
Oracle® Text
Reference

12c Release 2 (12.2)
E85635-02
April 2020

Oracle Text Reference, 12c Release 2 (12.2)

E85635-02

Copyright © 2001, 2020, Oracle and/or its affiliates.

Primary Author: Roopesh Ashok Kumar

Contributors: Drew Adams, Edwin Balthes, Eric Belden, Rajesh Bhatiya, Mohammad Faisal, Roger Ford,
Rahul Kadwe, George Krupka, Paul Lane, Colin McGregor, Padmaja Potineni, Yiming Qi, Sanoop
Sethumadhavan, Asha Makur, Gaurav Yadav, Reema Khosla

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiii

Documentation Accessibility xxiii

Related Documents xxiii

Conventions xxiv

 Changes in This Release for Oracle Text Reference

Changes in Oracle Text 12c Release 2 (12.2.0.1) xxv

1 Oracle Text SQL Statements and Operators

1.1 ALTER INDEX 1-1

1.2 ALTER TABLE: Supported Partitioning Statements 1-19

1.3 CATSEARCH 1-24

1.4 CONTAINS 1-30

1.5 CREATE INDEX 1-41

1.6 CREATE SEARCH INDEX 1-66

1.7 DROP INDEX 1-68

1.8 MATCHES 1-69

1.9 MATCH_SCORE 1-70

1.10 SCORE 1-71

2 Oracle Text Indexing Elements

2.1 Overview 2-1

2.2 Creating Preferences 2-2

2.3 Datastore Types 2-2

2.3.1 DIRECT_DATASTORE 2-3

2.3.2 MULTI_COLUMN_DATASTORE 2-3

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes 2-4

2.3.2.2 Indexing and DML 2-4

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction 2-4

iii

2.3.2.4 MULTI_COLUMN_DATASTORE Example 2-5

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example 2-5

2.3.2.6 Tagging Behavior 2-5

2.3.2.7 Indexing Columns as Sections 2-6

2.3.3 DETAIL_DATASTORE 2-7

2.3.3.1 DETAIL_DATASTORE Attributes 2-7

2.3.3.2 Synchronizing Master/Detail Indexes 2-7

2.3.3.3 Example Master/Detail Tables 2-7

2.3.4 FILE_DATASTORE 2-9

2.3.4.1 FILE_DATASTORE Attributes 2-9

2.3.4.2 FILE_DATASTORE and Security 2-10

2.3.4.3 FILE_DATASTORE Example 2-11

2.3.5 URL_DATASTORE 2-11

2.3.5.1 URL_DATASTORE URL Syntax 2-12

2.3.5.2 URL_DATASTORE Attributes 2-12

2.3.5.3 URL_DATASTORE and Security 2-13

2.3.5.4 URL_DATASTORE Example 2-13

2.3.6 USER_DATASTORE 2-14

2.3.6.1 USER_DATASTORE Attributes 2-14

2.3.6.2 USER_DATASTORE Constraints 2-15

2.3.6.3 USER_DATASTORE Editing Procedure after Indexing 2-15

2.3.6.4 USER_DATASTORE with CLOB Example 2-15

2.3.6.5 USER_DATASTORE with BLOB_LOC Example 2-16

2.3.7 NESTED_DATASTORE 2-16

2.3.7.1 NESTED_DATASTORE Attributes 2-17

2.3.7.2 NESTED_DATASTORE Example 2-17

2.4 Filter Types 2-19

2.4.1 AUTO_FILTER 2-19

2.4.1.1 AUTO_FILTER Attributes 2-20

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents 2-20

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in
Mixed Format Columns 2-21

2.4.1.4 AUTO_FILTER and Character Set Conversion With
AUTO_FILTER 2-22

2.4.2 NULL_FILTER 2-22

2.4.3 MAIL_FILTER 2-23

2.4.3.1 MAIL_FILTER Attributes 2-23

2.4.3.2 MAIL_FILTER Behavior 2-24

2.4.3.3 About the Mail Filter Configuration File 2-25

2.4.3.4 Mail_Filter Example 2-25

2.4.4 USER_FILTER 2-26

2.4.4.1 USER_FILTER Attributes 2-27

iv

2.4.4.2 Using USER_FILTER with Charset and Format Columns 2-27

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in
Mixed Format Columns 2-27

2.4.4.4 Character Set Conversion with USER_FILTER 2-28

2.4.4.5 User Filter Example 2-29

2.4.5 PROCEDURE_FILTER 2-29

2.4.5.1 PROCEDURE_FILTER Attributes 2-29

2.4.5.2 PROCEDURE_FILTER Parameter Order 2-32

2.4.5.3 PROCEDURE_FILTER Execute Requirements 2-32

2.4.5.4 PROCEDURE_FILTER Error Handling 2-32

2.4.5.5 PROCEDURE_FILTER Preference Example 2-32

2.5 Lexer Types 2-32

2.5.1 AUTO_LEXER 2-33

2.5.1.1 AUTO_LEXER Language Support 2-34

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER 2-35

2.5.1.3 AUTO_LEXER Language-Independent Attributes 2-35

2.5.1.4 AUTO_LEXER Language-Dependent Attributes 2-37

2.5.1.5 AUTO_LEXER Dictionary Attribute 2-40

2.5.2 BASIC_LEXER 2-41

2.5.2.1 BASIC_LEXER Attributes 2-41

2.5.2.2 Stemming User-Dictionaries 2-47

2.5.2.3 BASIC_LEXER Example 2-49

2.5.3 MULTI_LEXER 2-49

2.5.3.1 MULTI_LEXER Restriction 2-50

2.5.3.2 MULTI_LEXER Multi-language Stoplists 2-50

2.5.3.3 MULTI_LEXER Example 2-50

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables 2-51

2.5.4 CHINESE_VGRAM_LEXER 2-52

2.5.5 CHINESE_LEXER 2-52

2.5.6 JAPANESE_VGRAM_LEXER 2-53

2.5.7 JAPANESE_LEXER 2-55

2.5.8 KOREAN_MORPH_LEXER 2-56

2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries 2-56

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support 2-57

2.5.8.3 KOREAN_MORPH_LEXER Attributes 2-58

2.5.8.4 KOREAN_MORPH_ LEXER Limitations 2-58

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute
2-58

2.5.9 USER_LEXER 2-60

2.5.9.1 USER_LEXER Routines 2-60

2.5.9.2 USER_LEXER Limitations 2-60

2.5.9.3 USER_LEXER Attributes 2-61

v

2.5.9.4 INDEX_PROCEDURE 2-61

2.5.9.5 INPUT_TYPE 2-62

2.5.9.6 QUERY_PROCEDURE 2-64

2.5.9.7 Encoding Tokens as XML 2-65

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure 2-66

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location 2-68

2.5.9.10 XML Schema for User-defined Lexer Query Procedure 2-70

2.5.10 WORLD_LEXER 2-72

2.6 Wordlist Type 2-73

2.6.1 BASIC_WORDLIST 2-74

2.6.2 BASIC_WORDLIST Example 2-81

2.6.2.1 Enabling Fuzzy Matching and Stemming 2-81

2.6.2.2 Enabling Sub-string and Prefix Indexing 2-81

2.6.2.3 Setting Wildcard Expansion Limit 2-81

2.7 Storage Types 2-82

2.7.1 BASIC_STORAGE 2-83

2.7.1.1 BASIC_STORAGE Attributes 2-83

2.7.1.2 BASIC_STORAGE Default Behavior 2-90

2.7.1.3 BASIC_STORAGE Examples 2-90

2.8 Section Group Types 2-92

2.8.1 Section Group Types for Creating a Section Group 2-92

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled
Documents 2-93

2.8.2.1 Creating Section Groups in HTML Documents 2-94

2.8.2.2 Creating Sections Groups in XML Documents 2-94

2.8.2.3 Automatic Sectioning in XML Documents 2-94

2.8.2.4 Creating JSON Section Groups for JSON Search Index 2-95

2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS 2-95

2.8.2.6 Using JSON Search Index with JSON_EXISTS 2-95

2.9 Classifier Types 2-95

2.9.1 RULE_CLASSIFIER 2-95

2.9.2 SVM_CLASSIFIER 2-96

2.9.3 SENTIMENT_CLASSIFIER 2-97

2.10 Cluster Types 2-98

2.10.1 KMEAN_CLUSTERING 2-98

2.11 Stoplists 2-99

2.11.1 Multi-Language Stoplists 2-100

2.11.2 Creating Stoplists 2-100

2.11.3 Modifying the Default Stoplist 2-100

2.12 System-Defined Preferences 2-101

2.12.1 Data Storage Preferences 2-101

vi

2.12.2 Filter Preferences 2-102

2.12.3 Lexer Preferences 2-102

2.12.3.1 CTXSYS.DEFAULT_LEXER 2-102

2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER 2-103

2.12.3.3 CTXSYS.BASIC_LEXER 2-103

2.12.4 Section Group Preferences 2-103

2.12.5 Stoplist Preferences 2-104

2.12.6 Storage Preferences 2-104

2.12.7 Wordlist Preferences 2-104

2.13 System Parameters 2-105

2.13.1 General System Parameters 2-105

2.13.2 Default Index Parameters 2-105

2.13.2.1 CONTEXT Index Parameters 2-106

2.13.2.2 CTXCAT Index Parameters 2-107

2.13.2.3 CTXRULE Index Parameters 2-108

2.13.3 Default Policy Parameters 2-109

2.14 Token Limitations 2-110

3 Oracle Text CONTAINS Query Operators

3.1 Operator Precedence 3-2

3.1.1 Group 1 Operators 3-2

3.1.2 Group 2 Operators and Characters 3-2

3.1.3 Procedural Operators 3-3

3.1.4 Precedence Examples 3-3

3.1.5 Altering Precedence 3-3

3.2 ABOUT 3-4

3.3 ACCUMulate (,) 3-6

3.4 AND (&) 3-8

3.5 Broader Term (BT, BTG, BTP, BTI) 3-9

3.6 CTXFILTERCACHE 3-11

3.7 DEFINEMERGE 3-14

3.8 DEFINESCORE 3-15

3.9 EQUIValence (=) 3-19

3.10 Fuzzy 3-20

3.11 HASPATH 3-21

3.12 INPATH 3-23

3.13 MDATA 3-28

3.14 MINUS (-) 3-30

3.15 MNOT 3-31

3.16 Narrower Term (NT, NTG, NTP, NTI) 3-32

vii

3.17 NDATA 3-33

3.18 NEAR (;) 3-36

3.19 NEAR2 3-40

3.20 NOT (~) 3-41

3.21 OR (|) 3-42

3.22 Preferred Term (PT) 3-42

3.23 Related Term (RT) 3-43

3.24 SDATA 3-44

3.25 soundex (!) 3-46

3.26 stem ($) 3-47

3.27 Stored Query Expression (SQE) 3-47

3.28 SYNonym (SYN) 3-48

3.29 threshold (>) 3-49

3.30 Translation Term (TR) 3-50

3.31 Translation Term Synonym (TRSYN) 3-51

3.32 Top Term (TT) 3-52

3.33 weight (*) 3-53

3.34 wildcards (% _) 3-54

3.35 WITHIN 3-55

4 Special Characters in Oracle Text Queries

4.1 Grouping Characters 4-1

4.2 Escape Characters 4-1

4.3 Reserved Words and Characters 4-2

5 CTX_ADM Package

5.1 About CTX_ADM Package Procedures 5-1

5.2 MARK_FAILED 5-1

5.3 RECOVER 5-2

5.4 RESET_AUTO_OPTIMIZE_STATUS 5-3

5.5 SET_PARAMETER 5-3

6 CTX_ANL Package

6.1 About CTX_ANL Package Procedures 6-1

6.2 ADD_DICTIONARY 6-1

6.3 DROP_DICTIONARY 6-4

viii

7 CTX_CLS Package

7.1 About CTX_CLS Package Procedures 7-1

7.2 TRAIN 7-1

7.3 CLUSTERING 7-5

7.4 SA_TRAIN_MODEL 7-8

7.5 SA_DROP_MODEL 7-10

8 CTX_DDL Package

8.1 ADD_ATTR_SECTION 8-3

8.2 ADD_AUTO_OPTIMIZE 8-4

8.3 ADD_FIELD_SECTION 8-5

8.4 ADD_INDEX 8-8

8.5 ADD_MDATA 8-9

8.6 ADD_MDATA_COLUMN 8-11

8.7 ADD_MDATA_SECTION 8-13

8.8 ADD_NDATA_SECTION 8-14

8.9 ADD_SDATA_COLUMN 8-15

8.10 ADD_SDATA_SECTION 8-16

8.11 ADD_SEC_GRP_ATTR_VAL 8-19

8.12 ADD_SPECIAL_SECTION 8-19

8.13 ADD_STOPCLASS 8-21

8.14 ADD_STOP_SECTION 8-22

8.15 ADD_STOPTHEME 8-24

8.16 ADD_STOPWORD 8-24

8.17 ADD_SUB_LEXER 8-26

8.18 ADD_ZONE_SECTION 8-28

8.19 COPY_POLICY 8-31

8.20 CREATE_INDEX_SET 8-31

8.21 CREATE_POLICY 8-31

8.22 CREATE_PREFERENCE 8-33

8.23 CREATE_SECTION_GROUP 8-36

8.24 CREATE_SHADOW_INDEX 8-38

8.25 CREATE_STOPLIST 8-41

8.26 DROP_INDEX_SET 8-42

8.27 DROP_POLICY 8-42

8.28 DROP_PREFERENCE 8-42

8.29 DROP_SECTION_GROUP 8-43

8.30 DROP_SHADOW_INDEX 8-43

8.31 DROP_STOPLIST 8-44

8.32 EXCHANGE_SHADOW_INDEX 8-44

ix

8.33 OPTIMIZE_INDEX 8-46

8.34 POPULATE_PENDING 8-51

8.35 PREFERENCE_IMPLICIT_COMMIT 8-52

8.36 RECREATE_INDEX_ONLINE 8-53

8.37 REM_SEC_GRP_ATTR_VAL 8-59

8.38 REMOVE_AUTO_OPTIMIZE 8-60

8.39 REMOVE_INDEX 8-60

8.40 REMOVE_MDATA 8-61

8.41 REMOVE_SECTION 8-62

8.42 REMOVE_STOPCLASS 8-62

8.43 REMOVE_STOPTHEME 8-63

8.44 REMOVE_STOPWORD 8-64

8.45 REMOVE_SUB_LEXER 8-64

8.46 REPLACE_INDEX_METADATA 8-65

8.47 SET_ATTRIBUTE 8-66

8.48 SET_SEC_GRP_ATTR 8-67

8.49 SET_SECTION_ATTRIBUTE 8-68

8.50 SYNC_INDEX 8-69

8.51 UNSET_ATTRIBUTE 8-72

8.52 UNSET_SEC_GRP_ATTR 8-73

8.53 UPDATE_SUB_LEXER 8-73

8.54 UPDATE_POLICY 8-74

8.55 UPDATE_SDATA 8-74

9 CTX_DOC Package

9.1 About CTX_DOC Package Procedures 9-2

9.2 FILTER 9-2

9.3 GIST 9-5

9.4 HIGHLIGHT 9-9

9.5 IFILTER 9-12

9.6 MARKUP 9-13

9.7 PKENCODE 9-19

9.8 POLICY_FILTER 9-20

9.9 POLICY_GIST 9-21

9.10 POLICY_HIGHLIGHT 9-23

9.11 POLICY_LANGUAGES 9-24

9.12 POLICY_MARKUP 9-26

9.13 POLICY_NOUN_PHRASES 9-29

9.14 POLICY_PART_OF_SPEECH 9-31

9.15 POLICY_SNIPPET 9-33

x

9.16 POLICY_STEMS 9-35

9.17 POLICY_THEMES 9-37

9.18 POLICY_TOKENS 9-38

9.19 SENTIMENT 9-40

9.20 SENTIMENT_AGGREGATE 9-41

9.21 SET_KEY_TYPE 9-42

9.22 SNIPPET 9-43

9.23 THEMES 9-46

9.24 TOKENS 9-49

10

CTX_ENTITY Package

10.1 ADD_EXTRACT_RULE 10-1

10.2 ADD_STOP_ENTITY 10-4

10.3 COMPILE 10-5

10.4 CREATE_EXTRACT_POLICY 10-7

10.5 DROP_EXTRACT_POLICY 10-7

10.6 EXTRACT 10-8

10.7 REMOVE_EXTRACT_RULE 10-9

10.8 REMOVE_STOP_ENTITY 10-10

11

CTX_OUTPUT Package

11.1 ADD_EVENT 11-1

11.2 ADD_TRACE 11-2

11.3 DISABLE_QUERY_STATS 11-3

11.4 ENABLE_QUERY_STATS 11-4

11.5 END_LOG 11-5

11.6 END_QUERY_LOG 11-5

11.7 GET_TRACE_VALUE 11-6

11.8 LOG_TRACES 11-6

11.9 LOGFILENAME 11-7

11.10 REMOVE_EVENT 11-7

11.11 REMOVE_TRACE 11-8

11.12 RESET_TRACE 11-8

11.13 START_LOG 11-9

11.14 START_QUERY_LOG 11-10

12

CTX_QUERY Package

12.1 BROWSE_WORDS 12-1

12.2 COUNT_HITS 12-4

xi

12.3 EXPLAIN 12-4

12.4 HFEEDBACK 12-7

12.5 REMOVE_SQE 12-10

12.6 RESULT_SET 12-11

12.7 RESULT_SET_CLOB_QUERY 12-20

12.8 RESULT_SET_DOCUMENT 12-20

12.9 STORE_SQE 12-21

13

CTX_REPORT Package

13.1 Description of Procedures in CTX_REPORT 13-1

13.2 Using the Function Versions 13-2

13.3 DESCRIBE_INDEX 13-2

13.4 DESCRIBE_POLICY 13-3

13.5 CREATE_INDEX_SCRIPT 13-4

13.6 CREATE_POLICY_SCRIPT 13-5

13.7 INDEX_SIZE 13-5

13.8 INDEX_STATS 13-6

13.9 QUERY_LOG_SUMMARY 13-10

13.10 TOKEN_INFO 13-14

13.11 TOKEN_TYPE 13-15

13.12 VALIDATE_INDEX 13-16

14

CTX_THES Package

14.1 ALTER_PHRASE 14-2

14.2 ALTER_THESAURUS 14-3

14.3 BT 14-4

14.4 BTG 14-6

14.5 BTI 14-7

14.6 BTP 14-8

14.7 CREATE_PHRASE 14-10

14.8 CREATE_RELATION 14-10

14.9 CREATE_THESAURUS 14-12

14.10 CREATE_TRANSLATION 14-12

14.11 DROP_PHRASE 14-13

14.12 DROP_RELATION 14-14

14.13 DROP_THESAURUS 14-15

14.14 DROP_TRANSLATION 14-16

14.15 EXPORT_THESAURUS 14-16

14.16 HAS_RELATION 14-17

xii

14.17 IMPORT_THESAURUS 14-18

14.18 NT 14-19

14.19 NTG 14-21

14.20 NTI 14-22

14.21 NTP 14-23

14.22 OUTPUT_STYLE 14-24

14.23 PT 14-25

14.24 RT 14-26

14.25 SN 14-28

14.26 SYN 14-28

14.27 THES_TT 14-30

14.28 TR 14-31

14.29 TRSYN 14-32

14.30 TT 14-34

14.31 UPDATE_TRANSLATION 14-35

15

CTX_ULEXER Package

15.1 WILDCARD_TAB 15-1

16

Oracle Text Utilities

16.1 Thesaurus Loader (ctxload) 16-1

16.1.1 ctxload Text Loading 16-1

16.1.2 ctxload Syntax 16-2

16.1.3 ctxload Examples 16-3

16.2 Entity Extraction User Dictionary Loader (ctxload) 16-4

16.2.1 ctxload Syntax 16-4

16.2.2 Considerations When Creating a User Dictionary 16-4

16.2.3 XML Schema 16-5

16.2.4 ctxload Example 16-6

16.3 Knowledge Base Extension Compiler (ctxkbtc) 16-6

16.3.1 Knowledge Base Character Set 16-7

16.3.2 ctxkbtc Syntax 16-7

16.3.3 ctxkbtc Usage Notes 16-8

16.3.4 ctxkbtc Limitations 16-8

16.3.5 ctxkbtc Constraints on Thesaurus Terms 16-9

16.3.6 ctxkbtc Constraints on Thesaurus Relations 16-9

16.3.7 Extending the Knowledge Base 16-10

16.3.8 Example for Extending the Knowledge Base 16-10

16.3.9 Adding a Language-Specific Knowledge Base 16-11

xiii

16.3.10 Limitations for Adding a Knowledge Base 16-11

16.3.11 Order of Precedence for Multiple Thesauri 16-12

16.3.12 Size Limits for Extended Knowledge Base 16-12

16.4 Lexical Compiler (ctxlc) 16-12

16.4.1 Syntax of ctxlc 16-13

16.4.2 ctxlc Performance Considerations 16-13

16.4.3 ctxlc Usage Notes 16-13

16.4.4 ctxlc Example 16-14

17

Oracle Text Alternative Spelling

17.1 Overview of Alternative Spelling Features 17-1

17.1.1 Alternate Spelling 17-2

17.1.2 Base-Letter Conversion 17-2

17.1.3 New German Spelling 17-3

17.2 Overriding Alternative Spelling Features 17-3

17.3 Alternative Spelling Conventions 17-4

17.3.1 German Alternate Spelling Conventions 17-4

17.3.2 Danish Alternate Spelling Conventions 17-4

17.3.3 Swedish Alternate Spelling Conventions 17-5

A Oracle Text Result Tables

A.1 CTX_QUERY Result Tables A-1

A.1.1 EXPLAIN Table A-1

A.1.1.1 EXPLAIN Table Structure A-1

A.1.1.2 EXPLAIN Table Operation Column Values A-2

A.1.1.3 EXPLAIN Table OPTIONS Column Values A-3

A.1.2 HFEEDBACK Table A-3

A.1.2.1 HFEEDBACK Table Structure A-3

A.1.2.2 HFEEDBACK Table Operation Column Values A-4

A.1.2.3 HFEEDBACK Table OPTIONS Column Values A-5

A.1.2.4 CTX_FEEDBACK_TYPE A-5

A.2 CTX_DOC Result Tables A-6

A.2.1 Filter Table A-6

A.2.2 Gist Table A-6

A.2.3 Highlight Table A-7

A.2.4 Markup Table A-7

A.2.5 Theme Table A-8

A.2.6 Token Table A-8

A.3 CTX_THES Result Tables and Data Types A-9

xiv

A.3.1 EXP_TAB Table Type A-9

B Oracle Text Supported Document Formats

B.1 About Document Filtering Technology B-1

B.1.1 Latest Updates for Patch Releases B-1

B.1.2 Restrictions on Format Support B-2

B.1.3 Supported Platforms for AUTO_FILTER Document Filtering Technology
B-2

B.1.4 Filtering on PDF Documents and Security Settings B-3

B.1.5 PDF Filtering Limitations B-4

B.1.6 Environment Variables B-4

B.1.7 General Limitations B-4

B.2 Supported Document Formats B-4

B.2.1 Archive File Format B-5

B.2.2 Database Formats B-5

B.2.3 Email Formats B-6

B.2.4 Graphic Formats (Raster and Vector Image) B-7

B.2.5 Multimedia Formats B-10

B.2.6 Other Formats B-10

B.2.7 Presentation Formats B-11

B.2.8 Spreadsheet Formats B-11

B.2.9 Text and Markup Formats B-12

B.2.10 Word Processing and Desktop Publishing Formats B-12

C Text Loading Examples for Oracle Text

C.1 SQL INSERT Example C-1

C.2 SQL*Loader Example C-1

C.2.1 Creating the Table C-1

C.2.2 Issuing the SQL*Loader Command C-2

C.2.2.1 Example Control File: loader1.dat C-2

C.2.2.2 Example Data File: loader2.dat C-2

C.3 Structure of ctxload Thesaurus Import File C-3

C.3.1 Import File Format C-3

C.3.2 Alternate Hierarchy Structure C-6

C.3.3 Usage Notes for Terms in Import Files C-6

C.3.4 Usage Notes for Relationships in Import Files C-7

C.3.5 Examples of Import Files C-7

C.3.5.1 Example 1 (Flat Structure) C-7

C.3.5.2 Example 2 (Hierarchical) C-8

xv

C.3.5.3 Example 3 C-8

D Oracle Text Multilingual Features

D.1 Introduction D-1

D.2 Indexing D-1

D.2.1 Multilingual Features for Text Index Types D-2

D.2.1.1 CONTEXT Index Type D-2

D.2.1.2 CTXCAT Index Type D-2

D.2.1.3 CTXRULE Index Type D-3

D.2.2 Lexer Types D-3

D.2.3 Basic Lexer Features D-3

D.2.3.1 Theme Indexing D-4

D.2.3.2 Alternate Spelling D-4

D.2.3.3 Base Letter Conversion D-4

D.2.3.4 Composite D-4

D.2.3.5 Index stems D-5

D.2.4 Multi Lexer Features D-5

D.2.5 World Lexer Features D-5

D.3 Querying D-7

D.4 Supplied Stop Lists D-7

D.5 Knowledge Base D-7

D.6 Multilingual Features Matrix D-8

E Oracle Text Supplied Stoplists

E.1 English Default Stoplist E-1

E.2 Chinese Stoplist (Traditional) E-4

E.3 Chinese Stoplist (Simplified) E-5

E.4 Danish (dk) Default Stoplist E-5

E.5 Dutch (nl) Default Stoplist E-7

E.6 Finnish (sf) Default Stoplist E-14

E.7 French (f) Default Stoplist E-19

E.8 German (d) Default Stoplist E-25

E.9 Italian (i) Default Stoplist E-31

E.10 Portuguese (pt) Default Stoplist E-35

E.11 Spanish (e) Default Stoplist E-36

E.12 Swedish (s) Default Stoplist E-41

F The Oracle Text Scoring Algorithm

F.1 Scoring Algorithm for Word Queries F-1

xvi

F.2 Word Scoring Example F-2

F.3 DML and Scoring Algorithm F-2

G Oracle Text Views

G.1 CTX_ALEXER_DICTS G-2

G.2 CTX_AUTO_OPTIMIZE_INDEXES G-3

G.3 CTX_AUTO_OPTIMIZE_STATUS G-3

G.4 CTX_CLASSES G-3

G.5 CTX_FILTER_BY_COLUMNS G-3

G.6 CTX_FILTER_CACHE_STATISTICS G-4

G.7 CTX_INDEXES G-4

G.8 CTX_INDEX_ERRORS G-5

G.9 CTX_INDEX_OBJECTS G-5

G.10 CTX_INDEX_PARTITIONS G-6

G.11 CTX_INDEX_SETS G-6

G.12 CTX_INDEX_SET_INDEXES G-6

G.13 CTX_INDEX_SUB_LEXERS G-7

G.14 CTX_INDEX_SUB_LEXER_VALUES G-7

G.15 CTX_INDEX_VALUES G-7

G.16 CTX_OBJECTS G-8

G.17 CTX_OBJECT_ATTRIBUTES G-8

G.18 CTX_OBJECT_ATTRIBUTE_LOV G-8

G.19 CTX_ORDER_BY_COLUMNS G-9

G.20 CTX_PARAMETERS G-9

G.21 CTX_PENDING G-10

G.22 CTX_PREFERENCES G-11

G.23 CTX_PREFERENCE_VALUES G-11

G.24 CTX_SECTIONS G-11

G.25 CTX_SECTION_GROUPS G-12

G.26 CTX_SQES G-12

G.27 CTX_STOPLISTS G-12

G.28 CTX_STOPWORDS G-12

G.29 CTX_SUB_LEXERS G-13

G.30 CTX_THESAURI G-13

G.31 CTX_THES_PHRASES G-13

G.32 CTX_TRACE_VALUES G-14

G.33 CTX_USER_ALEXER_DICTS G-14

G.34 CTX_USER_AUTO_OPTIMIZE_INDEXES G-14

G.35 CTX_USER_EXTRACT_POLICIES G-14

G.36 CTX_USER_EXTRACT_POLICY_VALUES G-15

xvii

G.37 CTX_USER_EXTRACT_RULES G-15

G.38 CTX_USER_EXTRACT_STOP_ENTITIES G-15

G.39 CTX_USER_ FILTER_BY_COLUMNS G-16

G.40 CTX_USER_INDEXES G-16

G.41 CTX_USER_INDEX_ERRORS G-17

G.42 CTX_USER_INDEX_OBJECTS G-17

G.43 CTX_USER_INDEX_PARTITIONS G-17

G.44 CTX_USER_INDEX_SETS G-18

G.45 CTX_USER_INDEX_SET_INDEXES G-18

G.46 CTX_USER_INDEX_SUB_LEXERS G-19

G.47 CTX_USER_INDEX_SUB_LEXER_VALS G-19

G.48 CTX_USER_INDEX_VALUES G-19

G.49 CTX_USER_ORDER_BY_COLUMNS G-19

G.50 CTX_USER_PENDING G-20

G.51 CTX_USER_PREFERENCES G-20

G.52 CTX_USER_PREFERENCE_VALUES G-20

G.53 CTX_USER_SECTIONS G-21

G.54 CTX_USER_SECTION_GROUPS G-21

G.55 CTX_USER_SESSION_SQES G-21

G.56 CTX_USER_SQES G-22

G.57 CTX_USER_STOPLISTS G-22

G.58 CTX_USER_STOPWORDS G-22

G.59 CTX_USER_SUB_LEXERS G-22

G.60 CTX_USER_THESAURI G-23

G.61 CTX_USER_THES_PHRASES G-23

G.62 CTX_VERSION G-23

H Stopword Transformations in Oracle Text

H.1 Understanding Stopword Transformations H-1

H.2 About Stopwords in Phrase Queries H-2

H.3 Word Transformations H-2

H.4 AND Transformations H-2

H.5 OR Transformations H-3

H.6 ACCUMulate Transformations H-3

H.7 MINUS Transformations H-3

H.8 MNOT Transformations H-4

H.9 NOT Transformations H-4

H.10 EQUIValence Transformations H-4

H.11 NEAR Transformations H-5

H.12 Weight Transformations H-5

xviii

H.13 Threshold Transformations H-5

H.14 WITHIN Transformations H-5

Index

xix

List of Tables

1-1 ALTER INDEX SYNC Methods 1-8

1-2 CATSEARCH Query Operators 1-25

1-3 TRANSFORM Parameters 1-32

1-4 Template Attribute Values 1-36

1-5 SYNC Types 1-55

1-6 Supported CTXCAT Index Preferences 1-62

2-1 Datastore Types 2-2

2-2 MULTI_COLUMN_DATASTORE Attributes 2-4

2-3 DETAIL_DATASTORE Attributes 2-7

2-4 FILE_DATASTORE Attributes 2-10

2-5 URL_DATASTORE Attributes 2-12

2-6 USER_DATASTORE Attributes 2-14

2-7 NESTED_DATASTORE Attributes 2-17

2-8 Filter Types 2-19

2-9 AUTO_FILTER Attributes 2-20

2-10 MAIL_FILTER Attributes 2-23

2-11 USER_FILTER Attribute 2-27

2-12 PROCEDURE_FILTER Attributes 2-30

2-13 Lexer Types 2-33

2-14 Languages Supported for AUTO_LEXER 2-34

2-15 AUTO_LEXER Language-Independent Attributes 2-35

2-16 AUTO_LEXER Language-Dependent Attributes 2-38

2-17 Default Values for AUTO_LEXER Language-Dependent Attributes 2-38

2-18 Supported Languages for AUTO_LEXER Dictionary Attribute 2-40

2-19 BASIC_LEXER Attributes 2-41

2-20 Stemming User-Dictionaries 2-47

2-21 Languages Supported for MULTI_LEXER Auto-detection 2-51

2-22 CHINESE_VGRAM_LEXER Attributes 2-52

2-23 CHINESE_LEXER Attributes 2-53

2-24 JAPANESE_VGRAM_LEXER Attributes 2-53

2-25 JAPANESE_LEXER Attributes 2-55

2-26 KOREAN_MORPH_LEXER Dictionaries 2-57

2-27 KOREAN_MORPH_LEXER Attributes 2-58

2-28 User-Defined Routines for USER_LEXER 2-60

2-29 USER_LEXER Attributes 2-61

xx

2-30 VARCHAR2 Interface for INDEX_PROCEDURES 2-62

2-31 CLOB Interface for INDEX_PROCEDURE 2-63

2-32 User-defined Lexer Query Procedure XML Schema Attributes 2-65

2-33 User-defined Lexer Indexing Procedure XML Schema Element Names 2-67

2-34 User-defined Lexer Indexing Procedure XML Schema Attributes 2-69

2-35 User-defined Lexer Query Procedure XML Schema Attributes 2-72

2-36 WORLD_LEXER Attributes 2-73

2-37 BASIC_WORDLIST Attributes 2-74

2-38 Storage Types 2-82

2-39 BASIC_STORAGE Attributes 2-83

2-40 Section Group Types 2-92

2-41 RULE_CLASSIFIER Attributes 2-96

2-42 SVM_CLASSIFIER Attributes 2-97

2-43 SENTIMENT_CLASSIFIER Attributes 2-97

2-44 KMEAN_CLUSTERING Attributes 2-99

2-45 General System Parameters 2-105

2-46 Default CONTEXT Index Parameters 2-106

2-47 Default CTXCAT Index Parameters 2-107

2-48 Default CTXRULE Index Parameters 2-108

2-49 Default Policy Parameters for CTX_DDL.CREATE_POLICY 2-109

3-1 Query Expression Precedence Examples 3-3

3-2 MDATA and Other Query Operators 3-29

3-3 Score Samples 3-53

4-1 Characters for Grouping Query Terms 4-1

4-2 Characters for Escaping Query Terms 4-2

4-3 Reserved Words and Characters 4-3

6-1 Custom Dictionary Valid Parts-of-Speech (case sensitive) 6-3

6-2 Custom Dictionary Valid Features 6-3

8-1 Paragraph and Sentence Section Boundaries 8-20

9-1 Part of Speech Abbreviations 9-30

9-2 Required Columns for Token Tables 9-50

10-1 Supplied Entity Types 10-2

11-1 Available Traces 11-2

16-1 Size Limit for the Extended Knowledge Base 16-12

17-1 German Alternate Spelling Conventions 17-4

17-2 Danish Alternate Spelling Conventions 17-4

17-3 Swedish Alternate Spelling Conventions 17-5

xxi

A-1 EXPLAIN Result Table A-1

A-2 EXPLAIN Table OPERATION Column A-2

A-3 EXPLAIN Table OPTIONS Column A-3

A-4 HFEEDBACK Results Table A-3

A-5 HFEEDBACK Results Table OPERATION Column A-4

A-6 HFEEDBACK Results Table OPTIONS Column A-5

A-7 CTX_FEEDBACK_ITEM_TYPE A-5

A-8 FILTER Result Table A-6

A-9 Gist Table A-7

A-10 Highlight Table A-7

A-11 Markup Table A-8

A-12 Theme Table A-8

A-13 Token Table A-8

A-14 EXP_TAB Table Type (EXP_REC) A-9

B-1 AUTO_FILTER Behavior with PDF Security Settings B-3

B-2 Supported Archive File Formats B-5

B-3 Supported Raster Image Formats for AUTO_FILTER Filter B-8

B-4 Supported Vector Image Formats for AUTO_FILTER Filter B-9

D-1 Oracle Text Lexer Types D-3

D-2 Languages Supported by the World Lexer (Space-separated) D-5

D-3 Languages Supported by the World Lexer (Non-space-separated) D-6

D-4 Languages Not Supported by the World Lexer D-6

D-5 Multilingual Features for Supported Languages D-8

xxii

Preface

Welcome to Oracle Text Reference. This document provides reference information for
building applications with Oracle Text. This preface contains the following topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for application developers and system administrators who
maintain an Oracle Text system in an Oracle environment. To use this document, you
need experience with Oracle Database, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information about Oracle Text, see:

• Oracle Text Application Developer's Guide

For more information about Oracle Database, see:

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database Utilities

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database Development Guide

• Oracle Database Sample Schemas

For more information about PL/SQL, see:

• Oracle Database PL/SQL Language Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxiv

Changes in This Release for Oracle Text
Reference

This preface points you to changes in Oracle Text for this release.

• Changes in Oracle Text 12c Release 2 (12.2.0.1)

Changes in Oracle Text 12c Release 2 (12.2.0.1)
The changes in Oracle Text for Oracle Database 12c Release 2 (12.2) are described
in this topic.

New Features

The new features introduced in this release for Oracle Text are listed and described in
the New Features section of Oracle Text Application Developer's Guide.

For a complete list of new features for Oracle Database 12c, see Oracle Database
New Features Guide.

Deprecated Features

The deprecated features for Oracle Database 12c Release 2 (12.2) are described in
Oracle Database Upgrade Guide.

xxv

1
Oracle Text SQL Statements and
Operators

This chapter describes the SQL statements and Oracle Text operators for creating and
managing Oracle Text indexes and performing Oracle Text queries.

The following statements are described in this chapter:

• ALTER INDEX

• ALTER TABLE: Supported Partitioning Statements

• CATSEARCH

• CONTAINS

• CREATE INDEX

• CREATE SEARCH INDEX

• DROP INDEX

• MATCHES

• MATCH_SCORE

• SCORE

1.1 ALTER INDEX

Note:

This section describes the ALTER INDEX statement as it pertains to managing
an Oracle Text domain index.

For a complete description of the ALTER INDEX statement, see Oracle
Database SQL Language Reference.

ALTER INDEX Purpose

Use ALTER INDEX to make changes to, or perform maintenance tasks for a CONTEXT,
CTXCAT, or CTXRULE index.

All Index Types

Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

• Rename the index or index partition. See "ALTER INDEX RENAME Syntax ".

• Rebuild the index using different preferences. Some restrictions apply for the
CTXCAT index type. See "ALTER INDEX REBUILD Syntax".

1-1

• Add stopwords to the index. See "ALTER INDEX REBUILD Syntax".

• Add or remove a sub_lexer, and remove a stopword or set of stopwords for a
given symbol (language or language-independent). See "ALTER INDEX
Sub_Lexer Syntax"

CONTEXT and CTXRULE Index Types

Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index types:

• Resume a failed index operation (creation/optimization).

• Add sections and stop sections to the index.

• Replace index metadata.

See Also:

"ALTER INDEX REBUILD Syntax" to learn more about performing these
tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the
following sections:

• "ALTER INDEX MODIFY PARTITION Syntax"– use this to modify an index
partition's metadata.

• "ALTER INDEX PARAMETERS Syntax"– use this to modify the parameters of a
nonpartitioned index, or to modify all partitions of a local partitioned index, without
rebuilding the index.

• "ALTER INDEX RENAME Syntax "– use this to rename an index or index partition.

• "ALTER INDEX REBUILD Syntax"– use this to rebuild an index or index partition.
With this statement, you can also replace index metadata; add stopwords,
sections, and stop sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a
subset of the syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD
PARAMETERS statement can take either REPLACE or RESUME as an argument, and
ALTER INDEX REBUILD PARAMETERS ('REPLACE') can take several arguments.
Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS ('REPLACE DATASTORE datastore_pref')
ALTER INDEX REBUILD PARAMETERS ('REPLACE WORDLIST wordlist_pref')

ALTER INDEX MODIFY PARTITION Syntax

Use the following syntax to modify the metadata of an index partition:

ALTER INDEX index_name MODIFY PARTITION partition_name PARAMETER (paramstring)

index_name
Specify the name of the index whose partition metadata you want to modify.

Chapter 1
ALTER INDEX

1-2

partition_name
Specify the name of the index partition whose metadata you want to modify.

paramstring
The only valid argument here is 'REPLACE METADATA'. This follows the same syntax as
ALTER INDEX REBUILD PARTITION PARAMETERS ('REPLACE METADATA'); see the
REPLACE METADATA subsection of the "ALTER INDEX REBUILD Syntax" section for
more information. (The two statements are equivalent. ALTER INDEX MODIFY
PARTITION is offered for ease of use, and is the recommended syntax.)

ALTER INDEX PARAMETERS Syntax

The parameter string now supports READ ONLY MDATA. Use the following syntax to
modify the parameters either of nonpartitioned or local partitioned indexes, without
rebuilding the index. For partitioned indexes, this statement works at the index level,
not at the partition level. This statement changes information for the entire index,
including all partitions.

ALTER INDEX index_name PARAMETERS (paramstring)

paramstring
ALTER INDEX PARAMETERS accepts the following arguments for paramstring:

• 'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the "ALTER
INDEX REBUILD Syntax" section for more information.

• ‘ADD MDATA SECTION secname TAG sectag READ ONLY’

Creates non-updatable MDATA sections so that queries on these MDATA
sections do not require extra cursors to be opened on $I table.

• 'ADD STOPWORD'

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of
the "ALTER INDEX REBUILD Syntax" section for more information.

• 'ADD FIELD SECTION'

Dynamically adds a field section to an index. See the ADD FIELD subsection of the
"ALTER INDEX REBUILD Syntax" section for more information. You can add an
unlimited number of field sections.

• 'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the
"ALTER INDEX REBUILD Syntax" section for more information.

• 'ADD ATTR SECTION'

Dynamically adds an attribute section to an index. See the ADD ATTR subsection
of the "ALTER INDEX REBUILD Syntax" section for more information.

• 'ADD SDATA SECTION'

Dynamically adds an SDATA section to an index, without rebuilding the index. An
SDATA section can only be added to BASIC, HTML, XML, and NEWS section groups. It
supports both global as well as local indexes. The syntax is:

Chapter 1
ALTER INDEX

1-3

ALTER INDEX index_name PARAMETERS (ADD SDATA SECTION sdata_section_name TAG
sdata_section_tag DATATYPE sdata_section_datatype);

The datatype can be VARCHAR2, CHAR, NUMBER, DATE, or RAW.

See "Adding an SDATA Section" for more information.

Each of the above described parameters has an equivalent ALTER INDEX REBUILD
PARAMETERS version, except ADD SDATA SECTION.

For example, ALTER INDEX PARAMETERS ('REPLACE METADATA') is equivalent to ALTER
INDEX REBUILD PARAMETERS ('REPLACE METADATA'). However, the ALTER INDEX
PARAMETERS versions work on either partitioned or nonpartitioned indexes, whereas the
ALTER INDEX REBUILD PARAMETERS versions work only on nonpartitioned indexes.

ALTER INDEX RENAME Syntax

Use the following syntax to rename an index or index partition:

ALTER INDEX [schema.]index_name RENAME TO new_index_name;

ALTER INDEX [schema.]index_name RENAME PARTITION part_name TO new_part_name;

[schema.]index_name
Specify the name of the index to rename.

new_index_name
Specify the new name for schema.index. The new_index_name parameter can be no
more than 25 bytes, and 21 bytes for a partitioned index in earlier releases of Oracle
Database that have not been upgraded to Oracle Database 12c Release 2 (12.2). If
you specify a name longer than 25 bytes (or longer than 21 bytes for a partitioned
index), then Oracle Text returns an error and the renamed index is no longer valid.

Note:

When new_index_name is more than 25 bytes (21 for local partitioned index)
and less than 30 bytes, Oracle Text renames the index, even though the
system returns an error. To drop the index and associated tables, you must
drop new_index_name with the DROP INDEX statement and then re-create and
drop index_name.

The upgraded databases that do not have the compatible parameter set to 12.2 can
have the new_index_name parameter no more than 30 bytes, and 30 bytes for a
partitioned index.
The upgraded databases that have the compatible parameter set to 12.2 or new
Oracle Database 12c Release 2 (12.2) installations can have the new_index_name
parameter no more than 128 bytes, and 128 bytes for a partitioned index.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

Chapter 1
ALTER INDEX

1-4

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a
failed operation, replace index metadata, add stopwords to an index, or add sections
and stop sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters have
their own syntax. For example, the ALTER INDEX REBUILD PARAMETERS statement can
take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS
('REPLACE') has several arguments it can take.

Note:

You cannot use the ALTER INDEX REBUILD syntax to add or remove the
INMEMORY option associated Text index tables.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE datastore_pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist_pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE] [PARAMETERS
(paramstring)][PARALLEL N];

PARTITION partname
Rebuilds the index partition partname. Only one index partition can be built at a time.
When you rebuild a partition you can specify only RESUME or REPLACE in paramstring.
These operations work only on the partname you specify.
With the REPLACE operation, you can specify MEMORY, STORAGE, and SYNC for each
index partition.
Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL
statement. When you add a partition to an indexed table, Oracle Text automatically
creates the metadata for the new index partition. The new index partition has the
same name as the new table partition. If you must change the index partition name,
then use ALTER INDEX RENAME.
Splitting or Merging Partitions Splitting or merging a table partition with ALTER
TABLE renders the index partitions invalid. You must rebuild them with ALTER INDEX
REBUILD.

ONLINE
Enables you to continue to perform updates, insertions, and deletions on a base table.
It does not enable you to query the base table. The ONLINE keyword can only be used
with the Enterprise Edition of Oracle Database.

Chapter 1
ALTER INDEX

1-5

Note:

You can specify REPLACE or RESUME when rebuilding an index or an index
partition ONLINE.

PARAMETERS (paramstring)
Optionally, specify paramstring. If you do not specify paramstring, then Oracle Text
rebuilds the index with existing preference settings.
The syntax for paramstring is as follows:

paramstring =

'REPLACE
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [LEXER lexer_pref]
 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize
 [[POPULATE | NOPOPULATE]
 [INDEX SET index_set]

 [METADATA preference new_preference]
 [METADATA FORMAT COLUMN format_column_name]
 [[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [[METADATA] TRANSACTIONAL|NONTRANSACTIONAL
 [[METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]]

|[DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_name]]
|[SEARCH_ON TEXT_VALUE]
| RESUME [memory memsize]
| ADD STOPWORD word [language language]
| ADD ZONE SECTION section_name tag tag
| ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
| ADD ATTR SECTION section_name tag tag@attr
| ADD STOP SECTION tag'

REPLACE [optional_preference_list]
Rebuilds an index. You can optionally specify your own preferences, or system-
defined preferences.
You can replace only preferences that are supported for that index type. For instance,
you cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the CTXCAT
index type, you can replace lexer, wordlist, storage index set, and memory
preferences.
The POPULATE parameter is the default and need not be specified. If you want to
empty the index of its contents, then specify NOPOPULATE. Clear an index of its
contents when you must rebuild your index incrementally. The NOPOPULATE choice is
available for a specific partition of the index, and not just for the entire index.
If you are rebuilding a partitioned index using the REPLACE parameter, then you can
specify only STORAGE, MEMORY, and NOPOPULATE.
A new wordlist preference SEPARATE_OFFSETS specifies that the token_info in the
index is stored as docids only in one place, and offsets is stored only in another

Chapter 1
ALTER INDEX

1-6

place. Refer to Oracle Text Application Developer's Guide for information on improved
response time using the SEPARATE_OFFSETS option of CONTEXT index.

Note:

If this procedure modifies the existing index tables for only the following
storage attributes of the BASIC_STORAGE type (any one of them), then it will
not result in re-indexing of data:

• BIG_IO

• I_INDEX_CLAUSE

• I_TABLE_CLAUSE

• SEPARATE_OFFSETS

See Also:

• Oracle Text Indexing Elements for more information about creating and
setting preferences, including information about system-defined
preferences

• Oracle Text Application Developer's Guide for information on improved
response time using the SEPARATE_OFFSETS option of CONTEXT
index

REPLACE METADATA preference new_preference
Replaces the existing preference class settings, including SYNC parameters, of the
index with the settings from new_preference. Only index preferences and attributes
are replaced. The index is not rebuilt.
This statement is useful when you want to replace a preference and its attribute
settings after the index is built, without re-indexing all data. re-indexing data can
require significant time and computing resources.
This statement is also useful for changing the SYNC parameter type, which can be
automatic, manual, or on-commit.
The ALTER INDEX REBUILD PARAMETER ('REPLACE METADATA') statement does not
work for a local partitioned index at the global level for the index. You cannot, for
example, use this syntax to change a global preference, such as filter or lexer type,
without rebuilding the index. Use ALTER INDEX PARAMETERS instead to change the
metadata of an index at the global level, including all partitions. See "ALTER INDEX
PARAMETERS Syntax".
When should I use the METADATA keyword? REPLACE METADATA should be used
only when the change in index metadata will not lead to an inconsistent index, which
can lead to incorrect query results.
For example, use this statement in the following instances:

• To go from a single-language lexer to a multilexer in anticipation of multilingual
data. For an example, see "Replacing Index Metadata: Changing Single-Lexer to
Multilexer".

Chapter 1
ALTER INDEX

1-7

• To change the WILDCARD_MAXTERMS setting in BASIC_WORDLIST.

• To change the SYNC parameter type, which can be automatic, manual, or on-
commit.

These changes are safe and will not lead to an inconsistent index that might
adversely affect your query results.

WARNING:

The REPLACE METADATA statement can result in inconsistent index data,
which can lead to incorrect query results. As such, Oracle does not
recommend using this statement, unless you carefully consider the effect it
will have on the consistency of your index data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent
index data. For example, Oracle recommends against using the METADATA keyword
after performing the following procedures:

• Changing the USER_DATASTORE procedure to a new PL/SQL stored procedure
that has different output.

• Changing the BASIC_WORDLIST attribute PREFIX_INDEX from NO to YES because
no prefixes have been generated for existing documents. Changing it from YES to
NO is safe.

• Adding or changing BASIC_LEXER printjoin and skipjoin characters, because new
queries with these characters would be lexed differently from how these
characters were lexed at index time.

• Do not use REPLACE METADATA with FORWARD_INDEX. Instead use REPLACE STORAGE.

In these unsafe cases, Oracle recommends rebuilding the index.

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON
COMMIT)
Specifies SYNC for automatic synchronization of the CONTEXT index when a DML
change has occurred to the base table. You can specify one of the SYNC methods
shown in Table 1-1.

SYNC Type Description

MANUAL Means no automatic synchronization. This is the
default. You must manually synchronize the index
using CTX_DDL.SYNC_INDEX.
Use MANUAL to disable ON COMMIT and EVERY
synchronization.

Chapter 1
ALTER INDEX

1-8

SYNC Type Description

EVERY interval-string Automatically synchronize the index at a regular
interval specified by the value of interval-string, which
takes the same syntax as that for scheduler jobs.
Automatic synchronization using EVERY requires that
the index creator have CREATE JOB privileges.
Ensure that interval-string is set to a long enough
period so that any previous synchronization jobs will
have completed. Otherwise, the synchronization job
may hang. The interval-string argument must be
enclosed in double quotation marks ('' '').
See "Enabling Automatic Index Synchronization" for
an example of automatic synchronization syntax.

ON COMMIT Synchronize the index immediately after a commit.
The commit does not return until the sync is
complete. (Because the synchronization is performed
as a separate transaction, there may be a time
period, usually small, when the data is committed but
index changes are not.)
The operation uses the memory specified with the
memory parameter.
Note that the sync operation has its own transaction
context. If this operation fails, the data transaction
still commits. Index synchronization errors are logged
in the CTX_USER_INDEX_ERRORS view. See "Viewing
Index Errors" under CREATE INDEX.
ON COMMIT sync works best when the STAGE_ITAB
index option is enabled, because otherwise it causes
significant fragmentation of the main index, requiring
frequent OPTIMIZE calls.
See "Enabling Automatic Index Synchronization" for
an example of ON COMMIT syntax.
Refer to Oracle Text Application Developer's Guide
for more information about the STAGE_ITAB option
of the CONTEXT index.

Each partition of a locally partitioned index can have its own type of sync: (ON COMMIT,
EVERY, or MANUAL). The type of sync specified in master parameter strings applies to
all index partitions unless a partition specifies its own type.
With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. The syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory
size as what was specified at index creation.

Chapter 1
ALTER INDEX

1-9

Note:

This command rebuilds the index. When you want to change the SYNC
setting without rebuilding the index, use the REBUILD REPLACE METADATA
SYNC (MANUAL | ON COMMIT) operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL
This parameter enables you to turn the TRANSACTIONAL property on or off. For more
information, see "TRANSACTIONAL".
Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.
To turn on the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata transactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace transactional');

To turn off the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS('replace metadata nontransactional');

or

ALTER INDEX myidx REBUILD PARAMETERS('replace nontransactional');

REPLACE [METADATA] [ASYNCHRONOUS_UPDATE |
SYNCHRONOUS_UPDATE]
When you update the column in a document on which an Oracle Text index is based,
that document is marked as invalid for search operations until index synchronization is
performed. Enabling asynchronous update for an index enables a document to be
searchable even though its index has not yet been synchronized after the index
column was updated. Until the index is synchronized, Oracle Text uses the contents
of the old document to answer user queries.
To enable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ('REPLACE METADATA asynchronous_update');

To disable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ('REPLACE METADATA synchronous_update');

Note:

Synchronous update is not supported with the TRANSACTIONAL option and for
updates that cause row movement.

RESUME [MEMORY memsize]
Resumes a failed index operation. You can optionally specify the amount of memory
to use with memsize.

Chapter 1
ALTER INDEX

1-10

Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It
does not apply to CTXCAT indexes.

ADD STOPWORD word [language language]
Dynamically adds a stopword word to the index.
Index entries for word that existed before this operation are not deleted. However,
subsequent queries on word are treated as though it has always been a stopword.
When your stoplist is a multilanguage stoplist, you must specify language.
The index is not rebuilt by this statement.

ADD ZONE SECTION section_name tag tag
Dynamically adds the zone section section_name identified by tag to the existing
index.
The added section section_name applies only to documents indexed after this
operation. For the change to take effect, you must manually re-index any existing
documents that contain the tag.
The index is not rebuilt by this statement.

Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It
does not apply to CTXCAT indexes.

See Also:

"Notes"

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
Dynamically adds the field section section_name identified by tag to the existing
index. There is no limit to the number of field sections that can be added.
Optionally specify VISIBLE to make the field sections visible. The default is
INVISIBLE.

See Also:

CTX_DDL.ADD_FIELD_SECTION for more information on visible and
invisible field sections

The added section section_name applies only to documents indexed after this
operation. For the change to affect previously indexed documents, you must explicitly
re-index the documents that contain the tag.
This statement does not rebuild the index.

Chapter 1
ALTER INDEX

1-11

Note:

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does
not apply to CTXCAT indexes.

See Also:

"Notes"

ADD ATTR SECTION section_name tag tag@attr
Dynamically adds an attribute section section_name to the existing index. You must
specify the XML tag and attribute in the form tag@attr. You can add attribute sections
only to XML section groups.
The added attribute section section_name applies only to documents indexed after
this operation. For the change to take effect, you must manually re-index any existing
documents that contain the tag.
The index is not rebuilt by this statement.

Note:

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does
not apply to CTXCAT indexes.

See Also:

"Notes"

ADD STOP SECTION tag
Dynamically adds the stop section identified by tag to the existing index. As stop
sections apply only to automatic sectioning of XML documents, the index must use
the AUTO_SECTION_GROUP section group. The tag you specify must be case sensitive
and unique within the automatic section group or else ALTER INDEX raises an error.
The added stop section tag applies only to documents indexed after this operation.
For the change to affect previously indexed documents, you must explicitly re-index
the documents that contain the tag.
The text within a stop section can always be searched.
The number of stop sections you can add is unlimited.
The index is not rebuilt by this statement.

See Also:

"Notes"

Chapter 1
ALTER INDEX

1-12

Note:

This ALTER INDEX operation applies only to CONTEXT indexes. It does not
apply to CTXCAT indexes.

PARALLEL n
Using n, you can optionally specify the parallel degree for parallel indexing. This
parameter is supported only when you use SYNC, REPLACE, and RESUME in
paramstring. The actual degree of parallelism might be smaller depending on your
resources.
Parallel indexing can speed up indexing when you have large amounts of data to
index and when your operating system supports multiple CPUs.

ALTER INDEX Sub_Lexer Syntax

Use the following syntax.

See Also:

"ALTER INDEX Purpose" for list of types of indexes and syntax for ALTER
INDEX

New paramstring =
'REPLACE
 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [LEXER lexer_pref]
 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize
 [[POPULATE | NOPOPULATE]
 [INDEX SET index_set]

 [METADATA preference new_preference]
 [[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [[METADATA] TRANSACTIONAL|NONTRANSACTIONAL

| RESUME [memory memsize]
| OPTIMIZE [token index_token | fast | full [maxtime (time | unlimited)]
| SYNC [memory memsize]
| ADD STOPWORD word [language language][LANGUAGE_DEPENDENT(TRUE|FALSE)]
| ADD ZONE SECTION section_name tag tag
| ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]
| ADD ATTR SECTION section_name tag tag@attr
| ADD STOP SECTION tag
| ADD SUB_LEXER sub_lexer_name LANGUAGE language [ALT_VALUE
alternate_value_for_language] [LANGUAGE_DEPENDENT (TRUE|FALSE)]
| REMOVE SUB_LEXER LANGUAGE language
| REMOVE STOPWORD word [LANGUAGE language]
| REMOVE STOPWORDS FOR LANGUAGE language
| MIGRATE to MULTI_STOPLIST [LANGUAGE COLUMN lang]
| MIGRATE FIELD SECTION field_section_name to [READ ONLY] MDATA

Chapter 1
ALTER INDEX

1-13

| UPDATE SUB_LEXER LANGUAGE language TO sub_lexer_preference
| ADD MDATA SECTION secname TAG sectag READ ONLY

Sub_Lexer Example

ALTER INDEX myidx PARAMETERS('ADD SUB_LEXER mycompany_lexer LANGUAGE mycompany
LANGUAGE_DEPENDENT FALSE');

ALTER INDEX myidx PARAMETERS('REMOVE STOPWORDS FOR LANGUAGE mycompany');

Sub_Lexer Notes

The language can be Oracle predefined language symbols (globalization support
name or abbreviation of an Oracle Text-supported language), or user-defined symbols
for language independent sub_lexer or stopword.

ADD SUB_LEXER
The following conditions apply:

• If LANGUAGE_DEPENDENT clause is not provided, it will default TRUE.

• Sync will be blocked (or it will be blocked by sync).

• If adding first language independent sub_lexer, then base table will also be
locked.

• Adding first language independent sub_lexer or stopword will take longer to
complete. Otherwise, it should take fraction of a second to complete unless it's
being blocked by ongoing sync process on the same index.

REMOVE SUB_LEXER
Will succeed only if there are no documents with language column set to the symbol
for the sub_lexer being removed.

REMOVE STOPWORD
The following conditions apply:

• If LANGUAGE clause is not specified, it is assumed that the index is using
basic_stoplist. If the index is not using basic_stoplist, an error will be raised.

• If the index is using basic_stoplist (instead of multi_stoplist), then it will succeed
only if the base table is empty.

• If the index is using multi_stoplist, and user specifies "ALL" for LANGUAGE
clause, then it will succeed only if the base table is empty.

• If the index is using multi_stoplist, and user specifies a symbol for LANGUAGE
clause, then it will succeed only if there are no documents with language column
set to the symbol for the stopword being removed.

See Also:

"ALTER INDEX REBUILD Syntax"

MIGRATE TO MULTI_STOPLIST [LANGUAGE COLUMN lang]
The following conditions apply:

Chapter 1
ALTER INDEX

1-14

• Migrate the stoplist of an existing Text index to Multi_stoplist. The language of the
existing stopwords will have the value of ALL.

• If LANGUAGE column has already been defined for the index:

– LANGUAGE COLUMN can be skipped (old language column is retained for the
index).

– If LANGUAGE COLUMN is specified and there is a mismatch between index
language column and the one specified, an error will be raised.

• LANGUAGE COLUMN must be specified for the index; otherwise, an error is raised.

MIGRATE FIELD SECTION TO MDATA SECTION
The following conditions apply:

• Allow user to convert a field section to MDATA section. Specify READ ONLY if
the MDATA section is meant to be a READ_ONLY MDATA section (ADD and
REMOVE not allowed).

• Limitation: Tokens in migrated MDATA sections will not have typical MDATA
characteristics - case information, tokens being stored as it is in the document,
etc. To retain these, those documents need to be reindexed.

UPDATE SUB_LEXER LANGUAGE SUB_LEXER_SYMBOL TO
SUB_LEXER_PREFERENCE
The following conditions apply:

• Allows user to update sublexer dynamically.

• Language, alt_value, language dependency should remain same for the old and
new sublexer preference.

• For updating the default sublexer, the syntax is:

UPDATE SUB_LEXER DEFAULT TO SUB_LEXER_PREFERENCE

ADD MDATA SECTION secname TAG sectag READ ONLY
The following conditions apply:

• Allows users to add MDATA section to the index.

• Cannot be used with NULL/AUTO/PATH section groups.

ALTER INDEX Examples

Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2
megabytes of memory:

ALTER INDEX newsindex REBUILD PARAMETERS('resume memory 2M');

Rebuilding an Index

The following statement rebuilds the index, replacing the stoplist preference with
new_stop.

ALTER INDEX newsindex REBUILD PARAMETERS('replace stoplist new_stop');

Rebuilding a Partitioned Index

Chapter 1
ALTER INDEX

1-15

The following example creates a partitioned text table, populates it, and creates a
partitioned index. It then adds a new partition to the table and rebuilds the index with
ALTER INDEX as follows:

PROMPT create partitioned table and populate it

create table part_tab (a int, b varchar2(40)) partition by range(a)
(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

insert into part_tab values (1,'Actinidia deliciosa');
insert into part_tab values (8,'Distictis buccinatoria');
insert into part_tab values (12,'Actinidia quinata');
insert into part_tab values (18,'Distictis Rivers');
insert into part_tab values (21,'pandorea jasminoides Lady Di');
insert into part_tab values (28,'pandorea rosea');

commit;

PROMPT create partitioned index
create index part_idx on part_tab(b) indextype is ctxsys.context
local (partition p_idx1, partition p_idx2, partition p_idx3);

PROMPT add a partition and populate it
alter table part_tab add partition p_tab4 values less than (40);
insert into part_tab values (32, 'passiflora citrina');
insert into part_tab values (33, 'passiflora alatocaerulea');
commit;

The following statement rebuilds the index in the newly populated partition. In general,
the index partition name for a newly added partition is the same as the table partition
name, unless the name has already been used. In this case, Oracle Text generates a
new name.

alter index part_idx rebuild partition p_tab4;

The following statement queries the table for the two hits in the newly added partition:

select * from part_tab where contains(b,'passiflora') >0;

The following statement queries the newly added partition directly:

select * from part_tab partition (p_tab4) where contains(b,'passiflora') >;

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from single-
language documents (English) to multilanguage documents (English and Spanish) by
replacing the index metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ('the quick brown fox');
commit;

REM create a simple lexer to lex this English text

begin
 ctx_ddl.create_preference('us_lexer','basic_lexer');

Chapter 1
ALTER INDEX

1-16

end;
/

REM create a text index on the simple table
create index simple_idx on simple(text)
indextype is ctxsys.context parameters ('lexer us_lexer');

REM we can query easily
select * from simple where contains(text, 'fox')>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default 'us');

REM now let's create a Spanish lexer,
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
end;
/
REM Then create a multilexer incorporating our English and Spanish lexers.
REM Note that the DEFAULT lexer is the exact same lexer, with which we have
REM have already indexed all the documents.
begin
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','spanish','e_lexer');
end;
/
REM next replace our metadata
alter index simple_idx rebuild
parameters ('replace metadata language column lang lexer m_lexer');

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.
insert into simple values ('el zorro marrón rápido', 'e');
commit;
exec ctx_ddl.sync_index('simple_idx');
REM now query the Spanish data with base lettering:
select * from simple where contains(text, 'rapido')>0;

Optimizing the Index

To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index

To synchronize your index, use CTX_DDL.SYNC_INDEX.

Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter the
following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add zone section author tag author');

Adding a Stop Section

To add a stop section identified by tag <fluff> to the index that uses the
AUTO_SECTION_GROUP, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS('add stop section fluff');

Chapter 1
ALTER INDEX

1-17

Adding an Attribute Section

Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

Assume also that you want to create a separate section for the title attribute and you
want to name the new attribute section booktitle. To do so, enter the following
statement:

ALTER INDEX myindex REBUILD PARAMETERS('add attr section booktitle tag
title@book');

Adding an SDATA Section

To add an SDATA section S1 of NUMBER data type and identified by tag T1, to the index,
enter the following statement:

ALTER INDEX myindex PARAMETERS('add sdata section S1 tag T1 datatype NUMBER);

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX statement was issued
on the Text index for which the query is being run, then:

• The query optimizer will not choose the index access path for that given index
because the index is treated according to its creation time with ALTER INDEX.
Therefore, to the query optimizer, the index is perceived not to exist.

• The functional processing of the Text operator will fail with ORA-01466 or
ORA-08176 errors if the ALTER INDEX statement involves re-creation of DR$ index
tables.

To work around this issue, use the DBMS_FLASHBACK package. For example:

EXEC dbms_flashback.enable_at_system_change_number(:scn);
SELECT id from documents WHERE CONTAINS(text, 'oracle')>0;
EXEC dbms_flashback.disable;

See Also:

"Using DBMS_FLASHBACK Package" in Oracle Database Development
Guide

Notes

Add Section Constraints

Before altering the index section information, Oracle Text checks the new section
against the existing sections to ensure that all validity constraints are met. These
constraints are the same for adding a section to a section group with the CTX_DDL
PL/SQL package and are as follows:

• You cannot add zone, field, or stop sections to a NULL_SECTION_GROUP.

• You cannot add zone, field, or attribute sections to an automatic section group.

• You cannot add attribute sections to anything other than XML section groups.

Chapter 1
ALTER INDEX

1-18

• You cannot have the same tag for two different sections.

• Section names for zone, field, and attribute sections cannot intersect.

• You cannot exceed 64 fields per section.

• You cannot add stop sections to basic, HTML, XML, or news section groups.

• SENTENCE and PARAGRAPH are reserved section names.

• You cannot have embedded blanks in section and field names.

Related Topics

CTX_DDL.SYNC_INDEX in CTX_DDL Package

CTX_DDL.OPTIMIZE_INDEX in CTX_DDL Package

CREATE INDEX

1.2 ALTER TABLE: Supported Partitioning Statements

Note:

This section describes the ALTER TABLE statement as it pertains to adding
and modifying a partitioned text table with a context domain index.

For a complete description of the ALTER TABLE statement, see Oracle
Database SQL Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a
partitioned text table with a context domain index. The following sections describe
some of the ALTER TABLE operations.

Modify Partition Syntax

Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You
might mark an index partition unusable before you rebuild the index partition as
described in "Rebuild Unusable Local Indexes".

If the index partition is not marked unusable, then the statement returns without
actually rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an
UNUSABLE status.

Chapter 1
ALTER TABLE: Supported Partitioning Statements

1-19

Note:

If the index partition status is already VALID before you enter this statement,
then this statement does not rebuild the index partition. Do not depend on
this statement to rebuild the index partition unless the index partition status is
UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value_list) [partition_description]

Adds a new partition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER TABLE
SPLIT PARTITION statement.

The newly added table partition is always empty, and the context domain index (if any)
status for this partition is always VALID. After issuing DML, if you want to synchronize
or optimize this newly added index partition, then you must look up the index partition
name and enter the ALTER INDEX REBUILD PARTITION statement. For this newly added
partition, the index partition name is usually the same as the table partition name, but if
the table partition name is already used by another index partition, the system assigns
a name in the form of SYS_Pn.

By querying the USER_IND_PARTITIONS view and comparing the HIGH_VALUE field, you
can determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table
MERGE PARTITIONS partition1, partition2
[INTO PARTITION [new_partition] [partition_description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent
partitions into a new partition and then drops the original two partitions. If the resulting
partition is non-empty, then the corresponding local domain index partition is marked
UNUSABLE. You can use ALTER TABLE MODIFY PARTITION to rebuild the partition index.

For a global, nonpartitioned index, if you perform the merge operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the resulting index partition is the same as in the ALTER
TABLE ADD PARTITION statement.

Split Partition Syntax

ALTER TABLE [schema.]table
SPLIT PARTITION partition_name_old
AT (value_list)
[into (partition_description, partition_description)]

Chapter 1
ALTER TABLE: Supported Partitioning Statements

1-20

[parallel_clause]
[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two
partitions, thus adding a new partition to the table. The local corresponding index
partitions will be marked UNUSABLE if the corresponding table partitions are non-empty.
Use the ALTER TABLE MODIFY PARTITION statement to rebuild the partition indexes.

For a global, nonpartitioned index, if you perform the split operation without an UPDATE
GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must
be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the operation and
the SYNC type is MANUAL, then the index will be valid, but you still must synchronize the
index with CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the two resulting index partition is the same as in the ALTER
TABLE ADD PARTITION statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING|EXCLUDING INDEXES}
[WITH|WITHOUT VALIDATION]
[EXCEPTIONS INTO [schema.]table]
[UPDATE GLOBAL INDEXES]

Converts a partition to a nonpartitioned table, and converts a table to a partition of a
partitioned table by exchanging their data segments. Rowids are preserved.

If EXCLUDING INDEXES is specified, all the context indexes corresponding to the
partition and all the indexes on the exchanged table are marked as UNUSABLE. To
rebuild the new index partition in this case, issue an ALTER TABLE MODIFY PARTITION
statement.

If INCLUDING INDEXES is specified, then for every local domain index on the partitioned
table, there must be a nonpartitioned domain index on the nonpartitioned table. The
local index partitions are exchanged with the corresponding regular indexes.

For a global, nonpartitioned index, if you perform the exchange operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation and the SYNC type is MANUAL, then the index will be valid, but you still must
synchronize the index with CTX_DDL.SYNC_INDEX for the update to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and
local index use different section IDs for the same field section.

Storage

Storage is not changed. So if the index on the nonpartitioned table $I table was in
tablespace XYZ, then after the exchange partition, it will still be in tablespace XYZ, but
now it is the $I table for an index partition.

Storage preferences are not switched, so if you switch and then rebuild the index, then
the table may be created in a different location.

Restrictions

Chapter 1
ALTER TABLE: Supported Partitioning Statements

1-21

Both indexes must be equivalent. They must use the same objects and the same
settings for each object. Note that Oracle Text checks only that the indexes are using
the same object. But they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object
to partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised
and both the index and index partition will be INVALID. You must manually rebuild both
index and index partition using the ALTER INDEX REBUILD statement.

Truncate Partition Syntax

ALTER TABLE [schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL
INDEXES]

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions
are also removed.

For a global, nonpartitioned index, if you perform the truncate operation without an
UPDATE GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid
and must be rebuilt. If you specify the UPDATE GLOBAL INDEXES clause after the
operation, the index will be valid.

ALTER TABLE Examples

Global Index on Partitioned Table Examples

The following example creates a range-partitioned table with three partitions. Each
partition is populated with two rows. A global, nonpartitioned CONTEXT index is then
created. To demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split
and merged with an index synchronization.

create table tdrexglb_part(a int, b varchar2(40)) partition by range(a)
(partition p1 values less than (10),
 partition p2 values less than (20),
 partition p3 values less than (30));

insert into tdrexglb_part values (1,'row1');
insert into tdrexglb_part values (8,'row2');
insert into tdrexglb_part values (11,'row11');
insert into tdrexglb_part values (18,'row18');
insert into tdrexglb_part values (21,'row21');
insert into tdrexglb_part values (28,'row28');

commit;
create index tdrexglb_parti on tdrexglb_part(b) indextype is ctxsys.context;

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values(20,'newrow20');
commit;

PROMPT make sure query works
select * from tdrexglb_part where contains(b,'row18') >0;

PROMPT split partition
alter table tdrexglb_part split partition p2 at (15) into
(partition p21, partition p22) update global indexes;

Chapter 1
ALTER TABLE: Supported Partitioning Statements

1-22

PROMPT before sync
select * from tdrexglb_part where contains(b,'row11') >0;
select * from tdrexglb_part where contains(b,'row18') >0;

exec ctx_ddl.sync_index('tdrexglb_parti')

PROMPT after sync
select * from tdrexglb_part where contains(b,'row11') >0;
select * from tdrexglb_part where contains(b,'row18') >0;

PROMPT merge partition
alter table tdrexglb_part merge partitions p22, p3
into partition pnew3 update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row18') >0;
select * from tdrexglb_part where contains(b,'row28') >0;
exec ctx_ddl.sync_index('tdrexglb_parti');

PROMPT after sync
select * from tdrexglb_part where contains(b,'row18') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

PROMPT drop partition
alter table tdrexglb_part drop partition p1 update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'row1') >0;
exec ctx_ddl.sync_index('tdrexglb_parti');

PROMPT after sync
select * from tdrexglb_part where contains(b,'row1') >0;

PROMPT exchange partition
alter table tdrexglb_part exchange partition pnew3 with table
tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb_part where contains(b,'newrow20') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync
select * from tdrexglb_part where contains(b,'newrow20') >0;
select * from tdrexglb_part where contains(b,'row28') >0;

PROMPT move table partition
alter table tdrexglb_part move partition p21 update global indexes;
PROMPT before sync
select * from tdrexglb_part where contains(b,'row11') >0;

exec ctx_ddl.sync_index('tdrexglb_parti');
PROMPT after sync
select * from tdrexglb_part where contains(b,'row11') >0;

PROMPT truncate table partition
alter table tdrexglb_part truncate partition p21 update global indexes;

update global indexes;

Chapter 1
ALTER TABLE: Supported Partitioning Statements

1-23

1.3 CATSEARCH
Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the
WHERE clause of a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table
or materialized view by appending @dblink to the end of its name. The dblink must be
a complete or partial name for a database link to the database containing the remote
table or materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar
if your search criteria require special functionality, such as thesaurus, fuzzy matching,
proximity searching, or stemming. To utilize the CONTEXT grammar, use the "Query
Template Specification" in the text_query parameter as described in this section.

About Performance

Use the CATSEARCH operator with a CTXCAT index mainly to improve mixed-query
performance. Specify your text query condition with text_query and your structured
condition with the structured_query argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to
quickly produce results satisfying the query.

Limitations

If the optimizer chooses to use the functional query invocation, then your query will fail.
The optimizer might choose functional invocation when your structured clause is highly
selective.

The structured_query argument of the CATSEARCH operator must reference columns
used during CREATE INDEX sets; otherwise, error DRG-10845 will be raised. For
example, the error will be raised if you issue a CATSEARCH query on a view created on
top of a table with the CTXCAT index on it, and the name of the logical column on the
view is different from the actual column name on the physical table. The columns
referenced by the structured_query argument of the CATSEARCH operator must be the
physical column name used during CREATE INDEX sets, not the logical column on the
view.

Syntax

CATSEARCH(

[schema.]column,
text_query [VARCHAR2|CLOB],
structured_query VARCHAR2,

RETURN NUMBER;

[schema.]column
Specifies the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in column:

Chapter 1
CATSEARCH

1-24

• CATSEARCH Query Operations

• Query Template Specification (for using CONTEXT grammar)

CATSEARCH Query Operations

The CATSEARCH operator supports only the following query operations:

• Logical AND

• Logical OR (|)

• Logical NOT (-)

• " " (quoted phrases)

• Wildcarding

CATSEARCH Query Operations provides the syntax for these operators.

Table 1-2 CATSEARCH Query Operators

Operation Syntax Description of Operation

Logical AND a b c Returns rows that contain a, b, and c.

Logical OR a | b | c Returns rows that contain a, b, or c.

Logical NOT a - b Returns rows that contain a and not b.

Hyphen with no
space

a-b Hyphen treated as a regular character.

For example, if the hyphen is defined as skipjoin,
words such as web-site are treated as the single query
term website.

Likewise, if the hyphen is defined as a printjoin, words
such as web-site are treated as web-site in the CTXCAT
query language.

" " "a b c" Returns rows that contain the phrase "a b c".

For example, entering "Sony CD Player" means return
all rows that contain this sequence of words.

() (A B) | C Parentheses group operations. This query is equivalent
to the CONTAINS query (A &B) | C.

Wildcard

(right and double
truncated)

term*

a*b

The wildcard character matches zero or more
characters.

For example, do* matches dog, and gl*s matches
glass.

Left truncation not supported.

Note: Oracle recommends that you create a prefix
index if your application uses wildcard searching. Set
prefix indexing with the BASIC_WORDLIST
preference.

The following limitations apply to these operators:

• The left-hand side (the column name) must be a column named in at least one of
the indexes of the index set.

• The left-hand side must be a plain column name. Functions and expressions are
not allowed.

Chapter 1
CATSEARCH

1-25

• The right-hand side must be composed of literal values. Functions, expressions,
other columns, and subselects are not allowed.

• Multiple criteria can be combined with AND. Note that OR is not supported.

• When querying a remote table through a database link, the database link must be
specified for CATSEARCH as well as for the table being queried.

For example, these expressions are supported:

catsearch(text, 'dog', 'foo > 15')
catsearch(text, 'dog', 'bar = ''SMITH''')
catsearch(text, 'dog', 'foo between 1 and 15')
catsearch(text, 'dog', 'foo = 1 and abc = 123')
catsearch@remote(text, 'dog', 'foo = 1 and abc = 123')

These expressions are not supported:

catsearch(text, 'dog', 'upper(bar) = ''A''')
catsearch(text, 'dog', 'bar LIKE ''A%''')
catsearch(text, 'dog', 'foo = abc')
catsearch(text, 'dog', 'foo = 1 or abc = 3')

Query Template Specification

Specifies a marked-up string that specifies a query template. Specify one of the
following templates:

• Query rewrite, used to expand a query string into different versions

• Progressive relaxation, used to progressively enter less restrictive versions of a
query to increase recall

• Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query
Grammar Examples")

• Alternate language, used to specify alternate query language

• Alternate scoring, used to specify alternate scoring algorithms

See Also:

The text_query parameter description for CONTAINS for more information
about the syntax for these query templates

structured_query
Specifies the structured conditions and the ORDER BY clause. There must exist an
index for any column you specify. For example, if you specify 'category_id=1 order
by bid_close', you must have an index for 'category_id, bid_close' as specified
with the CTX_DDL.ADD_INDEX package.
With structured_query, you can use standard SQL syntax only with the following
operators:

• =

• <=

• >=

• >

Chapter 1
CATSEARCH

1-26

• <

• IN

• BETWEEN

• AND (to combine two or more clauses)

Note:

You cannot use parentheses () in the structured_query parameter.

Examples

1. Create the table.

The following statement creates the table to be indexed:

CREATE TABLE auction (category_id number primary key, title varchar2(20),
bid_close date);

The following statements insert the values into the table:

INSERT INTO auction values(1, 'Sony DVD Player', '20-FEB-2012');
INSERT INTO auction values(2, 'Sony DVD Player', '24-FEB-2012');
INSERT INTO auction values(3, 'Pioneer DVD Player', '25-FEB-2012');
INSERT INTO auction values(4, 'Sony DVD Player', '25-FEB-2012');
INSERT INTO auction values(5, 'Bose Speaker', '22-FEB-2012');
INSERT INTO auction values(6, 'Tascam CD Burner', '25-FEB-2012');
INSERT INTO auction values(7, 'Nikon digital camera', '22-FEB-2012');
INSERT INTO auction values(8, 'Canon digital camera', '26-FEB-2012');

2. Create the CTXCAT index.

The following statements create the CTXCAT index:

begin

ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','bid_close');

end;
/
CREATE INDEX auction_titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction_iset');

3. Query the table.

A typical query with CATSEARCH might include a structured clause as follows to find
all rows that contain the word camera ordered by bid_close:

SELECT * FROM auction WHERE CATSEARCH(title, 'camera', 'order by bid_close
desc')>
0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 8 Canon digital camera 26-FEB-12
 7 Nikon digital camera 22-FEB-12

Chapter 1
CATSEARCH

1-27

The following query finds all rows that contain the phrase Sony DVD Player and
that have a bid close date of February 20, 2012:

SELECT * FROM auction WHERE CATSEARCH(title, '"Sony DVD Player"',
'bid_close=''20-FEB-00''')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 1 Sony DVD Player 20-FEB-12

The following query finds all rows with the terms Sony and DVD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'Sony DVD Player',
'order by bid_close
desc')> 0;
CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 4 Sony DVD Player 25-FEB-12
 2 Sony DVD Player 24-FEB-12
 1 Sony DVD Player 20-FEB-12

The following query finds all rows with the term DVD and not Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'DVD - Player', 'order by bid_close
desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 6 Tascam CD Burner 25-FEB-12

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, 'CD | DVD | Speaker', 'order by
bid_close desc')> 0;

CATEGORY_ID TITLE BID_CLOSE
----------- -------------------- ---------
 3 Pioneer DVD Player 25-FEB-12
 4 Sony DVD Player 25-FEB-12
 6 Tascam CD Burner 25-FEB-12
 2 Sony DVD Player 24-FEB-12
 5 Bose Speaker 22-FEB-12
 1 Sony DVD Player 20-FEB-12

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH(title, 'ABOUT(audio equipment)',
NULL)> 0;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH
queries using the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 ?test
 </textquery>

Chapter 1
CATSEARCH

1-28

</query>','')>0
order by pk;

PROMPT
PROMPT fuzzy: query = !sail
PROMPT should match all soundex variations of bot (for example, sell)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 !sail
 </textquery>
</query>','')>0
order by pk;

PROMPT
PROMPT theme (ABOUT) query
PROMPT query: about(California)
select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 about(California)
 </textquery>
</query>','')>0
order by pk;

The following example shows a field section search against a CTXCAT index using
CONTEXT grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values(1, '<author>NOAM CHOMSKY</author><subject>CIVIL
 RIGHTS</subject><language>ENGLISH</language><publisher>MIT
 PRESS</publisher>', '01-NOV-2003');

insert into BOOKS values(2, '<author>NICANOR PARRA</author><subject>POEMS
 AND ANTIPOEMS</subject><language>SPANISH</language>
 <publisher>VASQUEZ</publisher>', '01-JAN-2001');

insert into BOOKS values(1, '<author>LUC SANTE</author><subject>XML
 DATABASE</subject><language>FRENCH</language><publisher>FREE
 PRESS</publisher>', '15-MAY-2002');

commit;

-- Create index set and section group
exec ctx_ddl.create_index_set('BOOK_INDEX_SET');
exec ctx_ddl.add_index('BOOKSET','PUBDATE');

exec ctx_ddl.create_section_group('BOOK_SECTION_GROUP',
 'BASIC_SECTION_GROUP');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','AUTHOR','AUTHOR');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','SUBJECT','SUBJECT');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx_ddl.add_field_section('BOOK_SECTION_GROUP','PUBLISHER','PUBLISHER');

-- Create index
create index books_index on books(info) indextype is ctxsys.ctxcat
 parameters('index set book_index_set section group book_section_group');

Chapter 1
CATSEARCH

1-29

-- Use the index
-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).
-- We need to use query template with CONTEXT grammar to access field
-- sections with CATSEARCH.

select id, info from books
where catsearch(info,
'<query>
 <textquery grammar="context">
 NOAM within author and english within language
 </textquery>
 </query>',
'order by pubdate')>0;

Related Topics

"Syntax for CTXCAT Index Type"

Oracle Text Application Developer's Guide

1.4 CONTAINS
Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the
query expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table
or materialized view by appending @dblink to the end of its name. The dblink must be
a complete or partial name for a database link to the database containing the remote
table or materialized view (querying of remote views is not supported).

CONTAINS returns a relevance score for every row selected. Obtain this score with the
SCORE operator.

The grammar for this operator is called the CONTEXT grammar. You can also use
CTXCAT grammar if your application works better with simpler syntax. To do so, use the
"Query Template Specification" in the text_query parameter as described in this
section.

See Also:

• "Query Rewrite Template"

• "Query Result Set Descriptor Template"

• "Query Relaxation Template"

• "Alternate Grammar Template"

• "Language Independent Template"

• "Alternate Language Template"

• "Alternative Scoring Template"

• The CONTEXT Grammar" topic in Oracle Text Application Developer's
Guide

Chapter 1
CONTAINS

1-30

Syntax

CONTAINS(
 [schema.]column,
 text_query [VARCHAR2|CLOB]
 [,label NUMBER])
RETURN NUMBER;

[schema.]column
Specify the text column to be searched on. This column must have a Text index
associated with it.

text_query
Specify one of the following (limited to 4000 bytes for a VARCHAR2 or 64000 bytes for a
CLOB):

• The query expression that defines your search in column.

• A marked-up document that specifies a query template.

Use one of the following query templates:

– Query Rewrite Template

– Query Result Set Descriptor Template

– Query Relaxation Template

– Alternate Grammar Template

– Language Independent Template

– Alternate Language Template

– Alternative Scoring Template

Query Rewrite Template

Use this template to automatically write different versions of a query before you submit
the query to Oracle Text. This is useful when you need to maximize the recall of a user
query. For example, you can program your application to expand a single phrase
query of 'cat dog' into the following queries:

{cat} {dog}
{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no
duplication. In this example, the query returns documents that contain the phrase cat
dog as well as documents in which cat is near dog, and documents that have cat and
dog.

This is done with the following template:

 <query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> cat dog
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seq>
 </progression>

Chapter 1
CONTAINS

1-31

 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

The operator TRANSFORM is used to specify the rewrite rules and has the following
syntax (note that it uses double parentheses). The parameters are described in the
following table.

TRANSFORM((terms, prefix, suffix, connector))

Table 1-3 TRANSFORM Parameters

Parameter Description

term Specifies the type of terms to be produced from the original query. Specify
either TOKENS or THEMES.

prefix Specifies the literal string to be prepended to all terms.

suffix Specifies the literal string to be appended to all terms.

connector Specifies the literal string to connect all terms after applying the prefix and
suffix.

Note:

An error will be raised if the input Text query string specified in the Query
Rewrite Template with TRANSFORM rules contains any Oracle Text query
operators (such as AND, OR, or SOUNDEX). Also, any special characters (such
as % or $) in the input Text query string must be preceded by an escape
character, or an error is raised.

Query Result Set Descriptor Template

Use this template to take in a Result Set Descriptor. The element
ctx_result_set_descriptor is added to the query template. This enables the CONTAINS
query cursor to take in a group count query.

The Result Set Interface document is placed in a public variable in the ctx_query
package. (ctx_query.result_set_document.)

The CONTAINS query cursor behavior remains unchanged and the Result Set
Document is available right after closing the cursor

For example, the following query of kukui nut returns a result set with the following
template.

<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite></seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
<ctx_result_set_descriptor>

Chapter 1
CONTAINS

1-32

 <group>
 <group_values>
 <value id="2"/>
 <value id="3"/>
 <value id="4"/>
 </group_values>
 <count/>
 </group>
</ctx_result_set_descriptor>
</query>

Query Relaxation Template

Use this template to progressively relax your query. Progressive relaxation is when
you increase recall by progressively issuing less restrictive versions of a query, so that
your application can return an appropriate number of hits to the user.

For example, the query of black pen can be progressively relaxed to:

black pen
black NEAR pen
black AND pen
black ACCUM pen

This is done with the following template

<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>black pen</seq>
 <seq>black NEAR pen</seq>
 <seq>black AND pen</seq>
 <seq>black ACCUM pen</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH.
Specifying an alternate grammar enables you to enter queries using different syntax
and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar.
Likewise with CONTAINS, enter logical queries using the simplified CATSEARCH syntax.

The phrase 'dog cat mouse' is interpreted as a phrase in CONTAINS. However, with
CATSEARCH, this is equivalent to an AND query of 'dog AND cat AND mouse'. Specify
that CONTAINS use the alternate grammar with the following template:

<query>
 <textquery grammar="CTXCAT">dog cat mouse</textquery>
 <score datatype="integer"/>
</query>

Language Independent Template

Use this template to specify a lexer that uses user-defined symbols (or abbreviations)
and does not depend on any language.

Chapter 1
CONTAINS

1-33

The following example specifies that the query take a list of language-independent
sublexers.

<query>
 <textquery grammar="CONTEXT" lang="ENGLISH">
 Oracle
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 <sublexers>
 <sublexer_label> SESSION_LANG </sublexer_label>
 <sublexer_label> MAIL </sublexer_label>
 <sublexer_label> CALENDER </sublexer_label>
 </sublexers>
</query>

The following conditions apply:

• The sublexers element consists of one or more sublexer_label elements.

• Each sublexer_label element contains the symbol for the language independent
sub_lexer.

• When the sublexers element is specified, the query will be processed with the
stopwords and sub_lexers for each of the symbols specified in the sublexers
element, and query will return only the documents indexed by the specified
sub_lexers.

• A special reserved symbol called SESSION_LANG can be used for the system to pick
a language-dependent sub_lexer based on the language specified in lang attribute
of the textquery element in the query template. If lang attribute is not specified,
then the lang attribute will be based on session language. Query parsed by the
chosen sub_lexer will only return documents indexed by that language-dependent
sub_lexer. If both SESSION_LANG and lang attribute are specified, the lang attribute
will take priority.

• If sublexers element is specified without SESSION_LANG, then lang attribute of
textquery element will be ignored.

• Default Behavior:

If sublexers element is not present in the query template, then query will be
parsed with one language-dependent sub-lexer (if any), which is chosen based on
the specified lang attribute value or the session language AND all language
independent sub-lexers.

Alternate Language Template

Use this template to specify an alternate language:

<query><textquery lang="french">bon soir</textquery></query>

Alternative Scoring Template

Use this template to specify an alternative scoring algorithm.

The following example specifies that the query use the CONTEXT grammar and return
integer scores using the COUNT algorithm. This algorithm returns a score as the number
of query occurrences in the document.

<query>
 <textquery grammar="CONTEXT" lang="english"> mustang
 </textquery>

Chapter 1
CONTAINS

1-34

 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normalization_expr attribute to add SDATA(price) into
the score returned by the query, and uses it as the final score:

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score algorithm="COUNT" normalization_expr ="doc_score+ SDATA(price)"/>
</query>

The normalization_expr attribute is used only with the alternate scoring template,
and is an arithmetic expression that consists of:

• Arithmetic operators: + - * /. The operator precedence is the same as that for SQL
operator precedence.

• Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

• Absolute function: ABS(n) returns the absolute value of n; where n is any
expression that returns a number.

• Logarithmic function: LOG(n): returns the base-10 logarithmic value of n; where n
is any expression that returns a number.

• Predefined components: The doc_score predefined component can be used to
return the initial query score of a particular document.

• SDATA component: SDATA(name) returns the value of the SDATA with the specified
name as the score.

– Only SDATA with a NUMBER or DATE data type is allowed. An error is raised
otherwise.

– The sdata string and the SDATA name are case-insensitive.

– Because an SDATA section value can be NULL, any expression with NULL SDATA
section value is evaluated as 0. For example: the normalization_expr
"doc_score + SDATA(price)" will be evaluated to 0 if SDATA(price) for a
given document has a NULL value.

• Numeric literals: There are any number literal that conforms to the SQL pattern of
NUMBER literal and is within the range of the double-precision floating-point
(-3.4e38 to 3.4e38).

• Date literals: Date literals must be enclosed with DATE (). Only the following format
is allowed: YYYY-MM-DD or YYYY-MM-DD HH24:MI:SS. For example:
DATE(2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normalization_expr attribute overrides the algorithm attribute. That is, if
algorithm is set to COUNT, and the user also specifies normalization_expr, then the
score will not be count, but the calculated score based on the normalization_expr.

If the score (either from algorithm = COUNT or normalization_expr = ...) is internally
calculated to be greater than 100, then it will be set to 100.

Chapter 1
CONTAINS

1-35

If the query relaxation template is used, the score will be further normalized in such a
way that documents returned from higher sequences will always have higher scores
than documents returned from sequence(s) below.

DATE Literal Restrictions
Only the minus (-) operator is allowed between date-type data (DATE literals and date-
type SDATA). Using other operators will result in an error. Subtracting two date-type
data will produce a number (float) that represents the difference in number of days
between the two dates. For example, the following expression is allowed:

SDATA(dob) – DATE(2005-11-08)

The following expression is not allowed:

SDATA(dob) + DATE(2005-11-08)

The plus (+) and minus (-) operators are allowed between numeric data and date type
of data. The number operand is interpreted as the number or fraction of days. For
example, the following expression is allowed:

DATE(2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE(2005-11-08)* 3 = ERROR

Template Attribute Values

Table 1-4 gives the possible values for template attributes.

Table 1-4 Template Attribute Values

Tag Attribute Description Possible Values Meaning

grammar= Specifies the
grammar of the
query.

CONTEXT

CTXCAT

The grammar of the query.

datatype= Specifies the type of
number returned as
score.

INTEGER

FLOAT

Returns score as integer
between 0 and 100.

Returns score as its high-
precision floating-point
number between 0 and 100.

algorithm= Specifies the scoring
algorithm to use.

DEFAULT

COUNT

Returns the default.

Returns scores as the
number of occurrences in
the document.

lang= Specifies the
language name.

Any language
supported by Oracle
Database. See Oracle
Database Globalization
Support Guide.

The language name.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the
following XML DTD:

Chapter 1
CONTAINS

1-36

<!DOCTYPE query [
<!ELEMENT query (textquery, score?, order?)>
<!ELEMENT textquery (#PCDATA|progression)*>
<!ELEMENT progression (seq)+>
<!ELEMENT seq (#PCDATA|rewrite)*>
<!ELEMENT rewrite (#PCDATA)>
<!ELEMENT score EMPTY>
<!ELEMENT order (orderkey+)>
<!ELEMENT orderkey (#PCDATA)>
<!ATTLIST textquery grammar (CONTEXT | CTXCAT | CTXRULE) #REQUIRED>
<!ATTLIST textquery lang CDATA #IMPLIED>
<!ATTLIST score datatype (integer | float) "integer">
<!ATTLIST score algorithm (default | count) "default">
<!ATTLIST score normalization_expr CDATA >

Values are case insensitive: integer | float, default | count, context |ctxcat .

See Also:

Oracle Text CONTAINS Query Operators for more information about the
operators in query expressions

label
Optionally, specifies the label that identifies the score generated by the CONTAINS
operator.

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100
that indicates how relevant the document row is to the query. The number 0 means
that Oracle Text found no matches in the row.

Note:

You must use the SCORE operator with a label to obtain this number.

Example

The following example searches for all documents in the text column that contain the
word oracle. The score for each row is selected with the SCORE operator using a label
of 1:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which
specifies that the score value calculated must be greater than zero for the row to be
selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS
clause must reference the score label value as in the following example:

Chapter 1
CONTAINS

1-37

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

The following example specifies that the query be parsed using the CATSEARCH
grammar:

SELECT id FROM test WHERE CONTAINS (text,
 '<query>
 <textquery lang="ENGLISH" grammar="CATSEARCH">
 cheap pokemon
 </textquery>
 <score datatype="INTEGER"/>
 </query>') > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query.
The example creates a CTXCAT and a CONTEXT index on the same table, and compares
the query results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT
create index tdrbqcq101x on test(text) indextype is ctxsys.context
parameters ('lexer theme_lexer');

create index tdrbqcq101cx on test(text) indextype is ctxsys.ctxcat
parameters ('lexer theme_lexer');

PROMPT ***** San Diego ***********
PROMPT ***** CONTEXT grammar ***********
PROMPT ** should be interpreted as phrase query **
select pk||' ==> '||text from test
where contains(text,'San Diego')>0
order by pk;

PROMPT ***** San Diego ***********
PROMPT ***** CTXCAT grammar ***********
PROMPT ** should be interpreted as AND query ***
select pk||' ==> '||text from test
where contains(text,
'<query>
 <textquery grammar="CTXCAT">San Diego</textquery>
 <score datatype="integer"/>
</query>')>0
order by pk;

PROMPT ***** Hitlist from CTXCAT index ***********
select pk||' ==> '||text from test
where catsearch(text,'San Diego','')>0
order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column) value
into the score returned by the query and uses it as the final score:

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>

Chapter 1
CONTAINS

1-38

 <score algorithm="COUNT" normalization_expr ="doc_score+SDATA(price)"/>
</query>

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of black
pen is entered in sequence as black pen, then black NEAR pen, then black AND pen,
and then black ACCUM pen. Query hits are returned in this sequence with no
duplication as long as the application requires results.

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT">
 <progression>
 <seq>black pen</seq>
 <seq>black NEAR pen</seq>
 <seq>black AND pen</seq>
 <seq>black ACCUM pen</seq>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query relaxation is most effective when your application requires the top n hits to a
query, which you can obtain with the DOMAIN_INDEX_SORT or FIRST_ROWS hint, which is
being deprecated, in a PL/SQL cursor.

Query Rewrite Template Example

The following template defines a query rewrite sequence. The query of kukui nut is
rewritten as follows:

{kukui} {nut}

{kukui} ; {nut}

{kukui} AND {nut}

{kukui} ACCUM {nut}

select id from docs where CONTAINS (text, '
 <query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
 <progression>
 <seq><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
 <seq><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite>/seq>
 <seq><rewrite>transform((TOKENS, "{", "}", "AND"))</rewrite><seq/>
 <seq><rewrite>transform((TOKENS, "{", "}", "ACCUM"))</rewrite><seq/>
 </progression>
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Order By SDATA Sections Template Example

The following query template defines a query sequence for ordering by SDATA section
values using the <order> and <orderkey> elements. The first level of ordering is done
on the SDATA section price, which is sorted in the ascending order. The second and
third level of ordering is done by the SDATA section pub_date and score, both of which
are sorted in the descending order.

Chapter 1
CONTAINS

1-39

select id from docs where CONTAINS (text, '
<query>
 <textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
 <order>
 <orderkey> SDATA(price) ASC </orderkey>
 <orderkey> SDATA(pub_date) DESC </orderKey>
 <orderkey> Score DESC </orderkey>
 </order>
</query>', 1)>0;

The <orderkey> element value must have the following format:

<orderkey> SDATA(sdata_section_name) | score [DESC|ASC] </orderkey>

The sort order is ascending by default, if not specified as either DESC or ASC.

The <orderkey> element will be ignored in the following cases:

• when the Oracle Cost-Based Optimizer (CBO) pushes the SQL query level
ordering into the Text index

• when the CONTAINS() predicate is processed functionally

• when the ordering is already specified by the ORDER BY clause in the SQL query
statement

Notes

Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At
query time, the multilexer examines the session's language setting and uses the
sublexer preference for that language to parse the query. If the language setting is not
mapped, then the default lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The
index contains tokens from multiple languages, so such a query can return documents
in several languages.

To limit your query to returning documents of a given language, use a structured
clause on the language column.

Query Performance Limitation with a Partitioned Index

Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

However, for optimal performance when querying a partitioned table with an ORDER BY
SCORE clause, query the partition. If you query the entire table and use an ORDER BY
SCORE clause, the query might not perform optimally unless you include a range
predicate that can limit the query to a single partition.

For example, the following statement queries the partition p_tab4 partition directly:

select * from part_tab partition (p_tab4) where contains(b,'oracle') > 0 ORDER BY
SCORE DESC;

Limitation with Remote Execution of CONTAINS Query

Oracle Text supports the remote execution of the CONTAINS operator, but with some
limitations. You can invoke the CONTAINS operator in a remote query only if the query is
executed completely in the remote database. You cannot use the CONTAINS operator in

Chapter 1
CONTAINS

1-40

a subquery of a query, which causes the query to run partly on the remote database
and partly on the local database. Doing so will raise the error "ORA-00949: illegal
reference to remote database." However, CONTAINS, when invoked remotely from an
inner query might run successfully sometimes if view merging is enabled and possible
on this query, as in this case the query will be transformed into a single query and,
hence, no error will occur.

For example, the following query is correct:

select id from remtab@rdb
where contains@rdb(text,'hello') > 0;

Related Topics

"Syntax for CONTEXT Index Type"

Oracle Text CONTAINS Query Operators

"The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

"SCORE"

1.5 CREATE INDEX
This section describes the CREATE INDEX statement as it pertains to creating an Oracle
Text domain index and composite domain index.

See Also:

"Oracle Database SQL Language Reference for a complete description of
the CREATE INDEX statement

Purpose

Use CREATE INDEX to create an Oracle Text index. An Oracle Text index is an Oracle
Database domain index or composite domain index of type CONTEXT, CTXCAT, or
CTXRULE. A domain index is an application-specific index. A composite domain index
(CDI) is an Oracle Text index that not only indexes and processes a specified text
column, but also indexes and processes FILTER BY and ORDER BY structured columns,
which are specified during index creation.

Example

create table mytab
(item_id number,
 item_info varchar2(4000),
 item_supplier varchar2(250),
 item_distributor varchar2(500));

create index idx on mytab(item_info) indextype is ctxsys.context
filter by item_supplier order by item_distributor;

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, or
MATCHES queries.

Chapter 1
CREATE INDEX

1-41

You cannot create an Oracle Text index on an index-organized table.

You can create the following types of Oracle Text indexes.

CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text
column. A CONTEXT index is useful when your source text consists of many large,
coherent documents. Query this index with the CONTAINS operator in the WHERE clause
of a SELECT statement. This index requires manual synchronization after DML. See
"Syntax for CONTEXT Index Type".

CTXCAT

The CTXCAT index is a combined index on a text column and one or more other
columns. The CTXCAT type is typically used to index small documents or text
fragments, such as item names, prices, and descriptions found in catalogs. Query this
index with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type
of index is optimized for mixed queries. This index is transactional, automatically
updating itself with DML to the base table. CTXCAT indexes are generally larger and
slower to create and update than CONTEXT indexes, and have a narrower range of
indexing options available. See "Syntax for CTXCAT Index Type".

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE
index is an index created on a table of queries or a column containing a set of queries,
where the queries serve as rules to define the classification criteria. Query this index
with the MATCHES operator in the WHERE clause of a SELECT statement. See "Syntax for
CTXRULE Index Type".

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle
Database privileges to create an index on the text column, you have sufficient privilege
to create a text index. The issuing owner, table owner, and index owner can all be
different users, which is consistent with Oracle standards for creating regular indexes.

Note:

Whenever you create an Oracle Text index, a number of additional internal
objects are created which have names prefixed with DR$. These internal
object names usually contain the index name. In some cases, the index
name is shortened to fit in the object name. In such cases, the index ID is
present in the object name to avoid naming conflicts with objects of other
indexes.

Syntax for CONTEXT Index Type

Uses a CONTEXT index to create an index on a text column. Query this index with the
CONTAINS operator in the WHERE clause of a SELECT statement. This index requires
manual synchronization after DML.

CREATE INDEX [schema.]index ON [schema.]table(txt_column)
 INDEXTYPE IS ctxsys.context [ONLINE]
 [FILTER BY filter_column[, filter_column]...]

Chapter 1
CREATE INDEX

1-42

 [ORDER BY oby_column[desc|asc][, oby_column[desc|asc]]...]
 [LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]]
 [, PARTITION [partition] [PARAMETERS('paramstring')]])]
 [PARAMETERS(paramstring)] [PARALLEL n] [UNUSABLE]];

[schema.]index
Specifies the name of the Text index to create.

[schema.]table(txt_column)
Specifies the name of the table and column to index. txt_column is the name of the
domain index column on which the CONTAINS() operator will be invoked.
Your table can optionally contain a primary key if you prefer to identify your rows as
such when you use procedures in CTX_DOC. When your table has no primary key,
document services identifies your documents by ROWID.

Note:

Primary keys of the following type are supported: NUMBER, VARCHAR2, DATE,
CHAR, VARCHAR, and RAW.

The column that you specify must be one of the following types: CHAR, VARCHAR,
VARCHAR2, BLOB, CLOB, BFILE, XMLType, or URIType.

Note:

In Oracle Database 12c Release 2 (12.2), an Oracle Text index cannot be
created on a column with a declared collation other than BINARY,
USING_NLS_COMP, USING_NLS_SORT or USING_NLS_SORT_CS. For all the
supported collations, the Oracle Text behavior is the same.

The table that you specify can be a partitioned table. If you do not specify the LOCAL
clause, then a global, nonpartitioned index is created.
The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also
cannot be indexed, but their attributes can be indexed, provided that they are atomic
data types.
Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following criteria is true:

• The VPD policy is created such that it does not apply to the INDEX statement type.

• The policy function returns a NULL predicate for the current user.

• The user (or index owner) is SYS.

• The user has the EXEMPT ACCESS POLICY privilege.

Indexes on multiple columns are not supported with the CONTEXT index type. You must
specify only one column in the column list.

Chapter 1
CREATE INDEX

1-43

Note:

With the CTXCAT index type, you can create indexes on text and structured
columns. See "Syntax for CTXCAT Index Type"

Note:

Because a Transparent Data Encryption-enabled column does not support
domain indexes, it cannot be used with Oracle Text. However, you can
create an Oracle Text index on a column in a table stored in a Transparent
Data Encryption-enabled tablespace.

ONLINE
Creates the index while enabling DML insertions/updates/deletions on the base table.
During indexing, Oracle Text enqueues DML requests in a pending queue. At the end
of the index creation, Oracle Text locks the base table. During this time, DML is
blocked. You must synchronize the index in order for DML changes to be available.

Limitations

The following limitations apply to using ONLINE:

• At the very beginning or very end of the ONLINE process, DML might fail.

• ONLINE is supported for CONTEXT indexes only.

FILTER BY filter_column
This is the structured indexed column on which a range or equality predicate in the
WHERE clause of a mixed query will operate. You can specify one or more structured
columns for filter_column, on which the relational predicates are expected to be
specified along with the CONTAINS() predicate in a query.
The Cost-based Optimizer (CBO) will consider pushing down the structured
predicates on these FILTER BY columns with the following relational operators: <, <=,
=, >=, >, between, and LIKE (for VARCHAR2).
These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally,
VARCHAR2 and RAW types are supported only if the maximum length is specified and is
limited to no more than 249. The ADT attributes of supported types (CHAR, NUMBER,
DATE, VARCHAR2, or RAW) are also allowed. An error is raised for all other data types.
Expressions, for example, func(cola), and virtual columns are not allowed.
txt_column is allowed in the FILTER BY column list.
DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column
This is the structured indexed column on which a structured ORDER BY mixed query will
be based. A list of structured oby_columns can be specified in the ORDER BY clause of
a CONTAINS() query.
These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. VARCHAR2
and RAW columns longer than 249 bytes are truncated to the first 249 bytes.
Expressions, for example, func(cola), and virtual columns are not allowed.

Chapter 1
CREATE INDEX

1-44

The order of the specified columns matters. The Cost-based Optimizer (CBO) will
consider pushing the sort into the composite domain index only if the ORDER BY clause
in the text query contains:

• Entire ordered ORDER BY columns declared by the ORDER BY clause during
the CREATE INDEX statement

• Only the prefix of the ordered ORDER BY columns declared by the ORDER BY
clause during the CREATE INDEX statement

• The score followed by the prefix of the ordered ORDER BY columns declared by
the ORDER BY clause during the CREATE INDEX statement

• The score following the prefix of the ordered ORDER BY columns declared by the
ORDER BY clause during the CREATE INDEX statement

The following example illustrates Cost-based Optimizer (CBO) behavior with regard to
ORDER BY columns:

CREATE INDEX foox ON foo(D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Consider the following query:

SELECT A, SCORE(1) FROM foo WHERE CONTAINS(D, 'oracle',1)>0
AND C>100 ORDER BY col_list;

Note:

If you set NLS_SORT or NLS_COMP parameters (that is, alter session set
NLS_SORT = <some lang>;), then CBO will not push the sort or related
structured predicate into the CDI. This behavior is consistent with regular
optimized for search SDATA indexes.

The Cost-based Optimizer (CBO) will consider pushing the sort into the composite
domain index (CDI) if col_list has the following values:

 A
 A,B
 SCORE(1), A
 SCORE(1), A, B
 A, SCORE(1)
 A, B, SCORE(1)

The CBO will not consider to push the sort into the CDI if col_list has the following
values:

 B
 B,A
 SCORE(1), B
 B, SCORE(1)

Chapter 1
CREATE INDEX

1-45

 A, B, C
 A, B asc

(or simply A, B)
Expressions, for example, func(cola), are not allowed.
txt_column appearing in the ORDER BY column list is allowed.
DML operations on ORDER BY columns are always transactional.

Limitations

The following limitations apply to FILTER BY and ORDER BY:

• A structured column is allowed in FILTER BY and ORDER BY clauses. However, a
column that is mapped to MDATA in a FILTER BY clause cannot also appear in the
ORDER BY clause. An error will be raised in this case.

• The maximum length for CHAR, VARCHAR2, and RAW columns cannot be greater than
249 for FILTER BY columns. For ORDER BY columns, the data is truncated at 249
characters.

• The total number of CDI (FILTER BY and ORDER BY) is 32.

Note:

• As with concatenated optimized for search SDATA indexes or bitmap
indexes, performance degradation may occur in DML as the number of
FILTER BY and ORDER BY columns increases.

• Mapping a FILTER BY column to MDATA is not recommended if the FILTER
BY column contains sequential values or has very high cardinality. Doing
so can result in a very long and narrow $I table and reduced $X
performance. An example is a column of type DATE. For columns of this
type, mapping to SDATA is recommended.

Chapter 1
CREATE INDEX

1-46

Note:

An index table with the name DR$indextable$S is created to store FILTER BY
and ORDER BY columns that are mapped to SDATA sections. If nothing is
mapped to an SDATA section, then the $S table will not be created.

$S table contains the following columns:

• SDATA_ID number is the internal SDATA section ID.

• SDATA_LAST number, the last document ID, which is analogous to
token_last.

• SDATA_DATA RAW(2000), the compressed SDATA values. Note that if $S is
created on a tablespace with 4K database block size, then it will be
defined as RAW(1500).

Restriction: For performance reasons, $S table must be created on a
tablespace with db block size >= 4K without overflow segment and without
PCTTHRESHOLD clause. If $S is created on a tablespace with db block size <
4K, or is created with an overflow segment or with a PCTTHRESHOLD clause,
then appropriate errors will be raised during the CREATE INDEX statement.

Restrictions on exporting and importing text tables with composite domain index
created with FILTER BY and/or ORDER BY clauses are as follows:

• Regular exp and imp will not support exporting and importing of composite domain
index. Doing so will lead to the following error: EXP-00113: Feature Composite
Domain Index is unsupported.

• To export a text table with composite domain index, you must use Data Pump
Export and Import utilities (invoked with the expdp and impdp commands,
respectively), or DBMS_DATAPUMP PL/SQL package.

See Also:

ADD_SDATA_COLUMN in CTX_DDL Package

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY
columns of the composite domain index, which are imposed by Extensible Indexing
Framework in Oracle Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle
Database.)

• Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is currently not
supported. You must re-create the index to add or drop FILTER BY or ORDER BY
columns.

• To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that has the
composite domain index built on it, you must first drop the composite domain index
before modifying the column.

Chapter 1
CREATE INDEX

1-47

• To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite
domain index, you must first drop the composite domain index before dropping the
index column.

The following limitations apply to FILTER BY and ORDER BY when used with PL/SQL
packages:

• Mapping FILTER BY columns to sections is optional. If section mapping does not
exist for a FILTER BY column, then it is mapped to an SDATA section by default. The
section name assumes the name of the FILTER BY column.

• If a section group is not specified during the CREATE INDEX clause of a composite
domain index, then system default section group settings are used. An SDATA
section is created for each of the FILTER BY and ORDER BY columns.

Note:

Because a section name does not allow certain special characters and is
case-insensitive, if the column name is case-sensitive or contains special
characters, then an error will be raised. To work around this problem,
you must map the column to an MDATA or SDATA section before creating
the index. See CTX_DDL.ADD_MDATA_COLUMN or
CTX_DDL.ADD_SDATA_COLUMN.

• An error is raised if a column that is mapped to an MDATA section also appears in
the ORDER BY column clause.

• Column section names are unique to their section group. That is, you cannot have
an MDATA column section named FOO if you already have an MDATA column section
named FOO. Nor can you have a field section named FOO if you already have an
SDATA column section named FOO. This is true whether it is implicitly created (by
CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly created (by
CTX_DDL.ADD_SDATA_COLUMN).

• One section name can be mapped to only one FILTER BY column, and vice versa.
Mapping a section to more than one column, or mapping a column to more than
one section is not allowed.

• Column sections can be added to any type of section group, including the NULL
section group.

• If a section group with sections added by the CTX_DDL.ADD_MDATA_COLUMN or
CTX_DDL.ADD_SDATA_COLUMN packages is specified for a CREATE INDEX statement
without a FILTER BY clause, then the mapped column sections will be ignored.
However, the index will still get created without those column sections. The same
is true for a FILTER BY clause that does not contain mapped columns in the
specified section group.

See Also:

CTX_DDL.ADD_SDATA_COLUMN

Chapter 1
CREATE INDEX

1-48

LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]
Specifies a local partitioned context index on a partitioned table. The partitioned table
must be partitioned by range. Hash, composite, and list partitions are not supported.
You can specify the list of index partition names with partition_name. If you do not
specify a partition name, then the system assigns one. The order of the index partition
list must correspond to the table partition order.
The PARAMETERS clause associated with each partition specifies the parameters string
specific to that partition. You can only specify sync (manual|every |on commit),
memory and storage for each index partition.
The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments. See
"POPULATE | NOPOPULATE".
Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_PARTITIONS to
find out index partition information, such as index partition name, and index partition
status.

See Also:

"Creating a Local Partitioned Index"

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE
clause, the query might not perform optimally unless you include a range predicate
that can limit the query to the fewest number of partitions, which is optimally a single
partition.

See Also:

"Query Performance Limitation with a Partitioned Index"

PARALLEL n
Optionally specifies the parallel degree for parallel indexing. The actual degree of
parallelism might be smaller depending on your resources. You can use this
parameter on nonpartitioned tables. However, creating a nonpartitioned index in
parallel does not turn on parallel query processing. Parallel indexing is supported for
creating a local partitioned index.
The indexing memory size specified in the parameter clause applies to each parallel
slave. For example, if indexing memory size is specified in the parameter clause as
500M and parallel degree is specified as 2, then you must ensure that there is at least
1GB of memory available for indexing.

Chapter 1
CREATE INDEX

1-49

See Also:

• "Parallel Indexing"

• "Creating a Local Partitioned Index in Parallel"

• The "Performance Tuning" chapter in Oracle Text Application
Developer's Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to index
and when your operating system supports multiple CPUs.

Note:

Using PARALLEL to create a local partitioned index that enables parallel
queries. (Creating a nonpartitioned index in parallel does not turn on parallel
query processing.)

Parallel querying degrades query throughput especially on heavily loaded
systems. Because of this, Oracle recommends that you disable parallel
querying after creating a local index. To do so, use the ALTER INDEX
NOPARALLEL statement.

For more information on parallel querying, see the "Performance Tuning"
chapter in Oracle Text Application Developer's Guide.

Limitations

Parallel indexing is supported only for the CONTEXT index type.

UNUSABLE
Creates an unusable index. This creates index metadata only and exits immediately.
You might create an unusable index when you need to create a local partitioned index
in parallel.

See Also:

"Creating a Local Partitioned Index in Parallel"

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify preferences
owned by another user using the user.preference notation.
The syntax for paramstring is as follows:

paramstring =
'[ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]

Chapter 1
CREATE INDEX

1-50

 [DATASTORE datastore_pref]
 [FILTER filter_pref]
 [CHARSET COLUMN charset_column_name]
 [FORMAT COLUMN format_column_name]
 [SAVE_COPY COLUMN save_copy_column_name]

 [LEXER lexer_pref]
 [LANGUAGE COLUMN language_column_name]

 [WORDLIST wordlist_pref]
 [STORAGE storage_pref]
 [STOPLIST stoplist]
 [SECTION GROUP section_group]
 [MEMORY memsize]
 [POPULATE | NOPOPULATE]
 [SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
 [TRANSACTIONAL]'

Create datastore, filter, lexer, wordlist, and storage preferences with
CTX_DDL.CREATE_PREFERENCE and then specify them in the paramstring.

Note:

When you specify no paramstring, Oracle Text uses the system defaults.
For more information about these defaults, see "Default Index Parameters".

ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE
Specifies whether Oracle Text must retain old index entries for documents in which
the indexed column was updated. The default is SYNCHRONOUS_UPDATE which indicates
that index updates are synchronous and that old index entries are unavailable for
search operations until the index is synchronized.
ASYNCHRONOUS_UPDATE indicates that until the index is synchronized, search queries
will use the old index entries to return the old document content. After index
synchronization, the rebuilt index is used to return the updated document content.
This option cannot be set at the partition level.
The following example creates a CONTEXT index idx for which asynchronous update is
enabled.

CREATE INDEX myidx ON mytab1(item_info) INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS('asynchronous_update');

Note: Asynchronous updates are not supported for DML operations that cause row
movement.

DATASTORE datastore_pref
Specifies the name of your datastore preference. Use the datastore preference to
specify where your text is stored.See "Datastore Types ".

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to
filter formatted documents to plain text or HTML. See "Filter Types".

Chapter 1
CREATE INDEX

1-51

CHARSET COLUMN charset_column_name
Specifies the name of the character set column. This column must be in the same
table as the text column, and it must be of type CHAR, VARCHAR, or VARCHAR2. Use this
column to specify the document character set for conversion to the database
character set. The value is case-insensitive. You must specify a globalization support
character set string, such as JA16EUC.
When the document is plain text or HTML, the AUTO_FILTER and CHARSET filters use
this column to convert the document character set to the database character set for
indexing.
Use this column when you have plain text or HTML documents with different
character sets or in a character set different from the database character set.
Setting NLS_LENGTH_SEMANTICS parameter to CHAR is not supported at the database
level. This parameter is supported for the following columns:

• The CHARSET COLUMN, for example:

VARCHAR2 <size> CHAR
CHAR <size> CHAR

• An index created on a VARCHAR2 and CHAR column

• VARCHAR2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE INDEX

• FORMAT COLUMN

Note:

• Documents are not marked for re-indexing when only the character set
column changes. The indexed column must be updated to flag the re-
index.

• The NLS_LENGTH_SEMANTICS = CHAR parameter is supported at the
column level only, and is not supported at the database level, as
described in this section.

FORMAT COLUMN format_column_name
Specifies the name of the format column. The format column must be in the same
table as the text column and it must be CHAR, VARCHAR, or VARCHAR2 type.
FORMAT COLUMN determines how a document is filtered, or, in the case of the IGNORE
value, if it is to be indexed.
AUTO_FILTER uses the format column when filtering documents. Use this column with
heterogeneous document sets to optionally bypass filtering for plain text or HTML
documents.
In the format column, you can specify one of the following options:

• TEXT

• BINARY

• IGNORE

The TEXT option indicates that the document is either plain text or HTML. When TEXT
is specified, the document is not filtered, but may have the character set converted.

Chapter 1
CREATE INDEX

1-52

The BINARY option indicates that the document is a format supported by the
AUTO_FILTER object other than plain text or HTML, for example PDF. BINARY is the
default, if the format column entry cannot be mapped.
The IGNORE option indicates that the row is to be ignored during indexing. Use this
value when you need to bypass rows that contain data incompatible with text indexing
such as image data, or rows in languages that you do not want to process. The
difference between documents with TEXT and IGNORE format column types is that the
former are indexed but ignored by the filter, while the latter are not indexed at all.
Thus, IGNORE can be used with any filter type.

Note:

Documents are not marked for re-indexing when only the format column
changes. The indexed column must be updated to flag the re-index.

SAVE_COPY COLUMN save_copy_column_name
Specifies the name of the column that contains the preference of whether to save a
copy of a document into the $D index table during a search operation.
You can specify one of the following three options in the SAVE_COPY column:
PLAINTEXT, FILTERED, or NONE.
The PLAINTEXT option indicates that the document should be stored as a plain text in
the $D index table. Specify this value when using the SNIPPET procedure.
The FILTERED option indicates that a filter preference should be applied on the text
present in the document before storing it into the $D index table. Specify this value
when using the MARKUP procedure or the HIGHLIGHT procedure.
The NONE option indicates that a copy of the document should not be saved in the $D
index table. Specify this value for any of the following scenarios:

• when SNIPPET, MARKUP, or HIGHLIGHT procedure is not used.

• when the indexed column is either VARCHAR2 or CLOB.

LEXER lexer_pref
Specifies the name of your lexer or multilexer preference. Use the lexer preference to
identify the language of your text and how text is tokenized for indexing. See "Lexer
Types".

LANGUAGE COLUMN language_column_name
Specifies the name of the language column when using a multi-lexer preference. See
"MULTI_LEXER".
This column must exist in the base table. It cannot be the same column as the
indexed column. Only the first 30 bytes of the language column are examined for
language identification.

Note:

Documents are not marked for re-indexing when only the language column
changes. The indexed column must be updated to flag the re-index.

Chapter 1
CREATE INDEX

1-53

WORDLIST wordlist_pref
Specifies the name of your wordlist preference. Use the wordlist preference to enable
features such as fuzzy, stemming, and prefix indexing for better wildcard searching.
See "Wordlist Type".

STORAGE storage_pref
Specifies the name of your storage preference for the Text index. Use the storage
preference to specify how the index tables are stored. See "Storage Types".

STOPLIST stoplist
Specifies the name of your stoplist. Use stoplist to identify words that are not to be
indexed. See CTX_DDL.CREATE_STOPLIST .

SECTION GROUP section_group
Specifies the name of your section group. Use section groups to create searchable
sections in structured documents. See CTX_DDL.CREATE_SECTION_GROUP .

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for
memsize is as follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.
The value you specify for memsize must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger
than the MAX_INDEX_MEMORY, you must reset this parameter with
CTX_ADM.SET_PARAMETER to be larger than or equal to memsize.
The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.
The memsize parameter specifies the amount of memory Oracle Text uses for
indexing before flushing the index to disk. Specifying a large amount memory
improves indexing performance because there are fewer I/O operations and improves
query performance and maintenance, because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

POPULATE | NOPOPULATE
Specifies whether an index should be empty or populated. The default is POPULATE.

Note:

POPULATE | NOPOPULATE is the only option whose default value cannot be set
with CTX_ADM.SET_PARAMETER.

Empty indexes are populated by updates or inserts to the base table. You might
create an empty index when you need to create your index incrementally or to
selectively index documents in the base table. You might also create an empty index
when you require only theme and Gist output from a document set.

Chapter 1
CREATE INDEX

1-54

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies SYNC for automatic synchronization of the CONTEXT index when there are
inserts, updates or deletes to the base table. You can specify one of the following
SYNC methods:

SYNC Type Description

MANUAL Provides no automatic synchronization. This is the
default. You must manually synchronize the index
with CTX_DDL.SYNC_INDEX.

EVERY "interval-
string"

Automatically synchronizes the index at a regular
interval specified by the value of interval-string, which
takes the same syntax as that for scheduler jobs.
Automatic synchronization using EVERY requires that
the index creator have CREATE JOB privileges.
Ensure that interval-string is set to a long enough
period that any previous sync jobs will have
completed; otherwise, the sync job might hang.
interval-string must be enclosed in double quotes,
and any single quote within interval-string must be
preceded by the escape character with another
single quote.
See "Enabling Automatic Index Synchronization" for
an example of automatic sync syntax.

ON COMMIT Synchronizes the index immediately after a commit
transaction. The commit transaction does not return
until the sync is complete. (Because the
synchronization is performed as a separate
transaction, there may be a period, usually small,
when the data is committed but index changes are
not.)
The operation uses the memory specified with the
memory parameter.
Note that the sync operation has its own transaction
context. If this operation fails, the data transaction is
still committed. Index synchronization errors are
logged in the CTX_USER_INDEX_ERRORS view. See
"Viewing Index Errors".
See "Enabling Automatic Index Synchronization" for
an example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT,
EVERY, or MANUAL). The type of sync specified in master parameter strings applies to
all index partitions unless a partition specifies its own type.
With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same
memory size that was specified at index creation.

Chapter 1
CREATE INDEX

1-55

See Also:

Oracle Database Administrator's Guide for information about job scheduling

TRANSACTIONAL
Specifies that documents can be searched immediately after they are inserted or
updated. If a text index is created with TRANSACTIONAL enabled, then, in addition to
processing the synchronized rowids already in the index, the CONTAINS operator will
process unsynchronized rowids as well. Oracle Text does in-memory indexing of
unsynchronized rowids and processes the query against the in-memory index.
TRANSACTIONAL is an index-level parameter and does not apply at the partition level.
You must still synchronize your text indexes from time to time (with
CTX_DDL.SYNC_INDEX) to bring pending rowids into the index. Query performance
degrades as the number of unsynchronized rowids increases. For that reason, Oracle
recommends setting up your index to use automatic synchronization with the EVERY or
ON COMMIT parameter. (See "SYNC (MANUAL | EVERY "interval-string" | ON
COMMIT)".)
Transactional querying for indexes that have been created with the TRANSACTIONAL
parameter can be turned on and off (for the duration of a user session) with the
PL/SQL variable CTX_QUERY.disable_transactional_query. This is useful, for
example, if you find that querying is slow due to the presence of too many pending
rowids. Here is an example of setting this session variable:

exec ctx_query.disable_transactional_query := TRUE;

If the index uses AUTO_FILTER, queries involving unsynchronized rowids will require
filtering of unsynchronized documents.

