
Oracle® Database Gateway for DRDA
User's Guide

12c Release 2 (12.2)
E85951-01
April 2017

Oracle Database Gateway for DRDA User's Guide, 12c Release 2 (12.2)

E85951-01

Copyright © 2006, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Rhonda Day

Contributing Authors: Peter A. Castro

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Intended Audience xi

Documentation Accessibility xi

Related Documents xi

Typographic Conventions xii

SQL*Plus Prompts xii

Storage Measurements xii

1 Introduction to the Oracle Database Gateway for DRDA

1.1 Overview ofthe Oracle Database Gateway for DRDA 1-1

1.2 Gateway Capabilities 1-2

1.2.1 Transparency at All Levels 1-2

1.2.2 Extended Database Services 1-3

1.2.3 Extended Advanced Networking, Internet and Intranet Support 1-3

1.2.4 Dynamic Dictionary Mapping 1-4

1.2.5 SQL 1-4

1.2.6 Data Definition Language 1-4

1.2.7 Data Control Language 1-5

1.2.8 Passthrough and Native DB2 SQL 1-5

1.2.9 Stored Procedures 1-5

1.2.10 Languages 1-5

1.2.11 Oracle Database Technology and Tools 1-5

1.2.12 SQL*Plus 1-6

1.2.13 Two-Phase Commit and Multi-Site Transactions 1-6

1.2.14 Site Autonomy 1-6

1.2.15 Migration and Coexistence 1-6

1.2.16 Security 1-6

1.2.17 DRDA UDB Server Encryption support 1-7

1.3 Terms 1-7

1.4 Architecture 1-7

1.5 Implementation 1-8

1.6 How the Gateway Works 1-9

iii

1.7 Oracle Tools and the Gateway 1-9

1.8 Features 1-10

2 Release Information

2.1 Product Set 2-1

2.2 Changes and Enhancements 2-1

2.2.1 Remote Insert Rowsource 2-1

2.2.2 Gateway Password Encryption Tool 2-2

2.2.3 Result Sets and Stored Procedures 2-2

2.3 Product Migration 2-3

2.4 Known Problems 2-3

2.5 Known Restrictions 2-4

2.5.1 DB2 Considerations 2-4

2.5.1.1 DD Basic Tables and Views 2-4

2.5.1.2 SUBSTR Function Post-Processed 2-4

2.5.1.3 Data type Limitations 2-4

2.5.1.4 Null Values and Stored Procedures 2-4

2.5.1.5 String Concatenation of Numbers 2-4

2.5.1.6 GLOBAL_NAMES Initialization Parameter 2-4

2.5.1.7 DRDA Package and DB2 considerations 2-5

2.5.1.8 Date Arithmetic 2-5

2.5.1.9 Row Length Limitation 2-5

2.5.1.10 LONG Data type in SQL*Plus 2-5

2.5.1.11 Stored Procedures and Transaction Integrity 2-5

2.5.2 SQL Limitations 2-6

2.5.2.1 Oracle ROWID Column 2-6

2.5.2.2 Oracle Bind Variables 2-6

2.5.2.3 CONNECT BY Is Not Supported 2-6

3 Using the Oracle Database Gateway for DRDA

3.1 DRDA Gateway Features 3-1

3.1.1 CHAR Semantics 3-1

3.1.2 Multi-byte Character Sets Ratio Suppression 3-1

3.1.3 IPv6 Support 3-2

3.1.4 Gateway Session IDLE Timeout 3-2

3.2 Processing a Database Link 3-2

3.2.1 Creating Database Links 3-2

3.2.2 Dropping Database Links 3-3

3.2.3 Examining Available Database Links 3-4

iv

3.2.4 Limiting the Number of Active Database Links 3-4

3.3 Accessing the Gateway 3-4

3.4 Accessing i5/OS File Members 3-5

3.5 Using the Synonym Feature 3-5

3.6 Performing Distributed Queries 3-5

3.6.1 Two-Phase Commit Processing 3-6

3.6.2 Distributed DRDA Transactions 3-7

3.7 Replicating in a Heterogeneous Environment 3-7

3.8 Copying Data from Oracle Database to DRDA Server 3-7

3.9 Copying Data from DRDA Server to Oracle Database 3-8

3.10 Tracing SQL Statements 3-8

4 Developing Applications

4.1 Gateway Appearance to Application Programs 4-1

4.1.1 Fetch Reblocking 4-2

4.2 Using Oracle Stored Procedures with the Gateway 4-2

4.3 Using DRDA Server Stored Procedures with the Gateway 4-3

4.3.1 Oracle Application and DRDA Server Stored Procedure Completion 4-4

4.3.2 Procedural Feature Considerations with DB2 4-5

4.3.3 Result Sets and Stored Procedures 4-5

4.3.3.1 OCI Program Fetching from Result Sets in Sequential Mode 4-6

4.3.3.2 PL/SQL Program Fetching from Result Sets in Sequential Mode 4-8

4.4 Database Link Behavior 4-9

4.5 Oracle Database SQL Construct Processing 4-9

4.5.1 Compatible SQL Functions 4-9

4.5.2 Translated SQL Functions 4-9

4.5.3 Compensated SQL Functions 4-9

4.5.3.1 Post-Processing 4-10

4.5.4 Native Semantic SQL Functions 4-10

4.5.5 DB2 UDB for z/OS SQL Compatibility 4-10

4.5.6 DB2 UDB for Unix, Linux, and Windows Compatibility 4-13

4.5.7 DB2 UDB for iSeries Compatibility 4-16

4.6 Native Semantics 4-18

4.6.1 SQL Functions That Can Be Enabled 4-19

4.6.2 SQL Functions That Can Be Disabled 4-21

4.6.3 SQL Set Operators and Clauses 4-21

4.7 DRDA Data type to Oracle Data type Conversion 4-21

4.7.1 Performing Character String Operations 4-22

4.7.2 Converting Character String Data types 4-23

4.7.3 Performing Graphic String Operations 4-23

v

4.7.4 Performing Date and Time Operations 4-24

4.7.4.1 Processing TIME and TIMESTAMP Data 4-24

4.7.4.2 Processing DATE Data 4-24

4.7.4.3 Performing Date Arithmetic 4-25

4.7.5 Dates 4-25

4.7.6 NLS_DATE_FORMAT Support 4-26

4.7.7 Oracle TO_DATE Function 4-26

4.7.8 Performing Numeric data type Operations 4-27

4.7.9 Mapping the COUNT Function 4-27

4.7.10 Performing Zoned Decimal Operations 4-27

4.8 Passing Native SQL Statements through the Gateway 4-28

4.8.1 Processing DDL Statements through Passthrough 4-28

4.8.2 Using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE 4-29

4.8.2.1 Examples 4-29

4.8.3 Retrieving Results Sets Through Passthrough 4-29

4.8.3.1 Example 4-29

4.9 Oracle Data Dictionary Emulation on a DRDA Server 4-30

4.9.1 Using the Gateway Data Dictionary 4-30

4.9.2 Using the DRDA Catalog 4-30

5 Error Messages, Diagnosis, and Reporting

5.1 Interpreting Gateway Error Messages 5-1

5.1.1 Errors Detected by the Gateway 5-1

5.1.2 Errors Detected in the DRDA Software 5-2

5.1.3 Errors Detected by the DRDA Server 5-2

5.2 Mapped Errors 5-3

5.3 SQL Tracing and the Gateway 5-3

5.3.1 SQL Tracing in the Oracle Database 5-3

A Oracle DB2 Data Dictionary Views

A.1 Supported Views A-1

A.2 ALL_CATALOG A-2

A.3 ALL_COL_COMMENTS A-2

A.4 ALL_CONS_COLUMNS A-2

A.5 ALL_CONSTRAINTS A-2

A.6 ALL_INDEXES A-3

A.7 ALL_IND_COLUMNS A-5

A.8 ALL_OBJECTS A-5

A.9 ALL_SYNONYMS A-6

vi

A.10 ALL_TABLES A-6

A.11 ALL_TAB_COLUMNS A-7

A.12 ALL_TAB_COMMENTS A-8

A.13 ALL_USERS A-9

A.14 ALL_VIEWS A-9

A.15 COLUMN_PRIVILEGES A-9

A.16 DICTIONARY A-10

A.17 DUAL A-10

A.18 TABLE_PRIVILEGES A-10

A.19 USER_CATALOG A-11

A.20 USER_COL_COMMENTS A-11

A.21 USER_CONSTRAINTS A-11

A.22 USER_CONS_COLUMNS A-12

A.23 USER_INDEXES A-12

A.24 USER_OBJECTS A-13

A.25 USER_SYNONYMS A-14

A.26 USER_TABLES A-14

A.27 USER_TAB_COLUMNS A-16

A.28 USER_TAB_COMMENTS A-16

A.29 USER_VIEWS A-17

A.30 USER_USERS A-17

B Initialization Parameters

B.1 Initialization Parameter File Syntax B-1

B.2 Oracle Database Gateway for DRDA Initialization Parameters B-2

B.3 HS_CALL_NAME B-3

B.4 HS_DB_DOMAIN B-4

B.5 HS_DB_INTERNAL_NAME B-4

B.6 HS_DB_NAME B-5

B.7 HS_DESCRIBE_CACHE_HWM B-5

B.8 HS_LANGUAGE B-5

B.8.1 Character Sets B-6

B.8.2 Language B-6

B.8.3 Territory B-6

B.9 HS_LONG_PIECE_TRANSFER_SIZE B-6

B.10 HS_OPEN_CURSORS B-7

B.11 HS_RPC_FETCH_REBLOCKING B-7

B.12 HS_RPC_FETCH_SIZE B-7

B.13 HS_TRANSACTION_MODEL B-8

B.14 IFILE B-9

vii

B.15 HS_FDS_CONNECT_INFO B-9

B.16 HS_FDS_RECOVERY_ACCOUNT B-10

B.17 HS_FDS_RECOVERY_PWD B-10

B.18 HS_FDS_FETCH_ROWS B-10

B.19 HS_FDS_TRACE_LEVEL B-11

B.20 HS_FDS_TRANSACTION_LOG B-11

B.21 HS_IDLE_TIMEOUT B-11

B.22 HS_FDS_MBCS_TO_GRAPHIC B-11

B.23 HS_FDS_GRAPHIC_TO_MBCS B-12

B.24 HS_FDS_TIMESTAMP_MAPPING B-12

B.25 HS_FDS_DATE_MAPPING B-12

B.26 HS_FDS_QUOTE_IDENTIFIER B-13

B.27 HS_FDS_CAPABILITY B-13

B.28 HS_FDS_TRANSACTION_ISOLATION B-13

B.29 HS_FDS_PACKAGE_COLLID B-14

B.30 HS_NLS_LENGTH_SEMANTICS B-14

B.31 HS_KEEP_REMOTE_COLUMN_SIZE B-14

B.32 HS_FDS_RESULTSET_SUPPORT B-15

B.33 HS_FDS_REMOTE_DB_CHARSET B-15

B.34 HS_FDS_SUPPORT_STATISTICS B-16

B.35 HS_FDS_RSET_RETURN_ROWCOUNT B-16

B.36 HS_FDS_AUTHENTICATE_USER B-16

B.37 HS_FDS_ENCRYPT_SESSION B-17

B.38 HS_FDS_VALIDATE_SERVER_CERT B-17

B.39 HS_FDS_TRUSTSTORE_FILE B-18

B.40 HS_FDS_TRUSTSTORE_PASSWORD B-18

B.41 HS_FDS_SQLLEN_INTERPRETATION B-18

B.42 HS_FDS_ARRAY_EXEC B-18

Index

viii

List of Figures

1-1 The Gateway Architecture 1-8

4-1 Calling Oracle Stored Procedures in a Distributed Oracle Environment 4-3

4-2 Running DRDA Server Stored Procedures 4-4

ix

List of Tables

4-1 SQL Compatibility, by Oracle SQL function 4-10

4-2 DB2 UDB for Unix, Linux, and Windows Compatibility, by Oracle SQL Function 4-13

4-3 DB2 UDB for iSeries Compatibility, by Oracle SQL Function 4-16

4-4 Data Type Mapping and Restrictions 4-22

x

Preface

The Oracle Database Gateway for DRDA provides users with transparent access to
DB2.

Intended Audience
This guide is intended for anyone responsible for installing, configuring, and
administering the gateway, and also for application developers.

Read this guide if you are responsible for writing applications that access DRDA
databases through the gateway.

You must understand the fundamentals of Oracle Database Gateway and the
operating system you are working on before using this guide to install or administer the
gateway.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
Oracle Database Heterogeneous Connectivity User's Guide

Oracle Database Administrator's Guide

Oracle Database Concepts

Oracle Database Error Messages

Oracle Database Performance Tuning Guide

Oracle Database Security Guide

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Typographic Conventions
The following typographic conventions are used in this guide:

Convention Description

monospace Monospace type indicates commands, directory names, user names, path
names, and file names.

italics Italic type indicates variables, including variable portions of file names. It is
also used for emphasis and for book titles.

UPPERCASE Uppercase letters indicate Structured Query Language (SQL) reserved words,
initialization parameters, and environment variables.

Bold Bold type indicates screen names and fields.

SQL*Plus
prompts

The SQL*Plus prompt, SQL>, appears in SQL statement and SQL*Plus
command examples. Enter your response at the prompt. Do not enter the text
of the prompt, "SQL>", in your response.

SQL*Plus Prompts
The SQL*Plus prompt, SQL>, appears in SQL statements and SQL*Plus command
examples. Enter your response at the prompt. Do not enter the text of the prompt,
"SQL>", in your response.

Storage Measurements
Storage measurements use the following abbreviations:

• KB, for kilobyte, which equals 1,024 bytes

• MB, for megabyte, which equals 1,048,576 bytes

• GB, for gigabyte, which equals 1,073,741,824 bytes

Preface

xii

1
Introduction to the Oracle Database
Gateway for DRDA

The following sections provide information about the architecture, uses, and features
of the Oracle Database Gateway for DRDA:

• Overview ofthe Oracle Database Gateway for DRDA

• Gateway Capabilities

• Terms

• Architecture

• Implementation

• How the Gateway Works

• Oracle Tools and the Gateway

• Features

1.1 Overview ofthe Oracle Database Gateway for DRDA
The Oracle Database Gateway for DRDA gives you access to your Oracle data and
DB2 data with a single set of applications while you continue to use existing IBM
applications to access your DB2 data. The gateway enables you to:

• Integrate heterogeneous database management systems so that they appear as a
single homogeneous database system.

• Read and write data from Oracle applications to data in DB2 UDB for z/OS, DB2
Universal Database™ for iSeries™ (DB2 UDB for iSeries), and DB2 Universal
Database.

Oracle Database 12c Release 2 (12.2) provides the foundation for the next generation
of the Oracle Database Gateways, which delivers enhanced integration capabilities by
exploiting Oracle Database Heterogeneous Services.

As an integrated component of the Oracle database, Heterogeneous Services can
take advantage of the powerful SQL parsing and distributed optimization capabilities of
the Oracle database. This integration also ensures that the gateway can immediately
take advantage of any enhancements made to future releases of the Oracle database.
For detailed information on Oracle Heterogeneous Services, refer to Oracle Database
Heterogeneous Connectivity User's Guide.

The gateways are even more tightly integrated with Oracle Database 12c Release 2
(12.2) than previous versions, enabling improved performance and enhanced
functionality while still providing transparent integration of Oracle and non-Oracle data.
For example, connection initialization information is available in the local Oracle
database, reducing the number of round trips and the amount of data sent over the
network. SQL execution is also faster, because, statements issued by an application
are parsed and translated once and can then be reused by multiple applications.

1-1

1.2 Gateway Capabilities
Oracle Database Gateway for DRDA enables you to integrate your heterogeneous
system into a single, seamless environment. If data is moved from a DRDA database
to an Oracle database, then no changes in application design or function are needed.
The gateway handles all differences in both data types and SQL functions between the
application and the database. As a result, end users and application programmers are
not required to know either the physical location or the storage characteristics of the
data.

This transparency not only enables you to integrate heterogeneous data seamlessly, it
also simplifies your gateway implementation, application development, and
maintenance. The gateway capabilities are as follows:

• Transparency at All Levels

• Extended Database Services

• Extended Advanced Networking_ Internet and Intranet Support

• Dynamic Dictionary Mapping

• SQL

• Data Definition Language

• Data Control Language

• Passthrough and Native DB2 SQL

• Stored Procedures

• Languages

• Oracle Database Technology and Tools

• SQL*Plus

• Two-Phase Commit and Multi-Site Transactions

• Site Autonomy

• Migration and Coexistence

• Security

• DRDA UDB Server Encryption support

1.2.1 Transparency at All Levels
Oracle Database Gateway for DRDA gives you transparency at the following levels:

• Location

Users can access tables by name and do not need to know the physical location of
the tables.

• Network

The gateway exploits the Oracle Net technology to allow users to access data
across multiple networks without concern for the network architecture. TCP/IP
protocol is supported. This release supports IPV4 and IPV6 between Oracle
database and the gateway, and also between the gateway and the DB2 server.

Chapter 1
Gateway Capabilities

1-2

• Operating System

Users can access data stored under multiple operating systems without being
aware of the operating systems that hold the data.

• Data Storage

The gateway provides the ability for data to be accessed regardless of the
database or file format.

• Access Method

You can utilize a single dialect of SQL for any data store, eliminating the need to
code for database-specific access methods or SQL implementations.

1.2.2 Extended Database Services
Following are some of the Oracle database services available through the gateway:

• SQL functions

Your application can access all your data using Oracle SQL. The method by which
the gateways are integrated with the Oracle database ensures that the latest
features of each database release are always available immediately to the
gateway.

• Distributed capabilities

Heterogeneous data can be integrated seamlessly because Oracle distributed
capabilities, such as JOIN and UNION, can be applied against non-Oracle data
without any special programming or mapping.

• Distributed query optimization

The Oracle database can utilize its advanced query optimization techniques to
ensure that SQL statements are executed efficiently against any of your data. The
data distribution and storage characteristics of local and remote data are equally
considered.

• Two-phase commit protection

The Oracle database two-phase commit mechanism provides consistency across
data stores by ensuring that a transaction that spans data stores is still treated as
a single unit of work. Changes are not committed (or permanently stored) in any
data store unless the changes can be committed in all data stores that will be
affected.

• Stored procedures and database triggers

The same Oracle stored procedures and database triggers can be used to access
all of your data, thereby ensuring uniform enforcement of your business rules
across the enterprise.

1.2.3 Extended Advanced Networking, Internet and Intranet Support
The gateway integration with the Oracle database extends the benefits of the Oracle
Internet and Oracle Net software to non-Oracle data and extends the benefits of the
Oracle client/server and server/server connectivity software. These features include:

• Application server support

Chapter 1
Gateway Capabilities

1-3

Any Internet or intranet application that can access data in the Oracle database
can also incorporate information from data stores accessible through the
gateways. Web browsers can connect to the Oracle database using any
application server product that supports Oracle software.

• Implicit protocol conversion

Oracle and Oracle Net can work together as a protocol converter, allowing
applications to transparently access other data stores on platforms that do not
support the clients network protocol. An Oracle database can use TCP/IP to
communicate with the gateway and another data store.

• Advanced Security

Non-Oracle data can be protected from unauthorized access or tampering during
transmission to the client. You can do this by using the hardware-independent and
protocol-independent encryption and checksum services of Advanced Security.

• Wireless communication

Oracle Mobile Agents, an Oracle industry-leading mobile technology, enables
wireless communication to Oracle database or to any databases that are
accessible through the gateways. This gives your field personnel direct access to
enterprise data from mobile laptop computers.

1.2.4 Dynamic Dictionary Mapping
The simple setup of the gateway does not require any additional mapping. Before an
application can access any information, the application must be told the structure of
the data, such as the columns of a table and their lengths. Many products require
administrators to manually define that information in a separate data dictionary stored
in a hub. Applications then access the information using the hub dictionary instead of
the native dictionaries of each database. This approach requires a great deal of
manual configuration and maintenance on your part. As administrators, you must
update the data dictionary in the hub whenever the structure of a remote table is
changed.

Inefficient duplication is not necessary with Oracle Database Gateway for DRDA. The
gateway uses the existing native dictionaries of each database. Your applications
access data using the dictionaries designed specifically for each database, which
means no redundant dictionary ever needs to be created or maintained.

1.2.5 SQL
Oracle Database Gateways ease your application development and maintenance by
allowing you to access any data using a uniform set of SQL. Changes to the location,
storage characteristics, or table structure do not require any changes to your
applications. ANSI and ISO standard SQL are supported, along with powerful Oracle
extensions.

1.2.6 Data Definition Language
Oracle Applications can create tables in target data stores by using native data
definition language (DDL) statements.

Chapter 1
Gateway Capabilities

1-4

1.2.7 Data Control Language
You can issue native data control language (DCL) statements from an Oracle
environment, allowing central administration of user privileges and access levels for
heterogeneous data stores.

1.2.8 Passthrough and Native DB2 SQL
Execution of native DB2 SQL can be passed through the gateway for execution
directly against DB2. This enables applications to send statements, such as a DB2
CREATE TABLE, to the gateway for execution on a target DB2 system.

1.2.9 Stored Procedures
The gateway enables you to exploit both Oracle and non-Oracle stored procedures,
leveraging your investments in a distributed, multi-database environment. Oracle
stored procedures can access multiple data stores easily, without any special coding
for heterogeneous data access.

Oracle Stored Procedures

Oracle stored procedures enable you to access and update DB2 data using
centralized business rules stored in the Oracle database. Using Oracle stored
procedures can increase your database performance by minimizing network traffic.
Instead of sending individual SQL statements across the network, an application can
send a single EXECUTE command to begin an entire PL/SQL routine.

Native DB2 Stored Procedures

The gateway can execute DB2 stored procedures using standard Oracle PL/SQL. The
Oracle application executes the DB2 stored procedure as if it were an Oracle remote
procedure.

1.2.10 Languages
Any application or tool that supports the Oracle database can access over thirty
different data sources through the Oracle gateways. A wide variety of open system
tools from Oracle Corporation and third-party vendors can be used, even if the data is
stored in legacy, proprietary formats. Hundreds of tools are supported, including
ad hoc query tools, Web browsers, turnkey applications, and application development
tools.

1.2.11 Oracle Database Technology and Tools
The gateway is integrated into the Oracle database technology, which provides global
query optimization, transaction coordination for multi-site transactions, and support for
all Oracle Net configurations. Tools and applications that support the Oracle database
can be used to access heterogeneous data through the gateway.

Chapter 1
Gateway Capabilities

1-5

1.2.12 SQL*Plus
You can use SQL*Plus for moving data between databases. This product gives you
the ability to copy data from your department databases to corporate Oracle database
instances.

1.2.13 Two-Phase Commit and Multi-Site Transactions
The gateway can participate as a partner in multi-site transactions and two-phase
commit. How this occurs depends on the capabilities of the underlying data source,
meaning that the gateway can be implemented as any one of the following:

• Full two-phase commit partner

• Commit point site

• Single-site update partner

• Read-only partner

The deciding factors for the implementation of the gateway are the locking and
transaction-handling capabilities of your target database.

Oracle Database Gateway for DRDA by default is configured as a commit point site,
that is, commit confirm protocol. Optionally, you can configure the gateway as read-
only if you choose to enforce read-only capability through the gateway. Other protocols
are not supported.

1.2.14 Site Autonomy
All Oracle database products, including gateways, supply site autonomy. For example,
administration of a data source remains the responsibility of the original system
administrator. Site autonomy also functions such that gateway products do not
override the security measures established by the data source or operating
environment.

1.2.15 Migration and Coexistence
The integration of a data source through the gateway does not require any changes to
be made to applications at the data source. The result is that the Oracle database
technology is non-intrusive, providing coexistence and an easy migration path.

1.2.16 Security
The gateway does not bypass existing security mechanisms. Gateway security
coexists with the security mechanisms already used in the operating environment of
the data source.

Functionally, gateway security is identical to that of an Oracle database, as described
in the Oracle Database Security Guide. Oracle database security is mapped to the
data dictionary of the data source.

Chapter 1
Gateway Capabilities

1-6

1.2.17 DRDA UDB Server Encryption support
This release of Gateway for DRDA provides complete UDB server Encryption support.
Refer to the following new parameters for various options:

• HS_FDS_AUTHENTICATE_USER

• HS_FDS_ENCRYPT_SESSION

• HS_FDS_TRUSTSTORE_FILE

• HS_FDS_TRUSTSTORE_PASSWORD

1.3 Terms
The terms used in this guide do not necessarily conform to the IBM terminology. The
following list presents several terms and their meanings as used within this guide:

DRDA data is, generically, any database data accessed through DRDA.

DRDA database is the collection of data that belongs to a DRDA server

DRDA server is a database server that can be accessed through DRDA. IBM
terminology for a DRDA server is a DRDA Application Server, or AS.

DRDA server type is a specific database product or program that can act as a DRDA
server.

Oracle database is any Oracle Database 12c Release 2 (12.2) instance that
communicates with the Oracle Database Gateway for DRDA to distribute database
access operations to a DRDA server. The Oracle database can also be used for non-
gateway applications.

DB2 Universal Database is a generic name for all implementations of IBM's DB2
Database product. DB2/UDB is frequently used as an abbreviation for the DB2
Universal Database for Unix, Linux, and Windows product.

1.4 Architecture
The Oracle Database Gateway for DRDA works with the Oracle database to shield
most of the differences of the non-Oracle database from Oracle applications.

The architecture consists of the following main components:

• Client

The client is an Oracle application or tool.

• Oracle database

The gateway instance is accessed by an Oracle database with procedural and
distributed options. Usually, the Oracle database is installed on the same host as
the gateway, but this is not a requirement. The Oracle database and the gateway
communicate in the normal Oracle database-to-server manner.

If the Oracle database is not on the host where the gateway resides, then you
must install the correct Oracle networking software on the platform where the
server resides. For Oracle database, you must install Oracle Net on the Oracle
database machine.

Chapter 1
Terms

1-7

• Oracle Database Gateway for DRDA

The gateway must be installed on hosts that are running the appropriate operating
system.

If the Oracle database is not on the same host, then you must also install Oracle
Net so that the gateway and Oracle database can communicate.

• DRDA server

The DRDA server must be on a system accessible to the host via a network.

Multiple Oracle databases can access the same gateway.

Figure 1-1 illustrates the gateway architecture.

