Oracle® Database
Java Developer's Guide

12c¢ Release 2 (12.2)
E85766-01
July 2017

ORACLE"

Oracle Database Java Developer's Guide, 12c Release 2 (12.2)
E85766-01

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tulika Das

Contributors: Sheryl Maring, Rick Sapir, Michael Wiesenberg, Venkatasubramaniam lyer, Brian Wright,
Timothy Smith, Malik Kalfane

Contributing Authors: Tanmay Choudhury , Kuassi Mensah, Mark Jungerman, Suresh Srinivasan, Ernest
Tucker, Robert H Lee, Dmitry Nizhegorodov, Nataraju Neeluru, David Unietis, Paul Lo, Steve Harris, Ellen
Barnes, Peter Benson, Greg Colvin, Bill Courington, Matthieu Devin, Jim Haungs, Hal Hildebrand, Susan
Kraft, Thomas Kurian, Scott Meyer, Tom Portfolio, Dave Rosenberg, Jerry Schwarz, Harlan Sexton, Xuhua Li

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XV
Documentation Accessibility XV
Related Documents Y
Conventions XVi
Changes in This Release for Oracle Database Java Developer's
Guide
Changes in Oracle Database 12c Release 2 (12.2.0.1) XVil
1 Introduction to Java in Oracle Database
1.1 Overview of Java 1-1
1.1.1 Java and Object-Oriented Programming Terminology 1-1
1.1.1.1 Classes 1-2
1.1.1.2 Objects 1-2
1.1.1.3 Inheritance 1-3
1.1.1.4 Interfaces 1-3
1.1.1.5 Encapsulation 1-4
1.1.1.6 Polymorphism 1-4
1.1.2 Key Features of the Java Language 1-5
1.1.3 Java Virtual Machine 1-6
1.1.4 Java Class Hierarchy 1-8
1.2 About Using Java in Oracle Database 1-9
1.2.1 Java and RDBMS: A Robust Combination 1-9
1.2.2 About Multithreading 1-10
1.2.3 Memory Spaces Management 1-11
1.2.4 Footprint 1-12
1.2.5 Performance of an Oracle JVM 1-13
1.2.6 Dynamic Class Loading 1-15
1.3 Overview of Oracle JVM 1-15
1.3.1 Process Area 1-16

ORACLE

1.3.2 Java session initialization, duration and entrypoints 1-16
1.3.3 The GUI 1-17
1.3.4 ThelDE 1-17
1.4 Feature List of Oracle JVM 1-17
1.5 Main Components of Oracle JVM 1-18
1.5.1 Library Manager 1-19
1.5.2 Compiler 1-19
1.5.3 Interpreter 1-20
1.5.4 Class Loader 1-20
1.5.5 Verifier 1-20
1.5.6 Server-Side JDBC Internal Driver 1-20
1.5.7 Server-Side SQLJ Translator 1-21
1.5.8 System Classes 1-21
1.6 Java Programming in Oracle Database 1-21
1.6.1 Java in Database Application Development 1-21
1.6.2 Java Programming Environment Usage 1-22
1.6.3 Java Stored Procedures 1-22
1.6.4 PL/SQL Integration and Oracle RDBMS Functionality 1-23
1.6.4.1 JDBC Drivers 1-23
1.6.4.2 SQLJ 1-24
1.6.5 Development Tools 1-24
1.6.6 Internet Protocol Version 6 Support 1-24
1.7 Support for Java 8 1-25
1.8 Memory Model for Dedicated Mode Sessions 1-25
2 Java Applications on Oracle Database
2.1 Database Sessions Imposed on Java Applications 2-1
2.2 Execution Control of Java Applications 2-3
2.3 Java Code, Binaries, and Resources Storage 2-3
2.4 About Java Classes Loaded in the Database 2-4
2.5 Preparing Java Class Methods for Execution 2-5
2.5.1 Compiling Java Classes 2-6
2.5.1.1 Compiling Source Through javac 2-7
2.5.1.2 Compiling Source Through the loadjava Tool 2-7
2.5.1.3 Compiling Source at Run Time 2-7
2.5.1.4 Specifying Compiler Options 2-7
2.5.1.5 Recompiling Source Programs Automatically 2-9
2.5.2 Overview of Resolving Class Dependencies 2-10
2.5.2.1 Allowing References to Nonexistent Classes 2-11
2.5.2.2 Bytecode Verifier 2-12
ORACLE v

2.5.3 Logging in Oracle JVM
2.5.4 Overview of Loading Classes Using the loadjava Tool

2.5.4.1 About Sharing of Metadata for User Classloaded Classes

2.5.4.2 Defining the Same Class Twice

2.5.4.3 About Designating Database Privileges and JVM Permissions

2.5.4.4 About Loading JAR or ZIP Files
2.5.4.5 Database Resident JARs
2.5.5 Overview of Granting Execute Rights
2.5.6 Overview of Controlling the Current User
2.5.7 Overview of Checking Java Uploads
2.5.8 About Publishing Java Methods Loaded in the Database
2.5.9 Overview of Auditing Java Classes Loaded in the Database
2.6 User Interfaces on the Server
2.7 Shortened Class Names
2.8 Class.forName() in Oracle Database
2.8.1 Supply ClassLoader in Class.forName()

2.8.2 Supply Class and Schema Names to classForNameAndSchemay()

2.8.3 Supply Class and Schema Names to lookupClass()
2.8.4 Supply Class and Schema Names when Serializing
2.8.5 Class.forName Example
2.9 About Managing Your Operating System Resources
2.9.1 Overview of Operating System Resources
2.9.2 Garbage Collection and Operating System Resources
2.10 About Using the Runtime.exec Functionality in Oracle Database
2.11 Managing Your Applications Using JMX
2.11.1 Overview of IMX
2.11.2 Enabling and Starting JMX in a Session
2.11.3 Setting Oracle JVM JMX Defaults and Configurability
2.11.4 Examples of SQL calls to dbms_java.start_jmx_agent
2.11.5 Using JConsole to Monitor and Control Oracle JVM
2.11.5.1 Using the jconsole Command
2.11.5.2 About Using the JConsole interface
2.11.5.3 About Viewing Oracle JVM Summary Information
2.11.5.4 About Monitoring Memory Consumption
2.11.5.5 About Monitoring Thread Use
2.11.5.6 About Monitoring Class Loading
2.11.5.7 About Monitoring and Managing MBeans
2.11.5.8 About Viewing VM Information
2.11.5.9 The OracleRuntime MBean
2.11.5.10 Memory Thresholds
2.11.6 Important Security Notes

ORACLE

2-13
2-15
2-17
2-17
2-18
2-18
2-18
2-19
2-20
2-22
2-23
2-23
2-25
2-26
2-26
2-27
2-28
2-29
2-29
2-29
2-30
2-31
2-31
2-33
2-33
2-33
2-34
2-35
2-36
2-37
2-37
2-38
2-38
2-40
2-42
2-42
2-43
2-46
2-47
2-50
2-52

2.11.7 Shared Server Limitations for JIMX 2-52
2.12 Overview of Threading in Oracle Database 2-53
2.12.1 Thread Life Cycle 2-54
2.12.2 System.exit(), OracleRuntime.exitSession(), and
OracleRuntime.exitCall() 2-55
2.13 Shared Servers Considerations 2-56
2.13.1 End-of-Call Migration 2-56
2.13.2 Oracle-Specific Support for End-of-Call Optimization 2-57
2.13.3 The EndOfCallRegistry.registerCallback() Method 2-60
2.13.4 The EndOfCallRegistry.runCallbacks() Method 2-60
2.13.5 The Callback Interface 2-61
2.13.6 The Callback.act() method 2-61
2.13.7 Operating System Resources Affected Across Calls 2-61
3 Calling Java Methods in Oracle Database
3.1 Invoking Java Methods 3-1
3.1.1 Using PL/SQL Wrappers 3-1
3.1.2 About JNI Support 3-3
3.1.3 About Utilizing SQLJ and JDBC with Java in the Database 3-3
3.1.3.1 Using JDBC 3-4
3.1.3.2 Using SQLJ 3-4
3.1.3.3 Example Comparing JDBC and SQLJ 3-6
3.1.3.4 SQLJ Strong Typing Paradigm 3-7
3.1.3.5 Translating a SQLJ Program 3-8
3.1.3.6 Interaction with PL/SQL 3-8
3.1.4 About Using the Command-Line Interface 3-8
3.1.5 Overview of Using the Client-Side Stub 3-10
3.1.5.1 Using the Default Service Feature 3-11
3.1.5.2 Testing the Default Service with a Basic Configuration 3-11
3.2 How To Tell Whether You Are Running on the Server 3-12
3.3 About Redirecting Output on the Server 3-12
4 Java Installation and Configuration

4.1 |Initializing a Java-Enabled Database 4-1

4.1.1 Configuring the Oracle JVM Option within the Oracle Database
Template 4-1
4.1.2 Modifying an Existing Oracle Database to Include Oracle JVM 4-1
4.2 Configuring Oracle JVM 4-2
4.3 The DBMS_JAVA Package 4-2
4.4 Enabling the Java Client 4-2
Vi

ORACLE

4.4.1 Installing Java SE on the Client 4-3
4.4.2 Setting Up Environment Variables 4-3

4.5 Two-Tier Duration for Java Session State 4-4
4.6 About Setting System Properties 4-4

5 Introduction to Nashorn JavaScript Engine

5.1 About Using Nashorn JavaScript Engine 5-1
5.1.1 Loading JavaScript Code into a Schema 5-2
5.1.2 How to run JavaScript in Oracle JVM 5-3
5.1.2.1 Using the DBMS_JAVASCRIPT.RUN PL/SQL Procedure 5-3

5.1.2.2 Using the DbmsJavaScript Java Class 5-3

5.1.2.3 Using the Standard javax.script Java Package 5-4

5.2 JavaScript Data Access using JDBC 5-6
5.3 REST Enable Your JavaScript Application 5-9

6 Developing Java Stored Procedures

6.1 Stored Procedures and Run-Time Contexts 6-1
6.1.1 Functions and Procedures 6-2
6.1.2 Database Triggers 6-2
6.1.3 Object-Relational Methods 6-2

6.2 Advantages of Stored Procedures 6-3
6.2.1 Performance 6-3
6.2.2 Productivity and Ease of Use 6-3
6.2.3 Scalability 6-4
6.2.4 Maintainability 6-4
6.2.5 Interoperability 6-4
6.2.6 Replication 6-4
6.2.7 Security 6-4

6.3 Running Java Stored Procedures 6-5
6.3.1 Creating or Reusing the Java Classes 6-6
6.3.2 Loading and Resolving the Java Classes 6-6
6.3.3 Publishing the Java Classes 6-6
6.3.4 Calling the Stored Procedures 6-7

6.4 Debugging Java Stored Procedures 6-7
6.4.1 Prerequisites for Debugging Java Stored Procedures 6-8
6.4.2 Debugging Java Stored Procedures Using the jdb Debugger 6-8
6.4.3 Debugging Java Stored Procedures Using JDeveloper 6-10

ORACLE

Vii

7 Publishing Java Classes With Call Specifications

7.1 What Are Call Specifications? 7-1
7.2 Defining Call Specifications 7-2
7.2.1 About Setting Parameter Modes 7-3
7.2.2 About Mapping Data Types 7-3
7.2.3 Using the Server-Side Internal JDBC Driver 7-5

7.3 Writing Top-Level Call Specifications 7-7
7.3.1 Examples 7-8

7.4 Writing Packaged Call Specifications 7-11
7.5 Writing Object Type Call Specifications 7-13
7.5.1 About Attributes 7-14
7.5.2 Declaring Methods 7-14
7.5.2.1 Map and Order Methods 7-15

7.5.2.2 Constructor Methods 7-15

7.5.2.3 Examples 7-16

8 Calling Stored Procedures

8.1 Calling Java from the Top Level 8-1
8.1.1 Redirecting the Output 8-1
8.1.2 Examples of Calling Java Stored Procedures From the Top Level 8-2

8.2 Calling Java from Database Triggers 8-4

8.3 Calling Java from SQL DML 8-7

8.4 Calling Java from PL/SQL 8-8

8.5 Calling PL/SQL from Java 8-10

8.6 How Oracle JVM Handles Exceptions 8-10

9 Java Stored Procedures Application Example

9.1 About Planning the Database Schema 9-1

9.2 Creating the Database Tables 9-2

9.3 Writing the Java Classes 9-3

9.4 Loading the Java Classes 9-7

9.5 Publishing the Java Classes 9-7

9.6 Calling the Java Stored Procedures 9-9

10 Oracle Database Java Application Performance

10.1 Oracle JVM Just-in-Time Compiler (JIT) 10-1
10.1.1 Overview of Oracle JVM JIT 10-1
10.1.2 Advantages of JIT Compilation 10-2

