transformations that capture the underlying variance of the data by decomposing a rectangular matrix into three matrices: U, V, and D. Columns of matrix V contain the right singular vectors and columns of matrix U contain the left singular vectors. Matrix D is a diagonal matrix and its singular values reflect the amount of data variance captured by the bases.

The SVDS_MAX_NUM_FEATURES constant specifies the maximum number of features supported by SVD. The value of the constant is 2500.

For information on the oml.svd class attributes and methods, invoke help(oml.svd) or see Oracle Machine Learning for Python API Reference.

Settings for a Singular Value Decomposition Model

Table 7-15  Singular Value Decomposition Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEAT_NUM_FEATURES</td>
<td>TO_CHAR(numeric_expr &gt;=1)</td>
<td>The number of features to extract. The default value is estimated by the algorithm. If the matrix rank is smaller than this number, fewer features are returned.</td>
</tr>
<tr>
<td>SVDS_OVER_SAMPLING</td>
<td>Range [1, 5000].</td>
<td>Configures the number of columns in the sampling matrix used by the Stochastic SVD solver. The number of columns in this matrix is equal to the requested number of features plus the oversampling setting. TSVDS_SOLVER must be set to SVDS_SOLVER_SSVD or SVDS_SOLVER_STEIGEN.</td>
</tr>
<tr>
<td>SVDS_POWER_ITERATION</td>
<td>Range [0, 20].</td>
<td>Improves the accuracy of the SSVD solver. The default value is 2. TSVDS_SOLVER must be set to SVDS_SOLVER_SSVD or SVDS_SOLVER_STEIGEN.</td>
</tr>
<tr>
<td>SVDS_RANDOM_SEED</td>
<td>Range [0, 4,294,967,296]</td>
<td>The random seed value for initializing the sampling matrix used by the Stochastic SVD solver. The default value is 0. TSVDS_SOLVER must be set to SVDS_SOLVER_SSVD or SVDS_SOLVER_STEIGEN.</td>
</tr>
<tr>
<td>SVDS_SCORING_MODE</td>
<td>SVDS_SCORING_PCA, SVDS_SCORING_SVD</td>
<td>Whether to use SVD or PCA scoring for the model. When the build data is scored with SVD, the projections are the same as the U matrix. When the build data is scored with PCA, the projections are the product of the U and D matrices. The default value is SVDS_SCORING_SVD.</td>
</tr>
</tbody>
</table>
Table 7-15  (Cont.) Singular Value Decomposition Model Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| SVDS_SOLVER        | SVDS_SOLVER_STEIGEN    | Specifies the solver to be used for computing SVD of the data. For PCA, the solver setting indicates the type of SVD solver used to compute the PCA for the data. When this setting is not specified, the solver type selection is data driven. If the number of attributes is greater than 3240, then the default wide solver is used. Otherwise, the default narrow solver is selected. The following are the group of solvers:  
  - Narrow data solvers: for matrices with up to 11500 attributes (TSEIGEN) or up to 8100 attributes (TSSVD).  
  - Wide data solvers: for matrices up to 1 million attributes.  
    For narrow data solvers:  
    - Tall-Skinny SVD uses QR computation TSVD (SVDS_SOLVER_TSSVD)  
    - Tall-Skinny SVD uses eigenvalue computation, TSEIGEN (SVDS_SOLVER_TSEIGEN), which is the default solver for narrow data.  
    For wide data solvers:  
    - Stochastic SVD uses QR computation SSVD (SVDS_SOLVER_SSVD), is the default solver for wide data solvers.  
    - Stochastic SVD uses eigenvalue computations, STEIGEN (SVDS_SOLVER_STEIGEN). |
|                   | SVDS_SOLVER_SSVD       |                                                                                                                                            |
|                   | SVDS_SOLVER_TSEIGEN    |                                                                                                                                            |
|                   | SVDS_SOLVER_TSSVD      |                                                                                                                                            |

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVDS_TOLERANCE</td>
<td>Range [0, 1]</td>
<td>Defines the minimum value for the eigenvalue of a feature as a share of the first eigenvalue to not prune. Use this setting to prune features. The default value is data driven.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVDS_U_MATRIX_OUTPUT</td>
<td>SVDS_U_MATRIX_ENABLE</td>
<td>Specifies whether to persist the U matrix produced by SVD. The U matrix in SVD has as many rows as the number of rows in the build data. To avoid creating a large model, the U matrix is persisted only when SVDS_U_MATRIX_OUTPUT is enabled. When SVDS_U_MATRIX_OUTPUT is enabled, the build data must include a case ID. If no case ID is present and the U matrix is requested, then an exception is raised. The default value is SVDS_U_MATRIX_DISABLE.</td>
</tr>
<tr>
<td></td>
<td>SVDS_U_MATRIX_DISABLE</td>
<td></td>
</tr>
</tbody>
</table>
Example 7-17 Using the oml.svd Class

This example uses some of the methods of the oml.svd class. In the listing for this example, some of the output is not shown as indicated by ellipses.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x: {0: 'setosa', 1: 'versicolor', 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

try:
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_dat = dat[0]
test_dat = dat[1]

Create an SVD model object.
svd_mod = oml.svd(ODMS_DETAILS = 'ODMS_ENABLE')

Fit the model according to the training data and parameter settings.
svd_mod = svd_mod.fit(train_dat)

Show the model details.
svd_mod

Use the model to make predictions on the test data.
svd_mod.predict(test_dat,
 supplemental_cols = test_dat[:, ['Sepal_Length',
 'Sepal_Width',
 'Petal_Length',
 'Species']])

Perform dimensionality reduction and return values for the two features that have the highest topN values.
svd_mod.transform(test_dat,
 supplemental_cols = test_dat[:, ['Sepal_Length']],
 topN = 2).sort_values(by = ['Sepal_Length',
 'Species'])
```
Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> try:
...    oml.drop('IRIS')
... except:
...    pass

>>> # Create the IRIS database table and the proxy object for the table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Create training and test data.
... dat = oml.sync(table = 'IRIS').split()
>>> train_dat = dat[0]
>>> test_dat = dat[1]

>>> # Create an SVD model object.
... svd_mod = oml.svd(ODMS_DETAILS = 'ODMS_ENABLE')

>>> # Fit the model according to the training data and parameter
... # settings.
>>> svd_mod = svd_mod.fit(train_dat)

>>> # Show the model details.
... svd_mod

Algorithm Name: Singular Value Decomposition

Mining Function: FEATURE_EXTRACTION

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_SINGULAR_VALUE_DECOMP</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>SVDS_SCORING_MODE</td>
<td>SVDS_SCORING_SVD</td>
</tr>
</tbody>
</table>
Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  FEAT_NUM_FEATURES</td>
<td>8</td>
</tr>
<tr>
<td>1        SVDS_SOLVER</td>
<td>SVDS_SOLVER_TSEIGEN</td>
</tr>
<tr>
<td>2     SVDS_TOLERANCE</td>
<td>.00000000000002464695114678475</td>
</tr>
</tbody>
</table>

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0   NUM_COMPONENTS</td>
<td>8</td>
</tr>
<tr>
<td>1         NUM_ROWS</td>
<td>111</td>
</tr>
<tr>
<td>2 SUGGESTED_CUTOFF</td>
<td>1</td>
</tr>
</tbody>
</table>

Attributes:
Petal_Length
Petal_Width
Sepal_Length
Sepal_Width
Species

Partition: NO

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>ID</td>
<td>None 0.996297</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Petal_Length</td>
<td>None 0.046646</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Petal_Width</td>
<td>None 0.015917</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Sepal_Length</td>
<td>None 0.063312</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
<td>Sepal_Width</td>
<td>None -0.030620</td>
</tr>
<tr>
<td>61</td>
<td>8</td>
<td>Species</td>
<td>setosa 0.431543</td>
</tr>
<tr>
<td>62</td>
<td>8</td>
<td>Species</td>
<td>versicolor 0.566418</td>
</tr>
<tr>
<td>63</td>
<td>8</td>
<td>Species</td>
<td>virginica 0.699261</td>
</tr>
</tbody>
</table>

[64 rows x 4 columns]

D:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 886.737809</td>
</tr>
<tr>
<td>1</td>
<td>2 32.736792</td>
</tr>
<tr>
<td>2</td>
<td>3 10.043389</td>
</tr>
<tr>
<td>3</td>
<td>4 5.270496</td>
</tr>
<tr>
<td>4</td>
<td>5 2.708602</td>
</tr>
<tr>
<td>5</td>
<td>6 1.652340</td>
</tr>
<tr>
<td>6</td>
<td>7 0.938640</td>
</tr>
<tr>
<td>7</td>
<td>8 0.452170</td>
</tr>
</tbody>
</table>

V:

  '1'    '2'    '3'    '4'    '5'    '6'
  '7'    
  0 0.001332 0.156581 -0.317375 0.113462 -0.154414 -0.113058 0.799390
Chapter 7
Singular Value Decomposition

1  0.003692  0.052289  0.316295  0.733040  0.190746  0.022285 -0.046406
2  0.005267 -0.051498 -0.052111  0.527881 -0.066995  0.046461 -0.469396
3  0.015917  0.008741  0.263614  0.244811  0.460445  0.767503  0.262966
4  0.030208  0.550384 -0.358277  0.041807  0.689962 -0.261815 -0.143258
5  0.046646  0.189325  0.766663  0.326363  0.079611 -0.479070  0.177661
6  0.063312  0.790864  0.097964 -0.051230 -0.490804  0.312159 -0.131337
7  0.996297 -0.076079 -0.035940 -0.017429 -0.000960 -0.001908  0.001755

8  0.431543
1  0.566418
2  0.699261
3  0.005000
4 -0.030620
5 -0.016932
6 -0.052185
7 -0.001415

>>> # Use the model to make predictions on the test data.
>>> svd_mod.predict(test_dat,
...                  supplemental_cols = test_dat[:,
...                                               ['Sepal_Length',
...                                               'Sepal_Width',
...                                               'Petal_Length',
...                                               'Species']])

  Sepal_Length  Sepal_Width  Petal_Length  Species  FEATURE_ID
0            5.0          3.6           1.4    setosa           2
1            5.0          3.4           1.5    setosa           2
2            4.4          2.9           1.4    setosa           8
3            4.9          3.1           1.5    setosa           2

   ...   ...   ...   ...   ...
35           6.9          3.1           5.4 virginica           1
36           5.8          2.7           5.1 virginica           1
37           6.2          3.4           5.4 virginica           5
38           5.9          3.0           5.1 virginica           1

>>> # Perform dimensionality reduction and return values for the two
... # features that have the highest topN values.
>>> svd_mod.transform(test_dat,
...                   supplemental_cols = test_dat[:, ['Sepal_Length']]
...                   topN = 2).sort_values(by = ['Sepal_Length',
...                                                'TOP_1',
...                                                'TOP_1_VAL'])

  Sepal_Length  TOP_1  TOP_1_VAL  TOP_2  TOP_2_VAL
0            4.4      7   0.153125      3  -0.130778
1            4.4      8   0.171819      2   0.147070
2            4.8      2   0.159324      6  -0.085194
3            4.8      7   0.157187      3  -0.141668

   ...   ...   ...   ...   ...
35           7.2      6  -0.167688      1   0.142545
36           7.2      7  -0.176290      6  -0.175527
37           7.6      4   0.205779      3   0.141533
38           7.9      8  -0.253194      7  -0.166967
Support Vector Machine

The `oml.svm` class creates a Support Vector Machine (SVM) model for classification, regression, or anomaly detection.

SVM is a powerful, state-of-the-art algorithm with strong theoretical foundations based on the Vapnik-Chervonenkis theory. SVM has strong regularization properties. Regularization refers to the generalization of the model to new data.

SVM models have a functional form similar to neural networks and radial basis functions, which are both popular machine learning techniques.

SVM can be used to solve the following problems:

- **Classification**: SVM classification is based on decision planes that define decision boundaries. A decision plane is one that separates a set of objects having different class memberships. SVM finds the vectors ("support vectors") that define the separators that give the widest separation of classes.

  SVM classification supports both binary and multiclass targets.

- **Regression**: SVM uses an epsilon-insensitive loss function to solve regression problems.

  SVM regression tries to find a continuous function such that the maximum number of data points lie within the epsilon-wide insensitivity tube. Predictions falling within epsilon distance of the true target value are not interpreted as errors.

- **Anomaly Detection**: Anomaly detection identifies unusual cases in data that is seemingly homogeneous. Anomaly detection is an important tool for detecting fraud, network intrusion, and other rare events that may have great significance but are hard to find.

  Anomaly detection is implemented as one-class SVM classification. An anomaly detection model predicts whether a data point is typical for a given distribution or not.

The `oml.svm` class builds each of these three different types of models. Some arguments apply to classification models only, some to regression models only, and some to anomaly detection models only.

For information on the `oml.svm` class attributes and methods, invoke `help(oml.svm)` or see *Oracle Machine Learning for Python API Reference*.

Support Vector Machine Model Settings

The following table lists settings for SVM models.
## Table 7-16  Support Vector Machine Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS_COST_TABLE_NAME</td>
<td><code>table_name</code></td>
<td>The name of a table that stores a cost matrix for the algorithm to use in scoring the model. The cost matrix specifies the costs associated with misclassifications. The cost matrix table is user-created. The following are the column requirements for the table.</td>
</tr>
</tbody>
</table>
|                                     |                | · Column Name: ACTUAL_TARGET_VALUE  
|                                     |                | Data Type: Valid target data type  
|                                     |                | · Column Name: PREDICTED_TARGET_VALUE  
|                                     |                | Data Type: Valid target data type  
|                                     |                | · Column Name: COST  
|                                     |                | Data Type: NUMBER  
| CLAS_WEIGHTS_BALANCED              | ON/OFF         | Indicates whether the algorithm must create a model that balances the target distribution. This setting is most relevant in the presence of rare targets, as balancing the distribution may enable better average accuracy (average of per-class accuracy) instead of overall accuracy (which favors the dominant class). The default value is OFF. |
| CLAS_WEIGHTS_TABLE_NAME            | `table_name`   | The name of a table that stores weighting information for individual target values in GLM logistic regression models. The weights are used by the algorithm to bias the model in favor of higher weighted classes. The class weights table is user-created. The following are the column requirements for the table. |
|                                     |                | · Column Name: TARGET_VALUE  
|                                     |                | Data Type: Valid target data type  
|                                     |                | · Column Name: CLASS_WEIGHT  
|                                     |                | Data Type: NUMBER  
| SVMS_BATCH_ROWS                    | Positive integer | Sets the size of the batch for the SGD solver. This setting applies to SVM models with linear kernel. An input of 0 triggers a data driven batch size estimate. The default value is 20000. |
| SVMS_COMPLEXITY_FACTOR             | `TO_CHAR(numeric_expr >0)` | Regularization setting that balances the complexity of the model against model robustness to achieve good generalization on new data. SVM uses a data-driven approach to finding the complexity factor. Value of complexity factor for SVM algorithm (both Classification and Regression). Default value estimated from the data by the algorithm. |
| SVMS_CONV_TOLERANCE                | `TO_CHAR(numeric_expr >0)` | Convergence tolerance for SVM algorithm. Default is 0.0001. |
| SVMS_EPSILON                       | `TO_CHAR(numeric_expr >0)` | Regularization setting for regression, similar to complexity factor. Epsilon specifies the allowable residuals, or noise, in the data. Value of epsilon factor for SVM regression. Default is 0.1. |
| SVMS.kernel_function               | SVMS_LINEAR/SVMS_GAUSSIAN | Kernel for Support Vector Machine. Linear or Gaussian. The default value is SVMS_LINEAR. |
Table 7-16  (Cont.) Support Vector Machine Settings

<table>
<thead>
<tr>
<th>Setting Name</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMS_NUM_ITERATIONS</td>
<td>Positive integer</td>
<td>Sets an upper limit on the number of SVM iterations. The default is system determined because it depends on the SVM solver.</td>
</tr>
<tr>
<td>SVMS_NUM_PIVOTS</td>
<td>Range [1; 10000]</td>
<td>Sets an upper limit on the number of pivots used in the Incomplete Cholesky decomposition. It can be set only for non-linear kernels. The default value is 200.</td>
</tr>
<tr>
<td>SVMS_OUTLIER_RATE</td>
<td>TO_CHAR(0&lt; numeric_expr &lt;1)</td>
<td>The desired rate of outliers in the training data. Valid for One-Class SVM models only (Anomaly Detection). The default value is 0.01.</td>
</tr>
<tr>
<td>SVMS_REGULARIZER</td>
<td>SVMS_REGULARIZER_L1</td>
<td>Controls the type of regularization that the SGD SVM solver uses. The setting applies only to linear SVM models. The default value is system determined because it depends on the potential model size.</td>
</tr>
<tr>
<td></td>
<td>SVMS_REGULARIZER_L2</td>
<td></td>
</tr>
<tr>
<td>SVMS_SOLVER</td>
<td>SVMS_SOLVER_SGD (Sub-Gradient Descend)</td>
<td>Allows the user to choose the SVM solver. The SGD solver cannot be selected if the kernel is non-linear. The default value is system determined.</td>
</tr>
<tr>
<td></td>
<td>SVMS_SOLVER_IPM (Interior Point Method)</td>
<td></td>
</tr>
<tr>
<td>SVMS_STD_DEV</td>
<td>TO_CHAR(numeric_expr &gt;0)</td>
<td>Controls the spread of the Gaussian kernel function. SVM uses a data-driven approach to find a standard deviation value that is on the same scale as distances between typical cases. Value of standard deviation for SVM algorithm. This is applicable only for the Gaussian kernel. The default value is estimated from the data by the algorithm.</td>
</tr>
</tbody>
</table>

See Also:
- About Model Settings
- Shared Settings

Example 7-18  Using the oml.svm Class

This example demonstrates the use of various methods of the oml.svm class. In the listing for this example, some of the output is not shown as indicated by ellipses.

```python
import oml
import pandas as pd
from sklearn import datasets

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal Length', 'Sepal Width',
 'Petal Length', 'Petal Width'])
```
y = pd.DataFrame(list(map(lambda x: 
    {0: 'setosa', 1: 'versicolor',
     2: 'virginica'}[x], iris.target)),
    columns = ['Species']))

try:
    oml.drop('IRIS')
except:
    pass

# Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

# Create training and test data.
dat = oml.sync(table = 'IRIS').split()
train_x = dat[0].drop('Species')
train_y = dat[0]['Species']
test_dat = dat[1]

# Create an SVM model object.
svm_mod = oml.svm('classification',
    svms_kernel_function =
    'dbms_data_mining.svms_linear')

# Fit the SVM Model according to the training data and parameter settings.
svm_mod.fit(train_x, train_y)

# Use the model to make predictions on test data.
svm_mod.predict(test_dat.drop('Species'),
    supplemental_cols = test_dat[:, ['Sepal_Length',
    'Sepal_Width',
    'Petal_Length',
    'Species']])

# Return the prediction probability.
svm_mod.predict_proba(test_dat.drop('Species'),
    supplemental_cols = test_dat[:, ['Sepal_Length',
    'Sepal_Width',
    'Species']],
    proba = True)
svm_mod.predict_proba(test_dat.drop('Species'),
    supplemental_cols = test_dat[:, ['Sepal_Length',
    'Sepal_Width',
    'Species']],
    topN = 1).sort_values(by = ['Sepal_Length', 'Sepal_Width'])
svm_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets
>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                   columns = ['Sepal_Length','Sepal_Width',
...                              'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                   columns = ['Species'])

Algorithm Name: Support Vector Machine

Mining Function: CLASSIFICATION

Target: Species

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_SUPPORT_VECTOR_MACHINES</td>
</tr>
<tr>
<td>CLAS_WEIGHTS_BALANCED</td>
<td>OFF</td>
</tr>
<tr>
<td>ODMS_DETAILS</td>
<td>ODMS_ENABLE</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>SVMS_CONV_TOLERANCE</td>
<td>.0001</td>
</tr>
<tr>
<td>SVMS_KERNEL_FUNCTION</td>
<td>SVMS_LINEAR</td>
</tr>
</tbody>
</table>

Computed Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMS_COMPLEXITY_FACTOR</td>
<td>10</td>
</tr>
</tbody>
</table>
1  SVMS_NUM_ITERATIONS  30
2            SVMS_SOLVER  SVMS_SOLVER_IPM

Global Statistics:

<table>
<thead>
<tr>
<th>attribute name</th>
<th>attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CONVERGED</td>
</tr>
<tr>
<td>1</td>
<td>ITERATIONS</td>
</tr>
<tr>
<td>2</td>
<td>NUM_ROWS</td>
</tr>
</tbody>
</table>

Attributes:

Petal_Length
Petal_Width
Sepal_Length
Sepal_Width

Partition: NO

Attributes:

Petal_Length
Petal_Width
Sepal_Length
Sepal_Width

Partition: NO

COEFFICIENTS:

<table>
<thead>
<tr>
<th>TARGET_VALUE</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_SUBNAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>setosa</td>
<td>Petal_Length</td>
<td>None</td>
<td>-0.5809</td>
</tr>
<tr>
<td>1</td>
<td>setosa</td>
<td>Petal_Width</td>
<td>None</td>
<td>-0.7736</td>
</tr>
<tr>
<td>2</td>
<td>setosa</td>
<td>Sepal_Length</td>
<td>None</td>
<td>-0.1653</td>
</tr>
<tr>
<td>3</td>
<td>setosa</td>
<td>Sepal_Width</td>
<td>None</td>
<td>0.5689</td>
</tr>
<tr>
<td>4</td>
<td>setosa</td>
<td>None</td>
<td>None</td>
<td>-0.7355</td>
</tr>
<tr>
<td>5</td>
<td>versicolor</td>
<td>Petal_Length</td>
<td>None</td>
<td>1.1304</td>
</tr>
<tr>
<td>6</td>
<td>versicolor</td>
<td>Petal_Width</td>
<td>None</td>
<td>-0.3323</td>
</tr>
<tr>
<td>7</td>
<td>versicolor</td>
<td>Sepal_Length</td>
<td>None</td>
<td>-0.8877</td>
</tr>
<tr>
<td>8</td>
<td>versicolor</td>
<td>Sepal_Width</td>
<td>None</td>
<td>-1.2582</td>
</tr>
<tr>
<td>9</td>
<td>versicolor</td>
<td>None</td>
<td>None</td>
<td>-0.9091</td>
</tr>
<tr>
<td>10</td>
<td>virginica</td>
<td>Petal_Length</td>
<td>None</td>
<td>4.6042</td>
</tr>
<tr>
<td>11</td>
<td>virginica</td>
<td>Petal_Width</td>
<td>None</td>
<td>4.0681</td>
</tr>
<tr>
<td>12</td>
<td>virginica</td>
<td>Sepal_Length</td>
<td>None</td>
<td>-0.7985</td>
</tr>
<tr>
<td>13</td>
<td>virginica</td>
<td>Sepal_Width</td>
<td>None</td>
<td>-0.4328</td>
</tr>
<tr>
<td>14</td>
<td>virginica</td>
<td>None</td>
<td>None</td>
<td>-5.3180</td>
</tr>
</tbody>
</table>

>>> # Use the model to make predictions on test data.
... svm_mod.predict(test_dat.drop('Species'),
...     supplemental_cols = test_dat[:, ['Sepal_Length',
...     'Sepal_Width',
...     'Petal_Length',
...     'Species']])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Petal_Length</th>
<th>Species</th>
<th>PREDICTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>setosa</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>3.4</td>
<td>1.6</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>virginica</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>46</td>
<td>6.5</td>
<td>3.0</td>
<td>5.2</td>
<td>virginica</td>
</tr>
<tr>
<td>47</td>
<td>5.9</td>
<td>3.0</td>
<td>5.1</td>
<td>virginica</td>
</tr>
</tbody>
</table>

>>> # Return the prediction probability.
... svm_mod.predict(test_dat.drop('Species'),
... supplemental_cols = test_dat[:, ['Sepal_Length',
...                       'Sepal_Width',
...                       'Species']],
...
... proba = True)

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Species</th>
<th>PREDICTION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9</td>
<td>3.0</td>
<td>setosa</td>
<td>0.761886</td>
</tr>
<tr>
<td>1</td>
<td>4.9</td>
<td>3.1</td>
<td>setosa</td>
<td>0.805510</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>3.4</td>
<td>setosa</td>
<td>0.920317</td>
</tr>
<tr>
<td>3</td>
<td>5.8</td>
<td>4.0</td>
<td>setosa</td>
<td>0.998398</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>3.3</td>
<td>virginica</td>
<td>0.927706</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>3.0</td>
<td>virginica</td>
<td>0.855353</td>
</tr>
<tr>
<td>46</td>
<td>6.5</td>
<td>3.0</td>
<td>virginica</td>
<td>0.799556</td>
</tr>
<tr>
<td>47</td>
<td>5.9</td>
<td>3.0</td>
<td>virginica</td>
<td>0.688024</td>
</tr>
</tbody>
</table>

>>> # Make predictions and return the probability for each class
... # on new data.
>>> svm_mod.predict_proba(test_dat.drop('Species'),
... supplemental_cols = test_dat[:, ['Sepal_Length',
...                       'Sepal_Width',
...                       'Species']],
... topN = 1).sort_values(by = ['Sepal_Length', 'Sepal_Width'])

<table>
<thead>
<tr>
<th>Sepal_Length</th>
<th>Sepal_Width</th>
<th>Species</th>
<th>TOP_1</th>
<th>TOP_1_VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.4</td>
<td>3.0</td>
<td>setosa</td>
<td>0.698067</td>
</tr>
<tr>
<td>1</td>
<td>4.4</td>
<td>3.2</td>
<td>setosa</td>
<td>0.815643</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>2.3</td>
<td>versicolor</td>
<td>0.605105</td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
<td>3.4</td>
<td>setosa</td>
<td>0.920317</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>6.7</td>
<td>3.3</td>
<td>virginica</td>
<td>0.927706</td>
</tr>
<tr>
<td>45</td>
<td>6.7</td>
<td>3.0</td>
<td>versicolor</td>
<td>0.378391</td>
</tr>
<tr>
<td>46</td>
<td>6.9</td>
<td>3.1</td>
<td>virginica</td>
<td>0.881118</td>
</tr>
<tr>
<td>47</td>
<td>7.0</td>
<td>3.2</td>
<td>versicolor</td>
<td>0.586393</td>
</tr>
</tbody>
</table>

>>> svm_mod.score(test_dat.drop('Species'), test_dat[:, ['Species']])
0.895833
Automated Machine Learning

Use the automated algorithm selection, feature selection, and hyperparameter tuning of Automated Machine Learning to accelerate the machine learning modeling process.

Automated Machine Learning in OML4Py is described in the following topics:

- About Automated Machine Learning
- Algorithm Selection
- Feature Selection
- Model Tuning
- Model Selection

About Automated Machine Learning

Automated Machine Learning (AutoML) provides built-in data science expertise about data analytics and modeling that you can employ to build machine learning models.

Any modeling problem for a specified data set and prediction task involves a sequence of data cleansing and preprocessing, algorithm selection, and model tuning tasks. Each of these steps require data science expertise to help guide the process to an efficient final model. Automated Machine Learning (AutoML) automates this process with its built-in data science expertise.

OML4Py has the following AutoML capabilities:

- Automated algorithm selection that selects the appropriate algorithm from the supported machine learning algorithms
- Automated feature selection that reduces the size of the original feature set to speed up model training and tuning, while possibly also increasing model quality
- Automated tuning of model hyperparameters, which selects the model with the highest score metric from among several metrics as selected by the user

AutoML performs those common modeling tasks automatically, with less effort and potentially better results. It also leverages in-database algorithm parallel processing and scalability to minimize runtime and produce high-quality results.

Note:

As the \texttt{fit} method of the machine learning classes does, the AutoML functions \texttt{reduce}, \texttt{select}, and \texttt{tune} provide a \texttt{case_id} parameter that you can use to achieve repeatable data sampling and data shuffling during model building.

The AutoML functionality is also available in a no-code user interface alongside OML Notebooks on Oracle Autonomous Database. For more information, see Oracle Machine Learning AutoML User Interface.
Automated Machine Learning Classes and Algorithms

The Automated Machine Learning classes are the following.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.automl.AlgorithmSelection</td>
<td>Using only the characteristics of the data set and the task, automatically selects the best algorithms from the set of supported Oracle Machine Learning algorithms. Supports classification and regression functions.</td>
</tr>
<tr>
<td>oml.automl.FeatureSelection</td>
<td>Uses meta-learning to quickly identify the most relevant feature subsets given a training data set and an Oracle Machine Learning algorithm. Supports classification and regression functions.</td>
</tr>
<tr>
<td>oml.automl.ModelTuning</td>
<td>Uses a highly parallel, asynchronous gradient-based hyperparameter optimization algorithm to tune the algorithm hyperparameters. Supports classification and regression functions.</td>
</tr>
<tr>
<td>oml.automl.ModelSelection</td>
<td>Selects the best Oracle Machine Learning algorithm and then tunes that algorithm. Supports classification and regression functions.</td>
</tr>
</tbody>
</table>

The Oracle Machine Learning algorithms supported by AutoML are the following:

Table 8-1  Machine Learning Algorithms Supported by AutoML

<table>
<thead>
<tr>
<th>Algorithm Abbreviation</th>
<th>Algorithm Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>dt</td>
<td>Decision Tree</td>
</tr>
<tr>
<td>glm</td>
<td>Generalized Linear Model</td>
</tr>
<tr>
<td>glm_ridge</td>
<td>Generalized Linear Model with ridge regression</td>
</tr>
<tr>
<td>nb</td>
<td>Naive Bayes</td>
</tr>
<tr>
<td>nn</td>
<td>Neural Network</td>
</tr>
<tr>
<td>rf</td>
<td>Random Forest</td>
</tr>
<tr>
<td>svm_gaussian</td>
<td>Support Vector Machine with Gaussian kernel</td>
</tr>
<tr>
<td>svm_linear</td>
<td>Support Vector Machine with linear kernel</td>
</tr>
</tbody>
</table>

Classification and Regression Metrics

The following tables list the scoring metrics supported by AutoML.

Table 8-2  Binary and Multiclass Classification Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description, Scikit-learn Equivalent, and Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>Calculates the rate of correct classification of the target.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.accuracy_score(y_true, y pred, normalize=True, sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (tp + tn)/samples</td>
</tr>
<tr>
<td>Metric</td>
<td>Description, Scikit-learn Equivalent, and Formula</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>f1_macro</td>
<td>Calculates the f-score or f-measure, which is a weighted average of the precision and recall. The f1_macro takes the unweighted average of per-class scores.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average='macro', sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}})</td>
</tr>
<tr>
<td>f1_micro</td>
<td>Calculates the f-score or f-measure with micro-averaging in which true positives, false positives, and false negatives are counted globally.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average='micro', sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}})</td>
</tr>
<tr>
<td>f1_weighted</td>
<td>Calculates the f-score or f-measure with weighted averaging of per-class scores based on support (the fraction of true samples per class). Accounts for imbalanced classes.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average='weighted', sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}})</td>
</tr>
<tr>
<td>precision_macro</td>
<td>Calculates the ability of the classifier to not label a sample incorrectly. The precision_macro takes the unweighted average of per-class scores.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='macro', sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (\frac{\text{tp}}{\text{tp} + \text{fp}})</td>
</tr>
<tr>
<td>precision_micro</td>
<td>Calculates the ability of the classifier to not label a sample incorrectly. Uses micro-averaging in which true positives, false positives, and false negatives are counted globally.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='micro', sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (\frac{\text{tp}}{\text{tp} + \text{fp}})</td>
</tr>
<tr>
<td>precision_weighted</td>
<td>Calculates the ability of the classifier to not label a sample incorrectly. Uses weighted averaging of per-class scores based on support (the fraction of true samples per class). Accounts for imbalanced classes.</td>
</tr>
<tr>
<td></td>
<td>sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average='weighted', sample_weight=None)</td>
</tr>
<tr>
<td></td>
<td>Formula: (\frac{\text{tp}}{\text{tp} + \text{fp}})</td>
</tr>
</tbody>
</table>
Table 8-2  (Cont.) Binary and Multiclass Classification Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description, Scikit-learn Equivalent, and Formula</th>
</tr>
</thead>
</table>
| recall_macro   | Calculates the ability of the classifier to correctly label each class. The recall_macro takes the unweighted average of per-class scores.  

\[
\text{Formula: } \frac{\text{tp}}{\text{tp + fn}}
\]

| recall_micro  | Calculates the ability of the classifier to correctly label each class with micro-averaging in which the true positives, false positives, and false negatives are counted globally.  

\[
\text{Formula: } \frac{\text{tp}}{\text{tp + fn}}
\]

| recall_weighted | Calculates the ability of the classifier to correctly label each class with weighted averaging of per-class scores based on support (the fraction of true samples per class). Accounts for imbalanced classes.  

\[
\text{Formula: } \frac{\text{tp}}{\text{tp + fn}}
\]

See Also: [Scikit-learn classification metrics](#)

Table 8-3  Binary Classification Metrics Only

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description, Scikit-learn Equivalent, and Formula</th>
</tr>
</thead>
</table>
| f1     | Calculates the f-score or f-measure, which is a weighted average of the precision and recall. This metric by default requires a positive target to be encoded as 1 to function as expected.  

\[
\text{Formula: } \frac{2 \times (\text{precision} \times \text{recall})}{(\text{precision} + \text{recall})}
\]

| precision | Calculates the ability of the classifier to not label a sample positive (1) that is actually negative (0).  

\[
\text{Formula: } \frac{\text{tp}}{\text{tp + fp}}
\]
### Table 8-3  (Cont.) Binary Classification Metrics Only

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description, Scikit-learn Equivalent, and Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>recall</td>
<td>Calculates the ability of the classifier to label all positive (1) samples correctly.</td>
</tr>
<tr>
<td></td>
<td><code>sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None)</code></td>
</tr>
<tr>
<td></td>
<td><strong>Formula:</strong> $\frac{tp}{tp + fn}$</td>
</tr>
<tr>
<td>roc_auc</td>
<td>Calculates the Area Under the Receiver Operating Characteristic Curve (roc_auc) from prediction scores.</td>
</tr>
<tr>
<td></td>
<td><code>sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)</code></td>
</tr>
<tr>
<td></td>
<td>See also the definition of <strong>receiver operation characteristic</strong>.</td>
</tr>
</tbody>
</table>

### Table 8-4  Regression Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description, Scikit-learn Equivalent, and Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2</td>
<td>Calculates the coefficient of determination (R squared).</td>
</tr>
<tr>
<td></td>
<td><code>sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')</code></td>
</tr>
<tr>
<td></td>
<td>See also the definition of <strong>coefficient of determination</strong>.</td>
</tr>
<tr>
<td>neg_mean_absolute_error</td>
<td>Calculates the mean of the absolute difference of predicted and true targets (MAE).</td>
</tr>
<tr>
<td></td>
<td><code>sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average')</code></td>
</tr>
<tr>
<td></td>
<td><strong>Formula:</strong> $-\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y_i})$</td>
</tr>
<tr>
<td>neg_mean_squared_error</td>
<td>Calculates the mean of the squared difference of predicted and true targets.</td>
</tr>
<tr>
<td></td>
<td>$-1.0 * sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average')$</td>
</tr>
<tr>
<td></td>
<td><strong>Formula:</strong> $-\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y_i})^2$</td>
</tr>
</tbody>
</table>
Table 8-4 (Cont.) Regression Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description, Scikit-learn Equivalent, and Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>neg_mean_squared_log_error</td>
<td>Calculates the mean of the difference in the natural log of predicted and true targets.</td>
</tr>
</tbody>
</table>
| | \[
sklearn.metrics.mean_squared_log_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average')
\]
| | Formula: |
| | \[
-\frac{1}{n}\sum_{i=1}^{n}(\log(Y_i) - \log(\hat{Y}_i))^2
\]
| neg_median_absolute_error | Calculates the median of the absolute difference between predicted and true targets. |
| | \[
sklearn.metrics.median_absolute_error(y_true, y_pred)
\]
| | Formula: |
| | \[
-Med([Y_i - \hat{Y}_i, 0 \leq i < n])
\]

See Also: Scikit-learn regression metrics

Algorithm Selection

The `oml.automl.AlgorithmSelection` class uses the characteristics of the data set and the task to rank algorithms from the set of supported Oracle Machine Learning algorithms.

Selecting the best Oracle Machine Learning algorithm for a data set and a prediction task is non-trivial. No single algorithm works best for all modeling problems. The `oml.automl.AlgorithmSelection` class ranks the candidate algorithms according to how likely each is to produce a quality model. This is achieved by using Oracle advanced meta-learning intelligence learned from a repertoire of data sets with the goal of avoiding exhaustive searches, thereby reducing overall compute time and costs.

The `oml.automl.AlgorithmSelection` class supports classification and regression algorithms. To use the class, you specify a data set and the number of algorithms you want to evaluate.

The `select` method of the class returns a sorted list of the top algorithms and their predicted rank (from best to worst).

For information on the parameters and methods of the class, invoke `help(oml.automl.AlgorithmSelection)` or see Oracle Machine Learning for Python API Reference.

Example 8-1 Using the `oml.automl.AlgorithmSelection` Class

This example creates an `oml.automl.AlgorithmSelection` object and then displays the algorithm rankings with their corresponding score metric. You may select the top
entry or choose a different model depending on the needs of your particular business problem.

