Contents

Preface

Technology Rebrand viii
Audience viii
Documentation Accessibility viii
Related Documents ix
Oracle Machine Learning for R Online Resources ix
Conventions ix

1 Introduction to Oracle Machine Learning for R

About Oracle Machine Learning for R 1-1
Advantages of Oracle Machine Learning for R 1-1
Get Online Help for Oracle Machine Learning for R Classes, Functions, and Methods 1-3
About Transparently Using R on Oracle Database Data 1-5
 About the Transparency Layer 1-5
 Transparency Layer Support for R Data Types and Classes 1-7
 About Oracle Machine Learning for R Data Types and Classes 1-7
 About the ore.frame Class 1-8
 Support for R Naming Conventions 1-10
 About Coercing R and Oracle Machine Learning for R Class Types 1-10
Typical Operations in Using Oracle Machine Learning for R 1-11
Oracle Machine Learning for R Global Options 1-11

2 Get Started with Oracle Machine Learning for R

Connect to an Oracle Database Instance 2-1
 About Connecting to the Database 2-1
 About Using the ore.connect Function 2-1
 About Using the ore.disconnect Function 2-2
 Use the ore.connect and ore.disconnect Functions 2-3
Create and Manage R Objects in Oracle Database 2-4
Create R Objects for In-Database Data 2-4
 About Creating R Objects for Database Objects 2-4
3 Prepare and Explore Data in the Database

Prepare Data in the Database Using Oracle Machine Learning for R 3-1
 About Preparing Data in the Database 3-1
 Select Data 3-1
 Select Data by Column 3-2
 Select Data by Row 3-2
 Select Data by Value 3-3
 Index Data 3-4
 Combine Data 3-5
 Summarize Data 3-6
 Transform Data 3-7
 Sample Data 3-9
 Partition Data 3-14
 Prepare Time Series Data 3-15

Explore Data 3-21
 About the Exploratory Data Analysis Functions 3-21
 About the NARROW Data Set for Examples 3-22
 Correlate Data 3-22
 Cross-Tabulate Data 3-24
4 Build Models in Oracle Machine Learning for R

Build Oracle Machine Learning for R Models 4-1
 About OREmodels Functions 4-1
 About the longley Data Set for Examples 4-2
 Build Linear Regression Models 4-3
 Build a Generalized Linear Model 4-4
 Build a Neural Network Model 4-7
 Build a Random Forest Model 4-9

Build Oracle Machine Learning for SQL Models 4-11
 About Building OML4SQL Models using OML4R 4-11
 OML4SQL Models Supported by OML4R 4-11
 About OML4SQL Models Built by OML4R Functions 4-12
 Specify Model Settings 4-13
 Build an Association Rules Model 4-14
 Build an Attribute Importance Model 4-17
 Build a Decision Tree Model 4-18
Build an Expectation Maximization Model 4-20
Build an Explicit Semantic Analysis Model 4-25
Build an Extensible R Algorithm Model 4-29
Build Generalized Linear Models 4-37
Build a k-Means Model 4-40
Build a Naive Bayes Model 4-43
Build a Non-Negative Matrix Factorization Model 4-45
Build an Orthogonal Partitioning Cluster Model 4-47
Build a Singular Value Decomposition Model 4-49
Build a Support Vector Machine Model 4-54
Build a Partitioned Model 4-57
Build a Text Processing Model 4-62
Cross-Validate Models 4-69

5 Prediction With R Models

About the ore.predict Function 5-1
Use the ore.predict Function 5-2

6 Use Oracle Machine Learning for R Embedded R Execution

About Oracle Machine Learning for R Embedded R Execution 6-1
Benefits of Embedded R Execution 6-1
APIs for Embedded R Execution 6-2
Security for Scripts 6-3
Support for Parallel Execution 6-3
Install a Third-Party Package for Use in Embedded R Execution 6-5
R Interface for Embedded R Execution 6-9
Arguments for Functions that Run Scripts 6-9
Input Function to Execute 6-10
Optional and Control Arguments 6-10
Structure of Return Value 6-12
Input Data 6-12
Parallel Execution 6-12
Unique Arguments 6-13
Manage Scripts in R 6-13
Use the ore.doEval Function 6-19
Use the ore.tableApply Function 6-25
Use the ore.groupApply Function 6-26
Partition on a Single Column 6-27
Partition on Multiple Columns 6-29
Preface

This publication describes how to use Oracle Machine Learning for R (OML4R).

Technology Rebrand

Oracle R Enterprise is now Oracle Machine Learning for R (OML4R).

Oracle has rebranded the suite of products and components that support machine learning with Oracle Database and Big Data. This technology is now known as Oracle Machine Learning (OML).

The OML application programming interface for R, previously under the name Oracle R Enterprise, is now named Oracle Machine Learning for R (OML4R). The package, class, and function names are not rebranded. They remain `ORE`, `OREbase`, `ore.frame`, `ore.connect`, and so on.

The OML application programming interfaces for SQL include PL/SQL packages, SQL functions, and data dictionary views. Using these APIs is described in publications, previously under the name Oracle Data Mining, that are now named Oracle Machine Learning for SQL (OML4SQL). The PL/SQL package and database view names are not rebranded. They remain `DBMS_DATA_MINING`, `ALL_MINING_MODELS`, and so on.

The Oracle R Advanced Analytics for Hadoop (ORAAH) technology is now Oracle Machine Learning for Spark (OML4Spark).

For more information, see Oracle Machine Learning.

Audience

This document is intended for anyone who uses Oracle Machine Learning for R. Use of OML4R requires knowledge of R and of Oracle Database.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Related Documents

The Oracle Machine Learning for R documentation set includes this publication and the following:

- Oracle Machine Learning for R Release Notes
- Oracle Machine Learning for R Installation and Administration Guide
- Oracle Machine Learning for R Licensing Information User Manual

Oracle Machine Learning for R Online Resources

The following websites provide useful information for users of OML4R:

- The Oracle Machine Learning for R page on the Oracle Technology Network (OTN) provides downloads, the latest documentation, and information such as white papers, blogs, discussion forums, presentations, and tutorials.
- The Oracle Machine Learning page, which has information on all of the Oracle Machine Learning technologies.
- The R Technologies Discussion Forum supports all aspects of Oracle’s R-related offerings, including Oracle Machine Learning for R and Oracle R Distribution. Use the forum to ask questions and make comments about the software.
- The Oracle R Technologies Blog discusses best practices, tips, and tricks for applying OML4R and other Oracle Machine Learning technologies in both traditional and Big Data environments.

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Introduction to Oracle Machine Learning for R

Lists topics that introduce Oracle Machine Learning for R (OML4R).

OML4R in previous releases was named Oracle R Enterprise. The following topics introduce OML4R:

About Oracle Machine Learning for R

Oracle Machine Learning for R (OML4R) is a comprehensive, database-centric environment for end-to-end analytical processes in R, with immediate deployment to production environments.

OML4R is a set of R packages and Oracle Database features that enable an R user to operate on database-resident data without using SQL and to execute R scripts in one or more embedded R engines that run on the database server.

Using OML4R from your local R session, you have easy access to data in an Oracle Database instance. You can create and use R objects that specify data in database tables. OML4R has overloaded functions that translate R operations into SQL that executes in the database. The database consolidates the SQL and can use the query optimization, parallel processing, and scalability features of the database when it executes the SQL statements. The database returns the results as R objects.

Embedded R execution provides some of the most significant advantages of using OML4R. Using embedded R execution, you can store and run R scripts in the database through either an R interface or a SQL interface or both. You can use the results of R scripts in SQL-enabled tools for structured data, R objects, and images.

Advantages of Oracle Machine Learning for R

Using OML4R to prepare and analyze data in an Oracle Database instance has many advantages for an R user.

With OML4R, you can do the following:

- **Operate on Database-Resident Data Without Using SQL.** OML4R has overloaded open source R methods and functions that transparently convert standard R syntax into SQL. These methods and functions are in packages that implement the OML4R transparency layer. With these functions and methods, you can create R objects that access, analyze, and manipulate data that resides in the database. The database can automatically optimize the SQL to improve the efficiency of the query.

- **Eliminate Data Movement.** By keeping the data in the database, you eliminate the time involved in transferring the data to your desktop computer and the need to store the data locally. You also eliminate the need to manage the locally stored data, which includes tasks such as distributing the data files to the appropriate locations, synchronizing the data with changes that are made in the production database, and so on.

- **Keep Data Secure.** By keeping the data in the database, you have the security, scalability, reliability, and backup features of Oracle Database for managing the data.
• **Use the Power of the Database.** By operating directly on database-resident data, you can use the memory and processing power of the database and avoid the memory constraints of your client R session.

• **Use Current Data.** As data is refreshed in the database, you have immediate access to current data.

• **Prepare Data in the Database.** Using the transparency layer functions, prepare large database-resident data sets for predictive analysis through operations such as ordering, aggregating, filtering, recoding, and the use of comprehensive sampling techniques without having to write SQL code.

• **Save R Objects in the Database.** You can save R objects in an Oracle Database instance as persistent database objects that are available to others. You can store R and OML4R objects in an OML4R datastore, which is managed by the Oracle Database instance.

• **Build Models in the Database.** You can build models in the database and manage them in an OML4R datastore. You can use functions in packages that you download from CRAN (The Comprehensive R Archive Network) to build models that require large amounts of memory and that use techniques such as ensemble modeling.

• **Score Data in the Database.** You can include your R models in scripts to score database-resident data. You can perform tasks such as the following:
 – Go from model building to scoring in one step because you can use the same R code for scoring. You do not need to translate the scoring logic as required by some standalone analytic servers.
 – Schedule scripts to be run automatically to perform tasks such as bulk scoring.
 – Score data in the context of a transaction.
 – Perform online what-if scoring.
 – Optionally convert a model to SQL, which Oracle Database does automatically for you. You can then deploy the resulting SQL for low-latency scoring tasks.

• **Execute R Scripts in the Database.** Using OML4R embedded R execution functionality, you can create, store, and execute R scripts in the database. When the script executes, Oracle Database starts, controls, and manages one or more R engines that can run in parallel on the database server. By executing scripts on the database server, you can take advantage of scalability and performance of the server.

 With the embedded R execution functionality, you can do the following:
 – Develop and test R scripts interactively and make the scripts available for use by SQL applications
 – Use CRAN and other packages in R scripts on the database server
 – Operationalize entire R scripts in production applications and eliminate porting R code; avoid reinventing code to integrate R results into existing applications
 – Seamlessly leverage Oracle Database as a high performance computing (HPC) environment for R scripts, providing data parallelism and resource management
 – Use the processing and memory resources of Oracle Database and the increased efficiency of read/write operations between the database and the embedded R execution R engines
Get Online Help for Oracle Machine Learning for R Classes, Functions, and Methods

The OML4R client packages contain the R components that you use to interact with data in an Oracle database.

For a list and brief descriptions of the client packages, and for information on installing them, see Oracle Machine Learning for R Installation and Administration Guide.

To get help on OML4R classes, functions, and methods, use R functions such as help and showMethods. If the name of a class or function has an ore prefix, you can supply the name to the help function. To get help on an overloaded method of an open-source R function, supply the name of the method and the name of the ore class.

Example 1-1 Getting Help on OML4R Classes, Functions, and Methods

This example shows several ways of getting information on OML4R classes, functions, and methods. In the listing following the example some code has been modified to display only a portion of the results and the output of some of the functions is not shown.

```r
# List the contents of the OREbase package.
ls("package:OREbase")

# Get help for the OREbase package.
help("OREbase")

# Get help for the ore virtual class.
help("ore-class")

# Show the subclasses of the ore virtual class.
showClass("ore")

# Get help on the ore.frame class.
help("ore.frame")

# Get help on the ore.vector class.
help("ore.vector")

# Show the arguments for the aggregate method.
showMethods("aggregate")

# Get help on the aggregate method for an ore.vector object.
help("aggregate,ore.vector-method")

# Show the signatures for the merge method.
showMethods("merge")
```
Get help on the merge method for an ore.frame object.
help("merge,ore.frame,ore.frame-method")

showMethods("scale")

Get help on the scale method for an ore.number object.
help("scale,ore.number-method")

Get help on the ore.connect function.
help("ore.connect")

Listing for Example 1-1

R> options(width = 80)

List the contents of the OREbase package.
R> head(ls("package:OREbase"), 12)

[1] "%in%" "Arith" "Compare" "I"
[5] "Logic" "Math" "NCOL" "NROW"
[9] "Summary" "as.data.frame" "as.env" "as.factor"
R>
R># Get help for the OREbase package.
R> help("OREbase") # Output not shown.
R>
R># Get help for the ore virtual class.
R> help("ore-class") # Output not shown.
R>
R># Show the subclasses of the ore virtual class.
R> showClass("ore")

Virtual Class "ore" [package "OREbase"]

No Slots, prototype of class "ore.vector"

Known Subclasses:
Class "ore.vector", directly
Class "ore.frame", directly
Class "ore.matrix", directly
Class "ore.number", by class "ore.vector", distance 2
Class "ore.character", by class "ore.vector", distance 2
Class "ore.factor", by class "ore.vector", distance 2
Class "ore.date", by class "ore.vector", distance 2
Class "ore.datetime", by class "ore.vector", distance 2
Class "ore.difftime", by class "ore.vector", distance 2
Class "ore.logical", by class "ore.vector", distance 3
Class "ore.integer", by class "ore.vector", distance 3
Class "ore.numeric", by class "ore.vector", distance 3
Class "ore.tblmatrix", by class "ore.matrix", distance 2
Class "ore.vecmatrix", by class "ore.matrix", distance 2
R>
Get help on the ore.frame class.
R> help("ore.frame") # Output not shown.

R># Get help on the ore.vector class.
R> help("ore.vector") # Output not shown.
R>
R># Show the arguments for the aggregate method.
R> showMethods("aggregate")

Function: aggregate (package stats)
x="ANY"
x="ore.vector"

Get help on the aggregate method for an ore.vector object.
About Transparently Using R on Oracle Database Data

OML4R has overloaded open source R methods and functions that you can use to operate directly on data in an Oracle Database instance.

The methods and functions are in packages that implement a transparency layer that translates R functions into SQL.

The OML4R transparency layer packages and the limitations of converting R into SQL are described in the following topics:

About the Transparency Layer

The Oracle Machine Learning for R transparency layer is implemented by the OREbase, OREgraphics, and OREstats packages.

These OML4R packages contain overloaded methods of functions in the open source R base, graphics, and stats packages, respectively. The OML4R packages also contain OML4R versions of some of the open source R functions.

With the methods and functions in these packages, you can create R objects that specify data in an Oracle Database instance. When you execute an R expression that uses such an object, the method or function transparently generates a SQL query and sends it to the database. The database then executes the query and returns the results of the operation as an R object.

A database table or view is represented by an ore.frame object, which is a subclass of data.frame. Other OML4R classes inherit from corresponding R classes, such as ore.vector and vector. OML4R maps Oracle Database data types to OML4R classes, such as NUMBER to ore.integer.
You can use the transparency layer methods and functions to prepare database-
resident data for analysis. You can then use functions in other OML4R packages to
build and fit models and use them to score data. For large data sets, you can do the
modeling and scoring using R engines embedded in Oracle Database.

See Also:

- "Transparency Layer Support for R Data Types and Classes" for
 information on OML4R data types and object mappings and on the
 correspondences between R, OML4R, and SQL data types and objects
- "Getting Started with Oracle R Enterprise"

Example 1-2 Finding the Mean of the Petal Lengths by Species in R

This example illustrates the translation of an R function invocation into SQL. It uses
the overloaded OML4R aggregate function to get the mean of the petal lengths from
the IRIS_TABLE object.

```r
ore.create(iris, table = 'IRIS_TABLE')
aggplen = aggregate(IRIS_TABLE$Petal.Length,
                   by = list(species = IRIS_TABLE$Species),
                   FUN = mean)
aggplen
```

Listing for This Example

```
R> ore.create(iris, table = 'IRIS_TABLE')
R> aggplen = aggregate(IRIS_TABLE$Petal.Length,
R>                     by = list(species = IRIS_TABLE$Species),
R>                     FUN = mean)
R> aggplen
```

<table>
<thead>
<tr>
<th>species</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>1.462</td>
</tr>
<tr>
<td>versicolor</td>
<td>4.260</td>
</tr>
<tr>
<td>virginica</td>
<td>5.552</td>
</tr>
</tbody>
</table>

Example 1-3 SQL Equivalent of the Previous Example

This example shows the SQL equivalent of the aggregate function in the previous
example.

```sql
SELECT "Species", AVG("Petal.Length")
FROM IRIS_TABLE
GROUP BY "Species"
ORDER BY "Species";
```

```
Species AVG("PETAL.LENGTH")
---------- -------------------
setosa    1.4620000000000002
versicolor 4.26
virginica  5.552
```
Transparency Layer Support for R Data Types and Classes

Oracle Machine Learning for R transparency layer has classes and data types that map R data types to Oracle Database data types.

Those classes and data types are described in the following topics:

About Oracle Machine Learning for R Data Types and Classes

OML4R has data types that map R data types to SQL data types.

In an R session, when you create database objects from R objects or you create R objects from database data, OML4R translates R data types to SQL data types and the reverse where possible.

OML4R creates objects that are instances of OML4R classes. OML4R overloads many standard R functions so that they use OML4R classes and data types. R language constructs and syntax are supported for objects that are mapped to Oracle Database objects.

Table 1-1 Mappings Between R, OML4R, and SQL Data Types

<table>
<thead>
<tr>
<th>R Data Type</th>
<th>OML4R Data Type</th>
<th>SQL Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>character mode vector</td>
<td>ore.character</td>
<td>VARCHAR2 INTERVAL YEAR TO MONTH</td>
</tr>
<tr>
<td>integer mode vector</td>
<td>ore.integer</td>
<td>NUMBER</td>
</tr>
<tr>
<td>logical mode vector</td>
<td>ore.logical</td>
<td>The NUMBER 0 for FALSE and 1 for TRUE</td>
</tr>
<tr>
<td>numeric mode vector</td>
<td>ore.number</td>
<td>BINARY_DOUBLE BINARY_FLOAT FLOAT NUMBER</td>
</tr>
<tr>
<td>Date</td>
<td>ore.date</td>
<td>DATE</td>
</tr>
<tr>
<td>POSIXct</td>
<td>ore.datatime</td>
<td>TIMESTAMP</td>
</tr>
<tr>
<td>POSIXlt</td>
<td>ore.datetime</td>
<td>TIMESTAMP WITH TIME ZONE TIMESTAMP WITH LOCAL TIME ZONE</td>
</tr>
<tr>
<td>difftime</td>
<td>ore.difftime</td>
<td>INTERVAL DAY TO SECOND LONG LONG RAW RAW</td>
</tr>
<tr>
<td>None</td>
<td>Not supported</td>
<td>User defined data types Reference data types</td>
</tr>
</tbody>
</table>
Note:

- Objects of type `ore.datetime` do not support a time zone setting, instead they use the system time zone `Sys.timezone` if it is available or GMT if `Sys.timezone` is not available.
- The SQL VARCHAR2 data type is mapped to the R character data type through the embedded R input data argument. Users can convert the character variable to a factor in R if needed by using `as.factor()`.

Related Topics

- **R Operators and Functions Supported by Oracle Machine Learning for R**
 The OML4R packages support many R operators and functions that you can use with OML4R objects.

About the `ore.frame` Class

An `ore.frame` object represents a relational query for an Oracle Database instance.

It is the OML4R equivalent of a `data.frame`. Typically, you get `ore.frame` objects that are proxies for database tables. You can then add new columns, or make other changes, to the `ore.frame` proxy object. Any such change does not affect the underlying table. If you then request data from the source table of the `ore.frame` object, the transparency layer function generates a SQL query that has the additional columns in the select list, but the table is not changed.

In R, the elements of a `data.frame` have an explicit order. You can specify elements by using integer indexing. In contrast, relational database tables do not define any order of rows and therefore cannot be directly mapped to R data structures.

OML4R has both ordered and unordered `ore.frame` objects. If a table has a primary key, which is a set of one or more columns that form a distinct tuple within a row, you can produce ordered results by performing a sort using an `ORDER BY` clause in a `SELECT` statement. However, ordering relational data can be expensive and is often unnecessary for transparency layer operations. For example, ordering is not required to compute summary statistics when invoking the `summary` function on an `ore.frame`.

See Also:

- "Moving Data to and from the Database" for information on `ore.create`
- "Creating Ordered and Unordered ore.frame Objects".

Example 1-4 Classes of a `data.frame` and a Corresponding `ore.frame`

This example creates a `data.frame` with columns that contain different data types and displays the structure of the `data.frame`. The example then invokes the `ore.push` function to create a temporary table in the database that contains a copy of the data of the `data.frame`. The `ore.push` invocation also generates an `ore.frame` object that is a
proxy for the table. The example displays the classes of the ore.frame object and of the columns in the data.frame and the ore.frame objects.

df <- data.frame(a="abc",
 b=1.456,
 c=TRUE,
 d=as.integer(1),
 e=Sys.Date(),
 f=asdifftime(c("0:3:20", "11:23:15")))

ore.push(df)
class(of)
class(df$a)
class(df$b)
class(df$c)
class(df$d)
class(df$e)
class(df$f)

df <- data.frame(a="abc",
 b=1.456,
 c=TRUE,
 d=as.integer(1),
 e=Sys.Date(),
 f=asdifftime(c("0:3:20", "11:23:15")))

R> ore.push(df)
R> class(of)
[1] "ore.frame"
attr(,"package")
[1] "OREbase"
R> class(df$a)
[1] "factor"
attr(,"package")
[1] "OREbase"
R> class(df$b)
[1] "numeric"
attr(,"package")
[1] "OREbase"
R> class(df$c)
[1] "logical"
attr(,"package")
[1] "OREbase"
R> class(df$d)
[1] "integer"
attr(,"package")
[1] "OREbase"
Support for R Naming Conventions

OML4R uses R naming conventions for \texttt{ore.frame} columns instead of the more restrictive Oracle Database naming conventions.

The column names of an \texttt{ore.frame} can be longer than 30 bytes, can contain double quotes, and can be non-unique.

About Coercing R and Oracle Machine Learning for R Class Types

Some OML4R functions coerce R objects and class types to OML4R \texttt{ore} objects and types.

The generic \texttt{as.ore} function coerces in-memory R objects to \texttt{ore} objects. The more specific functions, such as \texttt{as.ore.character}, coerce objects to specific types. The \texttt{ore.push} function implicitly coerces R class types to \texttt{ore} class types and the \texttt{ore.pull} function coerces \texttt{ore} class types to R class types. For information on those functions, see "Moving Data to and from the Database".

\textbf{Example 1-5 Coercing R and OML4R Class Types}

This example illustrates coercing R objects to \texttt{ore} objects. creates an R \texttt{integer} object and then uses the generic method \texttt{as.ore} to coerce it to an \texttt{ore} object, which is an \texttt{ore.integer}. The example coerces the R object to various other \texttt{ore} class types. For an example of using \texttt{as.factor} in embedded R execution function, see Example 6-13.

```r
x <- 1:10
class(x)
X <- as.ore(x)
class(X)
Xn <- as.ore.numeric(x)
class(Xn)
Xc <- as.ore.character(x)
class(Xc)
Xc
Xf <- as.ore.factor(x)
Xf
```

\textbf{Listing for Example 1-5}

```r
R> x <- 1:10
R> class(x)
[1] "integer"
R> X <- as.ore(x)
R> class(X)
[1] "ore.integer"
```
attr("package")
[1] "OREbase"
R> Xn <- as.ore.numeric(x)
R> class(Xn)
[1] "ore.numeric"
attr("package")
[1] "OREbase"
R> Xc <- as.ore.character(x)
R> class(Xc)
[1] "ore.character"
attr("package")
[1] "OREbase"
R> Xc
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
R> Xf <- as.ore.factor(x)
R> Xf
[1] 1 2 3 4 5 6 7 8 9 10
Levels: 1 10 2 3 4 5 6 7 8 9

Typical Operations in Using Oracle Machine Learning for R

In using OML4R, the following is a typical progression of operations:

1. In an R session, connect to a schema in an Oracle Database instance.
2. Attach the schema and synchronize with the schema objects, which generates OML4R proxy objects for database tables.
3. Prepare the data for analysis and possibly perform exploratory data analysis and data visualization.
4. Build models using functions in the OREmodels or OREdm packages.
5. Score data using the models either in your local R session or by using embedded R execution.
6. Deploy the results of the analysis to end users.

Figure 1-1 Typical OML4R Workflow

This figure illustrates these steps and typical reiterations of them.

Oracle Machine Learning for R Global Options

OML4R has global options that affect various functions.

Table 1-2 lists the OML4R global options and descriptions of them.
Table 1-2 OML4R Global Options

<table>
<thead>
<tr>
<th>Global</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.envAsEmptyenv</td>
<td>A logical value that specifies whether an environment referenced in an object should be replaced with an empty environment during serialization to an Oracle Database. When TRUE, the referenced environment in the object is replaced with an empty environment whose parent is .GlobalEnv, and the objects in the original referenced environment are not serialized. In some cases, this can significantly reduce the size of serialized objects. When FALSE, all of the objects in the referenced environment are serialized, and can be unserialized and loaded into memory. The default value for this option is FALSE. The following OML4R functions use this global option:</td>
</tr>
<tr>
<td></td>
<td>· ore.push, in saving a serialized list object to the database</td>
</tr>
<tr>
<td></td>
<td>· ore.save, in saving objects to an OML4R datastore</td>
</tr>
<tr>
<td></td>
<td>· ore.doEval and the other embedded R execution functions for serializing parameters of list type and for serializing some objects returned by an R function during embedded R execution</td>
</tr>
<tr>
<td>ore.na.extract</td>
<td>A logical value used during logical subscripting of an ore.frame or ore.vector object. When TRUE, rows or elements with an NA logical subscript produce rows or elements with NA values, which mimics how R treats missing value logical subscripting of data.frame and vector objects. When FALSE, an NA logical subscript is interpreted as a FALSE value, resulting in the removal of the corresponding row or element. The default value is FALSE.</td>
</tr>
<tr>
<td>ore.parallel</td>
<td>A preferred degree of parallelism to use in embedded R execution. One of the following:</td>
</tr>
<tr>
<td></td>
<td>· A positive integer greater than or equal to 2 for a specific degree of parallelism</td>
</tr>
<tr>
<td></td>
<td>· FALSE or 1 for no parallelism</td>
</tr>
<tr>
<td></td>
<td>· TRUE for the default parallelism of the data argument</td>
</tr>
<tr>
<td></td>
<td>· NULL for the database default for the operation</td>
</tr>
<tr>
<td></td>
<td>The default value is NULL.</td>
</tr>
<tr>
<td>ore.sep</td>
<td>A character string that specifies the separator to use between multiple column row names of an ore.frame. The default value is</td>
</tr>
<tr>
<td>ore.trace</td>
<td>A logical value that specifies whether iterative OML4R functions should print output at each iteration. The default value is FALSE.</td>
</tr>
<tr>
<td>ore.warn.order</td>
<td>A logical value that specifies whether OML4R displays a warning message when an ore.frame that lacks row names or an ore.vector that lacks element names is used in a function that requires ordering. The default value is TRUE.</td>
</tr>
</tbody>
</table>
See Also:

- "Global Options Related to Ordering" for information on using `ore.sep` and `ore.warn.order`
- "Support for Parallel Execution"
Get Started with Oracle Machine Learning for R

Start using OML4R by connecting to an Oracle Database instance, creating OML4R objects, and storing them in the database.

This chapter discusses these topics:

Connect to an Oracle Database Instance

To use Oracle Machine Learning for R, you first connect to an Oracle Database instance.

About Connecting to the Database

Oracle Machine Learning for R client components connect an R session to an Oracle Database instance and the OML4R server components.

The connection makes the data in a database schema available to the R user. It also makes the processing power, memory, and storage capacities of the database server available to the R session through the OML4R client interface.

The following topics discuss connecting and disconnecting an R session to an Oracle Database instance:

About Using the ore.connect Function

To begin using OML4R, you first connect to a schema in an Oracle Database instance with the ore.connect function.

Only one OML4R connection can exist at a time during an R session. If an R session is already connected to the database, then invoking ore.connect terminates the active connection before opening a new connection. Before attempting to connect, you can discover whether an active connection exists by using the ore.is.connected function.

You explicitly end a connection with the ore.disconnect function. If you do not invoke ore.disconnect, then the connection is automatically terminated when the R session ends.

With the type argument of ore.connect, you specify the type of connection, either ORACLE or HIVE. A HIVE type of connection connects to Hive tables in a Hadoop cluster. An ORACLE type of connection connects to a schema in an Oracle Database instance. The default value of type is "ORACLE".

If the connection type is HIVE, then ore.connect ignores all other arguments. The HIVE option applies only if you are using Oracle Machine Learning for Spark (OML4Spark) in conjunction with a Hadoop cluster. OML4Spark is part of the Oracle Big Data Connectors option to the Big Data Appliance.

If the connection type is ORACLE, then you do the following:
• Use the logical `all` argument to specify whether OML4R automatically creates an `ore.frame` object for each table to which the user has access in the schema and makes those `ore.frame` objects visible in the current R session. The `ore.frame` objects contain metadata about the tables. The default value of the `all` argument is `FALSE`.

If `all = TRUE`, then OML4R implicitly invokes the `ore.sync` and `ore.attach` functions. If `all = FALSE`, then the user must explicitly invoke `ore.sync` to create `ore.frame` objects. To access these objects by name, the user must invoke `ore.attach` to include the names in the search path.

• Use either the `conn_string` argument, or various combinations of the `user`, `sid`, `host`, `password`, `port`, `service_name`, and `conn_string` arguments to specify information that identifies the connection.

To avoid using a clear-text password, you can specify an Oracle wallet password with the `conn_string` argument. No other arguments are needed. By specifying an Oracle wallet password, you can avoid embedding a database user password in application code, batch jobs, or scripts.

With the other connection identifier arguments, you specify a database user name, host name, and password, and either a system identifier (SID) or service name, and, optionally, a TCP port, or you specify a database user name, password, and a `conn_string` argument.

The default value of the `port` argument is 1521, the default value of `host` is "localhost", which specifies the local host, and the default value of `conn_string` is NULL. You specify the local host when your R session is running on the same computer as the Oracle Database instance to which you want to connect.

See Also:

- "Using the `ore.connect` and `ore.disconnect` Functions" for examples of using the various connection identifiers
- "Creating R Objects for In-Database Data"
- *Oracle Big Data Connectors User’s Guide*

About Using the `ore.disconnect` Function

To explicitly end the connection between an R session and the Oracle Database instance, invoke the `ore.disconnect` function.

OML4R implicitly invokes `ore.disconnect` if you do either of the following:

• Quit the R session.
• Invoke `ore.connect` while an OML4R connection is already active.

When you disconnect the active connection, OML4R discards all OML4R objects that you have not explicitly saved in an OML4R datastore.
Use the ore.connect and ore.disconnect Functions

The examples in this section demonstrate the various ways of specifying an OML4R connection to an Oracle Database instance.

The examples use sample values for the ore.connect argument values. Replace the sample values with the appropriate values for connecting to your database.

Example 2-1 Using ore.connect and Specifying a SID

This example invokes the ore.connect function and specifies the user, sid, host, password, and port arguments.

```
ore.connect(user = "oml_user", sid = "sales", host = "sales-server",
            password = "oml_userStrongPassword", port = 1521 )
```

Example 2-2 Using ore.connect and Specifying a Service Name

This example demonstrates using a service name rather than a SID. It also specifies connecting to the local host.

```
ore.connect(user = "oml_user", host = "localhost",
            password = "oml_userStrongPassword",
            service_name = "sales.example.com")
```

Example 2-3 Using ore.connect and Specifying an Easy Connect String

This example uses the conn_string argument to specify an easy connect string that identifies the connection.

```
ore.connect(user = "oml_user", password = "oml_userStrongPassword",
            conn_string = "sales-server:1521:sales
                (ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
                (CONNECT_DATA=(SERVICE_NAME=sales.example.com))")
```

Example 2-4 Using ore.connect and Specifying a Full Connection String

This example uses the conn_string argument to specify a full connection string that identifies the connection.

```
ore.connect(user = "oml_user", password = "oml_userStrongPassword",
            conn_string = "DESCRIPTION=
                (ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
                (CONNECT_DATA=(SERVICE_NAME=myserver.example.com))")
```

Example 2-5 Using the conn_string Argument to Specify an Oracle Wallet

This example uses the conn_string argument to specify an Oracle wallet. The mydb_test string is the connection identifier for the Oracle database. The Oracle wallet contains the information needed to create the connection. For information on creating an Oracle wallet for an OML4R connection, see Oracle Machine Learning for R Installation and Administration Guide.

```
ore.connect(conn_string = "mydb_test")
```

Example 2-6 Using the conn_string Argument and Specifying an Empty Connection String

This example uses an empty connection string to connect to the local host.
ore.connect(user = "oml_user", password = "oml_userStrongPassword", conn_string = ")

Example 2-7 Using the conn_string Argument in Connecting to a Pluggable Database

This example connects to a pluggable database using the conn_string argument to specify a service name.

ore.connect(conn_string = "pdb1.example.com")

Example 2-8 Using the service_name Argument in Connecting to a Pluggable Database

This example invokes ore.connect using a service name, host name, and port number to connect to a pluggable database.

ore.connect(service_name = "pdb1.example.com", host = "mypdb", port = 1521)

Example 2-9 Disconnecting an OML4R Session

This example explicitly disconnects an OML4R session from an Oracle database.

ore.disconnect()

Create and Manage R Objects in Oracle Database

With transparency layer functions you can connect to an Oracle Database instance and interact with data structures in a database schema.

You can move data to and from the database and create database tables. You can also save R objects in the database. The OML4R functions that perform these actions are described in the following topics.

Create R Objects for In-Database Data

Using Oracle Machine Learning for R, you can create R proxy objects in your R session for database-resident data.

Creating proxy objects is described in the following topics.

About Creating R Objects for Database Objects

To gain access to the data in the database tables in the schema, you use the ore.sync function.

When you invoke ore.connect in an R session, Oracle Machine Learning for R creates a connection to a schema in an Oracle Database instance. The ore.sync function creates an ore.frame object that is a proxy for a table in a schema. You can use the ore.attach function to add an R environment that represents a schema in the R search path.

When you use the ore.sync function to create an ore.frame object as a proxy for a database table, the name of the ore.frame proxy object is the same as the name of the database object. Each ore.frame proxy object contains metadata about the corresponding database object.
You can use the proxy `ore.frame` object to select data from the table. When you execute an R operation that selects data from the table, the operation returns the current data from the database object. However, if some application has added a column to the table, or has otherwise changed the metadata of the database object, the `ore.frame` proxy object does not reflect such a change until you again invoke `ore.sync` for the database object.

If you invoke the `ore.sync` function with no tables specified, and if the value of the `all` argument was `FALSE` in the `ore.connect` function call that established the connection to the Oracle database instance, then the `ore.sync` function creates a proxy object for each table in the schema specified by `ore.connect`. You can use the `table` argument to specify the tables for which you want to create `ore.frame` proxy objects.

Tip:
To conserve memory resources and save time, you should only add proxies for the tables that you want to use in your R session.

With the `schema` argument, you can specify the schema for which you want to create an R environment and proxy objects. Only one environment for a given database schema can exist at a time. With the `use.keys` argument, you can specify whether you want to use primary keys in the table to order the `ore.frame` object.

Tip:
Ordering is expensive in the database. Because most operations in R do not need ordering, you should generally set `use.keys` to `FALSE` unless you need ordering for sampling data or some other purpose.

With the `query` argument, you can specify a SQL `SELECT` statement. This enables you to create an `ore.frame` for a query without creating a view in the database. This can be useful when you do not have the `CREATE VIEW` system privilege for the current schema. You cannot use the `schema` argument and the `query` argument in the same `ore.sync` invocation.

You can use the `ore.ls` function to list the `ore.frame` proxy objects that correspond to database tables in the environment for a schema. You can use the `ore.exists` function to find out if an `ore.frame` proxy object for a database table exists in an R environment. The function returns `TRUE` if the proxy object exists or `FALSE` if it does not. You can remove an `ore.frame` proxy object from an R environment with the `ore.rm` function.

Synchronize Data with the `ore.sync` Function

The following example demonstrates the use of the `ore.sync` function.

The example first invokes the `ore.exec` function to create some tables to represent tables existing in the OML_USER database schema. The example then invokes `ore.sync` and specifies three tables of the schema. The `ore.sync` invocation creates an R environment for the OML_USER schema and creates proxy `ore.frame` objects for the specified tables in that schema. The example lists the `ore.frame` proxy objects in the current environment. The
TABLE3 table exists in the schema but does not have an ore.frame proxy object because it was not included in the ore.sync invocation.

The example next invokes ore.sync with the query argument to create ore.frame objects for the specified SQL queries. The example lists the ore.frame objects again.

The example then invokes ore.sync again and creates an R environment for the SH schema and proxy objects in that environment for the specified tables in that schema. The example invokes the ore.exists function to find out if the specified table exists in the current environment and then in the SH environment. The example lists the R objects in the SH environment.

The example next removes the ore.frame objects QUERY1, QUERY2, and TABLE4 from the OML_USER environment. Finally, the example lists the proxy objects in the environment again.

Note:
The ore.rm function invocation removes the ore.frame that is a proxy for the TABLE4 table from the environment. It does not delete the table from the schema.

Example 2-10 Using ore.sync to Add ore.frame Proxy Objects to an R Environment

```r
# After connecting to a database as OML_USER, create some tables.
ore.exec("CREATE TABLE TABLE1 AS SELECT * FROM dual")
ore.exec("CREATE TABLE TABLE2 AS SELECT * FROM dual")
ore.exec("CREATE TABLE TABLE3 AS SELECT * FROM dual")
ore.exec("CREATE TABLE TABLE4 AS SELECT * FROM dual")
# Create ore.frame objects for the specified tables.
ore.sync(table = c("TABLE1", "TABLE3", "TABLE4"))
# List the ore.frame proxy objects in the current environment.
ore.ls()
# Create ore.frame objects for the specified queries.
ore.sync(query = c("QUERY1" = "SELECT 0 X, 1 Y FROM dual",
                  "QUERY2" = "SELECT 1 X, 0 Y FROM dual"))
ore.ls()
# The OML_USER user has been granted SELECT permission on the tables in the
# SH schema.
ore.sync("SH", table = c("CUSTOMERS", "SALES"))
# Find out if the CUSTOMERS ore.frame exists in the OML_USER environment.
ore.exists("CUSTOMERS")
# Find out if it exists in the SH environment.
ore.exists("CUSTOMERS", schema = "SH")
# List the ore.frame proxy objects in the SH environment.
ore.ls("SH")
# Remove the ore.frame objects for the specified objects.
ore.rm(c("QUERY1", "QUERY2", "TABLE4"))
```
List the ore.frame proxy objects in the current environment again.
ore.ls()

Listing for This Example

R> # After connecting to a database as OML_USER, create some tables.
R> ore.exec("CREATE TABLE TABLE1 AS SELECT * FROM dual")
R> ore.exec("CREATE TABLE TABLE2 AS SELECT * FROM dual")
R> ore.exec("CREATE TABLE TABLE3 AS SELECT * FROM dual")
R> ore.exec("CREATE TABLE TABLE4 AS SELECT * FROM dual")
R> # Create ore.frame objects for the specified tables.
R> ore.sync(table = c("TABLE1", "TABLE3", "TABLE4"))
R> # List the ore.frame proxy objects in the current environment.
R> ore.ls()

[1] "TABLE1" "TABLE3" "TABLE4"
R> # Create ore.frame objects for the specified queries.
R> ore.sync(query = c("QUERY1" = "SELECT 0 X, 1 Y FROM dual",
+ "QUERY2" = "SELECT 1 X, 0 Y FROM dual"))
R> ore.ls()

[1] "QUERY1" "QUERY2" "TABLE1" "TABLE3" "TABLE4"
R> # The OML_USER user has been granted SELECT permission on the tables in
the
R> # SH schema.
R> ore.sync("SH", table = c("CUSTOMERS", "SALES"))
R> # Find out if the CUSTOMERS ore.frame exists in the OML_USER environment.
R> ore.exists("CUSTOMERS")
[1] FALSE
R> # Find out if it exists in the SH environment.
R> ore.exists("CUSTOMERS", schema = "SH")
[1] TRUE
R> # List the ore.frame proxy objects in the SH environment.
R> ore.ls("SH")

[1] "CUSTOMERS" "SALES"
R> # Remove the ore.frame objects for the specified objects.
R> ore.rm(c("QUERY1", "QUERY2", "TABLE4"))
R> # List the ore.frame proxy objects in the current environment again.
R> ore.ls()

[1] "TABLE1" "TABLE3"

Get Objects with the ore.get Function

After you have created an R environment and ore.frame proxy objects with ore.sync, you can get a proxy object by name with the ore.get function.

You can use ore.get to get the proxy ore.frame for a table and assign it to a variable in R, as in `SH_CUST <- ore.get(name = "CUSTOMERS", schema = "SH")`. The ore.frame exists in the R global environment, which can be referred to using `.GlobalEnv`, and so it appears in the list returned by the `ls` function. Also, because this object exists in the R global environment, as opposed an R environment that represents a database schema, it is not listed by the `ore.ls` function.
Example 2-11 Using ore.get to Get a Database Table

This example invokes the ore.sync function to create an ore.frame object that is a proxy for the CUSTOMERS table in the SH schema. The example then gets the dimensions of the proxy object.

```r
ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
dim(ore.get(name = "CUSTOMERS", schema = "SH"))
```

Listing for Example 2-11

```r
R> ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
R> dim(ore.get(name = "CUSTOMERS", schema = "SH"))
[1] 630 15
```

Add a Schema with the ore.attach Function

With ore.attach, you add an R environment for a database schema to the R search path.

When you add the R environment, you have access to database tables by name through the proxy objects created by the ore.sync function without needing to specify the schema environment.

The default schema is the one specified in creating the connection and the default position in the search path is 2. You can specify the schema and the position in the ore.attach function invocation. You can also specify whether you want the ore.attach function to indicate whether a naming conflict occurs when adding the environment. You can detach the environment for a schema from the R search path with the ore.detach function.

Example 2-12 Using ore.attach to Add an Environment for a Database Schema

This example demonstrates the use of the ore.attach function. Comments in the example explain the function invocations.

```r
# Connected as oml_user.
# Add the environment for the oml_user schema to the R search path.
ore.attach()
# Create an unordered ore.frame proxy object in the SH environment for the
# specified table.
ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
# Add the environment for the SH schema to the search path and warn if naming
# conflicts exist.
ore.attach("SH", 3, warn.conflicts = TRUE)
# Display the number of rows and columns in the proxy object for the table.
dim(CUSTOMERS)
# Remove the environment for the SH schema from the search path.
ore.detach("SH")
# Invoke the dim function again.
dim(CUSTOMERS)
```

Listing for Example 2-12

```r
R> # Connected as oml_user.
R> # Add the environment for the oml_user schema to the R search path.
R> ore.attach()
R> # Create an unordered ore.frame proxy object in the SH environment for the
R> # specified table.
R> ore.sync(schema = "SH", table = "CUSTOMERS", use.keys = FALSE)
```
Create and Manage R Objects in Oracle Database

Create Ordered and Unordered ore.frame Objects

Oracle Machine Learning for R provides the ability to create ordered or unordered ore.frame objects.

The following topics describe this feature.

About Ordering in ore.frame Objects

R objects such as vector and data.frame have an implicit ordering of their elements.

The data in an Oracle Database table is not necessarily ordered. For some R operations, ordering is useful whereas for other operations it is unnecessary. By ordering an ore.frame, you are able to index the ore.frame object by using either integer or character indexes.

Using an ordered ore.frame object that is a proxy for a SQL query can be time-consuming for a large data set. Therefore, although OML4R attempts to create ordered ore.frame objects by default, it also provides the means of creating an unordered ore.frame object.

When you invoke the ore.sync function to create an OML4R ore.frame object as a proxy for a SQL query, you can use the use.keys argument to specify whether the ore.frame can be ordered or must be unordered.

An ore.frame object can be ordered if one or more of the following conditions are true:

- The value of the use.keys argument of the ore.sync function is TRUE and a primary key is defined on the underlying table
- The row names of the ore.frame constitute a unique tuple
- The ore.frame object is produced by certain functions such as aggregate and cbind
- All of the ore.frame objects that are input arguments to relevant OML4R functions are ordered

An ore.frame object is unordered if one or more of the following conditions are true:

- The value of the use.keys argument of the ore.sync function is FALSE
- No primary key is defined on the underlying table and either the row names of the ore.frame object are not specified or the row names of the ore.frame object are set to NULL
- One or more of the ore.frame objects that are input arguments to relevant OML4R functions are unordered

An unordered ore.frame object has null row names. You can determine whether an ore.frame object is ordered by invoking is.null on the row names of the objects, as shown
in the last lines of Example 2-13. If the ore.frame object is unordered, is.null returns an error.

See Also:
"Indexing Data"

Global Options Related to Ordering

OML4R has options that relate to the ordering of an ore.frame object.

The ore.warn.order global option specifies whether you want OML4R to display a warning message if you use an unordered ore.frame object in a function that requires ordering. If you know what to expect in an operation, then you might want to turn the warnings off so they do not appear in the output. For examples of the warning messages, see Example 2-13 and Example 2-14.

You can see what the current setting is, or turn the option on or off, as in the following example.

R> options("ore.warn.order")
$ore.warn.order
[1] TRUE
R> options("ore.warn.order" = FALSE)
R> options("ore.warn.order" = TRUE)

With the ore.sep option, you can specify the separator between the row name values that you use for multi-column keys, as in the following example.

R> options("ore.sep")
$ore.sep
[1] "|
R> options("ore.sep" = "/")
R> options("ore.sep" = "|

Ordering Using Keys

You can use the primary key of a database table to order an ore.frame object.

The following example loads the spam data set from the kernlab package. It adds two columns to the data set.

The example invokes ore.drop to drop the named tables if they exist. It then invokes ore.create to create two tables from the data set. It invokes ore.exec to make the USERID and TS columns a composite primary key of the SPAM_PK table, and invokes ore.sync to synchronize the table with its ore.frame proxy.
The ore.exec function executes a SQL statement in the Oracle Database schema. The function is intended for database definition language (DDL) statements that have no return value.

The example then displays the first eight rows of each table. The proxy object for the SPAM_PK table is an ordered ore.frame object. It has row names that are a combination of the TS and USERID column values separated by the "|" character. The proxy object for the SPAM_NOPK table is an unordered ore.frame object that has the symbol SPAM_NOPK. By default, SPAM_NOPK has row names that are sequential numbers.

Example 2-13 Ordering Using Keys

```r
# Prepare the data.
library(kernlab)
data(spam)
s <- spam
# Create a column that has integer values.
s$TS <- 1001:(1000 + nrow(s))
# Create a column that has integer values with each number repeated twice.
s$USERID <- rep(351:400, each=2, len=nrow(s))
# Ensure that the database tables do not exist.
ore.drop(table='SPAM_PK')
ore.drop(table='SPAM_NOPK')
# Create database tables.
ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
# Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key ("USERID","TS")")
# Synchronize the table to get the change to it.
ore.sync(table = "SPAM_PK")
# View the data in the tables.
# The row names of the ordered SPAM_PK are the primary key column values.
head(SPAM_PK[,1:8])
# The row names of the unordered SPAM_NOPK are sequential numbers.
# The first warning results from the inner accessing of SPAM_NOPK to subset
# the columns. The second warning is for the invocation of the head
# function on that subset.
head(SPAM_NOPK[,1:8])
# Verify that SPAM_NOPK is unordered.
is.null(row.names(SPAM_NOPK))
```

Listing for This Example

```r
R> # Prepare the data.
R> library(kernlab)
R> data(spam)
R> s <- spam
R> # Create a column that has integer values.
R> s$TS <- 1001:(1000 + nrow(s))
R> # Create a column that has integer values with each number repeated twice.
R> s$USERID <- rep(351:400, each=2, len=nrow(s))
R> # Ensure that the database tables do not exist.
R> ore.drop(table='SPAM_PK')
R> ore.drop(table='SPAM_NOPK')
R> # Create database tables.
```
R> ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
R> ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
R> # Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
R> ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key + ("USERID","TS")")
R> # Synchronize the table to get the change to it.
R> ore.sync(table = "SPAM_PK")
R> # View the data in the tables.
R> # The row names of the ordered SPAM_PK are the primary key column values.
R> head(SPAM_PK[,1:8])
 TS USERID make address all num3d our over
1001|351 1001 351 0.00 0.64 0.64 0 0.32 0.00
1002|351 1002 351 0.21 0.28 0.50 0 0.14 0.28
1003|352 1003 352 0.06 0.00 0.71 0 1.23 0.19
1004|352 1004 352 0.00 0.00 0.00 0 0.63 0.00
1005|353 1005 353 0.00 0.00 0.00 0 0.63 0.00
1006|353 1006 353 0.00 0.00 0.00 0 1.85 0.00
R> # The row names of the unordered SPAM_NOPK are sequential numbers.
R> # The first warning results from the inner accessing of SPAM_NOPK to subset
R> # the columns. The second warning is for the invocation of the head
R> # function on that subset.
R> head(SPAM_NOPK[,1:8])
 TS USERID make address all num3d our over
1 1001 351 0.00 0.64 0.64 0 0.32 0.00
2 1002 351 0.21 0.28 0.50 0 0.14 0.28
3 1003 352 0.06 0.00 0.71 0 1.23 0.19
4 1004 352 0.00 0.00 0.00 0 0.63 0.00
5 1005 353 0.00 0.00 0.00 0 0.63 0.00
6 1006 353 0.00 0.00 0.00 0 1.85 0.00
Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order
R> # Verify that SPAM_NOPK is unordered.
R> is.null(row.names(SPAM_NOPK))
Error: ORE object has no unique key

Ordering Using Row Names

You can use row names to order an ore.frame object.

The following example creates a data.frame object in the local R session memory and pushes it to the ore.frame object with the symbol `a`, which exists in the memory of the Oracle database to which the R session is connected. The example shows that the ore.frame object has the default row names of the R data.frame object. Because the ore.frame object is ordered, invoking the row.names function on it does not produce a warning message.

The example uses the ordered SPAM_PK and unordered SPAM_NOPK ore.frame objects to show that invoking row.names on the unordered SPAM_NOPK produces a warning message but invoking it on the ordered SPAM_PK does not.

The SPAM_PK object is ordered by the row names, which are the combined values of the TS and USERID column values separated by the "|" character. The example shows that you can change the row names.

Example 2-14 Ordering Using Row Names

```r
# Prepare the data.
library(kernlab)
```
data(spam)
s <- spam
Create a column that has integer values.
s$TS <- 1001:(1000 + nrow(s))
Create a column that has integer values with each number repeated twice.
s$USERID <- rep(351:400, each=2, len=nrow(s))
Ensure that the database tables do not exist.
ore.drop(table='SPAM_PK')
ore.drop(table='SPAM_NOPK')
Create database tables.
ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
 ("USERID","TS")")
Synchronize the table to get the change to it.
ore.sync(table = "SPAM_PK")
Create an ordered ore.frame by default.
a <- ore.push(data.frame(a=c(1:10,10:1), b=letters[c(1:10,10:1)]))
Display the values in the b column. Note that because the ore.frame is
ordered, no warnings appear.
a$b
Display the default row names for the first six rows of the a column.
row.names(head(a))
SPAM_NOPK has no unique key, so row.names raises error messages.
row.names(head(SPAM_NOPK))
Row names consist of TS '|' USERID.
For display on this page, only the first four row names are shown.
row.names(head(SPAM_PK))
Reassign the row names to the TS column only
row.names(SPAM_PK) <- SPAM_PK$TS
The row names now correspond to the TS values only.
row.names(head(SPAM_PK[,1:4]))
head(SPAM_PK[,1:4])

Listing for This Example

R> # Prepare the data.
R> library(kernlab)
R> data(spam)
R> s <- spam
R> # Create a column that has integer values.
R> s$TS <- 1001:(1000 + nrow(s))
R> # Create a column that has integer values with each number repeated twice.
R> s$USERID <- rep(351:400, each=2, len=nrow(s))
R> # Ensure that the database tables do not exist.
R> ore.drop(table='SPAM_PK')
R> ore.drop(table='SPAM_NOPK')
R> # Create database tables.
R> ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
R> ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
R> # Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
R> ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
 ("USERID","TS")")
R> # Synchronize the table to get the change to it.
R> ore.sync(table = "SPAM_PK")
R> # Create an ordered ore.frame by default.
a <- ore.push(data.frame(a=c(1:10,10:1), b=letters[c(1:10,10:1)]))
R> # Display the values in the b column. Note that because the ore.frame is
R> # ordered, no warnings appear.
R> a$b
Using Ordered Frames

This example shows the result of merging two ordered ore.frame objects and two unordered ore.frame objects.

Example 2-15 Merging Ordered and Unordered ore.frame Objects

Prepare the data.
library(kernlab)
data(spam)
s <- spam
Create a column that has integer values.
s$TS <- 1001:(1000 + nrow(s))
Create a column that has integer values with each number repeated twice.
s$USERID <- rep(351:400, each=2, len=nrow(s))
Ensure that the database tables do not exist.
ore.drop(table='SPAM_PK')
ore.drop(table='SPAM_NOPK')
Create database tables.
ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
Using a SQL statement, alter the SPAM_PK table to add a composite primary key.
ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key ("USERID","TS")")
Synchronize the table to get the change to it.
ore.sync(table = "SPAM_PK")
Create objects for merging data from unordered ore.frame objects.
x <- SPAM_NOPK[,1:4]
y <- SPAM_NOPK[,c(1,2,4,5)]
m1 <- merge(x, y, by="USERID")
The merged result m1 produces a warning because it is not an ordered frame.
head(m1,3)
Create objects for merging data from ordered ore.frame objects.
x <- SPAM_PK[,1:4]
y <- SPAM_PK[,c(1,2,4,5)]
The merged result m1 does not produce a warning now because it is an
ordered frame.
m1 <- merge(x, y, by="USERID")
head(m1,3)

Listing for This Example

R> # Prepare the data.
R> library(kernlab)
R> data(spam)
R> s <- spam
R> # Create a column that has integer values.
R> s$TS <- 1001:(1000 + nrow(s))
R> # Create a column that has integer values with each number repeated twice.
R> s$USERID <- rep(351:400, each=2, len=nrow(s))
R> # Ensure that the database tables do not exist.
R> ore.drop(table='SPAM_PK')
R> ore.drop(table='SPAM_NOPK')
R> # Create database tables.
R> ore.create(s[,c(59:60,1:28)], table="SPAM_PK")
R> ore.create(s[,c(59:60,1:28)], table="SPAM_NOPK")
R> # Using a SQL statement, alter the SPAM_PK table to add a composite
primary key.
R> ore.exec("alter table SPAM_PK add constraint SPAM_PK primary key
+ ("USERID","TS")")
R> # Synchronize the table to get the change to it.
R> ore.sync(table = "SPAM_PK")
R> # Create objects for merging data from unordered ore.frame objects.
R> x <- SPAM_NOPK[,1:4]
R> y <- SPAM_NOPK[,c(1,2,4,5)]
R> m1 <- merge(x, y, by="USERID")
R> # The merged result m1 produces a warning because it is not an ordered
frame.
R> head(m1,3)

Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order
R> # Create objects for merging data from ordered ore.frame objects.
R> x <- SPAM_PK[,1:4]
R> y <- SPAM_PK[,c(1,2,4,5)]
R> # The merged result m1 does not produce a warning now because it is an
R> # ordered frame.
R> m1 <- merge(x, y, by="USERID")
Move Data to and from the Database

You can create a temporary database table, and its corresponding proxy `ore.frame` object, from a local R object with the `ore.push` function.

With the `ore.pull` function you can create a local R object that contains a copy of data represented by an OML4R proxy object.

The `ore.push` function translates an R object into an OML4R object of the appropriate data type. The `ore.pull` function takes an `ore` class object and returns an R object. If the input object is an `ore.list`, the `ore.pull` function creates a `data.frame` and translates each the data of each database column into the appropriate R representation.

Note:

You can pull data to a local R `data.frame` only if the data can fit into the R session memory. Also, even if the data fits in memory but is still very large, you may not be able to perform many, or any, R functions in the client R session.

Unless you explicitly save them, the temporary database tables and their corresponding OML4R proxy objects that you create with the `ore.push` function are discarded when you quit the R session.

See Also:

- "Transparency Layer Support for R Data Types and Classes" for information on data type mappings
- "Saving and Managing R Objects in the Database" for information on permanently saving the OML4R objects in the database
- The `push_pull.R` example script

Example 2-16 Using `ore.push` and `ore.pull` to Move Data

This example demonstrates pushing an R `data.frame` object to the database as a temporary database table with an associated `ore.frame` object, `iris_of`, then creating another `ore.frame` object, `iris_of_setosa`, by selecting one column from `iris_of`, and then pulling the `iris_of_setosa` object into the local R session memory as a `data.frame` object. The example displays the class of some of the objects.
Create and Delete Database Tables

Use the `ore.create` function to create a persistent table in an Oracle Database schema.

Note:

When creating a table in Oracle Machine Learning for R, if you use lowercase or mixed case for the name of the table, then you must use the same lowercase or mixed case name in double quotation marks when using the table in a SQL query or function. If, instead, you use an all uppercase name when creating the table, then the table name is case-insensitive: you can use uppercase, lowercase, or mixed case when using the table without using double quotation marks. The same is true for naming columns in a table.
Creating the table automatically creates an `ore.frame` proxy object for the table in the R environment that represents your database schema. The proxy `ore.frame` object has the same name as the table. You can delete the persistent table in an Oracle Database schema with the `ore.drop` function.

Caution:

Only use the `ore.drop` function to delete a database table and its associated `ore.frame` proxy object. Never use it to remove an `ore.frame` object that is not associated with a permanent database table. To remove an `ore.frame` object for a temporary database table, use the `ore.rm` function.