CREATE INDEX: CONTEXT Index Examples

The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences

The following example creates a CONTEXT index called myindex on the docs column in
mytable. Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

See Also:

• Oracle Text Application Developer's Guide

• For more information about default settings, see "Default Index
Parameters"

Creating CONTEXT Index with Custom Preferences

Chapter 1
CREATE INDEX

1-56

The following example creates a CONTEXT index called myindex on the docs column in
mytable. The index is created with a custom lexer preference called my_lexer and a
custom stoplist called my_stop.

This example also assumes that the preference and stoplist were previously created
with CTX_DDL.CREATE_PREFERENCE for my_lexer, and
CTX_DDL.CREATE_STOPLIST for my_stop. Default preferences are used for the
unspecified preferences.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
 PARAMETERS('LEXER my_lexer STOPLIST my_stop');

Any user can use any preference. To specify preferences that exist in another user's
schema, add the user name to the preference name. The following example assumes
that the preferences my_lexer and my_stop exist in the schema that belongs to user
kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
 PARAMETERS('LEXER kenny.my_lexer STOPLIST kenny.my_stop');

Enabling Automatic Index Synchronization

You can create your index and specify that the index be synchronized at regular
intervals for insertions, updates and deletions to the base table. To do so, create the
index with the SYNC (EVERY "interval-string") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then
grant CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for
three index partitions. The first partition uses ON COMMIT synchronization. The other two
partitions are synchronized by jobs that are scheduled to be executed every Monday
at 3 P.M.

CONNECT system/password
GRANT CREATE JOB TO dr_test

CREATE INDEX tdrmauto02x ON tdrmauto02(text)
 INDEXTYPE IS CTXSYS.CONTEXT local
 (PARTITION tdrm02x_i1 PARAMETERS('
 MEMORY 20m SYNC(ON COMMIT)'),
 PARTITION tdrm02x_i2,
 PARTITION tdrm02x_i3) PARAMETERS('
 SYNC (EVERY "NEXT_DAY(TRUNC(SYSDATE), ''MONDAY'') + 15/24")
 ');

See Oracle Database Administrator's Guide for information about job scheduling
syntax.

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a
language column. This is a character column in the table that stores the language of

Chapter 1
CREATE INDEX

1-57

the document in the text column. For example, create the table globaldoc to hold
documents of different languages:

CREATE TABLE globaldoc (
 doc_id NUMBER PRIMARY KEY,
 lang VARCHAR2(10),
 text CLOB
);

Assume that global_lexer is a multilexer preference you created. To index the
global_doc table, specify the multilexer preference and the name of the language
column as follows:

CREATE INDEX globalx ON globaldoc(text) INDEXTYPE IS ctxsys.context
PARAMETERS
('LEXER global_lexer LANGUAGE COLUMN lang');

See Also:

"MULTI_LEXER" for more information about creating multilexer preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it,
and then creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part_tab (a int, b varchar2(40)) PARTITION BY RANGE(a)
(partition p_tab1 values less than (10),
 partition p_tab2 values less than (20),
 partition p_tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part_idx on part_tab(b) INDEXTYPE IS CTXSYS.CONTEXT
 LOCAL (partition p_idx1, partition p_idx2, partition p_idx3);

Note:

The limit for the number of partitions in Oracle Text is the same as the
maximum number of partitions per table in Oracle Database.

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by
author's publishing date.

Chapter 1
CREATE INDEX

1-58

First, create the table:

CREATE TABLE docs (
 docid NUMBER,
 pub_date DATE,
 author VARCHAR2(30),
 category VARCHAR2(30),
 document CLOB
);

Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
 FILTER BY category, author
 ORDER BY pub_date desc, docid
 PARAMETERS ('memory 500M');

Parallel Indexing

Parallel indexing can improve index performance when you have multiple CPUs.

To create an index in parallel, use the PARALLEL clause with a parallel degree. This
example uses a parallel degree of 3:

CREATE INDEX myindex ON mytab(pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have
multiple CPUs. With partitioned tables, you can divide the work. You can create a local
partitioned index in parallel in two ways:

• Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In
this case, the maximum parallel degree is limited to the number of partitions you
have. See "Parallelism with CREATE INDEX".

• Create an unusable index first, then run the DBMS_PCLXUTIL.BUILD_PART_INDEX
utility. This method can result in a higher degree of parallelism, especially if you
have more CPUs than partitions. See "Parallelism with
DBMS_PCLUTIL.BUILD_PART_INDEX".

If you attempt to create a local partitioned index in parallel, and the attempt fails, you
may see the following error message:

ORA-29953: error in the execution of the ODCIIndexCreate routine for one
or more
of the index partitions

To determine the specific reason why the index creation failed, query the
CTX_USER_INDEX_ERRORS view.

Parallelism with CREATE INDEX

Chapter 1
CREATE INDEX

1-59

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in
the CREATE INDEX statement. In this case, the maximum parallel degree is limited to
the number of partitions that you have.

The following example creates a table with three partitions, populates them, and then
creates the local indexes in parallel with a degree of 2:

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)
(partition p1 values less than (1000),
 partition p2 values less than (2000),
 partition p3 values less than (3000));

begin
 for i in 0..2999
 loop
 insert into part_tab3 values (i,'oracle');
 end loop;
end;
/

create index part_tab3x on part_tab3(text)
indextype is ctxsys.context local (partition part_tabx1,
 partition part_tabx2,
 partition part_tabx3)
parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index,
and then running the DBMS_PCLUTIL.BUILD_PART_INDEX utility. This method can result
in a higher degree of parallelism, especially when you have more CPUs than
partitions.

In this example, the base table has three partitions. We create a local partitioned
unusable index first, then run DBMS_PCLUTIL.BUILD_PART_INDEX, which builds the 3
partitions in parallel (referred to as inter-partition parallelism). Also, inside each
partition, index creation proceeds in parallel (called intra-partition parallelism) with a
parallel degree of 2. Therefore, the total parallel degree is 6 (3 times 2).

create table part_tab3(id number primary key, text varchar2(100))
partition by range(id)
(partition p1 values less than (1000),
 partition p2 values less than (2000),
 partition p3 values less than (3000));

begin
 for i in 0..2999
 loop
 insert into part_tab3 values (i,'oracle');
 end loop;
end;
/

create index part_tab3x on part_tab3(text)

Chapter 1
CREATE INDEX

1-60

indextype is ctxsys.context local (partition part_tabx1,
 partition part_tabx2,
 partition part_tabx3)
unusable;

exec dbms_pclxutil.build_part_index(jobs_per_batch=>3,
 procs_per_job=>2,
 tab_name=>'PART_TAB3',
 idx_name=>'PART_TAB3X',
 force_opt=>TRUE);

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with Oracle
Text views. To view errors on your indexes, query the CTX_USER_INDEX_ERRORS
view. To view errors on all indexes as CTXSYS, query the CTX_INDEX_ERRORS view.

For example, to view the most recent errors on your indexes, enter the following
statement:

SELECT err_timestamp, err_text FROM ctx_user_index_errors
ORDER BY err_timestamp DESC;

Deleting Index Errors

To clear the index error view, enter the following statement:

DELETE FROM ctx_user_index_errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index
with the CATSEARCH operator in the WHERE clause of a SELECT statement. This type of
index is optimized for mixed queries. This index is transactional, automatically
updating itself with DML to the base table.

CREATE INDEX [schema.]index on [schema.]table(column) INDEXTYPE IS
ctxsys.ctxcat
[PARAMETERS('[index set index_set]
[lexer lexer_pref]
[storage storage_pref]
[stoplist stoplist]
[section group sectiongroup_pref]
[wordlist wordlist_pref]
[memory memsize]');

[schema.]table(column)
Specifies the name of the table and column to index.
The column that you specify when you create a CTXCAT index must be of type CHAR or
VARCHAR2. No other types are supported for CTXCAT.
Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following options is true:

Chapter 1
CREATE INDEX

1-61

• The VPD policy is created such that it does not apply to INDEX statement type,
which is the default

• The policy function returns a null predicate for the current user.

• The user (index owner) is SYS.

• The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

index set index_set
Specifies the index set preference to create the CTXCAT index. Index set preferences
name the columns that make up your subindexes. Any column that is named in an
index set column list cannot have a NULL value in any row of the base table, or else
you get an error.
Always ensure that your columns have non-null values before and after indexing.
See "Creating a CTXCAT Index".

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of index
has its costs. The time that it takes Oracle Text to create a CTXCAT index depends on
the total size of the index.

The total size of a CTXCAT index is directly related to:

• Total text to be indexed

• Number of component indexes in the index set

• Number of columns in the base table that make up the component indexes

Having many component indexes in your index set also degrades DML performance
because more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully
consider the query performance benefit that each component index gives your
application before adding it to your index set.

See Also:

Oracle Text Application Developer's Guide for more information about
creating CTXCAT indexes and the benefits

Other CTXCAT Preferences
When you create an index of type CTXCAT, you can use the supported index
preferences listed in Table 1-6 in the parameters string.

Table 1-6 Supported CTXCAT Index Preferences

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.

Filter This preference class is not supported for CTXCAT.

Chapter 1
CREATE INDEX

1-62

Table 1-6 (Cont.) Supported CTXCAT Index Preferences

Preference Class Supported Types

Lexer BASIC_LEXER (index_themes attribute not supported)

CHINESE_LEXER

CHINESE_VGRAM_LEXER

JAPANESE_LEXER

JAPANESE_VGRAM_LEXER

KOREAN_MORPH_LEXER

Wordlist BASIC_WORDLIST

Storage BASIC_STORAGE

Stoplist Supports single language stoplists only (BASIC_STOPLIST type).

Section Group Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences.
For section group preferences, only the field section preference is supported. You also
cannot specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete
example, see Oracle Text Application Developer's Guide.

Consider a table called AUCTION with the following schema:

create table auction(item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on price. Results must be sorted based on bid_close. This
means that an index to support good response time for the structured and sorting
criteria is required.

You can create a catalog index to support the different types of structured queries a
user might enter. For structured queries, a CTXCAT index improves query performance
over a context index.

To create the indexes, first, create the index set preference, next, optionally, add the
storage preference, and, finally, add the required indexes to it:

begin
ctx_ddl.create_index_set('auction_iset');
ctx_ddl.add_index('auction_iset','bid_close');
ctx_ddl.add_index('auction_iset','price, bid_close');
end;

Chapter 1
CREATE INDEX

1-63

Optionally, create the storage preference:

begin
 ctx_ddl.create_preference('auction_st_pref', 'BASIC_STORAGE');
 ctx_ddl.set_attribute('auction_st_pref', 'I_TABLE_CLAUSE',
 'tablespace TEXT storage (initial 5M)');
 ctx_ddl.set_attribute('auction_st_pref', 'I_ROWID_INDEX_CLAUSE',
 'tablespace TEXT storage (initial 5M)');
 ctx_ddl.set_attribute('auction_st_pref', 'I_INDEX_CLAUSE',
 'tablespace TEXT storage (initial 5M) compress 2');
end;
/

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction_titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ('index set auction_iset storage auction_st_pref');

Querying a CTXCAT Index

To query the title column for the word pokemon, enter regular and mixed queries as
follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'price < 50 order
by
bid_close desc')> 0;

See Also:

Oracle Text Application Developer's Guide for a complete CTXCAT example

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this index
with the MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]index on [schema.]table(rule_col) INDEXTYPE IS
ctxsys.ctxrule
[PARAMETERS ('[lexer lexer_pref] [storage storage_pref]
[section group section_pref] [wordlist wordlist_pref]
[classifier classifier_pref]');

[PARALLEL n];

[schema.]table(column)
Specifies the name of the table and rule column to index. The rules can be query
compatible strings, query template strings, or binary Support Vector Machine rules.

Chapter 1
CREATE INDEX

1-64

The column you specify when you create a CTXRULE index must be VARCHAR2, CLOB or
BLOB. No other types are supported for the CTXRULE type.
Attempting to create an index on a Virtual Private Database (VPD) protected table will
fail unless one of the following is true:

• The VPD policy does not have the INDEX statement type turned on (which is the
default).

• The policy function returns a null predicate for the current user.

• The user (index owner) is SYS.

• The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref
Specifies the lexer preference to be used for processing queries and later for the
documents to be classified with the MATCHES function.
With both classifiers SVN_CLASSFIER and RULE_CLASSIFIER, you can use the
BASIC_LEXER, CHINESE_LEXER, JAPANESE_LEXER, or KOREAN_MORPH_LEXER lexer. (See
"Classifier Types" and "Lexer Types".)
For processing queries, these lexers support the following operators: ABOUT, STEM,
AND, NEAR, NOT, OR, and WITHIN.
The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are
supported. However, these operators are expanded using a snapshot of the
thesaurus at index time, not when the MATCHES function is entered. This means that if
you change your thesaurus after you index, you must re-index your query set.

storage_pref
Specify the storage preference for the index on the queries. Use the storage
preference to specify how the index tables are stored. See "Storage Types".

section group
Specify the section group. This parameter does not affect the queries. It applies to
sections in the documents to be classified. The following section groups are
supported for the CTXRULE index type:

• BASIC_SECTION_GROUP

• HTML_SECTION_GROUP

• XML_SECTION_GROUP

• AUTO_SECTION_GROUP

See "Section Group Types".

CTXRULE does not support special sections. It also does not support NDATA sections.

wordlist_pref
Specifies the wordlist preferences. This is used to enable stemming operations on
query terms. See Wordlist Type.

classifier_pref
Specifies the classifier preference. See "Classifier Types". You must use the same
preference name you specify with CTX_CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer's Guide for a complete example of using the
CTXRULE index type in a document routing application.

Chapter 1
CREATE INDEX

1-65

Related Topics

CTX_DDL.CREATE_PREFERENCE

CTX_DDL.CREATE_STOPLIST

CTX_DDL.CREATE_SECTION_GROUP

"ALTER INDEX "

"CATSEARCH "

1.6 CREATE SEARCH INDEX
This section describes the CREATE SEARCH INDEX statement as it pertains to creating a
JSON search index.

Purpose

Use CREATE SEARCH INDEX to create a JSON search index.

Example

create table t1 (txn_date date, po CLOB, constraint c1 check (po is json));
create search index idx on t1(po) for JSON parameters(‘DATAGUIDE ON sync
(on commit)’);

Syntax

You can use a simpler alternative syntax to create a search index on JSON. Starting
with Oracle Database 12c Release 2 (12.2), the following are the parameters that are
allowed:

CREATE SEARCH INDEX IDX ON TAB(COL) FOR JSON
PARAMETERS(DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_name]]
[SEARCH_ON [NONE | TEXT |TEXT_VALUE])

CREATE SEARCH INDEX ON [schema.]index ON [schema.]table(json_col)
 FOR JSON PARAMETERS ([paramstring]);

If the PARAMETERS clause is omitted, then the default values of DATAGUIDE, SEARCH_ON
and SYNC are ON, TEXT_VALUE and ON COMMIT respectively.

[schema.]index
Specifies the name of the JSON search index to create.

[schema.]table(json_col)
Specifies the name of the table and the JSON column to index. json_col is the name
of the JSON column on which the index will be created.
The column should have IS JSON check constraint.

Chapter 1
CREATE SEARCH INDEX

1-66

[paramstring] =
(DATAGUIDE [ON | OFF | ON CHANGE [ADD_VC|Function_name]]
[SEARCH_ON [NONE | TEXT |TEXT_VALUE]]
[MEMORY memsize]
[SYNC (MANUAL | EVERY "interval-string" | ON COMMIT))]

ADD_VC
Indicates whether virtual columns are created based on the data guide.

Function_name
Specifies the function to be executed when the data guide changes.

TEXT
Indicates that full-text search queries will use the search index.

TEXT_VALUE
Indicates that full-text search, as well as range search for leaf elements can be
answered using the search index.

NONE
Indicates that $I and $S* tables are not populated. This option enables you to have
data guide only and no index tables.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for
memsize is as follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.
The value you specify for memsize must be between 1M and the value of
MAX_INDEX_MEMORY in the CTX_PARAMETERS view. To specify a memory size larger
than the MAX_INDEX_MEMORY, you must reset this parameter with
CTX_ADM.SET_PARAMETER to be larger than or equal to memsize.
The default is the value specified for DEFAULT_INDEX_MEMORY in CTX_PARAMETERS.
The memsize parameter specifies the amount of memory Oracle Text uses for
indexing before flushing the index to disk. Specifying a large amount memory
improves indexing performance because there are fewer I/O operations and improves
query performance and maintenance, because there is less fragmentation.
Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when run-time memory is scarce.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies SYNC for automatic synchronization of the CONTEXT index when there are
inserts, updates or deletes to the base table. You can specify one of the SYNC
methods as described in Table 1-5.
Each partition of a locally partitioned index can have its own type of sync (ON COMMIT,
EVERY, or MANUAL). The type of sync specified in master parameter strings applies to
all index partitions unless a partition specifies its own type.

Chapter 1
CREATE SEARCH INDEX

1-67

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

... EVERY interval_string MEMORY mem_size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same
memory size that was specified at index creation.

See Also:

• Oracle Database Administrator's Guide for information about job
scheduling

• Oracle Database JSON Developer's Guide

1.7 DROP INDEX

Note:

This section describes the DROP INDEX statement as it pertains to dropping a
Text domain index.

For a complete description of the DROP INDEX statement, see Oracle
Database SQL Language Reference.

Purpose

Use DROP INDEX to drop a specified Text index.

Syntax

DROP INDEX [schema.]index [force];

[force]
Optionally forces the index to be dropped. Use the force option when Oracle Text
cannot determine the state of the index, such as when an indexing operation fails.
Oracle recommends against using this option by default. Use it only when a regular
call to DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's
database schema:

DROP INDEX doc_index;

Related Topics

"ALTER INDEX "

"CREATE INDEX"

Chapter 1
DROP INDEX

1-68

1.8 MATCHES
Use the MATCHES operator to find all rows in a query table that match a given
document. The document must be a plain text, HTML, or XML document.

The MATCHES operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the
range 0 to 100; a higher number indicates a greater confidence in the match. Use the
label parameter and MATCH_SCORE to obtain this number. Then use the matching score
to apply a category-specific threshold to a particular category.

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

Limitation

If the optimizer chooses to use the functional query invocation with a MATCHES query,
your query will fail.

Syntax

MATCHES(

[schema.]column,
document VARCHAR2 or CLOB
[,label INTEGER])

RETURN NUMBER;

column
Specifies the column containing the indexed query set.

document
Specifies the document to be classified. The document can be plain text, HTML, or
XML. Binary formats are not supported.

label
Optionally specifies the label that identifies the score generated by the MATCHES
operator. Use this label with MATCH_SCORE.

Matches Example

The following example creates a table querytable, and populates it with classification
names and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The
SELECT statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));
insert into querytable values ('common names', 'smith OR jones OR brown');
insert into querytable values ('countries', 'United States OR Great Britain OR
France');

Chapter 1
MATCHES

1-69

insert into querytable values ('Oracle DB', 'oracle NEAR database');

create index query_rule on querytable(text) indextype is ctxsys.ctxrule;

SELECT classification FROM querytable WHERE MATCHES(text, 'Smith is a common name
in the United States') > 0;

CLASSIFICATION
--
common names
countries

Related Topics

"MATCH_SCORE"

"Syntax for CTXRULE Index Type"

CTX_CLS.TRAIN

Oracle Text Application Developer's Guide contains extended examples of simple and
supervised classification, which make use of the MATCHES operator.

1.9 MATCH_SCORE
Use the MATCH_SCORE operator in a statement to return scores produced by a MATCHES
query.

The MATCH_SCORE operator also supports database links. You can identify a remote
table or materialized view by appending @dblink to the end of its name. The dblink
must be a complete or partial name for a database link to the database containing the
remote table or materialized view. (Querying of remote views is not supported.)

When the SVM_CLASSIFIER classifier type is used, this operator returns a score in the
range 0 to 100. Use the matching score to apply a category-specific threshold to a
particular category.

If the SVM_CLASSIFIER classifier is not used, then this operator returns either 100 (the
document matches the criteria) or 0 (the document does not match).

Syntax

MATCH_SCORE(label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to
identify the MATCHES clause that returns this score.

Example

To get the matching score, use:

select cat_id, match_score(1) from training_result where matches(profile,
text,1)>0;

Related Topics

"MATCHES "

Chapter 1
MATCH_SCORE

1-70

1.10 SCORE
Use the SCORE operator in a SELECT statement to return the score values produced by
a CONTAINS query. The SCORE operator can be used in a SELECT, ORDER BY, or GROUP
BY clause.

The SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote
table or materialized view. (Querying of remote views is not supported.)

Syntax

SCORE(label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to
identify the CONTAINS clause that returns this score.

Example

Single CONTAINS

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS
clause must reference the score label value as in the following example:

SELECT SCORE(1), title from newsindex
 WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

Multiple CONTAINS

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words
Oracle in their title and java in their body. The articles are sorted by the scores for the
first CONTAINS (Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE(20)

FROM news
WHERE CONTAINS (news.title, 'Oracle', 10) > 0 OR

CONTAINS (news.body, 'java', 20) > 0
ORDER BY SCORE(10), SCORE(20);

Related Topics

"CONTAINS"

The Oracle Text Scoring Algorithm

Chapter 1
SCORE

1-71

2
Oracle Text Indexing Elements

Oracle provides indexing types for storage, filtering, and lexers, and preferences and
stoplists that you can use to create an Oracle Text index.

The chapter includes the following topics:

• Overview

• Creating Preferences

• Datastore Types

• Filter Types

• Lexer Types

• Wordlist Type

• Storage Types

• Section Group Types

• Classifier Types

• Cluster Types

• Stoplists

• System-Defined Preferences

• System Parameters

• Token Limitations

2.1 Overview
When you use the CREATE INDEX statement to create an index or the ALTER INDEX
statement to manage an index, you can optionally specify indexing preferences,
stoplists, and section groups in the parameter string. Specifying a preference, stoplist,
or section group answers one of the following questions about the way Oracle Text
indexes text:

Preference Class Answers the Question

Datastore How are your documents stored?

Filter How can the documents be converted to plain text?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index tables be stored?

Stop List What words or themes are not to be indexed?

Section Group Is querying within sections enabled, and how are the document
sections defined?

2-1

This chapter describes how to set each preference. Enable an option by creating a
preference with one of the types described in this chapter.

For example, to specify that your documents are stored in external files, you can
create a datastore preference called mydatastore using the FILE_DATASTORE type.
Specify mydatastore as the datastore preference in the parameter clause of the
CREATE INDEX statement.

2.2 Creating Preferences
To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the
CTX_DDL.CREATE_PREFERENCE procedure and specify one of the types
described in this chapter. For some types, you can also set attributes with the
CTX_DDL.SET_ATTRIBUTE procedure.

An indexing type names a class of indexing objects that you can use to create an
index preference. A type, therefore, is an abstract ID, while a preference is an entity
that corresponds to a type. Many system-defined preferences have the same name as
types (for example, BASIC_LEXER), but exact correspondence is not guaranteed. Be
careful in assuming the existence or nature of either indexing types or system
preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX statements.
Indexing preferences determine how your index is created. For example, lexer
preferences indicate the language of the text to be indexed. You can create and
specify your own user-defined preferences, or you can use system-defined
preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST procedure. Add
stopwords to a stoplist with CTX_DDL.ADD_STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a
section group type. Add sections to section groups with the
CTX_DDL.ADD_ZONE_SECTION or CTX_DDL.ADD_FIELD_SECTION procedures.

2.3 Datastore Types
Use the datastore types to specify how your text is stored. To create a datastore
preference, you must use one of the datastore types described in Table 2-1.

Table 2-1 Datastore Types

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in the text column. Each
row is indexed as a single document.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one
column. Columns are concatenated to create a
virtual document, one for each row.

DETAIL_DATASTORE Data is stored internally in the text column.
Document consists of one or more rows stored in a
text column in a detail table, with header
information stored in a master table.

Chapter 2
Creating Preferences

2-2

Table 2-1 (Cont.) Datastore Types

Datastore Type Use When

FILE_DATASTORE Data is stored externally in operating system files.
File names are stored in the text column, one for
each row.

NESTED_DATASTORE Data is stored in a nested table.

URL_DATASTORE Data is stored externally in files located on an
intranet or the Internet. Uniform Resource Locators
(URLs) are stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a
user-defined stored procedure.

2.3.1 DIRECT_DATASTORE
Use the DIRECT_DATASTORE type for text stored directly in the text column, one
document for each row. The DIRECT_DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB,
BFILE, XMLType, and URIType.

Note:

If your column is a BFILE, then the index owner must have read permission
on all directories used by the BFILEs.

The following example creates a table with a CLOB column to store text data. It then
populates two rows with text data and indexes the table using the system-defined
preference CTXSYS.DEFAULT_DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values(111555,'this text will be indexed');
insert into mytable values(111556,'this is a direct_datastore example');
commit;

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('DATASTORE CTXSYS.DEFAULT_DATASTORE');

2.3.2 MULTI_COLUMN_DATASTORE
Use the MULTI_COLUMN_DATASTORE datastore when your text is stored in more than one
column. During indexing, the system concatenates the text columns, tags the column
text, and indexes the text as a single document. The XML-like tagging is optional. You
can also set the system to filter and concatenate binary columns.

• MULTI_COLUMN_DATASTORE Attributes

• Indexing and DML

Chapter 2
Datastore Types

2-3

• MULTI_COLUMN_DATASTORE Restriction

• MULTI_COLUMN_DATASTORE Example

• MULTI_COLUMN_DATASTORE Filter Example

• Tagging Behavior

• Indexing Columns as Sections

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes
The data store MULTI_COLUMN_DATASTORE has the attributes shown in Table 2-2.

Table 2-2 MULTI_COLUMN_DATASTORE Attributes

Attribute Attribute Value

columns Specify a comma-delimited list of columns to be concatenated during
indexing. You can also specify any allowed expression for the SELECT
statement column list for the base table. This includes expressions,
PL/SQL functions, column aliases, and so on.

The NUMBER and DATE column types are supported. They are converted
to text before indexing using the default format mask. The TO_CHAR
function can be used in the column list for formatting.

The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table
columns, and collections are not supported.

The column list is limited to 500 bytes.

filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to a
column in the COLUMNS list and denotes whether to filter the column
using the AUTO_FILTER.

Specify one of the following allowed values:

Y: Column is to be filtered with AUTO_FILTER

N or no value: Column is not to be filtered (default)

delimiter Specify the delimiter that separates column text as follows:

COLUMN_NAME_TAG: Column text is set off by XML-like open and close
tags (default).

NEWLINE: Column text is separated with a newline.

2.3.2.2 Indexing and DML
To index, you must create a dummy column to specify in the CREATE INDEX statement.
This column's contents are not made part of the virtual document, unless its name is
specified in the columns attribute.

The index is synchronized only when the dummy column is updated. You can create
triggers to propagate changes if needed.

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction
You cannot create a multicolumn datastore with XMLType columns.
MULTI_COLUMN_DATA_STORE does not support XMLType. You can create a CONTEXT index
with an XMLType column, as described in Oracle Text SQL Statements and Operators .

Chapter 2
Datastore Types

2-4

2.3.2.4 MULTI_COLUMN_DATASTORE Example
The following example creates a multicolumn datastore preference called my_multi
with three text columns:

begin

ctx_ddl.create_preference('my_multi', 'MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('my_multi', 'columns', 'column1, column2, column3');

end;

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example
The following example creates a multicolumn datastore preference and denotes that
the bar column is to be filtered with the AUTO_FILTER.

ctx_ddl.create_preference('MY_MULTI','MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS','foo,bar');
ctx_ddl.set_attribute('MY_MULTI','FILTER','N,Y');

The multicolumn datastore fetches the content of the foo and bar columns, filters bar,
then composes the compound document as:

<FOO>
foo contents
</FOO>
<BAR>
bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for
every column. Only the Y flags must be specified, with commas to denote which
column they apply to. For example:

ctx_ddl.create_preference('MY_MULTI','MULTI_COLUMN_DATASTORE');
ctx_ddl.set_attribute('MY_MULTI', 'COLUMNS','foo,bar,zoo,jar');
ctx_ddl.set_attribute('MY_MULTI','FILTER',',,Y');

This example filters only the column zoo.

2.3.2.6 Tagging Behavior
During indexing, the system creates a virtual document for each row. The virtual
document is composed of the contents of the columns concatenated in the listing order
with column name tags automatically added.

For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(1, 'John Smith', '123 Main Street');

exec ctx_ddl.create_preference('mymds', 'MULTI_COLUMN_DATASTORE');
exec ctx_ddl.set_attibute('mymds', 'columns', 'name, address');

This produces the following virtual text for indexing:

Chapter 2
Datastore Types

2-5

<NAME>
John Smith
</NAME>
<ADDRESS>
123 Main Street
</ADDRESS>

2.3.2.7 Indexing Columns as Sections
To index the tags as sections, you can optionally create field sections with
BASIC_SECTION_GROUP.

Note:

No section group is created when you use the MULTI_COLUMN_DATASTORE. To
create sections for these tags, you must create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters
of the expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17');

then it produces the following virtual text:

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17 col1');

then it produces the following virtual text:

<col1>
21
<col1>

The tags are in uppercase unless the column name or column alias is in lowercase
and surrounded by double quotation marks. For example:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo');

This produces the following virtual text:

<FOO>
content of foo
</FOO>

For lowercase tags, use the following:

exec ctx_ddl.set_attibute('mymds', 'COLUMNS', 'foo "foo"');

This expression produces:

Chapter 2
Datastore Types

2-6

<foo>
content of foo
</foo>

2.3.3 DETAIL_DATASTORE
Use the DETAIL_DATASTORE type for text stored directly in the database in detail tables,
with the indexed text column located in the master table.

• DETAIL_DATASTORE Attributes

• Synchronizing Master/Detail Indexes

• Example Master/Detail Tables

2.3.3.1 DETAIL_DATASTORE Attributes
The DETAIL_DATASTORE type has the attributes described in Table 2-3.

Table 2-3 DETAIL_DATASTORE Attributes

Attribute Attribute Value

binary Specify TRUE for Oracle Text to add no newline character after each
detail row.

Specify FALSE for Oracle Text to add a newline character (\n) after
each detail row automatically.

detail_table Specify the name of the detail table (OWNER.TABLE if necessary).

detail_key Specify the name of the detail table foreign key column.

detail_lineno Specify the name of the detail table sequence column.

detail_text Specify the name of the detail table text column.

2.3.3.2 Synchronizing Master/Detail Indexes
Changes to the detail table do not trigger re-indexing when you synchronize the index.
Only changes to the indexed column in the master table triggers a re-index when you
synchronize the index.

You can create triggers on the detail table to propagate changes to the indexed
column in the master table row.

2.3.3.3 Example Master/Detail Tables
This example illustrates how master and detail tables are related to each other.

• Master Table Example

• Detail Table Example

• Detail Table Example Attributes

• Master/Detail Index Example

Chapter 2
Datastore Types

2-7

2.3.3.3.1 Master Table Example
Master tables define the documents in a master/detail relationship. Assign an
identifying number to each document. The following table is an example master table,
called my_master:

Column Name Column Type Description

article_id NUMBER Document ID, unique for each document
(primary key)

author VARCHAR2(30) Author of document

title VARCHAR2(50) Title of document

body CHAR(1) Dummy column to specify in CREATE INDEX

Note:

Your master table must include a primary key column when you use the
DETAIL_DATASTORE type.

2.3.3.3.2 Detail Table Example
Detail tables contain the text for a document, whose content is usually stored across a
number of rows. The following detail table my_detail is related to the master table
my_master with the article_id column. This column identifies the master document to
which each detail row (sub-document) belongs.

Column Name Column Type Description

article_id NUMBER Document ID that relates to master table

seq NUMBER Sequence of document in the master document
defined by article_id

text VARCHAR2 Document text

2.3.3.3.3 Detail Table Example Attributes
In this example, the DETAIL_DATASTORE attributes have the following values:

Attribute Attribute Value

binary TRUE

detail_table my_detail

detail_key article_id

detail_lineno seq

detail_text text

Chapter 2
Datastore Types

2-8

Use CTX_DDL.CREATE_PREFERENCE to create a preference with
DETAIL_DATASTORE. Use CTX_DDL.SET_ATTRIBUTE to set the attributes for this
preference as described earlier. The following example shows how this is done:

begin

ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail_pref', 'detail_key', 'article_id');
ctx_ddl.set_attribute('my_detail_pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');

end;

2.3.3.3.4 Master/Detail Index Example
To index the document defined in this master/detail relationship, specify a column in
the master table using the CREATE INDEX statement. The column you specify must be
one of the allowed types.

This example uses the body column, whose function is to enable the creation of the
master/detail index and to improve readability of the code. The my_detail_pref
preference is set to DETAIL_DATASTORE with the required attributes:

CREATE INDEX myindex on my_master(body) indextype is ctxsys.context
parameters('datastore my_detail_pref');

In this example, you can also specify the title or author column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

2.3.4 FILE_DATASTORE
The FILE_DATASTORE type is used for text stored in files accessed through the local file
system.

• FILE_DATASTORE Attributes

• FILE_DATASTORE and Security

• FILE_DATASTORE Example

Note:

• The FILE_DATASTORE type may not work with certain types of remote-
mounted file systems.

• The character set of the file datastore is assumed to be the character set
of the database.

2.3.4.1 FILE_DATASTORE Attributes
The FILE_DATASTORE type has the attributes described Table 2-4.

Chapter 2
Datastore Types

2-9

Table 2-4 FILE_DATASTORE Attributes

Attribute Attribute Value

path path1:path2:pathn

filename_charset name

path
Specifies the full directory path name of the files stored externally in a file system.
When you specify the full directory path as such, you need to include only file names
in your text column.
You can specify multiple paths for the path attribute, with each path separated by a
colon (:) on UNIX and semicolon(;) on Windows. File names are stored in the text
column in the text table.
If you do not specify a path for external files with this attribute, then Oracle Text
requires that the path be included in the file names stored in the text column.
The PATH attribute has the following limitations:

• If you specify a PATH attribute, then you can only use a simple file name in the
indexed column. You cannot combine the PATH attribute with a path as part of the
file name. If the files exist in multiple folders or directories, you must leave the
PATH attribute unset, and include the full file name, with PATH, in the indexed
column.

• On Windows systems, the files must be located on a local drive. They cannot be
on a remote drive, whether the remote drive is mapped to a local drive letter.

filename_charset
Specifies a valid Oracle character set name (maximum length 30 characters) to be
used by the file datastore for converting file names. In general, the Oracle database
can use a different character set than the operating system. This can lead to problems
in finding files (which may raise DRG-11513 errors) when the indexed column
contains characters that are not convertible to the operating system character set. By
default, the file datastore will convert the file name to WE8ISO8859p1 for ASCII
platforms or WE8EBCDIC1047 for EBCDIC platforms.
However, this may not be sufficient for applications with multibyte character sets for
both the database and the operating system, because neither WE8ISO8859p1 nor
WE8EBCDIC1047 supports multibyte characters. The attribute filename_charset
rectifies this problem. If specified, then the datastore will convert from the database
character set to the specified character set rather than to ISO8859 or EBCDIC.
If the filename_charset attribute is the same as the database character set, then the
file name is used as is. If filename_charset is not a valid character set, then the error
"DRG-10763: value %s is not a valid character set" is raised.

2.3.4.2 FILE_DATASTORE and Security
File and URL datastores enable access to files on the actual database disk. This may
be undesirable when security is an issue since any user can browse the file system
that is accessible to the Oracle user. The FILE_ACCESS_ROLE system parameter can be
used to set the name of a database role that is authorized to create an index using
FILE or URL datastores. If set, any user attempting to create an index using FILE or URL
datastores must have this role, or the index creation will fail. Only SYS can set
FILE_ACCESS_ROLE, and an error will be raised if any other user tries to modify it. If
FILE_ACCESS_ROLE is left at the default of NULL, access is disallowed. Thus, by

Chapter 2
Datastore Types

2-10

default, users are not able to create indexes that use the file or URL datastores. Users
can, if desired, set FILE_ACCESS_ROLE to PUBLIC if they want to preserve the behavior
from earlier releases.

For example, the following statement sets the name of the database role:

ctx_adm.set_parameter('FILE_ACCESS_ROLE','TOPCAT');

where TOPCAT is the role that is authorized to create an index on a file or URL
datastore. The CREATE INDEX operation will fail when a user that does not have an
authorized role tries to create an index on a file or URL datastore. For example:

CREATE INDEX myindex ON mydocument(TEXT) INDEXTYPE IS ctxsys.context
PARAMETERS('DATASTORE ctxsys.file_datastore')

In this case, if the user does not have the role TOPCAT, then index creation will fail
and return an error. For users who have the TOPCAT role, the index creation will
proceed normally.

The authorized role name is checked any time the datastore is accessed. This
includes index creation, index sync, and calls to document services, such as
CTX_DOC.HIGHLIGHT.

2.3.4.3 FILE_DATASTORE Example
This example creates a file datastore preference called COMMON_DIR that has a path
of /mydocs:

begin
 ctx_ddl.create_preference('COMMON_DIR','FILE_DATASTORE');
 ctx_ddl.set_attribute('COMMON_DIR','PATH','/mydocs');
end;

When you populate the table mytable, you need only insert file names. The path
attribute tells the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values(111555,'first.txt');
insert into mytable values(111556,'second.txt');
commit;

Create the index as follows:

create index myindex on mytable(docs)
 indextype is ctxsys.context
 parameters ('datastore COMMON_DIR');

2.3.5 URL_DATASTORE
Use the URL_DATASTORE type for text stored:

• In files on the World Wide Web (accessed through HTTP or FTP)

• In files in the local file system (accessed through the file protocol)

Store each URL in a single text field.

• URL_DATASTORE URL Syntax

• URL_DATASTORE Attributes

Chapter 2
Datastore Types

2-11

• URL_DATASTORE and Security

• URL_DATASTORE Example

2.3.5.1 URL_DATASTORE URL Syntax
The syntax of a URL you store in a text field is as follows (with brackets indicating
optional parameters):

[URL:]<access_scheme>://<host_name>[:<port_number>]/[<url_path>]

The access_scheme string can be either ftp, http, or file. For example:

http://mycomputer.us.example.com/home.html

Note:

The login:password@ syntax within the URL is supported only for the ftp
access scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the
following restriction holds for the URL syntax: The URL must contain only printable
ASCII characters. Non-printable ASCII characters and multibyte characters must be
escaped with the %xx notation, where xx is the hexadecimal representation of the
special character.

2.3.5.2 URL_DATASTORE Attributes
URL_DATASTORE has the following attributes:

Table 2-5 URL_DATASTORE Attributes

Attribute Attribute Value

timeout The value of this attribute is ignored. This is provided for backward
compatibility.

maxthreads The value of this attribute is ignored. URL_DATASTORE is single-
threaded. This is provided for backward compatibility.

urlsize The value of this attribute is ignored. This is provided for backward
compatibility.

maxurls The value of this attribute is ignored. This is provided for backward
compatibility.

maxdocsize The value of this attribute is ignored. This is provided for backward
compatibility.

http_proxy Specify the host name of http proxy server. Optionally specify port
number with a colon in the form hostname:port.

ftp_proxy Specify the host name of ftp proxy server. Optionally specify port
number with a colon in the form hostname:port.

no_proxy Specify the domain for no proxy server. Use a comma-delimited
string of up to 16 domain names.

Chapter 2
Datastore Types

2-12

timeout
The value of this attribute is ignored. This is provided for backward compatibility.

maxthreads
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is
provided for backward compatibility.

urlsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxdocsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxurls
The value of this attribute is ignored. This is provided for backward compatibility.

http_proxy
Specify the fully qualified name of the host computer that serves as the HTTP proxy
(gateway) for the computer on which Oracle Text is installed. You can optionally
specify port number with a colon in the form hostname:port.
You must set this attribute if the computer is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

ftp_proxy
Specify the fully qualified name of the host computer that serves as the FTP proxy
(gateway) for the server on which Oracle Text is installed. You can optionally specify
a port number with a colon in the form hostname:port.
This attribute must be set if the computer is in an intranet that requires authentication
through a proxy server to access Web files located outside the firewall.

no_proxy
Specify a string of domains (up to sixteen, separated by commas) that are found in
most, if not all, of the computers in your intranet. When one of the domains is
encountered in a host name, no request is sent to the server(s) specified for
ftp_proxy and http_proxy. Instead, the request is processed directly by the host
computer identified in the URL.
For example, if the string us.example.com, uk.example.com is entered for no_proxy,
any URL requests to computers that contain either of these domains in their host
names are not processed by your proxy server(s).

2.3.5.3 URL_DATASTORE and Security
For a discussion of how to control file access security for file and URL datastores, refer
to "FILE_DATASTORE and Security".

2.3.5.4 URL_DATASTORE Example
This example creates a URL_DATASTORE preference called URL_PREF for which the
http_proxy, no_proxy, and timeout attributes are set. The defaults are used for the
attributes that are not set.

begin
 ctx_ddl.create_preference('URL_PREF','URL_DATASTORE');
 ctx_ddl.set_attribute('URL_PREF','HTTP_PROXY','www-proxy.us.example.com');
 ctx_ddl.set_attribute('URL_PREF','NO_PROXY','us.example.com');

Chapter 2
Datastore Types

2-13

 ctx_ddl.set_attribute('URL_PREF','Timeout','300');
end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2(2000));
insert into urls values(111555,'http://context.us.example.com');
insert into urls values(111556,'http://www.sun.com');
commit;

To create the index, specify URL_PREF as the datastore:

create index datastores_text on urls (docs)
 indextype is ctxsys.context
 parameters ('Datastore URL_PREF');

2.3.6 USER_DATASTORE
Use the USER_DATASTORE type to define stored procedures that synthesize documents
during indexing. For example, a user procedure might synthesize author, date, and
text columns into one document to have the author and date information be part of the
indexed text.

• USER_DATASTORE Attributes

• USER_DATASTORE Constraints

• USER_DATASTORE Editing Procedure after Indexing

• USER_DATASTORE with CLOB Example

• USER_DATASTORE with BLOB_LOC Example

2.3.6.1 USER_DATASTORE Attributes
USER_DATASTORE has the following attributes:

Table 2-6 USER_DATASTORE Attributes

Attribute Attribute Value

procedure Specify the procedure that synthesizes the document to be indexed.

This procedure can be owned by any user and must be executable by the
index owner.

output_type Specify the data type of the second argument to procedure. Valid
values are CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2. The default
is CLOB.

When you specify CLOB_LOC, BLOB_LOC, you indicate that no temporary
CLOB or BLOB is needed, because your procedure copies a locator to the
IN/OUT second parameter.

procedure
Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME or PACKAGENAME.PROCEDURENAME. You
can also specify the schema owner name.
The procedure you specify must have two arguments defined as follows:

Chapter 2
Datastore Types

2-14

procedure (r IN ROWID, c IN OUT NOCOPY output_type)

The first argument r must be of type ROWID. The second argument c must be of type
output_type. NOCOPY is a compiler hint that instructs Oracle Text to pass parameter c
by reference if possible.

Note:

The procedure name and its arguments can be named anything. The
arguments r and c are used in this example for simplicity.

The stored procedure is called once for each row indexed. Given the rowid of the
current row, procedure must write the text of the document into its second argument,
whose type you specify with output_type.

2.3.6.2 USER_DATASTORE Constraints
The following constraints apply to procedure:

• It can be owned by any user, but the user must have database permissions to
execute procedure correctly

• It must be executable by the index owner

• It must not enter DDL or transaction control statements, like COMMIT

2.3.6.3 USER_DATASTORE Editing Procedure after Indexing
When you change or edit the stored procedure, indexes based on it will not be notified,
so you must manually re-create such indexes. So if the stored procedure makes use of
other columns, and those column values change, the row will not be re-indexed. The
row is re-indexed only when the indexed column changes.

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB,
BLOB, CLOB_LOC, BLOB_LOC, or VARCHAR2.

2.3.6.4 USER_DATASTORE with CLOB Example
Consider a table in which the author, title, and text fields are separate, as in the
articles table defined as follows:

create table articles(
 id number,
 author varchar2(80),
 title varchar2(120),
 text clob);

The author and title fields are to be part of the indexed document text. Assume user
appowner writes a stored procedure with the user datastore interface that synthesizes
a document from the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is
 begin
 for c1 in (select author, title, text from articles

Chapter 2
Datastore Types

2-15

 where rowid = rid)
 loop

 dbms_lob.writeappend(tlob, length(c1.title), c1.title);
 dbms_lob.writeappend(tlob, length(c1.author), c1.author);
 dbms_lob.writeappend(tlob, length(c1.text), c1.text);

 end loop;
 end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all
the article's columns into the temporary CLOB. The for loop executes only once.

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'CLOB');

end;

When appowner creates the index on articles(text) using this preference, the
indexing operation sees author and title in the document text.

2.3.6.5 USER_DATASTORE with BLOB_LOC Example
The following procedure might be used with OUTPUT_TYPE BLOB_LOC:

procedure myds(rid in rowid, dataout in out nocopy blob)
is
 l_dtype varchar2(10);
 l_pk number;
begin
 select dtype, pk into l_dtype, l_pk from mytable where rowid = rid;
 if (l_dtype = 'MOVIE') then
 select movie_data into dataout from movietab where fk = l_pk;
 elsif (l_dtype = 'SOUND') then
 select sound_data into dataout from soundtab where fk = l_pk;
 end if;
end;

The user appowner creates the preference as follows:

begin

ctx_ddl.create_preference('myud', 'user_datastore');
ctx_ddl.set_attribute('myud', 'procedure', 'myproc');
ctx_ddl.set_attribute('myud', 'output_type', 'blob_loc');

end;

2.3.7 NESTED_DATASTORE
Use the nested datastore type to index documents stored as rows in a nested table.

• NESTED_DATASTORE Attributes

Chapter 2
Datastore Types

2-16

• NESTED_DATASTORE Example

2.3.7.1 NESTED_DATASTORE Attributes
NESTED_DATASTORE has the following attributes:

Table 2-7 NESTED_DATASTORE Attributes

Attribute Attribute Value

nested_column Specify the name of the nested table column. This attribute is required.
Specify only the column name. Do not specify schema owner or
containing table name.

nested_type Specify the type of nested table. This attribute is required. You must
provide owner name and type.

nested_lineno Specify the name of the attribute in the nested table that orders the
lines. This is like DETAIL_LINENO in detail datastore. This attribute is
required.

nested_text Specify the name of the column in the nested table type that contains
the text of the line. This is like DETAIL_TEXT in detail datastore. This
attribute is required. LONG column types are not supported as nested
table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline
character when synthesizing the document text. If you specify TRUE,
Oracle Text does not do this. This attribute is not required. The default
is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See
"NESTED_DATASTORE Example".

DML on the nested table is not automatically propagated to the dummy column used
for indexing. For DML on the nested table to be propagated to the dummy column,
your application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested_text column.

During validation, Oracle Text checks that the type exists and that the attributes you
specify for nested_lineno and nested_text exist in the nested table type. Oracle Text
does not check that the named nested table column exists in the indexed table.

2.3.7.2 NESTED_DATASTORE Example
This section shows an example of using the NESTED_DATASTORE type to index
documents stored as rows in a nested table.

• Create the Nested Table

• Insert Values into Nested Table

• Create Nested Table Preferences

• Create Index on Nested Table

• Query Nested Datastore

Chapter 2
Datastore Types

2-17

2.3.7.2.1 Create the Nested Table
The following code creates a nested table and a storage table mytab for the nested
table:

create type nt_rec as object (
 lno number, -- line number
 ltxt varchar2(80) -- text of line
);

create type nt_tab as table of nt_rec;
create table mytab (
 id number primary key, -- primary key
 dummy char(1), -- dummy column for indexing
 doc nt_tab -- nested table
)
nested table doc store as myntab;

2.3.7.2.2 Insert Values into Nested Table
The following code inserts values into the nested table for the parent row with ID equal
to 1.

insert into mytab values (1, null, nt_tab());
insert into table(select doc from mytab where id=1) values (1, 'the dog');
insert into table(select doc from mytab where id=1) values (2, 'sat on mat ');
commit;

2.3.7.2.3 Create Nested Table Preferences
The following code sets the preferences and attributes for the NESTED_DATASTORE
according to the definitions of the nested table type nt_tab and the parent table mytab:

begin
-- create nested datastore pref
ctx_ddl.create_preference('ntds','nested_datastore');

-- nest tab column in main table
ctx_ddl.set_attribute('ntds','nested_column', 'doc');

-- nested table type
ctx_ddl.set_attribute('ntds','nested_type', 'scott.nt_tab');

-- lineno column in nested table
ctx_ddl.set_attribute('ntds','nested_lineno','lno');

--text column in nested table
ctx_ddl.set_attribute('ntds','nested_text', 'ltxt');
end;

2.3.7.2.4 Create Index on Nested Table
The following code creates the index using the nested table datastore:

create index myidx on mytab(dummy) -- index dummy column, not nest table
indextype is ctxsys.context parameters ('datastore ntds');

Chapter 2
Datastore Types

2-18

2.3.7.2.5 Query Nested Datastore
The following select statement queries the index built from a nested table:

select * from mytab where contains(dummy, 'dog and mat')>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2.4 Filter Types
Use the filter types to create preferences that determine how text is filtered for
indexing. Filters enable word processor documents, formatted documents, plain text,
HTML, and XML documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and
uses filters to build interim plain text or HTML versions of the documents. Oracle Text
indexes the words derived from the plain text or HTML version of the formatted
document.

To create a filter preference, you must use one of the filter types shown in Table 2-8.

Table 2-8 Filter Types

Filter When Used

AUTO_FILTER Auto filter for filtering formatted documents.

NULL_FILTER No filtering required. Use for indexing plain text, HTML, or XML
documents.

MAIL_FILTER Use the MAIL_FILTER to transform RFC-822, RFC-2045
messages in to text that can be indexed.

USER_FILTER User-defined external filter to be used for custom filtering.

PROCEDURE_FILTER User-defined stored procedure filter to be used for custom filtering.

2.4.1 AUTO_FILTER
The AUTO_FILTER is a universal filter that filters most document formats, including PDF
and Microsoft Word documents. Use it for indexing both single-format and mixed-
format columns. This filter automatically bypasses plain text, HTML, XHTML, SGML,
and XML documents.

• AUTO_FILTER Attributes

• AUTO_FILTER and Indexing Formatted Documents

• AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

• AUTO_FILTER and Character Set Conversion With AUTO_FILTER

See Also:

Oracle Text Supported Document Formats, for a list of the formats supported
by AUTO_FILTER, and to learn more about how to set up your environment

Chapter 2
Filter Types

2-19

Note:

The AUTO_FILTER replaces the INSO_FILTER, which has been deprecated.
While every effort has been made to ensure maximal backward compatibility
between the two filters, so that applications using INSO_FILTER will continue
to work without modification, some differences may arise. Users should
therefore use AUTO_FILTER in their new programs and, when possible,
replace instances of INSO_FILTER, and any system preferences or constants
that make use of it, in older applications.

2.4.1.1 AUTO_FILTER Attributes
The AUTO_FILTER preference has the attributes shown in Table 2-9.

Table 2-9 AUTO_FILTER Attributes

Attribute Attribute Value

timeout Specify the AUTO_FILTER timeout in seconds. Use a number
between 0 and 42,949,672. Default is 120. Setting this value to 0
disables the feature.

How this wait period is used depends on how you set
timeout_type.

This feature is disabled for rows for which the corresponding charset
and format column cause the AUTO_FILTER to bypass the row, such
as when format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from
waiting indefinitely on a hanging filter operation.

timeout_type Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT
seconds if output from Outside In HTML Export has increased. The
operation terminates for the document if output has not increased.
An error is recorded in the CTX_USER_INDEX_ERRORS view and
Oracle Text moves to the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export processing
after TIMEOUT seconds regardless of whether filtering was
progressing normally or just hanging. This value is useful when
indexing throughput is more important than taking the time to
successfully filter large documents.

output_formatting Setting this attribute has no effect on filter performance or filter
output. It is maintained for backward compatibility.

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents
To index a text column containing formatted documents such as Microsoft Word, use
the AUTO_FILTER. This filter automatically detects the document format. Use the
CTXSYS.AUTO_FILTER system-defined preference in the parameter clause as follows:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore
 filter ctxsys.auto_filter');

Chapter 2
Filter Types

2-20

Note:

The CTXSYS.AUTO_FILTER replaces CTXSYS.INSO_FILTER, which has been
deprecated. Programs making use of CTXSYS.INSO_FILTER should still work.
New programs should use CTXSYS.AUTO_FILTER.

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDF, plain text, and HTML
documents.

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain text,
HTML, and XML documents. However, if you prefer not to depend on the built-in
bypass mechanism, you can explicitly tag your rows as text and cause the
AUTO_FILTER to ignore the row and not process the document in any way.

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
BINARY, and IGNORE. During indexing, the AUTO_FILTER ignores any document typed
TEXT, assuming the charset column is not specified. The difference between a
document with a TEXT format column type and one with an IGNORE type is that the TEXT
document is indexed, but ignored by the filter, while the IGNORE document is not
indexed at all. Use IGNORE to overlook documents such as image files, or documents in
a language that you do not want to index. IGNORE can be used with any filter type.

To set up the AUTO_FILTER bypass mechanism, you must create a format column in
your base table.

For example:

create table hdocs (
 id number primary key,
 fmt varchar2(10),
 text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format
column to filter the Word documents. Alternatively, to have the AUTO_FILTER ignore an
HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as BINARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert in hdocs values (2, 'text', '/docs/index.html');
commit;

To create the index, use CREATE INDEX and specify the format column name in the
parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore

Chapter 2
Filter Types

2-21

 filter ctxsys.auto_filter
 format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

Note:

You need not specify the format column in CREATE INDEX when using the
AUTO_FILTER.

2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER
The AUTO_FILTER converts documents to the database character set when the
document format column is set to TEXT. In this case, the AUTO_FILTER looks at the
charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

Note:

You need not specify the charset column when using the AUTO_FILTER.

2.4.2 NULL_FILTER
Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering
needs to be performed. NULL_FILTER has no attributes.

NULL_FILTER and Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the
NULL_FILTER in your filter preference.

For example, to index an HTML document set, specify the system-defined preferences
for NULL_FILTER and HTML_SECTION_GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context
 parameters('filter ctxsys.null_filter
 section group ctxsys.html_section_group');

See Also:

For more information on section groups and indexing HTML documents, see
"Section Group Types".

Chapter 2
Filter Types

2-22

2.4.3 MAIL_FILTER
Use MAIL_FILTER to transform RFC-822, RFC-2045 messages into indexable text. The
following limitations apply to the input:

• Documents must be US-ASCII

• Lines must not be longer than 1024 bytes

• Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by
the filter without error. Others may result in a fetch-time or filter-time error.

• MAIL_FILTER Attributes

• MAIL_FILTER Behavior

• About the Mail Filter Configuration File

• Mail_Filter Example

2.4.3.1 MAIL_FILTER Attributes
The MAIL_FILTER has the attributes shown in Table 2-10.

Table 2-10 MAIL_FILTER Attributes

Attribute Attribute Value

INDEX_FIELDS Specify a colon-separated list of fields to preserve in the
output. These fields are transformed to tag markup. For
example, if INDEX_FIELDS is set to "FROM":

From: Scott Tiger

becomes:

<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

AUTO_FILTER_TIMEOUT Specify a timeout value for the AUTO_FILTER filtering invoked
by the mail filter. Default is 60. (Replaces the INSO_TIMEOUT
attribute and is backward compatible with INSO_TIMEOUT.)

AUTO_FILTER_OUTPUT_FORMATTING Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous
INSO_OUTPUT_FORMATTING attribute. However, it has no
effect in the current release.

Chapter 2
Filter Types

2-23

Table 2-10 (Cont.) MAIL_FILTER Attributes

Attribute Attribute Value

PART_FIELD_STYLE Specify how fields occurring in lower-level parts and identified
by the INDEX_FIELDS attribute should be transformed. The
fields of the top-level message part identified by
INDEX_FIELDS are always transformed to tag markup (see
the previous description of INDEX_FIELDS);
PART_FIELD_STYLE controls the transformation of
subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the part
fields are not included for indexing; TAG, in which the part field
names are transformed to tags, as occurs with top-level part
fields; FIELD, in which the part field names are preserved as
fields, not as tags; and TEXT, in which the part field names are
eliminated and only the field content is preserved for indexing.
See "Mail_Filter Example" for an example of how
PART_FIELD_STYLE works.

2.4.3.2 MAIL_FILTER Behavior
This filter behaves in the following way for each document:

• Read and remove header fields

• Decode message body if needed, depending on Content-transfer-encoding field

• Take action depending on the Content-Type field value and the user-specified
behavior specified in a mail filter configuration file. (See "About the Mail Filter
Configuration File".) The possible actions are:

– produce the body in the output text (INCLUDE). If no character set is
encountered in the INCLUDE parts in the Content-Type header field, then
Oracle defaults to the value specified in the character set column in the base
table. Name your populated character set column in the parameter string of
the CREATE INDEX command.

– AUTO_FILTER the body contents (AUTO_FILTER directive).

– remove the body contents from the output text (IGNORE)

• If no behavior is specified for the type in the configuration file, then the defaults are
as follows:

– text/*: produce body in the output text

– application/*: AUTO_FILTER the body contents

– image/*, audio/*, video/*, model/*: ignore

• Multipart messages are parsed, and the mail filter applied recursively to each part.
Each part is appended to the output.

• All text produced will be charset-converted to the database character set, if
needed.

Chapter 2
Filter Types

2-24

2.4.3.3 About the Mail Filter Configuration File
The MAIL_FILTER filter makes use of a mail filter configuration file, which contains
directives specifying how a mail document should be filtered. The mail filter
configuration file is a editable text file. Here you can override default behavior for each
Content-Type. The configuration file also contains IANA-to-Oracle Globalization
Support character set name mappings.

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to use
is stored in the new system parameter MAIL_FILTER_CONFIG_FILE. On install, this is
set to drmailfl.txt, which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid
overwrite by the installation of a new version or patch set. The mail filter configuration
file should be in the database character set.

Mail File Configuration File Structure

The file has two sections, BEHAVIOR and CHARSETS. Indicate the start of the behavior
section as follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior
specification. The MIME type can be a full TYPE/SUBTYPE or just TYPE, which will apply to
all subtypes of that type. TYPE/SUBTYPE specification overrides TYPE specification,
which overrides default behavior. Behavior can be INCLUDE, AUTO_FILTER, or IGNORE
(see "MAIL_FILTER Behavior" for definitions). For instance:

application/zip IGNORE
application/msword AUTO_FILTER
model IGNORE

You cannot specify behavior for "multipart" or "message" types. If you do, such lines
are ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the #
symbol.

The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then an Oracle Globalization
Support charset name, like:

US-ASCII US7ASCI
ISO-8859-1 WE8ISO8859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents
indexed after that point. You must flush the shared pool after changing the file.

2.4.3.4 Mail_Filter Example
Suppose there is an e-mail with the following form, in which other e-mails with different
subject lines are attached to this e-mail:

Chapter 2
Filter Types

2-25

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed
. . .
Content-Type: text/plain
X-Ref: some_value
Subject: subheader 1
. . .
Content-Type: text/plain
X-Control: blah blah blah
Subject: subheader 2
. . .

Set INDEX_FIELDS to be "Subject" and, initially, PART_FIELD_STYLE to IGNORE.

CTX_DDL.CREATE_PREFERENCE('my_mail_filt', 'mail_filter');
CTX_DDL_SET_ATTRIBUTE(my_mail_filt', 'INDEX_FILES', 'subject');
CTX_DDL.SET ATTRIBUTE ('my_mail_filt', 'PART_FIELD_STYLE', 'ignore');

Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART_FIELD_STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheader1</SUBJECT>
<SUBJECT>subheader2</SUBJECT>

If PART_FIELD_STYLE is set to FIELD instead, this is the result:

<SUBJECT>mainheader<SUBJECT>
SUBJECT:subheader1
SUBJECT:subheader2

Finally, if PART_FIELD_STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheader1
subheader2

2.4.4 USER_FILTER
Use the USER_FILTER type to specify an external filter for filtering documents in a
column.

This section contains the following topics.

• USER_FILTER Attributes

• Using USER_FILTER with Charset and Format Columns

• USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format
Columns

• Character Set Conversion with USER_FILTER

• User Filter Example

Chapter 2
Filter Types

2-26

2.4.4.1 USER_FILTER Attributes
USER_FILTER has the following attribute:

Table 2-11 USER_FILTER Attribute

Attribute Attribute Value

command Specify the name of the filter executable.

WARNING:

The USER_FILTER type introduces the potential for security threats. A
database user granted the CTXAPP role could potentially use USER_FILTER
to load a malicious application. Therefore, the DBA must safeguard against
any combination of input and output file parameters that would enable the
named filter executable to compromise system security.

command
Specify the executable for the single external filter that is used to filter all text stored in
a column. If more than one document format is stored in the column, then the external
filter specified for command must recognize and handle all such formats.
The executable that you specify must exist in the $ORACLE_HOME/ctx/bin directory on
UNIX, and in the %ORACLE_HOME%/ctx/bin directory on Windows.
You must create your user-filter command with two parameters:

• The first parameter is the name of the input file to be read.

• The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO_FILTER, then use AUTO_FILTER
instead of USER_FILTER, unless additional tasks besides filtering are required for the
documents.

2.4.4.2 Using USER_FILTER with Charset and Format Columns
USER_FILTER bypasses documents that do not need to be filtered. Its behavior is
sensitive to the values of the format and charset columns. In addition, USER_FILTER
performs character set conversion according to the charset column values.

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns

A mixed-format column is a text column containing more than one document format,
such as a column that contains Microsoft Word, PDF, plain text, and HTML
documents.

The USER_FILTER executable can index mixed-format columns, automatically
bypassing textual documents. However, if you prefer not to depend on the built-in
bypass mechanism, you can explicitly tag your rows as text and cause the
USER_FILTER executable to ignore the row and not process the document in any way.

Chapter 2
Filter Types

2-27

The format column in the base table enables you to specify the type of document
contained in the text column. You can specify the following document types: TEXT,
BINARY, and IGNORE. During indexing, the USER_FILTER executable ignores any
document typed TEXT, assuming the charset column is not specified. (The difference
between a document with a TEXT format column type and one with an IGNORE type is
that the TEXT document is indexed, but ignored by the filter, while the IGNORE
document is not indexed at all. Use IGNORE to overlook documents such as image files,
or documents in a language that you do not want to index. IGNORE can be used with
any filter type.

To set up the USER_FILTER bypass mechanism, you must create a format column in
your base table. For example:

create table hdocs (
 id number primary key,
 fmt varchar2(10),
 text varchar2(80)
);

Assuming you are indexing mostly Word documents, you specify BINARY in the format
column to filter the Word documents. Alternatively, to have the USER_FILTER
executable ignore an HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning
one format as BINARY and the other TEXT:

insert into hdocs values(1, 'binary', '/docs/myword.doc');
insert into hdocs values(2, 'text', '/docs/index.html');
commit;

Assuming that this file is named upcase.pl, create the filter preference as follows:

ctx_ddl.create_preference
 (
 preference_name => 'USER_FILTER_PREF',
 object_name => 'USER_FILTER'
);

ctx_ddl.set_attribute ('USER_FILTER_PREF', 'COMMAND', 'upcase.pl');

To create the index, use CREATE INDEX and specify the format column name in the
parameter string:

create index hdocsx on hdocs(text) indextype is ctxsys.context
 parameters ('datastore ctxsys.file_datastore
 filter 'USER_FILTER_PREF'
 format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.4.4.4 Character Set Conversion with USER_FILTER
The USER_FILTER executable converts documents to the database character set when
the document format column is set to TEXT. In this case, the USER_FILTER executable
looks at the charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is
passed through without any character set conversion.

Chapter 2
Filter Types

2-28

2.4.4.5 User Filter Example
The following example shows a Perl script to be used as the user filter. This script
converts the input text file specified in the first argument to uppercase and writes the
output to the location specified in the second argument.

#!/usr/local/bin/perl

open(IN, $ARGV[0]);
open(OUT, ">".$ARGV[1]);

while (<IN>)
{
 tr/a-z/A-Z/;
 print OUT;
}

close (IN);
close (OUT);

Assuming that this file is named upcase.pl, create the filter preference as follows:

begin
 ctx_ddl.create_preference
 (
 preference_name => 'USER_FILTER_PREF',
 object_name => 'USER_FILTER'
);
 ctx_ddl.set_attribute
 ('USER_FILTER_PREF','COMMAND','upcase.pl');
end;

Create the index in SQL*Plus as follows:

create index user_filter_idx on user_filter (docs)
 indextype is ctxsys.context
 parameters ('FILTER USER_FILTER_PREF');

2.4.5 PROCEDURE_FILTER
Use the PROCEDURE_FILTER type to filter your documents with a stored procedure. The
stored procedure is called each time a document needs to be filtered.

This section contains the following topics.

• PROCEDURE_FILTER Attributes

• PROCEDURE_FILTER Parameter Order

• PROCEDURE_FILTER Execute Requirements

• PROCEDURE_FILTER Error Handling

• PROCEDURE_FILTER Preference Example

2.4.5.1 PROCEDURE_FILTER Attributes
Table 2-12 lists the attributes for PROCEDURE_FILTER.

Chapter 2
Filter Types

2-29

Table 2-12 PROCEDURE_FILTER Attributes

Attribute Purpose Allowable Values

procedure Name of the filter
stored procedure.

Any procedure. The procedure can be a
PL/SQL stored procedure.

input_type Type of input argument
for stored procedure.

VARCHAR2, BLOB, CLOB, FILE

output_type Type of output
argument for stored
procedure.

VARCHAR2, CLOB, FILE

rowid_parameter Include rowid
parameter?

TRUE/FALSE

format_parameter Include format
parameter?

TRUE/FALSE

charset_parameter Include charset
parameter?

TRUE/FALSE

procedure
Specify the name of the stored procedure to use for filtering. The procedure can be a
PL/SQL stored procedure. The procedure can be a safe callout, or call a safe callout.
With the rowid_parameter, format_parameter, and charset_parameter set to
FALSE, the procedure can have one of the following signatures:

PROCEDURE(IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE(IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE(IN BLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN CLOB, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN VARCHAR2, IN OUT NOCOPY VARCHAR2)
PROCEDURE(IN BLOB, IN VARCHAR2)
PROCEDURE(IN CLOB, IN VARCHAR2)
PROCEDURE(IN VARCHAR2, IN VARCHAR2)

The first argument is the content of the unfiltered row, output by the datastore. The
second argument is for the procedure to pass back the filtered document text.
The procedure attribute is mandatory and has no default.

input_type
Specify the type of the input argument of the filter procedure. You can specify one of
the following types:

Type Description

procedure Name of the filter stored procedure.

input_type Type of input argument for stored procedure.

output_type Type of output argument for stored procedure.

rowid_parameter Include rowid parameter?

The input_type attribute is not mandatory. If not specified, then BLOB is the default.

Chapter 2
Filter Types

2-30

output_type
Specify the type of output argument of the filter procedure. You can specify one of the
following types:

Type Description

CLOB The output argument is IN OUT NOCOPY CLOB. Your
procedure must write the filtered content to the CLOB
passed in.

VARCHAR2 The output argument is IN OUT NOCOPY VARCHAR2. Your
procedure must write the filtered content to the VARCHAR2
variable passed in.

FILE The output argument must be IN VARCHAR2. On entering
the filter procedure, the output argument is the name of a
temporary file. The filter procedure must write the filtered
contents to this named file.
Using a FILE output type is useful only when the
procedure is a safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the default.

rowid_ parameter
When you specify TRUE, the rowid of the document to be filtered is passed as the
first parameter, before the input and output parameters.
For example, with INPUT_TYPE BLOB, OUTPUT_TYPE CLOB, and ROWID_PARAMETER TRUE,
the filter procedure must have the signature as follows:

procedure(in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or
tables. This attribute is not mandatory. The default is FALSE.

format_parameter
When you specify TRUE, the value of the format column of the document being filtered
is passed to the filter procedure before input and output parameters, but after the
rowid parameter, if enabled.
Specify the name of the format column at index time in the parameters string, using
the keyword 'format column <columnname>'. The parameter type must be IN
VARCHAR2.
The format column value can be read by means of the rowid parameter, but this
attribute enables a single filter to work on multiple table structures, because the
format attribute is abstracted and does not require the knowledge of the name of the
table or format column.
FORMAT_PARAMETERis not mandatory. The default is FALSE.

charset_parameter
When you specify TRUE, the value of the charset column of the document being
filtered is passed to the filter procedure before input and output parameters, but after
the rowid and format parameter, if enabled.
Specify the name of the charset column at index time in the parameters string, using
the keyword 'charset column <columnname>'. The parameter type must be IN
VARCHAR2.
The CHARSET_PARAMETER attribute is not mandatory. The default is FALSE.

Chapter 2
Filter Types

2-31

2.4.5.2 PROCEDURE_FILTER Parameter Order
ROWID_PARAMETER, FORMAT_PARAMETER, and CHARSET_PARAMETER are all independent.
The order is rowid, the format, then charset. However, the filter procedure is passed
only the minimum parameters required.

For example, assume that INPUT_TYPE is BLOB and OUTPUT_TYPE is CLOB. If your filter
procedure requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)

If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID,input IN BLOB, output IN OUT NOCOPY CLOB)

2.4.5.3 PROCEDURE_FILTER Execute Requirements
To create an index using a PROCEDURE_FILTER preference, the index owner must have
execute permission on the procedure.

2.4.5.4 PROCEDURE_FILTER Error Handling
The filter procedure can raise any errors needed through the normal PL/SQL
raise_application_error facility. These errors are propagated to the
CTX_USER_INDEX_ERRORS view or reported to the user, depending on how the
filter is invoked.

2.4.5.5 PROCEDURE_FILTER Preference Example
Consider a filter procedure CTXSYS.NORMALIZE that you define with the following
signature:

PROCEDURE NORMALIZE(id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHAR2);

To use this procedure as your filter, set up your filter preference as follows:

begin
ctx_ddl.create_preference('myfilt', 'procedure_filter');
ctx_ddl.set_attribute('myfilt', 'procedure', 'normalize');
ctx_ddl.set_attribute('myfilt', 'input_type', 'clob');
ctx_ddl.set_attribute('myfilt', 'output_type', 'varchar2');
ctx_ddl.set_attribute('myfilt', 'rowid_parameter', 'TRUE');
ctx_ddl.set_attribute('myfilt', 'charset_parameter', 'TRUE');
end;

2.5 Lexer Types
Use the lexer preference to specify the language of the text to be indexed. To create a
lexer preference, you must use one of the lexer types described in Table 2-13.

Chapter 2
Lexer Types

2-32

Table 2-13 Lexer Types

Type Description

AUTO_LEXER Lexer for indexing columns that contain documents of different
languages.

BASIC_LEXER Lexer for extracting tokens from text in languages, such as English
and most western European languages that use white space
delimited words.

MULTI_LEXER Lexer for indexing tables containing documents of different languages
such as English, German, and Japanese.

CHINESE_VGRAM_LEXER Lexer for extracting tokens from Chinese text.

CHINESE_LEXER Lexer for extracting tokens from Chinese text. This lexer offers
benefits over the CHINESE_VGRAM lexer:

• Generates a smaller index
• Better query response time
• Generates real world tokens resulting in better query precision
• Supports stop words

JAPANESE_VGRAM_LEXER Lexer for extracting tokens from Japanese text.

JAPANESE_LEXER Lexer for extracting tokens from Japanese text. This lexer offers the
following advantages over the JAPANESE_VGRAM lexer:

• Generates smaller index
• Better query response time
• Generates real world tokens resulting in better precision

KOREAN_MORPH_LEXER Lexer for extracting tokens from Korean text.

USER_LEXER Lexer you create to index a particular language.

WORLD_LEXER Lexer for indexing tables containing documents of different
languages; autodetects languages in a document.

2.5.1 AUTO_LEXER
Use the AUTO_LEXER type to index columns that contain documents of different
languages. It performs language identification, word segmentation, document analysis,
and stemming. The AUTO_LEXER also enables customization of these components.
Although parts-of-speech information that is generated by the AUTO_LEXER is not
exposed for your use, AUTO_LEXER uses it for context-sensitive or tagged stemming.

This section contains the following topics.

• AUTO_LEXER Language Support

• AUTO_LEXER Attributes Inherited from BASIC_LEXER

• AUTO_LEXER Language-Independent Attributes

• AUTO_LEXER Language-Dependent Attributes

• AUTO_LEXER Dictionary Attribute

Chapter 2
Lexer Types

2-33

2.5.1.1 AUTO_LEXER Language Support
At index time, AUTO_LEXER automatically detects the language of the document, and
tokenizes and stems the document appropriately. To specify an AUTO_LEXER dictionary,
use the name of the dictionary you created instead of the filename for the dictionary.

At query time, the language of the query is inherited from the query template. If the
query template is not used, or if no language is specified in the query template, then
the language of the query is inherited from the session language. Table 2-14 lists the
supported languages.

Note:

Note that dictionary data will not be processed until index/policy creation time
or ALTER INDEX time. Errors in dictionary data format will be caught at index/
policy creation time or ALTER INDEX time and reported as: DRG-13710:
Syntax Error in Dictionary.

Table 2-14 Languages Supported for AUTO_LEXER

Language Language

ARABIC NYNORSK

BOKMAL PERSIAN

CROATIAN SERBIAN

DANISH SLOVAK

FINNISH SLOVENIAN

HEBREW THAI

CATALAN KOREAN

CZECH POLISH

DUTCH PORTUGUESE

ENGLISH ROMANIAN

FRENCH RUSSIAN

GERMAN SIMPLIFIED CHINESE (See Note)

GREEK SPANISH

HUNGARIAN SWEDISH

ITALIAN TRADITIONAL CHINESE (See Note)

JAPANESE TURKISH

Note:

Due to the limitation of 30 characters for the string, Traditional Chinese must
be specified as trad_chinese. Simplified Chinese must be specified as
simp_chinese.

Chapter 2
Lexer Types

2-34

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER
The following attributes are used in the same way and have the same effect on the
AUTO_LEXER as their corresponding attributes in BASIC_LEXER:

• printjoins

• skipjoins

• base_letter

• base_letter_type

• override_base_letter

• mixed_case

• alternate_spelling

See Also:

"BASIC_LEXER" and Table 2-19

2.5.1.3 AUTO_LEXER Language-Independent Attributes
Table 2-15 lists the language-independent attributes available in the AUTO_LEXER.

Table 2-15 AUTO_LEXER Language-Independent Attributes

Attribute Attribute Value Description

language <characters> (space-
delimited string)

Specifies the possible languages of the input
documents.

If no language is specified, then AUTO_LEXER performs
auto detection.

If one language is specified, then the language is set
manually and AUTO_LEXER does not perform auto
detection.

If more than one language is specified, then
AUTO_LEXER performs auto detection but limits the
detected language to be among the language set.

Note: The automatic detection of language is
statistically based and, thus, inherently imperfect.

deriv_stems NO (disabled) Specifies whether the derivational stemming should be
used or not. Currently, derivational stemming is only
available for English. Hence, the DERIV_STEMS has no
effect in other languages.

Also, when derivational stemming is performed, tagging
and tag stemming is not used. As a result, the tagging
and tagged stemming client dictionary has no effect on
the stemming result.

Chapter 2
Lexer Types

2-35

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes

Attribute Attribute Value Description

deriv_stems YES (default) Specifies whether the derivational stemming should be
used or not. Currently, derivational stemming is only
available for English. Hence, the DERIV_STEMS has no
effect in other languages.

Also, when derivational stemming is performed, tagging
and tag stemming is not used. As a result, the tagging
and tagged stemming client dictionary has no effect on
the stemming result.

german_decompound NO (disabled) Specifies whether German de-compounding should be
performed in the stemmer or not.

german_decompound YES (default, enabled for
German only)

Specifies whether German de-compounding should be
performed in the stemmer or not.

index_stems NO (disabled) Specifies whether an index stemmer should be used.

If specified as YES, then the stemmer that corresponds
to the document language will be used and the stemmer
will always be configured to maximize document recall.
Note that this means that the stemmer attribute of
BASIC_WORDLIST will be ignored, and the stemmer
used by the AUTO_LEXER will be used during query to
determine the stem of the given query term.

If specified as NO, then queries with stem operators will
use the word list stemming to try to stem the tokens. If
word list stemming is not available, then the stem
operator will be ignored.

For documents in Swedish and Dutch, if the
index_stems is set to YES, then compound word
stemming will automatically be performed, and
compounds are always separated into their component
stems.

index_stems YES (default) Specifies whether an index stemmer should be used.

If specified as YES, then the stemmer that corresponds
to the document language will be used and the stemmer
will always be configured to maximize document recall.
Note that this means that the stemmer attribute of
BASIC_WORDLIST will be ignored, and the stemmer
used by the AUTO_LEXER will be used during query to
determine the stem of the given query term.

If specified as NO, then queries with stem operators will
use the word list stemming to try to stem the tokens. If
word list stemming is not available, then the stem
operator will be ignored.

For documents in Swedish and Dutch, if the
index_stems is set to YES, then compound word
stemming will automatically be performed, and
compounds are always separated into their component
stems.

base_letter NO (disabled) Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are
converted to their base form before being stored in the
Text index.

Chapter 2
Lexer Types

2-36

Table 2-15 (Cont.) AUTO_LEXER Language-Independent Attributes

Attribute Attribute Value Description

base_letter YES (enabled) Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are
converted to their base form before being stored in the
Text index.

base_letter_type GENERIC (default) The GENERIC value is the default and means that base
letter transformation uses one transformation table that
applies to all languages.

base_letter_type SPECIFIC The GENERIC value is the default and means that base
letter transformation uses one transformation table that
applies to all languages.

override_base_letter TRUE

FALSE (default)

When base_letter is enabled at the same time as
alternate_spelling, it is sometimes necessary to
override base_letter to prevent unexpected results
from serial transformations.

mixed_case NO (disabled) Specify whether the lexer leaves the tokens exactly as
they appear in the text or converts the tokens to all
uppercase. The default is NO (tokens are converted to
all uppercase).

mixed_case YES (enabled) Specify whether the lexer leaves the tokens exactly as
they appear in the text or converts the tokens to all
uppercase.

alternate_spelling GERMAN (German
alternate spelling)

Specifies whether German alternate spelling should be
used or not.

alternate_spelling SWEDISH (Swedish
alternate spelling)

Specifies whether Swedish alternate spelling should be
used or not.

alternate_spelling NONE (No alternate
spelling, default)

The default is NONE. No alternate spelling is specified.

printjoins characters Specify the non alphanumeric characters that, when
they appear anywhere in a word (beginning, middle, or
end), are processed as alphanumeric and included with
the token in the Text index. This includes printjoins that
occur consecutively. See Basic Lexer "printjoins".

skipjoins characters Specify the non-alphanumeric characters that, when
they appear within a word, identify the word as a single
token; however, the characters are not stored with the
token in the Text index. See Basic Lexer "skipjoins".

2.5.1.4 AUTO_LEXER Language-Dependent Attributes
AUTO_LEXER provides language-dependent attributes for the languages specified in
Table 2-14.

Table 2-16 lists the language-dependent attributes available in the AUTO_LEXER. The
<language> variable in the attribute name refers to any of the supported language
names that are listed in Table 2-14.

Chapter 2
Lexer Types

2-37

Note:

Attribute names must not exceed 30 characters. Therefore, where the
<language> variable is specified, the language name may need to be
abbreviated in certain instances. For example, traditional_chinese should
be abbreviated to trad_chinese and simplified_chinese should be
abbreviated to simp_chinese.

Table 2-16 AUTO_LEXER Language-Dependent Attributes

Attribute Attribute Value Description

<language>_prefix_m
orphemes

characters (space-delimited
string)

Specifies the list of inflectional prefixes that, when
enclosed by parentheses, are kept together with the
base word. For example, (re) analyze.

<language>_suffix_m
orphemes

characters (space-delimited
string)

Specifies the list of inflectional suffixes that, when
enclosed by parentheses are kept together with the base
word. For example, file(s).

<language>_punctuat
ions

characters (space-delimited
string)

Specifies punctuation that breaks sentences.

<language>_non_sent
_end_abbr

characters (space-delimited
string)

Specifies abbreviations that do not end sentences.

Table 2-17 Default Values for AUTO_LEXER Language-Dependent Attributes

Attribute Language Default Value

<language>_prefix_morphemes All languages None

<language>_suffix_morphemes English s es er

<language>_suffix_morphemes Spanish ba n s es

<language>_suffix_morphemes Portuguese s es

<language>_suffix_morphemes German in innen

<language>_suffix_morphemes French ne e

<language>_suffix_morphemes All other languages None

<language>_punctuations English . ? !

<language>_punctuations Catalan, Czech, Dutch,
Greek, Hungarian, Polish,
Romanian, Russian, Turkish

. ? ! - --

<language>_punctuations French, German, Italian,
Korean, Portuguese,
Spanish, Swedish

, ? !

<language>_punctuations Japanese

Chapter 2
Lexer Types

2-38

Table 2-17 (Cont.) Default Values for AUTO_LEXER Language-Dependent Attributes

Attribute Language Default Value

<language>_punctuations Simplified Chinese

Abbreviate to: simp_chinese

<language>_punctuations Traditional Chinese

Abbreviate to: trad_chinese

<language>_non_sent_end_abbr Polish, Romanian, Russian,
Turkish

e.g. i.e. viz. a.k.a.

<language>_non_sent_end_abbr Catalan R.D. pp.

<language>_non_sent_end_abbr Czech, Greek, Hungarian e.g. i.e. viz. a.k.a.

<language>_non_sent_end_abbr Dutch f.eks. f. eks. inkl. sr. skuesp. sekr. prof.
mus. lrs. logr. kgl. insp. hr. hrs. gdr. frk. fr.
forst. forf. fm. fmd. esq. d.æ d.æ. d.y. dr.
dir. dept.chef civiling. bibl. ass. admn. adj.
Skt. H.K.H.

<language>_non_sent_end_abbr English, Japanese, Simplified
Chinese (abbreviate to
simp_chinese), Traditional
Chinese (abbreviate to
trad_chinese)

e.g. i.e. viz. a.k.a. Adm. Br. Capt. Cdr.
Cmdr. Col. Comdr. Comdt. Dr. Drs. Fr.
Gen. Gov. Hon. Ins. Lieut. Lt. Maj. Messrs.
Mdm. Mlle. Mlles. Mme. Mmes. Mr. Mrs.
Ms. Pres. Prof. Profs. Pvt. Rep. Rev. Revd.
Secy. Sen. Sgt. Sra. Srta. St. Ste.

<language>_non_sent_end_abbr French c.-à-d. cf. e.g. ex. i.e. Pr. Prof. M. Mr. Mrs.
Mme Mmes Mlle Mlles Mgr. MM. Lieut.
Gén. Dr. Col.

<language>_non_sent_end_abbr German ca. bzw. e.g. i.e. inkl. Fr. Frl. Mme. Mile.
Mag. Stud. Tel. Hr. Hrn. apl.Prof. Prof.

<language>_non_sent_end_abbr Italian e.g. i.e. pag. pagg. tel. T.V. N.H. N.D.
comm. col. cav. cap. geom. gen. ing. jr. mr.
mons. mar. magg. prof. prof.ssa prof.sse
proff. pres. perito ind. p. p.i. sr. s.ten.
sottoten. sig. serg. sen. segr. sac. ten. uff.
vicepres. vesc. S.S. S.E. avv. app. amm.
arch. on. dir. dott. dott.ssa dr. rag.

<language>_non_sent_end_abbr Korean e.g. i.e. a.k.a. Dr. Mr. Mrs. Ms. Prof.

<language>_non_sent_end_abbr Portuguese cf. Cf. e.g. E.g. i.é. I.é. p.ex. P.ex. pág. pag.
Pág. Pag. tel. telef. Tel. Telef. sr. srs. sra.
mr. eng. dr. dra. Dr. Dra. V.Ex. V.Exa. S. N.
S. Mrs. Eng. Ex. Exa.

<language>_non_sent_end_abbr Spanish e.g. i.e. ej. p.ej. pág. págs. tel. tfno. Fr. Ldo.
Lda. Lic. Pbro. D. Dña. Dr. Dres. Dra. Dras.
Dn. Mons. Rvdo. Sto. Sta. Sr. Srs. Srta.
Srtas. Sres. Sra. Sras. Excmo. Excma.
Ilmo. Ilma. Sto. Sta.

<language>_non_sent_end_abbr Swedish inkl. prof. hrr. hr. Hrr. Hr. dr. Dr.

Chapter 2
Lexer Types

2-39

Examples for AUTO_LEXER Language-Dependent Attributes

Example 2-1 ctx_ddl.create_preference to associate a dictionary with an index

exec CTX_DDL.CREATE_PREFERENCE('A_LEX', 'AUTO_LEXER');
exec CTX_ANL. ADD_DICTIONARY('MY_ENGLISH', 'ENGLISH', lobloc);
select * from CTX_USR_ANL_DICTS;
exec CTX_DDL.SET_ATTRIBUTE('A_LEX', 'english_dictionary', 'MY_ENGLISH'
);

Example 2-2 <language>_prefix_morphemes

ctx_ddl.set_attribute(
 'a_lex', 'english_prefix_morphemes', 're'
);

Example 2-3 <language>_suffix_morphemes

ctx_ddl.set_attribute(
 'a_lex', 'english_suffix_morphemes', 's es'
);

Example 2-4 <language>_punctuations

ctx_ddl.set_attribute(
 'a_lex', 'english_punctuations', '. ? !'
);

Example 2-5 <language>_non_sentence_ending_abbrev

ctx_ddl.set_attribute(
 'a_lex', 'english_non_sentence_ending_abbrev', 'e.g. a.k.a. Dr.'
);

2.5.1.5 AUTO_LEXER Dictionary Attribute
The dictionary attribute is language-specific and is used to set the name of the
language dictionary. The <language>_dictionary attribute specifies one language
dictionary for the supported languages as listed in Table 2-18.

The <language>_dictionary attribute has the following behavior:

• The <language> value of the attribute specifies only the dictionary name, not the
location. For example, dutch_dictionary specifies that the Dutch dictionary is to
be used.

• The set_attribute method does not load the dictionary; it only records the
dictionary name. Therefore, the dictionary must be at the specified location when
the dictionary is needed. Otherwise, an error will be raised.

Table 2-18 Supported Languages for AUTO_LEXER Dictionary Attribute

Language Attribute Language Attribute

Catalan Korean

Czech Polish

Dutch Portuguese

Chapter 2
Lexer Types

2-40

Table 2-18 (Cont.) Supported Languages for AUTO_LEXER Dictionary Attribute

Language Attribute Language Attribute

English Romanian

French Russian

German Simplified Chinese

Greek Spanish

Hungarian Swedish

Italian Traditional Chinese

Japanese Turkish

2.5.2 BASIC_LEXER
Use the BASIC_LEXER type to identify tokens for creating Text indexes for English and
all other supported whitespace-delimited languages.

The BASIC_LEXER also enables base-letter conversion, composite word indexing, case-
sensitive indexing and alternate spelling for whitespace-delimited languages that have
extended character sets.

In English and French, you can use the BASIC_LEXER to enable theme indexing.

Note:

Any processing that the lexer does to tokens before indexing (for example,
removal of characters, and base-letter conversion) are also performed on
query terms at query time. This ensures that the query terms match the form
of the tokens in the Text index.

BASIC_LEXER supports any database character set.

This section contains the following topics.

• BASIC_LEXER Attributes

• Stemming User-Dictionaries

• BASIC_LEXER Example

2.5.2.1 BASIC_LEXER Attributes
BASIC_LEXER has the attributes shown in Table 2-19.

Table 2-19 BASIC_LEXER Attributes

Attribute Attribute Value

continuation characters

Chapter 2
Lexer Types

2-41

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

numgroup characters

numjoin characters

printjoins characters

punctuations characters

skipjoins characters

startjoins non alphanumeric characters that occur at the beginning of a
token (string)

endjoins non alphanumeric characters that occur at the end of a token
(string)

whitespace characters (string)

newline NEWLINE (\n)

CARRIAGE_RETURN (\r)

base_letter NO (disabled)

base_letter YES (enabled)

base_letter_type GENERIC (default)

base_letter_type SPECIFIC

override_base_letter TRUE

FALSE (default)

mixed_case NO (disabled)

mixed_case YES (enabled)

composite DEFAULT (no composite word indexing, default)

composite GERMAN (German composite word indexing)

composite DUTCH (Dutch composite word indexing)

Chapter 2
Lexer Types

2-42

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

index_stems

Use the numeric value in a
string or the string value.

NONE

ENGLISH

DERIVATIONAL

DUTCH

FRENCH

GERMAN

ITALIAN

SPANISH

CATALAN

CZECH

GREEK

HUNGARIAN

POLISH

PORTUGUESE

ROMANIAN

RUSSIAN

SWEDISH (see Note)

DERIVATIONAL_NEW (see Note)

DUTCH_NEW (see Note)

ENGLISH_NEW (see Note)

FRENCH_NEW (see Note)

GERMAN_NEW (see Note)

ITALIAN_NEW (see Note)

SPANISH_NEW (see Note)

TURKISH

Note: De-compounding word stemming is automatically
performed when index_stems is set to SWEDISH, or
DUTCH_NEW values.

Note: Seven of the index_stem attributes that are new for this
release have a "_NEW" suffix to enable you to utilize the new
stemmer attributes while maintaining backward compatibility with
previous releases of Oracle Text.

index_themes YES (enabled)

index_themes NO (disabled, default)

index_text YES (enabled, default)

index_text NO (disabled)

prove_themes YES (enabled, default)

prove_themes NO (disabled)

theme_language AUTO (default)

theme_language (any Globalization Support language)

alternate_spelling GERMAN (German alternate spelling)

alternate_spelling DANISH (Danish alternate spelling)

Chapter 2
Lexer Types

2-43

Table 2-19 (Cont.) BASIC_LEXER Attributes

Attribute Attribute Value

alternate_spelling SWEDISH (Swedish alternate spelling)

alternate_spelling NONE (No alternate spelling, default)

new_german_spelling YES

NO (default)

continuation
Specify the characters that indicate a word continues on the next line and should be
indexed as a single token. The most common continuation characters are hyphen '-'
and backslash '\'.

numgroup
Specify a single character that, when it appears in a string of digits, indicates that the
digits are groupings within a larger single unit.
For example, comma ',' might be defined as a numgroup character because it often
indicates a grouping of thousands when it appears in a string of digits.

numjoin
Specify the characters that, when they appear in a string of digits, cause Oracle Text
to index the string of digits as a single unit or word.
For example, period '.' can be defined as a numjoin character because it often serves
as a decimal point when it appears in a string of digits.

Note:

The default values for numjoin and numgroup are determined by the
globalization support initialization parameters that are specified for the
database.
In general, a value need not be specified for either numjoin or numgroup
when creating a lexer preference for BASIC_LEXER.

printjoins
Specify the non alphanumeric characters that, when they appear anywhere in a word
(beginning, middle, or end), are processed as alphanumeric and included with the
token in the Text index. This includes printjoins that occur consecutively.
For example, if the hyphen '-' and underscore '_' characters are defined as
printjoins, terms such as pseudo-intellectual and _file_ are stored in the Text index
as pseudo-intellectual and _file_.

Chapter 2
Lexer Types

2-44

Note:

If a printjoins character is also defined as a punctuations character, the
character is only processed as an alphanumeric character if the character
immediately following it is a standard alphanumeric character or has been
defined as a printjoins or skipjoins character.

punctuations
Specify a list of non-alphanumeric characters that, when they appear at the end of a
word, indicate the end of a sentence. The defaults are period '.', question mark '?',
and exclamation point '!'.
Characters that are defined as punctuations are removed from a token before text
indexing. However, if a punctuations character is also defined as a printjoins
character, then the character is removed only when it is the last character in the
token.
For example, if the period (.) is defined as both a printjoins and a punctuations
character, then the following transformations take place during indexing and querying
as well:

Token Indexed Token

.doc .doc

dog.doc dog.doc

dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASIC_LEXER use punctuations characters in conjunction with newline
and whitespace characters to determine sentence and paragraph delimiters for
sentence/paragraph searching.

skipjoins
Specify the non-alphanumeric characters that, when they appear within a word,
identify the word as a single token; however, the characters are not stored with the
token in the Text index.
For example, if the hyphen character '-' is defined as a skipjoins, then the word
pseudo-intellectual is stored in the Text index as pseudointellectual.

Note:

Printjoins and skipjoins are mutually exclusive. The same characters
cannot be specified for both attributes.

startjoins/endjoins
For startjoins, specify the characters that when encountered as the first character in
a token explicitly identify the start of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index entry
for the token. In addition, the first startjoins character in a string of startjoins
characters implicitly ends the previous token.

Chapter 2
Lexer Types

2-45

For endjoins, specify the characters that when encountered as the last character in a
token explicitly identify the end of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the Text index entry
for the token.
The following rules apply to both startjoins and endjoins:

• The characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASIC_LEXER.

• startjoins/endjoins characters can occur only at the beginning or end of tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For
example, $35 will be indexed as one token if $ is a startjoin or a printjoin, but as
two tokens if it is defined as an endjoin.

whitespace
Specify the characters that are treated as blank spaces between tokens. BASIC_LEXER
uses whitespace characters in conjunction with punctuations and newline
characters to identify character strings that serve as sentence delimiters for sentence
and paragraph searching.
The predefined default values for whitespace are space and tab. These values
cannot be changed. Specifying characters as whitespace characters adds to these
defaults.

newline
Specify the characters that indicate the end of a line of text. BASIC_LEXER uses
newline characters in conjunction with punctuations and whitespace characters to
identify character strings that serve as paragraph delimiters for sentence and
paragraph searching.
The only valid values for newline are NEWLINE and CARRIAGE_RETURN (for carriage
returns). The default is NEWLINE.

base_letter
Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index. The default is NO (base-letter conversion disabled). For more information on
base-letter conversions and base_letter_type, see Base-Letter Conversion.

base_letter_type
Specify GENERIC or SPECIFIC.
The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on base-letter
conversions and base_letter_type, see "Base-Letter Conversion".

override_base_letter
When base_letter is enabled at the same time as alternate_spelling, it is
sometimes necessary to override base_letter to prevent unexpected results from
serial transformations. See "Overriding Alternative Spelling Features". Default is
FALSE.

mixed_case
Specify whether the lexer leaves the tokens exactly as they appear in the text or
converts the tokens to all uppercase. The default is NO (tokens are converted to all
uppercase).

Chapter 2
Lexer Types

2-46

Note:

Oracle Text ensures that word queries match the case sensitivity of the
index being queried. As a result, if you enable case sensitivity for your Text
index, queries against the index are always case sensitive.

composite
Specify whether composite word indexing is disabled or enabled for either GERMAN or
DUTCH text. The default is DEFAULT (composite word indexing disabled).
Words that are usually one entry in a German dictionary are not split into composite
stems, while words that aren't dictionary entries are split into composite stems.
To retrieve the indexed composite stems, you must enter a stem query, such
as $bahnhof. The language of the wordlist stemmer must match the language of the
composite stems.

2.5.2.2 Stemming User-Dictionaries
You can create a user-dictionary for your own language to customize how words are
decomposed. These dictionaries are shown in Table 2-20.

Table 2-20 Stemming User-Dictionaries

Dictionary Stemmer

$ORACLE_HOME/ctx/data/frlx/drfr.dct French

$ORACLE_HOME/ctx/data/delx/drde.dct German

$ORACLE_HOME/ctx/data/nllx/drnl.dct Dutch

$ORACLE_HOME/ctx/data/itlx/drit.dct Italian

$ORACLE_HOME/ctx/data/eslx/dres.dct Spanish

$ORACLE_HOME/ctx/data/enlx/dren.dct English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-20.

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character.
The following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

index_themes
Specify YES to index theme information in English or French. This makes ABOUT
queries more precise. The index_themes and index_text attributes cannot both be
NO. The default is NO.
You can set this parameter to TRUE for any index type, including CTXCAT. To enter an
ABOUT query with CATSEARCH, use the query template with CONTEXT grammar.

Chapter 2
Lexer Types

2-47

prove_themes
Specify YES to prove themes. Theme proving attempts to find related themes in a
document. When no related themes are found, parent themes are eliminated from the
document.
While theme proving is acceptable for large documents, short text descriptions with a
few words rarely prove parent themes, resulting in poor recall performance with ABOUT
queries.
Theme proving results in higher precision and less recall (less rows returned) for
ABOUT queries. For higher recall in ABOUT queries and possibly less precision, you can
disable theme proving. Default is YES.
The prove_themes attribute is supported for CONTEXT and CTXRULE indexes.

theme_language
Specify which knowledge base to use for theme generation when index_themes is set
to YES. When index_themes is NO, setting this parameter has no effect on anything.
Specify any globalization support language or AUTO. You must have a knowledge base
for the language you specify. This release provides a knowledge base in only English
and French. In other languages, you can create your own knowledge base.

See Also:

"Adding a Language-Specific Knowledge Base" in Oracle Text Utilities .

The default is AUTO, which instructs the system to set this parameter according to the
language of the environment.

index_stems
Specify the stemmer to use for stem indexing. Choose one of the following stemmers:
NONE, ARABIC, CATALAN, CROATIAN, CZECH, DANISH, DERIVATIONAL,
DUTCH, ENGLISH, FINNISH, FRENCH, GERMAN, HEBREW, HUNGARIAN,
ITALIAN, NORWEGIAN, POLISH, PORTUGUESE, ROMANIAN, SLOVAK,
SLOVENIAN, SPANISH, and SWEDISH.

Tokens are stemmed to a single base form at index time in addition to the normal
forms. Indexing stems enables better query performance for stem ($) queries, such
as $computed.

Note:

If the index_stems attribute is set to one of the languages with ID 8 to 33,
which are listed Table 2-19, then the stemmer attribute of BASIC_WORDLIST
will be ignored and the stemmer used by the BASIC_LEXER will be used during
query to determine the stem of the given query term.

index_text
Specify YES to index word information. The index_themes and index_text
attributes cannot both be NO.
The default is YES.

Chapter 2
Lexer Types

2-48

alternate_spelling
Specify either GERMAN, DANISH, or SWEDISH to enable the alternate spelling in one of
these languages. Enabling alternate spelling enables you to query a word in any of its
alternate forms.
Alternate spelling is off by default; however, in the language-specific scripts that
Oracle provides in admin/defaults (drdefd.sql for German, drdefdk.sql for Danish,
and drdefs.sql for Swedish), alternate spelling is turned on. If your installation uses
these scripts, then alternate spelling is on. However, you can specify NONE for no
alternate spelling. For more information about the alternate spelling conventions
Oracle Text uses, see Alternate Spelling.

new_german_spelling
Specify whether the queries using the BASIC_LEXER return both traditional and
reformed (new) spellings of German words. If new_german_spelling is set to YES,
then both traditional and new forms of words are indexed. If it is set to NO, then the
word will be indexed only as it as provided in the query. The default is NO.

See Also:

"New German Spelling"

2.5.2.3 BASIC_LEXER Example
The following example sets printjoin characters and disables theme indexing with the
BASIC_LEXER:

begin
ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

To create the index with no theme indexing and with printjoin characters set as
described, enter the following statement:

create index myindex on mytable (docs)
 indextype is ctxsys.context
 parameters ('LEXER mylex');

2.5.3 MULTI_LEXER
Use MULTI_LEXER to index text columns that contain documents of different languages.
For example, use this lexer to index a text column that stores English, German, and
Japanese documents.

This lexer has no attributes.

You must have a language column in your base table. To index multi-language tables,
specify the language column when you create the index.

Create a multi-lexer preference with CTX_DDL.CREATE_PREFERENCE. Add language-
specific lexers to the multi-lexer preference with the CTX_DDL.ADD_SUB_LEXER
procedure.

Chapter 2
Lexer Types

2-49

During indexing, the MULTI_LEXER examines each row's language column value and
switches in the language-specific lexer to process the document.

The WORLD_LEXER lexer also performs multi-language indexing, but without the need for
separate language columns (that is, it has automatic language detection). For more on
WORLD_LEXER, see "WORLD_LEXER".

This section contains the following topics.

• MULTI_LEXER Restriction

• MULTI_LEXER Multi-language Stoplists

• MULTI_LEXER Example

• MULTI_LEXER and Querying Multi-Language Tables

2.5.3.1 MULTI_LEXER Restriction
MULTI_LEXER must have a sublexer specified for different languages. If you already
know the language, you can use BASIC_LEXER as the sublexer. If the language is not
known, then you use AUTO_LEXER instead of MULTI_LEXER. Hence, using
AUTO_LEXER as a sublexer of MULTI_LEXER is not useful and it is disabled.

Thus, the following statements will not work and throw error DRG-13003.

exec ctx_ddl.create_preference ('multilexer', 'MULTI_LEXER');
exec ctx_ddl..create_preference('autolexer', AUTO_LEXER);
exec ctx_ddl.add_sub_lexer('multilexer', 'GERMAN', 'autolexer');

2.5.3.2 MULTI_LEXER Multi-language Stoplists
When you use the MULTI_LEXER, you can also use a multi-language stoplist for
indexing.

See Also:

"Multi-Language Stoplists".

2.5.3.3 MULTI_LEXER Example
Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-
lexers, one for English, one for German, and one for Japanese:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribute('english_lexer','theme_language','english');

Chapter 2
Lexer Types

2-50

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default
using CTX_DDL.ADD_SUB_LEXER :

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Now add the German and Japanese lexers in their respective languages with
CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is
expressed in the standard ISO 639-2 language codes, so add those as alternative
values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Now create the index globalx, specifying the multi-lexer preference and the language
column in the parameter clause as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables
At query time, the multi-lexer examines the language setting and uses the sub-lexer
preference for that language to parse the query.

If the language is not set, then the default lexer is used. Otherwise, the query is parsed
and run as usual. The index contains tokens from multiple languages, so such a query
can return documents in several languages. To limit your query to a given language,
use a structured clause on the language column.

If the language column is set to AUTO, then the multi-lexer detects the language of the
document for the supported languages shown in Table 2-21.

Table 2-21 Languages Supported for MULTI_LEXER Auto-detection

Language Language

ARABIC JAPANESE

CATALAN KOREAN

TRADITIONAL CHINESE NORWEGIAN

CROATIAN POLISH

CZECH PORTUGUESE

DANISH ROMANIAN

DUTCH RUSSIAN

ENGLISH LATIN SERBIAN

Chapter 2
Lexer Types

2-51

Table 2-21 (Cont.) Languages Supported for MULTI_LEXER Auto-detection

Language Language

GERMAN SLOVAK

GREEK SWEDISH

HEBREW THAI

HUNGARIAN TURKISH

ITALIAN

2.5.4 CHINESE_VGRAM_LEXER
The CHINESE_VGRAM_LEXER type identifies tokens in Chinese text for creating Text
indexes.

The CHINESE_VGRAM_LEXER has the following attribute:

Table 2-22 CHINESE_VGRAM_LEXER Attributes

Attribute Attribute Value

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

You can use this lexer if your database uses one of the following character sets:

• AL32UTF8

• ZHS16CGB231280

• ZHS16GBK

• ZHS32GB18030

• ZHT32EUC

• ZHT16BIG5

• ZHT32TRIS

• ZHT16HKSCS

• ZHT16MSWIN950

• UTF8

2.5.5 CHINESE_LEXER
The CHINESE_LEXER type identifies tokens in traditional and simplified Chinese text for
creating Oracle Text indexes.

This lexer offers the following benefits over the CHINESE_VGRAM_LEXER:

• generates a smaller index

• better query response time

Chapter 2
Lexer Types

2-52

• generates real word tokens resulting in better query precision

• supports stop words

Because the CHINESE_LEXER uses a different algorithm to generate tokens, indexing
time is longer than with CHINESE_VGRAM_LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode
character sets supported by Oracle.

The CHINESE_LEXER has the following attribute:

Table 2-23 CHINESE_LEXER Attributes

Attribute Attribute Value

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create
your own Chinese lexicon, with the ctxlc command.

See Also:

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

2.5.6 JAPANESE_VGRAM_LEXER
The JAPANESE_VGRAM_LEXER type identifies tokens in Japanese for creating Text
indexes. This lexer supports the stem ($) operator.

This lexer has the following attributes:

Table 2-24 JAPANESE_VGRAM_LEXER Attributes

Attribute Attribute Value

delimiter Specify whether to consider certain Japanese blank characters,
such as a full-width forward slash or a full-width middle dot, as
part of the indexed token. ALL considers these characters as
part of the token while NONE ignores them. The default is NONE.

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

bigram Specify TRUE to enable the bigram mode for the Japanese
VGRAM lexer. In the bigram mode, the Japanese queries run
faster because only 2-gram tokens are generated, thus avoiding
the internal wildcard search. But, in the bigram mode, the index
size needs to be increased to accommodate the large number of
tokens. Enable the bigram mode, if the performance of queries is
of higher importance to you than the disk space. Default is
FALSE.

Chapter 2
Lexer Types

2-53

Table 2-24 (Cont.) JAPANESE_VGRAM_LEXER Attributes

Attribute Attribute Value

printjoins Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed
as alphanumeric and included with the token in the Text index.
This includes printjoins that occur consecutively. See Basic
Lexer "printjoins".

skipjoins Specify the non-alphanumeric characters that, when they appear
within a word, identify the word as a single token; however, the
characters are not stored with the token in the Text index. See
Basic Lexer "skipjoins".

You can use this lexer if your database uses one of the following character sets:

• JA16SJIS

• JA16EUC

• UTF8

• AL32UTF8

• JA16EUCTILDE

• JA16EUCYEN

• JA16SJISTILDE

• JA16SJISYEN

Rules for PRINTJOIN and SKIPJOIN Characters

• Only non-alphanumeric ASCII characters that do not include any Chinese,
Japanese, or Korean characters or any full-width non-alphanumeric characters are
accepted.

• You can specify a single non-alphanumeric character or multiple non-
alphanumeric characters at a time.

• The printjoin/skipjoin will be ignored if you enter any characters that are not
allowed. This includes alphanumeric characters, CJK – Chinese, Japanese,
Korean – characters or full-width non-alphanumeric characters.

• In case of duplicate non-alphanumeric characters, duplicate entries will be
ignored.

Examples

Example 2-6 Using Printjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as printjoins thereby
indicating that these characters must be included with the token in the Text index.
Therefore, words such as web-site or web_site as indexed as web-site and web_site.
Queries that search for website will not return documents containing web-site or
web_site.

ctx_ddl.create_preference('mylex', 'JAPANESE_VGRAM_LEXER');
ctx_ddl.set_attribute('mylex', 'printjoins', '_-');

Chapter 2
Lexer Types

2-54

Example 2-7 Using Skipjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as skipjoins thereby
indicating that these characters must not be included with the token in the Text index.
Therefore, words such as web-site or web_site as indexed as website. Queries that
search for website will return documents containing web-site or web_site.

ctx_ddl.create_preference('mylex', 'JAPANESE_VGRAM_LEXER');
ctx_ddl.set_attribute('mylex', 'skipjoins', '_-');

2.5.7 JAPANESE_LEXER
The JAPANESE_LEXER type identifies tokens in Japanese for creating Text indexes. This
lexer supports the stem ($) operator.

This lexer offers the following benefits over the JAPANESE_VGRAM_LEXER:

• generates a smaller index

• better query response time

• generates real word tokens resulting in better query precision

Because the JAPANESE_LEXER uses a new algorithm to generate tokens, indexing time
is longer than with JAPANESE_VGRAM_LEXER.

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create
your own Japanese lexicon, with the ctxlc command.

See Also:

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

This lexer has the following attributes:

Table 2-25 JAPANESE_LEXER Attributes

Attribute Attribute Value

delimiter Specify NONE or ALL to ignore certain Japanese blank
characters, such as a full-width forward slash or a full-width
middle dot. Default is NONE.

mixed_case_ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7
text (for example, cat and Cat). Allowable values are YES and NO
(default).

The JAPANESE_LEXER supports the following character sets:

• JA16SJIS

• JA16EUC

• UTF8

• AL32UTF8

Chapter 2
Lexer Types

2-55

• JA16EUCTILDE

• JA16EUCYEN

• JA16SJISTILDE

• JA16SJISYEN

When you specify JAPANESE_LEXER for creating text index, the JAPANESE_LEXER
resolves a sentence into words.

For example, the following compound word (natural language institute)

is indexed as three tokens:

To resolve a sentence into words, the internal dictionary is referenced. When a word
cannot be found in the internal dictionary, Oracle Text uses the JAPANESE_VGRAM_LEXER
to resolve it.

2.5.8 KOREAN_MORPH_LEXER
The KOREAN_MORPH_LEXER type identifies tokens in Korean text for creating Oracle Text
indexes.

This section contains the following topics.

• KOREAN_MORPH_ LEXER Dictionaries

• KOREAN_MORPH_ LEXER Unicode Support

• KOREAN_MORPH_LEXER Attributes

• KOREAN_MORPH_ LEXER Limitations

• KOREAN_MORPH_LEXER Example: Setting Composite Attribute

2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries
The KOREAN_MORPH_LEXER uses four dictionaries:

Chapter 2
Lexer Types

2-56

Table 2-26 KOREAN_MORPH_LEXER Dictionaries

Dictionary File

System $ORACLE_HOME/ctx/data/kolx/drk2sdic.dat

Grammar $ORACLE_HOME/ctx/data/kolx/drk2gram.dat

Stopword $ORACLE_HOME/ctx/data/kolx/drk2xdic.dat

User-defined $ORACLE_HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the
KSC 5601 or MSWIN949 character sets. You can modify these dictionaries using the
defined rules. The system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for
specifying new words are in the file.

You can use KOREAN_MORPH_LEXER if your database uses one of the following character
sets:

• KO16KSC5601

• KO16MSWIN949

• UTF8

• AL32UTF8

The KOREAN_MORPH_LEXER enables mixed-case searches.

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support
The KOREAN_MORPH_LEXER has the following Unicode support:

• Words in non-KSC5601 Korean characters defined in Unicode

• Supplementary characters

See Also:

For information on supplementary characters, see the Oracle Database
Globalization Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the
KOREAN_MORPH_LEXER can recognize all possible 11,172 Korean (Hangul) characters,
such documents can also be interpreted by using the UTF8 or AL32UTF8 character
sets.

Use the AL32UTF8 character set for your database to extract surrogate characters. By
default, the KOREAN_MORPH_LEXER extracts all series of surrogate characters in a
document as one token for each series.

Chapter 2
Lexer Types

2-57

Limitations on Korean Unicode Support

For conversion from Hanja to Hangul (Korean), the KOREAN_MORPH_LEXER supports only
the 4,888 Hanja characters defined in KSC5601.

2.5.8.3 KOREAN_MORPH_LEXER Attributes
When you use the KOREAN_MORPH_LEXER, you can specify the following attributes:

Table 2-27 KOREAN_MORPH_LEXER Attributes

Attribute Attribute Value

verb_adjective Specify TRUE or FALSE to index verbs, adjectives, and adverbs.
Default is FALSE.

one_char_word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.

user_dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE.
The stop-word dictionary belongs to KOREAN_MORPH_LEXER.

composite Specify indexing style of composite noun.

Specify COMPOSITE_ONLY to index only composite nouns.

Specify NGRAM to index all noun components of a composite noun.

Specify COMPONENT_WORD to index single noun components of
composite nouns as well as the composite noun itself. Default is
COMPONENT_WORD.

"KOREAN_MORPH_LEXER Example: Setting Composite Attribute"
describes the difference between NGRAM and COMPONENT_WORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE,
tokens are created from the words that are divided by delimiters such
as white space in the document. Default is TRUE.

to_upper Specify TRUE or FALSE to convert English to uppercase. Default is
TRUE.

hanja Specify TRUE to index hanja characters. If set to FALSE, hanja
characters are converted to hangul characters. Default is FALSE.

long_word Specify TRUE to index long words that have more than 16 syllables in
Korean. Default is FALSE.

japanese Specify TRUE to index Japanese characters in Unicode (only in the 2-
byte area). Default is FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

2.5.8.4 KOREAN_MORPH_ LEXER Limitations
Sentence and paragraph sections are not supported with the KOREAN_MORPH_LEXER.

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute
Use the composite attribute to control how composite nouns are indexed.

Chapter 2
Lexer Types

2-58

NGRAM Example

When you specify NGRAM for the composite attribute, composite nouns are indexed with
all possible component tokens. For example, the following composite noun
(information processing institute)

is indexed as six tokens:

Specify NGRAM indexing as follows:

begin
ctx_ddl.create_preference('my_lexer','KOREAN_MORPH_LEXER');
ctx_ddl.set_attribute('my_lexer','COMPOSITE','NGRAM');
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my_lexer');

COMPONENT_WORD Example

When you specify COMPONENT_WORD for the composite attribute, composite nouns and
their components are indexed. For example, the following composite noun (information
processing institute)

is indexed as four tokens:

Specify COMPONENT_WORD indexing as follows:

begin
ctx_ddl.create_preference('my_lexer','KOREAN_MORPH_LEXER');

Chapter 2
Lexer Types

2-59

ctx_ddl.set_attribute('my_lexer','COMPOSITE','COMPONENT_WORD');
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my_lexer');

2.5.9 USER_LEXER
Use USER_LEXER to plug in your own language-specific lexing solution. This enables
you to define lexers for languages that are not supported by Oracle Text. It also
enables you to define a new lexer for a language that is supported but whose lexer is
inappropriate for your application.

This section contains the following topics.

• USER_LEXER Routines

• USER_LEXER Limitations

• USER_LEXER Attributes

• INDEX_PROCEDURE

• INPUT_TYPE

• QUERY_PROCEDURE

• Encoding Tokens as XML

• XML Schema for No-Location_ User-defined Indexing Procedure

• XML Schema for User-defined Indexing Procedure with Location

• XML Schema for User-defined Lexer Query Procedure

2.5.9.1 USER_LEXER Routines
The user-defined lexer you register with Oracle Text is composed of two routines that
you must supply:

Table 2-28 User-Defined Routines for USER_LEXER

User-Defined Routine Description

Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization
of documents and stop words. Output must be an XML
document as specified in this section.

Query Procedure Stored procedure (PL/SQL) which implements the tokenization
of query words. Output must be an XML document as specified
in this section.

2.5.9.2 USER_LEXER Limitations
The following features are not supported with the USER_LEXER:

• CTX_DOC.GIST and CTX_DOC.THEMES

• CTX_QUERY.HFEEDBACK

Chapter 2
Lexer Types

2-60

• ABOUT query operator

• CTXRULE index type

• VGRAM indexing algorithm

2.5.9.3 USER_LEXER Attributes
USER_LEXER has the following attributes:

Table 2-29 USER_LEXER Attributes

Attribute Attribute Value

INDEX_PROCEDURE Name of a stored procedure. No default provided.

INPUT_TYPE VARCHAR2, CLOB. Default is CLOB.

QUERY_PROCEDURE Name of a stored procedure. No default provided.

2.5.9.4 INDEX_PROCEDURE
This callback stored procedure is called by Oracle Text as needed to tokenize a
document or a stop word found in the stoplist object.

Requirements

This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You
can replace or drop this stored procedure after the index is dropped.

Parameters

Two different interfaces are supported for the user-defined lexer indexing procedure:

• VARCHAR2 Interface

• CLOB Interface

Restrictions

This procedure must not perform any of the following operations:

• Rollback

• Explicitly or implicitly commit the current transaction

• Enter any other transaction control statement

• Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

Chapter 2
Lexer Types

2-61

2.5.9.5 INPUT_TYPE
Two different interfaces are supported for the User-defined lexer indexing procedure.
One interface enables the document or stop word and the corresponding tokens
encoded as XML to be passed as VARCHAR2 datatype whereas the other interface uses
the CLOB datatype. This attribute indicates the interface implemented by the stored
procedure specified by the INDEX_PROCEDURE attribute.

• VARCHAR2 Interface

• CLOB Interface

2.5.9.5.1 VARCHAR2 Interface
Table 2-30 describes the interface that enables the document or stop word from
stoplist object to be tokenized to be passed as VARCHAR2 from Oracle Text to the
stored procedure and for the tokens to be passed as VARCHAR2 as well from the stored
procedure back to Oracle Text.

Your user-defined lexer indexing procedure should use this interface when all
documents in the column to be indexed are smaller than or equal to 32512 bytes and
the tokens can be represented by less than or equal to 32512 bytes. In this case the
CLOB interface given in Table 2-31 can also be used, although the VARCHAR2 interface
will generally perform faster than the CLOB interface.

This procedure must be defined with the following parameters:

Table 2-30 VARCHAR2 Interface for INDEX_PROCEDURES

Parameter
Position

Parameter
Mode

Parameter
Datatype

Description

1 IN VARCHAR2 Document or stop word from stoplist object to be tokenized.

If the document is larger than 32512 bytes then Oracle Text
will report a document level indexing error.

2 IN OUT VARCHAR2 Tokens encoded as XML.

If the document contains no tokens, then either NULL must
be returned or the tokens element in the XML document
returned must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when declaring
this parameter. This passes the data by reference, rather than
passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically used to
improve readability). This reduces the size of the XML
document which in turn minimizes the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding XML
schema at run-time.

Note that this parameter is IN OUT for performance purposes.
The stored procedure has no need to use the IN value.

Chapter 2
Lexer Types

2-62

Table 2-30 (Cont.) VARCHAR2 Interface for INDEX_PROCEDURES

Parameter
Position

Parameter
Mode

Parameter
Datatype

Description

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text
needs the character offset and character length of the tokens
as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the
tokens as found in the document being tokenized. This
implies that the XML attributes off and len must not be used.

2.5.9.5.2 CLOB Interface
Table 2-31 describes the CLOB interface that enables the document or stop word from
stoplist object to be tokenized to be passed as CLOB from Oracle Text to the stored
procedure and for the tokens to be passed as CLOB as well from the stored procedure
back to Oracle Text.

The user-defined lexer indexing procedure should use this interface when at least one
of the documents in the column to be indexed is larger than 32512 bytes or the
corresponding tokens are represented by more than 32512 bytes.

Table 2-31 CLOB Interface for INDEX_PROCEDURE

Parameter
Position

Parameter
Mode

Parameter Datatype Description

1 IN CLOB Document or stop word from stoplist object to be
tokenized.

2 IN OUT CLOB Tokens encoded as XML.

If the document contains no tokens, then either NULL
must be returned or the tokens element in the XML
document returned must contain no child elements.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by
reference, rather than passing data by value.

The XML document returned by this procedure should
not include unnecessary whitespace characters
(typically used to improve readability). This reduces
the size of the XML document which in turn minimizes
the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding
XML schema at run-time.

Note that this parameter is IN OUT for performance
purposes. The stored procedure has no need to use
the IN value. The IN value will always be a truncated
CLOB.

Chapter 2
Lexer Types

2-63

Table 2-31 (Cont.) CLOB Interface for INDEX_PROCEDURE

Parameter
Position

Parameter
Mode

Parameter Datatype Description

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle
Text needs the character offset and character length
of the tokens as found in the document being
tokenized.

Oracle Text sets this parameter to FALSE when Text
is not interested in the character offset and character
length of the tokens as found in the document being
tokenized. This implies that the XML attributes off and
len must not be used.

The first and second parameters are temporary CLOBS. Avoid assigning these CLOB
locators to other locator variables. Assigning the formal parameter CLOB locator to
another locator variable causes a new copy of the temporary CLOB to be created
resulting in a performance hit.

2.5.9.6 QUERY_PROCEDURE
This callback stored procedure is called by Oracle Text as needed to tokenize words in
the query. A space-delimited group of characters (excluding the query operators) in
the query will be identified by Oracle Text as a word.

Requirements

This procedure can be a PL/SQL stored procedure.

The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or be dropped after the index is created.
You can replace or drop this stored procedure after the index is dropped.

Restrictions

This procedure must not perform any of the following operations:

• Rollback

• Explicitly or implicitly commit the current transaction

• Enter any other transaction control statement

• Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be
in the same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all
parameters.

Parameters

Table 2-32 describes the interface for the user-defined lexer query procedure:

Chapter 2
Lexer Types

2-64

Table 2-32 User-defined Lexer Query Procedure XML Schema Attributes

Parameter
Position

Parameter
Mode

Parameter Datatype Description

1 IN VARCHAR2 Query word to be tokenized.

2 IN CTX_ULEXER.WILDCARD_TAB Character offsets of wildcard characters (%
and _) in the query word. If the query word
passed in by Oracle Text does not contain any
wildcard characters then this index-by table
will be empty.

The wildcard characters in the query word
must be preserved in the tokens returned in
order for the wildcard query feature to work
properly.

The character offset is 0 (zero) based. Offset
information follows USC-2 codepoint
semantics.

3 IN OUT VARCHAR2 Tokens encoded as XML.

If the query word contains no tokens then
either NULL must be returned or the tokens
element in the XML document returned must
contain no child elements.

The length of the data must be less-than or
equal to 32512 bytes.

2.5.9.7 Encoding Tokens as XML
The sequence of tokens returned by your stored procedure must be represented as an
XML 1.0 document. The XML document must be valid with respect to the XML
Schemas given in the following sections.

• XML Schema for No-Location_ User-defined Indexing Procedure

• XML Schema for User-defined Indexing Procedure with Location

• XML Schema for User-defined Lexer Query Procedure

Limitations

To boost performance of this feature, the XML parser in Oracle Text will not perform
validation and will not be a full-featured XML compliant parser. This implies that only
minimal XML features will be supported. The following XML features are not
supported:

• Document Type Declaration (for example, <!DOCTYPE [...]>) and therefore entity
declarations. Only the following built-in entities can be referenced: lt, gt, amp, quot,
and apos.

• CDATA sections.

• Comments.

• Processing Instructions.

• XML declaration (for example, <?xml version="1.0" ...?>).

• Namespaces.

Chapter 2
Lexer Types

2-65

• Use of elements and attributes other than those defined by the corresponding XML
Schema.

• Character references (for example ট).

• xml:space attribute.

• xml:lang attribute

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure
This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is FALSE. The
XML document returned must be valid with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="tokens">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="eos" type="EmptyTokenType"/>
 <xsd:element name="eop" type="EmptyTokenType"/>
 <xsd:element name="num" type="xsd:token"/>
 <xsd:group ref="IndexCompositeGroup"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Enforce constraint that compMem element must be preceded by word element
 or compMem element for indexing
 -->
 <xsd:group name="IndexCompositeGroup">
 <xsd:sequence>
 <xsd:element name="word" type="xsd:token"/>
 <xsd:element name="compMem" type="xsd:token" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>

 <!-- EmptyTokenType defines an empty element without attributes -->
 <xsd:complexType name="EmptyTokenType"/>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

• The root element is tokens. This is mandatory. It has no attributes.

• The root element can have zero or more child elements. The child elements can
be one of the following elements: eos, eop, num, word, and compMem. Each of
these represent a specific type of token.

• The compMem element must be preceded by a word element or a compMem element.

• The eos and eop elements have no attributes and must be empty elements.

• The num, word, and compMem elements have no attributes. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space

Chapter 2
Lexer Types

2-66

character, remove leading and trailing spaces, perform entity reference
replacement, and truncate to 64 bytes.

Table 2-33 describes the element names defined in the preceding XML Schema.