```python
import oml
from oml import automl
import pandas as pd
from sklearn import datasets

Load the breast cancer data set.
bcs = datasets.load_breast_cancer()
bcs_data = bcs.data.astype(float)
X = pd.DataFrame(bcs_data, columns = bcs.feature_names)
y = pd.DataFrame(bcs.target, columns = ['TARGET'])

Create the database table BreastCancer.
online_df = oml.create(pd.concat([X, y], axis=1),
 table = 'BreastCancer')

Split the data set into training and test data.
train, test = oml_df.split(ratio=(0.8, 0.2), seed = 1234)
X_train, y_train = train.drop('TARGET'), train['TARGET']
X_test, y_test = test.drop('TARGET'), test['TARGET']

Create an automated algorithm selection object with f1_macro as
the score_metric argument.
asel = automl.AlgorithmSelection(mining_function='classification',
 score_metric='f1_macro', parallel=4)

Run algorithm selection to get the top k predicted algorithms and
their ranking without tuning.
algo_ranking = asel.select(X_train, y_train, k=3)

Show the selected and tuned model.
[(m, '{:.2f}'.format(s)) for m,s in algo_ranking]

Drop the database table.
online.drop('BreastCancer')
```

**Listing for This Example**

```python
>>> import oml
>>> from oml import automl
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the breast cancer data set.
... bc = datasets.load_breast_cancer()
>>> bc_data = bc.data.astype(float)
>>> X = pd.DataFrame(bc_data, columns = bc.feature_names)
>>> y = pd.DataFrame(bc.target, columns = ['TARGET'])

>>> # Create the database table BreastCancer.
... online_df = oml.create(pd.concat([X, y], axis=1),
... table = 'BreastCancer')
```
>>> # Split the data set into training and test data.
... train, test = oml_df.split(ratio=(0.8, 0.2), seed = 1234)
>>> X, y = train.drop('TARGET'), train['TARGET']
>>> X_test, y_test = test.drop('TARGET'), test['TARGET']
>>> # Create an automated algorithm selection object with f1_macro as
... # the score metric argument.
... asel = automl.AlgorithmSelection(mining_function='classification',
... score_metric='f1_macro', parallel=4)
>>> # Run algorithm selection to get the top k predicted algorithms
and
... their ranking without tuning.
... algo_ranking = asel.select(X, y, k=3)
>>> # Show the selected and tuned model.
>>> [(m, '{:.2f}'.format(s)) for m,s in algo_ranking]
[('svm_gaussian', '0.97'), ('glm_ridge', '0.96'), ('nn', '0.96')]
>>> # Drop the database table.
... oml.drop('BreastCancer')

Feature Selection

The `oml.automl.FeatureSelection` class identifies the most relevant feature subsets for a training data set and an Oracle Machine Learning algorithm.

In a data analytics application, feature selection is a critical data preprocessing step that has a high impact on both runtime and model performance. The `oml.automl.FeatureSelection` class automatically selects the most relevant features for a data set and model. It internally uses several feature-ranking algorithms to identify the best feature subset that reduces model training time without compromising model performance. Oracle advanced meta-learning techniques quickly prune the search space of this feature selection optimization.

The `oml.automl.FeatureSelection` class supports classification and regression algorithms. To use the `oml.automl.FeatureSelection` class, you specify a data set and the Oracle Machine Learning algorithm on which to perform the feature reduction.

For information on the parameters and methods of the class, invoke `help(oml.automl.FeatureSelection)` or see Oracle Machine Learning for Python API Reference.

Example 8-2 Using the `oml.automl.FeatureSelection` Class

This example uses the `oml.automl.FeatureSelection` class. The example builds a model on the full data set and computes predictive accuracy. It performs automated feature selection, filters the columns according to the determined set, and rebuilds the model. It then recomputes predictive accuracy.

```python
import oml
from oml import automl
import pandas as pd
import numpy as np
```
from sklearn import datasets

digits = datasets.load_digits()
X = pd.DataFrame(digits.data,
       columns = ['pixel{}'.format(i) for i
       in range(digits.data.shape[1])])
y = pd.DataFrame(digits.target, columns = ['digit'])

oml_df = oml.create(pd.concat([X, y], axis=1), table = 'DIGITS')

# Split the data set into train and test.
train, test = oml_df.split(ratio=(0.8, 0.2),
    seed = 1234, strata_cols='digit')
X_train, y_train = train.drop('digit'), train['digit']
X_test, y_test = test.drop('digit'), test['digit']

# Default model performance before feature selection.
mod = oml.svm(mining_function='classification').fit(X_train, y_train)
"{:.2}".format(mod.score(X_test, y_test))

# Create an automated feature selection object with accuracy
# as the score_metric.
fs = automl.FeatureSelection(mining_function='classification',
    score_metric='accuracy', parallel=4)

# Get the reduced feature subset on the train data set.
subset = fs.reduce('svm_linear', X_train, y_train)
"{} features reduced to {}".format(len(X_train.columns),
   len(subset))

# Use the subset to select the features and create a model on the
# new reduced data set.
X_new  = X_train[:,subset]
X_test_new = X_test[:,subset]
mod = oml.svm(mining_function='classification').fit(X_new, y_train)
"{:.2} with {:.1f}x feature reduction".format(
    mod.score(X_test_new, y_test),
    len(X_train.columns)/len(X_new.columns))

# Drop the DIGITS table.
oml.drop('DIGITS')

# For reproducible results, add a case_id column with unique row
# identifiers.
row_id = pd.DataFrame(np.arange(digits.data.shape[0]),
       columns = ['CASE_ID'])
oml_df_cid = oml.create(pd.concat([row_id, X, y], axis=1),
       table = 'DIGITS_CID')

train, test = oml_df_cid.split(ratio=(0.8, 0.2), seed = 1234,
    hash_cols='CASE_ID',
    strata_cols='digit')
X_train, y_train = train.drop('digit'), train['digit']
X_test, y_test = test.drop('digit'), test['digit']
# Provide the case_id column name to the feature selection
# reduce function.
subset = fs.reduce('svm_linear', X_train,
                    y_train, case_id='CASE_ID')
"{} features reduced to {} with case_id".format(
    len(X_train.columns)-1,
    len(subset))

# Drop the tables created in the example.
oml.drop('DIGITS')
oml.drop('DIGITS_CID')

Listing for This Example

>>> import oml
>>> from oml import automl
>>> import pandas as pd
>>> import numpy as np
>>> from sklearn import datasets

>>> # Load the digits data set into the database.
>>> digits = datasets.load_digits()
>>> X = pd.DataFrame(digits.data,
                    columns = ['pixel{}'.format(i) for i
                                in range(digits.data.shape[1])])
>>> y = pd.DataFrame(digits.target, columns = ['digit'])
>>> oml_df = oml.create(pd.concat([X, y], axis=1), table = 'DIGITS')

>>> # Split the data set into train and test.
>>> train, test = oml_df.split(ratio=(0.8, 0.2),
                             seed = 1234, strata_cols='digit')
>>> X_train, y_train = train.drop('digit'), train['digit']
>>> X_test, y_test = test.drop('digit'), test['digit']

>>> # Default model performance before feature selection.
>>> mod = oml.svm(mining_function='classification').fit(X_train,
                                                       y_train)
>>> "{:.2}".format(mod.score(X_test, y_test))
'0.92'

>>> # Create an automated feature selection object with accuracy
>>> # as the score_metric.
>>> fs = automl.FeatureSelection(mining_function='classification',
                               score_metric='accuracy', parallel=4)

>>> # Get the reduced feature subset on the train data set.
>>> subset = fs.reduce('svm_linear', X_train, y_train)
>>> "{} features reduced to {}".format(len(X_train.columns),
                                       len(subset))
'64 features reduced to 41'

>>> # Use the subset to select the features and create a model on the
>>> # new reduced data set.
>>> X_new = X_train[:,subset]
>>> X_test_new = X_test[:,subset]
>>> mod = oml.svm(mining_function='classification').fit(X_new, y_train)
>>> '{:.2} with {:.1f}x feature reduction'.format(
...   mod.score(X_test_new, y_test),
...   len(X_train.columns)/len(X_new.columns))
'0.92 with 1.6x feature reduction'

>>> # Drop the DIGITS table.
... oml.drop('DIGITS')

>>> # For reproducible results, add a case_id column with unique row
... # identifiers.
>>> row_id = pd.DataFrame(np.arange(digits.data.shape[0]),
...    columns = ['CASE_ID'])
>>> oml_df_cid = oml.create(pd.concat([row_id, X, y], axis=1),
...                          table = 'DIGITS_CID')

>>> train, test = oml_df_cid.split(ratio=(0.8, 0.2), seed = 1234,
...                                  hash_cols='CASE_ID',
...                                  strata_cols='digit')
>>> X_train, y_train = train.drop('digit'), train['digit']
>>> X_test, y_test = test.drop('digit'), test['digit']

>>> # Provide the case_id column name to the feature selection
... # reduce function.
>>> subset = fs.reduce('svm_linear', X_train,
...                     y_train, case_id='CASE_ID')
>>> '{} features reduced to {} with case_id'.format(
...                     len(X_train.columns),
...                     len(subset))
'64 features reduced to 65 with case_id'

>>> # Drop the tables created in the example.
... oml.drop('DIGITS')
>>> oml.drop('DIGITS_CID')

# Model Tuning

The `oml.automl.ModelTuning` class tunes the hyperparameters for the specified
classification or regression algorithm and training data.

Model tuning is a laborious machine learning task that relies heavily on data scientist
expertise. With limited user input, the `oml.automl.ModelTuning` class automates this process
using a highly-parallel, asynchronous gradient-based hyperparameter optimization algorithm
to tune the hyperparameters of an Oracle Machine Learning algorithm.

The `oml.automl.ModelTuning` class supports classification and regression algorithms. To use
the `oml.automl.ModelTuning` class, you specify a data set and an algorithm to obtain a tuned
model and its corresponding hyperparameters. An advanced user can provide a customized
hyperparameter search space and a non-default scoring metric to this black box optimizer.

For a partitioned model, if you pass in the column to partition on in the `param_space` argument
of the `tune` method, `oml.automl.ModelTuning` tunes the partitioned model's
hyperparameters.
For information on the parameters and methods of the class, invoke help(oml.automl.ModelTuning) or see Oracle Machine Learning for Python API Reference.

Example 8-3 Using the oml.automl.ModelTuning Class

This example creates an oml.automl.ModelTuning object.

```python
import oml
from oml import automl
import pandas as pd
from sklearn import datasets

Load the breast cancer data set.
bcc = datasets.load_breast_cancer()
bcc_data = bcc.data.astype(float)
X = pd.DataFrame(bcc_data, columns = bcc.feature_names)
y = pd.DataFrame(bcc.target, columns = ['TARGET'])

Create the database table BreastCancer.
olm_df = oml.create(pd.concat([X, y], axis=1),
 table = 'BreastCancer')

Split the data set into training and test data.
train, test = oml_df.split(ratio=(0.8, 0.2), seed = 1234)
X, y = train.drop('TARGET'), train['TARGET']
X_test, y_test = test.drop('TARGET'), test['TARGET']

Start an automated model tuning run with a Decision Tree model.
at = automl.ModelTuning(mining_function='classification',
 parallel=4)
results = at.tune('dt', X, y, score_metric='accuracy')

tuned_model = results['best_model']

tuned_model

Show the best tuned model train score and the corresponding hyperparameters.
score, params = results['all_evals'][0]
"{:.2}".format(score),
"{}:{:.2}".format(k, params[k])
 for k in sorted(params)

Use the tuned model to get the score on the test set.
"{:.2}".format(tuned_model.score(X_test, y_test))

An example invocation of model tuning with user-defined search ranges for selected hyperparameters on a new tuning metric (f1_macro).
search_space = {
 'RFOR_SAMPLING_RATIO': {'type': 'continuous',
 'range': [0.01, 0.5]},
 'RFOR_NUM_TREES': {'type': 'discrete',
 'range': [50, 100]},
 'TREE_IMPURITY_METRIC': {'type': 'categorical',
 'values': ['gini', 'entropy']}
}
```
results = at.tune('rf', X, y, score_metric='f1_macro',
                 param_space=search_space)

score, params = results['all_evals'][0]

"{:.2}".format(score), "{"{:.2}"":"{}}
    for k in sorted(params)

# Some hyperparameter search ranges need to be defined based on the
# training data set sizes (for example, the number of samples and
# features). You can use placeholders specific to the data set,
# such as $nr_features and $nr_samples, as the search ranges.
search_space = {'RFOR_MTRY': {'type': 'discrete',
                              'range': [1, '$nr_features/2']}}

results = at.tune('rf', X, y, score_metric='f1_macro', param_space=search_space)

score, params = results['all_evals'][0]

"{:.2}".format(score), "{"{:.2}"":"{}}
    for k in sorted(params)

# Drop the database table.
oml.drop('BreastCancer')

Listing for This Example

>>> import oml
>>> from oml import automl
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the breast cancer data set.
... bc = datasets.load_breast_cancer()
>>> X = pd.DataFrame(bc.data, columns = bc.feature_names)
>>> y = pd.DataFrame(bc.target, columns = ['TARGET'])

>>> # Create the database table BreastCancer.
... oml_df = oml.create(pd.concat([X, y], axis=1),
...                     table = 'BreastCancer')

>>> # Split the data set into training and test data.
... train, test = oml_df.split(ratio=(0.8, 0.2), seed = 1234)
>>> X, y = train.drop('TARGET'), train['TARGET']
>>> X_test, y_test = test.drop('TARGET'), test['TARGET']

>>> # Start an automated model tuning run with a Decision Tree model.
... at = automl.ModelTuning(mining_function='classification',
                            parallel=4)

>>> results = at.tune('dt', X, y, score_metric='accuracy')

>>> # Show the tuned model details.
... tuned_model = results['best_model']
... tuned_model
Algorithm Name: Decision Tree

Mining Function: CLASSIFICATION

Target: TARGET

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ALGO_NAME</td>
<td>ALGO_DECISION_TREE</td>
</tr>
<tr>
<td>1 CLAS_MAX_SUP_BINS</td>
<td>32</td>
</tr>
<tr>
<td>2 CLAS_WEIGHTS_BALANCED</td>
<td>OFF</td>
</tr>
<tr>
<td>3 ODM5_DETAILS</td>
<td>ODM5_DISABLE</td>
</tr>
<tr>
<td>4 ODM5_MISSING_VALUE_TREATMENT</td>
<td>ODM5_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>5 ODM5_SAMPLING</td>
<td>ODM5_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>6 PREP_AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>7 TREE_IMPURITY_METRIC</td>
<td>TREE_IMPURITY_GINI</td>
</tr>
<tr>
<td>8 TREE_TERM_MAX_DEPTH</td>
<td>8</td>
</tr>
<tr>
<td>9 TREE_TERM_MINPCT_NODE</td>
<td>3.34</td>
</tr>
<tr>
<td>10 TREE_TERM_MINPCT_SPLIT</td>
<td>0.1</td>
</tr>
<tr>
<td>11 TREE_TERM_MINREC_NODE</td>
<td>10</td>
</tr>
<tr>
<td>12 TREE_TERM_MINREC_SPLIT</td>
<td>20</td>
</tr>
</tbody>
</table>

Attributes:
mean radius
mean texture
mean perimeter
mean area
mean smoothness
mean compactness
mean concavity
mean concave points
mean symmetry
mean fractal dimension
radius error
texture error
perimeter error
area error
smoothness error
compactness error
concavity error
concave points error
symmetry error
fractal dimension error
worst radius
worst texture
worst perimeter
worst area
worst smoothness
worst compactness
worst concavity
worst concave points
worst symmetry
worst fractal dimension

Partition: NO
Model Selection

The `oml.automl.ModelSelection` class automatically selects an Oracle Machine Learning algorithm according to the selected score metric and then tunes that algorithm.

```python
>>> # Show the best tuned model train score and the corresponding hyperparameters.
... # Use the tuned model to get the score on the test set.
... # An example invocation of model tuning with user-defined search ranges for selected hyperparameters on a new tuning metric (f1_macro).
... # Some hyperparameter search ranges need to be defined based on the training data set sizes (for example, the number of samples and features). You can use placeholders specific to the data set, such as `$nr_features` and `$nr_samples`, as the search ranges.
```
The `oml.automl.ModelSelection` class supports classification and regression algorithms. To use the `oml.automl.ModelSelection` class, you specify a data set and the number of algorithms you want to tune.

The `select` method of the class returns the best model out of the models considered.

For information on the parameters and methods of the class, invoke `help(oml.automl.ModelSelection)` or see Oracle Machine Learning for Python API Reference.

**Example 8-4 Using the `oml.automl.ModelSelection` Class**

This example creates an `oml.automl.ModelSelection` object and then uses the object to select and tune the best model.

```python
import oml
from oml import automl
import pandas as pd
from sklearn import datasets

Load the breast cancer data set.
bcs = datasets.load_breast_cancer()
bcs_data = bcs.data.astype(float)
X = pd.DataFrame(bcs_data, columns = bcs.feature_names)
y = pd.DataFrame(bcs.target, columns = ['TARGET'])

Create the database table BreastCancer.
oml_df = oml.create(pd.concat([X, y], axis=1),
 table = 'BreastCancer')

Split the data set into training and test data.
train, test = oml_df.split(ratio=(0.8, 0.2), seed = 1234)
X, y = train.drop('TARGET'), train['TARGET']
X_test, y_test = test.drop('TARGET'), test['TARGET']

Create an automated model selection object with f1_macro as the # score_metric argument.
ms = automl.ModelSelection(mining_function='classification',
 score_metric='f1_macro', parallel=4)

Run model selection to get the top (k=1) predicted algorithm # (defaults to the tuned model).
select_model = ms.select(X, y, k=1)

Show the selected and tuned model.
select_model

Score on the selected and tuned model.
"{:.2f}".format(select_model.score(X_test, y_test))

Drop the database table.
oml.drop('BreastCancer')
```
Listing for This Example

```python
>>> import oml
>>> from oml import automl
>>> import pandas as pd
>>> from sklearn import datasets

>>> # Load the breast cancer data set.
... bc = datasets.load_breast_cancer()
>>> bc_data = bc.data.astype(float)
>>> X = pd.DataFrame(bc_data, columns = bc.feature_names)
>>> y = pd.DataFrame(bc.target, columns = ['TARGET'])

>>> # Create the database table BreastCancer.
>>> oml_df = oml.create(pd.concat([X, y], axis=1),
... table = 'BreastCancer')

>>> # Split the data set into training and test data.
... train, test = oml_df.split(ratio=(0.8, 0.2), seed = 1234)
>>> X, y = train.drop('TARGET'), train['TARGET']
>>> X_test, y_test = test.drop('TARGET'), test['TARGET']

>>> # Create an automated model selection object with f1_macro as the
... # score_metric argument.
... ms = automl.ModelSelection(mining_function='classification',
... score_metric='f1_macro', parallel=4)

>>> # Run the model selection to get the top (k=1) predicted algorithm
... # (defaults to the tuned model).
... select_model = ms.select(X, y, k=1)

>>> # Show the selected and tuned model.
... select_model

Algorithm Name: Support Vector Machine

Mining Function: CLASSIFICATION

Target: TARGET

Settings:

<table>
<thead>
<tr>
<th>setting name</th>
<th>setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ALGO_NAME</td>
<td>ALGO_SUPPORT_VECTOR_MACHINES</td>
</tr>
<tr>
<td>1 CLAS_WEIGHTS_BALANCED</td>
<td>OFF</td>
</tr>
<tr>
<td>2 ODMS_DETAILS</td>
<td>ODMS_DISABLE</td>
</tr>
<tr>
<td>3 ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
</tr>
<tr>
<td>4 ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
</tr>
<tr>
<td>5 PREP_AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>6 SVMS_COMPLEXITY_FACTOR</td>
<td>10</td>
</tr>
<tr>
<td>7 SVMS_CONV_TOLERANCE</td>
<td>.0001</td>
</tr>
<tr>
<td>8 SVMS_KERNEL_FUNCTION</td>
<td>SVMS_GAUSSIAN</td>
</tr>
<tr>
<td>9 SVMS_NUM_PIVOTS</td>
<td>...</td>
</tr>
<tr>
<td>10 SVMS_STD_DEV</td>
<td>5.3999999999999995</td>
</tr>
</tbody>
</table>