ORACLE viii

10.1.3 Methods Introduced in Oracle Database 11g 10-2
10.2 About Java Memory Usage 10-4
10.2.1 Configuring Memory Initialization Parameters 10-4
10.2.1.1 Initializing Pool Sizes within Database Templates 10-5

10.2.2 About Java Pool Memory 10-6
10.2.3 Displaying Used Amounts of Java Pool Memory 10-7
10.2.4 Correcting Out of Memory Errors 10-8
10.2.5 Displaying Java Call and Session Heap Statistics 10-9

11 Security for Oracle Database Java Applications

11.1 Network Connection Security 111
11.2 Database Contents and Oracle JVM Security 11-2
11.2.1 Overview of Java 2 Security Features 11-3
11.2.2 Overview of Setting Permissions 11-4
11.2.2.1 Fine-Grain Definition for Each Permission 11-5
11.2.2.2 Assigning General Permission Definition to Roles 11-18

11.2.3 Debugging Permissions 11-19
11.2.4 Permission for Loading Classes 11-19
11.2.5 Customizing the Default java.security Resource 11-20
11.3 Database Authentication Mechanisms Available with Oracle JVM 11-22
11.4 Secure Use of Runtime.exec Functionality in Oracle Database 11-22

12 Native Oracle JVM Support for INDI

12.1 Overview of Oracle JVM Support for INDI 12-1
12.2 Requirements for Oracle JVM Support for INDI 12-1
12.2.1 Namespace 12-1
12.2.1.1 Object permissions 12-2
12.2.1.2 Persistent Storage Tables, Indexes, and Sequences 12-2
12.2.1.3 Initial Contexts and Permissions 12-3
12.2.1.4 Object and Context Default Permissions 12-3

12.2.2 Oracle Java Directory Service JNDI Name Space Provider 12-3
12.2.2.1 Directory Context 12-3
12.2.2.2 StateFactories 12-4
12.2.2.3 ObjectFactories 12-4
12.2.2.4 0OJDS URL Support 12-4
12.2.2.5 Client classpath 12-5

12.2.3 Namespace Browser 12-5
12.3 0OJDS Command-Line Tools 12-6
12.3.1 Is Command 12-6

ORACLE

12.3.2 cd Command 12-7

12.3.3 pwd Command 12-7
12.3.4 chown Command 12-7
12.3.5 mkdir Command 12-8
12.3.6 rm Command 12-9
12.3.7 In Command 12-9
12.3.8 mv Command 12-10
12.3.9 chmod Command 12-10
12.3.10 bind Command 12-11
12.3.11 bindds Command 12-12
12.3.12 bindurl Command 12-13
12.4 OJDS APIs and Classes 12-14
12.4.1 oracle.aurora.jndi.ojds.OjdsClientContext 12-14
12.4.2 oracle.aurora.jndi.ojds.OjdsServerContext 12-15
12.4.3 oracle.aurora.jndi.ojds.OjdsInitialContextFactory 12-15
12.4.4 oracle.aurora.jndi.ojds.OjdsURLContextFactory 12-15
12.4.5 oracle.aurora.jndi.ojds.OjdsURLContext 12-16

13 Schema Objects and Oracle JVM Utilities

13.1 Overview of Schema Objects 13-1
13.2 What and When to Load 13-2
13.3 Resolution of Schema Objects 13-2
13.4 Compilation of Schema Objects 13-3
13.5 The ojvmtc Tool 13-4
13.5.1 About the ojvmtc Tool 13-5
13.5.2 Arguments of ojymtc Command 13-5
13.6 The loadjava Tool 13-6
13.6.1 loadjava Tool Syntax 13-7
13.6.2 loadjava Tool Argument Summary 13-8
13.6.3 loadjava Tool Argument Details 13-13
13.7 The dropjava Tool 13-19
13.7.1 dropjava Tool Syntax 13-20
13.7.2 dropjava Tool Argument Summary 13-20
13.7.3 dropjava Tool Argument Details 13-21
13.7.4 About Dropping Resources Using dropjava Tool 13-22
13.8 The ojvmjava Tool 13-23
13.8.1 ojvmjava Tool Syntax 13-23
13.8.2 ojvmjava Tool Argument Summary 13-23
13.8.3 ojvmjava Tool Example 13-24
13.8.4 ojvmjava Tool Functionality 13-25

ORACLE X

13.8.4.1 ojvmjava Tool Command-Line Options 13-25
13.8.4.2 ojvmjava Tool Shell Commands 13-26
14 Database Web Services
14.1 Overview of Database Web Services 14-1
14.2 About Using Oracle Database as Web Services Consumer 14-1
14.2.1 About Using Oracle JVM Web Services Call-Out Utility 14-2
14.2.1.1 Architecture of Oracle JVM Web Services Call-Out Utility 14-2
14.2.1.2 Input to Oracle JVM Web Services Call-Out Utility 14-4
14.2.1.3 Output of the Oracle JVM Web Services Call-Out Utility 14-6
14.2.1.4 Calling Secure Web Service from Oracle JVM Web Services
Call-Out Utility 14-7
14.2.2 Web Service Data Sources (Virtual Table Support) 14-7
14.2.3 Features of Oracle Database as a Web Service Consumer 14-8
A DBMS_JAVA Package
A.1 longname A-1
A.2 shorthame A-1
A.3 get_compiler_option A-1
A.4 set_compiler_option A-2
A.5 reset_compiler_option A-2
A.6 resolver A-2
A.7 derivedFrom A-2
A.8 fixed_in_instance A-3
A.9 set_output A-3
A.10 export_source A-4
A.11 export_class A-4
A.12 export_resource A-4
A.13 loadjava A-4
A.14 dropjava A-5
A.15 grant_permission A-5
A.16 grant_permission A-6
A.17 restrict_permission A-6
A.18 restrict_permission A-7
A.19 grant_policy permission A-7
A.20 grant_policy_permission A-8
A.21 revoke_permission A-8
A.22 disable_permission A-9
A.23 enable_permission A-9
A.24 delete_permission A-9
ORACLE Xi

A.25 set_preference A-10

A.26 runjava A-10
A.27 runjava_in_current_session A-10
A.28 set_property A-10
A.29 get_property A-11
A.30 remove_property A-11
A.31 show_property A-12
A.32 set output_to_sql A-12
A.33 remove_output to sql A-12
A.34 enable_output_to_sql A-13
A.35 disable_output to sql A-13
A.36 query_output to sql A-13
A.37 set_output_to_java A-13
A.38 remove_output _to java A-14
A.39 enable_output to java A-14
A.40 disable_output_to_java A-15
A.41 query_output to java A-15
A.42 set output to file A-15
A.43 remove_output_to file A-16
A.44 enable_output_to_file A-16
A.45 disable_output_to_file A-16
A.46 query_output_to_file A-16
A.47 enable_output_to_trc A-17
A.48 disable output to trc A-17
A.49 query_output_to_trc A-17
A.50 endsession A-17
A.51 endsession_and_ related_state A-18
A.52 set_native_compiler_option A-18
A.53 unset_native_compiler_option A-18
A.54 compile_class A-18
A.55 uncompile_class A-19
A.56 compile_method A-19
A.57 uncompile_method A-19
A.58 start_jmx_agent A-20
A.59 set runtime_exec_credentials A-20

B DBMS_JAVASCRIPT Package

B.1 DBMS_JAVASCRIPT Overview B-1
B.1.1 The RUN Procedure B-1

ORACLE Xii

B.2 DBMS_JAVASCRIPT Security Model B-2
C Classpath Extensions and User Classloaded Metadata
C.1 Classpath Extensions C-1
C.1.1 jserverQuotedClassPathTermPrefix C-1
C.1.2 jserverURLPrefix C-1
C.1.3 jserverSpecialTokenPrefix C-1
C.1.4 JSERVER_CP C-2
C.1.5 JSERVER_SCHEMAc C-2
C.1.6 jserver:/CP general syntax C-2
C.2 User Classloaded Metadata C-3

Index

ORACLE"

Xiii

List of Tables

1-1 Feature List of Oracle JVM

2-1 Description of Java Code and Classes Storage in Oracle Database
2-2 Definitions for the Name and Option Parameters

2-3 Example JAVASOPTIONS Table

2-4 ORA Errors

2-5 Description of Java Files

2-6 loadjava Operations on Schema Objects

2-7 Key USER_OBJECT Columns

2-8 Statement Auditing Options Related to Java Schema Objects
2-9 Object Auditing Options Related to Java Schema Options
2-10 Description of the Overview Tab Fields in JConsole Interface
3-1 Command Line Argument Summary

3-2 set_output_to_sqgl Argument Summary

3-3 set_output_to_java Argument Summary

7-1 Legal Data Type Mappings

11-1 Predefined Permissions

11-2 JServerPermission Description

11-3 SYS Initial Permissions

11-4 PUBLIC Default Permissions

11-5 JAVAUSERPRIV Permissions

11-6 JAVASYSPRIV Permissions

11-7 JAVADEBUGPRIV Permissions

13-1 ojvmtc Argument Summary

13-2 loadjava Argument Summary

13-3 dropjava Argument Summary

13-4 ojvmjava Argument Summary

13-5 ojvmjava Command Common Options

13-6 java Argument Summary

13-7 connect Argument Summary

13-8 runjava Argument Summary

13-9 jdwp Argument Summary

14-1 Input to Oracle JVM Web Services Call-Out Utility

14-2 Output of the Oracle JVM Web Services Call-Out Utility
ORACLE

1-18
2-4
2-8
2-9

2-13

2-15

2-16

2-22

2-24

2-24

2-39
3-9

3-13

3-16

11-14
11-15
11-16
11-17
11-17
11-18
11-18

13-5

13-8
13-20
13-24
13-26
13-28
13-29
13-29
13-30

14-4

14-6

XV

Preface

Java is the object-oriented programming language of choice that provides platform
independence and automated storage management techniques. It enables you to
create applications and applets. Oracle Database provides support for developing and
deploying Java applications.

Audience

The Oracle Database Java Developer's Guide is intended for both Java and non-Java
developers. For PL/SQL developers who are not familiar with Java programming, this
manual provides a brief overview of Java and object-oriented concepts. For both Java
and PL/SQL developers, this manual discusses the following:

* How Java and Database concepts merge

e How to develop, load, and run Java stored procedures

e Oracle JVM

- Database concepts for managing Java objects in the database
e Oracle Database and Java security policies

To use this document, you need knowledge of Oracle Database, SQL, and PL/SQL.
Prior knowledge of Java and object-oriented programming can be helpful.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, refer to the following Oracle resources:

e Oracle Database JDBC Developer's Guide
* Oracle Database SQLJ Developer's Guide

* Oracle Database Net Services Administrator's Guide

ORACLE v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Database Advanced Security Guide

* Oracle Database Development Guide

Conventions

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts of
the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

<> Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

ORACLE XVi

Changes in This Release for Oracle
Database Java Developer's Guide

This preface contains:

e Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 12c Release 2 (12.2.0.1)

The following are changes in Oracle Database Java Developer's Guide for Oracle
Database 12c¢ Release 2 (12.2.0.1).

New Features

The following features are new in this release:

e Oracle JVM Web Services Call-Out Utility
See "About Using Oracle JVM Web Services Call-Out Utility"
e Support for Java 8
See "Support for Java 8"
e Oracle JVM Support for Running JavaScript in the database
See "About Using Nashorn JavaScript Engine”
* Improvements to Java Debug Wire Protocol (JDWP)
See "Debugging Java Stored Procedures”
e Oracle JVM Support for Long Identifiers

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), the maximum length of a
SQL identifier is 128 bytes for Oracle JVM. A longer maximum length for SQL
identifiers provides better compatibility and integration with other RDBMS
components. It also improves performance because there is little or no conversion
needed between short names and long names in Oracle JVM.

In Oracle Database 12c¢ Release 1 (12.1.0.1), the maximum length of a SQL
identifier or a database schema object name is 30 bytes, and all characters must
be legal and convertible to the target database character set.

Desupported Features

The following features are no longer supported by Oracle. See Oracle Database
Upgrade Guide for a complete list of desupported features in this release.