Figure 1-1 The Gateway Architecture

TCP/IP

Client

Oracle

Database

Oracle

Database

Gateway for

DRDA

Oracle Net

or

Local

Connection

DRDA

Server

1.5 Implementation
When the gateway is installed on your host, it has some of the same components as
an Oracle database instance on your host. The gateway has the following
components:

• A base file directory, similar to the one associated with an Oracle instance
ORACLE_HOME environment variable

• A gateway system identifier (SID), comparable to an Oracle instance ORACLE_SID

• Oracle Net to support communication between the Oracle database and the
Oracle Database Gateway for DRDA

The gateway does not have:

• Control, redo log, or database files

• The full set of subdirectories and ancillary files that are associated with an installed
Oracle database

Because the gateway does not have background processes and does not need a
management utility, such as Oracle Enterprise Manager, you do not need to start the
gateway product. Each Oracle database user session that accesses a particular

Chapter 1
Implementation

1-8

gateway creates an independent process on the host. This process runs the gateway
session and executes network operations to communicate with a DRDA server.

1.6 How the Gateway Works
The gateway has no database functions of its own. Instead, it provides an interface by
which an Oracle database can direct part or all of a SQL operation to a DRDA
database.

The gateway that is supporting the DRDA server is identified to the Oracle database
using a database link. The database link is the same construct that is used to identify
other Oracle databases. Tables on the DRDA server are referenced in SQL as:

table_name@dblink_name

or

owner.table_name@dblink_name

If you create synonyms or views in the Oracle database, then you can refer to tables
on the DRDA server by using simple names as though the table were local to the
Oracle database.

When the Oracle database encounters a reference to a table that is on the DRDA
server, the applicable portion of the SQL statement is sent to the gateway for
processing. Any host variables that are associated with the SQL statement are bound
to the gateway and, therefore, to the DRDA server.

The gateway is responsible for sending these SQL statements to the DRDA server for
execution and for fielding and returning responses. The responses are either data or
messages. Any conversions between Oracle data types and DRDA data types are
performed by the gateway. Both the Oracle database and the application read and
process only Oracle data types.

SQL Differences

Not all SQL implementations are the same. The Oracle database supports a larger set
of built-in functions than the databases that are currently accessed through the
gateway. The Oracle database and the gateway work together to convert SQL to a
form that is compatible with the specific DRDA server.

During this conversion, an Oracle database function can be converted to a function
that is recognizable to the specific DRDA server. For example, the Oracle database
NVL function is converted to the DB2 VALUE function.

Alternatively, the Oracle database withholds functions that are not executable by the
DRDA server and performs them after rows are fetched from the DRDA database.
This processing only applies to SELECT statements. The Oracle database and the
gateway cannot perform this kind of manipulation on UPDATE, INSERT, or DELETE
statements because doing so changes transaction semantics.

1.7 Oracle Tools and the Gateway
Use the Oracle Database Gateway to run applications, such as Oracle database tools,
that read and write data that is stored in DRDA databases.

Chapter 1
How the Gateway Works

1-9

While the Oracle Database Gateway for DRDA provides no new application or
development facilities, it extends the reach of existing Oracle database tools to include
data in non-Oracle databases that support DRDA.

Using the Oracle Database Gateway for DRDA with other Oracle products can greatly
extend the capabilities of the stand-alone gateway.

SQL*Plus

Use SQL*Plus and the Oracle Database Gateway for DRDA to create a distributed
database system, providing an easy-to-use transfer facility for moving data between
the distributed databases. One possible use is to distribute the data in your corporate
Oracle database to departmental DRDA databases. You can also distribute data in
your corporate DRDA database to departmental Oracle databases.

1.8 Features
Following is a list of important features that characterize Oracle Database Gateway for
DRDA:

• Heterogeneous Services Architecture

• Performance Enhancements

• Fetch Reblocking

• Oracle Database Passthrough Supported

• Retrieving Result Sets Through Passthrough

• Support for TCP/IP

• Native Semantics

• Columns Supported in a Result Set

• EXPLAIN_PLAN Improvement

• Heterogeneous Database Integration

• Minimum Impact on Existing Systems

• Application Portability

• Remote Data Access

• Support for Distributed Applications

• Application Development and End User Tools

• Password Encryption Utility

• Support for DB2 UDB for z/OS Stored Procedures

• IBM DB2 Universal Database Support

• DB2 z/OS ASCII and UNICODE Table Support

• Read-Only Support

• Support for Graphic and Multi-byte Data

• Support for DB2 Universal Database on Intel Hardware

• Data Dictionary Support for DB2 Universal Database

Chapter 1
Features

1-10

Heterogeneous Services Architecture

Oracle Database Gateway for DRDA utilizes the Oracle Heterogeneous Services
component within the Oracle database. Heterogeneous Services is the building block
for the next generation of Oracle database gateways.

For detailed information about heterogeneous services, refer to Oracle Database
Heterogeneous Connectivity User's Guide.

Performance Enhancements

Oracle Database Gateway for DRDA contains several internal performance
enhancements. This product has shown major improvements in response time and
CPU utilization for all relevant address spaces for a variety of workloads compared to
version 10 gateways. The actual performance improvement at your site might vary,
depending on your installation type and workload.

Fetch Reblocking

The array size of the application for SELECT is effective between the application and the
Oracle database. However, the array blocksize and the block fetch between the Oracle
database and the gateway are controlled by two Heterogeneous Services initialization
parameters: HS_RPC_FETCH_SIZE and HS_RPC_FETCH_REBLOCKING. These parameters are
specified in the gateway initialization file. Refer to Oracle Database Heterogeneous
Connectivity User's Guide for more information.

Oracle Database Passthrough Supported

You can use the Oracle database DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE method to
pass commands or statements available in your DRDA server through the gateway.

Retrieving Result Sets Through Passthrough

Oracle Database Gateway for DRDA provides a facility to retrieve result sets from a
SELECT statement issued with passthrough. Refer to "Retrieving Results Sets Through
Passthrough" for additional information.

Support for TCP/IP

This release of the gateway only supports the TCP/IP communication protocol
between the gateway and the DRDA server. Refer to Oracle Database Gateway
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), Oracle Solaris on x86-64 (64-Bit) and HP-
UX Itanium, or Oracle Database Gateway Installation and Configuration Guide for
Microsoft Windows depending on your platform.

Native Semantics

This release of the gateway supports the ability to selectively enable or disable post-
processing of various SQL functions by the DRDA server. Refer to "Native Semantics"
for further information.

Columns Supported in a Result Set

Oracle Database Gateway for DRDA supports up to 1000 columns in a result set.

Chapter 1
Features

1-11

EXPLAIN_PLAN Improvement

The EXPLAIN_PLAN table contains the actual SQL statements passed to the DRDA
server from the Oracle database through the gateway.

Heterogeneous Database Integration

The gateway support for ANSI-standard SQL enables read/write access to DRDA
databases. Even if your data exists on different platforms in different applications, new
applications can use all data, regardless of location.

Minimum Impact on Existing Systems

The gateway does not require installation of additional Oracle software on your OS/
390 (MVS), AS/400, UNIX based, or Microsoft Windows target system. The database
interface that it uses is provided by IBM and is built into the DRDA database products
and network facilities that already exist on these platforms.

Configuring an IBM system for DRDA access typically consists of defining the network
resources involved and establishing access security definitions specific to the target
database.

Application Portability

The gateway's ability to interface with heterogeneous databases makes it possible to
develop a single set of portable applications that can be used against both Oracle and
IBM databases, and any other databases for which Oracle provides gateways.

Remote Data Access

Location flexibility is maximized because the gateway architecture permits network
connections between each of the components. The application can use the Oracle
client-server capability to connect to a remote Oracle database through Oracle Net.
The Oracle database can connect to a remote gateway using a database link. The
gateway connects to a DRDA server through network facilities.

The benefits of remote access are:

• Provides a means to allocate the appropriate resource to a given task

You can, for example, move application development off expensive processors
and onto cost-efficient workstations or microcomputers.

• Expands the number of available data sources

Without remote access, you are limited to the data available in the local
environment. With remote access, only your networks limit your data sources.

• Provides a means to tailor an application environment to a given user

For example, some users prefer a block-mode terminal environment, while others
prefer a bit-mapped, graphics driven terminal environment. Remote access can
satisfy both because you are not constrained by the interface environment
imposed by the location of your data.

Support for Distributed Applications

Because the gateway gives your application direct access to DRDA data, you
eliminate the need to upload and download large quantities of database data to other
processors. Instead, you can access data where it is, when you want it, without having

Chapter 1
Features

1-12

to move the data between machines and risk unsynchronized and inconsistent data.
Avoiding massive data replication can also reduce aggregate disk storage
requirements over all your systems.

However, if your system design requires moving data among the machines in a
network, SQL*Plus and the gateway can simplify the data transfer. With a single
SQL*Plus command, you can move entire sets of data from one node of the network
to another and from one database to another.

You can pass commands and statements specific to your DRDA database through the
gateway to be executed by the DRDA database. For example, you can pass native
DB2 SQL through the gateway for DB2 to execute. You can also execute stored
procedures defined in non-Oracle databases.

Application Development and End User Tools

Through the gateway, Oracle extends the range of application development and end-
user tools you can use to access your IBM databases. These tools increase
application development and user productivity by reducing prototype, development,
and maintenance time. Current Oracle database users do not have to learn a new set
of tools to access data stored in DRDA databases. Instead, they can access Oracle
database and DRDA data with a single set of tools.

With the gateway and the application development tools available from Oracle you can
develop a single set of applications to access Oracle database and DRDA data. Users
can use the decision support tools available from Oracle to access Oracle database
and DRDA data. These tools can run on remote machines connected through Oracle
Net to the Oracle database.

When designing applications, keep in mind that the gateway is designed for retrieval
and relatively light transaction loads. The gateway is not currently designed to be a
heavy transaction processing system.

Password Encryption Utility

Oracle Database Gateway for DRDA includes a utility to support encryption of plain-
text passwords in the Gateway Initialization File. Refer to Chapter 15, "Security
Considerations" in Oracle Database Gateway Installation and Configuration Guide for
IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-
Bit), Oracle Solaris on x86-64 (64-Bit) and HP-UX Itanium or Oracle Database
Gateway Installation and Configuration Guide for Microsoft Windows for details.

Support for DB2 UDB for z/OS Stored Procedures

Oracle Database Gateway for DRDA supports the native stored procedures.

IBM DB2 Universal Database Support

Oracle Database Gateway for DRDA supports IBM DB2 Universal Database.

DB2 z/OS ASCII and UNICODE Table Support

Oracle Database Gateway for DRDA supports EBCDIC, ASCII, and UNICODE table
for DB2 z/OS. The character set selection is defined during table creation.

Chapter 1
Features

1-13

Read-Only Support

The current release enables the gateway to be configured as a read-only gateway. In
this mode, the user will not be able to modify data or call remote procedures at the
DRDA database.

Support for Graphic and Multi-byte Data

The current release of the gateway adds support for DB2 GRAPHIC and VARGRAPHIC data
types. Refer to Developing Applications for more information.

Support for DB2 Universal Database on Intel Hardware

The current release of the gateway adds support for DRDA servers running on
Microsoft Windows and Linux on Intel hardware.

Data Dictionary Support for DB2 Universal Database

The current release of the gateway also provides Oracle data dictionary support for
DB2 UDB.

Chapter 1
Features

1-14

2
Release Information

The following sections describe release information specific to the Oracle Database
Gateway for DRDA.

• Product Set

• Changes and Enhancements

• Product Migration

• Known Problems

• Known Restrictions

2.1 Product Set
The following product components are included in the product installation media:

• Oracle Database Gateway for DRDA, 12c Release 2 (12.2)

• Oracle Net, 12c Release 2 (12.2)

2.2 Changes and Enhancements
The following sections describe the changes and enhancements unique to this release
of the gateway:

• Remote Insert Rowsource

• Gateway Password Encryption Tool

• Result Sets and Stored Procedures

2.2.1 Remote Insert Rowsource

By Oracle Database design, some distributed statement must be executed at the
database link site. But in certain circumstances, there is data needed to execute these
queries that must be fetched from the originating Oracle Database. Under
homogeneous connections, the remote Oracle database would call back the source
Oracle database for such data. But in heterogeneous connections, this is not viable, as
this means that the Foreign Data Store would have to query call back functions, or
data, that can only be provided by the Oracle instance that issued the query. In
general, these kinds of statements are not something that can be supported through
the Oracle Database Gateway.

The following categories of SQL statements results in a callback:

• Any DML with a sub-select, which refers to a table in Oracle database.

2-1

• Any DELETE, INSERT, UPDATE or "SELECT... FOR UPDATE..." SQL statement containing
SQL functions or statements that needs to be executed at the originating Oracle
database.

These SQL functions include USER, USERENV, and SYSDATE; and involve the selection
of data from the originating Oracle database.

• Any SQL statement that involves a table in Oracle database, and a LONG or LOB
column in a remote table.

A new remote insert rowsource feature has been added to allow remote insert
requiring local oracle data to work through the Oracle database and Oracle Database
Gateway. This functionality is new, and requires the Oracle database, and the Oracle
Database Gateway to be version 12.2 or newer.

An example of a remote INSERT statement that can work through the remote insert
rowsource feature is as follows:

INSERT INTO gateway_table@gateway_link select * from local_table;

2.2.2 Gateway Password Encryption Tool
The Gateway Password Encryption tool (g4drpwd) has been replaced by a generic
feature that is now part of Heterogeneous Services. Refer to Chapter 15, "Security
Considerations" in Oracle Database Gateway Installation and Configuration Guide for
IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-
Bit), Oracle Solaris on x86-64 (64-Bit) and HP-UX Itanium or Oracle Database
Gateway Installation and Configuration Guide for Microsoft Windows for details.

2.2.3 Result Sets and Stored Procedures
The Oracle Database Gateway for DRDA provides support for stored procedures that
return result sets. By default, all stored procedures and functions do not return a result
set to the user. To enable result sets, set the HS_FDS_RESULTSET_SUPPORT parameter in
the initialization parameter file.

See Also:

Initialization Parameters for information about editing the initialization
parameter file and the HS_FDS_RESULTSET_SUPPORT parameter. For further
information about Oracle support for result sets in non-Oracle databases see
Oracle Database Heterogeneous Connectivity User's Guide.

Note:

If you set the HS_FDS_RESULTSET_SUPPORT gateway initialization parameter, you
must change the syntax of the procedure execute statement for all existing
stored procedures or errors will occur.

When accessing stored procedures with result sets through the Oracle Database
Gateway for DRDA, you will be in the sequential mode of Heterogeneous Services.

Chapter 2
Changes and Enhancements

2-2

The gateway returns the following information to Heterogeneous Services during
procedure description:

• All the input arguments of the remote stored procedure

• None of the output arguments

• One out argument of type ref cursor (corresponding to the first result set returned
by the stored procedure)

Client programs have to use the virtual package function
DBMS_HS_RESULT_SET.GET_NEXT_RESULT_SET to get the ref cursor for subsequent result
sets. The last result set returned is the out argument from the procedure.

The limitations of accessing result sets are as follows:

• Result sets returned by a remote stored procedure have to be retrieved in the
order in which they were placed on the wire.

• On execution of a stored procedure, all result sets returned by a previously
executed stored procedure will be closed, regardless of whether the data has been
completely retrieved or not.

In the following example, the UDB stored procedure is executed to fetch the contents
of the EMP and DEPT tables from UDB:

CREATE PROCEDURE REFCURPROC (IN STRIN VARCHAR(255), OUT STROUT VARCHAR(255))
 RESULT SETS 3 LANGUAGE SQL
BEGIN
 DECLARE TEMP CHAR (20);
 DECLARE C1 CURSOR WITH RETURN TO CALLER FOR
 SELECT * FROM TKHOEMP;
 DECLARE C2 CURSOR WITH RETURN TO CALLER FOR
 SELECT * FROM TKHODEPT;
 OPEN C1;
 OPEN C2;
 SET STROUT = STRIN;
 END

2.3 Product Migration
Refer to Oracle Database Gateway Installation and Configuration Guide for IBM AIX
on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), Oracle
Solaris on x86-64 (64-Bit) and HP-UX Itanium or Oracle Database Gateway
Installation and Configuration Guide for Microsoft Windows for information on
migrating product configurations from previous releases for additional changes or
requirements.

2.4 Known Problems
The problems that are documented in the following section are specific to the Oracle
Database Gateway for DRDA, and are known to exist in this release of the product. If
you have any questions or concerns about these problems, contact Oracle Support
Services.

A current list of problems is available online. Contact your local Oracle office for
information about accessing this online information.

Chapter 2
Product Migration

2-3

2.5 Known Restrictions
The following restrictions are known to exist for the products in the 12c Release 2
(12.2). Restrictions are not scheduled to change in future releases. Refer to
Developing Applications, for information or limitations when developing your
applications.

2.5.1 DB2 Considerations
The following considerations exist in the 12c Release 2 (12.2):

2.5.1.1 DD Basic Tables and Views
The owner of DD basic tables and views is OTGDB2. This cannot be changed.

2.5.1.2 SUBSTR Function Post-Processed
The SUBSTR function can be used with the Oracle database in ways that are not
compatible with a DRDA server, such as DB2 UDB for z/OS. Therefore, the SUBSTR
function is post-processed. However, it is possible to allow the server to process it
natively using the "Native Semantics" feature. Refer to Developing Applications, for
details.

2.5.1.3 Data type Limitations
Refer to "DRDA Data type to Oracle Data type Conversion " for detailed information
about data types.

2.5.1.4 Null Values and Stored Procedures
Null values are not passed into, or returned from, calls to stored procedures through
the gateway.

2.5.1.5 String Concatenation of Numbers
DB2 Universal Database does not support string concatenation of numbers. For
example,

SELECT 2||2 FROM table@dblink

is not allowed.

2.5.1.6 GLOBAL_NAMES Initialization Parameter
If GLOBAL_NAMES is set to TRUE in the Oracle database INIT.ORA file, then in order to be
able to connect to the gateway, you must specify the Heterogeneous Services (HS)
initialization parameter, HS_DB_DOMAIN, in the Gateway Initialization Parameter file to
match the value of the DB_DOMAIN parameter of the Oracle database. Refer to Oracle
Database Gateway Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), Oracle Solaris on
x86-64 (64-Bit) and HP-UX Itanium or Oracle Database Gateway Installation and

Chapter 2
Known Restrictions

2-4

Configuration Guide for Microsoft Windows , depending on your platform, for more
information.

2.5.1.7 DRDA Package and DB2 considerations
The gateway utilizes a package for statement execution. This package will be implicitly
bound upon the first time the gateway connects to the target DB2 system. Ensure that
the user ID connecting to the DB2 system has the necessary privileges to bind a
package. Refer to Oracle Database Gateway Installation and Configuration Guide for
IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-
Bit), Oracle Solaris on x86-64 (64-Bit) and HP-UX Itanium or Oracle Database
Gateway Installation and Configuration Guide for Microsoft Windows , depending on
your platform, for more information.

2.5.1.8 Date Arithmetic
In general, the following types of SQL expression forms do not work correctly with the
gateway because of DB2 limitations:

date + number
number + date
date - number
date1 - date2

DB2 does not allow number addition or subtraction with date data types. The date and
number addition and subtraction (date + number, number + date, date - number) forms
are sent through to the DB2 where they are rejected.

Also, DB2 does not perform date subtraction consistently. When you subtract two
dates (date1 - date2), differing interpretations of date subtraction in DB2 cause the
results to vary by server.

Note:

Avoid date arithmetic expressions in all gateway SQL expressions until date
arithmetic problems are resolved.

2.5.1.9 Row Length Limitation
Because of a restriction of the DRDA architecture, rows with aggregate length
exceeding 32 KB in DRDA representation cannot be stored or retrieved.

2.5.1.10 LONG Data type in SQL*Plus
SQL*Plus cannot fetch LONG columns from the Oracle Database Gateway for DRDA.

2.5.1.11 Stored Procedures and Transaction Integrity
IBM DB2 has introduced a feature called Commit on Return for stored procedures.
This feature allows DB2 to perform an automatic commit after a stored procedure runs
successfully. This feature is enabled when the procedure is created. To ensure data
integrity, the Oracle Database Gateway for DRDA does not support this feature in a

Chapter 2
Known Restrictions

2-5

heterogeneous environment. When attempting to call a stored procedure that has this
feature enabled, through the gateway, the gateway will return an error, ORA-28526 or
PLS-00201 (identifier must be declared).

2.5.2 SQL Limitations
The SQL limitations for Oracle Database Gateway for DRDA are described in the
following sections:

2.5.2.1 Oracle ROWID Column
The DB2 ROWID column is not compatible with the Oracle ROWID column. Because the
ROWID column is not supported, the following restrictions apply:

• UPDATE and DELETE are not supported with the WHERE CURRENT OF CURSOR clause. To
update or delete a specific row through the gateway, a condition style WHERE clause
must be used. (Bug No. 205538)

When UPDATE and DELETE statements are used in precompiler and PL/SQL
programs, they rely internally on the Oracle ROWID function.

• Snapshots between Oracle database and DB2 are not supported.

Snapshots rely internally on the Oracle ROWID column.

2.5.2.2 Oracle Bind Variables
Oracle bind variables become SQL parameter markers when used with the gateway.
Therefore, the bind variables are subject to the same restrictions as SQL parameter
markers.

For example, the following statements are not allowed:

WHERE :x IS NULL
WHERE :x = :y

2.5.2.3 CONNECT BY Is Not Supported
Oracle Database Gateway for DRDA does not support CONNECT BY in SELECT
statements.

Chapter 2
Known Restrictions

2-6

3
Using the Oracle Database Gateway for
DRDA

Using the Oracle Database Gateway for DRDA involves connecting to the
corresponding gateway system and the remote DRDA database associated with the
gateway.

• DRDA Gateway Features

• Processing a Database Link

• Accessing the Gateway

• Accessing i5/OS File Members

• Using the Synonym Feature

• Performing Distributed Queries

• Replicating in a Heterogeneous Environment

• Copying Data from Oracle Database to DRDA Server

• Copying Data from DRDA Server to Oracle Database

• Tracing SQL Statements

3.1 DRDA Gateway Features
This section describes the following DRDA gateway features:

• CHAR Semantics

• Multi-byte Character Sets Ratio Suppression

• IPv6 Support

• Gateway Session IDLE Timeout

3.1.1 CHAR Semantics
This feature allows the gateway to optionally run in CHAR Semantics mode. Rather than
always describing UDB CHAR columns as CHAR(n BYTE), this feature describes them as
CHAR(n CHAR) and VARCHAR(n CHAR). The concept is similar to Oracle database CHAR
Semantics. You need to specify HS_NLS_LENGTH_SEMANTICS=CHAR gateway parameter to
activate this option. Refer to Initialization Parameters for more detail.

3.1.2 Multi-byte Character Sets Ratio Suppression
This feature optionally suppresses the ratio expansion from UDB database to Oracle
database involving multi-byte character set. By default, Oracle Database Gateway for
DRDA assumes the worst ratio to prevent data being truncated or insufficient buffer
size situation. However, if you have specific knowledge of your UDB database and do

3-1

not want the expansion to occur, you can specify HS_KEEP_REMOTE_COLUMN_SIZE
parameter to suppress the expansion. Refer to Initialization Parameters for more
detail.

3.1.3 IPv6 Support
Besides full IPv6 support between Oracle databases and the gateway, IPv6 is also
supported between this gateway and UDB database. Refer to the HS_FDS_CONNECT_INFO
parameter in Initialization Parameters for more detail.

3.1.4 Gateway Session IDLE Timeout
You can optionally choose to terminate long idle gateway sessions automatically with
the gateway parameter HS_IDLE_TIMEOUT. Specifically, when a gateway session is idle
for more than the specified time limit, the gateway session is terminated with any
pending update rolled back

3.2 Processing a Database Link
The database and application administrators of a distributed database system are
responsible for managing the database links that define paths to the Oracle Database
Gateway for DRDA. The tasks are as follows:

• Creating Database Links

• Dropping Database Links

• Examining Available Database Links

• Limiting the Number of Active Database Links

3.2.1 Creating Database Links
To create a database link and define a path to a remote database, use the CREATE
DATABASE LINK statement. The CONNECT TO clause specifies the remote user ID and
password to use when creating a session in the remote database. The USING clause
points to a tnsnames.ora connect descriptor.

Note:

If you do not specify a user ID and a password in the CONNECT TO clause, then
the Oracle database user ID and password are used.

See Also:

Refer to Chapter 15, "Security Considerations" in Oracle Database Gateway
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit),
Linux x86-64, Oracle Solaris on SPARC (64-Bit), Oracle Solaris on x86-64
(64-Bit) and HP-UX Itanium or Oracle Database Gateway Installation and
Configuration Guide for Microsoft Windows for details.

Chapter 3
Processing a Database Link

3-2

The following example creates a database link to access information in the DRDA
server:

CREATE PUBLIC DATABASE LINK dblink
CONNECT TO userid IDENTIFIED BY password
USING 'tns_name_entry';

where:

dblink is the complete database link name.

user id is the user ID used to establish a session in the remote database. This user ID
must be a valid DRDA server user ID. It must be authorized to any table or file on the
DRDA server that is referenced in the SQL commands. Length restrictions on user IDs
are dependent on the authorization system used by the DRDA server. In many cases
this limit is eight characters, but in other cases, it may be longer. See DB2 platform
documentation for limitations.

password is the password used to establish a session in the remote database. This
password must be a valid DRDA server password. Length restrictions on passwords
are dependent on the authorization system used by the DRDA server. In many cases
this limit is eight characters, but in other cases, it may be longer. See DB2 platform
documentation for limitations.

tns_name_entry specifies the Oracle Net connect descriptor used to identify the
gateway.

Guidelines for Database Links

Database links are active for the duration of a gateway session. If you want to close a
database link during a session, then use the ALTER SESSION CLOSE DATABASE LINK dblink
statement.

3.2.2 Dropping Database Links
You can drop a database link with the DROP DATABASE LINK statement. For example, to
drop the public database link named DBLINK, use the statement:

DROP PUBLIC DATABASE LINK dblink;

Note:

A database link should not be dropped if it is required to resolve an in-doubt
distributed transaction. Refer to Oracle Database Administrator's Guide for
additional information about dropping database links.

