3.3.6 Rank Rows
OREdplyr functions for ranking rows.
               
The ranking functions rank the elements in an ordered ore.vector by its values. An ore.character is coerced to an ore.factor. The values of an ore.factor are based upon factor levels. To reverse the direction of the ranking, use the desc function.
                  
Table 3-7 Ranking Rows
| Function | Description | 
|---|---|
| cume_dist | A cumulative distribution function: returns the proportion of all values that are less than or equal to the current rank. | 
| dense_rank | Like  | 
| 
 | Gets the first value from an ordered  | 
| 
 | Gets the last value from an ordered  | 
| min_rank | Equivalent to  | 
| 
 | Obtains the value at the specified position in the order. | 
| ntile | A rough ranking that breaks the input vector into n buckets. | 
| 
 | Gets the nth value from an ordered  | 
| percent_rank | Returns a number between 0 and 1 that is computed by rescaling  | 
| 
 | Equivalent to  | 
| 
 | Selects the top or bottom number of rows. | 
Example 3-71 Ranking Rows
These examples use the ranking functions row_number, min_rank, dense_rank, percent_rank, cume_dist, and ntile.
                  
X <- ore.push(c(5, 1, 3, 2, 2, NA))
row_number(X)
row_number(desc(X))
min_rank(X)
dense_rank(X)
percent_rank(X)
cume_dist(X)
ntile(X, 2)
ntile(ore.push(runif(100)), 10)
MTCARS <- ore.push(mtcars)
by_cyl <- group_by(MTCARS, cyl)
# Using ranking functions with an ore.frame
head(mutate(MTCARS, rank = row_number(hp)))
head(mutate(MTCARS, rank = min_rank(hp)))
head(mutate(MTCARS, rank = dense_rank(hp)))
# Using ranking functions with a grouped ore.frame
head(mutate(by_cyl, rank = row_number(hp)))
head(mutate(by_cyl, rank = min_rank(hp)))
head(mutate(by_cyl, rank = dense_rank(hp)))Listing for This Example
R> X <- ore.push(c(5, 1, 3, 2, 2, NA))
R> 
R> row_number(X)
[1] 5 1 4 2 3 6
R> row_number(desc(X))
[1] 1 5 2 3 4 6
R> 
R> min_rank(X)
[1] 5 1 4 2 2 6
R> 
R> dense_rank(X)
[1] 4 1 3 2 2 6
R> 
R> percent_rank(X)
[1] 0.8 0.0 0.6 0.2 0.2 1.0
R> 
R> cume_dist(X)
[1] 0.8333333 0.1666667 0.6666667 0.5000000 0.5000000 1.0000000
R> 
R> ntile(X, 2)
[1] 2 1 2 1 1 2
R> ntile(ore.push(runif(100)), 10)
  [1]  6 10  5  2  1  1  8  3  8  8  7  3 10  3  7  9  9  4  4 10 10  7  2  3  7  4  5  5  3  9  4  6  8  4 10  6  1  5  5  4  6  9
 [43]  5  8  2  7  7  1  2  9  1  2  8  5  6  5  3  4  7  1  3  1 10  1  5  5 10  9  2  3  9  6  6  8  8  6  3  7  2  2  8  4  1  9
 [85]  6 10  4 10  7  2  9 10  7  2  4  9  6  3  8  1
R>
R> MTCARS <- ore.push(mtcars)
R> by_cyl <- group_by(MTCARS, cyl)
R>
R> # Using ranking functions with an ore.frame
R> head(mutate(MTCARS, rank = row_number(hp)))
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4   12
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4   13
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1    7
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1   14
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2   20
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1   10
R> 
R> head(mutate(MTCARS, rank = min_rank(hp)))
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4   12
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4   12
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1    7
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1   12
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2   20
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1   10
R> 
R> head(mutate(MTCARS, rank = dense_rank(hp)))
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4   11
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4   11
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1    6
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1   11
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2   15
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1    9
R> 
R> # Using ranking functions with a grouped ore.frame
R> head(mutate(by_cyl, rank = row_number(hp)))
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4    2
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4    3
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1    7
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1    4
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2    3
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1    1
R>
R> head(mutate(by_cyl, rank = min_rank(hp)))
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4    2
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4    2
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1    7
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1    2
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2    3
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1    1
R>
R> head(mutate(by_cyl, rank = dense_rank(hp)))
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb rank
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4    2
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4    2
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1    6
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1    2
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1    1
Parent topic: Data Manipulation Using OREdplyr