ORACLE Vi

Changes in This Release for Oracle Database Java Developer's Guide

Desupport of JPublisher

All Oracle JPublisher features are desupported and unavailable in Oracle Database
12c¢ Release 2 (12.2.0.1). Oracle recommends that you use the alternatives listed
here:

* To continue to use Web service callouts, Oracle recommends that you use the
Oracle JVM Web Services Callout utility, which is a replacement for the Web
Services Callout utility.

* To replace other JPublisher automation capabilities, including mapping user-
defined SQL types or SQL types, wrapping PL/SQL packages and similar
capabilities, Oracle recommends that developers use explicit steps, such as
precompiling code with SQLJ precompiler, building Java STRUCT classes, or
using other prestructured options.

¢ See Also:

My Oracle Support Note 1937939.1 for more information about JDeveloper
deprecation and desupport:

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1937939.1

Desupport of Server-Side SQLJ

Starting with Oracle Database 12¢ Release 2 (12.2.0.1), server-side SQLJ is
desupported. SQLJ is currently supported only as a client-side command-line tool.

ORACLE XViii

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1

Introduction to Java in Oracle Database

Oracle Database provides support for developing, storing, and deploying Java
applications. This chapter introduces the Java language to Oracle PL/SQL developers,
who are accustomed to developing server-side applications that are integrated with
SQL data. You can develop server-side Java applications that take advantage of the
scalability and performance of Oracle Database.

This chapter contains the following sections:

Overview of Java

About Using Java in Oracle Database
Overview of Oracle JVM

Feature List of Oracle JVM

Main Components of Oracle JVM

Java Programming in Oracle Database
Support for Java 8

Introduction to Nashorn JavaScript Engine

Memory Model for Dedicated Mode Sessions

1.1 Overview of Java

Java has emerged as the object-oriented programming language of choice. Some of
the important concepts of Java include:

A Java virtual machine (JVM), which provides the fundamental basis for platform
independence

Automated storage management techniques, such as garbage collection

Language syntax that is similar to that of the C language

The result is a language that is object-oriented and efficient for application
programming.

This section covers the following topics:

Java and Object-Oriented Programming Terminology
Key Features of the Java Language
Java Virtual Machine

Java Class Hierarchy

1.1.1 Java and Object-Oriented Programming Terminology

The following terms are common in Java application development in Oracle Database
environment:

ORACLE

1-1

1.1.1.1 Classes

Chapter 1
Overview of Java

Classes
Objects
Interfaces
Encapsulation
Inheritance

Polymorphism

All object-oriented programming languages support the concept of a class. As with a
table definition, a class provides a template for objects that share common
characteristics. Each class can define the following:

1.1.1.2 Objects

Fields

Fields are variables that are present in each object or instance of a particular
class, or are variables that are global and common to all instances. Instance fields
are analogous to the columns of a relational table row. The class defines the fields
and the type of each field.

You can declare fields in Java as static. Fields of a class that are declared as
static are global and common to all instances of that class. There is only one value
at any given time for a static field within a given instantiation of a Java runtime.
Fields that are not declared as static are created as distinct values within each
instance of the class.

The public, private, protect ed, and default access modifiers define the scope of
the field in the application. The Java Language Specification (JLS) defines the
rules of visibility of data for all fields. These rules define under what circumstances
you can access the data in these fields.

In the example illustrated in Figure 1-1, the employee identifier is defined as
privat e, indicating that other objects cannot access this field directly. In the
example, objects can access the i d field by calling the get1d() method.

Methods

Methods are procedures associated with a class. Like a field, a method can be
declared as st ati c, in which case it can be called globally. If a method is not
declared as static, it means that the method is an instance method and can be
called only as an operation on an object, where the object is an instance of the
class.

Similar to fields, methods can be declared as public, private, prot ect ed, or default
access. This declaration defines the scope in which the method can be called.

A Java object is an instance of a class and is analogous to a relational table row.
Objects are collections of data values, the individual elements of which are described
by the non-static field definitions of the class.

Figure 1-1 shows an example of an Enpl oyee class defined with two fields, i d, which is

the employee identifier, and | ast Nane, which is the last name of the employee, and the

getld() and setld(String anld) methods. The id field is privat e, and the | ast Nane field,
the get 1 d() method and the set1d(String anld) method are public.

ORACLE

1-2

Chapter 1
Overview of Java

Figure 1-1 Classes and Instances

Classes and Instances

public class Employee (Employee
fields new Employee () id=21563 2179
P~ |astName = Smith
private String id
public String lastName
J
methods
N
public getld () (Employee
public setld (String anld) p-| id=3872743215
new Employee () lastName = Jones
Employee class defines y,
the fields that instances
hold (state) and methods Each instance of
you can invoke on Employee holds its own
instances of Employee state. You can access that
(behavior). state only if the creator of
the class defines itin a

way that provides access
to you.

When you create an instance, the fields store individual and private information
relevant only to the employee. That is, the information contained within an employee
instance is known only to that particular employee. The example in Figure 1-1 shows
two instances of the Enpl oyee class, one for the employee Smith and one for Jones.
Each instance contains information relevant to the individual employee.

1.1.1.3 Inheritance

Inheritance is an important feature of object-oriented programming languages. It
enables classes to include properties of other classes. The class that inherits the
properties is called a child class or subclass, and the class from which the properties
are inherited is called a parent class or superclass. This feature also helps in reusing
already defined code.

In the example illustrated in Figure 1-1, you can create a Ful | Ti neEnpl oyee class that
inherits the properties of the Enpl oyee class. The properties inherited depend on the
access modifiers declared for each field and method of the superclass.

1.1.1.4 Interfaces

ORACLE

Java supports only single inheritance, that is, each class can inherit fields and
methods of only one class. If you need to inherit properties from more than one
source, then Java provides the concept of interfaces, which is a form of multiple
inheritance. Interfaces are similar to classes. However, they define only the signature
of the methods and not their implementations. The methods that are declared in the
interface are implemented in the classes. Multiple inheritance occurs when a class
implements multiple interfaces.

1-3

Chapter 1
Overview of Java

1.1.1.5 Encapsulation

Encapsulation describes the ability of an object to hide its data and methods from the
rest of the world and is one of the fundamental principles of object-oriented
programming. In Java, a class encapsulates the fields, which hold the state of an
object, and the methods, which define the actions of the object. Encapsulation enables
you to write reusable programs. It also enables you to restrict access only to those
features of an object that are declared publ i c. All other fields and methods are privat e
and can be used for internal object processing.

In the example illustrated in Figure 1-1, the i d field is pri vate, and access to it is
restricted to the object that defines it. Other objects can access this field using the
get1d() method. Using encapsulation, you can deny access to the i d field either by
declaring the get | d() method as pri vat e or by not defining the get | d() method.

1.1.1.6 Polymorphism

ORACLE

Polymorphism is the ability for different objects to respond differently to the same
message. In object-oriented programming languages, you can define one or more
methods with the same name. These methods can perform different actions and return
different values.

In the example in Figure 1-1, assume that the different types of employees must be
able to respond with their compensation to date. Compensation is computed differently
for different types of employees:

* Full-time employees are eligible for a bonus.
* Non-exempt employees get overtime pay.

In procedural languages, you write a swi t ch statement, with the different possible
cases defined, as follows:

switch: (enployee.type)
{
case: Enpl oyee
return enpl oyee. sal aryToDat e;
case: Ful | Ti meEnpl oyee
return enpl oyee. sal aryToDate + enpl oyee. bonusToDat e

}...

If you add a new type of employee, then you must update the swi t ch statement. In
addition, if you modify the data structure, then you must modify all swi t ch statements
that use it. In an object-oriented language, such as Java, you can implement a
method, conpensati onToDat e(), for each subclass of the Enpl oyee class, if it contains
information beyond what is already defined in the Enpl oyee class. For example, you
could implement the conpensat i onToDat e() method for a non-exempt employee, as
follows:

public float conpensationToDate()
{

return (super.conpensationToDate() + this.overtimeToDate());

}

For a full-time employee, the conpensati onToDat e() method can be implemented as
follows:

1-4

Chapter 1
Overview of Java

public float conpensationToDate()
{

return (super.conpensationToDate() + this.bonusToDate());

}

This common use of the method name enables you to call methods of different classes
and obtain the required results, without specifying the type of the employee. You do
not have to write specific methods to handle full-time employees and part-time
employees.

In addition, you can create a Contractor class that does not inherit properties from

Enpl oyee and implements a conpensat i onToDat e() method in it. A program that
calculates total payroll to date would iterate over all people on payroll, regardless of
whether they were full-time or part-time employees or contractors, and add up the
values returned from calling the conpensati onToDat e() method on each. You can safely
make changes to the individual conpensat i onToDat e() methods or the classes, and
know that callers of the methods will work correctly.

1.1.2 Key Features of the Java Language

ORACLE

The Java language provides certain key features that make it ideal for developing
server applications. These features include:

e Simplicity

Java is simpler than most other languages that are used to create server
applications, because of its consistent enforcement of the object model. The large,
standard set of class libraries brings powerful tools to Java developers on all
platforms.

e Portability

Java is portable across platforms. It is possible to write platform-dependent code
in Java, and it is also simple to write programs that move seamlessly across
systems.

See Also:

" Java Virtual Machine"

e Automatic storage management

A JVM automatically performs all memory allocation and deallocation while the
program is running. Java programmers cannot explicitly allocate memory for new
objects or free memory for objects that are no longer referenced. Instead, they
depend on a JVM to perform these operations. The process of freeing memory is
known as garbage collection.

e Strong typing

Before you use a field, you must declare the type of the field. Strong typing in Java
makes it possible to provide a reasonable and safe solution to interlanguage calls
between Java and PL/SQL applications, and to integrate Java and SQL calls
within the same application.

* No pointers

1-5

Chapter 1
Overview of Java

Although Java is quite similar to C in its syntax, it does not support direct pointers
or pointer manipulation. You pass all parameters, except primitive types, by
reference and not by value. As a result, the object identity is preserved. Java does
not provide low level, direct access to pointers, thereby eliminating any possibility
of memory corruption and leaks.

* Exception handling

Java exceptions are objects. Java requires developers to declare which
exceptions can be thrown by methods in any particular class.

* Flexible namespace

Java defines classes and places them within a hierarchical structure that mirrors
the domain namespace of the Internet. You can distribute Java applications and
avoid name collisions. Java extensions, such as the Java Naming and Directory
Interface (JNDI), provide a framework for multiple name services to be federated.
The namespace approach of Java is flexible enough for Oracle to incorporate the
concept of a schema for resolving class names in full compliance with the JLS.

e Security

The design of Java bytecodes and JVM specification allow for built-in mechanisms
to verify the security of Java binary code. Oracle Database is installed with an
instance of Security Manager that, when combined with Oracle Database security,
determines who can call any Java methods.

e Standards for connectivity to relational databases

Java Database Connectivity (JDBC) and SQLJ enable Java code to access and
manipulate data in relational databases. Oracle provides drivers that allow vendor-
independent, portable Java code to access the relational database.

1.1.3 Java Virtual Machine

As with other high-level computer languages, the Java source compiles to low-level
machine instructions. In Java, these instructions are known as bytecodes, because
each instruction has a uniform size of one byte. Most other languages, such as C,
compile to machine-specific instructions, such as instructions specific to an Intel or HP
processor.

When compiled, the Java code gets converted to a standard, platform-independent set
of bytecodes, which are executed by a Java Virtual Machine (JVM). AJVM is a
separate program that is optimized for the specific platform on which you run your
Java code.

Figure 1-2 illustrates how Java can maintain platform independence. Each platform
has a JVM installed that is specific to the operating system. The Java bytecodes get
interpreted through the JVM into the appropriate platform dependent actions.

ORACLE 1-6

ORACLE

Chapter 1
Overview of Java

Figure 1-2 Java Component Structure

Java Application

Java Virtual Machine

Operating System

When you develop a Java application, you use predefined core class libraries written
in the Java language. The Java core class libraries are logically divided into packages
that provide commonly used functionality. Basic language support is provided by the
java. | ang package, I/O support is provided by the j ava. i o package, and network
access is provided by the j ava. net package. Together, a JVM and the core class
libraries provide a platform on which Java programmers can develop applications,
which will run successfully on any operating system that supports Java. This concept
is what drives the "write once, run anywhere" idea of Java.

Figure 1-3 illustrates how Oracle Java applications reside on top of the Java core class
libraries, which reside on top of the JVM. Because the Oracle Java support system is
located within the database, the JVM interacts with Oracle Database libraries, instead
of directly interacting with the operating system.