See Also:

Oracle Database SQL Language Reference for additional information about
dropping database links

Chapter 3
Processing a Database Link

3-3

3.2.3 Examining Available Database Links
The data dictionary of each database stores the definitions of all the database links in
that database. The USER_DB_LINKS data dictionary view shows the privately defined
database links, that is, those accessible to the current Oracle user. The ALL_DB_LINKS
data dictionary views show all accessible (public and private) database links.

3.2.4 Limiting the Number of Active Database Links
You can limit the number of connections from a user process to remote databases with
the parameter OPEN_LINKS. This parameter controls the number of remote connections
that any single user process can concurrently use with a single SQL statement. Refer
to Oracle Database Administrator’s Guide for additional information about limiting the
number of active database links.

3.3 Accessing the Gateway
To access the gateway, complete the following steps on the Oracle database:

1. Example 3-1

2. Example 3-2

3. Example 3-3

Example 3-1 Login to the Oracle Database

Login to the Oracle database to access the gateway

Example 3-2 Create a database link to the DRDA Database

For example, use:

CREATE PUBLIC DATABASE LINK DRDA
CONNECT TO ORADRDA IDENTIFIED BY oracle_pw
USING 'tns_name_entry'

Example 3-3 Retrieve data from the DRDA Database

This query fetches the TABLE table in the schema SECURE, using the name ORADRDA as the
DRDA server user profile. The ORADRDA user profile must have the appropriate
privileges on the DRDA server to access the SECURE.TABLE files:

SELECT * FROM SECURE.TABLE@DRDA

The following is an example of the error messages that are displayed if insufficient
privileges are displayed:

ORA-28500: connection from ORACLE to a non-Oracle system returned this message:
[Oracle][ODBC DB2 Wire Protocol driver][UDB DB2 for Windows, UNIX, and
Linux]ORADRDA DOES NOT HAVE PRIVILEGE TO PERFORM OPERATION SELECT ON THIS
OBJECT SECURE.TABLE.
ORA-02063: preceding 2 lines from DRDA

Chapter 3
Accessing the Gateway

3-4

3.4 Accessing i5/OS File Members
Access to i5/OS files and file members is not specifically controlled by DRDA or the
gateway. However, DB2 UDB for iSeries uses a naming convention that implies that
the file member name is the same as the name of the file being addressed. For
example, accessing schema.table implies that table is the file name and also that table
is the file member name being accessed.

To access file members with names that differ from the associated file name, you must
create a view within the file so that DB2 UDB for iSeries can reference the correct file
member.

One method for creating this view involves issuing the i5/OS command Create Logical
File (CRTLF). This action creates a logical association between the file name and the
file member name.

See Also:

For additional information, refer to the i5/OS Command Language (CL)
documentation or to the DB2 UDB for iSeries SQL reference document.

3.5 Using the Synonym Feature
You can provide complete data, location, and network transparency by using the
synonym feature of Oracle database. When a synonym is defined, the user need not
know the underlying table or network protocol being used. A synonym can be public,
which means it is available to all Oracle users. A synonym can also be defined as
private, available only to the user who created it. Refer to Oracle Database Reference
for details on the synonym feature.

The following statement creates a system-wide synonym for the EMP file in the DRDA
server with ownership of ORACLE:

CREATE PUBLIC SYNONYM EMP FOR ORACLE.EMP@DRDA

3.6 Performing Distributed Queries
The Oracle Database Gateway technology enables the execution of distributed
queries that join data in an Oracle database and in DRDA servers and data from any
other data store for which Oracle provides a gateway. These complex operations can
be completely transparent to the users requesting the data.

The following example joins data between an Oracle database, DB2 UDB for z/OS,
and a DRDA server:

SELECT o.custname, p.projno, e.ename, sum(e.rate*p.hours)
FROM orders@DB2 o, EMP@ORACLE7 e, projects@DRDA p
WHERE o.projno = p.projno
AND p.empno = e.empno
GROUP BY o.custname, p.projno, e.ename

Chapter 3
Accessing i5/OS File Members

3-5

A combination of views and synonyms, using the following SQL statements, keeps the
process of distributed queries transparent to the user:

CREATE SYNONYM orders for orders@DB2;
CREATE SYNONYM PROJECTS for PROJECTS@DRDA;
CREATE VIEW details (custname,projno,ename,spend)
AS
SELECT o.custname, p.projno, e.ename, sum(e.rate*p.hours)
FROM orders o, EMP e, projects p
WHERE o.projno = p.projno
AND p.empno = e.empno
GROUP BY o.custname, p.projno, e.ename

The following SQL statement retrieves information from these three data stores in one
command:

SELECT * FROM DETAILS;

The results of this command are:

CUSTNAME PROJNO ENAME SPEND
--------- --------- --------- ---------
ABC Co. 1 Jones 400
ABC Co. 1 Smith 180
XYZ Inc. 2 Jones 400
XYZ Inc. 2 Smith 180

3.6.1 Two-Phase Commit Processing
To fully participate in a two-phase commit transaction, a server must support the
PREPARE TRANSACTION statement. The PREPARE TRANSACTION statement ensures that all
participating databases are prepared to COMMIT or to ROLLBACK a specific unit of work.

Oracle database supports the PREPARE TRANSACTION statement. Any number of Oracle
database can participate in a distributed two-phase commit transaction. The PREPARE
TRANSACTION statement is performed automatically when a COMMIT is issued explicitly by
an application or implicitly at the normal end of the application.

The gateway does not support the PREPARE TRANSACTION statement. This limits the two-
phase commit protocol when the gateway participates in a distributed transaction. The
gateway becomes the commit focal point site of a distributed transaction. The gateway
is configured as commit/confirm, so it is always the commit point site, regardless of the
commit point strength setting. The gateway commits the unit of work after verifying that
all Oracle databases in the transaction have successfully committed their work. The
gateway must coordinate the distributed transaction so that only one gateway instance
can participate in a two-phase commit transaction.

Two-phase commit transactions are recorded in the HS_TRANSACTION_LOG table (see the
initialization parameter HS_FDS_TRANSACTION_LOG), which is created during installation.
This table is created when the o2pc.sql script is run. The owner of this table also owns
the package. Refer to "DRDA Gateway Package Binding Considerations" on Oracle
Database Gateway Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), Oracle Solaris on
x86-64 (64-Bit) and HP-UX Itanium or Oracle Database Gateway Installation and
Configuration Guide for Microsoft Windows, depending on your platform, for more
information.

Chapter 3
Performing Distributed Queries

3-6

3.6.2 Distributed DRDA Transactions
Because the HS_TRANSACTION_LOG table is used to record the status of a gateway
transaction, this table must be in at the database where the DRDA update takes place.
Therefore, all updates that take place over the gateway must be local to the IBM
database.

Note:

• Updates to the HS_TRANSACTION_LOG table cannot be part of an IBM
distributed transaction.

• The default commit mode on OS400 V5R1 and later is READ UNCOMMITTED
(*CHG) and this requires files to be journaled. Hence, the object specified
by the HS_TRANSACTION_LOG initialization parameter must be journaled.

For additional information about the two-phase commit process, refer to Oracle
Database Heterogeneous Connectivity User's Guide.

3.7 Replicating in a Heterogeneous Environment
Oracle Database Gateway for DRDA provides a number of options for replicating
Oracle and non-Oracle data throughout the enterprise.

Oracle Database Triggers

When updates are made to Oracle database, synchronous copies of Oracle and non-
Oracle data can be maintained automatically by using Oracle database triggers.

Oracle Snapshots

Oracle Database Gateway for DRDA can use the Oracle snapshot feature to
automatically replicate non-Oracle data into Oracle database. The complete refresh
capability of Oracle snapshot can be used to propagate a complete copy or a subset of
the non-Oracle data into Oracle database at user-defined intervals.

3.8 Copying Data from Oracle Database to DRDA Server
This Oracle SQL INSERT command now works with the CALLBACK feature:

INSERT INTO DRDA_table SELECT * FROM local_table

Alternatively, you could use sqlplus COPY command. The COPY command enables you to
copy data from Oracle database to a DRDA server. To copy data from your Oracle
database to the DRDA server, you can also use:

COPY FROM username/password@connect_identifier -
INSERT destination_table -
USING query

Chapter 3
Replicating in a Heterogeneous Environment

3-7

For example, to select all rows from the local Oracle EMP table, insert them into the EMP
table on the DRDA server, and commit the transaction, use:

COPY FROM scott/tiger@ORACLE -
INSERT scott.EMP@DRDA -
USING SELECT * FROM EMP

The SQL*Plus COPY command supports APPEND, CREATE, INSERT, and REPLACE commands.
However, INSERT is the only command supported when copying to the DRDA server.
For more information about the COPY command, refer to SQL*Plus User's Guide and
Reference.

3.9 Copying Data from DRDA Server to Oracle Database
The CREATE TABLE command enables you to copy data from a DRDA server to Oracle
database. To create a table on your Oracle database and to insert rows from a DRDA
server table, use:

CREATE TABLE table_name
AS query

A SQL INSERT into an Oracle table can be done selecting data from the gateway as
follows:

INSERT INTO local_table SELECT * FROM drda_table

The following example creates the table EMP in your local Oracle database and inserts
the rows from the EMP table on the DRDA server:

CREATE TABLE EMP
AS SELECT * FROM scott.EMP@DRDA

Alternatively, you can use the SQL*Plus COPY command to copy data from a DRDA
server to Oracle database. For more information about the COPY command, refer to
SQL*Plus User's Guide and Reference.

3.10 Tracing SQL Statements
SQL statements issued through the gateway can be changed before reaching the
DRDA database. These changes are made to make the format acceptable to the
gateway or to make Oracle SQL compatible with DRDA server SQL. Oracle database
and the gateway can change the statements depending on the situation.

For various reasons, you might need to assess whether the gateway has altered the
statement correctly or whether the statement could be rewritten to improve
performance. SQL tracing is a feature that allows you to view the changes made to a
SQL statement by the Oracle database or the gateway.

SQL tracing reduces gateway performance. Use tracing only when testing and
debugging your application. Do not enable SQL tracing when the application is running
in a production environment. For more information about enabling SQL tracing, refer to
the section on "SQL Tracing and the Gateway " in Error Messages_ Diagnosis_ and
Reporting.

Chapter 3
Copying Data from DRDA Server to Oracle Database

3-8

4
Developing Applications

The following sections provide information that is specific to the Oracle Database
Gateway for DRDA.

• Gateway Appearance to Application Programs

• Using Oracle Stored Procedures with the Gateway

• Using DRDA Server Stored Procedures with the Gateway

• Database Link Behavior

• Oracle Database SQL Construct Processing

• Native Semantics

• DRDA Data type to Oracle Data type Conversion

• Passing Native SQL Statements through the Gateway

• Oracle Data Dictionary Emulation on a DRDA Server

4.1 Gateway Appearance to Application Programs
An application that is written to access information in a DRDA database interfaces with
an Oracle database. When developing applications, keep the following information in
mind:

• You must define the DRDA database to the application by using a database link
that is defined in the Oracle database. Your application should specify tables that
exist on a DRDA database by using the name that is defined in the database link.
For example, assume that a database link is defined so that it names the DRDA
database link DRDA, and also assume that an application needs to retrieve data
from an Oracle database and from the DRDA database. Use the following SQL
statement joining two tables together in your application:

SELECT EMPNO, SALARY
FROM EMP L, EMPS@DRDA R
WHERE L.EMPNO = R.EMPNO

In this example, EMP is a table on an Oracle database, and EMPS is a table on a
DRDA server. You can also define a synonym or a view on the DRDA server table,
and access the information without the database link suffix.

• You can read and write data to a defined DRDA database. SELECT, INSERT, UPDATE,
and DELETE are all valid operations.

• A single transaction can write to one DRDA database and to multiple Oracle
databases.

• Single SQL statements, using JOINs, can refer to tables in multiple Oracle
databases, in multiple DRDA databases, or in both.

4-1

4.1.1 Fetch Reblocking
Oracle database supports fetch reblocking with the HS_RPC_FETCH_REBLOCKING
parameter.

When the value of this parameter is set to ON (the default), the array size for SELECT
statements is determined by the HS_RPC_FETCH_SIZE value. The HS_RPC_FETCH_SIZE
parameter defines the number of bytes sent with each buffer from the gateway to the
Oracle database. The buffer may contain one or more qualified rows from the DRDA
server. This feature can provide significant performance enhancements, depending on
your application design, installation type, and workload.

The array size between the client and the Oracle database is determined by the
Oracle application. Refer to Oracle Database Gateway Installation and Configuration
Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on
SPARC (64-Bit), Oracle Solaris on x86-64 (64-Bit) and HP-UX Itanium or Oracle
Database Gateway Installation and Configuration Guide for Microsoft Windows ,
depending on your platform, for more information.

4.2 Using Oracle Stored Procedures with the Gateway
The gateway stored procedure support is an extension of Oracle stored procedures.
An Oracle stored procedure is a schema object that logically groups together a set of
SQL and other PL/SQL programming language statements to perform a specific task.
Oracle stored procedures are stored in the database for continued use. Applications
use standard Oracle PL/SQL to call stored procedures.

Oracle stored procedures can be located in a local instance of Oracle database and in
a remote instance. Figure 4-1 illustrates two stored procedures: oraproc1 is a
procedure stored in the ORA1 Oracle instance, and oraproc2 is a procedure stored in
the ORA2 Oracle instance.

Chapter 4
Using Oracle Stored Procedures with the Gateway

4-2

Figure 4-1 Calling Oracle Stored Procedures in a Distributed Oracle Environment

Oracle Application

Program Code

.

.

oraproc1 (ename,

empnc,sal);

.

oraproc2@ora2 (ename,

empnc,sal);

.

.

ProgramCode

oraproc1 Oracle Stored Procedure

DECLARE

.

.

BEGIN

.

.

UPDATE...oratab1

.

.

INSERT...oratab2@ora2

.

.

END

oraproc2 Oracle Stored Procedure

DECLARE

.

.

BEGIN

.

.

UPDATE...oratab1

.

.

INSERT...oratab2@ora2

.

.

END

Oracle

Database

ORA1

ORA2

To maintain location transparency in the application, a synonym can be created:

CREATE SYNONYM oraproc2 FOR oraproc2@ora2;

After this synonym is created, the application no longer needs to use the database link
specification to call the stored procedure in the remote Oracle instance.

In Figure 4-1, the second statement in oraproc1 is used to access a table in the ORA2
instance. In the same way, Oracle stored procedures can be used to access DB2
tables through the gateway.

4.3 Using DRDA Server Stored Procedures with the
Gateway

The procedural feature of the gateway enables invocation of native DRDA server
stored procedures. After the stored procedure is defined to the DRDA server, the
gateway is able to use the existing DRDA server definition to run the procedure. The
gateway does not require special definitions to call the DB2 stored procedure.
Standard Oracle PL/SQL is used by the Oracle application to run the stored
procedure.

Chapter 4
Using DRDA Server Stored Procedures with the Gateway

4-3

In Figure 4-2, an Oracle application calls the empproc stored procedure that is defined
to the DRDA server (for example, DB2 UDB for z/OS).

Figure 4-2 Running DRDA Server Stored Procedures

DB2 empproc

Stored

Procedure

Oracle Database

Gateway for DRDA

ProgramCode

.

.

.

EXEC SQL UPDATE ...

.

.

.

EXEC SQL INSERT ...

.

.

.

ProgramCode

ProgramCode

.

.

empproc@db2(emp,

pj,act,emt,ems,

erre,type,code);

.

.

.

ProgramCode

Oracle Application

DRDA Server

(for example, DB/MVS)

Oracle

Database

From the perspective of the application, running the DB2 stored procedure is no
different from invoking a stored procedure at a remote Oracle database instance.

4.3.1 Oracle Application and DRDA Server Stored Procedure
Completion

For an Oracle application to call a DB2 stored procedure, it is first necessary to create
the DB2 stored procedure on the DB2 system by using the procedures documented in
the IBM reference document for DB2 SQL.

After the stored procedure is defined in DB2, the gateway is able to access the data
using a standard PL/SQL call. For example, an employee name, John Smythe, is
passed to the DB2 stored procedure REVISE_SALARY. The DB2 stored procedure
retrieves the salary value from the DB2 database in order to calculate a new yearly
salary for John Smythe. The revised salary that is returned as result is used to update
the EMP table of Oracle database:

DECLARE
 INPUT VARCHAR2(15);
 RESULT NUMBER(8,2);
BEGIN
 INPUT := ‘JOHN SMYTHE';
 REVISE_SALARY@DB2(INPUT, RESULT);

Chapter 4
Using DRDA Server Stored Procedures with the Gateway

4-4

 UPDATE EMP SET SAL = RESULT WHERE ENAME = INPUT;
END;

When the gateway receives a call to run a stored procedure on the DRDA server, it
first does a lookup of the procedure name in the server catalog. The information that
defines a stored procedure is stored in different forms on each DRDA server. For
example, DB2 UDB for iSeries uses the tables QSYS2.SYSPROCS and QSYS2.SYSPARMS. The
gateway has a list of known catalogs to search, depending on the DRDA server that is
being accessed.

The search order of the catalogs is dependent on whether the catalogs support
Location designators (such as LUNAME in SYSIBM.SYSPROCEDURES), and authorization or
owner IDs (such as AUTHID in SYSIBM.SYSPROCEDURES or OWNER in SYSIBM.SYSROUTINES).

Some DRDA servers allow blank or public authorization qualifiers. If the DRDA server
that is currently connected supports this form of qualification, then the gateway will
apply those naming rules when searching for a procedure name in the catalog.

The matching rules will first search for a public definition, and then an owner qualified
procedure name. For more detailed information, refer to the IBM reference document
for DB2 SQL.

4.3.2 Procedural Feature Considerations with DB2
The following are special considerations for using the procedural feature with the
gateway:

• PL/SQL records cannot be passed as parameters when invoking a DB2 stored
procedure.

• The gateway supports the GENERAL and DB2SQL linkage conventions of DB2 stored
procedures. Both linkage conventions require that the parameters that are passed
to and from the DB2 stored procedure cannot be null.

4.3.3 Result Sets and Stored Procedures
The Oracle Database Gateway for DRDA provides support for stored procedures that
return result sets. By default, all stored procedures and functions do not return a result
set to the user. To enable result sets, set the HS_FDS_RESULTSET_SUPPORT parameter in
the initialization parameter file.

See Also:

Initialization Parameters for information about editing the initialization
parameter file and the HS_FDS_RESULTSET_SUPPORT parameter. For further
information about Oracle support for result sets in non-Oracle databases see
Oracle Database Heterogeneous Connectivity User's Guide.

Chapter 4
Using DRDA Server Stored Procedures with the Gateway

4-5

Note:

If you set the HS_FDS_RESULTSET_SUPPORT gateway initialization parameter, you
must change the syntax of the procedure execute statement for all existing
stored procedures or errors will occur.

When accessing stored procedures with result sets through the Oracle Database
Gateway for DRDA, you will be in the sequential mode of Heterogeneous Services.
The gateway returns the following information to Heterogeneous Services during
procedure description:

• All the input arguments of the remote stored procedure

• None of the output arguments

• One out argument of type ref cursor (corresponding to the first result set returned
by the stored procedure)

Client programs have to use the virtual package function
DBMS_HS_RESULT_SET.GET_NEXT_RESULT_SET to get the ref cursor for subsequent result
sets. The last result set returned is the out argument from the procedure.

The limitations of accessing result sets are as follows:

• Result sets returned by a remote stored procedure have to be retrieved in the
order in which they were placed on the wire.

• On execution of a stored procedure, all result sets returned by a previously
executed stored procedure will be closed, regardless of whether the data has been
completely retrieved or not.

In the following example, the UDB stored procedure is executed to fetch the contents
of the EMP and DEPT tables from UDB:

CREATE PROCEDURE REFCURPROC (IN STRIN VARCHAR(255), OUT STROUT VARCHAR(255))
 RESULT SETS 3 LANGUAGE SQL
BEGIN
 DECLARE TEMP CHAR (20);
 DECLARE C1 CURSOR WITH RETURN TO CALLER FOR
 SELECT * FROM TKHOEMP;
 DECLARE C2 CURSOR WITH RETURN TO CALLER FOR
 SELECT * FROM TKHODEPT;
 OPEN C1;
 OPEN C2;
 SET STROUT = STRIN;
 END

4.3.3.1 OCI Program Fetching from Result Sets in Sequential Mode
The following example shows OCI program fetching from result sets in sequential
mode:

OCIEnv *ENVH;
OCISvcCtx *SVCH;
OCIStmt *STMH;
OCIError *ERRH;
OCIBind *BNDH[3];
OraText arg1[20];

Chapter 4
Using DRDA Server Stored Procedures with the Gateway

4-6

OraText arg2[255];
OCIResult *rset;
OCIStmt *rstmt;
ub2 rcode[3];
ub2 rlens[3];
sb2 inds[3];
OraText *stmt = (OraText *) "begin refcurproc@UDB(:1,:2,:3); end;";
OraText *n_rs_stm = (OraText *)
 "begin :ret := DBMS_HS_RESULT_SET.GET_NEXT_RESULT_SET@UDB; end;";

/* Prepare procedure call statement */

/* Handle Initialization code skipped */
OCIStmtPrepare(STMH, ERRH, stmt, strlen(stmt), OCI_NTV_SYNTAX, OCI_DEFAULT);

/* Bind procedure arguments */
inds[0] = 0;
strcpy((char *) arg1, "Hello World");
rlens[0] = strlen(arg1);
OCIBindByPos(STMH, &BNDH[0], ERRH, 1, (dvoid *) arg1, 20, SQLT_CHR,
 (dvoid *) &(inds[0]), &(rlens[0]), &(rcode[0]), 0, (ub4 *) 0,
 OCI_DEFAULT);

inds[1] = -1;
OCIBindByPos(STMH, &BNDH[1], ERRH, 1, (dvoid *) arg2, 20, SQLT_CHR,
 (dvoid *) &(inds[1]), &(rlens[1]), &(rcode[1]), 0, (ub4 *) 0,
 OCI_DEFAULT);

inds[2] = 0;
rlens[2] = 0;
OCIDescriptorAlloc(ENVH, (dvoid **) &rset, OCI_DTYPE_RSET, 0, (dvoid **) 0);
OCIBindByPos(STMH, &BNDH[2], ERRH, 2, (dvoid *) rset, 0, SQLT_RSET,
 (dvoid *) &(inds[2]), &(rlens[2]), &(rcode[2]),
 0, (ub4 *) 0, OCI_DEFAULT);

/* Execute procedure */
OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot *) 0,
 (OCISnapshot *) 0, OCI_DEFAULT);

/* Convert result set to statement handle */
OCIResultSetToStmt(rset, ERRH);
rstmt = (OCIStmt *) rset;

/* After this the user can fetch from rstmt */
/* Issue get_next_result_set call to get handle to next_result set */
/* Prepare Get next result set procedure call */

OCIStmtPrepare(STMH, ERRH, n_rs_stm, strlen(n_rs_stm), OCI_NTV_SYNTAX,
 OCI_DEFAULT);

/* Bind return value */
OCIBindByPos(STMH, &BNDH[1], ERRH, 1, (dvoid *) rset, 0, SQLT_RSET,
 (dvoid *) &(inds[1]), &(rlens[1]), &(rcode[1]),
 0, (ub4 *) 0, OCI_DEFAULT);

/* Execute statement to get next result set*/
OCIStmtExecute(SVCH, STMH, ERRH, 1, 0, (CONST OCISnapshot *) 0,
 (OCISnapshot *) 0, OCI_DEFAULT);

/* Convert next result set to statement handle */
OCIResultSetToStmt(rset, ERRH);

Chapter 4
Using DRDA Server Stored Procedures with the Gateway

4-7

rstmt = (OCIStmt *) rset;

/* Now rstmt will point to the second result set returned by the
remote stored procedure */

/* Repeat execution of get_next_result_set to get the output arguments */

4.3.3.2 PL/SQL Program Fetching from Result Sets in Sequential Mode
Assume that the table LOC_EMP is a local table exactly like the UDB EMP table. The
same assumption applies for LOC_DEPT. OUTARGS is a table with columns corresponding
to the out arguments of the SQL Server stored procedure.

create or replace package rcpackage is type RCTYPE is ref cursor;end rcpackage;/
declare
 rc1 rcpackage.rctype;
 rec1 loc_emp%rowtype;
 rc2 rcpackage.rctype;
 rec2 loc_dept%rowtype;
 rc3 rcpackage.rctype;
 rec3 outargs%rowtype;
 out_arg varchar2(255);

begin

 -- Execute procedure
 out_arg := null;
 refcurproc@UDB('Hello World', out_arg, rc1);

 -- Fetch 20 rows from the remote emp table and insert them into loc_emp
 for i in 1 .. 20 loop
 fetch rc1 into rec1;
 insert into loc_emp (rec1.empno, rec1.ename, rec1.job,
 rec1.mgr, rec1.hiredate, rec1.sal, rec1.comm, rec1.deptno);
 end loop;

 -- Close ref cursor
 close rc1;

 -- Get the next result set returned by the stored procedure
 rc2 := dbms_hs_result_set.get_next_result_set@UDB;

 -- Fetch 5 rows from the remote dept table and insert them into loc_dept
 for i in 1 .. 5 loop
 fetch rc2 into rec2;
 insert into loc_dept values (rec2.deptno, rec2.dname, rec2.loc);
 end loop;

 --Close ref cursor
 close rc2;

 -- Get the output arguments from the remote stored procedure
 -- Since we are in sequential mode, they will be returned in the
 -- form of a result set
 rc3 := dbms_hs_result_set.get_next_result_set@UDB;

 -- Fetch them and insert them into the outarguments table
 fetch rc3 into rec3;
 insert into outargs (rec3.outarg, rec3.retval);

Chapter 4
Using DRDA Server Stored Procedures with the Gateway

4-8

 -- Close ref cursor
 close rc3;

end;
/

4.4 Database Link Behavior
A connection to the gateway is established through a database link when it is first used
in an Oracle database session. In this context, a connection refers to both the
connection between the Oracle database and the gateway and to the DRDA network
connection between the gateway and the target DRDA database. The connection
remains established until the Oracle database session ends. Another session or user
can access the same database link and get a distinct connection to the gateway and
DRDA database.