Attributes:
```
area error
compactness error
concave points error
concavity error
fractal dimension error
mean area
mean compactness
mean concave points
mean concavity
mean fractal dimension
mean perimeter
mean radius
mean smoothness
mean symmetry
mean texture
perimeter error
radius error
smoothness error
symmetry error
texture error
worst area
worst compactness
worst concave points
worst concavity
worst fractal dimension
worst perimeter
worst radius
worst smoothness
worst symmetry
worst texture
Partition: NO

>>> # Score on the selected and tuned model.
... "{:2}".format(select_model.score(X_test, y_test))
'0.99'

>>> # Drop the database table.
... oml.drop('BreastCancer')
Embedded Python Execution

Embedded Python Execution is a feature of Oracle Machine Learning for Python that allows you to invoke user-defined Python functions directly in an Oracle database instance.

Embedded Python Execution is described in the following topics:

- About Embedded Python Execution
- Python API for Embedded Python Execution
- REST API for Embedded Python Execution
- SQL API for Embedded Python Execution with On-premises Database
- SQL API for Embedded Python Execution with Autonomous Database

Embedded Python Execution is available on:

- Oracle Autonomous Database, where pre-installed Python packages can be used, via Python, REST and SQL APIs.
- Oracle Database on premises, ExaCS, ExaC@C, DBCS, and Oracle Database deployed in a compute instance, where the user can custom install third-party packages to use with EPE, via Python and SQL APIs.

About Embedded Python Execution

With Embedded Python Execution, you can invoke user-defined Python functions in Python engines spawned and managed by the Oracle database instance.

Embedded Python Execution is available in Oracle Autonomous Database and in on-premises Oracle Database.

- In Oracle Autonomous Database, you can use:
  - An OML Notebooks Python interpreter session (see Run a Notebook with Python Interpreter)
  - REST API for Embedded Python Execution
  - SQL API for Embedded Python Execution with Autonomous Database
- In an on-premises Oracle Database, you can use:
  - Python API for Embedded Python Execution
  - SQL API for Embedded Python Execution with On-premises Database

Comparison of the Embedded Python Execution APIs

The table below compares the four Embedded Python Execution APIs.

The APIs are:

- Embedded Python Execution API
- REST API for Embedded Python Execution (for use with Oracle Autonomous Database)
- SQL API for Embedded Python Execution with On-Premises Oracle Database.
- SQL API for Embedded Python Execution with Oracle Autonomous Database

The APIs share many functions, but they differ in some ways because of the different environments. For example, the APIs available for Autonomous Database provide an API for operating in a web environment.

The procedures and functions are part of the `PYQSYS` and `SYS` schemas.

<table>
<thead>
<tr>
<th>Category</th>
<th>Python API for Embedded Python Execution</th>
<th>REST API for Embedded Python Execution</th>
<th>SQL APIs for Embedded Python Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded Python Execution function</td>
<td><code>oml.do_eval function</code></td>
<td>POST /api/py-scripts/v1/do-eval/ {scriptIdName}</td>
<td>• <code>pyqEval Function</code> (Autonomous Database) (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td>See Run a User-Defined Python Function.</td>
<td>See Run a Python Function.</td>
<td>• <code>pyqEval Function</code> (On-Premises Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST /api/py-scripts/v1/do-eval/ {scriptIdName}/{ownerName}</td>
<td>See Run a Python Function with Script Owner Specified.</td>
</tr>
<tr>
<td>Embedded Python Execution function</td>
<td><code>oml.table_apply function</code></td>
<td>POST /api/py-scripts/v1/table-apply/ {scriptIdName}</td>
<td>• <code>pyqTableEval Function</code> (Autonomous Database) (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td>See Run a User-Defined Python Function on the Specified Data.</td>
<td>See Run a Python Function on Specified Data.</td>
<td>• <code>pyqTableEval Function</code> (On-Premises Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST /api/py-scripts/v1/table-apply/ {scriptIdName}/ {ownerName}</td>
<td>See Run a Python Function on Specified Data with Script Owner Specified.</td>
</tr>
<tr>
<td>Embedded Python Execution function</td>
<td><code>oml.group_apply function</code></td>
<td>POST /api/py-scripts/v1/group-apply/ {scriptIdName}</td>
<td>• <code>pyqGroupEval Function</code> (Autonomous Database) (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td>See Run a Python Function on Data Grouped By Column Values.</td>
<td>See Run a Python Function on Grouped Data.</td>
<td>• <code>pyqGroupEval Function</code> (On-Premises Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST /api/py-scripts/v1/group-apply/ {scriptIdName}/ {ownerName}</td>
<td>See Run a Python Function on Grouped Data with Script Owner Specified.</td>
</tr>
<tr>
<td>Category</td>
<td>Python API for Embedded Python Execution</td>
<td>REST API for Embedded Python Execution</td>
<td>SQL APIs for Embedded Python Execution</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>------------------------------------------</td>
<td>----------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>Embedded Python Execution function</td>
<td>oml.row_apply function</td>
<td>POST /api/py-scripts/v1/row-apply/{scriptName}</td>
<td>• pyqRowEval Function (Autonomous Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Run a Python Function on Chunks of Rows.</td>
<td>• pyqRowEval Function (On-Premises Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST /api/py-scripts/v1/row-apply/{scriptName}/ {ownerName}</td>
<td>See Run a Python Function on Chunks of Rows with Script Owner Specified.</td>
</tr>
<tr>
<td>Embedded Python Execution function</td>
<td>oml.index_apply function</td>
<td>POST /api/py-scripts/v1/index-apply/{scriptName}</td>
<td>• pyqIndexEval Function (Autonomous Database) (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Run a Python Function Multiple Times.</td>
<td>• The API for on-premises Oracle Database has no pyqIndexEval function. Use pyqGroupEval Function (On-Premises Database) instead.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POST /api/py-scripts/v1/index-apply/{scriptName}/ {ownerName}</td>
<td>See Run a Python Function Multiple Times with Script Owner Specified.</td>
</tr>
<tr>
<td>Job status API</td>
<td>NA</td>
<td>GET /api/py-scripts/v1/jobs/{jobId}</td>
<td>• pyqJobStatus Function (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Retrieve Asynchronous Job Status.</td>
<td>• NA (on-premises database)</td>
</tr>
<tr>
<td>Job result API</td>
<td>NA</td>
<td>GET /api/py-scripts/v1/jobs/{jobId}/result</td>
<td>• pyqJobResult Function (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Retrieve Asynchronous Job Result.</td>
<td>• NA (on-premises database)</td>
</tr>
<tr>
<td>Script repository</td>
<td>oml.script.dir function</td>
<td>GET /api/py-scripts/v1/scripts</td>
<td>List the scripts by querying the ALL_PYQ_SCRIPTS View and the USER_PYQ_SCRIPTS View.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See List Available User-Defined Python Functions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>List Scripts.</td>
<td></td>
</tr>
<tr>
<td>Script repository</td>
<td>oml.script.create function</td>
<td>NA</td>
<td>• pyqScriptCreate Procedure (Autonomous Database) (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Create and Store a User-Defined Python Function.</td>
<td>• pyqScriptCreate Procedure (On-Premises Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Script repository</td>
<td>oml.script.drop function</td>
<td>NA</td>
<td>• pyqScriptDrop Procedure (Autonomous Database) (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Drop a User-Defined Python Function from the Repository.</td>
<td>• pyqScriptDrop Procedure (On-Premises Database) (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Script repository</td>
<td>oml.script.load function</td>
<td>NA</td>
<td>• Scripts are loaded in the SQL APIs when the function is called.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Load a User-Defined Python Function.</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Python API for Embedded Python Execution</td>
<td>REST API for Embedded Python Execution</td>
<td>SQL APIs for Embedded Python Execution</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------------------</td>
<td>---------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>Script repository</td>
<td>NA</td>
<td>NA</td>
<td>ALL_PYQ_SCRIPTS View</td>
</tr>
<tr>
<td>Script repository</td>
<td>NA</td>
<td>NA</td>
<td>USER_PYQ_SCRIPTS View</td>
</tr>
<tr>
<td>Script repository and datastore</td>
<td>oml.grant function</td>
<td>NA</td>
<td>• pyqGrant procedure (Oracle Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• pyqGrant procedure (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See About the Script Repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Script repository and datastore</td>
<td>oml.revoke function</td>
<td>NA</td>
<td>• pyqRevoke procedure (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• pyqRevoke procedure (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See About the Script Repository.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datastore</td>
<td>NA</td>
<td>NA</td>
<td>ALL_PYQ_DATASTORES View</td>
</tr>
<tr>
<td>Datastore</td>
<td>NA</td>
<td>NA</td>
<td>ALL_PYQ_DATASTORE_CON面临的 View</td>
</tr>
<tr>
<td>Datastore</td>
<td>NA</td>
<td>NA</td>
<td>USER_PYQ_DATASTORES View</td>
</tr>
<tr>
<td>Authorization - Access Control Lists</td>
<td>NA</td>
<td>NA</td>
<td>• pyqAppendHostACE Procedure (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NA (on-premises database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(On-premises, the authorization is related to logging into the user schema.)</td>
</tr>
<tr>
<td>Authorization - Access Control Lists</td>
<td>NA</td>
<td>NA</td>
<td>• pyqRemoveHostACE Procedure (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NA (on-premises database)</td>
</tr>
<tr>
<td>Authorization - Access Control Lists</td>
<td>NA</td>
<td>NA</td>
<td>• pyqGetHostACE Function (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NA (on-premises database)</td>
</tr>
<tr>
<td>Authorization - Tokens</td>
<td>NA</td>
<td>See Authenticate.</td>
<td>• pyqSetAuthToken Procedure (Autonomous Database)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NA (on-premises database)</td>
</tr>
</tbody>
</table>
## Embedded Python Execution Views

OML4Py includes a number of database views that contain information about datastores and about the scripts and user-defined functions in the datastores. You can use these views with the Embedded Python Execution APIs to work with the datastores and their contents.

<table>
<thead>
<tr>
<th>View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ALL_PYQ_DATASTORES View</strong></td>
<td>Contains information about the datastores available to the current user.</td>
</tr>
<tr>
<td><strong>ALL_PYQ_DATASTORE_CONTENTS View</strong></td>
<td>Contains information about the objects in the datastores available to the current user.</td>
</tr>
<tr>
<td><strong>USER_PYQ_DATASTORES View</strong></td>
<td>Contains information about the datastores owned by the current user.</td>
</tr>
<tr>
<td><strong>ALL_PYQ_SCRIPTS View</strong></td>
<td>Describes the scripts that are available to the current user.</td>
</tr>
<tr>
<td><strong>USER_PYQ_SCRIPTS View</strong></td>
<td>Describes the user-defined Python functions in the script repository that are owned by the current user.</td>
</tr>
</tbody>
</table>

### ALL_PYQ_DATASTORE_CONTENTS View

The **ALL_PYQ_DATASTORE_CONTENTS View** contains information about the contents of datastores that are available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOWNER</td>
<td>VARCHAR2(128)</td>
<td>NULL permitted</td>
<td>The owner of the datastore.</td>
</tr>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NULL permitted</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>OBJNAME</td>
<td>VARCHAR2(128)</td>
<td>NULL permitted</td>
<td>The name of an object in the datastore.</td>
</tr>
<tr>
<td>CLASS</td>
<td>VARCHAR2(128)</td>
<td>NULL permitted</td>
<td>The class of a Python object in the datastore.</td>
</tr>
<tr>
<td>OBJSIZE</td>
<td>NUMBER</td>
<td>NULL permitted</td>
<td>The size of an object in the datastore.</td>
</tr>
<tr>
<td>LENGTH</td>
<td>NUMBER</td>
<td>NULL permitted</td>
<td>The length of an object in the datastore. The length is 1 for all objects unless the object is a <code>list</code>, <code>dict</code>, <code>pandas.DataFrame</code>, or <code>oml.DataFrame</code>, in which case it is equal to <code>len(obj)</code>.</td>
</tr>
<tr>
<td>Column</td>
<td>Datatype</td>
<td>Null</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>NROW</td>
<td>NUMBER</td>
<td>NULL</td>
<td>permitted</td>
</tr>
<tr>
<td>NCOL</td>
<td>NUMBER</td>
<td>NULL</td>
<td>permitted</td>
</tr>
</tbody>
</table>

**Example 9-1  Selecting from the ALL_PYQ_DATASTORE_CONTENTS View**

This example selects all columns from the `ALL_PYQ_DATASTORE_CONTENTS` view. For the creation of the datastores in this example, see Example 5-14.

```
SELECT * FROM ALL_PYQ_DATASTORE_CONTENTS
```

```
<table>
<thead>
<tr>
<th>DSOWNER</th>
<th>DSNAME</th>
<th>OBJNAME</th>
<th>CLASS</th>
<th>OBJSIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_pydata</td>
<td>oml_boston</td>
<td>oml.DataFrame</td>
<td>1073</td>
</tr>
<tr>
<td></td>
<td>506</td>
<td>506</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_pydata</td>
<td>oml_diabetes</td>
<td>oml.DataFrame</td>
<td>964</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td>442</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_pydata</td>
<td>wine</td>
<td>Bunch</td>
<td>24177</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_pymodel</td>
<td>regr1</td>
<td>LinearRegression</td>
<td>706</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_pymodel</td>
<td>regr2</td>
<td>oml.glm</td>
<td>5664</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_wine_data</td>
<td>oml_wine</td>
<td>oml.DataFrame</td>
<td>1410</td>
</tr>
<tr>
<td></td>
<td>178</td>
<td>178</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
```

**ALL_PYQ_DATASTORES View**

The `ALL_PYQ_DATASTORES` view contains information about the datastores that are available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOWNER</td>
<td>VARCHAR2(256)</td>
<td>NULL</td>
<td>permitted</td>
</tr>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NULL</td>
<td>permitted</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NULL</td>
<td>permitted</td>
</tr>
<tr>
<td>DSSIZE</td>
<td>NUMBER</td>
<td>NULL</td>
<td>permitted</td>
</tr>
</tbody>
</table>
### Example 9-2  Selecting from the ALL_PYQ_DATASTORES View

This example selects all columns from the ALL_PYQ_DATASTORES view. It then selects only the DSNAME and GRANTABLE columns from the view. For the creation of the datastores in these examples, see Example 5-14.

```sql
SELECT * FROM ALL_PYQ_DATASTORES;
```

<table>
<thead>
<tr>
<th>DSOWNER</th>
<th>DSNAME</th>
<th>NOBJ</th>
<th>DSSIZE</th>
<th>CDATE</th>
<th>DESCRIPTION</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML_USER</td>
<td>ds_pydata</td>
<td>3</td>
<td>26214</td>
<td>18-MAY-19</td>
<td>python datasets</td>
<td>F</td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_pymodel</td>
<td>2</td>
<td>6370</td>
<td>18-MAY-19</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>OML_USER</td>
<td>ds_wine_data</td>
<td>1</td>
<td>1410</td>
<td>18-MAY-19</td>
<td>wine dataset</td>
<td>F</td>
</tr>
</tbody>
</table>

This example selects only the DSNAME and GRANTABLE columns from the view.

```sql
SELECT DSNAME, GRANTABLE FROM ALL_PYQ_DATASTORES;
```

<table>
<thead>
<tr>
<th>DSNAME</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds_pydata</td>
<td>F</td>
</tr>
<tr>
<td>ds_pymodel</td>
<td>T</td>
</tr>
<tr>
<td>ds_wine_data</td>
<td>F</td>
</tr>
</tbody>
</table>

### ALL_PYQ_SCRIPTS View

The ALL_PYQ_SCRIPTS view contains information about the user-defined Python functions in the OML4Py script repository that are available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWNER</td>
<td>VARCHAR2(256)</td>
<td>NULL</td>
<td>The owner of the user-defined Python function.</td>
</tr>
<tr>
<td>NAME</td>
<td>VARCHAR2(128)</td>
<td>NULL</td>
<td>The name of the user-defined Python function.</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>CLOB</td>
<td>NULL</td>
<td>The user-defined Python function.</td>
</tr>
</tbody>
</table>
Example 9-3  Selecting from the ALL_PYQ_SCRIPTS View

This example selects the owner and the name of the user-defined Python function from the ALL_PYQ_SCRIPTS view. For the creation of the user-defined Python functions, see Example 9-27.

```
SELECT owner, name FROM ALL_PYQ_SCRIPTS;
```

<table>
<thead>
<tr>
<th>OWNER</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML_USER</td>
<td>create_iris_table</td>
</tr>
<tr>
<td>OML_USER</td>
<td>tmpqfun2</td>
</tr>
<tr>
<td>PYQSYS</td>
<td>tmpqfun2</td>
</tr>
</tbody>
</table>

This example selects the name of the user-defined Python function and the function definition from the view.

```
SELECT name, script FROM ALL_PYQ_SCRIPTS WHERE name = 'create_iris_table';
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>SCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>create_iris_table</td>
<td>&quot;def create_iris_table(): from sklearn.datasets import load_iris ...</td>
</tr>
</tbody>
</table>

USER_PYQ_DATASTORES View

The USER_PYQ_DATASTORES view contains information about the datastores that are owned by the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NULL</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NULL</td>
<td>The number of objects in the datastore.</td>
</tr>
<tr>
<td>DSSIZE</td>
<td>NUMBER</td>
<td>NULL</td>
<td>The size of the datastore.</td>
</tr>
<tr>
<td>CDATE</td>
<td>DATE</td>
<td>NULL</td>
<td>The date on which the datastore was created.</td>
</tr>
<tr>
<td>GRANTABLE</td>
<td>VARCHAR2(1)</td>
<td>NULL</td>
<td>Whether or not the read privilege to the datastore may be granted. The value in this column is either T for True or F for False.</td>
</tr>
</tbody>
</table>
Example 9-4  Selecting from the USER_PYQ_DATASTORES View

This example selects all columns from the USER_PYQ_DATASTORES view. For the creation of the datastores in these examples, see Example 5-14.

SELECT * FROM USER_PYQ_DATASTORES;

<table>
<thead>
<tr>
<th>DNAME</th>
<th>NOBJ</th>
<th>DSIZE</th>
<th>CDATE</th>
<th>DESCRIPTION</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds_wine_data</td>
<td>1</td>
<td>1410</td>
<td>18-MAY-19</td>
<td>wine dataset</td>
<td>F</td>
</tr>
<tr>
<td>ds_pydata</td>
<td>3</td>
<td>26214</td>
<td>18-MAY-19</td>
<td>python datasets</td>
<td>F</td>
</tr>
<tr>
<td>ds_pymodel</td>
<td>2</td>
<td>6370</td>
<td>18-MAY-19</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

This example selects only the DSNAME and GRANTABLE columns from the view.

SELECT DSNAME, GRANTABLE FROM USER_PYQ_DATASTORES;

<table>
<thead>
<tr>
<th>DNAME</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds_wine_data</td>
<td>F</td>
</tr>
<tr>
<td>ds_pydata</td>
<td>F</td>
</tr>
<tr>
<td>ds_pymodel</td>
<td>T</td>
</tr>
</tbody>
</table>

USER_PYQ_SCRIPTS View

This view contains information about the user-defined Python functions in the OML4Py script repository that are owned by the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the user-defined Python function.</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>CLOB</td>
<td>NULL permitted</td>
<td>The user-defined Python function.</td>
</tr>
</tbody>
</table>

Example 9-5  Selecting from the USER_PYQ_SCRIPTS View

This example selects all columns from USER_PYQ_SCRIPTS. For the creation of the user-defined Python functions, see Example 9-27.

SELECT * FROM USER_PYQ_SCRIPTS;

<table>
<thead>
<tr>
<th>NAME</th>
<th>SCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>create_iris_table</td>
<td>&quot;def create_iris_table(): from sklearn.datasets import load_iris ...</td>
</tr>
</tbody>
</table>

Chapter 9
Embedded Python Execution Views
Python API for Embedded Python Execution

You can invoke user-defined Python functions directly in an Oracle database instance by using Embedded Python Execution functions.

- About Embedded Python Execution
- Run a User-Defined Python Function
- Run a User-Defined Python Function on the Specified Data
- Run a Python Function on Data Grouped By Column Values
- Run a User-Defined Python Function on Sets of Rows
- Run a User-Defined Python Function Multiple Times
- Save and Manage User-Defined Python Functions in the Script Repository

About Embedded Python Execution

You may choose to run your functions in a data-parallel or task-parallel manner in one or more of these Python engines. In data-parallel processing, you partition the data and invoke the same user-defined Python function of each data subset using one or more Python engines. In task-parallel processing, you invoke a user-defined function multiple times in one or more Python engines with a unique index passed in as an argument; for example, you may use task parallelism for Monte Carlo simulations in which you use the index to set a random seed.

The following table lists the Python functions for Embedded Python Execution.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.do_eval</td>
<td>Runs a user-defined Python function in a Python engine spawned and managed by the database environment.</td>
</tr>
<tr>
<td>oml.group_apply</td>
<td>Partitions a database table by the values in one or more columns and runs the provided user-defined Python function on each partition.</td>
</tr>
<tr>
<td>oml.index_apply</td>
<td>Runs a Python function multiple times, passing in a unique index of the invocation to the user-defined function.</td>
</tr>
<tr>
<td>oml.row_apply</td>
<td>Partitions a database table into sets of rows and runs the provided user-defined Python function on the data in each set.</td>
</tr>
<tr>
<td>oml.table_apply</td>
<td>Runs a Python function on data in the database as a single pandas.DataFrame in a single Python engine.</td>
</tr>
</tbody>
</table>

About Special Control Arguments

Special control arguments control what happens before or after the running of the function that you pass to an Embedded Python Execution function. You specify a special control argument with the **kwargs parameter of a function such as oml.do_eval. The control arguments are not passed to the function specified by the func argument of that function.
## Table 9-1 Special Control Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml_input_type</td>
<td>Identifies the type of input data object that you are supplying to the <code>func</code> argument.</td>
</tr>
<tr>
<td></td>
<td>The input types are the following:</td>
</tr>
<tr>
<td></td>
<td>· pandas.DataFrame</td>
</tr>
<tr>
<td></td>
<td>· numpy.recarray</td>
</tr>
<tr>
<td></td>
<td>· 'default' (the default value)</td>
</tr>
<tr>
<td></td>
<td>If all columns are numeric, then default type is a 2-dimensional numpy.ndarray of type numpy.float64. Otherwise, the default type is a pandas.DataFrame.</td>
</tr>
<tr>
<td>oml_na_omit</td>
<td>Controls the handling of missing values in the input data. If you specify <code>oml_na_omit = True</code>, then rows that contain missing values are removed from the input data. If all of the rows contain missing values, then the input data is an empty oml.DataFrame. The default value is False.</td>
</tr>
</tbody>
</table>

### About Output

When a user-defined Python function runs in OML4Py, by default it returns the Python objects returned by the function. Also, OML4Py captures all matplotlib.figure.Figure objects created by the user-defined Python function and converts them into PNG format.

If `graphics = True`, the Embedded Python Execution functions return oml.embed.data_image._DataImage objects. The oml.embed.data_image._DataImage class contains Python objects and PNG images. Calling the method `__repr__()` displays the PNG images and prints out the Python object. By default, `.dat` returns the Python object that the user-defined Python function returned; `.img` returns a list containing PNG image data for each figure.

### About the Script Repository

Embedded Python Execution includes the ability to create and store user-defined Python functions in the OML4Py script repository, grant or revoke the read privilege to a user-defined Python function, list the available user-defined Python functions, load user-defined Python functions into the Python environment, or drop a user-defined Python function from the script repository.

Along with whatever other actions a user-defined Python function performs, it can also create, retrieve, and modify Python objects that are stored in OML4Py datastores.

In Embedded Python Execution, a user-defined Python function runs in one or more Python engines spawned and managed by the database environment. The engines are dynamically started and managed by the database. From the same user-defined Python function you can get structured data and PNG images.

You can make the user-defined Python function either private or global. A global function is available to any user. A private function is available only to the owner or to users to whom the owner of the function has granted the read privilege.
Run a User-Defined Python Function

Use the oml.do_eval function to run a user-defined input function that explicitly retrieves data or for which external data is not required.

The oml.do_eval function runs a user-defined Python function in a Python engine spawned and managed by the database environment.

The syntax of the oml.do_eval function is the following:

oml.do_eval(func, func_owner=None, graphics=False, **kwargs)

The func argument is the function to run. It may be one of the following:

- A Python function
- A string that is the name of a user-defined Python function in the OML4Py script repository
- A string that defines a Python function
- An oml.script.script.Callable object returned by the oml.script.load function

The optional func_owner argument is a string or None (the default) that specifies the owner of the registered user-defined Python function when argument func is a registered user-defined Python function name.

The graphics argument is a boolean that specifies whether to look for images. The default value is False.

With the **kwargs parameter, you can pass additional arguments to the func function. Special control arguments, which start with oml_, are not passed to the function specified by func, but instead control what happens before or after the running of the function.

See Also: About Special Control Arguments

The oml.do_eval function returns a Python object or an oml.embed.data_image._DataImage. If no image is rendered in the user-defined Python function, oml.do_eval returns whatever Python object is returned by the function. Otherwise, it returns an oml.embed.data_image._DataImage object.

See Also: About Output

Example 9-6 Using the oml.do_eval Function

This example defines a Python function that returns a Pandas DataFrame with the columns ID and RES. It then passes that function to the oml.do_eval function.

```python
import pandas as pd
import oml

def return_df(num, scale):
 import pandas as pd
 id = list(range(0, int(num)))
 res = [i/scale for i in id]
```
return pd.DataFrame({"ID":id, "RES":res})

res = oml.do_eval(func=return_df, scale = 100, num = 10)
type(res)

res

**Listing for This Example**

```python
>>> import pandas as pd
>>> import oml
>>> def return_df(num, scale):
... id = list(range(0, int(num)))
... res = [i/scale for i in id]
... return pd.DataFrame({"ID":id, "RES":res})
...

>>> res = oml.do_eval(func=return_df, scale = 100, num = 10)
>>> type(res)
<class 'pandas.core.frame.DataFrame'>

>>> res
 ID RES
0 0.0 0.00
1 1.0 0.01
2 2.0 0.02
3 3.0 0.03
4 4.0 0.04
5 5.0 0.05
6 6.0 0.06
7 7.0 0.07
8 8.0 0.08
9 9.0 0.09
```

### Run a User-Defined Python Function on the Specified Data

Use the `oml.table_apply` function to run a Python function on data that you specify with the `data` parameter.

The `oml.table_apply` function runs a user-defined Python function in a Python engine spawned and managed by the database environment. With the `func` parameter, you can supply a Python function or you can specify the name of a user-defined Python function in the OML4Py script repository.

The syntax of the function is the following:

```python
oml.table_apply(data, func, func_owner=None, graphics=False, **kwargs)
```

The `data` argument is an `oml.DataFrame` that contains the data that the `func` function operates on.
The `func` argument is the function to run. It may be one of the following:

- A Python function
- A string that is the name of a user-defined Python function in the OML4Py script repository
- A string that defines a Python function
- An `oml.script.script.Callable` object returned by the `oml.script.load` function

The optional `func_owner` argument is a string or `None` (the default) that specifies the owner of the registered user-defined Python function when argument `func` is a registered user-defined Python function name.

The `graphics` argument is a boolean that specifies whether to look for images. The default value is `False`.

With the `**kwargs` parameter, you can pass additional arguments to the `func` function. Special control arguments, which start with `oml_`, are not passed to the function specified by `func`, but instead control what happens before or after the execution of the function.

See Also: About Special Control Arguments

The `oml.table_apply` function returns a Python object or an `oml.embed.data_image._DataImage`. If no image is rendered in the user-defined Python function, `oml.table_apply` returns whatever Python object is returned by the function. Otherwise, it returns an `oml.embed.data_image._DataImage` object.

See Also: About Output

Example 9-7    Using the `oml.table_apply` Function

This example builds a regression model using in-memory data, and then uses the `oml.table_apply` function to predict using the model on the first 10 rows of the IRIS table.

```python
import oml
import pandas as pd
from sklearn import datasets
from sklearn import linear_model

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()

x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])

y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

Drop the IRIS database table if it exists.
try:
 oml.drop('IRIS')
except:
```
The code snippet below demonstrates how to create an IRIS database table, build a regression model Using in-memory data, and predict using the model on the first 10 rows of the IRIS table.

```python
Create the IRIS database table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Build a regression model using in-memory data.
iris = oml_iris.pull()
regr = linear_model.LinearRegression()
regr.fit(iris[['Sepal_Width', 'Petal_Length', 'Petal_Width']],
 iris[['Sepal_Length']])
regr.coef_

Use oml.table_apply to predict using the model on the first 10
rows of the IRIS table.
def predict(dat, regr):
 import pandas as pd
 pred = regr.predict(dat[['Sepal_Width', 'Petal_Length',
 'Petal_Width']])
 return pd.concat([dat, pd.DataFrame(pred)], axis=1)

res = oml.table_apply(data=oml_iris.head(n=10),
 func=predict, regr=regr)
res
```

**Listing for This Example**

```python
>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets
>>> from sklearn import linear_model

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()

>>> x = pd.DataFrame(iris.data,
... columns = ['Sepal Length','Sepal Width',
 'Petal Length','Petal Width'])

>>> y = pd.DataFrame(list(map(lambda x:
... {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
... columns = ['Species'])

>>> # Drop the IRIS database table if it exists.
... try:
... oml.drop('IRIS')
... except:
... pass

>>> # Create the IRIS database table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Build a regression model using in-memory data.
... iris = oml_iris.pull()

>>> regr = linear_model.LinearRegression()
```

This example shows how to use the OML (Oracle Machine Learning) library to perform regression analysis on the iris dataset, creating a database table and using it to train and test a linear regression model.
>>> regr.fit(iris[['Sepal_Width', 'Petal_Length', 'Petal_Width']], iris[['Sepal_Length']])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
>>> regr.coef_
array([[ 0.65083716,  0.70913196, -0.55648266]])

# Use oml.table_apply to predict using the model on the first 10 rows of the IRIS table.

def predict(dat, regr):
    import pandas as pd
    pred = regr.predict(dat[['Sepal_Width', 'Petal_Length', 'Petal_Width']])
    return pd.concat([dat, pd.DataFrame(pred)], axis=1)

res = oml.table_apply(data=oml_iris.head(n=10), func=predict, regr=regr)

Run a Python Function on Data Grouped By Column Values

Use the oml.group_apply function to group the values in a database table by one or more columns and then run a user-defined Python function on each group.

The oml.group_apply function runs a user-defined Python function in a Python engine spawned and managed by the database environment. The oml.group_apply function passes the oml.DataFrame specified by the data argument to the user-defined func function as its first argument. The index argument to oml.group_apply specifies the columns of the oml.DataFrame by which the database groups the data for processing by the user-defined Python function. The oml.group_apply function can use data-parallel execution, in which one or more Python engines perform the same Python function on different groups of data.
The syntax of the function is the following.

```python
oml.group_apply(data, index, func, func_owner=None, parallel=None, orderby=None, graphics=False, **kwargs)
```

The `data` argument is an `oml.DataFrame` that contains the in-database data that the `func` function operates on.

The `index` argument is an `oml.DataFrame` object, the columns of which are used to group the data before sending it to the `func` function.

The `func` argument is the function to run. It may be one of the following:

- A Python function
- A string that is the name of a user-defined Python function in the OML4Py script repository
- A string that defines a Python function
- An `oml.script.script.Callable` object returned by the `oml.script.load` function

The optional `func_owner` argument is a string or `None` (the default) that specifies the owner of the registered user-defined Python function when argument `func` is a registered user-defined Python function name.

The `parallel` argument is a boolean, an `int`, or `None` (the default) that specifies the preferred degree of parallelism to use in the Embedded Python Execution job. The value may be one of the following:

- A positive integer greater than or equal to 1 for a specific degree of parallelism
- `False`, `None`, or `0` for no parallelism
- `True` for the default data parallelism

The optional `orderby` argument is an `oml.DataFrame`, `oml.Float`, or `oml.String` that specifies the ordering of the group partitions.

The `graphics` argument is a boolean that specifies whether to look for images. The default value is `False`.

With the `**kwargs` parameter, you can pass additional arguments to the `func` function. Special control arguments, which start with `oml_`, are not passed to the function specified by `func`, but instead control what happens before or after the running of the function.

**See Also:** About Special Control Arguments

The `oml.group_apply` function returns a dict of Python objects or a dict of `oml.embed.data_image._DataImage` objects. If no image is rendered in the user-defined Python function, `oml.group_apply` returns a dict of Python object returned by the function. Otherwise, it returns a dict of `oml.embed.data_image._DataImage` objects.