Figure 1-3 Oracle Database Java Component Structure

Java Server Applications

Oracle-Supported Java APls: SQLJ, JDBC, JNDI

Java Core Class Libraries

Oracle Database JVM

Oracle Database Libraries

Operating System

To know more about Java and JVM, you can refer to the Java Language Specification
(JLS) and the JVM specification. The JLS defines the syntax and semantics, and the

JVM specification defines the necessary low-level actions for the system that runs the
application. In addition, there is also a compatibility test suite for JVM implementors to

1-7

Chapter 1
Overview of Java

determine if they have complied with the specifications. This test suite is known as the
Java Compatibility Kit (JCK). Oracle JVM implementation complies fully with JCK. Part
of the overall Java strategy is that an openly specified standard, together with a simple
way to verify compliance with that standard, allows vendors to offer uniform support for
Java across all platforms.

1.1.4 Java Class Hierarchy

Java defines classes within a large hierarchy of classes. At the top of the hierarchy is
the Obj ect class. All classes in Java inherit from the Qoj ect class at some level, as you
walk up through the inheritance chain of superclasses. When we say Class B inherits
from Class A, each instance of Class B contains all the fields defined in class B, as
well as all the fields defined in Class A.

Figure 1-4 illustrates a generic Java class hierarchy. The Ful | Ti meEnpl oyee class
contains the i d and | ast Nane fields defined in the Enpl oyee class, because it inherits
from the Enpl oyee class. In addition, the Ful | Ti neEnpl oyee class adds another field,
bonus, which is contained only within Ful | Ti neEnpl oyee.

You can call any method on an instance of Class B that was defined in either Class A
or Class B. In the example, the Ful | Ti neEnpl oyee instance can call methods defined
only in the Ful | Ti neEnpl oyee class and methods defined in the Enpl oyee class.

Figure 1-4 Class Hierarchy

Using Inheritance to Localize Behavior and State
Employee class has two
subclasses,
\/ PartTimeEmployee and
FullTimeEmployee,
class Employee rather than using
attributes of Employee to
id differentiate between
lastName different Employee types.
v PartTimeEmployees
class PartTimeEmployee class FullTimeEmployee have to track their
schedules, while
schedule ‘ ’ bonus FullTimeEmployees
are eligible for bonuses.
Each
e mRlovEes class ExemptEmployee class NonExemptEmployee
considered exempt
agitm?/rz;z)rror salaryToDate() ‘ ’ salaryToDate()
non-exempt if he
works at an hourly
rate. Each one
computes
salaryToDate
differently.

Instances of Class B can be substituted for instances of Class A, which makes
inheritance another powerful construct of object-oriented languages for improving code
reuse. You can create classes that define behavior and state where it makes sense in
the hierarchy, yet make use of preexisting functionality in class libraries.

ORACLE 1-8

Chapter 1
About Using Java in Oracle Database

1.2 About Using Java in Oracle Database

You can write and load Java applications within the database because it is a safe
language with a lot of security features. Java has been developed to prevent anyone
from tampering with the operating system where the Java code resides in. Some
languages, such as C, can introduce security problems within the database. However,
Java, because of its design, is a robust language that can be used within the
database.

Although the Java language presents many advantages to developers, providing an
implementation of a JVM that supports Java server applications in a scalable manner
is a challenge. This section discusses the following challenges:

+ Java and RDBMS: A Robust Combination
e About Multithreading

 Memory Spaces Management

e Footprint

» Performance of an Oracle JVM

e Dynamic Class Loading

1.2.1 Java and RDBMS: A Robust Combination

ORACLE

Oracle Database provides Java applications with a dynamic data-processing engine
that supports complex queries and different views of the same data. All client requests
are assembled as data queries for immediate processing, and query results are
generated dynamically.

The combination of Java and Oracle Database helps you to create component-based,
network-centric applications that can be easily updated as business needs change. In
addition, you can move applications and data stores off the desktop and onto
intelligent networks and network-centric servers. More important, you can access
those applications and data stores from any client device.

Figure 1-5 shows a traditional two-tier, client/server configuration in which clients call
Java stored procedures the same way they call PL/SQL stored procedures. The figure
also shows how Oracle Net Services Connection Manager can combine many network
connections into a single database connection. This enables Oracle Database to
support a large number of concurrent users.

1-9

Chapter 1
About Using Java in Oracle Database

Figure 1-5 Two-Tier Client/Server Configuration

Thin Client Oracle Database
in Clien
Java JDBC Oracle Net w

NC

Applet Driver
Relational Object Relational
Data Data
Fat Client
Oracle Net O O O
ocl Pre* oDBC | | OracleNet | Connection | OracleNet |
Clients Client Client Manager

Java Stored
Procedure
Oracle Net
Oracle Forms and Oracle Reports PL/SQL Stored
!U

1.2.2 About Multithreading

ORACLE

Multithreading is one of the key scalability features of the Java language. The Java
language and class libraries make it simpler to write multithreaded applications in Java
than many other languages, but it is still a daunting task in any language to write
reliable, scalable multithreaded code.

Oracle Database server efficiently schedules work for thousands of users. The Oracle
JVM takes advantage of the session architecture of Oracle database to concurrently
run Java applications for hundreds to thousands of users. Although Oracle Database
supports Java language-level threads required by the JLS and JCK, scalability will not
increase by using threads within the scope of the database. By using the embedded
scalability of the database, the need for writing multithreaded Java servers is
eliminated.

You should use the facilities of Oracle Database for scheduling users by writing single-
threaded Java applications. The database can schedule processes between each
application, and thus, you achieve scalability without having to manage threads. You
can still write multithreaded Java applications, but multiple Java threads will not
increase the performance of the server.

One complication multithreading creates is the interaction of threads and automated
storage management or garbage collection. The garbage collector running in a generic
JVM has no knowledge of which Java language threads are running or how the
underlying operating system schedules them. The difference between a non-Oracle
Database model and an Oracle JVM model is as follows:

* Non-Oracle Database model

A single user maps to a single Java thread and a single garbage collector
manages all garbage from all users. Different techniques typically deal with
allocation and collection of objects of varying lifetimes and sizes. The result in a
heavily multithreaded application is, at best, dependent upon operating system
support for native threads, which can be unreliable and limited in scalability. High
levels of scalability for such implementations have not been convincingly
demonstrated.

e Oracle JVM model

1-10

Chapter 1
About Using Java in Oracle Database

Even when thousands of users connect to the server and run the same Java code,
each user experiences it as if he or she is running his or her own Java code on his
or her own JVM. The responsibility of an Oracle JVM is to make use of operating
system processes and threads and the scalable approach of Oracle Database. As
a result of this approach, the garbage collector of the Oracle JVM is more reliable
and efficient because it never collects garbage from more than one user at any
time.

See Also:

"Overview of Threading in Oracle Database"

1.2.3 Memory Spaces Management

Garbage collection is a major function of the automated storage management feature
of Java, eliminating the need for Java developers to allocate and free memory
explicitly. Consequently, this eliminates a large source of memory leaks that are
commonly found in C and C++ programs. However, garbage collection contributes to
the overhead of program execution speed and footprint.

Garbage collection imposes a challenge to the JVM developer seeking to supply a
highly scalable and fast Java platform. An Oracle JVM meets these challenges in the
following ways:

* The Oracle JVM uses Oracle Database scheduling facilities, which can manage
multiple users efficiently.

» Garbage collection is performed consistently for multiple users, because garbage
collection is focused on a single user within a single session. The Oracle JVM has
an advantage, because the burden and complexity of the job of the memory
manager does not increase as the number of users increases. The memory
manager performs the allocation and collection of objects within a single session,
which typically translates to the activity of a single user.

* The Oracle JVM uses different garbage collection techniques depending on the
type of memory used. These techniques provide high efficiency and low overhead.

The two types of memory space are call space and session space.

Memory space Description

Call space It is a fast and inexpensive type of memory. It primarily exists for the
length of a call. Call memory space is divided into new and old
segments. All new objects are created within new memory. Objects that
have survived several scavenges are moved into old memory.

Session space It is an expensive, performance-wise memory. It primarily exists for the
length of a session. All st ati ¢ fields and any objects that exist beyond
the lifetime of a call exist here.

Figure 1-6 illustrates the different actions performed by the garbage collector.

ORACLE 1-11

Chapter 1
About Using Java in Oracle Database

Figure 1-6 Garbage Collection

Call and Sessions Memory Space

Garbage collected “new” Objects

often and very UL Qi_ go here

quickly during Call New Space

A
Garbage collected Survived objects
less often Old Space after several
during Call scavenging

O

Garbage collected . Survived objects
at end of Call Session Memory } after the end
\ of a call

Garbage collection algorithms within an Oracle JVM adhere to the following rules:

1. New objects are created within a new call space.

2. Scavenging occurs at a set interval. Some programmers create objects frequently
for only a short duration. These types of objects are created and garbage-collected
quickly within the new call space. This is known as scavenging.

3. Any objects that have survived several iterations of scavenging are considered to
be objects that can exist for a while. These objects are moved out of new call
space into old call space. During the move, they are also compacted. Old call
space is scavenged or garbage collected less often and, therefore, provides better
performance.

4. Atthe end of the call, any objects that are to exist beyond the call are moved into
session space.

Figure 1-6 illustrates the steps listed in the preceding text. This approach applies
sophisticated allocation and collection schemes tuned to the types and lifetimes of
objects. For example, new objects are allocated in fast and inexpensive call memory,
designed for quick allocation and access. Objects held in Java st ati c fields are
migrated to the more precious and expensive session space.

1.2.4 Footprint

The footprint of a running Java program is affected by many factors:

* Size of the program

ORACLE 1-12

Chapter 1
About Using Java in Oracle Database

The size of the program depends on the number of classes and methods and how
much code they contain.

e Complexity of the program

The complexity of the program depends on the number of core class libraries that
the Oracle JVM uses as the program runs, as opposed to the program itself.

* Amount of space the JVM uses

The amount of space the JVM uses depends on the number of objects the JVM
allocates, how large these objects are, and how many objects must be retained
across calls.

» Ability of the garbage collector and memory manager to deal with the demands of
the program running

This can not be determined often. The speed with which objects are allocated and
the way they are held on to by other objects influences the importance of this
factor.

From a scalability perspective, the key to supporting multiple clients concurrently is a
minimum per-user session footprint. The Oracle JVM keeps the per-user session
footprint to a minimum by placing all read-only data for users, such as Java bytecodes,
in shared memory. Appropriate garbage collection algorithms are applied against call
and session memories to maintain a small footprint for the user's session. The Oracle
JVM uses the following types of garbage collection algorithms to maintain the user's
session memory:

» Generational scavenging for short-lived objects
* Mark and lazy sweep collection for objects that exist for the life of a single call

» Copying collector for long-lived objects, that is, objects that live across calls within
a session

1.2.5 Performance of an Oracle JVM

ORACLE

The performance of an Oracle JVM is enhanced by the embedding of an innovative
Just-In-Time compiler similar to HotSpot on standard JVM. The platform-independent
Java bytecodes run on top of a JVM, and the JVM interacts with the specific hardware
platform. Any time you add levels within software, the performance is degraded.
Because Java requires going through an intermediary to interpret the bytecodes, a
degree of inefficiency exists for Java applications as compared to applications
developed using a platform-dependent language, such as C. To address this issue,
several JVM suppliers create native compilers. Native compilers translate Java
bytecodes into platform-dependent native code, which eliminates the interpreter step
and improves performance.

The following table describes two methods for native compilation:

Compiler Description

Just-In-Time (JIT) JIT compilers quickly compile Java bytecodes to platform-specific, or

Compilation native, machine code during run time. These compilers do not produce an
executable file to be run on the platform. Instead, they provide platform-
dependent code from Java bytecodes that is run directly after it is
translated. JIT compilers should be used for Java code that is run
frequently and at speeds closer to that of code developed in other
languages, such as C.

1-13

ORACLE

Chapter 1

About Using Java in Oracle Database

Compiler Description
Ahead-of-Time This compilation translates Java bytecodes to platform-independent C
Compilation code before run time. Then a standard C compiler compiles the C code

into an executable file for the target platform. This approach is more
suitable for Java applications that are not modified frequently. This

approach takes advantage of the mature and efficient platform-specific
compilation technology found in modern C compilers.

Oracle Database uses Just-In-Time (JIT) compilation to deliver its core Java class

libraries, such as JDBC code, in natively compiled form. The JIT compiler is enabled

without the support of any plug-ins and it is applicable across all the platforms that

Oracle supports.

The following figure illustrates how natively compiled code runs up to 10 times faster
than interpreted code. As a result, the more native code your program uses, the faster

it runs.