4.5 Oracle Database SQL Construct Processing
One of the most important features of the Oracle Database Gateways products is
providing SQL transparency to the user and to the application programmer. Foreign
SQL constructs can be categorized into four areas:

• Compatible

• Translated

• Compensated

• Native semantics

4.5.1 Compatible SQL Functions
Oracle database automatically forwards compatible SQL functions to the DRDA
database, where SQL constructs with the same syntax and meaning are on both
Oracle database and the DRDA database. These SQL constructs are forwarded
unmodified. All of the compatible functions are column functions. Functions that are
not compatible are either translated to an equivalent DRDA SQL function or are
compensated (post-processed) by Oracle database after the data is returned from the
DRDA database.

4.5.2 Translated SQL Functions
Translated functions have the same meaning but different names between the Oracle
database and the DRDA database. But all applications must use the Oracle function
name. These SQL constructs that are supported with different syntax (different
function names) by the DRDA database, are automatically translated by the Oracle
database and then forwarded to the DRDA database. Oracle database changes the
function name before sending it to the DRDA database, in a manner that is transparent
to your application.

4.5.3 Compensated SQL Functions
Some advanced SQL constructs that are supported by Oracle database may not be
supported in the same manner, by the DRDA database. Compensated functions are
those SQL functions that are either not recognized by the DRDA server or are

Chapter 4
Database Link Behavior

4-9

recognized by the DRDA server but the semantics of the function are interpreted
differently when comparing the DRDA server with the Oracle database. If a SELECT
statement containing one of these functions is passed from the Oracle database to the
gateway, then the gateway removes the function before passing the SQL statement to
the DRDA server. The gateway passes the selected DRDA database rows to Oracle
database. Oracle database applies the function.

4.5.3.1 Post-Processing
Oracle database can compensate for a missing or incompatible function by
automatically excluding the incompatible SQL construct from the SQL request that is
forwarded to the DRDA database. Oracle database then retrieves the necessary data
from the DRDA database and applies the function. This process is known as post-
processing.

The gateway attempts to pass all SQL functions to DRDA databases. However when a
DRDA database does not support a function that is represented in the computation,
the gateway changes that function. For example, if a program runs the following query
against a DB2 UDB for z/OS database:

SELECT COS(X_COOR) FROM TABLE_X;

Because the database does not support many of the COS functions, the gateway
changes the query to the following:

SELECT X_COOR FROM TABLE_X;

All data in the X_COOR column of TABLE_X is passed from the DB2 UDB for z/OS
database to the Oracle database. After the data is moved to the Oracle database, the
COS function is performed.

If you are performing operations on large amounts of data that are stored in a DRDA
database, then keep in mind that some functions require post-processing.

4.5.4 Native Semantic SQL Functions
Some SQL functions that are normally compensated may also be overridden, through
the Native Semantics facility. If a SQL function has been enabled for Native
Semantics, then the function may be passed on to the DRDA database for processing,
instead of being compensated. The SQL function is then processed natively in the
DRDA database. Refer to "Native Semantics" for more information.

4.5.5 DB2 UDB for z/OS SQL Compatibility
Table 4-1 describes how Oracle database and the gateway handle SQL functions for a
DB2 UDB for z/OS.

Table 4-1 SQL Compatibility, by Oracle SQL function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

ABS - - Yes Yes

ACOS - - Yes Yes

Chapter 4
Oracle Database SQL Construct Processing

4-10

Table 4-1 (Cont.) SQL Compatibility, by Oracle SQL function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

ADD_MONTHS - - Yes

ASCII - - Yes Yes

ASIN - - Yes Yes

ATAN - - Yes Yes

ATAN2 - - Yes Yes

AVG Yes - - -

BITAND - - Yes Yes

CAST - - Yes Yes

CEIL - CEILING - Yes

CHARTOROWID - - Yes -

CHR - - Yes Yes

CONCAT Yes - - -

CONVERT - - Yes Yes

COS - - Yes Yes

COSH - - Yes Yes

COUNT(*) Yes - - -

COUNT (DISTINCT
colname)

Yes - - -

COUNT (ALL colname) Yes - - COUNTCOL

COUNT (column) Yes - - COUNTCOL

DECODE - - Yes Yes

DUMP - - Yes Yes

EXP - - Yes Yes

FLOOR Yes - - Yes

GREATEST - - Yes Yes

HEXTORAW - - Yes Yes

INITCAP - - Yes Yes

INSTR - - Yes Yes

INSTRB - - Yes Yes

LAST_DAY - - Yes -

LEAST - - Yes Yes

LENGTH - - Yes Yes

LENGTHB - - Yes Yes

LN - - Yes Yes

LOG - - Yes Yes

LOWER Yes - - LCASE

Chapter 4
Oracle Database SQL Construct Processing

4-11

Table 4-1 (Cont.) SQL Compatibility, by Oracle SQL function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

LPAD - - Yes Yes

LTRIM - - Yes Yes

MAX Yes - - -

MIN Yes - - -

MOD - - Yes Yes

MONTHS_BETWEEN - - Yes -

NEW_TIME - - Yes -

NEXT_DAY - - Yes -

NLS_INITCAP - - Yes Yes

NLS_LOWER - - Yes Yes

NLS_UPPER - Yes Yes

NLSSORT - - Yes Yes

NVL VALUE

NVL2 - - Yes Yes

POWER - - Yes Yes

RAWTOHEX - - Yes Yes

REPLACE - - Yes Yes

REVERSE - - Yes Yes

ROUND - - Yes Yes

ROWIDTOCHAR - - Yes -

RPAD - - Yes Yes

RTRIM - - Yes Yes

SIGN - - Yes Yes

SIN - - Yes Yes

SINH - - Yes Yes

SOUNDEX - Yes -

SQRT - - Yes Yes

STDDEV - - Yes Yes

SUBSTR - - Yes Yes

SUBSTRB - - Yes Yes

SUM Yes - - -

SYSDATE - - Yes

TAN - - Yes Yes

TANH - - Yes Yes

TO_CHAR - - Yes -

TO_DATE - - Yes -

Chapter 4
Oracle Database SQL Construct Processing

4-12

Table 4-1 (Cont.) SQL Compatibility, by Oracle SQL function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

TO_MULTI_BYTE - - Yes -

TO_NUMBER - DECIMAL - Yes

TO_SINGLE_BYTE - - Yes -

TRANSLATE - - Yes Yes

TRIM - STRIP Yes Yes

TRUNC - - Yes Yes

UID - - Yes -

UPPER Yes - - UCASE

USER - - Yes -

USERENV - - Yes -

VARIANCE - - Yes Yes

VSIZE - - Yes Yes

4.5.6 DB2 UDB for Unix, Linux, and Windows Compatibility
Table 4-2 describes how Oracle database and the gateway handle SQL functions for a
DB2/UDB database.

Table 4-2 DB2 UDB for Unix, Linux, and Windows Compatibility, by Oracle SQL
Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

ABS Yes - - Yes

ACOS - - Yes Yes

ADD_MONTHS - - Yes -

ASCII - - Yes Yes

ASIN - - Yes Yes

ATAN - - Yes Yes

ATAN2 - - Yes Yes

AVG Yes - - -

BITAND - - Yes Yes

CAST - - Yes Yes

CEIL - CEILING - Yes

CHARTOROWID - - Yes -

CHR Yes - - Yes

CONCAT Yes - - -

Chapter 4
Oracle Database SQL Construct Processing

4-13

Table 4-2 (Cont.) DB2 UDB for Unix, Linux, and Windows Compatibility, by
Oracle SQL Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

CONVERT - - Yes Yes

COS Yes - - Yes

COSH - - Yes Yes

COUNT(*) Yes - - -

COUNT (DISTINCT
colname)

Yes - - -

COUNT (ALL colname) Yes - - COUNTCOL

COUNT (column) Yes - - COUNTCOL

DECODE - - Yes Yes

DUMP - - Yes Yes

EXP Yes - - Yes

FLOOR Yes - - Yes

GREATEST - - Yes Yes

HEXTORAW - - Yes Yes

INITCAP - - Yes Yes

INSTR - - Yes Yes

INSTRB - - Yes Yes

LAST_DAY - - Yes -

LEAST - - Yes Yes

LENGTH - - Yes Yes

LENGTHB - - Yes Yes

LN Yes - - Yes

LOG - - Yes Yes

LOWER Yes - - LCASE

LPAD - Yes Yes

LTRIM - - Yes Yes

MAX Yes - - -

MIN Yes - - -

MOD Yes - - Yes

MONTHS_BETWEEN - - Yes -

NEW_TIME - - Yes -

NEXT_DAY Yes - Yes -

NLS_INITCAP - - Yes Yes

NLS_LOWER - - Yes Yes

NLS_UPPER Yes Yes

Chapter 4
Oracle Database SQL Construct Processing

4-14

Table 4-2 (Cont.) DB2 UDB for Unix, Linux, and Windows Compatibility, by
Oracle SQL Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

NLSSORT - - Yes Yes

NVL - VALUE - -

NVL2 - - Yes Yes

POWER Yes - - Yes

RAWTOHEX - - Yes Yes

REPLACE Yes - - Yes

REVERSE - - Yes Yes

ROUND Yes - - Yes

ROWIDTOCHAR - Yes -

RPAD Yes Yes

RTRIM - - Yes Yes

SIGN Yes - - Yes

SIN Yes - - Yes

SINH - - Yes Yes

SOUNDEX - - Yes -

SQRT Yes - - Yes

STDDEV - - Yes Yes

SUBSTR - - Yes Yes

SUBSTRB - - Yes Yes

SUM Yes - - -

SYSDATE - - Yes -

TAN Yes - - Yes

TANH - - Yes Yes

TO_CHAR - - Yes -

TO_DATE - - Yes -

TO_MULTI_BYTE - - Yes -

TO_NUMBER - DECIMAL - Yes

TO_SINGLE_BYTE - - Yes -

TRANSLATE - - Yes Yes

TRIM - - Yes Yes

TRUNC Yes - - Yes

UID - - Yes -

UPPER Yes - - UCASE

USER - - Yes -

USERENV - - Yes -

Chapter 4
Oracle Database SQL Construct Processing

4-15

Table 4-2 (Cont.) DB2 UDB for Unix, Linux, and Windows Compatibility, by
Oracle SQL Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

VARIANCE - - Yes Yes

VSIZE - - Yes Yes

4.5.7 DB2 UDB for iSeries Compatibility
Table 4-3 describes how Oracle database and the gateway handle SQL functions for a
DB2 UDB for iSeries database.

Table 4-3 DB2 UDB for iSeries Compatibility, by Oracle SQL Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

ABS - ABSVAL - Yes

ACOS - - Yes Yes

ADD_MONTHS - - Yes -

ASCII - - Yes Yes

ASIN - - Yes Yes

ATAN - - Yes Yes

ATAN2 - - Yes Yes

AVG Yes - - -

BITAND - - Yes Yes

CAST - - Yes Yes

CEIL - CEILING - Yes

CHARTOROWID - - Yes -

CHR - - Yes Yes

CONCAT Yes - - -

CONVERT - - Yes Yes

COS Yes - - Yes

COSH Yes - - Yes

COUNT(*) Yes - - -

COUNT (DISTINCT
colname)

Yes - - -

COUNT (ALL colname) Yes - - COUNTCOL

COUNT (column) Yes - - COUNTCOL

DECODE - - Yes Yes

DUMP - - Yes Yes

Chapter 4
Oracle Database SQL Construct Processing

4-16

Table 4-3 (Cont.) DB2 UDB for iSeries Compatibility, by Oracle SQL Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

EXP Yes - - Yes

FLOOR Yes - - Yes

GREATEST - - Yes Yes

HEXTORAW - - Yes Yes

INITCAP - - Yes Yes

INSTR - - Yes Yes

INSTRB - - Yes Yes

LAST_DAY - - Yes -

LEAST - - Yes Yes

LENGTH - - Yes Yes

LENGTHB - - Yes Yes

LN Yes - - Yes

LOG - - Yes Yes

LOWER Yes - No LCASE

LPAD - - Yes Yes

LTRIM - - Yes Yes

MAX Yes - - -

MIN Yes - v -

MOD - - Yes Yes

MONTHS_BETWEEN - - Yes

NEW_TIME - - Yes

NEXT_DAX - - Yes

NLS_INITCAP - - Yes Yes

NLS_LOWER - - Yes Yes

NLS_UPPER - - Yes Yes

NLSSORT - - Yes Yes

NVL - VALUE - -

NVL2 - - Yes Yes

POWER - -- Yes Yes

RAWTOHEX - - Yes Yes

REPLACE - - Yes Yes

REVERSE - - Yes Yes

ROUND - - Yes Yes

ROWIDTOCHAR - - Yes -

RPAD - - Yes Yes

RTRIM - - Yes Yes

Chapter 4
Oracle Database SQL Construct Processing

4-17

Table 4-3 (Cont.) DB2 UDB for iSeries Compatibility, by Oracle SQL Function

Oracle SQL Function Compatible Translated Compensated Native
Semantics
Candidate

SIGN - - Yes Yes

SIN Yes - - Yes

SINH Yes - - Yes

SOUNDEX - - Yes -

SQRT Yes - - Yes

STDDEV Yes v - Yes

SUBSTR - - Yes Yes

SUBSTRB - - Yes Yes

SUM Yes - - -

SYSDATE - - Yes -

TAN Yes - - Yes

TANH Yes - - Yes

TO_CHAR - - Yes -

TO_DATE - - Yes -

TO_MULTI_BYTE - - Yes -

TO_NUMBER - DECIMAL - Yes

TO_SINGLE_BYTE - - Yes -

TRANSLATE - - Yes Yes

TRIM - - Yes Yes

TRUNC - - Yes Yes

UID - - Yes -

UPPER - TRANSLATE - UCASE

USER - - Yes -

USERENV - - Yes -

VARIANCE - VAR - Yes

VSIZE - - Yes Yes

4.6 Native Semantics
Some of the advanced SQL constructs that are supported by Oracle database may not
be supported in the same manner by the DRDA database. In this case, the Oracle
database compensates for the missing or incompatible functionality by post-
processing the DRDA database data with Oracle database functionality

Chapter 4
Native Semantics

4-18

See Also:

"Oracle Database SQL Construct Processing" for more information

This feature provides maximum transparency, but may impact performance. In
addition, new versions of a particular DRDA database may implement previously
unsupported functions or capabilities, or they may change the supported semantics as
to make them more compatible with Oracle database functions.

Some of DRDA servers also provide support for user-defined functions. The user may
choose to implement Oracle database functions natively in the DRDA database. This
enables the DRDA server to pass the function to the underlying database
implementation (for example, DB2). Native Semantics provides a method of enabling
specific capabilities to be processed natively by the DRDA server.

Native Semantics Considerations

Various considerations must be taken into account when enabling the Native Semantic
feature of a particular function because Native Semantics has advantages and
disadvantages, which are typically a trade-off between transparency and performance.

• One such consideration is the transparency of data coercions. Oracle database
provides coercion (implicit data conversion) for many SQL functions. This means
that if the supplied value for a particular function is not correct, then Oracle
database will coerce the value (change it to the correct value type) before
processing it. However, with the Native Semantic feature enabled, the value,
exactly as provided, will be passed to the DRDA server for processing. In many
cases, the DRDA server will not be able to coerce the value to the correct type and
will generate an error.

• Another consideration involves the compatibility of parameters to a particular SQL
function. For instance, Oracle database implementation of SUBSTR allows negative
values for the string index, whereas most DRDA server implementations of SUBSTR
do not allow negative values for the string index. However, if the application is
implemented to invoke SUBSTR in a manner that is compatible with the DRDA
server, then the function will behave the same in either Oracle database or the
DRDA server.

• Another consideration is that the processing of a function at the DRDA server may
not be desirable due to resource constraints in that environment.

Refer to the "HS_FDS_CAPABILITY" for details on enabling or disabling these
capabilities. Refer to the Oracle Database SQL Language Reference for Oracle
database format of the following capabilities.

4.6.1 SQL Functions That Can Be Enabled
The following list contains SQL functions that are disabled (OFF) by default. They can
be enabled (turned ON) as an option:

ABS ACOS

ASCII ASIN

Chapter 4
Native Semantics

4-19

ATAN ATAN2

BITAND CAST

CEIL CHR

CONVERT COS

COSH COUNTCOL

DECODE DUMP

EXP FLOOR

GREATEST HEXOTRAW

INITCAP INSTR

INSTRB LEAST

LENGTH LENGTHB

LN LOG

LOWER LPAD

LTRIM MOD

NLS_INITCAP NLS_UPPER

NLS_LOWER NLSSORT

NVL2 POWER

RAWTOHEX REPLACE

REVERSE ROUND

RPAD RTRIM

SIGN SIN

SINH SQRT

STDDEV SUBSTR

Chapter 4
Native Semantics

4-20

SUBSTRB TAN

TANH TO_NUMBER

TRANSLATE TRIM

TRUNC UPPER

VARIANCE VSIZE

4.6.2 SQL Functions That Can Be Disabled
The following SQL functions are enabled (ON) by default:

• GROUPBY

• HAVING

• ORDERBY

• WHERE

ORDERBY controls sort order, which may differ at various sort locations. For example,
with ORDERBY ON, a DB2 sort would be based on Extended Binary Coded Decimal
Interchange Code (EBCDIC) sorting order, whereas with ORDERBY OFF, an Oracle
database sort would be based on ASCII sorting order.

The other three functions, GROUPBY, HAVING, and WHERE, can take additional processing
time. If you need to minimize the use of expensive resources, then you should choose
the settings of these functions so that the processing is performed with cheaper
resource. The above listed functions can also be disabled.

4.6.3 SQL Set Operators and Clauses
The WHERE and HAVING clauses are compatible for all versions of the DRDA server. This
means that these clauses are passed unchanged to the DRDA server for processing.
Whether clauses GROUP BY and ORDER BY are passed to the DRDA server, or
compensated by Oracle database, is determined by the Native Semantics Parameters
(see the previous section).

The set operators UNION and UNION ALL are compatible for all versions of the DRDA
server, meaning that they are passed unchanged to the DRDA server for processing.
The set operators INTERSECT and MINUS are compensated on all versions of the DRDA
server except DB2/UDB. For DB2/UDB, INTERSECT is compatible and MINUS is translated
to EXCEPT.

4.7 DRDA Data type to Oracle Data type Conversion
To move data between applications and the database, the gateway binds data values
from a host variable or literal of a specific data type to a data type understood by the
database. Therefore, the gateway maps values from any version of the DRDA server
into appropriate Oracle data types before passing these values back to the application
or Oracle tool.

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-21

Table 4-4 lists the data type mapping and restrictions. The DRDA server data types
that are listed in the table are general. Refer to documentation for your DRDA
database for restrictions on data type size and value limitations.

Table 4-4 Data Type Mapping and Restrictions

DRDA server Oracle External Criteria If Oracle uses large varchar (32k)

CHAR(N) CHAR(N) N < = 2000

VARCHAR (N) VARCHAR2(N)

LONG

N < = 4000

4000 < N

N <= 32767

32767 < N

LONG VARCHAR(N) VARCHAR2(N) N 4000 N <= 32767

LONG VARCHAR(N) LONG 4000 < N 32767 < N

CHAR(N) FOR BIT DATA RAW(N) N 255

VARCHAR(N) FOR BIT DATA RAW(N) 1 N 2000 1 <= N <= 32767

VARCHAR(N) FOR BIT DATA LONG RAW 2000 < N N < 32767

LONG VARCHAR(N) FOR BIT
DATA

RAW(N) 1 <= N <= 2000 1 <= N <= 32767

LONG VARCHAR(N) FOR BIT
DATA

LONG RAW 2000 < N N < 32767

DATE DATE Refer to Performing
Date and Time
Operations

TIME CHAR(8) See Performing Date
and Time Operations

TIMESTAMP CHAR(26) See Performing Date
and Time Operations

GRAPHIC CHAR(2N) N <= 1000

VARGRAPHIC VARCHAR2(2N)

LONG

N <= 2000

2000 <= N

N <= 16370

16370 < N

LONG VARGRAPHIC VARCHAR2(2N)

LONG

N <= 2000

2000 < N

N <=16370

16370 < N

Floating Point Single FLOAT(24) n/a

Floating Point Double FLOAT(53) n/a

Decimal (P, S) NUMBER(P,S) n/a

CLOB LONG n/a

BLOB LONG RAW(N) n/a

DBLOB LONG n/a

SMALLINT NUMBER(5) n/a

INTEGER NUMBER(10) n/a

4.7.1 Performing Character String Operations
The gateway performs all character string comparisons, concatenations, and sorts
using the data type of the referenced columns, and determines the validity of character
string values passed by applications using the gateway. The gateway automatically

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-22

converts character strings from one data type to another and converts between
character strings and dates when needed.

Frequently, DRDA databases are designed to hold non-character binary data in
character columns. Applications executed on DRDA systems can generally store and
retrieve data as though it contained character data. However, when an application
accessing this data runs in an environment that uses a different character set,
inaccurate data may be returned.

With the gateway running on the host, character data retrieved from a DB2 UDB for
iSeries or DB2 UDB for z/OS host is translated from EBCDIC to ASCII. When
character data is sent to DB2 UDB for iSeries or DB2 UDB for z/OS from the host,
ASCII data is translated to EBCDIC. When the characters are binary data in a
character column, this translation causes the application to receive incorrect
information or errors. To resolve these errors, character columns on DB2 UDB for
iSeries or DB2 UDB for z/OS that hold non-character data must be created with the
FOR BIT DATA option. In the application, the character columns holding non-character
data should be processed using the Oracle data types RAW and LONG RAW. The DESCRIBE
information for a character column defined with FOR BIT DATA on the host always
indicates RAW or LONG RAW.

4.7.2 Converting Character String Data types
The gateway binds character string data values from host variables as fixed-length
character strings. The bind length is the length of the character string data value. The
gateway performs this conversion on every bind.

The DRDA VARCHAR data type can be between 1 and 32767 characters in length if the
Oracle database is configured to use maximum VARCHAR2 size of 32767. Otherwise, the
limit is 4000. If the DRDA VARCHAR data type is greater than the Oracle configured
VARCHAR2 limit size, then it is converted to an Oracle LONG data type.

The DB2 VARCHAR data type can be no longer than 32767 bytes, which is much shorter
than the maximum size for the Oracle LONG data type. If you define an Oracle LONG data
type larger than 32767 bytes in length, then you receive an error message when it is
mapped to the DB2 VARCHAR data type.

4.7.3 Performing Graphic String Operations
DB2 GRAPHIC data types store only double-byte string data. Sizes for DB2 GRAPHIC data
types typically have maximum sizes that are half that of their character counterparts.
For example, the maximum size of a CHAR may be 255 characters, whereas the
maximum size of a GRAPHIC may be 127 characters.

Oracle database does not have a direct matching data type, and the gateway therefore
converts between Oracle character data types to DB2 Graphic data types. Oracle
database character data types may contain single, mixed, or double-byte character
data. The gateway converts the string data into appropriate double-byte-only format
depending upon whether the target DB2 column is a Graphic type and whether
Gateway Initialization parameters are set to perform this conversion. For more
configuration information, refer to Initialization Parameters.

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-23

4.7.4 Performing Date and Time Operations
The implementation of date and time data differs significantly in IBM DRDA databases
and Oracle database. Oracle database has a single date data type, DATE, which can
contain both calendar date and time of day information.

IBM DRDA databases support the following three distinct date and time data types:

DATE is the calendar date only.

TIME is the time of day only.

TIMESTAMP is a numerical value combining calendar date and time of day with
microsecond resolution in the internal format of the IBM DRDA database.

4.7.4.1 Processing TIME and TIMESTAMP Data
There is no built-in mechanism that translates the IBM TIME and TIMESTAMP data to
Oracle DATE data. An application must process TIME data types to the Oracle CHAR
format with a length of eight bytes. An application must process the TIMESTAMP data
type in the Oracle CHAR format with a length of 26 bytes.

An application reads TIME and TIMESTAMP functions as character strings and converts or
subsets portions of the string to perform numerical operations. TIME and TIMESTAMP
values can be sent to a DRDA server as character literals or bind variables of the
appropriate length and format.

4.7.4.2 Processing DATE Data
Oracle and IBM DATE data types are mapped to each other. If an IBM DATE is queried,
then it is converted to an Oracle DATE with a zero (midnight) time of day. If an Oracle
DATE is processed against an IBM DATE column, then the date value is converted to the
IBM DATE format, and any time value is discarded.

Character representations of dates are different in Oracle format and IBM DRDA
format. When an Oracle application SQL statement contains a date literal, or conveys
a date using a character bind variable, the gateway must convert the date to an IBM
DRDA compatible format.

The gateway does not automatically recognize when a character value is being
processed against an IBM DATE column. Applications are required to distinguish
character date values by enclosing them with Oracle TO_DATE function notation. For
example, if EMP is a synonym or view that accesses data on an IBM DRDA database,
then you should not use the following SQL statement:

SELECT * FROM EMP WHERE HIREDATE = '03-MAR-81'

you should use the following:

SELECT * FROM EMP WHERE HIREDATE = TO_DATE('03-MAR-81')

In a programmatic interface program that uses a character bind variable for the
qualifying date value, you must use this SQL statement:

SELECT * FROM EMP WHERE HIREDATE = TO_DATE(:1)

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-24

The above SQL notation does not affect SQL statement semantics when the
statement is executed against an Oracle database table. The statement remains
portable across Oracle and IBM DRDA-accessed data stores.

Any date literal other than insert value is checked to match the Oracle NLS_DATE_FORMAT
before sending to DB2 for processing. TG4DB2 v10.2 does not check to match the
NLS_DATE_FORMAT format. If such compatibility is desired, then you need to specify
NODATECHK/ON value as part of HS_FDS_CAPABILITY parameter. You can then use any DB2
acceptable date formats:

• YYYY-MM-DD (ISO/JIS)

• DD.MM.YYYY (European)

• MM/DD/YYYY (USA)

For example:

SELECT * FROM EMP WHERE HIREDATE = '1981-03-03'

The TO_DATE requirement also does not pertain to input bind variables that are in Oracle
date 7-byte binary format. The gateway recognizes such values as dates. For DB2
UDB for z/OS, if you install the gateway supplied DATE EXIT, then you can also use two
additional Oracle date formats: DD-MON-RR and DD-MON-YYYY

4.7.4.3 Performing Date Arithmetic
The following forms of SQL expression generally do not work correctly with the
gateway:

date + number
number + date
date - number
date1 - date2

The date and number addition and subtraction (date + number,number + date,date -
number) forms are sent through to the DRDA server, where they are rejected. The
supported servers do not permit number addition or subtraction with dates.