**See Also:** About Output
Example 9-8 Using the oml.group_apply Function

This example defines some functions and calls oml.group_apply for each function.

```python
import pandas as pd
from sklearn import datasets
import oml

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2:'virginica'}[x], iris.target)),
 columns = ['Species'])

Drop the IRIS database table if it exists.
try:
 oml.drop('IRIS')
except:
 pass

Create the IRIS database table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

Define a function that counts the number of rows and returns a
dataframe with the species and the count.
def group_count(dat):
 import pandas as pd
 return pd.DataFrame([(dat['Species'][0], dat.shape[0])],
 columns = ['Species', 'COUNT'])

Select the Species column to use as the index argument.
index = oml.DataFrame(oml_iris['Species'])

Group the data by the Species column and run the user-defined
function for each species.
res = oml.group_apply(oml_iris, index, func=group_count,
 oml_input_type="pandas.DataFrame")
res

Define a function that builds a linear regression model, with
Petal_Width as the feature and Petal_Length as the target value,
and that returns the model after fitting the values.
def build_lm(dat):
 from sklearn import linear_model
 lm = linear_model.LinearRegression()
 X = dat[['Petal_Width']]
 y = dat[['Petal_Length']]
 lm.fit(X, y)
 return lm
```
# Run the model for each species and return an objectList in
# dict format with a model for each species.
mod = oml.group_apply(oml_iris[:,["Petal_Length", "Petal_Width",
                               "Species"]], index, func=build_lm)

# The output is a dict of key-value pairs for each species and model.
type(mod)

# Sort dict by the key species.
{k: mod[k] for k in sorted(mod.keys())}

Listing for This Example

```python
>>> import pandas as pd
>>> from sklearn import datasets
>>> import oml

Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()

Select the Species column to use as the index argument.
... index = oml.DataFrame(oml_iris['Species'])

Group the data by the Species column and run the user-defined
function for each species.
... res = oml.group_apply(oml_iris, index, func=group_count,
... oml_input_type="pandas.DataFrame")
>>> res
{'setosa': Species COUNT
0 setosa 50, 'versicolor': Species COUNT
50 'versicolor'

The output is a dict of key-value pairs for each species and model.
type(mod)

Sort dict by the key species.
{k: mod[k] for k in sorted(mod.keys())}
```

Chapter 9
Python API for Embedded Python Execution
0 versicolor 50, 'virginica': Species COUNT
0 virginica 50

>>> # Define a function that builds a linear regression model, with
... # Petal_Width as the feature and Petal_Length as the target
... # value, and that returns the model after fitting the values.
... def build_lm(dat):
...     from sklearn import linear_model
...     lm = linear_model.LinearRegression()
...     X = dat["Petal_Width"]
...     y = dat["Petal_Length"]
...     lm.fit(X, y)
...     return lm
...

>>> # Run the model for each species and return an objectList in
... # dict format with a model for each species.
... mod = oml.group_apply(oml_iris[:,["Petal_Length", "Petal_Width",
...                                   "Species"]], index,
...     func=build_lm)

>>> # The output is a dict of key-value pairs for each species and
... # model.
... type(mod)
<class 'dict'>

>>> # Sort dict by the key species.
... {k: mod[k] for k in sorted(mod.keys())}
{'setosa': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False), 'versicolor': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False), 'virginica': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)}

Run a User-Defined Python Function on Sets of Rows

Use the oml.row_apply function to chunk data into sets of rows and then run a user-defined Python function on each chunk.

The oml.row_apply function passes the oml.DataFrame specified by the data argument as the first argument to the user-defined func Python function. The rows argument specifies the maximum number of rows of the oml.DataFrame to assign to each chunk. The last chunk of rows may have fewer rows than the number specified.

The oml.row_apply function runs the Python function in a database-spawned Python engine. The function can use data-parallel execution, in which one or more Python engines perform the same Python function on different chunks of the data.

The syntax of the function is the following.

oml.row_apply(data, func, func_owner=None, rows=1, parallel=None, graphics=False, **kwargs)
The **data** argument is an `oml.DataFrame` that contains the data that the **func** function operates on.

The **func** argument is the function to run. It may be one of the following:

- A Python function
- A string that is the name of a user-defined Python function in the OML4Py script repository
- A string that defines a Python function
- An `oml.script.script.Callable` object returned by the `oml.script.load` function

The optional **func_owner** argument is a string or `None` (the default) that specifies the owner of the registered user-defined Python function when argument **func** is a registered user-defined Python function name.

The **rows** argument is an **int** that specifies the maximum number of rows to include in each chunk.

The **parallel** argument is a boolean, an **int**, or `None` (the default) that specifies the preferred degree of parallelism to use in the Embedded Python Execution job. The value may be one of the following:

- A positive integer greater than or equal to 1 for a specific degree of parallelism
- False, None, or 0 for no parallelism
- True for the default data parallelism

The **graphics** argument is a boolean that specifies whether to look for images. The default value is True.

With the **kwargs** parameter, you can pass additional arguments to the **func** function. Special control arguments, which start with `oml_`, are not passed to the function specified by **func**, but instead control what happens before or after the running of the function.

**See Also:** About Special Control Arguments

The `oml.row_apply` function returns a `pandas.DataFrame` or a list of `oml.embed.data_image._DataImage` objects. If no image is rendered in the user-defined Python function, `oml.row_apply` returns a `pandas.DataFrame`. Otherwise, it returns a list of `oml.embed.data_image._DataImage` objects.

**See Also:** About Output

**Example 9-9 Using the oml.row_apply Function**

This example creates the **x** and **y** variables using the iris data set. It then creates the persistent database table **IRIS** and the `oml.DataFrame` object `oml_iris` as a proxy for the table.

The example builds a regression model based on iris data. It defines a function that predicts the Petal_Width values based on the Sepal_Length, Sepal_Width, and Petal_Length columns of the input data. It then concatenates the Species column, the Petal_Width column, and the predicted Petal_Width as the object to return. Finally, the example calls the `oml.row_apply` function to apply the `make_pred()` function on each 4-row chunk of the input data.

```python
import oml
import pandas as pd
```
from sklearn import datasets
from sklearn import linear_model

# Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()
x = pd.DataFrame(iris.data,
    columns = ['Sepal_Length', 'Sepal_Width',
               'Petal_Length', 'Petal_Width'])
y = pd.DataFrame(list(map(lambda x:
    {0: 'setosa', 1: 'versicolor',
     2:'virginica'}[x], iris.target)),
    columns = ['Species'])

# Drop the IRIS database table if it exists.
try:
    oml.drop('IRIS')
except:
    pass

# Create the IRIS database table and the proxy object for the table.
onl_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

# Build a regression model to predict Petal_Width using in-memory data.
# iris = oml_iris.pull()
regr = linear_model.LinearRegression()
regr.fit(iris[['Sepal_Length', 'Sepal_Width', 'Petal_Length']],
         iris[['Petal_Width']])
regr.coef_

# Define a Python function.
def make_pred(dat, regr):
    import pandas as pd
    import numpy as np
    pred = regr.predict(dat[['Sepal_Length',
                              'Sepal_Width',
                              'Petal_Length']])
    return pd.concat([dat[['Species', 'Petal_Width']],
                      pd.DataFrame(pred,
                               columns=['Pred_Petal_Width'])],
                     axis=1)

input_data = oml_iris.split(ratio=(0.9, 0.1), strata_cols='Species')[1]
input_data.crosstab(index = 'Species').sort_values('Species')

res = oml.row_apply(input_data, rows=4, func=make_pred,
                     regr=regr, parallel=2)
type(res)
res

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets
>>> from sklearn import linear_model

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()
>>> x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
>>> y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> # Drop the IRIS database table if it exists.
... try:
...     oml.drop('IRIS')
... except:
...     pass

>>> # Create the IRIS database table and the proxy object for the table.
>>> oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Build a regression model to predict Petal_Width using in-memory data.
... # data.
... iris = oml_iris.pull()
>>> regr = linear_model.LinearRegression()
>>> regr.fit(iris[['Sepal_Length', 'Sepal_Width', 'Petal_Length']],
...          iris[['Petal_Width']])
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
normalize=False)
>>> regr.coef_
array([[-0.20726607,  0.22282854,  0.52408311]])

>>> # Define a Python function.
... def make_pred(dat, regr):
...     import pandas as pd
...     import numpy as np
...     pred = regr.predict(dat[['Sepal_Length',
...                             'Sepal_Width',
...                             'Petal_Length']])
...     return pd.concat([dat[['Species', 'Petal_Width']],
...                       pd.DataFrame(pred,
...                                   columns=['Pred_Petal_Width'])],
...                      axis=1)

>>> input_data = oml_iris.split(ratio=(0.9, 0.1), strata_cols='Species')[1]
>>> input_data.crosstab(index = 'Species').sort_values('Species')

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>setosa</td>
</tr>
<tr>
<td>1</td>
<td>versicolor</td>
</tr>
<tr>
<td>2</td>
<td>virginica</td>
</tr>
</tbody>
</table>

>>> res = oml.row_apply(input_data, rows=4, func=make_pred, regr=regr,
... columns=['Species',
...          'Petal_Width',
...          'Pred_Petal_Width'])
Run a User-Defined Python Function Multiple Times

Use the `oml.index_apply` function to run a Python function multiple times in Python engines spawned by the database environment.

The syntax of the function is the following:

```python
oml.index_apply(times, func, func_owner=None, parallel=None, graphics=False, **kwargs)
```

The `times` argument is an `int` that specifies the number of times to run the `func` function.

The `func` argument is the function to run. It may be one of the following:

- A Python function
- A string that is the name of a user-defined Python function in the OML4Py script repository
- A string that defines a Python function
- An `oml.script.script.Callable` object returned by the `oml.script.load` function

The optional `func_owner` argument is a string or `None` (the default) that specifies the owner of the registered user-defined Python function when argument `func` is a registered user-defined Python function name.

The `parallel` argument is a boolean, an `int`, or `None` (the default) that specifies the preferred degree of parallelism to use in the Embedded Python Execution job. The value may be one of the following:

- A positive integer greater than or equal to 1 for a specific degree of parallelism
- `False`, `None`, or 0 for no parallelism
True for the default data parallelism

The graphics argument is a boolean that specifies whether to look for images. The default value is True.

With the **kwargs parameter, you can pass additional arguments to the func function. Special control arguments, which start with oml_, are not passed to the function specified by func, but instead control what happens before or after the running of the function.

See Also: About Special Control Arguments

The oml.index_apply function returns a list of Python objects or a list of oml.embed.data_image._DataImage objects. If no image is rendered in the user-defined Python function, oml.index_apply returns a list of the Python objects returned by the user-defined Python function. Otherwise, it returns a list of oml.embed.data_image._DataImage objects.

See Also: About Output

Example 9-10 Using the oml.index_apply Function

This example defines a function that returns the mean of a set of random numbers the specified number of times.

```python
import oml
import pandas as pd

def compute_random_mean(index):
 import numpy as np
 import scipy
 from statistics import mean
 np.random.seed(index)
 res = np.random.random((100,1))*10
 return mean(res[1])
res = oml.index_apply(times=10, func=compute_random_mean)
type(res)
res
```

Listing for This Example

```bash
>>> import oml
>>> import pandas as pd
>>> def compute_random_mean(index):
... import numpy as np
... import scipy
... from statistics import mean
... np.random.seed(index)
... res = np.random.random((100,1))*10
... return mean(res[1])
...
... res = oml.index_apply(times=10, func=compute_random_mean)
>>> type(res)
<class 'list'>
>>> res
[7.203244934421581, 0.25926231827891333, 7.081478226181048, ...
```
Save and Manage User-Defined Python Functions in the Script Repository

The OML4Py script repository stores user-defined Python functions for use with Embedded Python Execution functions.

The script repository is a component of the Embedded Python Execution functionality.

The following topics describe the script repository and the Python functions for managing user-defined Python functions:

- About the Script Repository
- Create and Store a User-Defined Python Function
- List Available User-Defined Python Functions
- Load a User-Defined Python Function
- Drop a User-Defined Python Function from the Repository

About the Script Repository

Use these functions to store, manage, and use user-defined Python functions in the script repository.

The following table lists the Python functions for the script repository.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.script.create</td>
<td>Registers a single user-defined Python function in the script repository.</td>
</tr>
<tr>
<td>oml.script.dir</td>
<td>Lists the user-defined Python functions present in the script repository.</td>
</tr>
<tr>
<td>oml.script.drop</td>
<td>Drops a user-defined Python function from the script repository.</td>
</tr>
<tr>
<td>oml.script.load</td>
<td>Loads a user-defined Python function from the script repository into a Python session.</td>
</tr>
</tbody>
</table>

The following table lists the Python functions for managing access to user-defined Python functions in the script repository, and to datastores and datastore objects.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml.grant</td>
<td>Grants read privilege permission to another user to a datastore or user-defined Python function owned by the current user.</td>
</tr>
<tr>
<td>oml.revoke</td>
<td>Revokes the read privilege permission that was granted to another user to a datastore or user-defined Python function owned by the current user.</td>
</tr>
</tbody>
</table>
Create and Store a User-Defined Python Function

Use the `oml.script.create` function to add a user-defined Python function to the script repository.

With the `oml.script.create` function, you can store a single user-defined Python function in the OML4Py script repository. You can then specify the user-defined Python function as the `func` argument to the Embedded Python Execution functions `oml.do_eval`, `oml.group_apply`, `oml.index_apply`, `oml.row_apply`, and `oml.table_apply`.

You can make the user-defined Python function either private or global. A private user-defined Python function is available only to the owner, unless the owner grants the read privilege to other users. A global user-defined Python function is available to any user.

The syntax of `oml.script.create` is the following:

```python
oml.script.create(name, func, is_global=False, overwrite=False)
```

The `name` argument is a string that specifies a name for the user-defined Python function in the Python script repository.

The `func` argument is the Python function to run. The argument can be a Python function or a string that contains the definition of a Python function. You must specify a string in an interactive session if `readline` cannot get the command history.

The `is_global` argument is a boolean that specifies whether to create a global user-defined Python function. The default value is `False`, which indicates that the user-defined Python function is a private function available only to the current session user. When `is_global` is `True`, it specifies that the function is global and every user has the read privilege and the execute privilege to it.

The `overwrite` argument is a boolean that specifies whether to overwrite the user-defined Python function if it already exists. The default value is `False`.

**Example 9-11 Using the oml.script.create Function**

This example stores two user-defined Python functions in the script repository. It then lists the contents of the script repository using different arguments to the `oml.script.dir` function.

```python
from sklearn import datasets
import pandas as pd
import oml

Load the iris data set and create a pandas.DataFrame for it.
iris = datasets.load_iris()

Create objects containing data for the user-defined functions to use.
x = pd.DataFrame(iris.data,
 columns = ['Sepal_Length','Sepal_Width',
 'Petal_Length','Petal_Width'])

y = pd.DataFrame(list(map(lambda x:
 {0: 'setosa', 1: 'versicolor',
 2: 'virginica'}[x], iris.target)),
 columns = ['Species'])
```
# Create the IRIS database table and the proxy object for the table.
oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

# Define a function.
def build_lm1(dat):
    from sklearn import linear_model
    regr = linear_model.LinearRegression()
    import pandas as pd
    dat = pd.get_dummies(dat, drop_first=True)
    X = dat["Sepal_Width", "Petal_Length", "Petal_Width",
            "Species_versicolor", "Species_virginica"]
    y = dat["Sepal_Length"]
    regr.fit(X, y)
    return regr

# Create a private user-defined Python function.
oml.script.create("MYLM", func=build_lm1)

# Run the user-defined Python function.
res = oml.table_apply(oml_iris, func="MYLM",
    oml_input_type="pandas.DataFrame")
res
res.pull().coef_

# Define another function.
def build_lm2(dat):
    from sklearn import linear_model
    regr = linear_model.LinearRegression()
    X = dat["Petal_Width"]
    y = dat["Petal_Length"]
    regr.fit(X, y)
    return regr

# Create a global user-defined Python function, available to any user.
oml.script.create("GLBLM", func=build_lm2, is_global=True)

# Run the user-defined Python function.
res = oml.table_apply(oml_iris, func="GLBLM",
    oml_input_type="pandas.DataFrame")
res

# Define the same function, specified as a string.
func_str = '''def build_lm2(dat):
    from sklearn import linear_model
    regr = linear_model.LinearRegression()
    X = dat["Petal_Width"]
    y = dat["Petal_Length"]
    regr.fit(X, y)
    return regr
'''

# Overwrite the previous GLBLM user-defined Python function
# in the script repository.
oml.script.create("GLBLM", func=build_lm2, is_global=True,
overwrite=True)
res = oml.table_apply(oml_iris, func="GLBLM",
    oml_input_type="pandas.DataFrame")
res

# List the user-defined Python functions in the script repository
# available to the current user only.
oml.script.dir()

# List all of the user-defined Python functions available to the
# current user.
oml.script.dir(sctype='all')

# List the user-defined Python functions available to all users.
oml.script.dir(sctype='global')

# Drop the IRIS database table.
oml.drop('IRIS')

Listing for This Example

>>> import oml
>>> import pandas as pd
>>> from sklearn import datasets
>>> from sklearn import linear_model

>>> # Load the iris data set and create a pandas.DataFrame for it.
... iris = datasets.load_iris()

>>> # Create objects containing data for the user-defined Python
... # functions to use.
... x = pd.DataFrame(iris.data,
...                  columns = ['Sepal_Length','Sepal_Width',
...                             'Petal_Length','Petal_Width'])
... y = pd.DataFrame(list(map(lambda x:
...                            {0: 'setosa', 1: 'versicolor',
...                             2:'virginica'}[x], iris.target)),
...                  columns = ['Species'])

>>> # Create the IRIS database table and the proxy object for the table.
... oml_iris = oml.create(pd.concat([x, y], axis=1), table = 'IRIS')

>>> # Define a function.
... def build_lml(dat):
...    from sklearn import linear_model
...    regr = linear_model.LinearRegression()
...    import pandas as pd
...    dat = pd.get_dummies(dat, drop_first=True)
...    X = dat[['Sepal_Width', 'Petal_Length', 'Petal_Width',
      'Species_versicolor', 'Species_virginica']]  
...    y = dat[['Sepal_Length']]  
...    regr.fit(X, y)  
...    return regr  
...
>>> # Create a private user-defined Python function.
... oml.script.create("MYLM", func=build_lm1)

>>> # Run the user-defined Python function.
... res = oml.table_apply(oml_iris, func="MYLM",
...   oml_input_type="pandas.DataFrame")

>>> res
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

>>> res.pull().coef_
array([[ 0.49588894, 0.82924391, -0.31515517, -0.72356196,
      -1.02349781]])

>>> # Define another function.
... def build_lm2(dat):
...   from sklearn import linear_model
...   regr = linear_model.LinearRegression()
...   X = dat["Petal_Width"]
...   y = dat["Petal_Length"]
...   regr.fit(X, y)
...   return regr
...

>>> # Create a global user-defined Python function available to any user.
... oml.script.create("GLBLM", func=build_lm2, is_global=True)

>>> # Run the user-defined Python function.
... res = oml.table_apply(oml_iris, func="GLBLM",
...                   oml_input_type="pandas.DataFrame")

>>> res
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

>>> # Define the same function, specified as a string.
... func_str = """def build_lm2(dat):
...   from sklearn import linear_model
...   regr = linear_model.LinearRegression()
...   X = dat["Petal_Width"]
...   y = dat["Petal_Length"]
...   regr.fit(X, y)
...   return regr
... """

>>> # Overwrite the previous GLBLM user-defined Python function
>>> # in the script repository.
... oml.script.create("GLBLM", func=build_lm2, is_global=True,   
...   overwrite=True)

>>> res = oml.table_apply(oml_iris, func="GLBLM",
...                   oml_input_type="pandas.DataFrame")

>>> res
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
normalize=False)

>>> # List the user-defined Python functions in the script repository
... # available to the current user only.
... oml.script.dir()
### List Available User-Defined Python Functions

Use the `oml.script.dir` function to list the user-defined Python functions in the OML4Py script repository.

The syntax of the `oml.script.dir` function is the following:

```python
oml.script.dir(name=None, regex_match=False, sctype='user')
```

The `name` argument is a string that specifies the name of a user-defined Python function or a regular expression to match to the names of user-defined Python functions in the script repository. When `name` is `None`, this function returns the type of user-defined Python functions specified by argument `sctype`.

The `regex_match` argument is a boolean that indicates whether argument `name` is a regular expression to match. The default value is `False`.

The `sctype` argument is a string that specifies the type of user-defined Python function to list. The value may be one of the following.

- `user`, to specify the user-defined Python functions available to the current user only.
- `grant`, to specify the user-defined Python functions to which the read and execute privilege have been granted by the current user to other users.
- `granted`, to specify the user-defined Python functions to which the read and execute privilege have been granted by other users to the current user.
- `global`, to specify all of the global user-defined Python functions created by the current user.
- `all`, to specify all of the user-defined Python functions available to the current user.

The `oml.script.dir` function returns a `pandas.DataFrame` that contains the columns `NAME` and `SCRIPT` and, optionally, the columns `OWNER` and `GRANTEE`.
Example 9-12  Using the oml.script.dir Function

This example lists the contents of the script repository using different arguments to the 
oml.script.dir function. For the creation of the user-defined Python functions, see Example 9-11.

```python
import oml

List the user-defined Python functions in the script
repository available to the current user only.
开局.headline
oml.script.dir()

List all of the user-defined Python functions available
to the current user.
开局.headline
oml.script.dir(sctype='all')

List the user-defined Python functions available to all users.
开局.headline
oml.script.dir(sctype='global')

List the user-defined Python functions that contain the letters
BL and that are available to all users.
开局.headline
oml.script.dir(name="BL", regex_match=True, sctype='all')
```

### Listing for This Example

```bash
>>> import oml

>>> # List the user-defined Python functions in the script
... # repository available to the current user only.
... oml.script.dir()
NAME SCRIPT
0 MYLM def build_lm1(dat):
 from sklearn import l...

>>> # List all of the user-defined Python functions available
... to the current user.
... oml.script.dir(sctype='all')
OWNER NAME SCRIPT
0 PYQSYS GLBLM def build_lm2(dat):
 from sklearn import l...
1 OML_USER MYLM def build_lm1(dat):
 from sklearn import l...

>>> # List the user-defined Python functions available to all users.
>>> oml.script.dir(sctype='global')
NAME SCRIPT
0 GLBLM def build_lm2(dat):
 from sklearn import l...

>>> # List the user-defined Python functions that contain the letters
... # BL and that are available to all users.
... oml.script.dir(name="BL", regex_match=True, sctype='all')
OWNER NAME SCRIPT
0 PYQSYS GLBLM def build_lm2(dat):
 from sklearn import l...
```
Load a User-Defined Python Function

Use the `oml.script.load` function to load a user-defined Python function from the script repository into a Python session.

The syntax of the function is the following:

```python
oml.script.load(name, owner=None)
```

The `name` argument is a string that specifies the name of the user-defined Python function to load from the OML4Py script repository.

The optional `owner` argument is a string that specifies the owner of the user-defined Python function or `None` (the default). If `owner=None`, then this function finds and loads the user-defined Python function that matches `name` in the following order:

1. A user-defined Python function that the current user created.
2. A global user-defined Python function that was created by another user.

The `oml.script.load` function returns an `oml.script.script.Callable` object that references the named user-defined Python function.

**Example 9-13  Using the `oml.script.load` Function**

This example loads user-defined Python functions from the script repository and pulls them to the local Python session. For the creation of the user-defined Python functions, see Example 9-11.

```python
import oml

Load the MYLM and GLBLM user-defined Python functions.
MYLM = oml.script.load(name="MYLM")
GMYLM = oml.script.load(name="GLBLM")

Pull the models to the local Python session.
MYLM(oml_iris.pull()).coef_
GMYLM(oml_iris pull())
```

**Listing for This Example**

```python
>>> import oml

>>> # Load the MYLM and GLBLM user-defined Python functions.
>>> MYLM = oml.script.load(name="MYLM")
>>> GMYLM = oml.script.load(name="GLBLM")

>>> # Pull the models to the local Python session.
... MYLM(oml_iris.pull()).coef_
array([[0.49588894, 0.82924391, -0.31515517, -0.72356196, -1.02349781]])

>>> GMYLM(oml_iris.pull())
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
```
Drop a User-Defined Python Function from the Repository

Use the oml.script.drop function to remove a user-defined Python function from the script repository.

The oml.script.drop function drops a user-defined Python function from the OML4Py script repository.

The syntax of the function is the following:

\[
\text{oml.script.drop}(\text{name}, \text{is\_global}=\text{False}, \text{silent}=\text{False})
\]

The name argument is a string that specifies the name of the user-defined Python function in the script repository.

The is\_global argument is a boolean that specifies whether the user-defined Python function to drop is a global or a private user-defined Python function. The default value is False, which indicates a private user-defined Python function.

The silent argument is a boolean that specifies whether to display an error message when oml.script.drop encounters an error in dropping the specified user-defined Python function. The default value is False.

**Example 9-14 Using the oml.script.drop Function**

This example drops user-defined Python functions the MYLM private user-defined Python function and the GLBLM global user-defined Python function from the script repository. For the creation of the user-defined Python functions, see Example 9-11.

```python
import oml

List the available user-defined Python functions.
oml.script.dir(sctype="all")

Drop the private user-defined Python function.
oml.script.drop("MYLM")

Drop the global user-defined Python function.
oml.script.drop("GLBLM", is_global=True)

List the available user-defined Python functions again.
oml.script.dir(sctype="all")
```

**Listing for This Example**

```python
>>> import oml

>>> # List the available user-defined Python functions.
... oml.script.dir(sctype="all")

OWNER NAME SCRIPT
0 PYQSYS GLBLM def build_lm2(dat):
 from sklearn import lin...
1 OML_USER MYLM def build_lm1(dat):
 from sklearn import lin...

>>> # Drop the private user-defined Python function.
```
... oml.script.drop("MYLM")

>>> # Drop the global user-defined Python function.
... oml.script.drop("GLBLM", is_global=True)

>>> # List the available user-defined Python functions again.
... oml.script.dir(sctype="all")

Empty DataFrame
Columns: [OWNER, NAME, SCRIPT]
Index: []

SQL API for Embedded Python Execution with On-premises Database

SQL API for Embedded Python Execution with On-premises Database has SQL interfaces for Embedded Python Execution and for datastore and script repository management.

The following topics describe the OML4Py SQL interfaces for Embedded Python Execution.

- About the SQL API for Embedded Python Execution with On-Premises Database
- pyqEval Function (On-Premises Database)
- pyqTableEval Function (On-Premises Database)
- pyqRowEval Function (On-Premises Database)
- pyqGroupEval Function (On-Premises Database)
- pyqGrant Function (On-Premises Database)
- pyqRevoke Function (On-Premises Database)
- pyqScriptCreate Procedure (On-Premises Database)
- pyqScriptDrop Procedure (On-Premises Database)

About the SQL API for Embedded Python Execution with On-Premises Database

With the SQL API, you can run user-defined Python functions in one or more separate Python engines in an Oracle database environment, manage user-defined Python functions in the OML4Py script repository, and control access to and get information about datastores and about user-defined Python functions in the script repository.

You can use the SQL interface for Embedded Python Execution with an on-premises Oracle Database instance.

OML4Py provides the following types of SQL functions and procedures.

- SQL table functions for running user-defined Python functions in one or more database-spawned and managed Python engines; the user-defined Python functions may reference Python objects in OML4Py datastores and use third-party packages installed with the database server machine Python engines.
- PL/SQL procedures for creating and dropping user-defined Python functions in the OML4Py script repository.
PL/SQL procedures for granting and revoking the read privilege to datastores and the datastore objects in them, and to user-defined Python functions in the OML4Py script repository.

The following table lists the SQL functions for Embedded Python Execution and the PL/SQL procedures for managing datastores and user-defined Python functions.

<table>
<thead>
<tr>
<th>Function or Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyqEval function</td>
<td>Runs a user-defined Python function on the data passed in.</td>
</tr>
<tr>
<td>pyqGroupEval function</td>
<td>Groups data by one or more columns and runs a user-defined Python function on each group.</td>
</tr>
<tr>
<td>pyqTableEval function</td>
<td>Runs a user-defined Python function on data in the database.</td>
</tr>
<tr>
<td>pyqRowEval function</td>
<td>Runs the specified number of rows in each invocation of the user-defined Python function in parallel processes.</td>
</tr>
<tr>
<td>pyqGrant procedure</td>
<td>Grants the read privilege to another user to a user-defined Python function owned by the current user.</td>
</tr>
<tr>
<td>pyqRevoke procedure</td>
<td>Revokes the read privilege that was granted to another user to a user-defined Python function owned by the current user.</td>
</tr>
<tr>
<td>pyqScriptCreate procedure</td>
<td>Creates a user-defined Python function in the script repository.</td>
</tr>
<tr>
<td>pyqScriptDrop procedure</td>
<td>Drops a user-defined Python function from the script repository.</td>
</tr>
</tbody>
</table>

**pyqEval Function (On-Premises Database)**

This topic describes the `pyqEval` function when used in an on-premises Oracle Database. The `pyqEval` function runs a user-defined Python function that explicitly retrieves data or for which external data is to be automatically loaded for the function.

You can pass arguments to the Python function with the `PAR_QRY` parameter.

The `pyqEval` function does not automatically receive any data from the database. The Python function generates the data that it uses or it explicitly retrieves it from a data source such as Oracle Database, other databases, or flat files.

The Python function can return a boolean, a dict, a float, an int, a list, a str, a tuple or a pandas.DataFrame object. You define the form of the returned value with the `OUT_QRY` parameter.

**Syntax**

```sql
pyqEval (PAR_QRY VARCHAR2 IN, OUT_QRY VARCHAR2 IN, EXP_NAM VARCHAR2 IN)
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| PAR_QRY   | A JSON string that contains additional parameters to pass to the user-defined Python function specified by the EXP_NAM parameter. Special control arguments, which start with `oml_`, are not passed to the function specified by EXP_NAM, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as `pandas.DataFrame`, use: '`,`"oml_input_type":"pandas.DataFrame";'>
| OUT_QRY   | The format of the output returned by the function. It can be one of the following:  
  - A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded.  
  - The name of a table or view to use as a prototype. If using a table or view owned by another user, use the format `<owner name>`,<table/view name>. You must have read access to the specified table or view.  
  - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.  
  - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. |
| EXP_NAM   | The name of a user-defined Python function in the OML4Py script repository. |

Returns

Function `pyqEval` returns a table that has the structure specified by the `OUT_QRY` parameter value.

Example 9-15 Using the `pyqEval` Function

This example defines Python functions and stores them in the OML4Py script repository. It invokes the `pyqEval` function on the user-defined Python functions.

In a PL/SQL block, create an unnamed Python function that is stored in script repository with the name `pyqFun1`.

```sql
BEGIN
 sys.pyqScriptCreate('pyqFun1', 'func = lambda: "Hello World from a lambda!"',
 FALSE, TRUE); -- V_GLOBAL, V_OVERWRITE
END;
/
```

Invoke the `pyqEval` function, which runs the user-defined Python function and returns the results as XML.