Figure 1-7 Interpreter versus Accelerator

Java Source Code

Java Compiler

Java Bytecode

Java Interpreter

Execution speed is X

Accelerator

C Source Code

Platform C Compiler

Execution Speed is 2X to 10X

(depends on the number of casts,
array accesses, message sends,
accessor calls, etc. in the code)

1-14

Chapter 1
Overview of Oracle JVM

Related Topics:
e Oracle JVM Just-in-Time Compiler (JIT)

1.2.6 Dynamic Class Loading

Another strong feature of Java is dynamic class loading. The class loader loads
classes from the disk and places them in the JVM-specific memory structures
necessary for interpretation. The class loader locates the classes in CLASSPATH and
loads them only when they are used while the program is running. This approach,
which works well for applets, poses the following problems in a server environment:

Problem Description Solution

Predictability = The class loading operation places a The Oracle JVM loads classes
severe penalty when the program is dynamically, just as with any other JVM.
run for the first time. A simple The same one-time class loading speed
program can cause an Oracle JVM to hit is encountered. However, because
load many core classes to support its the classes are loaded into shared
needs. A programmer cannot easily memory, no other users of those
predict or determine the number of classes will cause the classes to load
classes loaded. again, and they will use the same

preloaded classes.

Reliability A benefit of dynamic class loading is Oracle Database separates the upload
that it supports program updating. For and resolve operation from the class
example, you would update classes loading operation at run time. You

on a server, and clients, who upload Java code you developed to the
download the program and load it server using the | oadj ava tool. Instead
dynamically, see the update of using CLASSPATH, you specify a

whenever they next use the program. resolver at installation time. The

Server programs tend to emphasize resolver is analogous to CLASSPATH, but
reliability. As a developer, you must enables you to specify the schemas in
know that every client runs a specific which the classes reside. This

program configuration. You do not separation of resolution from class

want clients to inadvertently load loading ensures that you always know
some classes that you did not intend what programs users run.
them to load.

1.3 Overview of Oracle JVM

ORACLE

The Oracle JVM is a standard, Java-compatible environment that runs any pure Java
application. It is compatible with the standard JLS and the JVM specifications. It
supports the standard Java binary format and the standard Java APIs. In addition,
Oracle Database adheres to standard Java language semantics, including dynamic
class loading at run time.

Java in Oracle Database introduces the following terms:

e Session

A session in Oracle Database Java environment is identical to the standard Oracle
Database usage. A session is typically, although not necessarily, bounded by the
time a single user connects to the server. As a user who calls a Java code, you
must establish a session in the server.

e« Call

1-15

Chapter 1
Overview of Oracle JVM

When a user causes a Java code to run within a session, it is termed as a call. A
call can be started in the following different ways:

— A SQL client program runs a Java stored procedure.
— Atrigger runs a Java stored procedure.
— A PL/SQL program calls a Java code.

In all the cases defined, a call begins, some combination of Java, SQL, or PL/SQL
code is run to completion, and the call ends.

Note:

The concept of session and call apply across all uses of Oracle Database.

Unlike other Java environments, the Oracle JVM is embedded within Oracle Database
and introduces a number of new concepts. This section discusses some important
differences between an Oracle JVM and typical client JVMs based on:

* Process Area

* Java session initialization_ duration and entrypoints
* The GUI

 The IDE

1.3.1 Process Area

In a standard Java environment, you run a Java application through the interpreter by
issuing the following command on the command line, where cl assnane is the name of
the class that you want the JVM to interpret first:

java cl assnane

When using the Oracle JVM, you must load the application into the database, publish
the interface, and then run the application within a database session. The database
session is the environment in which the Oracle JVM runs and as such is the analog of
the operating system process in which a standard client JVM runs.

Related Topics:

e Java Applications on Oracle Database

1.3.2 Java session initialization, duration and entrypoints

ORACLE

Standard client-based Java applications declare a single, top-level method, public
static void main(String args[]). This method is executed once and the instantiation
of the Java Virtual Machine lasts for the duration of that call. But, Oracle Java
applications are not restricted to a single top-level main entrypoint, and the duration of
the Oracle JVM instantiation is not determined by a single call and the exit of the call
from this entrypoint. Each client begins a session, calls its server-side logic modules
through top-level entry points, and eventually ends the session. The same JVM
instance remains in place for the entire duration of the session, so data state such as
static variable values can be used across multiple calls to multiple top-level entry
points.

1-16

Chapter 1
Feature List of Oracle JVM

Class definitions that have been loaded and published in the database are generally
available to all sessions in that database. The JVM instance in a given session and the
Java data objects and global field values in that JVM instance are private to the
session. This data is present for the duration of the session and may be used by
multiple calls within the lifetime of that session. But, neither this data is visible to other
sessions nor the data can be shared in any way with other sessions. This is analogous
to how in a standard client Java application separate invocations of the main method
share the same class definitions, but the data created and used during those
invocations are separate.

1.3.3 The GUI

A server cannot provide GUIs, but it can provide the logic that drives them. The Oracle
JVM supports only the headless mode of the Java Abstract Window Toolkit (AWT). All
Java AWT classes are available within the server environment and your programs can
use the Java AWT functionality, as long as they do not attempt to materialize a GUI on
the server.

Related Topics:

» User Interfaces on the Server

1.3.4 The IDE

The Oracle JVM is oriented to Java application deployment, and not development. You
can write and test applications on any preferred integrated development environment
(IDE), such as Oracle JDeveloper, and then deploy them within the database for the
clients to access and run them.

See Also:

"Development Tools"

The binary compatibility of Java enables you to work on any IDE and then upload the
Java class files to the server. You need not move your Java source files to the
database. Instead, you can use powerful client-side IDEs to maintain Java applications
that are deployed on the server.

Related Topics:

* Development Tools

1.4 Feature List of Oracle JVM

Table 1-1 lists the features of Oracle JVM and the versions in which they were first
supported.

ORACLE 1-17

Chapter 1
Main Components of Oracle JVM

Table 1-1 Feature List of Oracle JVM
]

Feature Supported Since Oracle
JVM Release
| oadj ava URL support 11.1
List-Based operations with dr opj ava support 111
oj vnt ¢ Tool 111
Runj ava command-line interface (JDK-like interface) 111
Database-Resident JARs 111
Sharing of user classloaded classes metadata support 111
Two-tier duration for the Java session state support 111
Default service feature 11.1
Just-in-Time compiler (JIT) 11.1
Internet Protocol Version 6 (IPv6) Support 11.2
JDK 6 support 12.1
JDK 7 support 12.1
JDK 8 support 12.2

1.5 Main Components of Oracle JVM

ORACLE

This section briefly describes the main components of an Oracle JVM and some of the
facilities they provide.

The Oracle JVM is a complete, Java 2-compliant environment for running Java
applications. It runs in the same process space and address space as the database
kernel by sharing its memory heaps and directly accessing its relational data. This
design optimizes memory use and increases throughput.

The Oracle JVM provides a run-time environment for Java objects. It fully supports
Java data structures, method dispatch, exception handling, and language-level
threads. It also supports all the core Java class libraries, including j ava. | ang, j ava.i o,
java.net,java. math, and java. util.

Figure 1-8 shows the main components of an Oracle JVM.

1-18

Chapter 1
Main Components of Oracle JVM

Figure 1-8 Main Components of an Oracle JVM

Oracle JVM
Interpreter &
Run-time System
Memory
SQL Calls » Natively
Compiled Code
Class Loader Garbage Collector
loadjava Utility > RDBMS RDBMS
CREATE JAVA Statement Library Manager Memory Manager

The Oracle JVM embeds the standard Java namespace in the database schemas.
This feature lets Java programs access Java objects stored in Oracle Database and
application servers across the enterprise.

In addition, the Oracle JVM is tightly integrated with the scalable, shared memory
architecture of the database. Java programs use call, session, and object lifetimes
efficiently without user intervention. As a result, the Oracle JVM and middle-tier Java
business objects can be scaled, even when they have session-long state.

The following sections provide an overview of some of the components of the Oracle
JVM and the JDBC driver and the SQLJ translator:

e Library Manager

e Compiler

* Interpreter

* Class Loader

* Verifier

» Server-Side JDBC Internal Driver
e Server-Side SQLJ Translator

e System Classes

1.5.1 Library Manager

To store Java classes in Oracle Database, you use the | oadj ava command-line tool,
which uses the SQL CREATE JAVA statements to do its work. When called by the CREATE
JAVA {SOURCE | CLASS | RESOURCE} statement, the library manager loads Java source,
class, or resource files into the database. These Java schema objects are not
accessed directly, and only an Oracle JVM uses them.

1.5.2 Compiler

ORACLE

The Oracle JVM includes a standard Java compiler. When the CREATE JAVA SOURCE
statement is run, it translates Java source files into architecture-neutral, one-byte

1-19

Chapter 1
Main Components of Oracle JVM

instructions known as bytecodes. Each bytecode consists of an opcode followed by its
operands. The resulting Java class files, which conform fully to the Java standard, are
submitted to the interpreter at run time.

1.5.3 Interpreter

To run Java programs, the Oracle JVM includes a standard Java 2 bytecode
interpreter. The interpreter and the associated Java run-time system run standard
Java class files. The run-time system supports native methods and call-in and call-out
from the host environment.

Note:

You can also compile your Java code to improve performance. The Oracle
JVM uses natively compiled versions of the core Java class libraries, SQLJ
translator, and JDBC drivers.

1.5.4 Class Loader

In response to requests from the run-time system, the Java class loader locates,
loads, and initializes Java classes stored in the database. The class loader reads the
class and generates the data structures needed to run it. Immutable data and
metadata are loaded into initialize-once shared memory. As a result, less memory is
required for each session. The class loader attempts to resolve external references
when necessary. In addition, if the source files are available, then the class loader
calls the Java compiler automatically when Java class files must be recompiled.

1.5.5 Verifier

Java class files are fully portable and conform to a well-defined format. The verifier
prevents the inadvertent use of spoofed Java class files, which might alter program
flow or violate access restrictions. Oracle security and Java security work with the
verifier to protect your applications and data.

1.5.6 Server-Side JDBC Internal Driver

ORACLE

JDBC is a standard and defines a set of Java classes providing vendor-independent
access to relational data. The JDBC classes are modeled after ODBC and the X/Open
SQL Call Level Interface (CLI) and provide standard features, such as simultaneous
connections to several databases, transaction management, simple queries, calls to
stored procedures, and streaming access to LONG column data.

Using low-level entry points, a specially tuned JDBC driver runs directly inside Oracle
Database, providing fast access to Oracle data from Java stored procedures. The
server-side JDBC internal driver complies fully with the standard JDBC specification.
Tightly integrated with the database, the JDBC driver supports Oracle-specific data
types, globalization character sets, and stored procedures. In addition, the client-side
and server-side JDBC APIs are the same, which makes it easy to partition
applications.

1-20

Chapter 1
Java Programming in Oracle Database

1.5.7 Server-Side SQLJ Translator

SQLJ enables you to embed SQL statements in Java programs. It is more concise
than JDBC and more responsive to static analysis and type checking. The SQLJ
preprocessor, which itself is a Java program, takes as input a Java source file in which
SQLJ clauses are embedded. Then, it translates the SQLJ clauses into Java class
definitions that implement the specified SQL statements. The Java type system
ensures that objects of those classes are called with the correct arguments.

A highly optimized SQLJ translator runs directly inside the database, where it provides
run-time access to Oracle data using the server-side internal JDBC driver. SQLJ forms
can include queries, data manipulation language (DML) statements, data definition
language (DDL) statements, transaction control statements, and calls to stored
procedures. The client-side and server-side SQLJ APIs are identical, making it easy to
partition applications.

1.5.8 System Classes

A set of classes that constitute a significant portion of the implementation of Java in
Oracle Database environment is known as the System classes. These classes are
defined in the SYS schema and exported for all users by public synonym. A class with
the same name as one of the System classes can be defined in a schema other than
the SYS schemal. But, this is a bad practice because the alternate version of the class
may behave in a manner that violates assumptions about the semantics of that class
that are present in other System classes or in the underlying implementation of Java
Virtual Machine. Oracle strongly discourages this practice.

1.6 Java Programming in Oracle Database

Oracle provides enterprise application developers an end-to-end Java solution for
creating, deploying, and managing Java applications. The total solution consists of
client-side and server-side programmatic interfaces, tools to support Java
development, and a JVM integrated with Oracle Database. All these products are fully
compatible with Java standards. This section covers the following topics:

» Javain Database Application Development

e Java Programming Environment Usage

e Java Stored Procedures

e PL/SQL Integration and Oracle RDBMS Functionality
* Development Tools

* Internet Protocol Version 6 Support

1.6.1 Java in Database Application Development

The most important features of Java in database application development are:

1 You cannot always define a class with the same name as one of the System classes. For the classes present in
some packages, for example, j ava. | ang, such definitions are explicitly prohibited by the code.