Because of differing interpretations of date subtraction in the supported servers,
subtracting two dates (date1 - date2) gives results that vary by server.

Note:

Avoid date arithmetic expressions in all gateway SQL until date arithmetic
problems are resolved.

4.7.5 Dates
Date handling has two categories:

• Two-digit year dates, which are treated as occurring 50 years before or 50 years
after the year 2000.

• Four-digit year dates, which are not ambiguous with regard to the year 2000.

Use one of the following methods to enter twenty-first century dates:

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-25

• The TO_DATE function

Use any date format including a four-character year field. Refer to the Oracle
Database SQL Language Reference for the available date format string options.

For example, TO_DATE('2008-07-23', 'YYYY-MM-DD') can be used in any SELECT,
INSERT, UPDATE, or DELETE statement.

• The NLS_DATE_FORMAT parameter

ALTER SESSION SET NLS_DATE_FORMAT should be used to set the date format used in
SQL.

4.7.6 NLS_DATE_FORMAT Support
The following table lists the four patterns that can be used for the NLS_DATE_FORMAT in
ALTER SESSION SET NLS_DATE_FORMAT:

DB2 Date Format Pattern Example

EUR DD.MM.YYYY 30.10.1994

ISO YYYY-MM-DD 1994-10-30

JIS YYYY-MM-DD 1994-10-30

USA MM/DD/YYYY 10/30/1994

The Oracle database default format of 'DD-MON-YY' is not permitted with DB2.

The following example demonstrates how to enter and select date values in the
twenty-first century:

ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD';
INSERT INTO EMP (HIREDATE) VALUES ('2008-07-23');
SELECT * FROM EMP WHERE HIREDATE = '2008-07-23';
UPDATE EMP SET HIREDATE = '2008-07-24'
 WHERE HIREDATE = '2008-07-23';
DELETE FROM EMP WHERE HIREDATE = '2008-07-24';

4.7.7 Oracle TO_DATE Function
The Oracle TO_DATE function is preprocessed in SQL INSERT, UPDATE, DELETE, and SELECT
WHERE clauses. TO_DATE functions in SELECT result lists are not preprocessed.

The TO_DATE function is often needed to provide values to update or compare with date
columns. Therefore, the gateway replaces the information included in the TO_DATE
clause with an acceptable value before the SQL statement is sent to DB2.

Except for the SELECT result list, all TO_DATE functions are preprocessed and turned into
values that are the result of the TO_DATE function. Only TO_DATE(literal) or
TO_DATE(:bind_variable) is permitted. Except in SELECT result lists, the
TO_DATE(column_name) function format is not supported.

The preprocessing of the Oracle TO_DATE functions into simple values is useful in an
INSERT VALUES clause because DB2 does not allow functions in the VALUES clause. In
this case, DB2 receives a simple value in the VALUES list. All forms of the TO_DATE
function (with one, two, or three operands) are supported.

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-26

4.7.8 Performing Numeric data type Operations
IBM versions of the DRDA server perform automatic conversions to the numeric data
type of the destination column (such as integer, double-precision floating point, or
decimal). The user has no control over the data type conversion, and this conversion
can be independent of the data type of the destination column in the database.

For example, if PRICE is an integer column of the PRODUCT table in an IBM DRDA
database, then the update shown in the following example inaccurately sets the price
of an ice cream cone to $1.00 because the IBM DRDA server automatically converts a
floating point to an integer:

UPDATE PRODUCT
SET PRICE = 1.50
WHERE PRODUCT_NAME = 'ICE CREAM CONE ';

Because PRICE is an integer, the IBM DRDA server automatically converts the decimal
data value of 1.50 to 1.

4.7.9 Mapping the COUNT Function
Oracle database supports the following four operands for the COUNT function:

• COUNT(*)

• COUNT(DISTINCT colname)

• COUNT(ALL colname)

• COUNT(colname)

Some DRDA servers do not support all forms of COUNT, specifically COUNT(colname) and
COUNT(ALL colname). In those cases the COUNT function and its arguments are translated
into COUNT(*). This may not yield the desired results, especially if the column being
counted contains NULLs.

For those DRDA servers that do not support the above forms, it may be possible to
achieve equivalent functionality by adding a WHERE clause. For example,

SELECT COUNT(colname) FROM table@dblink WHERE colname IS NOT NULL

or

SELECT COUNT(ALL colname) FROM table@dblink WHERE colname IS NOT NULL

You can also use native semantics to indicate support for all COUNT functions with the
following parameter in your gateway initialization file:

HS_FDS_CAPABILITY=(COUNTCOL=YES)

Refer to SQL Limitations for known DRDA servers that do not support all forms of
COUNT.

4.7.10 Performing Zoned Decimal Operations
A zoned decimal field is described as packed decimal on Oracle database. However,
an Oracle application such as a Pro*C program can insert into a zoned decimal
column using any supported Oracle numeric data type. The gateway converts this

Chapter 4
DRDA Data type to Oracle Data type Conversion

4-27

number into the most suitable data type. Data can be fetched from a DRDA database
into any Oracle data type, provided that it does not result in a loss of information.

4.8 Passing Native SQL Statements through the Gateway
The passthrough SQL feature enables an application developer to send a SQL
statement directly to the DRDA server without the statement being interpreted by
Oracle database. DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE SQL passthrough statements
that are supported by the gateway are limited to nonqueries (INSERT, UPDATE, DELETE,
and DDL statements) and cannot contain bind variables. The gateway can run native
SQL statements using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE.

DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE is a built-in gateway function. This function
receives one input argument and returns the number of rows affected by the SQL
statement. For data definition language (DDL) statements, the function returns zero.

DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE are reserved names of the gateway and are
used specifically for running native SQL.

The 12c Release 2 (12.2) of Oracle Database Gateway for DRDA enables retrieval of
result sets from queries issued with passthrough. The syntax is different from the
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE function. Refer to "Retrieving Results Sets
Through Passthrough" for more information.

4.8.1 Processing DDL Statements through Passthrough
As noted above, SQL statements that are processed through the
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE function are not interpreted by the Oracle
database. As a result, the Oracle database will not know if such statements are
making any modifications to the DRDA server. This means that unless you keep the
cached information of the Oracle database up to date after changes to the DRDA
server, the database may continue to rely upon inaccurate or outdated information in
subsequent queries within the same session.

An example of this occurs when you alter the structure of a table by either adding or
removing a column. When an application references a table through the gateway (for
example, when you perform a query on it), the Oracle database caches the table
definition. Now, suppose that within the same session, the application subsequently
alters the table's form, by using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE to add a
column. Then, the next reference to the table by the application will return the old
column definitions of the table and will ignore the table's new column. This is because
the Oracle database did not process the statement and, so, has no knowledge of the
alteration. Because the database does not know of the alteration, it has no reason to
requery the table form, and, so, it will use the already-cached form to handle any new
queries.

In order for the Oracle database to acquire the new form of the table, the existing
session with the gateway must be closed and a new session must be opened. This
can be accomplished in either of two ways:

• By ending the application session with the Oracle database and starting a new
session after modifications have been made to the DRDA server; or

• By running the ALTER SESSION CLOSE DATABASE LINK command after making any
modifications to the DRDA server.

Chapter 4
Passing Native SQL Statements through the Gateway

4-28

Either of the above actions will void the cached table definitions and will force the
Oracle database to acquire new definitions on the next reference.

4.8.2 Using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE
To run a passthrough SQL statement using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE,
use the following syntax:

number_of_rows = DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@dblink ('native_DRDA_sql');

where:

number_of_rows is a variable that is assigned the number of rows affected by the
passthrough SQL completion. For DDL statements, a zero is returned for the number
of rows affected.

dblink is the name of the database link used to access the gateway.

native_DRDA_sql is a valid nonquery SQL statement (except CONNECT, COMMIT, and
ROLLBACK). The statement cannot contain bind variables. The DRDA server rejects
native SQL statements that cannot be dynamically prepared. The SQL statement
passed by the DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE function must be a character
string. For more information regarding valid SQL statements, refer to the SQL
Reference for the particular DRDA server.

4.8.2.1 Examples
1. Insert a row into a DB2 table using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE:

DECLARE
 num_rows integer;
BEGIN
num_rows:=DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@dblink
('INSERT INTO SCOTT.DEPT VALUES (10,''PURCHASING'',''PHOENIX'')');
END;
/

2. Create a table in DB2 using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE:

DECLARE
 num_rows integer;
BEGIN
 num_rows:=DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@dblink
 ('CREATE TABLE MYTABLE (COL1 INTEGER, COL2 INTEGER, COL3 CHAR(14),
 COL4 VARCHAR(13))');
END;
/

4.8.3 Retrieving Results Sets Through Passthrough
Oracle Database Gateway for DRDA provides a facility to retrieve results sets from a
SELECT SQL statement entered through passthrough. Refer to Oracle Database
Heterogeneous Connectivity User's Guide for additional information.

4.8.3.1 Example
DECLARE
 CRS binary_integer;

Chapter 4
Passing Native SQL Statements through the Gateway

4-29

 RET binary_integer;
 VAL VARCHAR2(10)
BEGIN
 CRS:=DBMS_HS_PASSTHROUGH.OPEN_CURSOR@gtwlink;
 DBMS_HS_PASSTHROUGH.PARSE@gtwlink(CRS,'SELECT NAME FROM PT_TABLE');
BEGIN
 RET:=0;
 WHILE (TRUE)
 LOOP
 RET:=DBMS_HS_PASSTHROUGH.FETCH_ROW@gtwlink(CRS,FALSE);
 DBMS_HS_PASSTHROUGH.GET_VALUE@gtwlink(CRS,1,VAL);
 INSERT INTO PT_TABLE_LOCAL VALUES(VAL);
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE('END OF FETCH');
 DBMS_HS_PASSTHROUGH.CLOSE_CURSOR@gtwlink(CRS);
 END;
 END;
END;
/

4.9 Oracle Data Dictionary Emulation on a DRDA Server
The gateway optionally augments the DRDA database catalogs with data dictionary
views modeled on the Oracle data dictionary. These views are based on the dictionary
tables in the DRDA database, presenting that catalog information in views familiar to
Oracle users. The views created during the installation of the gateway automatically
limit the data dictionary information presented to each user based on the privileges of
that user.

4.9.1 Using the Gateway Data Dictionary
The gateway data dictionary views provide users with an Oracle-like interface to the
contents and use of the DRDA database. Oracle products require some of these
views. The gateway supports the DB2 UDB for z/OS, DB2 UDB for iSeries, and
DB2/UDB catalog views.

You can query the gateway data dictionary views to see the objects in the DRDA
database and to determine the authorized users of the DRDA database. The Oracle
Database Gateway for DRDA supports many Oracle catalog views. Refer to Oracle
DB2 Data Dictionary Views for descriptions of Oracle DB2 catalog views. These views
are completely compatible with the gateway.

4.9.2 Using the DRDA Catalog
Each DRDA database has its own catalog tables and views, which you might find
useful. Refer to the appropriate IBM documentation for descriptions of these catalogs.

Chapter 4
Oracle Data Dictionary Emulation on a DRDA Server

4-30

5
Error Messages, Diagnosis, and Reporting

The following sections provide information about error messages and error codes
specific to the Oracle Database Gateway for DRDA:

• Interpreting Gateway Error Messages

• Mapped Errors

• SQL Tracing and the Gateway

5.1 Interpreting Gateway Error Messages
The gateway architecture consists of different components. Any component may
detect and report an error condition while processing SQL statements that refer to one
or more DRDA database tables. This means that errors can be complex, involving
error codes and supporting data from multiple components. In all cases, however, the
application ultimately receives a single error code or a return code.

As most gateway messages exceed the 70 character message area in the Oracle SQL
Communications Area (SQLCA), the programmatic interfaces and Oracle Call
Interfaces, that you use to access data through the gateway should use SQLGLM or
OERHMS to view the entire text of messages. Refer to the programmer's guide to the
Oracle precompilers for additional information about SQLGLM, and refer to the Oracle
C++ Call Interface Programmer's Guide for additional information about OERHMS.

Errors encountered when using the gateway can originate from many sources, as
follows:

• Errors detected by the Oracle database

• Errors detected by the gateway

• Errors detected in the DRDA software, either on the client or server side

• Communication errors

• Errors detected by the server database

5.1.1 Errors Detected by the Gateway
Errors detected by the Oracle database are reported back to the application or tool
with the standard ORA type message. Refer to Oracle Database Error Messages for
descriptions of these errors. For example, the following error occurs when an
undefined database link name is specified:

ORA-02019: connection description for remote database not found

Errors in the ORA-9100 to ORA-9199 range are reserved for the generic gateway layer
(components of the gateway that are not specific to DRDA). Messages in this range
are documented in Oracle Database Error Messages.

5-1

5.1.2 Errors Detected in the DRDA Software
Errors detected in the DRDA gateway, on the client or server side, are usually reported
with error ORA-28500, followed by a gateway-specific expanded error message. There
are two return codes reported in the expanded message:

• drc specifies DRDA-specific errors.

• grc specifies generic gateway errors detected in the DRDA layer. These errors are
documented in the Oracle Database Error Messages.

Note:

Error code ORA-28500 was error code ORA-09100 prior to gateway version 8. Error
code ORA-28501 was listed as ORA-09101 prior to gateway version 8.

The values in parentheses that follow the drc values are used for debugging by Oracle
Support Services. The errp field indicates the program (client or server) that detected
the error. If present, errmc lists any error tokens.

For example, the following error message is returned when the database name
specified with the DRDA_REMOTE_NAME parameter in the initsid.ora file is not defined at
the DRDA server:

ORA-28500: connection from ORACLE to non-Oracle system returned the message:

5.1.3 Errors Detected by the DRDA Server
Errors detected by the DRDA server are reported with an ORA-28500 followed by a
gateway-specific expanded error message. Refer to IBM documentation for the
specific database being used. Also refer to Mapped Errorsfor some SQL errors that
get translated.

Note:

Error code ORA-28500 was error code ORA-09100 prior to gateway version 8. Error
code ORA-28501 was listed as ORA-09101 prior to gateway version 8.

For example, the following error message indicates that the DRDA server did not find
the DB2 database name specified in the HS_FDS_CONNECT_INFO parameter in the
initSID.ora file:

ORA-28500: connection from ORACLE to a non-Oracle system returned this message:
[Oracle][ODBC DB2 Wire Protocol driver]Remote Database Not Found: UNKNOWN

Chapter 5
Interpreting Gateway Error Messages

5-2

5.2 Mapped Errors
Some SQL errors are returned from the DRDA server and are translated to an Oracle
error code. This is needed when the Oracle instance or gateway provides special
handling of an error condition.

The following is an example of a translated object does not exist error:

ORA-00942: table or view does not exist
[Oracle][ODBC DB2 Wire Protocol driver][UDB DB2 for OS/390 and z/OS]PCASTRO.XXX IS
AN UNDEFINED NAME.

5.3 SQL Tracing and the Gateway
When developing applications, it is often useful to be able to see the exact SQL
statements that are being passed through the gateway. The following sections
describe setting appropriate trace parameters and setting up the debug gateway.

5.3.1 SQL Tracing in the Oracle Database
Oracle database has a command for capturing the SQL statement that is actually sent
to the gateway. This command is called EXPLAIN PLAN. The EXPLAIN PLAN command is
used to determine the execution plan that Oracle database follows to execute a
specified SQL statement. This command inserts a row, which describes each step of
the execution plan, into a specified table. If you are using cost-based optimization,
then this command also determines the cost of executing the statement. The syntax of
the command is:

EXPLAIN PLAN [SET STATEMENT_ID = 'text']
 [INTO [schema.]table[@dblink]] FOR statement

For detailed information on this command, refer to the Oracle Database SQL
Language Reference.

Note:

In most cases, EXPLAIN PLAN should be sufficient to extract the SQL statement
that is actually sent to the gateway, and thus sent to the DRDA server.
However, certain SQL statement form have post-processing performed on
them in the gateway.

Chapter 5
Mapped Errors

5-3

A
Oracle DB2 Data Dictionary Views

The following section covers the Oracle Database Gateway for DRDA data dictionary
views accessible to all users of Oracle database. Any user with SELECT privileges for
DB2 catalog tables can access most of the views.

N/A is used in the tables to denote that the column is not valid for the gateway.

A.1 Supported Views
The following is a list of Oracle data dictionary views that are supported by the
gateway for DB2 UDB for z/OS, DB2 UDB for iSeries, and DB2/UDB DRDA servers.

• ALL_CATALOG

• ALL_COL_COMMENTS

• ALL_CONS_COLUMNS

• ALL_CONSTRAINTS

• ALL_INDEXES

• ALL_IND_COLUMNS

• ALL_OBJECTS

• ALL_SYNONYMS

• ALL_TAB_COMMENTS

• ALL_TABLES

• ALL_TAB_COLUMNS

• ALL_USERS

• ALL_VIEWS

• COL_PRIVILEGES

• DICTIONARY

• DUAL

• TABLE_PRIVILEGES

• USER_CATALOG

• USER_COL_COMMENTS

• USER_CONSTRAINTS

• USER_CONS_COLUMNS

• USER_INDEXES

• USER_OBJECTS

• USER_SYNONYMS

A-1

• USER_TABLES

• USER_TAB_COLUMNS

• USER_TAB_COMMENTS

• USER_USERS

• USER_VIEWS

A.2 ALL_CATALOG
The ALL_CATALOG view contains all tables, views, synonyms, and sequence accessible
to the user.

Column name Description

OWNER Owner of the object

TABLE_NAME Name of the object

TABLE_TYPE Type of object

A.3 ALL_COL_COMMENTS
The ALL_COL_COMMENTS view contains comments on columns of accessible tables and
views.

Column name Description

OWNER Owner of the object

TABLE_NAME Object name

COLUMN_NAME Column name

COMMENTS Comments on column

A.4 ALL_CONS_COLUMNS
The ALL_CONS_COLUMNS view contains information about accessible columns in constraint
definitions.

Column name Description

OWNER Owner of the constraint definition

CONSTRAINT_NAME Name of the constraint definition

TABLE_NAME Name of the table with a constraint definition

COLUMN_NAME Name of the column specified in the constraint
definition

POSITION Original position of column in definition

A.5 ALL_CONSTRAINTS
The ALL_CONSTRAINTS view contains constraint definitions on accessible tables.

Appendix A
ALL_CATALOG

A-2

Column name Description

OWNER Owner of the constraint definition

CONSTRAINT_NAME Name of the constraint definition

CONSTRAINT_TYPE Type of the constraint definition

TABLE_NAME Name of the table with constraint definition

SEARCH_CONDITION Text of the search condition for table check

R_OWNER Owner of the table used in referential
constraint

R_CONSTRAINT_NAME Name of the unique constraint definition for
referenced table

DELETE_RULE Delete rule for a referential constraint

STATUS Status of a constraint

DEFERRABLE Whether the constraint is deferrable

DEFERRED Whether the constraint was initially deferred

VALIDATED Whether all data obeys the constraint

GENERATED Whether the name of the constraint is user or
system generated

BAD Constraint specifies a century in an
ambiguous manner

RELY Whether an enabled constraint is enforced or
unenforced

LAST_CHANGE When the constraint was last enabled

INDEX_OWNER N/A

INDEX_NAME N/A

A.6 ALL_INDEXES
The ALL_INDEXES view contains description of indexes on tables accessible to the user.

Column name Description

OWNER Owner of the index

INDEX_NAME Name of the index

INDEX_TYPE Type of the index

TABLE_OWNER Owner of the indexed object

TABLE_NAME Name of the indexed object

TABLE_TYPE Type of the indexed object

UNIQUENESS Uniqueness status of the index

COMPRESSION N/A

PREFIX_LENGTH 0

TABLESPACE_NAME Name of the tablespace containing the index

INI_TRANS N/A

MAX_TRANS N/A

Appendix A
ALL_INDEXES

A-3

Column name Description

INITIAL_EXTENT N/A

NEXT_EXTENT N/A

MIN_EXTENTS N/A

MAX_EXTENTS N/A

PCT_INCREASE N/A

PCT_THRESHOLD Threshold percentage of block space allowed per index
entry

INCLUDE_COLUMN Column ID of the last column to be included in an index-
organized table

FREELISTS Number of process freelists allocated to this segment

FREELIST_GROUPS Number of freelist groups allocated to this segment

PCT_FREE N/A

LOGGING Logging information

BLEVEL Depth of the index from its root block to its leaf blocks. A
depth of 1 indicates that the root block and the leaf block
are the same.

LEAF_BLOCKS Number of leaf blocks in the index

DISTINCT_KEYS Number of distinct indexed values. For indexes that
enforce UNIQUE and PRIMARY KEY constraints, this value is
the same as the number of rows in the table.

AVG_LEAF_BLOCKS_PER_KEY N/A

AVG_DATA_BLOCKS_PER_KEY N/A

CLUSTERING_FACTOR N/A

STATUS State of the index: VALID

NUM_ROWS Number of rows in the index

SAMPLE_SIZE Size of the sample used to analyze the index

LAST_ANALYZED Date on which an index was most recently analyzed

DEGREE Number of threads per instance for scanning the index

INSTANCES Number of instances across which the index is to be
scanned

PARTITIONED Whether the index is partitioned

TEMPORARY Whether the index is on a temporary table

GENERATED Whether the name of the index is system generated

SECONDARY N/A

BUFFER_POOL Whether the index is a secondary object

USER_STATS N/A

DURATION N/A

PCT_DIRECT_ACCESS N/A

ITYP_OWNER N/A

ITYP_NAME N/A

PARAMETERS N/A

Appendix A
ALL_INDEXES

A-4

Column name Description

GLOBAL_STATS N/A

DOMIDX_STATUS N/A

DOMIDX_OPSTATUS N/A

FUNCIDX_STATUS N/A

JOIN_INDEX N/A

IOT_REDUNDANT_PKEY_ELIM N/A

A.7 ALL_IND_COLUMNS
The ALL_IND_COLUMNS view contains the columns of indexes on all tables that are
accessible to the current user.

Column names Description

INDEX_OWNER Owner of the index

INDEX_NAME Name of the index

TABLE_OWNER Owner of the table or cluster

TABLE_NAME Name of the table or cluster

COLUMN_NAME Column name or attribute of object type column

COLUMN_POSITION Position of a column or attribute within the index

COLUMN_LENGTH Indexed length of the column

CHAR_LENGTH Maximum codepoint length of the column

DESCEND Whether the column is sorted in descending order (Y/N)

A.8 ALL_OBJECTS
The ALL_OBJECTS view contains objects accessible to the user.

Column name Description

OWNER Owner of the object

OBJECT_NAME Name of object

SUBOBJECT_NAME Name of the subobject

OBJECT_ID Object number of the object

DATA_OBJECT_ID Dictionary object number of the segment that
contains the object

OBJECT_TYPE Type of object

CREATED N/A

LAST_DDL_TIME N/A

TIMESTAMP N/A

STATUS State of the object

TEMPORARY Whether the object is temporary

Appendix A
ALL_IND_COLUMNS

A-5

Column name Description

GENERATED Whether the name of this object system is
generated

SECONDARY N/A

A.9 ALL_SYNONYMS
The ALL_SYNONYMS view contains all synonyms accessible to the user.

Column name Description

OWNER Owner of the synonym

SYNONYM_NAME Name of the synonym

TABLE_OWNER Owner of the object referenced by the
synonym

TABLE_NAME Name of the object referenced by the
synonym

DB_LINK N/A

A.10 ALL_TABLES
The ALL_TABLES view contains description of tables accessible to the user.

Column name Description

OWNER Owner of the table

TABLE_NAME Name of the table

TABLESPACE_NAME Name of the tablespace containing the table

CLUSTER_NAME N/A

IOT_NAME Name of the index organized table

PCT_FREE N/A

PCT_USED N/A

INI_TRANS N/A

MAX_TRANS N/A

INITIAL_EXTENT N/A

NEXT_EXTENT N/A

MIN_EXTENTS N/A

MAX_EXTENTS N/A

PCT_INCREASE N/A

FREELISTS Number of process freelists allocated to this segment

FREELIST_GROUPS Number of freelist groups allocated to this segment

LOGGING Logging attribute

BACKED_UP N/A

Appendix A
ALL_SYNONYMS

A-6

Column name Description

NUM_ROWS Number of rows in the table

BLOCKS N/A

EMPTY_BLOCKS N/A

AVG_SPACE N/A

CHAIN_CNT N/A

AVG_ROW_LEN Average length of a row in the table in bytes

AVG_SPACE_FREELIST_BLOCKS Average freespace of all blocks on a freelist

NUM_FREELIST_BLOCKS Number of blocks on the freelist

DEGREE Number of threads per instance for scanning the table

INSTANCES Number of instances across which the table is to be
scanned

CACHE Whether the cluster is to be cached in the buffer cache

TABLE_LOCK Whether the table locking is enabled or disabled

SAMPLE_SIZE Sample size used in analyzing this table

LAST_ANALYZED Date on which this table was most recently analyzed

PARTITIONED Whether this table is partitioned

IOT_TYPE Whether the table is an index-organized table

TEMPORARY Can the current session only see data that it placed in
this object itself?

SECONDARY N/A

NESTED Whether the table is a nested table

BUFFER_POOL Default buffer pool for the object

ROW_MOVEMENT N/A

GLOBAL_STATS N/A

USER_STATS N/A

DURATION N/A

SKIP_CORRUPT N/A

MONITORING N/A

CLUSTER_OWNER N/A

DEPENDENCIES N/A

COMPRESSION N/A

A.11 ALL_TAB_COLUMNS
The ALL_TAB_COLUMNS view contains columns of all tables, views, and clusters
accessible to the user.

Column name Description

OWNER Owner of the table or view

TABLE_NAME Table or view name

Appendix A
ALL_TAB_COLUMNS

A-7

Column name Description

COLUMN_NAME Column name

DATA_TYPE Data type of the column

DATA_TYPE_MOD Data type modifier of the column

DATA_TYPE_OWNER Owner of the data type of the column

DATA_LENGTH Maximum length of the column in bytes

DATA_PRECISION N/A

DATA_SCALE Digits to the right of decimal point in a number

NULLABLE Whether the column permits nulls? Value is n if there is a
NOT NULL constraint on the column or if the column is part of
a PRIMARY key.