Table 2-33 User-defined Lexer Indexing Procedure XML Schema Element
Names

Element Description

word This element represents a simple word token. The content of the element is
the word itself. Oracle Text does the work of identifying this token as being a
stop word or non-stop word and processing it appropriately.

num This element represents an arithmetic number token. The content of the
element is the arithmetic number itself. Oracle Text treats this token as a stop
word if the stoplist preference has NUMBERS added as the stopclass.
Otherwise this token is treated the same way as the word token.

Supporting this token type is optional. Without support for this token type,
adding the NUMERBS stopclass will have no effect.

eos This element represents end-of-sentence token. Oracle Text uses this
information so that it can support WITHIN SENTENCE queries.

Supporting this token type is optional. Without support for this token type,
queries against the SENTENCE section will not work as expected.

eop This element represents end-of-paragraph token. Oracle Text uses this
information so that it can support WITHIN PARAGRAPH queries.

Supporting this token type is optional. Without support for this token type,
queries against the PARAGRAPH section will not work as expected.

compMem Same as the word element, except that the implicit word offset is the same as
the previous word token.

Support for this token type is optional.

Examples

Document: Vom Nordhauptbahnhof und aus der Innenstadt zum Messegelände.

Tokens:

<tokens>
 <word> VOM </word>
 <word> NORDHAUPTBAHNHOF </word>
 <compMem>NORD</compMem>
 <compMem>HAUPT </compMem>
 <compMem>BAHNHOF </compMem>
 <compMem>HAUPTBAHNHOF </compMem>
 <word> UND </word>
 <word> AUS </word>
 <word> DER </word>
 <word> INNENSTADT </word>
 <word> ZUM </word>
 <word> MESSEGELÄNDE </word>
 <eos/>
</tokens>

Document: Oracle Database 11g Release 1

Tokens:

Chapter 2
Lexer Types

2-67

<tokens>
 <word> ORACLE11G</word>
 <word> RELEASE </word>
 <num> 1 </num>
</tokens>

Document: WHERE salary<25000.00 AND job = 'F&B Manager'

Tokens:

<tokens>
 <word> WHERE </word>
 <word> salary<2500.00 </word>
 <word> AND </word>
 <word> job </word>
 <word> F&B </word>
 <word> Manager </word>
</tokens>

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location
This section describes additional constraints imposed on the XML document returned
by the user-defined lexer indexing procedure when the third parameter is TRUE. The
XML document returned must be valid according to the following XML schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="tokens">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="eos" type="EmptyTokenType"/>
 <xsd:element name="eop" type="EmptyTokenType"/>
 <xsd:element name="num" type="DocServiceTokenType"/>
 <xsd:group ref="DocServiceCompositeGroup"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Enforce constraint that compMem element must be preceeded by word element
 or compMem element for document service
 -->
 <xsd:group name="DocServiceCompositeGroup">
 <xsd:sequence>
 <xsd:element name="word" type="DocServiceTokenType"/>
 <xsd:element name="compMem" type="DocServiceTokenType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>

 <!-- EmptyTokenType defines an empty element without attributes -->
 <xsd:complexType name="EmptyTokenType"/>

 <!--
 DocServiceTokenType defines an element with content and mandatory attributes
 -->
 <xsd:complexType name="DocServiceTokenType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">

Chapter 2
Lexer Types

2-68

 <xsd:attribute name="off" type="OffsetType" use="required"/>
 <xsd:attribute name="len" type="xsd:unsignedShort" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="OffsetType">
 <xsd:restriction base="xsd:unsignedInt">
 <xsd:maxInclusive value="2147483647"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Some of the constraints imposed by this XML Schema are as follows:

• The root element is tokens. This is mandatory. It has no attributes.

• The root element can have zero or more child elements. The child elements can
be one of the following elements: eos, eop, num, word, and compMem. Each of
these represent a specific type of token.

• The compMem element must be preceded by a word element or a compMem element.

• The eos and eop elements have no attributes and must be empty elements.

• The num, word, and compMem elements have two mandatory attributes: off and
len. Oracle Text will normalize the content of these elements as follows: convert
whitespace characters to space characters, collapse adjacent space characters to
a single space character, remove leading and trailing spaces, perform entity
reference replacement, and truncate to 64 bytes.

• The off attribute value must be an integer between 0 and 2147483647 inclusive.

• The len attribute value must be an integer between 0 and 65535 inclusive.

Table 2-33 describes the element types defined in the preceding XML Schema.

Table 2-34 describes the attributes defined in the preceding XML Schema.

Table 2-34 User-defined Lexer Indexing Procedure XML Schema Attributes

Attribute Description

off This attribute represents the character offset of the token as it appears in
the document being tokenized.

The offset is with respect to the character document passed to the user-
defined lexer indexing procedure, not the document fetched by the
datastore. The document fetched by the datastore may be pre-processed
by the filter object or the section group object, or both, before being
passed to the user-defined lexer indexing procedure.

The offset of the first character in the document being tokenized is 0
(zero). Offset information follows USC-2 codepoint semantics.

Chapter 2
Lexer Types

2-69

Table 2-34 (Cont.) User-defined Lexer Indexing Procedure XML Schema
Attributes

Attribute Description

len This attribute represents the character length (same semantics as SQL
function LENGTH) of the token as it appears in the document being
tokenized.

The length is with respect to the character document passed to the user-
defined lexer indexing procedure, not the document fetched by the
datastore. The document fetched by the datastore may be pre-processed
by the filter object or the section group object before being passed to the
user-defined lexer indexing procedure.

Length information follows USC-2 codepoint semantics.

Sum of off attribute value and len attribute value must be less than or equal to the
total number of characters in the document being tokenized. This is to ensure that the
document offset and characters being referenced are within the document boundary.

Example

Document: User-defined Lexer.

Tokens:

<tokens>
 <word off="0" len="4"> USE </word>
 <word off="5" len="7"> DEF </word>
 <word off="13" len="5"> LEX </word>
 <eos/>
</tokens>

2.5.9.10 XML Schema for User-defined Lexer Query Procedure
This section describes additional constraints imposed on the XML document returned
by the user-defined lexer query procedure. The XML document returned must be valid
with respect to the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="tokens">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="num" type="QueryTokenType"/>
 <xsd:group ref="QueryCompositeGroup"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

<!--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for query
-->
 <xsd:group name="QueryCompositeGroup">
 <xsd:sequence>
 <xsd:element name="word" type="QueryTokenType"/>

Chapter 2
Lexer Types

2-70

 <xsd:element name="compMem" type="QueryTokenType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>

 <!--
 QueryTokenType defines an element with content and with an optional attribute
 -->
 <xsd:complexType name="QueryTokenType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:token">
 <xsd:attribute name="wildcard" type="WildcardType" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <xsd:simpleType name="WildcardType">
 <xsd:restriction base="WildcardBaseType">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="64"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="WildcardBaseType">
 <xsd:list>
 <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:maxInclusive value="378"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:list>
 </xsd:simpleType>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

• The root element is tokens. This is mandatory. It has no attributes.

• The root element can have zero or more child elements. The child elements can
be one of the following elements: num and word. Each of these represent a specific
type of token.

• The compMem element must be preceded by a word element or a compMem element.

The purpose of compMem is to enable USER_LEXER queries to return multiple forms
for a single query. For example, if a user-defined lexer indexes the word bank as
BANK(FINANCIAL) and BANK(RIVER), the query procedure can return the first term
as a word and the second as a compMem element:

<tokens>
 <word>BANK(RIVER)</word>
 <compMem>BANK(FINANCIAL)</compMem>
</tokens>

See Table 2-35, "Table 2-35" for more on the compMem element.

• The num and word elements have a single optional attribute: wildcard. Oracle Text
will normalize the content of these elements as follows: convert whitespace
characters to space characters, collapse adjacent space characters to a single

Chapter 2
Lexer Types

2-71

space character, remove leading and trailing spaces, perform entity reference
replacement, and truncate to 64 bytes.

• The wildcard attribute value is a white-space separated list of integers. The
minimum number of integers is 1 and the maximum number of integers is 64. The
value of the integers must be between 0 and 378 inclusive. The intriguers in the
list can be in any order.

Table 2-33 describes the element types defined in the preceding XML Schema.

Table 2-35 describes the attribute defined in the preceding XML Schema.

Table 2-35 User-defined Lexer Query Procedure XML Schema Attributes

Attribute Description

compMem Same as the word element, but its implicit word offset is the same as the
previous word token. Oracle Text will equate this token with the previous word
token and with subsequent compMem tokens using the query EQUIV operator.

wildcard Any % or _ characters in the query which are not escaped by the user are
considered wildcard characters because they are replaced by other
characters. These wildcard characters in the query must be preserved during
tokenization in order for the wildcard query feature to work properly. This
attribute represents the character offsets (same semantics as SQL function
LENGTH) of wildcard characters in the content of the element. Oracle Text will
adjust these offsets for any normalization performed on the content of the
element. The characters pointed to by the offsets must either be % or _
characters.

The offset of the first character in the content of the element is 0. Offset
information follows USC-2 codepoint semantics.

If the token does not contain any wildcard characters then this attribute must
not be specified.

Examples

Query word: pseudo-%morph%

Tokens:

<tokens>
 <word> PSEUDO </word>
 <word wildcard="1 7"> %MORPH% </word>
</tokens>

Query word: <%>

Tokens:

<tokens>
 <word wildcard="5"> <%> </word>
</tokens>

2.5.10 WORLD_LEXER
Use the WORLD_LEXER to index text columns that contain documents of different
languages. For example, use this lexer to index a text column that stores English,
Japanese, and German documents.

Chapter 2
Lexer Types

2-72

WORLD_LEXER differs from MULTI_LEXER in that WORLD_LEXER automatically detects the
language(s) of a document. Unlike MULTI_LEXER, WORLD_LEXER does not require you to
have a language column in your base table nor to specify the language column when
you create the index. Moreover, it is not necessary to use sub-lexers, as with
MULTI_LEXER. (See "MULTI_LEXER".)

WORLD_LEXER supports all database character sets, and for languages whose character
sets are Unicode-based, it supports the Unicode 5.0 standard. For a list of languages
that WORLD_LEXER can work with, see "World Lexer Features".

The WORLD_LEXER has the following attributes:

Table 2-36 WORLD_LEXER Attributes

Attribute Attribute Value

mixed_case Enables mixed-case (upper- and lower-case) searches of text
(for example, cat and Cat). Allowable values are YES and NO
(default).

printjoins Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed
as alphanumeric and included with the token in the Text index.
This includes printjoins that occur consecutively. See Basic
Lexer "printjoins".

skipjoins Specify the non-alphanumeric characters that, when they appear
within a word, identify the word as a single token; however, the
characters are not stored with the token in the Text index. See
Basic Lexer "skipjoins".

Rules for PRINTJOIN and SKIPJOIN Characters

Refer to ”Rules for PRINTJOIN and SKIPJOIN Characters” in
JAPANESE_VGRAM_LEXER.

WORLD_LEXER Example

The following is an example of creating an index using WORLD_LEXER.

exec ctx_ddl.create_preference('MYLEXER', 'world_lexer');
create index doc_idx on doc(data)
 indextype is CONTEXT
 parameters ('lexer MYLEXER
 stoplist CTXSYS.EMPTY_STOPLIST');

2.6 Wordlist Type
Use the wordlist preference to enable the query options such as stemming, fuzzy
matching for your language. You can also use the wordlist preference to enable
substring and prefix indexing, which improves performance for wildcard queries with
CONTAINS and CATSEARCH.

To create a wordlist preference, you must use BASIC_WORDLIST, which is the only type
available.

• BASIC_WORDLIST

• BASIC_WORDLIST Example

Chapter 2
Wordlist Type

2-73

2.6.1 BASIC_WORDLIST
Use BASIC_WORDLIST type to enable stemming and fuzzy matching or to create prefix
indexes with Text indexes.

See Also:

Oracle Text CONTAINS Query Operators

The following table lists the attributes for BASIC_WORDLIST.

Table 2-37 BASIC_WORDLIST Attributes

Attribute Attribute Values

stemmer Specify which language stemmer to use. You can specify one of the
following stemmers:

NULL (no stemming)

ENGLISH (English inflectional)

DERIVATIONAL (English derivational)

DUTCH

FRENCH

GERMAN

ITALIAN

SPANISH

AUTO (Automatic language-detection for stemming, derived from the
database session language. If the database session language is
AMERICAN or ENGLISH, then the ENGLISH stemmer is used. Does
not auto-detect JAPANESE.)

JAPANESE

fuzzy_match Specify which fuzzy matching cluster to use. You can specify one of
the following types:

AUTO (Automatic language detection for stemming.)

CHINESE_VGRAM

DUTCH

ENGLISH

FRENCH

GENERIC

GERMAN

ITALIAN

JAPANESE_VGRAM

KOREAN

OCR

SPANISH

fuzzy_score Specify a default lower limit of fuzzy score. Specify a number between
1 and 80. Text with scores below this number is not returned. Default
is 60.

Chapter 2
Wordlist Type

2-74

Table 2-37 (Cont.) BASIC_WORDLIST Attributes

Attribute Attribute Values

fuzzy_numresults Specify the maximum number of fuzzy expansions. Use a number
between 0 and 5,000. Default is 100.

substring_index Specify TRUE for Oracle Text to create a substring index. A substring
index improves left-truncated and double-truncated wildcard queries
such as %ing or %benz%. Default is FALSE.

prefix_index Specify TRUE to enable prefix indexing. Prefix indexing improves
performance for right truncated wildcard searches such as TO%.
Default is FALSE.

prefix_min_length Specify the minimum length of indexed prefixes. Default is 1. Length
information must follow USC-2 codepoint semantics.

prefix_max_length Specify the maximum length of indexed prefixes. Default is 64. Length
information must follow USC-2 codepoint semantics.

wildcard_maxterms Specify the maximum number of terms in a wildcard expansion. The
maximum value is 50000 and the default value is 20000. If you
specify a value of 0, then the number of wildcard expansions will be
unbounded. Note that when set to 0, the system may run out of
memory due to the high number of wildcard expansions.

ndata_base_letter Specify whether characters that have diacritical marks are converted
to their base form before being stored in the Text index or queried by
the NDATA operator.

FALSE (default) or TRUE

When set to FALSE, no base lettering is used.

ndata_alternate_spelling Specify whether to enable alternate spelling for German, Danish, and
Swedish. Enabling alternate spelling allows you to index NDATA
section data and query using the NDATA operator in alternate form.

FALSE (default) or TRUE

When set to FALSE, no alternate spelling is used.

ndata_thesaurus Name of the thesaurus used for alternate name expansion.

ndata_join_particles A list of colon-separated name particles that can be joined with a
name that follows them.

reverse_index Specify whether to enable the creation of another index on $I to
provide better performance for left truncated queries. These are
queries where one or more tokens have a leading wildcard and no
trailing wildcard, for example, the %racle %atabase.

When set to TRUE, it creates a new index $V on $I on reverse
(token_text). Default is FALSE.

stemmer
Specify the stemmer used for word stemming in Text queries. When you do not
specify a value for STEMMER, the default is ENGLISH.
Specify AUTO for the system to automatically set the stemming language according to
the language setting of the database session. If the database language is AMERICAN or
ENGLISH, then the ENGLISH stemmer is automatically used. Otherwise, the stemmer
that maps to the database session language is used.
When there is no stemmer for a language, the default is NULL. With the NULL stemmer,
the stem operator is ignored in queries.

Chapter 2
Wordlist Type

2-75

You can create your own stemming user-dictionary. See "Stemming User-
Dictionaries" for more information.

Note:

The STEMMER attribute of BASIC_WORDLIST preference will be ignored if:

1. INDEX_STEMS attribute of BASIC_LEXER preference is set to BOKMAL,
CATALAN, CROATIAN, CZECH, DANISH, FINNISH, GREEK, HEBREW, HUNGARIAN,
NYNORSK, POLISH, PORTUGUESE, ROMANIAN, RUSSIAN, SERBIAN, SLOVAK,
SLOVENIAN, SWEDISH, ENGLISH_NEW, DERIVATIONAL_NEW, DUTCH_NEW,
FRENCH_NEW, GERMAN_NEW, ITALIAN_NEW, or SPANISH_NEW.

Or

2. INDEX_STEMS attribute of AUTO_LEXER preference is set to YES.

Or

3. The database session language causes MULTI_LEXER to choose a
SUB_LEXER with the same setting as 1 or 2 above.

In these cases, the same stemmer that is used by the BASIC_LEXER or
AUTO_LEXER during indexing will be used to determine the stem of the query
term during query.

fuzzy_match
Specify which fuzzy matching routines are used for the column. Fuzzy matching is
currently supported for English, Japanese, and, to a lesser extent, the Western
European languages.

Note:

The fuzzy_match attributes value for Chinese and Korean are dummy
attribute values that prevent the English and Japanese fuzzy matching
routines from being used on Chinese and Korean text.

The default for fuzzy_match is GENERIC.
Specify AUTO for the system to automatically set the fuzzy matching language
according to language setting of the session.

fuzzy_score
Specify a default lower limit of fuzzy score. Specify a number between 0 and 80. Text
with scores below this number are not returned. The default is 60.
Fuzzy score is a measure of how close the expanded word is to the query word. The
higher the score the better the match. Use this parameter to limit fuzzy expansions to
the best matches.

fuzzy_numresults
Specify the maximum number of fuzzy expansions. Use a number between 0 and
5000. The default is 100.
Setting a fuzzy expansion limits the expansion to a specified number of the best
matching words.

Chapter 2
Wordlist Type

2-76

substring_index
Specify TRUE for Oracle Text to create a substring index. A substring index improves
performance for left-truncated or double-truncated wildcard queries such as %ing or
%benz%. The default is false.
Substring indexing has the following impact on indexing and disk resources:

• Index creation and DML processing is up to 4 times slower

• Index creation with substring_index enabled requires more rollback segments
during index flushes than with substring index off. Oracle recommends that you do
either of the following when creating a substring index:

– Make available double the usual rollback or

– Decrease the index memory to reduce the size of the index flushes to disk

prefix_index
Specify yes to enable prefix indexing. Prefix indexing improves performance for right
truncated wildcard searches such as TO%. Default is NO.

Note:

Enabling prefix indexing increases index size.

Prefix indexing chops up tokens into multiple prefixes to store in the $I table. For
example, words TOKEN and TOY are normally indexed as follows in the $I table:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as
follows with a new token type of 6:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

T 6 DOCID 1 POS 1 POS 3

TO 6 DOCID 1 POS 1 POS 3

TOK 6 DOCID 1 POS 1

TOKE 6 DOCID 1 POS 1

TOKEN 6 DOCID 1 POS 1

TOY 6 DOCID 1 POS 3

Wildcard searches such as TO% are now faster because Oracle Text does no
expansion of terms and merging of result sets. To obtain the result, Oracle Text need
only examine the (TO,6) row.

prefix_min_length
Specify the minimum length of indexed prefixes. Default is 1.
For example, setting prefix_min_length to 3 and prefix_max_length to 5 indexes all
prefixes between 3 and 5 characters long.

Chapter 2
Wordlist Type

2-77

Note:

A wildcard search whose pattern is below the minimum length or above the
maximum length is searched using the slower method of equivalence
expansion and merging.

prefix_max_length
Specify the maximum length of indexed prefixes. Default is 64.
For example, setting prefix_min_length to 3 and prefix_max_length to 5 indexes all
prefixes between 3 and 5 characters long.

Note:

A wildcard search whose pattern is below the minimum length or above the
maximum length is searched using the slower method of equivalence
expansion and merging.

wildcard_maxterms
Specify the maximum number of terms in a wildcard (%) expansion. Use this
parameter to keep wildcard query performance within an acceptable limit. When the
wildcard query expansion exceeds this number, Oracle Text returns the following
error:

ORA-29902: error in executing ODCIIndexStart() routine
ORA-20000: Oracle Text error:
DRG-51030: wildcard query expansion resulted in too many terms

In such cases, use a more restrictive query so that it results in fewer matches or
increase the value of wildcard_maxterms. You can also set wildcard_maxterms to 0
to ignore the limit.

Note:

If the value of wildcard_maxterms is set as 0, the query might fail and
returns the above error again if too many terms are matched by the wildcard
search term.

You can also capture the above error and display your own less terse message.

Note:

Search terms with wildcard queries having only the wildcard character, for
example: %, %_%, and %_, are threaded as stopwords.

Chapter 2
Wordlist Type

2-78

ndata_base_letter
Specify whether characters that have diacritical marks (umlauts, cedillas, acute
accents, and so on) are converted to their base form before being stored in the Text
index or queried by the NDATA operator. The default is FALSE (base-letter conversion
disabled). For more information on base-letter conversions, see "Base-Letter
Conversion".

ndata_alternate_spelling
Specify whether to enable alternate spelling for German, Danish, and Swedish.
Enabling alternate spelling allows you to index NDATA section data and query using the
NDATA operator in alternate form.
When ndata_base_letter is enabled at the same time as
ndata_alternate_spelling, NDATA section data is serially transformed first by
alternate spelling and then by base lettering. For more information about the alternate
spelling conventions Oracle Text uses, see "Alternate Spelling".

ndata_thesaurus
Specify a name of the thesaurus used for alternate name expansion. The indexing
engine expands names in documents using synonym rings in the thesaurus. A user
should make use of homographic disambiguating feature of the thesaurus to
distinguish common nicknames.
An example is:

Albert
 SYN Al
 SYN Bert
Alfred
 SYN Al
 SYN Fred

A simple definition such as the above will put Albert, Alfred, Al, Bert, and Fred into the
same synonym ring. This will cause an unexpected expansion such that the
expansion of Bert includes Fred. To prevent this, you can use homographic
disambiguation as in:

Albert
 SYN Al (Albert)
 SYN Bert (Albert)
Alfred
 SYN Al (Alfred)
 SYN Fred (Alfred)

This forms two synonym rings, Albert-Al-Bert and Alfred-Al-Fred. Thus, the expansion
of Bert no longer includes Fred. A more detailed example is:

begin
 ctx_ddl.create_preference('NDAT_PREF', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_ALTERNATE_SPELLING', 'FALSE');
 ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_BASE_LETTER', 'TRUE');
 ctx_ddl.set_attribute('NDATA_PREF', 'NDATA_THESAURUS', 'NICKNAMES');
end;

Chapter 2
Wordlist Type

2-79

Note:

A sample thesaurus for names can be found in the $ORACLE_HOME/ctx/
sample/thes directory. This file is dr0thsnames.txt.

ndata_join_particles
Specify a list of colon-separated name particles that can be joined with a name that
follows them. A name particle, such as da, is written separately from or joined with its
following name like da Vinci or daVinci. The indexing engine generates index data for
both separated and join versions of a name when it finds a name particle specified in
this preference. The same happens in the query processing for better recall.

reverse_index
Reverse index allows for fast searches on left-truncated search terms.
Indexed words are stored in the token table ($I) which has an index ($X) on it.
Normally, if a search term such as “%xxx” is used in a query, the $X index cannot be
used. So, a full table scan of the $I table is necessary, which can lead to poor search
performance.
Setting REVERSE_INDEX to TRUE creates an extra index ($V) on a reverse form of the
tokens. This allows for indexed lookups for left-truncated terms, leading to much
better query performance for such terms.
REVERSE_INDEX speeds up searching of tokens with leading wildcards such as the
second word in the search "oracle %base". If the token has both leading and trailing
wildcards such as "oracle %bas%" this attribute will not help and the
SUBSTRING_INDEX option should be used instead.
Specify the attribute as a part of the wordlist preference and set it to TRUE or FALSE.
Default is FALSE. Set this attribute using CTX_DDL.SET_ATTRIBUTE procedure or using
ALTER INDEX REBUILD statement as used in any wordlist preference.
Syntax

ctx_ddl.set_attribute(worlist_pref_name, 'REVERSE_INDEX', BOOLEAN);

worlist_pref_name
Specify the first argument as the wordlist preference name.

REVERSE_INDEX
Specify the wordlist preference name as REVERSE_INDEX.

BOOLEAN
The attribute can be set to TRUE or FALSE. By default, the value is FALSE.

The following example creates a wordlist preference and sets REVERSE_INDEX to
TRUE :

exec ctx_ddl.create_preference(‘wrdlst’, ‘BASIC_WORDLIST’);
exec ctx_ddl.set_attribute(‘wrdlst’, ‘REVERSE_INDEX’, ‘TRUE’);

The following traces are added for the Reverse Index $V which can be used to track
timing and usage of this index at query time.

Trace ID Trace Name Description

37 TRACE_QRY_VV_TIME Time spent in executing
the $V cursor

Chapter 2
Wordlist Type

2-80

Trace ID Trace Name Description

38 TRACE_QRY_VF_TIME Time spent in fetching
rows from $V

39 TRACE_QRY_V_ROW
S

Number of rows with $V
fetched metadata

2.6.2 BASIC_WORDLIST Example
The following example shows the use of the BASIC_WORDLIST type.

• Enabling Fuzzy Matching and Stemming

• Enabling Sub-string and Prefix Indexing

• Setting Wildcard Expansion Limit

2.6.2.1 Enabling Fuzzy Matching and Stemming
The following example enables stemming and fuzzy matching for English. The
preference STEM_FUZZY_PREF sets the number of expansions to the maximum allowed.
This preference also instructs the system to create a substring index to improve the
performance of double-truncated searches.

begin
 ctx_ddl.create_preference('STEM_FUZZY_PREF', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','FUZZY_MATCH','ENGLISH');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','FUZZY_SCORE','0');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','FUZZY_NUMRESULTS','5000');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','SUBSTRING_INDEX','TRUE');
 ctx_ddl.set_attribute('STEM_FUZZY_PREF','STEMMER','ENGLISH');
end;

To create the index in SQL, enter the following statement:

create index fuzzy_stem_subst_idx on mytable (docs)
 indextype is ctxsys.context parameters ('Wordlist STEM_FUZZY_PREF');

2.6.2.2 Enabling Sub-string and Prefix Indexing
The following example sets the wordlist preference for prefix and sub-string indexing.
For prefix indexing, it specifies that Oracle Text create token prefixes between 3 and 4
characters long:

begin

ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
ctx_ddl.set_attribute('mywordlist','PREFIX_INDEX','TRUE');
ctx_ddl.set_attribute('mywordlist','PREFIX_MIN_LENGTH',3);
ctx_ddl.set_attribute('mywordlist','PREFIX_MAX_LENGTH', 4);
ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX', 'YES');

end;

2.6.2.3 Setting Wildcard Expansion Limit
Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard
expansion.

Chapter 2
Wordlist Type

2-81

--- create a sample table
drop table quick ;
create table quick
 (
 quick_id number primary key,
 text varchar(80)
);

--- insert a row with 10 expansions for 'tire%'
insert into quick (quick_id, text)
 values (1, 'tire tirea tireb tirec tired tiree tiref tireg tireh tirei tirej');
commit;

--- create an index using wildcard_maxterms=100
begin
 Ctx_Ddl.Create_Preference('wildcard_pref', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('wildcard_pref', 'wildcard_maxterms', 100) ;
end;
/
create index wildcard_idx on quick(text)
 indextype is ctxsys.context
 parameters ('Wordlist wildcard_pref') ;

--- query on 'tire%' - should work fine
select quick_id from quick
 where contains (text, 'tire%') > 0;

--- now re-create the index with wildcard_maxterms=5

drop index wildcard_idx ;

begin
 Ctx_Ddl.Drop_Preference('wildcard_pref');
 Ctx_Ddl.Create_Preference('wildcard_pref', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('wildcard_pref', 'wildcard_maxterms', 5) ;
end;
/

create index wildcard_idx on quick(text)
 indextype is ctxsys.context
 parameters ('Wordlist wildcard_pref') ;

--- query on 'tire%' gives "wildcard query expansion resulted in too many terms"
select quick_id from quick
 where contains (text, 'tire%') > 0;

2.7 Storage Types
Use the storage preference to specify tablespace and creation parameters for tables
associated with a Text index. The system provides a single storage type called
BASIC_STORAGE:

Table 2-38 Storage Types

Type Description

BASIC_STORAGE Indexing type used to specify the tablespace and creation
parameters for the database tables and indexes that constitute a
Text index.

Chapter 2
Storage Types

2-82

2.7.1 BASIC_STORAGE
The BASIC_STORAGE indexing type specifies the tablespace and creation parameters for
the database tables and indexes that constitute a Text index.

The clause you specify is added to the internal CREATE TABLE (CREATE INDEX for the
i_index_clause) statement at index creation. You can specify most allowable clauses,
such as storage, LOB storage, or partitioning. However, you cannot specify an index
organized table clause.

You can store Text index tables in the In-Memory Column Store (IM column store) by
specifying inmemory in the storage clause for that table. IM column store is supported
for the types of tables represented by the following storage attributes:
I_TABLE_CLAUSE, R_TABLE_CLAUSE, G_TABLE_CLAUSE, O_TABLE_CLAUSE,
D_TABLE_CLAUSE, SN_TABLE_CLAUSE, and E_TABLE_CLAUSE.

This section contains the following topics.

• BASIC_STORAGE Attributes

• BASIC_STORAGE Default Behavior

• BASIC_STORAGE Examples

See Also:

• Oracle Database SQL Language Reference for more information about
how to specify CREATE INDEX statement

• Oracle Database SQL Language Reference for more information about
how to specify CREATE TABLE statement

2.7.1.1 BASIC_STORAGE Attributes
BASIC_STORAGE has the attributes specified in Table 2-39.

Table 2-39 BASIC_STORAGE Attributes

Attribute Attribute Value

big_io Parameter clause to improve the query performance for the CONTEXT index
that is extensively used for IO operations. It uses SECUREFILES, and
hence the tablespace must use automatic segment space management
(ASSM). This clause mainly improves the query performance for rotational
disks, where seeks are expensive compared to serial reads. Creating an
index with the BIG_IO index option requires the CREATE TRIGGER privilege,
as a temporary trigger is created during the indexing process.

There is not much of a query performance improvement when the data
storage is on solid state disks.

Set it to YES to enable the BIG_IO index option for the CONTEXT index. The
default is NO.

Chapter 2
Storage Types

2-83

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

d_table_clause Parameter clause to specify the storage clause for the $D table.

This clause may be specified if the forward index feature is being used. The
forward index feature is used to increase the query performance while
calculating snippets.

If the d_table_clause is manually set, then it is recommended that you
choose SecureFiles with high compression for the document blob column
doc of the $D table. If the d_table_clause is not set, then the document
blob uses SecureFiles by default, if the index owner's default tablespace is
ASSM and the database compatible parameter is 11.0 or higher.

The $D table is created to save a copy of a document into the index by
either specifying a save_copy column or by specifying the save_copy
storage attribute.

e_table_clause Parameter clause for dr$indexname$E table creation. Used to specify the
storage and tablespace clauses to add to the end of the internal CREATE
TABLE statement.

forward_index Parameter clause to improve the performance of the following CTX_DOC
package procedures:

• ctx_doc.snippet
• ctx_doc.highlight
• ctx_doc.markup
Set it to TRUE to enable the forward index feature. This creates the $O
table. The $O table stores the mapping information from the token offsets in
the $I table to character offsets in the indexed documents.

The default is FALSE.

g_index_clause Parameter clause for the $H btree index on the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE INDEX statement.

When a CONTEXT index is created with the STAGE_ITAB index option, an
empty $G table is created with the $H btree index on it. Use the
g_index_clause clause in conjunction with the STAGE_ITAB index option
for improving the query performance for the CONTEXT index that is
extensively used for DML operations.

g_table_clause Parameter clause for the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

When a CONTEXT index is created with the STAGE_ITAB index option, an
empty $G table is created with the $H btree index on it. Use the
g_table_clause clause in conjunction with the STAGE_ITAB index option
for improving the query performance for the CONTEXT index that is
extensively used for DML operations.

i_index_clause Parameter clause for dr$indexname$X index creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE INDEX
statement. The default clause is: 'COMPRESS 2', which instructs Oracle
Text to compress this index table.

If you choose to override the default, Oracle recommends including
COMPRESS 2 in your parameter clause to compress this table, because
such compression saves disk space and helps query performance.

Chapter 2
Storage Types

2-84

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

i_rowid_index_clause Parameter clause to specify the storage clause for the $R index on dr$rowid
column of the $I table. Specify storage and tablespace clauses to add to the
end of the internal CREATE INDEX statement.

This clause is only used by the CTXCAT index type.

i_table_clause Parameter clause for dr$indexname$I table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The I table is the index data table.

Note: Oracle strongly recommends that you do not specify "disable storage
in row" for $I LOBs, as this will greatly degrade the query performance.

k_table_clause Parameter clause for dr$indexname$K table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The K table is the keymap table.

n_table_clause Parameter clause for dr$indexname$N table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The N table is the negative list table.

o_table_clause Parameter clause to specify the storage clause for the $O table.

This clause may be specified if the forward index feature is being used. The
forward index feature is used to increase the query performance while
calculating snippets.

If the o_table_clause is manually set, then it is recommended that you
choose SecureFiles with high compression for the document blob column
mapping of the $O table. If the o_table_clause is not set, then the
document blob uses SecureFiles by default, if the index owner's default
tablespace is ASSM and the database compatible parameter is 11.0 or
higher.

The $O table is created when the forward index feature is enabled by
specifying the forward_index storage attribute. The $O table stores the
mapping information from the token offsets in the $I table to character
offsets in the indexed documents.

p_table_clause Parameter clause for the substring index if you have enabled
SUBSTRING_INDEX in the BASIC_WORDLIST.

Specify storage and tablespace clauses to add to the end of the internal
CREATE INDEX statement. The P table is an index-organized table so the
storage clause you specify must be appropriate to this type of table.

query_filter_cache_size Parameter clause to specify the maximum size of the query filter cache in
bytes. The query filter cache is allocated out of the shared pool, so its
maximum size must be smaller than the shared pool size. When this
storage preference is set at the partition level, it is implicitly set at the index
level.

The default is 0.

Chapter 2
Storage Types

2-85

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

r_table_clause Parameter clause for dr$indexname$R table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement.

The R table is the rowid table.

The default clause is: 'LOB(DATA) STORE AS (CACHE)'.

If you modify this attribute, always include this clause for good performance.

s_table_clause Parameter clause for dr$indexname$S table creation*. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE
statement. The default clause is nocompress.

* For performance reasons, $S table must be created on a tablespace with
db block size >= 4K without overflow segment and without a
PCTTHRESHOLD clause. If $S is created on a tablespace with db block size <
4K, or is created with an overflow segment or with PCTTHRESHOLD clause,
then appropriate errors will be raised during CREATE INDEX.

The S table is the table that stores SDATA section values.

If this clause is specified for a storage preference in an index without
SDATA, then it will have no effect on the index, and index creation will still
succeed.

save_copy Parameter clause to specify saving the document to the $D index table.

Specify this clause to use the forward index feature for increasing the query
performance while calculating snippets.

Set it to PLAINTEXT to save the copy of a document in the $D table in the
plaintext format. This improves the performance of snippet generation,
since it does not invoke the datastore or filter to fetch the text. This also
improves the performance of highlight.

Set it to FILTERED to save the copy of a document in the $D table in the
filtered (HTML) format. This improves the performance of highlight and
markup, but requires more disk space than plaintext format. It is less
efficient for snippets generation, since the HTML markup must be removed
during the creation of snippets.

The default is NONE, and the copy of a document is not saved in the $D
table.

save_copy_max_size Parameter clause to specify the maximum size of a document to save in
the $D table using a basic_storage attribute.

If the document size is greater than the size specified in this attribute, the
truncated version of the document having the size specified in this attribute
is saved in the $D table.

If the $D table is using SecureFiles with compression for the document blob,
then the save_copy_max_size restriction is applied on the document size
before compression.

The default is 0, and the whole document is saved in the $D table
irrespective of its size.

Note: The save_copy_max_size parameter clause is effective only when
the save_copy parameter clause is specified.

Chapter 2
Storage Types

2-86

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

separate_offsets Parameter clause to improve the query performance for the CONTEXT index
that is extensively used for IO operations, and whose queries are mainly
single-word or boolean queries.

Set it to T to enable the SEPARATE_OFFSETS index option for the CONTEXT
index. The default is F.

single_byte Storage option for better performance if all the indexed data that is known in
advance is single-byte.

When set to TRUE, all the data is treated as a single-byte (8-bit) data and
the character set is irrelevant during indexing and querying. Ensure that no
character in the data set crosses the single-byte (8-bit) limit. The default is
FALSE.

small_r_row Storage attribute to reduce the size of $R row. It improves DML and query
performance during parallel DML and query workload. It reduces lock
contention during DMLs, thus improving the DML performance.

sn_table_clause Parameter clause for dr$indexname$SN table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sn_index_clause Parameter clause for dr$indexname$SNI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sd_table_clause Parameter clause for dr$indexname$SD table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sd_index_clause Parameter clause for dr$indexname$SDI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sv_table_clause Parameter clause for dr$indexname$SV table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sv_index_clause Parameter clause for dr$indexname$SVI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sr_table_clause Parameter clause for dr$indexname$SR table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

sr_index_clause Parameter clause for dr$indexname$SRI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sbd_table_clause Parameter clause for dr$indexname$SBD table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: ‘LOB(VAL_INFO) STORE AS
(CACHE)’.

sbd_index_clause Parameter clause for dr$indexname$SBDI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

Chapter 2
Storage Types

2-87

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

sbf_table_clause Parameter clause for dr$indexname$SBF table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: ‘LOB(VAL_INFO) STORE AS
(CACHE)’.

sbf_index_clause Parameter clause for dr$indexname$SBFI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

st_table_clause Parameter clause for dr$indexname$ST table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE TABLE
statement. The default clause is: ‘LOB(VAL_INFO) STORE AS (CACHE)’.

st_index_clause Parameter clause for dr$indexname$STI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

stz_table_clause Parameter clause for dr$indexname$STZ table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: ‘LOB(VAL_INFO) STORE AS
(CACHE)’.

stz_index_clause Parameter clause for dr$indexname$STZI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

sid_table_clause Parameter clause for dr$indexname$SIDS table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: ‘LOB(VAL_INFO) STORE AS
(CACHE)’.

sid_index_clause Parameter clause for dr$indexname$SIDSI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

siym_table_clause Parameter clause for dr$indexname$SIYM table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
TABLE statement. The default clause is: ‘LOB(VAL_INFO) STORE AS
(CACHE)’.

siym_index_clause Parameter clause for dr$indexname$SIYMI table creation. Specify the
storage and tablespace clauses to add at the end of the internal CREATE
INDEX statement.

Chapter 2
Storage Types

2-88

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

stage_itab Switch to improve the query performance for the CONTEXT index that is
extensively used for DML operations.

When the STAGE_ITAB index option is disabled, then when a new
document is added to the index, SYNC_INDEX is called to make the
documents searchable. This creates new rows in the $I table, thus
increasing the fragmentation in the $I table. This leads to the deterioration
of the query performance.

When the STAGE_ITAB index option is enabled, the information about the
new documents is stored in the $G staging table, and not in the $I table.
This ensures that the $I table does not get fragmented, and thus does not
deteriorate the query performance.

When the STAGE_ITAB index option is enabled, the $H btree index is also
created on the $G table. The $G table and $H btree index are equivalent to
the $I table and $X btree index.

Set stage_itab to YES to enable the STAGE_ITAB index option for the
CONTEXT index. The default is NO.

stage_itab_max_rows Storage option to ensure that the $G (stage_itab) table fits into the KEEP
pool and also that the $G table does not get filled up too frequently. This
option is also required to ensure that $G does not grow too big and start
slowing down the query and the index synchronization performance.

When the number of rows in the $G table exceeds this setting, a process is
started to move all data from the $G table to the $I table, optimizing the
data as it is moved. Note that this may cause certain SYNC operations or
commits if SYNC(ON COMMIT) is used to take an unexpectedly long time
because they may be moving many $G rows which have been inserted by
other processes. If this is unacceptable, set stage_itab_max_rows to 0
and use an auto optimization job instead.

When scheduling an auto optimization job, set stage_itab_max_rows to 0
to disable the automatic merging that now happens through sync index.

If stage_itab_max_rows is not set to 0 and an attempt is made to
schedule an auto optimization job, then an error occurs.

You can set stage_itab_max_rows to either 0 or any value greater than
or equal to 1000. The default value is 1 million. Oracle recommends a value
of 100K to 1 million for optimal merge performance during sync index.

With stage_itab, when queries are run during heavy DML operations,
Oracle Database can issue the following error: ORA-08176 consistent
read failure; rollback data not available. In such cases,
increase the size of the UNDO tablespace and the UNDO_RETENTION
initialization parameter.

See Also:

SYNC_INDEX

stage_itab_max_parallel New storage option controls the degree of parallelism used to merge rows
from the stage_itab ($G table) back to the $I table when the
stage_itab_max_rows limit is hit.

The default value is 16 for the degree of parallelism.

Chapter 2
Storage Types

2-89

Table 2-39 (Cont.) BASIC_STORAGE Attributes

Attribute Attribute Value

u_table_clause Specify the storage and tablespace clauses to add at the end of the internal
CREATE TABLE statement. The $U table keeps track of concurrent updates.

2.7.1.2 BASIC_STORAGE Default Behavior
By default, BASIC_STORAGE attributes are not set. In such cases, the Text index tables
are created in the index owner's default tablespace. Consider the following statement,
entered by user IUSER, with no BASIC_STORAGE attributes set:

create index IOWNER.idx on TOWNER.tab(b) indextype is ctxsys.context;

In this example, the text index is created in IOWNER's default tablespace.

2.7.1.3 BASIC_STORAGE Examples
The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',
 'tablespace users storage (initial 1K) lob
 (data) store as (disable storage in row cache)');
ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',
 'tablespace foo storage (initial 1K) compress 2');
ctx_ddl.set_attribute('mystore', 'P_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'U_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');end;

The following example adds to the end of the internal table that is created.

exec ctx_ddl.create_preference('sto', 'basic_storage');
exec ctx_ddl.set_attribute('sto', 'e_table_clause', 'tablespace foo');

The following example uses query_filter_cache_size storage parameter for a
partitioned index:

exec ctx_ddl.create_preference('fcs', 'basic_storage');
exec ctx_ddl.set_attribute('fcs', 'query_filter_cache_size', '100000000');

create table fc(id number primary key, txt varchar2(64))
partition by range (id)
(
 partition p1 values less than (25),
 partition p2 values less than (50),

Chapter 2
Storage Types

2-90

 partition p3 values less than (75)
);

create index fci on fc(txt) indextype is ctxsys.context
 local (
 partition p1,
 partition p2,
 partition p3) parameters('storage fcs memory 49M sync (on commit)');

The query filter cache is an index level storage preference. The storage preference for
the query filter cache can be set at partition level only if this is also set at the index
level.

select count(*) from fc partition (p1) where
contains(txt,'ctxfiltercache((hello))')>0;

SINGLE_BYTE Data Indexing Storage Attribute

Syntax

ctx_ddl.set_attribute(storage_pref_name, 'SINGLE_BYTE', BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SINGLE_BYTE
Specify the storage attribute name as SINGLE_BYTE or single_byte.

BOOLEAN
Indicate whether the attribute is set. By default, the value is FALSE. It implies that the
database character set identifies whether the documents are stored as single-byte or
multi-byte.

The following example sets the storage preference and enables the single_byte
storage attribute:

exec ctx_ddl.create_preference('mysto', 'basic_storage');
ctx_ddl.set_attribute('mysto', 'single_byte', 'TRUE');

SMALL_R_ROW Storage Attribute

Syntax

ctx_ddl.set_attribute(storage_pref_name, 'SMALL_R_ROW', BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SMALL_R_ROW
Specify the storage attribute name as SMALL_R_ROW or small_r_row..

BOOLEAN
Indicate whether the attribute is set. By default, the value is TRUE.

The following example sets the storage preference and enables the small_r_row
storage attribute:

Chapter 2
Storage Types

2-91

begin
ctx_ddl.create_preference('sto', 'basic_storage');
ctx_ddl.set_attribute('sto', 'small_r_row', 'T',
end;

To enable or disablesmall_r_row feature on an existing index:

ALTER INDEX index_name rebuild PARAMETERS('replace storage sto');

By default, small_r_row=TRUE , however, for earlier releases, small_r_row=FALSE.

2.8 Section Group Types
To enter WITHIN queries on document sections, you must create a section group
before you define your sections. Specify your section group in the parameter clause of
CREATE INDEX.

This section contains the following topics.

• Section Group Types for Creating a Section Group

• Section Group Examples for HTML, XML, and JSON Enabled Documents

2.8.1 Section Group Types for Creating a Section Group
To create a section group, you can specify one of the following group types with the
CTX_DDL.CREATE_SECTION_GROUP procedure.

Table 2-40 Section Group Types

Type Description

NULL_SECTION_GROUP Use this group type when you define no sections or when you
define only SENTENCE or PARAGRAPH sections. This is the
default.

BASIC_SECTION_GROUP Use this group type for defining sections where the start and end
tags are of the form <A> and .

Note: This group type does not support input such as
unbalanced parentheses, comments tags, and attributes. Use
HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type for indexing HTML documents and for
defining sections in HTML documents.

JSON_SECTION_GROUP Use this group to create a JSON enabled context index. The
JSON ENABLE attribute cannot be used with XML ENABLE. A
section group can only be marked as JSON ENABLE. If it is
already marked with XML ENABLE, then the path section group
cannot be used for JSON ENABLE and vice versa.

XML_SECTION_GROUP Use this group type for indexing XML documents and for defining
sections in XML documents. All sections to be indexed must be
manually defined for this group.

Chapter 2
Section Group Types

2-92

Table 2-40 (Cont.) Section Group Types

Type Description

AUTO_SECTION_GROUP Use this group type to automatically create a zone section for
each start-tag/end-tag pair in an XML document. The section
names derived from XML tags are case sensitive as in XML.

Attribute sections are created automatically for XML tags that
have attributes. Attribute sections are named in the form
tag@attribute.

Special sections can be added to AUTO_SECTION_GROUP for
WITHIN SENTENCE and WITHIN PARAGRAPH searches. Once a
sentence or paragraph section is added to the
AUTO_SECTION_GROUP, sections with corresponding tag names
'sentence' or 'paragraph' (case insensitive) are treated as stop
sections.

Stop sections, empty tags, processing instructions, and
comments are not indexed.

The following limitations apply to automatic section groups:

• You cannot add zone, field, sdata, or special sections to an
automatic section group.

• You can define a stop section that applies only to one
particular type; that is, if you have two different XML DTDs,
both of which use a tag called FOO, you can define
(TYPE1)FOO to be stopped, but(TYPE2)FOO to not be
stopped.

• The length of the indexed tags, including prefix and
namespace, cannot exceed 64 bytes. Tags longer than this
are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves like the
AUTO_SECTION_GROUP.

The difference is that with this section group you can do path
searching with the INPATH and HASPATH operators. Queries are
also case-sensitive for tag and attribute names. Stop sections
are not allowed.

NEWS_SECTION_GROUP Use this group for defining sections in newsgroup formatted
documents according to RFC 1036.

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled
Documents

The examples show the use of section groups in HTML and XML documents, and in
JSON enabled documents. See Table 2-40 for a summary.

This section contains the following examples:

• Creating Section Groups in HTML Documents

• Creating Sections Groups in XML Documents

• Automatic Sectioning in XML Documents

• Creating JSON Section Groups for JSON Search Index

• Using JSON Search Index with JSON_TEXTCONTAINS

Chapter 2
Section Group Types

2-93

• Using JSON Search Index with JSON_EXISTS

2.8.2.1 Creating Section Groups in HTML Documents
The following statement creates a section group called htmgroup with the HTML group
type.

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package, such as CTX_DDL.ADD_SPECIAL_SECTION or CTX_DDL.ADD_ZONE_SECTION. To
index your documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group htmgroup');

See Also:

For more information on section groups, see CTX_DDL Package

2.8.2.2 Creating Sections Groups in XML Documents
The following statement creates a section group called xmlgroup with the
XML_SECTION_GROUP group type.

begin
ctx_ddl.create_section_group('xmlgroup', 'XML_SECTION_GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX_DDL
package, such as CTX_DDL.ADD_ATTR_SECTION or CTX_DDL.ADD_STOP_SECTION. To
index your documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters('filter ctxsys.null_filter section group xmlgroup');

See Also:

For more information on section groups, see CTX_DDL Package

2.8.2.3 Automatic Sectioning in XML Documents
The following statement creates a section group called auto with the
AUTO_SECTION_GROUP group type. This section group automatically creates sections
from tags in XML documents.

begin

ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');

Chapter 2
Section Group Types

2-94

end;

CREATE INDEX myindex on docs(htmlfile) INDEXTYPE IS ctxsys.context
PARAMETERS('filter ctxsys.null_filter section group auto');

2.8.2.4 Creating JSON Section Groups for JSON Search Index
The following example creates a JSON enabled text index.

create index json_ctx_idx on customers (customer
_info)
indextype is ctxsys.context
parameters ('section group CTXSYS.JSON_SECTION_GROUP');

2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS
The following example searches for customers having keyword "gold" in the
description.

select customer_info
from customers
where JSON_TEXTCONTAINS(customer_info, '$.description', 'gold');

2.8.2.6 Using JSON Search Index with JSON_EXISTS
Find JSON enabled data.

select customer_info from customers
where JSON_EXISTS(customer_info, '$.dataplan');

2.9 Classifier Types
The following classifier types are used to create preferences for CTS_CLS.TRAIN and
CTXRULE index creation:

• RULE_CLASSIFIER

• SVM_CLASSIFIER

• SENTIMENT_CLASSIFIER

Note:

In Oracle Database Express Edition (Oracle Database XE),
RULE_CLASSIFIER, SVM_CLASSIFIER, and SENTIMENT_CLASSIFIER are not
supported because the Data Mining option is not available. This is also true
for KMEAN_CLUSTERING.

2.9.1 RULE_CLASSIFIER
Use the RULE_CLASSIFIER type for creating preferences for the query rule generating
procedure, CTX_CLS.TRAIN and for CTXRULE creation. The rules generated with this
type are essentially query strings and can be easily examined. The queries generated

Chapter 2
Classifier Types

2-95

by this classifier can use the AND, NOT, or ABOUT operators. The WITHIN operator is
supported for queries on field sections only.

Table 2-41 lists the attributes for the RULE_CLASSIFIER type.

Table 2-41 RULE_CLASSIFIER Attributes

Attribute Data
Type

Default Min
Value

Max
Value

Description

THRESHOLD I 50 1 99 Specify threshold (in percentage) for rule
generation. One rule is output only when its
confidence level is larger than threshold.

MAX_TERMS I 100 20 2000 For each class, a list of relevant terms is
selected to form rules. Specify the maximum
number of terms that can be selected for
each class.

MEMORY_SIZE I 500 10 4000 Specify memory usage for training in MB.
Larger values improve performance.

NT_THRESHOLD F 0.001 0 0.90 Specify a threshold for term selection. There
are two thresholds guiding two steps in
selecting relevant terms. This threshold
controls the behavior of the first step. At this
step, terms are selected as candidate terms
for the further consideration in the second
step. The term is chosen when the ratio of
the occurrence frequency over the number
of documents in the training set is larger
than this threshold.

TERM_THRESHOLD I 10 0 100 Specify a threshold as a percentage for term
selection. This threshold controls the second
step term selection. Each candidate term
has a numerical quantity calculated to imply
its correlation with a given class. The
candidate term will be selected for this class
only when the ratio of its quantity value over
the maximum value for all candidate terms in
the class is larger than this threshold.

PRUNE_LEVEL I 75 0 100 Specify how much to prune a built decision
tree for better coverage. Higher values mean
more aggressive pruning and the generated
rules will have larger coverage but less
accuracy.

2.9.2 SVM_CLASSIFIER
Use the SVM_CLASSIFIER type for creating preferences for the rule generating
procedure, CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type represents
the Support Vector Machine method of classification and generates rules in binary
format. Use this classifier type when you need high classification accuracy.

This type has the following attributes:

Chapter 2
Classifier Types

2-96

Table 2-42 SVM_CLASSIFIER Attributes

Attribute Name Data
Type

Default Min
Value

Max
Value

Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum number
of terms representing one
document.

MAX_FEATURES I 3,000 1 100,000 Specify the maximum number
of distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes as
features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning
INDEX_STEM on for the lexer.

MEMORY_SIZE I 500 10 4000 Specify approximate memory
size in MB.

SECTION_WEIGHT 1 2 0 100 Specify the occurrence
multiplier for adding a term in a
field section as a normal term.
For example, by default, the
term cat in "<A>cat" is a
field section term and is
treated as a normal term with
occurrence equal to 2, but you
can specify that it be treated
as a normal term with a weight
up to 100. SECTION_WEIGHT
is only meaningful when the
index policy specifies a field
section.

2.9.3 SENTIMENT_CLASSIFIER
Use the SENTIMENT_CLASSIFIER type to create a preference for sentiment analysis
queries. This classifier specifies preferences associated with a user-defined sentiment
classifier preference. You must define a preference of this type before you use the
CTX_CLS.SA_TRAIN_MODEL procedure to train the user-defined sentiment classifier.

Table 2-43 lists the attributes for the SENTIMENT_CLASSIFIER type.

Table 2-43 SENTIMENT_CLASSIFIER Attributes

Attribute Data
Type

Default Minimum
Value

Maximu
m Value

Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum number of distinct
terms representing one document

MAX_FEATURES I 3000 1 100000 Specify the maximum number of distinct
features used to build a sentiment classifier

Chapter 2
Classifier Types

2-97

Table 2-43 (Cont.) SENTIMENT_CLASSIFIER Attributes

Attribute Data
Type

Default Minimum
Value

Maximu
m Value

Description

THEME_ON B False Specify if themes must be extracted as
features

TOKEN_ON B True Specify if tokens must be extracted as
features

STEM_ON B True Specify if stemmed tokens must be extracted
as features

MEMORY_SIZE I 500 10 4000 Specify the typical memory size, in MB, used
to build the sentiment classifier.

SECTION_WEIGHT I 2 0 100 Specify the integer multiplier for term
occurrence within a field section

NUM_ITERATIONS I 600 Specify the maximum number of iterations for
which the sentiment classifier is run before it
converges

See Also:

Oracle Text Application Developer's Guide for an example of using the
SENTIMENT_CLASSIFIER type

2.10 Cluster Types
This section describes the cluster types used for creating preferences for the
CTX_CLS.CLUSTERING procedure.

• KMEAN_CLUSTERING

Note:

In Oracle Database Express Edition (Oracle Database XE),
KMEAN_CLUSTERING is not supported because the Data Mining option is not
available. This is also true for RULE_CLASSIFIER and SVM_CLASSIFIER.

See Also:

For more information about clustering, see "CLUSTERING" in CTX_CLS
Package as well as the Oracle Text Application Developer's Guide

2.10.1 KMEAN_CLUSTERING
The KMEAN_CLUSTERING clustering type has the attributes listed in Table 2-44.

Chapter 2
Cluster Types

2-98

Table 2-44 KMEAN_CLUSTERING Attributes

Attribute Name Data
Type

Default Min
Value

Max
Value

Description

MAX_DOCTERMS I 50 10 8192 Specify the maximum number
of distinct terms representing
one document.

MAX_FEATURES I 3,000 1 500,000 Specify the maximum number
of distinct features.

THEME_ON B FALSE NULL NULL Specify TRUE to use themes
as features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM_ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning
INDEX_STEM on for the lexer.

MEMORY_SIZE I 500 10 4000 Specify approximate memory
size in MB.

SECTION_WEIGHT 1 2 0 100 Specify the occurrence
multiplier for adding a term in
a field section as a normal
term. For example, by default,
the term cat in "<A>cat"
is a field section term and is
treated as a normal term with
occurrence equal to 2, but
you can specify that it be
treated as a normal term with
a weight up to 100.
SECTION_WEIGHT is only
meaningful when the index
policy specifies a field
section.

CLUSTER_NUM I 200 2 20000 Specify the total number of
leaf clusters to be generated.

2.11 Stoplists
Stoplists identify the words in your language that are not to be indexed. In English, you
can also identify stopthemes that are not to be indexed. By default, the system indexes
text using the system-supplied stoplist that corresponds to your database language.

Oracle Text provides default stoplists for most common languages including English,
French, German, Spanish, Chinese, Dutch, and Danish. These default stoplists
contain only stopwords.

• Multi-Language Stoplists

• Creating Stoplists

• Modifying the Default Stoplist

Chapter 2
Stoplists

2-99

See Also:

For more information about the supplied default stoplists, see Oracle Text
Supplied Stoplists

2.11.1 Multi-Language Stoplists
You can create multi-language stoplists to hold language-specific stopwords. A multi-
language stoplist is useful when you use the MULTI_LEXER to index a table that
contains documents in different languages, such as English, German.

To create a multi-language stoplist, use the CTX_DLL.CREATE_STOPLIST procedure
and specify a stoplist type of MULTI_STOPLIST. Add language specific stopwords with
CTX_DDL.ADD_STOPWORD .

At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

2.11.2 Creating Stoplists
Create your own stoplists using the CTX_DLL.CREATE_STOPLIST procedure. With
this procedure you can create a BASIC_STOPLIST for single language stoplist, or you
can create a MULTI_STOPLIST for a multi-language stoplist.

When you create your own stoplist, you must specify it in the parameter clause of
CREATE INDEX.

To create stoplists for Chinese or Japanese languages, use the CHINESE_LEXER or
JAPANESE_LEXER respectively, and update the appropriate lexicon to be
@contained_such_stopwords.

2.11.3 Modifying the Default Stoplist
The default stoplist is always named .CTXSYS.DEFAULT_STOPLIST. Use the following
procedures to modify this stoplist:

• CTX_DDL.ADD_STOPWORD

• CTX_DDL.REMOVE_STOPWORD

• CTX_DDL.ADD_STOPTHEME

• CTX_DDL.ADD_STOPCLASS

When you modify CTXSYS.DEFAULT_STOPLIST with the CTX_DDL package, you must re-
create your index for the changes to take effect.

Dynamic Addition of Stopwords

You can add stopwords dynamically to a default or custom stoplist with ALTER
INDEX . When you add a stopword dynamically, you need not re-index, because the
word immediately becomes a stopword and is removed from the index.

Chapter 2
Stoplists

2-100

Note:

Even though you can dynamically add stopwords to an index, you cannot
dynamically remove stopwords. To remove a stopword, you must use
CTX_DDL.REMOVE_STOPWORD , drop your index and re-create it.

See Also:

"ALTER INDEX " in Oracle Text SQL Statements and Operators

2.12 System-Defined Preferences
When you install Oracle Text, some indexing preferences are created. You can use
these preferences in the parameter clause of CREATE INDEX or define your own.

The default index parameters are mapped to some of the system-defined preferences
described in this section.

See Also:

For more information about default index parameters, see "Default Index
Parameters"

System-defined preferences are divided into the following categories:

• Data Storage Preferences

• Filter Preferences

• Lexer Preferences

• Section Group Preferences

• Stoplist Preferences

• Storage Preferences

• Wordlist Preferences

2.12.1 Data Storage Preferences
This section discusses the types associated with data storage preferences.

• The CTXSYS.DEFAULT_DATASTORE preference uses the DIRECT_DATASTORE
type. Use this preference to create indexes for text columns in which the text is
stored directly in the column.

• The CTXSYS.FILE_DATASTORE preference uses the FILE_DATASTORE type.

• The CTXSYS.URL_DATASTORE preference uses the URL_DATASTORE type.

Chapter 2
System-Defined Preferences

2-101

2.12.2 Filter Preferences
This section discusses the types associated with filtering preferences.

• The CTXSYS.NULL_FILTER preference uses the NULL_FILTER type.

• The CTXSYS.AUTO_FILTER preference uses the AUTO_FILTER type.

2.12.3 Lexer Preferences
This section discusses the types associated with lexer preferences.

• CTXSYS.DEFAULT_LEXER

• CTXSYS.DEFAULT_EXTRACT_LEXER

• CTXSYS.BASIC_LEXER

2.12.3.1 CTXSYS.DEFAULT_LEXER
The CTXSYS.DEFAULT_LEXER default lexer depends on the language used at install
time. The following sections describe the default settings for CTXSYS.DEFAULT_LEXER
for each language.

• American and English Language Settings

If your language is English, this preference uses the BASIC_LEXER with the
index_themes attribute disabled.

• Danish Language Settings

If your language is Danish, this preference uses the BASIC_LEXER with the
following option enabled:

– Alternate spelling (alternate_spelling attribute set to DANISH)

• Dutch Language Settings

If your language is Dutch, this preference uses the BASIC_LEXER with the
following options enabled:

– composite indexing (composite attribute set to DUTCH)

• German and German DIN Language Settings

If your language is German, then this preference uses the BASIC_LEXER with the
following options enabled:

– Case-sensitive indexing (mixed_case attribute enabled)

– Composite indexing (composite attribute set to GERMAN)

– Alternate spelling (alternate_spelling attribute set to GERMAN)

• Finnish, Norwegian, and Swedish Language Settings

If your language is Finnish, Norwegian, or Swedish, this preference uses the
BASIC_LEXER with the following option enabled:

– Alternate spelling (alternate_spelling attribute set to SWEDISH)

• Japanese Language Settings

Chapter 2
System-Defined Preferences

2-102

If your language is Japanese, this preference uses the
JAPANESE_VGRAM_LEXER.

• Korean Language Settings

If your language is Korean, this preference uses the KOREAN_MORPH_LEXER .
All attributes for the KOREAN_MORPH_LEXER are enabled.

• Chinese Language Settings

If your language is Simplified or Traditional Chinese, this preference uses the
CHINESE_VGRAM_LEXER.

• Other Languages

For all other languages not listed in this section, this preference uses the
BASIC_LEXER with no attributes set.

See Also:

To learn more about these options, see "BASIC_LEXER"

2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER
The CTXSYS.DEFAULT_EXTRACT_LEXER preference uses AUTO_LEXER and includes all
Oracle-supplied features (rules, dictionary, etc.). CTXSYS.DEFAULT_EXTRACT_LEXER
uses AUTO_LEXER with the following options:

• alternate_spelling is NONE

• base_letter is NO

• mixed_case is YES

• <> printjoin is '-*' <>

2.12.3.3 CTXSYS.BASIC_LEXER
The CTXSYS.BASIC_LEXER preference uses the BASIC_LEXER.

2.12.4 Section Group Preferences
This section discusses the types associated with section group preferences.

• The CTXSYS.NULL_SECTION_GROUP preference uses the NULL_SECTION_GROUP type.

• The CTXSYS.HTML_SECTION_GROUP preference uses the HTML_SECTION_GROUP type.

• The CTXSYS.JSON_SECTION_GROUP preference uses the PATH_SECTION_GROUP type.

• The CTXSYS.AUTO_SECTION_GROUP preference uses the AUTO_SECTION_GROUP type.

• The CTXSYS.PATH_SECTION_GROUP preference uses the PATH_SECTION_GROUP type.

Here is the list of default section groups that are created:

• The CTXSYS.XQUERY_SEC_GROUP preference evaluates not only xquery full text
expressions but also the xquery range expressions.

Chapter 2
System-Defined Preferences

2-103

• The CTXSYS.XQFT_SEC_GROUP preference evaluates only xquery full text
expressions.

2.12.5 Stoplist Preferences
This section discusses the types associated with stoplist preferences.

• The CTXSYS.DEFAULT_STOPLIST stoplist preference defaults to the stoplist of your
database language.

• The CTXSYS.EMPTY_STOPLIST stoplist has no words.

See Also:

For a complete list of the stop words in the supplied stoplists, see Oracle
Text Supplied Stoplists

2.12.6 Storage Preferences
This section discusses the types associated with storage preferences.

The CTXSYS.DEFAULT_STORAGE storage preference uses the BASIC_STORAGE type.

Here are the storage preferences:

• The CTXSYS.XQFT_LOW preference disables the persistence of secondary XML
representation into $D table to save index storage space.

– xml_save_copy = FALSE

– xml_forward_enable = FALSE

• The CTXSYS.XQFT_MEDIUM preference enables the persistence of secondary XML
representation into $D table to reduce the time spent on post index xquery
evaluation, if needed.

– xml_save_copy = TRUE

– xml_forward_enable = FALSE

• The CTXSYS.XQFT_HIGH preference enables the persistence of secondary XML
representation into $D table and forwards the index into $O to reduce the time
spent on post index xquery and xquery full text expression evaluation, if needed.

– xml_save_copy = TRUE

– xml_forward_enable = TRUE

2.12.7 Wordlist Preferences
This section discusses the types associated with wordlist preferences.

The CTXSYS.DEFAULT_WORDLIST preference uses the language stemmer for your
database language. If your language is not listed in Table 2-37, then this preference
defaults to the NULL stemmer and the GENERIC fuzzy matching attribute.

Chapter 2
System-Defined Preferences

2-104

2.13 System Parameters
This section describes the Oracle Text system parameters, which are divided into the
following categories:

• General System Parameters

• Default Index Parameters

• Default Policy Parameters

See Also:

"System-Defined Preferences"

2.13.1 General System Parameters
When you install Oracle Text, in addition to the system-defined preferences, the
following system parameters are set:

Table 2-45 General System Parameters

System Parameter Description

MAX_INDEX_MEMORY This is the maximum indexing memory that can be specified in
the parameter clause of CREATE INDEX and ALTER INDEX. The
maximum value for this parameter is 256 GB.

DEFAULT_INDEX_MEMORY This is the default indexing memory used with CREATE INDEX
and ALTER INDEX. The maximum value for this parameter is 64
MB.

LOG_DIRECTORY This is the directory for CTX_OUTPUT log files.

CTX_DOC_KEY_TYPE This is the default input key type, either ROWID or PRIMARY_KEY,
for the CTX_DOC procedures. Set to ROWID at install time.

See Also: CTX_DOC.SET_KEY_TYPE.

View system defaults by querying the CTX_PARAMETERS view. Change defaults
using the CTX_ADM.SET_PARAMETER procedure.

2.13.2 Default Index Parameters
This section describes the index parameters that you can use when you create
CONTEXT and CTXCAT indexes.

This section contains the following topics:

• CONTEXT Index Parameters

• CTXCAT Index Parameters

• CTXRULE Index Parameters

Chapter 2
System Parameters

2-105

Viewing Default Values

View system defaults by querying the CTX_PARAMETERS view. For example, to see
all parameters and values, enter the following statement:

SQL> SELECT par_name, par_value from ctx_parameters;

Changing Default Values

Change a default value using the CTX_ADM.SET_PARAMETER procedure to name
another custom or system-defined preference to use as default.

2.13.2.1 CONTEXT Index Parameters
The following default parameters are used when you create a CONTEXT index and do
not specify preferences in the parameter clause of CREATE INDEX. Each default
parameter names a system-defined preference to use for data storage, filtering, lexing,
and so on.

Table 2-46 Default CONTEXT Index Parameters

Parameter Used When Default Value

DEFAULT_DATASTORE No datastore preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_DATASTORE

DEFAULT_FILTER_FILE No filter preference specified in
parameter clause of CREATE INDEX,
and either of the following conditions
is true:

• Your files are stored in external
files (BFILES) or

• Specify a datastore preference
that uses FILE_DATASTORE

CTXSYS.AUTO_FILTER

DEFAULT_FILTER_BINARY No filter preference specified in
parameter clause of CREATE INDEX,
and Oracle Text detects that the text
column datatype is RAW, LONG RAW,
or BLOB.

CTXSYS.AUTO_FILTER

DEFAULT_FILTER_TEXT No filter preference specified in
parameter clause of CREATE INDEX,
and Oracle Text detects that the text
column datatype is either LONG,
VARCHAR2, VARCHAR, CHAR, or CLOB.

CTXSYS.NULL_FILTER

DEFAULT_SECTION_HTML No section group specified in
parameter clause of CREATE INDEX,
and when either of the following
conditions is true:

• Your datastore preference uses
URL_DATASTORE or

• Your filter preference uses
AUTO_FILTER.

CTXSYS.HTML_SECTION_GROUP

Chapter 2
System Parameters

2-106

Table 2-46 (Cont.) Default CONTEXT Index Parameters

Parameter Used When Default Value

DEFAULT_SECTION_TEXT No section group specified in
parameter clause of CREATE INDEX,
and when you do not use either
URL_DATASTORE or AUTO_FILTER.

CTXSYS.NULL_SECTION_GROUP

DEFAULT_STORAGE No storage preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_STORAGE

DEFAULT_LEXER No lexer preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DERAULT_LEXER

DEFAULT_STOPLIST No stoplist specified in parameter
clause of CREATE INDEX.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_WORDLIST No wordlist preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_WORDLIST

See Also:

"System-Defined Preferences"

2.13.2.2 CTXCAT Index Parameters
The following default parameters are used when you create a CTXCAT index with
CREATE INDEX and do not specify any parameters in the parameter string. The CTXCAT
index supports only the index set, lexer, storage, stoplist, and wordlist parameters.
Each default parameter names a system-defined preference.

Table 2-47 Default CTXCAT Index Parameters

Parameter Used When Default Value

DEFAULT_CTXCAT_INDEX_SET No index set specified in parameter
clause of CREATE INDEX.

n/a

DEFAULT_CTXCAT_STORAGE No storage preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_STORAGE

DEFAULT_CTXCAT_LEXER No lexer preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DERAULT_LEXER

DEFAULT_CTXCAT_STOPLIST No stoplist specified in parameter
clause of CREATE INDEX.

CTXSYS.DEFAULT_STOPLIST

Chapter 2
System Parameters

2-107

Table 2-47 (Cont.) Default CTXCAT Index Parameters

Parameter Used When Default Value

DEFAULT_CTXCAT_WORDLIST No wordlist preference specified in
parameter clause of CREATE INDEX.

Note that while you can specify a
wordlist preference for CTXCAT
indexes, most of the attributes do not
apply, because the catsearch query
language does not support
wildcarding, fuzzy, and stemming.
The only attribute that is useful is
PREFIX_INDEX for Japanese data.

CTXSYS.DEFAULT_WORDLIST

See Also:

"System-Defined Preferences"

2.13.2.3 CTXRULE Index Parameters
Table 2-48 lists the default parameters that are used when you create a CTXRULE index
with CREATE INDEX and do not specify any parameters in the parameter string. The
CTXRULE index supports only the lexer, storage, stoplist, and wordlist parameters. Each
default parameter names a system-defined preference.

Table 2-48 Default CTXRULE Index Parameters

Parameter Used When Default Value

DEFAULT_CTXRULE_LEXER No lexer preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DERAULT_LEXER

DEFAULT_CTXRULE_STORAGE No storage preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_STORAGE

DEFAULT_CTXRULE_STOPLIST No stoplist specified in parameter
clause of CREATE INDEX.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_CTXRULE_WORDLIST No wordlist preference specified in
parameter clause of CREATE INDEX.

CTXSYS.DEFAULT_WORDLIST

DEFAULT_CLASSIFIER No classifier preference is specified
in parameter clause.

RULE_CLASSIFIER

See Also:

"System-Defined Preferences"

CTXRULE Index Limitations

The CTXRULE index does not support the following query operators:

Chapter 2
System Parameters

2-108

• Fuzzy

• Soundex

It also does not support the following BASIC_WORDLIST attributes:

• SUBSTRING_INDEX

• PREFIX_INDEX

2.13.3 Default Policy Parameters
Policies in Oracle Text enable you to use document services without creating an index.
For example, the document services might be filtering to generate a plain text or HTML
version of a document, generating theme summaries or lists of themes, and
highlighting.

Table 2-49 lists the default parameters when you create a policy and do not specify
preferences when using CTX_DDL.CREATE_POLICY. Each default parameter names
a system-defined preference to use for filtering, lexing, and so on.

Table 2-49 Default Policy Parameters for CTX_DDL.CREATE_POLICY

Parameter Used When Default Value

DEFAULT_FILTER_BINARY No filter preference specified for
CREATE_POLICY, and the document
parameter of the document service is
VARCHAR2 or CLOB datatype; BLOB or
BFILE datatype.

CTXSYS.AUTO_FILTER

DEFAULT_FILTER_TEXT No filter preference specified for
CREATE_POLICY, and the document
parameter of the document service is
VARCHAR2 or CLOB datatype; BLOB or
BFILE datatype.

CTXSYS.NULL_FILTER

DEFAULT_SECTION_HTML No section group specified for
CREATE_POLICY, and when your
filter preference uses AUTO_FILTER.

CTXSYS.HTML_SECTION_GROUP

DEFAULT_SECTION_TEXT No section_group specified for
CREATE_POLICY, and when you do
not use AUTO_FILTER.

CTXSYS.NULL_SECTION_GROUP

DEFAULT_LEXER No lexer preference specified for
CREATE_POLICY.

CTXSYS.DERAULT_LEXER

DEFAULT_STOPLIST No stoplist specified for
CREATE_POLICY.

CTXSYS.DEFAULT_STOPLIST

DEFAULT_WORDLIST No wordlist preference specified for
CREATE_POLICY.

CTXSYS.DEFAULT_WORDLIST

See Also:

• "System-Defined Preferences"

• "CREATE_POLICY" for complete information

Chapter 2
System Parameters

2-109

2.14 Token Limitations
All Oracle Text index types store tokens in a table column of type VARCHAR2 (64
BYTE) . This means that the maximum size of an indexed token is 64 characters for
single–byte character sets, and is less with multibyte or variable-length character sets.
Any longer tokens are truncated at 64 bytes. That does not mean that the token
cannot be searched for, but rather that the system cannot distinguish between the two
tokens which have the same first 64 bytes.

Chapter 2
Token Limitations

2-110

3
Oracle Text CONTAINS Query Operators

This chapter describes operator precedence and provides descriptions, syntax, and
examples for every CONTAINS operator.

This chapter contains the following topics:

• Operator Precedence

• ABOUT

• ACCUMulate (_)

• AND (&)

• Broader Term (BT_ BTG_ BTP_ BTI)

• CTXFILTERCACHE

• DEFINEMERGE

• DEFINESCORE

• EQUIValence (=)

• Fuzzy

• HASPATH

• INPATH

• MDATA

• MINUS (-)

• MNOT

• Narrower Term (NT_ NTG_ NTP_ NTI)

• NDATA

• NEAR (;)

• NEAR2

• NOT (~)

• OR (|)

• Preferred Term (PT)

• Related Term (RT)

• SDATA

• soundex (!)

• stem ($)

• Stored Query Expression (SQE)

• SYNonym (SYN)

• threshold (>)

3-1

• Translation Term (TR)

• Translation Term Synonym (TRSYN)

• Top Term (TT)

• weight (*)

• wildcards (% _)

• WITHIN

3.1 Operator Precedence
Operator precedence determines the order in which the components of a query
expression are evaluated. Text query operators can be divided into two sets of
operators that have their own order of evaluation. These two groups are described
later as Group 1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to the
precedence of their operators. Operators with higher precedence are applied first.
Operators of equal precedence are applied in order of their appearance in the
expression from left to right.

• Group 1 Operators

• Group 2 Operators and Characters

• Procedural Operators

• Precedence Examples

• Altering Precedence

3.1.1 Group 1 Operators
Within query expressions, the Group 1 operators have the following order of evaluation
from highest precedence to lowest:

1. EQUIValence (=)

2. NEAR (;)

3. weight (*), threshold (>)

4. MINUS (-)

5. NOT (~)

6. MNOT

7. WITHIN

8. AND (&)

9. OR (|)

10. ACCUMulate (_)

3.1.2 Group 2 Operators and Characters
Within query expressions, the Group 2 operators have the following order of evaluation
from highest to lowest:

Chapter 3
Operator Precedence

3-2

1. Wildcard Characters

2. stem ($)

3. Fuzzy

4. soundex (!)

3.1.3 Procedural Operators
Other operators not listed under Group 1 or Group 2 are procedural. These operators
have no sense of precedence attached to them. They include the SQE and thesaurus
operators.

3.1.4 Precedence Examples

Table 3-1 Query Expression Precedence Examples

Query Expression Order of Evaluation

w1 | w2 & w3 (w1) | (w2 & w3)

w1 & w2 | w3 (w1 & w2) | w3

?w1, w2 | w3 & w4 (?w1), (w2 | (w3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)

dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than OR, the query returns
all documents that contain w1 and all documents that contain both w2 and w3.

In the second example, the query returns all documents that contain both w1 and w2
and all documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND operator is
applied to arguments w3 and w4, then the OR operator is applied to term w2 and the
results of the AND operation, and finally, the score from the fuzzy operation on w1 is
added to the score from the OR operation.

The fourth example shows that the equivalence operator has higher precedence than
the AND operator.

The fifth example shows that the AND operator has lower precedence than the WITHIN
operator.

3.1.5 Altering Precedence
Precedence is altered by grouping characters as follows:

• Within parentheses, expansion or execution of operations is resolved before other
expansions regardless of operator precedence.

• Within parentheses, precedence of operators is maintained during evaluation of
expressions.

• Within parentheses, expansion operators are not applied to expressions unless
the operators are also within the parentheses.

Chapter 3
Operator Precedence

3-3

See Also:

"Grouping Characters" in Special Characters in Oracle Text Queries

3.2 ABOUT
General Behavior

Use the ABOUT operator to return documents that are related to a query term or phrase.
In English and French, ABOUT enables you to query on concepts, even if a concept is
not actually part of a query. For example, an ABOUT query on heat might return
documents related to temperature, even though the term temperature is not part of the
query.

In other languages, using ABOUT will often increase the number of returned documents
and may improve the sorting order of results. For all languages, Oracle Text scores
results for an ABOUT query with the most relevant document receiving the highest
score.

English and French Behavior

In English and French, use the ABOUT operator to query on concepts. The system looks
up concept information in the theme component of the index. Create a theme
component to your index by setting the INDEX_THEMES BASIC_LEXER attribute to YES.

Note:

You need not have a theme component in the index to enter ABOUT queries in
English and French. However, having a theme component in the index yields
the best results for ABOUT queries.

Oracle Text retrieves documents that contain concepts that are related to your query
word or phrase. For example, if you enter an ABOUT query on California, the system
might return documents that contain the terms Los Angeles and San Francisco, which
are cities in California.The document need not contain the term California to be
returned in this ABOUT query.

The word or phrase specified in your ABOUT query need not exactly match the themes
stored in the index. Oracle Text normalizes the word or phrase before performing
lookup in the index.

You can use the ABOUT operator with the CONTAINS and CATSEARCH SQL operators. In
the case of CATSEARCH, you must use query templating with the CONTEXT grammar to
query on the indexed themes. See ABOUT Query with CATSEARCH in the Examples
section.

Chapter 3
ABOUT

3-4

Syntax

Syntax Description

about(phrase) In all languages, increases the number of relevant documents returned
for the same query without the ABOUT operator.The phrase parameter
can be a single word or a phrase, or a string of words in free text
format.

In English and French, returns documents that contain concepts related
to phrase, provided the BASIC_LEXER INDEX_THEMES attribute is set to
YES at index time.

The score returned is a relevance score.

Oracle Text ignores any query operators that are included in phrase.

If your index contains only theme information, an ABOUT operator and
operand must be included in your query on the text column or else
Oracle Text returns an error.

The phrase you specify cannot be more than 4000 characters.

Case-Sensitivity

ABOUT queries give the best results when your query is formulated with proper case.
This is because the normalization of your query is based on the knowledge catalog
which is case-sensitive.

However, you need not type your query in exact case to obtain results from an ABOUT
query. The system does its best to interpret your query. For example, if you enter a
query of CISCO and the system does not find this in the knowledge catalog, the
system might use Cisco as a related concept for look-up.

Improving ABOUT Results

The ABOUT operator uses the supplied knowledge base in English and French to
interpret the phrase you enter. Your ABOUT query therefore is limited to knowing and
interpreting the concepts in the knowledge base.

Improve the results of your ABOUT queries by adding your application-specific
terminology to the knowledge base.

See Also:

"Extending the Knowledge Base" in Oracle Text Utilities

Limitations

The phrase you specify in an ABOUT query cannot be more than 4000 characters.

Examples for ABOUT Operator

Single Words

To search for documents that are about soccer, use the following syntax:

'about(soccer)'

Chapter 3
ABOUT

3-5

Phrases

Further refine the query to include documents about soccer rules in international
competition by entering the phrase as the query term:

'about(soccer rules in international competition)'

In this English example, Oracle Text returns all documents that have themes of
soccer, rules, or international competition.

In terms of scoring, documents which have all three themes will generally score higher
than documents that have only one or two of the themes.

Unstructured Phrases

You can also query on unstructured phrases, such as the following:

'about(japanese banking investments in indonesia)'

Combined Queries

Use other operators, such as AND or NOT, to combine ABOUT queries with word queries.
For example, enter the following combined ABOUT and word query:

'about(dogs) and cat'

Combine an ABOUT query with another ABOUT query as follows:

'about(dogs) not about(labradors)'

Note:

You cannot combine ABOUT with the WITHIN operator, as for example 'ABOUT
(xyz) WITHIN abc'.

ABOUT Query with CATSEARCH

Enter ABOUT queries with CATSEARCH using the query template method with grammar
set to CONTEXT as follows:

select pk||' ==> '||text from test
where catsearch(text,
'<query>
 <textquery grammar="context">
 about(California)
 </textquery>
 <score datatype="integer"/>
</query>','')>0
order by pk;

3.3 ACCUMulate (,)
Use the ACCUM operator to search for documents that contain at least one occurrence
of any query terms, with the returned documents ranked by a cumulative score based
on how many query terms are found (and how frequently).

Chapter 3
ACCUMulate (,)

3-6

Syntax

Syntax Description

term1,term2

term1 ACCUM term2

Returns documents that contain term1 or term2. Ranks documents
according to document term weight, with the highest scores assigned to
documents that have the highest total term weight.

ACCUMulate Scoring

ACCUMulate first scores documents on how many query terms a document matches.
A document that matches more terms will always score higher than a document that
matches fewer terms, even if the terms appear more frequently in the latter. In other
words, if you search for dog ACCUM cat, you'll find that

the dog played with the cat

scores higher than

the big dog played with the little dog while a third dog ate the dog food

Scores are divided into ranges. In a two-term ACCUM, hits that match both terms will
always score between 51 and 100, whereas hits matching only one of the terms will
score between 1 and 50. Likewise, for a three-term ACCUM, a hit matching one term will
score between 1 and 33; a hit matching two terms will score between 34 and 66, and a
hit matching all three terms will score between 67 and 100. Within these ranges,
normal scoring algorithms apply.

See Also:

The Oracle Text Scoring Algorithm for more information on how scores are
calculated

You can assign different weights to different terms. For example, in a query of the form

soccer, Brazil*3

the term Brazil is weighted three times as heavily as soccer. Therefore, the document

people play soccer because soccer is challenging and fun

will score lower than

Brazil is the largest nation in South America

but both documents will rank below

soccer is the national sport of Brazil

Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil
ACCUM Brazil ACCUM Brazil. Because each query term Brazil is considered
independent, the entire query is scored as though it has four terms, not two, and thus
has four scoring ranges. The first Brazil-and-soccer example document shown above
scores in the first range (1-25), the second scores in the third range (51-75), and the
third scores in the fourth range (76-100). (No document scores in the second range,

Chapter 3
ACCUMulate (,)

3-7

because any document with Brazil in it will be considered to match at least three query
terms.)

Example for ACCUM Operator

set serveroutput on;
DROP TABLE accumtbl;
CREATE TABLE accumtbl (id NUMBER, text VARCHAR2(4000));

INSERT INTO accumtbl VALUES (1, 'the little dog played with the big dog
 while the other dog ate the dog food');
INSERT INTO accumtbl values (2, 'the cat played with the dog');

CREATE INDEX accumtbl_idx ON accumtbl (text) indextype is ctxsys.context;

PROMPT dog ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, 'dog ACCUM cat', 10)
 > 0;

PROMPT dog*3 ACCUM cat
SELECT SCORE(10) FROM accumtbl WHERE CONTAINS (text, 'dog*3 ACCUM cat', 10)
 > 0;

This produces the following output. Note that the document with both dog and cat
scores highest.

dog ACCUM cat
 ID SCORE(10)
----- ----------
 1 6
 2 52

dog*3 ACCUM cat
 ID SCORE(10)
----- ----------
 1 53
 2 76

Related Topics

weight (*)

3.4 AND (&)
Use the AND operator to search for documents that contain at least one occurrence of
each of the query terms. The AND operator returns documents that contain all of the
query terms, while OR operator returns documents that contain any of the query terms.

Syntax

Syntax Description

term1&term2

term1 and term2

Returns documents that contain term1 and term2. Returns the minimum
score of its operands. All query terms must occur; lower score taken.

Chapter 3
AND (&)

3-8

Example for AND Operator

To obtain all the documents that contain the terms blue and black and red, enter the
following query:

'blue & black & red'

In an AND query, the score returned is the score of the lowest query term. In this
example, if the three individual scores for the terms blue, black, and red is 10, 20 and
30 within a document, the document scores 10.

Related Topics

"OR (|)"

3.5 Broader Term (BT, BTG, BTP, BTI)
Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the
term that has been defined in a thesaurus as the broader or higher level term for a
specified term. They can also expand the query to include the broader term for the
broader term and the broader term for that broader term, and so on up through the
thesaurus hierarchy.

Syntax

Syntax Description

BT(term[(qualifier)][,level][,thes]) Expands a query to include the term defined in the
thesaurus as a broader term for term.

BTG(term[(qualifier)][,level][,thes]) Expands a query to include all terms defined in the
thesaurus as broader generic terms for term.

BTP(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader partitive terms for term.

BTI(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader instance terms for term.

term
Specify the operand for the broader term operator. Oracle Text expands term to
include the broader term entries defined for the term in the thesaurus specified by
thes. For example, if you specify BTG(dog), the expansion includes only those terms
that are defined as broader term generic for dog. You cannot specify expansion
operators in the term argument.
The number of broader terms included in the expansion is determined by the value for
level.

qualifier
Specify a qualifier for term, if term is a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.
If a qualifier is not specified for a homograph in a broader term query, the query
expands to include the broader terms of all the homographic terms.

Chapter 3
Broader Term (BT, BTG, BTP, BTI)

3-9

level
Specify the number of levels traversed in the thesaurus hierarchy to return the
broader terms for the specified term. For example, a level of 1 in a BT query returns
the broader term entry, if one exists, for the specified term. A level of 2 returns the
broader term entry for the specified term, as well as the broader term entry, if one
exists, for the broader term.
The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A thesaurus
named DEFAULT must exist in the thesaurus tables if you use this default value.

Note:

If you specify thes, then you must also specify level.

Examples for Broader Term Operators

The following query returns all documents that contain the term tutorial or the BT term
defined for tutorial in the DEFAULT thesaurus:

'BT(tutorial)'

When you specify a thesaurus name, you must also specify level as in:

'BT(tutorial, 2, mythes)'

Broader Term Operator on Homographs

If machine is a broader term for crane (building equipment) and bird is a broader term
for crane (waterfowl) and no qualifier is specified for a broader term query, the query

BT(crane)

expands to:

'{crane} or {machine} or {bird}'

If waterfowl is specified as a qualifier for crane in a broader term query, the query

BT(crane{(waterfowl)})

expands to the query:

'{crane} or {bird}'

Note:

When specifying a qualifier in a broader or narrower term query, the qualifier
and its notation (parentheses) must be escaped, as is shown in this example.

Chapter 3
Broader Term (BT, BTG, BTP, BTI)

3-10

Related Topics

CTX_THES.BT in CTX_THES Package for more information on browsing the broader
terms in your thesaurus

3.6 CTXFILTERCACHE
Oracle Text provides a cache layer called query filter cache that can be used to cache
the query results. Query filter cache is sharable across queries. Thus, the cached
query results can be reused by multiple queries, improving the query response time.
The CTXFILTERCACHE operator is used to specify which query results or part of query
results to cache in the query filter cache.

CTXFILTERCACHE only supports CONTEXT grammar queries. CONTAINER queries like
template queries are not supported. If you execute it with a template query, then errors
are raised.

Caution:

Before using CTXFILTERCACHE, you must run PURGE recyclebin as follows:

SQL> PURGE recylebin;

See Oracle Database Administrator's Guide for complete information about
purging objects in the recycle bin.

Syntax

ctxfiltercache((query_text) [, save_score] [, topN])

query_text
Specify the query whose results need to be stored in the cache.

save_score
Specify TRUE if you want to cache all the query results along with their scores in the
cache.
The default is FALSE. In this case, a score of 100 is returned for each query result, and
these scores are not stored in the cache. Only the query results are stored in the
cache.
Specify FALSE when you want to reuse the query results and not their scores in other
queries. This is particularly useful when you use the query text as a filter, such as a
security filter, where the relevance of the cached part of the query does not affect the
relevance of the query as a whole. Thus, when used with the AND operator (which
returns a lower score of its operands), a score of 100 does not affect the score of a
query as a whole.

topN
Specify TRUE if you want only the highest scoring query results to be stored in the
cache. Oracle Text internally determines how many highest scoring query results to
store in the cache. This helps in reducing the memory consumption of the cache.

Chapter 3
CTXFILTERCACHE

3-11

Note:

If you specify TRUE for topN, then save_score should also be TRUE.

Examples for CTXFILTERCACHE

Stored Query Results and TopN Examples

The following example stores the query results of the common_predicate query in the
cache:

select * from docs where contains(txt, 'ctxfiltercache((common_predicate),
FALSE)')>0;

Here, save_score is FALSE, and hence the score of 100 is returned for each query
result, and the scores are not stored in the cache.

In the following example, the cached results of the common_predicate query are
reused by the new_query query.

select * from docs where contains(txt, 'new_query &
ctxfiltercache((common_predicate), FALSE)')>0;

Set save_score to TRUE as shown in the following example to store all the query
results of the common_predicate query, along with the actual scores, in the cache.

select * from docs where contains(txt, 'ctxfiltercache((common_predicate), TRUE)')>0;

Set topN to TRUE if you want to store only the highest scoring query results of the
common_predicate query in the cache as described in the following example.

select id, score(1) from docs where contains(txt,
'ctxfiltercache((common_predicate), TRUE, TRUE)', 1)>0 order by score(1) desc;

Set topN to TRUE for the main part of the query and FALSE for the filter part, when the
score is relevant only for the main part of the query. The following example shows a
query with two ctxfiltercache clauses. It performs a free-text search for "cat AND
dog" and then applies a security filter to the search operation. Results of both the parts
of this query are separately cached so that they can be reused, but the score is
relevant only for the first part of the query.

select id, score(1) from docs where contains(txt, 'ctxfiltercache((cat AND dog),
TRUE, TRUE) AND ctxfiltercache((john WITHIN allowedUsers), FALSE, FALSE)', 1) > 0;

Cached Score Example

CTXFILTERCACHE stores one query result for score at a time in the cache. Hence, two
similar queries executed serially are considered the same query, and there is only one
such query stored in the cache.

The following examples, query A and query B, show two similar queries. The hit score
for A is 100, and the hit score for B is 5. Assume the cache is empty and you execute
query A first. The computed score 100 is stored in the cache for this query. When you
execute query B subsequently now, the cache contains the stored score of 100, and
therefore, query B returns the cached score of 100. Conversely, if you execute query B
before query A, then the cached computed score that gets returned is 5.

Query A:

Chapter 3
CTXFILTERCACHE

3-12

select /*+ DOMAIN_INDEX_SORT */ id, score(1) as ORADD from mydocs where contains
(txt ,'ctxfiltercache((DEFINEMERGE
 (((definescore(Oracle,relevance)),(definescore(Java,discrete)))
 ,OR,ADD
)),T,T)',1)>0 order by score(1) desc;

Query B:

select /*+ DOMAIN_INDEX_SORT */ id, score(1) as ORAVG from docs where contains
(txt ,'ctxfiltercache((DEFINEMERGE
 (((definescore(Oracle,relevance)),(definescore(Java,discrete)))
 ,OR,AVG
)),T,T)',1)>0 order by score(1) desc;

Notes

The query filter cache is an index level storage preference.

The storage preference for the query filter cache can be set at partition level only if this
is also set at index level. If a filter cache preference is set at partition level without any
filter cache preference being set at index level, then an error is thrown as follows:
"Illegal syntax for index, preference, source or section name."

Note that CTXFILTERCACHE is not utilized with:

• INPATH/HASPATH queries

• First query after syncindex for NDATA and SDATA

When topN is FALSE, the CTXFILTERCACHE operator can be either a top-level operator or
a child of the following operators:

• AND

• ACCUM

• NOT

• OR

• THRESHOLD (left side operand only)

• WEIGHT (left side operand only)

When topN is TRUE:

• The ctxfiltercache operator can be either a top-level operator or a child of the
following operators:

– AND

– THRESHOLD (left side operand only)

– WEIGHT (left side operand only)

• TopN is enabled only when the ctxfiltercache operator is used with the order
key ORDER BY SCORE(n) DESC and Oracle hint DOMAIN_INDEX_SORT for global
index. Additionally, for a partitioned index, be sure to have partition pruning in your
query. Otherwise, although topN is set to TRUE, normal mode will be used instead
of topN mode.

Chapter 3
CTXFILTERCACHE

3-13

Note:

The ctxfiltercache operator only supports a CONTEXT grammar query.
This means that container queries like template queries are not supported.

If ctxfiltercache is used with a query template, then the following type of
error will occur:

ERROR at line 1:
ORA-29902: error in executing ODCIIndexStart() routine
ORA-20000: Oracle Text error:
DRG-50900: text query parser error on line 1, column 8
DRG-50905: invalid score threshold <textquery

An example of a query that results in this error is as follows:

select score(1), id, txt from tdrbqfc45 where contains(txt,
'ctxfiltercache((<query><textquery>near2((a,b,c,d))
</textquery><score datatype="FLOAT"/>
</query>),true)', 1)>0 order by id;

To use ctxfiltercache you must specify a size for the query filter cache using the
basic storage attribute query_filter_cache_size. The default size is 0, which means
that ctxfiltercache is disabled by default.

The view ctx_filter_cache_statistics provides various statistics about the query
filter cache.

The query filter cache does not differentiate queries that only vary in how the score is
computed. Score is never computed on the fly within the query filter cache. See
"Cached Score Example" for an illustration of how this works.

Related Topics

"CTX_FILTER_CACHE_STATISTICS" for more information about the
ctx_filter_cache_statistics view

"BASIC_STORAGE" for more information about the query_filter_cache_size basic
storage attribute

3.7 DEFINEMERGE
Use the DEFINEMERGE operator to define how the score of child nodes of the AND and OR
should be merged. The DEFINEMERGE operator can be used as operand(s) of any
operators that allow AND or OR as operands. The score can be merged in three ways:
picking the minimum value, picking the maximum value, or calculating the average
score of all child nodes.

Use DEFINESCORE before using DEFINEMERGE.

Syntax

DEFINEMERGE (((text_query1), (text_query2), …) , operator, merge_method)

Chapter 3
DEFINEMERGE

3-14

Syntax Description

text_query1,2 ... Defines the search criteria. These parameters can have any value that is
valid for the AND/OR operator.

operator Defines the relationship between the two text_query parameters.

merge_method Defines how the score of the text_query should be merged. Possible
values: MIN, MAX, AVG, ADD

Example for DEFINEMERGE Operator

'DEFINEMERGE (((dog , cat) , (blue or black)), AND, MIN)'

Queries for the expression "dog ACCUM cat" and "blue OR black," using the default
scoring schemes and then using the minimum score of the two as the merged-score.

'DEFINEMERGE(((DEFINESCORE(dog, DISCRETE)) , (cat)), AND, MAX)'

Queries for the term "dog" using the DISCRETE scoring, and for the term "cat" using the
default relevant scoring, and then using the maximum score of the two as the merged-
score.

Example 3-1 DEFINEMERGE and text_query

The following examples show only the text_query part of a CONTAINS query:

'DEFINEMERGE (((dog), (cat)), OR, AVG)'

Queries for the term "dog" or "cat," using the average relevance score of both terms as
the merged score.

Related Topic

DEFINESCORE.

3.8 DEFINESCORE
Use the DEFINESCORE operator to define how a term or phrase, or a set of term
equivalences will be scored. The definition of a scoring expression can consist of an
arithmetic expression of predefined scoring components and numeric literals.

DEFINEMERGE can be used after DEFINESCORE.

Syntax

DEFINESCORE (query_term, scoring_expression)

query_term
The query term or phrase. Expressions containing the following operators are also
allowed:

Operators Operators

- -

ABOUT EQUIV(=)

Fuzzy Soundex (!)

Chapter 3
DEFINESCORE

3-15

Operators Operators

Stem ($) Wildcards (% _)

SDATA MDATA

scoring_expression
An arithmetic expression that describes how the query_term should be scored. This
operand is a string that contains the following components:

• Arithmetic operators: + - * /. The precedence is multiplication and division (*, /)
first before addition and subtraction (+, -).

• Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

• Absolute function: ABS(n) returns the absolute value of n; where n is any
expression that returns a number.

• Logarithmic function: LOG(n) returns the base-10 logarithmic value of n ; where n
is any expression that returns a number.

• Predefined scoring components: Each of the following scoring components
returns a value of 0 - 100, depending on different criteria:

Name Description

DISCRETE If the term exists in the document, score =
100. Otherwise, score = 0.

OCCURRENCE Score based on the number of occurrences.

RELEVANCE Score based on the document's relevance.

COMPLETION Score based on coverage. Documents will
score higher if the ratio between the number
of the matching terms and the number of all
terms in the section (counting stop words) is
higher. The COMPLETION scoring is only
applicable when used with the WITHIN
operator to search in zone sections.

IGNORE Ignore the scoring of this term. This
component should be used alone.
Otherwise, the query will return a syntax
error. If the scoring of the only term in the
query is set to IGNORE, then all the matching
documents should be returned with the
same score of 100.

Note:

For numeric literals, any number literal can be used that conforms to the SQL
pattern of number literal, and is within the range of the double precision
floating point (-3.4e38 to 3.4e38).

Chapter 3
DEFINESCORE

3-16

scoring_expression Syntax

<Exp> := <Exp> + <Term> | <Exp> - <Term> | <Term>

<Term> := <Term> * <Factor> | <Term> / <Factor> | <Factor>

<Factor> := <<NumericLiterals >>| DISCRETE | OCCURRENCE | RELEVANCE |
 COMPLETION | IGNORE | (<Exp>) | -<Factor> | Abs(<Exp>) | Log(<Exp>)

Examples for DEFINESCORE Operator

'DEFINESCORE (dog, OCCURRENCE)'

Queries for the word dog, and scores each document using the occurrence score.
Returns the score as integer.

'DEFINESCORE (Labradors are big dog, RELEVANCE)'

Queries for the phrase Labradors are big dogs, and scores each document using the
relevance score.

'cat and DEFINESCORE (dog, IGNORE)'

Queries for the words dog and cat, using only the default relevance score of cat as the
overall score of the document. Returns the score as integer.

'DEFINESCORE (dog, IGNORE)'

Queries for the word dog, and returns all documents with the word dog. The result is
the same as if all documents get a score of 100. Returns the score as integer.

'DEFINESCORE (dog, ABS (100-RELEVANCE))'

Queries for the word dog, and scores each document using the absolute value of 100
minus the relevance score. Returns the score as integer.

'cat and DEFINESCORE (dog, RELEVANCE*5 - OCCURRENCE)'

Returns a syntax error: Two predefined components are used.

When DEFINESCORE is used with query templates, the scoring_expression overrides
the values specified by the template. The following example queries for "dog" and
"cat," scores "cat" using OCCURRENCE(COUNT) and scores "dog" based on RELEVANCE.

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Limitations

• If the ABOUT operator is used in query_term, the OCCURRENCE and COMPLETION
scoring will not be applicable. If used, the query will return a syntax error.

• The IGNORE score cannot be used as right hand of the minus operator. If used,
then a syntax error will occur.

• The COMPLETION score is only applicable if the DEFINESCORE is used with a WITHIN
operator to search in zone sections, for example:

Chapter 3
DEFINESCORE

3-17

'DEFINESCORE (dog, COMPLETION) within zonesection'

otherwise, the query will return a syntax error.

• For the left hand operand of WITHIN:

– All nodes must use the same predefined-scoring component. (If not specified,
then the predefined scoring is RELEVANCE.)

– If the nodes use DISCRETE or COMPLETION, then only the AND and OR operator is
allowed as the left hand children of WITHIN.

– If the nodes use DISCRETE or COMPLETION, then WITHIN will use the max score
of all section instances as the score.

– If the nodes use RELEVANCE or OCCURRENCE, then WITHIN will use the
summation of the score of all section instances as the score.

• Only one predefined scoring component can be used in the scoring_expression
at one time. If more than one predefined scoring component is used, then a syntax
error will occur.

See Also:

Oracle Database SQL Language Reference

Notes

• The DEFINESCORE operator, the absolute function, the logarithmic function, and the
predefined scoring components are case-insensitive.

• The query_term and the scoring_expression parameters are mandatory.

• The final score of the DEFINESCORE operator will be truncated to be in the 0 – 100
range. If the data type is INTEGER, then the score is rounded up.

• The intermediate data type of the scoring value is a double precision float. As a
result, the value is limited to be in the -3.4e38 to 3.4e38 range. If the intermediate
scoring of any document exceeds the value, then the score will be truncated. If an
integer scoring is required, then the score will always be rounded up after the
score is calculated.

• The DEFINESCORE operator can be used as an operand of the following operators:

– AND

– NOT

– INPATH

– THRESHOLD

– WITHIN

– SQE

– OR

– DEFINEMERGE

– MINUS

Chapter 3
DEFINESCORE

3-18

– WEIGHT

– ACCUM

For example, the following statement is valid:

DEFINESCORE('dog', OCCURRENCE) AND DEFINESCORE('cat', RELEVANCE)

Queries for the term "dog" using occurrence scoring, and the term "cat" using
relevance scoring.

• If DEFINESCORE is used as a parameter of other operators, then an error will be
returned. For example, the following example returns an error:

SYN(DEFINESCORE('cat', OCCURRENCE))

• When used with query templates, the scoring_expression overrides the values
specified by the template. For example,

<query>
 <textquery grammar="CONTEXT" lang="english">
 DEFINESCORE(dog, RELEVANCE) and cat
 </textquery>
 <score datatype="INTEGER" algorithm="COUNT"/>
</query>

Queries for "dog" and "cat", scores "cat" using OCCURRENCE(COUNT), and scores
"dog" based on RELEVANCE.

Related Topic

DEFINEMERGE.

3.9 EQUIValence (=)
Use the EQUIV operator to specify an acceptable substitution for a word in a query.

Syntax

Syntax Description

term1=term2

term1 equiv term2

Specifies that term2 is an acceptable substitution for term1. Score
calculated as the sum of all occurrences of both terms.

Example for EQUIV Operator

The following example returns all documents that contain either the phrase alsatians
are big dogs or labradors are big dogs:

'labradors=alsatians are big dogs'

Operator Precedence

The EQUIV operator has higher precedence than all other operators except the
expansion operators (fuzzy, soundex, stem).

Chapter 3
EQUIValence (=)

3-19

3.10 Fuzzy
Use the fuzzy operator to expand queries to include words that are spelled similarly to
the specified term. This type of expansion is helpful for finding more accurate results
when there are frequent misspellings in your document set.

The fuzzy syntax enables you to rank the result set so that documents that contain
words with high similarity to the query word are scored higher than documents with
lower similarity. You can also limit the number of expanded terms.

Unlike stem expansion, the number of words generated by a fuzzy expansion
depends on what is in the index. Results can vary significantly according to the
contents of the index.

Supported Languages

Oracle Text supports fuzzy definitions for English, French, German, Italian, Dutch,
Spanish, Portuguese, Japanese, OCR, and auto-language detection.

Stopwords

If the fuzzy expansion returns a stopword, the stopword is not included in the query or
highlighted by CTX_DOC.HIGHLIGHT or CTX_DOC.MARKUP.

Base-Letter Conversion

If base-letter conversion is enabled for a text column and the query expression
contains a fuzzy operator, Oracle Text operates on the base-letter form of the query.

Syntax

fuzzy(term, score, numresults, weight)

Parameter Description

term Specify the word on which to perform the fuzzy expansion. Oracle Text
expands term to include words only in the index. The word needs to be
at least 3 characters for the fuzzy operator to process it.

score Specify a similarity score. Terms in the expansion that score below this
number are discarded. Use a number between 1 and 80. The default is
60.

numresults Specify the maximum number of terms to use in the expansion of term.
Use a number between 1 and 5000. The default is 100.

weight Specify WEIGHT or W for the results to be weighted according to their
similarity scores.

Specify NOWEIGHT or N for no weighting of results.

Examples for Fuzzy Operator

Consider the CONTAINS query:

...CONTAINS(TEXT, 'fuzzy(government, 70, 6, weight)', 1) > 0;

This query expands to the first six fuzzy variations of government in the index that
have a similarity score over 70.

Chapter 3
Fuzzy

3-20

In addition, documents in the result set are weighted according to their similarity to
government. Documents containing words most similar to government receive the
highest score.

Skip unnecessary parameters using the appropriate number of commas. For example:

'fuzzy(government,,,weight)'

Backward Compatibility Syntax

The old fuzzy syntax from previous releases is still supported. This syntax is as
follows:

Parameter Description

?term Expands term to include all terms with similar spellings as the
specified term. Term needs to be at least 3 characters for the fuzzy
operator to process it.

3.11 HASPATH
Use the HASPATH operator to find all XML documents that contain a specified section
path. You can also use this operator to do section equality testing.

Your index must be created with the PATH_SECTION_GROUP for this operator to work.

Syntax

Syntax Description

HASPATH(path) Searches an XML document set and returns a score
of 100 for all documents where path exists. Separate
parent and child paths with the / character. For
example, you can specify A/B/C.

See example.

HASPATH(A="value") Searches an XML document set and returns a score
of 100 for all documents that have the element A
with content value and only value.

See example.

Using Special Characters with HASPATH and INPATH

The following rules govern the use of special characters with regard to both the
HASPATH and INPATH operators:

• Left-brace ({) and right-brace (}) characters are not allowed inside HASPATH or
INPATH expressions unless they are inside the equality operand enclosed by
double quotes. So both 'HASPATH({/A/B})' and 'HASPATH(/A/{B})' will return
errors. However, 'HASPATH(/A[B="{author}"])' will be parsed correctly.

• With exception of the backslash (\), special characters, such as dollar sign ($),
percent sign (%), underscore (_), left brace ({), and right brace (}), when inside the
equality operand enclosed by double or single quotes, have no special meaning.
(That is, no stemming, wildcard expansion, or similar processing will be performed
on them.) However, they are still subject to regular text lexing and will be

Chapter 3
HASPATH

3-21

translated to whitespace, with the exception of characters declared as printjoins. A
backslash will still escape any character that immediately follows it.

For example, if the hyphen (-) and the double quote character (") are defined as
printjoins in a lexer preference, then:

– The string B_TEXT inside HASPATH(/A[B="B_TEXT") will be lexed as the
phrase B TEXT.

– The string B-TEXT inside HASPATH(/A[B="B-TEXT") will be lexed as the word
B-TEXT.

– The string B'TEXT inside HASPATH(/A[B="B'TEXT") will be lexed as the word
B"TEXT. You must use a backslash to escape the double quote between B
and TEXT, or you will get a parsing error.

– The string {B_TEXT} inside HASPATH(/A[B="{B_TEXT}") will be lexed as a
phrase B TEXT.

Examples for HASPATH Operator

Path Testing

The query

HASPATH(A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing

The query

dog INPATH A

finds

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test
with the HASPATH operator. For example,

HASPATH(A="dog")

finds and returns a score of 100 only for the first document, and not the second.

Limitations

Because of how XML section data is recorded, false matches might occur with XML
sections that are completely empty as follows:

<A><C></C><D><E></E></D>

A query of HASPATH(A/B/E) or HASPATH(A/D/C) falsely matches this document. This
type of false matching can be avoided by inserting text between empty tags.

Chapter 3
HASPATH

3-22

False matches might also occur when the document has empty elements but has
values in attributes, as in the following example document:

<Test>
<Client id="1">
 <Info infoid="1"/>
</Client>
<Client id="2">
 <Info infoid="2"/>
</Client>
</Test>

When searching with the following query, the query returns the document shown in the
example, which is a false match.

The following query was used to return the example document, which is a false match:

SELECT main_detail_logging_id, t.xml_data.getstringval() xml_data FROM
TEST_XMLTYPE t
WHERE CONTAINS(t.xml_data,
'HASPATH(/Test/Client[@id="1"]/Info[@infoid="2"])') > 0;

3.12 INPATH
Use the INPATH operator to do path searching in XML documents. This operator is like
the WITHIN operator except that the right-hand side is a parentheses enclosed path,
rather than a single section name.

Your index must be created with the PATH_SECTION_GROUP for the INPATH operator to
work.

Syntax

The INPATH operator has the following syntax:

Top-Level Tag Searching

Syntax Description

term INPATH (/A)

term INPATH (A)

Returns documents that have term within the <A>
and tags.

Any-Level Tag Searching

Syntax Description

term INPATH (//A) Returns documents that have term in the <A> tag at
any level. This query is the same as 'term WITHIN A'

Direct Parentage Path Searching

Chapter 3
INPATH

3-23

Syntax Description

term INPATH (A/B) Returns documents where term appears in a B
element which is a direct child of a top-level A
element.

For example, a document containing

<A>term

is returned.

Single-Level Wildcard Searching

Syntax Description

term INPATH (A/*/B) Returns documents where term appears in a B
element which is a grandchild (two levels down) of a
top-level A element.

For example a document containing

<A><D>term</D>

is returned.

Multi-level Wildcard Searching

Syntax Description

term INPATH (A/*/B/*/*/C) Returns documents where term appears in a C
element which is 3 levels down from a B element
which is two levels down (grandchild) of a top-level A
element.

Any-Level Descendant Searching

Syntax Description

term INPATH(A//B) Returns documents where term appears in a B
element which is some descendant (any level) of a
top-level A element.

Attribute Searching

Syntax Description

term INPATH (//A/@B) Returns documents where term appears in the B
attribute of an A element at any level. Attributes must
be bound to a direct parent.

Descendant/Attribute Existence Testing

Syntax Description

term INPATH (A[B]) Returns documents where term appears in a top-
level A element which has a B element as a direct
child.

Chapter 3
INPATH

3-24

Syntax Description

term INPATH (A[.//B]) Returns documents where term appears in a top-
level A element which has a B element as a
descendant at any level.

term INPATH (//A[@B]) Finds documents where term appears in an A
element at any level which has a B attribute.
Attributes must be tied to a direct parent.

Attribute Value Testing

Syntax Description

term INPATH (A[@B = "value"]) Finds all documents where term appears in a top-
level A element which has a B attribute whose value
is value.

term INPATH (A[@B != "value"]) Finds all documents where term appears in a top-
level A element which has a B attribute whose value
is not value.

Tag Value Testing

Syntax Description

term INPATH (A[B = "value"])) Returns documents where term appears in an A tag
which has a B tag whose value is value.

NOT Testing

Syntax Description

term INPATH (A[NOT(B)]) Finds documents where term appears in a top-level
A element which does not have a B element as an
immediate child.

AND and OR Testing

Syntax Description

term INPATH (A[B and C]) Finds documents where term appears in a top-level
A element which has a B and a C element as an
immediate child.

term INPATH (A[B and @C="value"]]) Finds documents where term appears in a top-level
A element which has a B element and a C attribute
whose value is value.

term INPATH (A [B OR C]) Finds documents where term appears in a top-level
A element which has a B element or a C element.

Combining Path and Node Tests

Chapter 3
INPATH

3-25

Syntax Description

term INPATH (A[@B = "value"]/C/D) Returns documents where term appears in aD
element which is the child of a C element, which is
the child of a top-level A element with a B attribute
whose value is value.

Nested INPATH

Nest the entire INPATH expression in another INPATH expression as follows:

(dog INPATH (//A/B/C)) INPATH (D)

When you do so, the two INPATH paths are completely independent. The outer INPATH
path does not change the context node of the inner INPATH path. For example:

(dog INPATH (A)) INPATH (D)

never finds any documents, because the inner INPATH is looking for dog within the top-
level tag A, and the outer INPATH constrains that to document with top-level tag D. A
document can have only one top-level tag, so this expression never finds any
documents.

Case-Sensitivity

Tags and attribute names in path searching are case-sensitive. That is,

dog INPATH (A)

finds <A>dog but does not find <a>dog. Instead use

dog INPATH (a)

Using Special Characters with INPATH

See "Using Special Characters with HASPATH and INPATH" for information on using
special characters, such as the percent sign (%) or the backslash (\), with INPATH.

Examples for INPATH Operator

Top-Level Tag Searching

To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH(A)

Any-Level Tag Searching

To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

Chapter 3
INPATH

3-26

and

<C><A>dog</C>

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a
top-level A element:

dog INPATH(A/B)

This query finds the following XML document:

<A>My dog is friendly.<A>

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing

You can test the value of tags. For example, the query:

dog INPATH(A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

Attribute Searching

You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

Attribute Value Testing

You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But does not find:

San Francisco, California, USA

Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:

HASPATH(A/B/C)

finds and returns a score of 100 for the document

Chapter 3
INPATH

3-27

<A><C>dog</C>

without the query having to reference dog at all.

Limitations

Testing for Equality

The following is an example of an INPATH equality test.

dog INPATH (A[@B = "foo"])

The following limitations apply for these expressions:

• Only equality and inequality are supported. Range operators and functions are not
supported.

• The left hand side of the equality must be an attribute. Tags and literals here are
not enabled.

• The right hand side of the equality must be a literal. Tags and attributes here are
not allowed.

• The test for equality depends on your lexer settings. With the default settings, the
query

dog INPATH (A[@B= "pot of gold"])

matches the following sections:

dog

and

dog

because lexer is case-insensitive by default.

dog

because of and is are default stopwords in English, and a stopword matches any
stopword word.

dog

because the underscore character is not a join character by default.

3.13 MDATA
Use the MDATA operator to query documents that contain MDATA sections. MDATA
sections are metadata that have been added to documents to speed up mixed
querying.

MDATA queries are treated exactly as literals. For example, with the query:

MDATA(price, $1.24)

the $ is not interpreted as a stem operator, nor is the . (period) transformed into
whitespace. A right (close) parenthesis terminates the MDATA operator, so that MDATA
values that have close parentheses cannot be searched.

Chapter 3
MDATA

3-28

Syntax

MDATA(sectionname, value)

sectionname
The name of the MDATA section(s) to search. MDATA will also search DATE or numerical
equality if the sectionname parameter is mapped to a FILTER BY column of DATE or
some numerical type.

value
The value of the MDATA section. For example, if an MDATA section called Booktype has
been created, it might have a value of paperback.
For MDATA operator on MDATA sections that are mapped to a DATE FILTER BY column,
the MDATA value must follow the Date format: YYYY-MM-DD HH24:MI:SS. Otherwise, the
expected rows will not be returned. If the time component is omitted, it will default to
00:00:00, according to SQL semantics.

Example for MDATA Operator

Suppose you want to query for books written by the writer Nigella Lawson that contain
the word summer. Assuming that an MDATA section called AUTHOR has been declared,
you can query as follows:

SELECT id FROM idx_docs
 WHERE CONTAINS(text, 'summer AND MDATA(author, Nigella Lawson)')>0

This query will only be successful if an AUTHOR tag has the exact value Nigella Lawson
(after simplified tokenization). Nigella or Ms. Nigella Lawson will not work.

Notes

MDATA query values ignore stopwords.

The MDATA operator returns an unlimited number of results or 0, depending on whether
the document is a match. You can set the maximum.

The MDATA operator is not supported for CTXCAT and CTXRULE indexes.

Table 3-2 shows how MDATA interacts with some other query operators:

Table 3-2 MDATA and Other Query Operators

Operator Example Allowed?

AND dog & MDATA(a, b) yes

OR dog | MDATA(a, b) yes

NOT dog ~ MDATA(a, b) yes

MINUS dog - MDATA(a, b) yes

ACCUM dog , MDATA(a, b) yes

PHRASE MDATA(a, b) dog no

NEAR MDATA(a, b) ; dog no

WITHIN, HASPATH, INPATH MDATA(a, b) WITHIN c no

Thesaurus MDATA(a, SYN(b)) no

Chapter 3
MDATA

3-29

Table 3-2 (Cont.) MDATA and Other Query Operators

Operator Example Allowed?

expansion MDATA(a, $b)

MDATA(a, b%)

MDATA(a, !b)

MDATA(a, ?b)

no (syntactically allowed, but
the inner operator is treated
as literal text)

ABOUT ABOUT(MDATA(a,b))

MDATA(ABOUT(a))

no (syntactically allowed, but
the inner operator is treated
as literal text)

When MDATA sections repeat, each instance is a separate and independent value. For
instance, the document

<AUTHOR>Terry Pratchett</AUTHOR><AUTHOR>Douglas Adams</AUTHOR>

can be found with any of the following queries:

MDATA(author, Terry Pratchett)
MDATA(author, Douglas Adams)
MDATA(author, Terry Pratchett) and MDATA(author, Douglas Adams)

but not any of the following:

MDATA(author, Terry Pratchett Douglas Adams)
MDATA(author, Terry Pratchett & Douglas Adams)
MDATA(author, Pratchett Douglas)

Related Topics

"ADD_MDATA"

"ADD_MDATA_SECTION"

See Also:

Oracle Text Application Developer's Guide for information about section
searching

3.14 MINUS (-)
Use the MINUS operator to lower the score of documents that contain unwanted noise
terms. MINUS is useful when you want to search for documents that contain one query
term but want the presence of a second term to cause a document to be ranked lower.

Chapter 3
MINUS (-)

3-30

Syntax

Syntax Description

term1-term2

term1 minus term2

Returns documents that contain term1. Calculates score by subtracting
the score of term2 from the score of term1. Only documents with
positive score are returned.

Example for MINUS Operator

Suppose a query on the term cars always returned high scoring documents about Ford
cars. You can lower the scoring of the Ford documents by using the expression:

'cars - Ford'

In essence, this expression returns documents that contain the term cars and possibly
Ford. However, the score for a returned document is the score of cars minus the score
of Ford.

Related Topics

"NOT (~)"

3.15 MNOT
The Mild Not (MNOT) operator is similar to the NOT and MINUS operators. The Mild Not
operator returns hits where the the left child is not contained by the right child. Both
children can only be TERM or PHRASE nodes.

The semantics can be illustrated with a query of "term1 mnot term1 term2", where the
hits for "term1 term2" will be filtered out. For example:

• A document with only term1 will be returned, with score unchanged.

• A document with only term1 term2 will not be returned.

• A document with term1 term1 term2 will be returned, but the score will be
calculated using just the first term1 hit.

The behavior described in the third bullet is different from the behavior of NOT, which
does not return this type of document.

The MNOT operator is more specific than the MINUS operator, in that the left child must
be contained by the right child. If it is not, the Mild Not operator ignores the right child.
Also, for Mild Not, the right child is a true filter, that is, it does not simply subtract the
scores of left child and right child.

The MNOT operator has precedence lower than NOT and higher than WITHIN.

Syntax

Syntax Description

term1 mnot term1 term2 Returns docs that contain term1 unless it is
part of the phrase term1 term2.

term1 mnot term2 Returns all documents that contain term1. It
will be the same query as just term1.

Chapter 3
MNOT

3-31

Example for MNOT Operator

The children of the MNOT operator must be a TERM or PHRASE.

SELECT * FROM docs
WHERE CONTAINS(txt, 'term1 mnot term1 term2') >0

Related Topic

"NOT (~)"

3.16 Narrower Term (NT, NTG, NTP, NTI)
Use the narrower term operators (NT, NTG, NTP, NTI) to expand a query to include all
the terms that have been defined in a thesaurus as the narrower or lower level terms
for a specified term. They can also expand the query to include all of the narrower
terms for each narrower term, and so on down through the thesaurus hierarchy.

Syntax

Syntax Description

NT(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower terms for term.

NTG(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower generic terms for
term.

NTP(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower partitive terms for
term.

NTI(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms
defined in the thesaurus as narrower instance terms for
term.

term
Specify the operand for the narrower term operator. term is expanded to include the
narrower term entries defined for the term in the thesaurus specified by thes. The
number of narrower terms included in the expansion is determined by the value for
level. You cannot specify expansion operators in the term argument.

qualifier
Specify a qualifier for term, if term is a homograph (word or phrase with multiple
meanings, but the same spelling) that appears in two or more nodes in the same
hierarchy branch of thes.
If a qualifier is not specified for a homograph in a narrower term query, the query
expands to include all of the narrower terms of all homographic terms.

level
Specify the number of levels traversed in the thesaurus hierarchy to return the
narrower terms for the specified term. For example, a level of 1 in an NT query returns
all the narrower term entries, if any exist, for the specified term. A level of 2 returns all
the narrower term entries for the specified term, as well as all the narrower term
entries, if any exist, for each narrower term.

Chapter 3
Narrower Term (NT, NTG, NTP, NTI)

3-32

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A thesaurus
named DEFAULT must exist in the thesaurus tables if you use this default value.

Note:

If you specify thes, then you must also specify level.

Examples for Narrower Term Operators

The following query returns all documents that contain either the term cat or any of the
NT terms defined for cat in the DEFAULT thesaurus:

'NT(cat)'

If you specify a thesaurus name, then you must also specify level as in:

'NT(cat, 2, mythes)'

The following query returns all documents that contain either fairy tale or any of the
narrower instance terms for fairy tale as defined in the DEFAULT thesaurus:

'NTI(fairy tale)'

That is, if the terms cinderella and snow white are defined as narrower term instances
for fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or snow
white.

Notes

Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to
the four narrower term operators. In a narrower term query, Oracle Text only expands
the query using the branch corresponding to the specified narrower term operator.

Related Topic

CTX_THES.NT in CTX_THES Package for more information on browsing the narrower
terms in your thesaurus

3.17 NDATA
Use the NDATA operator to find matches that are spelled in a similar way or where
rearranging the terms of the specified phrase is useful. It is helpful for finding more
accurate results when there are frequent misspellings (or inaccurate orderings) of
name data in the document set. This operator can be used only on defined NDATA
sections. The NDATA syntax enables you to rank the result set so that documents that
contain words with high orthographic similarity are scored higher than documents with
lower similarity.

Chapter 3
NDATA

3-33

Normalization

A lexer does not process NDATA query phrases. Users can, however, set base letter
and alternate spelling attributes for a particular section group containing NDATA
sections. Query case is normalized and non-character data (except for white space) is
removed (for example, numerical or punctuation).

Syntax

ndata(sectionname, phrase [,order][,proximity][,threshold])

Parameter
Name

Default Value Parameter Description

sectionname Specify the name of a defined NDATA sections to query (that
is, section_name)

phrase Specify the phrase for the name data query.

The phrase parameter can be a single word or a phrase, or
a string of words in free text format.

The score returned is a relevant score.

Oracle Text ignores any query operators that are included in
phrase.

The phrase should be a minimum of two characters in
length and should not exceed 4000 characters in length.

order NOORDER Specify whether individual tokens (terms) in a query should
be matched in-order or in any order. The order parameter
provides a primary filter for matching candidate documents.

ORDER or O - The query terms are matched in-order.

NOORDER o N [DEFAULT] - The query terms are matched in
any order.

proximity NOPROXIMITY Specify whether the proximity of terms should influence the
similarity score of candidate matches. That is, if the
proximity parameter is enabled, non-matching additional
terms between matching terms reduces the similarity score
of candidate matches.

PROXIMITY or P - The similarity score influenced by the
proximity of query terms in candidate matches.

NOPROXIMITY or N [DEFAULT] - The similarity score is not
influenced by the proximity of query terms in candidate
matches.

threshold 20 Starting with Oracle Database 12c Release 2 (12.2), you
can provide a threshold value as part of the NDATA
operator. Specify a threshold value for percentage of
matching grams. The section values containing low
percentage of matching grams are ignored. If the threshold
value is 20, sections with less than 20% of matching grams
are ignored. If this value is lowered, fewer sections are
ignored and this leads to a better recall. This threshold value
promotes recall over precision as the value is lowered. For
example:

NDATA(author, LAST First, x, proximity, 10)

Chapter 3
NDATA

3-34

Examples for NDATA Operator

An NDATA query on an indexed surname section name that matches terms in the query
phrase in any order without influencing the similarity score by the proximity of the black
and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, black smith)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in any order and in which similarity scores are influenced by the proximity of
the black and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, black smith,,proximity)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in-order without influencing the similarity score by the proximity of the black
and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, black smith, order)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query
phrase in-order and in which similarity scores are influenced by the proximity of the
black and smith terms has the form:

SELECT entryid, SCORE(1) FROM people WHERE
CONTAINS(idx_column, 'NDATA(surname, black smith, order, proximity)',1)>0;

Notes

The NDATA query operator does not provide offset information. As such, it cannot be
used as a child of WITHIN, NEAR(;), or EQUIV(=), and NDATA sections will be ignored by
CTX_DOC.HIGHLIGHT, CTX_DOC.SNIPPET, and CTX_DOC.MARKUP. The NDATA operator also
is not supported in the CTXCAT grammar. It can be used with other operators, including
OR and query templates.