ORACLE 1-21

Chapter 1
Java Programming in Oracle Database

» Designing data-bound procedures and functions using Java SE APIs and JDBC.

» Extending the reach and capabilities of the database with standard and third-party
Java libraries. For example, accessing third-party databases using their drivers in
the database and accessing Hadoop/HDFS.

» Providing flexible partitioning of Java2 Platform, Standard Edition (J2SE)
applications for symmetric data access at the JDBC level.

* Bridging SQL and the Java2 Platform, Enterprise Edition (J2EE) world by:
— Calling out Web components, such as JSP and servlet
— Bridging SQL and Web Services using Web Service Callouts

* Using an Oracle JVM as ERP Integration Hub.

* Invalidating cache.

1.6.2 Java Programming Environment Usage

In addition to the Oracle JVM, the Java programming environment provides:

» Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call Java stored
procedures from PL/SQL packages and PL/SQL procedures from Java stored
procedures.

* The JDBC and SQLJ programming interfaces for accessing SQL data.
* Tools and scripts that assist in developing, loading, and managing classes.

The following table helps you decide when to use which Java API:

Type of functionality you need Java API to use
To have a Java procedure called from SQL, such as a trigger. Java stored procedures
To call a static, simple SQL statement from a known table with SQLJ

known column names from a Java object.

To call dynamic, complex SQL statements from a Java object. JDBC

1.6.3 Java Stored Procedures

Java stored procedures are Java programs written and deployed on a server and run
from the server, exactly like a PL/SQL stored procedure. You invoke it directly with
products like SQL*Plus, or indirectly with a trigger. You can access it from any Oracle
Net client, such as OCI and PRO¥*, or JDBC or SQLJ.

In addition, you can use Java to develop powerful, server-side programs, which can be
independent of PL/SQL. Oracle Database provides a complete implementation of the
standard Java programming language and a fully compliant JVM.

Related Topics:

» Developing Java Stored Procedures

ORACLE 1-22

Chapter 1
Java Programming in Oracle Database

1.6.4 PL/SQL Integration and Oracle RDBMS Functionality

You can call existing PL/SQL programs from Java and Java programs from PL/SQL.
This solution protects and leverages your PL/SQL and Java code and opens up the
advantages and opportunities of Java-based Internet computing.

Oracle Database offers two different Java APIs for accessing SQL data, JDBC and
SQLJ. Both these APIs are available on the client, and the JDBC API is also available
on the server. As a result, you can deploy your applications on the client and server.

The following topics introduce the Java APIs provided by Oracle Database:

 JDBC Drivers
e SQLJ

1.6.4.1 JDBC Drivers

JDBC is a database access protocol that enables you to connect to a database and
run SQL statements and queries to the database. The core Java class libraries provide
the following JDBC APIs: j ava. sql and j avax. sql . However, JDBC is designed to
enable vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle provides the following distinct JDBC drivers:

Driver Description

JDBC Thin driver You can use the JDBC Thin driver to write pure Java applications and
applets that access Oracle SQL data. The JDBC Thin driver is especially
well-suited for Web-based applications and applets, because you can
dynamically download it from a Web page, similar to any other Java
applet.

JDBC OCI driver The JDBC OCI driver accesses Oracle-specific native code, that is, non-
Java code, and libraries on the client or middle tier, providing
performance boost compared to the JDBC Thin driver, at the cost of
significantly larger size and client-side installation.

JDBC server-side Oracle Database uses the server-side internal driver when the Java code

internal driver runs on the server. It allows Java applications running in the Oracle JVM
on the server to access locally defined data, that is, data on the same
system and in the same process, with JDBC. It provides a performance
boost, because of its ability to use the underlying Oracle RDBMS libraries
directly, without the overhead of an intervening network connection
between the Java code and SQL data. By supporting the same Java-SQL
interface on the server, Oracle Database does not require you to rework
code when deploying it.

See Also:

Oracle Database JDBC Developer’s Guide

Related Topics:
* About Utilizing SQLJ and JDBC with Java in the Database

ORACLE 1-23

1.6.4.2 SQLJ

Chapter 1
Java Programming in Oracle Database

Oracle has worked with other vendors, including IBM, Tandem, and Sybase, to
develop a standard way to embed SQL statements in Java programs called SQLJ.
This work has resulted in a new standard, ANSI x.3.135.10-1998, for a simpler and
more highly productive programming API than JDBC. A user writes applications to this
higher-level API and then uses a preprocessor to translate the program to standard
Java source with JDBC calls. At run time, the program can communicate with multi-
vendor databases using standard JDBC drivers.

SQLJ provides a simple, but powerful, way to develop client-side applications that
access databases from Java. You can use SQLJ in stored procedures and triggers. In
addition, you can combine SQLJ programs with JDBC.

The SQLJ translator is a Java program that translates embedded SQL in Java source
code to pure JDBC-based Java code.

¢ See Also:

Oracle Database SQLJ Developer’s Guide

1.6.5 Development Tools

The introduction of Java in Oracle Database enables you to use several Java IDEs.
The adherence of Oracle Database to the Java standards and specifications and the
open Internet standards and protocols ensures that your Java programs work
successfully, when you deploy them on Oracle Database. Oracle provides many tools
or utilities that are written in Java making development and deployment of Java server
applications easier. Oracle JDeveloper, a Java IDE provided by Oracle, has many
features designed specifically to make deployment of Java stored procedures and
EJBs easier. You can download JDeveloper from

http:// ww. oracl e. conl t echnet wor k/ devel oper -t ool s/ j dev/ overvi ew i ndex. ht m

1.6.6 Internet Protocol Version 6 Support

ORACLE

Starting from Oracle Database 11g Release 2, Oracle JVM supports Internet Protocol
Version 6 (IPv6) addresses in the URL and machine names of the Java code in the
database, which resolve to IPv6 addresses. IPv6 is a new Network layer protocol
designed by the Internet Engineering Task Force (IETF) to replace the current version
of Internet Protocol, Internet Protocol Version 4 (IPv4). The primary benefit of IPv6 is a
large address space, derived from the use of 128-bit addresses. IPv6 also improves
upon IPv4 in areas such as routing, network autoconfiguration, security, quality of
service, and so on.

The following system properties enable you to configure IPv6 preferences:

java.net.preferlPv4Stack

If IPv6 is available on the operating system, then the underlying native socket will be
an IPv6 socket. This enables Java applications to connect to, and accept connections
from both IPv4 and IPv6 hosts. If you have an application that has a preference to use

1-24

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

Chapter 1
Support for Java 8

only IPv4 sockets, then you can set this property to true. If you set the property to
true, then it implies that the application will not be able to communicate with IPv6
hosts.

java.net.preferlPv6Addresses

Even if IPv6 is available on the operating system, then for backward compatibility
reasons, the addresses are mapped to IPv4. For example, applications that depend on
access to only an IPv4 service, benefit from this type of mapping. If you want to
change the preferences to use IPv6 addresses over IPv4 addresses, then you can set
the java. net . prefer| Pv6Addr esses property to true. This allows applications to be
tested and deployed in environments, where the application is expected to connect to
IPv6 services.

Note:

All the new System classes that are required for IPv6 support are loaded when
Java is enabled during database initialization. So, if your application does not
have any addresses that are included in the software code, then you do not
need to change your code to use IPv6 functionality.

1.7 Support for Java 8

Oracle Database 12c Release 2 (12.2.0.1) provides support for Java 8, which enables
portability of Java applications and libraries, and compliance with the latest Java
standards. Java 8 furnishes Nashorn, a JavaScript engine that enables running
JavaScript directly in the database.

Note:

This release of Oracle JVM supports only Java 8. However, because Oracle
JVM is a database-resident JVM, some JDK specific features including
JavaFX, command line tools, Java tools, GUI interfaces, HotSpot, Mission
Control, and so on are not supported in Oracle JVM.

Related Topics:

* Introduction to Nashorn JavaScript Engine

1.8 Memory Model for Dedicated Mode Sessions

ORACLE

Since Oracle Database 10g, the Oracle JVM has a new memory model for sessions
that connect to the database through a dedicated server. The basic memory structures
associated with Oracle include:

e System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components,
that contain data and control information for one Oracle Database instance. The

1-25

ORACLE

Chapter 1
Memory Model for Dedicated Mode Sessions

SGA is shared by all server and background processes. Examples of data stored
in the SGA include cached data blocks and shared SQL areas.

* Program Global Areas (PGA)

A PGA is a memory region that contains data and control information for a server
process. It is nonshared memory created by Oracle when a server process is
started. Access to the PGA is exclusive to the server process. There is one PGA
for each server process. Background processes also allocate their own PGAs. The
total PGA memory allocated for all background and server processes attached to
an Oracle instance is referred to as the aggregate PGA.

The simplest way to manage memory is to allow the database to automatically
manage and tune it for you. To do so, you set only a target memory size initialization
parameter (MEMORY_TARGET) and a maximum memory size initialization parameter
(MEMORY_MAX_TARGET), on most platforms. The database then tunes to the target memory
size, redistributing memory as needed between the SGA and aggregate PGA.
Because the target memory initialization parameter is dynamic, you can change the
target memory size at any time without restarting the database. The maximum
memory size serves as an upper limit so that you cannot accidentally set the target
memory size too high. Because certain SGA components either cannot easily shrink or
must remain at a minimum size, the database also prevents you from setting the target
memory size too low.

See Also:

Oracle Database Administrator's Guide

1-26

Java Applications on Oracle Database

Oracle Database runs standard Java applications. However, the Java-integrated
Oracle Database environment is different from a typical Java development
environment. This chapter describes the basic differences for writing, installing, and
deploying Java applications within Oracle Database in the following sections:

e Database Sessions Imposed on Java Applications

« Execution Control of Java Applications

e Java Code_ Binaries_ and Resources Storage

* About Java Classes Loaded in the Database

* Preparing Java Class Methods for Execution

* User Interfaces on the Server

* Shortened Class Names

e Class.forName() in Oracle Database

« About Managing Your Operating System Resources
e About Using the Runtime.exec Functionality in Oracle Database
e Managing Your Applications Using JMX

e Overview of Threading in Oracle Database

e Shared Servers Considerations

2.1 Database Sessions Imposed on Java Applications

In the Java-integrated Oracle Database, your Java applications exist within the context
of a database session. Oracle JVM sessions are entirely analogous to traditional
Oracle sessions. Each Oracle JVM session maintains the state of the Java
applications accessed by the client across calls within the session.

Figure 2-1 illustrates how each Java client starts a database session as the
environment for running Java applications within the database. Each Java database
session has a separate garbage collector, session memory, and call memory.

ORACLE 2-1

ORACLE

Chapter 2
Database Sessions Imposed on Java Applications

Figure 2-1 Java Environment Within Each Database Session

[
\- database session 1

client 1

e B
>]
| I database session 2

client 2

-
|
—>

o
=2
1 | I database session 3

client 3

Each Java
database

session
session call g
memory memory

Within the context of a session, the client performs the following:

1
2
3.
4

Connects to the database and opens a session.
Runs Java within the database. This is referred to as a call.
Continues to work within the session, performing as many calls as required.

Ends the session.

Within a session, the client has its own Java environment. It appears to the client as if
a separate, individual JVM was started for each session, although the implementation
is more efficient than this seems to imply. Within a session, Oracle JVM manages the
scalability of applications. Every call from a single client is managed within its own
session, and calls from each client is handled separately. Oracle JVM maximizes
sharing read-only data between clients and emphasizes a minimum amount of per-
session incremental footprint, to maximize performance for multiple clients.

The underlying server environment hides the details associated with session, network,
state, and other shared resource management issues from the Java code. Fields
defined as stati ¢ are local to the client. No client can access the stati ¢ fields of other
clients, because the memory is not available across session boundaries. Because

2-2

Chapter 2
Execution Control of Java Applications

each client runs the Java application calls within its own session, activities of each
client are separate from any other client. During a call, you can store objects in stati c
fields of different classes, which will be available in the next call. The entire state of
your Java program is private and exists for your entire session.