```sql
SELECT name, value
FROM table(pyqEval(
 NULL,
```
The output is the following.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>&lt;root&gt;&lt;str&gt;Hello World from a lambda!&lt;/str&gt;&lt;/root&gt;</td>
</tr>
</tbody>
</table>

Drop the user-defined Python function.

BEGIN
    sys.pyqScriptDrop('pyqFun1');
END;
/

Define a Python function that returns a numpy.ndarray that is stored in script repository with the name pyqFun2.

BEGIN
    sys.pyqScriptCreate('pyqFun2',
        'def return_frame():
            import numpy as np
            import pickle
            z = np.array([[y for y in zip([str(x) + "demo" for x in range(10)],
                                     [float(x)/10 for x in range(10)],
                                     [x for x in range(10)],
                                     [bool(x%2) for x in range(10)],
                                     [pickle.dumps(x) for x in range(10)],
                                     ["test"+str(x**2) for x in range(10)]]),
                           dtype=[("a", "U10"), ("b", "f8"), ("c", "i4"),
                                  ("d", "?"), ("e", "S20"), ("f", "O"))])
            return z');
END;
/

Invoke the pyqEval function, which runs the pyqFun2 user-defined Python function.

SELECT *
FROM table(pyqEval(
    NULL,
    '{"A":"varchar2(10)"}, "B":"number",
    "C":"number", "D":"number",
    "E":"raw(10)"}, "F": "varchar2(10)" },
    'pyqFun2'));

The output is the following.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Chapter 9 SQL API for Embedded Python Execution with On-premises Database</td>
<td>9-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drop the user-defined Python function.

```
BEGIN
 sys.pyqScriptDrop('pyqFun2');
END;
/
```

**pyqTableEval Function (On-Premises Database)**

This topic describes the *pyqTableEval* function when used in an on-premises Oracle Database. The *pyqTableEval* function runs a user-defined Python function on data from an Oracle Database table.

You pass data to the Python function with the *INP_NAM* parameter. You can pass arguments to the Python function with the *PAR_QRY* parameter.

The Python function can return a *boolean*, a *dict*, a *float*, an *int*, a *list*, a *str*, a *tuple* or a *pandas.DataFrame* object. You define the form of the returned value with the *OUT_QRY* parameter.

**Syntax**

```
pyqTableEval(
 INP_NAM VARCHAR2 IN,
 PAR_QRY VARCHAR2 IN,
 OUT_QRY VARCHAR2 IN,
 EXP_NAM VARCHAR2 IN)
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>INP_NAM</strong></td>
<td>The name of a table or view that specifies the data to pass to the Python function specified by the <em>EXP_NAM</em> parameter. If using a table or view owned by another user, use the format <code>&lt;owner name&gt;.&lt;table/view name&gt;</code>. You must have read access to the specified table or view.</td>
</tr>
</tbody>
</table>
### Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_QRY</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the EXP_NAM parameter. Special control arguments, which start with <code>oml_</code>, are not passed to the function specified by EXP_NAM, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as <code>pandas.DataFrame</code>, use: <code>&quot;{&quot;oml_input_type&quot;:&quot;pandas.DataFrame&quot;}</code></td>
</tr>
</tbody>
</table>
| OUT_QRY   | The format of the output returned by the function. It can be one of the following:  
  - A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded.  
  - The name of a table or view to use as a prototype. If using a table or view owned by another user, use the format `<owner name>.<table/view name>`. You must have read access to the specified table or view.  
  - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.  
  - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. |
| EXP_NAM   | The name of a user-defined Python function in the OML4Py script repository. |

### Returns

Function `pyqTableEval` returns a table that has the structure specified by the OUT_QRY parameter value.

### Example 9-16 Using the pyqTableEval Function

This example stores a user-defined Python function in the OML4Py script repository with the name `create_iris_table`. It uses the function to create a database table as the result of a `pyqEval` function invocation. It creates another user-defined Python function that fits a linear regression model to the input data and saves the model in the OML4Py datastore. The example runs a SQL SELECT statement that invokes the `pyqTableEval` function, which invokes the function stored in the script repository with the name `myLinearRegressionModel`.

In a PL/SQL block, define the Python function `create_iris_table` and store it in the script repository with the name `create_iris_table`, overwriting any existing user-defined Python function stored in the script repository with the same name.

The `create_iris_table` function imports and loads the iris data set, creates two `pandas.DataFrame` objects, and then returns the concatenation of those objects.

```python
BEGIN
 sys.pyqScriptCreate('create_iris_table',
 'def create_iris_table():
 from sklearn.datasets import load_iris
 import pandas as pd
 iris = load_iris()
 x = pd.DataFrame(iris.data, columns = ["Sepal_Length","Sepal_Width",
```
Define the Python function `fit_model` and store it with the name `myLinearRegressionModel` as a private function in the script repository, overwriting any existing user-defined Python function stored with that name.

The `fit_model` function fits a regression model to the input data `dat` and then saves the fitted model as an object specified by the `modelName` argument to the datastore specified by the `datastoreName` argument. The `fit_model` function returns the fitted model in a string format.

By default, Python objects are saved to a new datastore with the specified `datastoreName`. To save an object to an existing datastore, either set the `overwrite` or `append` argument to `True` in the `oml.ds.save` invocation.

BEGIN
    sys.pygScriptCreate('myLinearRegressionModel',
        'def fit_model(dat, modelName, datastoreName):
            import oml
            from sklearn import linear_model
            regr = linear_model.LinearRegression()
            regr.fit(dat.loc[:, ["Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width"]], dat.loc[:, ["Petal_Width"]])
            oml.ds.save(objs={modelName:regr}, name=datastoreName, overwrite=True)
            return str(regr),
            FALSE, TRUE);
    END;

Run a SELECT statement that invokes the `pyqTableEval` function. The `INP_NAM` parameter of the `pyqTableEval` function specifies the IRIS table as the data to pass to the Python function. The `PAR_QRY` parameter specifies the names of the model and datastore to pass to the Python function, and specifies the `oml_connect` control argument to establish an OML4Py connection to the database during the invocation of the user-defined Python function. The `OUT_QRY` parameter specifies returning the value in XML format and the `EXP_NAM` parameter specifies the `myLinearRegressionModel` function in the script repository as the Python
function to invoke. The XML output is a CLOB; you can call `set long [length]` to get more output.

```sql
SELECT *
FROM table(pyqTableEval(
 'IRIS',
 '{"modelName":"linregr",
 "datastoreName":"pymodel",
 "oml_connect":1}',
 'XML',
 'myLinearRegressionModel'));
```

The output is the following:

```
NAME VALUE
----- --
<root><str>LinearRegression()</str></root>
```

**pyqRowEval Function (On-Premises Database)**

This topic describes the `pyqRowEval` function when used in an on-premises Oracle Database. The `pyqRowEval` function chunks data into sets of rows and then runs a user-defined Python function on each chunk.

The `pyqRowEval` function passes the data specified by the `INP_NAM` parameter to the Python function specified by the `EXP_NAM` parameter. You can pass arguments to the Python function with the `PAR_QRY` parameter.

The `ROW_NUM` parameter specifies the maximum number of rows to pass to each invocation of the Python function. The last set of rows may have fewer rows than the number specified.

The Python function can return a `boolean`, a `dict`, a `float`, an `int`, a `list`, a `str`, a `tuple` or a `pandas.DataFrame` object. You may define the form of the returned value with the `OUT_QRY` parameter.

**Syntax**

```sql
pyqRowEval (
 INP_NAM VARCHAR2 IN
 PAR_QRY VARCHAR2 IN
 OUT_QRY VARCHAR2 IN
 ROW_NUM NUMBER IN
 EXP_NAM VARCHAR2 IN
)
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_NAM</td>
<td>The name of a table or view that specifies the data to pass to the Python function specified by the EXP_NAM parameter. If using a table or view owned by another user, use the format &lt;owner name&gt;.&lt;table/view name&gt;. You must have read access to the specified table or view.</td>
</tr>
<tr>
<td>PAR_QRY</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the EXP_NAM parameter. Special control arguments, which start with oml_, are not passed to the function specified by EXP_NAM, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use: '{&quot;oml_input_type&quot;:&quot;pandas.DataFrame&quot;}'</td>
</tr>
</tbody>
</table>
| OUT_QRY    | The format of the output returned by the function. It can be one of the following:  
  - A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded.  
  - The name of a table or view to use as a prototype. If using a table or view owned by another user, use the format <owner name>.<table/view name>. You must have read access to the specified table or view.  
  - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.  
  - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. |
| ROW_NUM    | The number of rows to include in each invocation of the Python function. |
| EXP_NAM    | The name of a user-defined Python function in the OML4Py script repository. |

Returns

Function pyqRowEval returns a table that has the structure specified by the OUT_QRY parameter value.

Example 9-17 Using the pyqRowEval Function

This example loads the Python model linregr to predict row chunks of sample iris data. The model is created and saved in the datastore pymodel in Example 9-16.

The example defines a Python function and stores it in the OML4Py script repository. It uses the user-defined Python function to create a database table as the result of the pyqEval function. It defines a Python function that runs a prediction function on a model loaded from the OML4Py datastore. It then invokes the pyqTableEval function to invoke the function on chunks of rows from the database table.

In a PL/SQL block, define the function sample_iris_table and store it in the script repository. The function loads the iris data set, creates two pandas.DataFrame objects, and then returns a sample of the concatenation of those objects.

BEGIN
  sys.pyqScriptCreate('sample_iris_table',
  
END;
'def sample_iris_table(size):
    from sklearn.datasets import load_iris
    import pandas as pd
    iris = load_iris()
    x = pd.DataFrame(iris.data, columns = ['"Sepal_Length",
        "Sepal_Width","Petal_Length","Petal_Width"
    )
    y = pd.DataFrame(list(map(lambda x: {0:"setosa", 1:
        "versicolor", 2: "virginica"}[x], iris.target)),
    columns = ["Species"]
    return pd.concat([y, x], axis=1).sample(int(size))',
    FALSE, TRUE); -- V_GLOBAL, V_OVERWRITE
END;
/

Create the SAMPLE_IRIS table in the database as the result of a SELECT statement, which invokes the pyqEval function on the sample_iris_table user-defined Python function saved in the script repository with the same name. The sample_iris_table function returns an iris data sample of size size.

CREATE TABLE sample_iris AS
    SELECT *
    FROM TABLE(pyqEval(
        '{"size":20}',
        '{"Species":"varchar2(10)","Sepal_Length":"number",
            "Sepal_Width":"number","Petal_Length":"number",
            "Petal_Width":"number"}',
        'sample_iris_table'));

Define the Python function predict_model and store it with the name linregrPredict in the script repository. The function predicts the data in dat with the Python model specified by the modelName argument, which is loaded from the datastore specified by the datastoreName argument. The predictions are finally concatenated and returned with dat as the object that the function returns.

BEGIN
    sys.pyqScriptCreate('linregrPredict',
        'def predict_model(dat, modelName, datastoreName):
            import oml
            import pandas as pd
            objs = oml.ds.load(name=datastoreName, to_globals=False)
            pred = objs[modelName].predict(dat[['"Sepal_Length","Sepal_Width",
                "Petal_Length"']])
            return pd.concat([dat, pd.DataFrame(pred, 
                columns=['"Pred_Petal_Width"']), axis=1]',
            FALSE, TRUE);
END;
/

Run a SELECT statement that invokes the pyqRowEval function, which runs the specified Python function on each chunk of rows in the specified data set.
The `INP_NAM` argument specifies the data in the `SAMPLE_IRIS` table to pass to the Python function.

The `PAR_QRY` argument specifies connecting to the OML4Py server with the special control argument `oml_connect`, passing the input data as a `pandas.DataFrame` with the special control argument `oml_input_type`, along with values for the function arguments `modelName` and `datastoreName`.

In the `OUT_QRY` argument, the JSON string specifies the column names and data types of the table returned by `pyqRowEval`.

The `ROW_NUM` argument specifies that five rows are included in each invocation of the function specified by `EXP_NAM`.

The `EXP_NAM` parameter specifies `linregrPredict`, which is the name in the script repository of the user-defined Python function to invoke.

```
SELECT *
FROM table(pyqRowEval(
 'SAMPLE_IRIS',
 '{"oml_connect":1,"oml_input_type":"pandas.DataFrame",
 "modelName":"linregr", "datastoreName":"pymodel"}',
 '{"Species":"varchar2(10)", "Sepal Length":"number",
 "Sepal Width":"number", "Petal Length":"number",
 "Petal Width":"number","Pred_Petal_Width":"number"}',
 5,
 'linregrPredict'));
```

The output is the following:

<table>
<thead>
<tr>
<th>Species</th>
<th>Sepal Length</th>
<th>Sepal Width</th>
<th>Petal Length</th>
<th>Petal Width</th>
<th>Pred_Petal_Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>versicolor</td>
<td>5.4</td>
<td>3</td>
<td>4.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.66731546068336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>versicolor</td>
<td>6</td>
<td>3.4</td>
<td>4.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1.63208723397328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setosa</td>
<td>5.5</td>
<td>4.2</td>
<td>1.4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.289325450127603</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>virginica</td>
<td>6.4</td>
<td>3.1</td>
<td>5.5</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>2.00641535609046</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>versicolor</td>
<td>6.1</td>
<td>2.8</td>
<td>4.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>1.58248012323666</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setosa</td>
<td>5.4</td>
<td>3.7</td>
<td>1.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.251046097050724</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>virginica</td>
<td>7.2</td>
<td>3</td>
<td>5.8</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>1.97554457713195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>versicolor</td>
<td>6.2</td>
<td>2.2</td>
<td>4.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.32323976658868</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setosa</td>
<td>4.8</td>
<td>3.1</td>
<td>1.6</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.294116926466465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>virginica</td>
<td>6.7</td>
<td>3.3</td>
<td>5.7</td>
<td>2.5</td>
<td>2.0936178656911</td>
</tr>
<tr>
<td>virginica</td>
<td>7.2</td>
<td>3.6</td>
<td>6.1</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2.26646663788204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setosa</td>
<td>5</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
pyqGroupEval Function (On-Premises Database)

This topic describes the pyqGroupEval function when used in an on-premises Oracle Database. The pyqGroupEval function groups data by one or more columns and runs a user-defined Python function on each group.

The pyqGroupEval function runs the user-defined Python function specified by the EXP_NAM parameter. Pass data to the Python function with the INP_NAM parameter. Pass arguments to the Python function with the PAR_QRY parameter. Specify one or more grouping columns with the GRP_COL parameter.

The Python function can return a boolean, a dict, a float, an int, a list, a str, a tuple or a pandas.DataFrame object. Define the form of the returned value with the OUT_QRY parameter.

Syntax

pyqGroupEval (  
    INP_NAM VARCHAR2 IN  
    PAR_QRY VARCHAR2 IN  
    OUT_QRY VARCHAR2 IN  
    GRP_COL VARCHAR2 IN  
    EXP_NAM VARCHAR2 IN)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_NAM</td>
<td>The name of a table or view that specifies the data to pass to the Python function specified by the EXP_NAM parameter. If using a table or view owned by another user, use the format &lt;owner name&gt;.&lt;table/view name&gt;. You must have read access to the specified table or view.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>PAR_QRY</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the EXP_NAM parameter. Special control arguments, which start with oml_, are not passed to the function specified by EXP_NAM, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use: '{&quot;oml_input_type&quot;:&quot;pandas.DataFrame&quot;}'</td>
</tr>
</tbody>
</table>
| OUT_QRY   | The format of the output returned by the function. It can be one of the following:  
  - A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded.  
  - The name of a table or view to use as a prototype. If using a table or view owned by another user, use the format <owner name>.<table/view name>. You must have read access to the specified table or view.  
  - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.  
  - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. |
| GRP_COL   | The names of the grouping columns by which to partition the data. Use commas to separate multiple columns. For example, to group by GENDER and YEAR: "GENDER,YEAR" |
| EXP_NAM   | The name of a user-defined Python function in the OML4Py script repository. |

**Returns**

Function pyqGroupEval returns a table that has the structure specified by the OUT_QRY parameter value.

**Example 9-18 Using the pyqGroupEval Function**

This example defines the Python function create_iris_table and stores it with the name create_iris_table in the OML4Py script repository. It then invokes pyqEval, which invokes the user-defined Python function and creates the IRIS database table. The example creates the package irisPkg and uses that package in specifying the data cursor to pass to the irisGroupEval function, which is a user-defined pyqGroupEval function. It defines another Python function, group_count and stores it in the script repository with the name mygroupcount. The example then invokes the irisGroupEval function and passes it the Python function saved with the name mygroupcount.
In a PL/SQL block, define the Python function `create_iris_table` and store it in the script repository with the name `create_iris_table`.

```sql
BEGIN
 sys.pyqScriptCreate('create_iris_table',
 'def create_iris_table():
 from sklearn.datasets import load_iris
 import pandas as pd
 iris = load_iris()
 x = pd.DataFrame(iris.data, columns = ["Sepal_Length", "Sepal_Width","Petal_Length","Petal_Width"])
 y = pd.DataFrame(list(map(lambda x: {0:"setosa", 1:"versicolor", 2: "virginica"}[x], iris.target)), columns = ["Species")
 return pd.concat([y, x], axis=1);"
 END;
/
```

Invoke the `pyqEval` function to create the database table `IRIS`, using the Python function stored with the name `create_iris_table` in the script repository.

```sql
CREATE TABLE IRIS AS
 (SELECT * FROM pyqEval(
 NULL,
 '{"Species":"VARCHAR2(10)","Sepal_Length":"number",
 "Sepal_Width":"number","Petal_Length":"number",
 "Petal_Width":"number"}',
 'create_iris_table')
);
```

Define the Python function `group_count` and store it with the name `mygroupcount` in the script repository. The function returns a `pandas.DataFrame` generated on each group of data `dat`.

```sql
BEGIN
 sys.pyqScriptCreate('mygroupcount',
 'def group_count(dat):
 import pandas as pd
 return pd.DataFrame([(dat["Species"])[0], dat.shape[0])], columns = ["Species", "CNT")
 END;
/
```

Issue a query that invokes the `pygGroupEval` function. In the function, the `INF_NAM` argument specifies the data in the `IRIS` table to pass to the function.

The `PAR_QRY` argument specifies the special control argument `oml_input_type`.

The `OUT_QRY` argument specifies a JSON string that contains the column names and data types of the table returned by `pygGroupEval`.

The `GRP_COL` parameter specifies the column to group by.
The `EXP_NAM` parameter specifies the user-defined Python function stored with the name `mygroupcount` in the script repository.

```sql
SELECT *
FROM table(
 pyqGroupEval(
 'IRIS',
 '{"oml_input_type":"pandas.DataFrame"}',
 '{"Species":"varchar2(10)", "CNT":"number"}',
 'Species',
 'mygroupcount'));
```

The output is the following.

<table>
<thead>
<tr>
<th>Species</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>50</td>
</tr>
<tr>
<td>versicolor</td>
<td>50</td>
</tr>
<tr>
<td>virginica</td>
<td>50</td>
</tr>
</tbody>
</table>

**pyqGrant Function (On-Premises Database)**

This topic describes the `pyqGrant` function when used in an on-premises Oracle Database.

The `pyqGrant` function grants read privilege access to an OML4Py datastore or to a script in the OML4Py script repository.

**Syntax**

```sql
pyqGrant (V_NAME VARCHAR2 IN, V_TYPE VARCHAR2 IN, V_USER VARCHAR2 IN DEFAULT)
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4Py datastore or a script in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is <code>datastore</code>; for script the type is <code>pyqScript</code>.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user to whom to grant access.</td>
</tr>
</tbody>
</table>

**Example 9-19  Granting Read Access to a script**

```sql
-- Grant read privilege access to Scott.
BEGIN
 pyqGrant('pyqFun1', 'pyqscript', 'SCOTT');
END;
/
```
Example 9-20  Granting Read Access to a datastore

-- Grant read privilege access to datastore ds1 to SCOTT.
BEGIN
  pyqGrant('ds1', 'datastore', 'SCOTT');
END;
/

Example 9-21  Granting Read Access to a Script to all Users

-- Grant read privilege access to script RandomRedDots to all users.
BEGIN
  pyqGrant('pyqFun1', 'pyqscript', NULL);
END;
/

Example 9-22  Granting Read Access to a datastore to all Users

-- Grant read privilege access to datastore ds1 to all users.
BEGIN
  pyqGrant('ds1', 'datastore', NULL);
END;
/

pyqRevoke Function (On-Premises Database)

This topic describes the pyqRevoke function when used in an on-premises Oracle Database.

The pyqRevoke function revokes read privilege access to an OML4Py datastore or to a script in the OML4Py script repository.

Syntax

```
pyqRevoke (
 V_NAME VARCHAR2 IN
 V_TYPE VARCHAR2 IN DEFAULT)
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4Py datastore or a script in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is datastore; for script the type is pyqScript.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user from whom to revoke access.</td>
</tr>
</tbody>
</table>

Example 9-23  Revoking Read Access to a script

-- Revoke read privilege access to script pyqFun1 from SCOTT.
BEGIN
Example 9-24    Revoking Read Access to a datastore

-- Revoke read privilege access to datastore ds1 from SCOTT.
BEGIN
  pyqRevoke('ds1', 'datastore', 'SCOTT');
END;
/

Example 9-25    Revoking Read Access to a script from all Users

-- Revoke read privilege access to script pyqFun1 from all users.
BEGIN
  pyqRevoke('pyqFun1', 'pyqscript', NULL);
END;
/

Example 9-26    Revoking Read Access to a datastore from all Users

-- Revoke read privilege access to datastore ds1 from all users.
BEGIN
  pyqRevoke('ds1', 'datastore', NULL);
END;
/

pyqScriptCreate Procedure (On-Premises Database)

This topic describes the pyqScriptCreate procedure in an on-premises Oracle Database. The pyqScriptCreate procedure creates a user-defined Python function and adds it to the OML4Py script repository.

To create a user-defined Python function, you must have the PYQADMIN database role.

Syntax

sys.pyqScriptCreate ( 
  V_NAME          VARCHAR2    IN
  V_SCRIPT        CLOB        IN
  V_GLOBAL        BOOLEAN     IN     DEFAULT
  V_OVERWRITE     BOOLEAN     IN     DEFAULT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the user-defined Python function in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_SCRIPT</td>
<td>The definition of the Python function.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>TRUE specifies that the user-defined Python function is public; FALSE specifies that the user-defined Python function is private.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>V_OVERWRITE</td>
<td>If the script repository already has a user-defined Python function with the same name as V_NAME, then TRUE replaces the content of that user-defined Python function with V_SCRIPT and FALSE does not replace it.</td>
</tr>
</tbody>
</table>

**Example 9-27 Using the pyqScriptCreate Procedure**

This example creates a private user-defined Python function named `pyqFun2` in the OML4Py script repository.

```
BEGIN
sys.pyqScriptCreate('pyqFun2',
'def return_frame():
 import numpy as np
 import pickle
 z = np.array([y for y in zip([str(x)+"demo" for x in range(10)],
 [float(x)/10 for x in range(10)],
 [x for x in range(10)],
 [bool(x%2) for x in range(10)],
 [pickle.dumps(x) for x in range(10)],
 ["test"+str(x**2) for x in range(10)])],
 dtype=[("a", "U10"), ("b", "f8"), ("c", "i4"), ("d", "?"),
 ("e", "S20"), ("f", "O")])
 return z');
END;
/
```

This example creates a global user-defined Python function named `pyqFun2` in the script repository and overwrites any existing user-defined Python function of the same name.

```
BEGIN
sys.pyqScriptCreate('pyqFun2',
'def return_frame():
 import numpy as np
 import pickle
 z = np.array([y for y in zip([str(x)+"demo" for x in range(10)],
 [float(x)/10 for x in range(10)],
 [x for x in range(10)],
 [bool(x%2) for x in range(10)],
 [pickle.dumps(x) for x in range(10)],
 ["test"+str(x**2) for x in range(10)])],
 dtype=[("a", "U10"), ("b", "f8"), ("c", "i4"), ("d", "?"),
 ("e", "S20"), ("f", "O")])
 return z',
 TRUE, -- Make the user-defined Python function global.
 TRUE); -- Overwrite any global user-defined Python function
 -- with the same name.
END;
/
```
This example creates a private user-defined Python function named `create_iris_table` in the script repository.

BEGIN
sys.pyqScriptCreate('create_iris_table',
'def create_iris_table():
    from sklearn.datasets import load_iris
    import pandas as pd
    iris = load_iris()
    x = pd.DataFrame(iris.data, columns = [
        "Sepal Length", 
        "Sepal Width", "Petal Length", "Petal Width"])
    y = pd.DataFrame(list(map(lambda x: {0: "setosa", 1: "versicolor", 2: "virginica"}[x], iris.target)),
        columns = ["Species"])
    return pd.concat([y, x], axis=1)');
END;
/

Display the user-defined Python functions owned by the current user.

SELECT * FROM USER_PYQ_SCRIPTS;

<table>
<thead>
<tr>
<th>NAME</th>
<th>SCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>create_iris_table</td>
<td>def create_iris_table(): from sklearn.datasets import load_iris ...</td>
</tr>
<tr>
<td>pyqFun2</td>
<td>def return_frame(): import numpy as np import pickle ...</td>
</tr>
</tbody>
</table>

Display the user-defined Python functions available to the current user.

SELECT * FROM ALL_PYQ_SCRIPTS;

<table>
<thead>
<tr>
<th>OWNER</th>
<th>NAME</th>
<th>SCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML_USER</td>
<td>create_iris_table</td>
<td>&quot;def create_iris_table(): from sklearn.datasets import load_iris ...</td>
</tr>
<tr>
<td>OML_USER</td>
<td>pyqFun2</td>
<td>&quot;def return_frame(): import numpy as np import pickle ...</td>
</tr>
<tr>
<td>PYQSYS</td>
<td>pyqFun2</td>
<td>&quot;def return_frame(): import numpy as np import pickle ...</td>
</tr>
</tbody>
</table>
pyqScriptDrop Procedure (On-Premises Database)

This topic describes the pyqScriptDrop procedure in an on-premises Oracle Database. The pyqScriptDrop procedure removes a user-defined Python function from the OML4Py script repository.

To drop a user-defined Python function, you must have the PYQADMIN database role.

Syntax

```sql
sys.pyqScriptDrop (
 V_NAME VARCHAR2 IN
 V_GLOBAL BOOLEAN IN DEFAULT
 V_SILENT BOOLEAN IN DEFAULT)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the user-defined Python function in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>A BOOLEAN that specifies whether the user-defined Python function to drop is a global or a private user-defined Python function. The default value is FALSE, which indicates a private user-defined Python function. TRUE specifies that the user-defined Python function is public.</td>
</tr>
<tr>
<td>V_SILENT</td>
<td>A BOOLEAN that specifies whether to display an error message when sys.pyqScriptDrop encounters an error in dropping the specified user-defined Python function. The default value is FALSE.</td>
</tr>
</tbody>
</table>

Example 9-28 Using the sys.pyqScriptDrop Procedure

For the creation of the user-defined Python functions dropped in these examples, see Example 9-27.

This example drops the private user-defined Python function pyqFun2 from the script repository.

```sql
BEGIN
 sys.pyqScriptDrop('pyqFun2');
END;
/
```

This example drops the global user-defined Python function pyqFun2 from the script repository.

```sql
BEGIN
 sys.pyqScriptDrop('pyqFun2', TRUE);
END;
/
```
SQL API for Embedded Python Execution with Autonomous Database

The SQL API for Embedded Python Execution with Autonomous Database provides SQL interfaces for setting authorization tokens, managing access control list (ACL) privileges, executing Python scripts, and synchronously and asynchronously running jobs.

The following topics describe the SQL API.

- Access and Authorization Procedures and Functions
- Embedded Python Execution Functions (Autonomous Database)
- oml_async_flag Argument
- Special Control Arguments (Autonomous Database)
- Output Formats (Autonomous Database)

Access and Authorization Procedures and Functions

Use the network access control lists (ACL) API to control access by users to external network services and resources from the database. Use the token store API to persist the authorization token issued by a cloud host so it can be used with subsequent SQL calls.

Use the following to manage ACL privileges. An ADMIN user is required.

- pyqAppendHostACE Procedure
- pyqGetHostACE Function
- pyqRemoveHostACE Procedure

Use the following to manage authorization tokens:

- pyqSetAuthToken Procedure
- pyqIsTokenSet Function

Workflow

The typical workflow for using the SQL API for Embedded Python Execution with Autonomous Database is:

1. Connect to PDB as the ADMIN user, and add a normal user OMLUSER to the ACL list of the cloud host of which the root domain is adb.us-region-1.oraclecloudapps.com:

   ```sql
 exec pyqAppendHostAce('OMLUSER','adb.us-region-1.oraclecloudapps.com');
   ```

2. The OML Rest URLs can be obtained from the Oracle Autonomous Database that is provisioned.
   a. Sign into your Oracle Cloud Infrastructure account. You will need your OCI user name and password.
   b. Click the hamburger menu and select Autonomous Database instance that is provisioned. For more information on provisioning an Autonomous Database, see: Provision an Oracle Autonomous Database.
c. Click Service Console and then click Development.

d. Scroll down to Oracle Machine Learning RESTful Services tile and click Copy to obtain the following URLs for:

- Obtaining the REST authentication token for REST APIs provided by OML:
  
  `<oml-cloud-service-location-url>/omlusers/`

  The URL `<oml-cloud-service-location-url>` includes the tenancy ID, location, and database name. For example, https://qtraya2braestch-omldb.adb.us-sanjose-1.oraclecloudapps.com.

  In this example,
  - `qtraya2braestch` is the tenancy ID
  - `omldb` is the database name
  - `us-sanjose-1` is the datacenter region
  - `oraclecloudapps.com` is the root domain

3. The Oracle Machine Learning REST API uses tokens to authenticate an Oracle Machine Learning user. To authenticate and obtain an access token, send a POST request to the Oracle Machine Learning User Management Cloud Service REST endpoint `/oauth2/v1/token` with your OML username and password.

   ```
 curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{"grant_type":"password", "username":"${username}"}, "password":"${password}"}' "<oml-cloud-service-location-url>/omlusers/api/oauth2/v1/token"
   ```

   The example uses the following values:
   - `username` is the OML username.
   - `password` is the OML user password.
   - `oml-cloud-service-location-url` is a variable containing the REST server portion of the Oracle Machine Learning User Management Cloud Service instance URL that includes the tenancy ID, database name, and the location name. You can obtain the omlserver URL from the Development tab in the Service Console of your Oracle Autonomous Database instance.