Example 2-17 Using `ore.create` and `ore.drop` to Create and Drop Tables

This example creates tables in the database and drops some of them.

```r
# Create the AIRQUALITY table from the data.frame for the airquality data set.
ore.create(airquality, table = "AIRQUALITY")
# Create data.frame objects.
df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
# Create the DF1 and DF2 tables from the data.frame objects.
ore.create(df1, "DF1")
ore.create(df2, "DF2")
# Create the CARS93 table from the data.frame for the Cars93 data set.
ore.create(Cars93, table = "CARS93")
# List the OML4R proxy objects.
ore.ls()
# Drop the CARS93 object.
ore.drop(table = "CARS93")
# List the OML4R proxy objects again.
ore.ls()
```

Listing for This Example

```r
R> # Create the AIRQUALITY table from the data.frame for the airquality data set.
R> ore.create(airquality, table = "AIRQUALITY")
R> # Create data.frame objects.
R> df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
R> df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
R> # Create the DF1_TABLE and DF2_TABLE tables from the data.frame objects.
R> ore.create(df1, "DF1")
R> ore.create(df2, "DF2")
R> # Create the CARS93 table from the data.frame for the Cars93 data set.
R> ore.create(Cars93, table = "CARS93")
R> # List the OML4R proxy objects.
R> ore.ls()
```
Chapter 2

Create and Manage R Objects in Oracle Database

[1] "AIRQUALITY" "CARS93" "DF1" "DF2_"
R> # Drop the CARS93 object.
R> ore.drop(table = "CARS93")
R> # List the OML4R proxy objects again.
R> ore.ls()
[1] "AIRQUALITY" "DF1_" "DF2"

Note:
A text query having more than 4000 characters or storing a value of over 4000
characters in a CLOB column will result in an error stating “ORA-01704: string literal
too long”. Use a bind variable if the data is large as shown below. For more
information on bind variables see ROracle.

library(ROracle)
options(error = expression(NULL))
Sys.setlocale(‘LC_ALL’, ‘C’)
cat(‘\n Welcome to ROracle(OCI) World\n’);
cat(‘\n DBI Version : ’);
print(packageVersion(‘DBI’));
cat(‘\n’);
#Creating table whose fields are of different type
createStr <- ‘create table TMRQORABND1_TAB(row_num number, id1 clob)’;
insStr <- ‘insert into TMRQORABND1_TAB values(:1, :2)’;
selStr <- ‘select * from TMRQORABND1_TAB order by row_num’;
y <- ‘1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef’;
z <- y
z <- paste(y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,
y, y, ‘1234567890abcdef1234567890abcdef’, sep = ‘’);
c32767 <- paste(z, z, z, z, z, z, z, z, y, y,
‘1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcde’,
sep = ‘’)
print(nchar(c32767))
c32766 <- paste(z, z, z, z, z, z, z, z, y, y,
‘1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcd’,
sep = ‘’)
print(nchar(c32766))
c32768 <- paste(z, z, z, z, z, z, z, z, y, y,
‘1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef’,
sep = ‘’)
print(nchar(c32768))
y <- paste(y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,
y, y, ‘1234567890abcdef1234567890abcdef’, sep = ‘’);
y1 <- y
y <- paste(y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y, y,

2-19


y2 <- y
y <- paste(y, y, y,
y, y, y, y, y, y, y, y, y, y, y, y, '1234567890abcdef1234567890abcdef', sep = '');
y3 <- y
y4 <- paste(y3, y3, y3, y3, y3)

r1c2 <- paste(y, y, y,
y, y, '1234567890abcdef1234567890abcdef', sep = '');

print(nchar(y));
drv <- dbDriver('Oracle');
cat('\n ROracl e driver allocated.\n');
con <- dbConnect(drv, 'scott', 'tiger');
cat('\n One database connection object created.\n');

#tryCatch(
#{
if (dbExistsTable(con, 'TMRQORABND1_TAB'))
 dbGetQuery(con, 'drop table TMRQORABND1_TAB');
dbGetQuery(con, createStr);
cat('\nTable created with columns data type as raw(n) \n');
x <- 1;
dbGetQuery(con, insStr, data.frame(x, r1c2));
dbCommit(con);
x <- c(2, 3, 4, 5, 6, 7, 8, 9, 10);
yy <- c(y1, y2, y3, z, y4, c32767, c32766, c32768, '');
dbGetQuery(con, insStr, data.frame(x, yy));
dbCommit(con)
print(dbGetQuery(con, 'select row_num, length(id1) from TMRQORABND1_TAB'));
}

x <- 100;
y <- paste(y, c32767, sep = '');
dbGetQuery(con, insStr, data.frame(x, y));
dbCommit(con)
s <- dbSendQuery(con, selStr)
cinfo <- dbColumnInfo(s)
print(dbGetQuery(con, 'select row_num, length(id1) from TMRQORABND1_TAB'));
res <- dbGetQuery(con, selStr)
if (res[,2][1] != r1c2) {
 print(paste('Row', res[,1][1], cinfo[,1][2], res[,2][1],
 'not equal to', r1c2))
} else {
 print(paste('Row', res[,1][1], cinfo[,1][2], 'length is',
 nchar(res[,2][1]),
 'length of data is', nchar(r1c2)), sep = '')
}
for (i in 2:9)
{
 if (res[,2][i] != yy[i-1]) {
 print(paste('Row', res[,1][i], cinfo[,1][2], res[,2][i],
 'not equal to', yy[i-1])
 } else {
 print(paste('Row', res[,1][i], cinfo[,1][2], 'length is',
 nchar(res[,2][i]),
 'length of data is', nchar(yy[i-1]), sep = 'ror'))
}
Save and Manage R Objects in the Database

Oracle Machine Learning for R provides datastores that you can use to save OML4R proxy objects, as well as any R object, in an Oracle database.

You can grant or revoke read privilege access to a datastore for one or more users. You can restore the saved objects in another R session. The objects in a datastore are also accessible to embedded R execution through both the R and the SQL interfaces.

This section describes the OML4R functions that you can use to create and manage datastores. The section contains the following topics:

About Persisting Oracle Machine Learning for R Objects

With OML4R datastores, you can save R objects in the database.

R objects, including OML4R proxy objects, exist for the duration of the current R session unless you explicitly save them. The standard R functions for saving and restoring R objects, save and load, serialize objects in R memory to store them in a file and deserialize them to restore them in memory. However, for OML4R proxy objects, those functions do not save the database objects associated with the proxy objects in an Oracle database; therefore the saved proxy objects do not behave properly in a different R session.

You can save OML4R proxy objects, as well as any R object, with the ore.save function. The ore.save function specifies an OML4R datastore. A datastore persists in the database when
you end the R session. The datastore maintains the referential integrity of the objects it contains. Using the `ore.load` function, you can restore in another R session the objects in the datastore.

Using a datastore, you can do the following:

- Save OML4R and other R objects that you create in one R session and restore them in another R session.
- Pass arguments to R functions for use in embedded R execution.
- Pass objects for use in embedded R execution. You could, for example, use a function in the `OREdm` package to build an Oracle Machine Learning for SQL model and save it in a datastore. You could then use that model to score data in the database through embedded R execution. For an example of using a datastore in an embedded R execution function, see Example 6-10.

The following table lists the functions that manipulate datastores and provides brief descriptions of them.

Table 2-1 Functions that Manipulate Datastores

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ore.datastore</code></td>
<td>Lists information about a datastore in the current Oracle database schema.</td>
</tr>
<tr>
<td><code>ore.datastoreSummary</code></td>
<td>Provides detailed information about the specified datastore in the current Oracle database schema.</td>
</tr>
<tr>
<td><code>ore.delete</code></td>
<td>Deletes a datastore from the current Oracle database schema.</td>
</tr>
<tr>
<td><code>ore.grant</code></td>
<td>Grants read access to a datastore.</td>
</tr>
<tr>
<td><code>ore.lazyLoad</code></td>
<td>Lazily restores objects from a datastore into an R environment.</td>
</tr>
<tr>
<td><code>ore.load</code></td>
<td>Restores objects from a datastore into an R environment.</td>
</tr>
<tr>
<td><code>ore.revoke</code></td>
<td>Revokes read access to a datastore.</td>
</tr>
<tr>
<td><code>ore.save</code></td>
<td>Saves R objects in a new or existing datastore.</td>
</tr>
</tbody>
</table>

See Also:

"Using Oracle R Enterprise Embedded R Execution" for information on using the R and the SQL interfaces to embedded R execution

About OML4R Datastores

Each database schema has a table that stores named OML4R datastores.

A datastore can contain OML4R objects and standard R objects.

You create a datastore with the `ore.save` function. When you create a datastore, you specify a name for it. You can save objects in one or more datastores.

As long as a datastore contains an OML4R proxy object for a database object, the database object persists between R sessions. For example, you could use the `ore.odmNB` function in the `OREdm` package to build an Oracle Machine Learning for SQL Naïve Bayes model. If you save the resulting `ore.odmNB` object in a datastore and end
the R session, then Oracle Database does not delete the OML4SQL model. If no datastore contains the `ore.odmNB` object and the R session ends, then the database automatically drops the model.

Save Objects to a Datastore

The `ore.save` function saves one or more R objects in the specified datastore.

By default, OML4R creates the datastore in the current user schema. With the arguments to `ore.save`, you can provide the names of specific objects, or provide a list of objects. You can specify whether read privilege access to the datastore can be granted to other users. You can specify a particular R environment to search for the objects you would like to save. The `overwrite` and `append` arguments are mutually exclusive. If you set the `overwrite` argument to `TRUE`, then you can replace an existing datastore with another datastore of the same name. If you set the `append` argument to `TRUE`, then you can add objects to an existing datastore. With the `description` argument, you can provide some descriptive text that appears when you get information about the datastore. The `description` argument has no effect when used with the `append` argument.

Example 2-18 Saving Objects and Creating a Datastore

This example demonstrates creating datastores using different combinations of arguments.

```r
# Create some R objects.
df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
iris_of <- ore.push(iris)
# Create a database table and an OML4R proxy object for the table.
ore.drop("AIRQUALITY")
ore.create(airquality, table = "AIRQUALITY")
# List the R objects.
ls()
# List the OML4R proxy objects.
ore.ls()
# Save the proxy object and all objects in the current workspace environment
# to the datastore named ds1 and supply a description.
ore.save(AIRQUALITY, list = ls(), name = "ds1", description = "My private
datastore")
# Create some more objects.
x <- stats::runif(20)  # x is an object of type numeric.
y <- list(a = 1, b = TRUE, c = "hoopsa")
z <- ore.push(x)  # z is an object of type ore.numeric.
# Create another datastore.
ore.save(x, y, name = "ds2", description = "x and y")
# Overwrite the contents of datastore ds2.
ore.save(x, name = "ds2", overwrite = TRUE, description = "only x")
```
Append object z to datastore ds2.
ore.save(z, name = "ds2", append = TRUE)

Listing for This Example

R> # Create some R objects.
R> df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
R> df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
R> iris_of <- ore.push(iris)
R>
R> # Create a database table and an OML4R proxy object for the table.
R> ore.drop("AIRQUALITY")
R> ore.create(airquality, table = "AIRQUALITY")
R>
R> # List the R objects.
R> ls()
R> [1] "df1" "df2" "iris_of"
R>
R> # List the OML4R proxy objects.
R> ore.ls()
R> [1] "AIRQUALITY"
R>
R> # Save the proxy object and all objects in the current workspace
R> # environment to the datastore named ds1 and supply a description.
R> ore.save(AIRQUALITY, list = ls(), name = "ds1", description = "My datastore")
R>
R> # Create some more objects.
R> x <- stats::runif(20) # x is an object of type numeric.
R> y <- list(a = 1, b = TRUE, c = "hoopsa")
R> z <- ore.push(x) # z is an object of type ore.numeric.
R>
R> # Create another datastore.
R> ore.save(x, y, name = "ds2", description = "x and y")
R>
R> # Overwrite the contents of datastore ds2.
R> ore.save(x, name = "ds2", overwrite = TRUE, description = "only x")
R>
R> # Append object z to datastore ds2.
R> ore.save(z, name = "ds2", append = TRUE)

Control Access to Datastores

With the **ore.grant** and **ore.revoke** functions you can grant or revoke access to an OML4R datastore.

With the **ore.grant** and **ore.revoke** functions, you can control access to datastores. You can grant read access to a specified user to a datastore that you own or revoke the access privilege. The functions **ore.save**, **ore.load**, **ore.datastore**, and **ore.datastoreSummary** have arguments related to the accessibility of datastores.
Note:

If you use `ore.create` to create a persistent database table and its proxy `ore.frame` object, then save the proxy `ore.frame` object in a grantable datastore, and then use `ore.grant` to grant read privilege access to the datastore, the access applies only to the `ore.frame` object. The read access does not extend to the persistent database table. To grant read permission to the table itself, you must execute an appropriate SQL command.

Example 2-19 Granting and Revoking Access to a Datastore

This example pushes the airquality data set from the local R session to the Oracle database, where it exists as the `ore.frame` object `AIRQUALITY` and as a temporary database table with the same name. The example then saves the `AIRQUALITY` object to the datastore `ds3` and specifies that access to the datastore can be granted to other users. It invokes function `ore.datastore` with `type = grantable` to display all of the datastores to which read access has been granted. It grants the read privilege for the `ds3` datastore to SCOTT. It then invokes `ore.datastore` with `type = grant` to display the datastores to which read access has been granted. It revokes the read privilege for SCOTT, and again displays the datastores to which access has been granted.

```r
AIRQUALITY <- ore.push(airquality)
ore.save(AIRQUALITY, name = "ds3",
       description = "My datastore 3", grantable = TRUE)
ore.datastore(type = "grantable")
ore.datastore(type = "grant")
ore.grant("ds3", type = "datastore", user = "SCOTT")
ore.datastore(type = "grant")
ore.revoke("ds3", type = "datastore", user = "SCOTT")
ore.datastore(type = "grant")
```

Listing for This Example

```r
R> AIRQUALITY <- ore.push(airquality)
R> ore.save(AIRQUALITY, name = "ds3",
+           description = "My datastore 3", grantable = TRUE)
R> ore.datastore(type = "grantable")
  datastore.name object.count size creation.date description
1 ds3 1 1451 2015-11-30 18:48:25 My datastore 3
R> ore.datastore(type = "grant")
R> ore.grant("ds3", type = "datastore", user = "SCOTT")
R> ore.datastore(type = "grant")
  datastore.name grantee
1 ds3 SCOTT
R> ore.revoke("ds3", type = "datastore", user = "SCOTT")
R> ore.datastore(type = "grant")
R> ore.datastore(type = "grant")
<0 rows> (or 0-length row.names)
```
Get Information about Datastore Contents

You can get information about a datastore in the current user schema by using the `ore.datastore` and `ore.datastoreSummary` functions.

Using the `ore.datastore` function, you can list basic information about datastores. To get information about a specific type of datastore, you can use the optional character string `type` argument. The valid values for `type` are the following:

- `user`, which lists the datastores created by current session user. This is the default value.
- `private`, which lists the datastores for which read access cannot be granted by the current session user to other users.
- `all`, which lists all of the datastores to which the current session user has read access.
- `grantable`, which lists the datastores the read privilege for which can be granted by the current session user to other users.
- `grant`, which lists the datastores the read privilege for which has been granted by the current session user to other users.
- `granted`, which lists the datastores the read privilege for which has been granted by other users to the current session user.

If you do not specify a type, then function `ore.datastore` returns a `data.frame` object with columns that correspond to the datastore name, the number of objects in the datastore, the datastore size, the creation date, and a description. Rows are sorted by column `datastore.name` in alphabetical order. If you do specify a type, then the function returns a `data.frame` that has a column for the specified type.

You can search for a datastore by name or by using a regular expression pattern.

The `ore.datastoreSummary` function returns information about the R objects saved within a datastore in the user schema in the connected database. The function returns a `data.frame` with columns that correspond to object name, object class, object size, and either the length of the object, if it is a `vector`, or the number of rows and columns, if it is a `data.frame` object. It takes one required argument, the name of a datastore, and has an optional argument, the owner of the datastore.

Example 2-20 Using the ore.datastore Function

This example demonstrates using the `ore.datastore` function.

```r
# Create some R objects.
df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])
df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])
iris_of <- ore.push(iris)

# Create a database table and an OML4R proxy object for the table.
ore.drop("AIRQUALITY")
ore.create(airquality, table = "AIRQUALITY")

# Save the objects to a datastore named ds1 and supply a description.
ore.save(AIRQUALITY, list = ls(), name = "ds1", description = "My private datastore")
```
Create some more objects.
x <- \texttt{stats::runif(20)} # \texttt{x} is an object of type numeric.
y <- \texttt{list(a = 1, b = TRUE, c = "hoopsa")}
\texttt{z} <- \texttt{ore.push(x)} # \texttt{z} is an object of type \texttt{ore.numeric}.

Create other datastores.
\texttt{ore.save(x, y, name = "ds2", description = "x and y")}
\texttt{ore.save(df1, df2, name = "dfobj", description = "df objects")}
\texttt{ore.save(x, y, z, name = "another_ds", description = "For pattern matching")}

List all of the datastore objects.
\texttt{ore.datastore()}

List the specified datastore.
\texttt{ore.datastore("ds1")}

List the datastore objects with names that include "ds".
\texttt{ore.datastore(pattern = "ds")}

Listing for This Example

\texttt{R}> # Create some R objects.
\texttt{R> df1 <- data.frame(x1 = 1:5, y1 = letters[1:5])}
\texttt{R> df2 <- data.frame(x2 = 5:1, y2 = letters[11:15])}
\texttt{R> iris_of <- ore.push(iris)}
\texttt{R>}
\texttt{R> # Create a database table and an OML4R proxy object for the table.}
\texttt{R> ore.drop("AIRQUALITY")}
\texttt{R> ore.create(airquality, table = "AIRQUALITY")}
\texttt{R>}
\texttt{R> # Save the objects to a datastore named \texttt{ds1} and supply a description.}
\texttt{R> ore.save(AIRQUALITY, list = \texttt{ls()}, name = "ds1", description = "My private datastore")}
\texttt{R>}
\texttt{R> # Create some more objects.}
\texttt{R> x <- \texttt{stats::runif(20)} # \texttt{x} is an object of type numeric.}
\texttt{R> y <- \texttt{list(a = 1, b = TRUE, c = "hoopsa")}}
\texttt{R> z <- \texttt{ore.push(x)} # \texttt{z} is an object of type \texttt{ore.numeric}.}
\texttt{R>}
\texttt{R> # Create other datastores.}
\texttt{R> ore.save(x, y, name = "ds2", description = "x and y")}
\texttt{R> ore.save(df1, df2, name = "dfobj", description = "df objects")}
\texttt{R> ore.save(x, y, z, name = "another_ds", description = "For pattern matching")}
\texttt{R>}
\texttt{R> # List all of the datastore objects.}
\texttt{R> ore.datastore()}

<table>
<thead>
<tr>
<th>datastore.name</th>
<th>object.count</th>
<th>size</th>
<th>creation.date</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>another_ds</td>
<td>3</td>
<td>1284</td>
<td>2017-04-21 16:08:57</td>
<td>For pattern matching</td>
</tr>
<tr>
<td>dfobj</td>
<td>2</td>
<td>656</td>
<td>2017-04-21 16:08:38</td>
<td>df objects</td>
</tr>
<tr>
<td>ds1</td>
<td>4</td>
<td>3439</td>
<td>2017-04-21 16:03:55</td>
<td>My private datastore</td>
</tr>
<tr>
<td>ds2</td>
<td>2</td>
<td>314</td>
<td>2017-04-21 16:04:32</td>
<td>x and y</td>
</tr>
</tbody>
</table>
R> # List the specified datastore.
R> ore.datastore("ds1")

 datastore.name object.count size creation.date
description
1 ds1 4 3439 2017-04-21 16:03:55 My private datastore

R> # List the datastore objects with names that include "ds".
R> ore.datastore(pattern = "ds")

 datastore.name object.count size creation.date
description
1 another_ds 3 1284 2017-04-21 16:08:57 For pattern matching
2 ds1 4 3439 2017-04-21 16:03:55 My private datastore
3 ds2 2 314 2017-04-21 16:04:32 x and y

Example 2-21 Using the ore.datastoreSummary Function

This example demonstrates using the ore.datastoreSummary function. The example uses the datastores created in the previous example.

ore.datastoreSummary("ds1")
ore.datastoreSummary("ds2")

Listing for This Example

R> ore.datastoreSummary("ds1")

 object.name class size length row.count col.count
1 AIRQUALITY ore.frame 1213 6 NA 6
2 df1 data.frame 328 2 5 2
3 df2 data.frame 328 2 5 2
4 iris_of ore.frame 1570 5 NA 5

R> ore.datastoreSummary("ds2")

 object.name class size length row.count col.count
1 x numeric 182 20 NA NA
2 y list 132 3 NA NA

Restore Objects from a Datastore

The ore.load function restores R objects saved in a datastore to the R global environment, .GlobalEnv.

The function returns a character vector that contains the names of the restored objects.

You can load all of the saved objects or you can use the list argument to specify the objects to load. With the envir argument, you can specify an environment in which to load objects.
Example 2-22 Using the ore.load Function to Restore Objects from a Datastore

This example demonstrates using the ore.load function to restore objects from datastores that were created in Example 2-20. The example runs in the same R session as that example.

```r
# List the R objects.
ls()

# List the datastores.
ore.datastore()

# Delete the x and z objects.
rm(x, z)
ls()

# Restore all of the objects in datastore ds2.
ore.load("ds2")
ls()

# After ending the R session and starting another session.
ls()

# The datastore objects persist between sessions.
ore.datastore()

# Restore some of the objects from datastore ds1.
ore.load("ds1", list = c("df1", "df2", "iris_of"))
ls()
```

Listing for Example 2-22

```r
R> # List the R objects.
R> ls()
[1] "df1"   "df2"   "iris_of" "x"   "y"   "z"
R>
R> # List the datastores.
R> ore.datastore()

          datastore.name object.count size creation.date  description
1       another_ds            3 1243 2014-07-24 13:31:56 For pattern matching
4             ds2            2 1111 2014-07-24 13:27:26                only x
R>
R> # Delete the x and z objects.
R> rm(x, z)
R> ls()
[1] "df1"   "df2"   "iris_of" "y"
R>
R> # Restore all of the objects in datastore ds2.
R> ore.load("ds2")
[1] "x" "z"
R>
R> ls()
[1] "df1"   "df2"   "iris_of" "x"   "y"   "z"
R>
R> # After ending the R session and starting another session.
R> ls()
character(0)
R> # The datastore objects persist between sessions.
R> ore.datastore()
```
Delete a Datastore

With the `ore.delete` function, you can delete objects from an OML4R datastore or you can delete the datastore itself.

To delete a datastore, you specify the name of it. To delete one or more objects from the datastore, you specify the `list` argument. The `ore.delete` function returns the name of the deleted objects or datastore.

When you delete a datastore, OML4R discards all temporary database objects that were referenced by R objects in the deleted datastore. If you have saved an R object in more than one datastore, then OML4R discards a temporary database object only when no object in a datastore references the temporary database object.

Example 2-23 Using the `ore.delete` Function

This example demonstrates using `ore.delete` to delete an object from a datastore and then to delete the entire datastore. The example uses objects created in Example 2-18.

```r
# Delete the df2 object from the ds1 datastore.
ore.delete("ds1", list = "df2")
# Delete the datastore named ds1.
ore.delete("ds1")
```

Listing for Example 2-23

```r
R> # Delete the df2 object from the ds1 datastore.
R> ore.delete("ds1", list = "df2")
[1] "df2"
R> # Delete the datastore named ds1.
R> ore.delete("ds1")
[1] "ds1"
```

About Using a Datastore in Embedded R Execution

Saving objects in a datastore makes it very easy to pass arguments to, and reference R objects with, embedded R execution functions.

You can save objects that you create in one R session in a single datastore in the database. You can pass the name of this datastore to an embedded R function as an argument for loading within that function. You can use a datastore to easily pass one object or multiple objects.
Prepare and Explore Data in the Database

Use Oracle Machine Learning for R functions to prepare data for analysis and to perform exploratory analysis of the data.

These functions make it easier for you to prepare very large enterprise database-resident data for modeling. They are described the following topics:

Prepare Data in the Database Using Oracle Machine Learning for R

Using OML4R, you can prepare data for analysis in the database.

Data preparation is described in the following topics:

About Preparing Data in the Database

Oracle Machine Learning for R provides functions that enable you to use R to prepare database data for analysis.

Using these functions, you can perform typical data preparation tasks on ore.frame and other OML4R objects. You can perform data preparation operations on large quantities of data in the database and then pull the results to your local R session for analysis using functions in packages available from The Comprehensive R Archive Network (CRAN).

You can do operations on data such as the following.

- Selecting
- Binning
- Sampling
- Sorting and Ordering
- Summarizing
- Transforming
- Performing data preparation operations on date and time data

Performing these operations is described in the other topics in this chapter.

Select Data

A typical step in preparing data for analysis is selecting or filtering values of interest from a larger data set.

The examples in this topic demonstrate selecting data from an ore.frame object by column, by row, and by value. The examples are in the following topics:
Select Data by Column

This example selects columns from an ore.frame object.

Example 3-1 Selecting Data by Column

This example first creates a temporary database table, with the corresponding proxy ore.frame object iris_of, from the iris data.frame object. It displays the first three rows of iris_of. The example selects two columns from iris_of and creates the ore.frame object iris_projected with them. It then displays the first three rows of iris_projected.

```r
iris_of <- ore.push(iris)
head(iris_of, 3)

iris_projected = iris_of[, c("Petal.Length", "Species")]
head (iris_projected, 3)
```

Listing for This Example

```r
iris_of <- ore.push(iris)
head(iris_of, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa

R> iris_projected = iris_of[, c("Petal.Length", "Species")]
R> head (iris_projected, 3)

Petal.Length Species
1 1.4 setosa
2 1.4 setosa
3 1.3 setosa
```

Select Data by Row

This example selects rows from an ordered ore.frame object.

Example 3-2 Selecting Data by Row

This example first adds a column to the iris data.frame object for use in creating an ordered ore.frame object. It invokes the ore.drop function to delete the database table IRIS_TABLE, if it exists. It then creates a database table, with the corresponding proxy ore.frame object IRIS_TABLE, from the iris data.frame. The example invokes the ore.exec function to execute a SQL statement that makes the RID column the primary key of the database table. It then invokes the ore.sync function to synchronize the IRIS_TABLE ore.frame object with the table and displays the first three rows of the proxy ore.frame object.

The example next selects 51 rows from IRIS_TABLE by row number and creates the ordered ore.frame object iris_selrows with them. It displays the first six rows of iris_selrows. It then selects 3 rows by row name and displays the result.

```r
# Add a column to the iris data set to use as row identifiers.
iris$RID <- as.integer(1:nrow(iris) + 100)
ore.drop(table = 'IRIS_TABLE')
```

Chapter 3 Prepare Data in the Database Using Oracle Machine Learning for R
ore.create(iris, table = 'IRIS_TABLE')
ore.exec("alter table IRIS_TABLE add constraint IRIS_TABLE
 primary key ("RID")")
ore.sync(table = "IRIS_TABLE")
head(IRIS_TABLE, 3)

Select rows by row number.
iris_selrows <- IRIS_TABLE[50:100,]
head(iris_selrows)

Select rows by row name.
IRIS_TABLE[c("101", "151", "201"),]

Listing for This Example

R> # Add a column to the iris data set to use as row identifiers.
R> iris$RID <- as.integer(1:nrow(iris) + 100)
R> ore.drop(table = 'IRIS_TABLE')
R> ore.create(iris, table = 'IRIS_TABLE')
R> ore.exec("alter table IRIS_TABLE add constraint IRIS_TABLE
 + primary key ("RID")")
R> ore.sync(table = "IRIS_TABLE")
R> head(IRIS_TABLE, 3)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species RID
101 5.1 3.5 1.4 0.2 setosa 101
102 4.9 3.0 1.4 0.2 setosa 102
103 4.7 3.2 1.3 0.2 setosa 103

R> # Select rows by row number.
R> iris_selrows <- IRIS_TABLE[50:100,]
R> head(iris_selrows)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species RID
150 5.0 3.3 1.4 0.2 setosa 150
151 7.0 3.2 4.7 1.4 versicolor 151
152 6.4 3.2 4.5 1.5 versicolor 152
153 6.9 3.1 4.9 1.5 versicolor 153
154 5.5 2.3 4.0 1.3 versicolor 154
155 6.5 2.8 4.6 1.5 versicolor 155

R> # Select rows by row name.
R> IRIS_TABLE[c("101", "151", "201"),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species RID
101 5.1 3.5 1.4 0.2 setosa 101
151 7.0 3.2 4.7 1.4 versicolor 151
201 6.3 3.3 6.0 2.5 virginica 201

Select Data by Value

This example selects portions of a data set.

Example 3-3 Selecting Data by Value

The example pushes the iris data set to the database and gets the ore.frame object iris_of. It filters the data to produce iris_of_filtered, which contains the values from the rows of iris_of that have a petal length of less than 1.5 and that are in the Sepal.Length and Species columns. The example also filters the data using conditions, so that iris_of_filtered contains the values from iris_of that are of the setosa or versicolor species and that have a petal width of less than 2.0.

iris_of <- ore.push(iris)
Select sepal length and species where petal length is less than 1.5.
iris_of_filtered <- iris_of[iris_of$Petal.Length < 1.5,
c("Sepal.Length", "Species")

names(iris_of_filtered)
nrow(iris_of_filtered)
head(iris_of_filtered, 3)

Alternate syntax filtering.
iris_of_filtered <- subset(iris_of, Petal.Length < 1.5)
nrow(iris_of_filtered)
head(iris_of_filtered, 3)

Using the AND and OR conditions in filtering.
Select all rows with in which the species is setosa or versicolor.
and the petal width is less than 2.0.
iris_of_filtered <- iris_of[(iris_of$Species == "setosa" |
 iris_of$Species == "versicolor") &
 iris_of$Petal.Width < 2.0,]
nrow(iris_of_filtered)
head(iris_of, 3)

Listing for This Example

R> iris_of <- ore.push(iris)
R> # Select sepal length and species where petal length is less than 1.5.
R> iris_of_filtered <- iris_of[iris_of$Petal.Length < 1.5,
 + c("Sepal.Length", "Species")]
R> names(iris_of_filtered)
[1] "Sepal.Length" "Species"
R> nrow(iris_of_filtered)
[1] 24
R> head(iris_of_filtered, 3)
 Sepal.Length Species
 1 5.1 setosa
 2 4.9 setosa
 3 4.7 setosa
R> # Alternate syntax filtering.
R> iris_of_filtered <- subset(iris_of, Petal.Length < 1.5)
R> nrow(iris_of_filtered)
[1] 24
R> head(iris_of_filtered, 3)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1 5.1 3.5 1.4 0.2 setosa
 2 4.9 3.0 1.4 0.2 setosa
 3 4.7 3.2 1.3 0.2 setosa
R> # Using the AND and OR conditions in filtering.
R> # Select all rows with in which the species is setosa or versicolor.
R> # and the petal width is less than 2.0.
R> iris_of_filtered <- iris_of[(iris_of$Species == "setosa" |
 iris_of$Species == "versicolor") &
 iris_of$Petal.Width < 2.0,]
R> nrow(iris_of_filtered)
[1] 100
R> head(iris_of, 3)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1 5.1 3.5 1.4 0.2 setosa
 2 4.9 3.0 1.4 0.2 setosa
 3 4.7 3.2 1.3 0.2 setosa

Index Data

You can use integer or character vectors to index an ordered ore.frame object.

You can use the indexing to perform sampling and partitioning, as described in "Sampling Data" and "Partitioning Data".
Oracle Machine Learning for R supports functionality similar to R indexing with these differences:

- Integer indexing is not supported for `ore.vector` objects.
- Negative integer indexes are not supported.
- Row order is not preserved.

Example 3-4 Indexing an `ore.frame` Object

This example demonstrates character and integer indexing. The example uses the ordered `SPAM_PK` `ore.frame` object from Example 2-13. The example shows that you can access rows by name and that you can also access a set of rows by supplying a vector of character row names. The example then shows that you can supply the actual integer value. In the example this results in a set of different rows because the USERID values start at 1001, as opposed to 1.

```r
# Index to a specifically named row.
SPAM_PK["2060", 1:4]
# Index to a range of rows by row names.
SPAM_PK[as.character(2060:2064), 1:4]
# Index to a range of rows by integer index.
SPAM_PK[2060:2063, 1:4]
```

Listing for This Example

```r
R> # Index to a specifically named row.
R> SPAM_PK["2060", 1:4]
TS USERID make address
2060 2060    380    0       0
R> # Index to a range of rows by row names.
R> SPAM_PK[as.character(2060:2064), 1:4]
TS USERID make address
2060 2060    380 0.00    0.00
2061 2061    381 0.00    1.32
2062 2062    381 0.00    2.07
2063 2063    382 0.00    2.07
2064 2064    382 0.00    0.00
R> # Index to a range of rows by integer index.
R> SPAM_PK[2060:2063, 1:4]
TS USERID make address
3060 3060    380 0.00    0.00
3061 3061    381 0.00    1.32
3062 3062    381 0.00    2.07
3063 3063    382 0.34    0.00
```

Combine Data

You can join data from `ore.frame` objects that represent database tables by using the `merge` function.

Example 3-5 Joining Data from Two Tables

This example creates two `data.frame` objects and merges them. It then invokes the `ore.create` function to create a database table for each `data.frame` object. The `ore.create` function automatically generates an `ore.frame` object as a proxy object for the table. The `ore.frame` object has the same name as the table. The example merges the `ore.frame` objects. Note that the order of the results of the two `merge` operations is not the same because the `ore.frame` objects are unordered.
Create data.frame objects.
df1 <- data.frame(x1=1:5, y1=letters[1:5])
df2 <- data.frame(x2=5:1, y2=letters[11:15])

Combine the data.frame objects.
merge (df1, df2, by.x="x1", by.y="x2")

Create database tables and ore.frame proxy objects to correspond to
the local R objects df1 and df2.
ore.create(df1, table="DF1_TABLE")
ore.create(df2, table="DF2_TABLE")

Combine the ore.frame objects.
merge (DF1_TABLE, DF2_TABLE, by.x="x1", by.y="x2")

Listing for This Example
R> # Create data.frame objects.
R> df1 <- data.frame(x1=1:5, y1=letters[1:5])
R> df2 <- data.frame(x2=5:1, y2=letters[11:15])

R> # Combine the data.frame objects.
R> merge (df1, df2, by.x="x1", by.y="x2")
 x1 y1 y2
 1 a o
 2 b n
 3 c m
 4 d l
 5 e k

R> # Create database tables and ore.frame proxy objects to correspond to
R> # the local R objects df1 and df2.
R> ore.create(df1, table="DF1_TABLE")
R> ore.create(df2, table="DF2_TABLE")

R> # Combine the ore.frame objects.
R> merge (DF1_TABLE, DF2_TABLE, by.x="x1", by.y="x2")
 x1 y1 y2
 1 e k
 2 d l
 3 c m
 4 b n
 5 a o

Warning message:
ORE object has no unique key - using random order

Summarize Data

Summarize data with the aggregate function.

Example 3-6 Aggregating Data

This example pushes the iris data set to database memory as the ore.frame object
iris_of. It aggregates the values of iris_of by the Species column using the length
function. It then displays the first three rows of the result.

Create a temporary database table from the iris data set and get an ore.frame.
iris_of <- ore.push(iris)
aggdata <- aggregate(iris_of$Sepal.Length,
 by = list(species = iris_of$Species),

FUN = length)
head(aggdata, 3)

Listing for This Example

Create a temporary database table from the iris data set and get an ore.frame.
R> iris_of <- ore.push(iris)
R> aggdata <- aggregate(iris_of$Sepal.Length,
+ by = list(species = iris_of$Species),
+ FUN = length)
R> head(aggdata, 3)
 species x
setosa setosa 50
versicolor versicolor 50
virginica virginica 50

Transform Data

In preparing data for analysis, a typical step is to transform data by reformatting it or deriving new columns and adding them to the data set.

The examples in this topic demonstrate two ways of formatting data and deriving columns.

Example 3-7 Formatting Data

This example creates a function to format the data in a column.

Create a function for formatting data.
petalCategory_fmt <- function(x) {
 ifelse(x > 5, 'LONG',
 ifelse(x > 2, 'MEDIUM', 'SMALL'))
}
Create an ore.frame in database memory with the iris data set.
iris_of <- ore.push(iris)
Select some rows from iris_of.
iris_of[c(10, 20, 60, 80, 110, 140),]
Format the data in Petal.Length column.
iris_of$Petal.Length <- petalCategory_fmt(iris_of$Petal.Length)
Select the same rows from iris_of.

Listing for This Example

R> # Create a function for formatting data.
R> petalCategory_fmt <- function(x) {
+ ifelse(x > 5, 'LONG',
+ ifelse(x > 2, 'MEDIUM', 'SMALL'))
+ }
R> # Create an ore.frame in database memory with the iris data set.
R> iris_of <- ore.push(iris)
R> # Select some rows from iris_of.
R> iris_of[c(10, 20, 60, 80, 110, 140),]

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 10 4.9 3.1 1.5 0.1 setosa
 20 5.1 3.8 1.5 0.3 setosa
 60 5.2 2.7 3.9 1.4 versicolor
 80 5.7 2.6 3.5 1.0 versicolor
 110 7.2 3.6 6.1 2.5 virginica
 140 6.9 3.1 5.4 2.1 virginica

R> # Format the data in Petal.Length column.
R> iris_of$Petal.Length <- petalCategory_fmt(iris_of$Petal.Length)
R> # Select the same rows from iris_of.
Example 3-8 Using the transform Function

This example does the same thing as the previous example except that it uses the transform function to reformat the data in a column of the data set.

```r
# Create an ore.frame in database memory with the iris data set.
iris_of2 <- ore.push(iris)
# Select some rows from iris_of.
iris_of2[c(10, 20, 60, 80, 110, 140),]
iris_of2 <- transform(iris_of2,
  Petal.Length = ifelse(Petal.Length > 5, 'LONG',
                        ifelse(Petal.Length > 2, 'MEDIUM', 'SMALL')))
iris_of2[c(10, 20, 60, 80, 110, 140),]
```

Example 3-9 Adding Derived Columns

This example uses the transform function to add a derived column to the data set and then to add additional columns to it.

```r
# Set the page width.
options(width = 80)
# Create an ore.frame in database memory with the iris data set.
iris_of <- ore.push(iris)
names(iris_of)
# Add one column derived from another
iris_of <- transform(iris_of, LOG_PL = log(Petal.Length))
names(iris_of)
head(iris_of, 3)
```
Add more columns.
iris_of <- transform(iris_of,
 SEPALBINS = ifelse(Sepal.Length < 6.0, "A", "B"),
 PRODUCTCOLUMN = Petal.Length * Petal.Width,
 CONSTANTCOLUMN = 10)

names(iris_of)
Select some rows of iris_of.
iris_of[c(10, 20, 60, 80, 110, 140),]

Listing for This Example

R> # Set the page width.
R> options(width = 80)
R> # Create an ore.frame in database memory with the iris data set.
R> iris_of <- ore.push(iris)
R> names(iris_of)
R> # Add one column derived from another
R> iris_of <- transform(iris_of, LOG_PL = log(Petal.Length))
R> names(iris_of)
[6] "LOG_PL"
R> head(iris_of, 3)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species LOG_PL
 1 5.1 3.5 1.4 0.2 setosa 0.3364722
 2 4.9 3.0 1.4 0.2 setosa 0.3364722
 3 4.7 3.2 1.3 0.2 setosa 0.2623643
R> # Add more columns.
R> iris_of <- transform(iris_of,
 SEPALBINS = ifelse(Sepal.Length < 6.0, "A", "B"),
 PRODUCTCOLUMN = Petal.Length * Petal.Width,
 CONSTANTCOLUMN = 10)
R> names(iris_of)
[5] "Species" "LOG_PL" "CONSTANTCOLUMN" "SEPALBINS"
[9] "PRODUCTCOLUMN"
R> # Select some rows of iris_of.
R> iris_of[c(10, 20, 60, 80, 110, 140),]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species LOG_PL
10 4.9 3.1 1.5 0.1 setosa 0.4054651
20 5.1 3.8 1.5 0.3 setosa 0.4054651
60 5.2 2.7 3.9 1.4 versicolor 1.3609766
80 5.7 2.6 3.5 1.0 versicolor 1.2527630
110 7.2 3.6 6.1 2.5 virginica 1.8082888
140 6.9 3.1 5.4 2.1 virginica 1.6863990

Sample Data

Sampling is an important capability for statistical analytics.

Typically, you sample data to reduce its size and to perform meaningful work on it. In R you usually must load data into memory to sample it. However, if the data is too large, this isn’t possible.
In OML4R, instead of pulling the data from the database and then sampling, you can sample directly in the database and then pull only those records that are part of the sample. By sampling in the database, you minimize data movement and you can work with larger data sets. Note that it is the ordering framework integer row indexing in the transparency layer that enables this capability.

Note:

Sampling requires using ordered ore.frame objects as described in Creating Ordered and Unordered ore.frame Objects.

The examples in this section illustrate several sampling techniques.

Example 3-10 Simple Random Sampling

This example demonstrates a simple selection of rows at random. The example creates a small data.frame object and pushes it to the database to create an ore.frame object, MYDATA. Out of 20 rows, the example samples 5. It uses the R sample function to produce a random set of indices that it uses to get the sample from MYDATA. The sample, simpleRandomSample, is an ore.frame object.

```r
set.seed(1)
N <- 20
myData <- data.frame(a=1:N,b=letters[1:N])
MYDATA <- ore.push(myData)
head(MYDATA)
sampleSize <- 5
simpleRandomSample <- MYDATA[sample(nrow(MYDATA), sampleSize), , drop=FALSE]
class(simpleRandomSample)
simpleRandomSample
```

Listing for This Example

```r
R> set.seed(1)
R> N <- 20
R> myData <- data.frame(a=1:N,b=letters[1:N])
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
  a b
 1 1 a
 2 2 b
 3 3 c
 4 4 d
 5 5 e
 6 6 f
R> sampleSize <- 5
R> simpleRandomSample <- MYDATA[sample(nrow(MYDATA), sampleSize), , drop=FALSE]
R> class(simpleRandomSample)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> simpleRandomSample
  a b
 2 2 b
 7 7 g
10 10 j
```
Example 3-11 Split Data Sampling

This example demonstrates randomly partitioning data into training and testing sets. This splitting of the data is normally done in classification and regression to assess how well a model performs on new data. The example uses the MYDATA object created in the previous example.

This example produces a sample set of indices to use as the test data set. It then creates the logical vector group that is TRUE if the index is in the sample and is FALSE otherwise. Next, it uses row indexing to produce the training set where the group is FALSE and the test set where the group is TRUE. Notice that the number of rows in the training set is 15 and the number of rows in the test set is 5, as specified in the invocation of the sample function.

```r
set.seed(1)
sampleSize <- 5
ind <- sample(1:nrow(MYDATA), sampleSize)
group <- as.integer(1:nrow(MYDATA) %in% ind)
MYDATA.train <- MYDATA[group==FALSE,]
dim(MYDATA.train)
MYDATA.test <- MYDATA[group==TRUE,]
dim(MYDATA.test)
```

Example 3-12 Systematic Sampling

This example demonstrates systematic sampling, in which rows are selected at regular intervals. The example uses the seq function to create a sequence of values that start at 2 and increase by increments of 3. The number of values in the sequence is equal to the number of rows in MYDATA. The MYDATA object is created in the first example.

```r
set.seed(1)
N <- 20
myData <- data.frame(a=1:20,b=letters[1:N])
MYDATA <- ore.push(myData)
head(MYDATA)
start <- 2
by <- 3
systematicSample <- MYDATA[seq(start, nrow(MYDATA), by = by), , drop = FALSE]
```

Listing for This Example

```r
R> set.seed(1)
R> sampleSize <- 5
R> ind <- sample(1:nrow(MYDATA), sampleSize)
R> group <- as.integer(1:nrow(MYDATA) %in% ind)
R> MYDATA.train <- MYDATA[group==FALSE,]
R> dim(MYDATA.train)
[1] 15 2
R> MYDATA.test <- MYDATA[group==TRUE,]
R> dim(MYDATA.test)
[1] 5 2
```

```r
R> set.seed(1)
R> N <- 20
R> myData <- data.frame(a=1:20,b=letters[1:N])
R> MYDATA <- ore.push(myData)
```
R> head(MYDATA)
 a b
 1 1 a
 2 2 b
 3 3 c
 4 4 d
 5 5 e
 6 6 f
R> start <- 2
R> by <- 3
R> systematicSample <- MYDATA[seq(start, nrow(MYDATA), by = by), , drop = FALSE]
systematicSample
 a b
 2 2 b
 5 5 e
 8 8 h
 11 11 k
 14 14 n
 17 17 q
 20 20 t

Example 3-13 Stratified Sampling

This example demonstrates stratified sampling, in which rows are selected within each group where the group is determined by the values of a particular column. The example creates a data set that has each row assigned to a group. The function \texttt{rnorm} produces random normal numbers. The argument 4 is the desired mean for the distribution. The example splits the data according to group and then samples proportionately from each partition. Finally, it row binds the list of subset \texttt{ore.frame} objects into a single \texttt{ore.frame} object and then displays the values of the result, \texttt{stratifiedSample}.

set.seed(1)
N <- 200
myData <- data.frame(a=1:N,b=round(rnorm(N),2),
 group=round(rnorm(N,4),0))
MYDATA <- ore.push(myData)
head(MYDATA)
sampleSize <- 10
stratifiedSample <- do.call(rbind,
 lapply(split(MYDATA, MYDATA$group),
 function(y) {
 ny <- nrow(y)
 y[sample(ny, sampleSize*ny/N), , drop = FALSE]
 })))
stratifiedSample

Listing for This Example

R> set.seed(1)
R> N <- 200
R> myData <- data.frame(a=1:N,b=round(rnorm(N),2),
 group=round(rnorm(N,4),0))
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
 a b group
 1 1 -0.63 4
 2 2 0.18 6
 3 3 -0.84 6
 4 4 1.60 4
 5 5 0.33 2
Example 3-14 Cluster Sampling

This example demonstrates cluster sampling, in which entire groups are selected at random. The example splits the data according to group and then samples among the groups and row binds into a single `ore.frame` object. The resulting sample has data from two clusters, 6 and 7.

```r
set.seed(1)
N <- 200
myData <- data.frame(a=1:N,b=round(runif(N),2),
                     group=round(rnorm(N,4),0))
MYDATA <- ore.push(myData)
head(MYDATA)
sampleSize <- 5
clusterSample <- do.call(rbind,
                          sample(split(MYDATA, MYDATA$group), 2))
unique(clusterSample$group)
```

Listing for This Example

```r
set.seed(1)
N <- 200
myData <- data.frame(a=1:N,b=round(runif(N),2),
                     group=round(rnorm(N,4),0))
MYDATA <- ore.push(myData)
head(MYDATA)
sampleSize <- 5
clusterSample <- do.call(rbind,
                          sample(split(MYDATA, MYDATA$group), 2))
unique(clusterSample$group)
```
Example 3-15 Quota Sampling

This example demonstrates quota sampling, in which a consecutive number of records are selected as the sample. The example uses the head function to select the sample. The tail function could also have been used.

```r
set.seed(1)
N <- 200
myData <- data.frame(a=1:N,b=round(runif(N),2))
MYDATA <- ore.push(myData)
sampleSize <- 10
quotaSample1 <- head(MYDATA, sampleSize)
quotaSample1
```

Listing for This Example

```r
R> set.seed(1)
R> N <- 200
R> myData <- data.frame(a=1:N,b=round(runif(N),2))
R> MYDATA <- ore.push(myData)
R> sampleSize <- 10
R> quotaSample1 <- head(MYDATA, sampleSize)
R> quotaSample1
a    b
1   1 0.15
2   2 0.75
3   3 0.98
4   4 0.97
5   5 0.35
6   6 0.39
7   7 0.95
8   8 0.11
9   9 0.93
10 10 0.35
```

Partition Data

In analyzing large data sets, a typical operation is to randomly partition the data set into subsets.

You can analyze the partitions by using OML4R embedded R execution, as shown in the following example.

Example 3-16 Randomly Partitioning Data

This example creates a data.frame object with the symbol myData in the local R session and adds a column to it that contains a randomly generated set of values. It pushes the data set to database memory as the object MYDATA. The example invokes the embedded R execution function ore.groupApply, which partitions the data based on the partition column and then applies the lm function to each partition.

```r
N <- 200
k <- 5
myData <- data.frame(a=1:N,b=round(runif(N),2))
myData$partition <- sample(rep(1:k, each = N/k, length.out = N), replace = TRUE)
MYDATA <- ore.push(myData)
head(MYDATA)
results <- ore.groupApply(MYDATA, MYDATA$partition,
function(y) {lm(b~a,y)}, parallel = TRUE)
```
length(results)
results[[1]]

Listing for This Example

R> N <- 200
R> k <- 5
R> myData <- data.frame(a=1:N,b=round(runif(N),2))
R> myData$partition <- sample(rep(1:k, each = N/k,
+ length.out = N), replace = TRUE)
R> MYDATA <- ore.push(myData)
R> head(MYDATA)
a b partition
1 1 0.89 2
2 2 0.31 4
3 3 0.39 5
4 4 0.66 3
5 5 0.01 1
6 6 0.12 4
R> results <- ore.groupApply(MYDATA, MYDATA$partition,
+ function(y) {lm(b~a,y)}, parallel = TRUE)
R> length(results)
[1] 5
R> results[[1]]

Call:
 lm(formula = b ~ a, data = y)

Coefficients:
(Intercept) a
 0.388795 0.001015

Prepare Time Series Data

OML4R provides you with the ability to perform many data preparation operations on time series data, such as filtering, ordering, and transforming the data.

OML4R maps R data types to SQL data types, which allows you to create OML4R objects and perform data preparation operations in database memory. The following examples demonstrate some operations on time series data.

Example 3-17 Aggregating Date and Time Data

This example illustrates some of the statistical aggregation functions. For a data set, the example first generates on the local client a sequence of five hundred dates spread evenly throughout 2001. It then introduces a random diffTime and a vector of random normal values. The example then uses the ore.push function to create MYDATA, an in-database version of the data. The example invokes the class function to show that MYDATA is an ore.frame object and that the datetime column is of class ore.datetime. The example displays the first three rows of the generated data. It then uses the statistical aggregation operations of min, max, range, median, and quantile on the datetime column of MYDATA.

N <- 500
mydata <- data.frame(datetime =
 seq(as.POSIXct("2001/01/01"),
 as.POSIXct("2001/12/31"),
 length.out = N),
 diffTime = as.difftime(runif(N),
 units = "mins"),
 x = rnorm(N))
Listing for This Example

R> N <- 500
R> mydata <- data.frame(datetime =
+ seq(as.POSIXct("2001/01/01"),
+ as.POSIXct("2001/12/31"),
+ length.out = N),
+ difftime = as.difftime(runif(N),
+ units = "mins"),
+ x = rnorm(N))
R> MYDATA <- ore.push(mydata)
R> class(MYDATA)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> class(MYDATA$datetime)
[1] "ore.datetime"
attr("package")
[1] "OREbase"
R> head(MYDATA, 3)
datetime difftime x
1 2001-01-01 00:00:00 16.436782 secs 0.68439244
2 2001-01-01 17:30:25 8.711562 secs 1.38481435
3 2001-01-02 11:00:50 1.366927 secs -0.00927078

R> # statistical aggregations
R> min(MYDATA$datetime)
[1] "2001-01-01 CST"
R> max(MYDATA$datetime)
[1] "2001-12-31 CST"
R> range(MYDATA$datetime)
[1] "2001-01-01 CST" "2001-12-31 CST"
R> quantile(MYDATA$datetime,
+ probs = c(0, 0.05, 0.10))
0% 5% 10%
"2001-01-01 00:00:00 CST" "2001-01-19 04:48:00 CST" "2001-02-06 09:36:00 CST"

Example 3-18 Using Date and Time Arithmetic

This example creates a one day shift by taking the datetime column of the MYDATA ore.frame object created in the previous example and adding a difftime of one day. The result is day1Shift, which the example shows is of class ore.datetime. The example displays the first three elements of the datetime column of MYDATA and those of day1Shift. The first element of day1Shift is January 2, 2001.

This example also computes lag differences using the overloaded diff function. The difference between the dates is all the same because the 500 dates in MYDATA are evenly distributed throughout 2001.
day1Shift <- MYDATA$datetime + as.difftime(1, units = "days")
class(day1Shift)
head(MYDATA$datetime,3)
head(day1Shift,3)
lag1Diff <- diff(MYDATA$datetime)
class(lag1Diff)
head(lag1Diff,3)

Listing for This Example

R> day1Shift <- MYDATA$datetime + as.difftime(1, units = "days")
R> class(day1Shift)
[1] "ore.datetime"
attr(,"package")
[1] "OREbase"
R> head(MYDATA$datetime,3)
[1] "2001-01-01 00:00:00 CST" "2001-01-01 17:30:25 CST" "2001-01-02 11:00:50 CST"
R> head(day1Shift,3)
[1] "2001-01-02 00:00:00 CST" "2001-01-02 17:30:25 CST" "2001-01-03 11:00:50 CST"
R> lag1Diff <- diff(MYDATA$datetime)
R> class(lag1Diff)
[1] "ore.difftime"
attr(,"package")
[1] "OREbase"
R> head(lag1Diff,3)
Time differences in secs
[1] 63025.25 63025.25 63025.25

Example 3-19 Comparing Dates and Times

This example demonstrates date and time comparisons. The example uses the \texttt{datetime} column of the \texttt{MYDATA} \texttt{ore.frame} object created in the first example. This example selects the elements of \texttt{MYDATA} that have a date earlier than April 1, 2001. The resulting \texttt{isQ1} is of class \texttt{ore.logical} and for the first three entries the result is \texttt{TRUE}. The example finds out how many dates matching \texttt{isQ1} are in March. It then sums the logical vector and displays the result, which is that 43 rows are in March. The example next filters rows based on dates that are the end of the year, after December 27. The result is \texttt{eoySubset}, which is an \texttt{ore.frame} object. The example displays the first three rows returned in \texttt{eoySubset}.

\begin{verbatim}
isQ1 <- MYDATA$datetime < as.Date("2001/04/01")
class(isQ1)
head(isQ1,3)
isMarch <- isQ1 & MYDATA$datetime > as.Date("2001/03/01")
class(isMarch)
head(isMarch,3)
sum(isMarch)
eoySubset <- MYDATA[MYDATA$datetime > as.Date("2001/12/27"),]
class(eoySubset)
head(eoySubset,3)
\end{verbatim}

Listing for This Example

R> isQ1 <- MYDATA$datetime < as.Date("2001/04/01")
R> class(isQ1)
[1] "ore.logical"
attr(,"package")
[1] "OREbase"
R> head(isQ1,3)
[1] TRUE TRUE TRUE
R> isMarch <- isQ1 & MYDATA$datetime > as.Date("2001/03/01")

ORACLE

3-17
Example 3-20 Using Date and Time Accessors

OML4R has accessor functions that you can use to extract various components from `datetime` objects, such as year, month, day of the month, hour, minute, and second. This example demonstrates the use of these functions. The example uses the `datetime` column of the `MYDATA` `ore.frame` object created in the first example.

This example gets the year elements of the `datetime` column. The invocation of the `unique` function for `year` displays `2001` because it is the only year value in the column. However, for objects that have a range of values, as for example, `ore.mday`, the `range` function returns the day of the month. The result contains a vector with values that range from 1 through 31. Invoking the range function succinctly reports the range of values, as demonstrated for the other accessor functions.

```
year <- ore.year(MYDATA$datetime)
unique(year)
month <- ore.month(MYDATA$datetime)
range(month)
dayOfMonth <- ore.mday(MYDATA$datetime)
range(dayOfMonth)
hour <- ore.hour(MYDATA$datetime)
range(hour)
minute <- ore.minute(MYDATA$datetime)
range(minute)
second <- ore.second(MYDATA$datetime)
range(second)
```

Listing for This Example

```
R> year <- ore.year(MYDATA$datetime)
R> unique(year)
R> month <- ore.month(MYDATA$datetime)
R> range(month)
[1]  1 12
R> dayOfMonth <- ore.mday(MYDATA$datetime)
R> range(dayOfMonth)
[1]  1 31
R> hour <- ore.hour(MYDATA$datetime)
R> range(hour)
[1]  0 23
R> minute <- ore.minute(MYDATA$datetime)
```
Example 3-21 Coercing Date and Time Data Types

This example uses the as.ore subclass objects to coerce an ore.datetime data type into other data types. The example uses the datetime column of the MYDATA ore.frame object created in the first example. That column contains ore.datetime values. This example first extracts the date from the MYDATA$datetime column. The resulting dateOnly object has ore.date values that contain only the year, month, and day, but not the time. The example then coerces the ore.datetime values into objects with ore.character and ore.integer values that represent the names of days, the number of the day of the year, and the quarter of the year.

dateOnly <- as.ore.date(MYDATA$datetime)
class(dateOnly)
head(sort(unique(dateOnly)),3)
nameOfDay <- as.ore.character(MYDATA$datetime, format = "DAY")
class(nameOfDay)
sort(unique(nameOfDay))
dayOfYear <- as.integer(as.character(MYDATA$datetime, format = "DDD"))
class(dayOfYear)
range(dayOfYear)
quarter <- as.integer(as.character(MYDATA$datetime, format = "Q"))
class(quarter)
sort(unique(quarter))

Listing for This Example

R> dateOnly <- as.ore.date(MYDATA$datetime)
R> class(dateOnly)
[1] "ore.date"
attr(,"package")
[1] "OREbase"
R> head(sort(unique(dateOnly)),3)
[1] "2001-01-01" "2001-01-02" "2001-01-03"
R> nameOfDay <- as.ore.character(MYDATA$datetime, format = "DAY")
R> class(nameOfDay)
[1] "ore.character"
attr(,"package")
[1] "OREbase"
R> sort(unique(nameOfDay))
[1] "FRIDAY " "MONDAY " "SATURDAY " "SUNDAY " "THURSDAY " "TUESDAY " "WEDNESDAY"
R> dayOfYear <- as.integer(as.character(MYDATA$datetime, format = "DDD"))
R> class(dayOfYear)
[1] "ore.integer"
attr(,"package")
[1] "OREbase"
R> range(dayOfYear)
[1] 1 365
R> quarter <- as.integer(as.character(MYDATA$datetime, format = "Q"))
R> class(quarter)
[1] "ore.integer"
attr(,"package")
[1] "OREbase"
R> sort(unique(quarter))
[1] 1 2 3 4

Chapter 3
Prepare Data in the Database Using Oracle Machine Learning for R
Example 3-22 Using a Window Function

This example uses the window functions `ore.rollmean` and `ore.rollsd` to compute the rolling mean and the rolling standard deviation. The example uses the `MYDATA` `ore.frame` object created in the first example. This example ensures that `MYDATA` is an ordered `ore.frame` by assigning the values of the `datetime` column as the row names of `MYDATA`. The example computes the rolling mean and the rolling standard deviation over five periods. Next, to use the R time series functionality in the `stats` package, the example pulls data to the client. To limit the data pulled to the client, it uses the vector `is.March` from the third example to select only the data points in March. The example creates a time series object using the `ts` function, builds the Arima model, and predicts three points out.

```r
row.names(MYDATA) <- MYDATA$datetime
MYDATA$rollmean5 <- ore.rollmean(MYDATA$x, k = 5)
MYDATA$rollsd5 <- ore.rollsd (MYDATA$x, k = 5)
head(MYDATA)
marchData <- ore.pull(MYDATA[isMarch,])
tseries.x <- ts(marchData$x)
arima110.x <- arima(tseries.x, c(1,1,0))
predict(arima110.x, 3)
tseries.rm5 <- ts(marchData$rollmean5)
arima110.rm5 <- arima(tseries.rm5, c(1,1,0))
predict(arima110.rm5, 3)
```

Listing for This Example

```r
R> row.names(MYDATA) <- MYDATA$datetime
R> MYDATA$rollmean5 <- ore.rollmean(MYDATA$x, k = 5)
R> MYDATA$rollsd5 <- ore.rollsd (MYDATA$x, k = 5)
R> head(MYDATA)

<table>
<thead>
<tr>
<th>datetime</th>
<th>difftime</th>
<th>x</th>
<th>rollmean5</th>
<th>rollsd5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-01-01 00:00:00</td>
<td>39.998460 secs</td>
<td>-0.3450421</td>
<td>-0.46650761</td>
<td>0.8057575</td>
</tr>
</tbody>
</table>

R> marchData <- ore.pull(MYDATA[isMarch,])
R> tseries.x <- ts(marchData$x)
R> arima110.x <- arima(tseries.x, c(1,1,0))
R> predict(arima110.x, 3)
```

$pred
Explore Data

Oracle Machine Learning for R provides functions that enable you to perform exploratory data analysis.