Oracle JVM manages the following within the session:

» All the objects referenced by st ati ¢ Java fields, all the objects referred to by these
objects, and so on, till their transitive closure

e Garbage collection for the client that created the session
e Session memory for stati ¢ fields and across call memory needs

» Call memory for fields that exist within a call

2.2 Execution Control of Java Applications

In the Java 2 Platform, Standard Edition (J2SE) environment, you develop Java
applications with a mai n() method, which is called by the interpreter when the class is
run. The mai n() method is called when you enter the following command on the
command-line:

java cl assnane

This command starts the Java interpreter and passes the desired class, that is, the
class specified by cl assnane, to the Java interpreter. The interpreter loads the class
and starts running the application by calling nai n() . However, Java applications within
the database do not start by a call to the mai n() method.

After loading your Java application within the database, you can run it by calling any

st ati ¢ method within the loaded class. The class or methods must be published before
you can run them. In Oracle Database, the entry point for Java applications is not
assumed to be mai n() . Instead, when you run your Java application, you specify a
method name within the loaded class as your entry point.

For example, in a standard Java environment, you would start the Java object on the
server by running the following command:

java nyprogram

where, nyprogramis the name of a class that contains the nai n() method. In nyprogram
mai n() immediately calls nymet hod() for processing incoming information.

In Oracle Database, you load the nyprogram cl ass file into the database and publish
nynet hod() as an entry-point. Then, the client or trigger can invoke nynet hod() explicitly.

2.3 Java Code, Binaries, and Resources Storage

ORACLE

In the standard Java development environment, Java source code, binaries, and
resources are stored as files in a file system, as follows:

* Source code files are saved as . j ava files.
e Compiled Java binary files are saved as . cl ass files.

* Resources are any data files, such as . properties or . ser files, that are stored in
the file system hierarchy and are loaded and used at run time.

2-3

Chapter 2
About Java Classes Loaded in the Database

In addition, when you run a Java application, you specify the CLASSPATH, which is a file
or directory path in the file system that contains your . cl ass files. Java also provides a
way to group these files into a single archive form, a ZIP or Java Archive (JAR) file.

Both these concepts are different in Oracle Database environment.
Table 2-1 describes how Oracle Database handles Java classes and locates

dependent classes.

Table 2-1 Description of Java Code and Classes Storage in Oracle Database
|

Tasks How it differs for Oracle JVM
Storing Java code, In Oracle Database, source code, classes, and resources reside
binaries, and resources within the database and are known as Java schema objects,

where a schema corresponds to a database user. There are three
types of Java schema objects: source, class, and resource. There
areno.java,.class,.sqlj,.properties,or.ser files onthe
server. Instead, these files map to the appropriate Java schema
objects.

Locating Java classes Instead of the CLASSPATH, you use a resolver to specify one or
more schemas to search for Java source, class, and resource
schema objects.

2.4 About Java Classes Loaded in the Database

ORACLE

If you are not using the command-line interface, you must load Java files into the
database as schema objects, to make them available to Oracle JVM. The | oadj ava tool
can call the Java compiler of Oracle JVM, which compiles source files into standard
class files.

The following figure shows that the | oadj ava tool can set the values of options stored in
a system database table. Among other things, these options affect the processing of
Java source files.

2-4

Chapter 2
Preparing Java Class Methods for Execution

Figure 2-2 Loading Java into Oracle Database

®
L
=
)

Jjava file .class file

g

loadjava

N

Source || Class Class ||Resource

1
1
1
| Java Java Java Java
1
1

P Java Options &
Complier Table

N

Each Java class is stored as a schema object. The name of the object is derived from
the fully qualified name of the class, which includes the hames of containing packages.
For example, the full name of the class Handl e is:

oracl e. aurora. rdbms. Handl e
In the Java schema object name, slashes replace periods, so the full name of the
class becomes:

oracl e/ aurora/ rdbns/ Handl e

Oracle Database accepts Java names up to 4000 characters long. However, the
names of Java schema objects cannot be longer than 30 characters. Therefore, if a
schema object name is longer than 30 characters, then the system generates a short
name, or alias, for the schema object. Otherwise, the fully qualified name, also called
full name, is used. You can specify the full name in any context that requires it. When
needed, name mapping is handled by Oracle Database.

Related Topics:
e About Using the Command-Line Interface
* Shortened Class Names

e System Classes

2.5 Preparing Java Class Methods for Execution

ORACLE

To ensure that your Java methods run, you must do the following:

2-5

4.

Chapter 2
Preparing Java Class Methods for Execution

Decide when the Java source code is going to be compiled.

Decide if you are going to use the default resolver or another resolver for locating
supporting Java classes within the database.

Load the classes into the database. If you do not wish to use the default resolver
for your classes, then you should specify a separate resolver with the load
command.

Publish your class or method.

This sections covers the following topics:

Compiling Java Classes

Overview of Resolving Class Dependencies

Overview of Loading Classes Using the loadjava Tool
Overview of Granting Execute Rights

Overview of Controlling the Current User

Overview of Checking Java Uploads

About Publishing Java Methods Loaded in the Database

Overview of Auditing Java Classes Loaded in the Database

2.5.1 Compiling Java Classes

Compilation of the Java source code can be done in one of the following ways:

ORACLE

You can compile the source explicitly on a client system before loading it into the
database, through a Java compiler, such as j avac.

You can ask the database to compile the source during the loading process, which
is managed by the | oadj ava tool.

You can force the compilation to occur dynamically at run time.

Note:

If you decide to compile through the | oadj ava tool, then you can specify the
compiler options.

This section includes the following topics:

Compiling Source Through javac

Compiling Source Through the loadjava Tool
Compiling Source at Run Time

Specifying Compiler Options

Recompiling Source Programs Automatically

Related Topics:

Specifying Compiler Options

2-6

Chapter 2
Preparing Java Class Methods for Execution

2.5.1.1 Compiling Source Through javac

You can compile Java source code with a conventional Java compiler as shown in the
following example:

javac <file_nanme>.java
After compilation, you load the compiled binary into the database, rather than the

source itself. This is a better option, because it is usually easier to debug the Java
code on your own system, rather than debugging it on the database.

2.5.1.2 Compiling Source Through the loadjava Tool

When you specify the -resol ve option with the | oadj ava tool for a source file, the
following occurs:

1. The source file is loaded as a source schema object.

2. The source file is compiled.

3. Class schema objects are created for each class defined in the compiled . j ava file.
4. The compiled code is stored in the class schema objects.

Oracle Database writes all compilation errors to the log file of the | oadj ava tool as well
as the USER_ERRCRS view.

2.5.1.3 Compiling Source at Run Time

When you load the Java source into the database without the - r esol ve option, for
example:

| oadj ava <file_name>.|ava

Then, Oracle Database compiles the source automatically when the class is needed
during run time. The source file is loaded into a source schema object. Oracle
Database writes all compilation errors to the log file of the | oadj ava tool as well as the
USER_ERRCRS view.

2.5.1.4 Specifying Compiler Options
You can specify the compiler options in the following ways:

e Specify compiler options on the command line with the | oadj ava tool. You can also
specify the encoding option with the | oadj ava tool.

» Specify persistent compiler options in the JAVA$OPTI ONS table. The JAVASOPTI ONS
table exists for each schema. Every time you compile, the compiler uses these
options. However, any compiler options specified with the | oadj ava tool override
the options defined in this table. You must create this table yourself if you wish to
specify compiler options in this manner.

2.5.1.4.1 Specifying Default Compiler Options

When compiling a source schema object for which neither a JAVASOPTI ONS entry exists
nor a command-line value for any option is specified, the compiler assumes a default
value as follows:

ORACLE .

Chapter 2
Preparing Java Class Methods for Execution

e encodi ng=Syst em get Property("file.encoding");
e online=true

This option applies only to Java sources that contain SQLJ constructs.
* debug=true

This option is equivalent to:

javac -g

2.5.1.4.2 Specifying Compiler Options on the Command Line

The encodi ng compiler option specified with the | oadj ava tool identifies the encoding of
the . j ava file. This option overrides any matching value in the JAVASOPTI ONS table. The
values are identical to:

javac -encodi ng

This option is relevant only when loading a source file.

2.5.1.4.3 Specifying Compiler Options Specified in a Database Table

Each JAVASOPTI ONS entry contains the names of source schema objects to which an
option setting applies. You can use multiple rows to set the options differently for
different source schema objects.

You can set JAVASOPTI ONS entries by using the following procedures and functions,
which are defined in the database package DBVS_JAVA:

PROCEDURE set _conpi | er _option(name VARCHAR2, option VARCHAR2, val ue VARCHARZ);
FUNCTI ON get _conpi | er _option(name VARCHAR2, option VARCHAR2) RETURNS VARCHARZ;

PROCEDURE reset _conpi | er _opti on(nanme VARCHAR2, option VARCHAR2);

2.5.1.4.4 Details About Specifying Compiler Options Specified in the Database Table

ORACLE

The following table describes the parameters for the methods described in the
preceding section.

Table 2-2 Definitions for the Name and Option Parameters

__|
Parameter Description

name This is a Java package name, a fully qualified class hame, or an
empty string. When the compiler searches the JAVA$OPTI ONS
table for the options to use for compiling a Java source schema
object, it uses the row that has a value for nane that most closely
matches the fully qualified class name of a schema object. A
name whose value is the empty string matches any schema
object name.

option The opt i on parameter is either onl i ne, encodi ng, or debug.

Initially, a schema does not have a JAVASOPTI ONS table. To create a JAVASOPTI ONS table,
use the j ava. set _conpi | er _opti on procedure from the DBM5S_JAVA package to set a
value. The procedure will create the table, if it does not exist. Specify parameters in
single quotes. For example:

2-8

Chapter 2
Preparing Java Class Methods for Execution

SQ.> execute dbns_j ava.set_conpiler_option('x.y', 'online', 'false');

The following table represents a hypothetical JAVASOPTI ONS database table. The pattern
match rule is to match as much of the schema name against the table entry as
possible. The schema name with a higher resolution for the pattern match is the entry
that applies. Because the table has no entry for the encodi ng option, the compiler uses
the default or the value specified on the command line. The onl i ne option shown in the
table matches schema object names as follows:

* The name a. b. c. d matches class and package names beginning with a. b. c. d. The
packages and classes are compiled with onl i ne=tr ue.

* The name a. b matches class and package names beginning with a. b. The name
a. b does not match a. b. c. d. The packages and classes are compiled with
online=fal se.

e All other packages and classes match the empty string entry and are compiled
with onl i ne=true.

Table 2-3 Example JAVASOPTIONS Table

___|
Name Option Value Match Examples

a.b.cd online true e« ab.c.d
Matches the pattern exactly.
* abc.de

First part matches the pattern exactly.
No other rule matches the full
qualified name.

a.b online fal se e ab
Matches the pattern exactly
e a.b.c.x

First part matches the pattern exactly.
No other rule matches beyond this
rule.

Empty string online true e ac

No pattern match with any defined
name. Defaults to the empty string
rule.

. X.y
No pattern match with any defined

name. Defaults to the empty string
rule.

2.5.1.5 Recompiling Source Programs Automatically

ORACLE

Oracle Database provides a dependency management and automatic build facility that
transparently recompiles source programs when you make changes to the source or
binary programs upon which they depend. Consider the following example:

public class A

{
B b;
public void assignB()

{
b = new B()

2-9

Chapter 2
Preparing Java Class Methods for Execution

}

public class B

{
Cc;
public void assignC()
{
¢ = new ()

}

public class C

{
A a;
public void assignA()

{

a = new A()
}
}

The system tracks dependencies at a class level of granularity. In the preceding
example, you can see that classes A, B, and C depend on one another, because A holds
an instance of B, B holds an instance of C, and C holds an instance of A. If you change
the definition of class A by adding a new field to it, then the dependency mechanism in
Oracle Database flags classes B and C as invalid. Before you use any of these classes
again, Oracle Database attempts to resolve them and recompile, if necessary. Note
that classes can be recompiled only if the source file is present on the server.

The dependency system enables you to rely on Oracle Database to manage
dependencies between classes, to recompile, and to resolve automatically. You must
force compilation and resolution yourself only if you are developing and you want to
find problems early. The | oadj ava tool also provides the facilities for forcing compilation
and resolution if you do not want the dependency management facilities to perform
this for you.

2.5.2 Overview of Resolving Class Dependencies

ORACLE

Many Java classes contain references to other classes, which is the essence of
reusing code. A conventional JVM searches for . cl ass, . zi p, and . j ar files within the
directories specified in CLASSPATH. In contrast, Oracle JVM searches database schemas
for class objects. In Oracle Database, because you load all Java classes into the
database, you may need to specify where to find the dependent classes for your Java
class within the database.