A use case of the NDATA operator may involve finding a particular entry based on an
approximate spelling of a person's full-name and an estimated date-of-birth.
Supposing the entries' date-of-births are stored as an SDATA section, user-defined
scoring's alternate scoring template can be used to combine the scores of the full-
name's NDATA section data and the date-of-birth's SDATA section data.

The name john smith is queried for the section specified by the fullname
section_name. Altering the NDATA operator's score based on the closeness of the
SDATA section's date-of-birth to the date 08-NOV-2012 modifies the ranking of
matching documents as follows:

<query>
 <textquery grammar="CONTEXT" lang="english">
 NDATA(fullname, john smith)
 </textquery>
 <score algorithm="COUNT" normalization_expr =
 "doc_score-(DATE(8-NOV-2012)-sdata:dob)"/>
</query>

Chapter 3
NDATA

3-35

Restrictions

The NDATA query operator does not work with CTX_DOC Package procedures.
Attempting to use NDATA with CTX_DOC procedures will return an error stating that
this is not supported.

3.18 NEAR (;)
Use the NEAR operator to return a score based on the proximity of two or more query
terms. Oracle Text returns higher scores for terms closer together and lower scores for
terms farther apart in a document. If a word or term appears more than once in a NEAR
query, then the word must appear more than once in the document in order to match.

Note:

The NEAR operator works with only word queries. You cannot use NEAR in
ABOUT queries.

Syntax

NEAR((word1,word2,...,wordn) [, max_span [, order [, maxreqd]]])

Backward compatibility syntax:

word1;word2

word1-n
Specify the terms in the query separated by commas. The query terms can be single
words or phrases and may make use of other query operators (see "NEAR with Other
Operators").

max_span
Optionally specify the size of the biggest clump. The default is 100. Oracle Text
returns an error if you specify a number greater than 100.
A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.
For near queries with two terms, max_span is the maximum distance allowed between
the two terms. For example, to query on dog and cat where dog is within 6 words of
cat, enter the following query:

'near((dog, cat), 6)'

order
Specify TRUE for Oracle Text to search for terms in the order you specify. The default
is FALSE.
For example, to search for the words monday, tuesday, and wednesday in that order
with a maximum clump size of 20, enter the following query:

'near((monday, tuesday, wednesday), 20, TRUE)'

Chapter 3
NEAR (;)

3-36

Note:

To specify order, then you must always specify a number for max_span.

Oracle Text might return different scores for the same document when you use
identical query expressions that have the order flag set differently. For example,
Oracle Text might return different scores for the same document when you enter the
following queries:

'near((dog, cat), 50, FALSE)'
'near((dog, cat), 50, TRUE)'

maxreqd
This new argument is available starting with Oracle Database 12c Release 2 (12.2).
Specify the number of terms that must be near each other resulting in a match. If the
number of terms that must be near each other for a match is not specified, all terms
must match. For example, the following query matches documents that contain
clusters of words pertaining to fish:
'near((fish, shark, ocean, scales, fishing), 10, FALSE, 3)'
Here, only three of the query terms must be within a distance of 10 from each other
for a match.

NEAR Scoring

The scoring for the NEAR operator combines frequency of the terms with proximity of
terms. For each document that satisfies the query, Oracle Text returns a score
between 1 and 100 that is proportional to the number of clumps in the document and
inversely proportional to the average size of the clumps. This means many small
clumps in a document result in higher scores, because small clumps imply closeness
of terms.

The number of terms in a query also affects score. Queries with many terms, such as
seven, generally need fewer clumps in a document to score 100 than do queries with
few terms, such as two.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term. Define clump size with the max_span parameter, as
described in this section.

The size of a clump does not include the query terms themselves. So for the query
NEAR((DOG, CAT), 1), dog cat will be a match, and dog ate cat will be a match, but
dog sat on cat will not be a match.

NEAR with Other Operators

You can use the NEAR operator with other operators such as AND and OR. Scores are
calculated in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah
where the terms lion and tiger are within 10 words of each other, enter the following
query:

'near((lion, tiger), 10) AND cheetah'

The score returned for each document is the lower score of the near operator and the
term cheetah.

Chapter 3
NEAR (;)

3-37

You can also use the equivalence operator to substitute a single term in a near query:

'near((stock crash, Japan=Korea), 20)'

This query asks for all documents that contain the phrase stock crash within twenty
words of Japan or Korea.

The following NEAR syntax is now valid:

SELECT * FROM docs WHERE CONTAINS(txt, 'near((aterm1 aterm2 ... atermI
OR bterm1 bterm2 ... btermJ
OR cterm1 cterm2 ... ctermK, dterm))') >0

There can be any number of ORs in a given NEAR child, and the OR can appear in any of
the NEAR children.

The NEAR within NEAR feature allows users to use nested proximity queries. Starting
with Oracle Database 12c Release 2 (12.2), the distance between phrases is
measured from the closest words in the phrases. For example, if the document
contains the phrases ` Lorem ipsum dolor sit amet’ and ` Sed ut perspiciatis unde
omnis’, rather than measuring the distance of these two phrases as the distance
between `Lorem’ and `Sed’, the first two words in the phrases, the distance is
measured from `amet’ and ‘Sed’. The distance between phrases is the so-called
Hausdorff measure.

SELECT * FROM docs
WHERE CONTAINS(txt, 'near((near((term1, term2),5), term3), 100)')>0

This query returns documents where term1, term2, and term3 are near within a 100
token window and, additionally, the tokens term1 and term2 are near within a 5 token
window.

Mixing the semicolon and NEAR syntax is not supported and throws an error. That is,
the queries "near((a;b,c),3)" or "near((a,b));c" will be disallowed.

The following operators also work with NEAR and ; :

• EQUIV

• All expansion operators that produce words, phrases, or EQUIV. These include:

– soundex

– fuzzy

– wildcards

– stem

Backward Compatibility NEAR Syntax

You can write near queries using the syntax of previous Oracle Text releases.
However, in a nested NEAR query, the semicolon operator cannot be used as the
inner NEAR. That is, the query 'near(((a;d),f),3)' produces a syntax error. The
semicolon operator can be used as the outermost NEAR in a nested NEAR query.

For example, to find all documents where lion occurs near tiger, write:

'lion near tiger'

or with the semi-colon as follows:

Chapter 3
NEAR (;)

3-38

'lion;tiger'

This query is equivalent to the following query:

'near((lion, tiger), 100, FALSE)'

Note:

Only the syntax of the NEAR operator is backward compatible. In the example,
the score returned is calculated using the clump method as described in this
section.

Highlighting with the NEAR Operator

When you use highlighting and your query contains the near operator, all occurrences
of all terms in the query that satisfy the proximity requirements are highlighted.
Highlighted terms can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. I like chocolate served
in a waffle cone, and vanilla served in a cup with caramel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
<<chocolate>> served in a waffle cone, and <<vanilla>> served in a cup with
caramel syrup.

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is
highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
chocolate served in a waffle cone, and vanilla served in a cup with caramel syrup.

See Also:

CTX_DOC Package for more information about the procedures for
highlighting

Section Searching and NEAR

Use the NEAR operator with the WITHIN operator for section searching as follows:

'near((dog, cat), 10) WITHIN Headings'

When evaluating expressions such as these, Oracle Text looks for clumps that lie
entirely within the given section.

In this example, only those clumps that contain dog and cat that lie entirely within the
section Headings are counted. That is, if the term dog lies within Headings and the
term cat lies five words from dog, but outside of Headings, this pair of words does not
satisfy the expression and is not counted.

Chapter 3
NEAR (;)

3-39

3.19 NEAR2
Use the NEAR2 operator to perform position–based scoring and length normalization
to help improve relevancy.

The NEAR2 operator divides a document into segments based on the given query.
Then, it classifies each segment based on the primary features and scores them
based on the secondary features. The primary features that are used are as follows:

• Phrase Hits

• Partial Phrase Hits

• Ordered Near Hits

• Unordered Near Hits

• AND Hits

The secondary features are as follows:

• Excess Span

• Start Position

• Longest Partial Phrase

Syntax

NEAR2((word1, word2,...,wordn),max_span, phrase_weight,
partial_phrase_weight, ordered_near_weight, unordered_near_weight,
and_weight)

All or none of the weights must be provided. When the weights are provided, the NEAR2
operator works in the weighted-average mode. The weights are integers between 0
and 10.

word1-n
Specify the terms in the query separated by commas. The query terms can be single
words or phrases and can use other query operators (see "NEAR with Other
Operators"). Only the word list is mandatory.

max_span
Optionally, specify the size of the biggest clump. The default is 50. Oracle Text
returns an error if you specify a number greater than 50.
A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.
For near queries with two terms, max_span is the maximum distance allowed between
the two terms. For example, to query on dog and cat where dog is within 6 words of
cat, enter the following query:

'near((dog, cat), 6)'

phrase_weight
Determine the weight of the phrase primary feature when in weighted-average mode.
This is a qualitative weight, which is mapped to an internal weight.

Chapter 3
NEAR2

3-40

partial_phrase_weight
Determine the weight of the partial phrase primary feature when in weighted-average
mode. This is a qualitative weight.

ordered_near_weight
Determine the weight of the ordered near primary feature when in weighted-average
mode. This is a qualitative weight.

unordered_near_weight
Determine the weight of the unordered near primary feature when in weighted-
average mode. This is a qualitative weight.

and_weight
Determine the weight of the AND primary feature when in weighted average mode.
This is a qualitative weight.

See Also:

Oracle Text Application Developer's Guide

3.20 NOT (~)
Use the NOT operator to search for documents that contain one query term and not
another.

Syntax

Syntax Description

term1~term2

term1 not term2

Returns documents that contain term1 and not term2.

Examples for NOT Operator

To obtain the documents that contain the term animals but not dogs, use the following
expression:

'animals ~ dogs'

Similarly, to obtain the documents that contain the term transportation but not
automobiles or trains, use the following expression:

'transportation not (automobiles or trains)'

Note:

The NOT operator does not affect the scoring produced by the other logical
operators.

Chapter 3
NOT (~)

3-41

Related Topics

"MINUS (-)"

3.21 OR (|)
Use the OR operator to search for documents that contain at least one occurrence of
any of the query terms. The OR operator returns documents that contain any of the
query terms, while the AND operator returns documents that contain all query terms.

Syntax

Syntax Description

term1|term2

term1 or term2

Returns documents that contain term1 or term2. Returns the
maximum score of its operands. At least one term must exist;
higher score taken.

Examples for OR Operator

To obtain the documents that contain the term cats or the term dogs, use either of the
following expressions:

'cats | dogs'
'cats OR dogs'

Scoring

In an OR query, the score returned is the score for the highest query term. In the
example, if the scores for cats and dogs is 30 and 40 within a document, the document
scores 40.

Related Topics

"AND (&)"

3.22 Preferred Term (PT)
Use the preferred term operator (PT) to replace a term in a query with the preferred
term that has been defined in a thesaurus for the term.

Syntax

Syntax Description

PT(term[,thes]) Replaces the specified word in a query with the preferred term for
term.

term
Specify the operand for the preferred term operator. term is replaced by the preferred
term defined for the term in the specified thesaurus. However, if no PT entries are
defined for the term, term is not replaced in the query expression and term is the
result of the expansion.

Chapter 3
OR (|)

3-42

You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. As a result,
a thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

Example for PT Operator

The term automobile has a preferred term of car in a thesaurus. A PT query for
automobile returns all documents that contain the word car. Documents that contain
the word automobile are not returned.

Related Topics

CTX_THES.PT in CTX_THES Package form more information on browsing the
preferred terms in your thesaurus

3.23 Related Term (RT)
Use the related term operator (RT) to expand a query to include all related terms that
have been defined in a thesaurus for the term.

Syntax

Syntax Description

RT(term[,thes]) Expands a query to include all the terms defined in the thesaurus
as a related term for term.

term
Specify the operand for the related term operator. term is expanded to include term
and all the related entries defined for term in thes.
You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before using any of the
thesaurus operators.

Example for RT Operator

The term dog has a related term of wolf. An RT query for dog returns all documents
that contain the word dog and wolf.

Related Topics

CTX_THES.RT in CTX_THES Package for more information on browsing the related
terms in your thesaurus

Chapter 3
Related Term (RT)

3-43

3.24 SDATA
Use the SDATA operator to perform tests on SDATA sections and columns, which contain
structured data values. SDATA sections speed up mixed querying and ordering. This
operator provides structured predicate support for CONTAINS, which extends non-SQL
interfaces such as count_hits or the result set interface.

SDATA operators should only be used as descendants of AND operators that also have
non-SDATA children.

SDATA queries perform on string or numeric literals, and on date strings. The string
literal and date string are enclosed within single or double quote characters. The
numeric value is not enclosed in quote characters, and must conform to the SQL
format of NUMBER. For example:

CONTAINS(text, "dog and SDATA(category = ''news'')")>0 ...

SDATA(rating between 1.2 and 3.4) ...

SDATA(author LIKE 'FFORDE%') ...

SDATA(date >='2005-09-18') ...

Closed parentheses are permitted, as long as they are enclosed in single or double
quotes.

The SDATA operator can be used in query templates.

Syntax

Syntax Operators

SData := "SDATA" "(" SDataPredicate ")"

SDataPredicate := section_name SDataTest

SDataTest := <SDataSingleOp SDataLiteral> | SDataBetweenOp | <"is" ("not")?
"null">

SDataSingleOp := ("<" | "<=" | "=" | ">=" | ">" | "!=" | "<>" | "like") SDataLiteral

SDataBetweenOp := "between" SDataLiteral "and" SDataLiteral

SDataLiteral := numeric_literal | "'" string_literal "'" | "'" date_string "'"

section_name
The name of the SDATA section(s) on which to search and perform the test, or check.

SDataLiteral
The value of the SDATA section. This must be either a string literal, numeric literal, or a
date string.
The SDATA operator returns a score of 100 if the enclosed predicate returns TRUE, and
returns 0 otherwise. In the case of a NULL value, the SDATA operator returns a score of
0 (since in SQL it would not return TRUE).
Multi-valued semantics are not defined, as multi-valued SDATA sections are not
supported.
Comparison of strings is case sensitive. The BINARY collation is always used.

Chapter 3
SDATA

3-44

Note:

For the SDATA operator on SDATA sections that are mapped to a DATE FILTER
BY column, the SDATA value must follow the Date format: YYYY-MM-DD or
YYYY-MM-DD HH24:MI:SS. Otherwise, the expected rows will not be returned.
If the time component is omitted, it will default to 00:00:00, according to
SQL semantics. This Date format is always used, regardless of the setting
of the NLS_DATE_FORMAT environment variable.

Example for SDATA Operator

Suppose that you want to query for books in the fiction category that contain the word
summer. Assuming that an SDATA section called CATEGORY has been declared, you can
query as follows:

SELECT id FROM idx_docs
 WHERE CONTAINS(text, 'summer AND SDATA(category = "fiction")')>0

Restrictions

• An error is raised if the section name is not a defined SDATA section. The source of
the section (for example, tag versus column) is not important.

• The syntax precludes RHS SDATA and expressions.

• SDATA operators cannot be children of WITHIN, INPATH, HASPATH, or NEAR.

• The data type of the named SDATA section must be compatible with the literal
provided (and the operator, for example, LIKE) or an error is raised.

• SDATA operators are not supported in CTXRULE query documents.

• SDATA operators have no effect on highlighting.

Notes

Oracle recommends using SDATA operators only as descendants of AND operators that
also have non-SDATA children. Essentially, use SDATA operators as secondary (that is,
checking or non-driving) criteria. For instance, "find documents with DOG that also
have price > 5", rather than "find documents with rating > 4". Other usage may operate
properly, but may not have optimal performance.

The following examples are consistent with recommended use:

dog & SDATA(foo = 5)

The SDATA is a child of an AND operator that also has non-SDATA children.

dog & (SDATA(foo = 5) | SDATA(x = 1))

Although the SDATA operators here are children of OR, they are still descendants of an
AND operator with non-SDATA children.

The following examples show use that is not recommended:

SDATA(foo = 5)

Here, SDATA is the only criteria and, therefore, the driving criteria.

Chapter 3
SDATA

3-45

dog | SDATA(bar = 9)

The SDATA in this example is a child of an OR operator rather than an AND.

SDATA(foo = 5) & SDATA(bar = 7)

While both SDATA operators in this example are descendants of AND, this AND operator
does not have non-SDATA children.

Related Topics

"ADD_SDATA_COLUMN"

"ADD_SDATA_SECTION"

"UPDATE_SDATA"

"CTX_SECTIONS" in Oracle Text Views

See Also:

• Oracle Database SQL Language Reference

• Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer's Guide

3.25 soundex (!)
Use the soundex (!) operator to expand queries to include words that have similar
sounds; that is, words that sound like other words. This function enables comparison
of words that are spelled differently, but sound alike in English.

Syntax

Syntax Description

!term Expands a query to include all terms that sound the same as
the specified term (English-language text only).

Example for Soundex (!) Operator

SELECT ID, COMMENT FROM EMP_RESUME
WHERE CONTAINS (COMMENT, '!SMYTHE') > 0 ;

ID COMMENT
-- ------------
23 Smith is a hard worker who..

Language

Soundex works best for languages that use a 7-bit character set, such as English. It
can be used, with lesser effectiveness, for languages that use an 8-bit character set,
such as many Western European languages.

Chapter 3
soundex (!)

3-46

If you have base-letter conversion specified for a text column and the query
expression contains a soundex operator, then Oracle Text operates on the base-letter
form of the query.

3.26 stem ($)
Use the stem ($) operator to search for terms that have the same linguistic root as the
query term.

If you use the BASIC_LEXER to index your language, stemming performance can be
improved by using the index_stems attribute.

The Oracle Text stemmer, licensed from XSoft Division of Xerox Corporation, supports
the following languages with the BASIC_LEXER: English, French, Spanish, Italian,
German, and Dutch.

Japanese stemming is supported with the JAPANESE_LEXER.

Specify your stemming language with the BASIC_WORDLIST wordlist preference.

Syntax

Syntax Description

$term Expands a query to include all terms having the same
stem or root word as the specified term.

Examples for Stem ($) Operator

Input Expands To

$scream scream screaming screamed

$distinguish distinguish distinguished distinguishes

$guitars guitars guitar

$commit commit committed

$cat cat cats

$sing sang sung sing

Behavior with Stopwords

If stem returns a word designated as a stopword, the stopword is not included in the
query or highlighted by CTX_QUERY.HIGHLIGHT or CTX_QUERY.MARKUP.

Related Topics

For more information about enabling the stem operator with BASIC_LEXER, see
"BASIC_LEXER" in Oracle Text Indexing Elements

3.27 Stored Query Expression (SQE)
Use the SQE operator to call a stored query expression created with the
CTX_QUERY.STORE_SQE procedure.

Chapter 3
stem ($)

3-47

Stored query expressions can be used for creating predefined bins for organizing and
categorizing documents or to perform iterative queries, in which an initial query is
refined using one or more additional queries.

Syntax

Syntax Description

SQE(SQE_name) Returns the results for the stored query expression
SQE_name.

Examples for SQE Operator

To create an SQE named disasters, use CTX_QUERY.STORE_SQE as follows:

begin
ctx_query.store_sqe('disasters', 'hurricane or earthquake or blizzard');
end;

This stored query expression returns all documents that contain either hurricane,
earthquake or blizzard.

This SQE can then be called within a query expression as follows:

SELECT SCORE(1), docid FROM news
WHERE CONTAINS(resume, 'sqe(disasters)', 1)> 0
ORDER BY SCORE(1);

Limitations

Up to 100 stored query expressions (SQEs) can be stored in a single Text query. If a
Text query has more than 100 SQEs, including nested SQEs, then the query fails and
error DRG-50949 is raised.

Related Topic

"STORE_SQE"

3.28 SYNonym (SYN)
Use the synonym operator (SYN) to expand a query to include all the terms that have
been defined in a thesaurus as synonyms for the specified term.

Syntax

Syntax Description

SYN(term[,thes]) Expands a query to include all the terms defined in the
thesaurus as synonyms for term.

term
Specify the operand for the synonym operator. term is expanded to include term and
all the synonyms defined for term in thes.
You cannot specify expansion operators in the term argument.

Chapter 3
SYNonym (SYN)

3-48

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A thesaurus
named DEFAULT must exist in the thesaurus tables if you use this default value.

Examples for SYN Operator

The following query expression returns all documents that contain the term dog or any
of the synonyms defined for dog in the DEFAULT thesaurus:

'SYN(dog)'

Compound Phrases in Synonym Operator

Expansion of compound phrases for a term in a synonym query are returned as AND
conjunctives.

For example, the compound phrase temperature + measurement + instruments is
defined in a thesaurus as a synonym for the term thermometer. In a synonym query for
thermometer, the query is expanded to:

{thermometer} OR ({temperature}&{measurement}&{instruments})

Related Topics

CTX_THES.SYN in CTX_THES Package for more information on browsing the
synonym terms in your thesaurus

3.29 threshold (>)
Use the threshold operator (>) in two ways:

• at the expression level

• at the query term level

The threshold operator at the expression level eliminates documents in the result set
that score below a threshold number.

The threshold operator at the query term level selects a document based on how a
term scores in the document.

Syntax

Syntax Description

expression>n

term>n

Returns only those documents in the result set that score
above the threshold n.

Within an expression, returns documents that contain the
query term with score of at least n.

Examples for Threshold (>) Operator

At the expression level, to search for documents that contain relational databases and
to return only documents that score greater than 75, use the following expression:

'relational databases > 75'

Chapter 3
threshold (>)

3-49

At the query term level, to select documents that have at least a score of 30 for lion
and contain tiger, use the following expression:

'(lion > 30) and tiger'

3.30 Translation Term (TR)
Use the translation term operator (TR) to expand a query to include all defined foreign
language equivalent terms.

Syntax

Syntax Description

TR(term[, lang, [thes]]) Expands term to include all the foreign equivalents that are
defined for term.

term
Specify the operand for the translation term operator. term is expanded to include all
the foreign language entries defined for term in thes. You cannot specify expansion
operators in the term argument.

lang
Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. (You may specify
only one language at a time.) If you omit this parameter or specify it as ALL, the
system expands to use all defined foreign language terms.

thes
Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any
of the thesaurus operators.

Note:

If you specify thes, then you must also specify lang.

Examples for TR Operator

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat

To search for all documents that contain cat and the spanish translation of cat, enter
the following query:

'tr(cat, spanish, my_thes)'

This query expands to:

'{cat}|{gato}'

Chapter 3
Translation Term (TR)

3-50

Related Topics

CTX_THES.TR in CTX_THES Package for more information on browsing the related
terms in your thesaurus

3.31 Translation Term Synonym (TRSYN)
Use the translation term synonym operator (TRSYN) to expand a query to include all the
defined foreign equivalents of the query term, the synonyms of query term, and the
foreign equivalents of the synonyms.

Syntax

Syntax Description

TRSYN(term[, lang, [thes]]) Expands term to include foreign equivalents of term, the
synonyms of term, and the foreign equivalents of the synonyms.

term
Specify the operand for this operator. term is expanded to include all the foreign
language entries and synonyms defined for term in thes. You cannot specify
expansion operators in the term argument.

lang
Optionally, specify which foreign language equivalents to return in the expansion. The
language you specify must match the language as defined in thes. If you omit this
parameter, the system expands to use all defined foreign language terms.

thes
Optionally, specify the name of the thesaurus used to return the expansions for the
specified term. The thes argument has a default value of DEFAULT. As a result, a
thesaurus named DEFAULT must exist in the thesaurus tables before you can use any
of the thesaurus operators.

Note:

If you specify thes, then you must also specify lang.

Examples for TRSYN Operator

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat
 SYN lion
 SPANISH: leon

To search for all documents that contain cat, the spanish equivalent of cat, the
synonym of cat, and the spanish equivalent of lion, enter the following query:

'trsyn(cat, spanish, my_thes)'

Chapter 3
Translation Term Synonym (TRSYN)

3-51

This query expands to:

'{cat}|{gato}|{lion}|{leon}'

Related Topics

CTX_THES.TRSYN in CTX_THES Package for more information on browsing the
translation and synonym terms in your thesaurus

3.32 Top Term (TT)
Use the top term operator (TT) to replace a term in a query with the top term that has
been defined for the term in the standard hierarchy (Broader Term [BT], Narrower Term
[NT]) in a thesaurus. A top term is the broadest conceptual term related to a given
query term. For example, a thesaurus might define the following hierarchy:

DOG
 BT1 CANINE
 BT2 MAMMAL
 BT3 VERTEBRATE
 BT4 ANIMAL

The top term for dog in this thesaurus is animal.

Top terms in the generic (BTG, NTG), partitive (BTP, NTP), and instance (BTI, NTI)
hierarchies are not returned.

Syntax

Syntax Description

TT(term[,thes]) Replaces the specified word in a query with the top term in the
standard hierarchy (BT, NT) for term.

term
Specify the operand for the top term operator. term is replaced by the top term
defined for the term in the specified thesaurus. However, if no TT entries are defined
for term, term is not replaced in the query expression and term is the result of the
expansion.
You cannot specify expansion operators in the term argument.

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. A thesaurus
named DEFAULT must exist in the thesaurus tables if you use this default value.

Example for TT Operator

The term dog has a top term of animal in the standard hierarchy of a thesaurus. A TT
query for dog returns all documents that contain the phrase animal. Documents that
contain the word dog are not returned.

Related Topics

CTX_THES.TT for more information on browsing the top terms in your thesaurus

Chapter 3
Top Term (TT)

3-52

3.33 weight (*)
The weight operator multiplies the score by the given factor, topping out at 100 when
the score exceeds 100. For example, the query cat, dog*2 sums the score of cat with
twice the score of dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to
adjust the relative scoring of the query terms. Reduce the score of a query term by
using the weight operator with a number less than 1; increase the score of a query
term by using the weight operator with a number greater than 1 and less than 10.

The weight operator is useful in ACCUMulate (_), AND (&), or OR (|) queries when
the expression has more than one query term. With no weighting on individual terms,
the score cannot tell which of the query terms occurs the most. With term weighting,
you can alter the scores of individual terms and hence make the overall document
ranking reflect the terms you are interested in.

Syntax

Syntax Description

term*n Returns documents that contain term. Calculates score by multiplying
the raw score of term by n, where n is a number from 0.1 to 10.

Examples for Weight (*) Operator

Suppose you have a collection of sports articles. You are interested in the articles
about Brazilian soccer. It turns out that a regular query on soccer or Brazil returns
many high ranking articles on US soccer. To raise the ranking of the articles on
Brazilian soccer, enter the following query:

'soccer or Brazil*3'

Table 3-3 illustrates how the weight operator can change the ranking of three
hypothetical documents A, B, and C, which all contain information about soccer. The
columns in the table show the total score of four different query expressions on the
three documents.

Table 3-3 Score Samples

Document soccer Brazil soccer or Brazil soccer or Brazil*3

A 20 10 20 30

B 10 30 30 90

C 50 20 50 60

The score in the third column containing the query soccer or Brazil is the score of the
highest scoring term. The score in the fourth column containing the query soccer or
Brazil*3 is the larger of the score of the first column soccer and of the score Brazil
multiplied by three, Brazil*3.

With the initial query of soccer or Brazil, the documents are ranked in the order C B A.
With the query of soccer or Brazil*3, the documents are ranked B C A, which is the
preferred ranking.

Chapter 3
weight (*)

3-53

Weights can be added to multiple terms. The query Brazil OR (soccer AND Brazil)*3
will increase the relative scores for documents that contain both soccer and Brazil.

3.34 wildcards (% _)
Wildcard characters can be used in query expressions to expand word searches into
pattern searches. When a wildcard is used on its own, for example, "DOG %" or ".%"
or "%" by itself, it is treated as a stopword.

The wildcard characters are as follows:

Wildcard Character Description

% The percent wildcard can appear any number of times at any part of the
search term. The search term will be expanded into an equivalence list
of terms. The list consists of all terms in the index that match the
wildcarded term, with zero or more characters in place of the percent
character.

_ The underscore wildcard specifies a single position in which any
character can occur.

The total number of wildcard expansions from all words in a query containing
unescaped wildcard characters cannot exceed the maximum number of expansions
specified by the BASIC_WORDLIST attribute WILDCARD_MAXTERMS. For more information,
see "BASIC_WORDLIST".

Note:

• When a wildcard is used on its own, it is treated as a stopword.

• When a wildcard expression translates to a stopword, the stopword is
not included in the query and not highlighted by CTX_DOC.HIGHLIGHT
or CTX_DOC.MARKUP .

Right-Truncated Queries

Right truncation involves placing the wildcard on the right-hand-side of the search
string.

For example, the following query expression finds all terms beginning with the pattern
scal:

'scal%'

Left- and Double-Truncated Queries

Left truncation involves placing the wildcard on the left-hand-side of the search string.

To find words such as king, wing or sing, write the query as follows:

'_ing'

For all words that end with ing, enter:

'%ing'

Chapter 3
wildcards (% _)

3-54

Combine left-truncated and right-truncated searches to create double-truncated
searches. The following query finds all documents that contain words that contain the
substring %benz%

'%benz%'

Improving Wildcard Query Performance

Improve wildcard query performance by adding a substring or prefix index.

When your wildcard queries are left- and double-truncated, you can improve query
performance by creating a substring index. Substring indexes improve query
performance for all types of left-truncated wildcard searches such as %ed, _ing, or
%benz%.

When your wildcard queries are right-truncated, you can improve performance by
creating a prefix index. A prefix index improves query performance for wildcard
searches such as to%.

See Also:

"BASIC_WORDLIST" in Oracle Text Indexing Elements for more information
about creating substring and prefix indexes

3.35 WITHIN
Use the WITHIN operator to narrow a query down into document sections. Document
sections can be one of the following:

• Zone sections

• Field sections

• Attribute sections

• Special sections (sentence or paragraph)

Syntax

Syntax Description

expression WITHIN section Searches for expression within the predefined zone,
field, or attribute section.

If section is a zone, expression can contain one or
more WITHIN operators (nested WITHIN) whose section
is a zone or special section.

If section is a field or attribute section, expression
cannot contain another WITHIN operator.

expression WITHIN SENTENCE Searches for documents that contain expression
within a sentence. Specify an AND or NOT query for
expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or
special section.

Chapter 3
WITHIN

3-55

Syntax Description

expression WITHIN PARAGRAPH Searches for documents that contain expression
within a paragraph. Specify an AND or NOT query for
expression.

The expression can contain one or more WITHIN
operators (nested WITHIN) whose section is a zone or
special section.

WITHIN Limitations

The WITHIN operator has the following limitations:

• You cannot embed the WITHIN clause in a phrase. For example, you cannot write:
term1 WITHIN section term2

• Because WITHIN is a reserved word, you must escape the word with braces to
search on it.

WITHIN Operator Examples

Querying Within Zone Sections

To find all the documents that contain the term San Francisco within the section
Headings, write the query as follows:

'San Francisco WITHIN Headings'

To find all the documents that contain the term sailing and contain the term San
Francisco within the section Headings, write the query in one of two ways:

'(San Francisco WITHIN Headings) and sailing'

'sailing and San Francisco WITHIN Headings'

Compound Expressions with WITHIN

To find all documents that contain the terms dog and cat within the same section
Headings, write the query as follows:

'(dog and cat) WITHIN Headings'

This query is logically different from:

'dog WITHIN Headings and cat WITHIN Headings'

This query finds all documents that contain dog and cat where the terms dog and cat
are in Headings sections, regardless of whether they occur in the same Headings
section or different sections.

Near with WITHIN

To find all documents in which dog is near cat within the section Headings, write the
query as follows:

'dog near cat WITHIN Headings'

Chapter 3
WITHIN

3-56

Note:

The near operator has higher precedence than the WITHIN operator so
braces are not necessary in this example. This query is equivalent to (dog
near cat) WITHIN Headings.

Nested WITHIN Queries

You can nest the within operator to search zone sections within zone sections.

For example, assume that a document set had the zone section AUTHOR nested within
the zone BOOK section. Write a nested WITHIN query to find all occurrences of scott
within the AUTHOR section of the BOOK section as follows:

'(scott WITHIN AUTHOR) WITHIN BOOK'

Querying Within Field Sections

The syntax for querying within a field section is the same as querying within a zone
section. The syntax for most of the examples given in the previous section, "Querying
Within Zone Sections", apply to field sections.

However, field sections behave differently from zone sections in terms of

• Visibility: Make text within a field section invisible.

• Repeatability: WITHIN queries cannot distinguish repeated field sections.

• Nestability: You cannot enter a nested WITHIN query with a field section.

The following sections describe these differences.

Visible Flag in Field Sections

When a field section is created with the visible flag set to FALSE in
CTX_DDL.ADD_FIELD_SECTION, the text within a field section can only be queried using
the WITHIN operator.

For example, assume that TITLE is a field section defined with visible flag set to FALSE.
Then the query dog without the WITHIN operator will not find a document containing:

<TITLE>The dog</TITLE> I like my pet.

To find such a document, use the WITHIN operator as follows:

'dog WITHIN TITLE'

Alternatively, set the visible flag to TRUE when you define TITLE as a field section with
CTX_DDL.ADD_FIELD_SECTION.

See Also:

"ADD_FIELD_SECTION" in CTX_DDL Package for more information about
creating field sections

Chapter 3
WITHIN

3-57

Repeated Field Sections

WITHIN queries cannot distinguish repeated field sections in a document. For example,
consider the document with the repeated section <author>:

<author> Charles Dickens </author>
<author> Martin Luther King </author>

Assuming that <author> is defined as a field section, a query such as (charles and
martin) within author returns the document, even though these words occur in
separate tags.

To have WITHIN queries distinguish repeated sections, define the sections as zone
sections.

Nested Field Sections

You cannot enter a nested WITHIN query with field sections. Doing so raises an error.

Querying Within Sentence or Paragraphs

Querying within sentence or paragraph boundaries is useful to find combinations of
words that occur in the same sentence or paragraph. To query sentence or
paragraphs, you must first add the special section to your section group before you
index. Do so with CTX_DDL.ADD_SPECIAL_SECTION.

To find documents that contain dog and cat within the same sentence:

'(dog and cat) WITHIN SENTENCE'

To find documents that contain dog and cat within the same paragraph:

'(dog and cat) WITHIN PARAGRAPH'

To find documents that contain sentences with the word dog but not cat:

'(dog not cat) WITHIN SENTENCE'

Querying Within Attribute Sections

Query within attribute sections when you index with either XML_SECTION_GROUP or
AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

Define the section title@book to be the attribute section title. Do so with the
CTX_DLL.ADD_ATTR_SECTION procedure or dynamically after indexing with ALTER INDEX.

Chapter 3
WITHIN

3-58

Note:

When you use the AUTO_SECTION_GROUP to index XML documents, the
system automatically creates attribute sections and names them in the form
attribute@tag.

If you use the XML_SECTION_GROUP, you can name attribute sections anything
with CTX_DDL.ADD_ATTR_SECTION.

To search on Tale within the attribute section title, enter the following query:

'Tale WITHIN title'

Constraints for Querying Attribute Sections

The following constraints apply to querying within attribute sections:

• Regular queries on attribute text do not hit the document unless qualified in a
within clause. Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

A query on Tale by itself does not produce a hit on the document unless qualified with
WITHIN title@book. (This behavior is like field sections when you set the visible flag
set to false.)

• You cannot use attribute sections in a nested WITHIN query.

• Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men </word> to come to the aid.

Then this document would hit on the regular query good men, ignoring the intervening
attribute text.

• WITHIN queries can distinguish repeated attribute sections. This behavior is like
zone sections but unlike field sections. For example, you have a document as
follows:

<book title="Tale of Two Cities">It was the best of times.</book>
<book title="Of Human Bondage">The sky broke dull and gray.</book>

Assume that book is a zone section and book@author is an attribute section. Consider
the query:

'(Tale and Bondage) WITHIN book@author'

This query does not hit the document, because tale and bondage are in different
occurrences of the attribute section book@author.

Notes

Section Names

The WITHIN operator requires you to know the name of the section you search. A list of
defined sections can be obtained using the CTX_SECTIONS or
CTX_USER_SECTIONS views.

Chapter 3
WITHIN

3-59

Section Boundaries

For special and zone sections, the terms of the query must be fully enclosed in a
particular occurrence of the section for the document to satisfy the query. This is not a
requirement for field sections.

For example, consider the query where bold is a zone section:

'(dog and cat) WITHIN bold'

This query finds:

dog cat

but it does not find:

dogcat

This is because dog and cat must be in the same bold section.

This behavior is especially useful for special sections, where

'(dog and cat) WITHIN sentence'

means find dog and cat within the same sentence.

Field sections on the other hand are meant for non-repeating, embedded metadata
such as a title section. Queries within field sections cannot distinguish between
occurrences. All occurrences of a field section are considered to be parts of a single
section. For example, the query:

(dog and cat) WITHIN title

can find a document like this:

<TITLE>dog</TITLE><TITLE>cat</TITLE>

In return for this field section limitation and for the overlap and nesting limitations, field
section queries are generally faster than zone section queries, especially if the section
occurs in every document, or if the search term is common.

Chapter 3
WITHIN

3-60

4
Special Characters in Oracle Text Queries

This chapter describes the special characters that can be used in Text queries. In
addition, it provides a list of the words and characters that Oracle Text treats as
reserved words and characters.

The following topics are covered in this chapter:

• Grouping Characters

• Escape Characters

• Reserved Words and Characters

4.1 Grouping Characters
The grouping characters control operator precedence by grouping query terms and
operators in a query expression. The grouping characters are described in Table 4-1.

Table 4-1 Characters for Grouping Query Terms

Grouping Character Description

() The parentheses characters serve to group terms and operators
found between the characters

[] The bracket characters serve to group terms and operators
found between the characters; however, they prevent
penetrations for the expansion operators (fuzzy, soundex, stem).

The beginning of a group of terms and operators is indicated by an open character
from one of the sets of grouping characters. The ending of a group is indicated by the
occurrence of the appropriate close character for the open character that started the
group. Between the two characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered
before the close parenthesis indicate nested groups.

4.2 Escape Characters
To query on words or symbols that have special meaning in query expressions such
as and & or| accum, you must escape them. There are two ways to escape characters
in a query expression, as described in Table 4-2.

4-1

Table 4-2 Characters for Escaping Query Terms

Escape Character Description

{} Use braces to escape a string of characters or symbols.
Everything within a set of braces in considered part of the
escape sequence.

When you use braces to escape a single character, the escaped
character becomes a separate token in the query.

\ Use the backslash character to escape a single character or
symbol. Only the character immediately following the backslash
is escaped. For example, a query of blue\-green matches blue-
green and blue green.

In the following examples, an escape sequence is necessary because each
expression contains a Text operator or reserved symbol:

'high\-voltage'
'{high-voltage}'

'XY\&Z'
'{XY&Z}'

In the first example, the query matches high-voltage or high voltage.

Note that in the second example, a query on XY&Z will return 'XY Z', 'XY-Z', 'XY*Z',
and so forth, as well as 'XY&Z'. This is because non-alphabetic characters are treated
as whitespace (so XY&Z is treated as 'XY Z'). To match only XY&Z, you must declare
& as a printjoin. (If you do, however, XY&Z will not match 'XY & Z'.) For more on
printjoins, see BASIC_LEXER.

Note:

If you use braces to escape an individual character within a word, the
character is escaped, but the word is broken into three tokens. For example,
a query written as high{-}voltage searches for high - voltage, with the space
on either side of the hyphen.

Querying Escape Characters

The open brace { signals the beginning of the escape sequence, and the closed
brace } indicates the end of the sequence. Everything between the opening brace and
the closing brace is part of the escaped query expression (including any open brace
characters). To include the close brace character in an escaped query expression,
use }}. To escape the backslash escape character, use \\.

4.3 Reserved Words and Characters
Table 4-3 lists the Oracle Text reserved words and characters that must be escaped
when you want to search them in CONTAINS queries. Refer to Table 4-2 for the rule for
when to use braces {} or the backslash \ for the escape sequence.

Chapter 4
Reserved Words and Characters

4-2

Table 4-3 Reserved Words and Characters

Reserved Words Reserved Characters Operator

ABOUT (none) ABOUT

ACCUM , Accumulate

AND & And

BT (none) Broader Term

BTG (none) Broader Term Generic

BTI (none) Broader Term Instance

BTP (none) Broader Term Partitive

EQUIV = Equivalence

FUZZY ? fuzzy

(none) { } escape characters (multiple)

(none) \ escape character (single)

(none) () grouping characters

(none) [] grouping characters

HASPATH (none) HASPATH

INPATH (none) INPATH

MDATA (none) MDATA

MINUS - MINUS

NEAR ; NEAR

NOT ~ NOT

NT (none) Narrower Term

NTG (none) Narrower Term Generic

NTI (none) Narrower Term Instance

NTP (none) Narrower Term Partitive

OR | OR

PT (none) Preferred Term

RT (none) Related Term

(none) $ stem

(none) ! soundex

SQE (none) Stored Query Expression

SYN (none) Synonym

(none) > threshold

TR (none) Translation Term

TRSYN (none) Translation Term Synonym

TT (none) Top Term

(none) * weight

(none) % wildcard character (multiple)

(none) _ wildcard character (single)

WITHIN (none) WITHIN

Chapter 4
Reserved Words and Characters

4-3

Chapter 4
Reserved Words and Characters

4-4

5
CTX_ADM Package

This chapter contains the following topics.

• About CTX_ADM Package Procedures

• MARK_FAILED

• RECOVER

• RESET_AUTO_OPTIMIZE_STATUS

• SET_PARAMETER

5.1 About CTX_ADM Package Procedures
The CTX_ADM PL/SQL package provides administrative procedures for managing index
preferences.

The CTX_ADM package contains the following stored procedures.

Name Description

MARK_FAILED Changes an index's status from LOADING to FAILED.

RECOVER Cleans up database objects for deleted Text tables.

RESET_AUTO_OPTIMIZE_STATUS Resets the CTX_AUTO_OPTIMIZE_STATUS view.

SET_PARAMETER Sets system-level defaults for index creation.

Note:

Only the CTXSYS user can use the procedures in the CTX_ADM package.

The APIs in the CTX_ADM package do not support identifiers that are prefixed
with the schema or the owner name.

5.2 MARK_FAILED
Use the MARK_FAILED procedure to change the status of an index from LOADING to
FAILED.

Under rare circumstances, if CREATE INDEX or ALTER INDEX fails, an index may be left
with the status LOADING. When an index is in LOADING status, any attempt to recover
using RESUME INDEX is blocked. For this situation, use CTX_ADM.MARK_FAILED to forcibly
change the status from LOADING to FAILED so that you can recover the index with
RESUME INDEX.

You must log on as CTXSYS to run CTX_ADM.MARK_FAILED.

5-1

WARNING:

Use CTX_ADM.MARK_FAILED with caution. It should only be used as a last
resort and only when no other session is touching the index. Normally,
CTX_ADM.MARK_FAILED does not succeed if another session is actively
building the index with CREATE or ALTER INDEX. However, index creation or
alteration may include windows of time during which CTX_ADM.MARK_FAILED
can succeed, marking the index as failed even as it is being built by another
session.

CTX_ADM.MARK_FAILED works with local partitioned indexes. However, it changes the
status of all partitions to FAILED. Therefore, you should rebuild all index partitions with
ALTER INDEX REBUILD PARTITION PARAMETERS ('RESUME') after using
CTX_ADM.MARK_FAILED. If you run ALTER INDEX PARAMETER ('RESUME') after this
operation, then Oracle resets the index partition status to valid. Oracle does not rebuild
the index partitions that were successfully built before the MARK_FAILED operation.

Syntax

CTX_ADM.MARK_FAILED(
 owner_name in VARCHAR2,
 index_name in VARCHAR2);

owner_name
The name of the owner of the index whose status is to be changed.

index_name
The name of the index whose status is to be changed.

Note:

The index_name must not be prefixed by the schema or the owner name.

Example

begin
 CTX_ADM.MARK_FAILED('owner_1', 'index_1');
end;

5.3 RECOVER
The RECOVER procedure cleans up the Text data dictionary, deleting objects such as
leftover preferences.

Syntax

CTX_ADM.RECOVER;

Chapter 5
RECOVER

5-2

Example

begin
 ctx_adm.recover;
end;

5.4 RESET_AUTO_OPTIMIZE_STATUS
Use the RESET_AUTO_OPTIMIZE_STATUS procedure to reset (or delete the contents of)
the CTX_AUTO_OPTIMIZE_STATUS view.

You must log on as CTXSYS to run CTX_ADM.RESET_AUTO_OPTIMIZE_STATUS.

Syntax

CTX_ADM.RESET_AUTO_OPTIMIZE_STATUS;

Example

begin
 ctx_adm.reset_auto_optimize_status;
end;

5.5 SET_PARAMETER
The SET_PARAMETER procedure sets system-level parameters for index creation and for
near real-time indexes.

Syntax

CTX_ADM.SET_PARAMETER(param_name IN VARCHAR2,
 param_value IN VARCHAR2);

param_name
Specify the name of the parameter to set, which can be one of the following
parameters:

• max_index_memory (maximum memory allowed for indexing)

• default_index_memory (default memory allocated for indexing)

• ctx_doc_key_type (default input key type for CTX_DOC procedures)

• file_access_role (default database role name for index creation when using
FILE or URL datastores)

• auto_optimize (ENABLE or DISABLE for auto optimization)

• default_datastore (default datastore preference)

• default_filter_file (default filter preference for data stored in files)

• default_filter_text (default text filter preference)

• default_filter_binary (default binary filter preference)

• default_section_html (default html section group preference)

• default_section_xml (default xml section group preference)

Chapter 5
RESET_AUTO_OPTIMIZE_STATUS

5-3

• default_section_text (default text section group preference)

• default_lexer (default lexer preference)

• default_wordlist (default wordlist preference)

• default_stoplist (default stoplist preference)

• default_storage (default storage preference)

• default_ctxcat_lexer (default lexer preference for CTXCAT index)

• default_ctxcat_stoplist (default stoplist preference for CTXCAT index)

• default_ctxcat_storage (default CTXCAT index storage

• default_ctxcat_wordlist (default wordlist preference for CTXCAT index)

• default_ctxrule_lexer (default lexer for CTXRULE index)

• default_ctxrule_stoplist (default stoplist for CTXRULE index)

• default_ctxrule_storage (default storage for CTXRULE index)

• default_ctxrule_wordlist (default wordlist for CTXRULE index)

See Also:

To learn more about the default values for these parameters, see
"System Parameters" in Oracle Text Indexing Elements

Note:

log_directory (directory for CTX_OUTPUT files) and auto_optimize_logfile
(the base file name for the auto optimization log file) can no longer be
modified. Any call to the API is ignored for these parameters.

param_value
Specify the value to assign to the parameter. For max_index_memory and
default_index_memory, the value you specify must have the following syntax:

number[K|M|G]

where K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.
For each of the other parameters, specify the name of a preference to use as the
default for indexing.
For auto_optimize, the value you specify must be either ENABLE or DISABLE. When
you set this parameter to ENABLE, auto optimization jobs can be started. When you set
this parameter to DISABLE, no auto optimization jobs can be started and all the
currently-running optimization jobs are terminated.

Example

To modify the MAX_INDEX_MEMORY value:

exec ctx_adm.set_parameter(‘MAX_INDEX_MEMORY’, 100G);

Chapter 5
SET_PARAMETER

5-4

The memory parameter in the indexing statements can be as high as 256 GB (if the
MAX_INDEX_MEMORY parameter is not explicitly specified to a lower value).

create index myindex1 on mytab(textcol) indextype is ctxsys.context
parameters ('memory 256G');
exec ctx_ddl.sync_index(' myindex2', memory=> '256G');

Example

begin
 ctx_adm.set_parameter('default_lexer', 'my_lexer');
end;

Chapter 5
SET_PARAMETER

5-5

6
CTX_ANL Package

This chapter contains the following topics.

• About CTX_ANL Package Procedures

• ADD_DICTIONARY

• DROP_DICTIONARY

6.1 About CTX_ANL Package Procedures
The CTX_ANL PL/SQL package is used with AUTO_LEXER and provides procedures
for adding and dropping a custom dictionary from the lexer. A custom dictionary might
be one that you develop for a special field of study or for your industry. In most cases,
the dictionaries supplied with Oracle Text are more than sufficient to handle your
requirements.

See Also:

"AUTO_LEXER" for a discussion of AUTO_LEXER and supported languages

The CTX_ANL package contains the following stored procedures.

Name Description

ADD_DICTIONARY Adds a custom dictionary to the lexer.

DROP_DICTIONARY Drops a custom dictionary from the lexer.

Note:

Only the CTXSYS user can use the procedures in CTX_ANL.

The APIs in the CTX_ANL package do not support identifiers that are prefixed
with the schema or the owner name.

6.2 ADD_DICTIONARY
Use the CTX_ANL.ADD_DICTIONARY procedure to add a custom dictionary to be
used by "AUTO_LEXER".

6-1

Note:

The dictionary data is not processed until index/policy creation time or
ALTER INDEX time. Errors in dictionary data format are detected at index/
policy creation time or ALTER INDEX time and result in error: DRG-13710:
Syntax Error in Dictionary.

Syntax

CTX_ANL.ADD_DICTIONARY(
 name in VARCHAR2,
 language in VARCHAR2,
 dictionary in CLOB
);

name
The unique name for the user-created custom dictionary.

Note:

The unique name may not be prefixed by the schema or the owner name as
this syntax is not supported.

language
The language used by the custom dictionary.

dictionary
The CLOB containing the custom dictionary. The custom dictionary comprises a list of
definitions, which are declared separated by a tab or one per line as described in
"Custom Dictionary Format and Syntax".

Custom Dictionary Format and Syntax

The custom dictionary enables you to define a new stem or redefine an existing stem
to add words to AUTO_LEXER for your language.

Define a new stem or redefine an existing one using the following syntax:

COMPOUND<tab>word|word<tab>STEM<tab>word<tab>parts-of-speech<tab>features

COMPOUND
Use COMPOUND to create a compound word by joining two whole words with a pipe (|).
The word is a simple text string that you want to join to another word to create one
compound word to add to the language you specify in AUTO_LEXER.
Note that COMPOUND supports a maximum of 8 component words for a compound word.

STEM
Use STEM to add the root for a new word.

Chapter 6
ADD_DICTIONARY

6-2

word
For COMPOUND and STEM, the word value is a simple text string respresenting a word
that you want to join with another word to create a new word; or a word root or stem
that you want to add to the language dictionary in AUTO_LEXER.

parts-of-speech
The parts-of-speech value is a list of valid parts of speech, separated by a comma.
Table 6-1 lists the names for parts-of-speech value. At least one parts-of-speech
value is required.

features
The features represent a list of valid linguistic features, as shown in Table 6-2.
Multiple features are separated by a comma. Features are optional. If the word is
already defined in the supplied language dictionary, then this definition overrides it. It
is an error to have an invalid value for parts-of-speech or features.

Table 6-1 Custom Dictionary Valid Parts-of-Speech (case sensitive)

Part-of-Speech Description

noun A simple noun, like table, book, or procedure.

nounProper A proper name, for person, place, etc., typically capitalized, like
Zachary, Supidito, Susquehanna

adjective Modifiers of nouns, which typically can be compared (green,
greener, greenest), like fast, trenchant, pendulous.

adverb Any general modifier of a sentence that may modify an adjective
or verb or may stand alone, like slowly, yet, perhaps.

preposition A word that forms a prepositional phrase with a noun, like off,
beside, from. Used for postpositions too, in languages that have
postpositions of similar function.

Table 6-2 lists the features and their usage. The specified language determines
whether these are relevant and necessary. Note that declension refers to the inflection
some languages use to determine number (singular or plural), case, and gender. The
features are relevant depending on the language for the custom dictionary.

Table 6-2 Custom Dictionary Valid Features

Feature (case sensitive) Description

genderMasculine masculine

genderFeminine feminine

genderNeuter neuter

declensionHard hard declension

declensionSoft soft declension

Examples

exec CTX_DDL.CREATE_PREFERENCE('A_LEX', 'AUTO_LEXER');
exec CTX_ANL. ADD_DICTIONARY('my_dict1', 'ENGLISH', lobloc);
select * from CTX_USR_ANL_DICTS;
exec CTX_DDL.SET_ATTRIBUTE('A_LEX', 'english_dictionary', 'MY_ENGLISH');

Chapter 6
ADD_DICTIONARY

6-3

The following example creates a custom dictionary named d1 to be added to
AUTO_LEXER for the English language.

declare
 dict clob;
begin
 dict := '# compounds
COMPOUND help|desk
COMPOUND help|desks
COMPOUND book|shelf
COMPOUND book|shelves
COMPOUND back|woods|man
'||
'# define company abbreviations
STEM comp. noun
STEM ltd. noun
STEM co. noun
STEM oracle nounProper
STEM make verb
STEM unkword noun
STEM unkword verb
';
 ctx_anl.add_dictionary('d1','ENGLISH',dict);
end;
/

Related Topics

"AUTO_LEXER"

"CREATE_PREFERENCE "

"SET_ATTRIBUTE "

"DROP_DICTIONARY"

6.3 DROP_DICTIONARY
Use this procedure to drop a custom dictionary from AUTO_LEXER.

Syntax

CTX_ANL.DROP_DICTIONARY(
 name in VARCHAR2,
 language in VARCHAR2,
 dictionary in CLOB
);

name
The unique name for the user-created custom dictionary.

Note:

The unique name may not be prefixed by the schema or the owner name as
this syntax is not supported.

Chapter 6
DROP_DICTIONARY

6-4

language
The language for the custom dictionary.

dictionary
The CLOB representing the custom dictionary.

Example

begin
 CTX_ANL.DROP_DICTIONARY('dict1', 'english', 'dictionary');
end;

Related Topic

"AUTO_LEXER"

"ADD_DICTIONARY"

Chapter 6
DROP_DICTIONARY

6-5

7
CTX_CLS Package

This chapter contains the following topics.

• About CTX_CLS Package Procedures

• TRAIN

• CLUSTERING

7.1 About CTX_CLS Package Procedures
The CTX_CLS PL/SQL package provides procedures for generating rules that define
document categories, and enables you to perform document classification.

The following procedures are in the CTX_CLS PL/SQL package.

Name Description

TRAIN Generates rules that define document categories. Output based on
input training document set.

CLUSTERING Generates clusters for a document collection.

SA_TRAIN_MODEL Trains a sentiment classifier.

SA_DROP_MODEL Drops an existing sentiment classifier.

Note:

The APIs in the CTX_CLS package do not support identifiers that are prefixed
with the schema or the owner name.

See Also:

Oracle Text Application Developer's Guide for more information on document
classification

7.2 TRAIN
Use this procedure to generate query rules that select document categories. You must
supply a training set consisting of categorized documents. Documents can be in any
format supported by Oracle Text and must belong to one or more categories. This
procedure generates the queries that define the categories and then writes the results
to a table.

7-1

You must also have a document table and a category table. The category table must
contain at least two categories.

For example, your document and category tables can be defined as:

create table trainingdoc(

docid number primary key,
text varchar2(4000));

create table category (

docid trainingdoc(docid),
categoryid number);

You can use one of two syntaxes depending on the classification algorithm you need.
The query compatible syntax uses the RULE_CLASSIFIER preference and generates
rules as query strings. The Support Vector Machine syntax uses the SVM_CLASSIFER
preference and generates rules in binary format. The SVM_CLASSIFIER is good for high
classification accuracy, but because its rules are generated in binary format, they
cannot be examined like the query strings generated with the RULE_CLASSIFIER. Note
that only those document ids that appear in both the document table and the category
table will impact RULE_CLASSIFIER and SVM_CLASSIFIER learning.

The CTX_CLS.TRAIN procedure requires that your document table have an associated
context index. For best results, the index should be synchronized before running this
procedure. SVM_CLASSIFIER syntax enables the use of an unpopulated context index,
while query-compatible syntax requires that the context index be populated.

Note:

When downgrading the database, you must drop any models that were
created in Oracle Database 12c Release 2 (12.2) using TRAIN. These models
are not compatible with earlier releases. The following error occurs if the
models are not dropped before the downgrade: ORA-40350: One or more
models exist that cannot be downgraded.

See Also:

Oracle Text Application Developer's Guide for more on document
classification

Query Compatible Syntax

The following syntax generates query-compatible rules and is used with the
RULE_CLASSIFIER preference. Use this syntax and preference when different
categories are separated from others by several key words. An advantage of
generating your rules as query strings is that you can easily examine the generated
rules. This is different from generating SVM rules, which are in binary format.

CTX_CLS.TRAIN(

Chapter 7
TRAIN

7-2

index_name in varchar2,
docid in varchar2,
cattab in varchar2,
catdocid in varchar2,
catid in varchar2,
restab in varchar2,
rescatid in varchar2,
resquery in varchar2,
resconfid in varchar2,
preference in varchar2 DEFAULT NULL

);

index_name
Specify the name of the context index associated with your document training set.

docid
Specify the name of the document ID column in the document table. The document
IDs in this column must be unique, and this column must be of datatype NUMBER. The
values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0-4294967295.

cattab
Specify the name of the category table. You must have the READ or SELECT privilege
on this table. (See Oracle Database Security Guide for information about the READ
privilege.)

catdocid
Specify the name of the document ID column in the category table. The document IDs
in this table must also exist in the document table. This column must be a NUMBER. The
values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0-4294967295.

catid
Specify the name of the category ID column in the category table. This column must
be a NUMBER. The values for this column must be stored in an unsigned 32-bit integer
and must be in the range 0-4294967295.

restab
Specify the name of the result table. You must have INSERT privilege on this table.

rescatid
Specify the name of the category ID column in the result table. This column must be a
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and
must be in the range 0-4294967295.

resquery
Specify the name of the query column in the result table. This column must be
VARACHAR2, CHAR, CLOB, NVARCHAR2, or NCHAR.
The queries generated in this column connects terms with AND or NOT operators, such
as:

'T1 & T2 ~ T3'

Terms can also be theme tokens and be connected with the ABOUT operator, such as:

'about(T1) & about(T2) ~ about(T3)'

Chapter 7
TRAIN

7-3

Generated rules also support WITHIN queries on field sections.

resconfid
Specify the name of the confidence column in result table. This column contains the
estimated probability from training data that a document is relevant if that document
satisfies the query.

preference
Specify the name of the preference. For classifier types and attributes, see "Classifier
Types" in Oracle Text Indexing Elements.

Syntax for Support Vector Machine (SVM) Rules

The Support Vector Machine, or SVM, rules preference generates rules in binary
format. Use this syntax when your application requires high classification accuracy.

The following syntax generates Support Vector Machine (SVM) rules with the
SVM_CLASSIFIER preference.

CTX_CLS.TRAIN(
 index_name in varchar2,
 docid in varchar2,
 cattab in varchar2,
 catdocid in varchar2,
 catid in varchar2,
 restab in varchar2,
 preference in varchar2);

index_name
Specify the name of the text index.

docid
Specify the name of docid column in document table.

cattab
Specify the name of category table.

catdocid
Specify the name of docid column in category table.

catid
Specify the name of category ID column in category table.

restab
Specify the name of result table.
The result table has the following format:

Column Name Datatype Description

CAT_ID NUMBER The ID of the category.

TYPE NUMBER(3) NOT NULL 0 for the actual rule or
catid; 1 for other.

RULE BLOB The returned rule.

preference
Specify the name of user preference. For classifier types and attributes, see
"Classifier Types" in Oracle Text Indexing Elements.

Chapter 7
TRAIN

7-4

Note:

Column names must not be prefixed by the owner, schema or table name.

Example

The CTX_CLS.TRAIN procedure is used in supervised classification. For an extended
example, see Oracle Text Application Developer's Guide.

7.3 CLUSTERING
Use this procedure to cluster a collection of documents. A cluster is a group of
documents similar to each other in content.

A clustering result set is composed of document assignments and cluster descriptions:

• A document assignment result set shows how relevant each document is to all
generated leaf clusters.

• A cluster description result set contains information about what topic a cluster is
about. This result set identifies the cluster and contains cluster description text, a
suggested cluster label, and a quality score for the cluster.

Cluster output is hierarchical. Only leaf clusters are scored for relevance to
documents. Producing more clusters requires more computing time. Indicate the upper
limit for generated clusters with the CLUSTER_NUM attribute of the KMEAN_CLUSTERING
cluster type (see "Cluster Types" in this chapter).

There are two versions of this procedure: one with a table result set, and one with an
in-memory result set.

Clustering is also known as unsupervised classification.

See Also:

For more information about clustering and relevant preferences, see Cluster
Types in Oracle Text Indexing Elements, as well as the Oracle Text
Application Developer's Guide

Syntax: Table Result Set

ctx_cls.clustering (
 index_name IN VARCHAR2,
 docid IN VARCHAR2,
 doctab_name IN VARCHAR2,
 clstab_name IN VARCHAR2,
 pref_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the context index on collection table.

Chapter 7
CLUSTERING

7-5

docid
Specify the name of document ID column of the collection table.

doctab_name
Specify the name of document assignment table. This procedure creates the table
with the following structure:

doc_assign(
 docid number,
 clusterid number,
 score number
);

Column Description

DOCID Document ID to identify document.

CLUSTERID ID of a leaf cluster associated with this document. If
CLUSTERID is -1, then the cluster contains
"miscellaneous" documents; for example, documents
that cannot be assigned to any other cluster category.

SCORE The associated score between the document and the
cluster.

If you require more columns, then create the table before you call this procedure.

clstab_name
Specify the name of the cluster description table. This procedure creates the table
with the following structure:

cluster_desc(
 clusterid NUMBER,
 descript VARCHAR2(4000),
 label VARCHAR2(200),
 sze NUMBER,
 quality_score NUMBER,
 parent NUMBER
);

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then
the cluster contains "miscellaneous" documents; for
example, documents that cannot be assigned to any
other cluster category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number
indicates greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

If you require more columns, then create the table before you call this procedure.

pref_name
Specify the name of the preference.

Chapter 7
CLUSTERING

7-6

Syntax: In-Memory Result Set

Put the result set into in-memory structures for better performance. Two in-memory
tables are defined in CTX_CLS package for document assignment and cluster
description respectively.

CTX_CLS.CLUSTERING(
 index_name IN VARCHAR2,
 docid IN VARCHAR2,
 dids IN DOCID_TAB,
 doctab_name IN OUT NOCOPY DOC_TAB,
 clstab_name IN OUT NOCOPY CLUSTER_TAB,
 pref_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of context index on the collection table.

docid
Specify the document ID column of the collection table.

dids
Specify the name of the in-memory docid_tab.

TYPE docid_tab IS TABLE OF number INDEX BY BINARY_INTEGER;

doctab_name
Specify name of the document assignment in-memory table. This table is defined as
follows:

TYPE doc_rec IS RECORD (
 docid NUMBER,
 clusterid NUMBER,
 score NUMBER
)
TYPE doc_tab IS TABLE OF doc_rec INDEX BY BINARY_INTEGER;

Column Description

DOCID Document ID to identify document.

CLUSTERID ID of a leaf cluster associated with this document. If
CLUSTERID is -1, then the cluster contains
"miscellaneous" documents; for example, documents
that cannot be assigned to any other cluster category.

SCORE The associated score between the document and the
cluster.

cls_tab
Specify the name of cluster description in-memory table.

TYPE cluster_rec IS RECORD(
 clusterid NUMBER,
 descript VARCHAR2(4000),
 label VARCHAR2(200),
 sze NUMBER,
 quality_score NUMBER,
 parent NUMBER

Chapter 7
CLUSTERING

7-7

);
TYPE cluster_tab IS TABLE OF cluster_rec INDEX BY BINARY_INTEGER;

Column Description

CLUSTERID Cluster ID to identify cluster. If CLUSTERID is -1, then
the cluster contains "miscellaneous" documents; for
example, documents that cannot be assigned to any
other cluster category.

DESCRIPT String to describe the cluster.

LABEL A suggested label for the cluster.

SZE This parameter currently has no value.

QUALITY_SCORE The quality score of the cluster. A higher number
indicates greater coherence.

PARENT The parent cluster ID. Zero means no parent cluster.

pref_name
Specify the name of the preference. For cluster types and attributes, see Cluster
Types in Oracle Text Indexing Elements.

Example

See Also:

The Oracle Text Application Developer's Guide for an example of using
clustering

7.4 SA_TRAIN_MODEL
Use this procedure to train a sentiment classifier. You must provide a training set
consisting of categorized documents to train the sentiment classifier. Documents can
be in any format supported by Oracle Text and must belong to one or more categories.

Oracle Text first validates the training set table and the categories that are provided.
Features extracted from the training set documents are used to train the sentiment
classifier. A rule table is created and populated with rules that are generated after the
sentiment classifier is trained. The sentiment classifier uses these rules to perform
sentiment analysis. The CTXRULE index on the rule table is also built.

Note:

When downgrading the database, you must drop any models that were
created in Oracle Database 12c Release 2 (12.2) using SA_TRAIN_MODEL.
These models are not compatible with earlier releases. The following error
occurs if the models are not dropped before the downgrade: ORA-40350:
One or more models exist that cannot be downgraded.

Chapter 7
SA_TRAIN_MODEL

7-8

Syntax

SA_TRAIN_MODEL(
 clsfier_name IN VARCHAR2,
 index_name IN VARCHAR2,
 docid IN VARCHAR2,
 cattab IN VARCHAR2,
 cat_docid IN VARCHAR2,
 catid IN VARCHAR2,
 pref_name IN VARCHAR2
);

clsfier_name
Specify the name of the sentiment classifier that must be trained. The maximum
length of the sentiment classifier name is 24 bytes.

index_name
Specify the name of text index associated with the document training set. This is a
CONTEXT index that must be created on the training data before the sentiment classifier
is trained.

docid
Specify the name of the document ID column in the document training set. The
document IDs in this column must be unique, and this column must be of data type
NUMBER. The values for this column must be stored in an unsigned 32-bit integer and
must be in the range 0 to 4294967295.

cattab
Specify the name of the category table that contains the true labels for the training set
documents. This table should contain the docid to catid mappings for training the
sentiment classifier.

catdocid
Specify the name of document ID column in the category table. The document IDs in
this table must also exist in the document table. This column must be a NUMBER. The
values for this column must be stored in an unsigned 32-bit integer and must be in the
range 0 to 4294967295.

catid
Specify the name of the category ID column in the category table. This column must
be a NUMBER. The values for this column can be either 0, 1, or 2. 0 stands for neutral, 1
stands for positive, and 2 stands for negative.

pref_name
Specify the name of sentiment classifier preference, of type SENTIMENT_CLASSIFIER,
which is used to train the sentiment classifier. If no name is provided, then the default
sentiment classifier, CTXSYS.DEFAULT_SENT_CLASSIFIER, is used.

Chapter 7
SA_TRAIN_MODEL

7-9

See Also:

Oracle Text Application Developer's Guide for an example of using the
SA_TRAIN_MODEL procedure

7.5 SA_DROP_MODEL
Use this procedure to drop an existing sentiment classifier.

Syntax

SA_DROP_MODEL(
 clsfier_name IN VARCHAR2
);

clsfier_name
Specify the name of the sentiment classifier that must be dropped.

Chapter 7
SA_DROP_MODEL

7-10

8
CTX_DDL Package

The CTX_DDL PL/SQL package provides procedures to create and manage the
preferences, section groups, and stoplists required for Text indexes.

CTX_DDL contains the following stored procedures and functions:

Name Description

ADD_ATTR_SECTION Adds an attribute section to an XML section group.

ADD_AUTO_OPTIMIZE Adds an index or partition to the list of indexes subject to
auto optimization.

ADD_FIELD_SECTION Creates a field section and assigns it to the specified
section group.

ADD_INDEX Adds an index to a catalog index preference.

ADD_MDATA Changes the MDATA value of a document.

ADD_MDATA_COLUMN Maps a FILTER BY column to the specified MDATA section.

ADD_MDATA_SECTION Adds an MDATA metadata section to a document.

ADD_NDATA_SECTION Adds an NDATA section to a document.

ADD_SDATA_COLUMN Maps a FILTER BY column to the specified SDATA section.

ADD_SDATA_SECTION Adds an SDATA structured data section to a document.

ADD_SEC_GRP_ATTR_VAL Adds a section group attribute value to the list of values of
an already existing section group attribute.

ADD_SPECIAL_SECTION Adds a special section to a section group.

ADD_STOPCLASS Adds a stopclass to a stoplist.

ADD_STOP_SECTION Adds a stop section to an automatic section group.

ADD_STOPTHEME Adds a stoptheme to a stoplist.

ADD_STOPWORD Adds a stopword to a stoplist.

ADD_SUB_LEXER Adds a sub-lexer to a multi-lexer preference.

ADD_ZONE_SECTION Creates a zone section and adds it to the specified section
group.

COPY_POLICY Creates a copy of a policy.

CREATE_INDEX_SET Creates an index set for CTXCAT index types.

CREATE_POLICY Creates a policy to use with ORA:CONTAINS().

CREATE_PREFERENCE Creates a preference in the Text data dictionary.

CREATE_SECTION_GROUP Creates a section group in the Text data dictionary.

CREATE_SHADOW_INDEX Creates a policy for the passed-in index. For nonpartitioned
index, also creates an index table.

CREATE_STOPLIST Creates a stoplist.

DROP_INDEX_SET Drops an index set.

DROP_POLICY Drops a policy.

8-1

Name Description

DROP_PREFERENCE Deletes a preference from the Text data dictionary.

DROP_SECTION_GROUP Deletes a section group from the Text data dictionary.

DROP_SHADOW_INDEX Drops a shadow index.

DROP_STOPLIST Drops a stoplist.

EXCHANGE_SHADOW_INDEX Swaps the shadow index metadata and data.

OPTIMIZE_INDEX Optimizes the index.

POPULATE_PENDING Populates the pending queue with every rowid in the base
table or table partition.

PREFERENCE_IMPLICIT_COMMIT Specifies whether procedures related to CTX_DDL
preferences issue an implicit commit.

RECREATE_INDEX_ONLINE Recreates the passed-in index.

REM_SEC_GRP_ATTR_VAL Removes a specific section group attribute value from the
list of values of an existing section group attribute.

REMOVE_AUTO_OPTIMIZE Removes an index or partition from the list of indexes
subject to auto optimization

REMOVE_INDEX Removes an index from a CTXCAT index preference.

REMOVE_MDATA Removes MDATA values from a document.

REMOVE_SECTION Deletes a section from a section group.

REMOVE_STOPCLASS Deletes a stopclass from a stoplist.

REMOVE_STOPTHEME Deletes a stoptheme from a stoplist.

REMOVE_STOPWORD Deletes a stopword from a stoplist.

REMOVE_SUB_LEXER Deletes a sub-lexer from a multi-lexer preference.

REPLACE_INDEX_METADATA Replaces metadata for local domain indexes.

SET_ATTRIBUTE Sets a preference attribute.

SET_SEC_GRP_ATTR Adds a section group-specific attribute to a section group
identified by name.

SET_SECTION_ATTRIBUTE Sets a section attribute.

SYNC_INDEX Synchronizes the index.

UNSET_ATTRIBUTE Removes a set attribute from a preference.

UPDATE_SUB_LEXER Updates a sub-lexer.

UNSET_SEC_GRP_ATTR Removes a section group specific attribute.

UPDATE_POLICY Updates a policy.

UPDATE_SDATA Updates an SDATA section.

Note:

Except CREATE_PREFERENCE and CREATE_SECTION_GROUP, the APIs in the
CTX_DDL package do not support identifiers that are prefixed with the schema
or owner name.

Chapter 8

8-2

8.1 ADD_ATTR_SECTION
Adds an attribute section to an XML section group. This procedure is useful for
defining attributes in XML documents as sections. This enables you to search XML
attribute text with the WITHIN operator.

Note:

When you use AUTO_SECTION_GROUP, attribute sections are created
automatically. Attribute sections created automatically are named in the form
tag@attribute.

Syntax

CTX_DDL.ADD_ATTR_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2);

group_name
Specify the name of the XML section group. You can add attribute sections only to
XML section groups.

section_name
Specify the name of the attribute section. This is the name used for WITHIN queries on
the attribute text.
The section name you specify cannot contain the colon (:), comma (,), or dot (.)
characters. The section name must also be unique within group_name. Section names
are case-insensitive.
Attribute section names can be no more than 64 bytes long.

tag
Specify the name of the attribute in tag@attr form. This parameter is case-sensitive.

Examples

Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
 It was the best of times.
</BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_GROUP and
define the attribute section as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'BOOK@TITLE');
end;

When you define the TITLE attribute section as such and index the document set, you
can query the XML attribute text as follows:

'Cities within booktitle'

Chapter 8
ADD_ATTR_SECTION

8-3

Related Topic

"PREFERENCE_IMPLICIT_COMMIT"

8.2 ADD_AUTO_OPTIMIZE
Adds an index or partition to the list of indexes subject to auto optimization. For
partitioned indexes, the name of the partition must be specified, or else an error
occurs. For global indexes, STAGE_ITAB must be enabled, or else an error occurs.

The AUTO_OPTIMIZE feature improves the manageability of indexes that use the
STAGE_ITAB feature. The STAGE_ITAB feature introduces a staging $G table to collect
postings from newly synced documents.

The AUTO_OPTIMIZE feature has the following goals:

• Enables you to register indexes and partitions to a background AUTO_OPTIMIZE
process.

• Automatically moves rows from the $G table to $I at appropriate times.

• Movement of rows from $G to $I is done in a way to maximize query performance.

This procedure starts the background process if it has not already been started. The
progress of the auto optimization is tracked by CTX logging.

The changes made by this procedure take effect immediately.

Note:

The init.ora parameter JOB_QUEUE_PROCESSES must be set to one or higher.
See Oracle Database Reference for more information about
JOB_QUEUE_PROCESSES.

Syntax

CTX_DDL.ADD_AUTO_OPTIMIZE(

 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 default NULL,
 optlevel IN VARCHAR2 default CTX_DDL.OPTLEVEL_MERGE
);

idx_name
Specify the name of the index to add.

part_name
Specify the name of the partition to add.

optlevel
Specifies the optlevel of the CTX_DDL.OPTIMIZE_INDEX procedure. The only valid
value for this parameter is merge.

Chapter 8
ADD_AUTO_OPTIMIZE

8-4

Notes

The recommended sequence of steps for using auto optimization is:

1. Create the required indexes.

2. Add these indexes to the auto optimization list by using the
CTX_DDL.ADD_AUTO_OPTIMIZE procedure.

The synchronize index operation automatically begins executing an auto optimization
job (unless it is already running). This job continues until it runs out of work. Future
synchronize index operations will automatically start executing the auto optimization
job, if it is not already running.

Related Topics

"REMOVE_AUTO_OPTIMIZE"

Oracle Text Application Developer's Guide for information about using STAGE_ITAB
with CONTEXT indexes

SYNC_INDEX

8.3 ADD_FIELD_SECTION
Creates a field section and adds the section to an existing section group. This enables
field section searching with the WITHIN operator. You can add an unlimited number of
field sections.

Field sections are delimited by start and end tags. By default, the text within field
sections are indexed as a sub-document separate from the rest of the document.

Unlike zone sections, field sections cannot nest or overlap. As such, field sections are
best suited for non-repeating, non-overlapping sections such as TITLE and AUTHOR
markup in e-mail- or news-type documents.

Because of how field sections are indexed, WITHIN queries on field sections are
usually faster than WITHIN queries on zone sections.

Syntax

CTX_DDL.ADD_FIELD_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 visible IN BOOLEAN default FALSE
);

group_name
Specify the name of the section group to which section_name is added. You can add
an unlimited number of field sections to a single section group. Within the same
group, section zone names and section field names cannot be the same.

section_name
Specify the name of the section to add to the group_name. Use this name to identify
the section in queries. Avoid using names that contain non-alphanumeric characters

Chapter 8
ADD_FIELD_SECTION

8-5

such as _, because these characters must be escaped in queries. Section names are
case-insensitive.

Note:

The section_name may not be prefixed by the schema or the owner name
as this syntax is not supported.

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.
Section names need not be unique across tags. You can assign the same section
name to more than one tag, which makes details transparent to searches.

tag
Specify the tag that marks the start of a section. For example, if the tag is <H1>, then
specify H1. The start tag you specify must be unique within a section group.

Note:

The tag may not be prefixed by the schema or the owner name as this
syntax is not supported.

If group_name is an HTML_SECTION_GROUP, then you can create field sections for the
META tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue
where namevalue is the value of the NAME attribute whose CONTENT attribute is to be
indexed as a section. Refer to the example "Creating Sections for <META> Tags".
Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.

visible
Specify TRUE to make the text visible within the rest of the document.
By default the visible flag is FALSE. This means that Oracle Text indexes the text
within field sections as a sub-document separate from the rest of the document.
However, you can set the visible flag to TRUE if you want text within the field section to
be indexed as part of the enclosing document.

Examples

Visible and Invisible Field Sections

The following example defines a section group basicgroup of the
BASIC_SECTION_GROUP type. (See "Section Group Types" for information about the
BASIC_SECTION_GROUP type.) The example then creates a field section in basicgroup
called Author for the <A> tag.

The example also sets the visible flag to FALSE:

begin

ctx_ddl.create_section_group('basicgroup', 'BASIC_SECTION_GROUP');
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', FALSE);

end;

Chapter 8
ADD_FIELD_SECTION

8-6

Because the Author field section is not visible, to find text within the Author section,
you must use the WITHIN operator as follows:

'(Martin Luther King) WITHIN Author'

A query of Martin Luther King without the WITHIN operator does not return instances of
this term in field sections. To query text within field sections without specifying WITHIN,
you must set the visible flag to TRUE when you create the section as follows:

begin
ctx_ddl.add_field_section('basicgroup', 'Author', 'A', TRUE);
end;

Creating Sections for <META> Tags

When you use the HTML_SECTION_GROUP, you can create sections for META tags.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a field section that indexes the CONTENT attribute for the <META
NAME="author"> tag:

begin
ctx_ddl.create_section_group('myhtmlgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_field_section('myhtmlgroup', 'author', 'META@AUTHOR');
end

After indexing with section group mygroup, query the document as follows:

'ken WITHIN author'

Limitations

Nested Sections

Field sections cannot be nested. For example, if you define a field section to start with
<TITLE> and define another field section to start with <FOO>, the two sections cannot
be nested as follows:

<TITLE> dog <FOO> cat </FOO> </TITLE>

To work with nested section define them as zone sections.

Repeated Sections

Repeated field sections are allowed, but WITHIN queries treat them as a single section.
The following is an example of repeated field section in a document:

<TITLE> cat </TITLE>
<TITLE> dog </TITLE>

The query (dog and cat) within title returns the document, even though these words
occur in different sections.

To have WITHIN queries distinguish repeated sections, define them as zone sections.

Related Topics

"WITHIN"

Chapter 8
ADD_FIELD_SECTION

8-7

"Section Group Types"

"CREATE_SECTION_GROUP "

"ADD_ZONE_SECTION "

"ADD_SPECIAL_SECTION "

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

8.4 ADD_INDEX
Use this procedure to add a subindex to a catalog index preference. Create this
preference by naming one or more columns in the base table.

Because you create subindexes to improve the response time of structured queries,
the column you add should be used in the structured_query clause of the CATSEARCH
operator at query time.

Syntax

CTX_DDL.ADD_INDEX(
 set_name IN VARCHAR2,
 column_list IN VARCHAR2,
 storage_clause IN VARCHAR2
);

set_name
Specify the name of the index set.

column_list
Specify a comma-delimited list of columns to index. At index time, any column listed
here cannot have a NULL value in any row in the base table. If any row is NULL
during indexing, then an error is raised.
Always ensure that your columns have non-NULL values before and after indexing.

Note:

A column name in column_list must not be prefixed by the owner, schema
or table name.

storage_clause
Specify a storage clause.

Example

Consider a table called AUCTION with the following schema:

create table auction(

item_id number,
title varchar2(100),
category_id number,
price number,
bid_close date);

Chapter 8
ADD_INDEX

8-8

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on category_id. Results must be sorted based on bid_close.

You can create a catalog index to support the different types of structured queries a
user might enter.

To create the indexes, first create the index set preference then add the required
indexes to it:

begin
 ctx_ddl.create_index_set('auction_iset');
 ctx_ddl.add_index('auction_iset','bid_close');
 ctx_ddl.add_index('auction_iset','category_id, bid_close');
end;

Create the combined catalog index with CREATE INDEX as follows:

create index auction_titlex on AUCTION(title) indextype is CTXCAT parameters
('index set auction_iset');

Querying

To query the title column for the word pokemon, enter regular and mixed queries as
follows:

select * from AUCTION where CATSEARCH(title, 'pokemon',NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'category_id=99 order by
bid_close desc')> 0;

Notes

VARCHAR2 columns in the column list of a CTXCAT index of an index set cannot exceed
30 bytes.

Related Topic

"REMOVE_INDEX"

8.5 ADD_MDATA
Use this procedure to change the metadata of a document that has been specified as
an MDATA section. After this call, MDATA queries involving the named MDATA value will
find documents with the given MDATA value.

There are two versions of CTX_DDL.ADD_MDATA: one for adding a single metadata value
to a single rowid, and one for handing multiple values, multiple rowids, or both.

CTX_DDL.ADD_MDATA is transactional; it takes effect immediately in the calling session,
can be seen only in the calling session, can be reversed with a ROLLBACK command,
and must be committed to take permanent effect.

Use CTX_DDL.REMOVE_MDATA to remove metadata values from already-indexed
documents. Only the owner of the index is allowed to call ADD_MDATA and
REMOVE_MDATA.

Syntax

This is the syntax for adding a single value to a single rowid:

Chapter 8
ADD_MDATA

8-9

CTX_DDL.ADD_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 mdata_value IN VARCHAR2,
 mdata_rowid IN VARCHAR2,
 [part_name] IN VARCHAR2]
);

idx_name
Name of the text index that contains the named rowid.

section_name
Name of the MDATA section.

mdata_value
The metadata value to add to the document.

mdata_rowid
The rowid to which to add the metadata value.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, nonpartitioned indexes.

This is the syntax for handling multiple values, multiple rowids, or both. This version is
more efficient for large numbers of new values or rowids.

CTX_DDL.ADD_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 mdata_values SYS.ODCIVARCHAR2LIST,
 mdata_rowids SYS.ODCIRIDLIST,
 [part_name] IN VARCHAR2]
);

idx_name
Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

mdata_values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

mdata_rowids
The rowids to which to add the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, nonpartitioned indexes.

Example

This example updates a single value:

select rowid from mytab where contains(text, 'MDATA(sec, value')>0;
No rows returned
exec ctx_ddl.add_mdata('my_index', 'sec', 'value', 'ABC');
select rowid from mytab where contains(text, 'MDATA(sec, value')>0;

Chapter 8
ADD_MDATA

8-10

ROWID

ABC

This example updates multiple values:

begin
ctx_ddl.add_mdata('my_index', 'sec',
 sys.odcivarchar2list('value1','value2','value3'),
 sys.odciridlist('ABC','DEF'));
end;

This is equivalent to:

begin
ctx_ddl.add_mdata('my_index', 'sec', 'value1', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value1', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value2', 'DEF');
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'ABC');
ctx_ddl.add_mdata('my_index', 'sec', 'value3', 'DEF');
end;

Notes

If a rowid is not yet indexed, CTX_DDL.ADD.MDATA completes without error, but an error
is logged in CTX_USER_INDEX_ERRORS.

These updates are updates directly on the index itself, not on the actual contents
stored in the base table. Therefore, they will not survive when the Text index is rebuilt.

Related Topics

"ADD_MDATA_SECTION"

"REMOVE_MDATA"

"MDATA"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer's Guide

8.6 ADD_MDATA_COLUMN
Use this procedure to map the FILTER BY column named in column_name to the MDATA
section named in section_name.

Syntax

The syntax is as follows:

CTX_DDL.ADD_MDATA_COLUMN(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,

Chapter 8
ADD_MDATA_COLUMN

8-11

 column_name IN VARCHAR2,
);

group_name
Name of the group that contains the section.

section_name
Name of the MDATA section.

column_name
Name of the FILTER BY column to add to the MDATA section.

Note:

The column_name must not be prefixed by the owner, schema or table name.

Restrictions

MDATA sections that are created with CTX_DDL.ADD_MDATA_COLUMN cannot have their
values changed using CTX_DDL.ADD_MDATA or CTX_DDL.REMOVE_MDATA. Doing so will
result in errors being returned. The section values must be updated using SQL.

Notes

• The stored datatype for MDATA sections is text. Therefore, the value of the FILTER
BY column is converted to text during indexing. For non-text datatypes, the FILTER
BY columns are normalized to an internal format during indexing. If the section is
queried with an MDATA operator, then the MDATA query string will also be normalized
to the internal format before processing.

• When a FILTER BY column is mapped as MDATA, the cost-based optimizer in Oracle
Text tries to avoid using the Oracle Text composite domain index to process range
predicate(s) on that FILTER BY column. This is because range predicates on MDATA
FILTER BY columns are processed less efficiently than if they were declared as
SDATA. For this reason, you should not add a FILTER BY column as MDATA if you
plan to do range searches on the column.

Related Topics

"MDATA"

"ADD_MDATA_SECTION"

"REMOVE_MDATA"

"ADD_SDATA_COLUMN"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer's Guide

Chapter 8
ADD_MDATA_COLUMN

8-12

8.7 ADD_MDATA_SECTION
Use this procedure to add an MDATA section, with an accompanying value, to an
existing section group. MDATA sections cannot be added to Null Section groups, Path
Section groups, or Auto Section groups.

Section values undergo a simplified normalization:

• Leading and trailing whitespace on the value is removed.

• The value is truncated to 64 bytes.

• The value is indexed as a single value; if the value consists of multiple words, it is
not broken up.

• Case is preserved. If the document is dynamically generated, then implement
case-insensitivity by uppercasing MDATA values and making sure to search only in
uppercase.

Use CTX_DDL.REMOVE_SECTION to remove sections.

Syntax

CTX_DDL.ADD_MDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,
 read_only IN BOOLEAN default FALSE);

group_name
Name of the section group that will contain the MDATA section.

section_name
Name of the MDATA section.

tag
The value of the MDATA section. For example, if the section is <AUTHOR>, the value
could be Cynthia Kadohata (author of the novel The Floating World). More than one
tag can be assigned to a given MDATA section.

read_only
FALSE (default) if you want to allow calling CTX_DDL.ADD_MDATA() and
CTX_DDL.REMOVE_MDATA() for this MDATA section, and TRUE otherwise. When set to
FALSE, the queries on the MDATA section run less efficiently because a cursor needs to
be opened on the index table to track the deleted values for that MDATA section.

Example

This example creates an MDATA section called auth.

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_mdata_section('htmgroup', 'auth', 'author', READ_ONLY);

Related Topics

"ADD_MDATA"

"REMOVE_MDATA"

Chapter 8
ADD_MDATA_SECTION

8-13

"MDATA"

"CREATE_SECTION_GROUP "

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer's Guide

8.8 ADD_NDATA_SECTION
Use this procedure to find matches that are spelled in a similar way. The value of an
NDATA section is extracted from the document text like other sections, but is indexed as
name data. NDATA sections are stored in the CTX_USER_SECTIONS view.

Syntax

CTX_DDL.ADD_NDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2
);

group_name
Name of the group that contains the section.

section_name
Name of the NDATA section.

tag
Name of the tag that marks the start of a section. For example, if the tag is <H1>,
specify H1. The start tag you specify must be unique within a section group.

Notes

NDATA sections support both single and multi-byte data, however, there are character-
and term-based limitations. NDATA section data that is indexed is constrained as
follows:

• number of characters in a single, white space delimited term

511

• number of white space delimited terms

255

• total number of characters, including white spaces

511

NDATA section data that exceeds these constraints are truncated.

Example

The following example defines a section group namegroup of the BASIC_SECTION_GROUP
type. It then creates an NDATA section in namegroup called firstname.

Chapter 8
ADD_NDATA_SECTION

8-14

begin
 ctx_ddl.create_section_group('namegroup', 'BASIC_SECTION_GROUP');
 ctx_ddl.add_ndata_section('namegroup', 'firstname', 'fname1');
end;

8.9 ADD_SDATA_COLUMN
Use this procedure to map the FILTER BY or ORDER BY column named in column_name
to the SDATA section named in section_name. By default, all FILTER BY columns are
mapped as SDATA.

Syntax

The syntax is as follows:

CTX_DDL.ADD_SDATA_COLUMN(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 column_name IN VARCHAR2,
);

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

column_name
Name of the FILTER BY column to add to the SDATA section.

Notes

• Mapping FILTER BY columns to sections is optional. If no section mapping exists
for a FILTER BY column, then it is mapped to an SDATA section, and the section
name will be the name of the FILTER BY column.

• If a section group is not specified during CREATE INDEX of a composite domain
index, then system default section group settings will be used, and a SDATA section
will be created for each of the FILTER BY and ORDER BY columns.

Note:

Because section name does not allow certain special characters and is
case insensitive, if the column name is case sensitive or contains special
characters, then an error will be raised. To work around this problem,
you need to map the column to an MDATA or SDATA section before
creating the index. Refer to CTX_DDL.ADD_MDATA_COLUMN or
CTX_DDL.ADD_SDATA_COLUMN in this chapter.

• An error will be raised if a column mapped to MDATA also appears in the ORDER BY
column clause.

• Column section names are unique to their section group. That is, you cannot have
an MDATA column section named FOO if you already have an MDATA column section
named FOO. Furthermore, you cannot have a field section named FOO if you

Chapter 8
ADD_SDATA_COLUMN

8-15

already have an SDATA column section named FOO. This is true whether it is
implicitly created (by CREATE INDEX for FILTER BY or ORDER BY clauses) or explicitly
created (by CTX_DDL.ADD_SDATA_COLUMN).

• One section name can only be mapped to one FILTER BY column, and vice versa.
For example, mapping a section to more than one column or mapping a column to
more than one section is not allowed.

• Column sections can be added to any type of section group, including the NULL
section group.

• 99 is the maximum number for SDATA sections and columns.

Related Topics

"SDATA"

"ADD_SDATA_SECTION"

"UPDATE_SDATA"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer's Guide

8.10 ADD_SDATA_SECTION
This procedure adds an SDATA section to a section group. By default, all FILTER BY
columns are mapped as SDATA.

Starting with Oracle Database 12c Release 2 (12.2), searchable multi-valued SDATA
sections are supported. There is no restriction on the number of SDATA sections that
can be created for an index. That is, the sum total of SDATA sections for an index,
created implicitly with FILTER BY and ORDER BY, and explicitly with the
CTX_DDL.ADD_SDATA_SECTION() procedure is not restricted anymore. The total number
of CDI, including FILTER BY and ORDER BY is 32, but the number of SDATA sections
supported is unlimited. There are two types of SDATA sections:

• Searchable: Creates optimized for search SDATA sections which support multiple
values per document for the section and efficient range search capability.

• Sortable: Creates optimized for sort SDATA sections which support a single value
per document for the section. If the optimized_for attribute is not set, then the
default type of section is Sortable. The Composite Domain Index uses Sortable
SDATA internally for efficient FILTER BY or ORDER BY evaluation.

Syntax

The syntax is as follows:

CTX_DDL.ADD_SDATA_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2,

Chapter 8
ADD_SDATA_SECTION

8-16

 datatype IN VARCHAR2 default NULL,
);

group_name
Name of the group that contains the section.

section_name
Name of the SDATA section.

tag
Name of the tag to add to the SDATA section.

datatype
Specifies the stored format for the data, as well as the semantics of comparison in
later use in SDATA operators. The Sortable SDATA sections support the following data
types:

• VARCHAR2

• CHAR

• RAW

• NUMBER

• DATE

The VARCHAR2 datatype stores up to 249 bytes of character data in the database
character set. Values larger than this result in a per-document indexing error. Note
that leading and trailing whitespace are always trimmed from SDATA section values
when extracted by the sectioner. This is different than SDATA columns. Column values
are never trimmed. No lexing is performed on the value from either kind of SDATA.
The CHAR datatype stores up to 249 bytes of character data in the database character
set. Values larger than this result in a per-document indexing error. Note that leading
and trailing whitespace are always trimmed from SDATA section values when extracted
by the sectioner. This is different than SDATA columns. Column values are never
trimmed. No lexing is performed on the value from either kind of SDATA. To be
consistent with SQL, the comparisons of CHAR datatype SDATA values are blank-
padded comparisons.
The RAW datatype stores up to 249 bytes of binary data. Values larger than this result
in a per-document indexing error. The value is converted from hexadecimal string
representation. That is, to store a value of 65, the document should look like
<TAG>40</TAG>, and not <TAG>65</TAG> or <TAG>A</TAG>.
The DATE datatype values must conform to the following format: YYYY-MM-DD or YYYY-
MM-DD HH24:MI:SS. That is, to store a DATE value of "Nov. 24, 2006 10:32 pm 36 sec",
the document should look like <TAG>2006-11-24 22:32:36</TAG>.
The Searchable SDATA sections support the following data types, in addition to the
data types supported by the Sortable SDATA sections:

• BINARY_FLOAT

• BINARY_DOUBLE

• TIMESTAMP

• TIMESTAMP_WITH_TIMEZONE

The BINARY_FLOAT datatype stores 32-bit floating point number.
The BINARY_DOUBLE datatype stores 64-bit floating point number.

Chapter 8
ADD_SDATA_SECTION

8-17

The TIMESTAMP datatype is an extension of the DATE datatype. It stores year, month,
and day values of date, as well as hour, minute, and second values of time. It also
stores fractional seconds, which are not stored by the DATE datatype. The fractional
seconds precision can be no more than 9. The TIMESTAMP values must follow the ISO
format. You can specify the TIMESTAMP literal in the following format: YYYY-MM-DD
HH24:MI:SS.FF. An example of TIMESTAMP value is <TAG>1997-01-31
09:26:50.12</TAG>.
The TIMESTAMP_WITH_TIMEZONE datatype is a variant of TIMESTAMP datatype that
includes a time zone offset or a time zone region name in its value. The fractional
seconds prevision can be no more than 9. The TIMESTAMP_WITH_TIMEZONE values
must follow the ISO format. An example of TIMESTAMP_WITH_TIMEZONE value is
<TAG>1997-01-31 09:26:56.66 +02:00</TAG>

Example

The following example demonstrates how to create a SDATA section:

create table tab(id number, info varchar2(100));

insert into tab values(1,'Hello World<fruit>apple</fruit><price>3</
price>');
insert into tab values(2,'Hello World<fruit>orange</fruit><price>5</
price>');

The preceding statements create a table named tab with two rows of data.

The following statements create a basic section group named sg, add SDATA sections
to it and mark the SDATA to be searchable:

exec ctx_ddl.create_section_group('sg', 'basic_section_group');
exec ctx_ddl.add_sdata_section('sg','fruit','fruit','varchar2');
exec ctx_ddl.set_section_attribute('sg','fruit','optimized_for','search');
exec ctx_ddl.add_sdata_section('sg','price','price','number');
exec ctx_ddl.set_section_attribute('sg','price','optimized_for','search');

The following statement creates an index on sg:

create index idx on tab(info) indextype is ctxsys.context parameters
('section group sg');

The following statements query tab to demonstrate searchable SDATA:

Query 1

select id from tab where CONTAINS(info, 'SDATA(fruit = "apple")'); return
id 1

Query 2

select id from tab where CONTAINS(info, 'Hello and SDATA(price > 4)');
return id 2

Chapter 8
ADD_SDATA_SECTION

8-18

Limitations

• If no SDATA tag occurs in a given document, then this is treated as an SDATA value
of NULL.

• Empty SDATA tags are treated as NULL values.

• SDATA sections cannot be nested. Sections that are nested inside are ignored.

Related Topics

"SDATA"

"ADD_SDATA_COLUMN"

"UPDATE_SDATA"

See Also:

• Oracle Database SQL Language Reference

• Oracle Text Application Developer's Guide

8.11 ADD_SEC_GRP_ATTR_VAL
Adds a section group attribute value to the list of values of an already existing section
group attribute.

Syntax

CTX_DDL.ADD_SEC_GRP_ATTR_VAL(
 group_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2
);

group_name
Specify the section group name.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value.

8.12 ADD_SPECIAL_SECTION
Adds a special section, either SENTENCE or PARAGRAPH, to a section group. This enables
searching within sentences or paragraphs in documents with the WITHIN operator.

A special section in a document is a section which is not explicitly tagged like zone
and field sections. The start and end of special sections are detected when the index
is created. Oracle Text supports two such sections: paragraph and sentence.

Chapter 8
ADD_SEC_GRP_ATTR_VAL

8-19

The sentence and paragraph boundaries are determined by the lexer. For example,
the lexer recognizes sentence and paragraph section boundaries as follows:

Table 8-1 Paragraph and Sentence Section Boundaries

Special Section Boundary

SENTENCE WORD/PUNCT/WHITESPACE

SENTENCE WORD/PUNCT/NEWLINE

PARAGRAPH WORD/PUNCT/NEWLINE/WHITESPACE (indented paragraph)

PARAGRAPH WORD/PUNCT/NEWLINE/NEWLINE (block paragraph)

The punctuation, whitespace, and newline characters are determined by your lexer
settings and can be changed.

If the lexer cannot recognize the boundaries, no sentence or paragraph sections are
indexed.

Syntax

CTX_DDL.ADD_SPECIAL_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2
);

group_name
Specify the name of the section group.

section_name
Specify SENTENCE or PARAGRAPH.

Example

The following example enables searching within sentences within HTML documents:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
end;

Add zone sections to the group to enable zone searching in addition to sentence
searching. The following example adds the zone section Headline to the section group
htmgroup:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_special_section('htmgroup', 'SENTENCE');
ctx_ddl.add_zone_section('htmgroup', 'Headline', 'H1');
end;

If you are only interested in sentence or paragraph searching within documents and
not interested in defining zone or field sections, then use the NULL_SECTION_GROUP as
follows:

begin
ctx_ddl.create_section_group('nullgroup', 'NULL_SECTION_GROUP');
ctx_ddl.add_special_section('nullgroup', 'SENTENCE');
end;

Chapter 8
ADD_SPECIAL_SECTION

8-20

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP "

"ADD_ZONE_SECTION "

"ADD_FIELD_SECTION"

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

8.13 ADD_STOPCLASS
Adds a stopclass to a stoplist. A stopclass is a class of tokens that is not to be
indexed. A stoplist cannot have more than 250 stopclasses with stoppatterns. This
does not include the NUMBERS stopclass. When indexing with Stop Patterns, the
recommended memory setting is at least 500 MB to 1 GB to optimize the performance
of indexing.

English is the only language supported for stopclasses.

Syntax

CTX_DDL.ADD_STOPCLASS(
 stoplist_name IN VARCHAR2,
 stopclass IN VARCHAR2,
 stoppattern IN VARCHAR2 default NULL
);

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the stopclass to be added to stoplist_name. It can be either the NUMBERS
stopclass or else it is considered as the pattern stopclass.
NUMBERS includes tokens that follow the number pattern: digits, numgroup, and numjoin
only. Therefore, 123ABC is not a number, nor is A123. These are labeled as
MIXED. $123 is not a number (this token is not common in a text index because non-
alphanumerics become whitespace by default). In the United States, 123.45 is a
number, but 123.456.789 is not; in Europe, where numgroup may be '.', the reverse is
true.
If NUMBERS is not specified for the stopclass parameter, then it is treated as a
pattern stopclass, and you can provide any name to the stopclass parameter. If you
specify stopclass as a pattern class, then you need to specify the pattern in the
stoppattern parameter. The pattern includes any string pattern that may contain
numbers and dates as well.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

Chapter 8
ADD_STOPCLASS

8-21

stoppattern
Specify the stop pattern to add to the stoplist. If the stopclass is specified as a pattern
class, then the stop pattern must be specified. You can use the Oracle Regular
Expression to specify the stop pattern.
Call the ADD_STOPCLASS procedure multiple times to add multiple stop patterns to a
stoplist. You must specify different stopclass names for adding multiple stop patterns
to a stoplist.
A stop pattern is not case-sensitive by default, but acts as case-sensitive when the
MIXED_CASE lexer preference is enabled. The stop pattern can have the maximum
length of 512 characters. When indexing with Stop Patterns, the recommended
memory setting is at least 500 MB to 1 GB to optimize the performance of indexing.

See Also:

Oracle Database Development Guide for more information about the syntax
of the Oracle Regular Expression.

Example

The following example adds a stopclass of NUMBERS to the stoplist mystoplist:

begin
ctx_ddl.add_stopclass('mystoplist', 'NUMBERS');
end;

The following example adds the pattern stopclass of SSN to the stoplist mystoplist:

begin
ctx_ddl.add_stopclass('mystoplist', 'SSN', '\d{3}-\d{2}-\d{4}');
end;

In this example, the stopclass SSN matches all the tokens of the form <3 digit number>-
<2 digit number>-<4 digit number>, example, 234-11-8902.

Related Topics

"CREATE_STOPLIST "

"REMOVE_STOPCLASS "

"DROP_STOPLIST "

8.14 ADD_STOP_SECTION
Adds a stop section to an automatic section group. Adding a stop section causes the
automatic section indexing operation to ignore the specified section in XML
documents.

Note:

Adding a stop section causes no section information to be created in the
index. However, the text within a stop section is always searchable.

Chapter 8
ADD_STOP_SECTION

8-22

Adding a stop section is useful when your documents contain many low information
tags. Adding stop sections also improves indexing performance with the automatic
section group.

The number of stop sections you can add is unlimited.

Stop sections do not have section names and hence are not recorded in the section
views.

Syntax

CTX_DDL.ADD_STOP_SECTION(
 section_group IN VARCHAR2,
 tag IN VARCHAR2
);

section_group
Specify the name of the automatic section group. If you do not specify an automatic
section group, then this procedure returns an error.

tag
Specify the tag to ignore during indexing. This parameter is case-sensitive. Defining a
stop tag as such also stops the tag's attribute sections, if any.
Qualify the tag with document type in the form (doctype)tag. For example, if you
wanted to make the <fluff> tag a stop section only within the mydoc document type,
specify (mydoc)fluff for tag.

Example

Defining Stop Sections

The following example adds a stop section identified by the tag <fluff> to the
automatic section group myauto:

begin
ctx_ddl.add_stop_section('myauto', 'fluff');
end;

This example also stops any attribute sections contained within <fluff>. For example,
if a document contained:

<fluff type="computer">

Then the preceding example also stops the attribute section fluff@type.

Doctype Sensitive Stop Sections

The following example creates a stop section for the tag <fluff> only in documents
that have a root element of mydoc:

begin
ctx_ddl.add_stop_section('myauto', '(mydoc)fluff');
end;

Related Topics

"ALTER INDEX "

"CREATE_SECTION_GROUP "

Chapter 8
ADD_STOP_SECTION

8-23

8.15 ADD_STOPTHEME
Adds a single stoptheme to a stoplist. A stoptheme is a theme that is not to be
indexed.

In English, query on indexed themes using the ABOUT operator.

Syntax

CTX_DDL.ADD_STOPTHEME(
 stoplist_name IN VARCHAR2,
 stoptheme IN VARCHAR2
);

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be added to stoplist_name. The system normalizes the
stoptheme you enter using the knowledge base. If the normalized theme is more than
one theme, then the system does not process your stoptheme. For this reason,
Oracle recommends that you submit single stopthemes.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

Example

The following example adds the stoptheme banking to the stoplist mystop:

begin
ctx_ddl.add_stoptheme('mystop', 'banking');
end;

Related Topics

"CREATE_STOPLIST "

"REMOVE_STOPTHEME "

"DROP_STOPLIST "

"ABOUT"

8.16 ADD_STOPWORD
Use this procedure to add a single stopword to a stoplist.

To create a list of stopwords, you must call this procedure once for each word.

Syntax

CTX_DDL.ADD_STOPWORD(

 stoplist_name IN VARCHAR2,
 stopword IN VARCHAR2,
 language IN VARCHAR2 default NULL,
 language_dependent IN BOOLEAN default TRUE

Chapter 8
ADD_STOPTHEME

8-24

);

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be added.
Language-specific stopwords must be unique across the other stopwords specific to
the language. For example, it is valid to have a German die and an English die in the
same stoplist.
The maximum number of stopwords, stopthemes, and stopclasses you can add to a
stoplist is 4095.

language
Specify the language of stopword when the stoplist you specify with stoplist_name is
of type MULTI_STOPLIST. You must specify the globalization support name or
abbreviation of an Oracle Text-supported language.
To make a stopword active in multiple languages, specify ALL for this parameter. For
example, defining ALL stopwords is useful when you have international documents
that contain English fragments that need to be stopped in any language.
An ALL stopword is active in all languages. If you use the multi-lexer, the language-
specific lexing of the stopword occurs, just as if it had been added multiple times in
multiple specific languages.
Otherwise, specify NULL.

language_dependent
Set this parameter to FALSE to indicate that any user-defined string can be specified
for the language parameter.

Example

Single Language Stoplist

The following example adds the stopwords because, notwithstanding, nonetheless,
and therefore to the stoplist mystop:

begin

ctx_ddl.add_stopword('mystop', 'because');
ctx_ddl.add_stopword('mystop', 'notwithstanding');
ctx_ddl.add_stopword('mystop', 'nonetheless');
ctx_ddl.add_stopword('mystop', 'therefore');

end;

Multi-Language Stoplist

The following example adds the German word die to a multi-language stoplist:

begin

ctx_ddl.add_stopword('mystop', 'Die','german');

end;

Chapter 8
ADD_STOPWORD

8-25

Note:

Add stopwords after you create the index with ALTER INDEX.

Adding An ALL Stopword

The following adds the word the as an ALL stopword to the multi-language stoplist
globallist:

begin

ctx_ddl.add_stopword('globallist','the','ALL');

end;

Related Topics

"CREATE_STOPLIST "

"REMOVE_STOPWORD "

"DROP_STOPLIST "

"ALTER INDEX "

Oracle Text Supplied Stoplists

8.17 ADD_SUB_LEXER
Adds a sub-lexer to a multi-lexer preference. A sub-lexer identifies a language in a
multi-lexer (multi-language) preference. Use a multi-lexer preference when you want to
index more than one language.

Syntax

CTX_DDL.ADD_SUB_LEXER(
 lexer_name IN VARCHAR2,
 language IN VARCHAR2,
 sub_lexer IN VARCHAR2,
 alt_value IN VARCHAR2 default NULL,
 language_dependent IN BOOLEAN default TRUE
);

lexer_name
Specify the name of the multi-lexer preference.

language
Specify the globalization support language name or abbreviation of the sub-lexer. For
example, specify JAPANESE or JA for Japanese.
The sub-lexer you specify with sub_lexer is used when the language column has a
value case-insensitive equal to the globalization support name of abbreviation of
language.
Specify DEFAULT to assign a default sub-lexer to use when the value of the language
column in the base table is null, invalid, or unmapped to a sub-lexer. The DEFAULT
lexer is also used to parse stopwords.

Chapter 8
ADD_SUB_LEXER

8-26

If a sub-lexer definition for language already exists, then it is replaced by this call.

sub_lexer
Specify the name of the sub-lexer to use for this language.

alt_value
Optionally specify an alternate value for language.
If you specify DEFAULT for language, then you cannot specify an alt_value.
The alt_value is limited to 30 bytes and cannot be a globalization support language
name, abbreviation, or DEFAULT.

language_dependent
Set this parameter to FALSE to indicate that any user-defined string can be specified
for the language parameter. If set to FALSE, then the lexing applied to the search
expression will not be dependent on the query language. The FALSE option can only
be used when a BASIC_SECTION_GROUP is in use for the index.

Example

This example shows how to create a multi-language text table and how to set up the
multi-lexer to index the table.

Create the multi-language table with a primary key, a text column, and a language
column as follows:

create table globaldoc (
 doc_id number primary key,
 lang varchar2(3),
 text clob
);

Assume that the table holds mostly English documents, with an occasional German or
Japanese document. To handle the three languages, you must create three sub-
lexers: one for English, one for German, and one for Japanese as follows:

ctx_ddl.create_preference('english_lexer','basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.set_attribtue('english_lexer','theme_language','english');

ctx_ddl.create_preference('german_lexer','basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');

ctx_ddl.create_preference('japanese_lexer','japanese_vgram_lexer');

Create the multi-lexer preference:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Because the stored documents are mostly English, make the English lexer the default:

ctx_ddl.add_sub_lexer('global_lexer','default','english_lexer');

Add the German and Japanese lexers in their respective languages. Also assume that
the language column is expressed in ISO 639-2, so add those as alternative values.

ctx_ddl.add_sub_lexer('global_lexer','german','german_lexer','ger');
ctx_ddl.add_sub_lexer('global_lexer','japanese','japanese_lexer','jpn');

Chapter 8
ADD_SUB_LEXER

8-27

Create the index globalx, specifying the multi-lexer preference and the language
column in the parameters string as follows:

create index globalx on globaldoc(text) indextype is ctxsys.context
parameters ('lexer global_lexer language column lang');

You can specify a user-defined string for the language paramater as follows:

ctx_ddl.add_sub_lexer('global_lexer','mysymbol','german_lexer','my_alt_symbol',
language_dependent => FALSE);

Restrictions

The following restrictions apply to using CTX_DDL.ADD_SUB_LEXER:

• The invoking user must be the owner of the multi-lexer or CTXSYS.

• The lexer_name parameter must name a preference which is a multi-lexer lexer.

• A lexer for default must be defined before the multi-lexer can be used in an index.

• The sub-lexer preference owner must be the same as multi-lexer preference
owner.

• The sub-lexer preference must not be a multi-lexer lexer.

• A sub-lexer preference cannot be dropped while it is being used in a multi-lexer
preference.

• CTX_DDL.ADD_SUB_LEXER records only a reference. The sub-lexer values are
copied at create index time to index value storage.

8.18 ADD_ZONE_SECTION
Creates a zone section and adds the section to an existing section group. This
enables zone section searching with the WITHIN operator.

Zone sections are sections delimited by start and end tags. The and tags in
HTML, for instance, marks a range of words which are to be rendered in boldface.

Zone sections can be nested within one another, can overlap, and can occur more
than once in a document.

Syntax

CTX_DDL.ADD_ZONE_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 tag IN VARCHAR2
);

group_name
Specify the name of the section group to which section_name is added.

section_name
Specify the name of the section to add to the group_name. Use this name to identify
the section in WITHIN queries. Avoid using names that contain non-alphanumeric
characters such as _, because most of these characters are special must be escaped
in queries. Section names are case-insensitive.

Chapter 8
ADD_ZONE_SECTION

8-28

Within the same group, zone section names and field section names cannot be the
same. The terms Paragraph and Sentence are reserved for special sections.
Section names need not be unique across tags. You can assign the same section
name to more than one tag, making details transparent to searches.

tag
Specify the pattern which marks the start of a section. For example, if <H1> is the
HTML tag, specify H1 for tag. The start tag you specify must be unique within a
section group.
Oracle Text knows what the end tags look like from the group_type parameter you
specify when you create the section group.
If group_name is an HTML_SECTION_GROUP, you can create zone sections for the META
tag's NAME/CONTENT attribute pairs. To do so, specify tag as meta@namevalue where
namevalue is the value of the NAME attribute whose CONTENT attributes are to be
indexed as a section. Refer to the example.
If group_name is an XML_SECTION_GROUP, you can optionally qualify tag with a
document type (root element) in the form (doctype)tag. Doing so makes
section_name sensitive to the XML document type declaration. Refer to the example.

Examples

Creating HTML Sections

The following example defines a section group called htmgroup of type
HTML_SECTION_GROUP. It then creates a zone section in htmgroup called headline
identified by the <H1> tag:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'heading', 'H1');
end;

After indexing with section group htmgroup, query within the heading section by
issuing a query as follows:

'Oracle WITHIN heading'

Creating Sections for <META NAME> Tags

You can create zone sections for HTML META tags when you use the
HTML_SECTION_GROUP.

Consider an HTML document that has a META tag as follows:

<META NAME="author" CONTENT="ken">

To create a zone section that indexes all CONTENT attributes for the META tag whose
NAME value is author:

begin
ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');
ctx_ddl.add_zone_section('htmgroup', 'author', 'meta@author');
end

After indexing with section group htmgroup, query the document as follows:

'ken WITHIN author'

Creating Document Type Sensitive Sections (XML Documents Only)

Chapter 8
ADD_ZONE_SECTION

8-29

You have an XML document set that contains the <book> tag declared for different
document types (DTDs). You want to create a distinct book section for each document
type.

Assume that myDTDname is declared as an XML document type as follows:

<!DOCTYPE myDTDname>
<myDTDname>
 ...

(Note: the DOCTYPE must match the top-level tag.)

Within myDTDname, the element <book> is declared. For this tag, create a section
named mybooksec that is sensitive to the tag's document type as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', '(myDTDname)book');
end;

Notes

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For
example, if <H1> denotes a heading section, they can repeat in the same documents
as follows:

<H1> The Brown Fox </H1>

<H1> The Gray Wolf </H1>

Assuming that these zone sections are named Heading, the query Brown WITHIN
Heading returns this document. However, a query of (Brown and Gray) WITHIN
Heading does not.

Overlapping Sections

Zone sections can overlap each other. For example, if and <I> denote two
different zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections

Zone sections can nest, including themselves as follows:

<TD> <TABLE><TD>nested cell</TD></TABLE></TD>

Using the WITHIN operator, you can write queries to search for text in sections within
sections. For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as
follows in documents doc1 and doc2:

doc1:

<book1> <author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:

<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

Chapter 8
ADD_ZONE_SECTION

8-30

'(Scott within author) within book1'

This query returns only doc1.

Related Topics

"WITHIN"

"Section Group Types"

"CREATE_SECTION_GROUP "

"ADD_FIELD_SECTION"

"ADD_SPECIAL_SECTION "

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

8.19 COPY_POLICY
Creates a new policy from an existing policy or index.

Syntax

ctx_ddl.copy_policy(
 source_policy VARCHAR2,
 policy_name VARCHAR2);

source_policy
The name of the policy or index being copied.

policy_name
The name of the new policy copy.

The preference values are copied from the source_policy. Both the source policy or
index and the new policy must be owned by the same database user.

8.20 CREATE_INDEX_SET
Creates an index set for CTXCAT index types. Name this index set in the parameter
clause of CREATE INDEX when you create a CTXCAT index.

Syntax

CTX_DDL.CREATE_INDEX_SET(set_name in varchar2);

set_name
Specify the name of the index set. Name this index set in the parameter clause of
CREATE INDEX when you create a CTXCAT index.

8.21 CREATE_POLICY
Creates a policy to use with the CTX_DOC.POLICY_* procedures and the ORA:CONTAINS
function. ORA:CONTAINS is a function you use within an XPATH query expression with
existsNode().

Chapter 8
COPY_POLICY

8-31

See Also:

Oracle XML DB Developer's Guide

Syntax

CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the name for the new policy. Policy names and Text indexes share the same
namespace.

filter
Specify the filter preference to use.

section_group
Specify the section group to use. You can specify any section group that is supported
by CONTEXT index.

lexer
Specify the lexer preference to use. Your INDEX_THEMES attribute must be disabled.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

Example

Create mylex lexer preference named mylex.

begin
 ctx_ddl.create_preference('mylex', 'BASIC_LEXER');
 ctx_ddl.set_attribute('mylex', 'printjoins', '_-');
 ctx_ddl.set_attribute ('mylex', 'index_themes', 'NO');
 ctx_ddl.set_attribute ('mylex', 'index_text', 'YES');
end;

Create a stoplist preference named mystop.

begin
 ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
 ctx_ddl.add_stopword('mystop', 'because');
 ctx_ddl.add_stopword('mystop', 'nonetheless');
 ctx_ddl.add_stopword('mystop', 'therefore');
end;

Create a wordlist preference named 'mywordlist'.

Chapter 8
CREATE_POLICY

8-32

begin
 ctx_ddl.create_preference('mywordlist', 'BASIC_WORDLIST');
 ctx_ddl.set_attribute('mywordlist','FUZZY_MATCH','ENGLISH');
 ctx_ddl.set_attribute('mywordlist','FUZZY_SCORE','0');
 ctx_ddl.set_attribute('mywordlist','FUZZY_NUMRESULTS','5000');
 ctx_ddl.set_attribute('mywordlist','SUBSTRING_INDEX','TRUE');
 ctx_ddl.set_attribute('mywordlist','STEMMER','ENGLISH');
end;

exec ctx_ddl.create_policy('my_policy', NULL, NULL, 'mylex', 'mystop',
'mywordlist');

or

exec ctx_ddl.create_policy(policy_name => 'my_policy',
 lexer => 'mylex',
 stoplist => 'mystop',
 wordlist => 'mywordlist');

Then enter the following existsNode() query with your own defined policy:

select id from xmltab
 where existsNode(doc, '/book/chapter[ora:contains(summary,"dog or cat",
 "my_policy") >0]', 'xmlns:ora="http://xmlns.example.com/xdb" ')=1;

Update the policy with the following:

exec ctx_ddl.update_policy(policy_name => 'my_policy', lexer => 'my_new_lex');

Drop the policy with the following:

exec ctx_ddl.drop_policy(policy_name => 'my_policy');

8.22 CREATE_PREFERENCE
Creates a preference in the Text data dictionary. Specify preferences in the parameter
string of CREATE INDEX or ALTER INDEX .

Caution:

CTX_DDL.CREATE_PREFERENCE does not respect the current schema as set by
ALTER SESSION SET current_schema. Therefore, if you need to create or
delete a preference owned by another user, then you must explicitly state
this, and you must have the CREATE ANY TABLE system privilege.

See note 249991.1 titled "Oracle Text Overview of New Features in Release
10g" on My Oracle Support at https://support.oracle.com. This note
provides a technical overview that is relevant to Oracle Database release
10g and later releases.

Syntax

CTX_DDL.CREATE_PREFERENCE(preference_name in varchar2,
 object_name in varchar2);

Chapter 8
CREATE_PREFERENCE

8-33

https://support.oracle.com

preference_name
Specify the name of the preference to be created.

object_name
Specify the name of the preference type.

See Also:

For a complete list of preference types and their associated attributes, see
Oracle Text Indexing Elements

Examples

Creating Text-only Index

The following example creates a lexer preference that specifies a text-only index. It
does so by creating a BASIC_LEXER preference called my_lexer with
CTX_DDL.CREATE_PREFERENCE. It then calls CTX_DDL.SET_ATTRIBUTE twice, first
specifying YES for the INDEX_TEXT attribute, then specifying NO for the INDEX_THEMES
attribute.

begin
ctx_ddl.create_preference('my_lexer', 'BASIC_LEXER');
ctx_ddl.set_attribute('my_lexer', 'INDEX_TEXT', 'YES');
ctx_ddl.set_attribute('my_lexer', 'INDEX_THEMES', 'NO');
end;

Specifying File Data Storage

The following example creates a data storage preference called mypref that tells the
system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute of to the directory /
docs.

begin
ctx_ddl.create_preference('mypref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('mypref', 'PATH', '/docs');
end;

See Also:

For more information about data storage, see "Datastore Types "

Creating Master/Detail Relationship

Use CTX_DDL.CREATE_PREFERENCE to create a preference with
DETAIL_DATASTORE. Use CTX_DDL.SET_ATTRIBUTE to set the attributes for this
preference. The following example shows how this is done:

begin
ctx_ddl.create_preference('my_detail_pref', 'DETAIL_DATASTORE');
ctx_ddl.set_attribute('my_detail_pref', 'binary', 'true');
ctx_ddl.set_attribute('my_detail_pref', 'detail_table', 'my_detail');
ctx_ddl.set_attribute('my_detail_pref', 'detail_key', 'article_id');

Chapter 8
CREATE_PREFERENCE

8-34

ctx_ddl.set_attribute('my_detail_pref', 'detail_lineno', 'seq');
ctx_ddl.set_attribute('my_detail_pref', 'detail_text', 'text');
end;

See Also:

For more information about master/detail, see "DETAIL_DATASTORE "

Specifying Storage Attributes

The following examples specify that the index tables are to be created in the foo
tablespace with an initial extent of 1K:

begin
ctx_ddl.create_preference('mystore', 'BASIC_STORAGE');
ctx_ddl.set_attribute('mystore', 'I_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'K_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'R_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'S_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'N_TABLE_CLAUSE',
 'tablespace foo storage (initial 1K)');
ctx_ddl.set_attribute('mystore', 'I_INDEX_CLAUSE',
 'tablespace foo storage (initial 1K)');
end;

Note:

If S_TABLE_CLAUSE is specified for a storage preference in an index without
SDATA, then it has no effect on the index, and the index creation will still
succeed.

See Also:

Storage Types

Creating Preferences with No Attributes

When you create preferences with types that have no attributes, you need only create
the preference, as in the following example which sets the filter to the NULL_FILTER:

begin
ctx_ddl.create_preference('my_null_filter', 'NULL_FILTER');
end;

Specifying BIGRAM Mode for Japanese VGRAM Lexer

Chapter 8
CREATE_PREFERENCE

8-35

The following example creates a Japanese VGRAM lexer preference that specifies the
BIGRAM mode of operation for the Japanese queries:

begin
ctx_ddl.create_preference('jp_lexer','JAPANESE_VGRAM_LEXER');
ctx_ddl.set_attribute('jp_lexer','BIGRAM','TRUE');
end;

/* create the index */
create index jp_idx on jp_doc(text) indextype is ctxsys.context
 parameters('lexer jp_lexer');

Related Topics

"SET_ATTRIBUTE "

"DROP_PREFERENCE "

"CREATE INDEX"

"ALTER INDEX "

Oracle Text Indexing Elements

8.23 CREATE_SECTION_GROUP
Creates a section group for defining sections in a text column.

When you create a section group, you can add to it zone, field, or special sections with
ADD_ZONE_SECTION , ADD_FIELD_SECTION, ADD_MDATA_SECTION, or
ADD_SPECIAL_SECTION .

You also use CREATE_SECTION_GROUP with CTX_DDL.SET_SEC_GRP_ATTR to set
xml_enable to create an Oracle XML Search Index.

When you index, name the section group in the parameter string of CREATE INDEX
or ALTER INDEX .

After indexing, query within your defined sections with the WITHIN operator.

Syntax

CTX_DDL.CREATE_SECTION_GROUP(
 group_name in varchar2,
 group_type in varchar2
);

group_name
Specify the section group name to create as section_group_name. This parameter
must be unique within an owner.

group_type
Specify section group type. The group_type parameter can be one of the following:

Section Group Preference Description

NULL_SECTION_GROUP Use this group type when you define no
sections or when you define only SENTENCE or
PARAGRAPH sections. This is the default.

Chapter 8
CREATE_SECTION_GROUP

8-36

Section Group Preference Description

BASIC_SECTION_GROUP Use this group type for defining sections where
the start and end tags are of the form <A> and
.
Note: This group type does not support input
such as unbalanced parentheses, comments
tags, and attributes. Use
HTML_SECTION_GROUP for this type of input.

HTML_SECTION_GROUP Use this group type for indexing HTML
documents and for defining sections in HTML
documents.

JSON_SECTION_GROUP Use this group to create a JSON enabled
context index. The JSON ENABLE attribute
cannot be used with XML ENABLE. A section
group can only be marked as JSON ENABLE. If it
is already marked with XML ENABLE, then the
path section group cannot be used for JSON
ENABLE and vice versa.

XML_SECTION_GROUP Use this group type for indexing XML
documents and for defining sections in XML
documents.

AUTO_SECTION_GROUP Use this group type to automatically create a
zone section for each start-tag/end-tag pair in
an XML document. The section names derived
from XML tags are case sensitive as in XML.
Attribute sections are created automatically for
XML tags that have attributes. Attribute sections
are named in the form attribute@tag.
Stop sections, empty tags, processing
instructions, and comments are not indexed.
The following limitations apply to automatic
section groups:
• You cannot add zone, field, or special

sections to an automatic section group.