With these functions, you can perform common statistical operations.

The functions and their uses are described in the following topics:

About the Exploratory Data Analysis Functions

The OML4R functions for exploratory data analysis are in the OREeda package.

Table 3-1 Functions in the OREeda Package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.corr</td>
<td>Performs correlation analysis across numeric columns in an ore.frame object.</td>
</tr>
<tr>
<td>ore.crosstab</td>
<td>Expands on the xtabs function by supporting multiple columns with optional aggregations, weighting, and ordering options. Building a cross-tabulation is a pre-requisite to using the ore.freq function.</td>
</tr>
<tr>
<td>ore.esm</td>
<td>Builds exponential smoothing models on data in an ordered ore.vector object.</td>
</tr>
<tr>
<td>ore.freq</td>
<td>Operates on output from the ore.crosstab function and automatically determines techniques that are relevant for the table.</td>
</tr>
</tbody>
</table>
Table 3-1 (Cont.) Functions in the OREeda Package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.rank</td>
<td>Enables the investigation of the distribution of values along numeric</td>
</tr>
<tr>
<td></td>
<td>columns in an ore.frame object.</td>
</tr>
<tr>
<td>ore.sort</td>
<td>Provides flexible sorting for ore.frame objects.</td>
</tr>
<tr>
<td>ore.summary</td>
<td>Provides descriptive statistics for ore.frame objects within flexible</td>
</tr>
<tr>
<td></td>
<td>row aggregations.</td>
</tr>
<tr>
<td>ore.univariate</td>
<td>Provides distribution analysis of numeric columns in an ore.frame</td>
</tr>
<tr>
<td></td>
<td>object of. Reports all statistics from the ore.summary function plus</td>
</tr>
<tr>
<td></td>
<td>signed-rank test and extreme values.</td>
</tr>
</tbody>
</table>

About the NARROW Data Set for Examples

Many of the examples of the exploratory data analysis functions use the NARROW data set.

NARROW is an ore.frame that has 9 columns and 1500 rows, as shown in the following example. Some of the columns are numeric, others are not.

Example 3-23 The NARROW Data Set

This example shows the class, dimensions, and names of the NARROW object.

```r
R> class(NARROW)
R> dim(NARROW)
R> names(NARROW)
```

Listing for This Example

```r
R> class(NARROW)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> dim(NARROW)
[1] 1500  9
R> names(NARROW)
[1] "ID"             "GENDER"         "AGE"            "MARITAL_STATUS"
[5] "COUNTRY"        "EDUCATION"      "OCCUPATION"     "YRS_RESIDENCE"
[9] "CLASS"
```

Correlate Data

You can use the ore.corr function to perform correlation analysis.

With the ore.corr function, you can do the following:

- Perform Pearson, Spearman or Kendall correlation analysis across numeric columns in an ore.frame object.
- Perform partial correlations by specifying a control column.
- Aggregate some data prior to the correlations.
- Post-process results and integrate them into an R code flow.
You can make the output of the `ore.corr` function conform to the output of the `R cor` function; doing so allows you to use any R function to post-process the output or to use the output as the input to a graphics function.

For details about the function arguments, invoke `help(ore.corr)`.

The following examples demonstrate these operations.

Example 3-24 Performing Basic Correlation Calculations

This example demonstrates how to specify the different types of correlation statistics.

```r
# Before performing correlations, project out all non-numeric values
# by specifying only the columns that have numeric values.
names(NARROW)
NARROW_NUMS <- NARROW[,c(3,8,9)]
names(NARROW_NUMS)
# Calculate the correlation using the default correlation statistic, Pearson.
x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS')
head(x, 3)
# Calculate using Spearman.
x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='spearman')
head(x, 3)
# Calculate using Kendall
x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='kendall')
head(x, 3)
```

Listing for This Example

```r
R> # Before performing correlations, project out all non-numeric values
R> # by specifying only the columns that have numeric values.
R> names(NARROW)
[1] "ID" "GENDER" "AGE" "MARITAL_STATUS" "COUNTRY" "EDUCATION" "OCCUPATION"
[8] "YRS_RESIDENCE" "CLASS" "AGEBINS"
R> NARROW_NUMS <- NARROW[,c(3,8,9)]
R> names(NARROW_NUMS)
[1] "AGE" "YRS_RESIDENCE" "CLASS"

R> # Calculate the correlation using the default correlation statistic, Pearson.
R> x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS')
R> head(x, 3)
ROW  COL   PEARSON_T PEARSON_P PEARSON_DF
1  AGE    CLASS  0.2200960     1e-15  1298
2  AGE YRS_RESIDENCE  0.6568534     0e+00  1098
3 YRS_RESIDENCE   CLASS  0.3561869     0e+00  1298

R> # Calculate using Spearman.
R> x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='spearman')
R> head(x, 3)
ROW  COL   SPEARMAN_T SPEARMAN_P SPEARMAN_DF
1  AGE    CLASS  0.2601221      1e-15  1298
2  AGE YRS_RESIDENCE  0.7462684      0e+00  1098
3 YRS_RESIDENCE   CLASS  0.3835252      0e+00  1298

R> # Calculate using Kendall
R> x <- ore.corr(NARROW_NUMS,var='AGE,YRS_RESIDENCE,CLASS', stats='kendall')
R> head(x, 3)
ROW  COL    KENDALL_T    KENDALL_P KENDALL_DF
1  AGE    CLASS  0.2147107 4.28594e-31 <NA>
2  AGE YRS_RESIDENCE  0.6332196 0.000000e+00 <NA>
3 YRS_RESIDENCE   CLASS  0.3362078 1.094478e-73 <NA>
```
Example 3-25 Creating Correlation Matrices

This example pushes the `iris` data set to a temporary table in the database, which has the proxy `ore.frame` object `iris_of`. It creates correlation matrices grouped by species.

```r
iris_of <- ore.push(iris)
x <- ore.corr(iris_of, var = "Sepal.Length, Sepal.Width, Petal.Length",
           partial = "Petal.Width", group.by = "Species")

class(x)
head(x)
```

Listing for This Example

```
R> iris_of <- ore.push(iris)
R> x <- ore.corr(iris_of, var = "Sepal.Length, Sepal.Width, Petal.Length",
+                partial = "Petal.Width", group.by = "Species")
R> class(x)
[1] "list"
R> head(x)
$setosa
  ROW          COL PART_PEARSON_T PART_PEARSON_P PART_PEARSON_DF
  1 Sepal.Length Petal.Length      0.1930601   9.191136e-02              47
  2 Sepal.Length  Sepal.Width      0.7255823   1.840300e-09              47
  3  Sepal.Width Petal.Length      0.1095503   2.268336e-01              47

$versicolor
  ROW          COL PART_PEARSON_T PART_PEARSON_P PART_PEARSON_DF
  1 Sepal.Length Petal.Length     0.62696041   7.180100e-07              47
  2 Sepal.Length  Sepal.Width     0.26039166   3.538109e-02              47
  3  Sepal.Width Petal.Length     0.08269662   2.860704e-01              47

$virginica
  ROW          COL PART_PEARSON_T PART_PEARSON_P PART_PEARSON_DF
  1 Sepal.Length Petal.Length      0.8515725   4.000000e-15              47
  2 Sepal.Length  Sepal.Width      0.3782728   3.681795e-03              47
  3  Sepal.Width Petal.Length      0.2854459   2.339940e-02              47
```

Cross-Tabulate Data

Cross-tabulation is a statistical technique that finds an interdependent relationship between two tables of values.

The `ore.crosstab` function enables cross-column analysis of an `ore.frame`. This function is a sophisticated variant of the R `table` function.

You must use `ore.crosstab` function before performing frequency analysis using `ore.freq`.

If the result of the `ore.crosstab` function invocation is a single cross-tabulation, then the function returns an `ore.frame` object. If the result is multiple cross-tabulations, then the function returns a list of `ore.frame` objects.

For details about function arguments, invoke `help(ore.crosstab)`.

Example 3-26 Creating a Single Column Frequency Table

The most basic use case is to create a single-column frequency table, as shown in this example.
This example filters the NARROW ore.frame, grouping by GENDER.

ct <- ore.crosstab(~AGE, data=NARROW)
head(ct)

Listing for This Example

R> ct <- ore.crosstab(~AGE, data=NARROW)
R> head(ct)

AGE ORE$FREQ ORE$STRATA ORE$GROUP
17 17 14 1 1
18 18 16 1 1
19 19 30 1 1
20 20 23 1 1
21 21 22 1 1
22 22 39 1 1

Example 3-27 Analyzing Two Columns

This example analyses AGE by GENDER and AGE by CLASS.

c <- ore.crosstab(AGE~GENDER+CLASS, data=NARROW)
head(c)

Listing for This Example

R> c <- ore.crosstab(AGE~GENDER+CLASS, data=NARROW)
R> head(c)

$`AGE~GENDER`

AGE GENDER ORE$FREQ ORE$STRATA ORE$GROUP
17|F 17 F 5 1 1
17|M 17 M 9 1 1
18|F 18 F 4 1 1
18|M 18 M 10 1 1
19|F 19 F 15 1 1
19|M 19 M 17 1 1

The remaining output is not shown.

Example 3-28 Weighting Rows

To weight rows, include a count based on another column as shown in this example. This example weights values in AGE and GENDER using values in YRS_RESIDENCE.

c <- ore.crosstab(AGE~GENDER*YRS_RESIDENCE, data=NARROW)
head(c)

Listing for This Example

R> c <- ore.crosstab(AGE~GENDER*YRS_RESIDENCE, data=NARROW)
R> head(c)

AGE GENDER ORE$FREQ ORE$STRATA ORE$GROUP
17|F 17 F 1 1 1
17|M 17 M 8 1 1
18|F 18 F 4 1 1
18|M 18 M 10 1 1
19|F 19 F 15 1 1
19|M 19 M 17 1 1

Example 3-29 Ordering Cross-Tabulated Data

There are several possibilities for ordering rows in a cross-tabulated table, such as the following:
• Default or NAME orders by the columns being analyzed
• FREQ orders by frequency counts
• -NAME or -FREQ does reverse ordering
• INTERNAL bypasses ordering

This example orders by frequency count and then by reverse order by frequency count.

c t <- ore.crosstab(AGE~GENDER|FREQ, data=NARROW)
head(ct)
c t <- ore.crosstab(AGE~GENDER|-FREQ, data=NARROW)
head(ct)

Listing for This Example

R> ct <- ore.crosstab(AGE~GENDER|FREQ, data=NARROW)
R> head(ct)

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>74</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>77</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

R> ct <- ore.crosstab(AGE~GENDER|-FREQ, data=NARROW)
R> head(ct)

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>33</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>28</td>
</tr>
<tr>
<td>41</td>
<td>M</td>
<td>27</td>
</tr>
<tr>
<td>34</td>
<td>M</td>
<td>26</td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>25</td>
</tr>
</tbody>
</table>

Example 3-30 Analyzing Three or More Columns

This example demonstrates analyzing three or more columns. The result is similar to what the SQL GROUPING SETS clause accomplishes.

c t <- ore.crosstab(AGE+COUNTRY~GENDER, NARROW)
head(ct)

Listing for This Example

R> ct <- ore.crosstab(AGE+COUNTRY~GENDER, NARROW)
R> head(ct)

$`AGE~GENDER`

<table>
<thead>
<tr>
<th>AGE</th>
<th>GENDER</th>
<th>ORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>13</td>
</tr>
</tbody>
</table>

The rest of the output is not shown.

$`COUNTRY~GENDER`

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>GENDER</th>
<th>ORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>F</td>
<td>14</td>
</tr>
<tr>
<td>Argentina</td>
<td>M</td>
<td>28</td>
</tr>
</tbody>
</table>
Example 3-31 Specifying a Range of Columns

You can specify a range of columns instead of having to type all the column names, as demonstrated in this example.

```r
names(NARROW)
# Because AGE, MARITAL_STATUS and COUNTRY are successive columns,
# you can simply do the following:
ct <- ore.crosstab(AGE-COUNTRY~GENDER, NARROW)
# An equivalent invocation is the following:
ct <- ore.crosstab(AGE+MARITAL_STATUS+COUNTRY~GENDER, NARROW)
```

Example 3-32 Producing One Cross-Tabulation Table for Each Value of Another Column

This example produces one cross-tabulation table (AGE, GENDER) for each unique value of another column COUNTRY.

```r
c <- ore.crosstab(~AGE/COUNTRY, data=NARROW)
head(c)
```

Example 3-33 Producing One Cross-Tabulation Table for Each Set of Value of Two Columns

You can extend the cross-tabulation to more than one column, as shown in this example, which produces one (AGE, EDUCATION) table for each unique combination of (COUNTRY, GENDER).

```r
c <- ore.crosstab(AGE-EDUCATION/COUNTRY+GENDER, data=NARROW)
head(c)
```

Listing for This Example

```r
R> names(NARROW)
[1] "ID" "GENDER" "AGE" "MARITAL_STATUS"
[5] "COUNTRY" "EDUCATION" "OCCUPATION" "YRS_RESIDENCE"
[9] "CLASS"
R> # Because AGE, MARITAL_STATUS and COUNTRY are successive columns,
R> # you can simply do the following:
R> ct <- ore.crosstab(AGE-COUNTRY~GENDER, NARROW)
R> # An equivalent invocation is the following:
R> ct <- ore.crosstab(AGE+MARITAL_STATUS+COUNTRY~GENDER, NARROW)
```
Example 3-34 Augmenting Cross-Tabulation with Stratification

All of the cross-tabulation tables in the previous examples can be augmented with stratification, as shown in this example.

c\texttt{ct} <- ore.crosstab(AGE~GENDER^CLASS, data=NARROW)
head(\texttt{ct})

Listing for This Example

R> ct <- ore.crosstab(AGE~GENDER^CLASS, data=NARROW)
R> head(ct)

Example 3-35 Binning Followed by Cross-Tabulation

This example does a custom binning by AGE and then calculates the cross-tabulation for GENDER and the bins.

NARROW\texttt{AGEBINS} <- ifelse(NARROW\$AGE<20, 1, ifelse(NARROW\$AGE<30,2, ifelse(NARROW\$AGE<40,3,4))))

Listing for This Example

R> NARROW\texttt{AGEBINS} <- ifelse(NARROW\$AGE<20, 1, ifelse(NARROW\$AGE<30,2, + ifelse(NARROW\$AGE<40,3,4))))
R> ore.crosstab(GENDER~AGEBINS, NARROW)
Analyze the Frequency of Cross-Tabulations

The `ore.freq` function analyses the output of the `ore.crosstab` function and automatically determines the techniques that are relevant to an `ore.crosstab` result.

The techniques depend on the kind of cross-tabulation tables, which are the following:

- **2-way cross-tabulation tables**
 - Various statistics that describe relationships between columns in the cross-tabulation
 - Chi-square tests, Cochran-Mantel-Haenzsel statistics, measures of association, strength of association, risk differences, odds ratio and relative risk for 2x2 tables, tests for trend
- **N-way cross-tabulation tables**
 - N 2-way cross-tabulation tables
 - Statistics across and within strata

The `ore.freq` function uses Oracle Database SQL functions when available.

The `ore.freq` function returns an `ore.frame` in all cases.

Before you use `ore.freq`, you must calculate crosstabs, as shown in the following example.

For details about the function arguments, invoke `help(ore.freq)`.

Example 3-36 Using the ore.freq Function

This example pushes the `iris` data set to the database and gets the `ore.frame` object `iris_of`. The example gets a crosstab and invokes the `ore.freq` function on it.

```
IRIS <- ore.push(iris)
cr <- ore.crosstab(Species ~ Petal.Length + Sepal.Length, data = IRIS)
ore.freq(cr)
```

Listing for This Example

```
R> IRIS <- ore.push(iris)
R> cr <- ore.crosstab(Species ~ Petal.Length + Sepal.Length, data = IRIS)
R> ore.freq(cr)

$'Species~Petal.Length'
  METHOD FREQ DF   PVALUE            DESCR GROUP
  1 PCHISQ 181.4667 84 3.921603e-09 Pearson Chi-Square    1

$'Species~Sepal.Length'
  METHOD FREQ DF   PVALUE            DESCR GROUP
  1 PCHISQ 102.6 68 0.004270601 Pearson Chi-Square     1
```

Build Exponential Smoothing Models on Time Series Data

The `ore.esm` function builds a simple or a double exponential smoothing model for in-database time series observations in an ordered `ore.vector` object.

The function operates on time series data, whose observations are evenly spaced by a fixed interval, or transactional data, whose observations are not equally spaced. The function can aggregate the transactional data by a specified time interval, as well as handle missing values using a specified method, before entering the modeling phase.
The `ore.esm` function processes the data in one or more R engines running on the database server. The function returns an object of class `ore.esm`.

You can use the `predict` method to predict the time series of the exponential smoothing model built by `ore.esm`. If you have loaded the `forecast` package, then you can use the `forecast` method on the `ore.esm` object. You can use the `fitted` method to generate the fitted values of the training time series data set.

For information about the arguments of the `ore.esm` function, invoke `help(ore.esm)`.

Example 3-37 Building a Double Exponential Smoothing Model

This example builds a double exponential smoothing model on a synthetic time series data set. The `predict` and `fitted` functions are invoked to generate the predictions and the fitted values, respectively. The figure shows the observations, fitted values, and the predictions.

```r
N <- 5000
ts0 <- ore.push(data.frame(ID=1:N,
                VAL=seq(1,5,length.out=N)^2+rnorm(N,sd=0.5)))
rownames(tso) <- ts0$ID
x <- ts0$VAL
esm.mod <- ore.esm(x, model = "double")
esm.predict <- predict(esm.mod, 30)
esm.fitted <- fitted(esm.mod, start=4000, end=5000)
plot(ts0[4000:5000,], pch='.
lines(ts0[4000:5000, 1], esm.fitted, col="blue")
lines(esm.predict, col="red", lwd=2)
```
This example builds a simple smoothing model based on a transactional data set. As preprocessing, it aggregates the values to the day level by taking averages, and fills missing values by setting them to the previous aggregated value. The model is then built on the aggregated daily time series. The function `predict` is invoked to generate predicted values on the daily basis.

```r
# Example 3-38 Building a Time Series Model with Transactional Data

ts01 <- data.frame(ID=seq(as.POSIXct("2008/6/13"), as.POSIXct("2011/6/16"), length.out=4000), VAL=rnorm(4000, 10))
ts02 <- data.frame(ID=seq(as.POSIXct("2011/7/19"), as.POSIXct("2012/11/20"), length.out=1500), VAL=rnorm(1500, 10))
ts03 <- data.frame(ID=seq(as.POSIXct("2012/12/09"), as.POSIXct("2013/9/25"), length.out=1000), VAL=rnorm(1000, 10))
ts1 = ore.push(rbind(ts01, ts02, ts03))
rownames(ts1) <- ts1$ID
x <- ts1$VAL
esm.mod <- ore.esc(x, "DAY", accumulate = "AVG", model="simple",
esm.predict <- predict(esm.mod)
esm.predict

Listing for This Example

R> ts01 <- data.frame(ID=seq(as.POSIXct("2008/6/13"), as.POSIXct("2011/6/16"),
+                   length.out=4000), VAL=rnorm(4000, 10))
R> ts02 <- data.frame(ID=seq(as.POSIXct("2011/7/19"), as.POSIXct("2012/11/20"),
+                   length.out=1500), VAL=rnorm(1500, 10))
R> ts03 <- data.frame(ID=seq(as.POSIXct("2012/12/09"), as.POSIXct("2013/9/25"),
+                   length.out=1000), VAL=rnorm(1000, 10))
R> ts1 = ore.push(rbind(ts01, ts02, ts03))
R> rownames(ts1) <- ts1$ID
R> x <- ts1$VAL
R> esm.mod <- ore.esm(x, "DAY", accumulate = "AVG", model="simple",
+                   setmissing="PREV")
R> esm.predict <- predict(esm.mod)
R> esm.predict
   ID        VAL
 1 2013-09-26 9.962478
 2 2013-09-27 9.962478
 3 2013-09-28 9.962478
 4 2013-09-29 9.962478
 5 2013-09-30 9.962478
 6 2013-10-01 9.962478
 7 2013-10-02 9.962478
 8 2013-10-03 9.962478
 9 2013-10-04 9.962478
10 2013-10-05 9.962478
11 2013-10-06 9.962478
12 2013-10-07 9.962478

Example 3-39  Building a Double Exponential Smoothing Model Specifying an Interval

This example uses stock data from the TTR package. It builds a double exponential
smoothing model based on the daily stock closing prices. The 30-day predicted stock
prices, along with the original observations, are shown in the following figure.

library(TTR)
stock <- "orcl"
xts.data <- getYahooData(stock, 20010101, 20131024)
df.data <- data.frame(xts.data)
df.data$date <- index(xts.data)
of.data <- ore.push(df.data[, c("date", "Close")])
rownames(of.data) <- of.data$date
esm.mod <- ore.esm(of.data$Close, "DAY", model = "double")
esm.predict <- predict(esm.mod, 30)
plot(of.data,type="l")
lines(esm.predict,col="red",lwd=4)
Rank Data

The `ore.rank` function analyzes distribution of values in numeric columns of an `ore.frame`. The `ore.rank` function supports useful functionality, including:

- Ranking within groups
- Partitioning rows into groups based on rank tiles
- Calculation of cumulative percentages and percentiles
- Treatment of ties
- Calculation of normal scores from ranks

The `ore.rank` function syntax is simpler than the corresponding SQL queries.

The `ore.rank` function returns an `ore.frame` in all instances.

You can use these R scoring methods with `ore.rank`:

- To compute exponential scores from ranks, use `savage`.
- To compute normal scores, use one of `blom`, `tukey`, or `vw` (van der Waerden).

For details about the function arguments, invoke `help(ore.rank)`. 

---

Figure 3-2  Stock Price Prediction

R Graphics: Device 2 (ACTIVE)
The following examples illustrate using `ore.rank`. The examples use the NARROW data set.

**Example 3-40  Ranking Two Columns**

This example ranks the two columns AGE and CLASS and reports the results as derived columns; values are ranked in the default order, which is ascending.

```r
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass')
```

**Example 3-41  Handling Ties in Ranking**

This example ranks the two columns AGE and CLASS. If there is a tie, the smallest value is assigned to all tied values.

```r
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', ties='low')
```

**Example 3-42  Ranking by Groups**

This example ranks the two columns AGE and CLASS and then ranks the resulting values according to COUNTRY.

```r
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', group.by='COUNTRY')
```

**Example 3-43  Partitioning into Deciles**

To partition the columns into a different number of partitions, change the value of `groups`. For example, `groups=4` partitions into quartiles. This example ranks the two columns AGE and CLASS and partitions the columns into deciles (10 partitions).

```r
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', groups=10)
```

**Example 3-44  Estimating Cumulative Distribution Function**

This example ranks the two columns AGE and CLASS and estimates the cumulative distribution function for both column.

```r
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', nplus1=TRUE)
```

**Example 3-45  Scoring Ranks**

This example ranks the two columns AGE and CLASS and scores the ranks in two different ways. The first command partitions the columns into percentiles (100 groups). The `savage` scoring method calculates exponential scores and `blom` scoring calculates normal scores.

```r
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', score='savage', groups=100, group.by='COUNTRY')
x <- ore.rank(data=NARROW, var='AGE=RankOfAge, CLASS=RankOfClass', score='blom')
```

**Sort Data**

The `ore.sort` function enables flexible sorting of a data frame along one or more columns specified by the `by` argument.

The `ore.sort` function can be used with other data pre-processing functions. The results of sorting can provide input to R visualization.
The sorting done by the `ore.sort` function takes place in the Oracle database. The `ore.sort` function supports the database `nls.sort` option.

The `ore.sort` function returns an `ore.frame`.

For details about the function arguments, invoke `help(ore.sort)`.

Most of the following examples use the `NARROW` data set. Some examples use the `ONTIME_S` data set.

**Example 3-46  Sorting Columns in Descending Order**

This example sorts the columns `AGE` and `GENDER` in descending order.

```r
x <- ore.sort(data=NARROW, by='AGE,GENDER', reverse=TRUE)
```

**Example 3-47  Sorting Different Columns in Different Orders**

This example sorts `AGE` in descending order and `GENDER` in ascending order.

```r
x <- ore.sort(data=NARROW, by='-AGE,GENDER')
```

**Example 3-48  Sorting and Returning One Row per Unique Value**

This example sorts by `AGE` and keep one row per unique value of `AGE`:

```r
x <- ore.sort(data=NARROW, by='AGE', unique.key=TRUE)
```

**Example 3-49  Removing Duplicate Columns**

This example sorts by `AGE` and removes duplicate rows:

```r
x <- ore.sort(data=NARROW, by='AGE', unique.data=TRUE)
```

**Example 3-50  Removing Duplicate Columns and Returning One Row per Unique Value**

This example sorts by `AGE`, removes duplicate rows, and returns one row per unique value of `AGE`.

```r
x <- ore.sort(data=NARROW, by='AGE', unique.data=TRUE, unique.key = TRUE)
```

**Example 3-51  Preserving Relative Order in the Output**

This example maintains the relative order in the sorted output.

```r
x <- ore.sort(data=NARROW, by='AGE', stable=TRUE)
```

**Example 3-52  Sorting Two Columns in Different Orders**

This example sorts `ONTIME_S` by airline name in descending order and departure delay in ascending order.

```r
sortedOnTime1 <- ore.sort(data=ONTIME_S, by='-UNIQUECARRIER,DEPDELAY')
```

**Example 3-53  Sorting Two Columns in Different Orders and Producing Unique Combinations**

This example sorts `ONTIME_S` by airline name and departure delay and selects one of each combination (that is, returns a unique key).

```r
sortedOnTime1 <- ore.sort(data=ONTIME_S, by='-UNIQUECARRIER,DEPDELAY', unique.key=TRUE)
```
Summarize Data with `ore.summary`

The `ore.summary` function calculates descriptive statistics and supports extensive analysis of columns in an `ore.frame`, along with flexible row aggregations.

The `ore.summary` function supports these statistics:

- Mean, minimum, maximum, mode, number of missing values, sum, weighted sum
- Corrected and uncorrected sum of squares, range of values, stddev, stderr, variance
- t-test for testing the hypothesis that the population mean is 0
- Kurtosis, skew, Coefficient of Variation
- Quantiles: p1, p5, p10, p25, p50, p75, p90, p95, p99, qrange
- 1-sided and 2-sided Confidence Limits for the mean: clm, rclm, lclm
- Extreme value tagging

The `ore.summary` function provides a relatively simple syntax compared with SQL queries that produce the same results.

The `ore.summary` function returns an `ore.frame` in all cases except when the `group.by` argument is used. If the `group.by` argument is used, then `ore.summary` returns a list of `ore.frame` objects, one `ore.frame` per stratum.

For details about the function arguments, invoke `help(ore.summary)`.

Example 3-54  Calculating Default Statistics

This example calculates the mean, minimum, and maximum values for columns AGE and CLASS and rolls up (aggregates) the GENDER column.

```
ore.summary(NARROW, class = 'GENDER', var = c('AGE', 'CLASS', order = 'freq'))
```

Example 3-55  Calculating Skew and Probability for t Test

This example calculates the skew of AGE as column A and the probability of the Student's \( t \) distribution for CLASS as column B.

```
ore.summary(NARROW, class = 'GENDER', var = 'AGE, CLASS', stats = 'skew(AGE) = A, probt(CLASS) = B')
```

Example 3-56  Calculating the Weighted Sum

This example calculates the weighted sum for AGE aggregated by GENDER with YRS_RESIDENCE as weights; in other words, it calculates \( \text{sum(var*weight)} \).

```
ore.summary(NARROW, class = 'GENDER', var = 'AGE', stats = 'sum = X', weight = 'YRS_RESIDENCE')
```

Example 3-57  Grouping by Two Columns

This example groups CLASS by GENDER and MARITAL_STATUS.

```
ore.summary(NARROW, class = c('GENDER', 'MARITAL_STATUS'), var = 'CLASS', ways = 1)
```
**Example 3-58  Grouping by All Possible Ways**
This example groups CLASS in all possible ways by GENDER and MARITAL_STATUS.

```r
ore.summary(NARROW, class = c('GENDER', 'MARITAL_STATUS'), var = 'CLASS', ways = 'nway')
```

**Example 3-59  Getting the Maximum Values of Columns Using ore.summary**
This example lists the maximum value and corresponding species of the Sepal.Length and Sepal.Width columns in the IRIS ore.frame.

```r
IRIS <- ore.push(iris)
ore.summary(IRIS, c("Sepal.Length", "Sepal.Width"), "max",
 maxid=c(Sepal.Length="Species", Sepal.Width="Species"))
```

**Listing for This Example**

```r
R> IRIS <- ore.push(iris)
R> ore.summary(IRIS, c("Sepal.Length", "Sepal.Width"),
+ "max",
+ maxid=c(Sepal.Length="Species", Sepal.Width="Species"))

 FREQ MAX(Sepal.Length) MAX(Sepal.Width) MAXID(Sepal.Length->Species)
 MAXID(Sepal.Width->Species)
 1 150 7.9 4.4
virginica setosa
Warning message:
ORE object has no unique key - using random order
```

**Analyze the Distribution of Numeric Variables**

The `ore.univariate` function provides distribution analysis of numeric variables in an ore.frame.

The `ore.univariate` function provides these statistics:

- All statistics reported by the `summary` function
- Signed rank test, Student's t-test
- Extreme values reporting

The `ore.univariate` function returns an ore.frame as output in all cases.

For details about the function arguments, invoke `help(ore.univariate)`.

**Example 3-60  Calculating the Default Univariate Statistics**
This example calculates the default univariate statistics for AGE, YRS_RESIDENCE, and CLASS.

```r
ore.univariate(NARROW, var="AGE,YRS_RESIDENCE,CLASS")
```

**Example 3-61  Calculating the Default Univariate Statistics**
This example calculates location statistics for YRS_RESIDENCE.
Example 3-62 Calculating the Complete Quantile Statistics

This example calculates complete quantile statistics for AGE and YRS_RESIDENCE.

ore.univariate(NARROW, var="AGE,YRS_RESIDENCE", stats="quantiles")

Principal Component Analysis

The overloaded prcomp and princomp functions perform principal component analysis in parallel in the database.

The prcomp function uses a singular value decomposition of the covariance and correlations between variables. The princomp function uses eigen decomposition of the covariance and correlations between samples.

The transparency layer methods ore.frame-prcomp and ore.frame-princomp enable you to use the generic functions prcomp and princomp on data in an ore.frame object. This allows the functions to execute in parallel processes in the database.

For both functions, the methods support the function signature that accepts an ore.frame as the x argument and the signature that accepts a formula. The ore.frame must contain only numeric data. The formula must refer only to numeric variables and have no response variable.

Function prcomp returns a prcomp object and function princomp returns a princomp object.

For details about the function arguments, invoke help('ore.frame-prcomp') and help('ore.frame-princomp').

Note:
The biplot function is not supported for the objects returned by these transparency layer methods.

Example 3-63 Using the prcomp and princomp Functions

USARRESTS <- ore.push(USArrests)

# Using prcomp
prcomp(USARRESTS)
prcomp(USARRESTS, scale. = TRUE)

# Formula interface
prcomp(~ Murder + Assault + UrbanPop, data = USARRESTS, scale. = TRUE)

# Using princomp
princomp(USARRESTS)
princomp(USARRESTS, cor = TRUE)
# Formula interface
princomp(~ Murder + Assault + UrbanPop, data = USARRESTS, cor = TRUE)

**Listing for This Example**

R> USARRESTS <- ore.push(USArrests)
R>
R> # Using prcomp
R>
R> prcomp(USARRESTS)
Standard deviations:

Rotation:
   PC1       PC2       PC3       PC4
Murder  0.04170432 -0.04482166  0.07989066 -0.99492173
Assault 0.99522128 -0.05876003 -0.06756974  0.03893830
UrbanPop 0.04633575  0.97685748 -0.20054629 -0.05816914
Rape    0.07515550  0.20071807  0.97408059  0.07232502

R> prcomp(USARRESTS, scale. = TRUE)
Standard deviations:
[1] 1.5748783 0.9948694 0.5971291 0.4164494

Rotation:
   PC1       PC2       PC3       PC4
Murder  0.5358995 -0.4181809  0.3412327  0.64922780
Assault 0.5831836 -0.1879856  0.2681484 -0.74340748
UrbanPop 0.2781909  0.8728062  0.3780158  0.13387773
Rape    0.5434321  0.1673186 -0.8177779  0.08902432

R> # Formula interface
R> prcomp(~ Murder + Assault + UrbanPop, data = USARRESTS, scale. = TRUE)
Standard deviations:
[1] 1.3656547 0.9795415 0.4189100

Rotation:
   PC1       PC2       PC3
Murder  0.6672955 -0.3034552  0.6801703
Assault 0.6970818 -0.06713997 -0.7138411
UrbanPop 0.2622854  0.95047734  0.1667309

R> # Using princomp
R>
R> princomp(USARRESTS)
Call:
princomp(USARRESTS)

Standard deviations:
     Comp.1  Comp.2  Comp.3  Comp.4
82.890847 14.069560  6.424204  2.457837

4 variables and 50 observations.
R> princomp(USARRESTS, cor = TRUE)
Call:
princomp(USARRESTS, cor = TRUE)

Standard deviations:
  Comp.1  Comp.2  Comp.3  Comp.4
1.5748783 0.9948694 0.5971291 0.4164494
4 variables and 50 observations.

R>
R> # Formula interface
R> princomp(~ Murder + Assault + UrbanPop, data = USARRESTS, cor =
TRUE)
Call:
princomp(~Murder + Assault + UrbanPop, data = USARRESTS, cor = TRUE)

Standard deviations:
  Comp.1  Comp.2  Comp.3
1.3656547 0.9795415 0.4189100
3 variables and 50 observations.

Singular Value Decomposition

The overloaded svd function performs singular value decomposition in parallel in the
database.

The svd function accepts an ore.frame or an ore.tblmatrix object as the x
argument. The ore.frame-svd method distributes block SVD computation to parallel
processes executing in the database. The method uses the global option
ore.parallel to determine the degree of parallelism to employ.

The function returns a list object that contains the d vector and v matrix components
of a singular value decomposition of argument x. It does not return the left singular
vector matrix u, therefore the argument nu is not used.

For details about the function arguments, invoke help('ore.frame-svd').

Example 3-64  Using the svd Function

USARRESTS <- ore.push(USArrests)
svd(USARRESTS)

Listing for This Example

R> USARRESTS <- ore.push(USArrests)
R> svd(USARRESTS)
$d
[1] 1419.06140 194.82585  45.66134  18.06956

$v
[1,] 0.04239181 -0.01616262  0.06588426  0.99679535
[2,] 0.94395706 -0.32068580 -0.06655170 -0.04094568
Data Manipulation Using OREdplyr

OREdplyr package functions transparently implement dplyr functions for use with ore.frame and ore.numeric objects.

Many of these functions have non-standard evaluation (NSE) and standard evaluation (SE) interfaces. The SE functions have an underscore (_) appended to the function name. NSE functions are useful in interactive R sessions; SE functions are convenient for use in programs.

The functions in the OREdplyr package are described in the following topics.

Select and Order Data

OREdplyr functions for selecting and ordering data in columns and rows of an ore.frame object.

Table 3-2  Selecting and Ordering Columns and Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrange</td>
<td>Orders rows by the specified columns.</td>
</tr>
<tr>
<td>arrange_</td>
<td></td>
</tr>
<tr>
<td>desc</td>
<td>Sorts an ore.number, ore.factor, or ore.character object in descending order</td>
</tr>
<tr>
<td>distinct</td>
<td>Selects unique rows from an input ore.frame object over the specified columns.</td>
</tr>
<tr>
<td>distinct_</td>
<td></td>
</tr>
<tr>
<td>filter</td>
<td>Filters rows by matching the specified condition.</td>
</tr>
<tr>
<td>filter_</td>
<td></td>
</tr>
<tr>
<td>mutate</td>
<td>Adds new columns.</td>
</tr>
<tr>
<td>mutate_</td>
<td></td>
</tr>
<tr>
<td>rename</td>
<td>Renames the specified columns and keeps all columns.</td>
</tr>
<tr>
<td>rename_</td>
<td></td>
</tr>
<tr>
<td>select</td>
<td>Selects only the specified columns.</td>
</tr>
<tr>
<td>select_</td>
<td></td>
</tr>
<tr>
<td>slice</td>
<td>Selects rows by position; ignores the grouping of the input ordered ore.frame object.</td>
</tr>
<tr>
<td>slice_</td>
<td></td>
</tr>
<tr>
<td>tranmute</td>
<td>Adds new columns and drops the existing columns.</td>
</tr>
<tr>
<td>tranmute_</td>
<td></td>
</tr>
</tbody>
</table>

Examples of using these functions are the following:

Examples of Selecting Columns

Examples of the select and rename functions of the OREdplyr package.
Example 3-65  Selecting Columns

The following examples select columns from the IRIS ore.frame object that is created by using the ore.push function on the iris data.frame objects.

IRIS <- ore.push(iris)
# Select the specified column
names(select(IRIS, Petal.Length))
# Select the specified column
names(select(IRIS, petal_length = Petal.Length))
# Drop the specified column
names(select(IRIS, -Petal.Length))
# rename() keeps all variables
names(rename(IRIS, petal_length = Petal.Length))

Listing for This Example

R> IRIS <- ore.push(iris)
R> # Select the specified column
R> names(select(IRIS, Petal.Length))
[1] "Petal.Length"
R> names(select(IRIS, petal_length = Petal.Length))
[1] "petal_length"
R>
R> # Drop the specified column
R> names(select(IRIS, -Petal.Length))
R>
R> # rename() keeps all variables
R> names(rename(IRIS, petal_length = Petal.Length))

Examples of Programming with select_

Examples of the select_ function of the OREdplyr package.

Example 3-66  Programming with select

This example uses the select_ function to select columns from the IRIS ore.frame object that is created by using the ore.push function on the iris data.frame object.

IRIS <- ore.push(iris)
# Use ~, double quote, or quote function to specify the column to select
head(select_(IRIS, ~Petal.Length))
head(select_(IRIS, "Petal.Length"))
head(select_(IRIS, quote(-Petal.Length), quote(-Petal.Width)))
head(select_(IRIS, .dots = list(quote(-Petal.Length), quote(-Petal.Width))))
Listing for This Example

```r
R> IRIS <- ore.push(iris)
R> # Use ~, double quote, or quote function to specify the column to select
R> head(select_(IRIS, ~Petal.Length))
Petal.Length
 1 1.4
 2 1.4
 3 1.3
 4 1.5
 5 1.4
 6 1.7
R> head(select_(IRIS, "Petal.Length"))
Petal.Length
 1 1.4
 2 1.4
 3 1.3
 4 1.5
 5 1.4
 6 1.7
R> head(select_(IRIS, quote(-Petal.Length), quote(-Petal.Width)))
 Sepal.Length Sepal.Width Species
 1 5.1 3.5 setosa
 2 4.9 3.0 setosa
 3 4.7 3.2 setosa
 4 4.6 3.1 setosa
 5 5.0 3.6 setosa
 6 5.4 3.9 setosa
R> head(select_(IRIS, .dots = list(quote(-Petal.Length), quote(-Petal.Width))))
 Sepal.Length Sepal.Width Species
 1 5.1 3.5 setosa
 2 4.9 3.0 setosa
 3 4.7 3.2 setosa
 4 4.6 3.1 setosa
 5 5.0 3.6 setosa
 6 5.4 3.9 setosa
```

Examples of Selecting Distinct Columns

**Examples of the `distinct` and `arrange` functions of the OREdplyr package.**

**Example 3-67 Selecting Distinct Columns**

```r
df <- data.frame(
 x = sample(10, 100, rep = TRUE),
 y = sample(10, 100, rep = TRUE)
)
DF <- ore.push(df)
nrow(DF)
nrow(distinct(DF))
arrange(distinct(DF, x), x)
arrange(distinct(DF, y), y)
```
# Use distinct on computed variables
arrange(distinct(DF, diff = abs(x - y)), diff)

### Listing for This Example

R> df <- data.frame(
+   x = sample(10, 100, rep = TRUE),
+   y = sample(10, 100, rep = TRUE)
+ )
R> DF <- ore.push(df)
R> nrow(DF)
[1] 100
R> nrow(distinct(DF))
[1] 66
R> arrange(distinct(DF, x), x)
   x
1  1
2  2
3  3
4  4
5  5
6  6
7  7
8  8
9  9
10 10
R> arrange(distinct(DF, y), y)
   y
1  1
2  2
3  3
4  4
5  5
6  6
7  7
8  8
9  9
R> # Use distinct on computed variables
R> arrange(distinct(DF, diff = abs(x - y)), diff)
   diff
1   0
2   1
3   2
4   3
5   4
6   5
7   6
8   7
9   8
10  9
Examples of Selecting Rows by Position

**Examples of the `slice` and `filter` functions of the OREdplyr package.**

**Example 3-68  Selecting Rows by Position**

MTCARS <- ore.push(mtcars)
# Display the names of the rows in MTCARS
rownames(MTCARS)
# Select the first row
slice(MTCARS, 1L)

# Arrange the rows by horsepower, then select the first row by position
MTCARS <- arrange(MTCARS, hp)
slice(MTCARS, 1L)

by_cyl <- group_by(MTCARS, cyl)
# Grouping is ignored by slice.
slice(by_cyl, 1:2)
# Use filter and `row_number` to obtain slices per group.
filter(by_cyl, row_number(hp) < 3L)

**Listing for This Example**

R> MTCARS <- ore.push(mtcars)
R> # Display the names of the rows in MTCARS
R> rownames(MTCARS)
[1] "Mazda RX4"           "Mazda RX4 Wag"       "Datsun 710"
"Hornet 4 Drive"      "Hornet Sportabout" [6] "Valiant"           "Duster 360"       "Merc 240D"    "Merc 230"
"Merc 280"            "Merc 280C"          "Merc 450SE"       "Merc 450SL"    "Merc 450SLC"
"Cadillac Fleetwood" "Lincoln Continental" "Chrysler Imperial" "Plymouth Savoy" "Plymouth Volare"
"Honda Civic"         "Toyota Corolla"    "AMC Javelin"     "Camaro Z28"    "Toyota Celica"
"Ford Granada"        "Ford Ranchero"     "Mercury Comet"   "Merc Merc"    "Mercury Cougar"
[16] "Lincoln Continental" "Chrysler Imperial" "Plymouth Savoy" "Plymouth Volare" "Honda Civic"
[21] "Toyota Corona"       "Dodge Challenger" "AMC Javelin"     "Camaro Z28"    "Toyota Celica"
"Ford Granada"        "Ford Ranchero"     "Mercury Comet"   "Mercury Cougar" "Mercury Cougar"
[26] "Plymouth Barracuda" "Plymouth Duster"  "Lotus Europa"    "Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora"       "Volvo 142E"
R> # Select the first row
R> slice(MTCARS, 1L)
mpg cyl disp hp drat    wt  qsec vs am gear carb
Mazda RX4 21   6 160 110 3.9 2.62 16.46 0 1    4    4
R>
R> # Arrange the rows by horsepower, then select the first row by position
R> MTCARS <- arrange(MTCARS, hp)
R> slice(MTCARS, 1L)
mpg cyl disp hp drat    wt  qsec vs am gear carb
1 30.4 4 75.7 52 4.93 1.615 18.52 1 1    4    2
R>
R> by_cyl <- group_by(MTCARS, cyl)
R> # Grouping is ignored by slice
Examples of Arranging Columns

Examples of the `arrange` and `desc` functions of the OREdplyr package.

Example 3-69   Arranging Columns

This example arranges columns from the `ore.frame` object `MTCARS` that is created by using the `ore.push` function on the `mtcars` data.frame object. The second `arrange()` invocation calls the `desc()` function to arrange the values in descending order.

```r
MTCARS <- ore.push(mtcars)
head(arrange(mtcars, cyl, disp))
head(arrange(MTCARS, desc(disp)))
```

Listing for This Example

```r
R> MTCARS <- ore.push(mtcars)
R> head(arrange(MTCARS, cyl, disp))
mpg cyl disp hp drat wt qsec vs am gear carb
1 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
2 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
3 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
4 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
5 30.4 4 95.1 113 3.77 1.513 17.42 1 1 5 2
6 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
R> head(arrange(MTCARS, desc(disp)))
mpg cyl disp hp drat wt qsec vs am gear carb
1 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
2 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
3 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
4 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
6 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
```
Examples of Filtering Columns

**Examples of the** `filter` **function of the OREdplyr package.**

**Example 3-70  Filtering Columns**

This example filters columns from the `MTCARS` `ore.frame` object that is created by using the `ore.push` function on the `mtcars` data.frame object.

```r
MTCARS <- ore.push(mtcars)
head(filter(MTCARS, cyl == 8))
Using multiple criteria
head(filter(MTCARS, cyl < 6 & vs == 1))
```

**Listing for This Example**

```r
R> MTCARS <- ore.push(mtcars)
R> head(filter(MTCARS, cyl == 8))
 mpg cyl disp hp drat wt qsec vs am gear carb
1 18.7 8 360.0 175 3.15 3.44 17.02 0 0 3 2
2 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4
3 16.4 8 275.8 180 3.07 4.07 17.40 0 0 3 3
4 17.3 8 275.8 180 3.07 3.73 17.60 0 0 3 3
5 15.2 8 275.8 180 3.07 3.78 18.00 0 0 3 3
6 10.4 8 472.0 205 2.93 5.25 17.98 0 0 3 4
R> head(filter(MTCARS, cyl < 6 & vs == 1))
 mpg cyl disp hp drat wt qsec vs am gear carb
1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
R>
```

**Examples of Mutating Columns**

**Examples of the** `mutate` **and** `transmute` **functions of the OREdplyr package.**
Example 3-71  Mutating Columns

This example uses the MTCARS ore.frame object that is created by using the ore.push function on the mtcars data.frame object.

The mutate function adds the extra column displ_l with the value derived from that of column disp. Setting the column to NULL removes the column.

```
MTCARS <- ore.push(mtcars)
head(mutate(MTCARS, displ_l = disp / 61.0237))
head(transmute(MTCARS, displ_l = disp / 61.0237))
head(mutate(MTCARS, cyl = NULL))
head(mutate(MTCARS, cyl = NULL, hp = NULL, displ_l = disp / 61.0237))
```

Listing for This Example

```r
R> MTCARS <- ore.push(mtcars)
R> head(mutate(MTCARS, displ_l = disp / 61.0237))
 mpg cyl disp hp drat wt qsec vs am gear carb displ_l
1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 2.621932
2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4.2.621932
3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1.769804
4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1.4.227866
5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2.5.899347
6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1.3.687092
R> head(transmute(MTCARS, displ_l = disp / 61.0237))
 displ_l
1 2.621932
2 2.621932
3 1.769804
4 4.227866
5 5.899347
6 3.687092
R> head(mutate(mtcars, cyl = NULL))
 mpg disp hp drat wt qsec vs am gear carb
1 21.0 160 110 3.90 2.620 16.46 0 1 4 4
2 21.0 160 110 3.90 2.875 17.02 0 1 4 4.2.621932
3 22.8 108 93 3.85 2.320 18.61 1 1 4 1.769804
4 21.4 258 110 3.08 3.215 19.44 1 0 3 1.4.227866
5 18.7 360 175 3.15 3.440 17.02 0 0 3 2.5.899347
6 18.1 225 105 2.76 3.460 20.22 1 0 3 1.3.687092
R> head(mutate(mtcars, cyl = NULL, hp = NULL, displ_l = disp / 61.0237))
 mpg disp drat wt qsec vs am gear carb displ_l
1 21.0 160 3.90 2.620 16.46 0 1 4 2.621932
2 21.0 160 3.90 2.875 17.02 0 1 4.2.621932
3 22.8 108 3.85 2.320 18.61 1 1 1.769804
4 21.4 258 3.08 3.215 19.44 1 0 1.4.227866
5 18.7 360 3.15 3.440 17.02 0 0 2.5.899347
6 18.1 225 2.76 3.460 20.22 1 0 1.3.687092
```
Join Rows

`OREdplyr` functions for joining rows.

Table 3-3  Joining Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>full_join</code></td>
<td>Returns the union of rows from <code>left_join</code> and <code>right_join</code>.</td>
</tr>
<tr>
<td><code>inner_join</code></td>
<td>Returns all combination of rows from x and y over matched columns.</td>
</tr>
<tr>
<td><code>left_join</code></td>
<td>Returns rows from <code>inner_join</code> plus rows from y that do not match with x. For unmatched rows of y, NA is returned.</td>
</tr>
<tr>
<td><code>right_join</code></td>
<td>Returns rows from <code>inner_join</code> plus rows from x that do not match with y. For unmatched rows of x, NA is returned.</td>
</tr>
</tbody>
</table>

Example 3-72  Joining Rows

To join two tables, the `join` function selects the columns in each table that have the same name or uses the argument `by` to specify the columns.

```r
MTCARS <- ore.push(mtcars)
M1 <- filter(select(MTCARS, mpg, cyl, carb), carb < 6L)
M2 <- filter(select(MTCARS, cyl, hp, carb), carb > 2L)

names(inner_join(M1, M2))
nrow(left_join(M1, M2))
nrow(right_join(M1, M2))
nrow(full_join(M1, M2))

names(M2) <- c("cyl", "hp", "carb2")
names(inner_join(M1, M2, by = c("cyl", "carb", "carb2")))
nrow(inner_join(M1, M2, by = c("cyl", "carb", "carb2")))
nrow(left_join(M1, M2, by = c("cyl", "carb", "carb2")))
nrow(right_join(M1, M2, by = c("cyl", "carb", "carb2")))
nrow(full_join(M1, M2, by = c("cyl", "carb", "carb2")))
```

Listing for This Example

```r
R> MTCARS <- ore.push(mtcars)
R> M1 <- filter(select(MTCARS, mpg, cyl, carb), carb < 6L)
R> M2 <- filter(select(MTCARS, cyl, hp, carb), carb > 2L)
R>
R> names(inner_join(M1, M2))
[1] "cyl" "carb" "mpg" "hp"
R> nrow(left_join(M1, M2))
[1] 78
R> nrow(right_join(M1, M2))
[1] 63
R> nrow(full_join(M1, M2))
[1] 80
R>
```
Group Columns and Rows

OREdplyr functions for grouping columns and rows.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group_by</td>
<td>Groups an ore.frame object over the specified columns.</td>
</tr>
<tr>
<td>group_by_</td>
<td></td>
</tr>
<tr>
<td>group_size</td>
<td>Lists the number of rows in each group.</td>
</tr>
<tr>
<td>groups</td>
<td>Shows the names of the grouping columns.</td>
</tr>
<tr>
<td>n_groups</td>
<td>Returns the number of groups.</td>
</tr>
<tr>
<td>ungroup</td>
<td>Drops the grouping from the input ore.frame object.</td>
</tr>
</tbody>
</table>

Example 3-73 Using Grouping Functions

The following examples use the ore.frame object MTCARS that is created by using the ore.push function on the mtcars data.frame object. They exemplify the use of the grouping functions group_by, group_size, groups, n_group, and ungroup. They also use the OREdplyr functions arrange, rename, and summarize.

```r
MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)

Apply the summarise function to each group
arrange(summarise(by_cyl, mean(disp), mean(hp)), cyl)

Summarise drops one layer of grouping
by_vs_am <- group_by(MTCARS, vs, am)
by_vs <- summarise(by_vs_am, n = n())
arrange(by_vs, vs)
arrange(summarise(by_vs, n = sum(n)), vs)

Remove grouping
summarise(ungroup(by_vs), n = sum(n))

Group by expressions with mutate
arrange(group_size(group_by(mutate(MTCARS, vsam = vs + am), vsam)), vsam)
```
# Rename the grouping column
groups(rename(group_by(MTCARS, vs), vs2 = vs))

# Add more grouping columns
groups(group_by(by_cyl, vs, am))
groups(group_by(by_cyl, vs, am, add = TRUE))

# Drop duplicate groups
groups(group_by(by_cyl, cyl, cyl))

# Load the magrittr library to use the forward-pipe operator %>%
library(magrittr)
by_cyl_gear_carb <- MTCARS %>% group_by(cyl, gear, carb)
n_groups(by_cyl_gear_carb)
arrange(group_size(by_cyl_gear_carb), cyl, gear, carb)

by_cyl <- MTCARS %>% group_by(cyl)
# Number of groups
n_groups(by_cyl)

# Size of each group
arrange(group_size(by_cyl), cyl)

Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> by_cyl <- group_by(MTCARS, cyl)
R>
R> # Apply the summarise function to each group
R> arrange(summarise(by_cyl, mean(disp), mean(hp)), cyl)
  cyl mean.disp.  mean.hp.
      1  105.1364  82.63636
      2  183.3143 122.28571
      3  353.1000 209.21429
R>
R> # Summarise drops one layer of grouping
R> by_vs_am <- group_by(MTCARS, vs, am)
R> by_vs <- summarise(by_vs_am, n = n())
R> arrange(by_vs, vs, am)
  vs am  n
      1  0  12
      2  0  1  6
      3  1  0  7
      4  1  1  7
R> arrange(summarise(by_vs, n = sum(n)), vs)
  vs  n
      1  0  18
      2  1  14
R>
R> # Remove grouping
R> summarise(ungroup(by_vs), n = sum(n))
  n
      32
R>
R> # Group by expressions with mutate
R> arrange(group_size(group_by(mutate(MTCARS, vsam = vs + am), vsam)),
vsam)
  vsam n
1  0 12
2  1 13
3  2  7
R>
R> # Rename the grouping column
R> groups(rename(group_by(MTCARS, vs), vs2 = vs))
[1] "vs2"
R>
R> # Add more grouping columns
R> groups(group_by(by_cyl, vs, am))
[[1]]
[1] "vs"
[[2]]
[1] "am"
R> groups(group_by(by_cyl, vs, am, add = TRUE))
[[1]]
[1] "cyl"
[[2]]
[1] "vs"
[[3]]
[1] "am"
R>
R> # Drop duplicate groups
R> groups(group_by(by_cyl, cyl, cyl))
[1] "cyl"
R>
R> # Load the magrittr library to use the forward-pipe operator %>%
R> library(magrittr)
R> by_cyl_gear_carb <- MTCARS %>% group_by(cyl, gear, carb)
R> n_groups(by_cyl_gear_carb)
[1] 12
R> arrange(group_size(by_cyl_gear_carb), cyl, gear, carb)
  cyl gear carb n
1  4  3  1 1
2  4  4  1 4
3  4  4  2 4
4  4  5  2 2
5  6  3  1 2
6  6  4  4 4
7  6  5  6 1
8  8  3  2 4
9  8  3  3 3
10 8  3  4 5
11 8  5  4 1
12 8  5  8 1
R>
Aggregate Columns and Rows

OREdplyr functions for aggregating columns and rows.

Table 3-5  Aggregating Columns and Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Counts rows by group; similar to <code>tally</code>, but it does the <code>group_by</code> for you.</td>
</tr>
<tr>
<td>count_</td>
<td>Summarizes columns by using aggregate functions. When an <code>ore.frame</code> object is grouped, the aggregate function is applied group-wise. The resulting <code>ore.frame</code> drops one grouping of the input <code>ore.frame</code>.</td>
</tr>
<tr>
<td>summarise</td>
<td></td>
</tr>
<tr>
<td>summarise_</td>
<td></td>
</tr>
<tr>
<td>tally</td>
<td>Tallies rows by group; a convenient wrapper for <code>summarise</code> that either calls <code>n</code> or <code>sum(n)</code> depending on whether you're tallying for the first time or re-tallying.</td>
</tr>
</tbody>
</table>

Example 3-74  Aggregating Columns

The following examples use the `ore.frame` object `MTCARS` that is created by using the `ore.push` function on the `mtcars` data.frame object. They exemplify the use of the aggregation functions `count`, `summarize`, and `tally`. They also use the OREdplyr functions `arrange` and `group_by`.