COLUMN_ID Sequence number of the column as created

DEFAULT_LENGTH N/A

DATA_DEFAULT N/A

NUM_DISTINCT Number of distinct values in each column of the table

LOW_VALUE For tables with more than three rows, the second lowest and
second highest values. These statistics are expressed in
hexadecimal notation for the internal representation of the
first 32 bytes of the values.

HIGH_VALUE N/A

DENSITY N/A

NUM_NULLS Number of nulls in the column

NUM_BUCKETS Number of buckets in histogram for the column

LAST_ANALYZED Date on which this column was most recently analyzed

SAMPLE_SIZE Sample size used in analyzing this column

CHARACTER_SET_NAME Name of the character set

CHAR_COL_DECL_LENGTH Length of the character set

GLOBAL_STATS N/A

USER_STATS N/A

AVG_COL_LEN Average length of the column (in bytes)

CHAR_LENGTH Displays the length of the column in characters

CHAR_USED N/A

A.12 ALL_TAB_COMMENTS
The ALL_TAB_COMMENTS view contains comments on tables and views accessible to the
user.

Column name Description

OWNER Owner of the object

TABLE_NAME Name of the object

TABLE_TYPE Type of the object

Appendix A
ALL_TAB_COMMENTS

A-8

Column name Description

COMMENTS Comments on the object

A.13 ALL_USERS
The ALL_USERS contains information about all users of the database.

Column name Description

USERNAME Name of the user

USER_ID N/A

CREATED N/A

A.14 ALL_VIEWS
The ALL_VIEWS view contains text of views accessible to the user.

Column name Description

OWNER Owner of the view

VIEW_NAME Name of the view

TEXT_LENGTH ALL_VIEWS view will return 0 for TEXT_LENGTH column

TEXT ALL_VIEWS view will return NULL for TEXT column

TYPE_TEXT_LENGTH Length of the type clause of the typed view

TYPE_TEXT Type clause of the typed view

OID_TEXT_LENGTH Length of the WITH OID clause of the typed view

OID_TEXT WITH OID clause of the typed view

VIEW_TYPE_OWNER Owner of the type of the view, if the view is a typed view

VIEW_TYPE Type of the view, if the view is a typed view

SUPERVIEW_NAME N/A

A.15 COLUMN_PRIVILEGES
The COLUMN_PRIVILEGES view contains grants on columns for which the user is the
grantor, grantee, or owner, or, the grantee is PULBLIC.

Column name Description

GRANTEE Name of the user to whom access was granted

OWNER Username of the owner of the object

TABLE_NAME Name of the object

COLUMN_NAME Name of the column

GRANTOR Name of the user who performed the grant

INSERT_PRIV Permission to insert into the column

Appendix A
ALL_USERS

A-9

Column name Description

UPDATE_PRIV Permission to update the column

REFERENCES_PRIV Permission to reference the column

CREATED Timestamp for the grant

A.16 DICTIONARY
The DICTIONARY view contains list or data dictionary tables.

Column name Description

TABLE_NAME Table name

COMMENTS Description of the table

A.17 DUAL
The DUAL view contains list of dual tables.

Column name Description

DUMMY A dummy column

A.18 TABLE_PRIVILEGES
The TABLE_PRIVILEGES view contains grants on objects for which the user is the grantor,
grantee, or owner, or, the grantee is PUBLIC.

Column name Description

GRANTEE Name of the user to whom access is granted

OWNER Owner of the object

TABLE_NAME Name of the object

GRANTOR Name of the user who performed the grant

SELECT_PRIV Permission to select data from an object

INSERT_PRIV Permission to insert data into an object

DELETE_PRIV Permission to delete data from an object

UPDATE_PRIV Permission to update an object

REFERENCES_PRIV N/A

ALTER_PRIV Permission to alter an object

INDEX_PRIV Permission to create or drop an index on an object

CREATED Timestamp for the grant

Appendix A
DICTIONARY

A-10

A.19 USER_CATALOG
The USER_CATALOG view contains tables, views, synonyms, and sequences owned by
the user.

Column name Description

TABLE_NAME Name of the object

TABLE_TYPE Type of the object

A.20 USER_COL_COMMENTS
The USER_COL_COMMENTS view contains comments on columns of tables and views
owned by the user.

Column name Description

TABLE_NAME Name of the object

COLUMN_NAME Name of the column

COMMENTS Comments on the column

A.21 USER_CONSTRAINTS
The USER_CONSTRAINTS view contains constraint definitions on tables owned by the user.

Column name Description

OWNER Owner of the constraint definition

CONSTRAINT_NAME Name associated with the constraint definition

CONSTRAINT_TYPE Type of the constraint definition

TABLE_NAME Name associated with the table with constraint definition

SEARCH_CONDITION Text of the search condition for table check

R_OWNER Owner of table used in referential constraint

R_CONSTRAINT_NAME Name of the unique constraint definition for referenced table

DELETE_RULE Delete rule for referential constraint

STATUS Status of a constraint

DEFERRABLE Whether the constraint is deferrable

DEFERRED Whether the constraint was initially deferred

VALIDATED Whether all data obeys the constraint

GENERATED Whether the name of the constraint is user or system
generated

BAD Constraint specifies a century in an ambiguous manner

LAST_CHANGE When the constraint was last enabled

INDEX_OWNER N/A

INDEX_NAME N/A

Appendix A
USER_CATALOG

A-11

A.22 USER_CONS_COLUMNS
The USER_CONS_COLUMNS contains information about columns in constraint definitions
owned by the user.

Column name Description

OWNER Owner of the constraint definition

CONSTRAINT_NAME Name associated with the constraint definition

TABLE_NAME Name associated with table with constraint definition

COLUMN_NAME Name associated with column specified in the constraint definition

POSITION Original position of column in definition

A.23 USER_INDEXES
The USER_INDEXES view contains description of the user's indexes:

Column name Description

INDEX_NAME Name of the index

INDEX_TYPE Type of index

TABLE_OWNER Owner of the indexed object

TABLE_NAME Name of the indexed object

TABLE_TYPE Type of the indexed object

UNIQUENESS Uniqueness status of the index

COMPRESSION N/A

PREFIX_LENGTH 0

TABLESPACE_NAME Name of the tablespace containing the index

INI_TRANS N/A

MAX_TRANS N/A

INITIAL_EXTENT N/A

NEXT_EXTENT N/A

MIN_EXTENTS N/A

MAX_EXTENTS N/A

PCT_INCREASE N/A

PCT_THRESHOLD Threshold percentage of block space allowed per index
entry

INCLUDE_COLUMN Column ID of the last column to be included in index-
organized table

FREELISTS Number of process freelists allocated to a segment

FREELIST_GROUPS Number of freelist groups allocated to a segment

PCT_FREE N/A

LOGGING Logging information

Appendix A
USER_CONS_COLUMNS

A-12

Column name Description

BLEVEL Depth of the index from its root block to its leaf blocks. A
depth of 1 indicates that the root and leaf block are the
same.

LEAF_BLOCKS Number of leaf blocks in the index

DISTINCT_KEYS Number of distinct indexed values. For indexes that
enforce UNIQUE and PRIMARY KEY constraints, this value is
the same as the number of rows in the table.

AVG_LEAF_BLOCKS_PER_KEY N/A

AVG_DATA_BLOCKS_PER_KEY N/A

CLUSTERING_FACTOR N/A

STATUS State of the indexes: VALID

NUM_ROWS Number of rows in the index

SAMPLE_SIZE Size of the sample used to analyze the index

LAST_ANALYZED Date on which the index was most recently analyzed

DEGREE Number of threads per instance for scanning the index

INSTANCES Number of instances across which the index is to be
scanned

PARTITIONED Whether the index is partitioned

TEMPORARY Whether the index is on a temporary table

GENERATED Whether the name of the index is system generated

SECONDARY N/A

BUFFER_POOL Whether the index is a secondary object

USER_STATS N/A

DURATION N/A

PCT_DIRECT_ACCESS N/A

ITYP_OWNER N/A

ITYP_NAME N/A

PARAMETERS N/A

GLOBAL_STATS N/A

DOMIDX_STATUS N/A

DOMIDX_OPSTATUS N/A

FUNCIDX_STATUS N/A

JOIN_INDEX N/A

IOT_REDUNDANT_PKEY_ELIM N/A

A.24 USER_OBJECTS
The USER_OBJECTS view contains objects owned by the user.

Column name Description

OBJECT_NAME Name of the object

Appendix A
USER_OBJECTS

A-13

Column name Description

SUBOBJECT_NAME Name of the subobject

OBJECT_ID Object number of the object

DATA_OBJECT_ID Dictionary object number of the segment that contains the object

OBJECT_TYPE Type of object

CREATED N/A

LAST_DDL_TIME N/A

TIMESTAMP N/A

STATUS State of the object: VALID

TEMPORARY Whether the object is temporary

GENERATED Was the name of this object system generated?

SECONDARY N/A

A.25 USER_SYNONYMS
The USER_SYNONYMS view contains the private synonyms of the user.

Column name Description

SYNONYM_NAME Name of the synonym

TABLE_OWNER Owner of the object referenced by the
synonym

TABLE_NAME Name of the object referenced by the
synonym

DB_LINK N/A

A.26 USER_TABLES
The USER_TABLES view contains description of the tables owned by the user.

Column name Description

TABLE_NAME Name of the table

TABLESPACE_NAME Name of the tablespace containing the table

CLUSTER_NAME N/A

IOT_NAME Name of the index organized table

PCT_FREE N/A

PCT_USED N/A

INI_TRANS N/A

MAX_TRANS N/A

INITIAL_EXTENT N/A

NEXT_EXTENT N/A

MIN_EXTENTS N/A

Appendix A
USER_SYNONYMS

A-14

Column name Description

MAX_EXTENTS N/A

PCT_INCREASE N/A

FREELISTS Number of process freelists allocated to a segment

FREELIST_GROUPS Number of freelist groups allocated to a segment

LOGGING Logging information

BACKED_UP N/A

NUM_ROWS Number of rows in the table

BLOCKS N/A

EMPTY_BLOCKS N/A

AVG_SPACE N/A

CHAIN_CNT N/A

AVG_ROW_LEN Average length of a row in the table in bytes

AVG_SPACE_FREELIST_BLOCKS Average freespace of all blocks on a freelist

NUM_FREELIST_BLOCKS Number of blocks on the freelist

DEGREE Number of threads per instance for scanning the table

INSTANCES Number of instances across which the table is to be
scanned

CACHE Whether the cluster is to be cached in the buffer cache

TABLE_LOCK Whether table locking is enabled or disabled

SAMPLE_SIZE Sample size used in analyzing this table

LAST_ANALYZED Date on which this table was most recently analyzed

PARTITIONED Indicates whether this table is partitioned

IOT_TYPE If this is an index organized table

TEMPORARY Can the current session only see data that it placed in
this object itself?

SECONDARY N/A

NESTED If the table is a nested table

BUFFER_POOL The default buffer pool for the object

ROW_MOVEMENT N/A

GLOBAL_STATS N/A

USER_STATS N/A

DURATION N/A

SKIP_CORRUPT N/A

MONITORING N/A

CLUSTER_OWNER N/A

DEPENDENCIES N/A

COMPRESSION N/A

Appendix A
USER_TABLES

A-15

A.27 USER_TAB_COLUMNS
The USER_TAB_COLUMNS view contains columns of the tables, views, and clusters owned
by the user.

Column name Description

TABLE_NAME Name of the table, view, or cluster

COLUMN_NAME Name of the column

DATA_TYPE Data type of column

DATA_TYPE_MOD Data type modifier of the column

DATA_TYPE_OWNER Owner of the data type of the column

DATA_LENGTH Maximum length of the column in bytes

DATA_PRECISION N/A

DATA_SCALE Digits to the right of a decimal point in a number

NULLABLE Whether the column permits nulls. Value is n if there is a
NOT NULL constraint on the column or if the column is part
of a PRIMARY key.

COLUMN_ID Sequence number of the column as created

DEFAULT_LENGTH N/A

DATA_DEFAULT N/A

NUM_DISTINCT Number of distinct values in each column of the table

LOW_VALUE For tables with more than three rows, the second lowest and
second highest values. These statistics are expressed in
hexadecimal notation for the internal representation of the
first 32 bytes of the values.

HIGH_VALUE N/A

DENSITY N/A

NUM_NULLS Number of nulls in the column

NUM_BUCKETS Number of buckets in histogram for the column

LAST_ANALYZED Date on which this column was most recently analyzed

SAMPLE_SIZE Sample size used in analyzing this column

CHARACTER_SET_NAME Name of the character set

CHAR_COL_DECL_LENGTH Length of the character set

GLOBAL_STATS N/A

USER_STATS N/A

AVG_COL_LEN Average length of the column (in bytes)

CHAR_LENGTH Length of the column in characters

CHAR_USED N/A

A.28 USER_TAB_COMMENTS
The USER_TAB_COMMENTS view contains comments on the tables and views owned by the
user.

Appendix A
USER_TAB_COLUMNS

A-16

Column name Description

TABLE_NAME Name of the object

TABLE_TYPE Type of the object

COMMENTS Comments on the object

A.29 USER_VIEWS
The USER_VIEWS view contains text of views owned by the user.

Column name Description

VIEW_NAME Name of the view

TEXT_LENGTH Length of the view text

TEXT First line of the view text

TYPE_TEXT_LENGTH Length of the type clause of the typed view

TYPE_TEXT Type clause of the typed view

OID_TEXT_LENGTH Length of the WITH OID clause of the typed view

OID_TEXT WITH OID clause of the typed view

VIEW_TYPE_OWNER Owner of the type of the view, if the view is a typed view

VIEW_TYPE Type of the view, if the view is a typed view

SUPERVIEW_NAME N/A

A.30 USER_USERS
The USER_USERS view contains information about the current user.

Column name Description

USERNAME Name of the user

USER_ID N/A

ACCOUNT_STATUS Indicates if the account is locked, expired or unlocked

LOCK_DATE Date on which the account was locked

EXPIRE_DATE Date of expiration of the account

DEFAULT_TABLESPACE N/A

TEMPORARY_TABLESPACE N/A

CREATED N/A

EXTERNAL_NAME Name of the external user

Appendix A
USER_VIEWS

A-17

B
Initialization Parameters

The Oracle database initialization parameters in the init.ora file are distinct from
gateway initialization parameters. Set the gateway parameters in the initialization
parameter file using an agent-specific mechanism, or set them in the Oracle data
dictionary using the DBMS_HS package. The gateway initialization parameter file must be
available when the gateway is started. Changes made to the initialization parameters
only take effect in the next gateway session.

The following sections contain a list of the gateway initialization parameters that can
be set for each gateway and their description. It also describes the initialization
parameter file syntax.

• Initialization Parameter File Syntax

• Oracle Database Gateway for DRDA Initialization Parameters

B.1 Initialization Parameter File Syntax
The syntax for the initialization parameter file is as follows:

• The file is a sequence of commands.

• Each command should start on a separate line.

• End of line is considered a command terminator (unless escaped with a
backslash).

• If there is a syntax error in an initialization parameter file, none of the settings take
effect.

• Set the parameter values as follows:

[SET][PRIVATE] parameter=value

Where:

parameter is an initialization parameter name. It is a string of characters starting
with a letter and consisting of letters, digits and underscores. Initialization
parameter names are case sensitive.

value is the initialization parameter value. It is case-sensitive. An initialization
parameter value is either:

1. A string of characters that does not contain any backslashes, white space or
double quotation marks (")

2. A quoted string beginning with a double quotation mark and ending with a
double quotation mark. The following can be used inside a quoted string:

– backslash (\) is the escape character

– \n inserts a new line

– \t inserts a tab

– \" inserts a double quotation mark

B-1

– \\ inserts a backslash

A backslash at the end of the line continues the string on the next line. If a
backslash precedes any other character then the backslash is ignored.

For example, to enable tracing for an agent, set the HS_FDS_TRACE_LEVEL
initialization parameter as follows:

HS_FDS_TRACE_LEVEL=ON

SET and PRIVATE are optional keywords. You cannot use either as an initialization
parameter name. Most parameters are needed only as initialization parameters, so
you usually do not need to use the SET or PRIVATE keywords. If you do not specify
either SET or PRIVATE, the parameter is used only as an initialization parameter for
the agent.

SET specifies that, in addition to being used as an initialization parameter, the
parameter value is set as an environment variable for the agent process. Use SET
for parameter values that the drivers or non-Oracle system need as environment
variables.

PRIVATE specifies that the initialization parameter should be private to the agent
and should not be uploaded to the Oracle database. Most initialization parameters
should not be private. If, however, you are storing sensitive information like a
password in the initialization parameter file, then you may not want it uploaded to
the server because the initialization parameters and values are not encrypted
when uploaded. Making the initialization parameters private prevents the upload
from happening and they do not appear in dynamic performance views. Use
PRIVATE for the initialization parameters only if the parameter value includes
sensitive information such as a username or password.

SET PRIVATE specifies that the parameter value is set as an environment variable
for the agent process and is also private (not transferred to the Oracle database,
not appearing in dynamic performance views or graphical user interfaces).

B.2 Oracle Database Gateway for DRDA Initialization
Parameters

This section lists all the initialization file parameters that can be set for the Oracle
Database Gateway for DRDA. They are as follows:

• HS_CALL_NAME

• HS_DB_DOMAIN

• HS_DB_INTERNAL_NAME

• HS_DB_NAME

• HS_DESCRIBE_CACHE_HWM

• HS_LANGUAGE

• HS_LONG_PIECE_TRANSFER_SIZE

• HS_OPEN_CURSORS

• HS_RPC_FETCH_REBLOCKING

• HS_RPC_FETCH_SIZE

Appendix B
Oracle Database Gateway for DRDA Initialization Parameters

B-2

• HS_TRANSACTION_MODEL

• IFILE

• HS_FDS_CONNECT_INFO

• HS_FDS_RECOVERY_ACCOUNT

• HS_FDS_RECOVERY_PWD

• HS_FDS_FETCH_ROWS

• HS_FDS_TRACE_LEVEL

• HS_FDS_TRANSACTION_LOG

• HS_IDLE_TIMEOUT

• HS_FDS_MBCS_TO_GRAPHIC

• HS_FDS_GRAPHIC_TO_MBCS

• HS_FDS_TIMESTAMP_MAPPING

• HS_FDS_DATE_MAPPING

• HS_FDS_QUOTE_IDENTIFIER

• HS_FDS_CAPABILITY

• HS_FDS_ISOLATION_LEVEL

• HS_FDS_PACKAGE_COLLID

• HS_NLS_LENGTH_SEMANTICS

• HS_KEEP_REMOTE_COLUMN_SIZE

• HS_FDS_RESULTSET_SUPPORT

• HS_FDS_REMOTE_DB_CHARSET

• HS_FDS_SUPPORT_STATISTICS

• HS_FDS_RSET_RETURN_ROWCOUNT

• HS_FDS_AUTHENTICATE_USER

• HS_FDS_ENCRYPT_SESSION

• HS_FDS_VALIDATE_SERVER_CERT

• HS_FDS_TRUSTSTORE_FILE

• HS_FDS_TRUSTSTORE_PASSWORD

• HS_FDS_SQLLEN_INTERPRETATION

• HS_FDS_ARRAY_EXEC

B.3 HS_CALL_NAME

Property Description

Default value None

Range of values Not applicable

Appendix B
HS_CALL_NAME

B-3

Specifies the remote functions that can be referenced in SQL statements. The value is
a list of remote functions and their owners, separated by semicolons, in the following
format:

[owner_name.]function_name

For example:

owner1.A1;owner2.A2;A3

If an owner name is not specified for a remote function, the default owner name
becomes the user name used to connect to the remote database (specified when the
Heterogeneous Services database link is created or taken from user session if not
specified in the DB link).

The entries for the owner names and the function names are case-sensitive.

B.4 HS_DB_DOMAIN

Property Description

Default value WORLD

Range of values 1 to 199 characters

Specifies a unique network sub-address for a non-Oracle system. The HS_DB_DOMAIN
initialization parameter is similar to the DB_DOMAIN initialization parameter, described in
the Oracle Database Reference. The HS_DB_DOMAIN initialization parameter is required if
you use the Oracle Names server. The HS_DB_NAME and HS_DB_DOMAIN initialization
parameters define the global name of the non-Oracle system.

Note:

The HS_DB_NAME and HS_DB_DOMAIN initialization parameters must combine to
form a unique address in a cooperative server environment.

B.5 HS_DB_INTERNAL_NAME

Property Description

Default value 01010101

Range of values 1 to 16 hexadecimal characters

Specifies a unique hexadecimal number identifying the instance to which the
Heterogeneous Services agent is connected. This parameter's value is used as part of
a transaction ID when global name services are activated. Specifying a nonunique
number can cause problems when two-phase commit recovery actions are necessary
for a transaction.

Appendix B
HS_DB_DOMAIN

B-4

B.6 HS_DB_NAME

Property Description

Default value HO

Range of values 1 to 8 characters

Specifies a unique alphanumeric name for the data store given to the non-Oracle
system. This name identifies the non-Oracle system within the cooperative server
environment. The HS_DB_NAME and HS_DB_DOMAIN initialization parameters define the
global name of the non-Oracle system.

B.7 HS_DESCRIBE_CACHE_HWM

Property Description

Default value 100

Range of values 1 to 4000

Specifies the maximum number of entries in the describe cache used by
Heterogeneous Services. This limit is known as the describe cache high water mark.
The cache contains descriptions of the mapped tables that Heterogeneous Services
reuses so that it does not have to re-access the non-Oracle data store.

If you are accessing many mapped tables, increase the high water mark to improve
performance. Increasing the high water mark improves performance at the cost of
memory usage.

B.8 HS_LANGUAGE

Property Description

Default value System-specific

Range of values Any valid language name (up to 255 characters)

Provides Heterogeneous Services with character set, language, and territory
information of the non-Oracle data source. The value must use the following format:

language[_territory.character_set]

Note:

The globalization support initialization parameters affect error messages, the
data for the SQL Service, and parameters in distributed external procedures.

Appendix B
HS_DB_NAME

B-5

B.8.1 Character Sets
Ideally, the character sets of the Oracle database and the non-Oracle data source are
the same. In almost all cases, HS_LANGUAGE should be set exactly the same as Oracle
database character set for optimal character set mapping and performance. If they are
not the same, Heterogeneous Services attempts to translate the character set of the
non-Oracle data source to the Oracle database character set, and back again. The
translation can degrade performance. In some cases, Heterogeneous Services cannot
translate a character from one character set to another.

Note:

The specified character set must be a superset of the operating system
character set on the platform where the agent is installed.

As more Oracle databases and non-Oracle databases use Unicode as database
character sets, it is preferable to also run the gateway in Unicode character set. To do
so, you must set HS_LANGUAGE=AL32UTF8. However, when the gateway runs on Windows,
the Microsoft ODBC Driver Manager interface can exchange data only in the double-
byte character set, UCS2. This results in extra ratio expansion of described buffer and
column sizes. Refer to HS_FDS_REMOTE_DB_CHARSET for instruction on how to
adjust to correct sizes.

B.8.2 Language
The language component of the HS_LANGUAGE initialization parameter determines:

• Day and month names of dates

• AD, BC, PM, and AM symbols for date and time

• Default sorting mechanism

Note that Oracle does not determine the language for error messages for the generic
Heterogeneous Services messages (ORA-25000 through ORA-28000). These are
controlled by the session settings in the Oracle database.

B.8.3 Territory
The territory clause specifies the conventions for day and week numbering, default
date format, decimal character and group separator, and ISO and local currency
symbols. Note that the level of globalization support between the Oracle database and
the non-Oracle data source depends on how the gateway is implemented.

B.9 HS_LONG_PIECE_TRANSFER_SIZE

Property Description

Default value 64 KB

Range of values Any value up to 2 GB

Appendix B
HS_LONG_PIECE_TRANSFER_SIZE

B-6

Sets the size of the piece of LONG data being transferred. A smaller piece size means
less memory requirement, but more round-trips to fetch all the data. A larger piece size
means fewer round-trips, but more of a memory requirement to store the intermediate
pieces internally. Thus, the initialization parameter can be used to tune a system for
the best performance, with the best trade-off between round-trips and memory
requirements, and network latency or response time.

B.10 HS_OPEN_CURSORS

Property Description

Default value 50

Range of values 1 to the value of OPEN_CURSORS initialization parameter of Oracle
database

Defines the maximum number of cursors that can be open on one connection to a
non-Oracle system instance.

The value never exceeds the number of open cursors in the Oracle database.
Therefore, setting the same value as the OPEN_CURSORS initialization parameter in the
Oracle database is recommended.

B.11 HS_RPC_FETCH_REBLOCKING

Property Description

Default value ON

Range of values OFF or ON

Controls whether Heterogeneous Services attempts to optimize performance of data
transfer between the Oracle database and the Heterogeneous Services agent
connected to the non-Oracle data store.

The following values are possible:

• OFF disables reblocking of fetched data so that data is immediately sent from agent
to server.

• ON enables reblocking, which means that data fetched from the non-Oracle system
is buffered in the agent and is not sent to the Oracle database until the amount of
fetched data is equal or higher than the value of HS_RPC_FETCH_SIZE initialization
parameter. However, any buffered data is returned immediately when a fetch
indicates that no more data exists or when the non-Oracle system reports an error.

B.12 HS_RPC_FETCH_SIZE

Property Description

Default value 50000

Range of values 1 to 10000000

Appendix B
HS_OPEN_CURSORS

B-7

Tunes internal data buffering to optimize the data transfer rate between the server and
the agent process.

Increasing the value can reduce the number of network round-trips needed to transfer
a given amount of data, but also tends to increase data bandwidth and to reduce
latency as measured between issuing a query and completion of all fetches for the
query. Nevertheless, increasing the fetch size can increase latency for the initial fetch
results of a query, because the first fetch results are not transmitted until additional
data is available.

B.13 HS_TRANSACTION_MODEL

Property Description

Default Value COMMIT_CONFIRM

Range of Values COMMIT_CONFIRM, READ_ONLY, READ_ONLY_AUTOCOMMIT,
SINGLE_SITE, SINGLE_SITE_AUTOCOMMIT

Specifies the type of transaction model that is used when the non-Oracle database is
updated by a transaction.