• Automatic sectioning does not index XML
document types (root elements.) However,
you can define stop sections with document
type.

• The length of the indexed tags, including
prefix and namespace, cannot exceed 64
bytes. Tags longer than this are not
indexed.

PATH_SECTION_GROUP Use this group type to index XML documents.
Behaves like the AUTO_SECTION_GROUP.
The difference is that with this section group you
can do path searching with the INPATH and
HASPATH operators. Queries are also case-
sensitive for tag and attribute names.

Chapter 8
CREATE_SECTION_GROUP

8-37

Section Group Preference Description

NEWS_SECTION_GROUP Use this group for defining sections in
newsgroup formatted documents according to
RFC 1036.

Examples

The following command creates a section group called htmgroup with the HTML group
type.

begin

ctx_ddl.create_section_group('htmgroup', 'HTML_SECTION_GROUP');

end;

The following command creates a section group called auto with the
AUTO_SECTION_GROUP group type to be used to automatically index tags in XML
documents.

begin

ctx_ddl.create_section_group('auto', 'AUTO_SECTION_GROUP');

end;

The following example creates an Oracle XML Search index:

exec CTX_DDL.CREATE_SECTION_GROUP('secgroup','PATH_SECTION_GROUP');
exec CTX_DDL.SET_SEC_GRP_ATTR('secgroup','xml_enable','t');
CREATE INDEX po_ctx_idx on T(X) indextype is ctxsys.context
parameters ('section group SECGROUP');

Related Topics

"WITHIN"

"Section Group Types"

"ADD_ZONE_SECTION "

"ADD_FIELD_SECTION"

"ADD_MDATA_SECTION"

"ADD_SPECIAL_SECTION "

"REMOVE_SECTION "

"DROP_SECTION_GROUP "

8.24 CREATE_SHADOW_INDEX
Creates index metadata (or policy) for the specified index. If the index is not
partitioned, then it also creates the index tables. This procedure is only supported in
Enterprise Edition of Oracle Database.

The following changes are not supported:

Chapter 8
CREATE_SHADOW_INDEX

8-38

• Transition from non-composite domain index to composite, or changing the
composite domain index columns.

• Rebuild indexes that have partitioned index tables, for example, $I, $P, $K.

Note:

For a partitioned index, you must first call this procedure to create the
shadow index metadata. This procedure will not create index tables. It has
no effect on query, DML, sync, or optimize operations.

Syntax

CTX_DDL.CREATE_SHADOW_INDEX(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2 DEFAULT NULL,
 parallel_degree IN NUMBER DEFAULT 1
);

idx_name
The name of a valid CONTEXT indextype.

parameter_string
For nonpartitioned index, the same string as in ALTER INDEX. For partitioned index, the
same string as in ALTER INDEX PARAMETER.

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not
currently supported.

Example

Example 8-1 Scheduled Global Index RECREATE (Incremental Rebuild)

In this example, you have the finest control over each stage of
RECREATE_INDEX_ONLINE. Since SYNC_INDEX can take a time limit, you can limit
SYNC_INDEX during non-business hours and incrementally recreate the index.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* create shadow index */

Chapter 8
CREATE_SHADOW_INDEX

8-39

exec ctx_ddl.create_shadow_index('idx',
 'replace lexer m_lexer language column lang NOPOPULATE');

declare
 idxid integer;
begin
 /* figure out shadow index name */
 select idx_id into idxid from ctx_user_indexes
 where idx_name ='IDX';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid);
 /* time limited sync */
 ctx_ddl.sync_index(idx_name =>'RIO$'||idxid,
 maxtime =>480);
 /* more sync until no pending rows for the shadow index */
end;
/* swap in the shadow index */
exec ctx_ddl.exchange_shadow_index('idx');

Notes

The index name for the shadow index is RIO$index_id. By default it will also populate
index tables for nonpartitioned indexes, unless NOPOPULATE is specified in CREATE
INDEX or in ALTER INDEX. For a local partitioned index, it will only create index metadata
without creating the index tables for each partition. Each index can have only one
shadow index.

When building a nonpartitioned index online, you can first call this procedure to create
index metadata and index tables. If you specify POPULATE, then this procedure will
populate the index, but will not do swapping. You can schedule the swapping at a
later, preferred time.

If you specify NOPOPULATE, it will only create metadata for the index tables, but will not
populate them. You must perform POPULATE_PENDING
(CTX_DDL.POPULATE_PENDING) to populate the pending queues after running this
procedure, and then sync the indexes. This is referred to as incremental re-create.

Queries are all processed normally when this procedure is running.

If POPULATE is specified, then DML is blocked for a very short time at the beginning of
populate, after which all further DML is logged into an online pending queue and
processed later.

Sync with CTX_DDL.SYNC_INDEX runs normally on the index. OPTIMIZE_INDEX
runs without doing anything, but does not return an error.

Related Topics

POPULATE | NOPOPULATE in ALTER INDEX

CREATE INDEX in Oracle Text SQL Statements and Operators

CTX_DDL.DROP_SHADOW_INDEX

CTX_DDL.EXCHANGE_SHADOW_INDEX

CTX_DDL.SYNC_INDEX

CTX_DDL.POPULATE_PENDING

Chapter 8
CREATE_SHADOW_INDEX

8-40

8.25 CREATE_STOPLIST
Use this procedure to create a new, empty stoplist. Stoplists can contain words or
themes that are not to be indexed.

You can also create multi-language stoplists to hold language-specific stopwords. A
multi-language stoplist is useful when you index a table that contains documents in
different languages, such as English, German, and Japanese. When you do so, the
text table must contain a language column.

Add either stopwords, stopclasses, or stopthemes to a stoplist using
ADD_STOPWORD, ADD_STOPCLASS, or ADD_STOPTHEME. Specify a stoplist in
the parameter string of CREATE INDEX or ALTER INDEX to override the default
stoplist CTXSYS.DEFAULT_STOPLIST.

Syntax

CTX_DDL.CREATE_STOPLIST(

stoplist_name IN VARCHAR2,
stoplist_type IN VARCHAR2 DEFAULT 'BASIC_STOPLIST');

stoplist_name
Specify the name of the stoplist to be created.

stoplist_type
Specify BASIC_STOPLIST to create a stoplist for a single language. This is the default.
Specify MULTI_STOPLIST to create a stoplist with language-specific stopwords.
At indexing time, the language column of each document is examined, and only the
stopwords for that language are eliminated. At query time, the session language
setting determines the active stopwords, like it determines the active lexer when using
the multi-lexer.

Note:

When indexing a multi-language table with a multi-language stoplist, the
table must have a language column.

Examples

Example 8-2 Single Language Stoplist

The following example creates a stoplist called mystop:

begin
ctx_ddl.create_stoplist('mystop', 'BASIC_STOPLIST');
end;

Example 8-3 Multi-Language Stoplist

The following example creates a multi-language stoplist called multistop and then
adds tow language-specific stopwords:

begin
ctx_ddl.create_stoplist('multistop', 'MULTI_STOPLIST');

Chapter 8
CREATE_STOPLIST

8-41

ctx_ddl.add_stopword('mystop', 'Die','german');
ctx_ddl.add_stopword('mystop', 'Or','english');
end;

Related Topics

"ADD_STOPWORD "

"ADD_STOPCLASS "

"ADD_STOPTHEME "

"DROP_STOPLIST "

"CREATE INDEX"

"ALTER INDEX "

Oracle Text Supplied Stoplists

8.26 DROP_INDEX_SET
Drops a CTXCAT index set created with CTX_DDL.CREATE_INDEX_SET.

Syntax

CTX_DDL.DROP_INDEX_SET(
 set_name IN VARCHAR2
);

set_name
Specify the name of the index set to drop.
Dropping an index set drops all of the sub-indexes it contains.

8.27 DROP_POLICY
Drops a policy created with CTX_DDL.CREATE_POLICY.

Syntax

CTX_DDL.DROP_POLICY(
 policy_name IN VARCHAR2
);

policy_name
Specify the name of the policy to drop.

8.28 DROP_PREFERENCE
The DROP_PREFERENCE procedure deletes the specified preference from the Text data
dictionary. Dropping a preference does not affect indexes that have already been
created using that preference.

Syntax

CTX_DDL.DROP_PREFERENCE(
 preference_name IN VARCHAR2
);

Chapter 8
DROP_INDEX_SET

8-42

preference_name
Specify the name of the preference to be dropped.

Example

The following example drops the preference my_lexer.

begin
ctx_ddl.drop_preference('my_lexer');
end;

Related Topics

CTX_DDL.CREATE_PREFERENCE

8.29 DROP_SECTION_GROUP
The DROP_SECTION_GROUP procedure deletes the specified section group, as well as all
the sections in the group, from the Text data dictionary.

Syntax

CTX_DDL.DROP_SECTION_GROUP(
 group_name IN VARCHAR2
);

group_name
Specify the name of the section group to delete.

Example

The following example drops the section group htmgroup and all its sections:

begin
ctx_ddl.drop_section_group('htmgroup');
end;

Related Topics

"CREATE_SECTION_GROUP "

"PREFERENCE_IMPLICIT_COMMIT"

8.30 DROP_SHADOW_INDEX
Drops a shadow index for the specified index. When you drop a shadow index, if it is
partitioned, then its metadata and the metadata of all this shadow index's partitions are
dropped. This procedure also drops all the shadow index tables and cleans up any
online pending queue.

Syntax

CTX_DDL.DROP_SHADOW_INDEX(
 idx_name in VARCHAR2
);

Chapter 8
DROP_SECTION_GROUP

8-43

idx_name
The name of a valid CONTEXT indextype.

Example

The following example drops the shadow index myshadowidx:

begin
ctx_ddl.drop_shadow_index('myshadowidx');
end;

Related Topics

CTX_DDL.CREATE_SHADOW_INDEX

8.31 DROP_STOPLIST
Drops a stoplist from the Text data dictionary. When you drop a stoplist, you must re-
create or rebuild the index for the change to take effect.

Syntax

CTX_DDL.DROP_STOPLIST(stoplist_name in varchar2);

stoplist_name
Specify the name of the stoplist.

Example

The following example drops the stoplist mystop:

begin
ctx_ddl.drop_stoplist('mystop');
end;

Related Topics

CTX_DDL.CREATE_STOPLIST

8.32 EXCHANGE_SHADOW_INDEX
This procedure swaps the index (or index partition) metadata and index (or index
partition) data.

For nonpartitioned indexes, this procedure swaps both the metadata and the index
data, and processes the online pending queue.

Syntax

CTX_DDL.EXCHANGE_SHADOW_INDEX(
 idx_name IN VARCHAR2
 partition_name IN VARCHAR2 default NULL
);

idx_name
Specify the name of the CONTEXT indextype.

Chapter 8
DROP_STOPLIST

8-44

partition_name
Specify the name of the shadow index partition. May also be NULL.

Example

Example 8-4 Global Index RECREATE with Scheduled Swap

This example demonstrates running CTX_DDL.EXCHANGE_SHADOW_INDEX during non-
business hours when query failures and DML blocking can be tolerated.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.create_shadow_index('idx',
 'replace lexer m_lexer language column lang');
exec ctx_ddl.exchange_shadow_index('idx');

Notes

Using EXCHANGE_SHADOW_INDEX with Nonpartitioned Indexes

For nonpartitioned indexes, this procedure will swap both metadata and index data,
and will process the online pending queue.

Queries will return column not indexed errors when swapping metadata and index
data, but queries are processed normally when processing online pending queue. The
period of errors being raised should be short.

If you specify POPULATE when you create the shadow index, and if many DML
operations have been issued since the creation of the shadow index, then there could
be a large pending queue. However, if you use incremental recreate, that is, specify
NOPOPULATE when you create the shadow index, and you then populate the pending
queue and sync, then the online pending queue is always empty no matter how many
DML operations have occurred since CREATE_SHADOW_INDEX was issued.

When this procedure is running, DML will first fail with an error about index being in in-
progress status. After that DML could be blocked (hang) if there are rows in online
pending queue that need to be reapplied.

Chapter 8
EXCHANGE_SHADOW_INDEX

8-45

Note:

When this procedure is running, DML statements will fail with an error that
the index is in "in-progress status." If, when this error occurs, there are rows
in the online pending queue that need to be reapplied, then the DML could
be blocked and hang.

Using EXCHANGE_SHADOW_INDEX with Partitioned Indexes

For partitions that are recreated with NOSWAP: when the index is partitioned, and if
partition_name is a valid index partition, then this procedure will swap the index
partition data and the index partition metadata, and will process the online pending
queue for this partition.

This procedure swaps only one partition at a time. When you run this procedure on
partitions that are recreated with NOSWAP:

• Queries that span multiple partitions will not return consistent results across all
partitions.

• Queries on the partition that is being swapped will return errors.

• Queries on partitions that are already swapped will be based on the new index.

• Queries on the partitions that haven't been swapped will be based on the old
index.

If the partition_name is NULL, then this procedure will swap the index metadata. Run
this procedure as the last step when recreating a local partitioned index online.

Related Topics

CTX_DDL."RECREATE_INDEX_ONLINE"

CTX_DDL."CREATE_SHADOW_INDEX"

CTX_DDL."DROP_SHADOW_INDEX"

8.33 OPTIMIZE_INDEX
Use this procedure to optimize the index. Optimize your index after you synchronize it.
Optimizing an index removes old data and minimizes index fragmentation, which can
improve query response time. Querying and DML may proceed while optimization
takes place.

You can optimize in fast, full, rebuild, token, token-type, or merge mode.

• Fast mode compacts data but does not remove rows.

• Full mode compacts data and removes rows.

• Optimize in rebuild mode rebuilds the $I table (the inverted list table) in its entirety.
Rebuilding an index is often significantly faster than performing a full optimization,
and is more likely to result in smaller indexes, especially if the index is heavily
fragmented.

Rebuild optimization creates a more compact copy of the $I table, and then
switches the original $I table and the copy. The rebuild operation will therefore

Chapter 8
OPTIMIZE_INDEX

8-46

require enough space to store the copy as well as the original. (If redo logging is
enabled, then additional space is required in the redo log as well.) At the end of
the rebuild operation, the original $I table is dropped, and the space can be
reused. A temporary "change capture trigger" is used to ensure that updates to
the $I table during the optimization are not lost. For this reason, the user calling
OPTIMIZE_INDEX in REBUILD mode must have the CREATE TRIGGER privilege.

Optimize in rebuild mode supports partitioning on the $I table via the
i_table_clause attribute of the basic_storage preference with the following
limitations:

– The i_index_clause must specify using a local btree index if the $I table is
partitioned.

– Partitioning schemes on the token_first, token_last, or token_count
columns are not allowed.

• In token mode, specify a specific token to be optimized (for example, all rows with
documents containing the word elections). Use this mode to optimize index tokens
that are frequently searched, without spending time on optimizing tokens that are
rarely referenced. An optimized token can improve query response time (but only
for queries on that token).

• Token-type optimization is similar to token mode, except that the optimization is
performed on field, MDATA, or SDATA sections (for example, sections with an <A>
tag). This is useful in keeping critical field or MDATA sections optimal.

• Use the merge mode to optimize the $I table for the CONTEXT indexes that are
frequently used for DML operations. The merge operation removes the old data
(deleted rows) from the $G table, compacts the existing data in the $G table, and
then copies that data to the $I table. Using merge optimization for a particular
token copies only that token from the $G table to the $I table.

A common strategy for optimizing indexes is to perform regular token optimizations on
frequently referenced terms, and to perform rebuild optimizations less frequently. (Use
CTX_REPORT.QUERY_LOG_SUMMARY to find out which queries are made most
frequently.) You can perform full, fast, or token-type optimizations instead of token
optimizations.

Some users choose to perform frequent time-limited full optimizations along with
occasional rebuild optimizations.

Note:

Optimizing an index can result in better response time only if you insert,
delete, or update documents in the base table after your initial indexing
operation.

Using this procedure to optimize the index is recommended over using the ALTER
INDEX statement.

Optimization of a large index may take a long time. To monitor the progress of a
lengthy optimization, log the optimization with CTX_OUTPUT.START_LOG and check
the resultant logfile from time to time.

Chapter 8
OPTIMIZE_INDEX

8-47

Note that, unlike serial optimize full, CTX_DDL.OPTIMIZE_INDEX() run with optlevel of
FULL and parallel_degree > 1 is not resumable. That is, it will not resume from where
it left after a time-out or failure.

Note:

There is a very small window of time when a query might fail in
CTX_DDL.OPTIMIZE_INDEX REBUILD mode when the $I table is being swapped
with the optimized shadow $I table.

Syntax

CTX_DDL.OPTIMIZE_INDEX(

idx_name IN VARCHAR2,
optlevel IN VARCHAR2,
maxtime IN NUMBER DEFAULT NULL,
token IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
token_type IN NUMBER DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1

);

idx_name
Specify the name of the index. If you do not specify an index name, then Oracle Text
chooses a single index to optimize.

optlevel
Specify optimization level as a string. You can specify one of the following methods
for optimization:

optlevel value Description

FAST or CTX_DDL.OPTLEVEL_FAST This method compacts fragmented rows. However, old data is
not removed.
FAST optimization is not supported for CTXCAT indexes. FAST
optimization will not optimize $S index table.

FULL or CTX_DDL.OPTLEVEL_FULL In this mode you can optimize the entire index or a portion of the
index. This method compacts rows and removes old data
(deleted rows). Optimizing in full mode runs even when there are
no deleted rows.
Full optimization is not supported for CTXCAT indexes.

REBUILD or CTX_DDL.OPTLEVEL_REBUILD This optlevel rebuilds the $I table (the inverted list table) to
produce more compact token info rows. Like FULL optimize, this
mode also deletes information pertaining to deleted rows of the
base table.
REBUILD is not supported for CTCAT and CTXRULE indexes.
REBUILD is not supported when the $I table is partitioned.

Chapter 8
OPTIMIZE_INDEX

8-48

optlevel value Description

TOKEN or CTX_DDL.OPTLEVEL_TOKEN This method lets you specify a specific token to be optimized.
Oracle Text does a full optimization on the token you specify with
token. If no token type is provided, 0 (zero) will be used as the
default.
Use this method to optimize those tokens that are searched
frequently.
Token optimization is not supported for CTCAT and CTXRULE
indexes.

TOKEN_TYPE or
CTX_DDL.OPTLEVEL_TOKEN_TYPE

This optlevel optimizes on demand all tokens in the index
matching the input token type.
When optlevel is TOKEN_TYPE, token_type must be
provided.TOKEN_TYPE performs FULL optimize on any token of
the input token_type. Like a TOKEN optimize, TOKEN_TYPE
optimize does not change the FULL optimize state, and runs to
completion on each invocation.
Token_type optimization is not supported for CTCAT and
CTXRULE indexes.

MERGE or CTX_DDL.OPTLEVEL_MERGE This optlevel optimizes the $I table. It removes the old data
(deletes rows) from the $G table, compacts the existing data in
the $G table, and then copies that optimized data to the $I table.
When this option is used for a particular token, only that token
gets copied from the $G table to the $I table.
Merge optimization should be used for CONTEXT indexes with the
STAGE_ITAB index option enabled.

The behavior of CTX_DDL.OPTIMIZE_INDEX with respect to the $S index table is as
follows:

optlevel value Will
Optimize $S
Index Table
Yes/No

Notes

FAST or CTX_DDL.OPTLEVEL_FAST No

FULL or CTX_DDL.OPTLEVEL_FULL Yes • The optimize process will optimize $I table
first. Once $I table optimize is finished,
CTX_DDL.OPTIMIZE_INDEX will continue on
to optimize $S index table.

• MAXTIME will also be honored. Once
CTX_DDL.OPTIMIZE_INDEX completes
optimizing $S rows for a given SDATA_ID, it
will check MAXTIME and exit if total elapsed
time (including time taken to optimize $I)
exceeds specified MAXTIME. The next
CTX_DDL.OPTIMIZE_INDEX with
optlevel=>'FULL' will pick up where it left
off.

• $S table optimize will be done in serial.

Chapter 8
OPTIMIZE_INDEX

8-49

optlevel value Will
Optimize $S
Index Table
Yes/No

Notes

REBUILD or CTX_DDL.OPTLEVEL_REBUILD Yes • $S optimize will start after $I rebuild finishes.

• $S optimize in this case will be processed the
same way as $S optimize in FULL mode. $S
table is optimized in place, not rebuilt.
Note: If for some reason $S optimize exits
abnormally, then it is recommended that you
use optlevel=>TOKEN_TYPE to optimize $S
to avoid rebuilding the $I table again.

• $S table optimize will be done in serial.

TOKEN or CTX_DDL.OPTLEVEL_TOKEN No

TOKEN_TYPE or
CTX_DDL.OPTLEVEL_TOKEN_TYPE

Yes You can optimize $S rows for a given SDATA_ID
by setting optlevel => TOKEN_TYPE and the
TOKEN_TYPE parameter to the target SDATA_ID.

maxtime
Specify maximum optimization time, in minutes, for FULL optimize.
When you specify the symbol CTX_DDL.MAXTIME_UNLIMITED (or pass in NULL), the
entire index is optimized. This is the default.

token
Specify the token to be optimized.

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned.
If your index is a global, nonpartitioned index, then specify NULL, which is the default.

token_type
Specify the token_type to be optimized.

parallel_degree
Specify the parallel degree as a number for parallel optimization. The actual parallel
degree depends on your resources.
Because the optlevel values are executed serially, this setting throws the error
DRG-10598 for the following values:

• TOKEN or CTX_DDL.OPTLEVEL_TOKEN

• FAST or CTX_DDL.OPTLEVEL_FAST

Examples

The following two examples are equivalent ways of optimizing an index using fast
optimization:

begin
 ctx_ddl.optimize_index('myidx','FAST');
end;

begin
 ctx_ddl.optimize_index('myidx',CTX_DDL.OPTLEVEL_FAST);
end;

Chapter 8
OPTIMIZE_INDEX

8-50

The following example optimizes the index token Oracle:

begin
 ctx_ddl.optimize_index('myidx','token', TOKEN=>'Oracle');
end;

To optimize all tokens of field section MYSEC in index MYINDEX:

begin
 ctx_ddl.optimize_index('myindex', ctx_ddl.optlevel_token_type,
 token_type=> ctx_report.token_type('myindex','field mysec text'));end;

The following two examples are equivalent ways of optimizing an index using merge
optimization:

begin
 ctx_ddl.optimize_index('idx','MERGE');
end;

begin
 ctx_ddl.optimize_index('idx',CTX_DDL.OPTLEVEL_MERGE);
end;

Notes

You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time.
You can also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism
at the same time. However, you should not:

• Run CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX

• Run CTX_DDL.SYNC_INDEX with parallelism at the same time as
CTX_DDL.OPTIMIZE_INDEX with parallelism.

If you should run one of these combinations, no error is generated; however, one
operation will wait until the other is done.

Related Topics

CTX_DDL."SYNC_INDEX"

"ALTER INDEX "

8.34 POPULATE_PENDING
This procedure populates the pending queue with every rowid in the base table or
table partition. This procedure is only supported for CONTEXT indexes.

This procedure is valuable for large installations that cannot afford to have the
indexing process run continuously, and, therefore, need finer control over creating text
indexes. The preferred method is to create an empty index, place all the rowids into
the pending queue, and build the index through CTX_DDL.SYNC_INDEX.

Syntax

ctx_ddl.populate_pending(
 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 DEFAULT NULL
);

Chapter 8
POPULATE_PENDING

8-51

idx_name
Name of the CONTEXT indextype.

part_name
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, nonpartitioned indexes.

Notes

The SYNC_INDEX is blocked for the duration of the processing. The index unit must be
totally empty (idx_docid_count = 0, idx_nextid = 1). The rowids of rows waiting to be
indexed are inserted into table ctxsys.dr$pending. You should ensure that there is
sufficient space in this table to hold the rowids of the base table.

Related Topics

"SYNC_INDEX"

"CREATE_SHADOW_INDEX"

"DROP_SHADOW_INDEX"

"EXCHANGE_SHADOW_INDEX"

"RECREATE_INDEX_ONLINE"

8.35 PREFERENCE_IMPLICIT_COMMIT
This variable, set at the package level for CTX_DDL, determines whether procedures
related to CTX_DDL preferences issue an implicit commit and is session duration.

You can set the PREFERENCE_IMPLICIT_COMMIT variable for the procedures listed in the
following table.

Procedure Name Procedure Name

ADD_ATTR_SECTION CREATE_INDEX_SET

ADD_FIELD_SECTION CREATE_PREFERENCE

ADD_INDEX CREATE_SECTION_GROUP

ADD_MDATA_COLUMN CREATE_STOPLIST

ADD_MDATA_SECTION DROP_PREFERENCE

ADD_SDATA_COLUMN DROP_SECTION_GROUP

ADD_SDATA_SECTION DROP_STOPLIST

ADD_SPECIAL_SECTION REMOVE_INDEX

ADD_STOPCLASS REMOVE_SECTION

ADD_STOP_SECTION REMOVE_SUB_LEXER

ADD_STOPTHEME SET_ATTRIBUTE

ADD_STOPWORD UNSET_ATTRIBUTE

ADD_SUB_LEXER UPDATE_SUB_LEXER

ADD_ZONE_SECTION

Chapter 8
PREFERENCE_IMPLICIT_COMMIT

8-52

Note:

The REMOVE_STOPCLASS, REMOVE_STOPTHEME, and REMOVE_STOPWORD
procedures do not issue an implicit commit, and, therefore, do not use the
PREFERENCE_IMPLICIT_COMMIT flag.

Syntax

exec CTX_DDL.PREFERENCE_IMPLICIT_COMMIT := TRUE|FALSE ;

The default value of the PREFERENCE_IMPLICIT_COMMIT variable is TRUE. When this
variable is set to FALSE, procedures related to CTX_DDL preferences will not issue an
implicit commit. This enables you to easily rollback multiple preference changes. This
variable is session duration.

Example

The following example turns off implicit commit.

exec CTX_DDL.PREFERENCE_IMPLICIT_COMMIT : update_sub_lexer = FALSE;

8.36 RECREATE_INDEX_ONLINE
Recreates the specified index, or recreates the passed-in index partition if the index is
local partitioned. For global nonpartitioned indexes, this is a one-step procedure. For
local partitioned indexes, this procedure must be run separately on every partition after
first using CREATE_SHADOW_INDEX to create a shadow policy (or metadata). This
procedure is only supported in Enterprise Edition of Oracle Database.

The following changes are not supported:

• Transitioning from non-composite domain index to composite, or changing the
composite domain index columns.

• Rebuilding indexes that have partitioned index tables, for example, $I, $P, $K.

Syntax

CTX_DDL.RECREATE_INDEX_ONLINE(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2 default NULL,
 parallel_degree IN NUMBER default 1,
 partition_name IN VARCHAR2 default NULL
);

idx_name
The name of a valid CONTEXT indextype.

parameter_string
If the index is a global nonpartitioned index, specify the same index-level parameter
string as in ALTER INDEX. Must start with REPLACE, if it is not NULL. Optionally specify
SWAP or NOSWAP. The default is SWAP.

Chapter 8
RECREATE_INDEX_ONLINE

8-53

parallel_degree
Reserved for future use. Specify the degree of parallelism. Parallel operation is not
supported in the current release.

partition_name
Specify the name of a valid index partition for a local partitioned index. Otherwise, the
default is NULL. If the index is partitioned, then first pass a partition name, and then
specify the partition-level parameter string for ALTER INDEX REBUILD PARTITION.

Examples

Example 8-5 Recreate Simple Global Index

The following example creates an index idx with a BASIC_LEXER-based preference
us_lexer. It then recreates the index with a new MULTI_LEXER based preference
m_lexer in one step. You can use this one step approach when you do not mind that a
query might fail for a small window of time at the end of the operation, and DML might
get blocked at the beginning for a short time and again at the end.

/* create lexer and original index */
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idx on tbl(text) indextype is ctxsys.context
 parameters('lexer us_lexer');

/* create a new lexer */
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column to the table for multi-lexer */
alter table tbl add(lang varchar2(10) default 'us');

/* recreate index online with the new multip-lexer */
exec ctx_ddl.recreate_index_online('idx',
 'replace lexer m_lexer language column lang');

Example 8-6 Local Index Recreate with All-At-Once Swap

The following example creates a local partitioned index idxp with a basic lexer
us_lexer. It has two index partitions idx_p1 and idx_p2. It then recreates a local
partitioned index idxp online with partition idx_p1, which will have a new storage
preference new_store. The swapping of the partition metadata and index partition data
occur at the end. In this example, queries spanning multiple partitions return consistent
results across partitions when recreate is in process, except at the end when
EXCHANGE_SHADOW_INDEX is running. The extra space required is the combined
index size of partition idx_p1 and idx_p2.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */

Chapter 8
RECREATE_INDEX_ONLINE

8-54

begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer */
exec ctx_ddl.create_shadow_index('idxp', null,
 'replace lexer m_lexer language column lang');

/* recreate every index partition online without swapping */
exec ctx_ddl.recreate_index_online('idxp',
 'replace storage my_store NOSWAP', 1, 'idx_p1');
exec ctx_ddl.recreate_index_online('idxp','replace NOSWAP',1,'idx_p2');

/* exchange in shadow index partition all at once */
exec ctx_ddl.exchange_shadow_index('idxp',
 'idx_p1') /* exchange index partition data*/
exec ctx_ddl.exchange_shadow_index('idxp',
 'idx_p2') /* exchange index partition data*/

/* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp')

Example 8-7 Local Index Recreate with Per-Partition Swap

This example performs the same tasks as Example 8-6, except that each index
partition is swapped in as it is completed. Queries across all partitions may return
inconsistent results in this example.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;

Chapter 8
RECREATE_INDEX_ONLINE

8-55

/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
 'replace lexer m_lexer language column lang');

/* recreate every index partition online and swap (default) */
exec ctx_ddl.recreate_index_online('idxp',
 'replace storage my_store', 1, 'idx_p1');
exec ctx_ddl.recreate_index_online('idxp', 'replace SWAP', 1, 'idx_p2',

 /* exchange in shadow index metadata */
exec ctx_ddl.exchange_shadow_index('idxp')

Example 8-8 Scheduled Local Index Recreate with All-At-Once Swap

This example shows the incremental recreation of a local partitioned index, where
partitions are all swapped at the end.

/* create a basic lexer and a local partition index with the lexer*/
exec ctx_ddl.create_preference('us_lexer','basic_lexer');
create index idxp on tblp(text) indextype is ctxsys.context local
 (partition idx_p1,
 partition idx_p2)
 parameters('lexer us_lexer');

/* create new preferences */
begin
 ctx_ddl.create_preference('my_store','basic_storage');
 ctx_ddl.set_attribute('my_store','i_table_clause','tablespace tbs');
end;
/
begin
 ctx_ddl.create_preference('e_lexer','basic_lexer');
 ctx_ddl.set_attribute('e_lexer','base_letter','yes');
 ctx_ddl.create_preference('m_lexer','multi_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','default','us_lexer');
 ctx_ddl.add_sub_lexer('m_lexer','e','e_lexer');
end;
/

/* add new language column */
alter table tblp add column (lang varchar2(10) default 'us');

/* create a shadow policy with a new lexer *
exec ctx_ddl.create_shadow_index('idxp',
 'replace lexer m_lexer language column lang');
/* create shadow partition with new storage preference */
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage nopopulate',
1,'idx_p1');
exec ctx_ddl.recreate_index_online('idxp', 'replace storage ctxsys.default_storage nopopulate',
1,'idx_p2');

declare
 idxid integer;
 ixpid integer;
begin
 select idx_id into idxid from ctx_user_indexes

Chapter 8
RECREATE_INDEX_ONLINE

8-56

 where idx_name = 'IDXP';
 select ixp_id into ixpid from ctx_user_index_partitions
 where ixp_index_name = 'IDXP'
 and ixp_index_partition_name = 'IDX_P1';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
 /* incremental sync
 ctx_ddl.sync_index('RIO$'||idxid, null, 'RIO$'||idxid||'#'||ixpid,
 maxtime=>400);
 /* more incremental sync until no more pending rows */

 select ixp_id into ixpid from ctx_user_index_partitions
 where ixp_index_name = 'IDXP'
 and ixp_index_partition_name = 'IDX_P2';
 /* populate pending */
 ctx_ddl.populate_pending('RIO$'||idxid, 'RIO$'||idxid||'#'||ixpid);
 /* incremental sync
 ctx_ddl.sync_index('RIO$'||idxid, null, 'RIO$'||idxid||'#'||ixpid,
 maxtime=>400);
 /* more incremental sync until no more pending rows */
end;
/

exec ctx_ddl.exchange_shadow_index('idxp','idx_p1');
exec ctx_ddl.exchange_shadow_index('idxp','idx_p2');
exec ctx_ddl.exchange_shadow_index('idxp');

Example 8-9 Schedule Local Index Recreate with Per-Partition Swap

For incremental recreate where partitions are swapped as they becomes available,
follow the steps in example Example 8-8, except instead of waiting until all syncs are
finished before starting exchange shadow index, EXCHANGE_SHADOW_INDEX is
done for each partition right after sync is finished.

Notes

Using RECREATE_INDEX_ONLINE with Global Nonpartitioned Indexes

For global indexes, this procedure provides a one-step process to recreate an index
online. It recreates an index, with new preference values, while preserving base table
DML and query capability during the recreate process.

Note:

Because the new index is created alongside the existing index, this operation
requires additional storage roughly equal to the size of the existing index.

DML Behavior
Because this procedure is performed online, DML on the base table are permitted
during this operation, and are processed as normal. All DML statements that occur
during RECREATE_INDEX_ONLINE are logged into an online pending queue.
Towards the end of the recreate operation, there will be a short duration when DML
will fail with an error being raised stating that the index is in an in-progress status.
DML may hang again during the process, and the duration will depend on how many
DML are logged in the online pending queue since the start of the recreate process.

Chapter 8
RECREATE_INDEX_ONLINE

8-57

Note that after the recreate index operation is complete, new information, from all the
DML that becomes pending since RECREATE_INDEX_ONLINE started, may not be
immediately reflected. As with creating an index with INDEXTYPE IS ctxsys.context
ONLINE, the index should be synchronized after the recreate index operation is
complete, to bring it fully up-to-date.

See Also:

• CTX_DDL.CREATE_SHADOW_INDEX and
CTX_DDL.EXCHANGE_SHADOW_INDEX for information about how to
manually go through each stage of recreation, and to schedule each
step to run at a preferred time

• The ONLINE parameter under "Syntax for CONTEXT Index Type"

Sync and Optimize Behavior
Syncs issued against the index during the recreate operation are processed against
the old, existing data. Syncs are also blocked during the same window when queries
return errors. Optimize commands issued against the index during the recreate
operation return immediately without error and without processing.

Query Behavior
During the recreate operation, the index can be queried normally most of the time.
Queries return results based on the existing index and policy (or metadata) until after
the final swap.
There is a short interval towards the end of RECREATE_INDEX_ONLINE when queries will
return an error indicating that the column is not indexed. This duration should be short
for regular queries. It is mainly the time taken for swapping data segments of the
shadow index tables and the index tables, plus the time to delete all the rows in the
pending queue. This is the same window of time when DML will fail.
During RECREATE_INDEX_ONLINE, if you issue DML statements and synchronize them,
then you will be able to see the new rows when you query on the existing index.
However, after RECREATE_INDEX_ONLINE finishes (swapping completes and query is on
the new index) and before sync is performed, it is possible that you will not be able to
query on the new rows, which once could be queried on the old index.

Note:

Transactional queries are not supported.

Using RECREATE_INDEX_ONLINE with Local Partitioned Indexes

If the index is local partitioned, you cannot recreate index in one step. You must first
create a shadow policy, and then run this procedure for every partition. You can
specify SWAP or NOSWAP to indicate whether RECREATE_INDEX_ONLINE partition will swap
the index partition data and index partition metadata or not. If the partition was built
with NOSWAP, then another call to EXCHANGE_SHADOW_INDEX must be invoked later
against this partition.

Chapter 8
RECREATE_INDEX_ONLINE

8-58

This procedure can also be used to update the metadata (for example, storage
preference) of each partition when you specify NOPOPULATE in the parameter string.
This is useful for incremental building of a shadow index through time-limited sync.

If NOPOPULATE is specified, then NOSWAP is silently enforced.

NOSWAP Behavior
During the recreate of the index partition, since no swapping is performed, queries on
the partition are processed regularly. Until the swapping stage is reached, queries
spanning multiple partitions return consistent results across partitions.
DML and sync are processed normally. Running optimize on partitions that are being
recreated, or that have been built (but not swapped), simply returns without doing
anything. Running optimize on a partition that has not been rebuilt processes
normally.
As with a global index, when all of the partitions use NOSWAP, the additional storage
requirement is roughly equal to the size of the existing index.

SWAP Behavior
Because index partition data and metadata are swapped after index recreate, queries
that span multiple partitions will not return consistent results from partition to partition,
but will always be correct with respect to each index partition. There is also a short
interval towards the end of partition recreate, when the index partition is swapped,
during which a query will return a "column not indexed" error.
When partitions are recreated with SWAP, the additional storage requirement for the
operation is equal to the size of the existing index partition.
DML on the partition is blocked. Sync is also blocked during swapping.

Related Topics

CREATE_SHADOW_INDEX

DROP_SHADOW_INDEX

EXCHANGE_SHADOW_INDEX

Oracle Text Application Developer's Guide

8.37 REM_SEC_GRP_ATTR_VAL
Removes a specific section group attribute value from the list of values of an existing
section group attribute.

Syntax

CTX_DDL.REM_SEC_GRP_ATTR_VAL(group_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2);

group_name
Specify the section group name.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value.

Chapter 8
REM_SEC_GRP_ATTR_VAL

8-59

8.38 REMOVE_AUTO_OPTIMIZE
Removes an index or partition from the list of indexes subject to auto optimization. No
new auto optimization calls are made to this index. The removal takes effect
immediately.

If the specified index is not in the existing list of indexes, then an error occurs. For
partitioned indexes, an error occurs when the partition name is not specified.

Syntax

CTX_DDL.REMOVE_AUTO_OPTIMIZE(

 idx_name IN VARCHAR2,
 part_name IN VARCHAR2 default NULL
);

idx_name
Specify the name of the index to remove.

part_name
Specify the name of the partition to remove.

Related Topic

"ADD_AUTO_OPTIMIZE"

8.39 REMOVE_INDEX
Removes the index with the specified column list from a CTXCAT index set preference.

Note:

This procedure does not remove a CTXCAT sub-index from the existing index.
To do so, you must drop your index and re-index with the modified index set
preference.

Syntax

CTX_DDL.REMOVE_INDEX(

 set_name IN VARCHAR2,
 column_list IN VARCHAR2
 language IN VARCHAR2 default NULL
);

set_name
Specify the name of the index set.

column_list
Specify the name of the column list to remove.

Chapter 8
REMOVE_AUTO_OPTIMIZE

8-60

8.40 REMOVE_MDATA
Use this procedure to remove metadata values, which are associated with an MDATA
section, from a document. Only the owner of the index is allowed to call ADD_MDATA
and REMOVE_MDATA.

CTX_DDL.REMOVE_MDATA is transactional and takes effect immediately in the calling
session. This procedure can be seen only in the calling session and must be
committed to take permanent effect. You can reverse this procedure with a ROLLBACK
command.

Syntax

CTX_DDL.REMOVE_MDATA(
 idx_name IN VARCHAR2,
 section_name IN VARCHAR2,
 values SYS.ODCIVARCHAR2LIST,
 rowids SYS.ODCIRIDLIST,
 [part_name] IN VARCHAR2
);

idx_name
Name of the text index that contains the named rowids.

section_name
Name of the MDATA section.

values
List of metadata values. If a metadata value contains a comma, the comma must be
escaped with a backslash.

rowids
Rowids from which to remove the metadata values.

[part_name]
Name of the index partition, if any. Must be provided for local partitioned indexes and
must be NULL for global, nonpartitioned indexes.

Example

This example removes the MDATA value blue from the MDATA section BGCOLOR.

ctx_ddl.remove_mdata('idx_docs', 'bgcolor', 'blue', 'rows');

Notes

These updates are updates directly on the index itself, not on the actual contents
stored in the base table. Therefore, they will not survive when the Text index is rebuilt.

Related Topics

"ADD_MDATA"

"ADD_MDATA_SECTION"

"MDATA"

The Section Searching chapter of Oracle Text Application Developer's Guide

Chapter 8
REMOVE_MDATA

8-61

8.41 REMOVE_SECTION
The REMOVE_SECTION procedure removes the specified section from the specified
section group. You can specify the section by name or ID. View section ID with the
CTX_USER_SECTIONS view.

Syntax 1

Use the following syntax to remove a section by section name:

CTX_DDL.REMOVE_SECTION(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2
);

group_name
Specify the name of the section group from which to delete section_name.

section_name
Specify the name of the section to delete from group_name.

Syntax 2

Use the following syntax to remove a section by section ID:

CTX_DDL.REMOVE_SECTION(
 group_name IN VARCHAR2,
 section_id IN NUMBER
);

group_name
Specify the name of the section group from which to delete section_id.

section_id
Specify the section ID of the section to delete from group_name.

Example

The following example drops a section called Title from the htmgroup:

begin
ctx_ddl.remove_section('htmgroup', 'Title');
end;

Related Topics

"ADD_FIELD_SECTION"

"ADD_SPECIAL_SECTION "

"ADD_ZONE_SECTION "

8.42 REMOVE_STOPCLASS
Removes a stopclass from a stoplist.

Chapter 8
REMOVE_SECTION

8-62

Syntax

CTX_DDL.REMOVE_STOPCLASS(
 stoplist_name IN VARCHAR2,
 stopclass IN VARCHAR2
);

stoplist_name
Specify the name of the stoplist.

stopclass
Specify the name of the stopclass to be removed.

Example

The following example removes the stopclass NUMBERS from the stoplist mystop.

begin
ctx_ddl.remove_stopclass('mystop', 'NUMBERS');
end;

Related Topic

"ADD_STOPCLASS "

8.43 REMOVE_STOPTHEME
Removes a stoptheme from a stoplist.

Syntax

CTX_DDL.REMOVE_STOPTHEME(
 stoplist_name IN VARCHAR2,
 stoptheme IN VARCHAR2
);

stoplist_name
Specify the name of the stoplist.

stoptheme
Specify the stoptheme to be removed from stoplist_name.

Example

The following example removes the stoptheme banking from the stoplist mystop:

begin
ctx_ddl.remove_stoptheme('mystop', 'banking');
end;

Related Topic

"ADD_STOPTHEME "

Chapter 8
REMOVE_STOPTHEME

8-63

8.44 REMOVE_STOPWORD
Removes a stopword from a stoplist. To have the removal of a stopword be reflected
in the index, you must rebuild your index. You can also remove a language-
independent stopword.

Syntax

CTX_DDL.REMOVE_STOPWORD(

stoplist_name IN VARCHAR2,
stopword IN VARCHAR2,
language IN VARCHAR2 default NULL

);

stoplist_name
Specify the name of the stoplist.

stopword
Specify the stopword to be removed from stoplist_name.

language
Specify the language of stopword to remove when the stoplist you specify with
stoplist_name is of type MULTI_STOPLIST. You must specify the globalization support
name or abbreviation of an Oracle Text-supported language. You can also remove
ALL stopwords.

Example

The following example removes a stopword because from the stoplist mystop:

begin

ctx_ddl.remove_stopword('mystop','because');

end;

Related Topic

"ADD_STOPWORD "

8.45 REMOVE_SUB_LEXER
Removes a sub-lexer from a multi-lexer preference. You cannot remove the lexer for
DEFAULT. You can also remove a language-independent sub-lexer.

Syntax

CTX_DDL.REMOVE_SUB_LEXER(

lexer_name IN VARCHAR2,
language IN VARCHAR2 default NULL

);

Chapter 8
REMOVE_STOPWORD

8-64

lexer_name
Specify the name of the multi-lexer preference or language-independent sub-lexer.

language
Specify the language of the sub-lexer to remove. You must specify the globalization
support name or abbreviation of an Oracle Text-supported language.

Example

The following example removes a sub-lexer german_lexer of language german:

begin

ctx_ddl.remove_sub_lexer('german_lexer','german');

end;

Related Topic

"ADD_SUB_LEXER "

8.46 REPLACE_INDEX_METADATA
Use this procedure to replace metadata in local domain indexes at the global (index)
level.

Note:

The ALTER INDEX PARAMETERS command performs the same function as this
procedure and can replace more than just metadata. For that reason, using
ALTER INDEX PARAMETERS is the preferred method of replacing metadata at
the global (index) level and should be used in place of this procedure when
possible. For more information, see "ALTER INDEX PARAMETERS Syntax".

CTX_REPLACE_INDEX_METADATA may be deprecated in a future release of
Oracle Text.

Syntax

CTX_DDL.REPLACE_INDEX_METADATA(
 idx_name IN VARCHAR2,
 parameter_string IN VARCHAR2
);

idx_name
Specify the name of the index whose metadata you want to replace.

parameter_string
Specify the parameter string to be passed to ALTER INDEX. This must begin with
'REPLACE METADATA'.

Notes

ALTER INDEX REBUILD PARAMETERS ('REPLACE METADATA') does not work for a local
partitioned index at the index (global) level. You cannot, for example, use that ALTER

Chapter 8
REPLACE_INDEX_METADATA

8-65

INDEX syntax to change a global preference, such as filter or lexer type, without
rebuilding the index. Therefore, CTX_DDL.REPLACE_INDEX_METADATA is provided as a
method of overcoming this limitation of ALTER INDEX. Also, ALTER INDEX REBUILD
PARAMETERS ('REPLACE METADATA') does not work with forward_index; instead use
'REPLACE STORAGE'.

Though it is meant as a way to replace metadata for a local partitioned index,
CTX_DDL.REPLACE_INDEX_METADATA can be used on a global, nonpartitioned index, as
well.

REPLACE_INDEX_METADATA cannot be used to change the sync type at the partition
level; that is, parameter_string cannot be 'REPLACE METADATA SYNC'. For that purpose,
use ALTER INDEX REBUILD PARTITION to change the sync type at the partition level.

Related Topics

"ALTER INDEX PARAMETERS Syntax"

"ALTER INDEX REBUILD Syntax"

8.47 SET_ATTRIBUTE
Sets a preference attribute. Use this procedure after you have created a preference
with CTX_DDL.CREATE_PREFERENCE .

Syntax

CTX_DDL.SET_ATTRIBUTE(
 preference_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2
);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

attribute_value
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or NO,
Y or N, ON or OFF, or 1 or 0.

Examples

Example 8-10 Specifying File Data Storage

The following example creates a data storage preference called filepref that tells the
system that the files to be indexed are stored in the operating system. The example
then uses CTX_DDL.SET_ATTRIBUTE to set the PATH attribute to the directory /docs.

begin
ctx_ddl.create_preference('filepref', 'FILE_DATASTORE');
ctx_ddl.set_attribute('filepref', 'PATH', '/docs');
end;

Chapter 8
SET_ATTRIBUTE

8-66

See Also:

For more information about data storage, see "Datastore Types "

For more examples of using SET_ATTRIBUTE, see "CREATE_PREFERENCE
"

Example 8-11 Storing Text Index Tables in the In-Memory Column Store

This example creates a storage preference called mysto of type BASIC_STORAGE that
specifies that the $I index table must be stored in the In-Memory Column Store (IM
column store).

exec ctx_ddl.create_preference('mysto', 'basic_storage');
exec ctx_ddl.set_attribute('mysto', 'I_TABLE_CLAUSE', 'inmemory’);

See Also:

For more information about the storage attributes that support IM column
store, see BASIC_STORAGE

8.48 SET_SEC_GRP_ATTR
Adds a section group-specific attribute to a section group identified by name.

Also used to set xml_enable to support XML awareness.

Syntax

CTX_DDL.SET_SEC_GRP_ATTR(
 group_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 attribute_value IN VARCHAR2
);

group_name
Specify the name of the section group.

attribute_name
Specify the name of the section group attribute.

attribute_value
Specify the section group attribute value. The following are the attributes with their
supported values:

• xml_enable: Specify boolean values as TRUE or FALSE, T or F, YES or NO, Y or N, ON
or OFF, or 1 or 0.

Chapter 8
SET_SEC_GRP_ATTR

8-67

Related Topics

"CREATE_SECTION_GROUP "

8.49 SET_SECTION_ATTRIBUTE
Use SET_SECTION_ATTRIBUTE to specify attributes or properties for a given section.

The attribute names listed under "Syntax" are supported. Note that some attributes
only apply to sections that are tokenized. The following section types are tokenized:

• Field sections

• Zone sections

• SDATA sections

Syntax

CTX_DDL.SET_SECTION_ATTRIBUTE(
 group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN VARCHAR2
);

group_name
Specify the name of the section group.

section_name
Specify the name of the section.

attribute
Specify this attribute for SDATA sections:

• Visible section attribute

This attribute works with FIELD sections only. For FIELD sections:

Specify TRUE to make the text visible within the rest of the document. By default,
the visible flag is FALSE. This means that Oracle Text indexes the text within field
sections as a sub-document separate from the rest of the document. However,
you can set the visible flag to TRUE if you want text within the field section to be
indexed as part of the enclosing document.

For field sections, attribute will override the value specified in
CTX_DDL.ADD_FIELD_SECTION.

An error is thrown if you try to set the visible attribute for a zone section.

An error is thrown if the visible attribute is set on a non-tokenized section.

• save_copy. Set to True or False. The save_copy option is valid for all types of
sections, but only SDATA attributes are fetched from $D table. The rest of the
sections are stored for display purposes only (depending on value of save_copy).
SDATA sections are never stored for display purposes, but are stored
independently (in a separate column of $D table) for efficient fetching (depending
on value of save_copy). For all sections (except for SDATA sections): A section is

Chapter 8
SET_SECTION_ATTRIBUTE

8-68

either displayed or discarded during document service procedures (snippet,
markup, highlight) depending on the value of save_copy.

• optimized_for section attribute

This attribute makes an SDATA section optimal for search, optimal for sort, or
optimal for both search and sort. These are achieved by setting the attribute value
to search, sort, or sort_and_search.

– search provides efficient searching on SDATA sections. The default value of
this attribute is FALSE.

– sort provides efficient sorting on SDATA sections. The default value of this
attribute is TRUE.

– sort_and_search provides efficient searching and sorting on SDATA
sections. The default value of this attribute is FALSE.

value
Specify the attribute value. Specify boolean values as TRUE or FALSE, T or F, YES or NO,
Y or N, ON or OFF, or 1 or 0.

Example

The following example creates a basic section group called sg, adds a SDATA section
to it and marks that SDATA section to be searchable by using the
ctx_ddl.set_section_attribute:

begin
 exec ctx_ddl.create_section_group('sg', 'basic_section_group');
 exec ctx_ddl.add_sdata_section('sg', 'sec1', 'sec1', 'varchar2');
 exec ctx_ddl.set_section_attribute('sg', 'sec1', 'optimized_for', 'search');
end;

Notes

Like CTX_DDL.SET_ATTRIBUTE, this procedure issues a commit.

Related Topic

See also the "Searching Document Sections in Oracle Text" chapter of Oracle Text
Application Developer's Guide.

8.50 SYNC_INDEX
Synchronizes the index to process inserts, updates, and deletes to the base table.

Note:

Because CTX_DDL.SYNC_INDEX issues implicit commits, calling
CTX_DDL.SYNC_INDEX in a trigger is strongly discouraged. Doing so can result
in errors being raised, as both SYNC_INDEX and post-commit $R LOB
maintenance try to update the same $R LOB.

Chapter 8
SYNC_INDEX

8-69

Syntax

CTX_DDL.SYNC_INDEX(

idx_name IN VARCHAR2 DEFAULT NULL
memory IN VARCHAR2 DEFAULT NULL,
part_name IN VARCHAR2 DEFAULT NULL,
parallel_degree IN NUMBER DEFAULT 1
maxtime IN NUMBER DEFAULT NULL,
locking IN NUMBER DEFAULT LOCK_WAIT
);

idx_name
Specify the name of the index to synchronize.

Note:

When idx_name is null, all CONTEXT and CTXRULE indexes that have pending
changes are synchronized. You must be connected as ctxsys to perform
this operation. Each index or index partition is synchronized in sequence,
one after the other. Because of this, the individual syncs are performed with
locking set to NOWAIT and maxtime set to 0. Any values that you specify for
locking or maxtime on the SYNC_INDEX call are ignored. However, the memory
and parallel_degree parameters are passed on to the individual
synchronizations.

memory
Specify the runtime memory to use for synchronization. This value overrides the
DEFAULT_INDEX_MEMORY system parameter.
The memory parameter specifies the amount of memory Oracle Text uses for the
synchronization operation before flushing the index to disk. Specifying a large amount
of memory:

• Improves indexing performance because there is less I/O

• Improves query performance and maintenance because there is less
fragmentation

• The indexing memory size specified in the second argument applies to each
parallel slave. For example, if the memory argument is set to 500M and
parallel_degree is set to 2, then ensure that there is at least 1GB of memory
available on the system used for the parallel SYNC_INDEX.

Specifying smaller amounts of memory increases disk I/O and index fragmentation,
but might be useful when runtime memory is scarce.

part_name
If your index is a local index, then you must specify the name of the index partition to
synchronize otherwise an error is returned.
If your index is a global, nonpartitioned index, then specify NULL, which is the default.

Chapter 8
SYNC_INDEX

8-70

parallel_degree
Specify the degree to run parallel synchronize. A number greater than 1 turns on
parallel synchronize. The actual degree of parallelism might be smaller depending on
your resources.

maxtime
Indicate a suggested time limit on the operation, in minutes. SYNC_INDEX will process
as many documents in the queue as possible within the time limit. The maxtime value
of NULL is equivalent to CTX_DDL.MAXTIME_UNLIMITED. This parameter is ignored
when SYNC_INDEX is invoked without an index name, in which case maxtime value of 0
is used instead. The locking parameter is ignored for automatic syncs (that is, SYNC
ON COMMIT or SYNC EVERY).
The time limit specified is treated as approximate. The actual time taken may be
somewhat less than or greater than what you specify. The "time clock" for maxtime
does not start until the SYNC lock is acquired.

locking
Configure how SYNC_INDEX deals with the situation where another sync is already
running on the same index or index partition. When locking is ignored because
SYNC_INDEX is invoked without an index name, then locking value of LOCK_NOWAIT is
used instead. The locking parameter is ignored for automatic syncs (that is, SYNC ON
COMMIT or SYNC EVERY).
The options for locking are:

Locking Parameter Description

CTX_DDL.LOCK_WAIT If another sync is running, wait until the running sync
is complete, then begin sync. (In the event of not
being able to get a lock, it will wait forever and ignore
the maxtime setting.)

CTX_DDL.LOCK_NOWAIT If another sync is running, immediately returns without
error.

CTX_DDL.LOCK_NOWAIT_ERROR If another sync is running, error "DRG-51313: timeout
while waiting for DML or optimize lock" is raised.

Example

The following example synchronizes the index myindex with 2 megabytes of memory:

begin

ctx_ddl.sync_index('myindex', '2M');

end;

The following example synchronizes the part1 index partition with 2 megabytes of
memory:

begin

ctx_ddl.sync_index('myindex', '2M', 'part1');

end;

Chapter 8
SYNC_INDEX

8-71

Notes

You can run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX at the same time.
You can also run CTX_DDL.SYNC_INDEX and CTX_DDL.OPTIMIZE_INDEX with parallelism
at the same time. However, you should not run CTX_DDL.SYNC_INDEX with parallelism
at the same time as CTX_DDL.OPTIMIZE_INDEX, nor CTX_DDL.SYNC_INDEX with
parallelism at the same time as CTX_DDL.OPTIMIZE_INDEX with parallelism. If you
should run one of these combinations, no error is generated; however, one operation
will wait until the other is done.

If the stage_itab option is in use for the index and stage_itab_max_rows is greater
than 0, SYNC_INDEX automatically merges data back from the stage_itab ($G) to $I
when stage_itab_max_rows reaches a value of 1 million and degree of parallelism
value of 4. Therefore, it is not necessary to run the optimize job in merge mode
explicitly, or to setup an auto optimize background job.

If you want to schedule an auto optimize background job, then you must explicitly set
the stage_itab_max_rows to a value of 0. This turns off the automatic merge operation
that occurs during SYNC_INDEX. The rows are instead merged periodically through the
scheduled background process.

When stage_itab_max_rows is set to a value greater than 0, it is possible that some
SYNC operations take an unexpectedly long time to compete due to the merging of
rows from $G to $I.

Related Topics

"ALTER INDEX "

8.51 UNSET_ATTRIBUTE
Removes a set attribute from a preference.

Syntax

CTX_DDL.UNSET_ATTRIBUTE(preference_name varchar2,
 attribute_name varchar2);

preference_name
Specify the name of the preference.

attribute_name
Specify the name of the attribute.

Example

Enabling/Disabling Alternate Spelling

The following example shows how you can enable alternate spelling for German and
disable alternate spelling with CTX_DDL.UNSET_ATTRIBUTE:

begin
ctx_ddl.create_preference('GERMAN_LEX', 'BASIC_LEXER');
ctx_ddl.set_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING', 'GERMAN');
end;

To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE procedure as follows:

Chapter 8
UNSET_ATTRIBUTE

8-72

begin
ctx_ddl.unset_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING');
end;

Related Topics

"SET_ATTRIBUTE "

8.52 UNSET_SEC_GRP_ATTR
Removes a section group-specific attribute.

Syntax

CTX_DDL.UNSET_SEC_GRP_ATTR(group_name varchar2,
 attribute_name varchar2);

group_name
Specify the name of the section group.

attribute_name
Specify the name of the attribute.

Related Topics

"UNSET_ATTRIBUTE "

8.53 UPDATE_SUB_LEXER
Updates a sub-lexer and modifies its multi-lexer preference, language, or sub-lexer.
You can also update default sub-lexers using this procedure. This procedure can be
used in conjunction with the CTX_DDL.PREFERENCE_IMPLICIT_COMMIT variable.

See Also:

"PREFERENCE_IMPLICIT_COMMIT" for information about setting this
variable

Syntax

UPDATE_SUB_LEXER (
 lexer_name IN VARCHAR2,
 language IN VARCHAR2,
 sub_lexer IN VARCHAR2
);

lexer_name
Specify the name of the multi-lexer preference that needs to be updated.

language
Specify the language name of the sub-lexer. Use DEFAULT for the default sub-lexers.
See "language" for information on how to specify the globalization support language
name or abbreviation of the sub-lexer.

Chapter 8
UNSET_SEC_GRP_ATTR

8-73

sub_lexer
Specify the name of the sub-lexer to use for this language.

Related Topics

"ADD_SUB_LEXER "

"REMOVE_SUB_LEXER"

8.54 UPDATE_POLICY
Updates a policy created with CREATE_POLICY. Replaces the preferences of the policy.
Null arguments are not replaced.

Syntax

CTX_DDL.UPDATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the name of the policy to update.

filter
Specify the filter preference to use.

section_group
Specify the section group to use.

lexer
Specify the lexer preference to use.

stoplist
Specify the stoplist to use.

wordlist
Specify the wordlist to use.

8.55 UPDATE_SDATA
UPDATE_SDATA is an index API that modifies the specified SDATA values in the index. It
does not store or modify column values in a base table, where the base table column
may have been used as an SDATA section.

Export/import operations rebuild the index from the base table using the specified
preferences. Since modifications made using the UPDATE_SDATA API are not present in
the base table, the export/import operation does not preserve these changes.

UPDATE_SDATA modifies temporary metadata it adds in the index table, not the base
table. It cannot be used to directly add metadata. For export/import of metadata that is
persistent, create a base table column that contains the metadata values. You can
then update the metadata through the column in the base table.

Chapter 8
UPDATE_POLICY

8-74

UPDATE_SDATA truncates data which is larger than 249 bytes.

Syntax

CTX_DDL.UPDATE_SDATA(
 idx_name IN VARCHAR2 DEFAULT NULL,
 section_name IN VARCHAR2 DEFAULT NULL,
 sdata_value IN sys.anydata,
 sdata_rowid IN rowid,
 part_name IN VARCHAR2 DEFAULT NULL);

idx_name
Specify the name of the index.

section_name
Specify the name of the SDATA section.

sdata_value
Specify the new SDATA value.

sdata_rowid
Specify the rowid for which the SDATA value needs to be updated.

part_name
Specify the name of the locally partitioned index, if applicable. Specify NULL for the
global index.

Related Topics

"SDATA"

"ADD_SDATA_COLUMN"

"ADD_SDATA_SECTION"

See Also:

Chapter 8, "Searching Document Sections in Oracle Text" in Oracle Text
Application Developer's Guide

Chapter 8
UPDATE_SDATA

8-75

9
CTX_DOC Package

The CTX_DOC PL/SQL package provides procedures and functions for requesting
document services, such as highlighting extracted text or generating a list of themes
for a document.

• About CTX_DOC Package Procedures

The CTX_DOC package includes the following procedures and functions:

Name Description

FILTER Generates a plain text or HTML version of a document.

GIST Generates a Gist or theme summaries for a document.

HIGHLIGHT Generates plain text or HTML highlighting offset
information for a document.

IFILTER Generates a plain text version of binary data. Can be
called from a USER_DATASTORE procedure.

MARKUP Generates a plain text or HTML version of a document
with query terms highlighted.

PKENCODE Encodes a composite textkey string (value) for use in
other CTX_DOC procedures.

POLICY_FILTER Generates a plain text or HTML version of a document,
without requiring an index.

POLICY_GIST Generates a Gist or theme summaries for a document,
without requiring an index.

POLICY_HIGHLIGHT Generates plain text or HTML highlighting offset
information for a document, without requiring an index.

POLICY_LANGUAGES Provides the ability to fetch the language for a section of
text.

POLICY_MARKUP Generates a plain text or HTML version of a document
with query terms highlighted, without requiring an index.

POLICY_NOUN_PHRASES Extracts noun phrases for a document.

POLICY_PART_OF_SPEECH Extracts the part of speech for each word in a document.

POLICY_SNIPPET Generates a concordance for a document, based on
query terms, without requiring an index.

POLICY_STEMS Extracts stems for each word in a body of text.

POLICY_THEMES Generates a list of themes for a document, without
requiring an index.

POLICY_TOKENS Generates all index tokens for a document, without
requiring an index.

SENTIMENT Performs sentiment analysis for a single document and
provides a separate sentiment score for each segment
within the document.

9-1

Name Description

SENTIMENT_AGGREGATE Performs sentiment analysis for a single document and
provides an aggregate sentiment score for the entire
document.

SET_KEY_TYPE Sets CTX_DOC procedures to accept rowid or primary key
document identifiers.

SNIPPET Generates a concordance for a document, based on
query terms.

THEMES Generates a list of themes for a document.

TOKENS Generates all index tokens for a document.

The performance of the procedures SNIPPET, HIGHLIGHT, and MARKUP can be
improved by using the forward index feature, and the performance of the procedures
FILTER, GIST, THEMES. TOKENS can be improved by using the save copy feature of
Oracle Text.

See Also:

Oracle Text Application Developer's Guide for more information about
forward index and save copy features

9.1 About CTX_DOC Package Procedures
Many of the CTX_DOC PL/SQL package procedures exist in two versions: those that
make use of indexes, and those that do not. Those that do not make use of indexes
are called "policy-based" procedures. They are offered because there are times when
you may want to use document services on a single document without creating a
CONTEXT index in advance. Policy-based procedures enable you to do this.

The policy_* procedures mirror the conventional in-memory document services and
are used with policy_name replacing index_ name, and document of type
VARCHAR2, CLOB, BLOB, or BFILE replacing textkey. Thus, you need not create an
index to obtain document services output with these procedures.

For the procedures that generate character offsets and lengths, such as HIGHLIGHT
and TOKENS, Oracle Text follows USC-2 codepoint semantics.

Note:

The APIs in the CTX_DOC package do not support identifiers that are prefixed
with the schema or the owner name.

9.2 FILTER
Use the CTX_DOC.FILTER procedure to generate either a plain text or HTML version of
a document. You can store the rendered document in either a result table or in

Chapter 9
About CTX_DOC Package Procedures

9-2

memory. This procedure is generally called after a query, from which you identify the
document to be filtered.

Note:

The resultant HTML document does not include graphics.

Syntax 1: In-memory Result Storage

exec CTX_DOC.FILTER(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN OUT NOCOPY CLOB,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN CLOB,
 restab IN OUT NOCOPY HIGHLIGHT_TAB,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.FILTER(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN CLOB,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• a single column primary key value

• encoded specification for a composite (multiple column) primary key. Use
CTX_DOC.PKENCODE

• the rowid of the row containing the document

Chapter 9
FILTER

9-3

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE.

restab
You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.
To store results to a table, specify the name of the table. The table to which you want
to store results must exist before you make this call.

See Also:

"Filter Table" in Oracle Text Result Tables for more information about the
structure of the filter result table

To store results in memory, specify the name of the CLOB locator. If restab is NULL,
then a temporary CLOB is allocated and returned. You must de-allocate the locator after
using it with DBMS_LOB.FREETEMPORARY().

If restab is not NULL, then the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row inserted into restab.
When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext
Specify TRUE to generate a plaintext version of the document. Specify FALSE to
generate an HTML version of the document if you are using the AUTO_FILTER filter or
indexing HTML documents.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the document
from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Example

In-Memory Filter

The following code shows how to filter a document to HTML in memory.

declare
mklob clob;

Chapter 9
FILTER

9-4

amt number := 40;
line varchar2(80);

begin
 ctx_doc.filter('myindex','1', mklob, FALSE);
 -- mklob is NULL when passed-in, so ctx-doc.filter will allocate a temporary
 -- CLOB for us and place the results there.
 dbms_lob.read(mklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(mklob);
 end;

Create the filter result table to store the filtered document as follows:

create table filtertab (query_id number,
 document clob);

To obtain a plaintext version of document with textkey 20, enter the following
statement:

begin
ctx_doc.filter('newsindex', '20', 'filtertab', '0', TRUE);
end;

9.3 GIST
Use the CTX_DOC.GIST procedure to generate gist and theme summaries for a
document. You can generate paragraph-level or sentence-level gists or theme
summaries.

Syntax 1: In-Memory Storage

CTX_DOC.GIST(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN OUT CLOB,
glevel IN VARCHAR2 DEFAULT 'P',
pov IN VARCHAR2 DEFAULT 'GENERIC',
numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.GIST(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
glevel IN VARCHAR2 DEFAULT 'P',
pov IN VARCHAR2 DEFAULT NULL,
numParagraphs IN NUMBER DEFAULT 16,
maxPercent IN NUMBER DEFAULT 10,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Chapter 9
GIST

9-5

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• a single column primary key value

• an encoded specification for a composite (multiple column) primary key. To
encode a composite textkey, use the CTX_DOC.PKENCODE procedure

• the rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab
Specify that this procedure store the gist and theme summaries to either a table or to
an in-memory CLOB.
To store results to a table specify the name of an existing table.

See Also:

"Gist Table" in Oracle Text Result Tables

To store results in memory, specify the name of the CLOB locator. If restab is NULL,
then a temporary CLOB is allocated and returned. You must de-allocate the locator after
using it.

If restab is not NULL, then the CLOB is truncated before the operation.

query_id
Specify an identifier to use to identify the row(s) inserted into restab.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

• P for paragraph

• S for sentence

The default is P.

pov
Specify whether a gist or a single theme summary is generated. The type of gist or
theme summary generated (sentence-level or paragraph-level) depends on the value
specified for glevel.
To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as
the value for pov.
When using result table storage, if you do not specify a value for pov, then this
procedure returns the generic gist plus up to 50 theme summaries for the document.

Chapter 9
GIST

9-6

When using in-memory result storage to a CLOB, you must specify a pov. However, if
you do not specify a pov, then this procedure generates only a generic gist for the
document.

Note:

The pov parameter is case sensitive. To return a gist for a document, specify
'GENERIC' in all uppercase. To return a theme summary, specify the theme
exactly as it is generated for the document.
Only the themes generated by THEMES for a document can be used as
input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for
the document gist or theme summaries. The default is 16.

Note:

The numParagraphs parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the maxPercent parameter.
This means that the system always returns the smallest size gist or theme
summary.

maxPercent
Specify the maximum number of document paragraphs (or sentences) selected for
the document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

Note:

The maxPercent parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the numParagraphs parameter.
This means that the system always returns the smallest size gist or theme
summary.

num_themes
Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.
If you specify 0 or NULL, then this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.

Chapter 9
GIST

9-7

You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the document
from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples

In-Memory Gist

The following example generates a non-default size generic gist of at most 10
paragraphs. The result is stored in memory in a CLOB locator. The code then de-
allocates the returned CLOB locator after using it.

set serveroutput on;
declare
 gklob clob;
 amt number := 40;
 line varchar2(80);

begin
 ctx_doc.gist('newsindex','34',gklob, pov => 'GENERIC',numParagraphs => 10);
 -- gklob is NULL when passed-in, so ctx-doc.gist will allocate a temporary
 -- CLOB for us and place the results there.

 dbms_lob.read(gklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(gklob);
 end;

Result Table Gists

The following example creates a gist table called CTX_GIST:

create table CTX_GIST (query_id number,
 pov varchar2(80),
 gist CLOB);

Gists and Theme Summaries

The following example returns a default sized paragraph-level gist for document 34 as
well as the top 10 theme summaries in the document:

begin
 ctx_doc.gist('newsindex','34','CTX_GIST', 1, num_themes=>10);
end;

The following example generates a non-default size gist of at most 10 paragraphs:

begin
 ctx_doc.gist('newsindex','34','CTX_GIST',1,pov =>'GENERIC',numParagraphs=>10);
end;

Chapter 9
GIST

9-8

The following example generates a gist whose number of paragraphs is at most 10
percent of the total paragraphs in document:

begin
 ctx_doc.gist('newsindex','34','CTX_GIST',1,pov => 'GENERIC', maxPercent => 10);
end;

Theme Summary

The following example returns a paragraph-level theme summary for insects for
document 34. The default theme summary size is returned.

begin
 ctx_doc.gist('newsindex','34','CTX_GIST',1, pov => 'insects');
end;

9.4 HIGHLIGHT
Use the CTX_DOC.HIGHLIGHT procedure to generate highlight offsets for a document.
The offset information is generated for the terms in the document that satisfy the query
you specify. These highlighted terms are either the words that satisfy a word query or
the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. The table returned by CTX_DOC.HIGHLIGHT does not include any graphics
found in the original document. Apply the offset information to the same documents
filtered with CTX_DOC.FILTER .

You usually call this procedure after a query, from which you identify the document to
be processed. You can store the highlight offsets to either an in-memory PL/SQL table
or a result table.

Note that for queries that have predicates used mainly for filtering documents at query
time, the predicates are ignored during highlighting. This applies to SNIPPET, MARKUP
and HIGHLIGHT procedures. The following predicates are treated as filter predicates for
this purpose: SDATA, HASPATH, and WITHIN/INPATH searching inside XML attributes.

See CTX_DOC.POLICY_HIGHLIGHT for a version of this procedure that does not
require an index.

The performance of the procedures SNIPPET, HIGHLIGHT, and MARKUP can be
improved by using the forward index feature of Oracle Text.

See Also:

Oracle Text Application Developer's Guide for more information about
forward index

Syntax 1: In-Memory Result Storage

exec CTX_DOC.HIGHLIGHT(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN VARCHAR2,
 restab IN OUT NOCOPY HIGHLIGHT_TAB,
 plaintext IN BOOLEAN DEFAULT FALSE,

Chapter 9
HIGHLIGHT

9-9

 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN CLOB,
 restab IN OUT NOCOPY HIGHLIGHT_TAB,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.HIGHLIGHT(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN VARCHAR2,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.HIGHLIGHT_CLOB_QUERY(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 text_query IN CLOB,
 restab IN VARCHAR2,
 query_id IN NUMBER DEFAULT 0,
 plaintext IN BOOLEAN DEFAULT FALSE,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• a single column primary key value

• encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

• the rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, HIGHLIGHT does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. The HIGHLIGHT
procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store highlight offsets to either a table or to an in-
memory PL/SQL table.

Chapter 9
HIGHLIGHT

9-10

To store results to a table specify the name of the table. The table must exist before
you call this procedure.

See Also:

"Highlight Table" in Oracle Text Result Tables for more information about
the structure of the highlight result table.

To store results to an in-memory table, specify the name of the in-memory table of
type CTX_DOC.HIGHLIGHT_TAB. The HIGHLIGHT_TAB datatype is defined as follows:

type highlight_rec is record (
 offset number,
 length number
);
type highlight_tab is table of highlight_rec index by binary_integer;

CTX_DOC.HIGHLIGHT clears HIGHLIGHT_TAB before the operation.

query_id
Specify the identifier used to identify the row inserted into restab. When query_id
is not specified or set to NULL, it defaults to 0. You must manually truncate the table
specified in restab.

plaintext
Specify TRUE to generate a plaintext offsets of the document. Specify FALSE to
generate HTML offsets of the document if you are using the AUTO_FILTER filter or
indexing HTML documents.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table. The
default value is CTX_DOC.SAVE_COPY_FALLBACK.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the document
from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

Examples

Create Highlight Table

Create the highlight table to store the highlight offset information:

create table hightab(query_id number,
 offset number,
 length number);

Word Highlighting in the Presence of Filters

Chapter 9
HIGHLIGHT

9-11

When performing highlight on queries such as the following, only the keyword ("dog" in
these examples) will be highlighted. The filtering predicates after the AND operator will
be ignored.

begin
ctx_doc.highlight('newsindex', '20', 'dog AND cat WITHIN titlesection@name',
'hightab', 0, FALSE);
end;
begin
ctx_doc.highlight('newsindex', '20', 'dog AND SDATA(price > 100)', 'hightab', 0,
FALSE);
end;

Word Highlight Offsets

To obtain HTML highlight offset information for document 20 for the word dog:

begin
ctx_doc.highlight('newsindex', '20', 'dog', 'hightab', 0, FALSE);
end;

begin
ctx_doc.highlight('newsindex', '20', 'dog AND cat WITHIN titlesection', 'hightab',
0, FALSE);
end;

Theme Highlight Offsets

Assuming the index newsindex has a theme component, obtain HTML highlight offset
information for the theme query of politics by issuing the following query:

begin
ctx_doc.highlight('newsindex', '20', 'about(politics)', 'hightab', 0, FALSE);
end;

The output for this statement are the offsets to highlighted words and phrases that
represent the theme of politics in the document.

Restrictions

CTX_DOC.HIGHLIGHT does not support the use of query templates or highlighting XML
attribute values.

Related Topics

"POLICY_HIGHLIGHT"

"MARKUP "

"SNIPPET"

9.5 IFILTER
Use this procedure to filter binary data to text.

This procedure takes binary data (BLOB IN), filters the data with the AUTO_FILTER filter,
and writes the text version to a CLOB. (Any graphics in the original document are
ignored.) CTX_DOC.IFILTER employs the safe callout, and it does not require an index,
as CTX_DOC.FILTER does.

Chapter 9
IFILTER

9-12

Note:

This procedure will not be supported in future releases. Applications should
use CTX_DOC.POLICY_FILTER instead.

Requirements

Because CTX_DOC.IFILTER employs the safe callout mechanism, the SQL*Net listener
must be running and configured for extproc agent startup.

Syntax

CTX_DOC.IFILTER(data IN BLOB, text IN OUT NOCOPY CLOB);

data
Specify the binary data to be filtered.

text
Specify the destination CLOB. The filtered data is placed in here. This parameter must
be a valid CLOB locator that is writable. Passing NULL or a non-writable CLOB will result
in an error. Filtered text will be appended to the end of existing content, if any.

Example

The document text used in a MATCHES query can be VARCHAR2 or CLOB. It does not
accept BLOB input, so you cannot match filtered documents directly. Instead, you must
filter the binary content to CLOB using the AUTO_FILTER filter. Assuming the document
data is in bind variable :doc_blob:

 declare
 doc_text clob;
 begin
 -- create a temporary CLOB to hold the document text
 dbms_lob.createtemporary(doc_text, TRUE, DBMS_LOB.SESSION);

 -- call ctx_doc.ifilter to filter the BLOB to CLOB data
 ctx_doc.ifilter(:doc_blob, doc_text);

 -- now do the matches query using the CLOB version
 for c1 in (select * from queries where matches(query_string, doc_text)>0)
 loop
 -- do what you need to do here
 end loop;

 dbms_lob.freetemporary(doc_text);
 end;

9.6 MARKUP
The CTX_DOC.MARKUP procedure takes a query specification and a document textkey
and returns a version of the document in which the query terms are marked up. These
marked-up terms are either the words that satisfy a word query or the themes that
satisfy an ABOUT query.

Chapter 9
MARKUP

9-13

You can set the marked-up output to be either plaintext or HTML. The marked-up
document returned by CTX_DOC.MARKUP does not include any graphics found in the
original document.

You can use one of the predefined tag sets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

You usually call CTX_DOC.MARKUP after a query, from which you identify the document
to be processed.

You can store the marked-up document either in memory or in a result table.

Note that for queries that have predicates used mainly for filtering documents at query
time, the predicates are ignored during MARKUP. The following predicates are treated as
filter predicates for this purpose: SDATA, HASPATH, and WITHIN/INPATH searching inside
XML attributes.

See CTX_DOC.POLICY_MARKUP for a version of this procedure that does not
require an index.

The performance of the procedures SNIPPET, HIGHLIGHT, and MARKUP can be
improved by using the forward index feature of Oracle Text.

See Also:

Oracle Text Application Developer's Guide for more information about
forward index

Note:

Oracle Text does not guarantee well-formed output from CTX.DOC.MARKUP,
especially for terms that are already marked up with HTML or XML. In
particular, unexpected nesting of markup tags may occasionally result.

Syntax 1: In-Memory Result Storage

exec CTX_DOC.MARKUP(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN VARCHAR2,
restab IN OUT NOCOPY CLOB,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.MARKUP_CLOB_QUERY(
index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN CLOB,

Chapter 9
MARKUP

9-14

restab IN OUT NOCOPY CLOB,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

exec CTX_DOC.MARKUP(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

exec CTX_DOC.MARKUP_CLOB_QUERY(
index_name IN VARCHAR2,
textkey IN CLOB,
text_query IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
plaintext IN BOOLEAN DEFAULT FALSE,
tagset IN VARCHAR2 DEFAULT 'TEXT_DEFAULT',
starttag IN VARCHAR2 DEFAULT NULL,
endtag IN VARCHAR2 DEFAULT NULL,
prevtag IN VARCHAR2 DEFAULT NULL,
nexttag IN VARCHAR2 DEFAULT NULL,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index associated with the text column containing the
document identified by textkey.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• Encoded specification for a composite (multiple column) primary key. Use the
CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE.

text_query
Specify the original query expression used to retrieve the document.

Chapter 9
MARKUP

9-15

If text_query includes wildcards, stemming, fuzzy matching which result in
stopwords being returned, MARKUP does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. The MARKUP
procedure always returns highlight information for the entire result set.

restab
You can specify that this procedure store the marked-up text to either a table or to an
in-memory CLOB.
To store results to a table specify the name of the table. The result table must exist
before you call this procedure.

See Also:

For more information about the structure of the markup result table, see
"Markup Table" in Oracle Text Result Tables.

To store results in memory, specify the name of the CLOB locator. If restab is NULL,
a temporary CLOB is allocated and returned. You must de-allocate the locator after
using it.

If restab is not NULL, the CLOB is truncated before the operation.

query_id
Specify the identifier used to identify the row inserted into restab.
When query_id is not specified or set to NULL, it defaults to 0. You must manually
truncate the table specified in restab.

plaintext
Specify TRUE to generate plaintext marked-up document. Specify FALSE to generate a
marked-up HTML version of document if you are using the AUTO_FILTER filter or
indexing HTML documents.

tagset
Specify one of the following predefined tag sets. The second and third columns show
how the different tags are defined for each tagset:

Tagset Tag Tag Value

TEXT_DEFAULT starttag <<<

TEXT_DEFAULT endtag >>>

HTML_DEFAULT starttag

HTML_DEFAULT endtag

HTML_NAVIGATE starttag

HTML_NAVIGATE endtag

HTML_NAVIGATE prevtag <

HTML_NAVIGATE nexttag >

starttag
Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.
The sequence of starttag, endtag, prevtag and nexttag with respect to the
highlighted word is as follows:

Chapter 9
MARKUP

9-16

... prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the
previous highlight.
In the markup sequences prevtag and nexttag, you can specify the following
offset variables which are set dynamically:

Offset Variable Value

%CURNUM the current offset number

%PREVNUM the previous offset number

%NEXTNUM the next offset number

See the description of the HTML_NAVIGATE "tagset" for an example.

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next
highlight tag.
Within the markup sequence, you can use the same offset variables you use for
prevtag. See the explanation for "prevtag" and the HTML_NAVIGATE "tagset" for an
example.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the document
from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples

In-Memory Markup

The following code takes document (the dog chases the cat), performs the assigned
markup on it, and stores the result in memory.

set serveroutput on

drop table mark_tab;
create table mark_tab (id number primary key, text varchar2(80));
insert into mark_tab values ('1', 'The dog chases the cat.');

create index mark_tab_idx on mark_tab(text)
 indextype is ctxsys.context parameters

Chapter 9
MARKUP

9-17

 ('filter ctxsys.null_filter');

declare
mklob clob;
amt number := 40;
line varchar2(80);

begin
 ctx_doc.markup('mark_tab_idx','1','dog AND cat', mklob);
 -- mklob is NULL when passed-in, so ctx_doc.markup will
 -- allocate a temporary CLOB for us and place the results there.
 dbms_lob.read(mklob, amt, 1, line);
 dbms_output.put_line('FIRST 40 CHARS ARE:'||line);
 -- have to de-allocate the temp lob
 dbms_lob.freetemporary(mklob);
 end;
/

The output from this example shows what the marked-up document looks like:

FIRST 40 CHARS ARE: The <<<dog>>> chases the <<<cat>>>.

Markup Table

Create the highlight markup table to store the marked-up document as follows:

create table markuptab (query_id number,
 document clob);

Word Highlighting in HTML

You can also store your MARKUP results in a table. To create HTML highlight markup for
the words dog or cat for document 23, enter the following examples:

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog|cat',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog AND cat WITHIN titlesection@name',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Word Highlighting in the Presence of Filters

When performing markup on queries such as the following, only the keyword ("dog" in
these examples) will be marked up. The filtering predicates after the AND operator will
be ignored.

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog AND cat WITHIN titlesection@name',

Chapter 9
MARKUP

9-18

 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'dog AND SDATA(price > 100)',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Theme Highlighting in HTML

To create HTML highlight markup for the theme of politics for document 23, enter the
following statement:

begin
 ctx_doc.markup(index_name => 'my_index',
 textkey => '23',
 text_query => 'about(politics)',
 restab => 'markuptab',
 query_id => '1',
 tagset => 'HTML_DEFAULT');
end;

Restrictions

CTX_DOC.MARKUP does not support the use of query templates.

Related Topics

"POLICY_MARKUP"

"SNIPPET"

9.7 PKENCODE
The CTX_DOC.PKENCODE function converts a composite textkey list into a single string
and returns the string.

The string created by PKENCODE can be used as the primary key parameter textkey in
other CTX_DOC procedures, such as CTX_DOC.THEMES and CTX_DOC.GIST.

Syntax

CTX_DOC.PKENCODE(
 pk1 IN VARCHAR2,
 pk2 IN VARCHAR2 DEFAULT NULL,
 pk4 IN VARCHAR2 DEFAULT NULL,
 pk5 IN VARCHAR2 DEFAULT NULL,
 pk6 IN VARCHAR2 DEFAULT NULL,
 pk7 IN VARCHAR2 DEFAULT NULL,
 pk8 IN VARCHAR2 DEFAULT NULL,
 pk9 IN VARCHAR2 DEFAULT NULL,
 pk10 IN VARCHAR2 DEFAULT NULL,
 pk11 IN VARCHAR2 DEFAULT NULL,
 pk12 IN VARCHAR2 DEFAULT NULL,

Chapter 9
PKENCODE

9-19

 pk13 IN VARCHAR2 DEFAULT NULL,
 pk14 IN VARCHAR2 DEFAULT NULL,
 pk15 IN VARCHAR2 DEFAULT NULL,
 pk16 IN VARCHAR2 DEFAULT NULL)
RETURN VARCHAR2;

pk1-pk16
Each PK argument specifies a column element in the composite textkey list. You can
encode at most 16 column elements.

Returns

String that represents the encoded value of the composite textkey.

Example

begin
ctx_doc.gist('newsindex',CTX_DOC.PKENCODE('smith', 14), 'CTX_GIST');
end;

In this example, smith and 14 constitute the composite textkey value for the document.

9.8 POLICY_FILTER
Generates a plain text or an HTML version of a document. With this procedure, no
CONTEXT index is required.

This procedure uses a trusted callout.

Syntax

ctx_doc.policy_filter(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy CLOB,
 plaintext in BOOLEAN default FALSE,
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document to filter.

restab
Specify the name of the CLOB locator.

plaintext
Specify TRUE to generate a plaintext version of the document. Specify FALSE to
generate an HTML version of the document if you are using the AUTO_FILTER filter or
indexing HTML documents.

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See BASIC_LEXER in Oracle
Text Indexing Elements.

Chapter 9
POLICY_FILTER

9-20

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in CREATE
INDEX in Oracle Text SQL Statements and Operators .

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table. See "Filter Types".

9.9 POLICY_GIST
Generates a gist or theme summary for document. You can generate paragraph-level
or sentence-level gists or theme summaries. With this procedure, no CONTEXT index is
required.

Syntax

ctx_doc.policy_gist(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy CLOB,
 glevel in VARCHAR2 default 'P',
 pov in VARCHAR2 default 'GENERIC',
 numParagraphs in VARCHAR2 default NULL,
 maxPercent in NUMBER default NULL,
 num_themes in NUMBER default 50
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document for which to generate the Gist or theme summary.

restab
Specify the name of the CLOB locator.

glevel
Specify the type of gist or theme summary to produce. The possible values are:

• P for paragraph

• S for sentence

The default is P.

pov
Specify whether a gist or a single theme summary is generated. The type of gist or
theme summary generated (sentence-level or paragraph-level) depends on the value
specified for glevel.
To generate a gist for the entire document, specify a value of 'GENERIC' for pov. To
generate a theme summary for a single theme in a document, specify the theme as
the value for pov.

Chapter 9
POLICY_GIST

9-21

When using result table storage and you do not specify a value for pov, this procedure
returns the generic gist plus up to 50 theme summaries for the document.

Note:

The pov parameter is case sensitive. To return a gist for a document, specify
'GENERIC' in all uppercase. To return a theme summary, specify the theme
exactly as it is generated for the document.
Only the themes generated by THEMES for a document can be used as
input for pov.

numParagraphs
Specify the maximum number of document paragraphs (or sentences) selected for
the document gist or theme summaries. The default is 16.

Note:

The numParagraphs parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the maxPercent parameter.
This means that the system always returns the smallest size gist or theme
summary.

maxPercent
Specify the maximum number of document paragraphs (or sentences) selected for
the document gist or theme summaries as a percentage of the total paragraphs (or
sentences) in the document. The default is 10.

Note:

The maxPercent parameter is used only when this parameter yields a
smaller gist or theme summary size than the gist or theme summary size
yielded by the numParagraphs parameter.
This means that the system always returns the smallest size gist or theme
summary.

num_themes
Specify the number of theme summaries to produce when you do not specify a value
for pov. For example, if you specify 10, this procedure returns the top 10 theme
summaries. The default is 50.
If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the top 50 themes show conceptual
hierarchy.

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER".

Chapter 9
POLICY_GIST

9-22

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table.

9.10 POLICY_HIGHLIGHT
Generates plain text or HTML highlighting offset information for a document. With this
procedure, no CONTEXT index is required.

The offset information is generated for the terms in the document that satisfy the query
you specify. These highlighted terms are either the words that satisfy a word query or
the themes that satisfy an ABOUT query.

You can generate highlight offsets for either plaintext or HTML versions of the
document. You can apply the offset information to the same documents filtered with
CTX_DOC.FILTER .

Syntax

exec ctx_doc.policy_highlight(
 policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in VARCHAR2,
 restab in out nocopy highlight_tab,
 plaintext in boolean FALSE
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

exec ctx_doc.policy_highlight_clob_query(
 policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in CLOB,
 restab in out nocopy highlight_tab,
 plaintext in boolean FALSE
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

Chapter 9
POLICY_HIGHLIGHT

9-23

If text_query includes wildcards, stemming, or fuzzy matching which result in
stopwords being returned, this procedure does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. This procedure
always returns highlight information for the entire result set.

restab
Specify the name of the highlight_tab PL/SQL index-by-table type.

See Also:

"HIGHLIGHT " for more information about the structure of the
highlight_tab table type

plaintext
Specify TRUE to generate a plaintext offsets of the document.
Specify FALSE to generate HTML offsets of the document if you are using the
AUTO_FILTER filter or indexing HTML documents.

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER" in
Oracle Text Indexing Elements.

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description under "CREATE
INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table.

Restrictions

CTX_DOC.POLICY_HIGHLIGHT does not support the use of query templates.

9.11 POLICY_LANGUAGES
Provides the ability to fetch the language for a section of text.

Returns a table of language descriptors and scores, where the score is the confidence
level with which the system can assert that the supplied text is in the specific
language.

Syntax

CTX_DOC.POLICY_LANGUAGES (
 policy_name IN VARCHAR2 | CLOB,
 document IN VARCHAR2,
 restab IN OUT NOCOPY CTX_DOC.LANGUAGE_TAB
);

Chapter 9
POLICY_LANGUAGES

9-24

policy_name
A policy that was previously created using the CTX_DDL.CREATE_POLICY method.
If the specified policy includes a sectioning preference, the API will honor the
sectioning preference. For instance, if HTML sectioning is specified, then HTML tags
will be removed before processing the input document.

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab
The result of the language extraction process. The result is a table of records. Each
record has two attributes: the language string, and the score for each language string.
The score can range from 0 to 100 and represents the confidence with which the
system can assert that the supplied text is in the specified language. The resulting
languages are returned in sorted order with the language with the most confidence
appearing first.
The table layout for restab is similar to that for HIGHLIGHT.

See Also:

"HIGHLIGHT " for information on restab layout

Supported Languages for CTX_DOC.POLICY_LANGUAGES and POLICY_STEMS

Language extraction is supported for text in the languages supported by
AUTO_LEXER. The supported languages for CTX_DOC.POLICY_LANGUAGES and
CTX_DOC.POLICY_STEMS for this release are:

Arabic

Bokmal

Catalan

Croatian

Czech

Danish

Dutch

English

Finnish

French

German

Greek

Hebrew

Hungarian

Italian

Chapter 9
POLICY_LANGUAGES

9-25

Japanese

Korean

Polish

Nynorsk

Persian

Portuguese

Romanian

Russian

Serbian

Slovak

Slovenian

Simplified Chinese

Spanish

Swedish

Thai

Traditional Chinese

Turkish

Related Topics

"POLICY_STEMS"

"AUTO_LEXER"

9.12 POLICY_MARKUP
Generates plain text or HTML version of a document with query terms highlighted.
With this procedure, no CONTEXT index is required.

The CTX_DOC.POLICY_MARKUP procedure takes a query specification and a document
and returns a version of the document in which the query terms are marked up. These
marked-up terms are either the words that satisfy a word query or the themes that
satisfy an ABOUT query.

You can set the marked-up output to be either plaintext or HTML.

You can use one of the predefined tag sets for marking highlighted terms, including a
tag sequence that enables HTML navigation.

Syntax

ctx_doc.policy_markup(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in VARCHAR2,
 restab in out nocopy CLOB,
 plaintext in BOOLEAN default FALSE,

Chapter 9
POLICY_MARKUP

9-26

 tagset in VARCHAR2 default 'TEXT_DEFAULT',
 starttag in VARCHAR2 default NULL,
 endtag in VARCHAR2 default NULL,
 prevtag in VARCHAR2 default NULL,
 nexttag in VARCHAR2 default NULL
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

ctx_doc.policy_markup_clob_query(
 policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 text_query in CLOB,
 restab in out nocopy CLOB,
 plaintext in BOOLEAN default FALSE,
 tagset in VARCHAR2 default 'TEXT_DEFAULT',
 starttag in VARCHAR2 default NULL,
 endtag in VARCHAR2 default NULL,
 prevtag in VARCHAR2 default NULL,
 nexttag in VARCHAR2 default NULL
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document to generate highlighting offset information.

text_query
Specify the original query expression used to retrieve the document.
If text_query includes a NULL, then this procedure will fail and generate errors.
If text_query includes wildcards, stemming, or fuzzy matching which result in
stopwords being returned, then this procedure does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored. This procedure
always returns highlight information for the entire result set.

restab
Specify the name of the CLOB locator.

plaintext
Specify TRUE to generate a plaintext marked-up document. Specify FALSE to generate
a marked-up HTML version of the document if you are using the AUTO_FILTER filter or
indexing HTML documents.

tagset
Specify one of the following predefined tag sets. The second and third columns show
how the different tags are defined for each tagset:

Tagset Tag Tag Value

TEXT_DEFAULT starttag <<<

TEXT_DEFAULT endtag >>>

HTML_DEFAULT starttag

Chapter 9
POLICY_MARKUP

9-27

Tagset Tag Tag Value

HTML_DEFAULT endtag

HTML_NAVIGATE starttag

HTML_NAVIGATE endtag

HTML_NAVIGATE prevtag <

HTML_NAVIGATE nexttag >

starttag
Specify the character(s) inserted by MARKUP to indicate the start of a highlighted term.
The sequence of starttag, endtag, prevtag and nexttag with regard to the
highlighted word is as follows:

... prevtag starttag word endtag nexttag...

endtag
Specify the character(s) inserted by MARKUP to indicate the end of a highlighted term.

prevtag
Specify the markup sequence that defines the tag that navigates the user to the
previous highlight.
In the markup sequences prevtag and nexttag, you can specify the following
offset variables which are set dynamically:

Offset Variable Value

%CURNUM the current offset number

%PREVNUM the previous offset number

%NEXTNUM the next offset number

See the description of the HTML_NAVIGATE tagset for an example "tagset".

nexttag
Specify the markup sequence that defines the tag that navigates the user to the next
highlight tag.
Within the markup sequence, you can use the same offset variables you use for
prevtag. See the explanation for prevtag and the HTML_NAVIGATE "tagset" for an
example.

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER" in
Oracle Text Indexing Elements.

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table. See "Filter Types".

Chapter 9
POLICY_MARKUP

9-28

Restrictions

CTX_DOC.POLICY_MARKUP does not support the use of query templates.

9.13 POLICY_NOUN_PHRASES
Provides the ability to extract the noun phrases along with part-of-speech information
for each word in each noun phrase from a given document.

For example, consider the following sentence:

"The mayor of Chicago is giving a brief press conference."

The noun phrases for this input are "mayor of Chicago" and "brief press conference."
The subgroups in the input text are not returned. For instance, in the above example,
subgroups such as "mayor,Chicago, brief press, press conference, press, conference"
are not returned.

POLICY_NOUN_PHRASES (and POLICY_PART_OF_SPEECH) supports the
following languages:

• Dutch

• English

• German

• French

• Italian

• Japanese

• Korean

• Simplified Chinese

• Spanish

• Traditional Chinese

Syntax

ctx_doc.policy_noun_phrases (
 policy_name in varchar2,
 document in varchar2 | CLOB,
 restab in out nocopy noun_phrase_tab,
 language in varchar2 default NULL,
 format in varchar2 default NULL,
 charset in varchar2 default NULL
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab
Specify the name of the CLOB locator.

Chapter 9
POLICY_NOUN_PHRASES

9-29

language
Specify the language. See the list of supported languages in this section. If this
parameter is null, the language will be automatically detected. There is a cost
associated with language detection.

format
The format of the input text.

charset
The character set of the input text.

Abbreviations for Use with POLICY_NOUN_PHRASES and
POLICY_PART_OF_SPEECH

Table 9-1 provides a list of abbreviations to use in queries for POLICY_NOUN_PHRASES
and POLICY_PART_OF_SPEECH. The examples use these abbreviations.

Table 9-1 Part of Speech Abbreviations

Abbreviation Part of Speech

N noun

propN nounProper

V verb

Adj adjective

Adv adverb

Prep preposition

Part particle

Punct punct

Pro pronoun

Wh interrog

Det determiner

Conj conjunction

Card numCardinal

Ord numOrdinal

Suf suffix

Pre prefix

Acr nounAcronym

Poss poss

Unk unknown

Example for POLICY__NOUN_PHRASES

The example in this section uses the abbreviations shown in Table 9-1.

set serverout on
create or replace function toString(b boolean) return varchar2 is
 begin
 if (b) then
 return 'TRUE';
 end if;

Chapter 9
POLICY_NOUN_PHRASES

9-30

 return 'FALSE';
 end;
 /

declare
 the_nps ctx_doc.noun_phrase_tab;
begin
 ctx_ddl.create_preference('rvlex', 'AUTO_LEXER');
 ctx_ddl.set_attribute('rvlex','mixed_case','YES');
 ctx_ddl.set_attribute('rvlex','timeout',0);

 ctx_ddl.create_policy(policy_name => 'rv_policy_21',lexer => 'rvlex');

 ctx_doc.policy_noun_phrases('rv_policy_21','The mayor of Chicago is giving a
 brief press conference',the_nps);
 dbms_output.put_line(the_nps.count);

 for i in 1..the_nps.count loop
 if (the_nps(i).is_phrase_start) then
 if (i>1) then
 dbms_output.put(']');
 dbms_output.new_line;
 end if;
 dbms_output.put('Phrase{term,POS,is_in_lex,offset,len,is_phrase_
 start}:[');
 else
 dbms_output.put(',');
 end if;
 dbms_output.put('{' || the_nps(i).term || ',' || the_nps(i).pos_tag || ','
 || toString(the_nps(i).is_in_lexicon) || ',' || the_nps(i).offset
 || ',' || the_nps(i).length || ',' || toString(the_nps(i).is_phrase_start)
 || '}');
 end loop;
 dbms_output.put(']');
 dbms_output.new_line;
end;
/

Output for this example:

Phrase{term,POS,is_in_lex,offset,len,is_phrase_start}:
[{The,Det,TRUE,1,3,TRUE},{mayor,N,TRUE,5,5,FALSE},
{of,Prep,TRUE,11,2,FALSE},{Chicago,propN,TRUE,14,7,FALSE}

Phrase{term,POS,is_in_lex,offset,len,is_phrase_start}:
[{a,Det,TRUE,32,1,TRUE},{brief,N,TRUE,34,5,FALSE},
{press,N,TRUE,40,5,FALSE},{conference,N,TRUE,46,10,FALSE}]

Related Topics

"POLICY_PART_OF_SPEECH"

9.14 POLICY_PART_OF_SPEECH
Extracts part of speech information for each word in a body of text.

POLICY_NOUN_PHRASES has the list of supported languages.

Chapter 9
POLICY_PART_OF_SPEECH

9-31

Syntax

ctx_doc.policy_part_of_speech (
 policy_name in varchar2,
 document in varchar2 | CLOB,
 restab in out nocopy noun_phrase_tab,
 language in varchar2 default NULL,
 format in varchar2 default NULL,
 charset in varchar2 default NULL
 disambiguate_tags in boolean default TRUE
);

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY. If the specified
policy includes a sectioning preference, the API will honor the sectioning preference.
For instance, if HTML sectioning is specified, HTML tags will be removed before
processing the input document.

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab
Specify the name of the CLOB locator. The query returns a table with the result of the
noun phrase extraction. For each word, the following attributes are also returned:

• pos_tags: the part of speech tags for this word. There can be multiple part of
speech tags with the most likely tag listed first.

• offset: offset of the word in the input string

• length: length of the word in the input string.

• is_in_lexicon: Indicates whether the word is in the lexicon.

language
Specify the language. See the list of supported languages in this section. If this
parameter is null, the language will be automatically detected. There is a cost
associated with language detection.

format
The format of the input text.

charset
The character set of the input text.

Example for POLICY_PART_OF_SPEECH

The example in this section uses the abbreviations shown in Table 9-1.

set serveroutput on;
declare
 the_nps ctx_doc.part_of_speech_tab;
begin
 ctx_doc.policy_part_of_speech(policy_name => 'rv_policy_21',
 document => 'The mayor of Chicago is giving
 a brief press conference',
 restab => the_nps,
 disambiguate_tags => false,
 language => 'english');

Chapter 9
POLICY_PART_OF_SPEECH

9-32

 for i in 1..the_nps.count loop
 dbms_output.put('word:' || the_nps(i).word || ',pos:[');
 for j in 1..the_nps(i).pos_tags.count loop
 dbms_output.put(the_nps(i).pos_tags(j) || ',');
 end loop;
 dbms_output.put_line(']');
 end loop;
end;
/

Output for this example:

word:The,pos:[Det,]
word:mayor,pos:[N,]
word:of,pos:[Prep,]
word:Chicago,pos:[propN,]
word:is,pos:[V,]
word:giving,pos:[N,V,Adj,]
word:a,pos:[Det,]
word:brief,pos:[N,V,Adj,]
word:press,pos:[N,V,]
word:conference,pos:[N,V,]

Related Topics

"POLICY_NOUN_PHRASES"

"Custom Dictionary Valid Parts-of-Speech (case sensitive)"

9.15 POLICY_SNIPPET
Displays marked-up keywords in context. The returned text contains either the words
that satisfy a word query or the themes that satisfy an ABOUT query. This version of the
CTX_DOC.SNIPPET procedure does not require an index.

Syntax

Syntax 1

exec CTX_DOC.POLICY_SNIPPET(

policy_name IN VARCHAR2,
document IN [VARCHAR2|CLOB|BLOB|BFILE],
text_query IN VARCHAR2,
language IN VARCHAR2 default NULL,
format IN VARCHAR2 default NULL,
charset IN VARCHAR2 default NULL,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...'
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 150
)
return varchar2;

Syntax 2

exec CTX_DOC.POLICY_SNIPPET_CLOB_QUERY(

Chapter 9
POLICY_SNIPPET

9-33

policy_name IN VARCHAR2,
document IN [VARCHAR2|CLOB|BLOB|BFILE],
text_query IN CLOB,
language IN VARCHAR2 default NULL,
format IN VARCHAR2 default NULL,
charset IN VARCHAR2 default NULL,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...'
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 150
)
return varchar2;

policy_name
Specify the name of a policy created with CTX_DDL.CREATE_POLICY.

document
Specify the document in which to search for keywords.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, POLICY_SNIPPET does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored.

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See MULTI_LEXER in Oracle
Text Indexing Elements.

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table. See "Filter Types".

starttag
Specify the start tag for marking up the query keywords. Default is ''.

endtag
Specify the end tag for marking up the query keywords. Default is ''.

entity_translation
Specify if you want HTML entities to be translated. The default is TRUE, which means
the special entities (<, >, and &) are translated into their alternate forms ('<', '>',
and '&') when output by the procedure. However, special characters in the
markup tags generated by CTX_DOC.POLICY_SNIPPET will not be translated.

separator
Specify the string separating different returned fragments. Default is '...'.

Chapter 9
POLICY_SNIPPET

9-34

radius
Specify the number of characters to be shown on either side of the hit query in a
segment. The character count before the hit query begins on the first character of the
first hit query displayed in a segment. Accordingly, the character count after the hit
query begins on the last character of the last hit query displayed on a specific
segment. Two segments are merged into one if their radii overlap. The displayed
number of characters on each side may be modified by +/-10 chars to best match the
beginning or ending of a sentence or word.
Special attention is required for the value 0. When specified, the radius is set to
automatic and varies between sentences. A best guess of the results is displayed,
which attempts to match a full sentence. Note that the length of the radius on each
side of the hit query will most likely significantly differ.
The default value is 25.

max_length
Specify the maximum length of the snippet output in characters. This value is
currently upper-bounded by the current return type of CTX_DOC.SNIPPET and
CTX_DOC.POLICY_SNIPPET (VARCHAR2). Should the output be longer than the
return type VARCHAR2, the result will be truncated.
The default value for max_length is 150.

Note:

If you set max_length value to a very low value, no snippet may be
generated. For example, if max_length is set to 0 or if max_length is lower
than the length of query tokens themselves, no snippet may be generated at
all.

Limitations

CTX_DOC.POLICY_SNIPPET does not support the use of query templates.

CTX_DOC.POLICY_SNIPPET displays marked-up keywords in context when used with
NULL_SECTION_GROUP. However, there are limitations when using this procedure with
XML documents. When used with XML_SECTION_GROUP or AUTO_SECTION_GROUP, the
XML structure is ignored and user-specified tags are stripped out, which results in
parts of surrounding text to be included in the returned snippet.

Related Topics

"SNIPPET"

"MARKUP "

9.16 POLICY_STEMS
Extracts stems for each word in a body of text. This procedure is for use with
AUTO_LEXER. This procedure can only use the languages supported by
AUTO_LEXER, which are listed under "POLICY_LANGUAGES".

Syntax

exec CTX_DOC.POLICY_STEMS (
 policy_name in varchar2,

Chapter 9
POLICY_STEMS

9-35

 document in varchar2 | CLOB,
 restab in out nocopy ctx_doc.stem_group_tab,
 language in varchar2 default NULL,
 format in varchar2 default NULL,
 charset in varchar2 default NULL
);

policy_name
A policy that was previously created using the CTX_DDL.CREATE_POLICY method.
If the specified policy includes a HTML_SECTION_GROUP sectioning preference, the API
will honor the sectioning preference. For instance, if HTML sectioning is specified,
HTML tags will be removed before processing the input document.
Note that the policy must use AUTO_LEXER only.

document
A body of text for which the languages are to be extracted. The text is assumed to be
plain text with UTF-8 character encoding.

restab
The result of the stem extraction process. The returned values in the PL/SQL table
will have one cell for each word in the input string document. Each word can be a
multi-word as determined by the lexer. For each word, all the stems (including all
alternate stems) are returned. For each stem, the offset and the length (in the input
string) of the word for which this is a stem is returned. Additionally, for each stem, a
Boolean value is returned that indicates if the stem was found in the lexicon.
stem_group_tab is a table of stem_group_records.

language
The language of the input text. The language string can be one of the values specified
in the previous section on language extraction. If this parameter is null, the language
will be automatically detected. There is a cost associated with language detection. So,
if the language is known, it is best to supply the language value. See
"POLICY_LANGUAGES" for the list of languages.

format
The format of the input text.

charset
The character set of the input text.

Restrictions and Notes

The stem extraction process supports certain nonstandard word forms—e.g.
capitalization errors—as well as standard forms, and thus can be used to process
informal or imperfect text (such as email, online documents, or queries). It also
handles some variations in the text including case variation, hyphenation and
unaccented characters among others.

The stem extraction process does not break compound words, but instead separates
compound words with a # character. Such compound words are common in German.
For instance, the German compound word Bildungsroman (from Bildung "education"
and Roman "novel") yields a single stem Bildungs#roman instead of two stems
Bildungs and roman.

Related Topics

"POLICY_LANGUAGES"

Chapter 9
POLICY_STEMS

9-36

"AUTO_LEXER"

"CREATE_POLICY"

9.17 POLICY_THEMES
Generates a list of themes for a document. With this procedure, no CONTEXT index is
required.

Syntax

ctx_doc.policy_themes(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy theme_tab,
 full_themes in BOOLEAN default FALSE,
 num_themes in number default 50
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL
);

policy_name
Specify the policy you create with CTX_DDL.CREATE_POLICY.

document
Specify the document for which to generate a list of themes.

restab
Specify the name of the theme_tab PL/SQL index-by-table type.

See Also:

"THEMES" for more information about the structure of the theme_tab type.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of
parent themes (full themes) for each document theme.
Specify TRUE for this procedure to write full themes to the THEME column of the result
table.
Specify FALSE for this procedure to write single theme information to the THEME column
of the result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10,
up to first 10 themes are returned for the document. The default is 50.
If you specify 0 or NULL, this procedure returns all themes in a document. If the
document contains more than 50 themes, only the first 50 themes show conceptual
hierarchy.

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER" in
Oracle Text Indexing Elements.

Chapter 9
POLICY_THEMES

9-37

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the base
table. For more information, see the format column description in "CREATE INDEX" in
Oracle Text SQL Statements and Operators .

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table. See "Filter Types".

Example

Create a policy:

exec ctx_ddl.create_policy('mypolicy');

Run themes:

declare
 la varchar2(200);
 rtab ctx_doc.theme_tab;
begin
 ctx_doc.policy_themes('mypolicy',
 'To define true madness, What is''t but to be nothing but mad?', rtab);
 for i in 1..rtab.count loop
 dbms_output.put_line(rtab(i).theme||':'||rtab(i).weight);
 end loop;
end;

9.18 POLICY_TOKENS

Generate all index tokens for document. With this procedure, no CONTEXT index is
required.

Syntax

ctx_doc.policy_tokens(policy_name in VARCHAR2,
 document in [VARCHAR2|CLOB|BLOB|BFILE],
 restab in out nocopy token_tab,
 language in VARCHAR2 default NULL,
 format in VARCHAR2 default NULL,
 charset in VARCHAR2 default NULL,
 thes_name in VARCHAR2 default NULL,
 thes_toktype in VARCHAR2 default 'SYN');

policy_name
Specify the policy name created with CTX_DDL.CREATE_POLICY.

document
Specify the document for which to generate tokens.

restab
Specify the name of the token_tab PL/SQL index-by-table type.
The tokens returned are those tokens which are inserted into the index for the
document. Stop words are not returned. Section tags are not returned because they
are not text tokens.

Chapter 9
POLICY_TOKENS

9-38

See Also:

"TOKENS" of this chapter for more information about the structure of the
token_tab type

language
Specify the language of the document. Use an Oracle Text supported language value
as you would in the language column of the base table. See "MULTI_LEXER" in
Oracle Text Indexing Elements.

format
Specify the format of the document. Use an Oracle Text supported format value,
either TEXT, BINARY or IGNORE as you would specify in the format column of the
base table. For more information, see the format column description in "CREATE
INDEX".

charset
Specify the character set of the document. Use an Oracle Text supported value as
you would specify in the charset column of the base table. See "Filter Types".

thes_name
Specify the thesaurus name. If you do not specify a name, no synonyms or broader
terms for index tokens will be generated.
To use the system default thesaurus, specify DEFAULT.

thes_toktype
Specify SYN to generate synonyms. Alternatively, specify BT to generate broader terms
of index tokens. By default, only synonyms are generated. To use this parameter, you
must first specify the thesaurus name using the thes_name parameter.

Example 1

Get tokens:

declare
 la varchar2(200);
 rtab ctx_doc.token_tab;
begin
 ctx_doc.policy_tokens('mypolicy',
 'To define true madness, What is''t but to be nothing but mad?',rtab);
 for i in 1..rtab.count loop
 dbms_output.put_line(rtab(i).offset||':'||rtab(i).token);
 end loop;
end;

Example 2

This example uses thesaurus support to generate synonyms for tokens:

declare
 rtab ctx_doc.token_tab;
begin
 ctx_doc.policy_tokens('mypolicy','the lazy dog',rtab,thes_name =>'animals');
 for i in 1..rtab.count loop
 dbms_output.put_line(rtab(i).token||'a'||rtab(i).thes_tokens);
 end loop;
end;

Chapter 9
POLICY_TOKENS

9-39

9.19 SENTIMENT
Use this procedure to perform sentiment analysis for a document, determine a
sentiment score for each topic within the document, and populate the results into a
result table.

The mandatory inputs to this procedure include the name of a text index associated
with the document set and the text key, which is a unique identifier that identifies each
document. After sentiment classification is performed, the text segments from the
document and their associated sentiment scores are populated into the result table.
The sentiment score is a value between -100 and 100.

The result table must exist before you run this procedure. An error is returned if the
result table does not exist or if the specified topic is null.

If the specified topic is not present in the document, then a default snippet and
sentiment score of zero are written into the result table. If no sentiment classifier is
specified, then the default sentiment classifier is used. The default classifier is only
available when using AUTO_LEXER.

Syntax

SENTIMENT(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 topic IN VARCHAR2,
 restab IN VARCHAR2,
 clsfier_name IN VARCHAR2 default NULL,
 ttype IN VARCHAR2 default 'EXACT',
 radius IN NUMBER default 50,
 max_inst IN NUMBER default 5,
 starttag IN VARCHAR2 default '',
 endtag IN VARCHAR2 default '',
 use_saved_copy IN NUMBER default 0
);

Most parameters in SENTIMENT are also used in SENTIMENT_AGGREGATE. For a
description of parameters common to SENTIMENT and SENTIMENT_AGGREGATE, refer to
SENTIMENT_AGGREGATE.

restab
Specify the name of the result table that will be populated with generated results. The
table must exist and you must have INSERT permissions on the table. The table must
have two columns, snippet of data type CLOB and score of data type NUMBER.

starttag
Specify the character(s) to be inserted to indicate the start of a highlighted term.

endtag
Specify the character(s) to be inserted to indicate the end of a highlighted term.

Chapter 9
SENTIMENT

9-40

See Also:

Oracle Text Application Developer's Guide for an example of using the
SENTIMENT procedure

9.20 SENTIMENT_AGGREGATE
Use this procedure to perform sentiment analysis and return a single aggregate
sentiment score per document. The aggregate sentiment score is a value between
-100 and 100.

You specify search keywords as part of a text query and then identify a sentiment
associated with the topics in the document.

The mandatory inputs for this procedure include the name of a text index associated
with the document set and the text key, which is a unique identifier that identifies each
document. If no sentiment classifier is specified, then the default sentiment classifier is
used. The default classifier is only available when using AUTO_LEXER.

If the specified topic keyword is not found within the document, then a sentiment score
of zero is returned. If no topic is specified, then the aggregate sentiment score for the
entire document is returned.

Note:

Avoid using AUTO_LEXER with user-defined classifiers as this may provide
inconsistent sentiment scores.

Syntax

SENTIMENT_AGGREGATE(
 index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 topic IN VARCHAR2 default NULL,
 clsfier_name IN VARCHAR2 default NULL,
 ttype IN VARCHAR2 default 'EXACT',
 radius IN NUMBER default 50,
 max_inst IN NUMBER default 5,
 use_saved_copy IN NUMBER default 0
) return NUMBER;

index_name
Specify the name of the CONTEXT index for the text column. This parameter is
mandatory.

textkey
Specify the unique identifier (usually the primary key) for the document. The textkey
is mandatory and is a single column primary key value.

Chapter 9
SENTIMENT_AGGREGATE

9-41

clsfier_name
Specify the name of the sentiment classifier used to perform sentiment analysis. The
maximum length supported for a classifier name is 24 bytes. If you do not specify a
classifier name, then the default classifier is used.

topic
Specify the topic for which a sentiment score must be generated for this document. If
the topic is not specified, then the sentiment score for the entire document is
generated.

ttype
Specify the type of search to be performed for this document:

• EXACT: Indicates that the specified search keyword must be searched in the
document. This is the default setting.

• ABOUT: Indicates that the thesaurus must be used to find words that are related to
the search keywords.

radius
Specifies the radius of the surrounding text to be analyzed during sentiment
classification. The default value is 50.
The exact amount of text used for analysis varies from case to case because Oracle
Text attempts to find the best match text segment with respect to nearby topic
keywords, word boundaries, and sentence boundaries.

max_inst
Specify the maximum number of instances/occurrences of the topic that must be
analyzed. The default value for this parameter is 5.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document and what
action to take when the copy of the document is not available in the $D table. The
default value of this parameter is zero.

See Also:

Oracle Text Application Developer's Guide for an example of using the
SENTIMENT_AGGREGATE procedure

9.21 SET_KEY_TYPE
Use this procedure to set the CTX_DOC procedures to accept either the ROWID or the
PRIMARY_KEY document identifiers. This setting affects the invoking session only.

Syntax

ctx_doc.set_key_type(key_type in varchar2);

key_type
Specify either ROWID or PRIMARY_KEY as the input key type (document identifier) for
CTX_DOC procedures.
This parameter defaults to the value of the CTX_DOC_KEY_TYPE system parameter.

Chapter 9
SET_KEY_TYPE

9-42

Note:

When your base table has no primary key, setting key_type to PRIMARY_KEY
is ignored. The textkey parameter that you specify for any CTX_DOC
procedure is interpreted as a ROWID.

Example

The following example sets CTX_DOC procedures to accept primary key document
identifiers.

begin
ctx_doc.set_key_type('PRIMARY_KEY');
end

9.22 SNIPPET
Use the CTX_DOC.SNIPPET procedure to produce a concordance for a document. The
output of a snippet is a collection of segments. A concordance is a text fragment that
contains a query term with some of its surrounding text. This is also sometimes known
as Key Word in Context or KWIC, because it returns query keywords marked up in
their surrounding text, which enables the user to evaluate them in context. The
returned text can also contain themes that satisfy an ABOUT query.

For example, a search on brillig and slithey might return one relevant fragment of a
document as follows:

'Twas brillig, and the slithey toves did gyre and

CTX_DOC.SNIPPET returns one or more most relevant fragments for a document that
contains the query term. Because CTX_DOC.SNIPPET returns surrounding text, you can
immediately evaluate how useful the returned term is. CTX_DOC.SNIPPET returns the
entire document if no words in the returned text are marked up.

Note that for queries that have predicates used mainly for filtering documents at query
time, the predicates are ignored during SNIPPET generation. The following predicates
are treated as filter predicates for this purpose: SDATA, HASPATH, and WITHIN/INPATH
searching inside xml attributes.

See Also:

CTX_DOC.POLICY_SNIPPET for a policy-based version of this procedure

Syntax

Syntax 1

exec CTX_DOC.SNIPPET(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN VARCHAR2,
starttag IN VARCHAR2 DEFAULT '',

Chapter 9
SNIPPET

9-43

endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...',
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK
return varchar2
);

Syntax 2

exec CTX_DOC.SNIPPET_CLOB_QUERY(
index_name IN VARCHAR2,
textkey IN VARCHAR2,
text_query IN CLOB,
starttag IN VARCHAR2 DEFAULT '',
endtag IN VARCHAR2 DEFAULT '',
entity_translation IN BOOLEAN DEFAULT TRUE,
separator IN VARCHAR2 DEFAULT '...',
radius IN INTEGER DEFAULT 25,
max_length IN INTEGER DEFAULT 250
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK
return varchar2
);

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• An encoded specification for a composite (multiple column) primary key. When
textkey is a composite key, you must encode the composite textkey string using
the CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Use CTX_DOC.SET_KEY_TYPE to toggle between primary key and rowid identification.

text_query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.
If text_query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, SNIPPET does not highlight the stopwords.
If text_query contains the threshold operator, the operator is ignored.

starttag
Specify the start tag for marking up the query keywords. Default is ''.

endtag
Specify the end tag for marking up the query keywords. Default is ''.

entity_translation
Specify if you want HTML entities to be translated. The default is TRUE, which means
that the special entities (<, >, and &) are translated into their alternative forms ('<',

Chapter 9
SNIPPET

9-44

'>', and '&') when output by the procedure. However, special characters in the
markup tags that are generated by CTX_DOC.SNIPPET will not be translated.

separator
Specify the string separating different returned fragments. Default is '...'.

radius
Specify the number of characters to be shown on either side of the hit query in a
segment. The character count before the hit query begins on the first character of the
first hit query displayed in a segment. Accordingly, the character count after the hit
query begins on the last character of the last hit query displayed on a specific
segment. Two segments are merged into one if their radii overlap. The displayed
number of characters on each side may be modified by +/-10 chars to best match the
beginning or ending of a sentence or word.
Special attention is required for the value 0. When specified, the radius is set to
automatic and varies between sentences. A best guess of the results is displayed,
which attempts to match a full sentence. Note that the length of the radius on each
side of the hit query will most likely significantly differ.
The default value is 25.

max_length
Specify the maximum length of the snippet output in characters. This value is
currently upper-bounded by the current return type of CTX_DOC.SNIPPET and
CTX_DOC.POLICY_SNIPPET (VARCHAR2). Should the output be longer than the
return type VARCHAR2, the result will be truncated. The default value for max_length
is 250.
If you set max_length value to a very low value, no snippet may be generated. For
example, if max_length is set to 0 or if max_length is lower than the length of query
tokens themselves, no snippet may be generated at all.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table. The
default value is CTX_DOC.SAVE_COPY_FALLBACK.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the
document from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

Example

create table tdrbhk01 (id number primary key, text varchar2(4000));

insert into tdrbhk01 values (1, 'Oracle Text adds powerful search
 and intelligent text management to the Oracle
database. Complete. You can search and manage documents, web pages,
catalog entries in more than 150 formats in any language. Provides a
complete text query language and complete character support. Simple. You
can index and search text using SQL. Oracle Text Management can be done
using Oracle Enterprise Manager - a GUI tool. Fast. You can search

Chapter 9
SNIPPET

9-45

millions of documents, document,web pages, catalog entries using the
power and scalability of the database. Intelligent. Oracle Text''s
unique knowledge-base enables you to search, classify, manage
documents, clusters and summarize text based on its meaning as well as
its content. ');

create index tdrbhk01x on tdrbhk01(text) indextype is ctxsys.context;

create or replace function my_snippet_wrapper(
 key in varchar2,
 query in varchar2,
 radius in number,
 max_length in number) return varchar2 is
 buff varchar2(4000);
 begin
 buff := ctx_doc.snippet('tdrbhk01x', key, query, '', '', true, '..',
radius, max_length);
 return buff;
 end;
/
show errors;

select my_snippet_wrapper('1','Oracle', 10, 100) from dual;

The result looks something like this:

CTX_DOC.SNIPPET('TDRBHK01X','1','SEARCH|CLASSIFY')
--

Text's unique knowledge-base enables you to search,
classify, manage documents, clusters and summarize

Limitations

CTX_DOC.SNIPPET does not support the use of query templates.

CTX_DOC.SNIPPET displays marked-up keywords in context when used with
NULL_SECTION_GROUP. However, there are limitations when using this procedure with
XML documents. When used with XML_SECTION_GROUP or AUTO_SECTION_GROUP, the
XML structure is ignored and user-specified tags are stripped out, which results in
parts of surrounding text to be included in the returned snippet.

Related Topics

"POLICY_SNIPPET"

"HIGHLIGHT "

"MARKUP "

9.23 THEMES
Use the CTX_DOC.THEMES procedure to generate a list of themes for a document. You
can store each theme as a row in either a result table or an in-memory PL/SQL table
that you specify.

Syntax 1: In-Memory Table Storage

CTX_DOC.THEMES(

Chapter 9
THEMES

9-46

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN OUT NOCOPY THEME_TAB,
full_themes IN BOOLEAN DEFAULT FALSE,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.THEMES(

index_name IN VARCHAR2,
textkey IN VARCHAR2,
restab IN VARCHAR2,
query_id IN NUMBER DEFAULT 0,
full_themes IN BOOLEAN DEFAULT FALSE,
num_themes IN NUMBER DEFAULT 50,
use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index for the text column.

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• An encoded specification for a composite (multiple column) primary key. When
textkey is a composite key, you must encode the composite textkey string using
the CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Toggle between primary key and rowid identification using CTX_DOC.SET_KEY_TYPE.

restab
You can specify this procedure to store results to either a table or to an in-memory
PL/SQL table.
To store results in a table, specify the name of the table.

See Also:

"Theme Table" in Oracle Text Result Tables

To store results in an in-memory table, specify the name of the in-memory table of
type THEME_TAB. The THEME_TAB datatype is defined as follows:

type theme_rec is record (
 theme varchar2(2000),
 weight number
);

type theme_tab is table of theme_rec index by binary_integer;

CTX_DOC.THEMES clears the THEME_TAB you specify before the operation.