```r
MTCARS <- ore.push(mtcars)
arrange(tally(group_by(MTCARS, cyl)), cyl)
tally(group_by(MTCARS, cyl), sort = TRUE)

Multiple tallys progressively roll up the groups
cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), sort = TRUE)
tally(cyl_by_gear, sort = TRUE)
tally(tally(cyl_by_gear))

cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), wt = hp, sort = TRUE)
tally(cyl_by_gear, sort = TRUE)
tally(tally(cyl_by_gear))
```
cyl_by_gear <- count(MTCARS, cyl, gear, wt = hp + mpg, sort = TRUE)
tally(cyl_by_gear, sort = TRUE)
tally(tally(cyl_by_gear))

# Load the magrittr library to use the forward-pipe operator %>%
library(magrittr)
MTCARS %>% group_by(cyl) %>% tally(sort = TRUE)

# count is more succinct and also does the grouping
MTCARS %>% count(cyl) %>% arrange(cyl)
MTCARS %>% count(cyl, wt = hp) %>% arrange(cyl)
MTCARS %>% count("cyl", wt = hp, sort = TRUE)

Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> arrange(tally(group_by(MTCARS, cyl)), cyl)
cyl  n
1   4 11
2   6  7
3   8 14
R> tally(group_by(MTCARS, cyl), sort = TRUE)
cyl  n
1   8 14
2   4 11
3   6  7
R>
R> # Multiple tallys progressively roll up the groups
R> cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), sort = TRUE)
R> tally(cyl_by_gear, sort = TRUE)
Using n as weighting variable
cyl  n
1   8 14
2   4 11
3   6  7
R> tally(tally(cyl_by_gear))
Using n as weighting variable
Using n as weighting variable
n
32
R>
R> cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), wt = hp, sort = TRUE)
R> tally(cyl_by_gear, sort = TRUE)
Using n as weighting variable
cyl  n
1   8 2929
2   4 909
3   6 856
R> tally(tally(cyl_by_gear))
Using n as weighting variable
Using n as weighting variable
n
4694
R>
R> cyl_by_gear <- count(MTCARS, cyl, gear, wt = hp + mpg, sort = TRUE)
R> tally(cyl_by_gear, sort = TRUE)
Using n as weighting variable
  cyl  n
1   8 3140.4
2   4 1202.3
3   6  994.2
R> tally(tally(cyl_by_gear))
Using n as weighting variable
Using n as weighting variable
  n
5336.9
R>
R> # Load the magrittr library to use the forward-pipe operator %>%
R> library(magrittr)
R> MTCARS %>% group_by(cyl) %>% tally(sort = TRUE)
  cyl  n
1   8 14
2   4 11
3   6  7
R>
R> # count is more succinct and also does the grouping
R> MTCARS %>% count(cyl) %>% arrange(cyl)
  cyl  n
1   4 11
2   6  7
3   8 14
R> MTCARS %>% count(cyl, wt = hp) %>% arrange(cyl)
  cyl  n
1   4  909
2   6  856
3   8 2929
R> MTCARS %>% count_("cyl", wt = hp, sort = TRUE)
  cyl  n
1   8 2929
2   4  909
3   6  856

Sample Rows

OREdplyr functions for sampling rows.

Table 3-6  Sampling Row Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample_frac</td>
<td>Samples an ore.frame object by a fraction.</td>
</tr>
<tr>
<td>sample_n</td>
<td>Samples an ore.frame object by a fixed number of rows.</td>
</tr>
</tbody>
</table>
Example 3-75    Sampling Rows

These examples use the ore.frame object MTCARS that is created by using the ore.push function on the mtcars data.frame object. They exemplify the use of the sampling functions sample_n and sample_frac. They also use the OREdplyr functions arrange and summarize.

MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)

# Sample fixed number per group of rows from the entire dataset
sample_n(MTCARS, 10)
nrow(sample_n(MTCARS, 50, replace = TRUE))
sample_n(MTCARS, 10, weight = mpg)
sample_n(MTCARS, 10, weight = MTCARS["mpg"])

# Sample fixed number of rows per group with replacement and weight
arrange(sample_n(by_cyl, 3), cyl, mpg)
arrange(summarise(sample_n(by_cyl, 10, replace = TRUE), n = n()), cyl)
arrange(summarise(sample_n(by_cyl, 3, weight = mpg/mean(mpg)), n =
weight = by_cyl["mpg"])/mean(by_cyl["mpg"])), n = n()), cyl)

# Sample fixed fraction per group
nrow(sample_frac(MTCARS, 0.1))
nrow(sample_frac(MTCARS, 1.5, replace = TRUE))
nrow(sample_frac(MTCARS, 0.1, weight = 1/mpg))

Listing for This Example

R> MTCARS <- ore.push(mtcars)
R> by_cyl <- group_by(MTCARS, cyl)
R>
R> # Sample fixed number per group of rows from the entire dataset
R> sample_n(MTCARS, 10)
  mpg  cyl  disp   hp  drat    wt  qsec  vs  am  gear  carb
Datsun 710|4  22.8  4 108.0  93 3.85 2.320 18.61  1  1    4    1
Ford Pantera L|2  15.8  8 351.0 264 4.22 3.170 14.50  0  1    5    4
Honda Civic|10  30.4  4  75.7  52 4.93 1.615 18.52  1  1    4    2
Lotus Europa|6  30.4  4  95.1 113 3.77 1.513 16.90  1  1    5    2
Maserati Bora|3  15.0  8 301.0 335 3.54 3.570 14.60  0  1    4    2
Mazda RX4|5  21.0  6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag|9  21.0  6 160.0 110 3.90 2.875 17.02  0  1    4    4
Merc 280|4 19.2  6 167.6 123 3.92 3.440 18.30  1  0    4    4
Toyota Corolla|7  33.9  4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona|1  21.5  4 120.1  97 3.70 2.465 20.01  1  0    3    1
R> nrow(sample_n(MTCARS, 50, replace = TRUE))
[1] 50
R>
R> # Sample fixed number of rows per group with replacement and weight
R> arrange(sample_n(by_cyl, 3), cyl, mpg)
cyl  mpg  disp  hp  drat  wt  qsec  vs  am  gear  carb

Chapter 3
Data Manipulation Using OREdplyr
3-56
Rank Rows

OREdpdyr functions for ranking rows.

The ranking functions rank the elements in an ordered ore.vector by its values. An ore.character is coerced to an ore.factor. The values of an ore.factor are based upon factor levels. To reverse the direction of the ranking, use the desc function.

Table 3-7  Ranking Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cume_dist</td>
<td>A cumulative distribution function: returns the proportion of all values that are less than or equal to the current rank.</td>
</tr>
<tr>
<td>dense_rank</td>
<td>Like min_rank but with no gaps between ranks.</td>
</tr>
<tr>
<td>first</td>
<td>Gets the first value from an ordered ore.vector object.</td>
</tr>
<tr>
<td>last</td>
<td>Gets the last value from an ordered ore.vector object.</td>
</tr>
<tr>
<td>min_rank</td>
<td>Equivalent to rank(ties.method = &quot;min&quot;).</td>
</tr>
</tbody>
</table>
Table 3-7  (Cont.) Ranking Rows

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nth</td>
<td>Obtains the value at the specified position in the order.</td>
</tr>
<tr>
<td>ntile</td>
<td>A rough ranking that breaks the input vector into n buckets.</td>
</tr>
<tr>
<td>n_distinct</td>
<td>Gets the n-th value from an ordered ore.vector object.</td>
</tr>
<tr>
<td>percent_rank</td>
<td>Returns a number between 0 and 1 that is computed by rescaling min_rank to [0, 1].</td>
</tr>
<tr>
<td>row_number</td>
<td>Equivalent to rank(ties.method = &quot;first&quot;).</td>
</tr>
<tr>
<td>top_n</td>
<td>Selects the top or bottom number of rows.</td>
</tr>
</tbody>
</table>

Example 3-76  Ranking Rows

These examples use the ranking functions `row_number`, `min_rank`, `dense_rank`, `percent_rank`, `cume_dist`, and `ntile`.

```r
X <- ore.push(c(5, 1, 3, 2, 2, NA))
row_number(X)
row_number(desc(X))
min_rank(X)
dense_rank(X)
percent_rank(X)
cume_dist(X)
ntile(X, 2)
nHtile(ore.push(runif(100)), 10)

MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)
Using ranking functions with an ore.frame
head(mutate(MTCARS, rank = row_number(hp)))
head(mutate(MTCARS, rank = min_rank(hp)))
head(mutate(MTCARS, rank = dense_rank(hp)))
Using ranking functions with a grouped ore.frame
head(mutate(by_cyl, rank = row_number(hp)))
head(mutate(by_cyl, rank = min_rank(hp)))
head(mutate(by_cyl, rank = dense_rank(hp)))
```
Listing for This Example

R> X <- ore.push(c(5, 1, 3, 2, 2, NA))
R>
R> row_number(X)
[1] 5 1 4 2 3 6
R> row_number(desc(X))
[1] 1 5 2 4 6 3
R>
R> min_rank(X)
[1] 5 1 4 2 2 6
R>
R> dense_rank(X)
[1] 4 1 3 2 2 6
R>
R> percent_rank(X)
[1] 0.8 0.0 0.6 0.2 0.2 1.0
R>
R> cume_dist(X)
[1] 0.8333333 0.1666667 0.6666667 0.5000000 0.5000000 1.0000000
R>
R> ntile(X, 2)
[1] 2 1 2 1 1 2
R> ntile(ore.push(runif(100)), 10)
   [1]  6 10  5  2  1  1  8  3  8  7  3 10  3  7  9  9  4  4 10 10  7  2
   3  7  4  5  5  3  9  4  6  8  4 10  6  1  5  5  4  6  9
   [43]  5  8  2  7  7  1  2  9  1  2  8  5  6  5  3  4  7  1  3  1 10  1  5
   5 10  9  2  3  9  6  6  8  8  6  3  7  2  2  8  4  1  9
   [85]  6 10  4 10  7  2  9 10  7  2  4  9  6  3  8  1
R>
R> MTCARS <- ore.push(mtcars)
R> by_cyl <- group_by(MTCARS, cyl)
R>
R> # Using ranking functions with an ore.frame
R> head(mutate(MTCARS, rank = row_number(hp)))

  mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4 21.0   6 160 110 3.90 2.620 16.46  0  1    4    4   12
Mazda RX4 Wag 21.0   6 160 110 3.90 2.875 17.02  0  1    4    4   13
Datsun 710 22.8   4 108  93 3.85 2.320 18.61  1  1    4    1   12
Hornet 4 Drive 21.4   6 258 110 3.08 3.215 19.44  1  3    1    1   14
Hornet Sportabout 18.7   8 360 175 3.15 3.440 17.02  0  0    3    2   20
Valiant 18.1   6 225 105 2.76 3.460 20.22  1  0    3    1   10
R>
R> head(mutate(MTCARS, rank = min_rank(hp)))

  mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4 21.0   6 160 110 3.90 2.620 16.46  0  1    4    4   12
Mazda RX4 Wag 21.0   6 160 110 3.90 2.875 17.02  0  1    4    4   12
Datsun 710 22.8   4 108  93 3.85 2.320 18.61  1  1    4    1   12
Hornet 4 Drive 21.4   6 258 110 3.08 3.215 19.44  1  3    1    1   12
Hornet Sportabout 18.7   8 360 175 3.15 3.440 17.02  0  0    3    2   20
Valiant 18.1   6 225 105 2.76 3.460 20.22  1  0    3    1   10
R>
R> head(mutate(MTCARS, rank = dense_rank(hp)))

  mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4 21.0   6 160 110 3.90 2.620 16.46  0  1    4    4   11
<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda RX4</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mazda RX4 Wag</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Datsun 710</td>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hornet 4 Drive</td>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Hornet Sportabout</td>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

R> # Using ranking functions with a grouped ore.frame
R> head(mutate(by_cyl, rank = row_number(hp)))

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda RX4</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mazda RX4 Wag</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Datsun 710</td>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hornet 4 Drive</td>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Hornet Sportabout</td>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

R> head(mutate(by_cyl, rank = min_rank(hp)))

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda RX4</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mazda RX4 Wag</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Datsun 710</td>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hornet 4 Drive</td>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Hornet Sportabout</td>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

R> head(mutate(by_cyl, rank = dense_rank(hp)))

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazda RX4</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mazda RX4 Wag</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Datsun 710</td>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hornet 4 Drive</td>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Hornet Sportabout</td>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
About Using Third-Party Packages on the Client

In Oracle Machine Learning for R, if you want to use functions from an open source R package from The Comprehensive R Archive Network (CRAN) or other third-party R package, then you would generally do so in the context of embedded R execution.

Using embedded R execution, you can take advantage of the likely greater amount of memory on the database server.

However, if you want to use a third-party package function in your local R session on data from an Oracle database table, you must use the `ore.pull` function to get the data from an `ore.frame` object to your local session as a `data.frame` object. This is the same as using open source R except that you can extract the data from the database without needing the help of a DBA.

When pulling data from a database table to a local `data.frame`, you are limited to using the amount of data that can fit into the memory of your local machine. On your local machine, you do not have the benefits provided by embedded R execution.

To use a third-party package, you must install it on your system and load it in your R session. For an example that uses the `kernlab` package, see Example 2-13.

**See Also:**
- Install a Third-Party Package for Use in Embedded R Execution
- R Administration and Installation
- Installing R packages

### Example 3-77  Downloading, Installing, and Loading a Third-Party Package on the Client

This example demonstrates downloading, installing, and loading the CRAN package `kernlab`. The `kernlab` package contains kernel-based machine learning methods. The example invokes the `install.packages` function to download and install the package. It then invokes the `library` function to load the package.

```
install.packages("kernlab")
library("kernlab")
```

**Listing for This Example**

R> install.packages("kernlab")
  trying URL 'http://cran.rstudio.com/bin/windows/contrib/3.0/kernlab_0.9-19.zip'
Content type 'application/zip' length 2029405 bytes (1.9 Mb)
opened URL
downloaded 1.9 Mb

package 'kernlab' successfully unpacked and MD5 sums checked

---

<table>
<thead>
<tr>
<th>Hornet Sportabout</th>
<th>18.7</th>
<th>8</th>
<th>360</th>
<th>175</th>
<th>3.15</th>
<th>3.440</th>
<th>17.02</th>
<th>0</th>
<th>0</th>
<th>3</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The downloaded binary packages are in
   C:\Users\oml_user\AppData\Local\Temp\RtmpSKVZql\downloaded_packages
R> library("kernlab")

**Example 3-78  Using a kernlab Package Function**

This example invokes the `demo` function to look for example programs in the `kernlab` package. Because the package does not have examples, this example then gets help for the `ksvm` function. The example invokes example code from the help.

demo(package = "kernlab")
help(package = "kernlab", ksvm)
data(spam)
index <- sample(1:dim(spam)[1])
spamtrain <- spam[index[1:floor(dim(spam)[1]/2)], ]
spamtest <- spam[index[((ceiling(dim(spam)[1]/2)) + 1):dim(spam)[1]], ]
filter <- ksvm(type~.,data=spamtrain,kernel="rbfdot",
               kpar=list(sigma=0.05),C=5,cross=3)
filter
table(mailtype,spamtest[,58])

**Listing for This Example**

```r
> demo(package = "kernlab")
no demos found
> help(package = "kernlab", ksvm) # Output not shown.
> data(spam)
> index <- sample(1:dim(spam)[1])
> spamtrain <- spam[index[1:floor(dim(spam)[1]/2)],]
> spamtest <- spam[index[((ceiling(dim(spam)[1]/2)) + 1):dim(spam)[1]],]
> filter <- ksvm(type~., data=spamtrain, kernel="rbfdot",
 kpar=list(sigma=0.05), C=5, cross=3)
> filter
Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
parameter : cost C = 5

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.05

Number of Support Vectors : 970

Objective Function Value : -1058.218
Training error : 0.018261
Cross validation error : 0.08696
> mailtype <- predict(filter, spamtest[, -58])
> table(mailtype, spamtest[, 58])

 mailtype nonspam spam
nonspam 1347 136
 spam 45 772
```
OML4R provides functions for building regression models, neural network models, and models based on Oracle Machine Learning for SQL algorithms.

This chapter has the following topics:

Build Oracle Machine Learning for R Models

The OML4R package OREmodels contains functions with which you can create advanced analytical data models using ore.frame objects.

These functions are described in the following topics:

About OREmodels Functions

The OREmodels package contains functions with which you can build machine learning models using ore.frame objects.

The OREmodels functions are the following:

Table 4-1   Functions in the OREmodels Package

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.glm</td>
<td>Fits and uses a Generalized Linear Model model on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.lm</td>
<td>Fits a linear regression model on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.neural</td>
<td>Fits a Neural Network model on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.randomForest</td>
<td>Creates a Random Forest classification model in parallel on data in an ore.frame.</td>
</tr>
<tr>
<td>ore.stepwise</td>
<td>Fits a stepwise linear regression model on data in an ore.frame.</td>
</tr>
</tbody>
</table>

Note:

In R terminology, the phrase "fits a model" is often synonymous with "builds a model". In this document and in the online help for Oracle Machine Learning for R functions, the phrases are used interchangeably.

The ore.glm, ore.lm, and ore.stepwise functions have the following advantages:

- The algorithms provide accurate solutions using out-of-core QR factorization. QR factorization decomposes a matrix into an orthogonal matrix and a triangular matrix.
QR is an algorithm of choice for difficult rank-deficient models.

- You can process data that does not fit into memory, that is, out-of-core data. QR factors a matrix into two matrices, one of which fits into memory while the other is stored on disk.

  The `ore.glm`, `ore.lm` and `ore.stepwise` functions can solve data sets with more than one billion rows.

- The `ore.stepwise` function allows fast implementations of forward, backward, and stepwise model selection techniques.

The `ore.neural` function has the following advantages:

- It is a highly scalable implementation of neural networks, able to build a model on even billion row data sets in a matter of minutes. The `ore.neural` function can be run in two modes: in-memory for small to medium data sets and distributed (out-of-core) for large inputs.

- You can specify the activation functions on neurons on a per-layer basis; `ore.neural` supports many different activation functions.

- You can specify a neural network topology consisting of any number of hidden layers, including none.

About the longley Data Set for Examples

Most of the linear regression and `ore.neural` examples use the longley data set, which is provided by R.

The longley data set is a small macroeconomic data set that provides a well-known example for collinear regression and consists of seven economic variables observed yearly over 16 years.

**Example 4-1    Displaying Values from the longley Data Set**

This example pushes the longley data set to a temporary database table that has the proxy `ore.frame` object `longley_of` displays the first six rows of `longley_of`.

```r
longley_of <- ore.push(longley)
head(longley_of)
```

**Listing for This Example**

R> longley_of <- ore.push(longley)
R> dim(longley_of)[1]  16  7
R> head(longley_of)

<table>
<thead>
<tr>
<th>GNPD</th>
<th>Deflator</th>
<th>GNP</th>
<th>Unemployed</th>
<th>Armed.Forces</th>
<th>Population</th>
<th>Year</th>
<th>Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>83.0</td>
<td>234.289</td>
<td>235.6</td>
<td>159.0</td>
<td>107.608</td>
<td>1947</td>
<td>60.323</td>
</tr>
<tr>
<td>1948</td>
<td>88.5</td>
<td>259.426</td>
<td>232.5</td>
<td>145.6</td>
<td>108.632</td>
<td>1948</td>
<td>61.122</td>
</tr>
<tr>
<td>1949</td>
<td>88.2</td>
<td>258.054</td>
<td>368.2</td>
<td>161.6</td>
<td>109.773</td>
<td>1949</td>
<td>60.171</td>
</tr>
<tr>
<td>1950</td>
<td>89.5</td>
<td>284.599</td>
<td>335.1</td>
<td>165.0</td>
<td>110.929</td>
<td>1950</td>
<td>61.187</td>
</tr>
<tr>
<td>1951</td>
<td>96.2</td>
<td>328.975</td>
<td>209.9</td>
<td>309.9</td>
<td>112.075</td>
<td>1951</td>
<td>63.221</td>
</tr>
<tr>
<td>1952</td>
<td>98.1</td>
<td>346.999</td>
<td>193.2</td>
<td>359.4</td>
<td>113.270</td>
<td>1952</td>
<td>63.639</td>
</tr>
</tbody>
</table>
Build Linear Regression Models

The ore.lm and ore.stepwise functions perform least squares regression and stepwise least squares regression, respectively, on data represented in an ore.frame object.

A model fit is generated using embedded R map/reduce operations where the map operation creates either QR decompositions or matrix cross-products depending on the number of coefficients being estimated. The underlying model matrices are created using either a model.matrix or sparse.model.matrix object depending on the sparsity of the model. Once the coefficients for the model have been estimated another pass of the data is made to estimate the model-level statistics.

When forward, backward, or stepwise selection is performed, the XtX and Xty matrices are subsetted to generate the F-test p-values based upon coefficient estimates that were generated using a Choleski decomposition of the XtX subset matrix.

If there are collinear terms in the model, functions ore.lm and ore.stepwise do not estimate the coefficient values for a collinear set of terms. For ore.stepwise, a collinear set of terms is excluded throughout the procedure.

For more information on ore.lm and ore.stepwise, invoke help(ore.lm).

Example 4-2 Using ore.lm

This example pushes the longley data set to a temporary database table that has the proxy ore.frame object longley_of. The example builds a linear regression model using ore.lm.

longley_of <- ore.push(longley)
# Fit full model
oreFit1 <- ore.lm(Employed ~ ., data = longley_of)
class(oreFit1)
summary(oreFit1)

Listing for This Example

R> longley_of <- ore.push(longley)
R> # Fit full model
R> oreFit1 <- ore.lm(Employed ~ ., data = longley_of)
R> class(oreFit1)
[1] "ore.lm" "ore.model" "lm"
R> summary(oreFit1)

Call:
  ore.lm(formula = Employed ~ ., data = longley_of)

Residuals:
   Min     1Q Median     3Q    Max
-0.41011 -0.15767 -0.02816  0.10155  0.45539

Coefficients:         Estimate Std. Error t value Pr(>|t|)
(Intercept)       -3.482e+03  8.904e+02  -3.911 0.003560 **
GNP.deflator       1.506e-02  8.492e-02   0.177 0.863141
GNP               -3.582e-02  3.349e-02  -1.070 0.312681
Unemployed        -2.020e-02  4.884e-03  -4.136 0.002535 **
Armed.Forces      -1.033e-02  2.143e-03  -4.822 0.000944 ***
Population        -5.110e-02  2.261e-01  -0.226 0.826212
Year              1.829e+00  4.555e-01   4.016 0.003037 **
---

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared:  0.9955,    Adjusted R-squared:  0.9925
F-statistic: 330.3 on 6 and 9 DF,  p-value: 4.984e-10

Example 4-3 Using the ore.stepwise Function

This example pushes the longley data set to a temporary database table that has the proxy ore.frame object longley_of. The example builds linear regression models using the ore.stepwise function.

longley_of <- ore.push(longley)
# Two stepwise alternatives
oreStep1 <-
o.re.stepwise(Employed ~ .^2, data = longley_of, add.p = 0.1, drop.p = 0.1)
oreStep2 <-
  step(ore.lm(Employed ~ 1, data = longley_of),
       scope = terms(Employed ~ .^2, data = longley_of))

Listing for This Example

R> longley_of <- ore.push(longley)
R> # Two stepwise alternatives
R> oreStep1 <-
+   ore.stepwise(Employed ~ .^2, data = longley_of, add.p = 0.1, drop.p = 0.1)
R> oreStep2 <-
+   step(ore.lm(Employed ~ 1, data = longley_of),
+         scope = terms(Employed ~ .^2, data = longley_of))
Start:  AIC=41.17
Employed ~ 1

Df Sum of Sq     RSS     AIC
+ GNP            1   178.973   6.036 -11.597
+ Year          1   174.552  10.457  -2.806
+ GNP.deflator  1   174.397  10.611  -2.571
+ Population    1   170.643  14.366   2.276
+ Unemployed    1    46.716 138.293  38.509
+ Armed.Forces  1    38.691 146.318  39.411
<none>                      185.009  41.165

Step:  AIC=-11.6
Employed ~ GNP

Df Sum of Sq     RSS     AIC
+ Unemployed    1     2.457   3.579 -17.960
+ Population    1     2.162   3.784 -16.691
+ Year          1     1.125   4.911 -12.898
<none>                        6.036 -11.597
+ GNP.deflator  1     0.212   5.824  -9.802
+ Armed.Forces  1     0.077   5.959  -9.802
- GNP            1   178.973 185.009  41.165
... The rest of the output is not shown.

Build a Generalized Linear Model

The ore.glm functions fits generalized linear models on data in an ore.frame object.

The function uses a Fisher scoring iteratively reweighted least squares (IRLS) algorithm. Instead of the traditional step of halving to prevent the selection of less
optimal coefficient estimates, ore.glm uses a line search to select new coefficient estimates at each iteration, starting from the current coefficient estimates and moving through the Fisher scoring suggested estimates using the formula \((1 - \alpha) \cdot \text{old} + \alpha \cdot \text{suggested}\) where \(\alpha \in [0, 2]\). When the interp control argument is TRUE, the deviance is approximated by a cubic spline interpolation. When it is FALSE, the deviance is calculated using a follow-up data scan.

Each iteration consists of two or three embedded R execution map/reduce operations: an IRLS operation, an initial line search operation, and, if interp = FALSE, an optional follow-up line search operation. As with ore.lm, the IRLS map operation creates QR decompositions when update = "qr" or cross-products when update = "crossprod" of the model.matrix, or sparse.model.matrix if argument sparse = TRUE, and the IRLS reduce operation block updates those QR decompositions or cross-product matrices. After the algorithm has either converged or reached the maximum number of iterations, a final embedded R map/reduce operation is used to generate the complete set of model-level statistics.

The ore.glm function returns an ore.glm object.

For information on the ore.glm function arguments, invoke help(ore.glm).

### Example 4-4 Using the ore.glm Function

This example loads the rpart package and then pushes the kyphosis data set to a temporary database table that has the proxy ore.frame object KYPHOSIS. The example builds a Generalized Linear Model using the ore.glm function and one using the glm function and invokes the summary function on the models.

```r
Load the rpart library to get the kyphosis and solder data sets.
library(rpart)
Logistic regression
KYPHOSIS <- ore.push(kyphosis)
kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())
kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())
summary(kyphFit1)
summary(kyphFit2)
```

**Listing for Example 4-4**

```r
R> # Load the rpart library to get the kyphosis and solder data sets.
R> library(rpart)
R> # Logistic regression
R> KYPHOSIS <- ore.push(kyphosis)
R> kyphFit1 <- ore.glm(Kyphosis ~ ., data = KYPHOSIS, family = binomial())
R> kyphFit2 <- glm(Kyphosis ~ ., data = kyphosis, family = binomial())
R> summary(kyphFit1)
R> summary(kyphFit2)
```

Call:
```
glm(formula = Kyphosis ~ ., data = KYPHOSIS, family = binomial())
```

Deviance Residuals:
```
 Min 1Q Median 3Q Max
-2.3124 -0.5484 -0.3632 -0.1659 2.1613
```

Coefficients:
```
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.036934 1.449622 -1.405 0.15998
Age 0.010930 0.006447 1.696 0.08997 .
Number 0.410601 0.224870 1.826 0.06786 .
Start -0.206510 0.067700 -3.050 0.00229 **
```

---

**Chapter 4 Build Oracle Machine Learning for R Models**

4-5
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38

Number of Fisher Scoring iterations: 4

R> summary(kyphFit2)

Call:
glm(formula = Kyphosis ~ ., family = binomial(), data = kyphosis)

Deviance Residuals:
Min       1Q   Median       3Q      Max
-2.3124  -0.5484  -0.3632  -0.1659   2.1613

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.036934   1.449575  -1.405  0.15996
Age          0.010930   0.006446   1.696  0.08996 .
Number       0.410601   0.224861   1.826  0.06785 .
Start       -0.206510   0.067699  -3.050  0.00229 **

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38

Number of Fisher Scoring iterations: 5

# Poisson regression
R> SOLDER <- ore.push(solder)
R> solFit1 <- ore.glm(skips ~ ., data = SOLDER, family = poisson())
R> solFit2 <- glm(skips ~ ., data = solder, family = poisson())
R> summary(solFit1)

Call:
ore.glm(formula = skips ~ ., data = SOLDER, family = poisson())

Deviance Residuals:
Min       1Q   Median       3Q      Max
-3.4105  -1.0897  -0.4408   0.6406   3.7927

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.25506    0.10069 -12.465  < 2e-16 ***
OpeningM     0.25851    0.06656   3.884 0.000103 ***
OpeningS     1.89349    0.05363  35.305  < 2e-16 ***
SolderThin   1.09973    0.03864  28.465  < 2e-16 ***
MaskA3       0.42819    0.07547   5.674 1.40e-08 ***
MaskB3       1.20225    0.06697  17.953  < 2e-16 ***
MaskB6       1.86648    0.06310  29.580  < 2e-16 ***
PadTypeD6   -0.36865    0.07138  -5.164 2.41e-07 ***
PadTypeD7   -0.09844    0.06620  -1.487 0.137001

---
PadTypeL4    0.26236    0.06071   4.321 1.55e-05 ***
PadTypeL6   -0.66845    0.07841  -8.525  < 2e-16 ***
PadTypeL7   -0.49021    0.07406  -6.619 3.61e-11 ***
PadTypeL8   -0.27115    0.06939  -3.907 9.33e-05 ***
PadTypeL9   -0.63645    0.07759  -8.203 2.35e-16 ***
PadTypeW4   -0.11000    0.06640  -1.657 0.097591 .
PadTypeW9   -1.43759    0.10419 -13.798  < 2e-16 ***
Panel       0.11818    0.02056   5.749 8.97e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 6855.7  on 719  degrees of freedom
Residual deviance: 1165.4  on 703  degrees of freedom
AIC: 2781.6

Number of Fisher Scoring iterations: 4

---

Build a Neural Network Model

Neural network models can be used to capture intricate nonlinear relationships between inputs and outputs or to find patterns in data.

The `ore.neural` function builds a feed-forward neural network for regression on `ore.frame` data. It supports multiple hidden layers with a specifiable number of nodes. Each layer can have one of several activation functions.

The output layer is a single numeric or binary categorical target. The output layer can have any of the activation functions. It has the linear activation function by default.

The output of `ore.neural` is an object of type `ore.neural`.

For information about the arguments to the `ore.neural` function, invoke `help(ore.neural)`. Modeling with the `ore.neural` function is well-suited for noisy and complex data such as sensor data. Problems that such data might have are the following:

- Potentially many (numeric) predictors, for example, pixel values
- The target may be discrete-valued, real-valued, or a vector of such values
- Training data may contain errors – robust to noise
- Fast scoring
- Model transparency is not required; models difficult to interpret

Typical steps in neural network modeling are the following:

1. Specifying the architecture
2. Preparing the data
3. Building the model
4. Specifying the stopping criteria: iterations, error on a validation set within tolerance
5. Viewing statistical results from model
6. Improving the model
Example 4-5  Building a Neural Network Model

This example builds a Neural Network model with default values, including a hidden size of 1. The example pushes a subset of the longley data set to an ore.frame object in database memory as the object trainData. The example then pushes a different subset of longley to the database as the object testData. The example builds the model with trainData and then predicts results using testData.

```r
trainData <- ore.push(longley[1:11, ,])
testData <- ore.push(longley[12:16, ,])
fit <- ore.neural('Employed ~ GNP + Population + Year', data = trainData)
ans <- predict(fit, newdata = testData)
ans
```

Listing for This Example

R> trainData <- ore.push(longley[1:11, ,])
R> testData <- ore.push(longley[12:16, ,])
R> fit <- ore.neural('Employed ~ GNP + Population + Year', data = trainData)
R> ans <- predict(fit, newdata = testData)
R> ans

```
pred_Employed
1 67.97452
2 69.50893
3 70.28098
4 70.86127
5 72.31066
```

Warning message:
ORE object has no unique key - using random order

Example 4-6  Using ore.neural and Specifying Activations

This example pushes the iris data set to a temporary database table that has the proxy ore.frame object IRIS. The example builds a Neural Network model using the ore.neural function and specifies a different activation function for each layer.

```r
IRIS <- ore.push(iris)
fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length,
 data = IRIS,
 hiddenSizes = c(20, 5),
 activations = c("bSigmoid", "tanh", "linear"))
ans <- predict(fit, newdata = IRIS,
 supplemental.cols = c("Petal.Length"))
options(ore.warn.order = FALSE)
head(ans, 3)
summary(ans)
```

Listing for This Example

R> IRIS <- ore.push(iris)
R> fit <- ore.neural(Petal.Length ~ Petal.Width + Sepal.Length,
R> + data = IRIS,
R> + hiddenSizes = c(20, 5),
R> + activations = c("bSigmoid", "tanh", "linear"))
R>
R> ans <- predict(fit, newdata = IRIS,
R> + supplemental.cols = c("Petal.Length"))
R> options(ore.warn.order = FALSE)
R> head(ans, 3)
R> Petal.Length pred_Petal.Length
1 1.4 1.416466
Build a Random Forest Model

The `ore.randomForest` function provides an ensemble learning technique for classification of data in an `ore.frame` object.

Function `ore.randomForest` builds a Random Forest model by growing trees in parallel on the database server. It constructs many decision trees and outputs the class that is the mode of the classes of the individual trees. The function avoids overfitting, which is a common problem for decision trees.

The Random Forest algorithm, developed by Leo Breiman and Adele Cutler, combines the ideas of bagging and the random selection of variables, which results in a collection of decision trees with controlled variance. The Random Forest algorithm provides high accuracy, but performance and scalability can be issues for large data sets.

Function `ore.randomForest` executes in parallel for model building and scoring. Parallel execution can occur whether you are using the `randomForest` package in Oracle R Distribution (ORD) or the open source `randomForest` package 4.6-10. Using `ore.randomForest` and ORD can require less memory than using `ore.randomForest` with the open source alternative. If you use the open source `randomForest` package, Oracle Machine Learning for R issues a warning.

Function `ore.randomForest` uses the global option `ore.parallel` to determine the degree of parallelism to employ. The function returns an `ore.randomForest` object.

An invocation of the scoring method `predict` on an `ore.randomForest` object also runs in parallel on the database server. The `cache.model` argument specifies whether to cache the entire Random Forest model in memory during prediction. If sufficient memory is available, use the default `cache.model` value of `TRUE` for better performance.

The `grabTree` method returns an `ore.frame` object that contains information on the specified tree. Each row of the `ore.frame` represents one node of the tree.

---

**Note:**

Function `ore.randomForest` loads a copy of the training data for each embedded R session executing in parallel. For large datasets, this can exceed the amount of available memory. Oracle recommends that you adjust the number of parallel processes and the amount of available memory accordingly. The global option `ore.parallel` specifies the number of parallel processes. For information on controlling the amount of memory used by embedded R execution processes, see Controlling Memory Used by Embedded R in *Oracle Machine Learning for R Installation and Administration Guide*. 
Example 4-7  Using ore.randomForest

# Using the iris dataset
IRIS <- ore.push(iris)
mod <- ore.randomForest(Species~., IRIS)
tree10 <- grabTree(mod, k = 10, labelVar = TRUE)
ans <- predict(mod, IRIS, type="all", supplemental.cols="Species")
table(ans$Species, ans$prediction)

# Using the infert dataset
INFERT <- ore.push(infert)
formula <- case ~ age + parity + education + spontaneous + induced
rfMod <- ore.randomForest(formula, INFERT, ntree=1000, nodesize = 2)
tree <- grabTree(rfMod, k = 500)
rfPred <- predict(rfMod, INFERT, supplemental.cols = "case")
confusion.matrix <- with(rfPred, table(case, prediction))

Listing for This Example

R> # Using the iris dataset
R> IRIS <- ore.push(iris)
R> mod <- ore.randomForest(Species~., IRIS)
R> tree10 <- grabTree(mod, k = 10, labelVar = TRUE)
R> ans <- predict(mod, IRIS, type="all", supplemental.cols="Species")
R> table(ans$Species, ans$prediction)

<table>
<thead>
<tr>
<th>setosa</th>
<th>versicolor</th>
<th>virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

# Using the infert dataset
R> INFERT <- ore.push(infert)
R> formula <- case ~ age + parity + education + spontaneous + induced
R> rfMod <- ore.randomForest(formula, INFERT, ntree=1000, nodesize = 2)
R> tree <- grabTree(rfMod, k = 500)
R> rfPred <- predict(rfMod, INFERT, supplemental.cols = "case")
R> confusion.matrix <- with(rfPred, table(case, prediction))
R> confusion.matrix

<table>
<thead>
<tr>
<th>prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Build Oracle Machine Learning for SQL Models

Use the functions in the OREdm package of Oracle Machine Learning for R to build Oracle Machine Learning for SQL models in R.

These functions are described in the following topics:

About Building OML4SQL Models using OML4R

Oracle Machine Learning for SQL functions can process tables, views, star schemas, transactional data, and unstructured data.

These OREdm package functions provide R interfaces that use arguments that conform to typical R usage for corresponding predictive analytics and OML4SQL functions.

This section has the following topics:

OML4SQL Models Supported by OML4R

The functions in the OREdm package provide access to the Oracle Machine Learning for SQL in-database machine learning functionality of Oracle Database. You use these functions to build OML4SQL models in the database.

The following table lists the OML4R functions that build OML4SQL models and the corresponding OML4SQL algorithms and functions.

Table 4-2  Oracle Machine Learning for R Model Functions

<table>
<thead>
<tr>
<th>OML4R Function</th>
<th>OML4SQL Algorithm</th>
<th>OML4SQL Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.odmAI</td>
<td>Minimum Description Length</td>
<td>Attribute importance for classification or regression</td>
</tr>
<tr>
<td>ore.odmAssocRules</td>
<td>Apriori</td>
<td>Association rules</td>
</tr>
<tr>
<td>ore.odmDT</td>
<td>Decision Tree</td>
<td>Classification</td>
</tr>
<tr>
<td>ore.odmEM</td>
<td>Expectation Maximization</td>
<td>Clustering</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ore.odmESA</td>
<td>Explicit Semantic Analysis</td>
<td>Feature extraction</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ore.odmGLM</td>
<td>Generalized Linear Models</td>
<td>Classification and regression</td>
</tr>
<tr>
<td>ore.odmKMeans</td>
<td>$k$-Means</td>
<td>Clustering</td>
</tr>
<tr>
<td>ore.odmNB</td>
<td>Naive Bayes</td>
<td>Classification</td>
</tr>
<tr>
<td>ore.odmNMF</td>
<td>Non-Negative Matrix Factorization</td>
<td>Feature extraction</td>
</tr>
<tr>
<td>ore.odmOC</td>
<td>Orthogonal Partitioning Cluster (O-Cluster)</td>
<td>Clustering</td>
</tr>
<tr>
<td>ore.odmRALg</td>
<td>Extensible R Algorithm</td>
<td>Association rules, attribute importance, classification, clustering, feature extraction, and regression</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ore.odmSVD</td>
<td>Singular Value Decomposition</td>
<td>Feature extraction</td>
</tr>
<tr>
<td>(12.2 feature)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About OML4SQL Models Built by OML4R Functions

In each `OREdm` R model object, the slot name (or `fit.name`) is the name of the underlying OML4SQL model generated by the `OREdm` function.

While the R model exists, the OML4SQL model name can be used to access the OML4SQL model through other interfaces, including:

- Oracle Data Miner
- Any SQL interface, such as SQL*Plus or SQL Developer

In particular, the models can be used with the OML4SQL prediction functions.

With Oracle Data Miner you can do the following:

- Get a list of available models
- Use model viewers to inspect model details
- Score appropriately transformed data

**Note:**

Any transformations performed in the R space are not carried over into Oracle Data Miner or SQL scoring.

Users can also get a list of models using SQL for inspecting model details or for scoring appropriately transformed data.

By default, models built using `OREdm` functions are transient objects; they do not persist past the R session in which they were built unless they are explicitly saved in an OML4R datastore. OML4SQL models built using Data Miner or SQL, on the other hand, exist until they are explicitly dropped.

Model objects can be saved or persisted. Saving a model object generated by an `OREdm` function allows it to exist across R sessions and keeps the corresponding OML4SQL object in place. While the `OREdm` model exists, you can export and import it; then you can use it apart from the OML4R R object existence.

You can use the `MODEL_NAME` parameter in `odm.settings` to explicitly name an OML4SQL object created in the database. The named OML4SQL model object persists in the database just like those created using Oracle Data Miner or SQL.

**Related Topics**

- **Save and Manage R Objects in the Database**
  Oracle Machine Learning for R provides datastores that you can use to save OML4R proxy objects, as well as any R object, in an Oracle database.
Specify Model Settings

Functions in the OREdm package have an argument that specifies settings for an Oracle Machine Learning for SQL model and some have an argument for setting text processing parameters.

General Parameter Settings

With the `odm.settings` argument to an OREdm function, you can specify a list of OML4SQL parameter settings. Each list element's name and value refer to the parameter setting name and value, respectively. The setting value must be numeric or string. Refer to Specify Model Settings in Oracle Machine Learning for SQL User's Guide for each algorithm's valid settings.

The `settings` function returns a `data.frame` that lists each OML4SQL parameter setting name and value pair used to build the model.

Text Processing Attribute Settings

Some OREdm functions have a `ctx.settings` argument that specifies text processing attribute settings with which you can specify Oracle Text attribute-specific settings. With the `odm.settings` argument, you can specify the Oracle text policy, the minimal number of documents in which each token occurs, and the maximum number of distinct features for text processing. With the `ctx.settings` argument, you specify the columns that should be treated as text and the type of text transformation to apply.

The `ctx.settings` argument applies to the following functions:

- `ore.odmESA`, Explicit Semantic Analysis
- `ore.odmGLM`, Generalized Linear Models
- `ore.odmKMeans`, k-Means
- `ore.odmNMF`, Non-Negative Matrix Factorization
- `ore.odmSVD`, Singular Value Decomposition
- `ore.odmSVM`, Support Vector Machine

**Note:**

To create an Oracle Text policy, the user must have the `CTXSYS.CTX_DDL` privilege.

**See Also:**

Build an Association Rules Model

The `ore.odmAssocRules` function implements the Apriori algorithm to find frequent itemsets and generate an association model.

The function finds the co-occurrence of items in large volumes of transactional data such as in market basket analysis. An association rule identifies a pattern in the data in which the appearance of a set of items in a transactional record implies another set of items. The groups of items used to form rules must pass a minimum threshold according to how frequently they occur (the support of the rule) and how often the consequent follows the antecedent (the confidence of the rule). Association models generate all rules that have support and confidence greater than user-specified thresholds. The Apriori algorithm is efficient, and scales well with respect to the number of transactions, number of items, and number of itemsets and rules produced.

The formula specification has the form `~ terms`, where `terms` is a series of column names to include in the analysis. Multiple column names are specified using `+` between column names. Use `~ .` if all columns in the data should be used for model building. To exclude columns, use `-` before each column name to exclude. Functions can be applied to the items in `terms` to realize transformations.

The `ore.odmAssocRules` function accepts data in the following forms:

- Transactional data
- Multi-record case data using item id and item value
- Relational data

For examples of specifying the forms of data and for information on the arguments of the function, invoke `help(ore.odmAssocRules)`.

The function `rules` returns an object of class `ore.rules`, which specifies a set of association rules. You can pull an `ore.rules` object into memory in a local R session by using `ore.pull`. The local in-memory object is of class `rules` defined in the `arules` package. See `help(ore.rules)`.

The function `itemsets` returns an object of class `ore.itemsets`, which specifies a set of itemsets. You can pull an `ore.itemsets` object into memory in a local R session by using `ore.pull`. The local in-memory object is of class `itemsets` defined in the `arules` package. See `help(ore.itemsets)`.

Example 4-8  Using the `ore.odmAssocRules` Function

This example builds an association model on a transactional data set. The packages `arules` and `arulesViz` are required to pull the resulting rules and itemsets into the client R session memory and be visualized. The graph of the rules appears in the figure following the example.

```r
Load the arules and arulesViz packages.
library(arules)
library(arulesViz)
Create some transactional data.
id <- c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
item <- c("b", "d", "e", "a", "b", "c", "e", "b", "c", "d", "e")
Push the data to the database as an ore.frame object.
transdata_of <- ore.push(data.frame(ID = id, ITEM = item))
Build a model with specifications.
```

---

**ORACLE**

4-14
ar.mod1 <- ore.odmAssocRules(~., transdata_of, case.id.column = "ID",
    item.id.column = "ITEM", min.support = 0.6, min.confidence = 0.6,
    max.rule.length = 3)

# Generate itemsets and rules of the model.
itemsets <- itemsets(ar.mod1)
rules <- rules(ar.mod1)

# Convert the rules to the rules object in arules package.
rules.arules <- ore.pull(rules)
inspect(rules.arules)

# Convert itemsets to the itemsets object in arules package.
itemsets.arules <- ore.pull(itemsets)
inspect(itemsets.arules)

# Plot the rules graph.
plot(rules.arules, method = "graph", interactive = TRUE)

Listing for This Example

R> # Load the arules and arulesViz packages.
R> library(arules)
R> library(arulesViz)
R> # Create some transactional data.
R> id <- c(1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)
R> item <- c("b", "d", "e", "a", "b", "c", "e", "b", "c", "d", "e")
R> # Push the data to the database as an ore.frame object.
R> transdata_of <- ore.push(data.frame(ID = id, ITEM = item))
R> # Build a model with specifications.
R> ar.mod1 <- ore.odmAssocRules(~., transdata_of, case.id.column = "ID",
    + item.id.column = "ITEM", min.support = 0.6, min.confidence = 0.6,
    + max.rule.length = 3)
R> # Generate itemsets and rules of the model.
R> itemsets <- itemsets(ar.mod1)
R> rules <- rules(ar.mod1)
R> # Convert the rules to the rules object in arules package.
R> rules.arules <- ore.pull(rules)
R> inspect(rules.arules)

lhs    rhs   support confidence lift
1  {b} => {e} 1.0000000  1.0000000    1
2  {e} => {b} 1.0000000  1.0000000    1
3  {c} => {e} 0.6666667  1.0000000    1
4  {d, e} => {b} 0.6666667  1.0000000    1
5  {c, e} => {b} 0.6666667  1.0000000    1
6  {b, d} => {e} 0.6666667  1.0000000    1
7  {b, c} => {e} 0.6666667  1.0000000    1
8  {d} => {b} 0.6666667  1.0000000    1
9  {d} => {e} 0.6666667  1.0000000    1
10 {c} => {b} 0.6666667  1.0000000    1
11 {b} => {d} 0.6666667  0.6666667    1
12 {b} => {c} 0.6666667  0.6666667    1
13 {e} => {d} 0.6666667  0.6666667    1
14 {e} => {c} 0.6666667  0.6666667    1
15 {b, e} => {d} 0.6666667  0.6666667    1
16 {b, e} => {c} 0.6666667  0.6666667    1
R> # Convert itemsets to the itemsets object in arules package.
R> itemsets.arules <- ore.pull(itemsets)
R> inspect(itemsets.arules)
<table>
<thead>
<tr>
<th>items</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {b}</td>
<td>1.0000000</td>
</tr>
<tr>
<td>2 {e}</td>
<td>1.0000000</td>
</tr>
<tr>
<td>3 {b, e}</td>
<td>1.0000000</td>
</tr>
<tr>
<td>4 {c}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>5 {d}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>6 {b, c}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>7 {b, d}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>8 {c, e}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>9 {d, e}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>10 {b, c, e}</td>
<td>0.6666667</td>
</tr>
<tr>
<td>11 {b, d, e}</td>
<td>0.6666667</td>
</tr>
</tbody>
</table>

R> # Plot the rules graph.
R> plot(rules.arules, method = "graph", interactive = TRUE)
Figure 4-1  A Visual Demonstration of the Association Rules

Build an Attribute Importance Model

Attribute importance ranks attributes according to their significance in predicting a target.

The `ore.odmAI` function uses the OML4SQL Minimum Description Length algorithm to calculate attribute importance. Minimum Description Length (MDL) is an information theoretic model selection principle. It is an important concept in information theory (the study of the quantification of information) and in learning theory (the study of the capacity for generalization based on empirical data).

MDL assumes that the simplest, most compact representation of the data is the best and most probable explanation of the data. The MDL principle is used to build OML4SQL attribute importance models.

Attribute importance models built using OML4SQL cannot be applied to new data.

The `ore.odmAI` function produces a ranking of attributes and their importance values.
Note:
OREdm attribute importance models differ from OML4SQL attribute importance models in these ways: a model object is not retained, and an R model object is not returned. Only the importance ranking created by the model is returned.

For information on the ore.odmAI function arguments, invoke help(ore.odmAI).

Example 4-9 Using the ore.odmAI Function

This example pushes the data.frame iris to the database as the ore.frame iris_of. The example then builds an attribute importance model.

iris_of <- ore.push(iris)
ore.odmAI(Species ~ ., iris_of)

Listing for This Example

R> iris_of <- ore.push(iris)
R> ore.odmAI(Species ~ ., iris_of)

Call:
ore.odmAI(formula = Species ~ ., data = iris_of)

Importance:
   importance rank
Petal.Width  1.1701851    1
Petal.Length  1.1494402    2
Sepal.Length  0.5248815    3
Sepal.Width  0.2504077    4

Build a Decision Tree Model

The ore.odmDT function uses the OML4SQL Decision Tree algorithm, which is based on conditional probabilities.

Decision Tree models are classification models. Decision trees generate rules. A rule is a conditional statement that can easily be understood by humans and be used within a database to identify a set of records.

A decision tree predicts a target value by asking a sequence of questions. At a given stage in the sequence, the question that is asked depends upon the answers to the previous questions. The goal is to ask questions that, taken together, uniquely identify specific target values. Graphically, this process forms a tree structure.

During the training process, the Decision Tree algorithm must repeatedly find the most efficient way to split a set of cases (records) into two child nodes. The ore.odmDT function offers two homogeneity metrics, gini and entropy, for calculating the splits. The default metric is gini.

For information on the ore.odmDT function arguments, invoke help(ore.odmDT).
Example 4-10  Using the ore.odmDT Function

This example creates an input ore.frame, builds a model, makes predictions, and generates a confusion matrix.

```r
m <- mtcars
m$gear <- as.factor(m$gear)
m$cyl <- as.factor(m$cyl)
m$vs <- as.factor(m$vs)
m>ID <- 1:nrow(m)
mtcars_of <- ore.push(m)
row.names(mtcars_of) <- mtcars_of
Build the model.
dt.mod <- ore.odmDT(gear ~ ., mtcars_of)
summary(dt.mod)
Make predictions and generate a confusion matrix.
dt.res <- predict (dt.mod, mtcars_of, "gear")
with(dt.res, table(gear, PREDICTION))
```

Listing for This Example

```r
R> m <- mtcars
R> m$gear <- as.factor(m$gear)
R> m$cyl <- as.factor(m$cyl)
R> m$vs <- as.factor(m$vs)
R> m-ID <- 1:nrow(m)
R> mtcars_of <- ore.push(m)
R> row.names(mtcars_of) <- mtcars_of
R> # Build the model.
R> dt.mod <- ore.odmDT(gear ~ ., mtcars_of)
R> summary(dt.mod)

Call:
ore.odmDT(formula = gear ~ ., data = mtcars_of)

n = 32

Nodes:

<table>
<thead>
<tr>
<th>parent node.id</th>
<th>row.count</th>
<th>prediction</th>
<th>split</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

surrogate full.splits

1 <NA> <NA>
2 {cyl in ("4" "6")} (disp <= 196.299999999999995)
3 (cyl in ("8")} (disp > 196.299999999999995)

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>prep.auto</td>
</tr>
<tr>
<td>impurity.metric</td>
</tr>
<tr>
<td>term.max.depth</td>
</tr>
<tr>
<td>term.minpct.node</td>
</tr>
<tr>
<td>term.minpct.split</td>
</tr>
<tr>
<td>term.minrec.node</td>
</tr>
<tr>
<td>term.minrec.split</td>
</tr>
</tbody>
</table>
R> # Make predictions and generate a confusion matrix.
R> dt.res <- predict (dt.mod, mtcars_of, "gear")
R> with(dt.res, table(gear, PREDICTION))

PREDICTION

| gear | 3 | 4 |
```
Build an Expectation Maximization Model

The `ore.odmEM` function creates a model that uses the OML4SQL Expectation Maximization (EM) algorithm.

EM is a density estimation algorithm that performs probabilistic clustering. In density estimation, the goal is to construct a density function that captures how a given population is distributed. The density estimate is based on observed data that represents a sample of the population.

For information on the `ore.odmEM` function arguments, invoke `help(ore.odmEM)`.

**Example 4-11 Using the ore.odmEM Function**

```r
Synthetic 2-dimensional data set
set.seed(7654)

x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")

X <- ore.push (data.frame(ID=1:100,x))
rownames(X) <- X$ID

em.mod <- NULL
em.mod <- ore.odmEM(~., X, num.centers = 2L)

summary(em.mod)
rules(em.mod)
clusterhists(em.mod)
histogram(em.mod)

em.res <- predict(em.mod, X, type="class", supplemental.cols=c("x", "y"))
head(em.res)
em.res.local <- ore.pull(em.res)
plot(data.frame(x=em.res.local$x, y=em.res.local$y),
 col=em.res.local$CLUSTER_ID)
points(em.mod$centers2, col = rownames(em.mod$centers2), pch=8, cex=2)

head(predict(em.mod,X))
head(predict(em.mod,X,type=c("class","raw")))
head(predict(em.mod,X,type=c("class","raw"),supplemental.cols=c("x","y")))
head(predict(em.mod,X,type="raw",supplemental.cols=c("x","y")))
```

**Listing for This Example**

```r
R> ## Synthetic 2-dimensional data set
R>
R> set.seed(7654)
```
R> x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
+             matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R>
R> X <- ore.push (data.frame(ID=1:100,x))
R> rownames(X) <- X
R>
R> em.mod <- NULL
R> em.mod <- ore.odmEM(~., X, num.centers = 2L)
R>
R> summary(em.mod)

Call:
ore.odmEM(formula = ~., data = X, num.centers = 2L)

Settings:

```r
value
clus.num.clusters 2
cluster.components cluster.comp.enable
cluster.statistics clus.stats.enable
cluster.thresh 2
linkage.function linkage.single
loglike.improvement .001
max.num.attr.2d 50
min.pct.attr.support .1
model.search model.search.disable
num.components 20
num.distribution num.distr.system
num.equiwidth.bins 11
num.iterations 100
num.projections 50
random.seed 0
remove.components remove.comps.enable
odms.missing.value.treatment odms.missing.value.auto
odms.sampling odms.sampling.disable
prep.auto ON
```

Centers:

```r
 MEAN.ID MEAN.x MEAN.y
1 25.5 4.03 3.96
2 75.5 1.93 1.99
```

R> rules(em.mod)

```r
cluster.id rhs.support rhs.conf lhr.support lhs.conf lhs.var
lhs.var.support l lhs.var.conf
predicate
1 1 1 100 1.0 100 1.00 ID
100 0.0000 ID <= 100
2 1 100 1.0 100 1.00 ID
100 0.0000 ID >= 1
3 1 100 1.0 100 1.00 x
100 0.2500 x <= 4.6298
4 1 100 1.0 100 1.00 x
100 0.2500 x >= 1.3987
5 1 100 1.0 100 1.00 y
```

Chapter 4

Build Oracle Machine Learning for SQL Models
### Chapter 4

Build Oracle Machine Learning for SQL Models