The following values are possible:

• COMMIT_CONFIRM provides read and write access to the non-Oracle database and
allows the gateway to be part of a distributed update. To use the commit-confirm
model, the following items must be created in the non-Oracle database:

– Transaction log table. The default table name is HS_TRANSACTION_LOG. A
different name can be set using the HS_FDS_TRANSACTION_LOG parameter. The
transaction log table must be granted SELECT, DELETE, and INSERT privileges set
to public.

– Recovery account. The account name is assigned with the
HS_FDS_RECOVERY_ACCOUNT parameter.

– Recovery account password. The password is assigned with the
HS_FDS_RECOVERY_PWD parameter.

COMMIT_CONFIRM does not apply to Oracle Database Gateway for ODBC. The
default value for Oracle Database Gateway for ODBC is SINGLE_SITE.

• READ_ONLY provides read access to the non-Oracle database.

• READ_ONLY_AUTOCOMMIT provides read access to the non-Oracle database that do not
have logging.

• SINGLE_SITE provides read and write access to the non-Oracle database. However,
the gateway cannot participate in distributed updates.

• SINGLE_SITE_AUTOCOMMIT provides read and write access to the non-Oracle
database that do not have logging. Any update is committed immediately, and the
gateway cannot participate in distributed updates.

Appendix B
HS_TRANSACTION_MODEL

B-8

B.14 IFILE

Property Description

Default value None

Range of values Valid parameter file names

Use the IFILE initialization parameter to embed another initialization file within the
current initialization file. The value should be an absolute path and should not contain
environment variables. The three levels of nesting limit do not apply.

See Also:

Oracle Database Reference

B.15 HS_FDS_CONNECT_INFO

Property Description

Default Value None

Range of Values Not applicable

HS_FDS_CONNECT_INFO that describes the connection to the non-Oracle system.

The default initialization parameter file already has an entry for this parameter. The
syntax for HS_FDS_CONNECT_INFO for the gateways are as follows:

HS_FDS_CONNECT_INFO=IP_address:Port_number/Database_name,Type

Where IP_address is the hostname or IP address of the DB2 DRDA server

Port_number is the port number of the DB2 DRDA server.

Database_name is the database name of the DB2 server

Type (case insensitive) is one of the following:

• ZOS (DB2 UDB for z/OS),

• IOS (DB2 UDB for iSeries), or

• LUW (DB2 UDB for Linux, Unix, or Windows)

This release of gateway can support IPv6. If IPv6 address format is to be specified,
you would need to wrap square brackets around the IPv6 specification to indicate the
separation from the port number.

For example,

HS_FDS_CONNECT_INFO=[2001:0db8:20C:F1FF:FEC6:38AF]:1300/DB2M,ZOS

Appendix B
IFILE

B-9

B.16 HS_FDS_RECOVERY_ACCOUNT

Property Description

Default Value RECOVER

Range of values Any valid user ID

Specifies the name of the recovery account used for the commit-confirm transaction
model. An account with user name and password must be set up at the non-Oracle
system. For more information about the commit-confirm model, see the
HS_TRANSACTION_MODEL parameter.

For DRDA, HS_FDS_RECOVERY_ACCOUNT specifies the user ID that is used by the gateway if
a distributed transaction becomes in doubt. This user ID must have execute privileges
on the package and must be defined to the IBM database.

If a distributed transaction becomes in doubt, then the Oracle database determines the
status of the transaction by connecting to the IBM database, using the
HS_FDS_RECOVERY_ACCOUNT. If this parameter is missing, then the gateway attempts to
connect to a user ID of ORARECOV.

The name of the recovery account is case-sensitive.

B.17 HS_FDS_RECOVERY_PWD

Property Description

Default Value RECOVER

Range of values Any valid password

Specifies the password of the recovery account used for the commit-confirm
transaction model set up at the non-Oracle system. For more information about the
commit-confirm model, see the HS_TRANSACTION_MODEL parameter.

HS_FDS_RECOVERY_PWD is used with the HS_FDS_RECOVERY_ACCOUNT. The recovery user
connects to the IBM database if a distributed transaction is in doubt.

The name of the password of the recovery account is case-sensitive.

B.18 HS_FDS_FETCH_ROWS

Property Description

Default Value 100

Range of Values Any integer between 1 and 1000

Syntax HS_FDS_FETCH_ROWS=num

HS_FDS_FETCH_ROWS specifies the fetch array size. This is the number of rows to be
fetched from the non-Oracle database and to return to Oracle database at one time.
This parameter will be affected by the HS_RPC_FETCH_SIZE and HS_RPC_FETCH_REBLOCKING
parameters.

Appendix B
HS_FDS_RECOVERY_ACCOUNT

B-10

B.19 HS_FDS_TRACE_LEVEL

Property Description

Default Value OFF

Range of values OFF, ON, DEBUG

Specifies whether error tracing is turned on or off for gateway connectivity.

The following values are valid:

• OFF disables the tracing of error messages.

• ON enables the tracing of error messages that occur when you encounter
problems. The results are written by default to a gateway log file in LOG directory
where the gateway is installed.

• DEBUG enables the tracing of detailed error messages that can be used for
debugging.

B.20 HS_FDS_TRANSACTION_LOG

Property Description

Default Value HS_TRANSACTION_LOG

Range of Values Any valid table name

Specifies the name of the table created in the non-Oracle system for logging
transactions. For more information about the transaction model, see the
HS_TRANSACTION_MODEL parameter.

B.21 HS_IDLE_TIMEOUT

Property Description

Default Value 0 (no timeout)

Range of Values 0-9999 (minutes)

Syntax HS_IDLE_TIMEOUT=num

This feature is only available for Oracle Net TCP protocol.

When there is no activity for a connected gateway session for this specified time
period, the gateway session would be terminated automatically with pending update (if
any) rolled back.

B.22 HS_FDS_MBCS_TO_GRAPHIC

Property Description

Default Value FALSE

Appendix B
HS_FDS_TRACE_LEVEL

B-11

Property Description

Range of Values FALSE|TRUE

Syntax HS_FDS_MBCS_TO_GRAPHIC={FALSE|TRUE}

If set to TRUE, any single-byte character meant to insert to DB2 (var)graphic column
would be converted to equivalent double-byte value before the insert operation.

B.23 HS_FDS_GRAPHIC_TO_MBCS

Property Description

Default Value FALSE

Range of Values FALSE|TRUE

Syntax HS_FDS_GRAPHIC_TO_MBCS={FALSE|TRUE}

If set to TRUE, any double-byte characters in DB2 (var)graphic column that can have
equivalent single-byte equivalent would be translated to equivalent single-byte before
sending to the user.

B.24 HS_FDS_TIMESTAMP_MAPPING

Property Description

Default Value CHAR

Range of Values CHAR|DATE|TIMESTAMP

Syntax HS_FDS_TIMESTAMP_MAPPING={CHAR|DATE|TIMESTAMP}

If set to CHAR , then non-Oracle target timestamp would be mapped to CHAR(26). If set to
DATE (default), then non-Oracle target timestamp would be mapped to Oracle DATE. If
set to TIMESTAMP, then non-Oracle target timestamp would be mapped to Oracle
TIMESTAMP.

B.25 HS_FDS_DATE_MAPPING

Property Description

Default Value DATE

Range of Values DATE|CHAR

Syntax HS_FDS_DATE_MAPPING={DATE|CHAR}

If set to CHAR, then non-oracle target date would be mapped to CHAR(10). If set to DATE,
then non-Oracle target date would be mapped to Oracle date.

Appendix B
HS_FDS_GRAPHIC_TO_MBCS

B-12

B.26 HS_FDS_QUOTE_IDENTIFIER

Property Description

Default Value TRUE

Range of Values TRUE|FALSE

Syntax HS_FDS_QUOTE_IDENTIFIER={FALSE|TRUE}

By default, the gateway will quote identifiers if the FDS supports it. However, we give
the user the ability to overwrite the behavior.

B.27 HS_FDS_CAPABILITY

Property Description

Default Value None

Range of Values Refer to SQL Functions That Can Be Enabled

Syntax HS_FDS_CAPABILITY= {FUNCTION/{ON|OFF|SKIP}},...

If the HS_FDS_CAPABILITY is set to ON then the specified function will be sent to DB2 for
processing. In other words, post processing will be not needed for that function.

If the HS_FDS_CAPABILITY is set to OFF then the specified function will be not be sent to
DB2 for processing. In other words, it will be post processed.

If the HS_FDS_CAPABILITY is set to SKIP then the specified function will be stripped from
the SQL statement sent to DB2. In other words the function will be ignored.

B.28 HS_FDS_TRANSACTION_ISOLATION

Property Description

Default Value READ_COMMITTED

Range of Values {READ_UNCOMMITTED|READ_COMMITTED|REPEATABLE_READ|
SERIALIZABLE|NONE}

Syntax HS_FDS_ISOLATION_LEVEL={{READ_UNCOMMITTED|
READ_COMMITTED|REPEATABLE_READ|SERIALIZABLE|NONE}

HS_FDS_TRANSACTION_ISOLATION specifies the isolation level that is used for the
transaction that the gateway opens on the non-Oracle database.

The isolation level NONE is only valid against DB2 iSeries. It specifies level NO COMMIT.
This isolation level will force an HS_TRANSACTION_MODEL of SINGLE_SITE_AUTOCOMMIT.
Please refer to DB2's documentation regarding this level.

The isolation levels of READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, and
SERIALIZABLE are the four isolation levels defined in the SQL standard and adopted by
both both ANSI and ISO/IEC. For additional information regarding them, see Oracle
Database Concepts.

Appendix B
HS_FDS_QUOTE_IDENTIFIER

B-13

Use caution when specifying an isolation level lower than the Oracle transaction
isolation level being used, as the gateway transaction will have different Preventable
Read Phenomena from what will occur in the Oracle database transaction.

B.29 HS_FDS_PACKAGE_COLLID

Property Description

Default Value ORACLEGTW

Range of Values An alphanumeric string 1 to 18 characters in length

Syntax HS_FDS_PACKAGE_COLLID=collection_id

HS_FDS_PACKAGE_COLLID specifies the package collection ID. Note that in DB2 UDB for
iSeries, the collection ID is actually the name of an AS/400 library.

Note:

Any change to this parameter will cause a new package to be implicitly bound
by the gateway. For DB2 for UDB iSeries, prior to attempting a connection,
one should use the iSeries SQL command CREATE SCHEMA or CREATE COLLECTION
to create an iSeries library with the name as specified for
HS_FDS_PACKAGE_COLLID. This COLLECTION or SCHEMA should be created under the
id specified in the CONNECT TO phrase of the Oracle SQL command CREATE
DATABASE LINK.

B.30 HS_NLS_LENGTH_SEMANTICS

Property Description

Default Value BYTE

Range of values BYTE | CHAR

Syntax HS_NLS_LENGTH_SEMANTICS = { BYTE | CHAR }

This release of gateway has Character Semantics functionality equivalent to the
Oracle Database Character Semantics, that is, NLS_LENGTH_SEMANTICS. When
HS_NLS_LENGTH_SEMANTICS is set to CHAR, the (VAR)CHAR columns of UDB database are to
be interpreted as having CHAR semantics. The only situation the gateway does not
honor the HS_NLS_LENGTH_SEMANTICS=CHAR setting is when both Oracle database and the
gateway are on the same multi-byte character set

B.31 HS_KEEP_REMOTE_COLUMN_SIZE

Property Description

Default Value OFF

Range of Values OFF | LOCAL | REMOTE | ALL

Syntax HS_KEEP_REMOTE_COLUMN_SIZE = OFF | LOCAL |REMOTE |ALL

Appendix B
HS_FDS_PACKAGE_COLLID

B-14

Property Description

Parameter type String

HS_KEEP_REMOTE_COLUMN_SIZE specifies whether to suppress ratio expansion when
computing the length of (VAR)CHAR datatypes during data conversion from UDB
database to the gateway, and then to the Oracle database. When it is set to REMOTE,
the expansion is suppressed between the non-Oracle database to the gateway. When
it is set to LOCAL, the expansion is suppressed between the gateway and Oracle
database. When it is set to ALL, the expansion is suppressed from the non-Oracle
database to the Oracle database.

When the parameter is set, the expansion is suppressed when reporting the remote
column size, calculating the implicit resulting buffer size, and instantiating in the local
Oracle database. This has effect only for remote column size from the non-Oracle
database to Oracle database. If the gateway runs on Windows and
HS_LANGUAGE=AL32UTF8, then you must not specify this parameter, as it would influence
other ratio related parameter operation. It has no effect for calculating ratio for data
moving from Oracle database to non-Oracle database through gateway during INSERT,
UPDATE, or DELETE.

B.32 HS_FDS_RESULTSET_SUPPORT

Property Description

Default Value FALSE

Range of values TRUE | FALSE

Syntax HS_FDS_RESULTSET_SUPPORT = { TRUE | FALSE }

Enables result sets to be returned from stored procedures. By default, all stored
procedures do not return a result set to the user.

Note:

If you set this initialization parameter, you must do the following:

• Change the syntax of the procedure execute statement for all existing
stored procedures, to handle result sets.

• Work in the sequential mode of Heterogeneous Services.

B.33 HS_FDS_REMOTE_DB_CHARSET

Property Description

Default Value None

Range of values Not applicable

Syntax HS_FDS_REMOTE_DB_CHARSET

Appendix B
HS_FDS_RESULTSET_SUPPORT

B-15

This parameter is valid only when HS_LANGUAGE is set to AL32UTF8 and the gateway runs
on Windows. As more Oracle databases and non-Oracle databases use Unicode as
database character sets, it is preferable to also run the gateway in Unicode character
set. To do so, you must set HS_LANGUAGE=AL32UTF8. However, when the gateway runs on
Windows, the Microsoft ODBC Driver Manager interface can exchange data only in the
double-byte character set, UCS2. This results in extra ratio expansion of described
buffer and column sizes. To compensate, the gateway can re-adjust the column size if
HS_FDS_REMOTE_DB_CHARSET is set to the corresponding non-Oracle database character
set. For example, HS_FDS_REMOTE_DB_CHARSET=KO16KSC5601.

B.34 HS_FDS_SUPPORT_STATISTICS

Property Description

Default Value TRUE

Range of values {TRUE|FALSE}

Syntax HS_FDS_SUPPORT_STATISTICS= {TRUE|FALSE}

We gather statistics from the non-Oracle database by default. You can choose to
disable the gathering of remote database statistics by setting the
HS_FDS_SUPPORT_STATISTICS parameter to FALSE.

B.35 HS_FDS_RSET_RETURN_ROWCOUNT

Property Description

Default Value FALSE

Range of values {TRUE|FALSE}

Syntax HS_FDS_RSET_RETURN_ROWCOUNT= {TRUE|FALSE}

When set to TRUE, the gateway returns the row counts of DML statements that are
executed inside a stored procedure. The row count is returned as a single row, single
column result set of type signed integer.

When set to FALSE, the gateway skips the row counts of DML statements that are
executed inside a stored procedure. This is the default behavior, and it is the behavior
of 11.1 and older gateways.

B.36 HS_FDS_AUTHENTICATE_USER

Property Description

Default Value CLEARTEXT

Range of values {CLEARTEXT|ENCRYPT|ENCRYPT_BOTH|CLIENT|KERBEROS}

Syntax HS_FDS_AUTHENTICATE_USER= {CLEARTEXT|ENCRYPT|ENCRYPT_BOTH|
CLIENT|KERBEROS}

Specifies the way in which user ID and password are sent to the remote DB2 server
and authenticated. Valid values are:

Appendix B
HS_FDS_SUPPORT_STATISTICS

B-16

• CLEARTEXT : user ID and password are sent in clear text to server (default).

• ENCRYPT : password is sent encrypted to server.

• ENCRYPT_BOTH : user ID and password are sent encrypted to server.

• CLIENT : user ID is validated on the client side instead of by the server.

• KERBEROS : uses Kerberos to authenticate user ID.

B.37 HS_FDS_ENCRYPT_SESSION

Property Description

Default Value NONE

Range of values {NONE|SSL|DB2|NOTRUST_SSL}

Syntax HS_FDS_ENCRYPT_SESSION = {NONE|SSL|DB2|NOTRUST_SSL}

Specifies the way the session to DB2 is encrypted. Valid values are:

• NONE : data session is not encrypted (default).

• SSL : Use SSL to encrypt data session.

• DB2 : Use DB2 encryption protocol for data session (supported only on DB2 for
Linux,, UNIX, Windows, and DB2 for z/OS).

• NOTRUST_SSL: This option is equivalent to the SSL setting, with initialization
parameter HS_FDS_VALIDATE_SERVER_CERT = DISABLED

B.38 HS_FDS_VALIDATE_SERVER_CERT

Property Description

Default Value ENABLED

Range of values {ENABLED|DISABLED}

Syntax HS_FDS_VALIDATE_SERVER_CERT = {ENABLED|DISABLED}

Specifies whether the driver validates the certificate that is sent by the database server
when SSL encryption is enabled through HS_FDS_ENCRYPT_SESSION. When using SSL
server authentication, any certificate sent by the server must be issued by a trusted
Certificate Authority. Valid values are:

• ENABLED : the gateway validates the certificate that is sent by the database server.
Any certificate from the server must be issued by a trusted Certificate Authority in
the truststore file. The truststore information is specified using the
HS_FDS_TRUSTSTORE_FILE and HS_FDS_TRUSTSTORE_PASSWORD initialization parameters.

• DISABLED : the gateway does not validate the certificate that is sent by the database
server.

Appendix B
HS_FDS_ENCRYPT_SESSION

B-17

B.39 HS_FDS_TRUSTSTORE_FILE

Property Description

Default Value none

Range of values path to truststore file

Syntax HS_FDS_TRUSTSTORE_FILE = path to truststore file

Specifies the path that specifies the location of the truststore file. The truststore file
contains a list of the valid Certificate Authorities (CAs) that are trusted by the client
machine for SSL server authentication.

B.40 HS_FDS_TRUSTSTORE_PASSWORD

Property Description

Default Value none

Range of values password

Syntax HS_FDS_TRUSTSTORE_PASSWORD= password

Specifies the password required to access the truststore.

B.41 HS_FDS_SQLLEN_INTERPRETATION

Property Description

Default Value 64

Range of values {64|32}

Syntax HS_FDS_SQLLEN_INTERPRETATION= {64|32}

This parameter is only valid for 64 bit platforms. ODBC standard specifies SQLLEN (of
internal ODBC construct) being 64 bit on 64 bit platforms, but some ODBC driver
managers and drivers violate this convention, and implement it as 32 bit. In order for
the gateway to compensate their behavior, you need to specify
HS_FDS_SQLLEN_INTERPRETATION=32 if you use these types of driver managers and driver.

B.42 HS_FDS_ARRAY_EXEC

Property Description

Default Value FALSE

Range of values {TRUE|FALSE}

Syntax HS_FDS_ARRAY_EXEC= {TRUE|FALSE}

Appendix B
HS_FDS_TRUSTSTORE_FILE

B-18

If set to TRUE, the gateway will use array operations for insert, update, delete
statements containing binds against the remote data source. The array size is
determined by the value of the HS_FDS_FETCH_ROWS init parameter.

If set to FALSE, the gateway will not use array operations for insert, update, and delete
statements. Instead, a single statement will be issued for every value.

Appendix B
HS_FDS_ARRAY_EXEC

B-19

Index

A
accessing

gateway
main topic, 3-4

Advanced Security
function of the gateway, 1-4
purpose, 1-4

ALL_CATALOG view, A-2
ALL_COL_COMMENTS view, A-2
ALL_CON_COLUMNS view, A-2
ALL_CONSTRAINTS view, A-2
ALL_DB_LINKS data dictionary view, 3-4
ALL_INDEXES view, A-3
ALL_OBJECTS view, A-5
ALL_SYNONYMS view, A-6
ALL_TAB_COMMENTS view, A-8
ALL_TABLES view, A-6
ALL_USERS view, A-9
ALL_VIEWS view, A-9
ALTER SESSION statement, 3-3
ANSI-standard SQL, 1-4, 1-12
APPEND command

supported by COPY, 3-8
application

portability, 1-10
server support, 1-3

application development on the gateway, 1-13
architecture of the gateway, 1-7
array size

fetch reblocking, 1-11
how determined, 4-2

AS/400
files and file members, accessing, 3-5
library name, HS_FDS_PACKAGE_COLLID,

B-14
ASCII

sort order, 4-21
translated from EBCDIC, 4-23

autonomy, site, 1-6

B
binary data, non-character, 4-23
bind variables

bind variables (continued)
SQL passthrough, 4-28

bug
debugging

drc values in the DRDA software, 5-2
setting trace parameters, 5-3
SQL tracing, 3-8

number 205538, known restrictions, SQL
limitations, 2-6

C
call

DB2 stored procedure, 4-3, 4-5
empproc stored procedure, 4-4
Oracle Call Interfaces, 5-1
PL/SQL, 4-4
stored procedure

creating a synonym to maintain location
transparency, 4-3

using standard Oracle PL/SQL, 4-2
to stored procedure

known restrictions, 2-4
capabilities of DRDA server, native semantics,

4-19
changes in this release

IBM DB2/UDB supported, 1-13
read-only support, 1-10

character sets
Heterogeneous Services, B-6

character string
converting datatypes, 4-23
performing operations, 4-23

CHECKSUM command
extended advanced networking, 1-4

clauses
CONNECT TO, 3-2
GROUP BY, SQL Set Clauses, 4-21
HAVING, SQL Set Clauses, 4-21
ORDER BY, SQL Set Clauses, 4-21
SQL

DELETE, 4-26
INSERT, 4-26
SELECT WHERE, 4-26
UPDATE, 4-26

Index-1

clauses (continued)
USING, 3-2
VALUES

functions not allowed by DB2, 4-26
WHERE

known restrictions, SQL limitations, 2-6
SQL Set Clauses, 4-21
WHERE CURRENT OF CURSOR,

known restrictions, SQL
limitations, 2-6

closing and opening again any session against
db2 required with any change to

HS_FDS_PACKAGE_COLLID, B-14
coercion

of data, 4-19
column

date columns, TO_DATE function, 4-26
supported in a result set, 1-10

commands
CHECKSUM, 1-4
COPY

Oracle database to DRDA server, 3-7
SQL*Plus command, 3-8

EXECUTE, 1-5
EXPLAIN PLAN, 5-3

commit confirm protocol, 1-6
compatible SQL set operators and clauses, 4-21
CONNECT TO clause, 3-2
convert

character string, 4-23
datatypes

DRDA to Oracle datatypes, 4-21
DATE, 4-24
floating point to integer, 4-27
into most suitable datatype, 4-27
SQL, 1-9
to the numeric datatype, 4-27

converter, protocol, 1-4
COPY command

Oracle database to DRDA server, 3-7
COPY SQL*Plus command, 3-8
copying data

from the DRDA server, 3-8
from the Oracle database to DRDA server,

3-7
COS SQL function, 4-10
COUNT function, 4-27
CREATE command

supported by COPY, 3-8
CREATE DATABASE LINK command, 3-2
CREATE TABLE statement, 1-5
creating

database link, 3-2

D
data coercion, 4-19
data control language (DCL), 1-5
DATA datatype, 4-24
data definition language (DDL), 1-4
data dictionary

using, 4-30
views

ALL_DB_LINKS, 3-4
emulation on DRDA server, 4-30
for DB2/UDB not supported, A-1
supported for DB2/OS390 and DB2/400

servers, A-1
USER_DB_LINKS, 3-4

database
catalogs, 4-30
link

behavior, 4-9
creating, 3-2
dropping links, 3-3
examining, 3-4
guidelines, 3-2
limits, 3-4
processing, 3-2
suffix, 4-1
to identify the gateway, 1-9

triggers, 1-3
datatype

character string, 4-22
column (ALL_TAB_COLUMNS), A-8
column (USER_TAB_COLUMNS), A-16
conversion

DRDA to Oracle datatypes, 4-21
no control over, 4-27

converting character string, 4-23
data and time, 4-24
differences between Oracle database and

DRDA databases, 4-21
DRDA server datatypes list, 4-22
mapping, 4-22
numeric, 4-27
operations, numeric, 4-27
Oracle datatypes RAW and LONG RAW,

4-23
restrictions, 4-22
size and value limitations, 4-22

datatypes
DATE, 4-24
GRAPHIC, 4-23
LONG RAW, 4-23
Oracle and IBM DATE, 4-24
Oracle DATE, 4-24
RAW

character string operations, 4-23

Index

Index-2

datatypes (continued)
TIME, 4-24
TIMESTAMP, 4-24

date
date columns, TO_DATE function, 4-26
HS_NLS_DATE_FORMAT parameter, 4-26
INSERT

statement, 4-26
operations, 4-24
SELECT statement, 4-26
TO_DATE function, 4-26
UPDATE

statement, 4-26
date arithmetic

known restrictions, 2-5
DATE datatype, 4-24
DB_DOMAIN parameter

known restrictions, 2-4
DB2

data access, 1-5
native SQL, 1-5
native stored procedures, 1-5
procedural feature considerations, 4-5
SQL statements, 4-29
statements

CREATE TABLE, 1-5
stored procedures, 4-5

DB2 UDB for iSeries
HS_FDS_PACKAGE_COLLID, B-14

DB2/400
catalog view, 4-30
data dictionary views supported by gateway,

A-1
DB2/OS390

catalog view, 4-30
data dictionary views supported by gateway,

A-1
V6, V7 and V8 stored procedures supported,

1-10
DB2/UDB

catalog view, 4-30
data dictionary views not supported, A-1
supported, 1-13

DBMS_HS_PASSTHROUGH.EXECUTE_IMME
DIATE function, 4-28

DD basic tables, known restrictions, 2-4
DDL

statement, 4-28
debug

gateway, 5-3
debugging

error codes, 5-2
SQL tracing, 5-3
your application, 3-8

DELETE

DELETE (continued)
known restrictions, SQL limitations, 2-6
operation, 4-1
SQL clause, 4-26
statement, 4-28

DESCRIBE
character string operations, 4-23

describe cache high water mark
definition, B-5

dictionary
mapping, 1-4
tables, 4-30

DICTIONARY view, A-10
distributed

applications, support for, 1-10
DRDA transactions, 3-7
queries

two-phase commit, 3-6
transaction,

HS_FDS_RECOVERY_ACCOUNT,
B-10

DRDA
catalog, 4-30

DRDA server
architecture, 1-8
capabilities, native semantics, 4-19
functions, 4-19
stored procedures, 4-3