Chapter 9
THEMES

9-47

query_id
Specify the identifier used to identify the row(s) inserted into restab.

full_themes
Specify whether this procedure generates a single theme or a hierarchical list of
parent themes (full themes) for each document theme.
Specify TRUE for this procedure to write full themes to the THEME column of the result
table.
Specify FALSE for this procedure to write single theme information to the THEME column
of the result table. This is the default.

num_themes
Specify the maximum number of themes to retrieve. For example, if you specify 10,
then up to the first 10 themes are returned for the document. The default is 50.
If you specify 0 or NULL, then this procedure returns all themes in a document. If the
document contains more than 50 themes, then only the first 50 themes show
conceptual hierarchy.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the document
from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Examples

In-Memory Themes

The following example generates the first 10 themes for document 1 and stores them
in an in-memory table called the_themes. The example then loops through the table to
display the document themes.

declare
 the_themes ctx_doc.theme_tab;

begin
 ctx_doc.themes('myindex','1',the_themes, num_themes=>10);
 for i in 1..the_themes.count loop
 dbms_output.put_line(the_themes(i).theme||':'||the_themes(i).weight);
 end loop;
end;

Theme Table

The following example creates a theme table called CTX_THEMES:

Chapter 9
THEMES

9-48

create table CTX_THEMES (query_id number,
 theme varchar2(2000),
 weight number);

Single Themes

To obtain a list of up to the first 20 themes, where each element in the list is a single
theme, enter a statement like the following example:

begin

 ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => FALSE,
 num_themes=> 20);

end;

Full Themes

To obtain a list of the top 20 themes, where each element in the list is a hierarchical
list of parent themes, enter a statement like the following example:

begin

ctx_doc.themes('newsindex','34','CTX_THEMES',1,full_themes => TRUE, num_
themes=>20);

end;

9.24 TOKENS
Use this procedure to identify all text tokens in a document. The tokens returned are
those tokens that are inserted into the index. Thesaurus support also enables you to
generate synonyms or broader terms of the queried index tokens. This feature is
useful for implementing document classification, routing, or clustering.

Stopwords are not returned. Section tags are not returned because they are not text
tokens.

Syntax 1: In-Memory Table Storage

CTX_DOC.TOKENS(index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN OUT NOCOPY TOKEN_TAB,
 thes_name IN VARCHAR2 DEFAULT NULL,
 thes_toktype IN VARCHAR2 DEFAULT 'SYN',
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

Syntax 2: Result Table Storage

CTX_DOC.TOKENS(index_name IN VARCHAR2,
 textkey IN VARCHAR2,
 restab IN VARCHAR2,
 thes_name IN VARCHAR2 DEFAULT NULL,
 thes_toktype IN VARCHAR2 DEFAULT 'SYN',
 query_id IN NUMBER DEFAULT 0,
 use_saved_copy IN NUMBER DEFAULT CTX_DOC.SAVE_COPY_FALLBACK);

index_name
Specify the name of the index for the text column.

Chapter 9
TOKENS

9-49

textkey
Specify the unique identifier (usually the primary key) for the document.
The textkey parameter can be as follows:

• A single column primary key value

• Encoded specification for a composite (multiple column) primary key. To encode a
composite textkey, use the CTX_DOC.PKENCODE procedure.

• The rowid of the row containing the document

Toggle between primary key and rowid identification using
CTX_DOC.SET_KEY_TYPE.

restab
You can specify that this procedure store results to either a table or to an in-memory
PL/SQL table.
The tokens returned are those tokens that are inserted into the index for the
document (or row) named with textkey. Stop words are not returned. Section tags
are not returned because they are not text tokens.

thes_name
Specify the thesaurus name. If you do not specify a thesaurus name, then no
synonyms or broader terms will be generated. To use the system default thesaurus,
specify DEFAULT.

thes_toktype
Specify SYN to generate synonyms of index tokens. Alternatively, specify BT to
generate broader terms of index tokens. By default, synonyms are generated. To use
this parameter, you must first specify a thesaurus name using the thes_name
parameter.

Specifying a Token Table

To store results to a table, specify the name of the table. Token tables can be named
anything, but must include the columns shown in the following table, with names and
datatypes as specified.

Table 9-2 Required Columns for Token Tables

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call
to CTX_DOC.TOKENS (only populated when table is used to
store results from multiple TOKEN calls)

TOKEN VARCHAR2(64) The token string in the text.

OFFSET NUMBER The position of the token in the document, relative to the
start of document which has a position of 1.

LENGTH NUMBER The character length of the token.

Specifying an In-Memory Table

To store results to an in-memory table, specify the name of the in-memory table of
type TOKEN_TAB. The TOKEN_TAB datatype is defined as follows:

type token_rec is record (

Chapter 9
TOKENS

9-50

token varchar2(64),
offset number,
length number

);

type token_tab is table of token_rec index by binary_integer;

CTX_DOC.TOKENS clears the TOKEN_TAB you specify before the operation.

query_id
Specify the identifier used to identify the row(s) inserted into restab.

use_saved_copy
Specify whether to refer to the $D table to fetch the copy of the document, and what
action to take when the copy of the document is not available in the $D table.
You can specify one of the following values for the use_saved_copy parameter:

• CTX_DOC.SAVE_COPY_FALLBACK: Fetch the copy of the document from the $D table.
If the copy of the document is not present in the $D table, then fetch the document
from the data store.

• CTX_DOC.SAVE_COPY_ERROR: Fetch the copy of the document from the $D table. If
the copy of the document is not present in the $D table, then show an error
message. Specify this value when you want to implement a specific fallback logic
when the copy of the document is not available in the $D table.

• CTX_DOC.SAVE_COPY_IGNORE: Always fetch the document from the data store.

The default value is CTX_DOC.SAVE_COPY_FALLBACK.

Example

In-Memory Tokens

The following example generates the tokens for document 1 and stores them in an in-
memory table, declared as the_tokens. The example then loops through the table to
display the document tokens.

declare
 the_tokens ctx_doc.token_tab;

begin
 ctx_doc.tokens('myindex','1',the_tokens);
 for i in 1..the_tokens.count loop
 dbms_output.put_line(the_tokens(i).token);
 end loop;
end;

Chapter 9
TOKENS

9-51

10
CTX_ENTITY Package

The CTX_ENTITY PL/SQL package is used to locate and classify words and phrases
into categories, such as persons or companies.

CTX_ENTITY contains the following stored procedures and functions.

Name Description

ADD_EXTRACT_RULE Adds a single extraction rule to an extraction policy.

ADD_STOP_ENTITY Marks certain entity mentions or entity types as not to be extracted.

COMPILE Compiles added extraction rules into an extraction policy.

CREATE_EXTRACT_POLICY Creates an extraction policy to use.

DROP_EXTRACT_POLICY Drops an extraction policy.

EXTRACT Generates an XML document describing the entities found in an input
document.

REMOVE_EXTRACT_RULE Removes a single extraction rule from an extraction policy.

REMOVE_STOP_ENTITY Removes a stop entity from an extraction policy.

Note:

The APIs in the CTX_ENTITY package do not support identifiers that are
prefixed with the schema or the owner name.

10.1 ADD_EXTRACT_RULE
The ADD_EXTRACT_RULE procedure adds a single extraction rule to extract policy.
Invokers add rules into their own extraction policy. Extraction rules have sentence-
wide scopes. Extraction rules have to be case-sensitive except for entity types and
rule operators in the rule expression. Order of rule addition is not important. Addition of
a rule will not be effective until CTX_ENTITY.COMPILE is executed. This procedure
issues a commit.

Syntax

CTX_ENTITY.ADD_EXTRACT_RULE(
 policy_name IN VARCHAR2,
 rule_id IN INTEGER,
 extraction_rule IN VARCHAR2);

policy_name
Specify the policy name.

10-1

rule_id
Specify a unique rule ID within an extraction policy. The rule ID must be greater than
0.

extraction_rule
The rule text in XML format specifies the language, expression, and entities to be
extracted. The rule text follows the XML schema as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="rule">
 <xsd:sequence>
 <xsd:element name="expression" type="xsd:string"/>
 <xsd:complexType>
 <xsd:attribute name="refid" type="xsd:positiveInteger"/>
 </xsd:complexType>
 <xsd:element name="comments type="xsd:string" default="\0"/>
 </xsd:sequence>
 </xsd:attribute name="language" type="xsd:string" default="ALL"/>
</xsd:element>
</xsd:schema>

Where:

• The language attribute of the rule tag specifies the applied language for the rule.
The rule will only be applied to documents that are of the specified languages.
The language attribute can be left out, or set to "ALL" if the rule is to match on all
documents.

• The expression tag contains the posix regular expression that will be used in the
matching.

• The comments tag allows users to associate any comments with this user rule.

• The type tag assigns the extracted entity text to a given entity type. The refid
attribute of the type tag specifies which backreference in the regular expression
corresponds to the actual entity. The entity type can be one of the Oracle supplied
types, listed in Table 10-1, or it can be a user-defined type, which must be
prefixed with the letter "x".

Supplied Entity
Type

Explanation Examples

building A particular building White House

city New York

company Oracle Corporation

country United States

currency Dollar

date July 4

day Monday, Tuesday

email_address person@example.com

geo_political A political or strategic
organization

United Nations

holiday Name of a country
holiday

Labor Day

location_other Other types of locations Atlantic Ocean

month June, July

Chapter 10
ADD_EXTRACT_RULE

10-2

Supplied Entity
Type

Explanation Examples

non_profit Non-profit organization Red Cross

organization_oth
er

Other types of
organizations

Supreme Court

percent Expressed as number
and %

10%

person_jobtitle Person referred to by
title

President, Professor

person_name Person referred to by
name

John Doe

person_other Other types of persons Other types of persons (for
example, criminal)

phone_number (123)-456-7890

postal_address Redwood Shores, CA

product Oracle Text

region North America

ssn Social Security Number 123-45-6789

state A state or province California

time_duration A length of time 10 seconds

tod Time of day 8:00 AM

url Web address www.example.com

zip_code Zip Code CA 94065

Example 1

The following example shows how to define an extraction rule and associate it with an
entity extraction policy. The following rule defines a simple extraction rule for finding
email addresses in documents.

begin
 ctx_entity.add_extract_rule('pol1', 1,
 '<rule>
 <expression>email is (\w+@\w+\.\w+)</expression>
 <type refid = "1">email_address</type>
 </rule>');
end;
/

Where:

• Given the sentence: "My email address is jdoe@company.com", this extraction
rule will extract "jdoe@company.com" as an entity of type email_address.

• The rule is added to the extraction policy called pol1.

• The rule is added with rule ID of 1.

• This XML description of the rule is as follows:

– The language attribute of the rule tag is left empty, so the rule will apply to all
languages.

– The expression tag contains the regular expression to use in the extraction.

Chapter 10
ADD_EXTRACT_RULE

10-3

– The value of the type element and the refid attribute of the type tag specify
that the first backreference corresponds to the text of the entity.

Example 2

The following rule defines a simple extraction rule for finding phone numbers in
documents:

begin
 ctx_entity.add_extract_rule('pol1', 2,
 '<rule language="english">
 <expression>(\(d{3}\) \d{3}-\d{3}-\d{4})</expression>
 <comments>Rule for phone numbers</comments>
 <type refid="1">email_address</type>
 </rule>';
end;
/

Where:

• Given the sentence: "I can be contacted at (123) 456-7890", this extraction rule
will extract "(123) 456-7890" as an entity of type phone_number.

• The rule is added to the extraction policy called pol1.

• The rule is added with rule ID of 2.

• The XML description of the rule is as follows:

– The language attribute of the rule tag is set to english, so the rule will only
apply to English documents.

– The expression tag contains the regular expression to use in the extraction.

– The value of the type element and the refid attribute of the type tag specify
that the first backreference corresponds to the text of the entity.

– Explanatory comments are associated with this rule.

10.2 ADD_STOP_ENTITY
This procedure is used to mark certain entity mentions or entity types as not to be
extracted. Invokers add stop entities to their own extraction policy. It does not take
effect until after CTX_ENTITY.COMPILE is run. Either entity_name or entity_type can
be NULL, but not both. If one stop entity is a subset of another, it will be marked as a
subset after CTX_ENTITY.COMPILE, and not used in extraction. This procedure issues a
commit.

Syntax

CTX_ENTITY.ADD_STOP_ENTITY(
 policy_name IN VARCHAR2,
 entity_name IN INTEGER,
 entity_type IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the policy name of the stop entity that is to be added.

Chapter 10
ADD_STOP_ENTITY

10-4

entity_name
Specify the entity name to be listed as a stop entity. If entity_type is NULL, all
mentions with this entity_name will be listed as stop entities. It is case-sensitive.

entity_type
If entity_name is NULL, this will specify an entire entity type to be listed as stop entity.
If entity_name is not NULL, this will specify only the mention <entity_type,
entity_name> as a stop entity. It is case-insensitive. The maximum byte length is
4000 bytes.

comments
The maximum byte length is 4000 bytes.

Example

The following example adds a stop entity corresponding to all persons. After
compilation, extraction will not report any mentions of entity type person.

exec ctx_entity.add_stop_entity('pol1', NULL, 'person');

The following example adds a stop entity corresponding to <'person', 'john doe'>.
After compilation, extraction will not report any mentions of the pair <'person', 'john
doe'>. This stop entity is actually a subset of the first stop entity added. It will be
marked subset in the CTX_USER_EXTRACT_STOP_ENTITIES view, and will not be used
in extraction.

exec ctx_entity.add_stop_entity('pol1', 'john doe', 'person');

The following example adds a stop entity corresponding to all mentions of ford. After
compilation, extraction will not report any mentions of the entity ford, irrespective of
the entity type of the mention. For example, if a rule matches ford to a person, the
extraction will not report this match. If a rule matches ford to a company, the extraction
will again not report this match.

exec ctx_entity.add_stop_entity('pol1', 'ford', NULL);

Related Topics

"COMPILE"

"CTX_USER_EXTRACT_STOP_ENTITIES"

10.3 COMPILE
This procedure compiles added extraction rules into an extraction policy. It can also be
used to compile added stop entities into an extraction policy. Users have to invoke this
procedure if they have added any rules or stop entities to their policy.

Invokers compile rules and stop entities into their own extraction policy. Users can
choose to compile added rules, added stop entities, or both.

After compilation, the CTX_USER_EXTRACT_RULES and
CTX_USER_EXTRACT_STOP_ENTITIES views will show which rules and stop entities are
being used in the entity extraction.

Chapter 10
COMPILE

10-5

Syntax

CTX_ENTITY.COMPILE(
 policy_name IN VARCHAR2,
 compile_choice IN NUMBER DEFAULT COMPILE_ALL,
 locking IN NUMBER DEFAULT LOCK_NOWAIT_ERROR);

policy_name
Specify the policy name that is to be compiled.

compile_choice
Specify the entity name to be listed as a stop entity. If entity_type is NULL, all
mentions with this entity_name will be listed as stop entities. It is case-sensitive.
The options are COMPILE_ALL, COMPILE_RULES, and COMPILE_STOP_ENTITIES.
COMPILE_ALL compiles both rules and stop entities. COMPILE_RULES compiles only
rules. COMPILE_STOP_ENTITIES compiles only stop entities.

locking
The maximum byte length is 4000 bytes. Configure how COMPILE deals with the
situation where another COMPILE is already running on the same policy.
The options for locking are:

• CTX_ENTITY.LOCK_WAIT

If another compile is running, wait until the running compile is complete, then
begin compile. (In the event of not being able to get a lock, it will wait forever and
ignore the maxtime setting.).

• CTX_ENTITY.LOCK_NOWAIT

If another compile is running, immediately returns without error.

• CTX_ENTITY.LOCK_NOWAIT_ERROR

If another sync is running, error "DRG-51313: timeout while waiting for DML or
optimize lock" is raised.

Example

The following example compiles the policy using the default setting:

exec ctx_entity.compile('pol1');

The following example compiles only the stop entities for the policy:

exec ctx_entity.compile('pol1', CTX_ENTITY.COMPILE_STOP_ENTITIES);

The following example compiles both rules and stop entities. If a lock exists, the
function returns immediately, but does not raise an error.

exec ctx_entity.compile('pol1', CTX_ENTITY.COMPILE_ALL,
 CTX_ENTITY.LOCK_NOWAIT);

Related Topics

"CTX_USER_EXTRACT_RULES"

"CTX_USER_EXTRACT_STOP_ENTITIES"

Chapter 10
COMPILE

10-6

10.4 CREATE_EXTRACT_POLICY
The CREATE_EXTRACT_POLICY procedure creates an extraction policy to use. This policy
can only be used by the policy owner.

Syntax

CTX_ENTITY.CREATE_EXTRACT_POLICY(
 policy_name IN VARCHAR2,
 lexer IN VARCHAR2 DEFAULT NULL,
 include_supplied_rules IN BOOLEAN DEFAULT TRUE,
 include_supplied_dictionary IN BOOLEAN DEFAULT TRUE
);

policy_name
Specify the name of the new extraction policy.

lexer
Specify the name of the lexer preference. Only AUTO_LEXER is supported. If not
specified, CTXSYS.DEFAULT_EXTRACT_LEXER will be used. The attributes index_stems
and deriv_stems are not allowed.

include_supplied_rules
Specify whether Oracle-supplied rules are included in entity extraction. If false,
automatic acronym resolution will be turned off. The default is true.

include_supplied_dictionary
Specify whether the Oracle-supplied dictionary is included in entity extraction. The
default is true.

Examples

The following example creates an extraction policy using the default settings. By
default, the Oracle-supplied features, such as rules and dictionary, are enabled.

exec CTX_ENTITY.CREATE_EXTRACT_POLICY('pol1');

The following example creates an extraction policy that explicitly specifies certain
parameters. It specifies the lexer to be used as mylex, which must be an
AUTO_LEXER preference. It also includes the Oracle-supplied rules, but disables the
Oracle-supplied dictionary.

exec CTX_ENTITY.CREATE_EXTRACT_POLICY('pol2', 'mylex', TRUE, FALSE);

Related Topics

"AUTO_LEXER"

"CTXSYS.DEFAULT_EXTRACT_LEXER"

10.5 DROP_EXTRACT_POLICY
The DROP_EXTRACT_POLICY procedure drops an extraction policy. These policies can
only be dropped by the policy owner. This procedure issues a commit.

Chapter 10
CREATE_EXTRACT_POLICY

10-7

Syntax

CTX_ENTITY.DROP_EXTRACT_POLICY(
 policy_name IN VARCHAR2
);

policy_name
Specify the name of the extraction policy to be dropped.

Example

The following example drops the extraction policy pol2:

exec ctx_entity.drop_extract_policy('pol2');

10.6 EXTRACT
The EXTRACT procedure runs entity extraction on a given document and generates an
XML document describing the entities found in the document. The XML document will
give the entity text, type, and location of the entity in the document. The extraction will
use the settings (rules, stop entities, and dictionary) defined in the given extraction
policy.

Entity type names in the result will be uppercased. Invokers can run extraction using
their own extraction policy.

Before execution, you have to issue CTX_ENTITY.COMPILE.

Syntax

CTX_ENTITY.EXTRACT(
 policy_name IN VARCHAR2,
 document IN CLOB,
 language IN VARCHAR2,
 result IN OUT NOCOPY CLOB,
 entity_type_list IN CLOB DEFAULT NULL
);

policy_name
Run extraction using the given policy.

document
The input document to run extraction on.
If entity_type is NULL, all mentions with this entity_name will be listed as stop
entities. It is case-sensitive.

language
Only English is supported.

result
A CLOB containing the XML description of the entities extracted from the document.
If entity_type is NULL, all mentions with this entity_name will be listed as stop
entities. It is case-sensitive.

Chapter 10
EXTRACT

10-8

entity_type_list
Specify that extraction will only consider a subset of entity types. The
entity_type_list is a comma-delimited list. If the entity_type_list is not specified,
the entity extraction will consider all entity types.

Example

The following example shows the results of entity extraction on an example document.
Suppose that we have created an extraction policy called pol1, and we are given the
input document:

Sam A. Schwartz retired as executive vice president of Hupplewhite INc. in New York.

We then call the ctx_entity.extract procedure to generate an XML document
containing the entities in this document. We insert the results CLOB into a table called
entities for future viewing.

declare
 myresults clob;
begin
 select txt into mydoc from docs where id=1;
 ctx_entity.extract('p1', mydoc, null, myresults);
 insert into entities values(1, myresults);
 commit;
 end;
/

Then we can examine the extracted entities from the entities table. Note that each
entity is tagged with its location in the input document, as well as the source used to
classify the entity.

<entities>
<entity id="0" offset="75" length="8" source="SuppliedDictionary">
<text>New York</text>
<type>city</type>
</entity>
<entity id="1" offset="55" length="16" source="SuppliedRule">
<text>Hupplewhite Inc.</text>
<type>company</type>
</entity>
<entity id="2" offset="27" length="24" source="SuppliedDictionary">
<text>Sam A. Schwartz</text>
<type>person_name</type>
</entity>
<entity id="4" offset="75" length="8" source="SuppliedDictionary">
<text>New York</text>
<type>state</type>
</entity>
</entities>

10.7 REMOVE_EXTRACT_RULE
The REMOVE_EXTRACT_RULE procedure removes an extraction rule from the specified
policy given a rule_id. Only the owner of the specified policy can remove an
extraction rule from the policy. Removal of the extraction rule will be in effect after
running CTX_ENTITY.COMPILE.

Chapter 10
REMOVE_EXTRACT_RULE

10-9

Syntax

CTX_ENTITY.REMOVE_EXTRACT_RULE(
 policy_name IN VARCHAR2,
 rule_id IN INTEGER
);

policy_name
Remove the extraction rule from the specified policy.

rule_id
Specify the rule ID of the extraction rule to be removed.

Example

The following example removes the extraction rule with ID 1 from the policy pol1:

exec ctx_entity.remove_extract_rule('pol1', 1);

10.8 REMOVE_STOP_ENTITY
The REMOVE_STOP_ENTITY procedure removes a stop entity from an extraction policy.
Only the owner of the specified policy can remove a stop entity from the policy.
Removal of the stop entity will be in effect after running CTX_ENTITY.COMPILE. Either
the entity_name or entity_type can be null, but not both.

Syntax

CTX_ENTITY.REMOVE_STOP_ENTITY(
 policy_name IN VARCHAR2,
 entity_name IN INTEGER DEFAULT NULL,
 entity_type IN VARCHAR2 DEFAULT NULL
);

policy_name
Remove the stop_entity from the specified policy.

entity_name
Specify the name to be removed from the stop entity list. The stop_entity must have
already been added to the stop_entity list using CTX_ENTITY.ADD_STOP_ENTITY.

entity_type
Specify the type of entity to be removed from the stop entity list. The stop_entity
must have already been added to the stop entity list using
CTX_ENTITY.ADD_STOP_ENTITY.

Example

exec ctx_entity.remove_stop_entity('pol1', NULL, 'person_name');

The example statement removes the stop entity corresponding to all mentions of the
entity_type person_name from the policy pol1. After execution, this stop entity will be
marked as "to be deleted" in the CTX_USER_EXTRACT_STOP_ENTITIES view. The
removal of the stop entity will take effect once the user runs CTX_ENTITY.COMPILE.

Chapter 10
REMOVE_STOP_ENTITY

10-10

Related Topics

"COMPILE"

"ADD_STOP_ENTITY"

"CTX_USER_EXTRACT_STOP_ENTITIES"

Chapter 10
REMOVE_STOP_ENTITY

10-11

11
CTX_OUTPUT Package

This chapter provides reference information for using the CTX_OUTPUT PL/SQL
package.

CTX_OUTPUT contains the following stored procedures:

Name Description

ADD_EVENT Adds an event to the index log.

ADD_TRACE Enables tracing.

DISABLE_QUERY_STATS Turns off the gathering of query stats for the index.

ENABLE_QUERY_STATS Enables gathering of query stats for the index.

END_LOG Halts logging of index and document services requests.

END_QUERY_LOG Stops logging queries into a logfile.

GET_TRACE_VALUE Returns the value of a trace.

LOG_TRACES Prints traces to logfile.

LOGFILENAME Returns the name of the current log file.

REMOVE_EVENT Removes an event from the index log.

REMOVE_TRACE Disables tracing.

RESET_TRACE Clears a trace.

START_LOG Starts logging index and document service requests.

START_QUERY_LOG Creates a log file of queries.

Note:

The APIs in the CTX_OUTPUT package do not support identifiers that are
prefixed with the schema or the owner name.

11.1 ADD_EVENT
Use this procedure to add an event to the index log for a more detailed log output or to
enable error tracing for Oracle Text errors. Index logs are now appended to the
database trace files.

Syntax

CTX_OUTPUT.ADD_EVENT(event in NUMBER, errnum in NUMBER := null);

event
Specify the type of index event to log. You can add the following events:

11-1

• CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID, which logs the rowid of each row as it is
indexed. This is useful for debugging a failed index operation.

• CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints the each token as it is being
indexed.

• CTX_OUTPUT.EVENT_DRG_DUMP_ERRORSTACK, which prints the stack trace for the
specified DRG error in the log. An error will be raised if errnum is not specified.

Note:

CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, which prints each token as it is being
optimized, and CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints each
token as it is being indexed, are disabled when using PDB lockdown profile
CTX_PROTOCOLS.

errnum
Specify the DRG error number for a CTX_OUTPUT.EVENT_DRG_DUMP_ERRRORSTACK
event.

Example

begin
CTX_OUTPUT.ADD_EVENT(CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID);
end;

Related Topics

"REMOVE_EVENT"

11.2 ADD_TRACE
Use this procedure to enable a trace. If the trace has not been enabled, this call adds
the trace to the list of active traces and resets its value to 0. If the trace has already
been enabled, an error is raised.

Syntax

CTX_OUTPUT.ADD_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to enable. See Table 11-1 for possible trace values.

Notes

Table 11-1 shows the available traces:

Table 11-1 Available Traces

Symbol ID Metric

TRACE_IDX_USER_DATASTORE 1 Time spent executing user datastore

TRACE_IDX_AUTO_FILTER 2 Time spent invoking the AUTO_FILTER filter.
(Replaces the deprecated
TRACE_IDX_INSO_FILTER trace)

Chapter 11
ADD_TRACE

11-2

Table 11-1 (Cont.) Available Traces

Symbol ID Metric

TRACE_QRY_XX_TIME 3 Time spent executing the $X cursor

TRACE_QRY_XF_TIME 4 Time spent fetching from $X

TRACE_QRY_X_ROWS 5 Total number of rows whose token metadata was
fetched from $X

TRACE_QRY_IF_TIME 6 Time spent fetching the LOB locator from $I

TRACE_QRY_IR_TIME 7 Time spent reading $I LOB information

TRACE_QRY_I_ROWS 8 Number of rows whose $I token_info was
actually read

TRACE_QRY_I_SIZE 9 Number of bytes read from $I LOBs

TRACE_QRY_R_TIME 10 Time spent fetching and reading $R information

TRACE_QRY_CON_TIME 11 Time spent in CONTAINS processing
(drexrcontains/drexrstart/drexrfetch)

TRACE_QRY_S_TIME 15 Time spent fetching and reading $S information

TRACE_QRY_O_TIME 19 Time spent reading $O information

TRACE_QRY_D_TIME 23 Time spent reading $D information

TRACE_QRY_SNIPPET_TIME 25 Time spent extracting a snippet from a document

TRACE_HIL_DOCSERV_TIME 26 Time spent by document service procedures
(snippet, highlight, and markup)

Tracing is independent of logging. Logging does not have to be on to start tracing, and
vice-versa.

Traces are associated with a session—they can measure operations that take place
within a single session, and conversely, cannot make measurements across sessions.

During parallel sync or optimize, the trace profile will be copied to the slave sessions if
and only if tracing is currently enabled. Each slave will accumulate its own traces and
implicitly write all trace values to the slave logfile before termination.

Related Topics

"REMOVE_TRACE"

"GET_TRACE_VALUE"

"LOG_TRACES"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.3 DISABLE_QUERY_STATS
Disables gathering of query stats for the index.

Chapter 11
DISABLE_QUERY_STATS

11-3

Syntax

ctx_output.disable_query_stats(
index_name IN VARCHAR2
);

index_name
The name of the index on which query stats collection is to be disabled.

Example

Turn off gathering of query stats for the index myindex.

CTX_OUTPUT.DISABLE_QUERY_STATS(myindex);

Notes

Once the query stats is disabled for an index, gathering and storing query-related
metadata is stopped for that index. All the entries corresponding to that index are
cleared from the dictionary tables. An error is returned if you call this procedure on an
index where query stats is not enabled.

Related Topics

CTX_OUTPUT."ENABLE_QUERY_STATS"

CTX_REPORT."INDEX_STATS"

11.4 ENABLE_QUERY_STATS
Enables gathering of query stats for the index. To have query-related metadata stored
for the index, use this procedure to enable collection of statistics on that index. You
can only access the gathered metadata when ctx_output.enable_query_stats is
turned on for the index.

Note:

Accessing the query stats metadata only works when
ctx_output.enable_query_stats is turned on for the index. Please see
CTX_REPORT."INDEX_STATS" for the list of gathered query stats
metadata.

Syntax

ctx_output.enable_query_stats(
index_name IN VARCHAR2
);

index_name
The name of the index on which query stats collection is to be enabled.

Example

Turn on gathering of query stats for the index myindex.

Chapter 11
ENABLE_QUERY_STATS

11-4

CTX_OUTPUT.ENABLE_QUERY_STATS(myindex);

Notes

The information that shows whether query stats is enabled on an index is available in
the views: CTX_INDEXES and CTX_USER_INDEXES under the column
idx_query_stats_enabled, which is in both of these views. If query_stats is enabled
for an index, then the column displays YES; if not, then the column displays NO.

The data corresponding to the query statistics will be stored in persistent dictionary
tables. Once statistics has been enabled for a particular index, query statistics will
be collected for that index from all sessions.

If you call this procedure for an index where query stats is already enabled, then an
error is thrown.

Statistics collection has a minimal effect on query performance.

Related Topics

CTX_OUTPUT."DISABLE_QUERY_STATS"

CTX_REPORT."INDEX_STATS".

11.5 END_LOG
This procedure halts logging index and document service requests.

Syntax

ctx_output.end_log;

Example

begin
CTX_OUTPUT.END_LOG;
end;

11.6 END_QUERY_LOG
Use this procedure to stop logging queries into the database trace files.

Syntax

ctx_output.end_query_log;

Example

begin

CTX_OUTPUT.START_QUERY_LOG('mylog1');
 < get queries >
CTX_OUTPUT.END_QUERY_LOG;

end;

Chapter 11
END_LOG

11-5

11.7 GET_TRACE_VALUE
Use this procedure to programmatically retrieve the current value of a trace.

Syntax

CTX_OUTPUT.GET_TRACE_VALUE(trace_id BINARY_INTEGER);

trace_id
Specify the trace ID whose value you want. See Table 11-1 for possible values.

Example

This sets the value of the variable value:

value := ctx_output.get_trace_value(trace_id);

Notes

You can also retrieve trace values through SQL:

select * from ctx_trace_values;

See "CTX_TRACE_VALUES" for the entries in the CTX_TRACE_VALUES view.

If the trace has not been enabled, an error is raised.

Traces are not reset to 0 by this call.

Traces are associated with a session—they can measure operations that take place
within a single session, and conversely, cannot make measurements across sessions.

Related Topics

"REMOVE_TRACE"

"ADD_TRACE"

"LOG_TRACES"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.8 LOG_TRACES
Use this procedure to print all active traces to the RDBMS trace files.

Syntax

CTX_OUTPUT.LOG_TRACES;

Notes

Traces are not reset to 0 by this call.

The traces now go to the database trace files.

Chapter 11
GET_TRACE_VALUE

11-6

Related Topics

"REMOVE_TRACE"

"GET_TRACE_VALUE"

"ADD_TRACE"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.9 LOGFILENAME
Returns the current session's trace file name. An error occurs if logging is not started.

Syntax

CTX_OUTPUT.LOGFILENAME RETURN VARCHAR2;

Returns

Log file name

Example

declare
 logname varchar2(100);
begin
 logname := CTX_OUTPUT.LOGFILENAME;
 dbms_output.put_line('The current log file is: '||logname);
end;

11.10 REMOVE_EVENT
Use this procedure to remove an event added through ctx_output.add_event.

Syntax

CTX_OUTPUT.REMOVE_EVENT(event in NUMBER);

event
Specify the type of index event to remove from the log. You can remove the following
events:

• CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID, which logs the rowid of each row after it
is indexed. This is useful for debugging a failed index operation.

• CTX_OUTPUT.EVENT_OPT_PRINT_TOKEN, which prints each token as it is being
optimized.

• CTX_OUTPUT.EVENT_INDEX_PRINT_TOKEN, which prints the each token as it is being
indexed.

Example

begin

CTX_OUTPUT.REMOVE_EVENT(CTX_OUTPUT.EVENT_INDEX_PRINT_ROWID);

Chapter 11
LOGFILENAME

11-7

end;

Related Topics

"ADD_EVENT "

11.11 REMOVE_TRACE
Use this procedure to disable a trace.

Syntax

CTX_OUTPUT.REMOVE_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to disable. See Table 11-1 for possible values.

Notes

If the trace has not been enabled, an error is raised.

Related Topics

"GET_TRACE_VALUE"

"ADD_TRACE"

"LOG_TRACES"

"RESET_TRACE"

Oracle Text Application Developer's Guide

11.12 RESET_TRACE
Use this procedure to clear a trace (that is, reset it to 0).

Syntax

CTX_OUTPUT.RESET_TRACE(trace_id BINARY_INTEGER);

trace_id
Specify the ID of the trace to reset. See Table 11-1 for possible values.

Notes

If the trace has not been enabled, an error is raised.

Related Topics

"REMOVE_TRACE"

"GET_TRACE_VALUE"

"ADD_TRACE"

"LOG_TRACES"

Oracle Text Application Developer's Guide

Chapter 11
REMOVE_TRACE

11-8

11.13 START_LOG
Begin logging index and document service requests. Starting with Oracle Database
12c Release 2 (12.2), the index logs are written to the database trace files.

Syntax

CTX_OUTPUT.START_LOG(logfile in varchar2, overwrite in default true);

logfile
Specify the name of the log file. Starting with Oracle Database 12c Release 2 (12.2),
the logfile parameter is ignored. The logs are now appended to the database trace
files. Use the dictionary views such as V$DIAG_INFO and V$PROCESS to find the path to
your current session's trace file or to the trace file for each Oracle Database process.
The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility can also
be used to access the trace files.

overwrite
Specify whether you want to overwrite or append to the original query log file specified
by logfile, if it already exists. Starting with Oracle Database 12c Release 2 (12.2), this
parameter is ignored. By default, all logs are appended to the database trace file.

Examples

begin
CTX_OUTPUT.START_LOG('mylog1');
end;

To view the indexing logs, search for COMPONENT_NAME=’CONTEXT_INDEX’ in view
V$DIAG_TRACE_FILE_CONTENTS:

select PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME='CONTEXT_INDEX' and TRACE_FILENAME = trc_name;

To view the query logs, search for COMPONENT_NAME=’CONTEXT_QUERY’ in view
V$DIAG_TRACE_FILE_CONTENTS:

select PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME='CONTEXT_QUERY' and TRACE_FILENAME = trc_name;

Parallel Query (PQ) Slaves have trace filenames of the type: SID_pxxx_PID.trc. To
see the traces in the parallel slaves:

select TRACE_FILENAME, PAYLOAD from V$DIAG_TRACE_FILE_CONTENTS where
COMPONENT_NAME='CONTEXT_INDEX' and TRACE_FILENAME LIKE '%p00%';

Notes

No logs are written if the PDB lockdown profile CTX_LOGGING is enabled.

Logging does not have to be on to start tracing, and vice-versa.

Logging is associated with a session-it can log operations that take place within a
single session, and, conversely, cannot make measurements across sessions.

Chapter 11
START_LOG

11-9

Filenames used in CTX_OUTPUT.START_LOG are restricted to the following characters:
alphanumeric, minus, period, space, hash, underscore, single and double quotes. Any
other character in the filename will raise an error.

11.14 START_QUERY_LOG
Begin logging query requests. Starting with Oracle Database 12c Release 2 (12.2), the
query logs are written to the database trace files.

Use CTX_OUTPUT.END_QUERY_LOG to stop logging queries. Use
CTX_REPORT.QUERY_LOG_SUMMARY to obtain reports on logged queries, such as which
queries returned successfully the most times.

The query log includes the query string, the index name, and the timestamp of the
query, as well as whether or not the query successfully returned a hit. A successful
query for the phrase Blues Guitarists made at 6:46 (local time) on November 11th,
2003, would be entered into the query log in this form:

<QuerySet><TimeStamp>18:46:51 02/04/03</TimeStamp><IndexName>
IDX_SEARCH_TABLE</IndexName><Query>Blues
Guitarists</Query><ReturnHit>Yes</ReturnHit></QuerySet>

Syntax

CTX_OUTPUT.START_QUERY_LOG(logfile in varchar2, overwrite in default true);

logfile
Specify the name of the query log file. Starting with Oracle Database 12c Release 2
(12.2), the logfile parameter is ignored. The logs are appended to the database
trace files instead. Use the dictionary views such as V$DIAG_INFO and V$PROCESS to
find the path to your current session's trace file or to the trace file for each Oracle
Database process.
The Automatic Diagnostic Repository Command Interpreter (ADRCI) utility can also
be used to access the trace files.

overwrite
Specify whether you want to overwrite or append to the original query log file specified
by logfile, if it already exists. Starting with Oracle Database 12c Release 2 (12.2),
this parameter is ignored. By default, all logs are appended to the database trace file.

Example

begin

CTX_OUTPUT.START_QUERY_LOG('mylog1');
 < get queries >
CTX_OUTPUT.END_QUERY_LOG;

end;

Notes

No logs are written if the PDB lockdown profile CTX_LOGGING is enabled.

Filenames used in CTX_OUTPUT.START_QUERY_LOG are restricted to the following
characters: alphanumeric, minus, period, space, hash, underscore, single and double
quotes. Any other character in the filename will raise an error.

Chapter 11
START_QUERY_LOG

11-10

Logging is associated with a session-it can log operations that take place within a
single session, and, conversely, cannot make measurements across sessions.

Chapter 11
START_QUERY_LOG

11-11

12
CTX_QUERY Package

This chapter describes the CTX_QUERY PL/SQL package you can use for generating
query feedback, counting hits, and creating stored query expressions.

The CTX_QUERY package includes the following procedures and functions:

Name Description

BROWSE_WORDS Returns the words around a seed word in the index.

COUNT_HITS Returns the number hits to a query.

EXPLAIN Generates query expression parse and expansion
information.

HFEEDBACK Generates hierarchical query feedback information (broader
term, narrower term, and related term).

REMOVE_SQE Removes a specified stored query expression from the SQL
tables.

RESULT_SET Executes a query and generates a result set.

RESULT_SET_CLOB_QUERY Executes a query and generates a result set based on a
CLOB query parameter.

RESULT_SET_DOCUMENT Holds the result set document after the CONTAINS query
cursor is explicitly closed and if the query template has the
<ctx_result_set_descriptor> element.

STORE_SQE Executes a query and stores the results in stored query
expression tables.

Note:

You can use this package only when your index type is CONTEXT. This
package does not support the CTXCAT index type.

The APIs in the CTX_QUERY package do not support identifiers that are
prefixed with the schema or the owner name.

12.1 BROWSE_WORDS
This procedure enables you to browse words in an Oracle Text index. Specify a seed
word and BROWSE_WORDS returns the words around it in the index, and an approximate
count of the number of documents that contain each word.

This feature is useful for refining queries. You can identify the following words:

• Unselective words (words that have low document count)

• Misspelled words in the document set

12-1

Syntax 1: To Store Results in Table

ctx_query.browse_words(

index_name IN VARCHAR2,
seed IN VARCHAR2,
restab IN VARCHAR2,
browse_id IN NUMBER DEFAULT 0,
numwords IN NUMBER DEFAULT 10,
direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

Syntax 2: To Store Results in Memory

ctx_query.browse_words(

index_name IN VARCHAR2,
seed IN VARCHAR2,
resarr IN OUT BROWSE_TAB,
numwords IN NUMBER DEFAULT 10,
direction IN VARCHAR2 DEFAULT BROWSE_AROUND,
part_name IN VARCHAR2 DEFAULT NULL

);

index
Specify the name of the index. You can specify schema.name. Must be a local index.

seed
Specify the seed word. This word is lexed before browse expansion. The word need
not exist in the token table. seed must be a single word. Using multiple words as the
seed will result in an error.

restab
Specify the name of the result table. You can enter restab as schema.name. The
table must exist before you call this procedure, and you must have INSERT
permissions on the table. This table must have the following schema.

Column Datatype

browse_id number

word varchar2(64)

doc_count number

Existing rows in restab are not deleted before BROWSE_WORDS is called.

resarr
Specify the name of the result array. resarr is of type ctx_query.browse_tab.

type browse_rec is record (
 word varchar2(64),
 doc_count number
);
type browse_tab is table of browse_rec index by binary_integer;

Chapter 12
BROWSE_WORDS

12-2

browse_id
Specify a numeric identifier between 0 and 232. The rows produced for this browse
have a value of in the browse_id column in restab. When you do not specify
browse_id, the default is 0.

numwords
Specify the number of words returned.

direction
Specify the direction for the browse. You can specify one of:

value behavior

BEFORE Browse seed word and words alphabetically before the seed.

AROUND Browse seed word and words alphabetically before and after
the seed.

AFTER Browse seed word and words alphabetically after the seed.

Symbols CTX_QUERY.BROWSE_BEFORE, CTX_QUERY.BROWSE_AROUND, and
CTX_QUERY.BROWSE_AFTER are defined for these literal values as well.

part_name
Specify the name of the index partition to browse.

Example

Browsing Words with Result Table

begin
ctx_query.browse_words('myindex','dog','myres',numwords=>5,direction=>'AROUND');
end;

select word, doc_count from myres order by word;

WORD DOC_COUNT
-------- ----------
CZAR 15
DARLING 5
DOC 73
DUNK 100
EAR 3

Browsing Words with Result Array

set serveroutput on;
declare
 resarr ctx_query.browse_tab;
begin
ctx_query.browse_words('myindex','dog',resarr,5,CTX_QUERY.BROWSE_AROUND);
for i in 1..resarr.count loop
 dbms_output.put_line(resarr(i).word || ':' || resarr(i).doc_count);
end loop;
end;

Chapter 12
BROWSE_WORDS

12-3

12.2 COUNT_HITS
Returns the number of hits for the specified query. You can call COUNT_HITS in exact or
estimate mode. Exact mode returns the exact number of hits for the query. Estimate
mode returns an upper-bound estimate but runs faster than exact mode.

Syntax

Syntax 1

exec CTX_QUERY.COUNT_HITS(
 index_name IN VARCHAR2,
 text_query IN VARCHAR2,
 exact IN BOOLEAN DEFAULT TRUE,
 part_name IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

Syntax 2

exec CTX_QUERY.COUNT_HITS_CLOB_QUERY(
 index_name IN VARCHAR2,
 text_query IN CLOB,
 exact IN BOOLEAN DEFAULT TRUE,
 part_name IN VARCHAR2 DEFAULT NULL
) RETURN NUMBER;

index_name
Specify the index name.

text_query
Specify the query.

exact
Specify TRUE for an exact count. Specify FALSE for an upper-bound estimate.
Specifying FALSE returns a less accurate number but runs faster. Specifying FALSE
might return a number which is too high if rows have been updated or deleted since
the last FULL index optimize. Optimizing in full mode removes these false hits, and
then EXACT set to FALSE will return the same number as EXACT set to TRUE.

part_name
Specify the name of the index partition to query.

Notes

If the query contains structured criteria, then you should use SELECT COUNT(*).

If the index was created with the TRANSACTIONAL parameter, then COUNT_HITS will
include pending rowids as well as those that have been synchronized.

12.3 EXPLAIN
Use CTX_QUERY.EXPLAIN to generate explain plan information for a query expression.
The EXPLAIN plan provides a graphical representation of the parse tree for a Text
query expression. This information is stored in a result table.

Chapter 12
COUNT_HITS

12-4

This procedure does not execute the query. Instead, this procedure can tell you how a
query is expanded and parsed before you enter the query. This is especially useful for
stem, wildcard, thesaurus, fuzzy, soundex, or about queries. Parse trees also show
the following information:

• Order of execution (precedence of operators)

• ABOUT query normalization

• Query expression optimization

• Stop-word transformations

• Breakdown of composite-word tokens

Knowing how Oracle Text evaluates a query is useful for refining and debugging
queries. You can also design your application so that it uses the explain plan
information to help users write better queries.

Syntax

Syntax 1

exec CTX_QUERY.EXPLAIN(

 index_name IN VARCHAR2,
 text_query IN VARCHAR2,
 explain_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 explain_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL

);

Syntax 2

exec CTX_QUERY.EXPLAIN_CLOB_QUERY(
 index_name IN VARCHAR2,
 text_query IN CLOB,
 explain_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 explain_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the index to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.
When you include a wildcard, fuzzy, or soundex operator in text_query, this
procedure looks at the index tables to determine the expansion.
Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy
deletes as in regular queries.

explain_table
Specify the name of the table used to store representation of the parse tree for
text_query. You must have at least INSERT and DELETE privileges on the table used to
store the results from EXPLAIN.

Chapter 12
EXPLAIN

12-5

See Also:

"EXPLAIN Table" in Oracle Text Result Tables for more information about
the structure of the explain table.

sharelevel
Specify whether explain_table is shared by multiple EXPLAIN calls. Specify 0 for
exclusive use and 1 for shared use. Default is 0 (single-use).
When you specify 0, the system automatically truncates the result table before the
next call to EXPLAIN.
When you specify 1 for shared use, this procedure does not truncate the result table.
Only results with the same explain_id are updated. When no results with the same
explain_id exist, new results are added to the EXPLAIN table.

explain_id
Specify a name that identifies the explain results returned by an EXPLAIN procedure
when more than one EXPLAIN call uses the same shared EXPLAIN table. Default is
NULL.

part_name
Specify the name of the index partition to query.

Example

Creating the Explain Table

To create an explain table called test_explain for example, use the following SQL
statement:

create table test_explain(
 explain_id varchar2(30),
 id number,
 parent_id number,
 operation varchar2(30),
 options varchar2(30),
 object_name varchar2(64),
 position number,
 cardinality number);

Running CTX_QUERY.EXPLAIN

To obtain the expansion of a query expression such as comp% OR ?smith, use
CTX_QUERY.EXPLAIN as follows:

ctx_query.explain(
 index_name => 'newindex',
 text_query => 'comp% OR ?smith',
 explain_table => 'test_explain',
 sharelevel => 0,
 explain_id => 'Test');

Retrieving Data from Explain Table

To read the explain table, you can select the columns as follows:

select explain_id, id, parent_id, operation, options, object_name, position
from test_explain order by id;

Chapter 12
EXPLAIN

12-6

The output is ordered by ID to simulate a hierarchical query:

EXPLAIN_ID ID PARENT_ID OPERATION OPTIONS OBJECT_NAME POSITION
----------- ---- --------- ------------ ------- ----------- --------
Test 1 0 OR NULL NULL 1
Test 2 1 EQUIVALENCE NULL COMP% 1
Test 3 2 WORD NULL COMPTROLLER 1
Test 4 2 WORD NULL COMPUTER 2
Test 5 1 EQUIVALENCE (?) SMITH 2
Test 6 5 WORD NULL SMITH 1
Test 7 5 WORD NULL SMYTHE 2

Restrictions

CTX_QUERY.EXPLAIN does not support the use of query templates.

You cannot use CTX_QUERY.EXPLAIN with remote queries.

Related Topics

Oracle Text CONTAINS Query Operators

Stopword Transformations in Oracle Text

12.4 HFEEDBACK
In English or French, this procedure generates hierarchical query feedback information
(broader term, narrower term, and related term) for the specified query.

Broader term, narrower term, and related term information is obtained from the
knowledge base. However, only knowledge base terms that are also in the index are
returned as query feedback information. This increases the chances that terms
returned from HFEEDBACK produce hits over the currently indexed document set.

Hierarchical query feedback information is useful for suggesting other query terms to
the user.

Syntax

Syntax 1

exec CTX_QUERY.HFEEDBACK(
 index_name IN VARCHAR2,
 text_query IN VARCHAR2,
 feedback_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 feedback_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL
);

Syntax 2

exec CTX_QUERY.HFEEDBACK_CLOB_QUERY(
 index_name IN VARCHAR2,
 text_query IN CLOB,
 feedback_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 feedback_id IN VARCHAR2 DEFAULT NULL,
 part_name IN VARCHAR2 DEFAULT NULL
);

Chapter 12
HFEEDBACK

12-7

index_name
Specify the name of the index for the text column to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

feedback_table
Specify the name of the table used to store the feedback terms.

See Also:

"HFEEDBACK Table" in Oracle Text Result Tables for more information
about the structure of the explain table.

sharelevel
Specify whether feedback_table is shared by multiple HFEEDBACK calls. Specify 0 for
exclusive use and 1 for shared use. Default is 0 (single-use).
When you specify 0, the system automatically truncates the feedback table before the
next call to HFEEDBACK.
When you specify 1 for shared use, this procedure does not truncate the feedback
table. Only results with the same feedback_id are updated. When no results with the
same feedback_id exist, new results are added to the feedback table.

feedback_id
Specify a value that identifies the feedback results returned by a call to HFEEDBACK
when more than one HFEEDBACK call uses the same shared feedback table. Default is
NULL.

part_name
Specify the name of the index partition to query.

Example

Create HFEEDBACK Result Table

Create a result table to use with CTX_QUERY.HFEEDBACK as follows:

 CREATE TABLE restab (
 feedback_id VARCHAR2(30),
 id NUMBER,
 parent_id NUMBER,
 operation VARCHAR2(30),
 options VARCHAR2(30),
 object_name VARCHAR2(80),
 position NUMBER,
 bt_feedback ctxsys.ctx_feedback_type,
 rt_feedback ctxsys.ctx_feedback_type,
 nt_feedback ctxsys.ctx_feedback_type,
 NESTED TABLE bt_feedback STORE AS res_bt,
 NESTED TABLE rt_feedback STORE AS res_rt,
 NESTED TABLE nt_feedback STORE AS res_nt
 ;

CTX_FEEDBACK_TYPE is a system-defined type in the CTXSYS schema.

Chapter 12
HFEEDBACK

12-8

See Also:

"HFEEDBACK Table" in Oracle Text Result Tables for more information
about the structure of the HFEEDBACK table.

Call CTX_QUERY.HFEEDBACK

The following code calls the HFEEDBACK procedure with the query computer industry.

BEGIN
ctx_query.hfeedback (index_name => 'my_index',
 text_query => 'computer industry',
 feedback_table => 'restab',
 sharelevel => 0,
 feedback_id => 'query10'
);
END;

Select From the Result Table

The following code extracts the feedback data from the result table. It extracts broader
term, narrower term, and related term feedback separately from the nested tables.

DECLARE
 i NUMBER;
BEGIN
 FOR frec IN (
 SELECT object_name, bt_feedback, rt_feedback, nt_feedback
 FROM restab
 WHERE feedback_id = 'query10' AND object_name IS NOT NULL
) LOOP

 dbms_output.put_line('Broader term feedback for ' || frec.object_name ||
':');
 i := frec.bt_feedback.FIRST;
 WHILE i IS NOT NULL LOOP
 dbms_output.put_line(frec.bt_feedback(i).text);
 i := frec.bt_feedback.NEXT(i);
 END LOOP;

 dbms_output.put_line('Related term feedback for ' || frec.object_name ||
':');
 i := frec.rt_feedback.FIRST;
 WHILE i IS NOT NULL LOOP
 dbms_output.put_line(frec.rt_feedback(i).text);
 i := frec.rt_feedback.NEXT(i);
 END LOOP;

 dbms_output.put_line('Narrower term feedback for ' || frec.object_name ||
':');
 i := frec.nt_feedback.FIRST;
 WHILE i IS NOT NULL LOOP
 dbms_output.put_line(frec.nt_feedback(i).text);
 i := frec.nt_feedback.NEXT(i);
 END LOOP;

 END LOOP;
END;

Chapter 12
HFEEDBACK

12-9

Sample Output

The following output is for the preceding example, which queries on computer industry:

Broader term feedback for computer industry:
hard sciences
Related term feedback for computer industry:
computer networking
electronics
knowledge
library science
mathematics
optical technology
robotics
satellite technology
semiconductors and superconductors
symbolic logic
telecommunications industry
Narrower term feedback for computer industry:
ABEND - abnormal end of task
AT&T Starlans
ATI Technologies, Incorporated
ActivCard
Actrade International Ltd.
Alta Technology
Amiga Format
Amiga Library Services
Amiga Shopper
Amstrat Action
Apple Computer, Incorporated
..

Note:

The HFEEDBACK information you obtain depends on the contents of your index
and knowledge base and as such might differ from the sample shown.

Restrictions

CTX_QUERY.HFEEDBACK does not support the use of query templates.

12.5 REMOVE_SQE
The CTX_QUERY.REMOVE_SQE procedure removes the specified stored query expression.

CTX_QUERY.REMOVE_SQE can be used to remove both session-duration and persistent
SQEs. See "STORE_SQE".

Since the query_name namespace is shared between the persistent and session-
duration SQEs, it is unnecessary to specify the duration of the SQE to be removed.

Syntax

CTX_QUERY.REMOVE_SQE(
 query_name IN VARCHAR2
);

Chapter 12
REMOVE_SQE

12-10

query_name
Specify the name of the stored or session-duration query expression to be removed.

Example

begin
 ctx_query.remove_sqe('dis1');
 ctx_query.remove_sqe('dis2');
end;
/

12.6 RESULT_SET
This procedure executes an XML query and generates a result set in XML. The Result
Set Interface can return data views that are difficult to express in SQL.

See Also:

Oracle Text Application Developer's Guide for details on how to use the
Result Set Interface

Syntax

CTX_QUERY.RESULT_SET (
 index_name IN VARCHAR2,
 query IN VARCHAR2,
 result_set_descriptor IN CLOB,
 result_set IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the index against which to execute the query.

query
Specify the query string.

result_set_descriptor
Specify the result set descriptor in XML. It describes what the result set should
contain.

result_set
Specify the output result set. If this variable is NULL on input, a session-duration
temporary lob will be allocated and returned to the user. The user is responsible for
deallocating this temporary lob.

part_name
Specify the index partition name. If the index is global, part_name must be NULL. If the
index is partitioned and part_name is not NULL, then the query will only be evaluated
for the given partition. If the index is partitioned and part_name is NULL, then the query
will be evaluated for all partitions.

Chapter 12
RESULT_SET

12-11

The Input Result Set Descriptor

The result set descriptor is an XML message which describes what to calculate for the
result set. The elements present in the result set descriptor and the order in which they
occur serve as a simple template, specifying what to include in the output result set.
That is, there should be the list of hit rowids, then a count, then a token count, and so
on. The attributes of the elements specify the parameters and options to the specific
operations, such as number of hits in the list of rowids, estimate versus exact count,
and so on.

The result set descriptor itself is XML conforming to the following DTD:

<!DOCTYPE ctx_result_set_descriptor [
<!ELEMENT ctx_result_set_descriptor (hitlist?, group*, count?,
collocates?)>
<!ELEMENT hitlist (rowid?, score?, sdata*, snippet*, sentiment?)>
<!ELEMENT group (count?, group_values?)>
<!ELEMENT count EMPTY>
<!ELEMENT rowid EMPTY>
<!ELEMENT score EMPTY>
<!ELEMENT sdata EMPTY>
<!ELEMENT group_values (value*)>
<!ELEMENT value EMPTY>
<!ELEMENT sentiment (item*)>
<!ELEMENT item EMPTY>
<!ELEMENT collocates EMPTY>
<!ATTLIST sentiment classifier CDATA "DEFAULT_CLASSIFIER">
<!ATTLIST item topic CDATA #REQUIRED>
<!ATTLIST item type (about|exact) "exact">
<!ATTLIST item agg (TRUE|FALSE) "FALSE">
<!ATTLIST item radius CDATA "50">
<!ATTLIST item max_inst CDATA "5">
<!ATTLIST item starttag CDATA #IMPLIED>
<!ATTLIST item endtag CDATA #IMPLIED>
<!ATTLIST collocates radius CDATA "20">
<!ATTLIST collocates max_words CDATA "10">
<!ATTLIST collocates use_tscore (TRUE|FALSE) "TRUE">
<!ATTLIST collocates use_hits CDATA "10">
<!ATTLIST group sdata CDATA #REQUIRED>
<!ATTLIST value id CDATA #IMPLIED>
<!ATTLIST hitlist start_hit_num CDATA #REQUIRED>
<!ATTLIST hitlist end_hit_num CDATA #REQUIRED>
<!ATTLIST hitlist order CDATA #IMPLIED>
<!ATTLIST count exact (TRUE|FALSE) "FALSE">
<!ATTLIST snippet radius CDATA #IMPLIED>
<!ATTLIST snippet max_length CDATA #IMPLIED>
<!ATTLIST snippet starttag CDATA #IMPLIED>
<!ATTLIST snippet endtag CDATA #IMPLIED>
]>

The following is a description of the possible XML elements for the result set
descriptor:

• ctx_result_set_descriptor

Chapter 12
RESULT_SET

12-12

This is the root element for the result set descriptor. The parent element is none,
as are the available attributes.

The possible child elements are:

– Zero or more hitlist elements.

– Zero or more group elements.

– At most one count element.

• group

The group element causes the generated result set to include a group breakdown.
In other words, a breakdown of the results by SDATA section values. The parent
element is ctx_result_set_descriptor, and the available attributes are:

– sdata

Specifies the name of the SDATA section to use for grouping. It is required.

Possible child elements of group are:

– At most one count element.

• hitlist

The hitlist element controls inclusion of a list of hit documents. The parent
element is ctx_result_set_descriptor, and the available attributes are:

The possible child elements of order are:

– start_hit_num

This specifies the starting document hit to be included in the generated result
set. This can be set to any positive integer less than or equal to 16000. For
example, if start_hit_num is 21, then the result set will include document hits
starting from the 21st document hit. This element is required.

– end_hit_num

This specifies the last document hit to be included in the generated result set.
This can be set to any positive integer less than or equal to 16000. For
example, if end_hit_num is 40, then the result set will include document hits up
to the 40th document hit. This element is required.

The possible child elements for hitlist are:

– At most one rowid element.

– At most one score element.

– At most one sdata element.

– At most one snippet element.

– order

This is an optional attribute that specifies the order for the documents in the
generated result set. The value is a list similar to a SQL ORDER BY statement,
except that, instead of column names, they can either be SCORE or SDATA
section names. In the following example, MYDATE and MYPRICE are the SDATA
section names:

(order = "SCORE DESC, MYDATE, MYPRICE DESC")

– At most one rowid element.

Chapter 12
RESULT_SET

12-13

– At most one score element.

– At most one sdata element.

• count

This element causes the generated result set to include a count of the number of
hit documents. The parent elements are:

– ctx_result_set_descriptor

– group

The available attributes for count are:

– exact

This is to estimate mode. Set to true or false. It is required, and the default is
false.

The possible child elements for count are none.

• rowid

This child element causes the generated result set to include rowid information for
each hit. The parent element is hitlist. There are no attributes and no possible
child elements.

• score

This child element causes the generated result set to include score information for
each hit.

– The parent element is hitlist.

– There are no available attributes, and no possible child elements.

• sdata

This child element causes the generated result set to include sdata values for
each hit.

– The parent element is hitlist.

– The available attribute is name. This specifies the name of the sdata section. It
is required.

– There are no child elements.

• sentiment

This element controls the inclusion of sentiment classification results for each
document returned as a part of the hitlist. There can be only one sentiment
element in the hitlist element.

The parent element is hitlist.

The attribute available for this element is classifier, which specifies the
sentiment classifier that is used to perform sentiment analysis. If no classifier is
specified, then the CTXSYS.DEFAULT_SENTIMENT_CLASSIFIER is used. If a specified
classifier is not available, then an error is displayed.

• item

This element specifies keywords or concepts for which sentiment information must
be fetched for the returned set of documents. Each sentiment element must
contain at least one child item element. The maximum is 10 child item elements. If

Chapter 12
RESULT_SET

12-14

you specify an empty item element (without any attributes), it indicates that
sentiment score for entire document must be returned.

The parent element is sentiment.

The available attributes for item are:

– topic

This specifies the topic for which sentiment analysis must be performed.

– type

If this attribute value is set to ABOUT, then the classifier treats the specified
topic as a concept rather than a keyword. The default is EXACT.

– agg

Determines whether the sentiment score must be aggregated and presented
as a single score for the entire document. The possible values are TRUE or
FALSE. TRUE indicates that the per text segment scores will be aggregated
and text segments will not be returned in the output resultset, only the
aggregated score will be returned. The default value is FALSE.

– radius

This specifies the radius of the surrounding text to be identified during
sentiment classification for that keyword. The default value is 50.

– max_inst

This specifies how many instances of text excerpts related to the specified
topic must be analyzed for sentiment classification. The default value is 5.

– starttag

This specifies the starting tag for topic highlighting.

– endtag

This specifies the ending tag for topic highlighting.

• collocates

This element controls the generation of related keywords or concepts associated
with the collection of documents retrieved by the query.

The parent element is hitlist.

The available attributes for collocates are:

– radius

This specifies the radius of the surrounding text to be identified for collocates.
The default value is 20.

– max_words

This specifies the maximum number of collocates to return for the given query.
The default value is 10.

– use_tscore

This specifies whether to use T-score for scoring the collocates. The possible
values are TRUE or FALSE, with the default being TRUE.

Set this attribute to TRUE to identify collocates that are common tokens. Set
this attribute to FALSE to identify collocates that emphasize unique words.

Chapter 12
RESULT_SET

12-15

The Output Result Set XML

The output result set XML is XML conforming to the following DTD:

<!DOCTYPE ctx_result_set [
<!ELEMENT ctx_result_set (hitlist?, groups*, count? , collocates?)>
<!ELEMENT hitlist (hit*)>
<!ELEMENT hit (rowid?, score?, snippet*, sdata*, sentiment?)>
<!ELEMENT groups (group*)>
<!ELEMENT group (count?)>
<!ELEMENT count (#PCDATA)>
<!ELEMENT rowid (#PCDATA)>
<!ELEMENT score (#PCDATA)>
<!ELEMENT snippet (segment*)>
<!ELEMENT sdata (#PCDATA)>
<!ELEMENT sentiment (item*)>
<!ELEMENT item (segment*, score*, doc?)>
<!ELEMENT segment (segment_text?, segment_score?)>
<!ELEMENT segment_text (#PCDATA)>
<!ELEMENT segment_score (#PCDATA)>
<!ELEMENT doc (score?)>
<!ELEMENT collocates (collocation*)>
<!ELEMENT collocation (word?, score?)>
<!ELEMENT word (#PCDATA)>
<!ATTLIST item topic CDATA #REQUIRED>
<!ATTLIST groups sdata CDATA #REQUIRED>
<!ATTLIST group value CDATA #REQUIRED>
]>

The following is a description of the list of possible XML elements for the output result
set:

• ctx_result_set

This is the root element for the generated result set. There are no attributes. The
parent is none. The possible child elements are:

– At most one hitlist element.

– Zero or more groups elements.

• groups

This delimits the start of a group breakdown section. The parent element is
ctx_result_set. The available attributes are:

– sdata

This is the name of the sdata section used for grouping.

The possible child elements are:

– Zero or more group elements.

• group

This delimits the start of a GROUP BY value. The parent element is the groups
element. The available attributes are:

– value

This is the value of the sdata section.

The possible child elements are at most one count element.

Chapter 12
RESULT_SET

12-16

• hitlist

This delimits the start of hitlist information. The parent element is
ctx_result_set, while the children are zero or more hit elements. There are no
attributes.

• hit

This delimits the start of the information for a particular document within a
hitlist. The parent element is hitlist, and there are no available attributes. The
possible child elements are:

– Zero or one rowid elements.

– Zero or one score element.

– Zero or one sdata element.

– Zero or one snippet element.

• rowid

This is the rowid of the document, so the content is the rowid of the document. The
parent element is the hit element. There are no child elements, and no available
attributes.

• score

This is the score of the document. The parent element is the hit element. The
content is the numeric score. There are no available attributes, and no possible
child elements.

• sdata

This is the SDATA value or values for the document. The parent element is the hit
element, and the available attribute is name, which is the name of the sdata
section. There are no possible child elements available. The content is the SDATA
section value, which, for DATE values, is in the format "YYYY-MM-DD
HH24:MI:SS", depending upon the actual values being stored.

• count

This is the document hit count. The parent element is the ctx_result_set element
or the group element. It contains the numeric hit count, has no attributes, and no
possible child elements.

• sentiment

This delimits the sentiment element for the hitlist document. Its child element is
item and parent is hitlist. It contains no attributes in the output result set.

• item

This delimits the item element for the hitlist document. Parent element is
sentiment and child elements are segment, score, and doc. It has one attribute
called topic.

• segment

This delimits an instance of segment element in a hit. Parent element is item.
Child elements are segment_text and segment_score. It contains no attributes.

• segment_text

Chapter 12
RESULT_SET

12-17

This specifies the text segment for the given item topic. Parent element is segment.
It has no child elements or attributes.

• segment_score

This specifies the sentiment score for the segment. Parent element is segment. It
has no child elements or attributes.

• score

This specifies the sentiment score for the document or for the parent item topic.
When present within collocation it specifies the collocation score for the particular
collocation keyword. Parent element is doc or collocation. It has no child elements
or attributes

• doc

This denotes the sentiment score is for the entire document. Its parent element is
item and child element is score. It has no attributes.

• collocates

This delimits the collocates element for the result set output. Parent element is
ctx_result_set and child element is collocation. It has no attributes.

• collocation

This denotes a single collocation. Parent element is collocates and child
elements are word and score. It has no attributes.

• word

This specifies the collocates token. Its parent element is collocation. It has no
child elements or attributes.

Example

This call to CTX_QUERY.RESULT_SET with the specified XML result_set_descriptor
will generate the following information in the form of XML:

• top 5 hits displaying, score, rowid, author SDATA section value, and pubDate SDATA
section value, order by pubDate SDATA section value DESC and score DESC

• total doc hit count for the text query

• counts group by pubDate SDATA section values

• counts group by author SDATA section values

declare
 rs clob;
begin
 dbms_lob.createtemporary(rs, true, dbms_lob.session);
 ctx_query.result_set('docidx', 'oracle', '
 <ctx_result_set_descriptor>
 <count/>
 <hitlist start_hit_num="1" end_hit_num="5" order="pubDate desc, score desc">
 <score/>
 <rowid/>
 <sdata name="author"/>
 <sdata name="pubDate"/>
 </hitlist>
 <group sdata="pubDate">
 <count/>
 </group>

Chapter 12
RESULT_SET

12-18

 <group sdata="author">
 <count/>
 </group>
 </ctx_result_set_descriptor>
', rs);
 dbms_lob.freetemporary(rs);
exception
 when others then
 dbms_lob.freetemporary(rs);
 raise;
end;
/

The XML output store in the result set output clob will resemble the following:

<ctx_result_set>
 <hitlist>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAC</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAG</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAK</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAO</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 <hit>
 <score>3</score><rowid>AAAPoEAABAAAMWsAAS</rowid>
 <sdata name="AUTHOR">John</sdata>
 <sdata name="PUBDATE">2001-01-03 00:00:00</sdata>
 </hit>
 </hitlist>

 <count>100</count>

 <groups sdata="PUBDATE">
 <group value="2001-01-01 00:00:00"><count>25</count></group>
 <group value="2001-01-02 00:00:00"><count>50</count></group>
 <group value="2001-01-03 00:00:00"><count>25</count></group>
 </groups>

 <groups sdata="AUTHOR">
 <group value="John"><count>50</count></group>
 <group value="Mike"><count>25</count></group>
 <group value="Steve"><count>25</count></group>
 </groups>

</ctx_result_set>

Chapter 12
RESULT_SET

12-19

Limitations and Restrictions

The following limitations and restrictions apply for RESULT_SET.

• The Result Set Interface (RSI) is not supported with Virtual Private Database.
(VPD is supported with the regular CONTAINS query, but not with RSI.)

• In order to execute the function, you must be able to query the base table.

• If a VPD policy is active on the base table, the documents portion of the result set
will not show any documents to which you are not entitled.

• When a VPD policy is being used, aggregate measures such as count may not be
accurate.

Related Topics

Oracle Text Application Developer's Guide for information on the XML Result Set
Interface

12.7 RESULT_SET_CLOB_QUERY
This procedure executes an XML query and generates a result set based on a CLOB
query parameter in XML

The RESULT_SET_CLOB_QUERY procedure is identical to the RESULT_SET procedure
except that the datatype of its query parameter is CLOB instead of VARCHAR2 to handle
longer queries.

Syntax

CTX_QUERY.RESULT_SET_CLOB_QUERY (
 index_name IN VARCHAR2,
 query IN CLOB,
 result_set_descriptor IN CLOB,
 result_set IN OUT CLOB,
 part_name IN VARCHAR2 DEFAULT
);

See Also:

RESULT_SET for the description of these parameters

12.8 RESULT_SET_DOCUMENT
RESULT_SET_DOCUMENT holds the result set document after the CONTAINS query cursor is
explicitly closed and if the query template has the <ctx_result_set_descriptor>
element.

Syntax

CTX_QUERY.RESULT_SET_DOCUMENT(
 index_name IN VARCHAR2,

Chapter 12
RESULT_SET_CLOB_QUERY

12-20

 query IN VARCHAR2,
 result_set_descriptor IN CLOB,
 result_set IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the index against which to execute the query.

query
Specify the query string.

result_set_descriptor
Specify the result set descriptor in XML. It describes what the result set should
contain. See "The Input Result Set Descriptor" for more details.

result_set
Specify the output result set. If this variable is NULL on input, a session-duration
temporary lob will be allocated and returned to the user. The user is responsible for
deallocating this temporary lob. See "The Output Result Set XML" for more details.

part_name
Specify the index partition name. If the index is global, part_name must be NULL. If the
index is partitioned and part_name is not NULL, then the query will only be evaluated
for the given partition. If the index is partitioned and part_name is NULL, then the query
will be evaluated for all partitions.

12.9 STORE_SQE
This procedure creates either a stored or session-duration query expression (SQE).
Only the query definition is stored.

SQEs are used to store the definition of a query without storing any results.
Referencing the query with the CONTAINS SQL operator references the definition of the
query. In this way, SQEs make it easy for defining long or frequently used query
expressions. Creating a session-duration SQE is useful for when you do not want the
maintenance overhead of deleting unused or no longer needed SQEs.

Supported Operators

Stored query expressions support all of the CONTAINS query operators. Stored query
expressions also support all of the special characters and other components that can
be used in a query expression, including other stored query expressions.

Privileges

Users are permitted to create and remove stored query expressions owned by them.
Users are permitted to use stored query expressions owned by anyone. The CTXSYS
user can create or remove stored query expressions for any user.

Syntax

Syntax 1

CTX_QUERY.STORE_SQE(
 query_name IN VARCHAR2,
 text_query IN VARCHAR2

Chapter 12
STORE_SQE

12-21

 duration IN NUMBER default CTX_QUERY.DURATION_SESSION
);

Syntax 2

CTX_QUERY.STORE_SQE_CLOB_SYNTAX(
 query_name IN VARCHAR2,
 text_query IN CLOB
 duration IN NUMBER default CTX_QUERY.DURATION_SESSION
);

query_name
Specify the name of the stored query expression to be created.

text_query
Specify the query expression to be associated with query_name.

duration
The possible values are DURATION_SESSION and DURATION_PERSISTENT.

• When duration is to set to DURATION_SESSION, the stored query expression is
stored in a PL/SQL package variable and is available for the session.

• When duration is to set to DURATION_PERSISTENT, the stored query expression is
stored in a database table, and can be referenced by other database sessions.

• The query_name namespace is shared between the persistent and session-
duration SQEs. If you try to add a persistent or session-duration SQE with a name
that is already used by another persistent or session-duration SQE, then an error
will be raised.

duration_persistent
When there is a CLOB query, specify that the duration is stored in a database table.
This SQE must be deleted when it is no longer needed.

• The query_name namespace is shared between the persistent and session-
duration SQEs. If you try to add a persistent or session-duration SQE with a name
that is already used by another persistent or session-duration SQE, then an error
will be raised.

Example

begin
 ctx_query.store_sqe('dis1', 'flood', CTX_QUERY.DURATION_SESSION);
 ctx_query.store_sqe('dis2', 'tornado', CTX_QUERY.DURATION_PERSISTENT);
 ctx_query.store_sqe('dis3', 'fire')
end;
/

Chapter 12
STORE_SQE

12-22

13
CTX_REPORT Package

This chapter describes how to use the CTX_REPORT package to create reports on
indexing and querying. These reports can help you troubleshoot problems or fine-tune
your applications.

This chapter contains the following topics:

• Description of Procedures in CTX_REPORT

• Using the Function Versions

• DESCRIBE_INDEX

• DESCRIBE_POLICY

• CREATE_INDEX_SCRIPT

• CREATE_POLICY_SCRIPT

• INDEX_SIZE

• INDEX_STATS

• QUERY_LOG_SUMMARY

• TOKEN_INFO

• TOKEN_TYPE

• VALIDATE_INDEX

Note:

The APIs in the CTX_REPORT package do not support identifiers that are
prefixed with the schema or the owner name.

See Also:

Oracle Text Application Developer's Guide for an overview of the CTX_REPORT
package and how you can use the various procedures described in this
chapter

13.1 Description of Procedures in CTX_REPORT
The CTX_REPORT package contains the following procedures:

13-1

Name Description

DESCRIBE_INDEX Creates a report describing the index.

DESCRIBE_POLICY Creates a report describing a policy.

CREATE_INDEX_SCRIPT Creates a SQL*Plus script to duplicate the named index.

CREATE_POLICY_SCRIPT Creates a SQL*Plus script to duplicate the named policy.

INDEX_SIZE Creates a report to show the internal objects of an index,
their tablespaces and used sizes.

INDEX_STATS Creates a report to show the various statistics of an index.

QUERY_LOG_SUMMARY Creates a report showing query statistics

TOKEN_INFO Creates a report showing the information for a token,
decoded.

TOKEN_TYPE Translates a name and returns a numeric token type.

VALIDATE_INDEX Checks for index corruption and reports on problems found.
Mainly used with Oracle Support.

13.2 Using the Function Versions
Some of the procedures in the CTX_REPORT package have function versions. You can
call these functions as follows:

select ctx_report.describe_index('MYINDEX') from dual;

In SQL*Plus, to generate an output file to send to support, you can do:

set long 64000
set pages 0
set heading off
set feedback off
spool outputfile
select ctx_report.describe_index('MYINDEX') from dual;
spool off

13.3 DESCRIBE_INDEX
Creates a report describing the index. This includes the settings of the index metadata,
the indexing objects used, the settings of the attributes of the objects, and index
partition descriptions, if any.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.DESCRIBE_INDEX(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.DESCRIBE_INDEX(
 index_name IN VARCHAR2,

Chapter 13
Using the Function Versions

13-2

 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return CLOB;

index_name
Specify the name of the index to describe.

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It
is the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or
CTX_REPORT.FMT_XML.

Notes

CTX_REPORT.DESCRIBE_INDEX outputs FILTER BY and ORDER BY column information if
the index is created with FILTER BY and/or ORDER BY clauses.

Related Topics

"CREATE INDEX"

"ADD_SDATA_COLUMN"

13.4 DESCRIBE_POLICY
Creates a report describing the policy. This includes the settings of the policy
metadata, the indexing objects used, and the settings of the attributes of the objects.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.DESCRIBE_POLICY(
 policy_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.DESCRIBE_POLICY(
 policy_name IN VARCHAR2,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return CLOB;

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It
is the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing
contents will be overwritten by this call.

Chapter 13
DESCRIBE_POLICY

13-3

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or
CTX_REPORT.FMT_XML.

policy_name
Specify the name of the policy to describe.

13.5 CREATE_INDEX_SCRIPT
Creates a SQL*Plus script which will create a text index that duplicates the named text
index.

The created script will include creation of preferences identical to those used in the
named text index. However, the names of the preferences will be different.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.CREATE_INDEX_SCRIPT(
 index_name in varchar2,
 report in out nocopy clob,
 prefname_prefix in varchar2 default null
);

function CTX_REPORT.CREATE_INDEX_SCRIPT(
 index_name in varchar2,
 prefname_prefix in varchar2 default null
) return clob;

index_name
Specify the name of the index.

report
Specify the CLOB locator to which to write the script.
If report is NULL, a session-duration temporary CLOB will be created and returned. It
is the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call.

prefname_prefix
Specify optional prefix to use for preference names.
If prefname_prefix is omitted or NULL, index name will be used. The
prefname_prefix follows index length restrictions.

Notes

CTX_REPORT.CREATE_INDEX_SCRIPT will also generate necessary FILTER BY and ORDER
BY clauses for CREATE INDEX statements.

Related Topics

"CREATE INDEX"

Chapter 13
CREATE_INDEX_SCRIPT

13-4

13.6 CREATE_POLICY_SCRIPT
Creates a SQL*Plus script which will create a text policy that duplicates the named text
policy.

The created script will include creation of preferences identical to those used in the
named text policy.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.CREATE_POLICY_SCRIPT(
 policy_name in varchar2,
 report in out nocopy clob,
 prefname_prefix in varchar2 default null
);

function CTX_REPORT.CREATE_POLICY_SCRIPT(
 policy_name in varchar2,
 prefname_prefix in varchar2 default null
) return clob;

policy_name
Specify the name of the policy.

report
Specify the locator to which to write the script.
If report is NULL, a session-duration temporary CLOB will be created and returned. It
is the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call.

prefname_prefix
Specify the optional prefix to use for preference names. If prefname_prefix is omitted
or NULL, policy name will be used. prefname_prefix follows policy length restrictions.

13.7 INDEX_SIZE
Creates a report showing the internal objects of the text index or text index partition,
and their tablespaces, allocated, and used sizes.

You can call this operation as a procedure with an IN OUT CLOB parameter, or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.INDEX_SIZE(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.INDEX_SIZE(

Chapter 13
CREATE_POLICY_SCRIPT

13-5

 index_name IN VARCHAR2,
 part_name IN VARCHAR2 DEFAULT NULL,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return clob;

index_name
Specify the name of the index to describe.

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It
is the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call

part_name
Specify the name of the index partition (optional). If part_name is NULL, and the index
is a local partitioned text index, then all objects of all partitions will be displayed. If
part_name is provided, then only the objects of a particular partition will be displayed.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or
CTX_REPORT.FMT_XML.

Notes

CTX_REPORT.INDEX_SIZE will also output information on dr$indexname$S table.

Related Topics

"CREATE INDEX"

Table 2-39

13.8 INDEX_STATS
Creates a report showing various calculated statistics about the text index.

This procedure fully scans the text index tables, so it may take a long time to run for
large indexes.

Syntax

procedure ctx_report.index_stats(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 part_name IN VARCHAR2 DEFAULT NULL,
 frag_stats IN BOOLEAN DEFAULT TRUE,
 list_size IN NUMBER DEFAULT 100,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT,
 stat_type IN VARCHAR2 DEFAULT NULL
);

index_name
Specify the name of the index to describe. This must be a CONTEXT index.

Chapter 13
INDEX_STATS

13-6

report
Specify the CLOB locator to which to write the report.If report is NULL, a session-
duration temporary CLOB will be created and returned. It is the caller's responsibility to
free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call.

part_name
Specify the name of the index partition. If the index is a local partitioned index, then
part_name must be provided. INDEX_STATS will calculate the statistics for that index
partition.

frag_stats
Specify TRUE to calculate fragmentation statistics. If frag_stats is FALSE, the report
will not show any statistics relating to size of index data. However, the operation
should take less time and resources to calculate the token statistics.

list_size
Specify the number of elements in each compiled list. list_size has a maximum
value of 1000.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or
CTX_REPORT.FMT_XML.

stat_type
Specify the estimated statistics to output. If this parameter is set, then frag_stats is
ignored. The possible values are:

Statistics Type Description

EST_FRAG_STATS Get the estimated fragmentation stats for the
index. When this type is given list_size is
ignored.

EST_FREQUENT_TOKEN
S

Get the estimated frequently queried tokens for
the index. You can give a value of up to 100 for
list_size.

EST_TOKENS_TO_OPTIM
IZE

Show best tokens to optimize, based on
frequency of querying and fragmentation. You
can give a value of up to 100 for list_size.

EST_SLOWEST_QUERIE
S

Show slowest running queries for the index. You
can give a value of up to 100 for list_size.

Note:

The estimated statistics for stat_type is only available if query_stats is
enabled. See CTX_OUTPUT.ENABLE_QUERY_STATS and
CTX_OUTPUT.DISABLE_QUERY_STATS.

Chapter 13
INDEX_STATS

13-7

Example

create table output (result CLOB);

 declare
 x clob := null;
 begin
 ctx_report.index_stats('tdrbprx21',x);
 insert into output values (x);
 commit;
 dbms_lob.freetemporary(x);
 end;
 /

set long 32000
set head off
set pagesize 10000
select * from output;

The following sample output is for INDEX_STATS on a context index. This report has
been truncated for clarity. It shows some of the token statistics and all of the
fragmentation statistics.

The fragmentation statistics are at the end of the report. It tells you optimal row
fragmentation, an estimated amount of garbage data in the index, and a list of the
most fragmented tokens. Running CTX_DDL.OPTIMIZE_INDEX cleans up the index.

===
 STATISTICS FOR "DR_TEST"."TDRBPRX21"
===

indexed documents: 53
allocated docids: 68
$I rows: 16,259

 TOKEN STATISTICS

unique tokens: 13,445
average $I rows for each token: 1.21
tokens with most $I rows:
 telecommunications industry (THEME) 6
 science and technology (THEME) 6
 EMAIL (FIELD SECTION "SOURCE") 6
 DEC (FIELD SECTION "TIMESTAMP") 6
 electronic mail (THEME) 6
 computer networking (THEME) 6
 communications (THEME) 6
 95 (FIELD SECTION "TIMESTAMP") 6
 15 (FIELD SECTION "TIMESTAMP") 6
 HEADLINE (ZONE SECTION) 6

average size for each token: 8
tokens with largest size:
 T (NORMAL) 405
 SAID (NORMAL) 313
 HEADLINE (ZONE SECTION) 272
 NEW (NORMAL) 267
 I (NORMAL) 230

Chapter 13
INDEX_STATS

13-8

 MILLION (PREFIX) 222
 D (NORMAL) 219
 MILLION (NORMAL) 215
 U (NORMAL) 192
 DEC (FIELD SECTION "TIMESTAMP") 186

average frequency for each token: 2.00
most frequent tokens:
 HEADLINE (ZONE SECTION) 68
 DEC (FIELD SECTION "TIMESTAMP") 62
 95 (FIELD SECTION "TIMESTAMP") 62
 15 (FIELD SECTION "TIMESTAMP") 62
 T (NORMAL) 61
 D (NORMAL) 59
 881115 (THEME) 58
 881115 (NORMAL) 58
 I (NORMAL) 55
 geography (THEME) 52

token statistics by type:
 token type: NORMAL
 unique tokens: 6,344
 total rows: 7,631
 average rows: 1.20
 total size: 67,445 (65.86 KB)
 average size: 11
 average frequency: 2.33
 most frequent tokens:
 T 61
 D 59
 881115 58
 I 55
 SAID 45
 C 43
 NEW 36
 MILLION 32
 FIRST 28
 COMPANY 27

 token type: THEME
 unique tokens: 4,563
 total rows: 5,523
 average rows: 1.21
 total size: 21,930 (21.42 KB)
 average size: 5
 average frequency: 2.40
 most frequent tokens:
 881115 58
 political geography 52
 geography 52
 United States 51
 business and economics 50
 abstract ideas and concepts 48
 North America 48
 science and technology 46
 NKS 34
 nulls 34

The fragmentation portion of this report is as follows:

Chapter 13
INDEX_STATS

13-9

 FRAGMENTATION STATISTICS

total size of $I data: 116,772 (114.04 KB)

$I rows: 16,259
estimated $I rows if optimal: 13,445
estimated row fragmentation: 17 %

garbage docids: 15
estimated garbage size: 21,379 (20.88 KB)

most fragmented tokens:
 telecommunications industry (THEME) 83 %
 science and technology (THEME) 83 %
 EMAIL (FIELD SECTION "SOURCE") 83 %
 DEC (FIELD SECTION "TIMESTAMP") 83 %
 electronic mail (THEME) 83 %
 computer networking (THEME) 83 %
 communications (THEME) 83 %
 95 (FIELD SECTION "TIMESTAMP") 83 %
 HEADLINE (ZONE SECTION) 83 %
 15 (FIELD SECTION "TIMESTAMP") 83 %

Notes

These metadata are available only when QUERY_STATS is turned on for the index:
estimated fragmentation stats, estimated frequently queried tokens, estimated most
fragmented frequently queried token, and estimated slowest running queries for the
specified index.

CTX_REPORT.INDEX_STATS will also output information on dr$indexname$S table, which
is the section data, or SDATA, table.

Related Topics

CTX_OUTPUT.ENABLE_QUERY_STATS

CTX_OUTPUT.DISABLE_QUERY_STATS

CREATE INDEX

Table 2-39

13.9 QUERY_LOG_SUMMARY
Obtain a report of logged queries.

QUERY_LOG_SUMMARY enables you to analyze queries you have logged. For example,
suppose you have an application that searches a database of large animals, and your
analysis of queries against it shows that users are continually searching for the word
mouse; this analysis might induce you to rewrite your application so that a search for
mouse redirects the user to a database for small animals instead of simply returning
an unsuccessful search.

With query analysis, you can find out the following:

• Which queries were made

Chapter 13
QUERY_LOG_SUMMARY

13-10

• Which queries were successful

• Which queries were unsuccessful

• How many times each query was made

You can combine these factors in various ways, such as determining the 50 most
frequent unsuccessful queries made by your application.

Query logging is begun with CTX_OUTPUT.START_QUERY_LOG and terminated with
CTX_OUTPUT.END_QUERY_LOG.

Note:

You must connect as CTXSYS to use CTX_REPORT.QUERY_LOG_SUMMARY.

See Also:

"START_QUERY_LOG" and "END_QUERY_LOG"

Syntax

procedure CTX_REPORT.QUERY_LOG_SUMMARY(
 logfile IN VARCHAR2,
 indexname IN VARCHAR2 DEFAULT NULL,
 result_table IN OUT NOCOPY QUERY_TABLE,
 row_num IN NUMBER,
 most_freq IN BOOLEAN DEFAULT TRUE,
 has_hit IN BOOLEAN DEFAULT TRUE
);

logfile
Specify the name of the logfile that contains the queries. Starting with Oracle
Database 12c release 2 (12.2), this parameter is ignored as all the query logs are
written to database trace files.

indexname
Specify the name of the context index for which you want the summary report. If you
specify NULL, the procedure provides a summary report for all context indexes.

result_table
Specify the name of the in-memory table of type TABLE OF RECORD where the results
of the QUERY_LOG_SUMMARY are to go. The default is the location specified by the
system parameter LOG_DIRECTORY.

row_num
The number of rows of results from QUERY_LOG_SUMMARY to be reported into the table
named by restab. For example, if this is number is 10, most_freq is TRUE, and
has_hit is TRUE, then the procedure returns the 10 most frequent queries that were
successful (that is, returned hits).

Chapter 13
QUERY_LOG_SUMMARY

13-11

most_freq
Specify whether QUERY_LOG_SUMMARY should return the most frequent or least frequent
queries. The default is most frequent queries. If most_freq is set to FALSE, the
procedure returns the least successful queries.

has_hit
Specify whether QUERY_LOG_SUMMARY should return queries that are successful (that is,
that generate hits) or unsuccessful queries. The default is to count successful queries;
set has_hit to FALSE to return unsuccessful queries.

Example

The following example shows how a query log can be used.

First connect as CTXSYS. Then create and populate two tables, and then create an
index for each:

create table qlogtab1 (tk number primary key, text varchar2(2000));
insert into qlogtab1 values(1, 'The Roman name for France was Gaul.');
insert into qlogtab1 values(2, 'The Tour de France is held each summer.');
insert into qlogtab1 values(3, 'Jacques Anatole Thibault took the pen name Anatole France.');
create index idx_qlog1 on qlogtab1(text) indextype is ctxsys.context;
create table qlogtab2 (tk number primary key, text varchar2(2000));
insert into qlogtab2 values(1, 'The Great Wall of China is about 2400 kilometers long');
insert into qlogtab2 values(2, 'Soccer dates back at least to 217 C.E.');
insert into qlogtab2 values(3, 'The Corn Palace is a tourist attraction in South Dakota.');
create index idx_qlog2 on qlogtab2(text) indextype is ctxsys.context;

Turn on query logging, creating a log called query_log:

exec ctx_output.start_query_log('query.log');

Now make some queries (some of which will be unsuccessful):

select text from qlogtab1 where contains(text, 'France',1)>0;
select text from qlogtab1 where contains(text, 'cheese',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab2 where contains(text, 'Corn Palace',1)>0;
select text from qlogtab2 where contains(text, 'China',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizards',1)>0;
select text from qlogtab2 where contains(text, 'South Dakota',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab2 where contains(text, 'China',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab2 where contains(text, 'company',1)>0;
select text from qlogtab1 where contains(text, 'Text Wizard',1)>0;
select text from qlogtab1 where contains(text, 'France',1)>0;
select text from qlogtab1 where contains(text, 'database',1)>0;
select text from qlogtab2 where contains(text, 'high-tech',1)>0;
select text from qlogtab1 where contains(text, 'database',1)>0;
select text from qlogtab1 where contains(text, 'France',1)>0;
select text from qlogtab1 where contains(text, 'Japan',1)>0;
select text from qlogtab1 where contains(text, 'Egypt',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;
select text from qlogtab1 where contains(text, 'Japan',1)>0;
select text from qlogtab1 where contains(text, 'Egypt',1)>0;

Chapter 13
QUERY_LOG_SUMMARY

13-12

select text from qlogtab1 where contains(text, 'Air Shuttle',1)>0;
select text from qlogtab1 where contains(text, 'Argentina',1)>0;

With the querying over, turn query logging off:

exec ctx_output.end_query_log;

Use QUERY_LOG_SUMMARY to get query reports. In the first instance, you ask to see the
three most frequent queries that return successfully. First declare the results table
(the_queries).

set serveroutput on;
declare
 the_queries ctx_report.query_table;
begin
 ctx_report.query_log_summary('query.log', null, the_queries,
 row_num=>3, most_freq=>TRUE, has_hit=>TRUE);
 dbms_output.put_line('The 3 most frequent queries returning hits');
 dbms_output.put_line('number of times query string');
 for i in 1..the_queries.count loop
 dbms_output.put_line(the_queries(i).times||' '||the_queries(i).query);
 end loop;
end;
/

This returns the following:

The 3 most frequent queries returning hits
number of times query string
3 France
2 China
1 Corn Palace

Next, look for the three most frequent queries on idx_qlog1 that were successful.

declare
 the_queries ctx_report.query_table;
begin
 ctx_report.query_log_summary('query.log', 'idx_qlog1', the_queries,
 row_num=>3, most_freq=>TRUE, has_hit=>TRUE);
 dbms_output.put_line('The 3 most frequent queries returning hits for index idx_qlog1');
 dbms_output.put_line('number of times query string');
 for i in 1..the_queries.count loop
 dbms_output.put_line(the_queries(i).times||' '||the_queries(i).query);
 end loop;
end;
/

Because only the queries for France were successful,
ctx_report.query_log_summary returns the following:

The 3 most frequent queries returning hits for index idx_qlog1
number of times query string
3 France

Lastly, ask to see the three least frequent queries that returned no hits (that is, queries
that were unsuccessful and called infrequently). In this case, you are interested in
queries on both context indexes, so you set the indexname parameter to NULL.

Chapter 13
QUERY_LOG_SUMMARY

13-13

declare
 the_queries ctx_report.query_table;
begin
 ctx_report.query_log_summary('query.log', null, the_queries, row_num=>3,
 most_freq=>FALSE, has_hit=>FALSE);
 dbms_output.put_line('The 3 least frequent queries returning no hit');
 dbms_output.put_line('number of times query string');
 for i in 1..the_queries.count loop
 dbms_output.put_line(the_queries(i).times||' '||the_queries(i).query);
 end loop;
end;
/

This returns the following results:

The 3 least frequent queries returning no hit
number of times query string
1 high-tech
1 company
1 cheese

Argentina and Japan do not make this list, because they are queried more than once,
while Corn Palace does not make this list because it is successfully queried.

13.10 TOKEN_INFO
Creates a report showing the information for a token, decoded. This procedure will
fully scan the info for a token, so it may take a long time to run for really large tokens.

You can call this operation as a procedure with an IN OUT CLOB parameter or as a
function that returns the report as a CLOB.

Syntax

procedure CTX_REPORT.TOKEN_INFO(
 index_name IN VARCHAR2,
 report IN OUT NOCOPY CLOB,
 token IN VARCHAR2,
 token_type IN NUMBER,
 part_name IN VARCHAR2 DEFAULT NULL,
 raw_info IN BOOLEAN DEFAULT FALSE,
 decoded_info IN BOOLEAN DEFAULT TRUE,
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
);

function CTX_REPORT.TOKEN_INFO(
 index_name IN VARCHAR2,
 token IN VARCHAR2,
 token_type IN NUMBER,
 part_name IN VARCHAR2 DEFAULT NULL,
 raw_info IN VARCHAR2 DEFAULT 'N',
 decoded_info IN VARCHAR2 DEFAULT 'Y',
 report_format IN VARCHAR2 DEFAULT FMT_TEXT
) return clob;

index_name
Specify the name of the index.

Chapter 13
TOKEN_INFO

13-14

report
Specify the CLOB locator to which to write the report.
If report is NULL, a session-duration temporary CLOB will be created and returned. It is
the caller's responsibility to free this temporary CLOB as needed.
The report CLOB will be truncated before report is generated, so any existing contents
will be overwritten by this call token may be case-sensitive, depending on the passed-
in token type.

token
Specify the token text.

token_type
Specify the token type. You can use a number returned by the TOKEN_TYPE
function. THEME, ZONE, ATTR, PATH, and PATH ATTR tokens are case-sensitive.
Everything else gets passed through the lexer, so if the index's lexer is case-sensitive,
the token input is case-sensitive.

part_name
Specify the name of the index partition.
If the index is a local partitioned index, then part_name must be provided. TOKEN_INFO
will apply to just that index partition.

raw_info
Specify TRUE to include a hex dump of the index data. If raw_info is TRUE, the report
will include a hex dump of the raw data in the token_info column.

decoded_info
Specify decode and include docid and offset data. If decoded_info is FALSE,
CTX_REPORT will not attempt to decode the token information. This is useful when you
just want a dump of data.

report_format
Specify whether the report should be generated as 'TEXT' or as 'XML'. TEXT is the
default. You can also specify the values CTX_REPORT.FMT_TEXT or
CTX_REPORT.FMT_XML.

13.11 TOKEN_TYPE
This is a helper function which translates an English name into a numeric token type.
This is suitable for use with token_info, or any other CTX API which takes in a
token_type.

function token_type(
 index_name in varchar2,
 type_name in varchar2
) return number;

TOKEN_TYPE_TEXT constant number := 0;
TOKEN_TYPE_THEME constant number := 1;
TOKEN_TYPE_ZONE_SEC constant number := 2;
TOKEN_TYPE_ORIG constant number := 3,
TOKEN_TYPE_ATTR_TEXT constant number := 4;
TOKEN_TYPE_ATTR_SEC constant number := 5;
TOKEN_TYPE_PREFIX constant number := 6;
TOKEN_TYPE_PATH_SEC constant number := 7;
TOKEN_TYPE_PATH_ATTR constant number := 8;
TOKEN_TYPE_STEM constant number := 9;

Chapter 13
TOKEN_TYPE

13-15

index_name
Specify the name of the index.

type_name
Specify an English name for token_type. The following strings are legal input. All
input is case-insensitive.

Input Meaning Type Returned

TEXT Normal text token. 0

THEME Theme token. 1

ZONE SEC Zone token. 2

ORIGINAL Original form token 3

ATTR TEXT Text that occurs in attribute. 4

ATTR SEC Attribute section. 5

PREFIX Prefix token. 6

PATH SEC Path section. 7

PATH ATTR Path attribute section. 8

STEM Stem form token. 9

FIELD <name> TEXT Text token in field section
<name>

16-79

FIELD <name> PREFIX Prefix token in field section
<name>

616-916

FIELD <name> STEM Stem token in field section
<name>

916-979

NDATA <name> NDATA-type token 200-299

TOKEN_TYPE_ATTR_TXT_P
FIX

Attribute text prefix. 604

TOKEN_TYPE_ATTR_TXT_S
TEM

Attribute text stem. 904

For FIELD types, the index metadata needs to be read, so if you are going to be
calling this a lot for such things, you might want to consider caching the values in local
variables rather than calling token_type over and over again.
The constant types (0 - 9) also have constants in this package defined.

Notes

To get token types for MDATA tokens, do not use CTX_REPORT.TOKEN_TYPE; use the
MDATA operator instead. (See "MDATA".) The syntax to use is 'MDATA secname'.

Example

typenum := ctx_report.token_type('myindex', 'field author text');

13.12 VALIDATE_INDEX
Provides diagnostics if index corruption is believed to have occurred.
CTX_REPORT.VALIDATE_INDEX checks an index (or a partition for a locally partitioned
index) and reports whether or not any corruption has been detected. VALIDATE_INDEX
only checks $I rows that have token_type 0 and does not check other rows that
contain information about sections, such as the NDATA section.

Chapter 13
VALIDATE_INDEX

13-16

This procedure is primarily intended as a diagnostic tool to be used under the direction
of Oracle Support.

Chapter 13
VALIDATE_INDEX

13-17

14
CTX_THES Package

This chapter provides reference information for using the CTX_THES package to
manage and browse thesauri. These thesaurus functions are based on the ISO-2788
and ANSI Z39.19 standards except where noted.

Knowing how information is stored in your thesaurus helps in writing queries with
thesaurus operators. You can also use a thesaurus to extend the knowledge base,
which is used for ABOUT queries in English and French and for generating document
themes.

CTX_THES contains the following stored procedures and functions:

Name Description

ALTER_PHRASE Alters thesaurus phrase.

ALTER_THESAURUS Renames or truncates a thesaurus.

BT Returns all broader terms of a phrase.

BTG Returns all broader terms generic of a phrase.

BTI Returns all broader terms instance of a phrase.

BTP Returns all broader terms partitive of a phrase.

CREATE_PHRASE Adds a phrase to the specified thesaurus.

CREATE_RELATION Creates a relation between two phrases.

CREATE_THESAURUS Creates the specified thesaurus.

CREATE_TRANSLATION Creates a new translation for a phrase.

DROP_PHRASE Removes a phrase from thesaurus.

DROP_RELATION Removes a relation between two phrases.

DROP_THESAURUS Drops the specified thesaurus from the thesaurus tables.

DROP_TRANSLATION Drops a translation for a phrase.

EXPORT_THESAURUS Exports a thesaurus from the thesaurus tables.

HAS_RELATION Tests for the existence of a thesaurus relation.

IMPORT_THESAURUS Imports a thesaurus into the thesaurus tables.

NT Returns all narrower terms of a phrase.

NTG Returns all narrower terms generic of a phrase.

NTI Returns all narrower terms instance of a phrase.

NTP Returns all narrower terms partitive of a phrase.

OUTPUT_STYLE Sets the output style for the expansion functions.

PT Returns the preferred term of a phrase.

RT Returns the related terms of a phrase

SN Returns scope note for phrase.

SYN Returns the synonym terms of a phrase

THES_TT Returns all top terms for phrase.

14-1

Name Description

TR Returns the foreign equivalent of a phrase.

TRSYN Returns the foreign equivalent of a phrase, synonyms of the
phrase, and foreign equivalent of the synonyms.

TT Returns the top term of a phrase.

UPDATE_TRANSLATION Updates an existing translation.

Note:

The APIs in the CTX_THES package do not support identifiers that are prefixed
with the schema or the owner name.

See Also:

Oracle Text CONTAINS Query Operators for more information about the
thesaurus operators.

14.1 ALTER_PHRASE
Alters an existing phrase in the thesaurus. Only CTXSYS or thesaurus owner can alter a
phrase.

Syntax

CTX_THES.ALTER_PHRASE(tname in varchar2,
 phrase in varchar2,
 op in varchar2,
 operand in varchar2 default null);

tname
Specify the thesaurus name.

phrase
Specify a phrase to alter.

op (alter operation)
Specify the alter operation as a string or symbol. You can specify one of the following
operations with the op and operand pair:

op (or alter operation) meaning operand

RENAME
or
CTX_THES.OP_RENAME

Rename phrase. If the
new phrase already
exists in the thesaurus,
this procedure raises an
exception.

Specify a new phrase.
You can include
qualifiers to change,
add, or remove
qualifiers from phrases.

Chapter 14
ALTER_PHRASE

14-2

op (or alter operation) meaning operand

PT
or
CTX_THES.OP_PT

Make phrase the
preferred term. Existing
preferred terms in the
synonym ring becomes
non-preferred synonym.

(none)

SN
or
CTX_THES.OP_SN

Change the scope note
on the phrase.

Specify a new scope
note.

operand
Specify an argument to the alter operation. See table for "op (alter operation)".

Examples

Correct misspelled word in thesaurus:

ctx_thes.alter_phrase('thes1', 'tee', 'rename', 'tea');

Remove qualifier from mercury (metal):

ctx_thes.alter_phrase('thes1', 'mercury (metal)', 'rename', 'mercury');

Add qualifier to mercury:

ctx_thes.alter_phrase('thes1', 'mercury', 'rename', 'mercury (planet)');

Make Kowalski the preferred term in its synonym ring:

ctx_thes.alter_phrase('thes1', 'Kowalski', 'pt');

Change scope note for view cameras:

ctx_thes.alter_phrase('thes1', 'view cameras', 'sn', 'Cameras with lens focusing');

14.2 ALTER_THESAURUS
Use this procedure to rename or truncate an existing thesaurus. Only the thesaurus
owner or CTXSYS can invoke this function on a given thesaurus.

Syntax

CTX_THES.ALTER_THESAURUS(tname in varchar2,
 op in varchar2,
 operand in varchar2 default null);

tname
Specify the thesaurus name.

op
Specify the alter operation as a string or symbol. You can specify one of two
operations:

Chapter 14
ALTER_THESAURUS

14-3

op Meaning operand

RENAME
or
CTX_THES.OP_RENAME

Rename thesaurus.
Returns an error if the
new name already
exists.

Specify a new
thesaurus name.

TRUNCATE
or
CTX_THES.OP_TRUNCATE

Truncate thesaurus. None.

operand
Specify the argument to the alter operation. See table for op.

Examples

Rename thesaurus THES1 to MEDICAL:

ctx_thes.alter_thesaurus('thes1', 'rename', 'medical');

or

ctx_thes.alter_thesaurus('thes1', ctx_thes.op_rename, 'medical');

You can use symbols for any op argument, but all further examples will use strings.

Remove all phrases and relations from thesaurus THES1:

ctx_thes.alter_thesaurus('thes1', 'truncate');

14.3 BT
This function returns all broader terms of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.BT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BT(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

Chapter 14
BT

14-4

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify a thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms in the form:

 {bt1}|{bt2}|{bt3} ...

Example

String Result

Consider a thesaurus named MY_THES that has an entry for cat as follows:

cat
 BT1 feline
 BT2 mammal
 BT3 vertebrate
 BT4 animal

To look up the broader terms for cat up to two levels, enter the following statements:

set serveroutput on

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.bt('CAT', 2, 'MY_THES');
 dbms_output.put_line('The broader expansion for CAT is: '||terms);
end;

This code produces the following output:

The broader expansion for CAT is: {cat}|{feline}|{mammal}

Table Result

The following example performs a broader term lookup for white wolf using the table
result:

set serveroutput on

declare
 xtab ctx_thes.exp_tab;
begin
 ctx_thes.bt(xtab, 'white wolf', 2, 'my_thesaurus');

Chapter 14
BT

14-5

 for i in 1..xtab.count loop
 dbms_output.put_line(xtab(i).rel||' '||xtab(i).phrase);
 end loop;
end;

This code produces the following output:

PHRASE WHITE WOLF
BT WOLF
BT CANINE
BT ANIMAL

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

14.4 BTG
This function returns all broader terms generic of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.BTG(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BTG(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

Chapter 14
BTG

14-6

lvl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms generic in the form:

 {bt1}|{bt2}|{bt3} ...

Example

To look up the broader terms generic for cat up to two levels, enter the following
statements:

set serveroutput on
declare
 terms varchar2(2000);
begin
 terms := ctx_thes.btg('CAT', 2, 'MY_THES');
 dbms_output.put_line('the broader expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

14.5 BTI
This function returns all broader terms instance of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES.BTI(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.BTI(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,

Chapter 14
BTI

14-7

 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify a thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of broader terms instance in the form:

 {bt1}|{bt2}|{bt3} ...

Example

To look up the broader terms instance for cat up to two levels, enter the following
statements:

set serveroutput on
declare
 terms varchar2(2000);
begin
 terms := ctx_thes.bti('CAT', 2, 'MY_THES');
 dbms_output.put_line('the broader expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

14.6 BTP
This function returns all broader terms partitive of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES.BTP(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Chapter 14
BTP

14-8

Syntax 2: String Result

CTX_THES.BTP(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of broader terms to return. For example 2 means get the
broader terms of the broader terms of the phrase.

tname
Specify a thesaurus name. If not specified, the system default thesaurus is used.

Returns

This function returns a string of broader terms in the form:

 {bt1}|{bt2}|{bt3} ...

Example

To look up the two broader terms partitive for cat, enter the following statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.btp('CAT', 2, 'MY_THES');
 dbms_output.put_line('the broader expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Broader Term (BT_ BTG_ BTP_ BTI)"

Chapter 14
BTP

14-9

14.7 CREATE_PHRASE
The CREATE_PHRASE procedure adds a new phrase to the specified thesaurus.

Note:

Even though you can create thesaurus relations with this procedure, Oracle
recommends that you use CTX_THES.CREATE_RELATION rather than
CTX_THES.CREATE_PHRASE to create relations in a thesaurus.

Syntax

CTX_THES.CREATE_PHRASE(tname IN VARCHAR2,
 phrase IN VARCHAR2,
 rel IN VARCHAR2 DEFAULT NULL,
 relname IN VARCHAR2 DEFAULT NULL);

tname
Specify the name of the thesaurus in which the new phrase is added or the existing
phrase is located.

phrase
Specify the phrase to be added to a thesaurus or the phrase for which a new
relationship is created.

rel
Specify the new relationship between phrase and relname. This parameter is
supported only for backward compatibility. Use CTX_THES.CREATE_RELATION to
create new relations in a thesaurus.

relname
Specify the existing phrase that is related to phrase. This parameter is supported only
for backward compatibility. Use CTX_THES.CREATE_RELATION to create new
relations in a thesaurus.

Returns

The ID for the entry.

Example

In this example, two new phrases (os and operating system) are created in a
thesaurus named tech_thes.

begin
 ctx_thes.create_phrase('tech_thes','os');
 ctx_thes.create_phrase('tech_thes','operating system');
end;

14.8 CREATE_RELATION
Creates a relation between two phrases in the thesaurus. The synonym ring is limited
in length to about 4000 synonyms, depending on word length.

Chapter 14
CREATE_PHRASE

14-10

Note:

Oracle recommends that you use CTX_THES.CREATE_RELATION rather than
CTX_THES.CREATE_PHRASE to create relations in a thesaurus.

Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.

Syntax

CTX_THES.CREATE_RELATION(tname in varchar2,
 phrase in varchar2,
 rel in varchar2,
 relphrase in varchar2);

tname
Specify the thesaurus name

phrase
Specify the phrase to alter or create. If phrase is a disambiguated homograph, you
must specify the qualifier. If phrase does not exist in the thesaurus, it is created.

rel
Specify the relation to create. The relation is from phrase to relphrase. You can
specify one of the following relations:

relation meaning relphrase

BT*/NT* Add hierarchical
relation.

Specify the related phrase. The
relationship is interpreted from
phrase to relphrase.

RT Add associative
relation.

Specify the phrase to associate.

SYN Add phrase to a
synonym ring.

Specify an existing phrase in the
synonym ring.

Specify
language

Add translation for a
phrase.

Specify a new translation phrase.

relphrase
Specify the related phrase. If relphrase does not exist in tname, relphrase is created.
See table for rel.

Notes

The relation you specify for rel is interpreted as from phrase to relphrase. For example,
consider dog with broader term animal:

dog
 BT animal

To add this relation, specify the arguments as follows:

begin
CTX_THES.CREATE_RELATION('thes','dog','BT','animal');
end;

Chapter 14
CREATE_RELATION

14-11

Note:

The order in which you specify arguments for CTX_THES.CREATE_RELATION is
different from the order you specify them with CTX_THES.CREATE_PHRASE.

Examples

Create relation VEHICLE NT CAR:

ctx_thes.create_relation('thes1', 'vehicle', 'NT', 'car');

Create Japanese translation for you:

ctx_thes.create_relation('thes1', 'you', 'JAPANESE:', 'kimi');

14.9 CREATE_THESAURUS
The CREATE_THESAURUS procedure creates an empty thesaurus with the specified name
in the thesaurus tables.

Syntax

CTX_THES.CREATE_THESAURUS(name IN VARCHAR2,
 casesens IN BOOLEAN DEFAULT FALSE);

name
Specify the name of the thesaurus to be created. The name of the thesaurus must be
unique. If a thesaurus with the specified name already exists, CREATE_THESAURUS
returns an error and does not create the thesaurus.

casesens
Specify whether the thesaurus to be created is case-sensitive. If casesens is true,
Oracle Text retains the cases of all terms entered in the specified thesaurus. As a
result, queries that use the thesaurus are case-sensitive.

Example

begin
 ctx_thes.create_thesaurus('tech_thes', FALSE);
end;

14.10 CREATE_TRANSLATION
Use this procedure to create a new translation for a phrase in a specified language.

Syntax

CTX_THES.CREATE_TRANSLATION(tname in varchar2,
 phrase in varchar2,
 language in varchar2,
 translation in varchar2);

tname
Specify the name of the thesaurus, using no more than 30 characters.

Chapter 14
CREATE_THESAURUS

14-12

phrase
Specify the phrase in the thesaurus to which to add a translation. Phrase must
already exist in the thesaurus, or an error is raised.

language
Specify the language of the translation, using no more than 10 characters.

translation
Specify the translated term, using no more than 256 characters.
If a translation for this phrase already exists, this new translation is added without
removing that original translation, so long as that original translation is not the same.
Adding the same translation twice results in an error.

Example

The following code adds the Spanish translation for dog to my_thes:

begin
 ctx_thes.create_translation('my_thes', 'dog', 'SPANISH', 'PERRO');
end;

14.11 DROP_PHRASE
Removes a phrase from the thesaurus. Only thesaurus owner and CTXSYS can invoke
this procedure on a given thesaurus.

Syntax

CTX_THES.DROP_PHRASE(tname in varchar2,
 phrase in varchar2);

tname
Specify thesaurus name.

phrase
Specify a phrase to drop. If the phrase is a disambiguated homograph, then you
must include the qualifier. If the phrase does not exist in tname, then this procedure
raises an exception.
BT* / NT* relations are patched around the dropped phrase. For example, if A has a
BT B, and B has BT C, after B is dropped, A has BT C.
When a word has multiple broader terms, then a relationship is established for each
narrower term to each broader term.
Note that BT, BTG, BTP, and BTI are separate hierarchies, so if A has BTG B, and B
has BTI C, when B is dropped, there is no relation implicitly created between A and C.
RT relations are not patched. For example, if A has RT B, and B has RT C, then if B is
dropped, there is no associative relation created between A and C.

Example

Assume you have the following relations defined in mythes:

wolf
 BT canine
canine
 BT animal

You drop phrase canine:

Chapter 14
DROP_PHRASE

14-13

begin
ctx_thes.drop_phrase('mythes', 'canine');
end;

The resulting thesaurus is patched and looks like:

wolf
 BT animal

14.12 DROP_RELATION
Removes a relation between two phrases from the thesaurus.

Note:

CTX_THES.DROP_RELATION removes only the relation between two phrases.
Phrases are never removed by this call.

Only thesaurus owner and CTXSYS can invoke this procedure on a given thesaurus.

Syntax

CTX_THES.DROP_RELATION(tname in varchar2,
 phrase in varchar2,
 rel in varchar2,
 relphrase in varchar2 default null);

tname
Specify the thesaurus name.

phrase
Specify the filing phrase.

rel
Specify the relation to drop. The relation is from phrase to relphrase. You can
specify one of the following relations:

relation meaning relphrase

BT*/NT* Remove hierarchical
relation.

Optional specify relphrase. If not
provided, all relations of that type for
the phrase are removed.

RT Remove associative
relation.

Optionally specify relphrase. If not
provided, all RT relations for the
phrase are removed.

SYN Remove phrase from its
synonym ring.

(none)

PT Remove preferred term
designation from the
phrase. The phrase
remains in the synonym
ring.

(none)

Chapter 14
DROP_RELATION

14-14

relation meaning relphrase

language Remove a translation
from a phrase.

Optionally specify relphrase. You
can specify relphrase when there
are multiple translations for a phrase
for the language, and you want to
remove just one translation.
If relphrase is NULL, all translations
for the phrase for the language are
removed.

relphrase
Specify the related phrase.

Notes

The relation you specify for rel is interpreted as from phrase to relphrase. For example,
consider dog with broader term animal:

dog
 BT animal

To remove this relation, specify the arguments as follows:

begin
CTX_THES.DROP_RELATION('thes','dog','BT','animal');
end;

You can also remove this relation using NT as follows:

begin
CTX_THES.DROP_RELATION('thes','animal','NT','dog');
end;

Example

Remove relation VEHICLE NT CAR:

ctx_thes.drop_relation('thes1', 'vehicle', 'NT', 'car');

Remove all narrower term relations for vehicle:

ctx_thes.drop_relation('thes1', 'vehicle', 'NT');

Remove Japanese translations for me:

ctx_thes.drop_relation('thes1', 'me', 'JAPANESE:');

Remove a specific Japanese translation for me:

ctx_thes.drop_relation('thes1', 'me', 'JAPANESE:', 'boku')

14.13 DROP_THESAURUS
The DROP_THESAURUS procedure deletes the specified thesaurus and all of its entries
from the thesaurus tables.

Syntax

CTX_THES.DROP_THESAURUS(name IN VARCHAR2);

Chapter 14
DROP_THESAURUS

14-15

name
Specify the name of the thesaurus to be dropped.

Example

begin
ctx_thes.drop_thesaurus('tech_thes');
end;

14.14 DROP_TRANSLATION
Use this procedure to remove one or more translations for a phrase.

Syntax

CTX_THES.DROP_TRANSLATION (tname in varchar2,
 phrase in varchar2,
 language in varchar2 default null,
 translation in varchar2 default null);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to remove a translation. The phrase
must already exist in the thesaurus or an error is raised.

language
Optionally, specify the language of the translation, using no more than 10 characters.
If not specified, the translation must also not be specified and all translations in all
languages for the phrase are removed. An error is raised if the phrase has no
translations.

translation
Optionally, specify the translated term to remove, using no more than 256 characters.
If no such translation exists, an error is raised.

Example

The following code removes the Spanish translation for dog:

begin
 ctx_thes.drop_translation('my_thes', 'dog', 'SPANISH', 'PERRO');
end;

To remove all translations for dog in all languages:

begin
 ctx_thes.drop_translation('my_thes', 'dog');
end;

14.15 EXPORT_THESAURUS
Use this procedure to export a thesaurus as a clob from the Oracle Text thesaurus
tables. The format of the exported thesaurus is same as that of the format of the
thesaurus file that is used by the ctxload utility to import thesaurus into the Oracle
Text thesaurus tables.

Chapter 14
DROP_TRANSLATION

14-16

See Also:

"Thesaurus Loader (ctxload)" in Oracle Text Utilities for more information
about the ctxload utility.

Only the owner of the thesaurus, or the sys user, or the ctxsys user can export a
thesaurus from the Oracle Text thesaurus tables using export_thesaurus.

You should call ctx_output.start_log before calling export_thesaurus to log the
operations done by export_thesaurus.

Syntax

CTX_THES.EXPORT_THESAURUS(name in varchar2,
 thesdump in out nocopy CLOB);

name
Specify the name of the thesaurus in the Oracle Text thesaurus tables that you want
to export. If the specified thesaurus does not exists in the Oracle Text thesaurus
tables, then this procedure raises an exception.

thedump
Specify the name of the clob where you want to store the thesaurus that is exported
from the Oracle Text thesaurus tables.

Example

The following example copies the thesaurus named mythesaurus from the Oracle Text
thesaurus tables into the clob mythesdump:

declare
 mythesdump clob;
begin
 ctx_thes.export_thesaurus('mythesaurus', mythesdump);
end;

14.16 HAS_RELATION
HAS_RELATION tests that a thesaurus relation exists without actually performing the
expansion. The function returns TRUE if the phrase has any of the relations in the
specified list.

Syntax

CTX_THES.HAS_RELATION(phrase in varchar2,
 rel in varchar2,
 tname in varchar2 default 'DEFAULT')
 returns boolean;

phrase
Specify the phrase.

Chapter 14
HAS_RELATION

14-17

rel
Specify a single thesaural relation or a comma-delimited list of relations, except PT.
Specify 'ANY' for any relation.

tname
Specify the thesaurus name.

Example

The following example returns TRUE if the phrase cat in the DEFAULT thesaurus has any
broader terms or broader generic terms:

set serveroutput on
result boolean;

begin
 result := ctx_thes.has_relation('cat','BT,BTG');
 if (result) then dbms_output.put_line('TRUE');
 else dbms_output.put_line('FALSE');
 end if;
end;

14.17 IMPORT_THESAURUS
Use this procedure to import a thesaurus into the Oracle Text thesaurus tables. You
should call ctx_output.start_log before calling import_thesaurus to log the
operations done by import_thesaurus.

Syntax

CTX_THES.IMPORT_THESAURUS(name in varchar2,
 content in CLOB,
 thescase in varchar2 default 'N');

name
Specify the name of the thesaurus to be created. If the name of the thesaurus
specified in the name parameter already exists in the Oracle Text thesaurus tables,
then this procedure raises an exception.

content
Specify the thesaurus content to be imported in the Oracle Text thesaurus tables. The
format of the thesaurus to be imported should be the same as used by the ctxload
utility. If the format of the thesaurus to be imported is not correct, then this procedure
raises an exception.

See Also:

"Thesaurus Loader (ctxload)" in Oracle Text Utilities for more information
about the ctxload utility.

thecase
Specify 'Y' to create a case-sensitive thesaurus and 'N' to create a case-insensitive
thesaurus. The default is 'N'.

Chapter 14
IMPORT_THESAURUS

14-18

Example

The following example creates a case-sensitive thesaurus named mythesaurus and
imports the thesaurus content present in myclob into the Oracle Text thesaurus tables:

declare
 myclob clob;
begin
 myclob := to_clob('peking SYN beijing BT capital country NT beijing tokyo');
 ctx_thes.import_thesaurus('mythesaurus', myclob, 'Y');
end;

14.18 NT
This function returns all narrower terms of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.NT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NT(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

Chapter 14
NT

14-19

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms in the form:

 {nt1}|{nt2}|{nt3} ...

Example

String Result

Consider a thesaurus named MY_THES that has an entry for cat as follows:

cat
 NT domestic cat
 NT wild cat
 BT mammal
mammal
 BT animal
domestic cat
 NT Persian cat
 NT Siamese cat

To look up the narrower terms for cat down to two levels, enter the following
statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.nt('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

This code produces the following output:

the narrower expansion for CAT is: {cat}|{domestic cat}|{Persian cat}|{Siamese cat}|
{wild cat}

Table Result

The following code does an narrower term lookup for canine using the table result:

declare
 xtab ctx_thes.exp_tab;
begin
 ctx_thes.nt(xtab, 'canine', 2, 'my_thesaurus');
 for i in 1..xtab.count loop
 dbms_output.put_line(lpad(' ', 2*xtab(i).xlevel) ||
 xtab(i).xrel || ' ' || xtab(i).xphrase);
 end loop;
end;

This code produces the following output:

PHRASE CANINE
 NT WOLF (Canis lupus)
 NT WHITE WOLF
 NT GREY WOLF
 NT DOG (Canis familiaris)
 NT PIT BULL

Chapter 14
NT

14-20

 NT DASCHUND
 NT CHIHUAHUA
NT HYENA (Canis mesomelas)
NT COYOTE (Canis latrans)

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

14.19 NTG
This function returns all narrower terms generic of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES.NTG(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NTG(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Chapter 14
NTG

14-21

Returns

This function returns a string of narrower terms generic in the form:

 {nt1}|{nt2}|{nt3} ...

Example

To look up the narrower terms generic for cat down to two levels, enter the following
statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.ntg('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

14.20 NTI
This function returns all narrower terms instance of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES.NTI(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NTI(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

Chapter 14
NTI

14-22

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms instance in the form:

 {nt1}|{nt2}|{nt3} ...

Example

To look up the narrower terms instance for cat down to two levels, enter the following
statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.nti('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

14.21 NTP
This function returns all narrower terms partitive of a phrase as recorded in the
specified thesaurus.

Syntax 1: Table Result

CTX_THES.NTP(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.NTP(phrase IN VARCHAR2,
 lvl IN NUMBER DEFAULT 1,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

Chapter 14
NTP

14-23

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lvl
Specify how many levels of narrower terms to return. For example 2 means get the
narrower terms of the narrower terms of the phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of narrower terms partitive in the form:

 {nt1}|{nt2}|{nt3} ...

Example

To look up the narrower terms partitive for cat down to two levels, enter the following
statements:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.ntp('CAT', 2, 'MY_THES');
 dbms_output.put_line('the narrower expansion for CAT is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Narrower Term (NT_ NTG_ NTP_ NTI)"

14.22 OUTPUT_STYLE
Sets the output style for the return string of the CTX_THES expansion functions. This
procedure has no effect on the table results to the CTX_THES expansion functions.

Chapter 14
OUTPUT_STYLE

14-24

Syntax

CTX_THES.OUTPUT_STYLE (
 showlevel IN BOOLEAN DEFAULT FALSE,
 showqualify IN BOOLEAN DEFAULT FALSE,
 showpt IN BOOLEAN DEFAULT FALSE,
 showid IN BOOLEAN DEFAULT FALSE
);

showlevel
Specify TRUE to show level in BT/NT expansions.

showqualify
Specify TRUE to show phrase qualifiers.

showpt
Specify TRUE to show preferred terms with an asterisk *.

showid
Specify TRUE to show phrase ids.

Notes

The general syntax of the return string for CTX_THES expansion functions is:

{pt indicator:phrase (qualifier):level:phraseid}

Preferred term indicator is an asterisk then a colon at the start of the phrase. The
qualifier is in parentheses after a space at the end of the phrase. Level is a number.

The following is an example return string for turkey the bird:

*:TURKEY (BIRD):1:1234

14.23 PT
This function returns the preferred term of a phrase as recorded in the specified
thesaurus.

Syntax 1: Table Result

CTX_THES.PT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

Syntax 2: String Result

CTX_THES.PT(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

Chapter 14
PT

14-25

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns the preferred term as a string in the form:

{pt}

Example

Consider a thesaurus MY_THES with the following preferred term definition for
automobile:

AUTOMOBILE
 PT CAR

To look up the preferred term for automobile, execute the following code:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.pt('AUTOMOBILE','MY_THES');
 dbms_output.put_line('The preferred term for automobile is: '||terms);
end;

Related Topics

"OUTPUT_STYLE "

"Preferred Term (PT)"

14.24 RT
This function returns the related terms of a term in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.RT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Chapter 14
RT

14-26

Syntax 2: String Result

CTX_THES.RT(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of related terms in the form:

{rt1}|{rt2}|{rt3}| ...