```r
R> clusterhists(em.mod)
```

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>variable</th>
<th>bin.id</th>
<th>lower.bound</th>
<th>upper.bound</th>
<th>label</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ID</td>
<td>1</td>
<td>1.00</td>
<td>10.90</td>
<td>1:10.9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>ID</td>
<td>2</td>
<td>10.90</td>
<td>20.80</td>
<td>10.9:20.8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>ID</td>
<td>3</td>
<td>20.80</td>
<td>30.70</td>
<td>20.8:30.7</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>ID</td>
<td>4</td>
<td>30.70</td>
<td>40.60</td>
<td>30.7:40.6</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>ID</td>
<td>5</td>
<td>40.60</td>
<td>50.50</td>
<td>40.6:50.5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>ID</td>
<td>6</td>
<td>50.50</td>
<td>60.40</td>
<td>50.5:60.4</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>ID</td>
<td>7</td>
<td>60.40</td>
<td>70.30</td>
<td>60.4:70.3</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>ID</td>
<td>8</td>
<td>70.30</td>
<td>80.20</td>
<td>70.3:80.2</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>ID</td>
<td>9</td>
<td>80.20</td>
<td>90.10</td>
<td>80.2:90.1</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>ID</td>
<td>10</td>
<td>90.10</td>
<td>100.00</td>
<td>90.1:100.0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>ID</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td>1</td>
<td>1.40</td>
<td>1.72</td>
<td>1.399:1.722</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>x</td>
<td>2</td>
<td>1.72</td>
<td>2.04</td>
<td>1.722:2.045</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>x</td>
<td>3</td>
<td>2.04</td>
<td>2.37</td>
<td>2.045:2.368</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>x</td>
<td>4</td>
<td>2.37</td>
<td>2.69</td>
<td>2.368:2.691</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>x</td>
<td>5</td>
<td>2.69</td>
<td>3.01</td>
<td>2.691:3.014</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>x</td>
<td>6</td>
<td>3.01</td>
<td>3.34</td>
<td>3.014:3.337</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>x</td>
<td>7</td>
<td>3.34</td>
<td>3.66</td>
<td>3.337:3.66</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>x</td>
<td>8</td>
<td>3.66</td>
<td>3.98</td>
<td>3.66:3.984</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>x</td>
<td>9</td>
<td>3.98</td>
<td>4.31</td>
<td>3.984:4.307</td>
<td>22</td>
</tr>
<tr>
<td>21</td>
<td>x</td>
<td>10</td>
<td>4.31</td>
<td>4.63</td>
<td>4.307:4.63</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>x</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>:</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>y</td>
<td>1</td>
<td>1.35</td>
<td>1.68</td>
<td>1.355:1.678</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>y</td>
<td>2</td>
<td>1.68</td>
<td>2.00</td>
<td>1.678:2.001</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>y</td>
<td>3</td>
<td>2.00</td>
<td>2.32</td>
<td>2.001:2.324</td>
<td>18</td>
</tr>
<tr>
<td>26</td>
<td>y</td>
<td>4</td>
<td>2.32</td>
<td>2.65</td>
<td>2.324:2.647</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>y</td>
<td>5</td>
<td>2.65</td>
<td>2.97</td>
<td>2.647:2.97</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>y</td>
<td>6</td>
<td>2.97</td>
<td>3.29</td>
<td>2.97:3.293</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>y</td>
<td>7</td>
<td>3.29</td>
<td>3.62</td>
<td>3.293:3.616</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>y</td>
<td>8</td>
<td>3.62</td>
<td>3.94</td>
<td>3.616:3.939</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>y</td>
<td>9</td>
<td>3.94</td>
<td>4.26</td>
<td>3.939:4.262</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>y</td>
<td>10</td>
<td>4.26</td>
<td>4.58</td>
<td>4.262:4.585</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>y</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>ID</td>
<td>1</td>
<td>1.00</td>
<td>10.90</td>
<td>1:10.9</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>ID</td>
<td>2</td>
<td>10.90</td>
<td>20.80</td>
<td>10.9:20.8</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>ID</td>
<td>3</td>
<td>20.80</td>
<td>30.70</td>
<td>20.8:30.7</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>ID</td>
<td>4</td>
<td>30.70</td>
<td>40.60</td>
<td>30.7:40.6</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>ID</td>
<td>5</td>
<td>40.60</td>
<td>50.50</td>
<td>40.6:50.5</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>ID</td>
<td>6</td>
<td>50.50</td>
<td>60.40</td>
<td>50.5:60.4</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>ID</td>
<td>7</td>
<td>60.40</td>
<td>70.30</td>
<td>60.4:70.3</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>ID</td>
<td>8</td>
<td>70.30</td>
<td>80.20</td>
<td>70.3:80.2</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>ID</td>
<td>9</td>
<td>80.20</td>
<td>90.10</td>
<td>80.2:90.1</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>ID</td>
<td>10</td>
<td>90.10</td>
<td>100.00</td>
<td>90.1:100</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>ID</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>x</td>
<td>1</td>
<td>1.40</td>
<td>1.72</td>
<td>1.399:1.722</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>x</td>
<td>2</td>
<td>1.72</td>
<td>2.04</td>
<td>1.722:2.045</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>x</td>
<td>3</td>
<td>2.04</td>
<td>2.37</td>
<td>2.045:2.368</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>x</td>
<td>4</td>
<td>2.37</td>
<td>2.69</td>
<td>2.368:2.691</td>
</tr>
<tr>
<td>49</td>
<td>2</td>
<td>x</td>
<td>5</td>
<td>2.69</td>
<td>3.01</td>
<td>2.691:3.014</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>x</td>
<td>6</td>
<td>3.01</td>
<td>3.34</td>
<td>3.014:3.337</td>
</tr>
<tr>
<td>51</td>
<td>2</td>
<td>x</td>
<td>7</td>
<td>3.34</td>
<td>3.66</td>
<td>3.337:3.666</td>
</tr>
<tr>
<td>52</td>
<td>2</td>
<td>x</td>
<td>8</td>
<td>3.66</td>
<td>3.98</td>
<td>3.666:3.984</td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>x</td>
<td>9</td>
<td>3.98</td>
<td>4.31</td>
<td>3.984:4.307</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>x</td>
<td>10</td>
<td>4.31</td>
<td>4.63</td>
<td>4.307:4.636</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>x</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>y</td>
<td>1</td>
<td>1.35</td>
<td>1.68</td>
<td>1.355:1.678</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>y</td>
<td>2</td>
<td>1.68</td>
<td>2.00</td>
<td>1.678:2.001</td>
</tr>
<tr>
<td>58</td>
<td>2</td>
<td>y</td>
<td>3</td>
<td>2.00</td>
<td>2.32</td>
<td>2.001:2.324</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>y</td>
<td>4</td>
<td>2.32</td>
<td>2.65</td>
<td>2.324:2.647</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>y</td>
<td>5</td>
<td>2.65</td>
<td>2.97</td>
<td>2.647:2.970</td>
</tr>
<tr>
<td>61</td>
<td>2</td>
<td>y</td>
<td>6</td>
<td>2.97</td>
<td>3.29</td>
<td>2.97:3.293</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>y</td>
<td>7</td>
<td>3.29</td>
<td>3.62</td>
<td>3.293:3.616</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>y</td>
<td>8</td>
<td>3.62</td>
<td>3.94</td>
<td>3.616:3.939</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>y</td>
<td>9</td>
<td>3.94</td>
<td>4.26</td>
<td>3.939:4.262</td>
</tr>
<tr>
<td>65</td>
<td>2</td>
<td>y</td>
<td>10</td>
<td>4.26</td>
<td>4.58</td>
<td>4.262:4.585</td>
</tr>
<tr>
<td>66</td>
<td>2</td>
<td>y</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>67</td>
<td>3</td>
<td>ID</td>
<td>1</td>
<td>1.00</td>
<td>10.90</td>
<td>1:10.9</td>
</tr>
<tr>
<td>68</td>
<td>3</td>
<td>ID</td>
<td>2</td>
<td>10.90</td>
<td>20.80</td>
<td>10.9:20.8</td>
</tr>
<tr>
<td>69</td>
<td>3</td>
<td>ID</td>
<td>3</td>
<td>20.80</td>
<td>30.70</td>
<td>20.8:30.7</td>
</tr>
<tr>
<td>70</td>
<td>3</td>
<td>ID</td>
<td>4</td>
<td>30.70</td>
<td>40.60</td>
<td>30.7:40.6</td>
</tr>
<tr>
<td>71</td>
<td>3</td>
<td>ID</td>
<td>5</td>
<td>40.60</td>
<td>50.50</td>
<td>40.6:50.5</td>
</tr>
<tr>
<td>72</td>
<td>3</td>
<td>ID</td>
<td>6</td>
<td>50.50</td>
<td>60.40</td>
<td>50.5:60.4</td>
</tr>
<tr>
<td>73</td>
<td>3</td>
<td>ID</td>
<td>7</td>
<td>60.40</td>
<td>70.30</td>
<td>60.4:70.3</td>
</tr>
<tr>
<td>74</td>
<td>3</td>
<td>ID</td>
<td>8</td>
<td>70.30</td>
<td>80.20</td>
<td>70.3:80.2</td>
</tr>
<tr>
<td>75</td>
<td>3</td>
<td>ID</td>
<td>9</td>
<td>80.20</td>
<td>90.10</td>
<td>80.2:90.1</td>
</tr>
<tr>
<td>76</td>
<td>3</td>
<td>ID</td>
<td>10</td>
<td>90.10</td>
<td>100.00</td>
<td>90.1:100</td>
</tr>
<tr>
<td>77</td>
<td>3</td>
<td>ID</td>
<td>11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>x</td>
<td>1</td>
<td>1.40</td>
<td>1.72</td>
<td>1.399:1.722</td>
</tr>
<tr>
<td>79</td>
<td>3</td>
<td>x</td>
<td>2</td>
<td>1.72</td>
<td>2.04</td>
<td>1.722:2.045</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>x</td>
<td>3</td>
<td>2.04</td>
<td>2.37</td>
<td>2.045:2.368</td>
</tr>
<tr>
<td>81</td>
<td>3</td>
<td>x</td>
<td>4</td>
<td>2.37</td>
<td>2.69</td>
<td>2.368:2.691</td>
</tr>
</tbody>
</table>
Chapter 4
Build Oracle Machine Learning for SQL Models

82  3  x  5  2.69  3.01  2.691:3.014  0
83  3  x  6  3.01  3.34  3.014:3.337  0
84  3  x  7  3.34  3.66  3.337:3.666  0
85  3  x  8  3.66  3.98  3.666:3.894  0
86  3  x  9  3.98  4.31  3.984:4.307  0
87  3  x 10  4.31  4.63  4.307:4.630  0
88  3  x 11 NA NA : 0
89  3  y  1  1.35  1.68  1.355:1.678  7
90  3  y  2  1.68  2.00  2.001:2.000  18
91  3  y  3  2.00  2.32  2.001:2.324  18
92  3  y  4  2.32  2.65  2.324:2.647  6
93  3  y  5  2.65  2.97  2.647:2.971  1
94  3  y  6  2.97  3.29  3.293:3.290  0
95  3  y  7  3.29  3.62  3.293:3.616  0
96  3  y  8  3.62  3.94  3.616:3.939  0
97  3  y  9  3.94  4.26  3.939:4.262  0
98  3  y 10  4.26  4.58  4.262:4.585  0
99  3  y 11 NA NA : 0
R> histogram(em.mod)
R>
R> em.res <- predict(em.mod, X, type="class", supplemental.cols=c("x", "y"))
R> head(em.res)
   x    y CLUSTER_ID
1 4.15 3.63          2
2 3.88 4.13          2
3 3.72 4.10          2
4 3.78 4.14          2
5 4.22 4.35          2
6 4.07 3.62          2
R> em.res.local <- ore.pull(em.res)
R> plot(data.frame(x=em.res.local$x, y=em.res.local$y),
       col=em.res.local$CLUSTER_ID)
R> points(em.mod$centers2, col = rownames(em.mod$centers2), pch=8,
         cex=2)
R>
R> head(predict(em.mod,X))
   '2'      '3' CLUSTER_ID
1 1 1.14e-54          2
2 1 1.63e-55          2
3 1 1.10e-51          2
4 1 1.53e-52          2
5 1 9.02e-62          2
6 1 3.20e-49          2
R> head(predict(em.mod,X,type=c("class","raw")))
   '2'      '3' CLUSTER_ID
1 1 1.14e-54          2
2 1 1.63e-55          2
3 1 1.10e-51          2
4 1 1.53e-52          2
5 1 9.02e-62          2
6 1 3.20e-49          2
R>
head(predict(em.mod,X,type=c("class","raw"),supplemental.cols=c("x","y")))
Build an Explicit Semantic Analysis Model

The ore.odmESA function creates a model that uses the OML4SQL Explicit Semantic Analysis (ESA) algorithm.

ESA is an unsupervised algorithm used by OML4SQL for feature extraction. ESA does not discover latent features but instead uses explicit features based on an existing knowledge base.

Explicit knowledge often exists in text form. Multiple knowledge bases are available as collections of text documents. These knowledge bases can be generic, for example, Wikipedia, or domain-specific. Data preparation transforms the text into vectors that capture attribute-concept associations.

For information on the ore.odmESA function arguments, invoke help(ore.odmESA).

Example 4-12  Using the ore.odmESA Function

title <- c('Aids in Africa: Planning for a long war',
    'Mars rover maneuvers for rim shot',
    'Mars express confirms presence of water at Mars south pole',
    'NASA announces major Mars rover finding',
    'Drug access, Asia threat in focus at AIDS summit',
    'NASA Mars Odyssey THEMIS image: typical crater',
    'Road blocks for Aids')

# TEXT contents in character column
df <- data.frame(CUST_ID = seq(length(title)), TITLE = title)
ESA_TEXT <- ore.push(df)

# TEXT contents in clob column
attr(df$TITLE, "ora.type") <- "clob"
ESA_TEXT_CLOB <- ore.push(df)

# Create text policy (CTXSYS.CTX_DDL privilege is required)
ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")

# Specify TEXT POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and # ESA algorithm settings in odm.settings
esa.mod <- ore.odmESA(~ TITLE, data = ESA_TEXT_CLOB, 
  odm.settings = list(case_id_column_name = "CUST_ID", 
    ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL", 
    ODMS_TEXT_MINDOCUMENTS = 1, 
    ODMS_TEXT_MAXFEATURES = 3, 
    ESAS_MINITEMS = 1, 
    ESAS_VALUE_THRESHOLD = 0.0001, 
    ESAS_TOPNFEATURES = 3))

class(esa.mod)
summary(esa.mod)
settings(esa.mod)
features(esa.mod)
predict(esa.mod, ESA_TEXT, type = "class", supplemental.cols = "TITLE")

# Use ctx.settings to specify a character column as TEXT and 
# the same settings as above as well as TOKEN_TYPE
esa.mod2 <- ore.odmESA(~ TITLE, data = ESA_TEXT, 
  odm.settings = list(case_id_column_name = "CUST_ID", ESAS_MINITEMS = 1),
  ctx.settings = list(TITLE = "TEXT(POLICY_NAME:ESA_TXTPOL)(TOKEN_TYPE:STEM)(MIN_DOCUMENTS:1)(MAX_FEATURES:3)"))
summary(esa.mod2)
settings(esa.mod2)
features(esa.mod2)
predict(esa.mod2, ESA_TEXT_CLOB, type = "class", supplemental.cols = "TITLE")

ore.exec("Begin ctx_ddl.drop_policy('ESA_TXTPOL'); End;")

Listing for This Example

R> title <- c('Aids in Africa: Planning for a long war',
  + 'Mars rover maneuvers for rim shot',
  + 'Mars express confirms presence of water at Mars south pole',
  + 'NASA announces major Mars rover finding',
  + 'Drug access, Asia threat in focus at AIDS summit',
  + 'NASA Mars Odyssey THEMIS image: typical crater',
  + 'Road blocks for Aids')
R>
R> # TEXT contents in character column
R> df <- data.frame(CUST_ID = seq(length(title)), TITLE = title)
R> ESA_TEXT <- ore.push(df)
R>
R> # TEXT contents in clob column
R> attr(df$TITLE, "ora.type") <- "clob"
R> ESA_TEXT_CLOB <- ore.push(df)
R>
R> # Create a text policy (CTXSYS_CTX_DDL privilege is required)
R> ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")
R>
R> # Specify TEXT POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and
R> # ESA algorithm settings in odm.settings
R> esa.mod <- ore.odmESA(~ TITLE, data = ESA_TEXT_CLOB, 
+  odm.settings = list(case_id_column_name = "CUST_ID", 
+                      ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL", 
+                      ODMS_TEXT_MIN_DOCUMENTS = 1, 
+                      ODMS_TEXT_MAX_FEATURES = 3, 
+                      ESAS_MIN_ITEMS = 1, 
+                      ESAS_VALUE_THRESHOLD = 0.0001, 
+                      ESAS_TOPN_FEATURES = 3))
R> class(esa.mod)
[1] "ore.odmESA" "ore.model"
R> summary(esa.mod)

Call:
  ore.odmESA(formula = ~TITLE, data = ESA_TEXT_CLOB, odm.settings = 
  list(case_id_column_name = "CUST_ID", 
       ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL", ODMS_TEXT_MIN_DOCUMENTS = 1, 
       ODMS_TEXT_MAX_FEATURES = 3, ESAS_MIN_ITEMS = 1, ESAS_VALUE_THRESHOLD = 
       1e-04, 
       ESAS_TOPN_FEATURES = 3))

Settings:

<table>
<thead>
<tr>
<th>SETTING_NAME</th>
<th>SETTING_VALUE</th>
<th>SETTING_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min.items</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>topn.features</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>value.threshold</td>
<td>1e-04</td>
<td></td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.disable</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>odms.text.max.features</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>odms.text.min.documents</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>odms.text.policy.name</td>
<td>ESA_TXTPOL</td>
<td></td>
</tr>
<tr>
<td>prep.auto</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TITLE.AIDS</td>
<td>&lt;NA&gt;</td>
<td>1.00000000</td>
</tr>
<tr>
<td>2</td>
<td>TITLE.MARS</td>
<td>&lt;NA&gt;</td>
<td>0.4078615</td>
</tr>
<tr>
<td>3</td>
<td>TITLES.MARS</td>
<td>&lt;NA&gt;</td>
<td>0.9130438</td>
</tr>
<tr>
<td>4</td>
<td>TITLE.MARS</td>
<td>&lt;NA&gt;</td>
<td>1.00000000</td>
</tr>
<tr>
<td>5</td>
<td>TITLES.NASA</td>
<td>&lt;NA&gt;</td>
<td>0.6742695</td>
</tr>
<tr>
<td>6</td>
<td>TITLES.NASA</td>
<td>&lt;NA&gt;</td>
<td>0.6742695</td>
</tr>
<tr>
<td>7</td>
<td>TITLE.AIDS</td>
<td>&lt;NA&gt;</td>
<td>1.00000000</td>
</tr>
<tr>
<td>8</td>
<td>TITLES.MARS</td>
<td>&lt;NA&gt;</td>
<td>0.4078615</td>
</tr>
<tr>
<td>9</td>
<td>TITLES.NASA</td>
<td>&lt;NA&gt;</td>
<td>0.9130438</td>
</tr>
</tbody>
</table>

R> settings(esa.mod)

<table>
<thead>
<tr>
<th>SETTING_NAME</th>
<th>SETTING_VALUE</th>
<th>SETTING_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALGO_EXPLICIT_SEMANTIC_ANALYS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESAS_MIN_ITEMS</td>
<td>1</td>
<td>INPUT</td>
</tr>
<tr>
<td>ESAS_TOPN_FEATURES</td>
<td>3</td>
<td>INPUT</td>
</tr>
<tr>
<td>ESAS_VALUE_THRESHOLD</td>
<td>1e-04</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMS_MISSING_VALUE_TREATMENT</td>
<td>ODMS_MISSING_VALUE_AUTO</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>ODMS_SAMPLING</td>
<td>ODMS_SAMPLING_DISABLE</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>ODMS_TEXT_MAX_FEATURES</td>
<td>3</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMS_TEXT_MIN_DOCUMENTS</td>
<td>1</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMS_TEXT_POLICY_NAME</td>
<td>ESA_TXTPOL</td>
<td>INPUT</td>
</tr>
</tbody>
</table>
Chapter 4

Build Oracle Machine Learning for SQL Models

10  INPUT
R> features(esa.mod)

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TITLE.AIDS</td>
<td>&lt;NA&gt;</td>
<td>1.0000000</td>
</tr>
<tr>
<td>2</td>
<td>TITLE.MARS</td>
<td>&lt;NA&gt;</td>
<td>0.4078615</td>
</tr>
<tr>
<td>3</td>
<td>TITLE.ROVER</td>
<td>&lt;NA&gt;</td>
<td>0.9130438</td>
</tr>
<tr>
<td>4</td>
<td>TITLE.MARS</td>
<td>&lt;NA&gt;</td>
<td>1.0000000</td>
</tr>
<tr>
<td>5</td>
<td>TITLE.NASA</td>
<td>&lt;NA&gt;</td>
<td>0.6742695</td>
</tr>
<tr>
<td>6</td>
<td>TITLE.ROVER</td>
<td>&lt;NA&gt;</td>
<td>0.6742695</td>
</tr>
<tr>
<td>7</td>
<td>TITLE.AIDS</td>
<td>&lt;NA&gt;</td>
<td>1.0000000</td>
</tr>
<tr>
<td>8</td>
<td>TITLE.MARS</td>
<td>&lt;NA&gt;</td>
<td>0.4078615</td>
</tr>
<tr>
<td>9</td>
<td>TITLE.NASA</td>
<td>&lt;NA&gt;</td>
<td>0.9130438</td>
</tr>
<tr>
<td>10</td>
<td>TITLE.AIDS</td>
<td>&lt;NA&gt;</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

R> predict(esa.mod, ESA_TEXT, type = "class", supplemental.cols = "TITLE")

| TITLE FEATURE_ID |
|------------------|----------------|
| Aids in Africa: Planning for a long war | 1 |
| Mars rover maneuvers for rim shot | 2 |
| Mars express confirms presence of water at Mars south pole | 3 |
| NASA announces major Mars rover finding | 4 |
| Drug access, Asia threat in focus at AIDS summit | 1 |
| NASA Mars Odyssey THEMIS image: typical crater | 6 |
| Road blocks for Aids | 1 |

R>

R> # Use ctx.settings to specify a character column as TEXT and
R> # the same settings as above as well as TOKEN_TYPE
R> esa.mod2 <- ore.odmESA(~ TITLE, data = ESA_TEXT,
+   odm.settings = list(case_id_column_name = "CUST_ID",
   ESAS_MIN_ITEMS = 1),
+   ctx.settings = list(TITLE =
   "TEXT(POLICY_NAME:ESA_TXTPOL)(TOKEN_TYPE:STEM)(MIN_DOCUMENTS:1)
   (MAX_FEATURES:3)"))
R> summary(esa.mod2)

Call:
ore.odmESA(formula = ~TITLE, data = ESA_TEXT, odm.settings =
   list(case_id_column_name = "CUST_ID",
   ESAS_MIN_ITEMS = 1), ctx.settings = list(TITLE =
   "TEXT(POLICY_NAME:ESA_TXTPOL)(TOKEN_TYPE:STEM)(MIN_DOCUMENTS:1)
   (MAX_FEATURES:3)"))

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.items</td>
</tr>
<tr>
<td>topn.features</td>
</tr>
<tr>
<td>value.threshold</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
</tr>
<tr>
<td>odms.sampling</td>
</tr>
<tr>
<td>odms.text.max.features</td>
</tr>
<tr>
<td>odms.text.min.documents</td>
</tr>
<tr>
<td>prep.auto</td>
</tr>
</tbody>
</table>

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4</td>
<td>BUILD ORACLE MACHINE LEARNING FOR SQL MODELS</td>
<td>4-28</td>
<td></td>
</tr>
</tbody>
</table>
Build an Extensible R Algorithm Model

The `ore.odmRAlg` function creates an Extensible R algorithm model using OML4SQL.
The Extensible R algorithm builds, scores, and views an R model using registered R scripts. It supports classification, regression, clustering, feature extraction, attribute importance, and association machine learning functions.

For information on the `ore.odmRAlg` function arguments and for an example of using the function, invoke `help(ore.odmRAlg).

Example 4-13 Using the ore.odmRAlg Function

```r
library(OREembed)

digits <- getOption("digits")
options(digits = 5L)

IRIS <- ore.push(iris)

Regression with glm
ore.scriptCreate("glm_build", function(data, form, family)
 glm(formula = form, data = data, family = family))

ore.scriptCreate("glm_score", function(mod, data)
 { res <- predict(mod, newdata = data);
 data.frame(res) })

ore.scriptCreate("glm_detail", function(mod)
 data.frame(name=names(mod$coefficients),
 coef=mod$coefficients))

ore.scriptList(name = "glm_build")
ore.scriptList(name = "glm_score")
ore.scriptList(name = "glm_detail")

ralg.glm <- ore.odmRAlg(IRIS, mining.function = "regression",
 formula = c(form="Sepal.Length ~ ."),
 build.function = "glm_build",
 build.parameter = list(family="gaussian"),
 score.function = "glm_score",
 detail.function = "glm_detail",
 detail.value = data.frame(name="a", coef=1))

summary(ralg.glm)
predict(ralg.glm, newdata = head(IRIS), supplemental.cols = "Sepal.Length")

ore.scriptDrop(name = "glm_build")
ore.scriptDrop(name = "glm_score")
ore.scriptDrop(name = "glm_detail")

Classification with nnet
ore.scriptCreate("nnet_build", function(dat, form, sz){
 require(nnet);
 set.seed(1234);
 nnet(formula = formula(form), data = dat,

```
size = sz, linout = TRUE, trace = FALSE); 
},
overwrite = TRUE)

ore.scriptCreate("nnet_detail", function(mod)
data.frame(conn = mod$conn, wts = mod$wts),
overwrite = TRUE)

ore.scriptCreate("nnet_score",
function(mod, data) {
require(nnet);
res <- data.frame(predict(mod, newdata = data));
names(res) <- sort(mod$lev); res
})

ralg.nnet <- ore.odmRAlg(IRIS, mining.function = "classification",
formula = c(form="Species ~ "),
build.function = "nnet_build",
build.parameter = list(sz=2),
score.function = "nnet_score",
detail.function = "nnet_detail",
detail.value = data.frame(conn=1, wts =1))

summary(ralg.nnet)
predict(ralg.nnet, newdata = head(IRIS), supplemental.cols = "Species")

ore.scriptDrop(name = "nnet_build")
ore.scriptDrop(name = "nnet_score")
ore.scriptDrop(name = "nnet_detail")

# Feature extraction with pca
# Feature extraction with pca
ore.scriptCreate("pca_build",
function(dat){
  mod <- prcomp(dat, retx = FALSE)
  attr(mod, "dm$nfeat") <- ncol(mod$rotation)
  mod,
  overwrite = TRUE)

ore.scriptCreate("pca_score",
function(mod, data) {
  res <- predict(mod, data)
  as.data.frame(res),
  overwrite=TRUE)

ore.scriptCreate("pca_detail",
function(mod) {
  rotation_t <- t(mod$rotation)
data.frame(id = seq_along(rownames(rotation_t)),
  rotation_t),
  overwrite = TRUE)

X <- IRIS[, -5L]
ralg.pca <- ore.odmRAlg(X,
mining.function = "feature_extraction",}
formula = NULL,
build.function = "pca_build",
score.function = "pca_score",
detail.function = "pca_detail",
detail.value = data.frame(Feature.ID=1,
ore.pull(head(X,1L))})

summary(ralg.pca)
head(cbind(X, Pred = predict(ralg.pca, newdata = X)))

ore.scriptDrop(name = "pca_build")
ore.scriptDrop(name = "pca_score")
ore.scriptDrop(name = "pca_detail")

options(digits = digits)

Listing for This Example

R> library(OREembed)
R>
R> digits <-getOption("digits")
R> options(digits = 5L)
R>
R> IRIS <- ore.push(iris)
R>
R> # Regression with glm
R> ore.scriptCreate("glm_build",
  + function(data, form, family)
  +   glm(formula = form, data = data, family = family))
R>
R> ore.scriptCreate("glm_score",
  + function(mod, data)
  +   { res <- predict(mod, newdata = data);
  +     data.frame(res) })
R>
R> ore.scriptCreate("glm_detail", function(mod)
  +   data.frame(name=names(mod$coefficients),
  +               coef=mod$coefficients))
R>
R> ore.scriptList(name = "glm_build")

NAME
   SCRIPT
1 glm_build function (data, form, family) 
glm(formula = form, data = data, family = family)

R> ore.scriptList(name = "glm_score")

NAME
   SCRIPT
1 glm_score function (mod, data) 
{
  res <- predict(mod, newdata = data) 
data.frame(res)
}

R> ore.scriptList(name = "glm_detail")
```r
glm_detail function (mod) \ndata.frame(name = names(mod$coefficients),
 coef = mod$coefficients)
R>
R> ralg.glm <- ore.odmRAlg(IRIS, mining.function = "regression",
 + formula = c(form="Sepal.Length ~ ."),
 + build.function = "glm_build",
 + build.parameter = list(family="gaussian"),
 + score.function = "glm_score",
 + detail.function = "glm_detail",
 + detail.value = data.frame(name="a", coef=1))
R>
R> summary(ralg.glm)

Call:
ore.odmRAlg(data = IRIS, mining.function = "regression", formula = c(form =
 "Sepal.Length ~ ",
 build.function = "glm_build", build.parameter = list(family =
 "gaussian"),
 score.function = "glm_score", detail.function = "glm_detail",
 detail.value = data.frame(name = "a", coef = 1))

Settings:

 value
odms.missing.value.treatment
odms.missing.value.auto
odms.sampling
odms.sampling.disable
prep.auto
 OFF
build.function
OML_USER glm_build
build.parameter
 "family" from dual
details.format
 "coef" from dual
detail.function
OML_USER glm_detail
score.function
OML_USER glm_score

 name coef
1 (Intercept) 2.17127
2 Petal.Length 0.82924
3 Petal.Width -0.31516
4 Sepal.Width 0.49589
5 Speciesversicolor -0.72356
6 Speciesvirginica -1.02350
R> predict(ralg.glm, newdata = head(IRIS), supplemental.cols =
 "Sepal.Length")
 Sepal.Length PREDICTION
1 5.1 5.0048
```
2  4.9  4.7568
3  4.7  4.7731
4  4.6  4.8894
5  5.0  5.0544
6  5.4  5.3889

```
R> ore.scriptDrop(name = "glm_build")
R> ore.scriptDrop(name = "glm_score")
R> ore.scriptDrop(name = "glm_detail")
R>
R> # Classification with nnet
R> ore.scriptCreate("nnet_build",
+ function(dat, form, sz){
+ require(nnet);
+ set.seed(1234);
+ nnet(formula = formula(form), data = dat,
+ size = sz, linout = TRUE, trace = FALSE);
+ },
+ overwrite = TRUE)
R>
R> ore.scriptCreate("nnet_detail", function(mod)
+ data.frame(conn = mod$conn, wts = mod$wts),
+ overwrite = TRUE)
R>
R> ore.scriptCreate("nnet_score",
+ function(mod, data) {
+ require(nnet);
+ res <- data.frame(predict(mod, newdata = data));
+ names(res) <- sort(mod$lev); res
+ })
R>
R> ralg.nnet <- ore.odmRAlg(IRIS, mining.function = "classification",
+ formula = c(form="Species ~ ."),
+ build.function = "nnet_build",
+ build.parameter = list(sz=2),
+ score.function = "nnet_score",
+ detail.function = "nnet_detail",
+ detail.value = data.frame(conn=1, wts =1))
R>
R> summary(ra1g.nnet)

Call:
ore.odmRAlg(data = IRIS, mining.function = "classification",
 formula = c(form = "Species ~ ."), build.function = "nnet_build",
 build.parameter = list(sz = 2), score.function = "nnet_score",
 detail.function = "nnet_detail", detail.value = data.frame(conn = 1,
 wts = 1))

Settings:

value
clas.weights.balanced
OFF
odms.missing.value.treatment
```
odms.missing.value.auto
odms.sampling
prep.auto
build.function
build.parameter
details.format
details.function
score.function

\[
\begin{array}{ll}
\text{conn} & \text{wts} \\
1 & 0.146775 \\
2 & -12.88542 \\
3 & 2.38886 \\
4 & 9.98648 \\
5 & 16.57056 \\
6 & 0.97809 \\
7 & -0.51626 \\
8 & -0.94815 \\
9 & 0.13692 \\
10 & 0.35104 \\
11 & 37.22475 \\
12 & -66.49123 \\
13 & 70.81160 \\
14 & -4.50893 \\
15 & 7.01611 \\
16 & 20.88774 \\
17 & -32.15127 \\
18 & 58.92088 \\
19 & -91.96989 \\
\end{array}
\]

R> predict(raig.nnet, newdata = head(IRIS), supplemental.cols = "Species")

<table>
<thead>
<tr>
<th>Species</th>
<th>PREDICTION</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>0.99999</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>0.99998</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>0.99999</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>0.99998</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>1.00000</td>
</tr>
<tr>
<td>setosa</td>
<td>setosa</td>
<td>0.99999</td>
</tr>
</tbody>
</table>

R> ore.scriptDrop(name = "nnet_build")
R> ore.scriptDrop(name = "nnet_score")
R> ore.scriptDrop(name = "nnet_detail")

R> ore.scriptCreate("pca_build",
+                   function(dat){
+                     mod <- prcomp(dat, retx = FALSE)
+                     attr(mod, "dm$nfeat") <- ncol(mod$rotation)
+                     mod,
+                     overwrite = TRUE)

R> ore.scriptCreate("pca_score",
+                   function(mod, data) {
+                     res <- predict(mod, data)
+                     as.data.frame(res),
+                     overwrite=TRUE)
R> ore.scriptCreate("pca_detail", 
+    function(mod) {
+      rotation_t <- t(mod$rotation)
+      data.frame(id = seq_along(rownames(rotation_t)),
+                  rotation_t),
+      overwrite = TRUE)
R>
R> X <- IRIS[, -5L]
R> ralg.pca <- ore.odmRAlg(X,
+    mining.function = "feature_extraction",
+    formula = NULL,
+    build.function = "pca_build",
+    score.function = "pca_score",
+    detail.function = "pca_detail",
+    detail.value = data.frame(Feature.ID=1,
+                   ore.pull(head(X, 1L))))
R>
R> summary(ralg.pca)

Call:
ore.odmRAlg(data = X, mining.function = "feature_extraction",
    formula = NULL, build.function = "pca_build", score.function = 
    "pca_score",
    detail.function = "pca_detail", detail.value =
    data.frame(Feature.ID = 1,
        ore.pull(head(X, 1L))))

Settings:

value
odms.missing.value.treatment odms.missing.value.auto
odms.sampling odms.sampling.disable
prep.auto OFF
build.function OML_USER.pca_build
details.format select 1 "Feature.ID", 5.1 "Sepal.Length", 3.5 "Sepal.Width", 1.4 "Petal.Length", 0.2 "Petal.Width" from dual
details.function OML_USER.pca_detail
cscore.function OML_USER.pca_score

1 1 0.856671 0.358289 0.36139 -0.084523
2 2 -0.173373 -0.075481 0.65659 0.730161
3 3 0.076236 0.545831 -0.58203 0.597911
4 4 0.479839 -0.753657 -0.31549 0.319723

R> head(cbind(X, Pred = predict(ralg.pca, newdata = X)))

Sepal.Length Sepal.Width Petal.Length Petal.Width FEATURE_ID
1 1 5.1 3.5 1.4 0.2 2
2 2 4.9 3.0 1.4 0.2 4
3 3 4.7 3.2 1.3 0.2 3
4 4 4.6 3.1 1.5 0.2 4
5 5 5.0 3.6 1.4 0.2 2
6 6 5.4 3.9 1.7 0.4 2
R>
R> ore.scriptDrop(name = "pca_build")
R> ore.scriptDrop(name = "pca_score")
R> ore.scriptDrop(name = "pca_detail")
R>
R> options(digits = digits)

Build Generalized Linear Models

The ore.odmGLM function builds a Generalized Linear Model (GLM) model, which includes and extends the class of linear models (linear regression).

Generalized linear models relax the restrictions on linear models, which are often violated in practice. For example, binary (yes/no or 0/1) responses do not have same variance across classes.

The OML4SQL GLM is a parametric modeling technique. Parametric models make assumptions about the distribution of the data. When the assumptions are met, parametric models can be more efficient than non-parametric models.

The challenge in developing models of this type involves assessing the extent to which the assumptions are met. For this reason, quality diagnostics are key to developing quality parametric models.

In addition to the classical weighted least squares estimation for linear regression and iteratively re-weighted least squares estimation for logistic regression, both solved through Cholesky decomposition and matrix inversion, OML4SQL GLM provides a conjugate gradient-based optimization algorithm that does not require matrix inversion and is very well suited to high-dimensional data. The choice of algorithm is handled internally and is transparent to the user.

GLM can be used to build classification or regression models as follows:

- **Classification**: Binary logistic regression is the GLM classification algorithm. The algorithm uses the logit link function and the binomial variance function.
- **Regression**: Linear regression is the GLM regression algorithm. The algorithm assumes no target transformation and constant variance over the range of target values.

The ore.odmGLM function allows you to build two different types of models. Some arguments apply to classification models only and some to regression models only.

For information on the ore.odmGLM function arguments, invoke help(ore.odmGLM).

The following examples build several models using GLM. The input ore.frame objects are R data sets pushed to the database.

**Example 4-14 Building a Linear Regression Model**

This example builds a linear regression model using the longley data set.

```r
longley_of <- ore.push(longley)
longfit1 <- ore.odmGLM(Employed ~ ., data = longley_of)
summary(longfit1)
```

**Listing for This Example**

```r
R> longley_of <- ore.push(longley)
R> longfit1 <- ore.odmGLM(Employed ~ ., data = longley_of)
R> summary(longfit1)

Call:
ore.odmGLM(formula = Employed ~ ., data = longley_of)
```
Example 4-15    Using Ridge Estimation for the Coefficients of the ore.odmGLM Model

This example uses the longley_of ore.frame from the previous example. This example invokes the ore.odmGLM function and specifies using ridge estimation for the coefficients.

```
longfit2 <- ore.odmGLM(Employed ~ ., data = longley_of, ridge = TRUE,
 ridge.vif = TRUE)
summary(longfit2)
```

Listing for This Example

R> longfit2 <- ore.odmGLM(Employed ~ ., data = longley_of, ridge = TRUE,
                          +                         ridge.vif = TRUE)
R> summary(longfit2)

Call:
ore.odmGLM(formula = Employed ~ ., data = longley_of, ridge = TRUE,
            ridge.vif = TRUE)

Residuals:
  Min   1Q Median   3Q  Max
-0.4100 -0.1579 -0.0271  0.1017  0.4575

Coefficients:
       Estimate VIF
(Intercept) -3.466e+03 0.000
GNP.deflator 1.479e-02 0.077
GNP  -3.535e-02 0.012
Unemployed  -2.013e-02 0.000
Armed.Forces -1.031e-02 0.000
Population  -5.262e-02 0.548
Year          1.821e+00 2.212

Residual standard error: 0.3049 on 9 degrees of freedom
Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925
F-statistic: 330.2 on 6 and 9 DF, p-value: 4.986e-10
Example 4-16    Building a Logistic Regression GLM

This example builds a logistic regression (classification) model. It uses the `infert` data set. The example invokes the `ore.odmGLM` function and specifies `logistic` as the `type` argument, which builds a binomial GLM.

```r
infert_of <- ore.push(infert)
infit1 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = infert_of, type = "logistic")
infit1
```

**Listing for This Example**

```r
R> infert_of <- ore.push(infert)
R> infit1 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 + data = infert_of, type = "logistic")
R> infit1
```

**Response:**

```
 case == "1"
```

**Call:**

```
ore.odmGLM(formula = case ~ age + parity + education + spontaneous +
 induced, data = infert_of, type = "logistic")
```

**Coefficients:**

```
(Intercept) age parity education0-5yrs education12+
 yrs spontaneous induced -2.19348 0.03958 -0.82828 1.04424
-0.35896 2.04590 1.28876
```

**Degrees of Freedom:**

```
247 Total (i.e. Null); 241 Residual
```

**Null Deviance:**

```
316.2
```

**Residual Deviance:**

```
257.8 AIC: 271.8
```

Example 4-17    Specifying a Reference Value in Building a Logistic Regression GLM

This example builds a logistic regression (classification) model and specifies a reference value. The example uses the `infert_of` ore.frame from Example 4-16.

```r
infit2 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = infert_of, type = "logistic", reference = 1)
infit2
```

**Listing for This Example**

```r
infit2 <- ore.odmGLM(case ~ age+parity+education+spontaneous+induced,
 data = infert_of, type = "logistic", reference = 1)
infit2
```

**Response:**

```
 case == "0"
```

**Call:**

```
ore.odmGLM(formula = case ~ age + parity + education + spontaneous +
 induced, data = infert_of, type = "logistic", reference = 1)
```

**Coefficients:**

```
(Intercept) age parity education0-5yrs education12+
 yrs spontaneous induced 2.19348 -0.03958 0.82828 -1.04424
0.35896 -2.04590 -1.28876
```

**Degrees of Freedom:**

```
247 Total (i.e. Null); 241 Residual
```
Build a k-Means Model

The `ore.odmKM` function uses the OML4SQL k-Means (KM) algorithm, a distance-based clustering algorithm that partitions data into a specified number of clusters.

The algorithm has the following features:

- Several distance functions: Euclidean, Cosine, and Fast Cosine distance functions. The default is Euclidean.
- For each cluster, the algorithm returns the centroid, a histogram for each attribute, and a rule describing the hyperbox that encloses the majority of the data assigned to the cluster. The centroid reports the mode for categorical attributes and the mean and variance for numeric attributes.

For information on the `ore.odmKM` function arguments, invoke `help(ore.odmKM)`.

Example 4-18 Using the `ore.odmKM` Function

This example demonstrates the use of the `ore.odmKMeans` function. The example creates two matrices that have 100 rows and two columns. The values in the rows are random variates. It binds the matrices into the `matrix` `x`, then coerces `x` to a `data.frame` and pushes it to the database as `x_of`, an `ore.frame` object. The example next invokes the `ore.odmKMeans` function to build the KM model, `km.mod1`. It then invokes the `summary` and `histogram` functions on the model. Figure 4-2 shows the graphic displayed by the `histogram` function.

Finally, the example makes a prediction using the model, pulls the result to local memory, and plots the results. Figure 4-3 shows the graphic displayed by the `points` function.

```r
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
x_of <- ore.push(data.frame(x))
km.mod1 <- NULL
km.mod1 <- ore.odmKMeans(~., x_of, num.centers=2)
summary(km.mod1)
histogram(km.mod1)
Make a prediction.
km.res1 <- predict(km.mod1, x_of, type="class", supplemental.cols=c("x","y"))
head(km.res1, 3)
Pull the results to the local memory and plot them.
km.res1.local <- ore.pull(km.res1)
plot(data.frame(x=km.res1.local$x, y=km.res1.local$y),
 col=km.res1.local$CLUSTER_ID)
points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)
head(predict(km.mod1, x_of, type=c("class","raw"),
 supplemental.cols=c("x","y")), 3)
```

Listing for This Example

```r
R> x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
+ matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R> x_of <- ore.push(data.frame(x))
R> km.mod1 <- NULL
```
```r
R> km.mod1 <- ore.odmKMeans(~., x_of, num.centers=2)
R> summary(km.mod1)

Call:
ore.odmKMeans(formula = ~., data = x_of, num.centers = 2)

Settings:
 value
clus.num.clusters 2
block.growth 2
conv.tolerance 0.01
distance euclidean
iterations 3
min.pct.attr.support 0.1
num.bins 10
split.criterion variance
prep.auto on

Centers:
 x y
2 0.99772307 0.93368684
3 -0.02721078 -0.05099784

R> histogram(km.mod1)
R> # Make a prediction.
R> km.res1 <- predict(km.mod1, x_of, type="class", supplemental.cols=c("x","y"))
R> head(km.res1, 3)
 x y CLUSTER_ID
1 -0.03038444 0.4395409 3
2 0.17724606 -0.5342975 3
3 -0.17565761 0.2832132 3

Pull the results to the local memory and plot them.
R> km.res1.local <- ore.pull(km.res1)
R> plot(data.frame(x=km.res1.local$x, y=km.res1.local$y),
 col=km.res1.local$CLUSTER_ID)
R> points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)
R> head(predict(km.mod1, x_of, type=c("class","raw"),
 supplemental.cols=c("x","y")), 3)
 '2' '3' x y CLUSTER_ID
1 8.610341e-03 0.9913897 -0.03038444 0.4395409 3
2 8.017890e-06 0.9999920 0.17724606 -0.5342975 3
3 5.494263e-04 0.9994506 -0.17565761 0.2832132 3

Figure 4-2 shows the graphic displayed by the invocation of the histogram function in Example 4-18.
```
Figure 4-2  Cluster Histograms for the km.mod1 Model

Figure 4-3 shows the graphic displayed by the invocation of the `points` function in Example 4-18.
The `ore.odmNB` function builds an OML4SQL Naive Bayes model.

The Naive Bayes algorithm is based on conditional probabilities. Naive Bayes looks at the historical data and calculates conditional probabilities for the target values by observing the frequency of attribute values and of combinations of attribute values.

Naive Bayes assumes that each predictor is conditionally independent of the others. (Bayes' Theorem requires that the predictors be independent.)

For information on the `ore.odmNB` function arguments, invoke `help(ore.odmNB).

Example 4-19 Using the `ore.odmNB` Function

This example creates an input `ore.frame`, builds a Naive Bayes model, makes predictions, and generates a confusion matrix.

```r
m <- mtcars
m$gear <- as.factor(m$gear)
m$cyl <- as.factor(m$cyl)
m$vs <- as.factor(m$vs)
```
Listing for This Example

R> m <- mtcars
R> m$gear <- as.factor(m$gear)
R> m$cyl  <- as.factor(m$cyl)
R> m$vs   <- as.factor(m$vs)
R> m$ID   <- 1:nrow(m)
R> mtcars_of <- ore.push(m)
R> row.names(mtcars_of) <- mtcars_of
R> # Build the model.
R> nb.mod  <- ore.odmNB(gear ~ ., mtcars_of)
R> summary(nb.mod)
R> # Make predictions and generate a confusion matrix.
R> nb.res  <- predict (nb.mod, mtcars_of, "gear")
R> with(nb.res, table(gear, PREDICTION))
Build a Non-Negative Matrix Factorization Model

The `ore.odmNMF` function builds an OML4SQL Non-Negative Matrix Factorization (NMF) model for feature extraction.

Each feature extracted by NMF is a linear combination of the original attribution set. Each feature has a set of non-negative coefficients, which are a measure of the weight of each attribute on the feature. If the argument `allow.negative.scores` is `TRUE`, then negative coefficients are allowed.

For information on the `ore.odmNMF` function arguments, invoke `help(ore.odmNMF)`.

**Example 4-20 Using the ore.odmNMF Function**

This example creates an NMF model on a training data set and scores on a test data set.

```r
training.set <- ore.push(npk[1:18, c("N","P","K")])
scoring.set <- ore.push(npk[19:24, c("N","P","K")])
nmf.mod <- ore.odmNMF(~., training.set, num.features = 3)
```
features(nmf.mod)
summary(nmf.mod)
predict(nmf.mod, scoring.set)

Listing for This Example

R> training.set <- ore.push(npk[1:18, c("N","P","K")])
R> scoring.set <- ore.push(npk[19:24, c("N","P","K")])
R> nmf.mod <- ore.odmNMF(~., training.set, num.features = 3)
R> features(nmf.mod)

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>K</td>
<td>3.723468e-01</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>K</td>
<td>1.761670e-01</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>N</td>
<td>7.469067e-01</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>N</td>
<td>1.085058e-02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>P</td>
<td>5.730082e-01</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>K</td>
<td>4.107375e-01</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>K</td>
<td>2.193757e-01</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>N</td>
<td>8.065393e-03</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>N</td>
<td>8.569538e-01</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>P</td>
<td>4.005661e-01</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>P</td>
<td>4.124996e-02</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>K</td>
<td>1.910852e-01</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>K</td>
<td>3.11137e-01</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>N</td>
<td>1.547561e-01</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>N</td>
<td>1.283887e-01</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>P</td>
<td>9.791965e-06</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>P</td>
<td>9.113922e-01</td>
</tr>
</tbody>
</table>

R> summary(nmf.mod)

Call:
ore.odmNMF(formula = ~., data = training.set, num.features = 3)

Settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>feat.num.features</td>
<td>3</td>
</tr>
<tr>
<td>nmfs.conv.tolerance</td>
<td>0.05</td>
</tr>
<tr>
<td>nmfs.nonnegative.scoring</td>
<td></td>
</tr>
<tr>
<td>nmfs.nonneg.scoring.enable</td>
<td></td>
</tr>
<tr>
<td>nmfs.num.iterations</td>
<td>50</td>
</tr>
<tr>
<td>nmfs.random.seed</td>
<td>-1</td>
</tr>
<tr>
<td>prep.auto</td>
<td>on</td>
</tr>
</tbody>
</table>

Features:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>K</td>
<td>3.723468e-01</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>K</td>
<td>1.761670e-01</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>N</td>
<td>7.469067e-01</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>N</td>
<td>1.085058e-02</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>P</td>
<td>5.730082e-01</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>K</td>
<td>4.107375e-01</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>K</td>
<td>2.193757e-01</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>N</td>
<td>8.065393e-03</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>N</td>
<td>8.569538e-01</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>P</td>
<td>4.005661e-01</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>P</td>
<td>4.124996e-02</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>K</td>
<td>1.910852e-01</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>K</td>
<td>3.11137e-01</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>N</td>
<td>1.547561e-01</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>N</td>
<td>1.283887e-01</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>N</td>
<td>1.283887e-01</td>
</tr>
</tbody>
</table>
The `ore.odmOC` function builds an OML4SQL model using the Orthogonal Partitioning Cluster (O-Cluster) algorithm.

The O-Cluster algorithm builds a hierarchical grid-based clustering model, that is, it creates axis-parallel (orthogonal) partitions in the input attribute space. The algorithm operates recursively. The resulting hierarchical structure represents an irregular grid that tessellates the attribute space into clusters. The resulting clusters define dense areas in the attribute space.

The clusters are described by intervals along the attribute axes and the corresponding centroids and histograms. The `sensitivity` argument defines a baseline density level. Only areas that have a peak density above this baseline level can be identified as clusters.

The k-Means algorithm tessellates the space even when natural clusters may not exist. For example, if there is a region of uniform density, k-Means tessellates it into n clusters (where n is specified by the user). O-Cluster separates areas of high density by placing cutting planes through areas of low density. O-Cluster needs multi-modal histograms (peaks and valleys). If an area has projections with uniform or monotonically changing density, O-Cluster does not partition it.

The clusters discovered by O-Cluster are used to generate a Bayesian probability model that is then used during scoring by the `predict` function for assigning data points to clusters. The generated probability model is a mixture model where the mixture components are represented by a product of independent normal distributions for numeric attributes and multinomial distributions for categorical attributes.

If you choose to prepare the data for an O-Cluster model, keep the following points in mind:

- The O-Cluster algorithm does not necessarily use all the input data when it builds a model. It reads the data in batches (the default batch size is 50000). It only reads another batch if it believes, based on statistical tests, that there may still exist clusters that it has not yet uncovered.
- Because O-Cluster may stop the model build before it reads all of the data, it is highly recommended that the data be randomized.
- Binary attributes should be declared as categorical. O-Cluster maps categorical data to numeric values.
- The use of OML4SQL equi-width binning transformation with automated estimation of the required number of bins is highly recommended.
- The presence of outliers can significantly impact clustering algorithms. Use a clipping transformation before binning or normalizing. Outliers with equi-width binning can prevent O-Cluster from detecting clusters. As a result, the whole population appears to fall within a single cluster.

### Build an Orthogonal Partitioning Cluster Model

The `R> predict(nmf.mod, scoring.set)`

```
 '1' '2' '3' FEATURE_ID
19 0.1972489 1.2400782 0.03280919 2
20 0.7298919 0.0000000 1.29438165 3
21 0.1972489 1.2400782 0.03280919 2
22 0.0000000 1.0231268 0.98567623 2
23 0.7298919 0.0000000 1.29438165 3
24 1.5703239 0.1523159 0.00000000 1
```
The specification of the formula argument has the form ~ terms where terms are the column names to include in the model. Multiple terms items are specified using + between column names. Use ~ . if all columns in data should be used for model building. To exclude columns, use - before each column name to exclude.

For information on the ore.odmOC function arguments, invoke help(ore.odmOC).

**Example 4-21 Using the ore.odmOC Function**

This example creates an O-Cluster model on a synthetic data set. The figure following the example shows the histogram of the resulting clusters.

```r
x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
x_of <- ore.push(data.frame(ID=1:100,x))
rownames(x_of) <- x_of$ID
oc.mod <- ore.odmOC(~., x_of, num.centers=2)
summary(oc.mod)
histogram(oc.mod)
predict(oc.mod, x_of, type=c("class","raw"), supplemental.cols=c("x","y"))
```

**Listing for This Example**

```
R> x <- rbind(matrix(rnorm(100, mean = 4, sd = 0.3), ncol = 2),
+ matrix(rnorm(100, mean = 2, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R> x_of <- ore.push(data.frame(ID=1:100,x))
R> rownames(x_of) <- x_of$ID
R> oc.mod <- ore.odmOC(~., x_of, num.centers=2)
R> summary(oc.mod)

Call:
 ore.odmOC(formula = ~., data = x_of, num.centers = 2)

Settings:

 value
 clus.num.clusters 2
 max.buffer 50000
 sensitivity 0.5
 prep.auto on

Clusters:

 CLUSTER_ID ROW_CNT PARENT_CLUSTER_ID TREE_LEVEL DISPERSION IS_LEAF
 1 1 100 NA 1 NA FALSE
 2 2 56 1 2 NA TRUE
 3 3 43 1 2 NA TRUE

Centers:

 MEAN.x MEAN.y
 2 1.85444 1.941195
 3 4.04511 4.111740
R> histogram(oc.mod)
R> predict(oc.mod, x_of, type=c("class","raw"), supplemental.cols=c("x","y"))

 '2' '3' x y CLUSTER_ID
 1 3.616386e-08 9.999999e-01 3.825303 3.935346 3
 2 3.253662e-01 6.746338e-01 3.454143 4.193395 3
 3 3.616386e-08 9.999999e-01 4.049120 4.172898 3
 # ... Intervening rows not shown.
 98 1.000000e+00 1.275712e-12 2.011463 1.991468 2
```
Build a Singular Value Decomposition Model

The `ore.odmSVD` function creates a model that uses the OML4SQL Singular Value Decomposition (SVD) algorithm.

Singular Value Decomposition (SVD) is a feature extraction algorithm. SVD is orthogonal linear transformations that capture the underlying variance of the data by decomposing a rectangular matrix into three matrices: 'U', 'D', and 'V'. Matrix 'D' is a diagonal matrix and its singular values reflect the amount of data variance captured by the bases.
Example 4-22  Using the ore.odmSVD Function

IRIS <- ore.push(cbind(Id = seq_along(iris[[1L]]), iris))
svd.mod <- ore.odmSVD(~. -Id, IRIS)
summary(svd.mod)
d(svd.mod)
v(svd.mod)
head(predict(svd.mod, IRIS, supplemental.cols = "Id"))

svd.pmod <- ore.odmSVD(~. -Id, IRIS,
     odm.settings = list(odms_partition_columns = "Species"))
summary(svd.pmod)
d(svd.pmod)
v(svd.pmod)
head(predict(svd.pmod, IRIS, supplemental.cols = "Id"))

Listing for This Example

R> IRIS <- ore.push(cbind(Id = seq_along(iris[[1L]]), iris))
R>
R> svd.mod <- ore.odmSVD(~. -Id, IRIS)
R> summary(svd.mod)
R> Call:
R>    ore.odmSVD(formula = ~. - Id, data = IRIS)
R>
R> Settings:
R>       value
R> odms.missing.value.treatment odms.missing.value.auto
R> odms.sampling             odms.sampling.disable
R> prep.auto                 ON
R> scoring.mode              scoring.svd
R> u.matrix.output           u.matrix.disable
R>
R> d:
R>  FEATURE_ID VALUE
R> 1          1  96.2182677
R> 2          2  19.0780817
R> 3          3  7.2270380
R> 4          4  3.1502152
R> 5          5  1.8849634
R> 6          6  1.1474731
R> 7          7  0.5814097
R>
R> v:
R>           ATTRIBUTE_NAME ATTRIBUTE_VALUE   '1'  '2'  '3'  '4'  '5'  '6'  '7'
R> 1  Petal.Length            <NA> 0.51162932 0.65943465 -0.004420703 0.05479795 -0.51969015 0.17392232 -0.005674672
R> 0.05479795 -0.51969015 0.17392232 -0.005674672
R> 2  Petal.Width             <NA> 0.16745698 0.32071102 0.146484369 0.46553390 0.72685033 0.31962337 -0.021274748
R> 0.46553390 0.72685033 0.31962337 -0.021274748
R> 3  Sepal.Length            <NA> 0.74909171 -0.26482593 -0.102057243 -0.49272847 0.31969417 -0.09379235 -0.067308615
R> 0.74909171 -0.26482593 -0.102057243 -0.49272847 0.31969417 -0.09379235 -0.067308615
R> 4  Sepal.Width             <NA> 0.37906736 -0.50824062 0.142810811
0.69139828 -0.25849391 -0.17606099 -0.041908520
5  Species  setosa 0.03170407 -0.32247642  0.184499940
-0.12245506 -0.14348647  0.76017824  0.497502783
6  Species  versicolor 0.04288799  0.04054823 -0.780684855
0.19827972  0.07363250 -0.12354271  0.571881302
7  Species  virginica 0.05018593  0.16796988  0.551546107
-0.07177990  0.08109974 -0.48442099  0.647048040
Warning message:
In u.ore.odmSVD(object) : U matrix is not calculated.
R> d(svd.mod)
   FEATURE_ID VALUE
   1       96.21827
   2       19.07808
   3        7.22704
   4        3.15021
   5        1.88496
   6        1.14747
   7        0.58141
Warning message:
ORE object has no unique key - using random order
R> v(svd.mod)
   ATTRIBUTE_NAME ATTRIBUTE_VALUE        '1'         '2'          '3'
'4'         '5'         '6'          '7'
1   Petal.Length            <NA> 0.51162932  0.65943465 -0.004420703
0.05479795 -0.51969015  0.17392232 -0.005674672
2   Petal.Width            <NA> 0.16745698  0.32071102  0.146484369
0.46553390  0.72685033  0.31962337 -0.021274748
3   Sepal.Length            <NA> 0.74909171 -0.26482593 -0.102057243
-0.49272847  0.31969417 -0.09379235 -0.067308615
4   Sepal.Width            <NA> 0.37906736 -0.50824062  0.142810811
0.69139828 -0.25849391 -0.17606099 -0.041908520
5  Species  setosa 0.03170407 -0.32247642  0.184499940
-0.12245506 -0.14348647  0.76017824  0.497502783
6  Species  versicolor 0.04288799  0.04054823 -0.780684855
0.19827972  0.07363250 -0.12354271  0.571881302
7  Species  virginica 0.05018593  0.16796988  0.551546107
-0.07177990  0.08109974 -0.48442099  0.647048040
Warning message:
ORE object has no unique key - using random order
R> head(predict(svd.mod, IRIS, supplemental.cols = "Id"))
   Id FEATURE_ID
   1 1 0.06161595 -0.1291839 0.02586865 -0.01449182  1.536727e-05 -0.023495349
-0.007998605 2
   2 2 0.05808905 -0.1130876 0.01881265 -0.09294788  3.466226e-02
0.06956913 -0.51162932 0.051195429 2
   3 3 0.05678818 -0.1190959 0.02565027 -0.01950986  8.851560e-04
0.040073030 0.060908867 2
   4 4 0.05667915 -0.1081308 0.02496402 -0.02233741 -5.750222e-02
0.093904181 0.07741713 -0.030648988 2
   5 5 0.06123138 -0.1304597 0.02925687  0.02309694 -3.065834e-02
-0.003629897 2
   6 6 0.06747071 -0.1302726 0.03340671  0.06114966 -9.547838e-03
-0.008210224 -0.081807741 2

R> svd.pmod <- ore.odmSVD(~. - Id, IRIS, 
+ omd.settings = list(odms_partition_columns = 
"Species"))
R> summary(svd.pmod)

$setosa

Call:
ore.odmSVD(formula = ~. - Id, data = IRIS, omd.settings = 
list(odms_partition_columns = "Species"))

Settings:

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>odms.max.partitions</td>
<td>1000</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
</tr>
<tr>
<td>odms.partition.columns</td>
<td>&quot;Species&quot;</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.disable</td>
</tr>
<tr>
<td>prep.auto</td>
<td>ON</td>
</tr>
<tr>
<td>scoring.mode</td>
<td>scoring.svd</td>
</tr>
<tr>
<td>u.matrix.output</td>
<td>u.matrix.disable</td>
</tr>
</tbody>
</table>

d:

<table>
<thead>
<tr>
<th>FEATURE_ID</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.2872290</td>
</tr>
<tr>
<td>2</td>
<td>1.5719162</td>
</tr>
<tr>
<td>3</td>
<td>1.1458732</td>
</tr>
<tr>
<td>4</td>
<td>0.6836692</td>
</tr>
</tbody>
</table>

v:

<table>
<thead>
<tr>
<th>ATTRIBUTE_NAME</th>
<th>ATTRIBUTE_VALUE</th>
<th>'1'</th>
<th>'2'</th>
<th>'3'</th>
<th>'4'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petal.Length</td>
<td>&lt;NA&gt;</td>
<td>0.2334487</td>
<td>0.46456598</td>
<td>0.8317440</td>
<td>-0.19463332</td>
</tr>
<tr>
<td>Sepal.Length</td>
<td>&lt;NA&gt;</td>
<td>0.8010073</td>
<td>0.40303704</td>
<td>-0.4410167</td>
<td>0.03811461</td>
</tr>
</tbody>
</table>

$versicolor

Call:
ore.odmSVD(formula = ~. - Id, data = IRIS, omd.settings = 
list(odms_partition_columns = "Species"))

Settings:

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>odms.max.partitions</td>
<td>1000</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
</tr>
</tbody>
</table>

R> # xyz
R> d(svd.pmod)

<table>
<thead>
<tr>
<th>PARTITION_NAME</th>
<th>FEATURE_ID</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>1</td>
<td>44.2872290</td>
</tr>
<tr>
<td>setosa</td>
<td>2</td>
<td>1.5719162</td>
</tr>
<tr>
<td>setosa</td>
<td>3</td>
<td>1.1458732</td>
</tr>
<tr>
<td>setosa</td>
<td>4</td>
<td>0.6836692</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>versicolor</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>versicolor</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>versicolor</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>versicolor</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>virginica</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>virginica</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>virginica</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>virginica</td>
<td>4</td>
</tr>
</tbody>
</table>

Warning message:
ORE object has no unique key - using random order

```R
R> v(svd.pmod)
PARTITION_NAME ATTRIBUTE_NAME ATTRIBUTE_VALUE
'1' '2' '3' '4'
1 setosa Petal.Length <NA> 0.233487 0.46456598
0.83174398 -0.19463332
2 setosa Petal.Width <NA> 0.0395488 0.04182015
0.19467497 0.97917752
3 setosa Sepal.Length <NA> 0.8010073 0.40303704
-0.44101672 0.03811461
4 setosa Sepal.Width <NA> 0.5498408 -0.78739486
0.27533228 -0.04331888
5 versicolor Petal.Length <NA> 0.5380908 0.49576111
-0.60174021 -0.32029352
6 versicolor Petal.Width <NA> 0.1676394 0.97917752
0.36693207 0.91436795
7 versicolor Sepal.Length <NA> 0.7486029 -0.64738491
0.06943054 0.12516311
8 versicolor Sepal.Width <NA> 0.3492119 0.44774385
0.79492074 -0.21372297
9 virginica Petal.Length <NA> 0.5948985 -0.26368708
0.65157671 -0.38988802
10 virginica Petal.Width <NA> 0.2164036 0.59106806
0.42921836 0.64774960
11 virginica Sepal.Length <NA> 0.7058813 -0.27846153
-0.53436210 0.37235450
12 virginica Sepal.Width <NA> 0.3177999 0.70962445
-0.32507927 -0.53829342
```

Warning message:
ORE object has no unique key - using random order

```R
R> head(predict(svd.pmod, IRIS, supplemental.cols = "Id"))
Id '1' '2' '3' '4' FEATURE_ID
1 1 0.1432539 -0.026487881 -0.071688339 -0.04956008 1
2 2 0.1334289 0.172689424 0.114854368 0.02902893 2
3 3 0.1317675 0.008327214 -0.062409295 -0.02438248 1
4 4 0.1317675 0.008327214 0.114854368 0.02902893 2
5 5 0.1297716 -0.026487881 -0.071688339 -0.04956008 1
6 6 0.1554060 -0.055950655 0.160698708 0.14286095 3
```

Chapter 4
Build Oracle Machine Learning for SQL Models
Build a Support Vector Machine Model

The `ore.odmSVM` function builds an OML4R Support Vector Machine (SVM) model.

SVM is a powerful, state-of-the-art algorithm with strong theoretical foundations based on the Vapnik-Chervonenkis theory. SVM has strong regularization properties. Regularization refers to the generalization of the model to new data.

SVM models have similar functional form to neural networks and radial basis functions, both popular machine learning techniques.

SVM can be used to solve the following problems:

- **Classification**: SVM classification is based on decision planes that define decision boundaries. A decision plane is one that separates between a set of objects having different class memberships. SVM finds the vectors ("support vectors") that define the separators that give the widest separation of classes.

  SVM classification supports both binary and multiclass targets.

- **Regression**: SVM uses an epsilon-insensitive loss function to solve regression problems.

  SVM regression tries to find a continuous function such that the maximum number of data points lie within the epsilon-wide insensitivity tube. Predictions falling within epsilon distance of the true target value are not interpreted as errors.

- **Anomaly Detection**: Anomaly detection identifies identify cases that are unusual within data that is seemingly homogeneous. Anomaly detection is an important tool for detecting fraud, network intrusion, and other rare events that may have great significance but are hard to find.

  Anomaly detection is implemented as one-class SVM classification. An anomaly detection model predicts whether a data point is typical for a given distribution or not.

The `ore.odmSVM` function builds each of these three different types of models. Some arguments apply to classification models only, some to regression models only, and some to anomaly detection models only.

For information on the `ore.odmSVM` function arguments, invoke `help(ore.odmSVM)`.

**Example 4-23 Using the ore.odmSVM Function and Generating a Confusion Matrix**

This example demonstrates the use of SVM classification. The example creates `mtcars` in the database from the R `mtcars` data set, builds a classification model, makes predictions, and finally generates a confusion matrix.