DRDA server error, 5-2
DROP DATABASE LINK statement, 3-3
dynamic dictionary mapping, 1-4

E
EBCDIC

sort order, 4-21
translated to ASCII, 4-23

EMP
system-wide synonym, 3-5

environment
heterogeneous, 3-7

errmc
errmc field lists any error tokens, 5-2

error
basic description, 5-1
detected

by Oracle database, 5-1
by server database, 5-2
in DRDA software, 5-2

interpreting error messages, 5-1
messages

Oracle LONG datatype is too long, 4-23
messages ((amp)) codes, 5-1
ORA-02019, 5-1
ORA-28500 (was ORA-09100), 5-2

Index

3

error (continued)
Oracle mapped error codes, 5-3
tokens, 5-2
translation, 4-23
with Native Semantics, 4-19

Error messages
error tracing, B-11

EXCEPT set operator, SQL Set Clauses, 4-21
EXECUTE command, 1-5
exits

gateway local date, 4-26
EXPLAIN PLAN command, 5-3

F
features of the gateway

application development and end-user tools,
1-13

application portability, 1-10
columns supported in a result set, 1-10
distributed applications supported, 1-10
EXPLAIN_PLAN improvement, 1-10
fetch reblocking, 1-10
heterogeneous database integration, 1-10
heterogeneous services architecture, 1-10
main topic, 1-10
minimum impact on existing systems, 1-10
Native Semantics, 1-10
Oracle database passthrough supported,

1-10
Oracle snapshots, 3-7
performance enhancements, 1-10
remote data access, 1-10
retrieving result sets through passthrough,

1-10
support for TCP/IP, 1-10

fetch array size, with HS_FDS_FETCH_ROWS,
B-10

fetch reblocking
controlled by two Heterogeneous Services

initialization parameters, 1-10
supported by Oracle database, 4-2

fields
errmc, lists any error tokens, 5-2

file member
accessing AS/400 files, 3-5
name, 3-5

FOR BIT DATA
option, 4-23

functions
COS, 4-10
COUNT, 4-27
DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE,

4-28
DRDA server, 4-19

functions (continued)
SQL

SUBSTR, 4-19
SUBSTR

known restrictions, 2-4
TO_DATE

DB2 ISO format, 4-26
processing DATE data, 4-24
twenty-first century dates, 4-26

TO_DATE, main topic, 4-26

G
gateway

accessing
main topic, 3-4

advantages
migration and coexistence, 1-6
multi-site transactions, 1-6
security, 1-6
server technology and tools, 1-5
site autonomy, 1-6
two-phase commit, 1-6

and Oracle tools, 1-9
and stored procedures (Oracle and non-

Oracle), 1-5
application tools, 1-13
architecture, 1-7
benefits of integration with Oracle database,

1-3
components, 1-8
definition of terms, 1-7
features, main topic, 1-10
how to access, 3-4
interface, 1-9
local date exit, 4-26
performance enhancements, 1-10
performance versus transparency, 4-19
performing distributed queries, 3-5
SQL differences, 1-9
tracing

SQL statements, 3-8
using, 3-1
with other Oracle products, SQL*Plus, 1-6

GENERAL and DB2SQL linkage convention
gateway support, 4-5

GLOBAL_NAMES
known restrictions, 2-4

globalization support
Heterogeneous Services, B-5

GRAPHIC datatype, 4-23
graphic string operations

unsupported, 4-23
GROUP BY clause

SQL Set Clauses, 4-21

Index

Index-4

H
HAVING clause

SQL Set Clauses, 4-21
heterogeneous database integration, 1-10
Heterogeneous Services

defining maximum number of open cursors,
B-7

optimizing data transfer, B-7
setting global name, B-5
specifying cache high water mark, B-5
tuning internal data buffering, B-7
tuning LONG data transfer, B-6

Heterogeneous Services (HS), see HS, 1-1
host

performing character string operations on,
4-23

relationship to gateway and Oracle database,
1-7

variable, 4-21
HS (Heterogeneous Services)

architecture features, 1-10
HS_CALL_NAME initialization parameter, B-3
HS_DB_DOMAIN parameter

known restrictions, 2-4
HS_DB_NAME initialization parameter, B-5
HS_DESCRIBE_CACHE_HWM initialization

parameter, B-5
HS_FDS_CONNECT_INFO, B-9
HS_FDS_FETCH_ROWS parameter, B-10
HS_FDS_PACKAGE_COLLID parameter

defined, B-14
HS_FDS_TRACE_LEVEL initialization

parameter, B-11
enabling agent tracing, B-2

HS_FDS_TRANSACTION_ISOLATIONparamete
r, B-13

HS_FDS_TRANSACTION_LOG initialization
parameter, B-11

HS_KEEP_REMOTE_COLUMN_SIZE
initialization parameter, B-15

HS_LANGUAGE initialization parameter, B-5
HS_LONG_PIECE_TRANSFER_SIZE

initialization parameter, B-6
HS_NLS_DATE_FORMAT

four date patterns, 4-26
HS_OPEN_CURSORS initialization parameter,

B-7
HS_RPC_FETCH_REBLOCKING initialization

parameter, B-7
HS_RPC_FETCH_REBLOCKING parameter

Oracle database support, 4-2
HS_RPC_FETCH_SIZE initialization parameter,

B-7
HS_RPC_FETCH_SIZE parameter

HS_RPC_FETCH_SIZE parameter (continued)
specified in the Gateway Initialization File,

1-11
value determines array size, 4-2

I
IFILE initialization parameter, B-9
implementation, 1-8
implicit data conversion, 4-19
implicit protocol conversion, 1-4
Initialization parameter file

customizing, B-1
input bind variables, 4-25
INSERT

operation, 4-1
SQL clause, 4-26
statement

passthrough SQL feature, 4-28
INSERT command

supported by COPY, 3-8
Internet support, 1-3
INTERSECT, SQL set operators and clauses,

4-21
ISO standard, 1-4
isolation level,

HS_FDS_TRANSACTION_ISOLATION,
B-13

J
JOIN capability, 1-3
JOIN SQL statement, 4-1

K
known restrictions

datatype limitations, 2-4
date arithmetic, 2-5
DD basic tables and views, 2-4
GLOBAL_NAMES parameter, 2-4
LONG datatype in SQL*Plus, 2-5
null values and stored procedures, 2-4
row length limitation, 2-5
SUBSTR function post-processed, 2-4

L
languages

access through the gateway, 1-5
SQL*Plus, 1-6

link, also see Database Link, 4-9
literal

character literals, 4-24

Index

5

literal (continued)
date, 4-24
specific datatype, 4-21

LONG RAW datatype, 4-23

M
MINUS

set operator, SQL Set Clauses, 4-21
SQL set operators and clauses, 4-21

Mobile Agents, 1-4

N
Native Semantics

gateway architecture, 1-10
parameters, SQL Set Clauses, 4-21
with SUBSTR function, known restrictions,

2-4
non-character binary data, 4-23
null

rows, mapping the COUNT function, 4-27
values

mapping the COUNT function, 4-27
numeric datatype

zoned decimal column, 4-27

O
o2pc.sql

two-phase commit transactions, 3-6
OPEN_LINKS parameter, 3-4
operations

DELETE, 4-1
INSERT, 4-1
SELECT, 4-1
UPDATE, 4-1

operators
UNION ALL, SQL Set Clauses, 4-21
UNION, SQL Set Clauses, 4-21

option
data dictionary views, 4-30
date format string, 4-26
FOR BIT DATA, 4-23
Oracle database, 1-7
read-only

gateway configuration, 1-6
replicating, 3-7
SQL functions, 4-19
SQL*Plus COPY command, 3-8

ORA-02019 error, 5-1
ORA-28500 error

was ORA-09100, 5-2
ORA1 Oracle instance, 4-2

Oracle
mapped error codes, 5-3
products compatibility, 1-9
snapshots, 3-7

Oracle database
accessing the gateway, 3-4
architecture, 1-7
copying data

from DRDA server, 3-8
to DRDA server, 3-7

definition, 1-7
relationship to host, 1-7
services

database triggers, 1-3
distributed capabilities, 1-3
distributed query optimization, 1-3
extended database services, 1-3
stored procedures, 1-3
two-phase commit protection, 1-3

stored procedure, defined, 4-2
triggers, 3-7
using, in application development, 4-1

Oracle Net
and application development, 1-13
and remote data access, 1-10
and server coexistence, 1-7
integrated with Oracle database, 1-5
purpose, 1-8
TNS connect descriptor specification, 3-3

ORARECOV user ID
HS_FDS_RECOVERY_ACCOUNT, B-10

ORDER BY clause
SQL Set Clauses, 4-21

P
package

collection id, HS_FDS_PACKAGE_COLLID,
B-14

packed decimal, 4-27
parameter

Native Semantics, SQL Set Clauses, 4-21
setting up trace parameters, 5-3

parameters
DB_DOMAIN

known restrictions, 2-4
gateway initialization file

HS_FDS_CAPABILITY, B-13
HS_FDS_FETCH_ROWS, B-10
HS_FDS_PACKAGE_COLLID, B-14
HS_FDS_TRANSACTION_ISOLATION,

B-13
HS_DB_DOMAIN

known restrictions, 2-4
HS_NLS_DATE_FORMAT, 4-26

Index

Index-6

parameters (continued)
HS_RPC_FETCH_REBLOCKING, 4-2
HS_RPC_FETCH_SIZE, 1-11, 4-2
OPEN_LINKS, 3-4

passthrough
gateway features, 1-10
native DB2 SQL, 1-5
send SQL statement directly to DRDA server,

4-28
performance, 4-19
performance enhancements

with fetch reblocking, 4-2
PL/SQL

call, 4-4
DRDA stored procedures, 4-3
records, 4-5
routine, 1-5
standard Oracle, 1-5
stored procedure, 4-2

post-processed SQL functions
overview, 4-10

post-processing
native semantics, 4-18
SQL tracing in the gateway, 5-3

PREPARE TRANSACTION statement, 3-6
privileges

data dictionary emulation, 4-30
procedure

stored
using DRDA server, 4-3

processing time, with GROUPBY, HAVING,
WHERE, 4-21

protocol
commit confirm, 1-6
converter, 1-4
implicit protocol conversion, 1-4
network, 3-5
protocol-independent encryption, 1-4
two-phase commit, 3-6

protocols
TCP/IP

gateway transparency, 1-2
implicit protocol conversion, 1-4

Q
queries, distributed, 3-5

R
RAW datatype

performing character string operations, 4-23
read-only support, 1-10
remote

connections, 3-4

remote (continued)
data, 1-3
data access, 1-10
database

creating database links, 3-3
defining a path, 3-2
errors detected by the Oracle database, 5-1

DRDA database,
HS_FDS_TRANSACTION_ISOLATION,
B-13

instance, and Oracle stored procedures, 4-2
Oracle instance

using DRDA server stored procedures with
the gateway, 4-4

using Oracle stored procedures with the
gateway, 4-3

procedure, 1-5
table, 1-4
user ID and password, 3-2

remote functions
referenced in SQL statements, B-3

REPLACE command, supported by COPY, 3-8
replication, 3-7
RESULT, 4-4
result sets

columns in, 1-11
retrieving result sets through passthrough,

1-10
REVISE_SALARY

stored procedure, 4-4

S
security

Advanced Security, 1-4
site autonomy, 1-6

SELECT and array size, 1-11
SELECT operation, 4-1
SELECT statement

fetch reblocking, 4-2
retrieving results sets, 4-29

SELECT WHERE
SQL clause, 4-26

semantics, 4-19
session

connection, 4-9
set operators

compatibility, SQL Set Clauses, 4-21
EXCEPT, SQL Set Clauses, 4-21
INTERSECT, SQL Set Clauses, 4-21
MINUS, SQL Set Clauses, 4-21

site autonomy, 1-6
snapshots

known restrictions, SQL limitations, 2-6
Oracle Snapshot feature, 3-7

Index

7

sort order
with ORDERBY, 4-21

SQL
ANSI standard, 1-4
clause compatibility, 4-21
clauses

DELETE, 4-26
INSERT, 4-26
SELECT WHERE, 4-26
UPDATE, 4-26

constructs
Oracle processing, 4-9

differences in the gateway, 1-9
errors mapped to Oracle error codes, 5-3
functions

SUBSTR, 4-19
functions and Native Semantics, 4-19
gateway transparency, 1-4
ISO standard, 1-4
native DB2, 1-5
passthrough, 4-28, 4-29
statements, 4-1

DB2, 4-29
issued through the gateway, 3-8
passing through gateway, 4-28

statements,
HS_FDS_TRANSACTION_ISOLATION,
B-13

syntax, 4-27
tracing, not to be used in production

environment, 3-8
SQL functions

column functions, 4-9
compatible, defined, 4-9
compensated, defined, 4-9
DB2/400, 4-16
DB2/OS390, 4-10
DB2/UDB, 4-13
post-processing, defined, 4-10
that can be disabled, 4-21
that can be enabled, 4-19
translated, defined, 4-9
with Native Semantics, 4-19

SQL tracing
in Oracle database, 5-3

SQL*Plus
COPY command, 3-8
moving data, 1-6

statements
CREATE DATABASE LINK, 3-2
DB2 CREATE TABLE, 1-5
DDL, 4-28, 4-29
DELETE, 4-26, 4-28
DROP DATABASE LINK, 3-3
INSERT, 4-28

statements (continued)
PREPARE TRANSACTION, 3-6
SELECT, 4-2, 4-29
SQL

DB2, 4-29
JOIN, 4-1
SELECT, 4-29

UPDATE, 4-26, 4-28
stored procedure

creating on DB2, 4-4
DB2, 4-5
native DB2, 1-5
Oracle and non-Oracle, 1-5
Oracle database

local instance, 4-2
PL/SQL, 4-2
remote instance, 4-2
using, 4-2

Oracle, description, 1-5
restriction, 2-4
using DRDA server, 4-3

stored procedures, 1-3
DB2, 4-3
REVISE_SALARY, 4-4
using with the gateway, 4-2

string index, with Native Semantics, 4-19
SUBSTR SQL function, 4-19

known restrictions, 2-4
with Native Semantics, known restrictions,

2-4
synonym

feature, 3-5
for location transparency, 4-3
how the gateway works, 1-9

T
table

create a table in DB2, 4-29
insert a row into a DB2 table, 4-29

TABLE_PRIVILEGES view, A-10
TCP/IP

facilities, 1-12
functions, 1-9
protocol

gateway transparency, 1-2
implicit protocol conversion, 1-4

support, 1-10
terminology defined, 1-7
TIME datatype, 4-24
time operations, 4-24
TIMESTAMP datatype, 4-24
tnsnames.ora

connect descriptor, 3-2
TO_DATE function, main topic, 4-26

Index

Index-8

tools and the gateway, 1-9
trace parameters

setting, 5-3
tracing

SQL statements, 3-8
trade-off, Native Semantics, 4-19
transparency

main topic, gateway transparency, 1-2
native semantics, 4-19

triggers for Oracle database, 3-7
two-phase commit

processing transactions, 3-6
protection, 1-3
unsupported statement, 3-6

U
UNION

capability, 1-3
operator, SQL Set Clauses, 4-21
SQL set operators and clauses, 4-21

UNION ALL
operator, SQL Set Clauses, 4-21
SQL set operators and clauses, 4-21

UPDATE
known restrictions, SQL limitations, 2-6
operation, 4-1
SQL clause, 4-26
statement, 4-28

user privileges, 4-30
USER_CATALOG view, A-11
USER_COL_COMMENTS view, A-11
USER_CONS_COLUMNS view, A-12
USER_CONSTRAINTS view, A-11
USER_DB_LINKS data dictionary view, 3-4
USER_INDEXES view, A-12
USER_OBJECTS view, A-13

USER_SYNONYMS view, A-14
USER_TAB_COLUMNS view, A-16
USER_TAB_COMMENTS view, A-16
USER_TABLES view, A-14
USER_USERS view, A-17
USER_VIEWS view, A-17
USING clause, 3-2
Using the gateway, 3-1

V
VALUES clause

functions not allowed by DB2, 4-26
variable

bind, SQL passthrough, 4-28
input bind, 4-25

view
catalog

DB2/400, 4-30
DB2/OS390, 4-30
DB2/UDB, 4-30

data dictionary
emulation on DRDA server, 4-30

W
WHERE clause

known restrictions, SQL limitations, 2-6
SQL Set Clauses, 4-21

WHERE CURRENT OF CURSOR clause
known restrictions, SQL limitations, 2-6

wireless communication, 1-4

Z
zoned decimal operations, 4-27

Index

9

	Contents
	List of Figures
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Typographic Conventions
	SQL*Plus Prompts
	Storage Measurements

	1 Introduction to the Oracle Database Gateway for DRDA
	1.1 Overview ofthe Oracle Database Gateway for DRDA
	1.2 Gateway Capabilities
	1.2.1 Transparency at All Levels
	1.2.2 Extended Database Services
	1.2.3 Extended Advanced Networking, Internet and Intranet Support
	1.2.4 Dynamic Dictionary Mapping
	1.2.5 SQL
	1.2.6 Data Definition Language
	1.2.7 Data Control Language
	1.2.8 Passthrough and Native DB2 SQL
	1.2.9 Stored Procedures
	1.2.10 Languages
	1.2.11 Oracle Database Technology and Tools
	1.2.12 SQL*Plus
	1.2.13 Two-Phase Commit and Multi-Site Transactions
	1.2.14 Site Autonomy
	1.2.15 Migration and Coexistence
	1.2.16 Security
	1.2.17 DRDA UDB Server Encryption support

	1.3 Terms
	1.4 Architecture
	1.5 Implementation
	1.6 How the Gateway Works
	1.7 Oracle Tools and the Gateway
	1.8 Features

	2 Release Information
	2.1 Product Set
	2.2 Changes and Enhancements
	2.2.1 Remote Insert Rowsource
	2.2.2 Gateway Password Encryption Tool
	2.2.3 Result Sets and Stored Procedures

	2.3 Product Migration
	2.4 Known Problems
	2.5 Known Restrictions
	2.5.1 DB2 Considerations
	2.5.1.1 DD Basic Tables and Views
	2.5.1.2 SUBSTR Function Post-Processed
	2.5.1.3 Data type Limitations
	2.5.1.4 Null Values and Stored Procedures
	2.5.1.5 String Concatenation of Numbers
	2.5.1.6 GLOBAL_NAMES Initialization Parameter
	2.5.1.7 DRDA Package and DB2 considerations
	2.5.1.8 Date Arithmetic
	2.5.1.9 Row Length Limitation
	2.5.1.10 LONG Data type in SQL*Plus
	2.5.1.11 Stored Procedures and Transaction Integrity

	2.5.2 SQL Limitations
	2.5.2.1 Oracle ROWID Column
	2.5.2.2 Oracle Bind Variables
	2.5.2.3 CONNECT BY Is Not Supported

	3 Using the Oracle Database Gateway for DRDA
	3.1 DRDA Gateway Features
	3.1.1 CHAR Semantics
	3.1.2 Multi-byte Character Sets Ratio Suppression
	3.1.3 IPv6 Support
	3.1.4 Gateway Session IDLE Timeout

	3.2 Processing a Database Link
	3.2.1 Creating Database Links
	3.2.2 Dropping Database Links
	3.2.3 Examining Available Database Links
	3.2.4 Limiting the Number of Active Database Links

	3.3 Accessing the Gateway
	3.4 Accessing i5/OS File Members
	3.5 Using the Synonym Feature
	3.6 Performing Distributed Queries
	3.6.1 Two-Phase Commit Processing
	3.6.2 Distributed DRDA Transactions

	3.7 Replicating in a Heterogeneous Environment
	3.8 Copying Data from Oracle Database to DRDA Server
	3.9 Copying Data from DRDA Server to Oracle Database
	3.10 Tracing SQL Statements

	4 Developing Applications
	4.1 Gateway Appearance to Application Programs
	4.1.1 Fetch Reblocking

	4.2 Using Oracle Stored Procedures with the Gateway
	4.3 Using DRDA Server Stored Procedures with the Gateway
	4.3.1 Oracle Application and DRDA Server Stored Procedure Completion
	4.3.2 Procedural Feature Considerations with DB2
	4.3.3 Result Sets and Stored Procedures
	4.3.3.1 OCI Program Fetching from Result Sets in Sequential Mode
	4.3.3.2 PL/SQL Program Fetching from Result Sets in Sequential Mode

	4.4 Database Link Behavior
	4.5 Oracle Database SQL Construct Processing
	4.5.1 Compatible SQL Functions
	4.5.2 Translated SQL Functions
	4.5.3 Compensated SQL Functions
	4.5.3.1 Post-Processing

	4.5.4 Native Semantic SQL Functions
	4.5.5 DB2 UDB for z/OS SQL Compatibility
	4.5.6 DB2 UDB for Unix, Linux, and Windows Compatibility
	4.5.7 DB2 UDB for iSeries Compatibility

	4.6 Native Semantics
	4.6.1 SQL Functions That Can Be Enabled
	4.6.2 SQL Functions That Can Be Disabled
	4.6.3 SQL Set Operators and Clauses

	4.7 DRDA Data type to Oracle Data type Conversion
	4.7.1 Performing Character String Operations
	4.7.2 Converting Character String Data types
	4.7.3 Performing Graphic String Operations
	4.7.4 Performing Date and Time Operations
	4.7.4.1 Processing TIME and TIMESTAMP Data
	4.7.4.2 Processing DATE Data
	4.7.4.3 Performing Date Arithmetic

	4.7.5 Dates
	4.7.6 NLS_DATE_FORMAT Support
	4.7.7 Oracle TO_DATE Function
	4.7.8 Performing Numeric data type Operations
	4.7.9 Mapping the COUNT Function
	4.7.10 Performing Zoned Decimal Operations

	4.8 Passing Native SQL Statements through the Gateway
	4.8.1 Processing DDL Statements through Passthrough
	4.8.2 Using DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE
	4.8.2.1 Examples

	4.8.3 Retrieving Results Sets Through Passthrough
	4.8.3.1 Example

	4.9 Oracle Data Dictionary Emulation on a DRDA Server
	4.9.1 Using the Gateway Data Dictionary
	4.9.2 Using the DRDA Catalog

	5 Error Messages, Diagnosis, and Reporting
	5.1 Interpreting Gateway Error Messages
	5.1.1 Errors Detected by the Gateway
	5.1.2 Errors Detected in the DRDA Software
	5.1.3 Errors Detected by the DRDA Server

	5.2 Mapped Errors
	5.3 SQL Tracing and the Gateway
	5.3.1 SQL Tracing in the Oracle Database

	A Oracle DB2 Data Dictionary Views
	A.1 Supported Views
	A.2 ALL_CATALOG
	A.3 ALL_COL_COMMENTS
	A.4 ALL_CONS_COLUMNS
	A.5 ALL_CONSTRAINTS
	A.6 ALL_INDEXES
	A.7 ALL_IND_COLUMNS
	A.8 ALL_OBJECTS
	A.9 ALL_SYNONYMS
	A.10 ALL_TABLES
	A.11 ALL_TAB_COLUMNS
	A.12 ALL_TAB_COMMENTS
	A.13 ALL_USERS
	A.14 ALL_VIEWS
	A.15 COLUMN_PRIVILEGES
	A.16 DICTIONARY
	A.17 DUAL
	A.18 TABLE_PRIVILEGES
	A.19 USER_CATALOG
	A.20 USER_COL_COMMENTS
	A.21 USER_CONSTRAINTS
	A.22 USER_CONS_COLUMNS
	A.23 USER_INDEXES
	A.24 USER_OBJECTS
	A.25 USER_SYNONYMS
	A.26 USER_TABLES
	A.27 USER_TAB_COLUMNS
	A.28 USER_TAB_COMMENTS
	A.29 USER_VIEWS
	A.30 USER_USERS

	B Initialization Parameters
	B.1 Initialization Parameter File Syntax
	B.2 Oracle Database Gateway for DRDA Initialization Parameters
	B.3 HS_CALL_NAME
	B.4 HS_DB_DOMAIN
	B.5 HS_DB_INTERNAL_NAME
	B.6 HS_DB_NAME
	B.7 HS_DESCRIBE_CACHE_HWM
	B.8 HS_LANGUAGE
	B.8.1 Character Sets
	B.8.2 Language
	B.8.3 Territory

	B.9 HS_LONG_PIECE_TRANSFER_SIZE
	B.10 HS_OPEN_CURSORS
	B.11 HS_RPC_FETCH_REBLOCKING
	B.12 HS_RPC_FETCH_SIZE
	B.13 HS_TRANSACTION_MODEL
	B.14 IFILE
	B.15 HS_FDS_CONNECT_INFO
	B.16 HS_FDS_RECOVERY_ACCOUNT
	B.17 HS_FDS_RECOVERY_PWD
	B.18 HS_FDS_FETCH_ROWS
	B.19 HS_FDS_TRACE_LEVEL
	B.20 HS_FDS_TRANSACTION_LOG
	B.21 HS_IDLE_TIMEOUT
	B.22 HS_FDS_MBCS_TO_GRAPHIC
	B.23 HS_FDS_GRAPHIC_TO_MBCS
	B.24 HS_FDS_TIMESTAMP_MAPPING
	B.25 HS_FDS_DATE_MAPPING
	B.26 HS_FDS_QUOTE_IDENTIFIER
	B.27 HS_FDS_CAPABILITY
	B.28 HS_FDS_TRANSACTION_ISOLATION
	B.29 HS_FDS_PACKAGE_COLLID
	B.30 HS_NLS_LENGTH_SEMANTICS
	B.31 HS_KEEP_REMOTE_COLUMN_SIZE
	B.32 HS_FDS_RESULTSET_SUPPORT
	B.33 HS_FDS_REMOTE_DB_CHARSET
	B.34 HS_FDS_SUPPORT_STATISTICS
	B.35 HS_FDS_RSET_RETURN_ROWCOUNT
	B.36 HS_FDS_AUTHENTICATE_USER
	B.37 HS_FDS_ENCRYPT_SESSION
	B.38 HS_FDS_VALIDATE_SERVER_CERT
	B.39 HS_FDS_TRUSTSTORE_FILE
	B.40 HS_FDS_TRUSTSTORE_PASSWORD
	B.41 HS_FDS_SQLLEN_INTERPRETATION
	B.42 HS_FDS_ARRAY_EXEC

	Index

