About Multivariate State Estimation Technique - Sequential Probability Ratio Test

Multivariate state Estimation Technique - Sequential Probability Ratio Test (MSET-SPRT) is an algorithm for anomaly detection and statistical testing.

MSET is a nonlinear, nonparametric anomaly detection machine learning technique that calibrates the expected behavior of a system based on historical data from the normal operational sequence of monitored signals. It incorporates the learned behavior of a system into a persistent model that represents the normal estimated behavior. You can deploy the model to evaluate a subsequent stream of live signal vectors using Oracle Machine Learning for SQL scoring functions. To form a hypothesis as to the overall health of the system, these functions calculate the difference between the estimated and the actual signal values (residuals) and use SPRT calculations to determine whether any of the signals have become degraded.

To build a good model, MSET requires sufficient historical data that adequately captures all normal modes of behavior of the system. Incomplete data results in false alerts when the system enters a mode of operation that was poorly represented in the historical data. MSET assumes that the characteristics of the data being monitored do not change over time. Once deployed, MSET is a stationary model and does not evolve as it monitors a data stream.

Both MSET and SPRT operate on continuous time-ordered sensor data. If the raw data stream needs to be pre-processed or sampled, you must do that before you pass the data to the MSET-SPRT model.

The ALGO_MSET_SPRT algorithm is designated as a classification machine learning technique. It generates a model in which each data row is labeled as either normal or anomalous. For anomalous predictions, the prediction details provide a list of the sensors that show the anomaly and a weight.

When creating an MSET-SPRT model with the DBMS_DATA_MINING.CREATE_MODEL function, use the case_id argument to provide a unique row identifier for the time-ordered data that the algorithm requires. The build is then able to sort the training data and create windows for sampling and variance estimation. If you do not provide a case_id, then an exception occurs.

MSET-SPRT supports only numeric data. An exception occurs if other column types are in the build data.

When the number of sensors is very high, MSET-SPRT leverages random projections to improve the scalability and robustness of the algorithm. Random projections is a technique that reduces dimensionality while preserving pairwise distances. By randomly projecting the sensor data, the problem is solved in a distance-preserving, lower-dimension space. The MSET hypothesis testing approach is applied on the projected data where each random projection can be viewed as a Monte Carlo simulation of system health. The overall probability of an anomaly follows a binomial distribution with the number of projections as the number of trials and the number of alerting projections as the number of successes.

Note:

An MSET-SPRT model with random projections does not produce prediction details. When random projections are employed, the nature of the prediction output changes. The prediction captures the global health of the system and it is not possible to attribute the cause to individual attributes. Therefore, PREDICTION_DETAILS returns an empty list.

Note:

The term hyperparameter is also interchangeably used for model setting.