```r
m <- mtcars
m$gear <- as.factor(m$gear)
m$cyl <- as.factor(m$cyl)
m$vs <- as.factor(m.vs)
m$ID <- 1:nrow(m)
mtcars_of <- ore.push(m)
svm.mod <- ore.odmSVM(gear ~ .-ID, mtcars_of, "classification")
summary(svm.mod)
svm.res <- predict (svm.mod, mtcars_of,"gear")
with(svm.res, table(gear, PREDICTION)) # generate confusion matrix
```

```sql
Chapter 4
Build Oracle Machine Learning for SQL Models
4-54
```
Listing for This Example

```R
R> m <- mtcars
R> m$gear <- as.factor(m$gear)
R> m$cyl <- as.factor(m$cyl)
R> m$vs <- as.factor(m$vs)
R> m$ID <- 1:nrow(m)
R> mtcars_of <- ore.push(m)
R>
R> svm.mod <- ore.odmSVM(gear ~ .-ID, mtcars_of, "classification")
R> summary(svm.mod)
Call:
 ore.odmSVM(formula = gear ~ . - ID, data = mtcars_of, type = "classification")

Settings:

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>prep.auto</td>
<td>on</td>
</tr>
<tr>
<td>active.learning</td>
<td>a1.enable</td>
</tr>
<tr>
<td>complexity.factor</td>
<td>0.385498</td>
</tr>
<tr>
<td>conv.tolerance</td>
<td>1e-04</td>
</tr>
<tr>
<td>kernel.cache.size</td>
<td>50000000</td>
</tr>
<tr>
<td>kernel.function</td>
<td>gaussian</td>
</tr>
<tr>
<td>std.dev</td>
<td>1.072341</td>
</tr>
</tbody>
</table>

Coefficients:
[1] No coefficients with gaussian kernel
R> svm.res <- predict(svm.mod, mtcars_of, "gear")
R> with(svm.res, table(gear, PREDICTION)) # generate confusion matrix
PREDICTION
gear 3 4
 3 12 3
 4 0 12
 5 2 3
```

Example 4-24 Using the ore.odmSVM Function and Building a Regression Model

This example demonstrates SVM regression. The example creates a data frame, pushes it to a table, and then builds a regression model; note that `ore.odmSVM` specifies a linear kernel.

```R
x <- seq(0.1, 5, by = 0.02)
y <- log(x) + rnorm(x, sd = 0.2)
dat <- ore.push(data.frame(x=x, y=y))

Build model with linear kernel
svm.mod <- ore.odmSVM(y~x,dat,"regression", kernel.function="linear")
summary(svm.mod)
coef(svm.mod)
svm.res <- predict(svm.mod,dat, supplemental.cols="x")
head(svm.res,6)
```

Listing for This Example

```R
R> x <- seq(0.1, 5, by = 0.02)
R> y <- log(x) + rnorm(x, sd = 0.2)
R> dat <- ore.push(data.frame(x=x, y=y))
R>
R> # Build model with linear kernel
R> svm.mod <- ore.odmSVM(y~x,dat,"regression", kernel.function="linear")
R> summary(svm.mod)
Call:
 ore.odmSVM(formula = y ~ x, data = dat, type = "regression",
```
kernel.function = "linear")

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>prep.auto</td>
</tr>
<tr>
<td>active.learning</td>
</tr>
<tr>
<td>complexity.factor</td>
</tr>
<tr>
<td>conv.tolerance</td>
</tr>
<tr>
<td>epsilon</td>
</tr>
<tr>
<td>kernel.function</td>
</tr>
</tbody>
</table>

Residuals:

<table>
<thead>
<tr>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.79130</td>
<td>-0.28210</td>
<td>-0.05592</td>
<td>-0.01420</td>
<td>0.21460</td>
<td>1.58400</td>
</tr>
</tbody>
</table>

Coefficients:

<table>
<thead>
<tr>
<th>variable</th>
<th>x</th>
<th>0.6637951</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 {Intercept}</td>
<td></td>
<td>0.3802170</td>
</tr>
</tbody>
</table>

R> coef(svm.mod)

<table>
<thead>
<tr>
<th>variable</th>
<th>value</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x</td>
<td>0.6637951</td>
<td></td>
</tr>
<tr>
<td>2 {Intercept}</td>
<td></td>
<td>0.3802170</td>
</tr>
</tbody>
</table>

R> svm.res <- predict(svm.mod, dat, supplemental.cols="x")

Example 4-25    Using the ore.odmSVM Function and Building an Anomaly Detection Model

This example demonstrates SVN anomaly detection. It uses mtcars_of created in the classification example and builds an anomaly detection model.

svm.mod  <- ore.odmSVM(~ .-ID, mtcars_of, "anomaly.detection")
summary(svm.mod)
svm.res  <- predict(svm.mod, mtcars_of, "ID")
head(svm.res)
table(svm.res$PREDICTION)

Listing for This Example

R> svm.mod  <- ore.odmSVM(~ .-ID, mtcars_of, "anomaly.detection")
R> summary(svm.mod)

Call:
ore.odmSVM(formula = ~. - ID, data = mtcars_of, type = "anomaly.detection")

Settings:

<table>
<thead>
<tr>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>prep.auto</td>
</tr>
<tr>
<td>active.learning</td>
</tr>
<tr>
<td>conv.tolerance</td>
</tr>
<tr>
<td>kernel.cache.size</td>
</tr>
<tr>
<td>kernel.function</td>
</tr>
</tbody>
</table>
Build a Partitioned Model

A partitioned model is an ensemble model that consists of multiple sub-models, one for each partition of the data.

A partitioned model may achieve better accuracy through multiple targeted models that are managed and used as one. A partitioned model can simplify scoring by allowing you to reference the top-level model only. The proper sub-model is chosen by the system based on the values of the partitioned column or columns for each row of data to be scored.

To create a partitioned OML4SQL model, use the `odm.setting` argument with `ODMS_PARTITION_COLUMNS` as the name and with the names of the columns by which to partition the input data as the value. The `OREdm` function returns a model with a sub-model for each partition. The partitions are based on the unique values found in the columns.

The `partitions` function returns an `ore.frame` that lists each partition of the specified model object and the associated partition column values of the model. Partition names are system-determined. The function returns `NULL` for a non-partitioned model.

Example 4-26   Create a Partitioned Model

This example creates a partitioned Support Vector Machine classification model. It uses the Wine Quality data set from the University of California, Irvine Machine Learning Repository.

```r
Download the wine data set and create the data table.
white.wine <- read.csv(white.url, header = TRUE, sep = ";")
white.wine$color <- "white"

red.wine <- read.csv(red.url, header = TRUE, sep = ";")
red.wine$color <- "red"

dat <- rbind(white.wine, red.wine)
```

# Drop the WINE table if it exists.
ore.drop(table="WINE")
ore.create(dat, table="WINE")

# Assign row names to enable row indexing for train and test samples.
row.names(WINE) <- WINE$color

# Enable reproducible results.
set.seed(seed=6218945)

n.rows <- nrow(WINE)

# Train and test sampling.
random.sample <- sample(1:n.rows, ceiling(n.rows/2))

# Sample in-database using row indexing.
WINE.train <- WINE[random.sample,]
WINE.test <- WINE[setdiff(1:n.rows,random.sample),]

# Build a Support Vector Machine classification model
# on the training data set, using both red and white wine.
mod.svm <- ore.odmSVM(quality~.-pH-fixed.acidity, WINE.train,
"classification", kernel.function="linear")

# Predict wine quality on the test data set.
pred.svm <- predict (mod.svm, WINE.test,"quality")

# View the probability of each class and prediction.
head(pred.svm,3)

# Generate a confusion matrix. Note that 3 and 8 are not predicted.
with(pred.svm, table(quality, PREDICTION, dnn = c("Actual","Predicted")))

# Build a partitioned SVM model based on wine color.
# Specify the partitioning column with the odm.settings argument.
mod.svm2 <- ore.odmSVM(quality~.-pH-fixed.acidity, WINE.train,
"classification", kernel.function="linear",
odm.settings=list(odms_partition_columns = "color"))

# Predict wine quality on the test data set.
pred.svm2 <- predict (mod.svm2, WINE.test, "quality")

# View the probability of each class and prediction.
head(pred.svm2,3)

# Generate a confusion matrix. Note that 3 and 4 are not predicted.
with(pred.svm2, table(quality, PREDICTION, dnn = c("Actual","Predicted")))

partitions(mod.svm2)
summary(mod.svm2["red"])
Listing for This Example

```r
Download the wine data set and create the data table.
white.wine <- read.csv(white.url, header = TRUE, sep = ";")
white.wine$color <- "white"

red.wine <- read.csv(red.url, header = TRUE, sep = ";")
red.wine$color <- "red"

dat <- rbind(white.wine, red.wine)

Drop the WINE table if it exists.
ore.drop(table="WINE")
Warning message:
Table WINE does not exist.

ore.create(dat, table="WINE")

Assign row names to enable row indexing for train and test samples.
row.names(WINE) <- WINE$color

Enable reproducible results.
set.seed(seed=6218945)

n.rows <- nrow(WINE)

Train and test sampling.
random.sample <- sample(1:n.rows, ceiling(n.rows/2))

Sample in-database using row indexing.
WINE.train <- WINE[random.sample,]
WINE.test <- WINE[setdiff(1:n.rows,random.sample),]

Build a Support Vector Machine classification model
on the training data set, using both red and white wine.
mod.svm <- ore.odmSVM(quality~.-pH-fixed.acidity, WINE.train,
 "classification",kernel.function="linear")

Predict wine quality on the test data set.
pred.svm <- predict (mod.svm, WINE.test,"quality")

View the probability of each class and prediction.
head(pred.svm,3)

'3' '4' '5' '6' '7' '8' '9'
red 0.04957242 0.1345280 0.27779399 0.1345281 0.1345280 0.1345275 0.1345220
red.1 0.04301663 0.1228311 0.34283345 0.1228313 0.1228311 0.1228307 0.1228257
red.2 0.04473419 0.1713883 0.09832961 0.1713891 0.1713890 0.1713886 0.1713812

quality PREDICTION
red 4 5
red.1 5 5
red.2 7 6
```
> # Generate a confusion matrix. Note that 3 and 4 are not predicted.
> with(pred.svm, table(quality, PREDICTION, dnn =
> c("Actual", "Predicted")))

## Predicted

<table>
<thead>
<tr>
<th>Actual</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>85</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>927</td>
<td>152</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>779</td>
<td>555</td>
<td>63</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>121</td>
<td>316</td>
<td>81</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>66</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

> partitions(mod.svm2)

## PARTITION_NAME color

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>white</td>
<td>white</td>
</tr>
</tbody>
</table>

> summary(mod.svm2["red"])

## $red

Call:  
ore.odmSVM(formula = quality ~ . - pH - fixed.acidity, data = WINE.train,  
type = "classification", kernel.function = "linear", odm.settings  
= list(odms_partition_columns = "color"))

## Settings:

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clas.weights.balanced</td>
<td>OFF</td>
</tr>
<tr>
<td>odms.details</td>
<td>odms.enable</td>
</tr>
<tr>
<td>odms.max.partitions</td>
<td>1000</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto &quot;color&quot;</td>
</tr>
<tr>
<td>odms.partition.columns</td>
<td>&quot;color&quot;</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.enable</td>
</tr>
<tr>
<td>prep.auto</td>
<td>ON</td>
</tr>
<tr>
<td>active.learning</td>
<td>on.enable</td>
</tr>
<tr>
<td>conv.tolerance</td>
<td>le-04</td>
</tr>
<tr>
<td>kernel.function</td>
<td>linear</td>
</tr>
</tbody>
</table>

## Coefficients:

<table>
<thead>
<tr>
<th>PARTITION_NAME</th>
<th>class</th>
<th>variable</th>
<th>value</th>
<th>estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>red</td>
<td>(Intercept)</td>
<td>-1.347392e+01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>red</td>
<td>alcohol</td>
<td>7.245737e-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>red</td>
<td>chlorides</td>
<td>1.761946e+00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>red</td>
<td>citric.acid</td>
<td>-3.276716e+00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>red</td>
<td>density</td>
<td>2.449906e+00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>red</td>
<td>free.sulfur.dioxide</td>
<td>-6.035430e-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>red</td>
<td>residual.sugar</td>
<td>9.097631e-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>red</td>
<td>sulphates</td>
<td>1.240524e-04</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>red</td>
<td>total.sulfur.dioxide</td>
<td>-2.467554e+00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>red</td>
<td>volatile.acidity</td>
<td>1.300470e+00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>red</td>
<td>(Intercept)</td>
<td>-1.000002e+00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>red</td>
<td>alcohol</td>
<td>-7.920188e-07</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>red</td>
<td>chlorides</td>
<td>-2.589198e-08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>red</td>
<td>citric.acid</td>
<td>9.340296e-08</td>
<td></td>
</tr>
</tbody>
</table>
15  red  4  density  -5.418190e-07
16  red  4  free.sulfur.dioxide  -6.981268e-08
17  red  4  residual.sugar  3.389558e-07
18  red  4  sulphates  1.417324e-07
19  red  4  total.sulfur.dioxide  -3.113900e-07
20  red  4  volatile.acidity  4.928625e-07
21  red  5  (Intercept)  -3.151406e-01
22  red  5  alcohol  -9.692192e-01
23  red  5  chlorides  3.690034e-02
24  red  5  citric.acid  2.258823e-01
25  red  5  density  -1.770474e-01
26  red  5  free.sulfur.dioxide  -1.289540e-01
27  red  5  residual.sugar  7.521771e-04
28  red  5  sulphates  -3.596548e-01
29  red  5  total.sulfur.dioxide  5.688280e-01
30  red  5  volatile.acidity  3.005168e-01
31  red  6  (Intercept)  -9.999994e-01
32  red  6  alcohol  8.807703e-07
33  red  6  chlorides  6.871310e-08
34  red  6  citric.acid  -4.525750e-07
35  red  6  density  5.786923e-07
36  red  6  free.sulfur.dioxide  3.856018e-07
37  red  6  residual.sugar  -4.281795e-07
38  red  6  sulphates  1.036468e-07
39  red  6  total.sulfur.dioxide  -4.287512e-07
40  red  6  volatile.acidity  -4.426151e-07
41  red  7  (Intercept)  -1.000000e+00
42  red  7  alcohol  1.761665e-07
43  red  7  chlorides  -3.583316e-08
44  red  7  citric.acid  -4.837739e-08
45  red  7  density  2.169500e-08
46  red  7  free.sulfur.dioxide  4.800717e-08
47  red  7  residual.sugar  1.909498e-08
48  red  7  sulphates  1.062205e-07
49  red  7  total.sulfur.dioxide  -2.339108e-07
50  red  7  volatile.acidity  -1.539326e-07
51  red  8  (Intercept)  -1.000000e+00
52  red  8  alcohol  7.089889e-08
53  red  8  chlorides  -8.566726e-09
54  red  8  citric.acid  2.769301e-08
55  red  8  density  -3.852321e-08
56  red  8  free.sulfur.dioxide  -1.302056e-08
57  red  8  residual.sugar  4.847947e-09
58  red  8  sulphates  1.276461e-08
59  red  8  total.sulfur.dioxide  -5.484427e-08
60  red  8  volatile.acidity  2.959182e-08

Related Topics

- **Specify Model Settings**

  Functions in the `OREdm` package have an argument that specifies settings for an Oracle Machine Learning for SQL model and some have an argument for setting text processing parameters.
Build a Text Processing Model

A text processing model uses `ctx.settings` arguments to specify Oracle Text attribute settings.

**Example 4-27  Building a Text Processing Model**

This example builds an `ore.odmKMeans` model that processes text. It uses the `odm.settings` and `ctx.settings` arguments. The figure following the example shows the output of the `histogram(km.mod1)` function.

```r
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")

X <- ore.push(data.frame(x))
km.mod1 <- NULL
km.mod1 <- ore.odmKMeans(~., X, num.centers = 2)
km.mod1
summary(km.mod1)
rules(km.mod1)
clusterhists(km.mod1)
histogram(km.mod1)

km.res1 <- predict(km.mod1, X, type="class", supplemental.cols=c("x","y"))
head(km.res1,3)
km.res1.local <- ore.pull(km.res1)
plot(data.frame(x = km.res1.local$x,
 y = km.res1.local$y),
 col = km.res1.local$CLUSTER_ID)
points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex=2)

head(predict(km.mod1, X))
head(predict(km.mod1, X, type=c("class","raw"), supplemental.cols=c("x","y ")),3)
head(predict(km.mod1, X, type="raw", supplemental.cols=c("x","y")),3)

Text processing with ore.odmKMeans.
title <- c("Aids in Africa: Planning for a long war",
 "Mars rover maneuvers for rim shot",
 "Mars express confirms presence of water at Mars south pole",
 "NASA announces major Mars rover finding",
 "Drug access, Asia threat in focus at AIDS summit",
 "NASA Mars Odyssey THEMIS image: typical crater",
 "Road blocks for AIDS")

Text contents in a character column.
KM_TEXT <- ore.push(data.frame(CUST_ID = seq(length(title)),
 RESPONSE = response, TITLE = title))

Create a text policy (CTXSYS.CTX_DDL privilege is required).
```
ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")

# Specify POLICY_NAME, MIN/Documents, MAX_FEATURES and
text column attributes.
km.mod <- ore.odmKMeans(~ TITLE, data = KM_TEXT, num.centers = 2L,
  odm.settings = list(ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
    ODMS_TEXT_MIN/Documents = 1,
    ODMS_TEXT_MAX_FEATURES = 3,
    kmns_distance = "dbms data mining.kmns_cosine",
    kmns_details = "kmns_details_all"),
  ctx.settings = list(TITLE = "TEXT(TOKEN_TYPE:STEM)"))
summary(km.mod)
settings(km.mod)
print(predict(km.mod, KM_TEXT, supplemental.cols = "RESPONSE"), digits = 3L)

ore.exec("Begin ctx_ddl.drop_policy('ESA_TXTPOL'); End;")

Listing for This Example

R> x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
  +         matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
R> colnames(x) <- c("x", "y")
R>
R> X <- ore.push (data.frame(x))
R> km.mod1 <- NULL
R> km.mod1 <- ore.odmKMeans(~., X, num.centers = 2)
R> km.mod1

Call:
ore.odmKMeans(formula = ~ ., data = X, num.centers = 2)

Settings:

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus.num.clusters</td>
<td>2</td>
</tr>
<tr>
<td>block.growth</td>
<td>2</td>
</tr>
<tr>
<td>conv.tolerance</td>
<td>0.01</td>
</tr>
<tr>
<td>details</td>
<td>details.all</td>
</tr>
<tr>
<td>distance</td>
<td>euclidean</td>
</tr>
<tr>
<td>iterations</td>
<td>3</td>
</tr>
<tr>
<td>min.pct.attr.support</td>
<td>0.1</td>
</tr>
<tr>
<td>num.bins</td>
<td>10</td>
</tr>
<tr>
<td>random.seed</td>
<td>0</td>
</tr>
<tr>
<td>split.criterion</td>
<td>variance</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.disable</td>
</tr>
<tr>
<td>prep.auto</td>
<td>ON</td>
</tr>
</tbody>
</table>

R> summary(km.mod1)

Call:
ore.odmKMeans(formula = ~ ., data = X, num.centers = 2)

Settings:

<table>
<thead>
<tr>
<th></th>
<th>value</th>
</tr>
</thead>
</table>
clus.num.clusters = 2
block.growth = 2
conv.tolerance = 0.01
details = details.all
distance = euclidean
iterations = 3
min.pct.attr.support = 0.1
num.bins = 10
random.seed = 0
split.criterion = variance
odms.missing.value.treatment = odms.missing.value.auto
odms.sampling = odms.sampling.disable
prep.auto = ON

Centers:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.000</td>
<td>0.07638266</td>
</tr>
<tr>
<td>0.98493306</td>
<td>1.00864399</td>
</tr>
</tbody>
</table>

R> rules(km.mod1)

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>rhs.support</th>
<th>rhs.conf</th>
<th>lhr.support</th>
<th>lhs.conf</th>
<th>lhs.var.support</th>
<th>lhs.var.conf</th>
<th>lhs.var.conf</th>
<th>predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>92</td>
<td>0.86</td>
<td></td>
<td></td>
<td>x &lt;= 1.2209</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>92</td>
<td>0.86</td>
<td></td>
<td></td>
<td>x &gt;= -.6188</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>86</td>
<td>0.86</td>
<td></td>
<td></td>
<td>y &lt;= 1.1653</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>100</td>
<td>1.0</td>
<td>86</td>
<td>0.86</td>
<td></td>
<td></td>
<td>y &gt; -.3053</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>50</td>
<td>0.5</td>
<td>48</td>
<td>0.96</td>
<td></td>
<td></td>
<td>x &lt;= .4324</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>50</td>
<td>0.5</td>
<td>48</td>
<td>0.96</td>
<td></td>
<td></td>
<td>x &gt;= -.6188</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>50</td>
<td>0.5</td>
<td>48</td>
<td>0.96</td>
<td></td>
<td></td>
<td>y &lt;= .5771</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>50</td>
<td>0.5</td>
<td>48</td>
<td>0.96</td>
<td></td>
<td></td>
<td>y &gt; -.5995</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>50</td>
<td>0.5</td>
<td>49</td>
<td>0.98</td>
<td></td>
<td></td>
<td>x &lt;= 1.7465</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>50</td>
<td>0.5</td>
<td>49</td>
<td>0.98</td>
<td></td>
<td></td>
<td>x &gt; .4324</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>50</td>
<td>0.5</td>
<td>50</td>
<td>0.98</td>
<td></td>
<td></td>
<td>y &lt;= 1.7536</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>50</td>
<td>0.5</td>
<td>50</td>
<td>0.98</td>
<td></td>
<td></td>
<td>y &gt; .2829</td>
</tr>
</tbody>
</table>

R> clusterhists(km.mod1)

<table>
<thead>
<tr>
<th>cluster.id</th>
<th>variable</th>
<th>bin.id</th>
<th>lower.bound</th>
<th>upper.bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>1</td>
<td>-0.61884662</td>
<td>-0.35602715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-0.35602715</td>
<td>-0.09320769</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-0.09320769</td>
<td>0.16961178</td>
</tr>
</tbody>
</table>
R> histogram(km.mod1)
R>
R> km.res1 <- predict(km.mod1, X, type="class", supplemental.cols =
c("x","y"))
R> head(km.res1, 3)
x           y CLUSTER_ID
1 -0.43646407 0.26201831          2
4 -0.35602715 -0.09320769          0
6 -0.09320769  0.16961178          0

Chapter 4
Build Oracle Machine Learning for SQL Models

4-66
2 -0.02797831 0.07319952          2
3  0.11998373 -0.08638716          2
R> km.res1.local <- ore.pull(km.res1)
R> plot(data.frame(x = km.res1.local$x,
+                  y = km.res1.local$y),
+                  col = km.res1.local$CLUSTER_ID)
R>  points(km.mod1$centers2, col = rownames(km.mod1$centers2), pch = 8, cex = 2)
R>
R>  head(predict(km.mod1, X))
'2'          '3' CLUSTER_ID
1 0.9992236 0.0007763706          2
2 0.9971310 0.0028690375          2
3 0.9974216 0.0025783939          2
4 0.9997335 0.0002665114          2
5 0.9917773 0.0082226599          2
6 0.9771667 0.0228333398          2
R>
R>  head(predict(km.mod1,X,type=c("class","raw"),supplemental.cols=c("x","y")),3)
'2'          '3'           x           y CLUSTER_ID
1 0.9992236 0.0007763706 -0.43646407  0.26201831          2
2 0.9971310 0.0028690375 -0.02797831  0.07319952          2
3 0.9974216 0.0025783939  0.11998373 -0.08638716          2
R> head(predict(km.mod1,X,type="raw",supplemental.cols=c("x","y")),3)
  x       y  '2'       '3'
1 -0.43646407  0.26201831 0.9992236 0.0007763706
2 -0.02797831  0.07319952 0.9971310 0.0028690375
3  0.11998373 -0.08638716 0.9974216 0.0025783939
R>
R> # Text processing with ore.odmKMeans.
R> title <- c('Aids in Africa: Planning for a long war',
+     'Mars rover maneuvers for rim shot',
+     'Mars express confirms presence of water at Mars south pole',
+     'NASA announces major Mars rover finding',
+     'Drug access, Asia threat in focus at AIDS summit',
+     'NASA Mars Odyssey THEMIS image: typical crater',
+     'Road blocks for Aids')
R>  response <- c('Aids', 'Mars', 'Mars', 'Mars', 'Aids', 'Mars', 'Aids')
R>
R> # Text contents in a character column.
R> KM_TEXT <- ore.push(data.frame(CUST_ID = seq(length(title)),
+                             RESPONSE = response, TITLE = title))
R>
R> # Create a text policy (CTXSYS.CTX_DDL privilege is required).
R> ore.exec("Begin ctx_ddl.create_policy('ESA_TXTPOL'); End;")
R>
R> # Specify POLICY_NAME, MIN_DOCUMENTS, MAX_FEATURES and
R> # text column attributes.
R> km.mod <- ore.odmKMeans(~ TITLE, data = KM_TEXT, num.centers = 2L,
+    odm.settings = list(ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
+                        ODMS_TEXT_MIN_DOCUMENTS = 1,
+                        ODMS_TEXT_MAX_FEATURES = 3,
+                        kmns_distance = "dbms_data_mining.kmns_cosine",
+                        kmns_details = "kmns_details_all"),
+    ctx.settings = list(TITLE="TEXT(TOKEN_TYPE:STEM)"))
R> summary(km.mod)

Call:
o.re.odmKMeans(formula = ~TITLE, data = KM_TEXT, num.centers = 2L,
   odm.settings = list(ODMS_TEXT_POLICY_NAME = "ESA_TXTPOL",
       ODMS_TEXT_MIN_DOCUMENTS = 1, ODMS_TEXT_MAX_FEATURES = 3,
       kmns_distance = "dbms_data_mining.kmns_cosine",
       kmns_details = "kmns_details_all"),
   ctx.settings = list(TITLE = "TEXT(TOKEN_TYPE:STEM)"))

Settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>clus.num.clusters</td>
<td>2</td>
</tr>
<tr>
<td>block.growth</td>
<td>2</td>
</tr>
<tr>
<td>conv.tolerance</td>
<td>0.01</td>
</tr>
<tr>
<td>details</td>
<td>details.all</td>
</tr>
<tr>
<td>distance</td>
<td>cosine</td>
</tr>
<tr>
<td>iterations</td>
<td>3</td>
</tr>
<tr>
<td>min.pct.attr.support</td>
<td>0.1</td>
</tr>
<tr>
<td>num.bins</td>
<td>10</td>
</tr>
<tr>
<td>random.seed</td>
<td>0</td>
</tr>
<tr>
<td>split.criterion</td>
<td>variance</td>
</tr>
<tr>
<td>odms.missing.value.treatment</td>
<td>odms.missing.value.auto</td>
</tr>
<tr>
<td>odms.sampling</td>
<td>odms.sampling.disable</td>
</tr>
<tr>
<td>odms.text.max.features</td>
<td>3</td>
</tr>
<tr>
<td>odms.text.min.documents</td>
<td>1</td>
</tr>
<tr>
<td>odms.text.policy.name</td>
<td>ESA_TXTPOL</td>
</tr>
<tr>
<td>prep.auto</td>
<td>ON</td>
</tr>
</tbody>
</table>

Centers:

TITLE.MARS TITLE.NASA TITLE.ROVER TITLE.AIDS
2  0.5292307  0.7936566  0.7936566         NA
3         NA         NA          NA          1

R> settings(km.mod)

<table>
<thead>
<tr>
<th>SETTING_NAME</th>
<th>SETTING_VALUE</th>
<th>SETTING_TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGO_NAME</td>
<td>ALGO_KMEANS</td>
<td>INPUT</td>
</tr>
<tr>
<td>CLUS_NUM_CLUSTERS</td>
<td>2</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_BLOCK_GROWTH</td>
<td>2</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_CONV_TOLERANCE</td>
<td>0.01</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_DETAILS</td>
<td>KMNS_DETAILS_ALL</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_DISTANCE</td>
<td>KMNS_COSINE</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_ITERATIONS</td>
<td>3</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_MIN_PCT_ATTR_SUPPORT</td>
<td>0.1</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_NUM_BINS</td>
<td>10</td>
<td>INPUT</td>
</tr>
<tr>
<td>KMNS_RANDOM_SEED</td>
<td>0</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>KMNS_SPLIT_CRITERION</td>
<td>KMNS_VARIANCE</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMSS_MISSING_VALUE_TREATMENT</td>
<td>ODMSS_MISSING_VALUE_AUTO</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>ODMSS_SAMPLING</td>
<td>ODMSS_SAMPLING_DISABLE</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>ODMSS_TEXT_MAX_FEATURES</td>
<td>3</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMSS_TEXT_MIN_DOCUMENTS</td>
<td>1</td>
<td>INPUT</td>
</tr>
<tr>
<td>ODMSS_TEXT_POLICY_NAME</td>
<td>ESA_TXTPOL</td>
<td>INPUT</td>
</tr>
<tr>
<td>PREP_AUTO</td>
<td>ON</td>
<td>INPUT</td>
</tr>
</tbody>
</table>

R> print(predict(km.mod, KM_TEXT, supplemental.cols = "RESPONSE"),
   digits = 3L)

'2'  '3' RESPONSE CLUSTER_ID
<table>
<thead>
<tr>
<th></th>
<th>0.0213</th>
<th>0.9787</th>
<th>Aids</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.9463</td>
<td>0.0537</td>
<td>Mars</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.9325</td>
<td>0.0675</td>
<td>Mars</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.9691</td>
<td>0.0309</td>
<td>Mars</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0.0213</td>
<td>0.9787</td>
<td>Aids</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0.9463</td>
<td>0.0537</td>
<td>Mars</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0.0213</td>
<td>0.9787</td>
<td>Aids</td>
<td>3</td>
</tr>
</tbody>
</table>

```r
R> ore.exec("Begin ctx_ddl.drop_policy('ESA_TXTPOL'); End;")
```

**Figure 4-5** Cluster Histogram for km.mod1

![Cluster Histograms](image)

**Related Topics**

- **Specify Model Settings**
  Functions in the `OREdm` package have an argument that specifies settings for an Oracle Machine Learning for SQL model and some have an argument for setting text processing parameters.

- **Build an Explicit Semantic Analysis Model**
  The `ore.odmESA` function creates a model that uses the OML4SQL Explicit Semantic Analysis (ESA) algorithm.

**Cross-Validate Models**

Cross-validation is a model improvement technique that avoids the limitations of a single train-and-test experiment by building and testing multiple models through repeated sampling from the available data.

Predictive models are usually built on given data and verified on held-aside or unseen data. The purpose of cross-validation is to offer better insight into how well the model would
generalize to new data and to avoid over-fitting and deriving wrong conclusions from misleading peculiarities of the seen data.

The `ore.CV` utility R function uses Oracle Machine Learning for R for performing cross-validation of regression and classification models.

For a select set of algorithms and cases, the function `ore.CV` performs cross-validation for models that were generated by OML4R regression and classification functions using in-database data.

The `ore.CV` function works with models generated by the following OML4R functions:

- `ore.lm`
- `ore.stepwise`
- `ore.glm`
- `ore.neural`
- `ore.odmDT`
- `ore.odmGLM`
- `ore.odmNB`
- `ore.odmSVM`

You can also use `ore.CV` to cross-validate models generated with some R regression functions through OML4R embedded R execution. Those R functions are the following:

- `lm`
- `glm`
- `svm`

To download the function `ore.CV`, and for more information on and examples of using `ore.CV`, see the blog post:

Model cross-validation with `ore.CV()`
Prediction With R Models

Use the Oracle Machine Learning for R function `ore.predict` on an OML4R model to predict future behavior.

About the `ore.predict` Function

Predictive models allow you to predict future behavior based on past behavior.

After you build a model, you use it to score new data, that is, to make predictions.

R allows you to build many kinds of models. When you score data to predict new results using an R model, the data to score must be in an R `data.frame`. With the `ore.predict` function, you can use an R model to score database-resident data in an `ore.frame` object.

The `ore.predict` function provides the fastest way to operationalize R-based models for scoring in Oracle Database. The function has no dependencies on PMML or any other plugins.

Some advantages of using the `ore.predict` function to score data in the database are the following:

- Uses R-generated models to score in-database data. The data to score is in an `ore.frame` object.
- Maximizes the use of Oracle Database as a compute engine. The database provides a commercial grade, high performance, scalable scoring engine.
- Simplifies application workflow. You can go from a model to SQL scoring in one step.

The `ore.predict` function is a generic function. It has the following usage:

```r
ore.predict(object, newdata, ...)
```

The value of the `object` argument is one of the model objects listed in Table 5-1. The value of the `newdata` argument is an `ore.frame` object that contains the data to score. The `ore.predict` function has methods for use with specific R model classes. The `...` argument represents the various additional arguments that are accepted by the different methods.

Function `ore.predict` has methods that support the model objects listed in the table.

### Table 5-1  Models Supported by the `ore.predict` Function

<table>
<thead>
<tr>
<th>Class of Model</th>
<th>Description of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>glm</td>
<td>Generalized Linear Model</td>
</tr>
<tr>
<td>kmeans</td>
<td>k-Means clustering model</td>
</tr>
<tr>
<td>lm</td>
<td>Linear regression model</td>
</tr>
</tbody>
</table>
Table 5-1  (Cont.) Models Supported by the ore.predict Function

<table>
<thead>
<tr>
<th>Class of Model</th>
<th>Description of Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>A matrix with no more than 1000 rows, for use in an hclust</td>
</tr>
<tr>
<td></td>
<td>hierarchical clustering model</td>
</tr>
<tr>
<td>multinom</td>
<td>Multinomial log-linear model</td>
</tr>
<tr>
<td>nnet</td>
<td>Neural Network model</td>
</tr>
<tr>
<td>ore.model</td>
<td>An OML4R model from the OREModels package</td>
</tr>
<tr>
<td>prcomp</td>
<td>Principal components analysis on a matrix</td>
</tr>
<tr>
<td>princomp</td>
<td>Principal components analysis on a numeric matrix</td>
</tr>
<tr>
<td>rpart</td>
<td>Recursive partitioning and regression tree model</td>
</tr>
</tbody>
</table>

For the function signatures of the ore.predict methods, invoke the help function on the following, as in help("ore.predict-kmeans"):

- ore.predict-glm
- ore.predict-kmeans
- ore.predict-lm
- ore.predict-matrix
- ore.predict-multinom
- ore.predict-nnet
- ore.predict-ore.model
- ore.predict-prcomp
- ore.predict-princomp
- ore.predict-rpart

Use the ore.predict Function

These examples demonstrate the use of the ore.predict function.

Example 5-1  Using the ore.predict Function on a Linear Regression Model

This example builds a linear regression model, irisModel, using the lm function on the iris data.frame. It pushes the data set to the database as the temporary table IRIS and the corresponding ore.frame proxy, IRIS. The example scores the model by invoking ore.predict on it and then combines the prediction with IRIS ore.frame object. Finally, it displays the first six rows of the resulting object.

IRISModel <- lm(Sepal.Length ~ ., data = iris)
IRIS <- ore.push(iris)
IRIS_pred <- ore.predict(IRISModel, IRIS, se.fit = TRUE, interval = "prediction")
IRIS <- cbind(IRIS, IRIS_pred)
head(IRIS)
Example 5-2 Using the ore.predict Function on a Generalized Linear Regression Model

This example builds a generalized linear model using the infert data set and then invokes the ore.predict function on the model.

```r
infertModel <-
 glm(case ~ age + parity + education + spontaneous + induced,
 data = infert, family = binomial())
INFERT <- ore.push(infert)
INFERTpred <- ore.predict(infertModel, INFERT, type = "response",
 se.fit = TRUE)
INFERT <- cbind(INFERT, INFERTpred)
head(INFERT)
```

Listing for This Example

```r
infertModel <-
 glm(case ~ age + parity + education + spontaneous + induced,
 data = infert, family = binomial())
INFERT <- ore.push(infert)
INFERTpred <- ore.predict(infertModel, INFERT, type = "response",
 se.fit = TRUE)
INFERT <- cbind(INFERT, INFERTpred)
```
Example 5-3 Using the ore.predict Function on an ore.model Model

This example pushes the iris data set to the database as the temporary table IRIS and the corresponding ore.frame proxy, IRIS. The example builds a linear regression model, IRISModel2, using the ore.lm function. It scores the model and adds a column to IRIS.

IRIS <- ore.push(iris)
IRISModel2 <- ore.lm(Sepal.Length ~ ., data = IRIS)
IRIS$PRED <- ore.predict(IRISModel2, IRIS)
head(IRIS, 3)

Listing for This Example

R> IRIS <- ore.push(iris)
R> IRISModel2 <- ore.lm(Sepal.Length ~ ., data = IRIS)
R> IRIS$PRED <- ore.predict(IRISModel2, IRIS)
R> head(IRIS, 3)
Use Oracle Machine Learning for R Embedded R Execution

Embedded R execution in OML4R enables you to invoke R scripts in R sessions that run on the Oracle Database server.

These topics discuss embedded R execution:

About Oracle Machine Learning for R Embedded R Execution

In OML4R, embedded R execution is the ability to run R scripts in R engines that are dynamically started and managed by the database.

You can store R scripts in the OML4R script repository and to invoke such scripts with embedded R functions. When invoked, a script executes in one or more R engines that run on the database server. OML4R provides both an R interface and a SQL interface for embedded R execution. From the same R script you can get structured data, an XML representation of R objects and images, and even PNG images through a BLOB column in a database table.

The following topics describe embedded R execution:

Benefits of Embedded R Execution

Embedded R execution has the following benefits:

- Eliminates moving data from the Oracle Database server to your local R session. As well as being more secure, the transfer of database data between Oracle Database and an internal R engine is much faster than to a separate client R engine.
- Uses the database server to start, manage, and control the execution of R scripts in R engines running on the server.
- Leverages the memory and processing power of the database server machine for R engine execution, which provides better scalability and performance.
- Enables data-parallel and task-parallel execution of user-defined R functions that correspond to special cases of Hadoop Map-Reduce jobs.
- Provides parallel simulations capability.
- Allows the use of open source CRAN packages in R scripts running on the database server.
- Provides the ability to develop and operationalize comprehensive scripts for analytical applications in a single step, without leaving the R environment.

You can directly integrate R scripts used in exploratory analysis into application tasks. You can also immediately invoke R scripts in production to drastically reduce time to market by eliminating porting and enabling instantaneous updates of changes to application code.
• Executing R scripts from SQL enables integration of R script results with Oracle Business Intelligence Enterprise Edition (OBIEE), Oracle BI Publisher, and other SQL-enabled tools for structured data, R objects, and images.

APIs for Embedded R Execution

Oracle Machine Learning for R provides R and SQL application programming interfaces for embedded R execution.

The following table lists the R functions and the equivalent SQL functions and procedures for embedded R execution and OML4R script repository management. The function \( f \) refers to a named R function or an R function defined in a script in the OML4R script repository.

<table>
<thead>
<tr>
<th>R API</th>
<th>SQL API</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ore.doEval</td>
<td>rqEval</td>
<td>Executes ( f ) with no automatic transfer of data.</td>
</tr>
<tr>
<td>ore.tableApply</td>
<td>rqTableEval</td>
<td>Executes ( f ) by passing all rows of the provided input ( \text{ore.frame} ) as the first argument of ( f ). Provides the first argument of ( f ) as a ( \text{data.frame} ).</td>
</tr>
<tr>
<td>ore.groupApply</td>
<td>rqGroupEval</td>
<td>This function must be explicitly defined by the user.</td>
</tr>
<tr>
<td>ore.rowApply</td>
<td>rqRowEval</td>
<td>Executes ( f ) by passing a specified number of rows (a chunk) of the provided input ( \text{ore.frame} ). Provides each chunk as a ( \text{data.frame} ) in the first argument of ( f ). Supports parallel execution of each ( f ) invocation in the pool of database server-side R engines.</td>
</tr>
<tr>
<td>ore.indexApply</td>
<td>No equivalent.</td>
<td>Executes ( f ) with no automatic transfer of data but provides the index of the invocation, 1 through ( n ), where ( n ) is the number of times to invoke the function. Supports parallel execution of each ( f ) invocation in the pool of R engines running on the database server.</td>
</tr>
<tr>
<td>ore.grant</td>
<td>rqGrant</td>
<td>Grants read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>ore.revoke</td>
<td>rqRevoke</td>
<td>Revokes read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>ore.scriptCreate</td>
<td>sys.rqScriptCreate</td>
<td>Adds the provided R function into the OML4R script repository with the provided name.</td>
</tr>
<tr>
<td>ore.scriptDrop</td>
<td>sys.rqScriptDrop</td>
<td>Removes the named R function from the OML4R script repository.</td>
</tr>
<tr>
<td>ore.scriptList</td>
<td>ALL_RQ_SCRIPTS, USER_RQ_SCRIPTS</td>
<td>Lists information about scripts.</td>
</tr>
<tr>
<td>ore.scriptLoad</td>
<td>No equivalent.</td>
<td>Loads the R function of a script into the R environment.</td>
</tr>
</tbody>
</table>
Security for Scripts

Because R scripts allow access to the database server, the creation of scripts must be controlled.

The RQADMIN role is a collection of Oracle Database privileges that a user must have to create scripts and store them in the Oracle Machine Learning for R script repository or drop scripts from the repository.

The installation of OML4R on the database server creates the RQADMIN role. The role must be explicitly granted to a user. To grant RQADMIN to a user, start SQL*Plus as sysdba and enter a GRANT statement such as the following, which grants the role to the user OML_USER:

```
GRANT RQADMIN to OML_USER
```

**Note:**

You should grant RQADMIN only to those users who need it.

When creating a script, the owner can use the `global` argument to specify whether the script is public or private. If `global = TRUE`, then all users have read privilege access to the script. If `global = FALSE`, which is the default, then the owner can share the script by granting access to other users. The owner can revoke the access at any time.

Support for Parallel Execution

Some of the Oracle Machine Learning for R embedded R execution functions support the use of parallel execution in the database.

The `ore.groupApply`, `ore.rowApply`, `rq.groupEval`, and `rq.rowEval` functions support data-parallel execution and the `ore.indexApply` function supports task-parallel execution. This parallel execution capability enables a script to take advantage of high-performance computing hardware such as an Oracle Exadata Database Machine.
The parallel argument of the `ore.groupApply`, `ore.rowApply`, and `ore.indexApply` functions specifies the degree of parallelism to use in the embedded R execution. The value of the argument can be one of the following:

- A positive integer greater than or equal to 2 for a specific degree of parallelism
- `FALSE` or 1 for no parallelism
- `TRUE` for the default parallelism of the `data` argument
- `NULL` for the database default for the operation

The default value of the argument is the value of the global option `ore.parallel` or `FALSE` if `ore.parallel` is not set.

A user-defined R function invoked using `ore.doEval` or `ore.tableApply` is not executed in parallel. The function executes in a single R engine.

For the `rq.groupEval`, and `rq.rowEval` functions, the degree of parallelism is specified by a `PARALLEL` hint in the input cursor argument.

In data-parallel execution for the `ore.groupApply` and `rq.groupEval` functions, one or more R engines perform the same R function, or task, on different partitions of data. This functionality enables the building of large numbers of models, for example building tens or hundreds of thousands of predictive models, one model per customer.

In data-parallel execution for the `ore.rowApply` and `rq.rowEval` functions, one or more R engines perform the same R function on disjoint chunks of data. This functionality enables scalable model scoring and predictions on large data sets.

In task-parallel execution for the `ore.indexApply` function, one or more R engines perform the same or different calculations, or task. A number, associated with the index of the execution, is provided to the function. This functionality is valuable in a variety of operations, such as in performing simulations.

Oracle Database handles the management and control of potentially multiple R engines at the database server, automatically partitioning and passing data to R engines executing in parallel. It ensures that all of the R function executions for all of the partitions complete; if not, the OML4R function returns an error. The result from the execution of each user-defined embedded R function is gathered in an `ore.list`. This list remains in the database until the user requires the result.

Embedded R execution also allows for data-parallel execution of user-defined R functions that may use functions from an open source R package from The Comprehensive R Archive Network (CRAN) or other third-party R package. However, third-party packages do not leverage in-database parallelism and are subject to the parallelism constraints of R. Third-party packages can benefit from the data-parallel and task-parallel execution supported in embedded R execution.

See Also:

* Oracle Machine Learning for R Global Options
Install a Third-Party Package for Use in Embedded R Execution

Embedded R execution allows the use of CRAN or other third-party packages in user-defined R functions executed on the Oracle Database server.

To use a third-party package in embedded R execution, the package must be installed on the database server. If you are going to use the package from the R interface for embedded R execution, then the package must also be installed on the client, as well. To avoid incompatibilities, you must install the same version of the package on both the client and server machines.

An Oracle Database Administrator (DBA) can install a package on a database server so that it can be used by embedded R execution functions or by any R user. The DBA can install a package on a single database server or on multiple database servers.

A DBA would typically do the following:

1. Download and install the package from CRAN. Downloading a package from CRAN requires an Internet connection.
2. In an Oracle Machine Learning for R session running on the server, load the package. Verify that the package is installed correctly by using a function in the package.

To install a package on a single database server, do one of the following:

- In an OML4R session running on the server, invoke the `install.packages` function, as shown in Example 6-1. The function downloads the package and installs dependencies automatically.
- Download the package source from CRAN using `wget`. If the package depends on any packages that are not in the R distribution in use, then download those packages, also.
  
  From the operating system command line, use the `ORE CMD INSTALL` command to install the package or packages in the same location as the OML4R packages, which is `$ORACLE_HOME/R/library`. See Example 6-2.

To install a package, and any dependent packages, on multiple database servers, such as those in an Oracle Real Application Clusters (Oracle RAC) or a multinode Oracle Exadata Database Machine environment, use the Exadata Distributed Command Line Interface (DCLI) utility, as shown in Example 6-3.

To verify that the package is installed correctly, load the package and use a function in the package, as shown in Example 6-4.

**Example 6-1 Installing a Package for a Single Database in an OML4R Session**

This example invokes the `install.packages` function to download the `c50` package from CRAN and to install it. The `c50` package contains functions for creating C5.0 decision trees and rule-based models for pattern recognition.

The output this example, which is not shown, is almost identical to the output of the `ORE CMD INSTALL` command in Example 6-2.