   **Note:**

   When a token expires, all calls to the OML Services REST endpoints with return a message stating that the token has expired along with the HTTP error: HTTP/1.1 401 Unauthorized

4. Connect to PDB as OMLUSER, set the access token, and run pyqIndexEval:

   ```
 exec pyqSetAuthToken('<access token>');
 select *
   ```
from table(pyqIndexEval(
    par_qry => NULL,
    out_fmt => '{"ID":"number", "RES":"varchar2(3)"}',
    times_num => 3,
    scr_name => 'idx_ret_df'));

ID RES
---------- ---
   1 a
   2 b
   3 c

3 rows selected.

**pyqAppendHostACE Procedure**

The `pyqAppendHostACE` procedure appends an access control entry (ACE) to the access control list (ACL) of the cloud host. The ACL controls access to the cloud host from the database, and the ACE specifies the connect privilege granted to the specified user name.

**Syntax**

```sql
PROCEDURE SYS.pyqAppendHostACE(
 username IN VARCHAR2,
 host_root_domain IN VARCHAR2
)
```

**Parameter**

- **username** - Database user to whom the connect privilege to the cloud host is granted.
- **host_root_domain** - Root domain of the cloud host. For example, if the URL is `https://qtraya2braestch-omldb.adb.us-sanjose-1.oraclecloudapps.com`, the root domain of the cloud host is: `adb.us-sanjose-1.oraclecloudapps.com`.

**pyqGetHostACE Function**

The `pyqGetHostACE` function gets the existing host access control entry (ACE) for the specified user. An exception is raised if the host ACE doesn't exist for the specified user.

**Syntax**

```sql
FUNCTION sys.pyqGetHostACE(
 p_username IN VARCHAR2
)
```

**Parameter**

- **p_username** - Database user to look for the host ACE.
Example

If user OMLUSER has access to the cloud host, i.e., ibuwlq4mjqkeils-omlrgpy1.adb.us-region-1.oraclecloudapps.com, the ADMIN user can run the following to check the user’s privileges:

```
SQL> set serveroutput on
DECLARE
 hostname VARCHAR2(4000);
BEGIN
 hostname := pyqGetHostACE('OMLUSER');
 DBMS_OUTPUT.put_line ('hostname: ' || hostname);
END;
/
```

hostname: ibuwlq4mjqkeils-omlrgpy1.adb.us-region-1.oraclecloudapps.com
PL/SQL procedure successfully completed.

pyqRemoveHostACE Procedure

The pyqRemoveHostACE procedure removes the existing host access control entry (ACE) from the specified username. If an access token was set for the cloud host, the token is also removed. An exception is raised if the host ACE does not exist.

Syntax

```
PROCEDURE SYS.pyqRemoveHostACE(
 username IN VARCHAR2
)
```

Parameter

- **username** - Database user from whom the connect privilege to the cloud host is revoked.

pyqSetAuthToken Procedure

The pyqSetAuthToken procedure sets the access token in the token store.

Syntax

```
PROCEDURE SYS.pyqSetAuthToken(
 access_token IN VARCHAR2
)
```
pyqIsTokenSet Function

The `pyqIsTokenSet` function returns whether the authorization token is set or not.

Syntax

```sql
FUNCTION SYS.pyqIsTokenSet() RETURN BOOLEAN
```

Example

The following example shows how to use the `pyqSetAuthToken` procedure and the `pyqIsTokenSet` function.

```sql
DECLARE
 is_set BOOLEAN;
BEGIN
 pyqSetAuthToken('<access token>');</n
 is_set := pyqIsTokenSet();
 IF (is_set) THEN
 DBMS_OUTPUT.put_line ('token is set');
 END IF;
END;
/```

Embedded Python Execution Functions (Autonomous Database)

The SQL API for Embedded Python Execution with Autonomous Database functions are described in the following topics.

Topics

- `pyqEval Function (Autonomous Database)`
- `pyqTableEval Function (Autonomous Database)`
- `pyqRowEval Function (Autonomous Database)`
- `pyqGroupEval Function (Autonomous Database)`
- `pyqIndexEval Function (Autonomous Database)`
- `pyqGrant Function (Autonomous Database)`
- `pyqRevoke Function (Autonomous Database)`
- `pyqScriptCreate Procedure (Autonomous Database)`
- `pyqScriptDrop Procedure (Autonomous Database)`

pyqEval Function (Autonomous Database)

This topic describes the `pyqEval` function when used in Oracle Autonomous Database. The `pyqEval` function runs a user-defined Python function that explicitly retrieves data or for which external data is to be automatically loaded for the function.
Syntax

FUNCTION PYQSYS.pyqEval(
 PAR_LST VARCHAR2,
 OUT_FMT VARCHAR2,
 SCR_NAME VARCHAR2,
 SCR_OWNER VARCHAR2 DEFAULT NULL
)
 RETURN SYS.AnyDataSet

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_LST</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the SCR_NAME parameter. Special control arguments, which start with oml_, are not passed to the function specified by SCR_NAME, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use: '{"oml_input_type":"pandas.DataFrame"}' See also: Special Control Arguments (Autonomous Database).</td>
</tr>
</tbody>
</table>
| OUT_FMT | The format of the output returned by the function. It can be one of the following:
 - A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded. The Python function must return a pandas.DataFrame, a numpy.ndarray, a tuple, or a list of tuples.
 - The string 'JSON', which specifies that the table returned contains a CLOB that is a JSON string.
 - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.
 - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. See also: Output Formats (Autonomous Database). |
| SCR_NAME | The name of a user-defined Python function in the OML4Py script repository. |
| SCR_OWNER | The owner of the registered Python script. The default value is NULL. If NULL, will search for the Python script in the user’s script repository. |

Example

This example defines a Python function and stores it in the OML4Py script repository. It invokes the pyqEval function on the user-defined Python functions.

In a PL/SQL block, create a Python function that is stored in script repository with the name pyqFun1.

```sql
begin
    sys.pyqScriptCreate('pyqFun1',
```
'def fun_tab():
 import pandas as pd
 names = ['demo_'+str(i) for i in range(10)]
 ids = [x for x in range(10)]
 floats = [float(x)/10 for x in range(10)]
 d = {'ID': ids, 'NAME': names, 'FLOAT': floats}
 scores_table = pd.DataFrame(d)
 return scores_table

Next, invoke the pyqEval function, which runs the user-defined Python function.

The PAR_LST argument specifies using MEDIUM service level with the special control argument oml_service_level.

In the OUT_FMT argument, the string 'JSON', specifies that the table returned contains a CLOB that is a JSON string.

The SCR_NAME parameter specifies the pyqFun1 function in the script repository as the Python function to invoke.

The JSON output is a CLOB. You can call set long [length] to get more output.

 set long 500
 select *
 from table(pyqEval(
 par_lst => '{"oml_service_level":"MEDIUM"}',
 out_fmt => 'JSON',
 scr_name => 'pyqFun1'));

The output is the following.

 NAME

 VALUE

 [{"FLOAT":0,"ID":0,"NAME":"demo_0"},{"FLOAT":0.1,"ID":1,"NAME":"demo_1"},{"FLOAT":0.2,"ID":2,"NAME":"demo_2"},{"FLOAT":0.3,"ID":3,"NAME":"demo_3"},{"FLOAT":0.4,"ID":4,"NAME":"demo_4"},{"FLOAT":0.5,"ID":5,"NAME":"demo_5"},{"FLOAT":0.6,"ID":6,"NAME":"demo_6"},{"FLOAT":0.7,"ID":7,"NAME":"demo_7"},{"FLOAT":0.8,"ID":8,"NAME":"demo_8"},{"FLOAT":0.9,"ID":9,"NAME":"demo_9"}]

 1 row selected.
pyqTableEval Function (Autonomous Database)

This topic describes the pyqTableEval function when used in Oracle Autonomous Database. The pyqTableEval function runs a user-defined Python function on data from an Oracle Database table.

Pass data to the Python function with the INP_NAM parameter. Pass arguments to the Python function with the PAR_LST parameter.

The Python function can return a boolean, a dict, a float, an int, a list, a str, a tuple or a pandas.DataFrame object. You define the form of the returned value with the OUT_FMT parameter.

Syntax

FUNCTION PYQSYS.pyqTableEval(
 INP_NAM VARCHAR2,
 PAR_LST VARCHAR2,
 OUT_FMT VARCHAR2,
 SCR_NAME VARCHAR2,
 SCR_OWNER VARCHAR2 DEFAULT NULL
) RETURN SYS.AnyDataSet

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_NAM</td>
<td>The name of a table or view that specifies the data to pass to the Python function specified by the SCR_NAME parameter. If using a table or view owned by another user, use the format <owner name>.<table/view name>. You must have read access to the specified table or view.</td>
</tr>
<tr>
<td>PAR_LST</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the SCR_NAME parameter. Special control arguments, which start with oml_, are not passed to the function specified by SCR_NAME, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use: '{}"oml_input_type":"pandas.DataFrame"'</td>
</tr>
</tbody>
</table>

See also: Special Control Arguments (Autonomous Database).
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **OUT_FMT** | The format of the output returned by the function. It can be one of the following:
 - A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded. The Python function must return a `pandas.DataFrame`, a `numpy.ndarray`, a tuple, or a list of tuples.
 - The string 'JSON', which specifies that the table returned contains a CLOB that is a JSON string.
 - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.
 - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. |

See also: Output Formats (Autonomous Database).

<table>
<thead>
<tr>
<th>SCR_NAME</th>
<th>The name of a user-defined Python function in the OML4Py script repository.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR_OWNER</td>
<td>The owner of the registered Python script. The default value is NULL. If NULL, will search for the Python script in the user's script repository.</td>
</tr>
</tbody>
</table>

Example

This example stores a user-defined Python function in the OML4Py script repository with the name `create_iris_table`. It uses the function to create a database table as the result of a pyqEval function invocation. It creates another user-defined Python function that fits a linear regression model to the input data and saves the model in the OML4Py datastore. The example runs a SQL SELECT statement that invokes the pyqTableEval function, which invokes the function stored in the script repository with the name `myLinearRegressionModel`.

In a PL/SQL block, define the Python function `create_iris_table` and store in the script repository with the name `create_iris_table`, overwriting any existing user-defined Python function stored in the script repository with the same name.

The `create_iris_table` function imports and loads the iris data set, creates two `pandas.DataFrame` objects, and then returns the concatenation of those objects.

```python
BEGIN
  sys.pyqScriptCreate('create_iris_table',
    'def create_iris_table():
       from sklearn.datasets import load_iris
       import pandas as pd
       iris = load_iris()
       x = pd.DataFrame(iris.data, columns = ["Sepal_Length","Sepal_Width","Petal_Length","Petal_Width"])
       y = pd.DataFrame(list(map(lambda x: {0:"setosa", 1: "versicolor", 2: "virginica"}[x], iris.target)),
                       columns = ["Species"])
       return pd.concat([y, x], axis=1)',
```
CREATE TABLE IRIS AS
(SELECT *
FROM pyqEval(
 NULL,
 '{"Species":"VARCHAR2(10)","Sepal_Length":"number",
 "Sepal_Width":"number","Petal_Length":"number",
 "Petal_Width":"number"}',
 'create_iris_table'
));

Define the Python function `fit_model` and store it with the name `myLinearRegressionModel` as a private function in the script repository, overwriting any existing user-defined Python function stored with that name.

The `fit_model` function fits a regression model to the input data `dat` and then saves the fitted model as an object specified by the `modelName` argument to the datastore specified by the `datastoreName` argument. The `fit_model` function returns the fitted model in a string format.

By default, Python objects are saved to a new datastore with the specified `datastoreName`. To save an object to an existing datastore, either set the `overwrite` or `append` argument to `True` in the `oml.ds.save` invocation.

BEGIN
 sys.pyqScriptCreate('myLinearRegressionModel',
 'def fit_model(dat, modelName, datastoreName):
 import oml
 from sklearn import linear_model
 regr = linear_model.LinearRegression()
 regr.fit(dat.loc[:,["Sepal_Length", "Sepal_Width", "Petal_Length"]],
 dat.loc[:,"Petal_Width"])
 oml.ds.save(objs={modelName:regr}, name=datastoreName,
 overwrite=True)
 return str(regr)',
 FALSE, TRUE); -- V_GLOBAL, V_OVERWRITE
END;
/

Run a SELECT statement that invokes the `pyqTableEval` function. The `INP_NAM` parameter of the `pyqTableEval` function specifies the IRIS table as the data to pass to the Python function. The `PAR_LST` parameter specifies the names of the model and datastore to pass to the Python function. The `OUT_FMT` parameter specifies returning the value in XML format and the `SCR_NAME` parameter specifies the `myLinearRegressionModel` function in the script repository as the Python function to invoke. The XML output is a CLOB; you can call `set long [length]` to get more output.

SELECT *
FROM table(pyqTableEval(
 inp_nam => 'IRIS',
 ...
The output is the following:

NAME

__

VALUE

__

<root><str>LinearRegression()</str></root>
1 row selected.

pyqRowEval Function (Autonomous Database)

This topic describes the pyqRowEval function when used in Oracle Autonomous Database. The pyqRowEval function chunks data into sets of rows and then runs a user-defined Python function on each chunk.

The pyqRowEval function passes the data specified by the INP_NAM parameter to the Python function specified by the SCR_NAME parameter. You can pass arguments to the Python function with the PAR_LST parameter.

The ROW_NUM parameter specifies the maximum number of rows to pass to each invocation of the Python function. The last set of rows may have fewer rows than the number specified.

The Python function can return a boolean, a dict, a float, an int, a list, a str, a tuple or a pandas.DataFrame object. You can define the form of the returned value with the OUT_FMT parameter.

Syntax

FUNCTION PYQSYS.pyqEval(
 INP_NAM VARCHAR2,
 PAR_LST VARCHAR2,
 OUT_FMT VARCHAR2,
 ROW_NUM NUMBER,
 SCR_NAME VARCHAR2,
 SCR_OWNER VARCHAR2 DEFAULT NULL
) RETURN SYS.AnyDataSet

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_NAM</td>
<td>The name of a table or view that specifies the data to pass to the Python function specified by the SCR_NAME parameter. If using a table or view owned by another user, use the format <owner name>.<table/view name>. You must have read access to the specified table or view.</td>
</tr>
</tbody>
</table>
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_LST</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the SCR_NAME parameter. Special control arguments, which start with oml_, are not passed to the function specified by SCR_NAME, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use: '"oml_input_type":"pandas.DataFrame"' See also: Special Control Arguments (Autonomous Database).</td>
</tr>
<tr>
<td>OUT_FMT</td>
<td>The format of the output returned by the function. It can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded. The Python function must return a pandas.DataFrame, a numpy.ndarray, a tuple, or a list of tuples.</td>
</tr>
<tr>
<td></td>
<td>- The string 'JSON', which specifies that the table returned contains a CLOB that is a JSON string.</td>
</tr>
<tr>
<td></td>
<td>- The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.</td>
</tr>
<tr>
<td></td>
<td>- The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. See also: Output Formats (Autonomous Database).</td>
</tr>
<tr>
<td>ROW_NUM</td>
<td>The number of rows in a chunk. The Python script is executed in each chunk.</td>
</tr>
<tr>
<td>SCR_NAME</td>
<td>The name of a user-defined Python function in the OML4Py script repository.</td>
</tr>
<tr>
<td>SCR_OWNER</td>
<td>The owner of the registered Python script. The default value is NULL. If NULL, will search for the Python script in the user's script repository.</td>
</tr>
</tbody>
</table>

Example

This example loads the Python model linregr to predict row chunks of sample iris data. The model is created and saved in the datastore pymodel, which is shown in the example for pyqTableEval Function (Autonomous Database).

The example defines a Python function and stores it in the OML4Py script repository. It uses the user-defined Python function to create a database table as the result of the pyqEval function. It defines a Python function that runs a prediction function on a model loaded from the OML4Py datastore. It then invokes the pyqTableEval function to invoke the function on chunks of rows from the database table.

In a PL/SQL block, define the function sample_iris_table and store it in the script repository. The function loads the iris data set, creates two pandas.DataFrame objects, and then returns a sample of the concatenation of those objects.

```sql
BEGIN
  sys.pyqScriptCreate('sample_iris_table',
    'def sample_iris_table(size):
      from sklearn.datasets import load_iris
      import pandas as pd
      iris = load_iris()
`
```
x = pd.DataFrame(iris.data, columns = ["Sepal_Length", "Sepal_Width","Petal_Length","Petal_Width"])
y = pd.DataFrame(list(map(lambda x: {0:"setosa", 1:"versicolor", 2: "virginica"}[x], iris.target)), columns = ["Species"])
return pd.concat([y, x], axis=1).sample(int(size))
```

Create the **SAMPLE_iris** table in the database as the result of a **SELECT** statement, which invokes the **pyqEval** function on the **sample_iris_table** user-defined Python function saved in the script repository with the same name. The **sample_iris_table** function returns an iris data sample of size **size**.

```
CREATE TABLE sample_iris AS
SELECT *
FROM TABLE(pyqEval(

 'sample_iris_table'))
```

Define the Python function **predict_model** and store it with the name **linregrPredict** in the script repository. The function predicts the data in **dat** with the Python model specified by the **modelName** argument, which is loaded from the datastore specified by the **datastoreName** argument. The function also plots the actual petal width values with the predicted values. The predictions are finally concatenated and returned with **dat** as the object that the function returns.

```
BEGIN
sys.pyqScriptCreate('linregrPredict',
'def predict_model(dat, modelName, datastoreName):
 import oml
 import pandas as pd
 import matplotlib.pyplot as plt
 objs = oml.ds.load(name=datastoreName, to_globals=False)
 pred = objs[modelName].predict(dat[["Sepal_Length", "Sepal_Width","Petal_Length","Petal_Width"]])
 plt.plot(dat[["Petal_Width"]], pred, ".")
 plt.xlabel("Petal Width")
 plt.ylabel("Prediction")
 plt.title("Prediction of Petal Width")
 return pd.concat([dat, pd.DataFrame(pred,
 columns=["Pred_Petal_Width")], axis=1),
 FALSE, TRUE); -- V_GLOBAL, V_OVERWRITE
END;
```

Run a **SELECT** statement that invokes the **pyqRowEval** function, which runs the specified Python function on each chunk of rows in the specified data set.
The `INP_NAM` argument specifies the data in the `SAMPLE_IRIS` table to pass to the Python function.

The `PAR_LST` argument specifies the special control argument `oml_graphics_flag` to capture images, passing the input data as a `pandas.DataFrame` with the special control argument `oml_input_type`, along with values for the function arguments `modelName` and `datastoreName`.

In the `OUT_FMT` argument, the string `'PNG'` specifies to include both return value and images (titles and image bytes) returned by `pyqRowEval`.

The `ROW_NUM` argument specifies that five rows are included in each invocation of the function specified by `SCR_NAME`.

The `SCR_NAME` parameter specifies `linregrPredict`, which is the name in the script repository of the user-defined Python function to invoke.

column name format a7
column value format a15
column title format a16
column image format a15

```
SELECT *
FROM table(pyqRowEval(
 inp_nam => 'SAMPLE_IRIS',
 par_lst => '{"oml_input_type":"pandas.DataFrame",
 "modelName":"linregr", "datastoreName":"pymodel",
 "oml_graphics_flag":true}',
 out_fmt => 'PNG',
 row_num => 5,
 scr_name => 'linregrPredict'));
```

The output is the following.

<table>
<thead>
<tr>
<th>NAME</th>
<th>ID</th>
<th>VALUE</th>
<th>TITLE</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHUNK_1</td>
<td>1</td>
<td>[{'Species':se Prediction of Pe tosa', 'Sepal Length':5.0, 'Sepal Width':3.2, 'Petal Length':1.2, 'Petal Width':1.4}, {'Species':se Prediction of Pe tosa', 'Sepal Length':5.2, 'Sepal Width':3.4, 'Petal Length':1.4, 'Petal Width':1.4}]</td>
<td>6956424F5277304</td>
<td>B47676F4114141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B47676F4114141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416F4114141</td>
<td>141416F4114141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>486743415941414</td>
<td>486743415941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4141412484E35</td>
<td>4141412484E35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6641686B6941414</td>
<td>6641686B6941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416C7753466C</td>
<td>141416C7753466C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7A411414150</td>
<td>7A411414150</td>
</tr>
</tbody>
</table>

| CHUNK_2    | 1   | [{'Species':se Prediction of Pe tosa', 'Sepal Length':5.0, 'Sepal Width':3.2, 'Petal Length':1.2, 'Petal Width':1.4}, {'Species':se Prediction of Pe tosa', 'Sepal Length':5.2, 'Sepal Width':3.4, 'Petal Length':1.4, 'Petal Width':1.4}] | 6956424F5277304                              | B47676F4114141 |
|            |     |                                            |                                             | B47676F4114141 |
|            |     |                                            | 4E5355684555674                              | 4E5355684555674 |
|            |     |                                            | 141416F4114141                               | 141416F4114141 |
|            |     |                                            | 486743415941414                             | 486743415941414 |
|            |     |                                            | 1413130647A6B41                             | 1413130647A6B41 |
|            |     |                                            | 4141412484E35                               | 4141412484E35 |
|            |     |                                            | 35651493416749                              | 35651493416749 |
Define the Python function `score_model` and store it with the name `linregrScore` in the script repository. The function scores the data in `dat` with the Python model specified by the `modelName` argument, which is loaded from the datastore specified by the `datastoreName` argument. The function also plots the actual Petal Width values with the predicted values. The prediction score is returned.

```python
BEGIN
sys.pyqScriptCreate('linregrScore',
'def score_model(dat, modelName, datastoreName):
 import oml
 import pandas as pd
 import matplotlib.pyplot as plt
 objs = oml.ds.load(name=datastoreName, to_globals=False)
 pred = objs[modelName].predict(dat[['Sepal_Length',
 'Sepal_Width', 'Petal_Length']])
 score = objs[modelName].score(dat[['Sepal_Length',
 'Sepal_Width', 'Petal_Length']],
 dat[['Petal_Width']])
 plt.plot(dat[['Petal_Width']], pred, '.
 plt.xlabel("Petal Width")
 plt.ylabel("Prediction")
 plt.title("Prediction of Petal Width")
 return score',
FALSE, TRUE); -- V_GLOBAL, V_OVERWRITE
END;
```
Run a SELECT statement that invokes the pyqRowEval function. Each invocation of script linregrScore is applied to 10 rows of data in the SAMPLE_IRIS table. Capture the images rendered in the script and return the XML output where both structured data and images are included. The XML output is a CLOB; you can call set long [length] to get more output.

```
set long 300
SELECT *
FROM table(pyqRowEval(
 inp_nam => 'SAMPLE_IRIS',
 par_lst => '{"oml_input_type":"pandas.DataFrame",
 "modelName":"linregr", "datastoreName":"pymodel",
 "oml_graphics_flag":true}',
 out_fmt => 'XML',
 row_num => 10,
 scr_name => 'linregrScore'));
```

The output is the following:

```
NAME
--

VALUE
--

1
<root><Py-data><numpyfloat64>0.926099694286079</numpyfloat64></Py-data><images><
image><![CDATA[...]
2
<root><Py-data><numpyfloat64>0.589260487753192</numpyfloat64></Py-data><images><
image><![CDATA[...]
```

2 rows selected.

pyqGroupEval Function (Autonomous Database)

This topic describes the pyqGroupEval function when used in Oracle Autonomous Database. The pyqGroupEval function groups data by one or more columns and runs a user-defined Python function on each group.

The pyqGroupEval function runs the user-defined Python function specified by the SCR_NAME parameter. Pass data to the Python function with the INP_NAM parameter, pass arguments to the Python function with the PAR_LST parameter. Specify one or more grouping columns with the GRP_COL parameter.
The Python function can return a boolean, a dict, a float, an int, a list, a str, a tuple or a pandas.DataFrame object. Define the form of the returned value with the OUT_FMT parameter.

Syntax

```sql
FUNCTION PYQSYS.pyqGroupEval(
 INP_NAM VARCHAR2,
 PAR_LST VARCHAR2,
 OUT_FMT VARCHAR2,
 GRP_COL VARCHAR2,
 ORD_COL VARCHAR2,
 SCR_NAME VARCHAR2,
 SCR_OWNER VARCHAR2 DEFAULT NULL
) RETURN SYS.AnyDataSet
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_NAM</td>
<td>The name of a table or view that specifies the data to pass to the Python function specified by the SCR_NAME parameter. If using a table or view owned by another user, use the format &lt;owner name&gt;.&lt;table/view name&gt;. You must have read access to the specified table or view.</td>
</tr>
</tbody>
</table>
| PAR_LST   | A JSON string that contains additional parameters to pass to the user-defined Python function specified by the SCR_NAME parameter. Special control arguments, which start with oml_, are not passed to the function specified by SCR_NAME, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use: 

```json
"oml_input_type":"pandas.DataFrame"
```

See also: Special Control Arguments (Autonomous Database).

<table>
<thead>
<tr>
<th>OUT_FMT</th>
<th>The format of the output returned by the function. It can be one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• A JSON string that specifies the column names and data types of the table returned by the function. Any image data is discarded. The Python function must return a pandas.DataFrame, a numpy.ndarray, a tuple, or a list of tuples.</td>
</tr>
<tr>
<td></td>
<td>• The string 'JSON', which specifies that the table returned contains a CLOB that is a JSON string.</td>
</tr>
<tr>
<td></td>
<td>• The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function.</td>
</tr>
<tr>
<td></td>
<td>• The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation.</td>
</tr>
</tbody>
</table>

See also: Output Formats (Autonomous Database).

<table>
<thead>
<tr>
<th>GRP_COL</th>
<th>The names of the grouping columns by which to partition the data. Use commas to separate multiple columns. For example, to group by GENDER and YEAR:</th>
</tr>
</thead>
</table>
|           | "GENDER, YEAR"
### Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| ORD_COL   | Comma-separated column names to order the input data. For example to order by GENDER: "GENDER"
|           | If specified, the input data will first be ordered by the ORD_COL columns and then grouped by the GRP_COL columns. |
| SCR_NAME  | The name of a user-defined Python function in the OML4Py script repository. |
| SCR_OWNER | The owner of the registered Python script. The default value is NULL. If NULL, will search for the Python script in the user’s script repository. |

### Example

This example uses the IRIS table created in the example shown in pyqTableEval Function (Autonomous Database).

Define the Python function `group_count` and store it with the name `mygroupcount` in the script repository. The function returns a pandas.DataFrame generated on each group of data `dat`.

```python
BEGIN
 sys.pyqScriptCreate('mygroupcount',
 'def group_count(dat):
 import pandas as pd
 return pd.DataFrame([\(dat["Species"]\[0\], dat.shape[0])\],\
 columns = ["Species", "CNT"],
 FALSE, TRUE); -- V_GLOBAL, V_OVERWRITE
END;
/
```

Issue a query that invokes the `pyqGroupEval` function. In the function, the INP_NAM argument specifies the data in the IRIS table to pass to the function.

The PAR_LST argument specifies the special control argument `oml_input_type`.

The OUT_FMT argument specifies a JSON string that contains the column names and data types of the table returned by `pyqGroupEval`.

The GRP_COL parameter specifies the column to group by.

The SCR_NAME parameter specifies the user-defined Python function stored with the name `mygroupcount` in the script repository.

```sql
SELECT *
FROM table(
 pyqGroupEval(
 inp_nam => 'IRIS',
 par_lst => '{"oml_input_type":"pandas.DataFrame"}',
 out_fmt => '{"Species":"varchar2(10)", "CNT":"number"}',
 grp_col => 'Species',
 ord_col => NULL,
 scr_name => 'mygroupcount'));
```
The output is the following:

<table>
<thead>
<tr>
<th>Species</th>
<th>CNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>virginica</td>
<td>50</td>
</tr>
<tr>
<td>setosa</td>
<td>50</td>
</tr>
<tr>
<td>versicolor</td>
<td>50</td>
</tr>
</tbody>
</table>

3 rows selected.

Run the same script with IRIS data and return the XML output.