Example

Consider a thesaurus MY_THES with the following related term definition for dog:

DOG
 RT WOLF
 RT HYENA

To look up the related terms for dog, execute the following code:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.rt('DOG','MY_THES');
 dbms_output.put_line('The related terms for dog are: '||terms);
end;

This codes produces the following output:

The related terms for dog are: {dog}|{wolf}|{hyena}

Related Topics

"OUTPUT_STYLE "

Chapter 14
RT

14-27

"Related Term (RT)"

14.25 SN
This function returns the scope note of the given phrase.

Syntax

CTX_THES.SN(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns the scope note as a string.

Example

declare
 note varchar2(80);
begin
 note := ctx_thes.sn('camera','mythes');
 dbms_output.put_line('CAMERA');
 dbms_output.put_line(' SN ' || note);
end;

sample output:

CAMERA
 SN Optical cameras

14.26 SYN
This function returns all synonyms of a phrase as recorded in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.SYN(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.SYN(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

Chapter 14
SN

14-28

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of the form:

 {syn1}|{syn2}|{syn3} ...

Example

String Result

Consider a thesaurus named ANIMALS that has an entry for cat as follows:

CAT
 SYN KITTY
 SYN FELINE

To look-up the synonym for cat and obtain the result as a string, enter the following
statements:

declare
 synonyms varchar2(2000);
begin
 synonyms := ctx_thes.syn('CAT','ANIMALS');
 dbms_output.put_line('the synonym expansion for CAT is: '||synonyms);
end;

This code produces the following output:

the synonym expansion for CAT is: {CAT}|{KITTY}|{FELINE}

Table Result

The following code looks up the synonyms for canine and obtains the results in a
table. The contents of the table are printed to the standard output.

declare
 xtab ctx_thes.exp_tab;
begin
 ctx_thes.syn(xtab, 'canine', 'my_thesaurus');
 for i in 1..xtab.count loop

Chapter 14
SYN

14-29

 dbms_output.put_line(lpad(' ', 2*xtab(i).xlevel) ||
 xtab(i).xrel || ' ' || xtab(i).xphrase);
 end loop;
end;

This code produces the following output:

PHRASE CANINE
 PT DOG
SYN PUPPY
SYN MUTT
SYN MONGREL

Related Topics

"OUTPUT_STYLE "

"SYNonym (SYN)"

14.27 THES_TT
This procedure finds and returns all top terms of a thesaurus. A top term is defined as
any term which has a narrower term but has no broader terms.

This procedure differs from TT in that TT takes in a phrase and finds the top term for
that phrase, but THES_TT searches the whole thesaurus and finds all top terms.

Large Thesauri

Because this procedure searches the whole thesaurus, it can take some time on large
thesauri. Oracle recommends that you not call this often for such thesauri. Instead,
your application should call this once, store the results in a separate table, and use
those stored results.

Syntax

CTX_THES.THES_TT(restab IN OUT NOCOPY EXP_TAB,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

restab
Specify the name of the expansion table to store the results. This table must be of
type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

Chapter 14
THES_TT

14-30

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This procedure returns all top terms and stores them in restab.

14.28 TR
For a given mono-lingual thesaurus, this function returns the foreign language
equivalent of a phrase as recorded in the thesaurus.

Note:

Foreign language translation is not part of the ISO-2788 or ANSI Z39.19
thesaural standards. The behavior of TR is specific to Oracle Text.

Syntax 1: Table Result

CTX_THES.TR(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')

Syntax 2: String Result

CTX_THES.TR(phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lang
Specify the foreign language. Specify 'ALL' for all translations of phrase.

Chapter 14
TR

14-31

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of foreign terms in the form:

 {ft1}|{ft2}|{ft3} ...

Example

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat
 SYN lion
 SPANISH: leon

To look up the translation for cat, enter the following statements:

declare
 trans varchar2(2000);
 span_trans varchar2(2000);
begin
 trans := ctx_thes.tr('CAT','ALL','MY_THES');
 span_trans := ctx_thes.tr('CAT','SPANISH','MY_THES')
 dbms_output.put_line('the translations for CAT are: '||trans);
 dbms_output.put_line('the Spanish translations for CAT are: '||span_trans);
end;

This codes produces the following output:

the translations for CAT are: {CAT}|{CHAT}|{GATO}
the Spanish translations for CAT are: {CAT}|{GATO}

Related Topics

"OUTPUT_STYLE "

"Translation Term (TR)"

14.29 TRSYN
For a given mono-lingual thesaurus, this function returns the foreign equivalent of a
phrase, synonyms of the phrase, and foreign equivalent of the synonyms as recorded
in the specified thesaurus.

Note:

Foreign language translation is not part of the ISO-2788 or ANSI Z39.19
thesaural standards. The behavior of TRSYN is specific to Oracle Text.

Chapter 14
TRSYN

14-32

Syntax 1: Table Result

CTX_THES.TRSYN(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.TRSYN(phrase IN VARCHAR2,
 lang IN VARCHAR2 DEFAULT NULL,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN VARCHAR2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

lang
Specify the foreign language. Specify 'ALL' for all translations of phrase.

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns a string of foreign terms in the form:

 {ft1}|{ft2}|{ft3} ...

Example

Consider a thesaurus MY_THES with the following entries for cat:

cat
 SPANISH: gato
 FRENCH: chat
 SYN lion
 SPANISH: leon

To look up the translation and synonyms for cat, enter the following statements:

Chapter 14
TRSYN

14-33

declare
 synonyms varchar2(2000);
 span_syn varchar2(2000);
begin
 synonyms := ctx_thes.trsyn('CAT','ALL','MY_THES');
 span_syn := ctx_thes.trsyn('CAT','SPANISH','MY_THES')
 dbms_output.put_line('all synonyms for CAT are: '||synonyms);
 dbms_output.put_line('the Spanish synonyms for CAT are: '||span_syn);
end;

This codes produces the following output:

all synonyms for CAT are: {CAT}|{CHAT}|{GATO}|{LION}|{LEON}
the Spanish synonyms for CAT are: {CAT}|{GATO}|{LION}|{LEON}

Related Topics

"OUTPUT_STYLE "

"Translation Term Synonym (TRSYN)"

14.30 TT
This function returns the top term of a phrase as recorded in the specified thesaurus.

Syntax 1: Table Result

CTX_THES.TT(restab IN OUT NOCOPY EXP_TAB,
 phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT');

Syntax 2: String Result

CTX_THES.TT(phrase IN VARCHAR2,
 tname IN VARCHAR2 DEFAULT 'DEFAULT')
RETURN varchar2;

restab
Optionally, specify the name of the expansion table to store the results. This table
must be of type EXP_TAB which the system defines as follows:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);
type exp_tab is table of exp_rec index by binary_integer;

See Also:

"CTX_THES Result Tables and Data Types" in Oracle Text Result Tables
for more information about EXP_TAB.

phrase
Specify a phrase to lookup in thesaurus.

Chapter 14
TT

14-34

tname
Specify the thesaurus name. If not specified, system default thesaurus is used.

Returns

This function returns the top term string in the form:

{tt}

Example

Consider a thesaurus MY_THES with the following broader term entries for dog:

DOG
 BT1 CANINE
 BT2 MAMMAL
 BT3 VERTEBRATE
 BT4 ANIMAL

To look up the top term for DOG, execute the following code:

declare
 terms varchar2(2000);
begin
 terms := ctx_thes.tt('DOG','MY_THES');
 dbms_output.put_line('The top term for DOG is: '||terms);
end;

This code produces the following output:

The top term for dog is: {ANIMAL}

Related Topics

"OUTPUT_STYLE "

"Top Term (TT)"

14.31 UPDATE_TRANSLATION
Use this procedure to update an existing translation.

Syntax

CTX_THES.UPDATE_TRANSLATION(tname in varchar2,
 phrase in varchar2,
 language in varchar2,
 translation in varchar2,
 new_translation in varchar2);

tname
Specify the name of the thesaurus, using no more than 30 characters.

phrase
Specify the phrase in the thesaurus to which to update a translation. The phrase must
already exist in the thesaurus or an error is raised.

language
Specify the language of the translation, using no more than 10 characters.

Chapter 14
UPDATE_TRANSLATION

14-35

translation
Specify the translated term to update. If no such translation exists, an error is raised.
You can specify NULL if there is only one translation for the phrase. An error is raised if
there is more than one translation for the term in the specified language.

new_translation
Optionally, specify the new form of the translated term.

Example

The following code updates the Spanish translation for dog:

begin
 ctx_thes.update_translation('my_thes', 'dog', 'SPANISH:', 'PERRO', 'CAN');
end;

Chapter 14
UPDATE_TRANSLATION

14-36

15
CTX_ULEXER Package

This chapter provides reference information on how to use the CTX_ULEXER PL/SQL
package with the user-defined lexer.

CTX_ULEXER declares the following type:

Name Description

WILDCARD_TAB Index-by table type that you use to specify the offset of
characters to be treated as wildcard characters by the user-
defined lexer query procedure.

Note:

The APIs in the CTX_ULEXER package do not support identifiers that are
prefixed with the schema or the owner name.

15.1 WILDCARD_TAB
TYPE WILDCARD_TAB IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

Use this index-by table type to specify the offset of those characters in the query word
to be treated as wildcard characters by the user-defined lexer query procedure.

Character offset information follows USC-2 codepoint semantics.

15-1

16
Oracle Text Utilities

Oracle Text provides utilities for managing and operating on Text indexes. For
example, you can load a specific thesaurus into the index, and you can create your
own knowledge base to be associated with the index, among other things. This
chapter discusses the utilities shipped with Oracle Text.

The following topics are included:

• Thesaurus Loader (ctxload)

• Entity Extraction User Dictionary Loader (ctxload)

• Knowledge Base Extension Compiler (ctxkbtc)

• Lexical Compiler (ctxlc)

Note:

The APIs in the utilities shipped with Oracle Text do not support identifiers
that are prefixed with the schema or the owner name.

16.1 Thesaurus Loader (ctxload)
Use ctxload to import a thesaurus file into the Oracle Text thesaurus tables.

An import file is an ASCII flat file that contains entries for synonyms, broader terms,
narrower terms, or related terms, which can be used to expand queries.

This section contains the following topics.

• ctxload Text Loading

• ctxload Syntax

• ctxload Examples

See Also:

For examples of import files for thesaurus importing, see "Structure of
ctxload Thesaurus Import File" in Text Loading Examples for Oracle Text

16.1.1 ctxload Text Loading
The ctxload program no longer supports the loading of text columns. To load files to a
text column in batch mode, Oracle recommends that you use SQL*Loader.

16-1

See Also:

"SQL*Loader Example" in Text Loading Examples for Oracle Text

16.1.2 ctxload Syntax
ctxload -user username[/password][@sqlnet_address]
 -name object_name
 -file file_name

 [-thes]
 [-thescase y|n]
 [-thesdump]
 [-log file_name]
 [-trace]
 [-drop]

ctxload Mandatory Arguments

-user
Specify the user name and password of the user running ctxload.
The user name and password can be followed immediately by @sqlnet_address to
permit logging on to remote databases. The value for sqlnet_address is a database
connect string. If the TWO_TASK environment variable is set to a remote database, then
you do not need to specify a value for sqlnet_address to connect to the database.

-name object_name
When you use ctxload to import a thesaurus, use object_name to specify the name
of the thesaurus to be imported.
Use object_name to identify the thesaurus in queries that use thesaurus operators.

Note:

Thesaurus name must be unique. If the name specified for the thesaurus is
identical to an existing thesaurus, then ctxload returns an error and does
not overwrite the existing thesaurus.

-file file_name
When ctxload is used to import a thesaurus, use file_name to specify the name of
the import file that contains the thesaurus entries.
When ctxload is used to export a thesaurus, use file_name to specify the name of
the export file created by ctxload.

Note:

If the name specified for the thesaurus dump file is identical to an existing
file, then ctxload overwrites the existing file.

Chapter 16
Thesaurus Loader (ctxload)

16-2

ctxload Optional Arguments

-thes
Import a thesaurus. Specify the source file with the -file argument. Specify the
name of the thesaurus to be imported with -name.

-thescase y | n
Specify y to create a case-sensitive thesaurus with the name specified by -name and
populate the thesaurus with entries from the thesaurus import file specified by -file.
If -thescase is y (the thesaurus is case-sensitive), ctxload enters the terms in the
thesaurus exactly as they appear in the import file.
The default for -thescase is n (case-insensitive thesaurus).

Note:

-thescase is valid for use only with the -thes argument.

-thesdump
Export a thesaurus. Specify the name of the thesaurus to be exported with the -name
argument. Specify the destination file with the -file argument.

-log
Specify the name of the log file to which ctxload writes any national-language
supported (Globalization Support) messages generated during processing. If you do
not specify a log file name, the messages appear on the standard output. The logs
generated by ctxload will be present in $ORACLE_HOME/ctx/log directory.

-trace
Enables SQL statement tracing using ALTER SESSION SET SQL_TRACE TRUE. This
command captures all processed SQL statements in a trace file, which can be used
for debugging. The location of the trace file is operating-system dependent and can
be modified using the DIAGNOSTIC_DEST initialization parameter.

See Also:

For more information about SQL trace and the DIAGNOSTIC_DEST
initialization parameter, see Oracle Database Administrator's Guide

16.1.3 ctxload Examples
This section provides examples for some of the operations that ctxload can perform.

See Also:

For more document loading examples, see Text Loading Examples for
Oracle Text

Chapter 16
Thesaurus Loader (ctxload)

16-3

The following example imports a thesaurus named tech_doc from an import file named
tech_thesaurus.txt:

ctxload -user jsmith/password -thes -name tech_doc -file tech_thesaurus.txt

The following example exports the contents of a thesaurus named tech_doc into a file
named tech_thesaurus.out:

ctxload -user jsmith/password -thesdump -name tech_doc -file tech_thesaurus.out

16.2 Entity Extraction User Dictionary Loader (ctxload)
Use ctxload to import an entity extraction user dictionary into Oracle Text tables.

An import file is an XML flat file containing entries for entities, with their associated
types and alternate forms.

This section contains the following topics.

• ctxload Syntax

• Considerations When Creating a User Dictionary

• XML Schema

• ctxload Example

16.2.1 ctxload Syntax
ctxload -user username[/password][@sqlnet_address]
 -extract
 -name entity extraction policy name
 -file user-dictionary file name
 [-drop] to drop a user-dictionary from a policy

ctxload Mandatory Arguments

-user
Specify the user name and password of the user running ctxload.
The user name and password can be followed immediately by @sqlnet_address to
permit logging on to remote databases. The value for sqlnet_address is a database
connect string. If the TWO_TASK environment variable is set to a remote database, then
you do not need to specify a value for sqlnet_address to connect to the database.

-name entity extraction policy name
When you use ctxload to import an entity extraction dictionary, use object_name to
specify the entity extraction policy to associate the dictionary with. An entity extraction
policy can have only one user dictionary.

-file user-dictionary file name
Use file to specify the name of the XML file containing the user dictionary.

-drop
Drop the user dictionary currently associated with an entity extraction policy.

16.2.2 Considerations When Creating a User Dictionary
The following are some considerations for when creating a user dictionary:

Chapter 16
Entity Extraction User Dictionary Loader (ctxload)

16-4

• Entity mentions are case-sensitive. They cannot contain any null characters.

• Entity type names are case-insensitive. They cannot contain any null or comma
characters.

• Customers will be able to assign two or more entity types to a single entity
mention. For example, the entity "Washington" could be assigned the type "CITY"
and also the type "STATE".

• The content of a user's dictionary is invisible to other users.

• The maximum byte length of an entity mention is 512 bytes by the server-side
database character set.

• The maximum byte length of an entity type name is 30 bytes by the server-side
database character set.

• User-defined entity type names must start with the letter "x".

16.2.3 XML Schema
The entity extraction dictionary follows this XML schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="dictionary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="entities" type="entityType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:complexType>
</xsd:element>

<xsd:complexType name="entityType">
 <xsd:sequence>
 <xsd:element name="entity" type="entType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:attribute name="language" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="entType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string" minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element name="alternate" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The following tables illustrate some aspects of the XML schema for the entity
extraction dictionary.

Element Name Description

dictionary Collection of entities

entities Collection of entities per language

entity Each entity

value Entity mention

Chapter 16
Entity Extraction User Dictionary Loader (ctxload)

16-5

Element Name Description

type Entity type

alternate Alternate form of entity

Attribute Name Element Name Description

language Entities Language name of each entity in entities

16.2.4 ctxload Example
The following is an example of an entity extraction user dictionary file that can be
loaded using ctxload:

<?xml version="1.0" encoding="utf-8"?>
<dictionary>
 <entities>
 <entity>
 <value>New York</value>
 <type>city</type>
 </entity>
 </entities>
 <entities language="german">
 <entity>
 <value>Deutschland</value>
 <type>country</type>
 <entity>
 </entities>
 <entities language="english">
 <entity>
 <value>Astra</value>
 <type>person</type>
 <type>organization</type>
 </entity>
 <entity>
 <value>George W. Bush<value>
 <type>person</type>
 <alternate>G. W. Bush<alternate>
 <alternate>G. Bush<alternate>
 </entity>
 </entities>
</dictionary>

16.3 Knowledge Base Extension Compiler (ctxkbtc)
The knowledge base is the information source that Oracle Text uses to perform theme
analysis, such as theme indexing, processing ABOUT queries, and to document theme
extraction with the CTX_DOC package. A knowledge base is supplied for English and
French and is installed by default.

With the ctxkbtc compiler, you can:

• Extend your knowledge base by compiling one or more thesauri with the Oracle
Text knowledge base. The extended information can be application-specific terms
and relationships. During theme analysis, the extended portion of the knowledge

Chapter 16
Knowledge Base Extension Compiler (ctxkbtc)

16-6

base overrides any terms and relationships in the knowledge base where there is
overlap.

• Create a new user-defined knowledge base by compiling one or more thesauri. In
languages other than English and French, this feature can be used to create a
language-specific knowledge base.

Note:

Only CTXSYS can extend the knowledge base.

This section contains the following topics.

– Knowledge Base Character Set

– ctxkbtc Syntax

– ctxkbtc Usage Notes

– ctxkbtc Limitations

– ctxkbtc Constraints on Thesaurus Terms

– ctxkbtc Constraints on Thesaurus Relations

– Extending the Knowledge Base

Example for Extending the Knowledge Base

– Adding a Language-Specific Knowledge Base

Limitations for Adding a Knowledge Base

– Order of Precedence for Multiple Thesauri

– Size Limits for Extended Knowledge Base

See Also:

For more information about the ABOUT operator, see ABOUT operator in
Oracle Text CONTAINS Query Operators

For more information about document services, see CTX_DOC Package

16.3.1 Knowledge Base Character Set
Knowledge bases can be in any single-byte character set. Supplied knowledge bases
are in WE8ISO8859P1. You can store an extended knowledge base in another
character set such as US7ASCII.

16.3.2 ctxkbtc Syntax
ctxkbtc -user uname/passwd

[-name thesname1 [thesname2 ... thesname16]]
[-revert]
[-stoplist stoplistname]

Chapter 16
Knowledge Base Extension Compiler (ctxkbtc)

16-7

[-verbose]
[-log filename]

-user
Specify the user name and password for the administrator creating an extended
knowledge base. This user must have write permission to the ORACLE_HOME directory.

-name thesname1 [thesname2 ... thesname16]
Specify the names of the thesauri (up to 16) to be compiled with the knowledge base
to create the extended knowledge base. The thesauri you specify must already be
loaded with ctxload with the "-thescase Y" option.

-revert
Reverts the extended knowledge base to the default knowledge base provided by
Oracle Text.

-stoplist stoplistname
Specify the name of the stoplist. Stopwords in the stoplist are added to the knowledge
base as useless words that are prevented from becoming themes or contributing to
themes. Add stopthemes after running this command using CTX_DLL.ADD_STOPTHEME.

-verbose
Displays all warnings and messages, including non-Globalization Support messages,
to the standard output.

-log
Specify the log file for storing all messages. When you specify a log file, no messages
are reported to standard out. The logs generated by ctxkbtc will be present
in $ORACLE_HOME/ctx/log directory.

16.3.3 ctxkbtc Usage Notes
• Before running ctxkbtc, you must set the NLS_LANG environment variable to match

the database character set.

• The user issuing ctxkbtc must have write permission to the ORACLE_HOME,
because the program writes files to this directory.

• Before being compiled, each thesaurus must be loaded into Oracle Text case
sensitive with the "-thescase Y" option in ctxload.

• Running ctxkbtc twice removes the previous extension.

16.3.4 ctxkbtc Limitations
The ctxkbtc program has the following limitations:

• When upgrading or downgrading your database to a different release, for theme
indexing and related features to work correctly, Oracle recommends that you
recompile your extended knowledge base in the new environment.

• Before extending the knowledge base, you must terminate all server processes
that have invoked any knowledge base-related Text functions during their lifetime.

• There can be only one user extension for each language for each installation.
Because a user extension affects all users at the installation, only the CTXSYS user
can extend the knowledge base.

Chapter 16
Knowledge Base Extension Compiler (ctxkbtc)

16-8

• In an Oracle RAC environment, the ORACLE_HOME can either be shared between
multiple nodes, or each node can have its own ORACLE_HOME. The following
requirements apply:

– Before using any knowledge base-dependent functionality in any of the Oracle
RAC nodes, ctxkbtc must be run in every ORACLE_HOME in the Oracle RAC
environment.

– When using ctxkbtc, the exact same input thesaurus content must be used in
every ORACLE_HOME in the Oracle RAC environment.

16.3.5 ctxkbtc Constraints on Thesaurus Terms
Terms are case sensitive. If a thesaurus has a term in uppercase, for example, the
same term present in lowercase form in a document will not be recognized.

The maximum length of a term is 80 characters.

Disambiguated homographs are not supported.

16.3.6 ctxkbtc Constraints on Thesaurus Relations
The following constraints apply to thesaurus relations:

• BTG and BTP are the same as BT. NTG and NTP are the same as NT.

• Only preferred terms can have a BT, NTs or RTs.

• If a term has no USE relation, it will be treated as its own preferred term.

• If a set of terms are related by SYN relations, only one of them may be a preferred
term.

• An existing category cannot be made a top term.

• There can be no cycles in BT and NT relations.

• A term can have at most one preferred term and at most one BT. A term may have
any number of NTs.

• An RT of a term cannot be an ancestor or descendent of the term. A preferred
term may have any number of RTs up to a maximum of 32.

• The maximum height of a tree is 16 including the top term level.

• When multiple thesauri are being compiled, a top term in one thesaurus should not
have a broader term in another thesaurus.

Chapter 16
Knowledge Base Extension Compiler (ctxkbtc)

16-9

Note:

The thesaurus compiler tolerates some violations of the preceding rules.
For example, if a term has multiple BTs, then the compiler ignores all but
the last one it encounters.

Similarly, BTs between existing knowledge base categories result only in
a warning message.

Oracle recommends that you do not set up extended storage bases with
violations. Using extended storage bases containing violations can
produce undesired results.

16.3.7 Extending the Knowledge Base
Extend the supplied knowledge base by compiling one or more thesauri with the
Oracle Text knowledge base. The extended information can be application-specific
terms and relationships. During theme analysis, the extended portion of the knowledge
base overrides any terms and relationships in the knowledge base where there is
overlap.

When extending the knowledge base, Oracle recommends that new terms be linked to
one of the categories in the knowledge base for best results in theme proving when
appropriate.

If new terms are kept completely disjoint from existing categories, fewer themes from
new terms will be proven. The result of this is poorer precision and recall with ABOUT
queries as well poor quality of gists and theme highlighting.

Link new terms to existing terms by making an existing term the broader term for the
new terms.

16.3.8 Example for Extending the Knowledge Base
You purchase a medical thesaurus medthes containing a hierarchy of medical terms.
The four top terms in the thesaurus are the following:

• Anesthesia and Analgesia

• Anti-Allergic and Respiratory System Agents

• Anti-Inflammatory Agents, Antirheumatic Agents, and Inflammation Mediators

• Antineoplastic and Immunosuppressive Agents

To link these terms to the existing knowledge base, add the following entries to the
medical thesaurus to map the new terms to the existing health and medicine branch:

health and medicine
 NT Anesthesia and Analgesia
 NT Anti-Allergic and Respiratory System Agents
 NT Anti-Inflamammatory Agents, Antirheumatic Agents, and Inflamation Mediators
 NT Antineoplastic and Immunosuppressive Agents

Set your globalization support language environment variable to match the database
character set. For example, if your database character set is WE8ISO8859P1 and you
are using American English, set your NLS_LANG as follows:

Chapter 16
Knowledge Base Extension Compiler (ctxkbtc)

16-10

setenv NLS_LANG AMERICAN_AMERICA.WE8ISO8859P1

Assuming the medical thesaurus is in a file called med.thes, load the thesaurus as
medthes with ctxload as follows:

ctxload -thes -thescase y -name medthes -file med.thes -user ctxsys/ctxsys

To link the loaded thesaurus medthes to the knowledge base, use ctxkbtc as follows:

ctxkbtc -user ctxsys/ctxsys -name medthes

16.3.9 Adding a Language-Specific Knowledge Base
Extend theme functionality to languages other than English or French by loading your
own knowledge base for any single-byte whitespace delimited language, including
Spanish.

Theme functionality includes theme indexing, ABOUT queries, theme highlighting, and
the generation of themes, gists, and theme summaries with the CTX_DOC PL/SQL
package.

Extend theme functionality by adding a user-defined knowledge base. For example,
you can create a Spanish knowledge base from a Spanish thesaurus.

To load your language-specific knowledge base, follow these steps:

1. Load your custom thesaurus using ctxload.

2. Set NLS_LANG so that the language portion is the target language. The charset
portion must be a single-byte character set.

3. Compile the loaded thesaurus using ctxkbtc:

ctxkbtc -user ctxsys/ctxsys -name my_lang_thes

This command compiles your language-specific knowledge base from the loaded
thesaurus. To use this knowledge base for theme analysis during indexing and ABOUT
queries, specify the NLS_LANG language as the THEME_LANGUAGE attribute value for the
BASIC_LEXER preference.

16.3.10 Limitations for Adding a Knowledge Base
The following limitations hold for adding knowledge bases:

• Oracle Text supplies knowledge bases in English and French only. You must
provide your own thesaurus for any other language.

• You can only add knowledge bases for languages with single-byte character sets.
You cannot create a knowledge base for languages which can be expressed only
in multibyte character sets. If the database is a multibyte universal character set,
such as UTF-8, the NLS_LANG parameter must still be set to a compatible single-
byte character set when compiling the thesaurus.

• Adding a knowledge base works best for whitespace delimited languages.

• You can have at most one knowledge base for each globalization support
language.

• Obtaining hierarchical query feedback information such as broader terms,
narrower terms and related terms does not work in languages other than English

Chapter 16
Knowledge Base Extension Compiler (ctxkbtc)

16-11

and French. In other languages, the knowledge bases are derived entirely from
your thesauri. In such cases, Oracle recommends that you obtain hierarchical
information directly from your thesauri.

16.3.11 Order of Precedence for Multiple Thesauri
When multiple thesauri are to be compiled, precedence is determined by the order in
which thesauri are listed in the arguments to the compiler, assumed to be most
preferred first. A user-defined thesaurus always has precedence over the built-in
knowledge base.

16.3.12 Size Limits for Extended Knowledge Base
The following table lists the size limits associated with creating and compiling an
extended knowledge base.

Table 16-1 Size Limit for the Extended Knowledge Base

Description of Parameter Limit

Number of RTs (from + to) for each term 32

Number of terms for each single hierarchy (for example, all narrower terms
for a given top term)

64000

Number of new terms in an extended knowledge base 1 million

Number of separate thesauri that can be compiled into a user extension to
the KB

16

16.4 Lexical Compiler (ctxlc)
The Lexical Compiler (ctxlc) is a command-line utility that enables you to create your
own Chinese and Japanese lexicons (dictionaries). Such a lexicon may either be
generated from a user-supplied word list or from the merging of a word list with the
system lexicon for that language.

ctxlc creates the new lexicon in your current directory. The new lexicon consists of
three files, drold.dat, drolk.dat, and droli.dat. To change your system lexicon for
Japanese or Chinese, overwrite the system lexicon with these files.

The Lexical Compiler can also generate wordlists from the system lexicons for
Japanese and Chinese, enabling you to see their contents. These word lists go to the
standard output and thus can be redirected into a file of your choice.

After overwriting the system lexicon, you need to re-create your indexes before
querying them.

This section contains the following topics.

• Syntax of ctxlc

• ctxlc Performance Considerations

• ctxlc Usage Notes

• ctxlc Example

Chapter 16
Lexical Compiler (ctxlc)

16-12

16.4.1 Syntax of ctxlc
ctxlc has the following syntax:

ctxlc -ja | -zht [-n] -ics character_set -i input_file

ctxlc -ja | -zht -ocs character_set [> output_file]

ctxload Mandatory Arguments

-ja | -zht
Specify the language of the lexicon to modify or create. -ja indicates the Japanese
lexicon; -zht indicates the Chinese lexicon, the same for either traditional or simplified
Chinese.

-ics character_set
Specify the character set of the input file denoted by -i input_file. input_file is the list
of words, one word to a line, to use in creating the new lexicon.

-i input_file
Specify the file containing words to use in creating a new lexicon.

-ocs character_set
Specify the character set of the text file to be output.

ctxload Optional Arguments

-n
Specify -n to create a new lexicon that consists only of user-supplied words taken
from input_file. If -n is not specified, then the new lexicon consists of a merge of the
system lexicon with input_file. Also, when -n is not selected, a text file called
drolt.dat, is created in the current directory to enable you to inspect the contents of
the merged lexicon without having to enter another ctxlc command.

16.4.2 ctxlc Performance Considerations
You can add up to 1,000,000 new words to a lexicon. However, creating a very large
lexicon can reduce performance in indexing and querying. Performance is best when
the lexicon character set is UTF-8. There is no performance impact on the Chinese or
Japanese V-gram lexers, as they do not use lexicons.

16.4.3 ctxlc Usage Notes
Oracle recommends the following practices with regard to ctxlc:

• Save your plain text dictionary file in your environment for emergency use.

• When upgrading or downgrading your database to a different release, recompile
your plain text dictionary file in the new environment so that the user lexicon will
work correctly.

Chapter 16
Lexical Compiler (ctxlc)

16-13

16.4.4 ctxlc Example
In this example, you create a new Japanese lexicon from the file jadict.txt, a word
list that uses the JA16EUC character set. Because you are not specifying -n, the new
lexicon is the result of merging jadict.txt with the system Japanese lexicon. Then
replace the existing Japanese lexicon with the new, merged one.

% ctxlc -ja -ics JA16EUC -i jadict.txt

This creates new files in the current directory:

% ls
drold.dat
drolk.dat
droli.dat
drolt.dat

The system lexicon files for Japanese and Chinese are named droldxx.dat
drolkxx.dat, and drolixx.dat, where xx is either JA (for Japanese) or ZH (for
Chinese). Rename the three new files and copy them to the directory containing the
system Japanese lexicon.

% mv drold.dat droldJA.dat
% mv drolk.dat drolkJA.dat
% mv droli.dat droliJA.dat
% cp *dat $ORACLE_HOME/ctx/data/jalx

This replaces the system Japanese lexicon with one that is a merge of the old system
lexicon and your wordlist from jadict.txt.

You can also use ctxlc to get a dump of a system lexicon. This example dumps the
Chinese lexicon to a file called new_chinese_dict.txt in the current directory:

% ctxlc -zh -ocs UTF8 > new_chinese_dict.txt

This creates a file, new_japanese.dict.txt, using the UTF8 character set, in the
current directory.

Chapter 16
Lexical Compiler (ctxlc)

16-14

17
Oracle Text Alternative Spelling

This chapter describes various ways that Oracle Text handles alternative spelling of
words. It also documents the alternative spelling conventions that Oracle Text uses in
the German, Danish, and Swedish languages.

The following topics are covered:

• Overview of Alternative Spelling Features

• Overriding Alternative Spelling Features

• Alternative Spelling Conventions

17.1 Overview of Alternative Spelling Features
Some languages have alternative spelling forms for certain words. For example, the
German word Schoen can also be spelled as Schön.

The form of a word is either original or normalized. The original form of the word is
how it appears in the source document. The normalized form is how it is transformed,
if it is transformed at all. Depending on the word being indexed and which system
preferences are in effect (these are discussed in this chapter), the normalized form of
a word may be the same as the original form. Also, the normalized form may comprise
more than one spelling. For example, the normalized form of Schoen is both Schoen
and Schön.

Oracle Text handles indexing of alternative word forms in the following ways:

• Alternate Spelling—indexing of alternative forms is enabled

• Base-Letter Conversion—accented letters are transformed into non-accented
representations

• New German Spelling—reformed German spelling is accepted

Enable these features by specifying the appropriate attribute to the BASIC_LEXER. For
instance, enable alternate spelling by specifying either GERMAN, DANISH, or SWEDISH for
the ALTERNATE_SPELLING attribute. As an example, here is how to enable alternate
spelling in German:

begin
ctx_ddl.create_preference('GERMAN_LEX', 'BASIC_LEXER');
ctx_ddl.set_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING', 'GERMAN');
end;

To disable alternate spelling, use the CTX_DDL.UNSET_ATTRIBUTE procedure as follows:

begin
ctx_ddl.unset_attribute('GERMAN_LEX', 'ALTERNATE_SPELLING');
end;

17-1

Oracle Text converts query terms to their normalized forms before lookup. As a result,
users can query words with either spelling. If Schoen has been indexed as both
Schoen and Schön, a query with Schön returns documents containing either form.

This section contains the following topics.

• Alternate Spelling

• Base-Letter Conversion

• New German Spelling

17.1.1 Alternate Spelling
When Swedish, German, or Danish has more than one way of spelling a word, Oracle
Text normally indexes the word in its original form; that is, as it appears in the source
document.

When Alternate Spelling is enabled, Oracle Text indexes words in their normalized
form. So, for example, Schoen is indexed both as Schoen and as Schön, and a query
on Schoen will return documents containing either spelling. (The same is true of a
query on Schön.)

To enable Alternate Spelling, set the BASIC_LEXER attribute ALTERNATE_SPELLING to
GERMAN, DANISH, or SWEDISH. See "BASIC_LEXER" for more information.

17.1.2 Base-Letter Conversion
Besides alternative spelling, Oracle Text also handles base-letter conversions. With
base-letter conversions enabled, letters with umlauts, acute accents, cedillas, and the
like are converted to their basic forms for indexing, so fiancé is indexed both as fiancé
and as fiance, and a query of fiancé returns documents containing either form.

To enable base-letter conversions, set the BASIC_LEXER attribute BASE_LETTER to YES.
See "BASIC_LEXER" for more information.

When Alternate Spelling is also enabled, Base-Letter Conversion may need to be
overridden to prevent unexpected results. See "Overriding Alternative Spelling
Features" for more information.

Generic Versus Language-Specific Base-Letter Conversions

The BASE_LETTER_TYPE attribute affects the way base-letter conversions take place. It
has two possible values: GENERIC or SPECIFIC.

The GENERIC value is the default and specifies that base letter transformation uses one
transformation table that applies to all languages.

The SPECIFIC value means that a base-letter transformation that has been specifically
defined for your language will be used. This enables you to use accent-sensitive
searches for words in your own language, while ignoring accents that are from other
languages.

For example, both the GENERIC and the Spanish SPECIFIC tables will transform é into
e. However, they treat the letter ñ distinctly. The GENERIC table treats ñ as an n with an
accent (actually, a tilde), and so transforms ñ to n. The Spanish SPECIFIC table treats
ñ as a separate letter of the alphabet, and thus does not transform it.

Chapter 17
Overview of Alternative Spelling Features

17-2

17.1.3 New German Spelling
In 1996, new spelling rules for German were approved by representatives from all
German-speaking countries. For example, under the spelling reforms, Potential
becomes Potenzial, Schiffahrt becomes Schifffahrt, and schneuzen becomes
schnäuzen.

When the BASIC_LEXER attribute NEW_GERMAN_SPELLING is set to YES, then a CONTAINS
query on a German word that has both new and traditional forms will return documents
matching both forms. For example, a query on Potential returns documents containing
both Potential and Potenzial. The default setting is NO.

Note:

Under reformed German spelling, many words traditionally spelled as one
word, such as soviel, are now spelled as two (so viel). Currently, Oracle Text
does not make these conversions, nor conversions from two words to one
(for example, weh tun to wehtun).

The case of the transformed word is determined from the first two characters of the
word in the source document; that is, schiffahrt becomes schifffahrt, Schiffahrt
becomes Schifffahrt, and SCHIFFAHRT becomes SCHIFFFAHRT.

As many new German spellings include hyphens, it is recommended that users
choosing NEW_GERMAN_SPELLING define hyphens as printjoins.

See "BASIC_LEXER" for more information on setting this attribute.

17.2 Overriding Alternative Spelling Features
Even when alternative spelling features have been specified by lexer preference, it is
possible to override them.

You can override base-letter conversion when Alternate Spelling is used, to prevent
characters with alternate spelling forms, such as ü, ö, and ä, from also being
transformed to the base letter forms.

Overriding Base-Letter Transformations with Alternate Spelling

Transformations caused by turning on alternate_spelling are performed before
those of base_letter, which can sometimes cause unexpected results when both are
enabled.

When Alternate Spelling is enabled, Oracle Text converts two-letter forms to single-
letter forms (for example, ue to ü), so that words can be searched in both their base
and alternate forms. Therefore, with Alternate Spelling enabled, a search for Schoen
will return documents with both Schoen and Schön.

However, when Base-letter Transformation is also enabled, the ü in Schlüssel is
transformed into a u, producing the non-existent word (in German, anyway) Schlussel,
and the word is indexed in all three forms.

Chapter 17
Overriding Alternative Spelling Features

17-3

To prevent this secondary conversion, set the OVERRIDE_BASE_LETTER attribute to
TRUE.

OVERRIDE_BASE_LETTER only affects letters with umlauts; accented letters, for example,
are still transformed into their base forms.

For more on BASE_LETTER, see "Base-Letter Conversion".

17.3 Alternative Spelling Conventions
The following sections show the alternative spelling substitutions used by Oracle Text.

• German Alternate Spelling Conventions

• Danish Alternate Spelling Conventions

• Swedish Alternate Spelling Conventions

17.3.1 German Alternate Spelling Conventions
The German alphabet is the English alphabet plus the additional characters: ä ö ü ß.
Table 17-1 lists the alternate spelling conventions Oracle Text uses for these
characters.

Table 17-1 German Alternate Spelling Conventions

Character Alternate Spelling Substitution

ä ae

ü ue

ö oe

Ä AE

Ü UE

Ö OE

ß ss

17.3.2 Danish Alternate Spelling Conventions
The Danish alphabet is the Latin alphabet without the w, plus the special characters: ø
æ å. Table 17-2 lists the alternate spelling conventions Oracle Text uses for these
characters.

Table 17-2 Danish Alternate Spelling Conventions

Character Alternate Spelling Substitution

æ ae

ø oe

å aa

Æ AE

Ø OE

Chapter 17
Alternative Spelling Conventions

17-4

Table 17-2 (Cont.) Danish Alternate Spelling Conventions

Character Alternate Spelling Substitution

Å AA

17.3.3 Swedish Alternate Spelling Conventions
The Swedish alphabet is the English alphabet without the w, plus the additional
characters: å ä ö. Table 17-3 lists the alternate spelling conventions Oracle Text uses
for these characters.

Table 17-3 Swedish Alternate Spelling Conventions

Character Alternate Spelling Convention

ä ae

å aa

ö oe

Ä AE

Å AA

Ö OE

Chapter 17
Alternative Spelling Conventions

17-5

A
Oracle Text Result Tables

This appendix describes the structure of the result tables used to store the output
generated by the procedures in the CTX_QUERY, CTX_DOC, and CTX_THES packages.

The following topics are discussed in this appendix:

• CTX_QUERY Result Tables

• CTX_DOC Result Tables

• CTX_THES Result Tables and Data Types

A.1 CTX_QUERY Result Tables
For the CTX_QUERY procedures that return results, tables for storing the results must be
created before the procedure is called. The tables can be named anything, but must
include columns with specific names and data types.

This section describes the following types of result tables, and their required columns:

• EXPLAIN Table

• HFEEDBACK Table

A.1.1 EXPLAIN Table
This section describes the EXPLAIN table.

• EXPLAIN Table Structure

• EXPLAIN Table Operation Column Values

• EXPLAIN Table OPTIONS Column Values

A.1.1.1 EXPLAIN Table Structure
Table A-1 describes the structure of the table to which CTX_QUERY.EXPLAIN writes
its results.

Table A-1 EXPLAIN Result Table

Column Name Datatype Description

EXPLAIN_ID VARCHAR2(30) The value of the explain_id argument
specified in the FEEDBACK call.

ID NUMBER A number assigned to each node in the query
execution tree. The root operation node has ID
=1. The nodes are numbered in a top-down,
left-first manner as they appear in the parse
tree.

A-1

Table A-1 (Cont.) EXPLAIN Result Table

Column Name Datatype Description

PARENT_ID NUMBER The ID of the execution step that operates on
the output of the ID step. Graphically, this is
the parent node in the query execution tree.
The root operation node (ID =1) has
PARENT_ID = 0.

OPERATION VARCHAR2(30) Name of the internal operation performed.
Refer to Table A-2 for possible values.

OPTIONS VARCHAR2(30) Characters that describe a variation on the
operation described in the OPERATION column.
When an OPERATION has more than one
OPTIONS associated with it, OPTIONS values
are concatenated in the order of processing.
See Table A-3 for possible values.

OBJECT_NAME VARCHAR2(80) Section name, wildcard term, weight, or
threshold value or term to lookup in the index.

POSITION NUMBER The order of processing for nodes that all have
the same PARENT_ID. The positions are
numbered in ascending order starting at 1.

CARDINALITY NUMBER Reserved for future use. You should create
this column for forward compatibility.

A.1.1.2 EXPLAIN Table Operation Column Values
Table A-2 shows the possible values for the OPERATION column of the EXPLAIN table.

Table A-2 EXPLAIN Table OPERATION Column

Operation Value Query Operator Equivalent Symbol

ABOUT ABOUT n/a

ACCUMULATE ACCUM ,

AND AND &

COMPOSITE (none) n/a

EQUIVALENCE EQUIV =

MINUS MINUS -

NEAR NEAR ;

NOT NOT ~

NO_HITS (no hits will result from this query) n/a

OR OR |

PHRASE (a phrase term) n/a

SECTION (section) n/a

THRESHOLD > >

WEIGHT * *

WITHIN within n/a

Appendix A
CTX_QUERY Result Tables

A-2

Table A-2 (Cont.) EXPLAIN Table OPERATION Column

Operation Value Query Operator Equivalent Symbol

WORD (a single term) n/a

A.1.1.3 EXPLAIN Table OPTIONS Column Values
Table A-3 lists the possible values for the OPTIONS column of the EXPLAIN table.

Table A-3 EXPLAIN Table OPTIONS Column

Options Value Description

($) Stem

(?) Fuzzy

(!) Soundex

(T) Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with the max_span parameter for the Near
operator.

[9] Indicates that index_stems is set and query is using
token_type 9.

A.1.2 HFEEDBACK Table
This section describes the HFEEDBACK table.

• HFEEDBACK Table Structure

• HFEEDBACK Table Operation Column Values

• HFEEDBACK Table OPTIONS Column Values

• CTX_FEEDBACK_TYPE

A.1.2.1 HFEEDBACK Table Structure
Table A-4 describes the table to which CTX_QUERY.HFEEDBACK writes its results.

Table A-4 HFEEDBACK Results Table

Column Name Datatype Description

FEEDBACK_ID VARCHAR2(30) The value of the feedback_id argument
specified in the HFEEDBACK call.

ID NUMBER A number assigned to each node in the query
execution tree. The root operation node has ID
=1. The nodes are numbered in a top-down,
left-first manner as they appear in the parse
tree.

Appendix A
CTX_QUERY Result Tables

A-3

Table A-4 (Cont.) HFEEDBACK Results Table

Column Name Datatype Description

PARENT_ID NUMBER The ID of the execution step that operates on
the output of the ID step. Graphically, this is the
parent node in the query execution tree. The
root operation node (ID =1) has PARENT_ID =
0.

OPERATION VARCHAR2(30) Name of the internal operation performed.
Refer to Table A-5 for possible values.

OPTIONS VARCHAR2(30) Characters that describe a variation on the
operation described in the OPERATION column.
When an OPERATION has more than one
OPTIONS associated with it, OPTIONS values
are concatenated in the order of processing.
See Table A-6 for possible values.

OBJECT_NAME VARCHAR2(80) Section name, wildcard term, weight, threshold
value or term to lookup in the index.

POSITION NUMBER The order of processing for nodes that all have
the same PARENT_ID. The positions are
numbered in ascending order starting at 1.

BT_FEEDBACK CTX_FEEDBACK_TYPE Stores broader feedback terms. See Table A-7.

PT_FEEDBACK CTX_FEEDBACK_TYPE Stores related feedback terms. See Table A-7.

NT_FEEDBACK CTX_FEEDBACK_TYPE Stores narrower feedback terms. See
Table A-7.

A.1.2.2 HFEEDBACK Table Operation Column Values
Table A-5 shows the possible values for the OPERATION column of the HFEEDBACK table.

Table A-5 HFEEDBACK Results Table OPERATION Column

Operation Value Query Operator Equivalent Symbol

ABOUT ABOUT (none)

ACCUMULATE ACCUM ,

AND AND &

EQUIVALENCE EQUIV =

MINUS MINUS -

NEAR NEAR ;

NOT NOT ~

OR OR |

SECTION (section)

TEXT word or phrase of a text query

THEME word or phrase of an ABOUT query

THRESHOLD > >

WEIGHT * *

Appendix A
CTX_QUERY Result Tables

A-4

Table A-5 (Cont.) HFEEDBACK Results Table OPERATION Column

Operation Value Query Operator Equivalent Symbol

WITHIN within (none)

A.1.2.3 HFEEDBACK Table OPTIONS Column Values
Table A-6 lists the values for the OPTIONS column of the HFEEDBACK table.

Table A-6 HFEEDBACK Results Table OPTIONS Column

Options Value Description

(T) Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with the max_span parameter for the Near
operator.

A.1.2.4 CTX_FEEDBACK_TYPE
The CTX_FEEDBACK_TYPE is a nested table of objects. This datatype is predefined in the
CTXSYS schema. Use this type to define the columns BT_FEEDBACK, RT_FEEDBACK, and
NT_FEEDBACK.

The nested table CTX_FEEDBACK_TYPE holds objects of type CTX_FEEDBACK_ITEM_TYPE,
which is also predefined in the CTXSYS schema. This object is defined with three
members and one method as follows:

Table A-7 CTX_FEEDBACK_ITEM_TYPE

CTX_FEEDBACK_ITEM_TYPE
Members and Methods

Type Description

text NUMBER Feedback term.

cardinality NUMBER (reserved for future use.)

score NUMBER (reserved for future use.)

The SQL code that defines these objects is as follows:

CREATE OR REPLACE TYPE ctx_feedback_type AS TABLE OF ctx_feedback_item_type;

CREATE OR REPLACE TYPE ctx_feedback_item_type AS OBJECT
(text VARCHAR2(80),
 cardinality NUMBER,
 score NUMBER,
 MAP MEMBER FUNCTION rank RETURN REAL,
 PRAGMA RESTRICT_REFERENCES (rank, RNDS, WNDS, RNPS, WNPS)
);

CREATE OR REPLACE TYPE BODY ctx_feedback_item_type AS
 MAP MEMBER FUNCTION rank RETURN REAL IS
 BEGIN
 RETURN score;

Appendix A
CTX_QUERY Result Tables

A-5

 END rank;
END;

See Also:

For an example of how to select from the HFEEDBACK table and its nested
tables, refer to CTX_QUERY.HFEEDBACK in CTX_QUERY Package

A.2 CTX_DOC Result Tables
The CTX_DOC procedures return results stored in a table. Before calling a procedure,
you must create the table. The tables can be named anything, but must include
columns with specific names and data types.

This section describes the following result tables and their required columns:

• Filter Table

• Gist Table

• Highlight Table

• Markup Table

• Theme Table

• Token Table

A.2.1 Filter Table
A filter table stores one row for each filtered document returned by
CTX_DOC.FILTER . Filtered documents can be plain text or HTML.

When you call CTX_DOC.FILTER for a document, the document is processed through
the filter defined for the text column and the results are stored in the filter table you
specify.

Filter tables can be named anything, but must include the following columns, with
names and datatypes as specified:

Table A-8 FILTER Result Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call
to CTX_DOC.FILTER (only populated when table is used
to store results from multiple FILTER calls)

DOCUMENT CLOB Text of the document, stored in plain text or HTML.

A.2.2 Gist Table
A Gist table stores one row for each Gist/theme summary generated by CTX_DOC.GIST.

Appendix A
CTX_DOC Result Tables

A-6

Gist tables can be named anything, but must include the following columns, with
names and data types as specified:

Table A-9 Gist Table

Column Name Type Description

QUERY_ID NUMBER Query ID.

POV VARCHAR2(80) Document theme. Case depends of how themes were
used in document or represented in the knowledge
base.

POV has the value of GENERIC for the document GIST.

GIST CLOB Text of Gist or theme summary, stored as plain text

A.2.3 Highlight Table
A highlight table stores offset and length information for highlighted terms in a
document. This information is generated by CTX_DOC.HIGHLIGHT . Highlighted
terms can be the words or phrases that satisfy a word or an ABOUT query.

If a document is formatted, the text is filtered into either plain text or HTML and the
offset information is generated for the filtered text. The offset information can be used
to highlight query terms for the same document filtered with CTX_DOC.FILTER .

Highlight tables can be named anything, but must include the following columns, with
names and datatypes as specified:

Table A-10 Highlight Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call to
CTX_DOC.HIGHLIGHT (only populated when table is used
to store results from multiple HIGHLIGHT calls)

OFFSET NUMBER The position of the highlight in the document, relative to the
start of document which has a position of 1.

LENGTH NUMBER The length of the highlight.

A.2.4 Markup Table
A markup table stores documents in plain text or HTML format with the query terms in
the documents highlighted by markup tags. This information is generated when you
call CTX_DOC.MARKUP .

Markup tables can be named anything, but must include the following columns, with
names and datatypes as specified:

Appendix A
CTX_DOC Result Tables

A-7

Table A-11 Markup Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a particular call
to CTX_DOC.MARKUP (only populated when table is used
to store results from multiple MARKUP calls)

DOCUMENT CLOB Marked-up text of the document, stored in plain text or
HTML format

A.2.5 Theme Table
A theme table stores one row for each theme generated by CTX_DOC.THEMES. The
value stored in the THEME column is either a single theme phrase or a string of parent
themes, separated by colons.

Theme tables can be named anything, but must include the following columns, with
names and data types as specified:

Table A-12 Theme Table

Column
Name

Type Description

QUERY_ID NUMBER Query ID

THEME VARCHAR2(2000) Theme phrase or string of parent themes separated by
colons (:).

WEIGHT NUMBER Weight of theme phrase relative to other theme phrases
for the document.

A.2.6 Token Table

A token table stores the text tokens for a document as output by the CTX_DOC.TOKENS
procedure. Token tables can be named anything, but must include the following
columns, with names and data types as specified.

Table A-13 Token Table

Column Name Type Description

QUERY_ID NUMBER The identifier for the results generated by a
particular call to CTX_DOC.HIGHLIGHT (only
populated when table is used to store results from
multiple HIGHLIGHT calls)

TOKEN VARCHAR2(64) The token string in the text.

OFFSET NUMBER The position of the token in the document, relative
to the start of document which has a position of 1.

LENGTH NUMBER The character length of the token.

Appendix A
CTX_DOC Result Tables

A-8

Table A-13 (Cont.) Token Table

Column Name Type Description

THES_TOKENS VARCHAR2(4000) Synonyms or broader terms generated using the
thesaurus for the token in TOKEN column. These
are separated using colons.

A.3 CTX_THES Result Tables and Data Types
The CTX_THES expansion functions such as BT, NT, and SYN can return the expansions
in a table of type EXP_TAB. Specify the name of your table with the restab argument.

• EXP_TAB Table Type

A.3.1 EXP_TAB Table Type
The EXP_TAB table type is a table of rows of type EXP_REC.

The EXP_REC and EXP_TAB types are defined as follows in the CTXSYS schema:

type exp_rec is record (
 xrel varchar2(12),
 xlevel number,
 xphrase varchar2(256)
);

type exp_tab is table of exp_rec index by binary_integer;

When you call a thesaurus expansion function and specify restab, the system returns
the expansion as an EXP_TAB table. Each row in this table is of type EXP_REC and
represents a word or phrase in the expansion. Table A-14 describes the fields in
EXP_REC:

Table A-14 EXP_TAB Table Type (EXP_REC)

EXP_REC Field Description

xrel The xrel field contains the relation of the term to the input term
(for example, 'SYN', 'PT', 'RT', and so on). The xrel value is
PHRASE when the input term appears in the expansion. For
translations, the xrel value is the language.

xlevel The xlevel field is the level of the relation. This is used mainly
when xrel is a hierarchical relation (BT*/NT*).

The xlevel field is 0 when xrel is PHRASE.

The xlevel field is 2 for translations of synonyms under
TRSYN.

The xlevel field is 1 for operators that are not hierarchical,
such as PT and RT.

xphrase The xphrase is the related term. This includes a qualifier in
parentheses, if one exists for the related term. Compound terms
are not de-compounded.

Appendix A
CTX_THES Result Tables and Data Types

A-9

B
Oracle Text Supported Document Formats

Oracle Text uses the HTML export technology of Oracle Outside In for automatic
filtering. This appendix provides tables with the document and graphic file formats
supported by the automatic AUTO_FILTER filtering technology for this release.

This appendix contains the following topics:

• About Document Filtering Technology

• Supported Document Formats

See Also:

"AUTO_FILTER" for information on using AUTO_FILTER

B.1 About Document Filtering Technology
The automatic filtering technology in Oracle Text enables you to convert documents to
HTML for document presentation with the CTX_DOC package.

To use automatic filtering for indexing and DML processing, you must specify the
AUTO_FILTER object in your filter preference.

To use automatic filtering technology for converting documents to HTML with the
CTX_DOC package, you need not use the AUTO_FILTER indexing preference.

This section contains these topics:

• Latest Updates for Patch Releases

• Restrictions on Format Support

• Supported Platforms for AUTO_FILTER Document Filtering Technology

• Filtering on PDF Documents and Security Settings

• PDF Filtering Limitations

• Environment Variables

• General Limitations

B.1.1 Latest Updates for Patch Releases
The supported platforms and formats listed in this appendix apply for this release.
These supported formats are updated for patch releases.

B-1

B.1.2 Restrictions on Format Support
The formats listed in this appendix are those formats recognized by AUTO_FILTER.
Recognizing a format does not necessarily mean that text can be extracted from it. For
example, a scanned document is usually an image and AUTO_FILTER does not perform
optical character recognition. Similarly, text cannot be extracted for indexing from
multimedia file types.

Password-protected documents and documents with password-protected content are
not supported by the AUTO_FILTER filter.

For other limitations, see "Supported Document Formats" concerning specific
document types.

B.1.3 Supported Platforms for AUTO_FILTER Document Filtering
Technology

Several platforms can take advantage of AUTO_FILTER filter technology. AUTO_FILTER
filter technology is supported on the following platforms:

• Windows (x86 32-bit) Windows 2000, Windows Server 2003, Windows Server
2008, Windows XP, and Windows Vista Enterprise

• Windows (x86 64-bit) Windows Server 2003 and Windows Server 2008 x64
Standard, Enterprise, and Datacenter Editions (64-bit Extended Systems)

• HP-UX (PA-RISC 64-bit) 11.i

• HP/UX (Itanium 64) 11i

• IBM AIX on POWER Systems (64-bit) 5.3 - 7.1

• iSeries (OS/400 using PASE) V5R2

• Red Hat Linux (x86) Advanced Server 3, 4, and 5

• Red Hat Linux (x86) Red Hat Enterprise Linux (RHEL) 4

• Red Hat Linux (Itanium 64) Advanced Server 3, 4, and 5

• Red Hat Linux (zSeries, 31-bit) Advanced Server 3 and 4

• Red Hat Enterprise Linux AS/ES 3.0, 4.0 and 5.0, x86-64 (AMD64/EM64T)Oracle
Linux 4.0 and 5.0, x86-64 (AMD64/EM64T)

• SuSE Linux (x86) 9, 10, and Enterprise Server 9.0

• SuSE Linux (x86 64-bit) SUSE Enterprise Server (SLES) 9, 10

• SuSE Linux (Itanium 64) Enterprise Server 8

• SuSE Linux (zSeries, 31-bit) 9

• Sun Solaris (SPARC 64-bit) 9.x - 10.x

• Sun Solaris (x86-64-bit) 10x

Note that some of these platforms may not be supported by the Oracle Database.

Appendix B
About Document Filtering Technology

B-2

B.1.4 Filtering on PDF Documents and Security Settings
A PDF document can have different levels of security settings as follows:

Table B-1 AUTO_FILTER Behavior with PDF Security Settings

Security
Level

Description PDF
Version

Encryption AUTO_FILTER Support Level

Level 1 Requires a password for opening the
document.

1.2+ 40 bit RC4 Not supported.

Level 1 Requires a password for opening the
document.

1.4+ 128 bit RC4 Not supported.

Level 1 Requires a password for opening the
document.

1.5+ 128 bit RC4 Not supported.

Level 1 Requires a password for opening the
document.

1.6+ 128 bit AES Not supported.

Level 1 Requires a password for opening the
document.

1.7+ 256 bit AES Not supported.

Level 2 Disallows user printing of the
document.

1.2+ 40 bit RC4 Supported.

Level 2 Disallows user printing of the
document.

1.4+ 128 bit RC4 Supported.

Level 2 Disallows user printing of the
document.

1.5+ 128 bit RC4 Supported.

Level 2 Disallows user printing of the
document.

1.6+ 128 bit AES Not supported.

Level 2 Disallows user printing of the
document.

1.7+ 256 bit AES Not supported.

Level 3 Disallows user modification or change
of the document.

1.2+ 40 bit RC4 Supported.

Level 3 Disallows user modification or change
of the document.

1.4+ 128 bit RC4 Supported.

Level 3 Disallows user modification or change
of the document.

1.5+ 128 bit RC4 Supported.

Level 3 Disallows user modification or change
of the document.

1.6+ 128 bit RC4 Not supported.

Level 3 Disallows user modification or change
of the document.

1.7+ 256 bit AES Not supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.2+ 40 bit RC4 Supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.4+ 128 bit RC4 Supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.5+ 128 bit RC4 Supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.6+ 128 bit AES Not supported.

Level 4 Disallows the user from copying or
extracting content from the document.

1.7+ 256 bit AES Not supported.

Appendix B
About Document Filtering Technology

B-3

B.1.5 PDF Filtering Limitations
The following limitations apply when filtering PDF files:

• Multi-byte PDFs are supported, provided the PDF document is created using
Character ID-keyed (CID) fonts, predefined CJK CMap files, or ToUnicode font
encodings, and the document does not contain embedded fonts.

• Embedded fonts in a PDF document are not filtered correctly. They are usually
displayed using the question mark (?) replacement character.

• Hyperlinks in a PDF are not active when displayed in a browser or a viewing
window.

• Annotations, such as notes, sound, or movies, are not supported.

B.1.6 Environment Variables
No environment variables need to be set by the user.

B.1.7 General Limitations
AUTO_FILTER filter technology has the following limitations:

• Any ASCII characters less then 0x20 (decimal 32) are converted to hexadecimal
numbers.

• Files larger than 2GB are not handled.

B.2 Supported Document Formats
Document filtering is used for indexing, DML, and for converting documents to HTML
with the CTX_DOC package. The tables in this section list the document formats that
Oracle Text supports for filtering.

This section contains the following topics:

• Archive File Format

• Database Formats

• Email Formats

• Graphic Formats (Raster and Vector Image)

• Multimedia Formats

• Other Formats

• Presentation Formats

• Spreadsheet Formats

• Text and Markup Formats

• Word Processing and Desktop Publishing Formats

Appendix B
Supported Document Formats

B-4

Note:

These lists do not represent the complete list of formats that Oracle Text is
able to process. The USER_FILTER and PROCEDURE_FILTER enable Oracle
Text to process any document format, provided an external filter exists that
can filter to some textual format like plain-text, HTML, XML, and so forth.

B.2.1 Archive File Format
When filtering an archive file, all the contents of the files inside the archive will be
exported to a single output file. This will also include the contents of all subfolders and
files inside the archive file.

Table B-2 lists the archive formats that Oracle Text supports.

Table B-2 Supported Archive File Formats

Archive Format Version

7z (BZIP2 and split archives not
supported)

7z Self Extracting .exe (BZIP2 and split
archives not supported)

LZA Self Extracting Compress

LZH Compress

Microsoft Office Binder 95 – 97

Microsoft Cabinet (CAB)

RAR 1.5, 2.0, 2.9

Self-extracting .exe

UNIX Compress

UNIX GZip

UNIX Tar

Uuencode

Zip PKZip

Zip WinZip

Zip Zip64

B.2.2 Database Formats

Format Version

DataEase 4.x

DBase III, IV, V

First Choice DB Through 3.0

Framework DB 3.0

Appendix B
Supported Document Formats

B-5

Format Version

Microsoft Access 1.0, 2.0, 95–2013

Microsoft Works DB for DOS 1.0, 2.0

Microsoft Works DB for Macintosh 2.0

Microsoft Works DB for Windows 3.0, 4.0

Paradox for DOS 2.0 – 4.0

Paradox for Windows 1.0

Q&A Database Through 2.0

R:BASE R:BASE 5000

R:BASE R:BASE System V

Reflex 2.0

SmartWare II DB 1.02

B.2.3 Email Formats

Format Version

Apple Mail Message (EMLX) 2.0

Encoded mail messages MHT

Encoded mail messages Multi Part Alternative

Encoded mail messages Multi Part Digest

Encoded mail messages Multi Part Mixed

Encoded mail messages Multi Part News Group

Encoded mail messages Multi Part Signed

Encoded mail messages TNEF

EML with Digital Signature SMIME

IBM Lotus Notes Domino XML Language DXL 8.5

IBM Lotus Notes NSF (Win32, Win64, Linux
x86-32 and Oracle Solaris 32-bit only with Notes
Client or Domino Server)

8.x

MBOX Mailbox RFC 822

Microsoft Outlook Message (MSG) 97 – 2013

Microsoft Outlook Express (EML)

Microsoft Outlook Forms Template (OFT) 97 – 2013

Microsoft Outlook OST 97 – 2013

Microsoft Outlook PST 97 – 2013

Microsoft Outlook PST (Mac) 2001

MSG with Digital Signature SMIME

MIME Support Notes

The following formats are supported:

• MIME formats

Appendix B
Supported Document Formats

B-6

– EML

– MHT (Web Archive)

– NWS (Newsgroup single-part and multi-part)

– Simple Text Mail (defined in RFC 2822)

• TNEF format

• MIME encodings, including

– base64 (defined in RFC 1521)

– binary (defined in RFC 1521)

– binhex (defined in RFC 1741)

– btoa

– quoted-printable (defined in RFC 1521)

– utf-7 (defined in RFC 2152)

– uue

– xxe

– yenc

In addition, the body of a message can be encoded in several ways. The following
encodings are supported:

• HTML

• RTF

• TNEF

• Text/enriched (defined in RFC 1523)

• Text/richtext (defined in RFC1341)

• Embedded mail message (defined in RFC 822) - this is handled as a link to a new
message

The attachments of a MIME message can be stored in many formats. Oracle
Corporation processes all attachment types that its technology supports.

B.2.4 Graphic Formats (Raster and Vector Image)
The graphic formats that the AUTO_FILTER filter recognizes ensure that indexing a text
column containing any of these formats produces no error. Formats are categorized as
either embedded graphics or standalone graphics. Embedded graphics are inserted or
referenced within a document.

This section contains the following tables for supported graphic formats:

• Table B-3

• Table B-4

Appendix B
Supported Document Formats

B-7

Note:

The AUTO_FILTER filter cannot extract textual information from graphics.

Table B-3 Supported Raster Image Formats for AUTO_FILTER Filter

Format Version

Adobe Photoshop 4.0

Adobe Photoshop PSD (File ID only)

Adobe Photoshop CS1 – 6

CALS Raster (GP4) Type I

CALS Raster (GP4) Type II

Computer Graphics Metafile ANSI

Computer Graphics Metafile CALS

Computer Graphics Metafile NIST

Encapsulated PostScript (EPS) TIFF header Only

GEM Image (Bitmap)

Graphics Interchange Format (GIF)

IBM Graphics Data Format (GDF) 1.0

IBM Picture Interchange Format 1.0

JBIG2 Graphic Embeddings in PDF

JFIF (JPEG not in TIFF format)

JPEG

JPEG 2000 JP2

Kodak Flash Pix

Kodak Photo CD 1.0

Lotus PIC

Lotus Snapshot

Macintosh PICT BMP only

Macintosh PICT2 BMP only

MacPaint

Microsoft Windows Bitmap

Microsoft Windows Cursor

Microsoft Windows Icon

OS/2 Bitmap

OS/2 Warp Bitmap

Paint Shop Pro (Win32 only) 5.0, 6.0

PC Paintbrush (PCX)

PC Paintbrush DCX (multi-page PCX)

Portable Bitmap (PBM)

Portable Graymap PGM

Appendix B
Supported Document Formats

B-8

Table B-3 (Cont.) Supported Raster Image Formats for AUTO_FILTER Filter

Format Version

Portable Network Graphics (PNG)

Portable Pixmap (PPM)

Progressive JPEG

StarOffice Draw 6.x – 9.0

Sun Raster

TIFF Group 5 & 6

TIFF CCITT Group 3 & 4

TruVision TGA (Targa) 2.0

Word Perfect Graphics 1.0

WBMP wireless graphics format

X-Windows Bitmap x10 compatible

X-Windows Dump x10 compatible

X-Windows Pixmap x10 compatible

WordPerfect Graphics 2.0 – 10.0

Table B-4 Supported Vector Image Formats for AUTO_FILTER Filter

Graphics Format Version

Adobe Illustrator 4.0 – 7.0

Adobe Illustrator (PDF Preview only) 9.0, CS1 — 6

Adobe Illustrator XMP CS1 – 6

Adobe InDesign XMP CS1 - 6

Adobe InDesign Interchange (XMP only)

Adobe PDF 1.0 – 1.7 (Acrobat 1 – 10)

Adobe PDF Package 1.7 (Acrobat 8 – 10)

Adobe PDF Portfolio 1.7 (Acrobat 8 – 10)

Ami Draw SDW

AutoCAD Drawing 2.5, 2.6

AutoCAD Drawing 9.0 – 14.0

AutoCAD Drawing 2000i – 2013

AutoShade Rendering 2

Corel Draw 2.0 – 9.0

Corel Draw Clipart 5.0, 7.0

Enhanced Metafile (EMF)

Escher graphics

FrameMaker Graphics (FMV) 3.0 – 5.0

Gem File (Vector)

Harvard Graphics Chart DOS 2.0 – 3.0

Appendix B
Supported Document Formats

B-9

Table B-4 (Cont.) Supported Vector Image Formats for AUTO_FILTER Filter

Graphics Format Version

Harvard Graphics for Windows

Hewlett Packard Graphics Language (HPGL) 2.0

IGES Drawing 5.1 – 5.3

Micrografx Designer (DRW) Through 3.1

Micrografx Designer (DFS) 6.0

Micrografx Draw (DRW) Through 4.0

Microsoft XPS (Text only)

Novell PerfectWorks Draw 2

OpenOffice Draw 1.1 – 3.0

Oracle Open Office Draw 3.x

SVG (processed as XML, not rendered)

Visio (Page Preview mode WMF/EMF) 4.0

Visio 5.0 - 2010

Visio (text only) 2013

Windows Metafile (WMF)

B.2.5 Multimedia Formats
The multimedia formats listed below are those formats recognized by AUTO_FILTER.
Recognizing a format does not necessarily mean that text can be extracted from it.
Also, the file name and file header information are not indexed. A scanned document
is usually an image, and AUTO_FILTER does not perform optical character recognition.
Similarly, text cannot be extracted for indexing from multimedia file types.

Format Version

Flash (text extraction only) 6.x, 7.x, Lite

MP3 (ID3 metadata only)

B.2.6 Other Formats

Format Version

Microsoft Live Messenger (via XML filter) 10.0

Microsoft Project (table view only) 98 – 2003

Microsoft Project (table view only) 2007, 2010

Microsoft Windows DLL -

Microsoft Windows Executable -

Trillian Text Log File (via text filter) 4.2

vCalendar 2.1

vCard 2.1

Appendix B
Supported Document Formats

B-10

Format Version

Yahoo Messenger 6.x – 8

B.2.7 Presentation Formats

Format Version

Apple iWork Keynote (text and PDF preview) 09

Harvard Graphics Presentation DOS 3.0

IBM Lotus Symphony Presentations 1.x

Kingsoft WPS Presentation 2010

LibreOffice Impress 4.x

Lotus Freelance 1.0 – Millennium 9.6

Lotus Freelance for OS/3 2

Lotus Freelance for Windows 95, 97, SmartSuite 9.8

Microsoft PowerPoint for Macintosh 4.0 – 2011

Microsoft PowerPoint for Windows 3.0 – 2013

Microsoft PowerPoint for Windows Slideshow 2007 – 2013

Microsoft PowerPoint for Windows Template 2007 – 2013

Novell Presentations 3.0, 7.0

OpenOffice Impress 1.1, 3.0

Oracle Open Office Impress 3.x

StarOffice Impress 5.2 – 9.0

WordPerfect Presentations 5.1 – X

B.2.8 Spreadsheet Formats

Format Version

Apple iWork Numbers (text and PDF preview) 09

Enable Spreadsheet 3.0 – 4.5

First Choice SS Through 3.0

Framework SS 3.0

IBM Lotus Symphony Spreadsheets 1.x

Kingsoft WPS Spreadsheets 2010

LibreOffice Calc 4.x

Lotus 1-2-3 Through Millennium 9.8

Lotus 1-2-3 Charts for DOS and Windows Through 5.0

Lotus 1-2-3 for OS/2 Through 2.0

Microsoft Excel Charts 2.x – 2007

Microsoft Excel for Macintosh 98 – 2011

Appendix B
Supported Document Formats

B-11

Format Version

Microsoft Excel for Windows 3.0 – 2013

Microsoft Excel for Windows (text only via XML filter) 2003 XML

Microsoft Excel for Windows (.xlsb) 2007 – 2013 (Binary)

Microsoft Works SS for DOS 2.0

Microsoft Works SS for Macintosh 2.0

Microsoft Works SS for Windows 3.0, 4.0

Multiplan 4.0

Novell PerfectWorks Spreadsheet 2.0

OpenOffice Calc 1.1 – 3.0

Oracle Open Office Calc 3.x

PFS: Plan 1.0

Quattro Pro for DOS Through 5.0

Quattro Pro for Windows Through X6

SmartWare Spreadsheet

SmartWare II SS 1.02

StarOffice Calc 5.2 – 9.0

SuperCalc 5.0

Symphony Through 5.0

VP-Planner 1.0

B.2.9 Text and Markup Formats

Format Version

ANSI Text 7 and 8 bit

ASCII Text 7 and 8 bit

DOS character set

EBCDIC

HTML (HTML5 advanced elements are limited to those
typically found in HTML based emails.)

1.0 – 5.0

IBM DCA/RFT

Macintosh character set

Rich Text Format (RTF)

Unicode Text 3.0, 4.0

UTF-8

Wireless Markup Language

XML (text only)

B.2.10 Word Processing and Desktop Publishing Formats

Appendix B
Supported Document Formats

B-12

Format Version

Adobe FrameMaker (MIF only) 3.0 – 6.0

Adobe Illustrator Postscript Level 2

Ami

Ami Pro for OS2

Ami Pro for Windows 2.0, 3.0

Apple iWork Pages (text and PDF preview) 09

DEC DX Through 4.0

DEC DX Plus 4.0, 4.1

Enable Word Processor 3.0 – 4.5

First Choice WP 1.0, 3.0

Framework WP 3.0

Hangul 97 – 2010

IBM DCA/FFT

IBM DisplayWrite 2.0 – 5.0

IBM Writing Assistant 1.01

Ichitaro 5.0, 6.0, 8.0 – 13.0, 2004, 2013

JustWrite Through 3.0

Kingsoft WPS Writer 2010

Legacy 1.1

Lotus Manuscript Through 2.0

Lotus WordPro 9.7, 96 – Millennium 9.8

MacWrite II 1.1

Mass 11 Through 8.0

Microsoft Word for DOS 4.0 – 6.0

Microsoft Word for Macintosh 4.0 – 6.0, 98 – 2011

Microsoft Word for Windows 1.0 – 2013

Microsoft Word for Windows (text only via XML filter) 2003 XML

Microsoft Word for Windows 98-J

Microsoft WordPad

Microsoft Works WP for DOS 2.0

Microsoft Works WP for Macintosh 2.0

Microsoft Works WP for Windows 3.0, 4.0

Microsoft Write for Windows 1.0 – 3.0

MultiMate Through 4.0

MultiMate Advantage 2.0

Navy DIF

Nota Bene 3.0

Novell PerfectWorks Word Processor 2.0

OfficeWriter 4.0 – 6.0

OpenOffice Writer 1.1 – 3.0

Appendix B
Supported Document Formats

B-13

Format Version

Oracle Open Office Writer 3.x

PC File Doc 5.0

PFS: Write A, B

Professional Write for DOS 1.0, 2.0

Professional Write Plus for Windows 1.0

Q&A Write 2.0, 3.0

Samna Word IV 1.0 – 3.0

Samna Word IV+

Signature 1.0

SmartWare II WP 1.02

Sprint 1.0

StarOffice Writer 5.2 – 9.0

Total Word 1.2

Wang IWP Through 2.6

WordMarc Composer

WordMarc Composer+

WordMarc Word Processor

WordPerfect for DOS 4.2

WordPerfect for Macintosh 1.02 – 3.1

WordPerfect for Windows 5.1 – X5

WordStar 2000 for DOS 1.0 – 3.0

Wordstar for DOS 3.0 – 7.0

Wordstar for Windows 1.0

XyWrite Through III+

Appendix B
Supported Document Formats

B-14

C
Text Loading Examples for Oracle Text

This appendix provides examples of how to load text into a text column, and the
structure of ctxload import files. This appendix contains these topics:

• SQL INSERT Example

• SQL*Loader Example

• Structure of ctxload Thesaurus Import File

C.1 SQL INSERT Example
A simple way to populate a text table is to create a table with two columns, id and
text, using CREATE TABLE and then use the INSERT statement to load the data. This
example makes the id column the primary key, which is optional. The text column is
VARCHAR2:

create table docs (id number primary key, text varchar2(80));

To populate the text column, use the INSERT statement as follows:

insert into docs values(1, 'this is the text of the first document');
insert into docs values(12, 'this is the text of the second document');

C.2 SQL*Loader Example
The following example shows how to use SQL*Loader to load mixed format
documents from the operating system to a BLOB column. The example has two steps:

• Creating the Table

• Issuing the SQL*Loader Command

The SQL*Loader command reads the control file and loads data into table

See Also:

For a complete discussion on using SQL*Loader, see Oracle Database
Utilities

C.2.1 Creating the Table
This example loads a table articles_formatted created as follows:

CREATE TABLE articles_formatted (
 ARTICLE_ID NUMBER PRIMARY KEY ,
 AUTHOR VARCHAR2(30),
 FORMAT VARCHAR2(30),

C-1

 PUB_DATE DATE,
 TITLE VARCHAR2(256),
 TEXT BLOB
);

The article_id column is the primary key. Documents are loaded in the text column,
which is of type BLOB.

C.2.2 Issuing the SQL*Loader Command
The following command starts the loader, which reads the control file LOADER1.DAT:

sqlldr userid=demo/password control=loader1.dat log=loader.log

• Example Control File: loader1.dat

• Example Data File: loader2.dat

C.2.2.1 Example Control File: loader1.dat
This SQL*Loader control file defines the columns to be loaded and instructs the loader
to load the data line by line from loader2.dat into the articles_formatted table.
Each line in loader2.dat holds a comma-delimited list of fields to be loaded.

-- load file example
load data
INFILE 'loader2.dat'
INTO TABLE articles_formatted
APPEND
FIELDS TERMINATED BY ','
(article_id SEQUENCE (MAX,1),
 author CHAR(30),
 format,
 pub_date SYSDATE,
 title,
 ext_fname FILLER CHAR(80),
 text LOBFILE(ext_fname) TERMINATED BY EOF)

This control file instructs the loader to load data from loader2.dat to the
articles_formatted table in the following way:

1. The ordinal position of the line describing the document fields in loader2.dat is
written to the article_id column.

2. The first field on the line is written to author column.

3. The second field on the line is written to the format column.

4. The current date given by SYSDATE is written to the pub_date column.

5. The title of the document, which is the third field on the line, is written to the title
column.

6. The name of each document to be loaded is read into the ext_fname temporary
variable, and the actual document is loaded in the text BLOB column:

C.2.2.2 Example Data File: loader2.dat
This file contains the data to be loaded into each row of the table,
articles_formatted.

Appendix C
SQL*Loader Example

C-2

Each line contains a comma-delimited list of the fields to be loaded in
articles_formatted. The last field of every line names the file to be loaded in to the
text column:

Ben Kanobi, plaintext,Kawasaki news article,../sample_docs/kawasaki.txt,
Joe Bloggs, plaintext,Java plug-in,../sample_docs/javaplugin.txt,
John Hancock, plaintext,Declaration of Independence,../sample_docs/indep.txt,
M. S. Developer, Word7,Newsletter example,../sample_docs/newsletter.doc,
M. S. Developer, Word7,Resume example,../sample_docs/resume.doc,
X. L. Developer, Excel7,Common example,../sample_docs/common.xls,
X. L. Developer, Excel7,Complex example,../sample_docs/solvsamp.xls,
Pow R. Point, Powerpoint7,Generic presentation,../sample_docs/generic.ppt,
Pow R. Point, Powerpoint7,Meeting presentation,../sample_docs/meeting.ppt,
Java Man, PDF,Java Beans paper,../sample_docs/j_bean.pdf,
Java Man, PDF,Java on the server paper,../sample_docs/j_svr.pdf,
Ora Webmaster, HTML,Oracle home page,../sample_docs/oramnu97.html,
Ora Webmaster, HTML,Oracle Company Overview,../sample_docs/oraoverview.html,
John Constable, GIF,Laurence J. Ellison : portrait,../sample_docs/larry.gif,
Alan Greenspan, GIF,Oracle revenues : Graph,../sample_docs/oragraph97.gif,
Giorgio Armani, GIF,Oracle Revenues : Trend,../sample_docs/oratrend.gif,

C.3 Structure of ctxload Thesaurus Import File
This section discusses the structure of the ctxload thesaurus import file in the
following topics.

• Import File Format

• Alternate Hierarchy Structure

• Usage Notes for Terms in Import Files

• Usage Notes for Relationships in Import Files

• Examples of Import Files

C.3.1 Import File Format
The import file must use the following format for entries in the thesaurus:

phrase
 BT broader_term
 NT narrower_term1
 NT narrower_term2
. . .
 NT narrower_termN

 BTG broader_term
 NTG narrower_term1
 NTG narrower_term2
. . .
 NTG narrower_termN

 BTP broader_term
 NTP narrower_term1
 NTP narrower_term2
. . .
 NTP narrower_termN

 BTI broader_term

Appendix C
Structure of ctxload Thesaurus Import File

C-3

 NTI narrower_term1
 NTI narrower_term2
. . .
 NTI narrower_termN

 SYN synonym1
 SYN synonym2
. . .
 SYN synonymN

 USE synonym1 or SEE synonym1 or PT synonym1

 RT related_term1
 RT related_term2
. . .
 RT related_termN

 SN text

 language_key: term

phrase
is a word or phrase that is defined as having synonyms, broader terms, narrower
terms, or related terms.
In compliance with ISO-2788 standards, a TT marker can be placed before a phrase
to indicate that the phrase is the top term in a hierarchy; however, the TT marker is
not required. In fact, ctxload ignores TT markers during import.
A top term is identified as any phrase that does not have a broader term (BT, BTG,
BTP, or BTI).

Note:

The thesaurus query operators (SYN, PT, BT, BTG, BTP, BTI, NT, NTG, NTP, NTI,
and RT) are reserved words and, thus, cannot be used as phrases in
thesaurus entries.

BT, BTG, BTP, BTI broader_termN
are the markers that indicate broader_termN is a broader (generic|partitive|
instance) term for phrase.
broader_termN is a word or phrase that conceptually provides a more general
description or category for phrase. For example, the word elephant could have a
broader term of land mammal.

NT, NTG, NTP, NTI narrower_termN
are the markers that indicate narrower_termN is a narrower (generic|partitive|
instance) term for phrase.
If phrase does not have a broader (generic|partitive|instance) term, but has one or
more narrower (generic|partitive|instance) terms, phrase is created as a top term in
the respective hierarchy (in an Oracle Text thesaurus, the BT/NT, BTG/NTG, BTP/
NTP, and BTI/NTI hierarchies are separate structures).
narrower_termN is a word or phrase that conceptually provides a more specific
description for phrase. For example, the word elephant could have a narrower terms
of indian elephant and african elephant.

Appendix C
Structure of ctxload Thesaurus Import File

C-4

SYN synonymN
is a marker that indicates phrase and synonymN are synonyms within a synonym
ring.
synonymN is a word or phrase that has the same meaning for phrase. For example,
the word dog could have a synonym of canine.

Note:

Synonym rings are not defined explicitly in Oracle Text thesauri. They are
created by the transitive nature of synonyms.

USE SEE PT synonym1
are markers that indicate phrase and synonym1 are synonyms within a synonym
ring (similar to SYN).
The markers USE, SEE or PT also indicate synonym1 is the preferred term for the
synonym ring. Any of these markers can be used to define the preferred term for a
synonym ring.

Note:

If the user-defined thesaurus is to be used for compiling the knowledge
base, then you must specify the preferred term when a synonym ring is
declared. Use one of the keywords USE, SEE, or PT to specify which
synonym to use when reporting query matches. Only one term can be a
preferred term.
Not using one of these keywords may result in the failure to return results
defined by a word's synonym. When compiling two or more thesauri that
declare elements of the same synonym ring, the preferred term must be the
same in both files, which ensures that only one word is defined as the
preferred word in a synonym ring.

RT related_termN
is the marker that indicates related_termN is a related term for phrase.
related_termN is a word or phrase that has a meaning related to, but not
necessarily synonymous with phrase. For example, the word dog could have a
related term of wolf.

Note:

Related terms are not transitive. If a phrase has two or more related terms,
the terms are related only to the parent phrase and not to each other.

SN text
is the marker that indicates the following text is a scope note (for example,
comment) for the preceding entry.

language_key term
term is the translation of phrase into the language specified by language_key.

Appendix C
Structure of ctxload Thesaurus Import File

C-5

C.3.2 Alternate Hierarchy Structure
In compliance with thesauri standards, the load file supports formatting hierarchies
(BT/NT, BTG/NTG, BTP, NTP, BTI/NTI) by indenting the terms under the top term and
using NT (or NTG, NTP, NTI) markers that include the level for the term:

phrase
 NT1 narrower_term1
 NT2 narrower_term1.1
 NT2 narrower_term1.2
 NT3 narrower_term1.2.1
 NT3 narrower_term1.2.2
 NT1 narrower_term2
 . . .
 NT1 narrower_termN

Using this method, the entire branch for a top term can be represented hierarchically in
the load file.

C.3.3 Usage Notes for Terms in Import Files
The following conditions apply to the structure of the entries in the import file:

• Each entry (phrase, BT, NT, or SYN) must be on a single line followed by a
newline character.

• Entries can consist of a single word or phrases.

• The maximum length of an entry (phrase, BT, NT, or SYN) is 255 bytes, not
including the BT, NT, and SYN markers or the newline characters.

• Entries cannot contain parentheses or plus signs.

• Each line of the file that starts with a relationship (BT, NT, and so on) must begin
with at least one space.

• A phrase can occur more than once in the file.

• Each phrase can have one or more narrower term entries (NT, NTG, NTP),
broader term entries (BT, BTG, BTP), synonym entries, and related term entries.

• Each broader term, narrower term, synonym, and preferred term entry must start
with the appropriate marker and the markers must be in capital letters.

• The broader terms, narrower terms, and synonyms for a phrase can be in any
order.

• Homographs must be followed by parenthetical disambiguators everywhere they
are used.

For example: cranes (birds), cranes (lifting equipment)

• Compound terms are signified by a plus sign between each factor (for example,
buildings + construction).

• Compound terms are allowed only as synonyms or preferred terms for other
terms, never as terms by themselves, or in hierarchical relations.

• Terms can be followed by a scope note (SN), total maximum length of 2000 bytes,
on subsequent lines.

Appendix C
Structure of ctxload Thesaurus Import File

C-6

• Multi-line scope notes are allowed, but require an SN marker on each line of the
note.

Example of Incorrect SN usage:

VIEW CAMERAS
 SN Cameras with through-the lens focusing and a
range of movements of the lens plane relative to
the film plane

Example of Correct SN usage:

VIEW CAMERAS
 SN Cameras with through-the lens focusing and a
 SN range of movements of the lens plane relative
 SN to the film plane

• Multi-word terms cannot start with reserved words (for example, use is a reserved
word, so use other door is not an allowed term; however, use is an allowed term).

C.3.4 Usage Notes for Relationships in Import Files
The following conditions apply to the relationships defined for the entries in the import
file:

• related term entries must follow a phrase or another related term entry

• related term entries start with one or more spaces, the RT marker, followed by
white space, then the related term on the same line

• multiple related terms require multiple RT markers

Example of incorrect RT usage:

MOVING PICTURE CAMERAS
 RT CINE CAMERAS
TELEVISION CAMERAS

Example of correct RT usage:

MOVING PICTURE CAMERAS
 RT CINE CAMERAS
 RT TELEVISION CAMERAS

• Terms are allowed to have multiple broader terms, narrower terms, and related
terms

C.3.5 Examples of Import Files
This section provides three examples of correctly formatted thesaurus import files.

• Example 1 (Flat Structure)

• Example 2 (Hierarchical)

• Example 3

C.3.5.1 Example 1 (Flat Structure)
cat
 SYN feline

Appendix C
Structure of ctxload Thesaurus Import File

C-7

 NT domestic cat
 NT wild cat
 BT mammal
mammal
 BT animal
domestic cat
 NT Persian cat
 NT Siamese cat
wild cat
 NT tiger
tiger
 NT Bengal tiger
dog
 BT mammal
 NT domestic dog
 NT wild dog
 SYN canine
domestic dog
 NT German Shepard
wild dog
 NT Dingo

C.3.5.2 Example 2 (Hierarchical)
animal
 NT1 mammal
 NT2 cat
 NT3 domestic cat
 NT4 Persian cat
 NT4 Siamese cat
 NT3 wild cat
 NT4 tiger
 NT5 Bengal tiger
 NT2 dog
 NT3 domestic dog
 NT4 German Shepard
 NT3 wild dog
 NT4 Dingo
cat
 SYN feline
dog
 SYN canine

C.3.5.3 Example 3
35MM CAMERAS
 BT MINIATURE CAMERAS
CAMERAS
 BT OPTICAL EQUIPMENT
 NT MOVING PICTURE CAMERAS
 NT STEREO CAMERAS
LAND CAMERAS
 USE VIEW CAMERAS
VIEW CAMERAS
 SN Cameras with through-the lens focusing and a range of
 SN movements of the lens plane relative to the film plane
 UF LAND CAMERAS
 BT STILL CAMERAS

Appendix C
Structure of ctxload Thesaurus Import File

C-8

D
Oracle Text Multilingual Features

This Appendix describes the multilingual features of Oracle Text. The following topics
are discussed:

• Introduction

• Indexing

• Querying

• Supplied Stop Lists

• Knowledge Base

• Multilingual Features Matrix

D.1 Introduction
This appendix summarizes the main multilingual features for Oracle Text.

For a complete list of Oracle Globalization Support languages and character set
support, refer to the Oracle Database Globalization Support Guide.

Note:

Oracle Text does not support the NLS_COMP and NLS_SORT parameters.
Search results generated from Oracle Text are independent from values of
those parameters.

In Oracle Database 12c Release 2 (12.2), an Oracle Text index cannot be
created on a column with a declared collation other than BINARY,
USING_NLS_COMP, USING_NLS_SORT or USING_NLS_SORT_CS. For all the
supported collations, the Oracle Text behavior is the same.

D.2 Indexing
The following sections describe the multilingual indexing features:

• Multilingual Features for Text Index Types

• Lexer Types

• Basic Lexer Features

• Multi Lexer Features

• World Lexer Features

D-1

D.2.1 Multilingual Features for Text Index Types
The following sections describes the supported multilingual features for the Oracle
Text index types.

• CONTEXT Index Type

• CTXCAT Index Type

• CTXRULE Index Type

See Also:

"Lexer Types" for a description of available lexers

D.2.1.1 CONTEXT Index Type
The CONTEXT index type fully supports multilingual features, including use of the
language and character set columns.

The following lexers are supported:

• AUTO_LEXER

• MULTI_LEXER

• USER_LEXER

• WORLD_LEXER

• CHINESE_LEXER

• CHINESE_VGRAM_LEXER

• JAPANESE_LEXER

• JAPANESE_VGRAM_LEXER

• KOREAN_MORPH_LEXER

D.2.1.2 CTXCAT Index Type
CTXCAT supports the multilingual features of the BASIC_LEXER with the exception of
indexing themes, and supports the following additional lexers:

• USER_LEXER

• WORLD_LEXER

CTXCAT also supports the following lexers:

• CHINESE_LEXER

• CHINESE_VGRAM_LEXER

• JAPANESE_LEXER

• JAPANESE_VGRAM_LEXER

Appendix D
Indexing

D-2

• KOREAN_MORPH_LEXER

D.2.1.3 CTXRULE Index Type
The CTXRULE index type supports the multilingual features of the BASIC_LEXER including
ABOUT and STEM operators. It also supports Japanese, Chinese, and Korean (when
used with the SVM_CLASSIFIER).

D.2.2 Lexer Types
Oracle Text supports the indexing of different languages by enabling you to choose a
lexer in the indexing process. The lexer you employ determines the languages you can
index. Table D-1 describes the supported lexers.

Table D-1 Oracle Text Lexer Types

Lexer Supported Languages

BASIC_LEXER English and most western European languages that use white
space delimited words.

MULTI_LEXER Lexer for indexing tables containing documents of different
languages such as English, German, and Japanese.

CHINESE_VGRAM Lexer for extracting tokens from Chinese text.

CHINESE_LEXER Lexer for extracting tokens from Chinese text. This lexer offers
the following benefits over the CHINESE_VGRAM lexer:

• Generates a smaller index
• Better query response time
• Generates real world tokens resulting in better query

precision
• Supports stop words

JAPANESE_VGRAM Lexer for extracting tokens from Japanese text.

JAPANESE_LEXER Lexer for extracting tokens from Japanese text. This lexer offers
the following advantages over the JAPANESE_VGRAM lexer:

• Generates smaller index
• Better query response time
• Generates real world tokens resulting in better precision

KOREAN_MORPH_LEXER Lexer for extracting tokens from Korean text.

USER_LEXER Lexer you create to index a particular language.

WORLD_LEXER Lexer for indexing tables containing documents of different
languages; autodetects languages in a document

D.2.3 Basic Lexer Features
The following features are supported with the BASIC_LEXER preference. Enable these
features with attributes of the BASIC_LEXER. Features such as alternate spelling,
composite, and base letter can be enabled together for better search results.

• Theme Indexing

• Alternate Spelling

• Base Letter Conversion

Appendix D
Indexing

D-3

• Composite

• Index stems

D.2.3.1 Theme Indexing
Enables the indexing and subsequent querying of document concepts with the ABOUT
operator with CONTEXT index types. These concepts are derived from the Oracle Text
knowledge base. This feature is supported for English and French.

This feature is not supported with CTXCAT index types.

D.2.3.2 Alternate Spelling
This feature enables you to search on alternate spellings of words. For example, with
alternate spelling enabled in German, a query on gross returns documents that contain
groß and gross.

This feature is supported in German, Danish, and Swedish.

Additionally, German can be indexed according to both traditional and reformed
spelling conventions.

See Also:

"Alternate Spelling" and "New German Spelling".

D.2.3.3 Base Letter Conversion
This feature enables you to query words with or without diacritical marks such as
tildes, accents, and umlauts. For example, with a Spanish base-letter index, a query of
energia matches documents containing both energía and energia.

This feature is supported for English and all other supported whitespace delimited
languages. In English and French, you can use the basic lexer to enable theme
indexing.

See Also:

"Base-Letter Conversion"

D.2.3.4 Composite
This feature enables you to search on words that contain the specified term as a sub-
composite. You must use the stem ($) operator. This feature is supported for German
and Dutch.

For example, in German, a query of $register finds documents that contain
Bruttoregistertonne and Registertonne.

Appendix D
Indexing

D-4

D.2.3.5 Index stems
This feature enables you to specify a stemmer for stem indexing. Tokens are stemmed
to a single base form at index time in addition to the normal forms. Specifying index
stems enables better query performance for stem queries, for example $computed.

This feature is supported for English, Dutch, French, German, Italian, and Spanish.

D.2.4 Multi Lexer Features
The MULTI_LEXER lexer enables you to index a column that contains documents of
different languages. During indexing Oracle Text examines the language column and
switches in the language-specific lexer to process the document. Define the lexer
preferences for each language before indexing.

The multi lexer enables you to set different preferences for languages. For example,
you can have composite set to TRUE for German documents and composite set to
FALSE for Dutch documents.

D.2.5 World Lexer Features
Like MULTI_LEXER, the WORLD_LEXER lexer enables you to index documents that contain
different languages. It automatically detects the languages of a document and,
therefore, does not require you to create a language column in the base table.

WORLD_LEXER processes all database character sets and supports the Unicode 5.0
standard. For WORLD_LEXER to be effective with documents that use multiple languages,
AL32UTF-8 or UTF8 Oracle character set encoding must be specified. This includes
supplementary, or "surrogate-pair," characters.

Table D-2 and Table D-3 show the languages supported by WORLD_LEXER. This list may
change as the Unicode standard changes, and in any case should not be considered
exhaustive. (Languages are grouped by Unicode writing system, not by natural
language groupings.)

Table D-2 Languages Supported by the World Lexer (Space-separated)

Language Group Languages Include

Arabic Arabic, Farsi, Kurdish, Pashto, Sindhi, Urdu

Armenian Armenian

Bengali Assamese, Bengali

Bopomofo Hakka Chinese, Minnan Chinese

Cyrillic Over 50 languages, including Belorussian, Bulgarian,
Macedonian, Moldavian, Russian, Serbian, Serbo-Croatian,
Ukrainian

Devenagari Bhojpuri, Bihari, Hindi, Kashmiri, Marathi, Nepali, Pali, Sanskrit

Ethiopic Amharic, Ge'ez, Tigrinya, Tigre

Georgian Georgian

Greek Greek

Gujarati Gujarati, Kacchi

Appendix D
Indexing

D-5

Table D-2 (Cont.) Languages Supported by the World Lexer (Space-separated)

Language Group Languages Include

Gurmukhi Punjabi

Hebrew Hebrew, Ladino, Yiddish

Kaganga Redjang

Kannada Kanarese, Kannada

Korean Korean, Hanja Hangul

Latin Afrikaans, Albanian, Basque, Breton, Catalan, Croatian, Czech,
Danish, Dutch, English, Esperanto, Estonian, Faeroese, Fijian,
Finnish, Flemish, French, Frisian, German, Hawaiian, Hungarian,
Icelandic, Indonesian, Irish, Italian, Lappish, Classic Latin, Latvian,
Lithuanian, Malay, Maltese, Pinyin Mandarin, Maori, Norwegian,
Polish, Portuguese, Provencal, Romanian, Rumanian, Samoan,
Scottish Gaelic, Slovak, Slovene, Slovenian, Sorbian, Spanish,
Swahili, Swedish, Tagalog, Turkish, Vietnamese, Welsh

Malayalam Malayalam

Mongolian Mongolian

Oriya Oriya

Sinhalese, Sinhala Pali, Sinhalese

Syriac Aramaic, Syriac

Tamil Tamil

Telugu Telugu

Thaana Dhiveli, Divehi, Maldivian

Table D-3 Languages Supported by the World Lexer (Non-space-separated)

Language Group Languages Include

Chinese Cantonese, Mandarin, Pinyin phonograms

Japanese Japanese (Hiragana, Kanji, Katakana)

Khmer Cambodian, Khmer

Lao Lao

Myanmar Burmese

Thai Thai

Tibetan Dzongkha, Tibetan

Table D-4 shows languages not supported by the World Lexer.

Table D-4 Languages Not Supported by the World Lexer

Language Group Languages Include

Buhid Buhid

Canadian Syllabics Blackfoot, Carrier, Cree, Dakhelh, Inuit, Inuktitut, Naskapi,
Nunavik, Nunavut, Ojibwe, Sayisi, Slavey

Appendix D
Indexing

D-6

Table D-4 (Cont.) Languages Not Supported by the World Lexer

Language Group Languages Include

Cherokee Cherokee

Cypriot Cypriot

Limbu Limbu

Ogham Ogham

Runic Runic

Tai Le (Tai Lu, Lue, Dai Le) Tai Le

Ugaritic Ugaritic

Yi Yi

Yi Jang Hexagram Yi Jang

D.3 Querying
Oracle Text supports the use of different query operators. Some operators can be set
to behave in accordance with your language. This section summarizes the multilingual
query features for these operators.

• Use the ABOUT operator to query on concepts. The system looks up concept
information in the theme component of the index. This feature is supported for
English and French with CONTEXT indexes only.

• The fuzzy operator enables you to search for words that have similar spelling to
specified word. Oracle Text supports fuzzy for English, French, German, Italian,
Dutch, Spanish, Portuguese, Japanese, Optical Character recognition (OCR), and
automatic language detection.

• The stem operator enables you to search for words that have the same root as the
specified term. For example, a stem of $sing expands into a query on the words
sang, sung, sing. The Oracle Text stemmer supports the following languages:
English, French, Spanish, Italian, German, Japanese and Dutch.

D.4 Supplied Stop Lists
A stoplist is a list of words that do not get indexed. These are usually common words
in a language such as this, that, and can in English.

Oracle Text provides a default stoplist for English, Chinese (traditional and simplified),
Danish, Dutch, Finnish, French, German, Italian, Portuguese, Spanish, and Swedish.
Oracle Text Supplied Stoplists, lists the stoplists for various languages.

D.5 Knowledge Base
An Oracle Text knowledge base is a hierarchical tree of concepts used for theme
indexing, ABOUT queries, and deriving themes for document services.

Oracle Text supplies knowledge bases in English and French only. These knowledge
bases are installed by default.

Appendix D
Querying

D-7

You can extend theme functionality to languages other than English or French by
loading your own knowledge base for any single byte white space delimited language,
including Spanish.

D.6 Multilingual Features Matrix
The following table summarizes the multilingual features for the supported languages.

Table D-5 Multilingual Features for Supported Languages

LANGUAGE ALTERNATE
SPELLING

FUZZY
MATCHING

LANGUAGE
SPECIFIC
LEXER

DEFAULT
STOP LIST

STEMMING

ENGLISH N/A Yes Yes Yes Yes

GERMAN Yes Yes Yes Yes Yes

JAPANESE N/A Yes Yes No Yes

FRENCH N/A Yes Yes Yes Yes

SPANISH N/A Yes Yes Yes Yes

ITALIAN N/A Yes Yes Yes Yes

DUTCH N/A Yes Yes Yes Yes

PORTUGUESE N/A Yes Yes Yes Yes

KOREAN N/A No Yes No Yes

SIMPLIFIED CHINESE N/A No Yes Yes Yes

TRADITIONAL CHINESE N/A No Yes Yes Yes

DANISH Yes No Yes No Yes

SWEDISH Yes No Yes Yes Yes

FINNISH N/A No Yes No Yes

ARABIC N/A No Yes No Yes

GREEK N/A No Yes No Yes

BOKMAL N/A No Yes No Yes

POLISH N/A No Yes No Yes

RUSSIAN N/A No Yes No Yes

SLOVENIAN N/A No Yes No Yes

THAI N/A No Yes No Yes

CATALAN N/A No Yes No Yes

CROATIAN N/A No Yes No Yes

HEBREW N/A No Yes No Yes

NYNORSK N/A No Yes No Yes

SERBIAN N/A No Yes No Yes

TURKISH N/A No Yes No Yes

CZECH N/A No Yes No Yes

HUNGARIAN N/A No Yes No Yes

PERSIAN N/A No Yes No Yes

SLOVAK N/A No Yes No Yes

Appendix D
Multilingual Features Matrix

D-8

Appendix D
Multilingual Features Matrix

D-9

E
Oracle Text Supplied Stoplists

This appendix describes the default stoplists for all the different languages supported
and lists the stopwords in each. The following stoplists are described:

• English Default Stoplist

• Chinese Stoplist (Traditional)

• Chinese Stoplist (Simplified)

• Danish (dk) Default Stoplist

• Dutch (nl) Default Stoplist

• Finnish (sf) Default Stoplist

• French (f) Default Stoplist

• German (d) Default Stoplist

• Italian (i) Default Stoplist

• Portuguese (pt) Default Stoplist

• Spanish (e) Default Stoplist

• Swedish (s) Default Stoplist

E.1 English Default Stoplist
The following English words are defined as stop words:

• a

• all

• almost

• also

• although

• an

• and

• any

• are

• as

• at

• be

• because

• been

• both

E-1

• but

• by

• can

• could

• d

• did

• do

• does

• either

• for

• from

• had

• has

• have

• having

• he

• her

• here

• hers

• him

• his

• how

• however

• i

• if

• in

• into

• is

• it

• its

• just

• ll

• me

• might

• Mr

• Mrs

• Ms

Appendix E
English Default Stoplist

E-2

• my

• no

• non

• nor

• not

• of

• on

• one

• only

• onto

• or

• our

• ours

• s

• shall

• she

• should

• since

• so

• some

• still

• such

• t

• than

• that

• the

• their

• them

• then

• there

• therefore

• these

• they

• this

• those

• though

• through

Appendix E
English Default Stoplist

E-3

• thus

• to

• too

• until

• ve

• very

• was

• we

• were

• what

• when

• where

• whether

• which

• while

• who

• whose

• why

• will

• with

• would

• yet

• you

• your

• yours

E.2 Chinese Stoplist (Traditional)
The following traditional Chinese words are defined in the default stoplist for this
language.

Appendix E
Chinese Stoplist (Traditional)

E-4

E.3 Chinese Stoplist (Simplified)
The following simplified Chinese words are defined in the default stoplist for this
language.

E.4 Danish (dk) Default Stoplist
The following Danish words are defined in the default stoplist for this language:

• af

• aldrig

• alle

• altid

• bagved

• de

• der

• du

Appendix E
Chinese Stoplist (Simplified)

E-5

• efter

• eller

• en

• et

• endnu

• få

• lidt

• fjernt

• for

• foran

• fra

• gennem

• god

• han

• her

• hos

• hovfor

• hun

• hvad

• hvem

• hvor

• hvorhen

• hvordan

• I

• De

• i

• imod

• ja

• jeg

• langsom

• mange

• måske

• med

• meget

• mellem

• mere

• mindre

Appendix E
Danish (dk) Default Stoplist

E-6

• når

• hvonår

• nede

• nej

• nu

• og

• oppe

• på

• rask

• hurtig

• sammen

• temmelig

• nok

• til

• uden

• udenfor

• under

• ved

• vi

E.5 Dutch (nl) Default Stoplist
The following Dutch words are defined in the default stoplist for this language:

• aan

• aangaande

• aangezien

• achter

• achterna

• afgelopen

• al

• aldaar

• aldus

• alhoewel

• alias

• alle

• allebei

• alleen

• alsnog

Appendix E
Dutch (nl) Default Stoplist

E-7

• altijd

• altoos

• ander

• andere

• anders

• anderszins

• behalve

• behoudens

• beide

• beiden

• ben

• beneden

• bent

• bepaald

• betreffende

• bij

• binnen

• binnenin

• boven

• bovenal

• bovendien

• bovengenoemd

• bovenstaand

• bovenvermeld

• buiten

• daar

• daarheen

• daarin

• daarna

• daarnet

• daarom

• daarop

• daarvanlangs

• dan

• dat

• de

• die

Appendix E
Dutch (nl) Default Stoplist

E-8

• dikwijls

• dit

• door

• doorgaand

• dus

• echter

• eer

• eerdat

• eerder

• eerlang

• eerst

• elk

• elke

• en

• enig

• enigszins

• enkel

• er

• erdoor

• even

• eveneens

• evenwel

• gauw

• gedurende

• geen

• gehad

• gekund

• geleden

• gelijk

• gemoeten

• gemogen

• geweest

• gewoon

• gewoonweg

• haar

• had

• hadden

Appendix E
Dutch (nl) Default Stoplist

E-9

• hare

• heb

• hebben

• hebt

• heeft

• hem

• hen

• het

• hierbeneden

• hierboven

• hij

• hoe

• hoewel

• hun

• hunne

• ik

• ikzelf

• in

• inmiddels

• inzake

• is

• jezelf

• jij

• jijzelf

• jou

• jouw

• jouwe

• juist

• jullie

• kan

• klaar

• kon

• konden

• krachtens

• kunnen

• kunt

• later

Appendix E
Dutch (nl) Default Stoplist

E-10

• liever

• maar

• mag

• meer

• met

• mezelf

• mij

• mijn

• mijnent

• mijner

• mijzelf

• misschien

• mocht

• mochten

• moest

• moesten

• moet

• moeten

• mogen

• na

• naar

• nadat

• net

• niet

• noch

• nog

• nogal

• nu

• of

• ofschoon

• om

• omdat

• omhoog

• omlaag

• omstreeks

• omtrent

• omver

Appendix E
Dutch (nl) Default Stoplist

E-11

• onder

• ondertussen

• ongeveer

• ons

• onszelf

• onze

• ook

• op

• opnieuw

• opzij

• over

• overeind

• overigens

• pas

• precies

• reeds

• rond

• rondom

• sedert

• sinds

• sindsdien

• slechts

• sommige

• spoedig

• steeds

• tamelijk

• tenzij

• terwijl

• thans

• tijdens

• toch

• toen

• toenmaals

• toenmalig

• tot

• totdat

• tussen

Appendix E
Dutch (nl) Default Stoplist

E-12

• uit

• uitgezonderd

• vaak

• van

• vandaan

• vanuit

• vanwege

• veeleer

• verder

• vervolgens

• vol

• volgens

• voor

• vooraf

• vooral

• vooralsnog

• voorbij

• voordat

• voordezen

• voordien

• voorheen

• voorop

• vooruit

• vrij

• vroeg

• waar

• waarom

• wanneer

• want

• waren

• was

• wat

• weer

• weg

• wegens

• wel

• weldra

Appendix E
Dutch (nl) Default Stoplist

E-13

• welk

• welke

• wie

• wiens

• wier

• wij

• wijzelf

• zal

• ze

• zelfs

• zichzelf

• zij

• zijn

• zijne

• zo

• zodra

• zonder

• zou

• zouden

• zowat

• zulke

• zullen

• zult

E.6 Finnish (sf) Default Stoplist
The following Finnish words are defined in the default stoplist for this language:

• ään

• ah

• ai

• aina

• alla

• alle

• alta

• ansiosta

• edessä

• een

• ehkä

Appendix E
Finnish (sf) Default Stoplist

E-14

• ei

• eli

• elikkä

• ellei

• elleivät

• ellemme

• ellen

• ellet

• ellette

• enemmän

• eniten

• ennen

• eräs

• että

• hän

• harva

• he

• hei

• hitaasti

• hyi

• hyvin

• iin

• ilman

• itse

• ja

• jahka

• jälkeen

• jo

• joka

• jokainen

• joku

• jollei

• jolleivat

• jollemme

• jollen

• jollet

• jollette

Appendix E
Finnish (sf) Default Stoplist

E-15

• jos

• joskin

• jotta

• kaikki

• kanssa

• kaukana

• ken

• keneksi

• kenelle

• kenkään

• kenties

• keskellä

• kesken

• ketkä

• kohti

• koska

• koskaan

• ksi

• kuin

• kuinka

• kuka

• kukaan

• kukin

• kumpainen

• kumpainenkaan

• kumpainenkin

• kumpi

• kumpikaan

• kumpikin

• kun

• kunhan

• kunnes

• kuten

• kyllä

• kylliksi

• lähellä

• läpi

Appendix E
Finnish (sf) Default Stoplist

E-16

• liian

• lla

• llä

• lle

• lta

• ltä

• luona

• me

• mikä

• mikään

• mikäli

• mikin

• miksi

• milloin

• milloinkaan

• minä

• missä

• miten

• molemmat

• mutta

• na

• nä

• näin

• nämä

• ne

• niin

• nopeasti

• nuo

• nyt

• oi

• olemme

• olen

• olet

• olette

• oli

• olimme

• olin

Appendix E
Finnish (sf) Default Stoplist

E-17

• olit

• olitte

• olivat

• ollut

• on

• oon

• ovat

• paitsi

• paljon

• paremmin

• parhaiten

• pian

• se

• seen

• sekä

• sen

• siellä

• sieltä

• siin

• sillä

• sinä

• sinne

• ssa

• ssä

• sta

• stä

• suoraan

• ta

• tä

• tähden

• tahi

• tai

• taikka

• takana

• takia

• tämä

• tarpeeksi

Appendix E
Finnish (sf) Default Stoplist

E-18

• tässä

• te

• tokko

• tta

• ttä

• tuo

• ulkopuolella

• useammin

• useimmin

• usein

• vaan

• vähän

• vähemmän

• vähiten

• vaikka

• vailla

• varten

• vastaan

• vielä

• voi

• ympäri

E.7 French (f) Default Stoplist
The following French words are defined in the default stoplist for this language:

• a

• afin

• ailleurs

• ainsi

• alors

• après

• attendant

• au

• aucun

• aucune

• au-dessous

• au-dessus

• auprès

Appendix E
French (f) Default Stoplist

E-19

• auquel

• aussi

• aussitôt

• autant

• autour

• aux

• auxquelles

• auxquels

• avec

• à

• beaucoup

• ça

• ce

• ceci

• cela

• celle

• celles

• celui

• cependant

• certain

• certaine

• certaines

• certains

• ces

• cet

• cette

• ceux

• chacun

• chacune

• chaque

• chez

• combien

• comme

• comment

• concernant

• dans

• de

Appendix E
French (f) Default Stoplist

E-20

• dedans

• dehors

• déjà

• delà

• depuis

• des

• desquelles

• desquels

• dessus

• dès

• donc

• donné

• dont

• du

• duquel

• durant

• elle

• elles

• en

• encore

• entre

• et

• étaient

• était

• étant

• etc

• eux

• furent

• grâce

• hormis

• hors

• ici

• il

• ils

• jadis

• je

• jusqu

Appendix E
French (f) Default Stoplist

E-21

• jusque

• la

• laquelle

• là

• le

• lequel

• les

• lesquelles

• lesquels

• leur

• leurs

• lors

• lorsque

• lui

• ma

• mais

• malgré

• me

• même

• mêmes

• mes

• mien

• mienne

• miennes

• miens

• moins

• moment

• mon

• moyennant

• ne

• ni

• non

• nos

• notamment

• notre

• notres

• nôtre

Appendix E
French (f) Default Stoplist

E-22

• nôtres

• nous

• nulle

• nulles

• on

• ou

• où

• par

• parce

• parmi

• plus

• plusieurs

• pour

• pourquoi

• près

• puis

• puisque

• quand

• quant

• que

• quel

• quelle

• quelqu'un

• quelqu'une

• quelque

• quelques-unes

• quelques-uns

• quels

• qui

• quiconque

• quoi

• quoique

• sa

• sans

• sauf

• se

• selon

Appendix E
French (f) Default Stoplist

E-23

• ses

• sien

• sienne

• siennes

• siens

• soi

• soi-même

• soit

• sont

• suis

• sur

• ta

• tandis

• tant

• te

• telle

• telles

• tes

• tienne

• tiennes

• tiens

• toi

• ton

• toujours

• tous

• toute

• toutes

• très

• trop

• tu

• un

• une

• vos

• votre

• vôtre

• vôtres

• vous

Appendix E
French (f) Default Stoplist

E-24

• vu

• y

E.8 German (d) Default Stoplist
The following German words are defined in the default stoplist for this language:

• ab

• aber

• allein

• als

• also

• am

• an

• auch

• auf

• aus

• außer

• bald

• bei

• beim

• bin

• bis

• bißchen

• bist

• da

• dabei

• dadurch

• dafür

• dagegen

• dahinter

• damit

• danach

• daneben

• dann

• daran

• darauf

• daraus

• darin

Appendix E
German (d) Default Stoplist

E-25

• darüber

• darum

• darunter

• das

• dasselbe

• daß

• davon

• davor

• dazu

• dazwischen

• dein

• deine

• deinem

• deinen

• deiner

• deines

• dem

• demselben

• den

• denn

• der

• derselben

• des

• desselben

• dessen

• dich

• die

• dies

• diese

• dieselbe

• dieselben

• diesem

• diesen

• dieser

• dieses

• dir

• doch

Appendix E
German (d) Default Stoplist

E-26

• dort

• du

• ebenso

• ehe

• ein

• eine

• einem

• einen

• einer

• eines

• entlang

• er

• es

• etwa

• etwas

• euch

• euer

• eure

• eurem

• euren

• eurer

• eures

• für

• fürs

• ganz

• gar

• gegen

• genau

• gewesen

• her

• herein

• herum

• hin

• hinter

• hintern

• ich

• ihm

Appendix E
German (d) Default Stoplist

E-27

• ihn

• Ihnen

• ihnen

• ihr

• ihre

• Ihre

• ihrem

• Ihrem

• ihren

• Ihren

• Ihrer

• ihrer

• ihres

• Ihres

• im

• in

• ist

• ja

• je

• jedesmal

• jedoch

• jene

• jenem

• jenen

• jener

• jenes

• kaum

• kein

• keine

• keinem

• keinen

• keiner

• keines

• man

• mehr

• mein

• meine

Appendix E
German (d) Default Stoplist

E-28

• meinem

• meinen

• meiner

• meines

• mich

• mir

• mit

• nach

• nachdem

• nämlich

• neben

• nein

• nicht

• nichts

• noch

• nun

• nur

• ob

• ober

• obgleich

• oder

• ohne

• paar

• sehr

• sei

• sein

• seine

• seinem

• seinen

• seiner

• seines

• seit

• seitdem

• selbst

• sich

• Sie

• sie

Appendix E
German (d) Default Stoplist

E-29

• sind

• so

• sogar

• solch

• solche

• solchem

• solchen

• solcher

• solches

• sondern

• sonst

• soviel

• soweit

• über

• um

• und

• uns

• unser

• unsre

• unsrem

• unsren

• unsrer

• unsres

• vom

• von

• vor

• während

• war

• wäre

• wären

• warum

• was

• wegen

• weil

• weit

• welche

• welchem

Appendix E
German (d) Default Stoplist

E-30

• welchen

• welcher

• welches

• wem

• wen

• wenn

• wer

• weshalb

• wessen

• wie

• wir

• wo

• womit

• zu

• zum

• zur

• zwar

• zwischen

E.9 Italian (i) Default Stoplist
The following Italian words are defined in the default stoplist for this language:

• a

• affinchè

• agl'

• agli

• ai

• al

• all'

• alla

• alle

• allo

• anzichè

• avere

• bensì

• che

• chi

• cioè

Appendix E
Italian (i) Default Stoplist

E-31

• come

• comunque

• con

• contro

• cosa

• da

• dachè

• dagl'

• dagli

• dai

• dal

• dall'

• dalla

• dalle

• dallo

• degl'

• degli

• dei

• del

• dell'

• delle

• dello

• di

• dopo

• dove

• dunque

• durante

• e

• egli

• eppure

• essere

• essi

• finché

• fino

• fra

• giacchè

• gl'

Appendix E
Italian (i) Default Stoplist

E-32

• gli

• grazie

• I

• il

• in

• inoltre

• io

• l'

• la

• le

• lo

• loro

• ma

• mentre

• mio

• ne

• neanche

• negl'

• negli

• nei

• nel

• nell'

• nella

• nelle

• nello

• nemmeno

• neppure

• noi

• nonchè

• nondimeno

• nostro

• o

• onde

• oppure

• ossia

• ovvero

• per

Appendix E
Italian (i) Default Stoplist

E-33

• perchè

• perciò

• però

• poichè

• prima

• purchè

• quand'anche

• quando

• quantunque

• quasi

• quindi

• se

• sebbene

• sennonchè

• senza

• seppure

• si

• siccome

• sopra

• sotto

• su

• subito

• sugl'

• sugli

• sui

• sul

• sull'

• sulla

• sulle

• sullo

• suo

• talchè

• tu

• tuo

• tuttavia

• tutti

• un

Appendix E
Italian (i) Default Stoplist

E-34

• una

• uno

• voi

• vostro

E.10 Portuguese (pt) Default Stoplist
The following Portuguese words are defined in the default stoplist for this language:

• a

• abaixo

• adiante

• agora

• ali

• antes

• aqui

• até

• atras

• bastante

• bem

• com

• como

• contra

• debaixo

• demais

• depois

• depressa

• devagar

• direito

• e

• ela

• elas

• êle

• eles

• em

• entre

• eu

• fora

• junto

Appendix E
Portuguese (pt) Default Stoplist

E-35

• longe

• mais

• menos

• muito

• não

• ninguem

• nós

• nunca

• onde

• ou

• para

• por

• porque

• pouco

• próximo

• qual

• quando

• quanto

• que

• quem

• se

• sem

• sempre

• sim

• sob

• sobre

• talvez

• todas

• todos

• vagarosamente

• você

• vocês

E.11 Spanish (e) Default Stoplist
The following Spanish words are defined in the default stoplist for this language:

• a

• acá

Appendix E
Spanish (e) Default Stoplist

E-36

• ahí

• ajena

• ajenas

• ajeno

• ajenos

• al

• algo

• alguna

• algunas

• alguno

• algunos

• algún

• allá

• allí

• aquel

• aquella

• aquellas

• aquello

• aquellos

• aquí

• cada

• cierta

• ciertas

• cierto

• ciertos

• como

• cómo

• con

• conmigo

• consigo

• contigo

• cualquier

• cualquiera

• cualquieras

• cuan

• cuanta

• cuantas

Appendix E
Spanish (e) Default Stoplist

E-37

• cuánta

• cuántas

• cuanto

• cuantos

• cuán

• cuánto

• cuántos

• de

• dejar

• del

• demasiada

• demasiadas

• demasiado

• demasiados

• demás

• el

• ella

• ellas

• ellos

• él

• esa

• esas

• ese

• esos

• esta

• estar

• estas

• este

• estos

• hacer

• hasta

• jamás

• junto

• juntos

• la

• las

• lo

Appendix E
Spanish (e) Default Stoplist

E-38

• los

• mas

• más

• me

• menos

• mía

• mientras

• mío

• misma

• mismas

• mismo

• mismos

• mucha

• muchas

• muchísima

• muchísimas

• muchísimo

• muchísimos

• mucho

• muchos

• muy

• nada

• ni

• ninguna

• ningunas

• ninguno

• ningunos

• no

• nos

• nosotras

• nosotros

• nuestra

• nuestras

• nuestro

• nuestros

• nunca

• os

Appendix E
Spanish (e) Default Stoplist

E-39

• otra

• otras

• otro

• otros

• para

• parecer

• poca

• pocas

• poco

• pocos

• por

• porque

• que

• querer

• qué

• quien

• quienes

• quienesquiera

• quienquiera

• quién

• ser

• si

• siempre

• sí

• sín

• Sr

• Sra

• Sres

• Sta

• suya

• suyas

• suyo

• suyos

• tal

• tales

• tan

• tanta

Appendix E
Spanish (e) Default Stoplist

E-40

• tantas

• tanto

• tantos

• te

• tener

• ti

• toda

• todas

• todo

• todos

• tomar

• tuya

• tuyo

• tú

• un

• una

• unas

• unos

• usted

• ustedes

• varias

• varios

• vosotras

• vosotros

• vuestra

• vuestras

• vuestro

• vuestros

• y

• yo

E.12 Swedish (s) Default Stoplist
The following Swedish words are defined in the default stoplist for this language:

• ab

• aldrig

• all

• alla

Appendix E
Swedish (s) Default Stoplist

E-41

• allt

• alltid

• allting

• än

• andra

• andre

• annan

• annat

• ännu

• är

• åter

• att

• av

• avse

• avsedd

• avsedda

• avser

• avses

• bakom

• bara

• bäst

• bättre

• bra

• bredvid

• då

• dålig

• där

• därför

• de

• dem

• den

• denna

• deras

• dess

• dessa

• det

• detta

Appendix E
Swedish (s) Default Stoplist

E-42

• du

• efter

• efteråt

• eftersom

• ej

• eller

• emot

• en

• endast

• er

• era

• ert

• ett

• få

• fall

• färre

• fastän

• flest

• flesta

• för

• först

• första

• förste

• fort

• framför

• från

• genom

• god

• goda

• gott

• ha

• hade

• haft

• han

• hans

• här

• hellre

Appendix E
Swedish (s) Default Stoplist

E-43

• henne

• hennes

• heta

• heter

• hette

• hon

• honom

• hos

• hur

• i

• fall

• ifall

• in

• inga

• ingen

• ingenting

• inget

• innan

• inte

• ja

• jag

• kan

• kort

• korta

• kunde

• kunna

• lång

• långa

• långsam

• långsamma

• långsamt

• långt

• lite

• liten

• litet

• man

• med

Appendix E
Swedish (s) Default Stoplist

E-44

• medan

• mellan

• men

• mer

• mera

• mest

• mesta

• mindre

• minst

• minsta

• mot

• mycket

• någon

• någonting

• något

• några

• när

• nära

• ned

• nej

• ner

• nere

• ni

• nu

• och

• också

• om

• oss

• över

• överst

• översta

• övre

• på

• så

• sådan

• sådana

• sådant

Appendix E
Swedish (s) Default Stoplist

E-45

• säga

• säger

• sägs

• sämre

• sämst

• sån

• sånt

• såsom

• sin

• sist

• sista

• ska

• skall

• skulle

• som

• ta

• till

• tillräcklig

• tillräckliga

• tillräckligt

• tillsammans

• tog

• trots att

• under

• underst

• undre

• upp

• uppe

• ut

• utan

• ute

• utom

• vad

• väl

• var

• vara

• varför

Appendix E
Swedish (s) Default Stoplist

E-46

• vart

• vem

• vems

• vet

• veta

• vi

• vid

• vilken

• vill

• ville

• visste

• vore

Appendix E
Swedish (s) Default Stoplist

E-47

F
The Oracle Text Scoring Algorithm

This appendix describes how Oracle Text calculates scoring for word queries, which is
different from the way it calculates scores for ABOUT queries in English. Scoring is
obtained using the SCORE operator.

This appendix contains these topics:

• Scoring Algorithm for Word Queries

• Word Scoring Example

• DML and Scoring Algorithm

See Also:

"DEFINESCORE" and "DEFINEMERGE" for information about user-defined
scoring

F.1 Scoring Algorithm for Word Queries
To calculate a relevance score for a returned document in a word query, Oracle Text
uses an inverse frequency algorithm based on Salton's formula.

Inverse frequency scoring assumes that frequently occurring terms in a document set
are noise terms, and so these terms are scored lower. For a document to score high,
the query term must occur frequently in the document but infrequently in the document
set as a whole.

The following table illustrates Oracle Text's inverse frequency scoring. The first column
shows the number of documents in the document set, and the second column shows
the number of terms in the document necessary to score 100.

This table assumes that only one document in the set contains the query term.

Number of Documents in
Document Set

Occurrences of Term in Document Needed to Score 100

1 34

5 20

10 17

50 13

100 12

500 10

1,000 9

10,000 7

F-1

Number of Documents in
Document Set

Occurrences of Term in Document Needed to Score 100

100,000 6

1,000,000 5

Note that the score varies, depending on the set size. For example, if only one
document in the set contains the query term, and there are five documents in the set,
then the term must occur 20 times in the document to score 100. If 1,000,000
documents are in the set, then the term can occur only 5 times in the document to
score 100.