```r
install.packages("c50")
```

**Example 6-2 Installing a Package for a Single Database from the Command Line**

This example demonstrates downloading the `c50` package from CRAN and installing it with `ORE CMD INSTALL` from a Linux command line.
wget http://cran.r-project.org/src/contrib/C50_0.1.0-19.tar.gz
ORE CMD INSTALL C50_0.1.0-19.tar.gz

Listing for This Example

$ wget http://cran.r-project.org/src/contrib/C50_0.1.0-19.tar.gz
# The output of wget is not shown.
$ ORE CMD INSTALL C50_0.1.0-19.tar.gz
* installing to library '/example/dbhome_1/R/library'
* installing *source* package 'C50' ...
** package 'C50' successfully unpacked and MD5 sums checked
checking for gcc... gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables... 
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
configure: creating ./config.status
config.status: creating src/Makevars

** libs
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c attwinnow.c -o attwinnow.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c classify.c -o classify.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c confmat.c -o confmat.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c construct.c -o construct.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c contin.c -o contin.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c discri.c -o discri.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c formrules.c -o formrules.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c formtree.c -o formtree.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c getdata.c -o getdata.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c getnames.c -o getnames.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c global.c -o global.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c hash.c -o hash.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c hooks.c -o hooks.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c implicitatt.c -o implicitatt.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c info.c -o info.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c mcost.c -o mcost.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c modelfiles.c -o modelfiles.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c p-thresh.c -o p-thresh.o 
 gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include  - 
 flfloat-store -q -fpic -g -02 -c prune.c -o prune.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c rc50.c -o rc50.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c redefine.c -o redefine.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c rsample.c -o rsample.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c rulebasedmodels.c -o rulebasedmodels.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c rules.c -o rules.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c ruletree.c -o ruletree.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c siftrules.c -o siftrules.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c sort.c -o sort.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c strbuf.c -o strbuf.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c subset.c -o subset.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c top.c -o top.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c trees.c -o trees.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c update.c -o update.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -q -fpic -g -o2 -c utility.c -o utility.o
gcc -m64 -std=gnu99 -I/usr/include/R -DNDEBUG -DNDEBUG -I/usr/local/include   -ffloat-
store -g -fPIC -g -o2 -c xval.c -o xval.o
gcc -m64 -std=gnu99 -shared -L/usr/local/lib64 -o C50.so attwinnow.o classify.o
gcc -m64 -shared -L/usr/local/lib64 imputatt.o info.o mcost.o modelfiles.o p-thresh.o prune.o
gcc -m64 -shared -L/usr/local/lib64 rc50.o redefine.o rsample.o rulebasedmodels.o rules.o ruletree.o siftrules.o sort.o
strbuf.o subset.o top.o trees.o update.o utility.o xval.o -L/usr/lib64/R/lib -LR
installing to /example/dbhome_1/R/library/C50/libs
** R
** data
** preparing package for lazy loading
** help
*** installing help indices
converting help for package 'C50'
finding HTML links ... done
C5.0 html
C5.0Control html
churn html
predict.C5.0 html
summary.C5.0 html
varImp.C5.0 html
** building package indices
** testing if installed package can be loaded
* DONE (C50)

Example 6-3 Installing a Package Using DCLI

This example shows the DCLI command for installing the C50 package. The dcli -g flag designates a file containing a list of nodes to install on, and the -l flag specifies the user ID to use when executing the commands.

dcli -g nodes -l oracle R CMD INSTALL C50_0.1.0-19.tar.gz
Example 6-4 Using a C50 Package Function

This example shows starting R, connecting to OML4R on the server, loading the C50 package, and using a function in the package. The example starts R by executing the ORE command from the Linux command line. The example connects to OML4R and then loads the C50 package. It invokes the demo function to look for example programs in the package. Because the package does not have examples, this example then gets help for the C5.0 function. The example invokes example code from the help.

ORE

library(ORE)
ore.connect(user = "OML_USER", sid = "orcl", host = "myhost",
password = "oml_userStrongPassword", port = 1521, all=TRUE)

library(C50)
demo(package = "C50")
?C5.0
data(churn)
treeModel <- C5.0(x = churnTrain[, -20], y = churnTrain$churn)
treeModel

Listing for This Example

$ ORE

R> library(ORE)
Loading required package: OREbase

Attaching package: 'OREbase'

The following objects are masked from 'package:base':

  cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
  rbind, table

Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml

> ore.connect(user = "OML_USER", sid = "orcl", host = "myhost",
+ password = "oml_userStrongPassword", port = 1521, all=TRUE)
Loading required package: ROracle
Loading required package: DBI

R> library(C50)
R> demo(package = "C50")
no demos found
R> ?C5.0     # Output not shown.
R> data(churn)
R> treeModel <- C5.0(x = churnTrain[, -20], y = churnTrain$churn)
R> treeModel
Call:
  C5.0.default(x = churnTrain[, -20], y = churnTrain$churn)
Classification Tree
Number of samples: 3333
Number of predictors: 19

Tree size: 27
Non-standard options: attempt to group attributes

R Interface for Embedded R Execution

Oracle Machine Learning for R provides functions that invoke R scripts that run in one or more R engines that are embedded in the Oracle database.

Other functions create and store an R function as a script in the OML4R script repository, grant or revoke read access to a script, list the available scripts, load a script function into the R environment, or drop a script from the repository. This section describes these functions in the following topics:

Arguments for Functions that Run Scripts

The Oracle Machine Learning for R embedded R execution functions `ore.doEval`, `ore.tableApply`, `ore.groupApply`, `ore.rowApply`, and `ore.indexApply` have arguments that are common to some or all of the functions.

Some of the functions also have an argument that is unique to the function. The following topics describe these arguments:

See Also:

- For function signatures and more details about function arguments, see the online help displayed by invoking `help(ore.doEval)`
- For examples of the use of the arguments, see Using the `ore.doEval` Function and the other topics on using the embedded R execution functions
Input Function to Execute

The embedded R execution functions all require an R function to apply during the execution of the script.

You specify the input function with one of the following mutually exclusive arguments:

- **FUN**
- **FUN.NAME** (and optional **FUN.OWNER**)

The **FUN** argument takes a function object as a directly specified function or as one assigned to an R variable. Only a user with the RQADMIN role can use the **FUN** argument when invoking an embedded R function.

The **FUN.NAME** argument specifies a script that is stored in the OML4R R script repository. A stored script contains the function to apply when the script runs. Any OML4R user can use the **FUN.NAME** argument when invoking an embedded R function.

The optional argument **FUN.OWNER** specifies the owner of a script in the R script repository. The owner is the user who created the script. Use this argument only with the **FUN.NAME** argument. When **FUN.NAME** is a private script to which you have been granted read privilege access, use **FUN.OWNER** to specify the owner of the private script.

The RQSYS schema is the owner of public scripts and the predefined OML4R scripts. For a list of the predefined scripts, invoke `help("ore.doEval")` and see the description of the **FUN.NAME** argument. If **FUN.OWNER** is not specified or is NULL, then OML4R looks for the owner in the following order: user of the current session, RQSYS. If the owner of the script is not current user or RQSYS, then an error occurs.

---

**Note:**

The OML4R functions in the `OREmodels` package, `ore.glm`, `ore.lm`, `ore.neural`, and `ore.randomForest`, use the embedded R execution framework internally and cannot be used in embedded R execution functions.

---

Optional and Control Arguments

All of the embedded R execution functions take optional arguments, which can be named or not.

Oracle Machine Learning for R passes user-defined optional arguments to the input function. You can pass any number of optional arguments to the input function, including complex R objects such as models.

Arguments that start with `ore.` are special control arguments. OML4R does not pass them to the input function, but instead uses them to control what happens before or after the execution of that function. The following control arguments are supported:
• **ore.connect** controls whether to automatically connect to OML4R inside the embedded R execution function. This is equivalent to doing an **ore.connect** call with the same credentials as the client session. The default value is **FALSE**.

If an automatic connection is enabled, the following functionality occurs:
- The embedded R script is connected to the database.
- The connection has the same credentials as the session that invokes the embedded R SQL function.
- The script runs in an autonomous transaction.
- ROracle queries can work with the automatic connection.
- OML4R transparency layer functionality is enabled in the embedded script.

• **ore.drop** controls the input data. If the option value is **TRUE**, a one column data.frame is converted to a vector. The default value is **TRUE**.

• **ore.envAsEmptyenv** controls whether an environment referenced in an object is replaced with an empty environment during serialization. Some types of input parameters and returned objects, such as list and formula, are serialized before being saved to the database. If the control argument value is **TRUE**, then the referenced environment in the object is replaced with an empty environment whose parent is `.GlobalEnv` and the objects in the original referenced environment are not serialized. In some cases, this can significantly reduce the size of serialized objects. If the control argument value is **FALSE**, then all of the objects in the referenced environment are serialized and can be unserialized and recovered later. The default value is regulated by the global option **ore.envAsEmptyenv**.

• **ore.na.omit** controls the handling of missing values in the input data. If you specify **ore.na.omit = TRUE**, then rows or vector elements, depending on the **ore.drop** setting, that contain missing values are removed from the input data. If all of the rows in a chunk contain missing values, then the input data for that chunk will be an empty data.frame or vector. The default value is **FALSE**.

• **ore.graphics** controls whether to start a graphical driver and look for images. The default value is **TRUE**.

• **ore.png.*** specifies additional arguments for the **png** graphics driver if **ore.graphics** is **TRUE**. The naming convention for these arguments is to add an **ore.png.** prefix to the arguments of the **png** function. For example, if **ore.png.height** is supplied, argument **height** is passed to the **png** function. If not set, the standard default values for the **png** function are used.

---

**See Also:**

For more details about control arguments, see the online help displayed by invoking `help(ore.doEval)`
Structure of Return Value

Another argument that applies to all of the embedded R execution functions is `FUN.VALUE`.

If the `FUN.VALUE` argument is `NULL`, then the `ore.doEval` and `ore.tableApply` function can return a serialized R object as an `ore.object` class object, and the `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions return an `ore.list` object. However, if you specify a `data.frame` or an `ore.frame` with the `FUN.VALUE` argument, then the function returns an `ore.frame` that has the structure of the specified `data.frame` or `ore.frame` object.

To specify that the corresponding output column of an `ore.frame` have a CLOB or BLOB database data type, you can apply the attribute `ora.type` to a column of a `FUN.VALUE` data.frame. For an example of using `ora.type`, see Example 6-11.

Input Data

The `ore.doEval` and `ore.indexApply` functions do not automatically receive any data from the database.

They simply execute the function specified by the `FUN` or `FUN.NAME` argument. Any data needed by the input function is either generated within that function or explicitly retrieved from a data source such as Oracle Database, other databases, or flat files. The input function can load data from a file or a table using the `ore.pull` function or other transparency layer function.

The `ore.tableApply`, `ore.groupApply`, and `ore.rowApply` functions require a database table as input data. The table is represented by an `ore.frame`. You supply that data with an `ore.frame` object that you specify with the `X` argument, which is the first argument to the embedded R execution function. The embedded R execution function passes the `ore.frame` object to the user-defined input function as the first argument to that function.

**Note:**

The data represented by the `ore.frame` object passed to the user-defined R function is copied from Oracle Database to the database server R engine. The R memory limitations apply. If your database server machine has 32 GB RAM and your data table is 64 GB, then Oracle R Enterprise cannot load the data into the R engine memory.

Parallel Execution

The `parallel` argument specifies the degree of parallelism to use in the embedded R execution of the input function.

The `parallel` argument is accepted by the `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions.

See Support for Parallel Execution.
Unique Arguments

The `ore.groupApply`, `ore.indexApply`, and `ore.rowApply` functions each take an argument that is unique to the function.

The `ore.groupApply` function takes the `INDEX` argument, which specifies the name of a column by which the rows of the input data are partitioned for processing by the input function.

The `ore.indexApply` function takes the `times` argument, which specifies the number of times to execute the input function.

The `ore.rowApply` function takes the `rows` argument, which specifies the number of rows to pass to each invocation of the input function.

Manage Scripts in R

Embedded R execution functions can invoke R functions that are stored as scripts in the OML4R script repository. You can use the R functions described in this topic to create and manage scripts.

The embedded R execution functions can take a `FUN.NAME` argument, which specifies the name of a script in the OML4R script repository. Scripts in the R script repository are also available through the SQL API for embedded R execution.

The R functions for managing scripts are the following:

- `ore.grant`
- `ore.revoke`
- `ore.scriptCreate`
- `ore.scriptList`
- `ore.scriptLoad`
- `ore.scriptDrop`

These functions are described in the following sections:

- Adding a Script
- Granting or Revoking Read Access to a Script
- Listing the Available Scripts
- Loading a Script into an R Environment
- Dropping a Script

For an example that uses these functions, see Example 6-5.

Adding a Script

To add an R function as a script in the OML4R script repository, use the `ore.createScript` function. To evoke this function, you must have the RQADMIN role. The `ore.createScript` function has the following syntax:

```
ore.scriptCreate(name, FUN, global, overwrite)
```
The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>fun</td>
<td>An R function.</td>
</tr>
<tr>
<td>global</td>
<td>A logical value that indicates whether the script is public (global) or private. FALSE (the default) specifies that the script is not public and is visible only to the owner or to users to whom the owner has granted read privilege access; TRUE specifies that the script is public and therefore visible to all users.</td>
</tr>
<tr>
<td>overwrite</td>
<td>A logical value that indicates whether to replace the R function of the script with the function specified in by the fun argument. TRUE specifies replacing the function, if it exists; FALSE (the default) specifies that the existing contents cannot be replaced.</td>
</tr>
</tbody>
</table>

If overwrite = FALSE, an error condition occurs if a script by the same name already exists in the OML4R script repository; otherwise, ore.scriptCreate returns NULL.

Granting or Revoking Read Access to a Script

The creator of a script can use the ore.grant function to grant read access privilege to the script and the ore.revoke function to revoke that access. Those functions have the following syntax:

```r
ore.grant(name, type = "rqscript", user)
ore.revoke(name, type = "rqscript", user)
```

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
<tr>
<td>type</td>
<td>For a script, the type is rqscript.</td>
</tr>
<tr>
<td>user</td>
<td>The user to whom to grant or revoke read privilege access.</td>
</tr>
</tbody>
</table>

The name and type arguments are required. If argument user is not specified, then read privilege access is granted to or revoked from all users.

An error occurs when one of the following is true:

- The named script is not in the OML4R script repository.
- The type argument is not specified.
- The user is not found.
- The read privilege has already been granted to or revoked from the user.
- The named script is public.
Listing the Available Scripts

To list the scripts available to you, use `ore.scriptList`. You can list scripts by name, by a pattern, or by type. If you have the RQADMIN role, you can list system scripts, as well. The function has the following syntax:

```r
ore.scriptList(name, pattern, type)
```

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of a script in the OML4R script repository. Cannot be used when argument pattern is specified.</td>
</tr>
<tr>
<td>pattern</td>
<td>A regular expression pattern. Scripts that match the pattern are listed. Cannot be used when argument name is specified.</td>
</tr>
</tbody>
</table>
| type     | The type of the script, which can be one of the following:  
- `user`, which lists scripts owned by the current user  
- `global`, which lists public scripts, which are visible to all users  
- `grant`, which lists the scripts to which the current user has granted read access to others  
- `granted`, which lists the scripts to which the current user has been granted read access by another user  
- `all`, which lists all of the user, public, and granted scripts |

The `ore.scriptList` function returns a `data.frame` that contains the names of the scripts in the OML4R script repository and the function in the script.

Loading a Script into an R Environment

To load the R function of a script into an R environment, use `ore.scriptLoad`, which has the following syntax:

```r
ore.scriptLoad(name, owner, newname, envir)
```

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
<tr>
<td>owner</td>
<td>The owner of the script.</td>
</tr>
<tr>
<td>newname</td>
<td>A new function name in which to load the script.</td>
</tr>
<tr>
<td>envir</td>
<td>The R environment in which to load the script.</td>
</tr>
</tbody>
</table>

Specifying the owner of a script is useful when access to the script has been granted to the user who is invoking `ore.scriptLoad`.

Specifying a new function name is useful when the name of the script in the OML4R script repository is not a valid R function name.

An error occurs when one of the following is true:

- The script is not in the OML4R script repository.
The current user does not have read access to the script.

The function specified by the name argument is not a valid R function name.

The newname argument is not a valid R function name.

Dropping a Script

To remove a script from the OML4R script repository, use the ore.scriptDrop function. To invoke this function, you must have the RQADMIN role. The ore.scriptDrop function has the following syntax:

ore.scriptDrop(name, global, silent)

The arguments are the following:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>global</td>
<td>A logical value that indicates whether the script is global (public) or private. TRUE specifies dropping a global script; FALSE (the default) specifies dropping a script owned by the current user.</td>
</tr>
<tr>
<td>silent</td>
<td>A logical value that indicates whether to display an error message if ore.scriptDrop encounters an error condition. TRUE specifies the display of error messages; FALSE (the default) specifies no display.</td>
</tr>
</tbody>
</table>

An error condition occurs when one of the following is true:

- The script is not in the OML4R script repository.
- If global = TRUE, the script is a private script.
- If global = FALSE, the script is a public script.

If successful, ore.scriptDrop returns NULL.

Example 6-5 Using the R Script Management Functions

```r
Create an ore.frame object from the data.frame for the iris data set.
IRIS <- ore.push(iris)

Create a private R script for the current user.
ore.scriptCreate("myRandomRedDots", function(divisor = 100){
id <- 1:10
plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
data.frame(id = id, val = id / divisor)
})

Create another private R script.
ore.scriptCreate("MYLM", function(data, formula, ...) lm(formula, data, ...))

Create a public script, available to any user.
ore.scriptCreate("GLBGLM", function(data, formula, ...) glm(formula = formula, data = data, ...), global = TRUE)

List only my private scripts.
ore.scriptList()
```
# List my private scripts and the public scripts.
ore.scriptList(type = "all")

# List my private scripts that have the specified pattern.
ore.scriptList(pattern = "MY")

# Grant read access to a private script to all users.
ore.grant("MYLM", type = "rqscript")

# Grant read access to a private script to a specific user.
ore.grant("myRandomRedDots", user = "SCOTT", type = "rqscript")

# List the granted scripts.
ore.scriptList(type = "grant")

# Use the MYLM script in an embedded R execution function.
ore.tableApply(IRIS[1:4], FUN.NAME = "MYLM", formula = Sepal.Length ~ .)

# Use the GLBGLM script in an embedded R execution function.
ore.tableApply(IRIS[1:4], FUN.NAME = "GLBGLM", formula = Sepal.Length ~ .)

# Load an R script to an R function object
ore.scriptLoad(name = "MYLM")

# Invoke the function.
MYLM(iris, formula = Sepal.Length ~ .)

# Load another R script to an R function object
ore.scriptLoad(name = "GLBGLM", newname = "MYGLM")

# Invoke the function.
MYGLM(iris, formula = Sepal.Length ~ .)

# Drop some scripts.
ore.scriptDrop("MYLM")
ore.scriptDrop("GLBGLM", global = TRUE)

# List all scripts.
ore.scriptList(type = "all")

---

### Listing for This Example

R> # Create an ore.frame object from the data.frame for the iris data set.
R> IRIS <- ore.push(iris)
R>
R> # Create a private R script for the current user.
R> ore.scriptCreate("myRandomRedDots", function(divisor = 100){
+     id <- 1:10
+     plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2 )
+     data.frame(id = id, val = id / divisor)
+ })
R>
R> # Create another private R script.
R> ore.scriptCreate("MYLM", function(data, formula, ...) lm(formula, data, ...))
R>
R> # Create a public script, available to any user.
R> ore.scriptCreate("GLBGLM",}
R> library(ore)

R> # List only my private scripts.
R> ore.scriptList()

NAME      SCRIPT
1            MYLM      function (data, formula, ...) 
lm(formula, data, ...)
2 myRandomRedDots      function (divisor = 100) 
{
    id &lt
    -1:10
    plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
    data.frame(id = id, val = id/divisor)
}

R> # List my private scripts and the public scripts.
R> ore.scriptList(type = "all")

OWNER              NAME    SCRIPT
1  RQSYS            GLBGLM    function (data, formula, ...) 
glm(formula = formula, data = data, ...)
2 OML_USER            MYLM    function (data, formula, ...) 
lm(formula, data, ...)
3 OML_USER myRandomRedDots    function (divisor = 100) 
{
    id &lt
    -1:10
    plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
    data.frame(id = id, val = id/divisor)
}

R> # List my private scripts that have the specified pattern.
R> ore.scriptList(pattern = "MY")

NAME  SCRIPT
1 MYLM  function (data, formula, ...) 
lm(formula, data, ...)

R> # Grant read access to a private script to all users.
R> ore.grant("MYLM", type = "rqscript")

R> # Grant read access to a private script to a specific user.
R> ore.grant("myRandomRedDots", user = "SCOTT", type = "rqscript")

R> # List the granted scripts.
R> ore.scriptList(type = "grant")

NAME GRANTEE
1            MYLM  PUBLIC
2 myRandomRedDots   SCOTT

R> # Use the MYLM script in an embedded R execution function.
R> ore.tableApply(IRIS[1:4], FUN.NAME = "MYLM", 
    formula = Sepal.Length ~ .)

Call:
  lm(formula = formula, data = data)

Coefficients:
  (Intercept)   Sepal.Width  Petal.Length  Petal.Width
  1.8560        0.6508        0.7091       -0.5565

R> # Use the GLBGLM script in an embedded R execution function.
R> ore.tableApply(IRIS[1:4], FUN.NAME = "GLBGLM", 
    formula = Sepal.Length ~ .)

Call:  glm(formula = formula, data = data)

Coefficients:
  (Intercept)   Sepal.Width  Petal.Length  Petal.Width

R>
Use the ore.doEval Function

The `ore.doEval` function executes the specified input function using data that is generated by the input function.

It returns an `ore.frame` object or a serialized R object as an `ore.object` object.

The syntax of the `ore.doEval` function is the following:

```r
ore.doEval(FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL)
```

See Also:

- Input Function to Execute
- Using the `ore.doEval` Function for examples that use the `myRandomRedDots` script
- Example 6-14 for another example of using `ore.scriptCreate` and `ore.scriptDrop`
- Manage Scripts in SQL
Example 6-6 Using the ore.doEval Function

In this example, `RandomRedDots` gets a function that has an argument and that returns a `data.frame` object that has two columns and that plots 100 random normal values. The example then invokes `ore.doEval` function and passes it the `RandomRedDots` function object. The image is displayed at the client, but it is generated by the database server R engine that executed the `RandomRedDots` function.

```r
RandomRedDots <- function(divisor = 100) {
 id <- 1:10
 plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
 data.frame(id=id, val=id / divisor)
}
ore.doEval(RandomRedDots)
```

Listing for This Example

```r
table(cbind(id, val))
```
Example 6-7 Using the ore.doEval Function with an Optional Argument

You can provide arguments to the input function as optional arguments to the doEval function. This example invokes the doEval function with an optional argument that overrides the divisor argument of the RandomRedDots function.

\[
\text{ore.doEval(RandomRedDots, divisor = 50)}
\]

Listing for This Example

\[
\begin{array}{ll}
\text{id} & \text{val} \\
1 & 1 0.02 \\
2 & 2 0.04 \\
3 & 3 0.06 \\
4 & 4 0.08 \\
5 & 5 0.10 \\
6 & 6 0.12 \\
\end{array}
\]
Example 6-8 Using the ore.doEval Function with the FUN.NAME Argument

If the input function is stored in the OML4R script repository, then you can invoke the ore.doEval function with the FUN.NAME argument. This example first invokes ore.scriptDrop to ensure that the script repository does not contain a script with the name myRandomRedDots. The example adds the RandomRedDots function from Example 6-6 to the repository under the name myRandomRedDots. This example invokes the ore.doEval function and specifies myRandomRedDots. The result is assigned to the variable res.

The return value of the RandomRedDots function is a data.frame but in this example the ore.doEval function returns an ore.object object. To get back the data.frame object, the example invokes ore.pull to pull the result to the client R session.

```
ore.scriptDrop("myRandomRedDots")
ore.scriptCreate("myRandomRedDots", RandomRedDots)
res <- ore.doEval(FUN.NAME = "myRandomRedDots", divisor = 50)
class(res)
res.local <- ore.pull(res)
class(res.local)
```

Listing for This Example

```
R> ore.scriptDrop("myRandomRedDots")
R> ore.scriptCreate("myRandomRedDots", RandomRedDots)
R> res <- ore.doEval(FUN.NAME = "myRandomRedDots", divisor = 50)
R> class(res)
[1] "ore.object"
attr("package")
[1] "OREembed"
R> res.local <- ore.pull(res)
R> class(res.local)
[1] "data.frame"
```

Example 6-9 Using the ore.doEval Function with the FUN.VALUE Argument

To have the doEval function return an ore.frame object instead of an ore.object, use the argument FUN.VALUE to specify the structure of the result, as shown in this example.

```
res.of <- ore.doEval(FUN.NAME="myRandomRedDots", divisor = 50,
 FUN.VALUE= data.frame(id = 1, val = 1))
class(res.of)
```

Listing for Example 6-9

```
R> res.of <- ore.doEval(FUN.NAME="myRandomRedDots", divisor = 50,
 FUN.VALUE= data.frame(id = 1, val = 1))
R> class(res.of)
[1] "ore.frame"
attr("package")
[1] "OREbase"
```
Example 6-10 Using the doEval Function with the ore.connect Argument

This example demonstrates using the special optional argument `ore.connect` to connect to the database in the embedded R function, which enables the use of objects stored in a datastore. The example creates the `RandomRedDots2` function object, which is the same as the `RandomRedDots` function from Example 6-6 except the `RandomRedDots2` function has an argument that takes the name of a datastore. The example creates the `myVar` variable and saves it in the datastore named `datastore_1`. The example then invokes the `doEval` function and passes it the name of the datastore and passes the `ore.connect` control argument set to `TRUE`.

```r
RandomRedDots2 <- function(divisor = 100, datastore.name = "myDatastore"){
 id <- 1:10
 plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
 ore.load(datastore.name) # Contains the numeric variable myVar.
 data.frame(id = id, val = id / divisor, num = myVar)
}
myVar <- 5
ore.save(myVar, name = "datastore_1")
ore.doEval(RandomRedDots2, datastore.name = "datastore_1", ore.connect = TRUE)
```

Listing for This Example

```
R> RandomRedDots2 <- function(divisor = 100, datastore.name = "myDatastore"){
+ id <- 1:10
+ plot(1:100, rnorm(100), pch = 21, bg = "red", cex = 2)
+ ore.load(datastore.name) # Contains the numeric variable myVar.
+ data.frame(id = id, val = id / divisor, num = myVar)
+ }
R> ore.doEval(RandomRedDots2, datastore.name = "datastore_1", ore.connect = TRUE)

 id val num
 1 1 0.01 5
 2 2 0.02 5
 3 3 0.03 5
 4 4 0.04 5
 5 5 0.05 5
 6 6 0.06 5
 7 7 0.07 5
 8 8 0.08 5
 9 9 0.09 5
 10 10 0.10 5
The graph displayed by the plot function is not shown.
```

Example 6-11 Using the ora.type Attribute

This example demonstrates using the `ora.type` attribute to specify database data types of CLOB and BLOB for columns in the `data.frame` object specified by the `FUN.VALUE` argument.

```r
eval1 <- ore.doEval(function() "Hello, world")
eval2 <-
 ore.doEval(function()
 data.frame(x = "Hello, world", stringsAsFactors = FALSE))
eval3 <-
 ore.doEval(function()
 data.frame(x = "Hello, world", stringsAsFactors = FALSE),
 FUN.VALUE =
 data.frame(x = character(), stringsAsFactors = FALSE))
out.df <- data.frame(x = character(), y = raw(), stringsAsFactors = FALSE)
attr(out.df$x, "ora.type") <- "clob"
attr(out.df$y, "ora.type") <- "blob"
```
eval4 <-
  ore.doEval(function() {
    res <- data.frame(x = "Hello, world", stringsAsFactors = FALSE)
    res$y[[1L]] <- charToRaw("Hello, world")
    res,
    FUN.VALUE = out.df
  })
eval1
class(eval1) # ore.object
eval2
class(eval2) # ore.object
eval3
class(eval3) # ore.frame
eval4$x
  rawToChar(ore.pull(eval4$y))

Listing for This Example

R> eval1 <- ore.doEval(function() "Hello, world")
R> eval2 <-
  ore.doEval(function()
    + data.frame(x = "Hello, world", stringsAsFactors = FALSE))
R> eval3 <-
  ore.doEval(function()
    + data.frame(x = "Hello, world", stringsAsFactors = FALSE),
    + FUN.VALUE =
    + data.frame(x = character(), stringsAsFactors = FALSE))
R> out.df <- data.frame(x = character(), y = raw(), stringsAsFactors = FALSE)
R> attr(out.df$x, "ora.type") <- "clob"
R> attr(out.df$y, "ora.type") <- "blob"
R> eval4 <-
  ore.doEval(function() {
    + res <- data.frame(x = "Hello, world", stringsAsFactors = FALSE)
    + res$y[[1L]] <- charToRaw("Hello, world")
    + res,
    + FUN.VALUE = out.df
  })
R> eval1
[1] "Hello, world"
R> class(eval1)
[1] "ore.object"
attr("package")
[1] "OREEmbed"
R> eval2
x
1 Hello, world
R> class(eval2)
[1] "ore.object"
attr("package")
[1] "OREEmbed"
R> eval3
x
1 Hello, world
Warning message:
ORE object has no unique key - using random order
R> class(eval3)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> eval4$x
[1] "Hello, world"
Warning message:
ORE object has no unique key - using random order
Use the ore.tableApply Function

The ore.tableApply function invokes an R script with an ore.frame as the input data.

The ore.tableApply function passes the ore.frame to the user-defined input function as the first argument to that function. The ore.tableApply function returns an ore.frame object or a serialized R object as an ore.object object.

The syntax of the ore.tableApply function is the following:

ore.tableApply(X, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL)

See Also:

Arguments for Functions that Run Scripts for descriptions of the arguments to function ore.tableApply

Example 6-12    Using the ore.tableApply Function

This example uses the ore.tableApply function to build a Naïve Bayes model on the iris data set. The naiveBayes function is in the e1071 package, which must be installed on both the client and database server machine R engines. As the first argument to the ore.tableApply function, the ore.push(iris) invocation creates a temporary database table and an ore.frame that is a proxy for the table. The second argument is the input function, which has as an argument dat. The ore.tableApply function passes the ore.frame table proxy to the input function as the dat argument. The input function creates a model, which the ore.tableApply function returns as an ore.object object.

library(e1071)
nbmod <- ore.tableApply(
  ore.push(iris),
  function(dat) {
    library(e1071)
    dat$Species <- as.factor(dat$Species)
    naiveBayes(Species ~ ., dat)
  }
)
class(nbmod)
nbmod

Listing for This Example

R> nbmod <- ore.tableApply(
+   ore.push(iris),
+   function(dat) {
+     library(e1071)
+     dat$Species <- as.factor(dat$Species)
+     naiveBayes(Species ~ ., dat)
+   })
R> class(nbmod)
[1] "ore.object"
attr("package")
Naive Bayes Classifier for Discrete Predictors

Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)

A-priori probabilities:
Y
  setosa versicolor virginica
  0.3333333  0.3333333  0.3333333

Conditional probabilities:
  Sepal.Length
    Y     [,1]      [,2]
    setosa  5.006 0.3524897
    versicolor  5.936 0.5161711
    virginica  6.588 0.6358796

  Sepal.Width
    Y     [,1]      [,2]
    setosa  3.428 0.3790644
    versicolor  2.770 0.3137983
    virginica  2.974 0.3224966

  Petal.Length
    Y     [,1]      [,2]
    setosa  1.462 0.1736640
    versicolor  4.260 0.4699110
    virginica  5.552 0.5518947

  Petal.Width
    Y     [,1]      [,2]
    setosa  0.246 0.1053856
    versicolor  1.326 0.1977527
    virginica  2.026 0.2746501

Use the ore.groupApply Function

The ore.groupApply function invokes an R script with an ore.frame as the input data.

The ore.groupApply function passes the ore.frame to the user-defined input function as the first argument to that function. The INDEX argument to the ore.groupApply function specifies the name of a column of the ore.frame by which Oracle Database partitions the rows for processing by the user-defined R function. The ore.groupApply function can use data-parallel execution, in which one or more R engines perform the same R function, or task, on different partitions of data.

The syntax of the ore.groupApply function is the following:

ore.groupApply(X, INDEX, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL,
                   parallel = getOption("ore.parallel", NULL))

The ore.groupApply function returns an ore.list object or an ore.frame object.

Examples of the use of the ore.groupApply function are in the following topics:
Partition on a Single Column

This example uses the ore.groupApply function and partitions the data on a single column.

The example uses the C50 package, which has functions that build decision tree and rule-based models. The package also provides training and testing data sets. The example builds C5.0 models on the churnTrain training data set from the churn data set of the C50 package, with the goal of building one churn model on the data for each state. The example does the following:

- Loads the C50 package and then the churn data set.
- Uses the ore.create function to create the CHURN_TRAIN database table and its proxy ore.frame object from churnTrain, a data.frame object.
- Specifies CHURN_TRAIN, the proxy ore.frame object, as the first argument to the ore.groupApply function and specifies the state column as the INDEX argument. The ore.groupApply function partitions the data on the state column and invokes the user-defined function on each partition.
- Creates the variable modList, which gets the ore.list object returned by the ore.groupApply function. The ore.list object contains the results from the execution of the user-defined function on each partition of the data. In this case, it is one C5.0 model per state, with each model stored as an ore.object object.
- Specifies the user-defined function. The first argument of the user-defined function receives one partition of the data, which in this case is all of the data associated with a single state.

The user-defined function does the following:

- Loads the C50 package so that it is available to the function when it executes in an R engine in the database.
- Deletes the state column from the data.frame so that the column is not included in the model.
- Converts the columns to factors because, although the ore.frame defined factors, when they are loaded to the user-defined function, factors appear as character vectors.
- Builds a model for a state and returns it.

- Uses the ore.pull function to retrieve the model from the database as the mod.MA variable and then invokes the summary function on it. The class of mod.MA is C5.0.

Example 6-13 Using the ore.groupApply Function

```r
library(C50)
data("churn")

ore.create(churnTrain, "CHURN_TRAIN")

modList <- ore.groupApply(
 CHURN_TRAIN,
 INDEX=CHURN_TRAIN$state,
 function(dat) {
 library(C50)
 dat$state <- NULL
 dat$churn <- as.factor(dat$churn)
 dat$area_code <- as.factor(dat$area_code)
 })
```

Example 6-13 Using the ore.groupApply Function

```r
library(C50)
data("churn")

ore.create(churnTrain, "CHURN_TRAIN")

modList <- ore.groupApply(
 CHURN_TRAIN,
 INDEX=CHURN_TRAIN$state,
 function(dat) {
 library(C50)
 dat$state <- NULL
 dat$churn <- as.factor(dat$churn)
 dat$area_code <- as.factor(dat$area_code)
 })
```
dat$international_plan <- as.factor(dat$international_plan)
dat$voice_mail_plan <- as.factor(dat$voice_mail_plan)
C5.0(churn ~ ., data = dat, rules = TRUE)
}
mod.MA <- ore.pull(modList$MA)
summary(mod.MA)

Listing for This Example

R> library(C50)
R> data(churn)
R>
R> ore.create(churnTrain, "CHURN_TRAIN")
R>
R> modList <- ore.groupApply(
+   CHURN_TRAIN,
+   INDEX=CHURN_TRAIN$state,
+     function(dat) {
+       library(C50)
+       dat$state <- NULL
+       dat$churn <- as.factor(dat$churn)
+       dat$area_code <- as.factor(dat$area_code)
+       dat$international_plan <- as.factor(dat$international_plan)
+       dat$voice_mail_plan <- as.factor(dat$voice_mail_plan)
+       C5.0(churn ~ ., data = dat, rules = TRUE)
+   });
R> mod.MA <- ore.pull(modList$MA)
R> summary(mod.MA)

Call:
C5.0.formula(formula = churn ~ ., data = dat, rules = TRUE)

----------------------------------------
Class specified by attribute 'outcome'
Read 65 cases (19 attributes) from undefined.data

Rules:

Rule 1: (52/1, lift 1.2)
  international_plan = no
  total_day_charge <= 43.04
  -> class no [0.963]

Rule 2: (5, lift 5.1)
  total_day_charge > 43.04
  -> class yes [0.857]

Rule 3: (6/1, lift 4.4)
  area_code in {area_code_408, area_code_415}
  international_plan = yes
  -> class yes [0.750]

Default class: no

Evaluation on training data (65 cases):
Rules
----------------
No Errors

3 2 (3.1%) <<

(a)  (b)  <=classified as
----  ----
53     1    (a): class no
1    10    (b): class yes

Attribute usage:
89.23% international_plan
87.69% total_day_charge
9.23% area_code

Time: 0.0 secs

Partition on Multiple Columns

This example uses the `ore.groupApply` function and partitions the data on multiple columns.

The `ore.groupApply` function takes a single column or multiple columns as the `INDEX` argument. The following example uses data from the CHURN_TRAIN data set to build an `rpart` model that produces rules on the partitions of data specified, which are the `voice_mail_plan` and `international_plan` columns. The example uses the `table` function to show the number of rows to expect in each partition.

The example invokes the `ore.scriptDrop` function to ensure that no script by the specified name exists in the OML4R script repository. It then uses the `ore.scriptCreate` function to define a script named `my_rpartFunction` and to store it in the repository. The stored script defines a function that takes a data source and a prefix to use for naming OML4R datastore objects. Each invocation of the function `my_rpartFunction` receives data from one of the partitions identified by the values in the `voice_mail_plan` and `international_plan` columns. Because the source partition columns are constants, the function sets them to `NULL`. It converts the character vectors to factors, builds a model to predict churn, and saves it in an appropriately named datastore. The function creates a list to return the specific partition column values, the distribution of churn values, and the model itself.

The example then loads the `rpart` library, sets the datastore prefix, and invokes `ore.groupApply` using the values from the `voice_mail_plan` and `international_plan` columns as the `INDEX` argument and `my_rpartFunction` as the value of the `FUN.NAME` argument to invoke the user-defined function stored in the script repository. The `ore.groupApply` function uses an optional argument to pass the `datastorePrefix` variable to the user-defined function. It uses the optional argument `ore.connect` to connect to the database when executing the user-defined function. The `ore.groupApply` function returns an `ore.list` object as the variable `res`.

The example displays the first entry in the list returned. It then invokes the `ore.load` function to load the model for the case where the customer has both the voice mail plan and the international plan.
library(C50)
data(churn)
ore.drop("CHURN_TRAIN")
ore.create(churnTrain, "CHURN_TRAIN")

options(width = 80)
head(CHURN_TRAIN, 3)

ore.scriptDrop("my_rpartFunction")
ore.scriptCreate("my_rpartFunction",
    function(dat, datastorePrefix) {
        library(rpart)
        vmp <- dat[1, "voice_mail_plan"]
        ip <- dat[1, "international_plan"]
        datastoreName <- paste(datastorePrefix, vmp, ip, sep = "_")
        dat$voice_mail_plan <- NULL
        dat$international_plan <- NULL
        dat$state <- as.factor(dat$state)
        dat$churn <- as.factor(dat$churn)
        dat$area_code <- as.factor(dat$area_code)
        mod <- rpart(churn ~ ., data = dat)
        ore.save(mod, name = datastoreName, overwrite = TRUE)
        list(voice_mail_plan = vmp,
              international_plan = ip,
              churn.table = table(dat$churn),
              rpart.model = mod)
    })

library(rpart)
datastorePrefix = "my.rpartModel"

res <- ore.groupApply(CHURN_TRAIN,
    INDEX = CHURN_TRAIN[, c("voice_mail_plan", "international_plan")],
    FUN.NAME = "my_rpartFunction",
    datastorePrefix = datastorePrefix,
    ore.connect = TRUE)

res[[1]]
ore.load(name=paste(datastorePrefix, "yes", "yes", sep = ")
mod

Listing for This Example

R> library(C50)
R> data(churn)
R> ore.drop("CHURN_TRAIN")
R> ore.create(churnTrain, "CHURN_TRAIN")
R>
R> table(CHURN_TRAIN$international_plan, CHURN_TRAIN$voice_mail_plan)

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>2180</td>
<td>830</td>
</tr>
<tr>
<td>yes</td>
<td>231</td>
<td>92</td>
</tr>
</tbody>
</table>

R>
R> options(width = 80)
R> head(CHURN_TRAIN, 3)

state account_length area_code international_plan voice_mail_plan
1   KS 128 area_code_415 no yes
Chapter 6

R Interface for Embedded R Execution

2 OH 107 area_code_415 no yes
3 NJ 137 area_code_415 no no

number_vmail_messages total_day_minutes total_day_calls total_day_charge
1 25 265.1 110 45.07
2 26 161.6 123 27.47
3 0 243.4 114 41.38

total_eve_minutes total_eve_calls total_eve_charge total_night_minutes
1 197.4 99 16.78 244.7
2 195.5 103 16.62 254.4
3 121.2 110 10.30 162.6

total_night_calls total_night_charge total_intl_minutes total_intl_calls
1 91 11.01 10.0 3
2 103 11.45 13.7 3
3 104 7.32 12.2 5

total_intl_charge number_customer_service_calls churn
1 2.70 1 no
2 3.70 1 no
3 3.29 0 no

Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order

R> ore.scriptDrop("my_rpartFunction")
R> ore.scriptCreate("my_rpartFunction",
+   function(dat, datastorePrefix) {
+     library(rpart)
+     vmp <- dat[1, "voice_mail_plan"]
+     ip <- dat[1, "international_plan"]
+     datastoreName <- paste(datastorePrefix, vmp, ip, sep = ".")
+     dat$voice_mail_plan <- NULL
+     dat$international_plan <- NULL
+     dat$state <- as.factor(dat$state)
+     dat$churn <- as.factor(dat$churn)
+     dat$area_code <- as.factor(dat$area_code)
+     mod <- rpart(churn ~ ., data = dat)
+     ore.save(mod, name = datastoreName, overwrite = TRUE)
+     list(voice_mail_plan = vmp,
+       international_plan = ip,
+       churn.table = table(dat$churn),
+       rpart.model = mod)
+   })
R>
R> library(rpart)
R> datastorePrefix = "my.rpartModel"
R>
R> res <- ore.groupApply(CHURN_TRAIN,
+   INDEX = CHURN_TRAIN[, c("voice_mail_plan", "international_plan")],
+   FUN.NAME = "my_rpartFunction",
+   datastorePrefix = datastorePrefix,
+   ore.connect = TRUE)
R> res[[1]]
$voice_mail_plan
[1] "no"

$international_plan
[1] "no"

$churn.table

no yes
1878 302
Use the ore.rowApply Function

The ore.rowApply function invokes an R script with an ore.frame as the input data.

The ore.rowApply function passes the ore.frame to the user-defined input function as the first argument to that function. The rows argument to the ore.rowApply function specifies the number of rows to pass to each invocation of the user-defined R function. The last chunk or rows may have fewer rows than the number specified. The
**ore.rowApply** function can use data-parallel execution, in which one or more R engines perform the same R function, or task, on different partitions of data.

The syntax of the ore.rowApply function is the following:

```r
ore.rowApply(X, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, rows = 1,
 FUN.OWNER = NULL, parallel = getOption("ore.parallel", NULL))
```

The ore.rowApply function returns an ore.list object or an ore.frame object.

---

**See Also:**

- [Arguments for Functions that Run Scripts](#) for descriptions of the arguments to function ore.rowApply

---

**Example 6-15 Using the ore.rowApply Function**

This example uses the e1071 package, previously downloaded from CRAN. The example does the following:

- Loads the package e1071.
- Pushes the iris data set to the database as the IRIS temporary table and ore.frame object.
- Creates the Naive Bayes model nbmod.
- Creates a copy of IRIS as IRIS_PRED and adds the PRED column to IRIS_PRED to contain the predictions.
- Invokes the ore.rowApply function, passing the IRIS ore.frame as the data source for user-defined R function and the user-defined R function itself. The user-defined function does the following:
  - Loads the package e1071 so that it is available to the R engine or engines that run in the database.
  - Converts the Species column to a factor because, although the ore.frame defined factors, when they are loaded to the user-defined function, factors appear as character vectors.
  - Invokes the predict method and returns the res object, which contains the predictions in the column added to the data set.
- Pulls the model to the client R session.
- Passes IRIS_PRED as the argument FUN.VALUE, which specifies the structure of the object that the ore.RowApply function returns.
- Specifies the number of rows to pass to each invocation of the user-defined function.
- Displays the class of res, and invokes the table function to display the Species column and the PRED column of the res object.

```r
library(e1071)
IRIS <- ore.push(iris)
nbmod <- ore.tableApply{
 ore.push(iris),
 function(dat) {
```
library(e1071)
dat$Species <- as.factor(dat$Species)
nativeBayes(Species ~ ., dat)
)
IRIS_PRED <- IRIS
IRIS_PRED$PRED <- "A"
res <- ore.rowApply(
IRIS,
function(dat, nbmod) {
  library(e1071)
  dat$Species <- as.factor(dat$Species)
  dat$PRED <- predict(nbmod, newdata = dat)
  dat
},
nbmod = ore.pull(nbmod),
FUN.VALUE = IRIS_PRED,
rows = 10)
class(res)
table(res$Species, res$PRED)

Listing for This Example

R> library(e1071)
R> IRIS <- ore.push(iris)
R> nbmod <- ore.tableApply(
+   ore.push(iris),
+   function(dat) {
+     library(e1071)
+     dat$Species <- as.factor(dat$Species)
+     naiveBayes(Species ~ ., dat)
+   })
R> IRIS_PRED <- IRIS
R> IRIS_PRED$PRED <- "A"
R> res <- ore.rowApply(
+   IRIS,
+   function(dat, nbmod) {
+     library(e1071)
+     dat$Species <- as.factor(dat$Species)
+     dat$PRED <- predict(nbmod, newdata = dat)
+   },
+   nbmod = ore.pull(nbmod),
+   FUN.VALUE = IRIS_PRED,
+   rows = 10)
R> class(res)
[1] "ore.frame"
attr("package")
[1] "OREbase"
R> table(res$Species, res$PRED)

    setosa versicolor virginica
setosa       50         0         0
versicolor    0        47         3
virginica     0         3        47

This example uses the C50 package to score churn data (that is, to predict which customers are likely to churn) using C5.0 models. The example partitions the data by a number of rows. It scores the customers from the specified state in parallel. It uses datastores and saves functions to the OML4R script repository, which allows the functions to be used by the OML4R SQL API functions.
The example first loads C50 package and the data sets. It deletes the datastores with names containing myC5.0modelFL, if they exist. It invokes ore.drop to delete the CHURN_TEST table, if it exists, and then invokes ore.create to create the CHURN_TEST table from the churnTest data set.

The example next invokes ore.getLevels, which returns a list of the levels for each factor column. The invocation excludes the first column, which is state, because the levels for that column are not needed. Getting the levels first can ensure that all possible levels are provided during model building, even if some rows do not have values for some of the levels. The ore.delete invocation ensures that no datastore with the specified name exists and the ore.save invocation saves the xlevels object in the datastore named myXLevels.

The example creates a user-defined function, myC5.0FunctionForLevels, that generates a C5.0 model. The function uses the list of levels returned by function ore.getXlevels instead of computing the levels using the as.factor function. It uses the levels to convert the column type from character vector to factor. The function myC5.0FunctionForLevels returns the value TRUE. The example saves the function in the script repository.

The example next gets a list of datastores that have names that include the specified string and deletes those datastores if they exist.

The example then invokes ore.groupApply, which invokes function myC5.0FunctionForLevels on each state in the CHURN_TEST data. To each myC5.0FunctionForLevels invocation, ore.groupApply passes the datastore that contains the xlevels object and a prefix to use in naming the datastore generated by myC5.0FunctionForLevels. It also passes the ore.connect control argument to connect to the database in the embedded R function, which enables the use of objects stored in a datastore. The ore.groupApply invocation returns a list that contains the results of all of the invocations of myC5.0FunctionForLevels.

The example pulls the result over to the local R session and verifies that myC5.0FunctionForLevels returned TRUE for each state in the data source.

The example next creates another user-defined another function, myScoringFunction, and stores it in the script repository. The function scores a C5.0 model for the levels of a state and returns the results in a data.frame.

The example then invokes function ore.rowApply. It filters the input data to use only data for the state of Massachusetts. It specifies myScoringFunction as the function to invoke and passes that user-defined function the name of the datastore that contains the xlevels object and a prefix to use in loading the datastore that contains the C5.0 model for the state. The ore.rowApply invocation specifies invoking myScoringFunction on 200 rows of the data set in each parallel R engine. It uses the FUN.VALUE argument so that ore.rowApply returns an ore.frame that contains the results of all of the myScoringFunction invocations. The variable scores gets the results of the ore.rowApply invocation.

Finally, the example prints the scores object and then uses the table function to display the confusion matrix for the scoring.

⚠️ **See Also:**

Example A-8 for an invocation of the SQL rqRowEval function that produces the same result as the ore.rowApply function in this example
Example 6-16    Using the ore.rowApply Function with Datastores and Scripts

```r
library(C50)
data(churn)

ore.drop("CHURN_TEST")
ore.create(churnTest, "CHURN_TEST")
xlevels <- ore.getXlevels(~ ., churnTest[, -1])
ore.delete("myXLevels")
ore.save(xlevels, name = "myXLevels")

ore.scriptDrop("myC5.0FunctionForLevels")
ore.scriptCreate("myC5.0FunctionForLevels",
 function(dat, xlevelsDatastore, datastorePrefix) {
 library(C50)
 state <- dat[1, "state"]
 datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
 dat$state <- NULL
 ore.load(name = xlevelsDatastore)
 for (j in names(xlevels))
 dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
c5mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
 ore.save(c5mod, name = datastoreName)
 TRUE
 })

d.s.v <- ore.datastore(pattern = "myC5.0modelFL")$datastore.name
for (ds in d.s.v) ore.delete(name = ds)

res <- ore.groupApply(CHURN_TEST,
 INDEX=CHURN_TEST$state,
 FUN.NAME = "myC5.0FunctionForLevels",
 xlevelsDatastore = "myXLevels",
 datastorePrefix = "myC5.0modelFL",
 ore.connect = TRUE)
res <- ore.pull(res)
all(as.logical(res) == TRUE)

ore.scriptDrop("myScoringFunction")
ore.scriptCreate("myScoringFunction",
 function(dat, xlevelsDatastore, datastorePrefix) {
 library(C50)
 state <- dat[1, "state"]
 datastoreName <- paste(datastorePrefix, state, sep = "_")
 dat$state <- NULL
 ore.load(name = xlevelsDatastore)
 for (j in names(xlevels))
 dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
 ore.load(name = datastoreName)
 res <- data.frame(pred = predict(c5mod, dat, type =
 "class"),
 actual = dat$churn,
 state = state)

 res
 })

scores <- ore.rowApply(
 CHURN_TEST[CHURN_TEST$state == "MA",],
 FUN.NAME = "myScoringFunction",
```
```r
xlevelsDatastore = "myXLevels",
datastorePrefix = "myC5.0modelFL",
ore.connect = TRUE, parallel = TRUE,
FUN.VALUE = data.frame(pred = character(0),
actual = character(0),
state = character(0)),
rows=200)
scores
table(scores$actual, scores$pred)

Listing for This Example

R> library(C50)
R> data(churn)
R>
R> ore.drop("CHURN_TEST"
R> ore.create(churnTest, "CHURN_TEST")
R>
R> xlevels <- ore.getXlevels(~ ., CHURN_TEST[,-1])
R> ore.delete("myXLevels")
[1] "myXLevels"
R> ore.save(xlevels, name = "myXLevels")
R>
R> ore.scriptDrop("myC5.0FunctionForLevels")
R> ore.scriptCreate("myC5.0FunctionForLevels",
+ function(dat, xlevelsDatastore, datastorePrefix) {
+ library(C50)
+ state <- dat[1,"state"]
+ datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
+ dat$state <- NULL
+ ore.load(name = xlevelsDatastore)
+ for (j in names(xlevels))
+ dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
+ c5mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
+ ore.save(c5mod, name = datastoreName)
+ TRUE
+ })
R>
R> ds.v <- ore.datastore(pattern="myC5.0modelFL")$datastore.name
R> for (ds in ds.v) ore.delete(name=ds)
R>
R> res <- ore.groupApply(CHURN_TEST,
+ INDEX=CHURN_TEST$state,
+ FUN.NAME="myC5.0FunctionForLevels",
+ xlevelsDatastore = "myXLevels",
+ datastorePrefix = "myC5.0modelFL",
+ ore.connect = TRUE)
R> res <- ore.pull(res)
R> all(as.logical(res) == TRUE)
[1] TRUE
R>
R> ore.scriptDrop("myScoringFunction")
R> ore.scriptCreate("myScoringFunction",
+ function(dat, xlevelsDatastore, datastorePrefix) {
+ library(C50)
+ state <- dat[1,"state"]
+ datastoreName <- paste(datastorePrefix, state,sep="_")
+ dat$state <- NULL
+ ore.load(name = xlevelsDatastore)
+ for (j in names(xlevels))
+ dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
```
```r
ore.load(name = datastoreName)
res <- data.frame(pred = predict(c5mod, dat, type="class"),
 actual = dat$churn,
 state = state)
res
```

```r
scores <- ore.rowApply(
 CHURN_TEST[CHURN_TEST$state == "MA",],
 FUN.NAME = "myScoringFunction",
 xlevelsDatastore = "myXLevels",
 datastorePrefix = "myC5.0modelFL",
 ore.connect = TRUE, parallel = TRUE,
 FUN.VALUE = data.frame(pred=character(0),
 actual=character(0),
 state=character(0)),
 rows=200
)
```

```r
scores
 pred actual state
 1 no no MA
 2 no no MA
 3 no no MA
 4 no no MA
 5 no no MA
 6 no yes MA
 7 yes yes MA
 8 yes yes MA
 9 no no MA
 10 no no MA
 11 no no MA
 12 no no MA
 13 no no MA
 14 no no MA
 15 yes yes MA
 16 no no MA
 17 no no MA
 18 no no MA
 19 no no MA
 20 no no MA
 21 no no MA
 22 no no MA
 23 no no MA
 24 no no MA
 25 no no MA
 26 no no MA
 27 no no MA
 28 no no MA
 29 no yes MA
 30 no no MA
 31 no no MA
 32 no no MA
 33 yes yes MA
 34 no no MA
 35 no no MA
 36 no no MA
 37 no no MA
 38 no no MA
```

Warning message:
ORE object has no unique key - using random order
R> table(scores$actual, scores$pred)

   no yes
no 32  0
yes 2  4

Use the ore.indexApply Function

The ore.indexApply function executes the specified user-defined input function using data that is generated by the input function.

The function supports task-parallel execution, in which one or more R engines perform the same or different calculations, or task. The times argument to the ore.indexApply function specifies the number of times that the input function executes in the database. Any required data must be explicitly generated or loaded within the input function.

The syntax of the ore.indexApply function is the following:

ore.indexApply(times, FUN, ..., FUN.VALUE = NULL, FUN.NAME = NULL, FUN.OWNER = NULL, parallel = getOption("ore.parallel", NULL))

The ore.indexApply function returns an ore.list object or an ore.frame object.

See Also:
- Arguments for Functions that Run Scripts for descriptions of the arguments to function ore.indexApply

Examples of the use of the ore.indexApply function are in the following topics:

Simple Example of Using the ore.indexApply Function

The example invokes ore.indexApply and specifies that it execute the input function five times in parallel.

Example 6-17  Using the ore.indexApply Function

This example displays the class of the result, which is ore.list, and then displays the result.

```r
res <- ore.indexApply(5,
 function(index) {
 paste("IndexApply:", index)
 },
 parallel = TRUE)
class(res)
res
```

Listing for This Example

```r
R> res <- ore.indexApply(5,
+ function(index) {
+ paste("IndexApply:", index)
+ },
+ parallel = TRUE)
```
Column-Parallel Use Case

The example uses the R `summary` function to compute in parallel summary statistics on the first four numeric columns of the `iris` data set.

Example 6-18  Using the ore.indexApply Function and Combining Results

The example combines the computations into a final result. The first argument to the `ore.indexApply` function is 4, which specifies the number of columns to summarize in parallel. The user-defined input function takes one argument, `index`, which will be a value between 1 and 4 and which specifies the column to summarize.

The example invokes the `summary` function on the specified column. The `summary` invocation returns a single row, which contains the summary statistics for the column. The example converts the result of the `summary` invocation into a `data.frame` and adds the column name to it.

The example next uses the `FUN.VALUE` argument to the `ore.indexApply` function to define the structure of the result of the function. The result is then returned as an `ore.frame` object with that structure.

```r
res <- NULL
res <- ore.indexApply(4,
 function(index) {
 ss <- summary(iris[, index])
 attr.names <- attr(ss, "names")
 stats <- data.frame(matrix(ss, 1, length(ss)))
 names(stats) <- attr.names
 stats$col <- names(iris)[index]
 stats
 },
 FUN.VALUE=data.frame(Min. = numeric(0),
 "1st Qu." = numeric(0),
 Median = numeric(0),
 Mean = numeric(0),
 "3rd Qu." = numeric(0),
 Max. = numeric(0),
 Col = character(0)),
 parallel = TRUE)
res
```
### Listing for This Example

```r
R> res <- NULL
R> res <- ore.indexApply(4,
+ function(index) {
+ ss <- summary(iris[, index])
+ attr.names <- attr(ss, "names")
+ stats <- data.frame(matrix(ss, 1, length(ss)))
+ names(stats) <- attr.names
+ stats$col <- names(iris)[index]
+ stats
+ },
+ FUN.VALUE=data.frame(Min. = numeric(0),
+ "1st Qu." = numeric(0),
+ Median = numeric(0),
+ Mean = numeric(0),
+ "3rd Qu." = numeric(0),
+ Max. = numeric(0),
+ Col = character(0)),
+ parallel = TRUE)
R> res

Min. X1st.Qu. Median Mean X3rd.Qu. Max. Col
1 2.0 2.8 3.00 3.057 3.3 4.4 Sepal.Width
2 4.3 5.1 5.80 5.843 6.4 7.9 Sepal.Length
3 0.1 0.3 1.30 1.199 1.8 2.5 Petal.Width
4 1.0 1.6 4.35 3.758 5.1 6.9 Petal.Length
```

### Simulations Use Case

You can use the `ore.indexApply` function in simulations, which can take advantage of high-performance computing hardware like an Oracle Exadata Database Machine.

**Example 6-19 Using the ore.indexApply Function in a Simulation**

This example takes multiple samples from a random normal distribution to compare the distribution of the summary statistics. Each simulation occurs in a separate R engine in the database, in parallel, up to the degree of parallelism allowed by the database. The example defines variables for the sample size, the mean and standard deviations of the random numbers, and the number of simulations to perform. The example specifies `num.simulations` as the first argument to the `ore.indexApply` function. The `ore.indexApply` function passes `num.simulations` to the user-defined function as the `index` argument. This input function then sets the random seed based on the index so that each invocation of the input function generates a different set of random numbers.

The input function next uses the `rnorm` function to produce `sample.size` random normal values. It invokes the `summary` function on the vector of random numbers, and then prepares a `data.frame` as the result it returns. The `ore.indexApply` function specifies the `FUN.VALUE` argument so that it returns an `ore.frame` that structures the combined results of the simulations. The `res` variable gets the `ore.frame` returned by the `ore.indexApply` function.

To get the distribution of samples, the example invokes the `boxplot` function on the `data.frame` that is the result of using the `ore.pull` function to bring selected columns from `res` to the client.

```r
res <- NULL
sample.size = 1000
mean.val = 100
```
std.dev.val = 10
num.simulations = 1000

res <- ore.indexApply(num.simulations,
    function(index, sample.size = 1000, mean = 0, std.dev = 1) {
        set.seed(index)
        x <- rnorm(sample.size, mean, std.dev)
        ss <- summary(x)
        attr.names <- attr(ss, "names")
        stats <- data.frame(matrix(ss, 1, length(ss)))
        names(stats) <- attr.names
        stats$index <- index
        stats
    },
    FUN.VALUE=data.frame(Min. = numeric(0),
        "1st Qu." = numeric(0),
        Median = numeric(0),
        Mean = numeric(0),
        "3rd Qu." = numeric(0),
        Max. = numeric(0),
        Index = numeric(0)),
    parallel = TRUE,
    sample.size = sample.size,
    mean = mean.val, std.dev = std.dev.val)

options("ore.warn.order" = FALSE)
head(res, 3)
tail(res, 3)
boxplot(ore.pull(res[, 1:6]),
    main=sprintf("Boxplot of %d rnorm samples size %d, mean=%d, sd=%d",
        num.simulations, sample.size, mean.val, std.dev.val))

Listing for This Example

R> res <- ore.indexApply(num.simulations,
+    function(index, sample.size = 1000, mean = 0, std.dev = 1) {
+        set.seed(index)
+        x <- rnorm(sample.size, mean, std.dev)
+        ss <- summary(x)
+        attr.names <- attr(ss, "names")
+        stats <- data.frame(matrix(ss, 1, length(ss)))
+        names(stats) <- attr.names
+        stats$index <- index
+        stats
+    },
+    FUN.VALUE=data.frame(Min. = numeric(0),
+        "1st Qu." = numeric(0),
+        Median = numeric(0),
+        Mean = numeric(0),
+        "3rd Qu." = numeric(0),
+        Max. = numeric(0),
+        Index = numeric(0)),
+    parallel = TRUE,
+    sample.size = sample.size,
+    mean = mean.val, std.dev = std.dev.val)
R> options("ore.warn.order" = FALSE)
R> head(res, 3)
     Min. X1st.Qu. Median       Mean X3rd.Qu.  Max. Index
1  67.56  93.11   99.42   99.30  105.8  128.0   847
2  67.73  94.19  100.10  100.10  106.3  130.7   258
3  65.58  93.15   99.78   99.82  106.2  134.3   264
R> tail(res, 3)
Min. X1st.Qu. Median Mean X3rd.Qu. Max. Index
1 65.02 93.44 100.2 100.20 106.9 134.0 5
2 71.60 93.34 99.6 99.66 106.4 131.7 4
3 69.44 93.15 100.3 100.10 106.8 135.2 3

R> boxplot(ore.pull(res[, 1:6]),
   + main=sprintf("Boxplot of %d rnorm samples size %d, mean=%d, sd=%d",
   + num.simulations, sample.size, mean.val, std.dev.val))

Figure 6-2 Display of the boxplot Function in Example 6-19

SQL Interface for Embedded R Execution

The SQL interface for Oracle Machine Learning for R embedded R execution allows you to execute R functions in production database applications.

The SQL interface has procedures for the following actions:

- Adding and removing a script from the OML4R script repository
- Granting or revoking read privilege access to a script by the owner to other users
• Executing an R script in an embedded R session
• Deleting an OML4R datastore

Data dictionary views provide information about scripts and datastores.

This SQL interface is described in the following topics:

About Oracle Machine Learning for R SQL Table Functions

OML4R provides SQL table functions that are equivalents of most of the R interface functions for embedded R execution.

Executing a `SELECT FROM TABLE` statement and specifying one of the table functions results in the invocation of the specified R script. The script runs in one or more R engines on the Oracle Database server.

The SQL table functions for embedded R execution are:

• `rqEval`
• `rqGroupEval`
• `rqRowEval`
• `rqTableEval`

The R interface functions and the SQL equivalents are listed in Table 6-1.

For the `rqGroupEval` function, OML4R provides a generic implementation of the group apply functionality in SQL. You must write a table function that captures the structure of the input cursor.

See the reference pages for the functions for information about them, including examples of their use.

Some general aspects of the SQL table functions are described in the following topics:

Parameters of the SQL Table Functions

The SQL table functions have some parameters in common and some functions have parameters that are unique to that function.

The parameters of the SQL table functions are the following.

Table 6-2   SQL Table Function Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_CUR</td>
<td>A cursor that specifies the data that is input to the R function specified by EXP_NAM. For all of the SQL table functions except <code>rqEval</code>, the first argument is a cursor that specifies input data for the R function.</td>
</tr>
</tbody>
</table>
Table 6-2  (Cont.) SQL Table Function Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_CUR</td>
<td>A cursor that specifies arguments to pass to the R function. The parameters cursor consists of a single row of scalar values. An argument can be a string or a numeric value. You can specify multiple arguments in the cursor. Arguments to an R function are case sensitive, so you should put names, such as a column name, in double quotes. In the cursor, you can also specify as scalar values an OML4R control argument or the names of serialized R objects, such as predictive models, that are in an OML4R datastore. The value of this parameters cursor can be NULL if you are not passing any arguments to the R function or any control arguments.</td>
</tr>
<tr>
<td>OUT_QRY</td>
<td>An output table definition. The value of this argument can be NULL or a string that defines the structure of the R data.frame returned by the R function specified by EXP_NAM. The string can be a SELECT statement, 'XML', or 'PNG'.</td>
</tr>
<tr>
<td>GRP_COL</td>
<td>For the rqGroupEval function, the name of the grouping column.</td>
</tr>
<tr>
<td>RON_NUM</td>
<td>For the rqRowEval function, the number of rows to pass to each invocation of the R function.</td>
</tr>
<tr>
<td>EXP_NAM</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>

Related Topics

- Manage Scripts in SQL
  This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.
- Manage Datastores in SQL
  Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

Return Value of SQL Table Functions

The Oracle Machine Learning for R SQL table functions return a table. The structure and contents of the table are determined by the results of the R function passed to the SQL table function and by the OUT_QRY parameter. The R function can return a data.frame object, other R objects, and graphics. The structure of the table that represents the results of the R function is specified by one of the following OUT_QRY values:

- NULL, which results in a table that has a serialized object that can contain both data and image objects.
- A table signature specified in a SELECT statement, which results in a table that has the defined structure. The result of the R function must be a data.frame. No images are returned.
- The string 'XML', which results in a table that has a CLOB that can contain both structured data and graph images in an XML string. The non-image R objects, such as
data.frame or model objects, are provided first, followed by the base 64 encoding of a PNG representation of the image.

- The string 'PNG', which results in a table that has a BLOB that contains graph images in PNG format. The table has the column names name, id, and image.

Connect to Oracle Machine Learning for R in Embedded R Execution

To establish a connection to OML4R on the Oracle Database server during the embedded R execution, you can specify the control argument `ore.connect` in the parameters cursor.

Doing so establishes a connection using the credentials of the user who invoked the embedded R function. It also automatically loads the `ORE` package. Establishing an OML4R connection is required to save objects in an OML4R R object datastore or to load objects from a datastore. It also allows you to explicitly use the OML4R transparency layer.

See Also:

Optional and Control Arguments for information on other control arguments

Manage Scripts in SQL

This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.

The functions in the SQL API for embedded R execution require as an argument a named script that is stored in the OML4R script repository. The PL/SQL procedures `sys.rqScriptCreate` and `sys.rqScriptDrop` create and drop scripts. To create a script or drop one from the script repository requires the RQADMIN role.

When using the `sys.rqScriptCreate` function, you must specify a name for the script and an R function script that contains a single R function definition. Calls to the functions `sys.rqScriptCreate` and `sys.rqScriptDrop` must be wrapped in a `BEGIN-`END` PL/SQL block. The script repository stores the R function as a character large object (a CLOB), so you must enclose the function definition in single quotes to specify it as a string.

The owner of a script can use the `rqGrant` procedure to grant to another user read privilege access to a script or use the `rqRevoke` procedure to revoke the privilege. To use a script granted to you by another user, you must specify the owner by prepending the owner’s name and a period to the name of the script, as in the following:

```
select * from table(rqEval(NULL, 'select 1 x from dual', 'owner_name.script_name'));
```

The owner prefix is not required for a public script or for a script owned by the user.

The following tables list the PL/SQL procedures for managing script repository scripts and the data dictionary views that contain information about scripts.
Table 6-3  PL/SQL Procedures for Managing Scripts

<table>
<thead>
<tr>
<th>PL/SQL Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rqGrant</td>
<td>Grants read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>rqRevoke</td>
<td>Revokes read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>sys.rqScriptCreate</td>
<td>Adds the provided R function into the script repository with the provided name.</td>
</tr>
<tr>
<td>sys.rqScriptDrop</td>
<td>Removes the named R function from the script repository.</td>
</tr>
</tbody>
</table>

Table 6-4  Data Dictionary Views for Scripts

<table>
<thead>
<tr>
<th>Data Dictionary View</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_RQ_SCRIPTS</td>
<td>Describes the scripts in the OML4R script repository that are available to the current user</td>
</tr>
<tr>
<td>USER_RQ_SCRIPTS</td>
<td>Describes the scripts in the script repository that are owned by the current user.</td>
</tr>
<tr>
<td>USER_RQ_SCRIPT_PRIVS</td>
<td>Describes the scripts in the script repository to which the current user has granted read access and the users to whom access has been granted.</td>
</tr>
<tr>
<td>SYS.RQ_SCRIPTS</td>
<td>Describes the system scripts in the script repository.</td>
</tr>
</tbody>
</table>

Example 6-20  Create a Script with the SQL APIs

This example uses the **sys.rqScriptCreate** procedure to create a script in the Oracle Machine Learning for R script repository.

The example creates the user-defined function named *myRandomRedDots2*. The user-defined function accepts two arguments, and it returns a *data.frame* object that has two columns and that plots the specified number of random normal values. The **sys.rqScriptCreate** function stores the user-defined function in the OML4R script repository.