```
SELECT *
FROM table(
 pyqGroupEval(
 inp_nam => 'IRIS',
 par_lst => '{"oml_input_type":"pandas.DataFrame"}',
 out_fmt => 'XML',
 grp_col => 'Species',
 ord_col => NULL,
 scr_name => 'mygroupcount'));
```

The output is the following.

<table>
<thead>
<tr>
<th>NAME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>____</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>____</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>__</td>
<td>Virginica</td>
</tr>
<tr>
<td>__</td>
<td>&lt;root&gt;&lt;pandas_dataFrame&gt;&lt;ROW-pandas_dataFrame&gt;&lt;Species&gt;virginica&lt;/</td>
</tr>
<tr>
<td>__</td>
<td>&lt;Species&gt;&lt;/Species&gt;&lt;CNT&gt;50&lt;/CNT&gt;&lt;/ROW-pandas_dataFrame&gt;&lt;/pandas_dataFrame&gt;&lt;/root&gt;</td>
</tr>
<tr>
<td>__</td>
<td>Setosa</td>
</tr>
<tr>
<td>__</td>
<td>&lt;root&gt;&lt;pandas_dataFrame&gt;&lt;ROW-pandas_dataFrame&gt;&lt;Species&gt;setosa&lt;/</td>
</tr>
<tr>
<td>__</td>
<td>&lt;Species&gt;&lt;/Species&gt;&lt;CNT&gt;50&lt;/CNT&gt;&lt;/ROW-pandas_dataFrame&gt;&lt;/pandas_dataFrame&gt;&lt;/root&gt;</td>
</tr>
<tr>
<td>__</td>
<td>Versicolor</td>
</tr>
<tr>
<td>__</td>
<td>&lt;root&gt;&lt;pandas_dataFrame&gt;&lt;ROW-pandas_dataFrame&gt;&lt;Species&gt;versicolor&lt;/</td>
</tr>
<tr>
<td>__</td>
<td>&lt;Species&gt;&lt;/Species&gt;&lt;CNT&gt;50&lt;/CNT&gt;&lt;/ROW-pandas_dataFrame&gt;&lt;/pandas_dataFrame&gt;&lt;/root&gt;</td>
</tr>
</tbody>
</table>

3 rows selected.

**pyqIndexEval Function (Autonomous Database)**

This topic describes the `pyqIndexEval` function when used in Oracle Autonomous Database. The `pyqIndexEval` runs a user-defined Python function to run a Python function multiple times in Python engines spawned by the database environment.
Syntax

FUNCTION PYQSYS.pyqIndexEval(
    PAR_LST VARCHAR2,
    OUT_FMT VARCHAR2,
    TIMES_NUM NUMBER,
    SCR_NAME VARCHAR2,
    SCR_OWNER VARCHAR2 DEFAULT NULL
)
RETURN SYS.AnyDataSet
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_LST</td>
<td>A JSON string that contains additional parameters to pass to the user-defined Python function specified by the SCR_NAME parameter. Special control arguments, which start with oml_, are not passed to the function specified</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>by SCR_NAME, but instead control what happens before or after the invocation of the function. For example, to specify the input data type as pandas.DataFrame, use:</td>
<td></td>
</tr>
</tbody>
</table>

```python
"oml_input_type": "pandas.DataFrame"
```

<table>
<thead>
<tr>
<th>See also</th>
<th>Special Control</th>
</tr>
</thead>
</table>


<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arguments (Autonomous Database)</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OUT_FMT</td>
<td>The format of the output returned by the function. It can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>· A JSON string that specifies the column</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>data</td>
<td>edataisdiscarded</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Frame</td>
<td>Frame, an umpy array, a tuple, or a list of tuples.</td>
</tr>
<tr>
<td>Str</td>
<td>The...</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>n</td>
<td>JSON, which specifies that the table returned contains a CLOB</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>JSON string</td>
<td>Specifies that this is a JSON string.</td>
</tr>
<tr>
<td>XML</td>
<td>Specifies that the XML string, which is specified in the chapter, is used.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Table Returned</td>
<td>Contains a CLOB that is an XML string. The XML can contain</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>ntainbothsstructureddataandimages,withstructuredordersonsemis</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>t r u c t u r e d p y t h o n o b j e c t s f i r s t, f o l l o w e d b y t h e i m a g e o r i m a g e s g</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

- The string `'PNG'`, which specifies
- The string `'PNG'`, which specifies
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>esthatetablereturnedcontainsaBLOB</td>
<td>that has the image of a BLOB</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>g</td>
<td>generated by the Python function</td>
</tr>
<tr>
<td>e</td>
<td>images are returned as a list</td>
</tr>
<tr>
<td>s</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>encoding</td>
<td>of the PNG representation.</td>
</tr>
</tbody>
</table>

See also:
Output Formats (Autonomous Database).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMES_NUM</td>
<td>The number of times to execute the Python script.</td>
</tr>
<tr>
<td>SCR_NAME</td>
<td>The name of a user-defined Python function in the OML 4Py script repository.</td>
</tr>
</tbody>
</table>
### Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR_OWNER</td>
<td>The owner of the registered Python script. The default value is NULL. If NULL, will search for the Python script in the user's script repository.</td>
</tr>
</tbody>
</table>

### Example

Define the Python function `fit_lm` and store it with the name `myFitMultiple` in the script repository. The function returns a `pandas.DataFrame` containing the index and prediction score of the fitted model on the data sampled from scikit-learn's IRIS dataset.

```python
begin
 sys.pyqScriptCreate('myFitMultiple',
 'def fit_lm(i, sample_size):
 from sklearn import linear_model
 from sklearn.datasets import load_iris
 import pandas as pd
 iris = load_iris()
 x = pd.DataFrame(iris.data, columns = ["Sepal_Length",
 "Sepal_Width","Petal_Length","Petal_Width"])
 y = pd.DataFrame(list(map(lambda x: {0:"setosa", 1:
```
"versicolor",
    2: "virginica") [x], iris.target)),
        columns = ["Species"])
    dat = pd.concat([{y, x]}, axis=1).sample(sample_size)
    regr = linear_model.LinearRegression()
    regr.fit(x.loc[:, ["Sepal_Length", "Sepal_Width", "Petal_Length"]],
        x.loc[:,["Petal_Width"]])
    sc = regr.score(dat.loc[:, ["Sepal_Length", "Sepal_Width", "Petal_Length"]],
        dat.loc[:,["Petal_Width"])
    return pd.DataFrame([[i, sc]], columns=["id", "score"])
end;
/

Issue a query that invokes the pyqIndexEval function. In the function, the PAR_LST argument specifies the function argument sample_size. The OUT_FMT argument specifies a JSON string that contains the column names and data types of the table returned by pyqIndexEval. The TIMES_NUM parameter specifies the number of times to execute the script. The SCR_NAME parameter specifies the user-defined Python function stored with the name myFitMultiple in the script repository.

select *
from table(pyqIndexEval(
    par_lst => 'sample_size':80}',
    outFmt => '{id:"number","score":"number"}',
    timesNum => 3,
    scrName => 'myFitMultiple'));

The output is the following:

    id  score
    ----  ------
       1  0.943550631
       2  0.927836941
       3  0.937196049
3 rows selected.

pyqGrant Function (Autonomous Database)

This topic describes the pyqGrant function when used in Oracle Autonomous Database.

The pyqGrant function grants read privilege access to an OML4Py datastore or to a script in the OML4Py script repository.

Syntax

pyqGrant (V_NAME VARCHAR2 IN,
          V_TYPE VARCHAR2 IN,
          V_USER VARCHAR2 IN DEFAULT)
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4Py datastore or a script in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is datastore; for script the type is pyqScript.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user to whom to grant access.</td>
</tr>
</tbody>
</table>

Example 9-29  Granting Read Access to a script

-- Grant read privilege access to Scott.
BEGIN
  pyqGrant('pyqFun1', 'pyqscript', 'SCOTT');
END;
/

Example 9-30  Granting Read Access to a datastore

-- Grant read privilege access to datastore ds1 to SCOTT.
BEGIN
  pyqGrant('ds1', 'datastore', 'SCOTT');
END;
/

Example 9-31  Granting Read Access to a Script to all Users

-- Grant read privilege access to script RandomRedDots to all users.
BEGIN
  pyqGrant('pyqFun1', 'pyqscript', NULL);
END;
/

Example 9-32  Granting Read Access to a datastore to all Users

-- Grant read privilege access to datastore ds1 to all users.
BEGIN
  pyqGrant('ds1', 'datastore', NULL);
END;
/

pyqRevoke Function (Autonomous Database)

This topic describes the pyqRevoke function when used in Oracle Autonomous Database.

The pyqRevoke function revokes read privilege access to an OML4Py datastore or to a script in the OML4Py script repository.
**Syntax**

```
pyqRevoke (
 V_NAME VARCHAR2 IN
 V_TYPE VARCHAR2 IN
 V_USER VARCHAR2 IN DEFAULT)
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4Py datastore or a script in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is <code>datastore</code>; for script the type is <code>pyqScript</code>.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user from whom to revoke access.</td>
</tr>
</tbody>
</table>

**Example 9-33  Revoking Read Access to a script**

```
-- Revoke read privilege access to script pyqFun1 from SCOTT.
BEGIN
 pyqRevoke('pyqFun1', 'pyqscript', 'SCOTT');
END;
/
```

**Example 9-34  Revoking Read Access to a datastore**

```
-- Revoke read privilege access to datastore ds1 from SCOTT.
BEGIN
 pyqRevoke('ds1', 'datastore', 'SCOTT');
END;
/
```

**Example 9-35  Revoking Read Access to a script from all Users**

```
-- Revoke read privilege access to script pyqFun1 from all users.
BEGIN
 pyqRevoke('pyqFun1', 'pyqscript', NULL);
END;
/
```

**Example 9-36  Revoking Read Access to a datastore from all Users**

```
-- Revoke read privilege access to datastore ds1 from all users.
BEGIN
 pyqRevoke('ds1', 'datastore', NULL);
END;
/
```
pyqScriptCreate Procedure (Autonomous Database)

This topic describes the `pyqScriptCreate` procedure in Oracle Autonomous Database. Use the `pyqScriptCreate` procedure to create a user-defined Python function and adds it to the OML4Py script repository.

**Syntax**

```sql
sys.pyqScriptCreate (
 V_NAME VARCHAR2 IN
 V_SCRIPT CLOB IN
 V_GLOBAL BOOLEAN IN DEFAULT
 V_OVERWRITE BOOLEAN IN DEFAULT)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the user-defined Python function in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_SCRIPT</td>
<td>The definition of the Python function.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>TRUE specifies that the user-defined Python function is public; FALSE specifies that the user-defined Python function is private.</td>
</tr>
<tr>
<td>V_OVERWRITE</td>
<td>If the script repository already has a user-defined Python function with the same name as V_NAME, then TRUE replaces the content of that user-defined Python function with V_SCRIPT and FALSE does not replace it.</td>
</tr>
</tbody>
</table>

**Example 9-37  Using the pyqScriptCreate Procedure**

This example creates a private user-defined Python function named `pyqFun2` in the OML4Py script repository.

BEGIN
  sys.pyqScriptCreate('pyqFun2',
    'def return_frame():
        import numpy as np
        import pickle
        z = np.array([y for y in zip([str(x)+"demo" for x in range(10)],
                        [float(x)/10 for x in range(10)],
                        [x for x in range(10)],
                        [bool(x%2) for x in range(10)],
                        [pickle.dumps(x) for x in range(10)],
                        ["test"+str(x**2) for x in range(10)]],
                        dtype=[("a", "U10"), ("b", "f8"), ("c", "i4"), ("d", "?"),
                        ("e", "S20"), ("f", "O")])
        return z');
  END;

/
This example creates a global user-defined Python function named pyqFun2 in the script repository and overwrites any existing user-defined Python function of the same name.

BEGIN
sys.pyqScriptCreate('pyqFun2',
 'def return_frame():
    import numpy as np
    import pickle
    z = np.array([y for y in zip([str(x) + "demo" for x in range(10)],
            [float(x)/10 for x in range(10)],
            [x for x in range(10)],
            [bool(x%2) for x in range(10)],
            [pickle.dumps(x) for x in range(10)],
            ["test" + str(x**2) for x in range(10)]],
            dtype=[("a", "U10"), ("b", "f8"), ("c", "i4"), ("d", "?"),
                   ("e", "S20"), ("f", "O")])
    return z',
TRUE,  -- Make the user-defined Python function global.
TRUE); -- Overwrite any global user-defined Python function
         -- with the same name.
END;
/

This example creates a private user-defined Python function named create_iris_table in the script repository.

BEGIN
sys.pyqScriptCreate('create_iris_table',
 'def create_iris_table():
    from sklearn.datasets import load_iris
    import pandas as pd
    iris = load_iris()
    x = pd.DataFrame(iris.data, columns = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"])
    y = pd.DataFrame(list(map(lambda x: {0: "setosa", 1: "versicolor", 2: "virginica"}[x], iris.target)),
                      columns = ["Species"])
    return pd.concat([y, x], axis=1)');
END;
/

Display the user-defined Python functions owned by the current user.

SELECT * from USER_PYQ_SCRIPTS;

<table>
<thead>
<tr>
<th>NAME</th>
<th>SCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>create_iris_table</td>
<td>def create_iris_table(): from sklearn.datasets import load_iris ...</td>
</tr>
</tbody>
</table>
pyqFun2  def return_frame():  import numpy as np
import pickle  ...

Display the user-defined Python functions available to the current user.

SELECT * from ALL_PYQ_SCRIPTS;

<table>
<thead>
<tr>
<th>OWNER</th>
<th>NAME</th>
<th>SCRIPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>OML_USER</td>
<td>create_iris_table</td>
<td>&quot;def create_iris_table(): from sklearn.datasets import load_iris ...</td>
</tr>
<tr>
<td>OML_USER</td>
<td>pyqFun2</td>
<td>&quot;def return_frame(): import numpy as np import pickle ...</td>
</tr>
<tr>
<td>PYQSYS</td>
<td>pyqFun2</td>
<td>&quot;def return_frame(): import numpy as np import pickle ...</td>
</tr>
</tbody>
</table>

**pyqScriptDrop Procedure (Autonomous Database)**

This topic describes the *pyqScriptDrop* procedure in Oracle Autonomous Database. Use the *pyqScriptDrop* procedure to remove a user-defined Python function from the OML4Py script repository.

**Syntax**

```sql
sys.pyqScriptDrop (
 V_NAME VARCHAR2 IN,
 V_GLOBAL BOOLEAN IN DEFAULT,
 V_SILENT BOOLEAN IN DEFAULT)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the user-defined Python function in the OML4Py script repository.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>A BOOLEAN that specifies whether the user-defined Python function to drop is a global or a private user-defined Python function. The default value is FALSE, which indicates a private user-defined Python function. TRUE specifies that the user-defined Python function is public.</td>
</tr>
<tr>
<td>V_SILENT</td>
<td>A BOOLEAN that specifies whether to display an error message when sys.pyqScriptDrop encounters an error in dropping the specified user-defined Python function. The default value is FALSE.</td>
</tr>
</tbody>
</table>

**Example 9-38 Using the sys.pyqScriptDrop Procedure**

For the creation of the user-defined Python functions dropped in these examples, see Example 9-27.
This example drops the private user-defined Python function `pyqFun2` from the script repository.

```
BEGIN
 sys.pyqScriptDrop('pyqFun2');
END;
/
```

This example drops the global user-defined Python function `pyqFun2` from the script repository.

```
BEGIN
 sys.pyqScriptDrop('pyqFun2', TRUE);
END;
/
```

Asynchronous Jobs (Autonomous Database)

When a function is run asynchronously, it's run as a job which can be tracked by using the `pyqJobStatus` and `pyqJobResult` functions.

**Topics:**

- `oml_async_flag` Argument
- `pyqJobStatus` Function
- `pyqJobResult` Function
- Asynchronous Job Example

**oml_async_flag** Argument

The special control argument `oml_async_flag` determines if a job is run synchronously or asynchronously. The default value is false.

**Set the `oml_async_flag` Argument**

- To run a function in synchronous mode, set `oml_async_flag` to false.
  
  In synchronous mode, the SQL API waits for the HTTP call to finish and returns when the HTTP response is ready.
  
  By default, `pyq*Eval` functions are executed synchronously. The default connection timeout limit is 60 seconds. Synchronous mode is used if `oml_async_flag` is not set or if it's set to false.

- To run a function in asynchronous mode, set `oml_async_flag` to true.
  
  In asynchronous mode, the SQL API returns a URL directly after the asynchronous job is submitted to the web server. The URL contains a job ID, which can be used to fetch the job status and result in subsequent SQL calls.
Submit Asynchronous Job Example

This example uses the table GRADE, created as follows:

```sql
CREATE TABLE GRADE (
 NAME VARCHAR2(30),
 GENDER VARCHAR2(1),
 STATUS NUMBER(10),
 YEAR NUMBER(10),
 SECTION VARCHAR2(1),
 SCORE NUMBER(10),
 FINALGRADE NUMBER(10)
);
```

```sql
insert into GRADE values('Abbott', 'F', 2, 97, 'A', 90, 87);
insert into GRADE values('Branford', 'M', 1, 98, 'A', 92, 97);
insert into GRADE values('Crandell', 'M', 2, 98, 'B', 81, 71);
insert into GRADE values('Dennison', 'M', 1, 97, 'A', 85, 72);
insert into GRADE values('Edgar', 'F', 1, 98, 'B', 89, 80);
insert into GRADE values('Faust', 'M', 1, 97, 'B', 78, 73);
insert into GRADE values('Greeley', 'F', 2, 97, 'A', 82, 91);
insert into GRADE values('Hart', 'F', 1, 98, 'B', 84, 80);
insert into GRADE values('Isley', 'M', 2, 97, 'A', 88, 86);
insert into GRADE values('Jasper', 'M', 1, 97, 'B', 91, 83);
```

In the following code, the Python function `score_diff` is defined and stored with the name `computeGradeDiff` as a private function in the script repository. The function returns a pandas.DataFrame after assigning a new `DIFF` column by computing the difference between the `SCORE` and `FINALGRADE` column of the input data.

```sql
begin
 sys.pyqScriptCreate('computeGradeDiff','def score_diff(dat):
 import numpy as np
 import pandas as pd
 df = dat.assign(DIFF=dat.SCORE-dat.FINALGRADE)
 return df

 '); end;
```

Run the saved `computeGradeDiff` script as follows:

```sql
select *
 from table(pyqTableEval(
 inp_nam => 'GRADE',
 par_lst => '{"oml_async_flag":true}',
 out_fmt => NULL,
 scr_name => 'computeGradeDiff',
 scr_owner => NULL
));
```
The **VALUE** column of the result contains a URL containing the job ID of the asynchronous job:

```
NAME
--

VALUE
--

https://<host_name>/oml/tenants/<tenant_name>/databases/<database_name>/api/py-scripts/v1/jobs/<job_id>
```

1 row selected.

### pyqJobStatus Function

Use the **pyqJobStatus** function to look up the status of an asynchronous job. If the job is pending, it returns **job is still running**. If the job is completed, the function returns a URL.

#### Syntax

FUNCTION PYQSYS.pyqJobStatus(
  job_id       VARCHAR2
)
RETURN PYQSYS.pyqClobSet

#### Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>job_id</td>
<td>The ID of the asynchronous job.</td>
</tr>
</tbody>
</table>

#### Example

The following example shows a **pyqJobStatus** call and its output.

```sql
SQL> select * from pyqJobStatus(
 + job_id => '<job id>'
);
```

```
NAME
--

VALUE
--

https://<host_name>/oml/tenants/<tenant_name>/databases/<database_name>/api/py-scripts/v1/jobs/<job_id>/result
```

1 row selected.
pyqJobResult Function

Use the `pyqJobResult` function to return the job result.

Syntax

```sql
FUNCTION PYQSYS.pyqJobResult(
 job_id VARCHAR2,
 out_fmt VARCHAR2 DEFAULT 'JSON'
) RETURN SYS.AnyDataSet
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>job_id</td>
<td>The ID of the asynchronous job.</td>
</tr>
</tbody>
</table>

Example

The following example shows a `pyqJobResult` call and its output.

```sql
SQL> select * from pyqJobResult(
 job_id => '<job id>',
 out_fmt =>
 '{"NAME":"varchar2(?),"SCORE":"number","FINALGRADE":"number","DIFF":"number"}
);
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>SCORE</th>
<th>FINALGRADE</th>
<th>DIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>90</td>
<td>87</td>
<td>3</td>
</tr>
<tr>
<td>Branford</td>
<td>92</td>
<td>97</td>
<td>-5</td>
</tr>
<tr>
<td>Crandell</td>
<td>81</td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>Dennison</td>
<td>85</td>
<td>72</td>
<td>13</td>
</tr>
<tr>
<td>Edgar</td>
<td>89</td>
<td>80</td>
<td>9</td>
</tr>
<tr>
<td>Faust</td>
<td>78</td>
<td>73</td>
<td>5</td>
</tr>
<tr>
<td>Greeley</td>
<td>82</td>
<td>91</td>
<td>-9</td>
</tr>
<tr>
<td>Hart</td>
<td>84</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>Isley</td>
<td>88</td>
<td>86</td>
<td>2</td>
</tr>
<tr>
<td>Jasper</td>
<td>91</td>
<td>83</td>
<td>8</td>
</tr>
</tbody>
</table>

10 rows selected.
Asynchronous Job Example

The following examples shows how to submit asynchronous jobs with non-XML output and with XML output.

Non-XML Output

When submitting asynchronous jobs, for JSON, PNG and relational outputs, set the OUT_FMT argument to NULL when submitting the job. When fetching the job result, specify OUT_FMT in the pyqJobResult call.

This example uses the IRIS table created in the example shown in the pyqTableEval Function (Autonomous Database) topic and the linregrPredict script created in the example shown in the pyqRowEval Function (Autonomous Database) topic.

Issue a pyqGroupEval function call to submit an asynchronous job. In the function, the INP_NAM argument specifies the data in the IRIS table to pass to the function.

The PAR_LST argument specifies submitting the job asynchronously with the special control argument oml_async_flag, capturing the images rendered in the script with the special control argument oml_graphics_flag, passing the input data as a pandas.DataFrame with the special control argument oml_input_type, along with values for the function arguments modelName and datastoreName.

The OUT_FMT argument is NULL.

The GRP_COL parameter specifies the column to group by.

The SCR_NAME parameter specifies the user-defined Python function stored with the name linregrPredict in the script repository.

The asynchronous call returns a job status URL in CLOB, you can call set long [length] to get the full URL.

set long 150
select *
from table(pyqGroupEval(
inp_nam => 'IRIS',
par_lst => '{"oml_input_type":"pandas.DataFrame",
"oml_async_flag":true, "oml_graphics_flag":true,
"modelName":"linregr", "datastoreName":"pymodel"}',
out_fmt => NULL,
grp_col => 'Species',
ord_col => NULL,
scr_name => 'linregrPredict',
scr_owner => NULL
));

The output is the following:

NAME
-----------------------------------------------
---
VALUE
-----------------------------------------------
Run a `SELECT` statement that invokes the `pyqJobStatus` function, which returns a resource URL containing the job ID when the job result is ready.

```sql
select * from pyqJobStatus(
job_id => '<job id>'
);
```

The output is the following when the job is still pending.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>job is still running</td>
</tr>
</tbody>
</table>

1 row selected.

The output is the following when the job finishes.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>https://&lt;host name&gt;/oml/tenants/&lt;tenant name&gt;/databases/&lt;database name&gt;/api/py-scripts/v1/jobs/&lt;job id&gt;/result</td>
</tr>
</tbody>
</table>

1 row selected.

Run a `SELECT` statement that invokes the `pyqJobResult` function.

In the `OUT_FMT` argument, the string `'PNG'` specifies to include both return value and images (titles and image bytes) in the result.

```sql
column name format a7
column value format a15
column title format a16
column image format a15
select * from pyqJobResult(
 job_id => '<job id>',
 out_fmt => 'PNG'
);
```
The output is the following.

<table>
<thead>
<tr>
<th>NAME</th>
<th>ID</th>
<th>VALUE</th>
<th>TITLE</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP_s</td>
<td>1</td>
<td>{[&quot;Species&quot;:&quot;setosa&quot;,&quot;Sepal Length&quot;:4.6,&quot;Sepal_Width&quot;:3.6,&quot;Petal_Length&quot;:1.0,&quot;Petal_Width&quot;:0.2,&quot;Pred_Petal_Width&quot;:0.1325]</td>
<td>setosa</td>
<td>6956424F5277304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4867434159414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41414142484E345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6641686869414144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141416C7753466C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7A141415059514</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141443245427144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2B6E615141414144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>468305256683055</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3239644864686</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36D5541625474630</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>634778766447788</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0596942325A584A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7A615739754D793</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4784C6A49734947</td>
</tr>
<tr>
<td>GROUP_v</td>
<td>1</td>
<td>{[&quot;Species&quot;:&quot;versicolor&quot;,&quot;Sepal Length&quot;:5.1,&quot;Sepal_Width&quot;:2.5,&quot;Petal_Length&quot;:3.0,&quot;Petal_Width&quot;:1.1,&quot;Pred_Petal_Width&quot;:0.8319563387],&quot;Species&quot;:&quot;versicolor&quot;}</td>
<td>versicolor</td>
<td>6956424F5277304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4867434159414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41414142484E345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6641686869414144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141416C7753466C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7A141415059514</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141443245427144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2B6E615141414144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>468305256683055</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3239644864686</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36D5541625474630</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>634778766447788</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0596942325A584A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7A615739754D793</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4784C6A49734947</td>
</tr>
<tr>
<td>GROUP_v</td>
<td>1</td>
<td>{[&quot;Species&quot;:&quot;virginica&quot;,&quot;Sepal Length&quot;:5.7,&quot;Sepal_Width&quot;:2.5,&quot;Petal_Length&quot;:5.0,&quot;Petal_Width&quot;:2.0,&quot;Pred_Petal_Width&quot;:1.7,55762924],&quot;Species&quot;:&quot;virginica&quot;}</td>
<td>virginica</td>
<td>6956424F5277304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4867434159414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41414142484E345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6641686869414144</td>
</tr>
</tbody>
</table>

Chapter 9

SQL API for Embedded Python Execution with Autonomous Database

9-105
XML Ouput

If XML output is expected from the asynchronous job, set the OUT_FMT argument to 'XML' when submitting the job and fetching the job result.

This example uses the script `myFitMultiple` created in the example shown in the `pyqIndexEval Function (Autonomous Database)` topic.

Issue a `pyqIndexEval` function call to submit an asynchronous job. In the function, the PAR_LST argument specifies submitting the job asynchronously with the special control argument `oml_async_flag`, along with values for the function arguments `sample_size`.

The asynchronous call returns a job status URL in CLOB, you can call `set long [length]` to get the full URL.

```sql
set long 150 select *
from table(pyqIndexEval(
 par_lst => '{"sample_size":80,"oml_async_flag":true}',
 out_fmt => 'XML',
 times_num => 3,
 scr_name => 'myFitMultiple',
 scr_owner => NULL
));
```

The output is the following.

<table>
<thead>
<tr>
<th>NAME</th>
<th>____________________________________________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>----------------------------------------------------------------</td>
</tr>
</tbody>
</table>

https://<host name>/oml/tenants/<tenant name>/databases/<database name>/api/py-scripts/v1/jobs/<job id>

1 row selected.
Run a SELECT statement that invokes the pyqJobStatus function, which returns a resource URL containing the job id when the job result is ready.

```sql
select * from pyqJobStatus(
 job_id => '<job id>'
);
```

The output is the following when the job is still pending.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>job is still running</td>
<td>1 row selected.</td>
</tr>
</tbody>
</table>

The output is the following when the job result is ready.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://&lt;host name&gt;/oml/tenants/&lt;tenant name&gt;/databases/&lt;database name&gt;/api/py-scripts/v1/jobs/&lt;job id&gt;/result</td>
<td>1 row selected.</td>
</tr>
</tbody>
</table>

Run a SELECT statement that invokes the pyqJobResult function.

In the OUT_FMT argument, the string 'XML' specifies that the table returned contains a CLOB that is an XML string.

```sql
select * from pyqJobResult(
 job_id => '<job id>',
 out_fmt => 'XML'
);
```

The output is the following.

<table>
<thead>
<tr>
<th>NAME</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&lt;root&gt;&lt;pandas_dataFrame&gt;&lt;ROW-pandas_dataFrame&gt;&lt;id&gt;1&lt;/id&gt;&lt;score&gt;0.943550631313753&lt;/score&gt;&lt;/ROW-pandas_dataFrame&gt;&lt;/pandas_dataFrame&gt;&lt;/root&gt;</td>
</tr>
<tr>
<td>2</td>
<td>&lt;root&gt;&lt;pandas_dataFrame&gt;&lt;ROW-pandas_dataFrame&gt;&lt;id&gt;2&lt;/id&gt;&lt;score&gt;0.92783&lt;/score&gt;&lt;/ROW-pandas_dataFrame&gt;&lt;/pandas_dataFrame&gt;&lt;/root&gt;</td>
</tr>
</tbody>
</table>
### Special Control Arguments (Autonomous Database)

Use the PAR_LST parameter to specify special control arguments and additional arguments to be passed into the Python script.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Syntax and Description</th>
</tr>
</thead>
</table>
| `oml_input_type`  | **Syntax**
|                   | `oml_input_type : 'pandas.DataFrame', 'numpy.recarray', or 'default' (default)`         |
|                   | **Description**
|                   | Specifies the type of object to construct from data in the Autonomous Database. By default, a two-dimensional `numpy.ndarray` of type `numpy.float64` is constructed if all columns are numeric. Otherwise, a `pandas.DataFrame` is constructed. |
| `oml_na_omit`     | **Syntax**
|                   | `oml_na_omit : bool, false (default)`                                                   |
|                   | **Description**
|                   | Determines if rows with any missing values will be omitted from the table to be evaluated. |
|                   | If `true`, omit all rows with missing values from the table.                           |
|                   | If `false`, do not omit rows with missing values from the table.                        |
| `oml_async_flag`  | **Syntax**
|                   | `oml_async_flag : bool, false (default)`                                               |
|                   | **Description**
|                   | If `true`, the job will be submitted asynchronously.                                    |
|                   | If `false`, the job will be executed in synchronous mode.                               |
| `oml_graphics_flag` | **Syntax**
|                   | `oml_graphics_flag : bool, false (default)`                                            |
|                   | **Description**
|                   | If `true`, the server will capture images rendered in the Python script.                |
|                   | If `false`, the server will not capture images rendered in the Python script.           |
| `oml_parallel_flag` | **Syntax**
|                   | `oml_parallel_flag : bool, false (default)`                                            |
|                   | **Description**
|                   | If `true`, the Python script will be run with data parallelism. Data parallelism is only applicable to pyqRowEval, pyqGroupEval, and pyqIndexEval. |
|                   | If `false`, the Python script will not be run with data parallelism.                   |
### Argument Syntax and Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oml_service_level</td>
<td><code>string</code>, allowed values: 'LOW' (default), 'MEDIUM', 'HIGH'</td>
<td>Controls the different levels of performance and concurrency in Autonomous Database.</td>
</tr>
</tbody>
</table>

#### Examples

- **Input data is** `pandas.DataFrame`:
  ```python
def my_function(par_lst):
 par_lst = '{"oml_input_type":"pandas.DataFrame"}'
 # Use the function here
```

- **Drop rows with missing values from input data**:
  ```python
 def my_function(par_lst):
 par_lst = '{"oml_na_omit":true}'
 # Use the function here

 def my_data_frame:
 # Input data

 my_function(my_data_frame)
  ```

- **Submit a job in asynchronous mode**:
  ```python
 def my_function(par_lst):
 par_lst = '{"oml_async_flag":true}'
 # Use the function here

 def my_data_frame:
 # Input data

 my_function(my_data_frame)
  ```

- **Use MEDIUM service level**:
  ```python
 def my_function(par_lst):
 par_lst = '{"oml_service_level":"MEDIUM"}'
 # Use the function here

 def my_data_frame:
 # Input data

 my_function(my_data_frame)
  ```

### Output Formats (Autonomous Database)

The `OUT_FMT` parameter controls the format of output returned by the table functions `pyqEval`, `pyqGroupEval`, `pyqIndexEval`, `pyqRowEval`, `pyqTableEval`, and `pyqJobResult`.