F.2 Word Scoring Example
You have 5000 documents dealing with chemistry in which the term chemical occurs
at least once in every document. The term chemical thus occurs frequently in the
document set.

You have a document that contains 5 occurrences of chemical and 5 occurrences of
the term hydrogen. No other document contains the term hydrogen. The term
hydrogen thus occurs infrequently in the document set.

Because chemical occurs so frequently in the document set, its score for the
document is lower with respect to hydrogen, which is infrequent is the document set as
a whole. The score for hydrogen is therefore higher than that of chemical. This is so
even though both terms occur 5 times in the document.

Note:

Even if the relatively infrequent term hydrogen occurred 4 times in the
document, and chemical occurred 5 times in the document, the score for
hydrogen might still be higher, because chemical occurs so frequently in the
document set (at least 5000 times).

Inverse frequency scoring also means that adding documents that contain hydrogen
lowers the score for that term in the document, and adding more documents that do
not contain hydrogen raises the score.

F.3 DML and Scoring Algorithm
Because the scoring algorithm is based on the number of documents in the document
set, inserting, updating or deleting documents in the document set is likely to change
the score for any given term before and after DML.

If DML is heavy, you must optimize the index. Perfect relevance ranking is obtained by
running a query right after optimizing the index.

If DML is light, Oracle Database still gives fairly accurate relevance ranking.

In either case, you must synchronize the index with CTX_DDL.SYNC_INDEX.

Appendix F
Word Scoring Example

F-2

See Also:

"SYNC_INDEX"

Appendix F
DML and Scoring Algorithm

F-3

G
Oracle Text Views

This appendix lists all of the views provided by Oracle Text. The system provides the
following views:

• CTX_ALEXER_DICTS

• CTX_AUTO_OPTIMIZE_INDEXES

• CTX_AUTO_OPTIMIZE_STATUS

• CTX_CLASSES

• CTX_FILTER_BY_COLUMNS

• CTX_FILTER_CACHE_STATISTICS

• CTX_INDEXES

• CTX_INDEX_ERRORS

• CTX_INDEX_OBJECTS

• CTX_INDEX_PARTITIONS

• CTX_INDEX_SETS

• CTX_INDEX_SET_INDEXES

• CTX_INDEX_SUB_LEXERS

• CTX_INDEX_SUB_LEXER_VALUES

• CTX_INDEX_VALUES

• CTX_OBJECTS

• CTX_OBJECT_ATTRIBUTES

• CTX_OBJECT_ATTRIBUTE_LOV

• CTX_ORDER_BY_COLUMNS

• CTX_PARAMETERS

• CTX_PENDING

• CTX_PREFERENCES

• CTX_PREFERENCE_VALUES

• CTX_SECTIONS

• CTX_SECTION_GROUPS

• CTX_SQES

• CTX_STOPLISTS

• CTX_STOPWORDS

• CTX_SUB_LEXERS

• CTX_THESAURI

G-1

• CTX_THES_PHRASES

• CTX_TRACE_VALUES

• CTX_USER_ALEXER_DICTS

• CTX_USER_AUTO_OPTIMIZE_INDEXES

• CTX_USER_EXTRACT_POLICIES

• CTX_USER_EXTRACT_POLICY_VALUES

• CTX_USER_EXTRACT_RULES

• CTX_USER_EXTRACT_STOP_ENTITIES

• CTX_USER_ FILTER_BY_COLUMNS

• CTX_USER_INDEXES

• CTX_USER_INDEX_ERRORS

• CTX_USER_INDEX_OBJECTS

• CTX_USER_INDEX_PARTITIONS

• CTX_USER_INDEX_SETS

• CTX_USER_INDEX_SET_INDEXES

• CTX_USER_INDEX_SUB_LEXERS

• CTX_USER_INDEX_SUB_LEXER_VALS

• CTX_USER_INDEX_VALUES

• CTX_USER_ORDER_BY_COLUMNS

• CTX_USER_PENDING

• CTX_USER_PREFERENCES

• CTX_USER_PREFERENCE_VALUES

• CTX_USER_SECTIONS

• CTX_USER_SECTION_GROUPS

• CTX_USER_SQES

• CTX_USER_STOPLISTS

• CTX_USER_STOPWORDS

• CTX_USER_SUB_LEXERS

• CTX_USER_THESAURI

• CTX_USER_THES_PHRASES

• CTX_VERSION

G.1 CTX_ALEXER_DICTS
This view displays all dictionaries created by any user. This view can be queried by
CTXSYS.

Appendix G
CTX_ALEXER_DICTS

G-2

Column Name Type Description

ALD_OWNER VARCHAR2(30) Name of the dictionary owner

ALD_NAME VARCHAR2(30) Name of the dictionary

ALD_LANG VARCHAR2(30) Language of the dictionary

G.2 CTX_AUTO_OPTIMIZE_INDEXES
This view displays all the indexes that are registered for auto optimization. It can be
queried by CTXSYS.

Column Name Type Description

AOI_INDEX_OWNER VARCHAR2(30) Index owner

AOI_INDEX_NAME VARCHAR2(30) Index name

AOI_PARTITION_NAME VARCHAR2(30) Partition name

G.3 CTX_AUTO_OPTIMIZE_STATUS
This view displays the status of auto optimization jobs. It can be queried by CTXSYS.

Column Name Type Description

AOS_TIMESTAMP TIMESTAMP(6) WITH
TIMEZONE

Time at which the auto optimization
job started

AOS_STATUS VARCHAR2(30) Status of the auto optimization job

AOS_ERROR VARCHAR2(4000) Errors raised by the auto optimization
job

G.4 CTX_CLASSES
This view displays all the preference categories registered in the Text data dictionary.
It can be queried by any user.

Column Name Type Description

CLA_NAME VARCHAR2(30) Class name

CLA_DESCRIPTION VARCHAR2(80) Class description

G.5 CTX_FILTER_BY_COLUMNS
This view displays all FILTER BY columns registered in the Text data dictionary. It can
be queried by any user.

Column Name Type Description

FBC_INDEX_OWNER VARCHAR2(30) Index owner name

Appendix G
CTX_AUTO_OPTIMIZE_INDEXES

G-3

Column Name Type Description

FBC_INDEX_NAME VARCHAR2(30) Index name

FBC_TABLE_OWNER VARCHAR2(30) Table owner name

FBC_TABLE_NAME VARCHAR2(30) Table name

FBC_COLUMN_NAME VARCHAR2(256) Column name

FBC_COLUMN_TYPE VARCHAR2(30) Column type

FBC_SECTION_TYPE VARCHAR2(30) Section type

FBC_SECTION_NAME VARCHAR2(30) Section name

FBC_SECTION_ID NUMBER Section ID

G.6 CTX_FILTER_CACHE_STATISTICS
This view displays various statistics related to the query filter cache. This view can be
queried by all users and it displays the statistics for all indexes.

Column Name Type Description

FCS_INDEX_OWNER VARCHAR2(30) Index owner name

FCS_INDEX_NAME VARCHAR2(30) Index name

FCS_PARTITION_NAME VARCHAR2(30) Index partition name

FCS_SIZE NUMBER Current size of the filter cache in
bytes

FCS_ENTRIES NUMBER Number of queries for which the
query results are cached in the filter
cache

FCS_REQUESTS NUMBER Number of query requests to the filter
cache

FCS_HITS NUMBER Number of query requests for which
matches were found in the filter
cache

G.7 CTX_INDEXES
This view displays all indexes that are registered in the Text data dictionary for the
current user. It can be queried by CTXSYS.

Column Name Type Description

IDX_CHARSET_COLUMN VARCHAR2(256) Name of the charset column in base table

IDX_DOCID_COUNT NUMBER Number of documents indexed

IDX_FORMAT_COLUMNS VARCHAR2(256) Name of the format column in base table

IDX_ID NUMBER Internal index ID

IDX_KEY_NAME VARCHAR2(256) Primary key column(s)

IDX_LANGUAGE_COLUMN VARCHAR2(256) Name of the language column in base
table

Appendix G
CTX_FILTER_CACHE_STATISTICS

G-4

Column Name Type Description

IDX_NAME VARCHAR2(30) Name of index

IDX_OWNER VARCHAR2(30) Owner of index

IDX_STATUS VARCHAR2(12) Status

IDX_SYNC_INTERVAL VARCHAR2(2000) Interval string required by scheduler job.
Only meaningful for AUTOMATIC sync.
Always null for MANUAL and ON COMMIT
sync.

IDX_SYNC_JOBNAME VARCHAR2(50) Scheduler job name for automatic sync.
Only meaningful for AUTOMATIC sync and
always null for other types of sync.

IDX_SYNC_MEMORY VARCHAR2(100) Sync memory size. Only meaningful for ON
COMMIT and AUTOMATIC types of sync. For
MANUAL sync, this is always null.

IDX_SYNC_PARA_DEGREE NUMBER Degree of parallelism for sync. Only
meaningful for the AUTOMATIC type of
sync; always null for MANUAL and ON
COMMIT syncs.

IDX_SYNC_TYPE VARCHAR2(20) Type of synching: MANUAL, AUTOMATIC, or
ON COMMIT

IDX_TABLE VARCHAR2(30) Table name

IDX_TABLE_OWNER VARCHAR2(30) Owner of table

IDX_TEXT_NAME VARCHAR2(30) Text column name

IDX_TYPE VARCHAR2(7) Type of index: CONTEXT, CTXCAT, or
CTXRULE

G.8 CTX_INDEX_ERRORS
This view displays the DML errors and is queryable by CTXSYS.

Column Name Type Description

ERR_INDEX_OWNER VARCHAR2(30) Index owner

ERR_INDEX_NAME VARCHAR2(30) Name of index

ERR_TIMESTAMP DATE Time of error

ERR_TEXTKEY VARCHAR2(18) ROWID of errored document or name of
errored operation (for example, ALTER INDEX)

ERR_TEXT VARCHAR2(4000) Error text

G.9 CTX_INDEX_OBJECTS
This view displays the objects that are used for each class in the index. It can be
queried by CTXSYS.

Appendix G
CTX_INDEX_ERRORS

G-5

Column Name Type Description

IXO_INDEX_OWNER VARCHAR2(30) Index owner

IXO_INDEX_NAME VARCHAR2(30) Index name

IXO_CLASS VARCHAR2(30) Class name

IXO_OBJECT VARCHAR2(30) Object name

G.10 CTX_INDEX_PARTITIONS
This view displays all index partitions. It can be queried by CTXSYS.

Column Name Type Description

IXP_ID NUMBER(38) Index partition ID

IXP_INDEX_OWNER VARCHAR2(30) Index owner

IXP_INDEX_NAME VARCHAR2(30) Index name

IXP_INDEX_PARTITION_NAME VARCHAR2(30) Index partition name

IXP_SYNC_TYPE VARCHAR2(20) Type of synching: MANUAL, AUTOMATIC,
or ON COMMIT

IXP_TABLE_OWNER VARCHAR2(30) Table owner

IXP_TABLE_NAME VARCHAR2(30) Table name

IXP_TABLE_PARTITION_NAME VARCHAR2(30) Table partition name

IXP_DOCID_COUNT NUMBER(38) Number of documents associated with
the partition

IXP_STATUS VARCHAR2(12) Partition status

G.11 CTX_INDEX_SETS
This view displays all index set names. It can be queried by any user.

Column Name Type Description

IXS_OWNER VARCHAR2(30) Index set owner

IXS_NAME VARCHAR2(30) Index set name

G.12 CTX_INDEX_SET_INDEXES
This view displays all the sub-indexes in an index set. It can be queried by any user.

Column Name Type Description

IXX_INDEX_SET_OWNER VARCHAR2(30) Index set owner

IXX_INDEX_SET_NAME VARCHAR2(30) Index set name

IXX_COLLIST VARCHAR2(500) Column list of the sub-index

IXX_STORAGE VARCHAR2(500) Storage clause of the sub-index

Appendix G
CTX_INDEX_PARTITIONS

G-6

G.13 CTX_INDEX_SUB_LEXERS
This view shows the sub-lexers for each language for each index. It can be queried by
CTXSYS.

Column Name Type Description

ISL_INDEX_OWNER VARCHAR2(30) Index owner

ISL_INDEX_NAME VARCHAR2(30) Index name

ISL_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISL_ALT_VALUE VARCHAR2(30) Alternate value of language

ISL_OBJECT VARCHAR2(30) Name of lexer object used for this
language

G.14 CTX_INDEX_SUB_LEXER_VALUES
Shows the sub-lexer attributes and their values. Accessible by CTXSYS.

Column Name Type Description

ISV_INDEX_OWNER VARCHAR2(30) Index owner

ISV_INDEX_NAME VARCHAR2(30) Index name

ISV_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISV_OBJECT VARCHAR2(30) Name of lexer object used for this
language

ISV_ATTRIBUTE VARCHAR2(30) Name of sub-lexer attribute

ISV_VALUE VARCHAR2(500) Value of attribute of sub-lexer

G.15 CTX_INDEX_VALUES
This view displays attribute values for each object used in indexes. This view is
queryable by CTXSYS.

Column Name Type Description

IXV_INDEX_OWNER VARCHAR2(30) Index owner

IXV_INDEX_NAME VARCHAR2(30) Index name

IXV_CLASS VARCHAR2(30) Class name

IXV_OBJECT VARCHAR2(30) Object name

IXV_ATTRIBUTE VARCHAR2(30) Attribute name

IXV_VALUE VARCHAR2(500) Attribute value

Appendix G
CTX_INDEX_SUB_LEXERS

G-7

G.16 CTX_OBJECTS
This view displays all of the Text objects registered in the Text data dictionary. This
view can be queried by any user.

Column Name Type Description

OBJ_CLASS VARCHAR2(30) Object class (Datastore, Filter, Lexer, and so
on)

OBJ_NAME VARCHAR2(30) Object name

OBJ_DESCRIPTION VARCHAR2(80) Object description

G.17 CTX_OBJECT_ATTRIBUTES
This view displays the attributes that can be assigned to preferences of each object. It
can be queried by all users.

Column Name Type Description

OAT_CLASS VARCHAR2(30) Object class (Data Store, Filter, Lexer, and
so on)

OAT_OBJECT VARCHAR2(30) Object name

OAT_ATTRIBUTE VARCHAR2(64) Attribute name

OAT_DESCRIPTION VARCHAR2(80) Description of attribute

OAT_REQUIRED VARCHAR2(1) Required attribute, either Y or N

OAT_STATIC VARCHAR2(1) Not currently used

OAT_DATATYPE VARCHAR2(64) Attribute datatype. The value PROCEDURE
indicates that the attribute of the object
should be a stored procedure name.

OAT_DEFAULT VARCHAR2(500) Default value for attribute

OAT_MIN NUMBER Minimum value

OAT_MAX NUMBER Maximum value

OAT_MAX_LENGTH NUMBER Maximum length

G.18 CTX_OBJECT_ATTRIBUTE_LOV
This view displays the allowed values for certain object attributes provided by Oracle
Text. It can be queried by all users.

Column Name Type Description

OAL_CLASS NUMBER(38) Class of object

OAL_OBJECT VARCHAR2(30) Object name

OAL_ATTRIBUTE VARCHAR2(32) Attribute name

OAl_LABEL VARCHAR2(30) Attribute value label

OAL_VALUE VARCHAR2(64) Attribute value

Appendix G
CTX_OBJECTS

G-8

Column Name Type Description

OAL_DESCRIPTION VARCHAR2(80) Attribute value description

G.19 CTX_ORDER_BY_COLUMNS
This view displays the ORDER BY columns registered in the Text data dictionary. It can
be queried by any user.

Column Name Type Description

OBC_INDEX_OWNER VARCHAR2(30) Index owner

OBC_INDEX_NAME VARCHAR2(30) Index name

OBC_TABLE_OWNER VARCHAR2(30) Table owner

OBC_TABLE_NAME VARCHAR2(30) Table name

OBC_COLUMN_NAME VARCHAR2(236) Column name

OBC_COLUMN_POSITION VARCHAR2(30) Column position

OBC_COLUMN_TYPE VARCHAR2(30) Column type

OBC_SECTION_NAME VARCHAR2(30) Section name

OBC_SECTION_TYPE VARCHAR2(30) Section type

OBC_SECTION_ID NUMBER Section ID

OBC_SORT_ORDER VARCHAR2(8) Sort order

G.20 CTX_PARAMETERS
This view displays all system-defined parameters as defined by CTXSYS. It can be
queried by any user.

Appendix G
CTX_ORDER_BY_COLUMNS

G-9

Column Name Type Description

PAR_NAME VARCHAR2(30) Parameter name:

auto_optimize

auto_optimize_logfile

max_index_memory

ctx_doc_key_type

default_index_memory

default_datastore

default_filter_binary

default_filter_text

default_filter_file

default_section_html

default_section_xml

default_section_text

default_lexer

default_stoplist

default_storage

default_wordlist

default_ctxcat_lexer

default_ctxcat_index_set

default_ctxcat_stoplist

default_ctxcat_storage

default_ctxcat_wordlist

default_ctxrule_lexer

default_ctxrule_stoplist

default_ctxrule_storage

default_ctxrule_wordlist

log_directory

file_access_role

PAR_VALUE VARCHAR2(500) Parameter value. For max_index_memory and
default_index_memory, PAR_VALUE stores a
string consisting of the memory amount. For the
other parameter names, PAR_VALUE stores the
names of the preferences used as defaults for
index creation.

G.21 CTX_PENDING
This view displays a row for each of the user's entries in the DML Queue. It can be
queried by CTXSYS.

Column Name Type Description

PND_INDEX_OWNER VARCHAR2(30) Index owner

PND_INDEX_NAME VARCHAR2(30) Name of index

Appendix G
CTX_PENDING

G-10

Column Name Type Description

PND_PARTITION_NAME VARCHAR2(30) Name of partition for local partition
indexes. NULL for normal indexes.

PND_ROWID ROWID ROWID to be indexed

PND_TIMESTAMP DATE Time of modification

G.22 CTX_PREFERENCES
This view displays preferences created by Oracle Text users, as well as all the
system-defined preferences included with Oracle Text. The view contains one row for
each preference. It can be queried by all users.

Column Name Type Description

PRE_OWNER VARCHAR2(30) Username of preference owner

PRE_NAME VARCHAR2(30) Preference name

PRE_CLASS VARCHAR2(30) Preference class

PRE_OBJECT VARCHAR2(30) Object used

G.23 CTX_PREFERENCE_VALUES
This view displays the values assigned to all the preferences in the Text data
dictionary. The view contains one row for each value. It can be queried by all users.

Column Name Type Description

PRV_OWNER VARCHAR2(30) Username of preference owner

PRV_PREFERENCE VARCHAR2(30) Preference name

PRV_ATTRIBUTE VARCHAR2(64) Attribute name

PRV_VALUE VARCHAR2(500) Attribute value

G.24 CTX_SECTIONS
This view displays information about all the sections, including SDATA and MDATA
sections, that have been created in the Text data dictionary. It can be queried by any
user.

Column Name Type Description

SEC_OWNER VARCHAR2(30) Owner of the section group

SEC_SECTION_GROUP VARCHAR2(30) Name of the section group

SEC_TYPE VARCHAR2(30) Type of section, either ZONE, FIELD,
SPECIAL, ATTR, STOP

SEC_ID NUMBER Section ID

SEC_NAME VARCHAR2(30) Name of section

Appendix G
CTX_PREFERENCES

G-11

Column Name Type Description

SEC_TAG VARCHAR2(64) Section tag

SEC_VISIBLE VARCHAR2(1) Y or N visible indicator for field sections
only.

Y indicator for READ ONLY MDATA
sections.

SEC_DATATYPE VARCHAR2(30) Shows the datatype name (NUMBER,
VARCHAR2, DATE or RAW) if the section is
an SDATA section. Otherwise, it is NULL.

G.25 CTX_SECTION_GROUPS
This view displays information about all the section groups that have been created in
the Text data dictionary. It can be queried by any user.

Column Name Type Description

SGP_OWNER VARCHAR2(30) Owner of section group

SGP_NAME VARCHAR2(30) Name of section group

SGP_TYPE VARCHAR2(30) Type of section group

G.26 CTX_SQES
This view displays the definitions for all SQEs that have been created by users. It can
be queried by all users.

Column Name Type Description

SQE_OWNER VARCHAR2(30) Owner of SQE

SQE_NAME VARCHAR2(30) Name of SQE

SQE_QUERY CLOB Query Text

G.27 CTX_STOPLISTS
This view displays stoplists. Queryable by all users.

Column Name Type Description

SPL_OWNER VARCHAR2(30) Owner of stoplist

SPL_NAME VARCHAR2(30) Name of stoplist

SPL_COUNT NUMBER Number of stopwords

SPL_TYPE VARCHAR2(30) Type of stoplist, MULTI or BASIC

G.28 CTX_STOPWORDS
This view displays the stopwords in each stoplist. Queryable by all users.

Appendix G
CTX_SECTION_GROUPS

G-12

Column Name Type Description

SPW_OWNER VARCHAR2(30) Stoplist owner

SPW_STOPLIST VARCHAR2(30) Stoplist name

SPW_TYPE VARCHAR2(10) Stop type, either STOP_WORD, STOP_CLASS,
STOP_THEME

SPW_WORD VARCHAR2(80) Stopword

SPW_LANGUAGE VARCHAR2(30) Stopword language

SPW_PATTERN VARCHAR2(512) Stop pattern

G.29 CTX_SUB_LEXERS
This view contains information on multi-lexers and the sub-lexer preferences they
contain. It can be queried by any user.

Column Name Type Description

SLX_OWNER VARCHAR2(30) Owner of the multi-lexer preference

SLX_NAME VARCHAR2(30) Name of the multi-lexer preference

SLX_LANGUAGE VARCHAR2(30) Language of the referenced lexer (full
name, not abbreviation)

SLX_ALT_VALUE VARCHAR2(30) An alternate value for the language

SLX_SUB_OWNER VARCHAR2(30) Owner of the sub-lexer

SLX_SUB_NAME VARCHAR2(30) Name of the sub-lexer

G.30 CTX_THESAURI
This view displays information about all the thesauri that have been created in the Text
data dictionary. It can be queried by any user.

Column Name Type Description

THS_OWNER VARCHAR2(30) Thesaurus owner

THS_NAME VARCHAR2(30) Thesaurus name

G.31 CTX_THES_PHRASES
This view displays phrase information for all thesauri in the Text data dictionary. It can
be queried by any user.

Column Name Type Description

THP_THESAURUS VARCHAR2(30) Thesaurus name

THP_PHRASE VARCHAR2(256) Thesaurus phrase

THP_QUALIFIER VARCHAR2(256) Thesaurus qualifier

THP_SCOPE_NOTE VARCHAR2(2000) Thesaurus scope notes

Appendix G
CTX_SUB_LEXERS

G-13

G.32 CTX_TRACE_VALUES
This view contains one row for each active trace, and shows the current value of each
trace.

Column Name Type Description

TRC_ID BINARY_INTEGER Trace ID

TRC_VALUE NUMBER Current trace value

Note:

The error "ORA-00955: name is already used by an existing object" can
safely be ignored if this error is raised in the postinstall steps for patch
releases. This may occur when this view is present in the database being
patched.

G.33 CTX_USER_ALEXER_DICTS
This view displays all dictionaries created by the current user.

Column Name Type Description

ALD_NAME VARCHAR2(30) Name of the dictionary

ALD_LANG VARCHAR2(30) Language of the dictionary

G.34 CTX_USER_AUTO_OPTIMIZE_INDEXES
This view displays the user indexes that are registered for auto optimization. It can be
queried by all users.

Column Name Type Description

AOI_INDEX_NAME VARCHAR2(30) Index name

AOI_PARTITION_NAME VARCHAR2(30) Partition name

G.35 CTX_USER_EXTRACT_POLICIES
This view displays all of the entity extraction policies owned by the current user. All
users can query this view.

Column Name Type Description

EPL_NAME VARCHAR2(30) Entity extraction policy name

Appendix G
CTX_TRACE_VALUES

G-14

G.36 CTX_USER_EXTRACT_POLICY_VALUES
This view displays all of the values for the entity extraction policies owned by the
current user. All users can query this view.

Column Name Type Description

EPV_POLICY_NAME VARCHAR2(30) Entity extraction policy name

EPV_CLASS VARCHAR2(30) Object class

EPV_OBJECT VARCHAR2(30) Object name

EPV_ATTRIBUTE VARCHAR2(30) Object attribute name

EPV_VALUE VARCHAR2(500) Object attribute value

G.37 CTX_USER_EXTRACT_RULES
This view displays the entity extraction rules for the policies owned by the current user.
All users can query this view.

Column Name Type Description

ERL_POLICY_NAME VARCHAR2(30) Entity extraction policy name

ERL_RULE_ID INTEGER Entity extraction rule ID

ERL_LANGUAGE VARCHAR2(30) Entity extraction rule language

ERL_RULE VARCHAR2(512) Entity extraction rule contents

ERL_TYPE VARCHAR2(4000) String mapping backreferences to entity types

ERL_STATUS VARCHAR2(30) Entity extraction rule status: compiled, not
compiled, to be deleted

ERL_COMMENTS VARCHAR2(4000) Comments

G.38 CTX_USER_EXTRACT_STOP_ENTITIES
This view displays the stop entities owned by the current user. All users can query this
view.

Column Name Type Description

ESE_POLICY_NAME VARCHAR2(30) Entity extraction policy name

ESE_NAME VARCHAR2(512) Stop entity name

ESE_TYPE VARCHAR2(30) Stop entity type

ESE_STATUS VARCHAR2(30) Entity extraction rule status: compiled, not
compiled, to be deleted, subset

ESE_COMMENTS VARCHAR2(4000) Comments

Appendix G
CTX_USER_EXTRACT_POLICY_VALUES

G-15

G.39 CTX_USER_ FILTER_BY_COLUMNS
This view displays all FILTER BY columns registered in the Text data dictionary for the
current user. It can be queried by any user.

Column Name Type Description

FBC_INDEX_NAME VARCHAR2(30) Index name

FBC_TABLE_OWNER VARCHAR2(30) Table owner name

FBC_TABLE_NAME VARCHAR2(30) Table name

FBC_COLUMN_NAME VARCHAR2(256) Column name

FBC_COLUMN_TYPE VARCHAR2(30) Column type

FBC_SECTION_TYPE VARCHAR2(30) Section type

FBC_SECTION_NAME VARCHAR2(30) Section name

FBC_SECTION_ID NUMBER Section ID

G.40 CTX_USER_INDEXES
This view displays all indexes that are registered in the Text data dictionary for the
current user. It can be queried by all users.

Column Name Type Description

IDX_CHARSET_COLUMN VARCHAR2(256) Name of the charset column of
base table

IDX_DOCID_COUNT NUMBER Number of documents indexed

IDX_FORMAT_COLUMN VARCHAR2(256) Name of the format column of base
table

IDX_ID NUMBER Internal index ID

IDX_KEY_NAME VARCHAR(256) Primary key column(s)

IDX_LANGUAGE_COLUMN VARCHAR2(256) Name of the language column of
base table

IDX_NAME VARCHAR2(30) Name of index

IDX_STATUS VARCHAR2(12) Status, either INDEXED or
INDEXING

IDX_SYNC_INTERVAL VARCHAR2(2000) This is the interval string required
by scheduler job. Only meaningful
for AUTOMATIC sync. Always null for
MANUAL and ON COMMIT sync.

IDX_SYNC_JOBNAME VARCHAR2(50) This is the scheduler job name for
automatic sync. Only meaningful for
AUTOMATIC sync and always null
for other types of sync.

IDX_SYNC_MEMORY VARCHAR2(100) The sync memory size. Only
meaningful for ON COMMIT and
AUTOMATIC types of sync. For
MANUAL sync, this is always null.

Appendix G
CTX_USER_ FILTER_BY_COLUMNS

G-16

Column Name Type Description

IDX_SYNC_PARA_DEGREE NUMBER Degree of parallelism for sync. Only
meaningful for the AUTOMATIC type
of sync; always null for MANUAL and
ON COMMIT syncs.

IDX_SYNC_TYPE VARCHAR2(20) Type of synching: AUTOMATIC,
MANUAL or ON COMMIT

IDX_TABLE VARCHAR2(30) Table name

IDX_TABLE_OWNER VARCHAR2(30) Owner of table

IDX_TEXT_NAME VARCHAR2(30) Text column name

IDX_TYPE VARCHAR2(30) Type of index: CONTEXT, CTXCAT,
or CTXRULE

G.41 CTX_USER_INDEX_ERRORS
This view displays the indexing errors for the current user and is queryable by all
users.

Column Name Type Description

ERR_INDEX_NAME VARCHAR2(30) Name of index

ERR_TIMESTAMP DATE Time of error

ERR_TEXTKEY VARCHAR2(18) ROWID of errored document or name of
errored operation (for example, ALTER
INDEX)

ERR_TEXT VARCHAR2(4000) Error text

G.42 CTX_USER_INDEX_OBJECTS
This view displays the preferences that are attached to the indexes defined for the
current user. It can be queried by all users.

Column Name Type Description

IXO_INDEX_NAME VARCHAR2(30) Name of index

IXO_CLASS VARCHAR2(30) Object name

IXO_OBJECT VARCHAR2(80) Object description

G.43 CTX_USER_INDEX_PARTITIONS
This view displays all index partitions for the current user. It is queryable by all users.

Column Name Type Description

IXP_DOCID_COUNT NUMBER(38) Number of documents associated with the
index partition

Appendix G
CTX_USER_INDEX_ERRORS

G-17

Column Name Type Description

IXP_ID NUMBER(38) Index partition ID

IXP_INDEX_NAME VARCHAR2(30) Index name

IXP_INDEX_PARTITION_NAME VARCHAR2(30) Index partition name

IDX_SYNC_INTERVAL VARCHAR2(2000) This is the interval string required by
scheduler job. Only meaningful for
AUTOMATIC sync. Always null for MANUAL
and ON COMMIT sync.

IDX_SYNC_JOBNAME VARCHAR2(50) This is the scheduler job name for
automatic sync. It is only meaningful for
AUTOMATIC sync and always null for other
types of sync.

IDX_SYNC_MEMORY VARCHAR2(100) The sync memory size. Only meaningful for
ON COMMIT and AUTOMATIC types of sync.
For MANUAL sync, this is always null.

IDX_SYNC_PARA_DEGREE NUMBER Degree of parallelism for sync. Only
meaningful for the AUTOMATIC type of
sync; always null for MANUAL and ON
COMMIT syncs.

IDX_SYNC_TYPE VARCHAR2(20) Type of synching: AUTOMATIC, MANUAL or
ON COMMIT

IXP_STATUS VARCHAR2(12) Partition status

IXP_TABLE_OWNER VARCHAR2(30) Table owner

IXP_TABLE_NAME VARCHAR2(30) Table name

IXP_TABLE_PARTITION_NAME VARCHAR2(30) Table partition name

G.44 CTX_USER_INDEX_SETS
This view displays all index set names that belong to the current user. It is queryable
by all users.

Column Name Type Description

IXS_NAME VARCHAR2(30) Index set name

G.45 CTX_USER_INDEX_SET_INDEXES
This view displays all the indexes in an index set that belong to the current user. It is
queryable by all users.

Column Name Type Description

IXX_INDEX_SET_NAME VARCHAR2(30) Index set name

IXX_COLLIST VARCHAR2(500) Column list of the index

IXX_STORAGE VARCHAR2(500) Storage clause of the index

Appendix G
CTX_USER_INDEX_SETS

G-18

G.46 CTX_USER_INDEX_SUB_LEXERS
This view shows the sub-lexers for each language for each index for the querying
user. This view can be queried by all users.

Column Name Type Description

ISL_INDEX_NAME VARCHAR2(30) Index name

ISL_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISL_ALT_VALUE VARCHAR2(30) Alternate value of language

ISL_OBJECT VARCHAR2(30) Name of lexer object used for this
language

G.47 CTX_USER_INDEX_SUB_LEXER_VALS
Shows the sub-lexer attributes and their values for the querying user. This view can be
queried by all users.

Column Name Type Description

ISV_INDEX_NAME VARCHAR2(30) Index name

ISV_LANGUAGE VARCHAR2(30) Language of sub-lexer

ISV_OBJECT VARCHAR2(30) Name of lexer object used for this
language

ISV_ATTRIBUTE VARCHAR2(30) Name of sub-lexer attribute

ISV_VALUE VARCHAR2(500) Value of sub-lexer attribute

G.48 CTX_USER_INDEX_VALUES
This view displays attribute values for each object used in indexes for the current user.
This view is queryable by all users.

Column Name Type Description

IXV_INDEX_NAME VARCHAR2(30) Index name

IXV_CLASS VARCHAR2(30) Class name

IXV_OBJECT VARCHAR2(30) Object name

IXV_ATTRIBUTE VARCHAR2(30) Attribute name

IXV_VALUE VARCHAR2(500) Attribute value

G.49 CTX_USER_ORDER_BY_COLUMNS
This view displays all ORDER BY columns registered in the Text data dictionary for the
current user. It can be queried by any user.

Appendix G
CTX_USER_INDEX_SUB_LEXERS

G-19

Column Name Type Description

OBC_INDEX_NAME VARCHAR2(30) Index name

OBC_TABLE_OWNER VARCHAR2(30) Table owner

OBC_TABLE_NAME VARCHAR2(30) Table name

OBC_COLUMN_NAME VARCHAR2(236) Column name

OBC_COLUMN_POSITION VARCHAR2(30) Column position

OBC_COLUMN_TYPE VARCHAR2(30) Column type

OBC_SECTION_NAME VARCHAR2(30) Section name

OBC_SECTION_TYPE VARCHAR2(30) Section type

OBC_SECTION_ID NUMBER Section ID

OBC_SORT_ORDER VARCHAR2(8) Sort order

G.50 CTX_USER_PENDING
This view displays a row for each of the user's entries in the DML Queue. It can be
queried by all users.

Column Name Type Description

PND_INDEX_NAME VARCHAR2(30) Name of index

PND_PARTITION_NAME VARCHAR2(30) Name of partition for local partition
indexes. NULL for normal indexes.

PND_ROWID ROWID Rowid to be indexed

PND_TIMESTAMP DATE Time of modification

G.51 CTX_USER_PREFERENCES
This view displays all preferences defined by the current user. It can be queried by all
users.

Column Name Type Description

PRE_NAME VARCHAR2(30) Preference name

PRE_CLASS VARCHAR2(30) Preference class

PRE_OBJECT VARCHAR2(30) Object used

G.52 CTX_USER_PREFERENCE_VALUES
This view displays all the values for preferences defined by the current user. It can be
queried by all users.

Column Name Type Description

PRV_PREFERENCE VARCHAR2(30) Preference name

Appendix G
CTX_USER_PENDING

G-20

Column Name Type Description

PRV_ATTRIBUTE VARCHAR2(64) Attribute name

PRV_VALUE VARCHAR2(500) Attribute value

G.53 CTX_USER_SECTIONS
This view displays information about the sections that have been created in the Text
data dictionary for the current user. It can be queried by all users.

Column Name Type Description

SEC_DATATYPE VARCHAR2(30) Shows the datatype name (NUMBER,
VARCHAR2, DATE or RAW) if the section is an
SDATA section. Otherwise, it is NULL.

SEC__SECTION_GROUP VARCHAR2(30) Name of the section group

SEC_TYPE VARCHAR2(30) Type of section, either ZONE, FIELD,
SPECIAL, STOP, or ATTR

SEC_ID NUMBER Section ID

SEC_NAME VARCHAR2(30) Name of section

SEC_TAG VARCHAR2(64) Section tag

SEC_VISIBLE VARCHAR2(1) Y or N visible indicator for field sections

G.54 CTX_USER_SECTION_GROUPS
This view displays information about the section groups that have been created in the
Text data dictionary for the current user. It can be queried by all users.

Column Name Type Description

SGP_NAME VARCHAR2(30) Name of section group

SGP_TYPE VARCHAR2(30) Type of section group

G.55 CTX_USER_SESSION_SQES
This view displays the definitions of all session-duration SQEs that have been created
by the current user.

Column Name Type Description

SQE_OWNER VARCHAR2(30) Name of owner of SQE

SQE_NAME VARCHAR2(30) Name of SQE (shared namespace between
persistent and session-duration)

SQE_QUERY CLOB Query text (max size of 32k)

Appendix G
CTX_USER_SECTIONS

G-21

G.56 CTX_USER_SQES
This view displays the definitions of all persistent duration SQEs that have been
created by the current user. In other words, it does not display session duration SQEs.

Column Name Type Description

SQE_OWNER VARCHAR2(30) Owner of SQE

SQE_NAME VARCHAR2(30) Name of SQE

SQE_QUERY CLOB Query text

G.57 CTX_USER_STOPLISTS
This view displays stoplists for current user. It is queryable by all users.

Column Name Type Description

SPL_NAME VARCHAR2(30) Name of stoplist

SPL_COUNT NUMBER Number of stopwords

SPL_TYPE VARCHAR2(30) Type of stoplist, MULTI or BASIC

G.58 CTX_USER_STOPWORDS
This view displays stopwords in each stoplist for current user. Queryable by all users.

Column Name Type Description

SPW_STOPLIST VARCHAR2(30) Stoplist name

SPW_TYPE VARCHAR2(10) Stop type, either STOP_WORD, STOP_CLASS,
STOP_THEME

SPW_WORD VARCHAR2(80) Stopword

SPW_LANGUAGE VARCHAR2(30) Stopword language

SPW_PATTERN VARCHAR2(512) Stop pattern

G.59 CTX_USER_SUB_LEXERS
For the current user, this view contains information on multi-lexers and the sub-lexer
preferences they contain. It can be queried by any user.

Column Name Type Description

SLX_NAME VARCHAR2(30) Name of the multi-lexer preference

SLX_LANGUAGE VARCHAR2(30) Language of the referenced lexer (full name,
not abbreviation)

SLX_ALT_VALUE VARCHAR2(30) An alternate value for the language

SLX_SUB_OWNER VARCHAR2(30) Owner of the sub-lexer

Appendix G
CTX_USER_SQES

G-22

Column Name Type Description

SLX_SUB_NAME VARCHAR2(30) Name of the sub-lexer

G.60 CTX_USER_THESAURI
This view displays the information about all of the thesauri that have been created in
the system by the current user. It can be viewed by all users.

Column Name Type Description

THS_NAME VARCHAR2(30) Thesaurus name

G.61 CTX_USER_THES_PHRASES
This view displays the phrase information of all thesauri owned by the current user. It
can be queried by all users.

Column Name Type Description

THP_THESAURUS VARCHAR2(30) Thesaurus name

THP_PHRASE VARCHAR2(256) Thesaurus phrase

THP_QUALIFIER VARCHAR2(256) Phrase qualifier

THP_SCOPE_NOTE VARCHAR2(2000) Scope note of the phrase

G.62 CTX_VERSION
This view displays the CTXSYS data dictionary and code version number information.

Column Name Type Description

VER_DICT CHAR(9) The CTXSYS data dictionary version number

VER_CODE VARCHAR2(9) The version number of the code linked in to the
Oracle Database shadow process

This column fetches the version number for
linked-in code. Thus, use this column to detect
and verify patch releases.

Appendix G
CTX_USER_THESAURI

G-23

H
Stopword Transformations in Oracle Text

This appendix describes the stopword rewrites or transformations for each operator. In
all tables, the Stopword Expression column describes the query expression or
component of a query expression, while the right-hand column describes the way
Oracle Text rewrites the query.

This appendix contains the following topics:

• Understanding Stopword Transformations

• About Stopwords in Phrase Queries

• Word Transformations

• AND Transformations

• OR Transformations

• ACCUMulate Transformations

• MINUS Transformations

• MNOT Transformations

• NOT Transformations

• EQUIValence Transformations

• NEAR Transformations

• Weight Transformations

• Threshold Transformations

• WITHIN Transformations

H.1 Understanding Stopword Transformations
When you use a stopword or stopword-only phrase as an operand for a query
operator, Oracle Text rewrites the expression to eliminate the stopword or stopword-
only phrase and then executes the query.

The token stopword stands for a single stopword or a stopword-only phrase.

The token non_stopword stands for either a single non-stopword, a phrase of all non-
stopwords, or a phrase of non-stopwords and stopwords.

The token no_lex stands for a single character or a string of characters that is neither
a stopword nor a word that is indexed. For example, the + character by itself is an
example of a no_lex token.

When the Stopword Expression column completely describes the query expression, a
rewritten expression of no_token means that no hits are returned when you enter such
a query.

H-1

When the Stopword Expression column describes a component of a query expression
with more than one operator, a rewritten expression of no_token means that a
no_token value is passed to the next step of the rewrite.

Transformations that contain a no_token as an operand in the Stopword Expression
column describe intermediate transformations in which the no_token is a result of a
previous transformation. These intermediate transformations apply when the original
query expression has at least one stopword and more than one operator.

For example, consider the following compound query expression:

'(this NOT dog) AND cat'

Assuming that this is the only stopword in this expression, Oracle Text applies the
following transformations in the following order:

stopword NOT non-stopword => no_token

no_token AND non_stopword => non_stopword

The resulting expression is:

'cat'

H.2 About Stopwords in Phrase Queries
If used in a phrase query, a stopword will match any single word, whether that word is
a stopword or not. For example, if "in" and "to" are stopwords, but "throughout" is not,
then the query "hiking in California" will match any of these phrases:

• hiking in California

• hiking to California

• hiking throughout California

H.3 Word Transformations

Stopword Expression Rewritten Expression

stopword no_token

no_lex no_token

The first transformation means that a stopword or stopword-only phrase by itself in a
query expression results in no hits.

The second transformation says that a term that is not lexed, such as the + character,
results in no hits.

H.4 AND Transformations

Stopword Expression Rewritten Expression

non_stopword AND stopword non_stopword

non_stopword AND no_token non_stopword

Appendix H
About Stopwords in Phrase Queries

H-2

Stopword Expression Rewritten Expression

stopword AND non_stopword non_stopword

no_token AND non_stopword non_stopword

stopword AND stopword no_token

no_token AND stopword no_token

stopword AND no_token no_token

no_token AND no_token no_token

H.5 OR Transformations

Stopword Expression Rewritten Expression

non_stopword OR stopword non_stopword

non_stopword OR no_token non_stopword

stopword OR non_stopword non_stopword

no_token OR non_stopword non_stopword

stopword OR stopword no_token

no_token OR stopword no_token

stopword OR no_token no_token

no_token OR no_token no_token

H.6 ACCUMulate Transformations

Stopword Expression Rewritten Expression

non_stopword ACCUM stopword non_stopword

non_stopword ACCUM no_token non_stopword

stopword ACCUM non_stopword non_stopword

no_token ACCUM non_stopword non_stopword

stopword ACCUM stopword no_token

no_token ACCUM stopword no_token

stopword ACCUM no_token no_token

no_token ACCUM no_token no_token

H.7 MINUS Transformations

Stopword Expression Rewritten Expression

non_stopword MINUS stopword non_stopword

non_stopword MINUS no_token non_stopword

stopword MINUS non_stopword no_token

no_token MINUS non_stopword no_token

Appendix H
OR Transformations

H-3

Stopword Expression Rewritten Expression

stopword MINUS stopword no_token

no_token MINUS stopword no_token

stopword MINUS no_token no_token

no_token MINUS no_token no_token

H.8 MNOT Transformations

Stopword Expression Rewritten Expression

non_stopword MNOT stopword non_stopword

non_stopword MNOT no_token non_stopword

stopword MNOT non_stopword no_token

no_token MNOT non_stopword no_token

stopword MNOT stopword no_token

no_token MNOT stopword no_token

stopword MNOT no_token no_token

no_token MNOT no_token no_token

H.9 NOT Transformations

Stopword Expression Rewritten Expression

non_stopword NOT stopword non_stopword

non_stopword NOT no_token non_stopword

stopword NOT non_stopword no_token

no_token NOT non_stopword no_token

stopword NOT stopword no_token

no_token NOT stopword no_token

stopword NOT no_token no_token

no_token NOT no_token no_token

H.10 EQUIValence Transformations

Stopword Expression Rewritten Expression

non_stopword EQUIV stopword non_stopword

non_stopword EQUIV no_token non_stopword

stopword EQUIV non_stopword non_stopword

no_token EQUIV non_stopword non_stopword

stopword EQUIV stopword no_token

no_token EQUIV stopword no_token

Appendix H
MNOT Transformations

H-4

Stopword Expression Rewritten Expression

stopword EQUIV no_token no_token

no_token EQUIV no_token no_token

Note:

When you use query explain plan, not all of the equivalence transformations
are represented in the EXPLAIN table.

H.11 NEAR Transformations

Stopword Expression Rewritten Expression

non_stopword NEAR stopword non_stopword

non_stopword NEAR no_token non_stopword

stopword NEAR non_stopword non_stopword

no_token NEAR non_stopword non_stopword

stopword NEAR stopword no_token

no_token NEAR stopword no_token

stopword NEAR no_token no_token

no_token NEAR no_token no_token

H.12 Weight Transformations

Stopword Expression Rewritten Expression

stopword * n no_token

no_token * n no_token

H.13 Threshold Transformations

Stopword Expression Rewritten Expression

stopword > n no_token

no_token > n no_token

H.14 WITHIN Transformations

Stopword Expression Rewritten Expression

stopword WITHIN section no_token

Appendix H
NEAR Transformations

H-5

Stopword Expression Rewritten Expression

no_token WITHIN section no_token

Appendix H
WITHIN Transformations

H-6

Index

Symbols
_ wildcard, 3-54
- operator, 3-30
, operator, 3-6
! operator, 3-46
? operator, 3-20
{} escape character, 4-1
* operator, 3-53
\ escape character, 4-1
% wildcard, 3-54
= operator, 3-14, 3-15, 3-19
> operator, 3-49
$ operator, 3-47

A
ABOUT query, 3-4

example, 3-4
highlight markup, 9-13, 9-26
highlight offsets, 9-9, 9-23
viewing expansion, 12-4

accumulate operator, 3-6
scoring, 3-6
stopword transformations, H-3

ADD_ATTR_SECTION procedure, 8-3
ADD_AUTO_OPTIMIZE procedure, 8-4
ADD_EVENT procedure, 11-1
ADD_FIELD_SECTION procedure, 8-5
ADD_INDEX procedure, 8-8
ADD_MDATA procedure, 8-9, 8-11
ADD_MDATA_SECTION procedure, 8-13
ADD_SDATA_COLUMN procedure, 8-15
ADD_SDATA_SECTION procedure, 8-16
ADD_SPECIAL_SECTION procedure, 8-19
ADD_STOP_SECTION procedure, 8-22
ADD_STOPCLASS procedure, 8-21
ADD_STOPTHEME procedure, 8-24
ADD_STOPWORD procedure, 8-24
ADD_SUB_LEXER procedure, 8-26

example, 2-50
ADD_TRACE procedure, 11-2
ADD_ZONE_SECTION procedure, 8-28
adding a trace, 11-2
adding an event, 11-1

adding metadata, 8-9, 8-11, 8-13
adding structured data, 8-15, 8-16
AL32UTF8 character set, 2-52, 2-54, 2-55, 2-57
ALTER INDEX

Add Section Constraints, 1-18
ALTER INDEX statement, 1-1

examples, 1-1
parameters syntax, 1-1
rebuild syntax, 1-1
rename syntax, 1-1
syntax overview, 1-1

ALTER TABLE
Composite Domain Index and, 1-47
UPDATE GLOBAL INDEXES, 1-20–1-22

ALTER TABLE statement, 1-19
ALTER_PHRASE procedure, 14-2
ALTER_THESAURUS procedure, 14-3
alternate grammar template, 1-33
alternate language template, 1-34
alternate spelling, 17-2

about, 17-1
base letter, 17-2
Danish, 17-4
disabling example, 8-72, 17-1
enabling example, 17-1
German, 17-4
normalized vs. original, 17-1
overriding, 17-3
Swedish, 17-5

alternate_spelling attribute, 2-47, 17-2
alternative scoring template, 1-34
American

index defaults, 2-102
analyzing queries, 13-10
AND operator, 3-8

stopword transformations, H-2
Asian languages

and CTXRULE indexes, D-3
attribute section

adding dynamically, 1-1
defining, 8-3
dynamically adding, 1-18
querying, 3-55
WITHIN example, 3-55

Index-1

attributes
alternate_spelling, 2-47, 17-2
auto_filter_output_formatting, 2-23
base_letter, 2-41, 17-2
base_letter_type, 2-41
binary, 2-7
command, 2-27
composite, 2-41
continuation, 2-41
detail_key, 2-7
detail_lineno, 2-7
detail_table, 2-7
detail_text, 2-7
disabling, 8-72, 8-73
endjoins, 2-41
ftp_proxy, 2-12
fuzzy_match, 2-74
fuzzy_numresults, 2-74
fuzzy_score, 2-74
http_proxy, 2-12
i_index_clause, 2-84
i_table_clause, 2-85
index_text, 2-47
index_themes, 2-47
k_table_clause, 2-85
maxthreads, 2-12
maxurls, 2-12
mixed_case, 2-41
n_table_clause, 2-85
new_german_spelling, 2-47, 17-3
newline, 2-41
no_proxy, 2-12
numgroup, 2-41
numjoin, 2-41
output_type, 2-15
override_base_letter, 17-3
p_table_clause, 2-85
path, 2-9
printjoins, 2-41
procedure, 2-14
punctuations, 2-41
r_table_clause, 2-86
setting, 8-66, 8-68
skipjoins, 2-41
startjoins, 2-41
stemmer, 2-74
timeout, 2-12
urlsize, 2-12
viewing, G-8
viewing allowed values, G-8
whitespace, 2-41

auto optimization
add indexes, 8-4
add partitions, 8-4
remove indexes, 8-60

auto optimization (continued)
remove partitions, 8-60

AUTO stemming, 2-74
AUTO_FILTER Document Filtering Technology

Supported Platforms for, B-2
AUTO_FILTER filter, 2-19

character set conversion, 2-22
index preference object, 2-19
setting up, B-1
supported formats, B-4
supported platforms, B-2
unsupported formats, B-2

AUTO_FILTER_OUTPUT_FORMATTING
attribute, 2-23

AUTO_SECTION_GROUP example, 2-94
automatic index synchronization, 1-1, 1-41
available traces, 11-2

B
backslash escape character, 4-1
base_letter attribute, 2-41, 17-2
base_letter_type attribute, 2-41, 17-2
base-letter conversions, 17-2
base-letter conversions, overriding, 17-3
BASIC_LEXER object, 2-41
BASIC_LEXER system-defined preference,

2-103
BASIC_LEXER type

example, 2-49
BASIC_STOPLIST type, 8-41
BASIC_STORAGE object

attributes for, 2-83
defaults, 2-90
example, 2-90

BASIC_WORDLIST object
attributes for, 2-74
example, 2-81

BFILE column
indexing, 1-43

binary attribute, 2-7, 2-17
binary documents

filtering, 2-4
BINARY format column value, 1-41
BLOB column

indexing, 1-43
loading example, C-1

brace escape character, 4-1
brackets

altering precedence, 3-3, 4-1
grouping character, 4-1

broader term operators
example, 3-9

broader term query feedback, 12-7
BROWSE_WORDS procedure, 12-1

Index

Index-2

browsing words in index, 12-1
BT function, 14-4
BT operator, 3-9
BTG function, 14-6
BTG operator, 3-9
BTI function, 14-7
BTI operator, 3-9
BTP function, 14-8
BTP operator, 3-9

C
case-sensitive

ABOUT queries, 3-4
case-sensitive index

creating, 2-41
CATSEARCH operator, 1-24
CHAR column

indexing, 1-43
character sets

Chinese, 2-52
conversion with AUTO_FILTER, 2-22
Japanese, 2-54
Korean, 2-57

characters
continuation, 2-41
numgroup, 2-41
numjoin, 2-41
printjoin, 2-41
punctuation, 2-41
skipjoin, 2-41
specifying for newline, 2-41
specifying for whitespace, 2-41
startjoin and endjoin, 2-41

charset column, 1-41
Chinese

fuzzy matching, 2-74
Chinese character sets supported, 2-52
Chinese lexicon, modifying, 16-12
Chinese text

indexing, 2-52
CHINESE_LEXER Attribute, 2-53
CHINESE_VGRAM_LEXER object, 2-52
classifying documents, 7-1

clustering, 2-98, 7-5
CLOB column

indexing, 1-43
clump, 3-37
clump size in near operator, 3-36
clustering, 2-98, 7-5

KMEAN_CLUSTERING, 2-98
types, 2-98

CLUSTERING procedure, 7-5
clustering types, 2-98

columns types
supported for CTXCAT index, 1-61
supported for CTXRULE index, 1-65
supported for indexing, 1-43

command attribute, 2-27
compiler, lexical, 16-12
compMem element, 2-71
composite attribute

BASIC_LEXER, 2-41
KOREAN_MORPH_LEXER, 2-58

composite domain index, 1-41
composite textkey

encoding, 9-19
composite word dictionary, 2-47
composite word index

creating for German or Dutch text, 2-41
composite words

viewing, 12-4
concordance, 9-43
CONTAINS operator

example, 1-30
syntax, 1-30

CONTEXT index
about, 1-42
default parameters, 2-106
syntax, 1-41

context indextype, 1-41
continuation attribute, 2-41
control file example

SQL*Loader, C-2
COPY_POLICY procedure, 8-31
CREATE INDEX statement, 1-41

CONTEXT, 1-41
CTXCAT, 1-41
CTXRULE, 1-41
default parameters, 2-105, 2-109
failure, 5-1

CREATE SEARCH INDEX statement, 1-66
CREATE_INDEX_SCRIPT procedure, 13-4
CREATE_INDEX_SET procedure, 8-31, 8-74
CREATE_PHRASE procedure, 14-10
CREATE_POLICY procedure, 8-31
CREATE_POLICY_SCRIPT procedure, 13-5
CREATE_PREFERENCE procedure, 8-33
CREATE_RELATION procedure, 14-10
CREATE_SECTION_GROUP procedure, 8-36
CREATE_STOPLIST procedure, 8-41
CREATE_THESAURUS function, 14-12
CREATE_TRANSLATION procedure, 14-12
creating an index report, 13-2
CTX_ADM package

MARK_FAILED, 5-1
RECOVER, 5-2
RESET_AUTO_OPTIMIZE_STATUS, 5-3
SET_PARAMETER, 5-3

Index

3

CTX_ADM.MARK_FAILED, 5-1
CTX_AUTO_OPTIMIZE_INDEXES view, G-3
CTX_AUTO_OPTIMIZE_STATUS view, G-3
CTX_CLASSES view, G-3, G-4, G-9, G-16, G-19
CTX_CLS

CLUSTERING, 7-5
TRAIN, 7-1

CTX_DDL package
ADD_ATTR_SECTION, 8-3
ADD_AUTO_OPTIMIZE, 8-4
ADD_FIELD_SECTION, 8-5
ADD_MDATA, 8-9, 8-11
ADD_MDATA_SECTION, 8-13
ADD_SDATA_COLUMN, 8-15
ADD_SDATA_SECTION, 8-16
ADD_SPECIAL_SECTION, 8-19
ADD_STOP_SECTION, 8-22
ADD_STOPCLASS, 8-21
ADD_STOPTHEME, 8-24
ADD_STOPWORD, 8-24
ADD_SUB_LEXER, 8-26
ADD_ZONE_SECTION, 8-28
COPY_POLICY, 8-31
CREATE_INDEX_SET, 8-31, 8-74
CREATE_POLICY, 8-31
CREATE_PREFERENCE, 8-33
CREATE_SECTION_GROUP, 8-36
CREATE_STOPLIST, 8-41
DROP_POLICY, 8-42
DROP_PREFERENCE, 8-42
DROP_STOPLIST, 8-44
OPTIMIZE_INDEX procedure, 8-46
PREFERENCE_IMPLICIT_COMMIT

variable, 8-52
REMOVE_AUTO_OPTIMIZE, 8-60
REMOVE_MDATA, 8-61
REMOVE_SECTION, 8-62
REMOVE_STOPCLASS, 8-62
REMOVE_STOPTHEME, 8-63
REMOVE_STOPWORD, 8-64
REMOVE_SUB_LEXER, 8-64
REPLACE_INDEX_METADATA, 8-65
SET_ATTRIBUTE, 8-66
SET_SECTION_ATTRIBUTE, 8-68
SYNC_INDEX procedure, 8-69
UNSET_ATTRIBUTE, 8-72, 8-73
UPDATE_SUB_LEXER, 8-73

CTX_DDL.ADD_INDEX procedure, 8-8
CTX_DOC package, 9-1

FILTER, 9-2
GIST, 9-5
HIGHLIGHT, 9-9
IFILTER, 9-12
MARKUP, 9-13
PKENCODE, 9-19

CTX_DOC package (continued)
POLICY_FILTER, 9-20
POLICY_GIST, 9-21
POLICY_HIGHLIGHT, 9-23
POLICY_MARKUP, 9-26
POLICY_SNIPPET, 9-33
POLICY_THEMES, 9-37
POLICY_TOKENS, 9-38
result tables, A-6
SET_KEY_TYPE, 9-42
SNIPPET, 9-43
THEMES, 9-46
TOKENS, 9-49

CTX_FEEDBACK_ITEM_TYPE type, A-5
CTX_FEEDBACK_TYPE type, 12-8, A-5
CTX_FILTER_CACHE_STATISTICS view, G-4
CTX_INDEX_ERRORS view, G-5

example, 1-61
CTX_INDEX_OBJECTS view, G-5
CTX_INDEX_SET_INDEXES view

views
CTX_INDEX_SET_INDEXES, G-6

CTX_INDEX_SUB_LEXERS view, G-7, G-19
CTX_INDEX_SUB_LEXERS_VALUES view, G-7
CTX_INDEX_VALUES view, G-7
CTX_INDEXES view, G-4
CTX_OBJECT_ATTRIBUTE_LOV view, G-8
CTX_OBJECT_ATTRIBUTES view, G-8
CTX_OBJECTS view, G-8
CTX_OUTPUT package, 11-1

ADD_EVENT, 11-1
ADD_TRACE, 11-2
DISABLE_QUERY_STATS, 11-3
ENABLE_QUERY_STATS, 11-4
END_LOG, 11-5
GET_TRACE_VALUE, 11-6
LOG_TRACES, 11-6
LOGFILENAME, 11-7
REMOVE_EVENT, 11-7
REMOVE_TRACE, 11-8
RESET_TRACE, 11-8
START_LOG, 11-9

CTX_PARAMETERS view, 2-105, G-9
CTX_PENDING view, G-10
CTX_PREFERENCE_VALUES view, G-11
CTX_PREFERENCES view, G-11
CTX_QUERY package

BROWSE_WORDS, 12-1
EXPLAIN, 12-4
HFEEDBACK, 12-7
REMOVE_SQE, 12-10
result tables, A-1
STORE_SQE, 12-21

CTX_QUERY.disable_transactional_query
session variable, 1-56

Index

Index-4

CTX_REPORT output format, 13-2, 13-3, 13-5,
13-6, 13-14

CTX_REPORT package, 13-1
CREATE_INDEX_SCRIPT, 13-4
CREATE_POLICY_SCRIPT, 13-5
DESCRIBE_INDEX, 13-2
DESCRIBE_POLICY, 13-3
function versions of procedures, 13-2
INDEX_SIZE, 13-5
INDEX_STATS, 13-6
QUERY_LOG_SUMMARY, 13-10
TOKEN_INFO, 13-14
TOKEN_TYPE, 13-15

CTX_SECTION_GROUPS view, G-12
CTX_SECTIONS view, G-11
CTX_SQES view, G-12
CTX_STOPLISTS view, G-12
CTX_STOPWORDS view, G-12
CTX_SUB_LEXERS view, G-13
CTX_THES package, 14-1

ALTER_PHRASE, 14-2
ALTER_THESAURUS, 14-3
BT, 14-4
BTG, 14-6
BTI, 14-7
BTP, 14-8
CREATE_PHRASE, 14-10
CREATE_RELATION, 14-10
CREATE_THESAURUS, 14-12
DROP_PHRASE, 14-13
DROP_RELATION, 14-14
DROP_THESAURUS, 14-15
NT, 14-19
NTG, 14-21
NTI, 14-22
NTP, 14-23
OUTPUT_STYLE, 14-24
PT, 14-25
result tables, A-9
RT, 14-26
SN, 14-28
SYN, 14-28
THES_TT, 14-30
TR, 14-31
TRSYN, 14-32
TT, 14-34

CTX_THES.CREATE_TRANSLATION, 14-12
CTX_THES.DROP_TRANSLATION, 14-16
CTX_THES.UPDATE_TRANSLATION, 14-35
CTX_THESAURI view, G-13
CTX_TRACE_VALUES view, G-14
CTX_ULEXER package, 15-1
CTX_USER_AUTO_OPTIMIZE_STATUS view,

G-14

CTX_USER_INDEX_ERRORS view, G-17
example, 1-61

CTX_USER_INDEX_OBJECTS view, G-17
CTX_USER_INDEX_SET_INDEXES view, G-18
CTX_USER_INDEX_SETS view, G-18
CTX_USER_INDEX_SUB_LEXERS view, G-19
CTX_USER_INDEX_VALUES view, G-19
CTX_USER_INDEXES view, G-16
CTX_USER_PENDING view, G-20
CTX_USER_PREFERENCE_VALUES view,

G-20
CTX_USER_PREFERENCES view, G-20
CTX_USER_SECTION_GROUPS view, G-21
CTX_USER_SECTIONS view, G-21
CTX_USER_SQES view, G-21, G-22
CTX_USER_STOPLISTS view, G-22
CTX_USER_STOPWORDS view, G-22
CTX_USER_SUB_LEXERS view, G-22
CTX_USER_THES_PHRASES view, G-23
CTX_USER_THESAURI view, G-23
CTX_VERSION view, G-23
CTXCAT index

about, 1-41
default parameters, 2-107
supported preferences, 1-41
syntax, 1-41
unsupported preferences, 1-41

CTXFILTERCACHE operator, 3-11
ctxkbtc complier, 16-6
ctxlc (lexical compiler), 16-12
ctxload, 16-1

examples, 16-4
import file structure, C-3

CTXRULE index
about, 1-41
and Asian languages, D-3
and multilingual support, D-3
default parameters, 2-108
lexer types, 1-41
syntax, 1-41

CTXRULE Index Limitations, 2-108
CTXSYS.AUTO_FILTER system preference,

2-20
CTXSYS.DEFAULT_STOPLIST, 2-100
CTXSYS.INSO_FILTER system preference

(deprecated), 2-21

D
Danish

alternate spelling, 17-4
index defaults, 2-102
supplied stoplist, E-5

data storage
defined procedurally, 2-14

Index

5

data storage (continued)
direct, 2-3
example, 8-34
external, 2-9
master/detail, 2-7
URL, 2-11

datastore types, 2-2
DBMS_PCLUTIL

BUILD_PART_INDEX, 1-60
default index

example, 1-56
default parameters

changing, 2-105
CONTEXT index, 2-106
CTXCAT index, 2-107
CTXRULE index, 2-108
viewing, 2-105

DEFAULT thesaurus, 3-10, 3-33
DEFAULT_CTXRULE_LEXER system

parameter, 2-108
DEFAULT_CTXRULE_STOPLIST system

parameter, 2-108
DEFAULT_CTXRULE_WORDLIST system

parameter, 2-108
DEFAULT_DATASTORE system-defined

indexing preference, 2-101
DEFAULT_RULE_STORAGE system parameter,

2-108
DEFAULT_STORAGE system-defined

preference, 2-104
DEFAULT_WORDLIST system-defined

preference, 2-104
defaults for indexing

viewing, G-9
definemerge operator, 3-14
definescore operator, 3-15
derivational stemming

enabling for English, 2-74
DESCRIBE_INDEX procedure, 13-2
DESCRIBE_POLICY procedure, 13-3
describing an index, 13-2
DETAIL_DATASTORE object, 2-7

example, 2-7
detail_key attribute, 2-7
detail_lineno attribute, 2-7
detail_table attribute, 2-7
detail_text attribute, 2-7
dictionary

Chinese, 16-12
Japanese, 16-12
Korean, 2-56
modifying, 16-12
user, 2-47

DIRECT_DATASTORE object, 2-3
example, 2-3

DISABLE_QUERY_STATS procedure, 11-3
disabling transactional queries, 1-56
disambiguators

in thesaural queries, 3-9
in thesaurus import file, C-6

DML
affect on scoring, F-2

DML errors
viewing, G-5

DML processing
batch, 1-1

DML queue
viewing, G-10

document
classifying, 7-1
clustering, 7-5
filtering to HTML and plain text, 9-2

document filtering
AUTO_FILTER, B-1

document formats
supported, B-4
unsupported, B-2

document loading
SQL*Loader, C-1

document presentation
procedures, 9-1

document services
logging

requests, 11-9
domain index, 1-41
double-truncated queries, 3-54
double-truncated searching

improving performance, 2-74
DROP INDEX statement, 1-68
DROP_PHRASE procedure, 14-13
DROP_POLICY procedure, 8-42
DROP_PREFERENCE procedure, 8-42
DROP_RELATION procedure, 14-14
DROP_STOPLIST procedure, 8-44
DROP_THESAURUS procedure, 14-15
DROP_TRANSLATION procedure, 14-16
duplicating indexes with scripts, 13-4
duplicating policy with script, 13-5
Dutch

composite word indexing, 2-41
fuzzy matching, 2-74
index defaults, 2-102
stemming, 2-74
supplied stoplist, E-7

E
e-mail

filtering and indexing, 2-23
embedded graphics, B-7

Index

Index-6

empty index
creating, 1-41
POPULATE | NOPOPULATE and, 1-54

EMPTY_STOPLIST system-defined preference,
2-104

ENABLE_QUERY_STATS procedure, 11-4
enabling tracing, 11-2
END_LOG procedure, 11-5
END_QUERY_LOG procedure, 11-5
ending a log, 11-5
ending a query log, 11-5
endjoins attribute, 2-41
English

fuzzy matching, 2-74
index defaults, 2-102
supplied stoplist, E-1

english attribute (Korean lexer), 2-58
entity extraction, 10-1
environment variables

setting for AUTO_FILTER filter, B-4
equivalence operator, 3-19

stopword transformations, H-4
with NEAR, 3-36

errors
indexing, 1-61

escaping special characters, 4-1
event

adding, 11-1
removing, 11-7

EVERY parameter, 1-1, 1-41
EXP_TAB table type, A-9
expansion operator

soundex, 3-46
stem, 3-47
viewing, 12-4

EXPLAIN procedure, 12-4
example, 12-6
result table, A-1

explain table
creating, 12-6
retrieving data example, 12-6
structure, A-1

EXPORT_THESAURUS procedure, 14-16
extending knowledge base, 16-6
external filters

specifying, 2-27

F
failed index operation

resuming, 1-1
failure of index loading, 5-1
fast filtering, 2-23
field section

adding dynamically, 1-1

field section (continued)
defining, 8-5
limitations, 8-5
querying, 3-55
repeated, 3-55
WITHIN example, 3-55

file data storage
example, 8-34

FILE_DATASTORE object, 2-9
example, 2-11

filter
INSO (deprecated), 2-20

filter attribute
MULTI_COLUMN_DATASTORE, 2-4

FILTER BY, 1-41
FILTER BY and ORDER BY with creating an

index example, 1-58
filter formats

supported, B-4
FILTER procedure, 9-2

example, 9-5
in-memory example, 9-4
result table, A-6

filter table
structure, A-6

filter types, 2-19
filtering

fast, with
AUTO_FILTER_OUTPUT_FORMATTING
attribute, 2-23

multi_column_datastore, 2-4
stored procedures, 2-29
to plain text, 9-12
to plain text and HTML, 9-2

filters
AUTO_FILTER, 2-19, B-1
user, 2-26

Finnish
index defaults, 2-102
supplied stoplist, E-14

format column, 1-41
formatted documents

filtering, 2-19
fragmentation of index, 1-54, 1-67
French

fuzzy matching, 2-74
supplied stoplist, E-19

French stemming, 2-74
ftp_proxy attribute, 2-12
fuzzy matching

automatic language detection, 2-74
example for enabling, 2-81
specifying a language, 2-76

fuzzy operator, 3-20
fuzzy_match attribute, 2-74

Index

7

fuzzy_numresults attribute, 2-74
fuzzy_score attribute, 2-74

G
German

alternate spelling attribute, 2-47
alternate spelling conventions, 17-4
composite word indexing, 2-41
fuzzy matching, 2-74
index defaults, 2-102
new spelling, querying with, 2-47, 17-3
stemming, 2-74
supplied stoplist, E-25

GET_TRACE_VALUE procedure, 11-6
gist

generating, 9-5
generating with POLICY_GIST, 9-21

GIST procedure
example, 9-8
result table, A-6
updated syntax, 9-5

Gist table
structure, A-6

graphics
embedded, B-7
standalone, B-7

H
hanja attribute, 2-58
HASPATH operator, 3-21

and special characters, 3-21
HFEEDBACK procedure, 12-7

example, 12-8
result table, A-3

hierarchical query feedback information
generating, 12-7

hierarchical relationships
in thesaurus import file, C-6

HIGHLIGHT procedure, 9-9
example, 9-12
result table, A-7

highlight table
example, 9-11
structure, A-7

highlighting
generating markup, 9-13, 9-26
generating offsets, 9-9, 9-23
with NEAR operator, 3-36

homographs
in broader term queries, 3-10
in queries, 3-9
in thesaurus import file, C-6

HTML
bypassing filtering, 2-21
filtering to, 9-2
generating, 9-20
generating highlight offsets for, 9-9, 9-23
highlight markup, 9-13, 9-26
highlighting example, 9-18
indexing, 2-22
zone section example, 8-29

HTML_SECTION_GROUP
example, 2-94

HTML_SECTION_GROUP object, 8-29
with NULL_FILTER, 2-22

http_proxy attribute, 2-12

I
i_index_clause attribute, 2-84
i_table_clause attribute, 2-85
IFILTER procedure, 9-12
IGNORE format column value, 1-41
import file

examples of, C-7
structure, C-3

IMPORT_THESAURUS procedure, 14-18
index

creating, 1-41
creating a report on, 13-2
creating index script, 13-4
describing, 13-2
duplicating with script, 13-4
loading failure, 5-1
renaming, 1-1
script, 13-4
show size of objects, 13-5
show statistics, 13-6
synchronizing, 1-1, 1-41
transactional, 12-4
transactional CONTEXT, 1-10, 1-56
viewing registered, G-4

index creation
custom preference example, 1-56
default example, 1-56

index creation parameters
example, 2-90

index errors
deleting, 1-61
viewing, 1-61

index fragmentation, 1-54, 1-67
index maintenance, 1-1
index objects, 2-1

viewing, G-5, G-8
index preference

about, 2-1
creating, 2-2, 8-33

Index

Index-8

index reports, 13-1
index requests

logging, 11-9
index status, 5-1
index tablespace parameters

specifying, 2-82
index tokens

generating for a document, 9-38, 9-49
INDEX_PROCEDURE user_lexer attribute, 2-61
INDEX_SIZE procedure, 13-5
INDEX_STATS procedure, 13-6
index_stems attribute, 2-47
index_text attribute, 2-47
index_themes attribute, 2-47
index-organized table, 1-42
indexing

master/detail example, 2-9
multilingual documents, 2-49, 2-72, D-5
parallel, 1-1, 1-41
themes, 2-47

indexing types
classifier, 2-95
clustering, 2-98
datastore, 2-2
filter, 2-19
lexer, 2-32
section group, 2-92
storage, 2-82
vs. preferences, 2-2
wordlist, 2-73

indexless document services, see policy-based
document services, 9-2

indextype context, 1-41
inflectional stemming

enabling, 2-74
INPATH operator, 3-23

and special characters, 3-21
INPUT_TYPE user_lexer attribute, 2-62
INSERT statement

loading example, C-1
INSO_FILTER (deprecated), 2-20
inverse frequency scoring, F-1
Italian

fuzzy matching, 2-74
stemming, 2-74
supplied stoplist, E-31

J
JA16EUC character set, 2-54, 2-55
JA16EUCTILDE character set, 2-54, 2-56
JA16EUCYEN character set, 2-54, 2-56
JA16SJIS character set, 2-54, 2-55
JA16SJISTILDE character set, 2-54, 2-56
JA16SJISYEN character set, 2-54, 2-56

Japanese
fuzzy matching, 2-74
index defaults, 2-102
indexing, 2-53
stemming, 2-74

japanese attribute (Korean lexer), 2-58
Japanese character sets supported, 2-54
Japanese EUC character se, 2-55
Japanese lexicon, modifying, 16-12
Japanese stemming, 2-74, 3-47
JAPANESE_LEXER, 2-55
JAPANESE_LEXER Attributes, 2-55
JAPANESE_VGRAM_LEXER Attributes, 2-53
JAPANESE_VGRAM_LEXER object, 2-53
JOB_QUEUE_PROCESSES initialization

parameter, 1-41
JSON_SECTTION_GROUP, 2-92, 8-37

K
k_table_clause attribute, 2-85
Key Word in Context. See KWIC, 9-43
KMEAN_CLUSTERING object, 2-98
knowledge base

supported character set, 16-7
user-defined, 16-11

knowledge base extension compiler, 16-6
KO16KSC5601 character set, 2-57
KO16MSWIN949 character set, 2-57
Korean

fuzzy matching, 2-74
index defaults, 2-103
unicode character support, 2-57

korean character sets supported, 2-57
Korean text

indexing, 2-56
KOREAN_MORPH_LEXER, 2-56

composite example, 2-58
supplied dictionaries, 2-56
Unicode support, 2-57

KOREAN_MORPH_LEXER Attributes, 2-58
KWIC (Key Word in Context), 9-43

L
language

setting, 2-32
language column, 1-41
language-independent lexer template, 1-33
left-truncated searching

improving performance, 2-74
lexer types, 2-32

and CTXRULE index, 1-41
lexical compiler, 16-12
lexicon. See entries under dictionary, 16-12

Index

9

loading text
SQL INSERT example, C-1
SQL*Loader example, C-1

loading thesaurus, 16-1
LOB columns

loading, C-1
local partition index

parallelism, 1-59
local partitioned index, 1-41
LOG_DIRECTORY system parameter, 11-7
LOG_TRACES procedure, 11-6
LOGFILENAME procedure, 11-7
logging

ending, 11-5
ending a log, 11-5
getting log file name, 11-7
index requests, 11-9

logging queries, 13-10
logging traces, 11-6
logical operators

with NEAR, 3-36
LONG columns

indexing, 1-43
long_word attribute, 2-58

M
mail filter configuration file, 2-25
mail filtering, see e-mail, 2-23
MAIL_FILTER object, 2-23
MAIL_FILTER_CONFIG_FILE system

parameter, 2-25
maintaining index, 1-1
MARK_FAILED procedure, 5-1
MARKUP procedure, 9-13

example, 9-18
HTML highlight example, 9-18
result table, A-7

markup table
example, 9-18
structure, A-7

master/detail data storage, 2-7
example, 2-7, 8-34

master/detail tables
indexing example, 2-9

MATCH_SCORE operator, 1-70
MATCHES operator, 1-69
max_span parameter in near operator, 3-36
maxthreads attribute, 2-12
maxurls attribute, 2-12
MDATA operator, 3-28
MDATA section, 8-9, 8-11, 8-13, 8-61
memory

for indexing, 1-41, 8-70

META tag
creating field sections for, 8-7
creating zone section for, 8-29

metadata, 1-1, 3-28
replacing, 8-65

METADATA keyword, 1-1
ALTER INDEX example, 1-16

metadata section, 8-9, 8-11, 8-13, 8-61
MINUS operator, 3-30

stopword transformations, H-3
mixed_case attribute, 2-41
mixed-format columns

filtering, 2-19
indexing, 2-21
supported formats for, B-4

modifying user dictionary, 16-12
morpheme attribute, 2-58
MULTI_COLUMN_DATASTORE Restriction, 2-4
MULTI_LEXER object

CREATE INDEX example, 1-57
example, 2-50

MULTI_LEXER type, 2-49
MULTI_STOPLIST type, 8-41
multi-language indexing, 2-49, 2-72, 8-26, D-5
multi-language stoplist, 2-50, 2-100
multi-language tables

querying, 1-40, 2-51
multi-lexer example

migrating from single language, 1-16

N
n_table_clause attribute, 2-85
narrower term operators

example, 3-32
narrower term query feedback, 12-7
NEAR operator, 3-36

backward compatibility, 3-36
highlighting, 3-36
scoring, 3-36
stopword transformations, H-5
with other operators, 3-36
with within, 3-55

NEAR2 operator, 3-40
nested section searching, 3-55
nested zone sections, 8-30
nested_column attribute, 2-17
NESTED_DATASTORE attribute, 2-17
NESTED_DATASTORE object, 2-16
nested_lineno attribute, 2-17
nested_text attribute, 2-17
nested_type attribute, 2-17
new_german_spelling attribute, 2-47, 17-3
newline attribute, 2-41
NLS_LENGTH_SEMANTICS parameter, 1-52

Index

Index-10

no_proxy attribute, 2-12
nopopulate index parameter, 1-41
nopopulate parameter, 1-41
normalization_expr attribute, 1-35
normalized word forms, 17-1
Norwegian

index defaults, 2-102
NOT operator, 3-41

stopword transformations, H-4
NT function, 14-19
NT operator, 3-32
NTG function, 14-21
NTG operator, 3-32
NTI function, 14-22
NTI operator, 3-32
NTP function, 14-23
NTP operator, 3-32
NULL_FILTER object, 2-22
number attribute, 2-58
numgroup attribute, 2-41
numjoin attribute, 2-41

O
object values

viewing, G-7
objects

viewing index, G-8
offsets for highlighting, 9-9, 9-23
on commit, 1-1, 1-41
one_char_word attribute, 2-58
ONLINE

CREATE INDEX and, 1-41
OPERATION column of explain table

values, A-2
operator

ABOUT, 3-4
accumulate, 3-6
broader term, 3-9
equivalence, 3-19
fuzzy, 3-20
HASPATH, 3-21
INPATH, 3-23
MATCH_SCORE, 1-70
MATCHES, 1-69
MDATA, 3-28
MINUS, 3-30
narrower term, 3-32
NEAR, 3-36
NOT, 3-41
OR, 3-42
preferred term, 3-42
related term, 3-43
SCORE, 1-71
scoring, 3-14, 3-15

operator (continued)
SDATA, 3-44
soundex, 3-46
SQE, 3-47
stem, 3-47
synonym, 3-48
threshold, 3-49
top term, 3-52
TRANSFORM, 1-32
translation term, 3-11, 3-50
translation term synonym, 3-51
weight, 3-53
WITHIN, 3-55

operator expansion
viewing, 12-4

operator precedence, 3-2
examples, 3-3
viewing, 12-5

operators, 3-1
optimization, 8-46

strategies, 8-46
OPTIMIZE_INDEX procedure, 8-46
OPTIONS column

explain table, A-3
hfeedback table, A-5

OR operator, 3-42
stopword transformations, H-3

ORDER BY, 1-41
Limitations with PL/SQL Packages, 1-48

original word forms, 17-1
OUTPUT_STYLE procedure, 14-24
output_type attribute, 2-15
overlapping zone sections, 8-30
override_base_letter attribute, 17-3
overriding alternate spelling, 17-3
overriding base-letter conversions, 17-3

P
p_table_clause, 2-85
PARAGRAPH keyword, 3-55
paragraph section

defining, 8-19
querying, 3-55

parallel index creation, 1-59
parallel indexing, 1-1, 1-41

DBMS_PCLUTIL.BUILD_PART_INDEX,
1-60

example, 1-59
local partitioned index, 1-41

parameter
transactional, 1-10, 1-56

parameters
setting, 5-3
viewing system-defined, G-9

Index

11

parentheses
altering precedence, 3-3, 4-1
grouping character, 4-1

partitioned index
creating local in parallel, 1-41
example, 1-58
local, 1-41
parallel creation, 1-60
rebuild example, 1-15

partitioned index creation
example, 1-59

partitioned tables
modifying, 1-19

path attribute, 2-9
PATH_SECTION_GROUP system-defined

preference, 2-103
pending DML

viewing, G-10
performance

wildcard searches, 3-54
PKENCODE function, 9-19
plain text

bypassing filtering, 2-21
filtering to, 9-2, 9-12
highlight markup, 9-13, 9-26
indexing with NULL_FILTER, 2-22
offsets for highlighting, 9-9

policy, 9-2
create script, 13-5
duplicate with script, 13-5
report describing, 13-3

POLICY_FILTER procedure, 9-20
POLICY_GIST procedure, 9-21
POLICY_HIGHLIGHT procedure, 9-23
POLICY_MARKUP procedure, 9-26
POLICY_SNIPPET procedure, 9-33
POLICY_THEMES procedure

syntax, 9-37
POLICY_TOKENS procedure

syntax, 9-38
policy-based document services, 9-2
populate index parameter, 1-41
populate parameter, 1-41
Portuguese

supplied stoplist, E-35
precedence of operators, 3-2

altering, 3-3, 4-1
equivalence operator, 3-19
example, 3-3
viewing, 12-4

preference classes
viewing, G-3, G-4, G-9, G-16, G-19

preference values
viewing, G-11

PREFERENCE_IMPLICIT_COMMIT, 8-52

preferences
about, 2-1
changing, 1-1
creating, 8-33
dropping, 8-42
replacing, 1-1
specifying for indexing, 1-41
system-defined, 2-101
viewing, G-11
vs. types, 2-2

preferred term operator
example, 3-42

prefix_index attribute, 2-74
prefix_max_length attribute, 2-74
prefix_min_length attribute, 2-74
printjoins attribute, 2-41
privileges

required for indexing, 1-42
procedure

COPY_POLICY, 8-31
CTX_DDL.ADD_INDEX, 8-8
CTX_DDL.REPLACE_INDEX_METADATA,

8-65
CTX_OUTPUT_LOG_TRACES, 11-6
CTX_OUTPUT.ADD_TRACE, 11-2
CTX_OUTPUT.END_QUERY_LOG, 11-5
CTX_OUTPUT.GET_TRACE_VALUE, 11-6
CTX_OUTPUT.REMOVE_TRACE, 11-8
CTX_OUTPUT.RESET_TRACE, 11-8

procedure attribute, 2-14
PROCEDURE_FILTER object, 2-29
progressive relaxation template, 1-33
prove_themes attribute, 2-47
proximity operator, see NEAR operator, 3-36
PT function, 14-25
PT operator, 3-42
punctuations attribute, 2-41

Q
query

accumulate, 3-6
analysis, 13-10
AND, 3-8
broader term, 3-9
equivalence, 3-19
example, 1-30
hierarchical feedback, 12-7
MINUS, 3-30
narrower term, 3-32
NOT, 3-41
on unsynched index, 1-56
OR, 3-42
preferred term, 3-42
related term, 3-43

Index

Index-12

query (continued)
report of logged, 13-10
scoring, 3-14, 3-15
stored, 3-47
synonym, 3-48
threshold, 3-49
top term, 3-52
transactional, 1-56, 12-4
translation term, 3-11, 3-50
translation term synonym, 3-51
weighted, 3-53

query relaxation template, 1-33
query rewrite template, 1-31
query template, 1-26, 1-30
query_filter_cache_size basic storage attribute,

2-85
QUERY_LOG_SUMMARY procedure, 13-10
QUERY_PROCEDURE user_lexer attribute, 2-64

R
r_table_clause, 2-86
rebuilding index

example, 1-15
syntax, 1-1

RECOVER procedure, 5-2
related term operator, 3-43
related term query feedback, 12-7
relaxing queries, 1-33
relevance ranking

word queries, F-1
REMOVE_AUTO_OPTIMIZE procedure, 8-60
REMOVE_EVENT procedure, 11-7
REMOVE_MDATA procedure, 8-61
REMOVE_SECTION procedure, 8-62
REMOVE_SQE procedure, 12-10
REMOVE_STOPCLASS procedure, 8-62
REMOVE_STOPTHEME procedure, 8-63
REMOVE_STOPWORD procedure, 8-64
REMOVE_SUB_LEXER procedure, 8-64
REMOVE_TRACE procedure, 11-8
removing a trace, 11-8
removing metadata, 8-61
renaming index, 1-1
repeated field sections

querying, 3-55
REPLACE_INDEX_METADATA procedure, 8-65
replacing, 1-1
replacing metadata, 1-1
replacing preferences, 1-1
report

describing index, 13-2
describing policy, 13-3
index objects, 13-5
index size, 13-5

report (continued)
index statistics, 13-6
of logged queries, 13-10
token information, 13-14

reserved words and characters, 4-2
escaping, 4-1

RESET_AUTO_OPTIMIZE_STATUS procedure,
5-3

RESET_TRACE procedure, 11-8
resetting a trace, 11-8
result set interface, 12-11, 12-20
result sets, 12-11
result table

TOKENS, A-8
result tables, A-1

CTX_DOC, A-6
CTX_QUERY, A-1
CTX_THES, A-9

result_set_clob_query, 12-20
resuming failed index, 1-1

example, 1-15
rewriting queries, 1-31
RFC 1738 URL specification, 2-12
RFC-2045 messages

filtering, 2-23
RFC-822 messages

filtering, 2-23
RT function, 14-26
RT operator, 3-43
RULE_CLASSIFIER type, 2-95
rules

generating, 7-1

S
SA_TRAIN_MODEL, 7-8
Salton’s formula for scoring, F-1
scope notes

finding, 14-28
SCORE operator, 1-71
scoring

accumulate, 3-6
effect of DML, F-2
for NEAR operator, 3-36

scoring algorithm
word queries, F-1

script
create index, 13-4
create policy, 13-5

SDATA operator, 3-44
SDATA section, 8-15, 8-16
search index

creating, 1-66
section group

creating, 8-36

Index

13

section group (continued)
viewing information about, G-12

section group example, 2-93
section group types, 2-92, 8-36
section searching, 3-55

nested, 3-55
sections

adding dynamically, 1-1
constraints for dynamic addition, 1-18
creating attribute, 8-3
creating field, 8-5
creating zone, 8-28
nested, 8-30
overlapping, 8-30
removing, 8-62
repeated field, 8-7
repeated zone, 8-30
viewing information on, G-11

SENTENCE keyword, 3-55
sentence section

defining, 8-19
querying, 3-55

SENTIMENT, 9-40
SENTIMENT_AGGREGATE, 9-41
SENTIMENT_CLASSIFIER, 2-97
SET_ATTRIBUTE procedure, 8-66
SET_KEY_TYPE procedure, 9-42
SET_PARAMETER procedure, 2-105, 5-3
SET_SECTION_ATTRIBUTE procedure, 8-68
show size of index objects, 13-5
Simplified Chinese

index defaults, 2-103
single-byte languages

indexing, 2-41
skipjoins attribute, 2-41
SN procedure, 14-28
SNIPPET procedure, 9-43
soundex operator, 3-46
Spanish

fuzzy matching, 2-74
stemming, 2-74
supplied stoplist, E-36

special characters
INPATH and HASPATH operators, 3-21

special section
defining, 8-19
querying, 3-55

spelling
alternate, 17-2
base letter, 17-2
new German, 17-3
overriding alternate, 17-3

spelling, alternate, 17-1
spelling, new German, 2-47
SQE operator, 3-47

SQL commands
ALTER INDEX, 1-1
CREATE INDEX, 1-41
CREATE SEARCH INDEX, 1-66
DROP INDEX, 1-68

SQL operators
CONTAINS, 1-30
MATCH_SCORE, 1-70
MATCHES, 1-69
SCORE, 1-71

SQL*Loader
example, C-1
example control file, C-2
example data file, C-2

sqlldr example, C-2
standalone graphics, B-7
START_LOG procedure, 11-9
startjoins attribute, 2-41
statistics, disabling, 11-3
statistics, enabling, 11-4
statistics, showing index, 13-6
stem indexing, 2-47
stem operator, 3-47
stemmer attribute, 2-74
stemming, 2-74, 3-47

automatic, 2-74
example for enabling, 2-81

stop section
adding dynamically, 1-1
dynamically adding example, 1-17

stop sections
adding, 8-22

stop_dic attribute, 2-58
stopclass

defining, 8-21
removing, 8-62

stoplist
creating, 8-41
Danish, E-5
dropping, 8-44
Dutch, E-7
English, E-1
Finnish, E-14
French, E-19
German, E-25
Italian, E-31
modifying, 2-100
multi-language, 2-50, 2-100
Portuguese, E-35
Spanish, E-36
Swedish, E-41

stoplists
about, 2-99
creating, 2-100
viewing, G-12

Index

Index-14

stoptheme
defining, 8-24
removing, 8-63

stopword
adding dynamically, 1-1
defining, 8-24
removing, 8-64
viewing all in stoplist, G-12

stopword transformation, H-1
viewing, 12-4

stopwords
adding dynamically, 2-100
removing, 2-101

storage defaults, 2-90
storage index preference

example, 8-35
storage objects, 2-82
STORE_SQE procedure

example, 3-48
syntax, 12-21

stored queries, 3-47
stored query expression

creating, 12-21
removing, 12-10
viewing, G-21, G-22
viewing definition, G-12

structured data, 3-44
structured data section, 8-15, 8-16
sub-lexer preference

removing, 8-64
sub-lexer values

viewing, G-7
sub-lexers

viewing, G-7, G-13, G-19
substring index

example for creating, 2-81
substring_index attribute, 2-74
supplied stoplists, E-1
Supported Platforms for AUTO_FILTER, B-2
Swedish

alternate spelling, 17-5
index defaults, 2-102
supplied stoplist, E-41

SYN function, 14-28
SYN operator, 3-48
SYNC EVERY parameter, 1-1, 1-41
SYNC ON COMMIT parameter, 1-1, 1-41
sync parameter, 1-1, 1-41
SYNC_INDEX procedure, 8-69
synchronize index, 1-1, 1-41
synonym operator, 3-48
system parameters, 2-105

defaults for indexing, 2-105, 2-109
system recovery

manual, 5-2

system-defined preferences, 2-101
CTXSYS.AUTO_FILTER, 2-20

T
table structure

explain, A-1
filter, A-6
Gist, A-6
hfeedback, A-3
highlight, A-7
markup, A-7
theme, A-8

tagged text
searching, 3-55

template query, 1-26, 1-30
text column

supported types, 1-43
Text data dictionary

cleaning up, 5-1, 5-2
TEXT format column value, 1-41
text-only index

enabling, 2-47
example, 8-34

theme functionality
supported languages, 16-11

theme highlighting
generating markup, 9-13
generating offsets, 9-9, 9-23
HTML markup example, 9-19
HTML offset example, 9-12

theme index
as default in English, 2-102
creating, 2-47

theme proving
enabling, 2-47

theme summary
generating, 9-5
generating top n, 9-8

theme table
structure, A-8

theme_language attribute, 2-47
themes

generating for document, 9-37, 9-46
generating highlight markup, 9-13, 9-26
highlight offset example, 9-12
indexing, 2-47
obtaining top n, 9-49

THEMES procedure
result table, A-8
syntax, 9-46

THES_TT procedure, 14-30
thesaurus

compiling, 16-6
creating, 14-12

Index

15

thesaurus (continued)
creating relationships, 14-10
DEFAULT, 3-10
dropping, 14-15
import/export examples, 16-4
importing/exporting, 16-1
procedures for browsing, 14-1
renaming and truncating, 14-3
viewing information about, G-13

thesaurus import file
examples, C-7
structure, C-3

thesaurus phrases
altering, 14-2
dropping, 14-13

thesaurus relations
creating, 14-10
dropping, 14-14

thesaurus scope note
finding, 14-28

thesaurus top terms
finding all, 14-30

threshold operator, 3-49
stopword transformations, H-5

timeout attribute, 2-12
to_upper attribute, 2-58
token limitations, 2-110
token report, generating, 13-14
TOKEN_INFO procedure, 13-14
TOKEN_TYPE procedure, 13-15
token, translating name into, 13-15
TOKENS procedure

result table, A-8
syntax, 9-49

top term, 3-52
top term operator, 3-52
TR function, 14-31
TR operator, 3-11, 3-50
trace value

getting, 11-6
traces, available, 11-2
tracing

adding a trace, 11-2
available traces, 11-2
CTX_TRACE_VALUES view, G-14
enabling, 11-2
getting trace values, 11-6, G-14
logging traces, 11-6
removing trace, 11-8
resetting trace, 11-8

TRAIN procedure, 7-1
transactional CONTEXT index, 1-10, 1-56
transactional index, 12-4
transactional parameter, 1-10, 1-56

transactional text query, 1-10, 1-56
disabling, 1-56

TRANSFORM operator, 1-32
transformation

stopword, H-1
translation term operator, 3-11, 3-50
translation term synonym operator, 3-51
translations

adding to thesaurus, 14-12
dropping, 14-16
English name to numeric token, 13-15
updating, 14-35

Transparent Data Encryption
Oracle Text index on a column and, 1-44

TRSYN function, 14-32
TRSYN operator, 3-51
TT function, 14-34
TT operator, 3-52
type

MULTI_LEXER, 2-49
WORLD_LEXER, 2-72, D-5

types, 2-2
indexing, 2-2
see also indexing types, 2-2

U
unicode support in Korean lexer, 2-57
UNSET_ATTRIBUTE procedure, 8-72, 8-73
unsupervised classification, see clustering, 7-5
UPDATE GLOBAL INDEXES, 1-20–1-22
UPDATE_SDATA procedure, 8-74
UPDATE_SUB_LEXER procedure, 8-73
UPDATE_TRANSLATION procedure, 14-35
URL syntax, 2-12
URL_DATASTORE object

attributes for, 2-11
example, 2-13

urlsize attribute, 2-12
user dictionary, modifying, 16-12
USER_DATASTORE object, 2-14

example, 2-15
USER_DATSTORE

filtering binary documents, 9-12
user_dic attribute, 2-58
USER_FILTER object, 2-26

example, 2-29
USER_LEXER object, 2-60
UTF8, 2-55
UTF8 character set, 2-52, 2-54, 2-55, 2-57
utilities

ctxload, 16-1

Index

Index-16

V
VARCHAR2 column

indexing, 1-43
verb_adjective attribute, 2-58
version numbers

viewing, G-23
viewing, G-3

operator expansion, 12-4
operator precedence, 12-5

views
CTX_AUTO_OPTIMIZE_INDEXES, G-3
CTX_AUTO_OPTIMIZE_STATUS, G-3
CTX_CLASSES, G-3, G-4, G-9, G-16, G-19
CTX_INDEX_ERRORS, G-5
CTX_INDEX_OBJECTS, G-5
CTX_INDEX_SUB_LEXER, G-7
CTX_INDEX_SUB_LEXERS, G-19
CTX_INDEX_SUB_LEXERS_VALUES, G-7
CTX_INDEX_VALUES, G-7
CTX_INDEXES, G-4
CTX_OBJECT_ATTRIBUTE_LOV, G-8
CTX_OBJECT_ATTRIBUTES, G-8
CTX_OBJECTS, G-8
CTX_PARAMETERS, G-9
CTX_PENDING, G-10
CTX_PREFERENCE_VALUES, G-11
CTX_PREFERENCES, G-11
CTX_SECTION_GROUPS, G-12
CTX_SECTIONS, G-11
CTX_SQES, G-12
CTX_STOPLISTS, G-12
CTX_STOPWORDS, G-12
CTX_SUB_LEXERS, G-13
CTX_THESAURI, G-13
CTX_TRACE_VALUES, G-14
CTX_USER_AUTO_OPTIMIZE_STATUS,

G-14
CTX_USER_INDEX_ERRORS, G-17
CTX_USER_INDEX_OBJECTS, G-17
CTX_USER_INDEX_SET_INDEXES, G-18
CTX_USER_INDEX_SETS, G-18
CTX_USER_INDEX_SUB_LEXERS, G-19
CTX_USER_INDEX_VALUES, G-19
CTX_USER_INDEXES, G-16
CTX_USER_PENDING, G-20
CTX_USER_PREFERENCE_VALUES, G-20
CTX_USER_PREFERENCES, G-20
CTX_USER_SECTION_GROUPS, G-21
CTX_USER_SECTIONS, G-21
CTX_USER_SQES, G-21, G-22
CTX_USER_STOPLISTS, G-22
CTX_USER_STOPWORDS, G-22
CTX_USER_SUB_LEXERS, G-22
CTX_USER_THES_PHRASES, G-23

views (continued)
CTX_USER_THESAURI, G-23
CTX_VERSION, G-23

visible flag for field sections, 8-6
visible flag in field sections, 3-55

W
weight operator, 3-53

stopword transformations, H-5
whitespace attribute, 2-41
wildcard queries

improving performance, 2-74
wildcard searches, 3-54

improving performance, 3-54
wildcard_maxterms attribute, 2-74
WILDCARD_TAB type, 15-1
WITHIN operator, 3-55

attribute sections, 3-55
limitations, 3-55
nested, 3-55
precedence, 3-3
stopword transformations, H-5

word forms, 17-1
original vs. normalized, 17-1

WORLD_LEXER type, 2-72, D-5

X
XML documents

attribute sections, 8-3
doctype sensitive sections, 8-29
querying, 3-55

XML report output format, 13-2, 13-3, 13-5, 13-6,
13-14

XML Search, 8-38
XML Search Index, 8-36
XML sectioning, 2-94
xml_enable, 8-36
XML_SECTION_GROUP

example, 2-94

Z
ZHS16CGB231280 character set, 2-52
ZHS16GBK character set, 2-52
ZHS32GB18030 character set, 2-52
ZHT16BIG5 character set, 2-52
ZHT16HKSCS character set, 2-52
ZHT16MSWIN950 character set, 2-52
ZHT32EUC character set, 2-52
ZHT32TRIS character set, 2-52
zone section

adding dynamically, 1-1

Index

17

zone section (continued)
creating, 8-28
dynamically adding example, 1-17

zone section (continued)
querying, 3-55
repeating, 8-30

Index

Index-18

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Text Reference
	Changes in Oracle Text 12c Release 2 (12.2.0.1)

	1 Oracle Text SQL Statements and Operators
	1.1 ALTER INDEX
	1.2 ALTER TABLE: Supported Partitioning Statements
	1.3 CATSEARCH
	1.4 CONTAINS
	1.5 CREATE INDEX
	1.6 CREATE SEARCH INDEX
	1.7 DROP INDEX
	1.8 MATCHES
	1.9 MATCH_SCORE
	1.10 SCORE

	2 Oracle Text Indexing Elements
	2.1 Overview
	2.2 Creating Preferences
	2.3 Datastore Types
	2.3.1 DIRECT_DATASTORE
	2.3.2 MULTI_COLUMN_DATASTORE
	2.3.2.1 MULTI_COLUMN_DATASTORE Attributes
	2.3.2.2 Indexing and DML
	2.3.2.3 MULTI_COLUMN_DATASTORE Restriction
	2.3.2.4 MULTI_COLUMN_DATASTORE Example
	2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example
	2.3.2.6 Tagging Behavior
	2.3.2.7 Indexing Columns as Sections

	2.3.3 DETAIL_DATASTORE
	2.3.3.1 DETAIL_DATASTORE Attributes
	2.3.3.2 Synchronizing Master/Detail Indexes
	2.3.3.3 Example Master/Detail Tables
	2.3.3.3.1 Master Table Example
	2.3.3.3.2 Detail Table Example
	2.3.3.3.3 Detail Table Example Attributes
	2.3.3.3.4 Master/Detail Index Example

	2.3.4 FILE_DATASTORE
	2.3.4.1 FILE_DATASTORE Attributes
	2.3.4.2 FILE_DATASTORE and Security
	2.3.4.3 FILE_DATASTORE Example

	2.3.5 URL_DATASTORE
	2.3.5.1 URL_DATASTORE URL Syntax
	2.3.5.2 URL_DATASTORE Attributes
	2.3.5.3 URL_DATASTORE and Security
	2.3.5.4 URL_DATASTORE Example

	2.3.6 USER_DATASTORE
	2.3.6.1 USER_DATASTORE Attributes
	2.3.6.2 USER_DATASTORE Constraints
	2.3.6.3 USER_DATASTORE Editing Procedure after Indexing
	2.3.6.4 USER_DATASTORE with CLOB Example
	2.3.6.5 USER_DATASTORE with BLOB_LOC Example

	2.3.7 NESTED_DATASTORE
	2.3.7.1 NESTED_DATASTORE Attributes
	2.3.7.2 NESTED_DATASTORE Example
	2.3.7.2.1 Create the Nested Table
	2.3.7.2.2 Insert Values into Nested Table
	2.3.7.2.3 Create Nested Table Preferences
	2.3.7.2.4 Create Index on Nested Table
	2.3.7.2.5 Query Nested Datastore

	2.4 Filter Types
	2.4.1 AUTO_FILTER
	2.4.1.1 AUTO_FILTER Attributes
	2.4.1.2 AUTO_FILTER and Indexing Formatted Documents
	2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
	2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER

	2.4.2 NULL_FILTER
	2.4.3 MAIL_FILTER
	2.4.3.1 MAIL_FILTER Attributes
	2.4.3.2 MAIL_FILTER Behavior
	2.4.3.3 About the Mail Filter Configuration File
	2.4.3.4 Mail_Filter Example

	2.4.4 USER_FILTER
	2.4.4.1 USER_FILTER Attributes
	2.4.4.2 Using USER_FILTER with Charset and Format Columns
	2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
	2.4.4.4 Character Set Conversion with USER_FILTER
	2.4.4.5 User Filter Example

	2.4.5 PROCEDURE_FILTER
	2.4.5.1 PROCEDURE_FILTER Attributes
	2.4.5.2 PROCEDURE_FILTER Parameter Order
	2.4.5.3 PROCEDURE_FILTER Execute Requirements
	2.4.5.4 PROCEDURE_FILTER Error Handling
	2.4.5.5 PROCEDURE_FILTER Preference Example

	2.5 Lexer Types
	2.5.1 AUTO_LEXER
	2.5.1.1 AUTO_LEXER Language Support
	2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER
	2.5.1.3 AUTO_LEXER Language-Independent Attributes
	2.5.1.4 AUTO_LEXER Language-Dependent Attributes
	2.5.1.5 AUTO_LEXER Dictionary Attribute

	2.5.2 BASIC_LEXER
	2.5.2.1 BASIC_LEXER Attributes
	2.5.2.2 Stemming User-Dictionaries
	2.5.2.3 BASIC_LEXER Example

	2.5.3 MULTI_LEXER
	2.5.3.1 MULTI_LEXER Restriction
	2.5.3.2 MULTI_LEXER Multi-language Stoplists
	2.5.3.3 MULTI_LEXER Example
	2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables

	2.5.4 CHINESE_VGRAM_LEXER
	2.5.5 CHINESE_LEXER
	2.5.6 JAPANESE_VGRAM_LEXER
	2.5.7 JAPANESE_LEXER
	2.5.8 KOREAN_MORPH_LEXER
	2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries
	2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support
	2.5.8.3 KOREAN_MORPH_LEXER Attributes
	2.5.8.4 KOREAN_MORPH_ LEXER Limitations
	2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

	2.5.9 USER_LEXER
	2.5.9.1 USER_LEXER Routines
	2.5.9.2 USER_LEXER Limitations
	2.5.9.3 USER_LEXER Attributes
	2.5.9.4 INDEX_PROCEDURE
	2.5.9.5 INPUT_TYPE
	2.5.9.5.1 VARCHAR2 Interface
	2.5.9.5.2 CLOB Interface

	2.5.9.6 QUERY_PROCEDURE
	2.5.9.7 Encoding Tokens as XML
	2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure
	2.5.9.9 XML Schema for User-defined Indexing Procedure with Location
	2.5.9.10 XML Schema for User-defined Lexer Query Procedure

	2.5.10 WORLD_LEXER

	2.6 Wordlist Type
	2.6.1 BASIC_WORDLIST
	2.6.2 BASIC_WORDLIST Example
	2.6.2.1 Enabling Fuzzy Matching and Stemming
	2.6.2.2 Enabling Sub-string and Prefix Indexing
	2.6.2.3 Setting Wildcard Expansion Limit

	2.7 Storage Types
	2.7.1 BASIC_STORAGE
	2.7.1.1 BASIC_STORAGE Attributes
	2.7.1.2 BASIC_STORAGE Default Behavior
	2.7.1.3 BASIC_STORAGE Examples

	2.8 Section Group Types
	2.8.1 Section Group Types for Creating a Section Group
	2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents
	2.8.2.1 Creating Section Groups in HTML Documents
	2.8.2.2 Creating Sections Groups in XML Documents
	2.8.2.3 Automatic Sectioning in XML Documents
	2.8.2.4 Creating JSON Section Groups for JSON Search Index
	2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS
	2.8.2.6 Using JSON Search Index with JSON_EXISTS

	2.9 Classifier Types
	2.9.1 RULE_CLASSIFIER
	2.9.2 SVM_CLASSIFIER
	2.9.3 SENTIMENT_CLASSIFIER

	2.10 Cluster Types
	2.10.1 KMEAN_CLUSTERING

	2.11 Stoplists
	2.11.1 Multi-Language Stoplists
	2.11.2 Creating Stoplists
	2.11.3 Modifying the Default Stoplist

	2.12 System-Defined Preferences
	2.12.1 Data Storage Preferences
	2.12.2 Filter Preferences
	2.12.3 Lexer Preferences
	2.12.3.1 CTXSYS.DEFAULT_LEXER
	2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER
	2.12.3.3 CTXSYS.BASIC_LEXER

	2.12.4 Section Group Preferences
	2.12.5 Stoplist Preferences
	2.12.6 Storage Preferences
	2.12.7 Wordlist Preferences

	2.13 System Parameters
	2.13.1 General System Parameters
	2.13.2 Default Index Parameters
	2.13.2.1 CONTEXT Index Parameters
	2.13.2.2 CTXCAT Index Parameters
	2.13.2.3 CTXRULE Index Parameters

	2.13.3 Default Policy Parameters

	2.14 Token Limitations

	3 Oracle Text CONTAINS Query Operators
	3.1 Operator Precedence
	3.1.1 Group 1 Operators
	3.1.2 Group 2 Operators and Characters
	3.1.3 Procedural Operators
	3.1.4 Precedence Examples
	3.1.5 Altering Precedence

	3.2 ABOUT
	3.3 ACCUMulate (,)
	3.4 AND (&)
	3.5 Broader Term (BT, BTG, BTP, BTI)
	3.6 CTXFILTERCACHE
	3.7 DEFINEMERGE
	3.8 DEFINESCORE
	3.9 EQUIValence (=)
	3.10 Fuzzy
	3.11 HASPATH
	3.12 INPATH
	3.13 MDATA
	3.14 MINUS (-)
	3.15 MNOT
	3.16 Narrower Term (NT, NTG, NTP, NTI)
	3.17 NDATA
	3.18 NEAR (;)
	3.19 NEAR2
	3.20 NOT (~)
	3.21 OR (|)
	3.22 Preferred Term (PT)
	3.23 Related Term (RT)
	3.24 SDATA
	3.25 soundex (!)
	3.26 stem (⁠$)
	3.27 Stored Query Expression (SQE)
	3.28 SYNonym (SYN)
	3.29 threshold (>)
	3.30 Translation Term (TR)
	3.31 Translation Term Synonym (TRSYN)
	3.32 Top Term (TT)
	3.33 weight (*)
	3.34 wildcards (% _)
	3.35 WITHIN

	4 Special Characters in Oracle Text Queries
	4.1 Grouping Characters
	4.2 Escape Characters
	4.3 Reserved Words and Characters

	5 CTX_ADM Package
	5.1 About CTX_ADM Package Procedures
	5.2 MARK_FAILED
	5.3 RECOVER
	5.4 RESET_AUTO_OPTIMIZE_STATUS
	5.5 SET_PARAMETER

	6 CTX_ANL Package
	6.1 About CTX_ANL Package Procedures
	6.2 ADD_DICTIONARY
	6.3 DROP_DICTIONARY

	7 CTX_CLS Package
	7.1 About CTX_CLS Package Procedures
	7.2 TRAIN
	7.3 CLUSTERING
	7.4 SA_TRAIN_MODEL
	7.5 SA_DROP_MODEL

	8 CTX_DDL Package
	8.1 ADD_ATTR_SECTION
	8.2 ADD_AUTO_OPTIMIZE
	8.3 ADD_FIELD_SECTION
	8.4 ADD_INDEX
	8.5 ADD_MDATA
	8.6 ADD_MDATA_COLUMN
	8.7 ADD_MDATA_SECTION
	8.8 ADD_NDATA_SECTION
	8.9 ADD_SDATA_COLUMN
	8.10 ADD_SDATA_SECTION
	8.11 ADD_SEC_GRP_ATTR_VAL
	8.12 ADD_SPECIAL_SECTION
	8.13 ADD_STOPCLASS
	8.14 ADD_STOP_SECTION
	8.15 ADD_STOPTHEME
	8.16 ADD_STOPWORD
	8.17 ADD_SUB_LEXER
	8.18 ADD_ZONE_SECTION
	8.19 COPY_POLICY
	8.20 CREATE_INDEX_SET
	8.21 CREATE_POLICY
	8.22 CREATE_PREFERENCE
	8.23 CREATE_SECTION_GROUP
	8.24 CREATE_SHADOW_INDEX
	8.25 CREATE_STOPLIST
	8.26 DROP_INDEX_SET
	8.27 DROP_POLICY
	8.28 DROP_PREFERENCE
	8.29 DROP_SECTION_GROUP
	8.30 DROP_SHADOW_INDEX
	8.31 DROP_STOPLIST
	8.32 EXCHANGE_SHADOW_INDEX
	8.33 OPTIMIZE_INDEX
	8.34 POPULATE_PENDING
	8.35 PREFERENCE_IMPLICIT_COMMIT
	8.36 RECREATE_INDEX_ONLINE
	8.37 REM_SEC_GRP_ATTR_VAL
	8.38 REMOVE_AUTO_OPTIMIZE
	8.39 REMOVE_INDEX
	8.40 REMOVE_MDATA
	8.41 REMOVE_SECTION
	8.42 REMOVE_STOPCLASS
	8.43 REMOVE_STOPTHEME
	8.44 REMOVE_STOPWORD
	8.45 REMOVE_SUB_LEXER
	8.46 REPLACE_INDEX_METADATA
	8.47 SET_ATTRIBUTE
	8.48 SET_SEC_GRP_ATTR
	8.49 SET_SECTION_ATTRIBUTE
	8.50 SYNC_INDEX
	8.51 UNSET_ATTRIBUTE
	8.52 UNSET_SEC_GRP_ATTR
	8.53 UPDATE_SUB_LEXER
	8.54 UPDATE_POLICY
	8.55 UPDATE_SDATA

	9 CTX_DOC Package
	9.1 About CTX_DOC Package Procedures
	9.2 FILTER
	9.3 GIST
	9.4 HIGHLIGHT
	9.5 IFILTER
	9.6 MARKUP
	9.7 PKENCODE
	9.8 POLICY_FILTER
	9.9 POLICY_GIST
	9.10 POLICY_HIGHLIGHT
	9.11 POLICY_LANGUAGES
	9.12 POLICY_MARKUP
	9.13 POLICY_NOUN_PHRASES
	9.14 POLICY_PART_OF_SPEECH
	9.15 POLICY_SNIPPET
	9.16 POLICY_STEMS
	9.17 POLICY_THEMES
	9.18 POLICY_TOKENS
	9.19 SENTIMENT
	9.20 SENTIMENT_AGGREGATE
	9.21 SET_KEY_TYPE
	9.22 SNIPPET
	9.23 THEMES
	9.24 TOKENS

	10 CTX_ENTITY Package
	10.1 ADD_EXTRACT_RULE
	10.2 ADD_STOP_ENTITY
	10.3 COMPILE
	10.4 CREATE_EXTRACT_POLICY
	10.5 DROP_EXTRACT_POLICY
	10.6 EXTRACT
	10.7 REMOVE_EXTRACT_RULE
	10.8 REMOVE_STOP_ENTITY

	11 CTX_OUTPUT Package
	11.1 ADD_EVENT
	11.2 ADD_TRACE
	11.3 DISABLE_QUERY_STATS
	11.4 ENABLE_QUERY_STATS
	11.5 END_LOG
	11.6 END_QUERY_LOG
	11.7 GET_TRACE_VALUE
	11.8 LOG_TRACES
	11.9 LOGFILENAME
	11.10 REMOVE_EVENT
	11.11 REMOVE_TRACE
	11.12 RESET_TRACE
	11.13 START_LOG
	11.14 START_QUERY_LOG

	12 CTX_QUERY Package
	12.1 BROWSE_WORDS
	12.2 COUNT_HITS
	12.3 EXPLAIN
	12.4 HFEEDBACK
	12.5 REMOVE_SQE
	12.6 RESULT_SET
	12.7 RESULT_SET_CLOB_QUERY
	12.8 RESULT_SET_DOCUMENT
	12.9 STORE_SQE

	13 CTX_REPORT Package
	13.1 Description of Procedures in CTX_REPORT
	13.2 Using the Function Versions
	13.3 DESCRIBE_INDEX
	13.4 DESCRIBE_POLICY
	13.5 CREATE_INDEX_SCRIPT
	13.6 CREATE_POLICY_SCRIPT
	13.7 INDEX_SIZE
	13.8 INDEX_STATS
	13.9 QUERY_LOG_SUMMARY
	13.10 TOKEN_INFO
	13.11 TOKEN_TYPE
	13.12 VALIDATE_INDEX

	14 CTX_THES Package
	14.1 ALTER_PHRASE
	14.2 ALTER_THESAURUS
	14.3 BT
	14.4 BTG
	14.5 BTI
	14.6 BTP
	14.7 CREATE_PHRASE
	14.8 CREATE_RELATION
	14.9 CREATE_THESAURUS
	14.10 CREATE_TRANSLATION
	14.11 DROP_PHRASE
	14.12 DROP_RELATION
	14.13 DROP_THESAURUS
	14.14 DROP_TRANSLATION
	14.15 EXPORT_THESAURUS
	14.16 HAS_RELATION
	14.17 IMPORT_THESAURUS
	14.18 NT
	14.19 NTG
	14.20 NTI
	14.21 NTP
	14.22 OUTPUT_STYLE
	14.23 PT
	14.24 RT
	14.25 SN
	14.26 SYN
	14.27 THES_TT
	14.28 TR
	14.29 TRSYN
	14.30 TT
	14.31 UPDATE_TRANSLATION

	15 CTX_ULEXER Package
	15.1 WILDCARD_TAB

	16 Oracle Text Utilities
	16.1 Thesaurus Loader (ctxload)
	16.1.1 ctxload Text Loading
	16.1.2 ctxload Syntax
	16.1.3 ctxload Examples

	16.2 Entity Extraction User Dictionary Loader (ctxload)
	16.2.1 ctxload Syntax
	16.2.2 Considerations When Creating a User Dictionary
	16.2.3 XML Schema
	16.2.4 ctxload Example

	16.3 Knowledge Base Extension Compiler (ctxkbtc)
	16.3.1 Knowledge Base Character Set
	16.3.2 ctxkbtc Syntax
	16.3.3 ctxkbtc Usage Notes
	16.3.4 ctxkbtc Limitations
	16.3.5 ctxkbtc Constraints on Thesaurus Terms
	16.3.6 ctxkbtc Constraints on Thesaurus Relations
	16.3.7 Extending the Knowledge Base
	16.3.8 Example for Extending the Knowledge Base
	16.3.9 Adding a Language-Specific Knowledge Base
	16.3.10 Limitations for Adding a Knowledge Base
	16.3.11 Order of Precedence for Multiple Thesauri
	16.3.12 Size Limits for Extended Knowledge Base

	16.4 Lexical Compiler (ctxlc)
	16.4.1 Syntax of ctxlc
	16.4.2 ctxlc Performance Considerations
	16.4.3 ctxlc Usage Notes
	16.4.4 ctxlc Example

	17 Oracle Text Alternative Spelling
	17.1 Overview of Alternative Spelling Features
	17.1.1 Alternate Spelling
	17.1.2 Base-Letter Conversion
	17.1.3 New German Spelling

	17.2 Overriding Alternative Spelling Features
	17.3 Alternative Spelling Conventions
	17.3.1 German Alternate Spelling Conventions
	17.3.2 Danish Alternate Spelling Conventions
	17.3.3 Swedish Alternate Spelling Conventions

	A Oracle Text Result Tables
	A.1 CTX_QUERY Result Tables
	A.1.1 EXPLAIN Table
	A.1.1.1 EXPLAIN Table Structure
	A.1.1.2 EXPLAIN Table Operation Column Values
	A.1.1.3 EXPLAIN Table OPTIONS Column Values

	A.1.2 HFEEDBACK Table
	A.1.2.1 HFEEDBACK Table Structure
	A.1.2.2 HFEEDBACK Table Operation Column Values
	A.1.2.3 HFEEDBACK Table OPTIONS Column Values
	A.1.2.4 CTX_FEEDBACK_TYPE

	A.2 CTX_DOC Result Tables
	A.2.1 Filter Table
	A.2.2 Gist Table
	A.2.3 Highlight Table
	A.2.4 Markup Table
	A.2.5 Theme Table
	A.2.6 Token Table

	A.3 CTX_THES Result Tables and Data Types
	A.3.1 EXP_TAB Table Type

	B Oracle Text Supported Document Formats
	B.1 About Document Filtering Technology
	B.1.1 Latest Updates for Patch Releases
	B.1.2 Restrictions on Format Support
	B.1.3 Supported Platforms for AUTO_FILTER Document Filtering Technology
	B.1.4 Filtering on PDF Documents and Security Settings
	B.1.5 PDF Filtering Limitations
	B.1.6 Environment Variables
	B.1.7 General Limitations

	B.2 Supported Document Formats
	B.2.1 Archive File Format
	B.2.2 Database Formats
	B.2.3 Email Formats
	B.2.4 Graphic Formats (Raster and Vector Image)
	B.2.5 Multimedia Formats
	B.2.6 Other Formats
	B.2.7 Presentation Formats
	B.2.8 Spreadsheet Formats
	B.2.9 Text and Markup Formats
	B.2.10 Word Processing and Desktop Publishing Formats

	C Text Loading Examples for Oracle Text
	C.1 SQL INSERT Example
	C.2 SQL*Loader Example
	C.2.1 Creating the Table
	C.2.2 Issuing the SQL*Loader Command
	C.2.2.1 Example Control File: loader1.dat
	C.2.2.2 Example Data File: loader2.dat

	C.3 Structure of ctxload Thesaurus Import File
	C.3.1 Import File Format
	C.3.2 Alternate Hierarchy Structure
	C.3.3 Usage Notes for Terms in Import Files
	C.3.4 Usage Notes for Relationships in Import Files
	C.3.5 Examples of Import Files
	C.3.5.1 Example 1 (Flat Structure)
	C.3.5.2 Example 2 (Hierarchical)
	C.3.5.3 Example 3

	D Oracle Text Multilingual Features
	D.1 Introduction
	D.2 Indexing
	D.2.1 Multilingual Features for Text Index Types
	D.2.1.1 CONTEXT Index Type
	D.2.1.2 CTXCAT Index Type
	D.2.1.3 CTXRULE Index Type

	D.2.2 Lexer Types
	D.2.3 Basic Lexer Features
	D.2.3.1 Theme Indexing
	D.2.3.2 Alternate Spelling
	D.2.3.3 Base Letter Conversion
	D.2.3.4 Composite
	D.2.3.5 Index stems

	D.2.4 Multi Lexer Features
	D.2.5 World Lexer Features

	D.3 Querying
	D.4 Supplied Stop Lists
	D.5 Knowledge Base
	D.6 Multilingual Features Matrix

	E Oracle Text Supplied Stoplists
	E.1 English Default Stoplist
	E.2 Chinese Stoplist (Traditional)
	E.3 Chinese Stoplist (Simplified)
	E.4 Danish (dk) Default Stoplist
	E.5 Dutch (nl) Default Stoplist
	E.6 Finnish (sf) Default Stoplist
	E.7 French (f) Default Stoplist
	E.8 German (d) Default Stoplist
	E.9 Italian (i) Default Stoplist
	E.10 Portuguese (pt) Default Stoplist
	E.11 Spanish (e) Default Stoplist
	E.12 Swedish (s) Default Stoplist

	F The Oracle Text Scoring Algorithm
	F.1 Scoring Algorithm for Word Queries
	F.2 Word Scoring Example
	F.3 DML and Scoring Algorithm

	G Oracle Text Views
	G.1 CTX_ALEXER_DICTS
	G.2 CTX_AUTO_OPTIMIZE_INDEXES
	G.3 CTX_AUTO_OPTIMIZE_STATUS
	G.4 CTX_CLASSES
	G.5 CTX_FILTER_BY_COLUMNS
	G.6 CTX_FILTER_CACHE_STATISTICS
	G.7 CTX_INDEXES
	G.8 CTX_INDEX_ERRORS
	G.9 CTX_INDEX_OBJECTS
	G.10 CTX_INDEX_PARTITIONS
	G.11 CTX_INDEX_SETS
	G.12 CTX_INDEX_SET_INDEXES
	G.13 CTX_INDEX_SUB_LEXERS
	G.14 CTX_INDEX_SUB_LEXER_VALUES
	G.15 CTX_INDEX_VALUES
	G.16 CTX_OBJECTS
	G.17 CTX_OBJECT_ATTRIBUTES
	G.18 CTX_OBJECT_ATTRIBUTE_LOV
	G.19 CTX_ORDER_BY_COLUMNS
	G.20 CTX_PARAMETERS
	G.21 CTX_PENDING
	G.22 CTX_PREFERENCES
	G.23 CTX_PREFERENCE_VALUES
	G.24 CTX_SECTIONS
	G.25 CTX_SECTION_GROUPS
	G.26 CTX_SQES
	G.27 CTX_STOPLISTS
	G.28 CTX_STOPWORDS
	G.29 CTX_SUB_LEXERS
	G.30 CTX_THESAURI
	G.31 CTX_THES_PHRASES
	G.32 CTX_TRACE_VALUES
	G.33 CTX_USER_ALEXER_DICTS
	G.34 CTX_USER_AUTO_OPTIMIZE_INDEXES
	G.35 CTX_USER_EXTRACT_POLICIES
	G.36 CTX_USER_EXTRACT_POLICY_VALUES
	G.37 CTX_USER_EXTRACT_RULES
	G.38 CTX_USER_EXTRACT_STOP_ENTITIES
	G.39 CTX_USER_ FILTER_BY_COLUMNS
	G.40 CTX_USER_INDEXES
	G.41 CTX_USER_INDEX_ERRORS
	G.42 CTX_USER_INDEX_OBJECTS
	G.43 CTX_USER_INDEX_PARTITIONS
	G.44 CTX_USER_INDEX_SETS
	G.45 CTX_USER_INDEX_SET_INDEXES
	G.46 CTX_USER_INDEX_SUB_LEXERS
	G.47 CTX_USER_INDEX_SUB_LEXER_VALS
	G.48 CTX_USER_INDEX_VALUES
	G.49 CTX_USER_ORDER_BY_COLUMNS
	G.50 CTX_USER_PENDING
	G.51 CTX_USER_PREFERENCES
	G.52 CTX_USER_PREFERENCE_VALUES
	G.53 CTX_USER_SECTIONS
	G.54 CTX_USER_SECTION_GROUPS
	G.55 CTX_USER_SESSION_SQES
	G.56 CTX_USER_SQES
	G.57 CTX_USER_STOPLISTS
	G.58 CTX_USER_STOPWORDS
	G.59 CTX_USER_SUB_LEXERS
	G.60 CTX_USER_THESAURI
	G.61 CTX_USER_THES_PHRASES
	G.62 CTX_VERSION

	H Stopword Transformations in Oracle Text
	H.1 Understanding Stopword Transformations
	H.2 About Stopwords in Phrase Queries
	H.3 Word Transformations
	H.4 AND Transformations
	H.5 OR Transformations
	H.6 ACCUMulate Transformations
	H.7 MINUS Transformations
	H.8 MNOT Transformations
	H.9 NOT Transformations
	H.10 EQUIValence Transformations
	H.11 NEAR Transformations
	H.12 Weight Transformations
	H.13 Threshold Transformations
	H.14 WITHIN Transformations

	Index