```sql
-- Create a script named myRandomRedDots2 and add it to the script repository.
-- Specify that the script is private and to overwrite a script with the same name.
BEGIN
 sys.rqScriptCreate('myRandomRedDots2',
 'function(divisor = 100, numDots = 100) {
 id <- 1:10
 plot(1:numDots, rnorm(numDots), pch = 21, bg = "red", cex = 2)
 data.frame(id = id, val = id / divisor)}',
 v_global => FALSE,
 v_overwrite => TRUE);
END;
/

-- Grant read privilege access to Scott.
BEGIN
 rqGrant('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/
```
-- View the users granted read access to myRandomRedDots2.
select * from USER_RQ_SCRIPT_PRIVS;

<table>
<thead>
<tr>
<th>NAME</th>
<th>GRANTEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>myRandomRedDots</td>
<td>SCOTT</td>
</tr>
</tbody>
</table>

-- Revoke the read privilege access from Scott.
BEGIN
  rqRevoke('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/

-- Remove the script from the script repository.
BEGIN
  sys.rqScriptDrop('myRandomRedDots2');
END;
/

Related Topics

- **SQL APIs for Oracle Machine Learning for R**
  The OML4R SQL APIs comprise SQL table functions for executing R functions in
  one or more embedded R sessions on the OML4R Server database, and PL/SQL
  procedures for managing OML4R datastores and for managing scripts in the
  OML4R script repository.

- **Oracle Database Views for Oracle Machine Learning for R**
  Oracle Database has several data dictionary views that contain information about
  OML4R datastores and scripts in the OML4R script repository.

- **Manage Scripts in R**
  Embedded R execution functions can invoke R functions that are stored as scripts
  in the OML4R script repository. You can use the R functions described in this topic
  to create and manage scripts.

Manage Datastores in SQL

Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database
data dictionary views for the basic management of datastores in SQL.

The following tables list the procedures and views.

**Table 6-5  PL/SQL Procedures for Managing Datastores**

<table>
<thead>
<tr>
<th>PL/SQL Procedures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rqGrant</td>
<td>Grants read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>rqRevoke</td>
<td>Revokes read privilege access to a datastore or script.</td>
</tr>
<tr>
<td>rqDropDataStore</td>
<td>Deletes a datastore.</td>
</tr>
</tbody>
</table>
### Table 6-6  Data Dictionary Views for Datastores

<table>
<thead>
<tr>
<th>Views</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL_RQ_DATASTORES</td>
<td>Describes the datastores available to the current user, including whether the datastore is grantable.</td>
</tr>
<tr>
<td>RQUSER_DATASTORELIST</td>
<td>Describes the datastores in the Oracle Database schema.</td>
</tr>
<tr>
<td>RQUSER_DATASTORECONTENTS</td>
<td>Describes the objects in the datastores in the Oracle Database schema.</td>
</tr>
<tr>
<td>USER_RQ_DATASTORE_PRIVS</td>
<td>Describes the datastores and the users to whom the current user has granted read privilege access.</td>
</tr>
<tr>
<td>USER_RQ_DATASTORES</td>
<td>Describes the datastores owned by the current user, including whether the datastore is grantable.</td>
</tr>
</tbody>
</table>

**Related Topics**

- **SQL APIs for Oracle Machine Learning for R**
  The OML4R SQL APIs comprise SQL table functions for executing R functions in one or more embedded R sessions on the OML4R Server database, and PL/SQL procedures for managing OML4R datastores and for managing scripts in the OML4R script repository.

- **Oracle Database Views for Oracle Machine Learning for R**
  Oracle Database has several data dictionary views that contain information about OML4R datastores and scripts in the OML4R script repository.
SQL APIs for Oracle Machine Learning for R

The OML4R SQL APIs comprise SQL table functions for executing R functions in one or more embedded R sessions on the OML4R Server database, and PL/SQL procedures for managing OML4R datastores and for managing scripts in the OML4R script repository.

The SQL APIs for OML4R are described in the following topics:

rqDropDataStore Procedure

The rqDropDataStore procedure deletes a datastore from an Oracle Database schema.

Syntax

rqDropDataStore (DS_NAME VARCHAR2 IN)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS_NAME</td>
<td>The name of the datastore to drop.</td>
</tr>
</tbody>
</table>

Example A-1 Dropping a Datastore

This example deletes the datastore datastore_1 from the current user schema.

rqDropDataStore('datastore_1')

Related Topics

- Manage Datastores in SQL
- Oracle Database Views for Oracle Machine Learning for R

rqEval Function

The rqEval function executes the R function in the script specified by the EXP_NAM parameter.

You can pass arguments to the R function with the PAR_CUR parameter.

The rqEval function does not automatically receive any data from the database. The R function generates the data that it uses or it explicitly retrieves it from a data source such as Oracle Database, other databases, or flat files.

The R function returns an R data.frame object, which appears as a SQL table in the database. You define the form of the returned value with the OUT_QRY parameter.
Syntax

\[
\text{rqEval} \ ( \begin{array}{lll}
\text{PAR_CUR} & \text{REF CURSOR} & \text{IN} \\
\text{OUT_QRY} & \text{VARCHAR2} & \text{IN} \\
\text{EXP_NAM} & \text{VARCHAR2} & \text{IN} \\
\end{array} )
\]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR_CUR</td>
<td>A cursor that contains argument values to pass to the R function specified by the \text{EXP_NAM} parameter.</td>
</tr>
<tr>
<td>OUT_QRY</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>- NULL, which returns a serialized object that can contain both data and image objects.</td>
</tr>
<tr>
<td></td>
<td>- A SQL \text{SELECT} statement that specifies the column names and data types of the table returned by \text{rqEval}. Any image data is discarded. You can provide a prototype row using the \text{dual} dummy table or you can base the \text{SELECT} statement on an existing table or view. The R function must return a \text{data.frame}.</td>
</tr>
<tr>
<td></td>
<td>- The string \text{'XML'}, which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.</td>
</tr>
<tr>
<td></td>
<td>- The string \text{'PNG'}, which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format.</td>
</tr>
<tr>
<td>EXP_NAM</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>

Return Value

Function \text{rqEval} returns a table that has the structure specified by the \text{OUT_QRY} parameter value.

Examples

Example A-2 Using rqEval

This example creates the script \text{myRandomRedDots2}. The value of the first parameter to \text{rqEval} is \text{NULL}, which specifies that no arguments are supplied to the function \text{myRandomRedDots2}. The value of second parameter is a string that specifies a SQL statement that describes the column names and data types of the \text{data.frame} returned by \text{rqEval}. The value of third parameter is the name of the script in the OML4R script repository.

```sql
-- Create a script named myRandomRedDots2 and add it to the script repository.
-- Specify that the script is private and to overwrite a script with the same name.
BEGIN
 sys.rqScriptCreate('myRandomRedDots2',
```
'function(divisor = 100, numDots = 100) {
  id <- 1:10
  plot(1:numDots, rnorm(numDots), pch = 21, bg = "red", cex = 2)
  data.frame(id = id, val = id / divisor),
  v_global => FALSE,
  v_overwrite => TRUE);
END;
/

SELECT *
FROM table(rqEval(NULL, 'SELECT 1 id, 1 val FROM dual',
  'myRandomRedDots2'));

In Oracle SQL Developer, the results of the SELECT statement are:

<table>
<thead>
<tr>
<th>ID</th>
<th>VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>7</td>
<td>0.07</td>
</tr>
<tr>
<td>8</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
</tr>
</tbody>
</table>

10 rows selected

Example A-3 Passing Arguments to the R Function invoked by rqEval

This example provides arguments to the R function by specifying a cursor as the first parameter to rqEval. The cursor specifies multiple arguments in a single row of scalar values.

SELECT *
FROM table(rqEval(cursor(SELECT 50 "divisor", 500 "numDots" FROM dual),
  'SELECT 1 id, 1 val FROM dual',
  'myRandomRedDots2'));

In Oracle SQL Developer, the results of the SELECT statement are:

<table>
<thead>
<tr>
<th>ID</th>
<th>VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>0.08</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.12</td>
</tr>
<tr>
<td>7</td>
<td>0.14</td>
</tr>
<tr>
<td>8</td>
<td>0.16</td>
</tr>
<tr>
<td>9</td>
<td>0.18</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
</tr>
</tbody>
</table>

10 rows selected
Example A-4  Specifying PNG as the Output Table Definition

This example creates a script named PNG_Example and stores it in the script repository. The invocation of rqEval specifies an OUT_QRY value of 'PNG'.

BEGIN
sys.rqScriptDrop('PNG_Example');
sys.rqScriptCreate('PNG_Example',
  'function(){
    dat <- data.frame(y = log(1:100), x = 1:100)
    plot(lm(y ~ x, dat))
  }');
END;
/
SELECT * FROM table(rqEval(NULL,'PNG','PNG_Example'));

In Oracle SQL Developer, the results of the SELECT statement are:

<table>
<thead>
<tr>
<th>NAME</th>
<th>ID</th>
<th>IMAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(BLOB)</td>
<td></td>
</tr>
</tbody>
</table>

rqGrant Procedure

The rqGrant procedure grants read privilege access to an OML4R datastore or to a script in the OML4R script repository.

Syntax

rqGrant (V_NAME VARCHAR2 IN, V_TYPE VARCHAR2 IN, V_USER VARCHAR2 IN DEFAULT)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4R datastore or a script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is datastore; for a script, the type is rqscript.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user to whom to grant access.</td>
</tr>
</tbody>
</table>

Example A-5  Granting Read Access to a Script

-- Grant read privilege access to Scott.
BEGIN
  rqGrant('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
/
Related Topics

• rqRevoke Procedure

rqGroupEval Function

The `rqGroupEval` function is a user-defined function that identifies a grouping column.

The user defines an `rqGroupEval` function in PL/SQL using the SQL object `rqGroupEvalImpl`, which is a generic implementation of the group apply functionality in SQL. The implementation supports data-parallel execution, in which one or more R engines perform the same R function, or task, on different partitions of data. The data is partitioned according to the values of the grouping column.

Only one grouping column is supported. If you have multiple columns, then combine the columns into one column and use the new column as the grouping column.

The `rqGroupEval` function executes the R function in the script specified by the `EXP_NAME` parameter. You pass data to the R function with the `INP_CUR` parameter. You can pass arguments to the R function with the `PAR_CUR` parameter.

The R function returns an R `data.frame` object, which appears as a SQL table in the database. You define the form of the returned value with the `OUT_QRY` parameter.

To create an `rqGroupEval` function, you create the following two PL/SQL objects:

• A PL/SQL package that specifies the types of the result to return.
• A function that takes the return value of the package and uses the return value with `PIPELINED_PARALLEL_ENABLE` set to indicate the column on which to partition data.

Syntax

```
rqGroupEval (
 INP_CUR REF CURSOR IN
 PAR_CUR REF CURSOR IN
 OUT_QRY VARCHAR2 IN
 GRP_COL VARCHAR2 IN
 EXP_NAM VARCHAR2 IN)
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INP_CUR</td>
<td>A cursor that specifies the data to pass to the R function specified by the <code>EXP_NAME</code> parameter.</td>
</tr>
<tr>
<td>PAR_CUR</td>
<td>A cursor that contains argument values to pass to the R function.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>OUT_QRY</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• NULL, which returns a serialized object that can contain both data and image objects.</td>
</tr>
<tr>
<td></td>
<td>• A SQL SELECT statement that specifies the column names and data types of the table returned by rqEval. Any image data is discarded. You can provide a prototype row using the dual dummy table or you can base the SELECT statement on an existing table or view. The R function must return a <code>data.frame</code>.</td>
</tr>
<tr>
<td></td>
<td>• The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.</td>
</tr>
<tr>
<td></td>
<td>• The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format.</td>
</tr>
<tr>
<td>GRP_COL</td>
<td>The name of the grouping column by which to partition the data.</td>
</tr>
<tr>
<td>EXP_NAM</td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>

**Return Value**

The user-defined `rqGroupEval` function returns a table that has the structure specified by the OUT_QRY parameter value.

**Examples**

This example has a PL/SQL block that drops the script `myC5.0Function` to ensure that the script does not exist in the OML4R script repository. It then creates a function and stores it as the script `myC5.0Function` in the script repository.

The R function accepts two arguments: the data on which to operate and a prefix to use in creating datastores. The function uses the C50 package to build C5.0 models on the churn data set from C50. The function builds one churn model on the data for each state.

The `myC5.0Function` function loads the C50 package so that the function body has access to it when the function executes in an R engine on the database server. The function then creates a datastore name using the datastore prefix and the name of a state. To exclude the state name from the model, the function deletes the column from the `data.frame`. Because factors in the `data.frame` are converted to character vectors when they are loaded in the user-defined embedded R function, the `myC5.0Function` function explicitly converts the character vectors back to R factors.

The `myC5.0Function` function gets the data for the state from the specified columns and then creates a model for the state and saves the model in a datastore. The R function returns `TRUE` to have a simple value that can appear as the result of the function execution.

The example next creates a PL/SQL package, `churnPkg`, and a user-defined function, `churnGroupEval`. In defining an `rqGroupEval` function implementation, the PARALLEL_ENABLE clause is optional but the CLUSTER BY clause is required.
Finally, the example executes a `SELECT` statement that invokes the `churnGroupEval` function. In the `INP_CUR` argument of the `churnGroupEval` function, the `SELECT` statement specifies the `PARALLEL` hint to use parallel execution of the R function and the data set to pass to the R function. The `INP_CUR` argument of the `churnGroupEval` function specifies connecting to OML4R and the datastore prefix to pass to the R function. The `OUT_QRY` argument specifies returning the value in XML format, the `GRP_NAM` argument specifies using the state column of the data set as the grouping column, and the `EXP_NAM` argument specifies the `myC5.0Function` script in the script repository as the R function to invoke.

For each of 50 states plus Washington, D.C., the `SELECT` statement returns from the `churnGroupEval` table function the name of the state and an XML string that contains the value `TRUE`.

**Example A-6 Using an rqGroupEval Function**

```sql
BEGIN
 sys.rqScriptDrop('myC5.0Function');
sys.rqScriptCreate('myC5.0Function',
 'function(dat, datastorePrefix) {
 library(C50)
 datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
 dat$state <- NULL
 dat$churn <- as.factor(dat$churn)
 dat$area_code <- as.factor(dat$area_code)
 dat$international_plan <- as.factor(dat$international_plan)
 dat$voice_mail_plan <- as.factor(dat$voice_mail_plan)
 mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
 ore.save(mod, name = datastoreName)
 TRUE
 }');
END;
/

CREATE OR REPLACE PACKAGE churnPkg AS
 TYPE cur IS REF CURSOR RETURN CHURN_TRAIN%ROWTYPE;
END churnPkg;
/
CREATE OR REPLACE FUNCTION churnGroupEval(
 inp_cur churnPkg.cur,
 par_cur SYS_REFCURSOR,
 out_qry VARCHAR2,
 grp_col VARCHAR2,
 exp_txt CLOB)
RETURN SYS.AnyDataSet
PIPELINED PARALLEL_ENABLE (PARTITION inp_cur BY HASH ("state"))
CLUSTER inp_cur BY ("state")
USING rqGroupEvalImpl;
/

SELECT *
FROM table(churnGroupEval(
 cursor(SELECT * /*+ parallel(t,4) */ FROM CHURN_TRAIN t),
 cursor(SELECT 1 AS "ore.connect",
 'myC5.0model' AS "datastorePrefix" FROM dual),
 'XML', 'state', 'myC5.0Function'));
```
rqRevoke Procedure

The `rqRevoke` procedure revokes read privilege access to an OML4R datastore or to a script in the OML4R script repository.

Syntax

```sql
rqGrant (
 V_NAME VARCHAR2 IN
 V_TYPE VARCHAR2 IN
 V_USER VARCHAR2 IN DEFAULT)
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>The name of an OML4R datastore or a script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_TYPE</td>
<td>For a datastore, the type is datastore; for a script, the type is rqscript.</td>
</tr>
<tr>
<td>V_USER</td>
<td>The name of the user from whom to revoke access.</td>
</tr>
</tbody>
</table>

Example A-7  Revoking Read Access to a Script

```sql
-- Revoke read privilege access to Scott.
BEGIN
 rqRevoke('myRandomRedDots2', 'rqscript', 'SCOTT');
END;
```

Related Topics

- `rqGrant Procedure`

rqRowEval Function

The `rqRowEval` function executes the R function in the script specified by the `EXP_NAM` parameter.

You pass data to the R function with the `INP_CUR` parameter. You can pass arguments to the R function with the `PAR_CUR` parameter. The `ROW_NUM` parameter specifies the number of rows that should be passed to each invocation of the R function. The last chunk may have fewer rows than the number specified.

The `rqRowEval` function supports data-parallel execution, in which one or more R engines perform the same R function, or task, on disjoint chunks of data. Oracle Database handles the management and control of the potentially multiple R engines that run on the database server machine, automatically chunking and passing data to the R engines executing in parallel. Oracle Database ensures that R function executions for all chunks of rows complete, or the `rqRowEval` function returns an error.
The R function returns an R `data.frame` object, which appears as a SQL table in the database. You define the form of the returned value with the `OUT_QRY` parameter.

**Syntax**

```
rqRowEval (
 INP_CUR REF CURSOR IN
 PAR_CUR REF CURSOR IN
 OUT_QRY VARCHAR2 IN
 ROW_NUM NUMBER IN
 EXP_NAM VARCHAR2 IN)
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>INP_CUR</code></td>
<td>A cursor that specifies the data to pass to the R function specified by the <code>EXP_NAME</code> parameter.</td>
</tr>
<tr>
<td><code>PAR_CUR</code></td>
<td>A cursor that contains argument values to pass to the R function.</td>
</tr>
<tr>
<td><code>OUT_QRY</code></td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• NULL, which returns a serialized object that can contain both data and image objects.</td>
</tr>
<tr>
<td></td>
<td>• A SQL <code>SELECT</code> statement that specifies the column names and data types of the table returned by <code>rqEval</code>. Any image data is discarded. You can provide a prototype row using the <code>dual</code> dummy table or you can base the <code>SELECT</code> statement on an existing table or view. The R function must return a <code>data.frame</code>.</td>
</tr>
<tr>
<td></td>
<td>• The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.</td>
</tr>
<tr>
<td></td>
<td>• The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format.</td>
</tr>
<tr>
<td><code>ROW_NUM</code></td>
<td>The number of rows to include in each invocation of the R function.</td>
</tr>
<tr>
<td><code>EXP_NAM</code></td>
<td>The name of a script in the OML4R script repository.</td>
</tr>
</tbody>
</table>

**Return Value**

Function `rqRowEval` returns a table that has the structure specified by the `OUT_QRY` parameter value.

**Examples**

This example uses the C50 package to score churn data (that is, to predict which customers are likely to churn) using C5.0 decision tree models. The example scores the customers from the specified state in parallel. This example produces the same result as the invocation of function `ore.rowApply` in Example 6-16.
**Example A-8  Using an rqRowEval Function**

This example creates a user-defined function and saves the function in the OML4R script repository. The user-defined function creates a C5.0 model for a state and saves the model in a datastore. In this example, the user-defined function myC5.0FunctionForLevels uses the list of levels created in Example 6-16. The function myC5.0FunctionForLevels returns the value TRUE.

This example creates the PL/SQL package churnPkg and the function churnGroupEval. The example declares a cursor to get the names of the datastores that include the string myC5.0modelFL and then executes a PL/SQL block that deletes those datastores. The example next executes a SELECT statement that invokes the churnGroupEval function. The churnGroupEval function invokes the myC5.0FunctionForLevels function to generate the C5.0 models and save them in datastores.

The example then creates the myScoringFunction function and stores it in the script repository. The function scores a C5.0 model for the levels of a state and returns the results in a data.frame.

Finally, the example executes a SELECT statement that invokes the rqRowEval function. The input cursor to the rqRowEval function uses the PARALLEL hint to specify the degree of parallelism to use. The cursor specifies the CHURN_TEST table as the data source and filters the rows to include only those for Massachusetts. All rows processed use the same predictive model.

The parameters cursor specifies the ore.connect control argument to connect to OML4R on the database server and specifies values for the datastorePrefix and xlevelsDatastore arguments to the myScoringFunction function.

The SELECT statement for the OUT_QRY parameter specifies the format of the output. The ROW_NUM parameter specifies 200 as the number of rows to process at a time in each parallel R engine. The EXP_NAME parameter specifies myScoringFunction in the script repository as the R function to invoke.

```
BEGIN
sys.rqScriptDrop('myC5.0FunctionForLevels');
sys.rqScriptCreate('myC5.0FunctionForLevels',
 'function(dat, xlevelsDatastore, datastorePrefix) {
 library(C50)
 state <- dat[1,"state"]
 datastoreName <- paste(datastorePrefix, dat[1, "state"], sep = "_")
 dat$state <- NULL
 ore.load(name = xlevelsDatastore) # To get the xlevels object.
 for (j in names(xlevels))
 dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
 c5mod <- C5.0(churn ~ ., data = dat, rules = TRUE)
 ore.save(c5mod, name = datastoreName)
 }')
```
CREATE OR REPLACE PACKAGE churnPkg AS
    TYPE cur IS REF CURSOR RETURN CHURN_TEST%ROWTYPE;
END churnPkg;
/
CREATE OR REPLACE FUNCTION churnGroupEval(
    inp_cur churnPkg.cur,
    par_cur SYS_REFCURSOR,
    out_qry VARCHAR2,
    grp_col VARCHAR2,
    exp_txt CLOB
) RETURN SYS.AnyDataSet
PIPELINED PARALLEL_ENABLE (PARTITION inp_cur BY HASH ("state"))
CLUSTER inp_cur BY ("state")
USING rqGroupEvalImpl;
/
DECLARE
    CURSOR c1
    IS
        SELECT dsname FROM RQUSER_DATASTORELIST WHERE dsname like 'myC5.0modelFL%';
BEGIN
    FOR dsname_st IN c1
    LOOP
        rqDropDataStore(dsname_st.dsname);
    END LOOP;
END;
SELECT *
FROM table(churnGroupEval(
    cursor(SELECT * /*+ parallel(t,4) */ FROM CHURN_TEST t),
    cursor(SELECT 1 AS "ore.connect", 'myXLevels' as "xlevelsDatastore", 'myC5.0modelFL' AS "datastorePrefix" FROM dual),
    'XML', 'state', 'myC5.0FunctionForLevels'));
BEGIN
    sys.rqScriptDrop('myScoringFunction');
    sys.rqScriptCreate('myScoringFunction',
        'function(dat, xlevelsDatastore, datastorePrefix) {
            library(C50)
            state <- dat[1, "state"]
            datastoreName <- paste(datastorePrefix, state, sep = "_")
            dat$state <- NULL
            ore.load(name = xlevelsDatastore) # To get the xlevels object.
            for (j in names(xlevels))
                dat[[j]] <- factor(dat[[j]], levels = xlevels[[j]])
            ore.load(name = datastoreName)
            res <- data.frame(pred = predict(c5mod, dat, type = "class"),
                actual= dat$churn,
                state = state)

            res
        }');
END;
/
SELECT * FROM table(rqRowEval(
    cursor(select /*+ parallel(t, 4) */ *
        FROM CHURN_TEST t
        WHERE "state" = 'MA'),
    cursor(SELECT 1 as "ore.connect",
        'myC5.0modelFL' as "datastorePrefix",
        'myXLevels' as "xlevelsDatastore"
        FROM dual),
    'SELECT ''aaa'' "pred","aaa" "actual", ''aa'' "state" FROM dual',
    200, 'myScoringFunction'));

In Oracle SQL Developer, the results of the last SELECT statement are:

<table>
<thead>
<tr>
<th>pred</th>
<th>actual</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>yes</td>
<td>yes</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>MA</td>
</tr>
</tbody>
</table>

38 rows selected

rqTableEval Function

The rqTableEval function executes the R function in the script specified by the EXP_NAM parameter.
You pass data to the R function with the `INP_CUR` parameter. You can pass arguments to the R function with the `PAR_CUR` parameter.

The R function returns an R `data.frame` object, which appears as a SQL table in the database. You define the form of the returned value with the `OUT_QRY` parameter.

**Syntax**

```
rqTableEval (
 INP_CUR REF CURSOR IN
 PAR_CUR REF CURSOR IN
 OUT_QRY VARCHAR2 IN
 EXP_NAM VARCHAR2 IN)
```

**Parameters**

*Table A-2  Parameters of the rqTableEval Function*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>INP_CUR</code></td>
<td>A cursor that specifies the data to pass to the R function specified by the <code>EXP_NAME</code> parameter.</td>
</tr>
<tr>
<td><code>PAR_CUR</code></td>
<td>A cursor that contains argument values to pass to the input function.</td>
</tr>
</tbody>
</table>
| `OUT_QRY` | One of the following:  
  - NULL, which returns a serialized object that can contain both data and image objects.  
  - A SQL `SELECT` statement that specifies the column names and data types of the table returned by `rqEval`. Any image data is discarded. You can provide a prototype row using the dual dummy table or you can base the `SELECT` statement on an existing table or view. The R function must return a `data.frame`.  
  - The string 'XML', which specifies that the table returned contains a CLOB that is an XML string. The XML can contain both structured data and images, with structured or semi-structured R objects first, followed by the image or images generated by the R function. Images are returned as a base 64 encoding of the PNG representation.  
  - The string 'PNG', which specifies that the table returned contains a BLOB that has the image or images generated by the R function in PNG format. |
| `EXP_NAM` | The name of a script in the OML4R script repository. |

**Return Value**

Function `rqTableEval` returns a table that has the structure specified by the `OUT_QRY` parameter value.

**Examples**

This example first has a PL/SQL block that drops the script `myNaiveBayesModel` to ensure that the script does not exist in the OML4R script repository. It then creates a function and stores it as the script `myNaiveBayesModel` in the repository.

The R function accepts two arguments: the data on which to operate and the name of a datastore. The function builds a Naive Bayes model on the `iris` data set. Naive Bayes is found in the `e1071` package.
The `myNaiveBayesModel` function loads the e1071 package so that the function body has access to it when the function executes in an R engine on the database server. Because factors in the `data.frame` are converted to character vectors when they are loaded in the user-defined embedded R function, the `myNaiveBayesModel` function explicitly converts the character vector to an R factor.

The `myNaiveBayesModel` function gets the data from the specified column and then creates a model and saves it in a datastore. The R function returns `TRUE` to have a simple value that can appear as the result of the function execution.

The example next executes a `SELECT` statement that invokes the `rqTableEval` function. In the `INP_CUR` argument of the `rqTableEval` function, the `SELECT` statement specifies the data set to pass to the R function. The data is from the IRIS table that was created by invoking `ore.create(iris, "IRIS")`, which is not shown in the example. The `INP_CUR` argument of the `rqTableEval` function specifies the name of a datastore to pass to the R function and specifies the `ore.connect` control argument to establish an OML4R connection to the database during the embedded R execution of the user-defined R function. The `OUT_QRY` argument specifies returning the value in XML format, and the `EXP_NAM` argument specifies the `myNaiveBayesModel` script in the script repository as the R function to invoke.

**Example A-9  Using the rqTableEval Function**

```r
BEGIN
sys.rqScriptDrop('myNaiveBayesModel');
sys.rqScriptCreate('myNaiveBayesModel',
 'function(dat, datastoreName) {
 library(e1071)
 dat$Species <- as.factor(dat$Species)
 nbmod <- naiveBayes(Species ~ ., dat)
 ore.save(nbmod, name = datastoreName)
 TRUE
 }');
END;
/
SELECT *
FROM table(rqTableEval(
 cursor(SELECT * FROM IRIS),
 cursor(SELECT 'myNaiveBayesDatastore' "datastoreName",
 1 as "ore.connect" FROM dual),
 'XML', 'myNaiveBayesModel'));
```

The `SELECT` statement returns from the `rqTableEval` table function an XML string that contains the value `TRUE`.

The `myNaiveBayesDatastore` datastore now exists and contains the object `nbmod`, as shown by the following `SELECT` statement.

```sql
SQL> SELECT * from RQUSER_DATASTORECONTENTS
 2 WHERE dsname = 'myNaiveBayesDatastore';
```

```
 DSNNAME OBJNAME CLASS OBJSIZE LENGTH NROW NCOL
 --------------------- ------- ---------- ------- ------ ---- ----
myNaiveBayesDatastore nbmod naiveBayes 1485 4
```

In a local R session, you could load the model and display it, as in the following:
R> ore.load("myNaiveBayesDatastore")
[1] "nbmod"
R> nbmod
$apriori
  Y setosa versicolor virginica
      50       50       50

$tables
$tables$Sepal.Length
  Sepal.Length
   Y [,1] [,2]
  setosa 5.006 0.3524897
  versicolor 5.936 0.5161711
  virginica 6.588 0.6358796

$tables$Sepal.Width
  Sepal.Width
   Y [,1] [,2]
  setosa 3.428 0.3790644
  versicolor 2.770 0.3137983
  virginica 2.974 0.3224966

$tables$Petal.Length
  Petal.Length
   Y [,1] [,2]
  setosa 1.462 0.1736640
  versicolor 4.260 0.4699110
  virginica 5.552 0.5518947

$tables$Petal.Width
  Petal.Width
   Y [,1] [,2]
  setosa 0.246 0.1053856
  versicolor 1.326 0.1977527
  virginica 2.026 0.2746501

$levels
[1] "setosa" "versicolor" "virginica"

$call
naiveBayes.default(x = X, y = Y, laplace = laplace)
attr(,"class")
[1] "naiveBayes"

sys.rqScriptCreate Procedure

The sys.rqScriptCreate procedure creates a script and adds it to the OML4R script repository.

Syntax

sys.rqScriptCreate ( 
  V_NAME VARCHAR2    IN
  V_SCRIPT CLOB       IN
)
### sys.rqScriptDrop Procedure

The **sys.rqScriptDrop** procedure removes a script from the OML4R script repository.

#### Syntax

```sql
sys.rqScriptDrop (
 V_NAME VARCHAR2 IN
 V_GLOBAL BOOLEAN IN DEFAULT
 V_SILENT BOOLEAN IN DEFAULT)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_NAME</td>
<td>A name for the script in the OML4R script repository.</td>
</tr>
<tr>
<td>V_SCRIPT</td>
<td>The R function definition to store in the script.</td>
</tr>
<tr>
<td>V_GLOBAL</td>
<td>TRUE specifies that the script is public; FALSE specifies that the script is private.</td>
</tr>
<tr>
<td>V_OVERWRITE</td>
<td>If the OML4R script repository already has a script with the same name as V_NAME, then TRUE replaces the content of that script with V_SCRIPT and FALSE does not replace it.</td>
</tr>
<tr>
<td>V_SILENT</td>
<td>FALSE (the default) specifies that <strong>sys.rqScriptDrop</strong> displays an error message if it encounters an error in dropping the specified R script. TRUE specifies that the procedure does not display an error message.</td>
</tr>
</tbody>
</table>

#### Related Topics
- [Manage Scripts in SQL](#)
Oracle Database has several data dictionary views that contain information about OML4R datastores and scripts in the OML4R script repository.

The following topics describe these views.

Related Topics

- **Manage Scripts in SQL**
  This topic lists the PL/SQL procedures and Oracle Database data dictionary views for creating and managing R scripts.

- **Manage Datastores in SQL**
  Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

---

### ALL_RQ_DATASTORES

**ALL_RQ_DATASTORES** describes the datastores available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSOWNER</td>
<td>VARCHAR2(256)</td>
<td>NOT NULL</td>
<td>The owner of the datastore.</td>
</tr>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The number of objects in the datastore.</td>
</tr>
<tr>
<td>DSSIZE</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of the datastore.</td>
</tr>
<tr>
<td>CDATE</td>
<td>DATE</td>
<td>NOT NULL</td>
<td>The creation date of the datastore.</td>
</tr>
<tr>
<td>GRANTABLE</td>
<td>VARCHAR2(1)</td>
<td>NOT NULL</td>
<td>Whether read privilege access to the datastore can be granted by the owner to another user.</td>
</tr>
</tbody>
</table>

Related Topics

- **About OML4R Datastores**
  Each database schema has a table that stores named OML4R datastores.

- **Manage Datastores in SQL**
  Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.
ALL_RQ_SCRIPTS

ALL_RQ_SCRIPTS describes the scripts in the OML4R script repository that are available to the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWNER</td>
<td>VARCHAR2(256)</td>
<td>NOT NULL</td>
<td>The owner of the script.</td>
</tr>
<tr>
<td>NAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the script.</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>CLOB</td>
<td>NOT NULL</td>
<td>The R function of the script.</td>
</tr>
</tbody>
</table>

Related Topics

- USER_RQ_SCRIPT_PRIVS
- USER_RQ_SCRIPTS

RQUSER_DATASTORECONTENTS

RQUSER_DATASTORECONTENTS contains information about the contents of Oracle Machine Learning for R datastores.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>OBJNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The names of the objects in the datastore.</td>
</tr>
<tr>
<td>CLASS</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The R class of an object.</td>
</tr>
<tr>
<td>DSIZE</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of an object.</td>
</tr>
<tr>
<td>LENGTH</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of an object.</td>
</tr>
<tr>
<td>NROW</td>
<td>NUMBER</td>
<td>NULL allowed</td>
<td>The number of rows in an object.</td>
</tr>
<tr>
<td>NCOL</td>
<td>NUMBER</td>
<td>NULL allowed</td>
<td>The number of columns in an object.</td>
</tr>
</tbody>
</table>

Related Topics

- ALL_RQ_DATASTORES
- RQUSER_DATASTORELIST

RQUSER_DATASTORELIST

RQUSER_DATASTORELIST contains information about Oracle Machine Learning for R datastores.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the datastore.</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The number of objects in a datastore.</td>
</tr>
<tr>
<td>DSIZE</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of the datastore.</td>
</tr>
<tr>
<td>CDATE</td>
<td>DATE</td>
<td>NOT NULL</td>
<td>The date the datastore was created.</td>
</tr>
</tbody>
</table>
USER_RQ_DATASTORE_PRIVS

USER_RQ_DATASTORE_PRIVS describes the datastores and the users to whom the current user has granted read privilege access.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of a datastore.</td>
</tr>
<tr>
<td>GRANTEE</td>
<td>VARCHAR2(30)</td>
<td>NOT NULL</td>
<td>The user to whom read privilege access has been granted.</td>
</tr>
</tbody>
</table>

Related Topics

- **About OML4R Datastores**
  Each database schema has a table that stores named OML4R datastores.
- **Manage Datastores in SQL**
  Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.
- **ALL_RQ_DATASTORES**
- **USER_RQ_DATASTORES**

USER_RQ_DATASTORES

USER_RQ_DATASTORES describes datastores created by the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSNAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of a datastore.</td>
</tr>
<tr>
<td>NOBJ</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The number of objects in the datastore.</td>
</tr>
<tr>
<td>DSIZE</td>
<td>NUMBER</td>
<td>NOT NULL</td>
<td>The size of the datastore.</td>
</tr>
<tr>
<td>CDATE</td>
<td>DATE</td>
<td>NOT NULL</td>
<td>The creation date of the datastore.</td>
</tr>
<tr>
<td>GRANTABLE</td>
<td>VARCHAR2(1)</td>
<td>NOT NULL</td>
<td>Whether read privilege access to the datastore can be granted by the owner to another user.</td>
</tr>
</tbody>
</table>

Related Topics

- **About OML4R Datastores**
  Each database schema has a table that stores named OML4R datastores.
Manage Databases in SQL
Oracle Machine Learning for R provides PL/SQL procedures and Oracle Database data dictionary views for the basic management of datastores in SQL.

- **ALL_RQ_DATASTORES**
- **USER_RQ_DATASTORE_PRIVS**

**USER_RQ_SCRIPT_PRIVS**

**USER_RQ_SCRIPT_PRIVS** describes the scripts in the OML4R script repository to which the current user has granted read access and the users to whom access has been granted.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the script to which read access has been granted.</td>
</tr>
<tr>
<td>GRANTEE</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The user to whom read access has been granted.</td>
</tr>
</tbody>
</table>

**Related Topics**

- **ALL_RQ_SCRIPTS**
- **USER_RQ_SCRIPTS**

**USER_RQ_SCRIPTS**

**USER_RQ_SCRIPTS** describes the scripts in the OML4R script repository that are owned by the current user.

<table>
<thead>
<tr>
<th>Column</th>
<th>Datatype</th>
<th>Null</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>VARCHAR2(128)</td>
<td>NOT NULL</td>
<td>The name of the script.</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>CLOB</td>
<td>NOT NULL</td>
<td>The R function of the script.</td>
</tr>
</tbody>
</table>

**Related Topics**

- **ALL_RQ_SCRIPTS**
- **USER_RQ_SCRIPT_PRIVS**
The OML4R packages support many R operators and functions that you can use with OML4R objects.

This appendix lists the R operators and functions that OML4R supports.

The OML4R sample programs include several examples using each category of these functions with OML4R data types.

You are not restricted to using this list of functions. If a specific function that you need is not supported by OML4R, you can pull data from the database into the R engine memory using `ore.pull` to create an in-memory R object first, and use any R function.

The following operators and functions are supported. See R documentation for syntax and semantics of these operators and functions. Syntax and semantics for these items are unchanged when used on a corresponding database-mapped data type (also known as an OML4R data type).

- **Mathematical transformations**: `abs`, `sign`, `sqrt`, `ceiling`, `floor`, `trunc`, `cummax`, `cummin`, `cumprod`, `cumsum`, `log`, `loglo`, `log10`, `log2`, `acos`, `acosh`, `asin`, `asinh`, `atan`, `atanh`, `cos`, `cosh`, `sin`, `sinh`, `tan`, `atan2`, `tanh`, `gamma`, `lgamma`, `digamma`, `trigamma`, `factorial`, `lfactorial`, `round`, `signif`, `pmin`, `pmax`, `zapsmall`, `rank`, `diff`, `besselI`, `besselJ`, `besselK`, `besselY`
- **Basic statistics**: `mean`, `summary`, `min`, `max`, `sum`, `any`, `all`, `median`, `range`, `IQR`, `fivenum`, `mad`, `quantile`, `sd`, `var`, `table`, `tabulate`, `rowSums`, `colSums`, `rowMeans`, `colMeans`, `cor`, `cov`
- **Arithmetic operators**: `+`, `-`, `*`, `/`, `^`, `%%`
- **Comparison operators**: `==`, `>`, `<`, `!=`, `<=`, `>=`
- **Logical operators**: `&`, `|`, `xor`
- **Set operations**: `unique`, `%in%`, `subset`
- **String operations**: `tolower`, `toupper`, `casefold`, `toString`, `chartr`, `sub`, `gsub`, `substr`, `substring`, `paste`, `nchar`, `grepl`
- **Combine Data Frame**: `cbind`, `rbind`, `merge`
- **Combine vectors**: `append`
- **Vector creation**: `ifelse`
- **Subset selection**: `[`, `[[`, `$`, `head`, `tail`, `window`, `subset`, `Filter`, `na.omit`, `na.exclude`, `complete.cases`
- **Subset replacement**: `[-`, `[[<-`, `$<-`
- **Data reshaping**: `split`, `unlist`
- **Data processing**: `eval`, `with`, `within`, `transform`
- **Apply variants**: `tapply`, `aggregate`, `by`
- **Special value checks**: `is.na`, `is.finite`, `is.infinite`, `is.nan`
• **Metadata functions:** nrow, NROW, ncol, NCOL, nlevels, names, names<-, row, col, dimnames, dimnames<-, dim, length, row.names, row.names<-, rownames, rownames<-, colnames, levels, reorder

• **Graphics:** arrows, boxplot, cdplot, co.intervals, coplot, hist, identify, lines, matlines, matplot, matpoints, pairs, plot, points, polygon, polypath, rug, segments, smoothScatter, sunflowerplot, symbols, text, xspline, xy.coords

• **Conversion functions:** as.logical, as.integer, as.numeric, as.character, as.vector, as.factor, as.data.frame

• **Type check functions:** is.logical, is.integer, is.numeric, is.character, is.vector, is.factor, is.data.frame

• **Character manipulation:** nchar, tolower, toupper, casefold, chartr, sub, gsub, substr

• **Other ore.frame functions:** data.frame, max.col, scale

• **Hypothesis testing:** binom.test, chisq.test, ks.test, prop.test, t.test, var.test, wilcox.test

• **Various Distributions:** Density, cumulative distribution, and quantile functions for standard distributions

• **ore.matrix function:** show, is.matrix, as.matrix, `%*%` (matrix multiplication), t, crossprod (matrix cross-product), tcrossprod (matrix cross-product A times transpose of B), solve (invert), backsolve, forwardsolve, all appropriate mathematical functions (abs, sign, and so on), summary (max, min, all, and so on), mean

**Related Topics**

• **Transparency Layer Support for R Data Types and Classes**
  Oracle Machine Learning for R transparency layer has classes and data types that map R data types to Oracle Database data types.
Index

A

access control
  for datastores, 2-24, 6-48
  for scripts, 6-13, 6-46
accessor functions, 3-15
aggregate function, 1-5, 3-6
aggregating data, 3-6, 3-53
aggregation functions, 3-15, 3-53
algorithms
  Apriori, 4-14
  association rules, 4-14
  attribute importance, 4-17
  Decision Tree, 4-18
  Expectation Maximization, 4-20
  Explicit Semantic Analysis, 4-25
  Extensible R, 4-29
  Generalized Linear Model, 4-37
  k-Means, 4-40
  Minimum Description Length, 4-17
  Naive Bayes, 4-43
  Non-Negative Matrix Factorization, 4-45
  Orthogonal Partitioning Cluster, 4-47
  Singular Value Decomposition, 4-49
  Support Vector Machine, 4-54
ALL_RQ_DATASTORES view, B-1
ALL_RQ_SCRIPTS view, B-2
Apriori algorithm, 4-14
arima function, 3-15
arrange function
  description, 3-41
  example, 3-43, 3-46
arrange_ function
  description, 3-41
as.Date function, 3-15
as.difftime function, 3-15
as.integer function, 3-15
as.ore class, 3-15
as.ore function, 1-10
as.ore.character function, 1-10, 3-15
as.ore.date function, 3-15
association models, 4-14
attaching a schema, 2-8
attribute importance models, 4-17

C

C50 package, 6-5, 6-27, 6-32, A-5, A-8
class inheritance, 1-5
coefficient class types, 1-10
columns
  deriving, 3-7
  partitioning on, 6-29
combining data, 3-5
Comprehensive R Archive Network
  See CRAN packages
creating an R session, 2-1
connection types, 2-1
connections, specifying, 2-1
control arguments for embedded R execution, 6-10
count function
  description, 3-53
  example, 3-53
CRAN packages, 1-2, 3-1, 3-61, 6-4, 6-5
creating a table, 2-17
creating proxy objects, 2-4
cross-validating models, 4-69
ctx.settings argument, 4-13, 4-62
cume_dist function
  description, 3-57
  examples, 3-57

data
  aggregating, 3-53
  distribution analysis of, 3-37
  exploring, 3-21
  grouping, 3-50
  indexing, 3-4
  joining, 3-5, 3-49
  partitioning, 3-14
  preparing, 1-2, 3-1
  ranking, 3-33, 3-57
  sampling, 3-9, 3-55
  scoring, 1-2
  selecting, 3-1, 3-41
  sorting, 3-34
  summarizing, 3-6, 3-36, 3-53
transforming, 3-7
transmuting, 3-41
data types
coercing to another type, 3-15
datastores
about, 2-22
access control, 2-24
deleting, 2-30
getting information about, 2-26
in embedded R execution, 2-30, 6-32, A-5, A-8, A-12
managing in SQL, 6-48
restoring objects from, 2-28
saving objects in, 2-21, 2-23
date and time objects, 3-15
dCLI, 6-5
Decision Tree algorithm, 4-18
Decision Tree models, 4-18
dense_rank function
description, 3-57
examples, 3-57
density estimation algorithm, 4-20
desc function
description, 3-41
example, 3-46
detaching a schema, 2-8
diff function, 3-15
distinct function
description, 3-41
example, 3-43
distinct function
description, 3-41
distinct function
description, 3-41
do.call function, 3-9
dplyr package, 3-41
dropping a table, 2-17
e1071 package, 6-25
easy connect string, specifying, 2-3
embedded R execution, 1-2
about, 6-1
APIs for, 6-2
control arguments, 6-10
parallel execution, 6-3, 6-12
R interface for, 6-9
security, 6-3
SQL interface for, 6-43
executing SQL statements, 2-10
Expectation Maximization model, 4-20
Explicit Semantic Analysis model, 4-20
exploratory data analysis
data set for examples, 3-22
exponential smoothing models, 3-29
Extensible R model, 4-29
F
feature extraction algorithm, 4-25, 4-49
filter function
description, 3-41
example, 3-45
examples, 3-47
filter_function
description, 3-41
filtering data, 2-17
forecast package, 3-29
formatting data, 3-7
full_join function
description, 3-49
example of, 3-49
G
Generalized Linear Model, 4-4, 4-37
glm function, 4-4
global options, 1-11, 2-10
ore.envAsEmptyenv, 1-12
ore.na.extract, 1-12
ore.parallel, 1-12
ore.sep, 1-12
ore.trace, 1-12
ore.warn.order, 1-12
group_by function
description, 3-50
examples, 3-50
group_size function
description, 3-50
examples, 3-50
groups function
description, 3-50
examples, 3-50
H
Hadoop cluster, 2-1
HIVE connection type, 2-1
I
indexing data, 3-4
inner_join function
description, 3-49
example of, 3-49
install.packages function, 3-61
IRLS algorithm, 4-4
is.null function, 2-9
K
k-Means models, 4-40
kernlab package, 2-10, 3-61
keys
  ordering with, 2-10
kyphosis data set, 4-4

L
lapply function, 3-9
least squares regression, 4-3
left_join function
  description, 3-49
  example of, 3-49
library function, 3-61
linear regression model, 4-3
longley data set, 4-2

M
machine learning models, 4-11
map/reduce operations, 4-4
max function, 3-15
min function, 3-15
min_rank function
  description, 3-57
  examples, 3-57
Minimum Description Length algorithm, 4-17
models
  association, 4-14
  attribute importance, 4-17
  cross-validating, 4-69
  Decision Tree, 4-18
  Expectation Maximization, 4-20
  Explicit Semantic Analysis, 4-25
  Extensible R, 4-29
  Generalized Linear Model, 4-4, 4-37
  k-Means, 4-40
  linear regression, 4-3
  Naive Bayes, 4-43
  Neural Network, 4-7
  Non-Negative Matrix Factorization, 4-45
  OML4SQL, 4-11
  Orthogonal Partitioning Cluster, 4-47
  parametric, 4-37
  partitioned, 4-57
  predictive, 5-1
  Random Forest, 4-9
  Singular Value Decomposition, 4-49
  Support Vector Machine, 4-54
mutate function
  description, 3-41
  examples, 3-47, 3-57

mutate_function
  description, 3-41

N
n_groups function
  description, 3-50
  examples, 3-50
Naive Bayes models, 4-43
naming conventions, 1-10
NARROW data set, 3-22
neural network models, 4-1
Neural Network models, 4-7
NMF models, 4-45
ntile function
  description, 3-57
  examples, 3-57

O
O-Cluster models, 4-47
odm.settings argument, 4-13, 4-57, 4-62
OML4R script repository, 6-13, 6-46
OML4SQL models, 4-1, 4-11
  partitioned, 4-57
  settings, 4-13
open source R packages, 3-61, 6-4
ORACLE connection type, 2-1
Oracle Data Mining rebranded, viii
Oracle Machine Learning for Spark, 2-1
Oracle R Advanced Analytics for Hadoop rebranded, viii
Oracle R Enterprise rebranded, viii
Oracle Wallet, 2-1, 2-3
ordering ore.frame objects, 1-8, 2-9
ore.attach function, 2-4, 2-8
ore.character objects, 3-15
ore.corr function, 3-21, 3-22
ore.connect function, 2-1
ore.connect function, 2-1
ore.crosstab function, 3-21, 3-24
ore.CV function, 4-69
ore.datastore function, 2-21, 2-26
ore.datastoreSummary function, 2-21, 2-26
ore.date objects, 3-15
ore.delete function, 2-30
  ore.grant function, 2-21
ore.detach function, 2-8
ore.disconnect function, 2-1, 2-2
ore.doEval function, 6-19
ore.drop control argument for embedded R execution, 6-11
ore.drop function, 2-17
ore.envAsEmptyenv control argument for embedded R execution, 6-11
ore.envAsEmptyenv global option, 1-12
ore.esm function, 3-21, 3-29
ore.exec function, 2-10, 3-2
ore.exists function, 2-4
ore.frame objects
  about, 1-8
  as proxy for a table, 2-4
  column naming conventions, 1-10
  ordering, 1-8
  subclass of data.frame, 1-5
ore.freq function, 3-21, 3-29
ore.get function, 2-7
ore(glm function, 4-1, 4-4
ore.grant, 2-24
ore.grant function, 6-13
ore.graphics control argument for embedded R execution, 6-11
ore.groupApply function, 3-14, 6-26
ore.hour function, 3-15
ore.indexApply function, 6-39
ore.integer objects, 3-15
ore.is.connected function, 2-1
ore.lazyLoad function, 2-21
ore.list class, 2-16
ore.lm function, 4-1, 4-3
ore.load function, 2-21, 2-28
ore.logical class, 3-15
ore.ls function, 2-4
ore.mday function, 3-15
ore.minute function, 3-15
ore.month function, 3-15
ore.na.extract global option, 1-12
ore.na.omit control argument for embedded R execution, 6-11
ore.neural function, 4-1, 4-7
ore.odmAI function, 4-17
ore.odmAssocRules function, 4-14
ore.odmDT function, 4-18
ore.odmEM function, 4-20
ore.odmESA function, 4-25
ore.odmGLM function, 4-37
ore.odmKM function, 4-40
ore.odmNB function, 4-43
ore.odmNMF function, 4-45
ore.odmOC function, 4-47
ore.odmRAIg function, 4-29
ore.odmSVD function, 4-49
ore.odmSVM function, 4-54
ore.parallel global option, 1-12
ore.png control arguments for embedded R execution, 6-11
ore.push function, 1-10, 2-16, 4-3
ore.randomForest function, 4-1, 4-9
ore.rank function, 3-21, 3-33
ore.revoke, 2-21, 2-24
ore.revoke function, 6-13
ore.rm function, 2-4
ore.rolling mean function, 3-15
ore.rolls function, 3-15
ore.rowApply function, 6-32
ore.save function, 2-21–2-23
  examples, 2-23, 6-32, A-5, A-8
ore.scriptCreate function, 6-13
ore.scriptDrop function, 6-13
ore.scriptList function, 6-13
ore.scriptLoad function, 6-13
ore.second function, 3-15
ore.sep global option, 1-12, 2-10
ore.sort function, 3-21, 3-34
ore.stepwise function, 4-1, 4-3
ore.summary function, 3-21, 3-36
ore.sync function, 2-4, 2-5, 2-8, 2-10, 3-2
ore.tableApply function, 6-25
ore.trace global option, 1-12
ore.univariate function, 3-21, 3-37
ore.warn.order global option, 1-12, 2-10
ore.year function, 3-15
OREbase package, 1-5
OREdm package, 2-21, 4-11
OREdplyr package, 3-41
OREeda package, 3-21
OREgraphics package, 1-5
OREmodels package, 4-1
OREpredict package, 5-1
OREstats package, 1-5

P
packages
  C50, 6-5, 6-27, 6-32, A-5, A-8
dplyr, 3-41
e1071, 6-25
forecast, 3-29
kernlab, 2-10, 3-61
OML4R, 1-3
OREbase, 1-5
OREdm, 2-21, 4-11
OREdplyr, 3-41
OREeda, 3-21
OREgraphics, 1-5
OREmodels, 4-1
OREpredict, 5-1
OREstats, 1-5
rpart, 4-4
third-party, 3-61, 6-5
TTR, 3-29
parallel execution, 6-3, 6-12
parametric models, 4-37
partitioning
  OML4SQL models, 4-57
partitions function, 4-57
percent_rank function
description, 3-57
examples, 3-57
persisting proxy objects, 2-21
PL/SQL procedures
  rqDropDataStore, A-1
  rqGrant, A-4
  rqRevoke, A-8
  sys.rqScriptCreate, A-15
  sys.rqScriptDrop, A-16
prcomp function, 3-38
preparing data, 1-2
time series, 3-15
primary keys
  ordering with, 2-10
principal component analysis, 3-38
princomp function, 3-38
proxy objects
  for database tables, 2-4
Q
quantile function, 3-15
R
Random Forest model, 4-9
range function, 3-15
rbind function, 3-9
rebranding
  Oracle Data Mining, viii
  Oracle R Advanced Analytics for Hadoop, viii
  Oracle R Enterprise, viii
regression models, 4-1
removing proxy objects, 2-4
rename function
description, 3-41
example, 3-41
rename_function
description, 3-41
repository, OML4R script, 6-13
right_join function
description, 3-49
example of, 3-49
row names
  ordering with, 2-12
rpart package, 4-4
RQADMIN role, 6-3
rqDropDataStore procedure, A-1
rqEval function, 6-44, A-1
rqGrant procedure, A-4
rqGroupEval function, 6-44, A-5
rqRevoke procedure, A-8
rqRowEval function, A-8
rqTableEval function, 6-44, A-12
RQUSER_DATASTORECONTENTS view, B-2
RQUSER_DATASTORELIST view, B-2

S
sample function, 3-9, 3-14
sampling
  cluster, 3-9
  in-database data, 3-9
  stratified, 3-9
sample_frac function
description, 3-55
example, 3-55
sample_n function
description, 3-55
example, 3-55
saving objects, 2-21
schema
  attaching, 2-8
  default, 2-8
  detaching, 2-8
scoring data, 1-2
script repository, 6-13
scripts
  dropping, A-16
  embedded R execution of, 6-1
  executing in database, 1-2
  managing in SQL, 6-46
search path
  adding an environment to, 2-8
  removing a schema from, 2-8
security for embedded R execution scripts, 6-3
select function
description, 3-41
example, 3-41
select_function
description, 3-41
example, 3-42
seq function, 3-9, 3-15
settings
  OML4SQL model parameter, 4-13
settings function, 4-13, 4-62
singular value decomposition, 3-40
Singular Value Decomposition model, 4-49
slice function
  description, 3-41
  example, 3-45
slice_function
description, 3-41
sort function, 3-15
SQL functions for embedded R execution, 6-44
SQL statements, executing, 2-10
SQL table functions, 6-44
stepwise least squares regression, 4-3
summarize function
description, 3-53
example, 3-53
summary function, 4-4
supported R operators and functions, C-1
svd function, 3-40
SVM models, 4-54
synchronizing database tables, 2-4
sys.rqScriptCreate procedure, A-15
sys.rqScriptDrop procedure, A-16

T

table functions, 6-44
tables
creating a database, 2-17
dropping a database, 2-17
making visible in R, 2-8
proxy objects for, 2-4
tally function
description, 3-53
example, 3-53
text processing, 4-13, 4-62
third-party packages, 3-61, 6-4, 6-5
transform function
eamples of, 3-7
transmute function
description, 3-41
example of, 3-47
transmute_ function (continued)
transparency layer, 1-1, 1-5, 2-4
ts function, 3-15
TTR package, 3-29

U

ungroup function
description, 3-50
examples, 3-50
unique function, 3-15
use.keys argument to ore.sync, 2-9
USER_RQ_DATASTORE_PRIVS view, B-3
USER_RQ_DATASTORES view, B-3
USER_RQ_SCRIPT_PRIVS view, B-4
USER_RQ_SCRIPTS view, B-4

V

views, B-1
ALL_RQ_DATASTORES, B-1
ALL_RQ_SCRIPTS, B-2
making visible in R, 2-8
RQ_USER_DATASTORECONTENTS, B-2
RQ_USER_DATASTORELIST, B-2
USER_RQ_DATASTORE_PRIVS, B-3
USER_RQ_DATASTORES, B-3
USER_RQ_SCRIPT_PRIVS, B-4
USER_RQ_SCRIPTS, B-4

W

wallets, Oracle, 2-1, 2-3
window functions, 3-15