The output formats are:

- **JSON**
- **Relational**
- **XML**
- **PNG**
- **Asynchronous Mode Output**

#### JSON

When `OUT_FMT` is set to `JSON`, the table functions return a table containing a CLOB that is a JSON string.

The following example invokes the `pyqEval` function on the 'pyqFun1' created in the `pyqEval` function section.

```sql
SQL> select *
 2 from table(pyqEval(
 3 par_lst => '{"oml_service_level":"MEDIUM"}',
 4 # Use the function here
 5));
```

---

Chapter 9
SQL API for Embedded Python Execution with Autonomous Database

9-109
out_fmt => 'JSON',
scr_name => 'pyqFun1');

NAME
-------------------------------
VALUE
---------------------------------
[{"FLOAT":0,"ID":0,"NAME":"demo_0"},{"FLOAT":0.1,"ID":1,"NAME":"demo_1"},{"FLOAT":0.2,"ID":2,"NAME":"demo_2"},{"FLOAT":0.3,"ID":3,"NAME":"demo_3"},{"FLOAT":0.4,"ID":4,"NAME":"demo_4"},{"FLOAT":0.5,"ID":5,"NAME":"demo_5"},{"FLOAT":0.6,"ID":6,"NAME":"demo_6"},{"FLOAT":0.7,"ID":7,"NAME":"demo_7"},{"FLOAT":0.8,"ID":8,"NAME":"demo_8"},{"FLOAT":0.9,"ID":9,"NAME":"demo_9"}]
1 row selected.

Relational

When `OUT_FMT` is specified with a JSON string where column names are mapped to column types, the table functions return the response by reshaping it into table columns.

For example, if `OUT_FMT` is specified with `{"NAME":"varchar2(7)", "DIFF":"number"}`, the output should contain a `NAME` column of type VARCHAR2(7) and a `DIFF` column of type NUMBER. The following example uses the table `GRADE` and the script 'computeGradeDiff' (created in Asynchronous Jobs (Autonomous Database) and invokes the `computeGradeDiff` function:

```sql
SQL> select *
 2 from table(pyqTableEval{
 inp_nam => 'GRADE',
 par_lst => '{"oml_input_type":"pandas.DataFrame"}',
 out_fmt => '{"NAME":"varchar2(7)","DIFF":"number"}',
 scr_name => 'computeGradeDiff'});
```

NAME DIFF
-------- --------
Abbott 3
Branfor -5
Crandel 10
Denniso 13
Edgar 9
Faust 5
Greeley -9
Isley 2
Jasper 8

10 rows selected.
XML

When `OUT_FMT` is specified with `XML`, the table functions return the response in a table with fixed columns. The output consists of two columns. The `NAME` column contains the name of the row. The `NAME` column value is `NULL` for `pyqEval`, `pyqTableEval`, `pyqRowEval` function returns. For `pyqGroupEval`, `pyqIndexEval`, the `NAME` column value is the group/index name. The `VALUE` column contains the XML string.

The XML can contain both structured data and images, with structured or semi-structured Python objects first, followed by the image or images generated by the Python function. Images are returned as a base 64 encoding of the PNG representation. To include images in the XML string, the special control argument `oml_graphics_flag` must be set to true.

In the following code, the python function `gen_two_images` is defined and stored with name `plotTwoImages` in the script repository. The function renders two subplots with random dots in red and blue color and returns the number of columns of the input data.

```
begin
 sys.pyqScriptCreate('plotTwoImages','def gen_two_images (dat):
 import numpy as np
 import matplotlib.pyplot as plt
 np.random.seed(22)
 fig = plt.figure(1);
 fig2 = plt.figure(2);
 ax = fig.add_subplot(111);
 ax.set_title("Random red dots")
 ax2 = fig2.add_subplot(111);
 ax2.set_title("Random blue dots")
 ax.plot(range(100), np.random.normal(size=100), marker = "o",
 color = "red", markersize = 2)
 ax2.plot(range(100,0,-1), marker = "o", color = "blue",
 markersize = 2)
 return dat.shape[1]
 ',FALSE,TRUE);
end;
```

The following example shows the XML output of a `pyqRowEval` function call where both structured data and images are included in the result:

```
SQL> select *
 2 from table(pyqRowEval(
 inp_nam => 'GRADE',
 par_lst => '{"oml_graphics_flag":true}',
 outFmt => 'XML',
 row_num => 5,
 scr_name => 'plotTwoImages'
));
```

```
NAME

VALUE
```
When `OUT_FMT` is specified with `PNG`, the table functions return the response in a table with fixed columns (including an image bytes column). When calling the SQL API, you must set the special control argument `oml_graphics_flag` to `true` so that the web server can capture images rendered in the executed script.

The PNG output consists of four columns. The `NAME` column contains the name of the row. The `NAME` column value is `NULL` for `pyqEval` and `pyqTableEval` function returns. For `pyqRowEval`, `pyqGroupEval`, `pyqIndexEval`, the `NAME` column value is the chunk/group/index name. The `ID` column indicates the ID of the image. The `VALUE` column contains the return value of the executed script. The `TITLE` column contains the titles of the rendered PNG images. The `IMAGE` column is a BLOB column containing the bytes of the PNG images rendered by the executed script.

The following example shows the PNG output of a `pyqRowEval` function call.

```sql
SQL> column name format a7
column valueformat a5
column title format a16
column image format a15
select *
from table(pyqRowEval(
 inp_nam => 'GRADE',
 par_lst => '{"oml_graphics_flag":true}',
 out_fmt => 'PNG',row_num => 5,
 scr_name => 'plotTwoImages',
 scr_owner => NULL
));
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>ID</th>
<th>VALUE</th>
<th>TITLE</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHUNK_1</td>
<td>1</td>
<td>7</td>
<td>Random red dots</td>
<td>6956424F5277304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
</tbody>
</table>
### Asynchronous Mode Output

When you set `oml_async_flag` to `true` to run an asynchronous job, set `OUT_FMT` to `NULL` for jobs that return non-XML results, or set it to `XML` for jobs that return XML results, as described below.

See also `oml_async_flag` Argument.

### Asynchronous Mode: Non-XML Output

4 rows selected.

<table>
<thead>
<tr>
<th>CHUNK_1</th>
<th>27</th>
<th>Random blue dots</th>
<th>6956424F5277304</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>486743415941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4141412484E435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6641686B6941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416C7753466C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7A41414150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHUNK_2</th>
<th>17</th>
<th>Random red dots</th>
<th>6956424F5277304</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>486743415941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4141412484E435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6641686B6941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416C7753466C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7A41414150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHUNK_2</th>
<th>27</th>
<th>Random blue dots</th>
<th>6956424F5277304</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>B47676F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4E5355684555674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416F41414141</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>486743415941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1413130647A6B41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4141412484E435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35651493416749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6641686B6941414</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141416C7753466C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7A41414150</td>
</tr>
</tbody>
</table>
When submitting asynchronous jobs, for JSON, PNG, and relational outputs, set `OUT_FMT` to NULL when submitting the job. When fetching the job result, specify `OUT_FMT` in the `pyqJobResult` call.

The following example shows how to get the JSON output from an asynchronous `pyqIndexEval` function call:

```
SQL> select *
 2 from table(pyqGroupEval(
 3 inp_nam => 'GRADE',
 4 par_lst => '{"oml_async_flag":true, "oml_graphics_flag":true}',
 5 out_fmt => NULL,
 6 grp_col => 'GENDER',
 7 ord_col => NULL,
 8 scr_name => 'inp_twoimgs',
 9 scr_owner => NULL
 10));

NAME --
VALUE --

https://<host name>/oml/tenants/<tenant name>/databases/<database
name>/api/py-scripts/v1/jobs/<job id>

1 row selected.

SQL> select * from pyqJobStatus(
 2 job_id => '<job id>');

NAME --
VALUE --

https://<host name>/oml/tenants/<tenant name>/databases/<database
name>/api/py-scripts/v1/jobs/<job id>/result

1 row selected.

SQL> column name format a7
 column value format a5
 column title format a16
 column image format a15
 select * from pyqJobResult(
 3 job_id => '<job id>',
 4)
```
```
out_fmt => 'PNG'
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>ID</th>
<th>VALUE</th>
<th>TITLE</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP_F</td>
<td>1</td>
<td>7</td>
<td>Random red dots</td>
<td>6956424F5277304 B47676F41414141 4E5355684555674 141416F41414141 486743415941414 1413130647A6B41 41414142484E435 356514943416749 6641686B6941414 141416C7753466C 7A4141415059514 141443245427144 2B6E61514141414 468305256683055 32396D644864686 36D554162574630 634778766447787 0596942325A584A 7A615739754D793 4784C6A49734947</td>
</tr>
<tr>
<td>GROUP_F</td>
<td>2</td>
<td>7</td>
<td>Random blue dots</td>
<td>6956424F5277304 B47676F41414141 4E5355684555674 141416F41414141 486743415941414 1413130647A6B41 41414142484E435 356514943416749 6641686B6941414 141416C7753466C 7A4141415059514 141443245427144 2B6E61514141414 468305256683055 32396D644864686 36D554162574630 634778766447787 0596942325A584A 7A615739754D793 4784C6A49734947</td>
</tr>
<tr>
<td>GROUP_M</td>
<td>1</td>
<td>7</td>
<td>Random red dots</td>
<td>6956424F5277304 B47676F41414141 4E5355684555674 141416F41414141 486743415941414 1413130647A6B41 41414142484E435 356514943416749 6641686B6941414 141416C7753466C 7A4141415059514 141443245427144 2B6E61514141414 468305256683055 32396D644864686 36D554162574630 634778766447787 0596942325A584A 7A615739754D793 4784C6A49734947</td>
</tr>
</tbody>
</table>
Asynchronous Mode: XML Output

If XML output is expected from the asynchronous job, you must set `OUT_FMT` to `XML` when submitting the job and fetching the job result.

The following example shows how to get the XML output from an asynchronous `pyqIndexEval` function call.

```
SQL> select *
from table(pyt
 from table(pyqIndexEval(
 par_lst => '"oml_async_flag":true',
 out_fmt => 'XML',
 times_num => 3,
 scr_name => 'idx_ret_df',
```
scr_owner => NULL
});

NAME
---
VALUE
---

https://<host name>/oml/tenants/<tenant name>/databases/<database name>/api/py-scripts/v1/jobs/<job id>

1 row selected.

SQL> select * from pyqJobStatus(
       job_id => '<job id>'
);

2
NAME
---
VALUE
---

https://<host name>/oml/tenants/<tenant name>/databases/<database name>/api/py-scripts/v1/jobs/<job id>/result

1 row selected.

SQL> select * from pyqJobResult(
       job_id => '<job id>',
       out_fmt => 'XML'
);

    2     3     4
NAME
---
VALUE
---

1
<root><pandas_dataFrame><ROW-
pandas_dataFrame><ID>1</ID><RES>a</RES></ROW-pandas _dataFrame></pandas_dataFrame></root>

2
<root><pandas_dataFrame><ROW-
pandas_dataFrame</ID>2</ID><RES>b</RES></ROW-
pandas_dataFrame></pandas_dataFrame></root>

3
<root><pandas_dataFrame><ROW-
pandas_dataFrame><ID>3</ID><RES>c</RES></ROW-
pandas_dataFrame></pandas_dataFrame></root>

3 rows selected
10

Administrative Tasks for Oracle Machine Learning for Python

If you find that your Python process is consuming too many of your machine's resources, or causing your machine to crash, you can get information about, or set limits for, the resources Python is using.

The Python system and process utilities library `psutil` is a cross-platform library for retrieving information on running processes and system utilization, such as CPU, memory, disks, network, and sensors, in Python. It is useful for system monitoring, profiling, limiting process resources, and the management of running processes.

The function `psutil.Process.rlimit` gets or sets process resource limits. In `psutil`, process resource limits are constants with names beginning with `psutil.RLIMIT_`. Each resource is controlled by a soft limit and hard limit tuple.

For example, `psutil.RLIMIT_AS` represents the maximum size (in bytes) of the virtual memory (address space) used by the process. The default limit of `psutil.RLIMIT_AS` can be `-1` (`psutil.RLIM_INFINITY`). You can lower the resource limit of `psutil.RLIMIT_AS` to prevent your Python program from loading too much data into memory, as shown in the following example.

### Example 10-1 Resource Control with psutil.RLIMIT_AS

```python
import psutil
import numpy as np

Get the current OS process.
p = psutil.Process()

Get a list of available resources.
[attr for attr in dir(psutil) if attr[:7] == 'RLIMIT_']

Display the Virtual Memory Size of the current process.
p.memory_info().vms

Get the process resource limit RLIMIT_AS.
soft, hard = p.rlimit(psutil.RLIMIT_AS)
print('Original resource limits of RLIMIT_AS (soft/hard): {}/{}
'.format(soft, hard))

Check the constant used to represent the limit for an unlimited resource.
psutil.RLIM_INFINITY

Set resource RLIMIT_AS (soft, hard) limit to (1GB, 2GB).
p.rlimit(psutil.RLIMIT_AS, (pow(1024,3)*1, pow(1024,3)*2))

Get the current resource limit of RLIMIT_AS.
cur_soft, cur_hard = p.rlimit(psutil.RLIMIT_AS)
```
print('Current resource limits of RLIMIT_AS (soft/hard): {}/{}
'.format(cur_soft, cur_hard))

# Define a list of sizes to be allocated in MB (megabytes).
sz = [5, 10, 20]

# Define a megabyte variable in bytes.
MB = 1024*1024

# Allocate an increasing amount of data.
for val in sz:
    stmt = "Allocate %s MB " % val
    try:
        print("virtual memory: %d MB" % int(p.memory_info().vms/MB))
        m = np.arange(val*MB/8, dtype="u8")
        print(stmt + " Success.")
    except:
        print(stmt + " Fail.")
    raise

# Delete the allocated variable.
del m

# Raise the soft limit of RLIMIT_AS to 2GB.
p.rlimit(psutil.RLIMIT_AS, (pow(1024,3)*2, pow(1024,3)*2))

# Get the current resource limit of RLIMIT_AS.
cur_soft, cur_hard = p.rlimit(psutil.RLIMIT_AS)
print('Current resource limits of RLIMIT_AS (soft/hard): {}/{}
'.format(cur_soft, cur_hard))

# Retry: allocate an increasing amount of data.
for val in sz:
    stmt = "Allocate %s MB " % val
    try:
        print("virtual memory: %d MB" % int(p.memory_info().vms/MB))
        m = np.arange(val*MB/8, dtype="u8")
        print(stmt + " Success.")
    except:
        print(stmt + " Fail.")
    raise

Listing for This Example

>>> import psutil
>>> import numpy as np
>>> # Get the current OS process.
... p = psutil.Process()
>>> # Get a list of available resources.
... [attr for attr in dir(psutil) if attr[:7] == 'RLIMIT_']
['RLIMIT_AS', 'RLIMIT_CORE', 'RLIMIT_CPU', 'RLIMIT_DATA',
'RLIMIT_FSIZE', 'RLIMIT_LOCKS', 'RLIMIT_MEMLOCK', 'RLIMIT_MSGQUEUE',
'}
'RLIMIT_NICE', 'RLIMIT_NOFILE', 'RLIMIT_NPROC', 'RLIMIT_RSS',
'RLIMIT_RTPRIO', 'RLIMIT_RTTIME', 'RLIMIT_SIGPENDING', 'RLIMIT_STACK']

>>> # Display the Virtual Memory Size of the current process.
... p.memory_info().vms
413175808

>>> # Get the process resource limit RLIMIT_AS.
... soft, hard = p.rlimit(psutil.RLIMIT_AS)
>>> print('Original resource limits of RLIMIT_AS (soft/hard): {}/
{}'.format(soft, hard))
Original resource limits of RLIMIT_AS (soft/hard): -1/-1

>>> # Check the constant used to represent the limit for an unlimited
resource.
... psutil.RLIM_INFINITY
-1

>>> # Set the resource RLIMIT_AS (soft, hard) limit to (1GB, 2GB).
... p.rlimit(psutil.RLIMIT_AS, (pow(1024,3)*1, pow(1024,3)*2))

>>> # Get the current resource limit of RLIMIT_AS.
... cur_soft, cur_hard = p.rlimit(psutil.RLIMIT_AS)
>>> print('Current resource limits of RLIMIT_AS (soft/hard): {}/
{}'.format(cur_soft, cur_hard))
Current resource limits of RLIMIT_AS (soft/hard): 1073741824/2147483648

>>> # Define a list of sizes to be allocated in MB (megabytes).
... sz = [100, 200, 500, 1000]

>>> # Define a megabyte variable in bytes.
... MB = 1024*1024

>>> # Allocate an increasing amount of data.
... for val in sz:
...     stmt = "Allocate %s MB " % val
...     try:
...         print("virtual memory: %d MB" % int(p.memory_info().vms/MB))
...         m = np.arange(val*MB/8, dtype="u8")
...         print(stmt + " Success.")
...         except:
...             print(stmt + " Fail.")
...             raise

virtual memory: 394 MB
Allocate 100 MB Success.
virtual memory: 494 MB
Allocate 200 MB Success.
virtual memory: 594 MB
Allocate 500 MB Fail.
Traceback (most recent call last):
  File "<stdin>", line 6, in <module>
MemoryError

>>> # Delete the allocated variable.
>>> # Raise the soft limit of RLIMIT_AS to 2GB.
... p.rlimit(psutil.RLIMIT_AS, (pow(1024,3)*2, pow(1024,3)*2))

>>> # Get the current resource limit of RLIMIT_AS.
... cur_soft, cur_hard = p.rlimit(psutil.RLIMIT_AS)

>>> print('Current resource limits of RLIMIT_AS (soft/hard): {}/{}
'.format(cur_soft, cur_hard))
Current resource limits of RLIMIT_AS (soft/hard): 2147483648/2147483648

>>> # Retry: allocate an increasing amount of data.
... for val in sz:
...     stmt = "Allocate {} MB " % val
...     try:
...         print("virtual memory: {} MB" % int(p.memory_info().vms/MB))
...         m = np.arange(val*MB/8, dtype="u8")
...         print(stmt + " Success.")
...     except:
...         print(stmt + " Fail.")
...         raise

virtual memory: 458 MB
Allocate 100 MB Success.
virtual memory: 558 MB
Allocate 200 MB Success.
virtual memory: 658 MB
Allocate 500 MB Success.
virtual memory: 958 MB
Allocate 1000 MB Success.
Index

A
algorithm selection class, 8-6
algorithms
  Apriori, 7-21
  attribute importance, 7-18
  Automated Machine Learning, 8-1
  Automatic Data Preparation, 7-10
  automatically selecting, 8-15
  Decision Tree, 7-28
  Expectation Maximization, 7-35
  Explicit Semantic Analysis, 7-50
  Generalized Linear Model, 7-55
  k-Means, 7-66
  machine learning, 7-1
  Minimum Description Length, 7-18
  Naive Bayes, 7-71
  Neural Network, 7-80
  Random Forest, 7-89
  settings common to all, 7-4
  Singular Value Decomposition, 7-98
  Support Vector Machine, 7-104
ALL_PYQ_DATASTORE_CONTENTS view, 9-5
ALL_PYQ_DATASTORES view, 9-6
ALL_PYQ_SCRIPTS view, 9-7
anomaly detection models, 7-104
Apriori algorithm, 7-21
attribute importance, 7-18
Automated Machine Learning
  about, 8-1
Automatic Data Preparation algorithm, 7-10
Automatic Machine Learning
  connection parameter, 5-1
  Autonomous Database, 5-1
classes (continued)
  oml.automl.ModelSelection, 8-15
  oml.automl.ModelTuning, 8-11
  oml.dt, 7-10, 7-28
  oml.em, 7-35
  oml.esa, 7-50
  oml.glm, 7-55
  oml.graphics, 6-32
  oml.km, 7-66
  oml.nb, 7-71
  oml.nn, 7-80
  oml.rf, 7-89
  oml.svd, 7-98
  oml.svm, 7-104
classification algorithm, 7-89
classification models, 7-10, 7-28, 7-55, 7-71,
  7-80, 7-89, 7-104
client
  installing for Linux for Autonomous
    Database, 2-1
  installing for Linux on-premises, 3-18
clustering models, 7-35, 7-50, 7-66
connection
  creating a on-premises database, 5-4
  functions, 5-1
control arguments, 9-10
convert Python to SQL, 1-4
creating
  proxy objects, 5-12, 5-15
cx_Oracle package, 5-1
cx_Oracle.connect function, 5-1

D
data
  about moving, 5-8
  exploring, 6-17
  filtering, 6-13
  preparing, 6-1
  selecting, 6-3
data parallel processing, 9-10
database
  connecting to an on-premises, 5-4
datastores
  about, 5-20
datastores (continued)
database views for, 9-5, 9-6, 9-8
deleting objects, 5-28
describing objects in, 5-27
getting information about, 5-25
granting or revoking access to, 5-30
loading objects from, 5-24
saving objects in, 5-21

DCLI
Exadata, 4-5
python, 4-1

Decision Tree algorithm, 7-28
Distributed Command Line Interface, 4-1
dropping tables, 5-15

E
EM model, 7-35
Embedded Python Execution
about, 9-10
about the SQL interface for, 9-35
SQL interface for, 9-35, 9-55
ESA model, 7-50
Exadata, 4-1
compute nodes, 4-1
DCLI, 4-5
Expectation Maximization algorithm, 7-35
explainability, 7-12
Explicit Semantic Analysis algorithm, 7-50
exporting models, 7-7

F
feature extraction algorithm, 7-50
feature extraction class, 7-98
feature selection class, 8-8
function
pyqGrant, 9-49, 9-93
functions
cx_Oracle.connect, 5-1
Embedded Python Execution, 9-10
for graphics, 6-32
for managing user-defined Python functions, 9-26
oml.boxplot, 6-32
oml.check_embed, 5-1, 5-4
oml.connect, 5-1, 5-4
oml.create, 5-15
oml.cursor, 5-8, 5-15
oml.dir, 5-8, 5-12
oml.disconnect, 5-1, 5-4
oml.do_eval, 9-12
oml.drop, 5-15
oml.ds.delete, 5-28

functions (continued)
oml.ds.describe, 5-27
oml.ds.dir, 5-25
oml.ds.load, 5-24
oml.ds.save, 5-21
oml.grant, 5-30
oml.group_apply, 9-16
oml.hist, 6-32
oml.index_apply, 9-24
oml.isconnected, 5-1, 5-4
oml.row_apply, 9-20
oml.script.create, 9-27
oml.script.dir, 9-31
oml.script.drop, 9-34
oml.script.load, 9-33
oml.set_connection, 5-1
oml.sync, 5-12
oml.table_apply, 9-13
pyqEval, 9-36
pyqGroupEval, 9-46
pyqRowEval, 9-42
pyqTableEval, 9-39

G
GLM models, 7-55
granting
access to scripts and datastores, 5-30
user privileges, 3-13
graphics
rendering, 6-32

I
importing models, 7-7
installing
client for Linux for Autonomous Database, 2-1
client for Linux on-premises, 3-18
server for Linux on-premises, 3-6, 3-11
Instant Client
installing for Linux on-premises, 3-17

K
KM model, 7-66

L
libraries inOML4Py, 1-5
Linux
installing Python for, 3-1
requirements, 3-1
uninstalling on-premises client for, 3-22
Linux (continued)
  uninstalling on-premises server for, 3-16
Linux for Autonomous Database
  installing client for, 2-1
Linux on-premises
  installing client for, 3-18
  installing Oracle Instant Client for, 3-17
  installing server for, 3-6, 3-11
  supporting packages for, 3-4

M
  machine learning
    classes, 7-1
    methods
      drop, 6-13
      drop_duplicates, 6-13
      dropna, 6-13
      for exploring data, 6-17
      for preparing data, 6-1
      pull, 5-11
  Minimum Description Length algorithm, 7-18
  model selection, 8-15
  model tuning, 8-11
  models
    association rules, 7-21
    attribute importance, 7-18
    Decision Tree, 7-10, 7-28
    Expectation Maximization, 7-35
    explainability, 7-12
    Explicit Semantic Analysis, 7-50
    exporting and importing, 7-7
    for anomaly detection, 7-104
    for classification, 7-10, 7-28, 7-55, 7-71, 7-80, 7-89, 7-104
    for clustering, 7-35, 7-66
    for feature extraction, 7-50, 7-98
    for regression, 7-55, 7-80, 7-104
    Generalized Linear Model, 7-55
    k-Means, 7-66
    Naive Bayes, 7-71
    Neural Network, 7-80
    parametric, 7-55
    persisting, 7-1
    Random Forest, 7-89
    Singular Value Decomposition, 7-98
    Support Vector Machine, 7-104
  moving data
    about, 5-8
    to a local Python session, 5-11
    to the database, 5-9

N
  Naive Bayes model, 7-71
  Neural Network model, 7-80

O
  oml_input_type argument, 9-10
  oml_na_omit argument, 9-10
  oml.ai class, 7-18
  oml.ar class, 7-21
  oml.automl.AlgorithmSelection class, 8-6
  oml.automl.FeatureSelection class, 8-8
  oml.automl.ModelSelection class, 8-15
  oml.automl.ModelTuning class, 8-15
  oml.boxplot function, 6-32
  oml.check_embed function, 5-1, 5-4
  oml.connect function, 5-1, 5-4
  oml.create function, 5-15
  oml.cursor function, 5-8, 5-15
  oml.dir function, 5-8, 5-12
  oml.disconnect function, 5-1, 5-4
  oml.do_eval function, 9-12
  oml.drop function, 5-15
  oml.ds.delete function, 5-28
  oml.ds.describe function, 5-27
  oml.ds/dir function, 5-25
  oml.ds/load function, 5-24
  oml.ds/save function, 5-21
  oml.dt class, 7-10, 7-28
  oml.em class, 7-35
  oml.esa class, 7-50
  oml.glm class, 7-55
  oml.grant function, 5-30
  oml.graphics class, 6-32
  oml.group_apply function, 9-16
  oml.hist function, 6-32
  oml.index_apply function, 9-24
  oml.isconnected function, 5-1, 5-4
  oml.km class, 7-66
  oml.nb class, 7-71
  oml.nn class, 7-80
  oml.push function, 5-9
  oml.revoke function, 5-30
  oml.rf class, 7-89
  oml.row_apply function, 9-20
  oml.script/create function, 9-27
  oml.script/dir function, 9-31
  oml.script/drop function, 9-34
  oml.script/load function, 9-33
  oml.set_connection function, 5-1, 5-4
  oml.svd class, 7-98
  oml.svm class, 7-104
  oml.sync function, 5-12
  oml.table_apply function, 9-13
  OML4Py, 1-1, 4-1
  Exadata, 4-5
on-premises client
  installing, 3-16
  uninstalling, 3-22
on-premises server
  installing, 3-6
  uninstalling, 3-16
on-premises system requirements, 3-1
Oracle Machine Learning Notebooks, 5-1
Oracle Machine Learning Python interpreter, 5-1
Oracle wallets
  about, 5-3
packages
  supporting for Linux on-premises, 3-4
  parallel processing, 9-10
parametric models, 7-55
PL/SQL procedures
  sys.pyqScriptCreate, 9-51
  sys.pyqScriptDrop, 9-54
predict method, 7-71
predict.proba method, 7-71
privileges
  required, 3-13
proxy objects, 1-4
  for database tables, 5-12, 5-15
  storing, 5-20
pull method, 5-11
PYQADMIN role, 3-13
pyqEval function, 9-36
pyqGrant function, 9-49, 9-93
pyqGroupEval function, 9-46
pyqRowEval function, 9-42
pyqTableEval function, 9-39
pyquser.sql script, 3-14
Python, 4-1
  installing for Linux, 3-1
  libraries in OML4Py, 1-5
  requirements, 3-1
  version used, 1-5
Python interpreter, 5-1
Python objects
  storing, 5-20
Python to SQL conversion, 1-4

R
Random Forest algorithm, 7-89
  ranking
    attribute importance, 7-18
  read privilege
    granting or revoking, 5-30
  regression models, 7-55, 7-80
requirements
  on-premises system, 3-1
resources
  managing, 10-1
revoking
  access to scripts and datastores, 5-30
roles
  PYQADMIN, 3-13

S
scoring new data, 1-2, 7-1
script repository
  granting or revoking access to, 5-30
  managing user-defined Python functions in, 9-26
  registering a user-defined function, 9-26
scripts
  pyquser, 3-14
server
  installing for Linux on-premises, 3-6, 3-11
settings
  about model, 7-3
  Apriori algorithm, 7-21
  association rules, 7-21
  Automatic data preparation algorithm, 7-10
  Decision Tree algorithm, 7-28
  Expectation Maximization model, 7-35
  Explicit Semantic Analysis algorithm, 7-50
  Generalized Linear Model algorithm, 7-55
  k-Means algorithm, 7-66
  Minimum Description Length algorithm, 7-18
  Naive Bayes algorithm, 7-71
  Neural Network algorithm, 7-80
  Random Forest algorithm, 7-89
  shared algorithm, 7-4
  Singular Value Decomposition algorithm, 7-98
  attribute importance, 7-18
  Support Vector Machine algorithm, 7-104
  special control arguments, 9-10
SQL APIs
  pyqEval function, 9-36
  pyqGrant function, 9-49, 9-93
  pyqGroupEval function, 9-46
  pyqRowEval function, 9-42
  pyqTableEval function, 9-39
SQL to Python conversion, 1-4
  supporting packages
    for Linux on-premises, 3-4
SVD model, 7-98
SVM models, 7-104
synchronizing database tables, 5-12
sys.pyqScriptCreate procedure, 9-51
sys.pyqScriptDrop procedure, 9-54
tables
  creating, 5-15
  dropping, 5-12, 5-15
  proxy objects for, 5-12, 5-15
  task parallel processing, 9-10
  transparency layer, 1-4

uninstalling
  on-premises client, 3-22
  on-premises server, 3-16
  USER_PYQ_DATASTORES view, 9-8
  USER_PYQ_SCRIPTS view, 9-9
user-defined Python functions
  Embedded Python Execution of, 9-10

user-defined Python functions (continued)
users
  creating new, 3-14

views
  ALL_PYQ_DATASTORE_CONTENTS, 9-5
  ALL_PYQ_DATASTORES, 9-6
  ALL_PYQ_SCRIPTS, 9-7
  USER_PYQ_DATASTORES, 9-8
  USER_PYQ_SCRIPTS, 9-9

wallets
  about Oracle, 5-3