All classes loaded within the database are referred to as class schema objects and are
loaded within certain schemas. All predefined Java application programming interfaces
(APIs), such as java. |l ang. * , are loaded within the PUBLI C schema. If your classes
depend on other classes you have defined, then you will probably load them all within
your own schema. For example, if your schema is HR, then the database resolver
searches the HR schema before searching the PUBLI C schema. The listing of schemas
to search is known as a resolver specification. Resolver specifications are defined
for each class. This is in contrast to a classic JVM, where CLASSPATH is global to all
classes.

When locating and resolving the interclass dependencies for classes, the resolver
marks each class as valid or invalid, depending on whether all interdependent classes
are located. If the class that you load contains a reference to a class that is not found
within the appropriate schemas, then the class is listed as invalid. Unsuccessful

2-10

Chapter 2
Preparing Java Class Methods for Execution

resolution at run time produces a d assNot Found exception. Also, run-time resolution
can fail for lack of database resources, if the tree of classes is very large.

Note:

As with the Java compiler, the | oadj ava tool resolves references to classes,
but not to resources. Ensure that you correctly load the resource files that your
classes require.

For each interclass reference in a class, the resolver searches the schemas specified
by the resolver specification for a valid class schema object that satisfies the
reference. If all references are resolved, then the resolver marks the class valid. A
class that has never been resolved, or has been resolved unsuccessfully, is marked
invalid. A class that depends on a schema object that becomes invalid is also marked
invalid.

To make searching for dependent classes easier, Oracle Database provides a default
resolver and resolver specification that searches the definer's schema first and then
searches the PUBLI C schema. This covers most of the classes loaded within the
database. However, if you are accessing classes within a schema other than your own
or PUBLI C, you must define your own resolver specification.

Classes can be resolved in the following ways:

* Loading using the default resolver, which searches the definer's schema and
PUBLI C:

| oadj ava -resol ve
e Loading using your own resolver specification definition:

| oadj ava-resol ve -resolver "((* HR)(* OTHER)(* PUBLIQ))"

In the preceding example, the resolver specification definition includes the HR
schema, OTHER schema, and PUBLI C.

The -resol ver option specifies the objects to search within the schemas defined. In the
preceding example, all class schema objects are searched within HR, OTHER, and PUBLI C.
However, if you want to search for only a certain class or group of classes within the
schema, then you could narrow the scope for the search. For example, to search only
for the ny/ gui / * classes within the OTHER schema, you would define the resolver
specification as follows:

| oadj ava -resolve -resolver '((* HR) ("ny/gui/*" OTHER) (* PUBLIC))'
The first parameter within the resolver specification is for the class schema object, and

the second parameter defines the schema within which to search for these class
schema objects.

2.5.2.1 Allowing References to Nonexistent Classes

ORACLE

You can specify a special option within a resolver specification that allows an
unresolved reference to a nonexistent class. Sometimes, internal classes are never
used within a product. In a standard Java environment, this is not a problem, because
as long as the methods are not called, JVM ignores them. However, when resolving a
class, Oracle JVM tries to resolve all names referenced by that class, including names

2-11

Chapter 2
Preparing Java Class Methods for Execution

that may never be used. If Oracle JVM cannot find a matching class for each such
names referenced by that class, then the class being resolved is marked as invalid
and cannot be run.

To ignore references, you can specify the wildcard, minus sign (-), within the resolver
specification. The following example specifies that any references to classes within
ny/ gui are to be allowed, even if it is not present within the resolver specification
schema list.

| oadj ava -resolve -resolver '((* HR) (* PUBLIC) ("nmy/gui/*" -))'

Without the wildcard, if a dependent class is not found within one of the schemas, your
class is listed as invalid and cannot be run.

In addition, you can define that all classes not found are to be ignored. However, this
is dangerous, because a class that has a dependent class will be marked as valid,
even if the dependent class does not exist. However, the class can never run without
the dependent class. In this case, you will receive an exception at run time.

To ignore all classes not found within HR or PUBLI C, specify the following resolver
specification:

| oadj ava -resolve -resolver "((* HR) (* PUBLIC) (* -))"

If you later intend to load the nonexistent classes that required you to use such a
resolver, then you should not use a resolver containing the minus sign (-) wildcard.
Instead, include all referenced classes in the schema before resolving.

Even when a minus sign (-) wildcard is used, the super class of a class can never be
nonexistent. If the super class is not found, then the class will be invalid regardless of
the use of a minus sign (-) wildcard in the resolver.

Note:

An alternative mechanism for dealing with nonexistent classes is using the -
gemi ssi ng option of the | oadj ava tool. This option causes the | oadj ava tool to
create and load definitions of classes that are referenced, but not defined.

2.5.2.2 Bytecode Verifier

According to JVM specification, . cl ass files are subject to verification before the class
they define is available in a JVM. In Oracle JVM, the verification process occurs at
class resolution.

The following table describes the problems the resolver may find and the appropriate
Oracle error code issued.

ORACLE 2-12

Chapter 2
Preparing Java Class Methods for Execution

Table 2-4 ORA Errors

__|
Error Code Description

ORA- 29545 If the resolver determines that the class is malformed, then the
resolver does not mark it valid. When the resolver rejects a
class, it issues an ORA- 29545 error. The | oadj ava tool reports
the error. For example, this error is thrown if the contents of
a . cl ass file are not the result of a Java compilation or if the file
has been corrupted.

The ORA- 29545 error may also show up if you used the minus
sign (-) wild card expression with the resolver and the validity of
some classes was not verified.

ORA- 29552 In some situations, the resolver allows a class to be marked
valid, but will replace bytecodes in the class to throw an
exception at run time. In these cases, the resolver issues an
ORA- 29552 warning that the | oadj ava tool reports. The | oadj ava
tool issues this warning when the Java Language Specification
(JLS) requires an | nconpat i bl eCl assChangeError to be thrown.
Oracle JVM relies on the resolver to detect these situations,
supporting the proper run-time behavior that the JLS requires.

A resolver with the minus sign (-) wildcard marks your class valid, regardless of
whether classes referenced by your class are present. Because of inheritance and
interfaces, you may want to write valid Java methods that use an instance of a class
as if it were an instance of a superclass or of a specific interface. When the method
being verified uses a reference to class A as if it were a reference to class B, the
resolver must check that A either extends or implements B. For example, consider the
following potentially valid method, whose signature implies a return of an instance of B,
but whose body returns an instance of A:

B nyMet hod(A a)
{

return a;

}

The method is valid only if A extends the class B or Aimplements the interface B. If A or
B have been resolved using the minus sign (-) wildcard, then the resolver does not
know that this method is safe. In this case, the resolver replaces the bytecodes of
nyMet hod with bytecodes that throw an exception if nyMet hod is called.

A resolver without the minus sign (-) wildcard ensures that the class definitions of A
and B are found and resolved properly if they are present in the schemas they
specifically identify. The only time you may consider using the alternative resolver is if
you must load an existing JAR file containing classes that reference other nonsystem
classes, which are not included in the JAR file.

Related Topics:
e Schema Objects and Oracle JVM Utilities

2.5.3 Logging in Oracle JVM

Oracle JVM extends the JDK Java Logging API in the area of logging properties
lookup to enhance security of logging configuration management and to support
logging configurations on a user basis.

ORACLE 2-13

Chapter 2
Preparing Java Class Methods for Execution

¢ See Also:
For more information about Java Logging APIs, visit the following site:

http://docs. oracl e. conljavase/ 7/ docs/

You must activate the LogManager in the session to initialize the logging properties in
Oracle JVM. The logging properties are initialized once per session with the LogManager
API that is extended with the database resident resource lookup.

Oracle JVM performs the following steps to configure logging options:

1. Ifthejava.util.logging.config.class property is set, then the logging behavior is
the same as in standard JDK.

2. |Ifthejava.util.logging. config.class property is not set, then Oracle JVM
inspects the availability of the javavni |i b/ | oggi ng. properties resource in the
current user schema.

If available, this resource is used as the configuration setting for the LogManager
and the java. util .l ogging.config. file property is set.

3. If both the above conditions do not hold true, then the
java.util.logging.config.file property is inspected and if specified, it is used as
described in Loghanager API.

4. If none of the conditions in step 1, 2, and 3 holds true, then the j avavm | i b/
| oggi ng. properties resource in the SYS schema is used. This resource is a copy of
the $(j ava. hone) /1 i b/l oggi ng. properti es file that is loaded into the SYS schema at
database creation time. This means, by default, the Loghvanager behaves as if it is
configured as per the $(j ava. home)/javavni | i b/ | oggi ng. properti es file. However,
altering this file has no effect until the database is re-created

If you are not satisfied with the default settings in the j avavm |'i b/ | oggi ng. properties
file, then prepare a different set of properties and load them in your schema using the
| oadj ava command. For example, if your schema is HR and your current file directory is
nydi r, then create a directory j avavni i b/ under nydi r and specify the required
properties in the | oggi ng. properti es file under the nydir/javavn |i b/ directory. Then,
invoke the | oadj ava command from nydi r as follows:

mydir% | oadj ava -u HR -v -r javavn |ib/1ogging. properties
passwor d: <passwor d>

After invoking the | oadj ava command, you can delete the nydir/javavn | i b/

| oggi ng. properties file. Any session running as HR and performing activation of
LogManager will have the LogManager configured with properties coming from this
database resident resource private to HR.

ORACLE 2-14

http://docs.oracle.com/javase/7/docs/

Chapter 2
Preparing Java Class Methods for Execution

Note:

Oracle JVM always runs with a security manager. So, HR must be granted
logging permissions, regardless of the logging configuration method used. In
most cases, the following call issued by a privileged user is sufficient to grant
these permissions:

call dbns_java. grant_permission('HR,
"SYS:java.util.logging. Loggi ngPernission', 'control', "');

2.5.4 Overview of Loading Classes Using the loadjava Tool

ORACLE

You can use the | oadj ava tool to create schema objects from files and load the
schema objects to different schemas. For example,

| oadj ava -u HR -schema TEST MyC ass.java
Password: password

Note:

You do not have to load the classes to the database as schema objects if you
use the command-line interface. For example,

C:\oracl ehone\ bi n>l oadj ava -u HR MyCl ass. j ava
Password: password

You can also run the | oadj ava tool from within SQL commands. Unlike a conventional
JVM, which compiles and loads from files, Oracle JVM compiles and loads from
database schema objects.

The following t able describes database schema objects that correspond to the files
used by a conventional JVM.

Table 2-5 Description of Java Files
|

Java File Types Description

.java source files or . sgl j source files correspond to Java source schema objects
. ¢l ass compiled Java files correspond to Java class schema objects

. properties Java resource files, . ser SQLJ correspond to Java resource schema
profile files, or data files objects

You must load all classes or resources into the database to be used by other classes
within the database. In addition, at load time, you define who can run your classes
within the database.

The following table describes the activities the | oadj ava tool performs for each type of
file.

2-15

Chapter 2
Preparing Java Class Methods for Execution

Table 2-6 loadjava Operations on Schema Objects

__|
Schema Object loadjava Operations on Objects

-J ava source files 1. Creates a Java source schema object in the definer's

schema unless another schema is specified.
2. Loads the contents of the source file into a schema object.

3. Creates a class schema object for all classes defined in the
source file.

4. If -resol ve is requested, compiles the source schema
object and resolves the class and its dependencies. It then
stores the compiled class into a class schema object.

-sqlj source files 1. Creates a source schema object in the definer's schema
unless another schema is specified.

2. Loads contents of the source file into the schema object.

3. Creates a class schema object for all classes and resources
defined in the source file.

4. If-resol ve is requested, translates and compiles the source
schema object and stores the compiled class into a class
schema object. It then stores the profile into a . ser resource
schema object and customizes it.

-l ass compiled Javafiles 3 creates a class schema object in the definer's schema
unless another schema is specified.

2. Loads the class file into the schema object.

3. Resolves and verifies the class and its dependencies if -
resol ve is specified.

. properties Java resource

) 1. Creates a resource schema object in the definer's schema
files unless another schema is specified.

2. Loads a resource file into a schema object.
-ser SQLJ profile 1. Creates a resource schema object in the definer's schema

unless another schema is specified.

2. Loads the. ser resource file into a schema object and
customizes it.

ORACLE 2-16

Chapter 2
Preparing Java Class Methods for Execution

Note:

The dr opj ava tool performs the reverse of the | oadj ava tool. It deletes schema
objects that correspond to Java files. Always use the dr opj ava tool to delete a
Java schema object created with the | oadj ava tool. For example,

dropjava -u HR -schema TEST M/d ass. java
Password: password

Dropping with SQL data definition language (DDL) commands will not update
the auxiliary data maintained by the | oadj ava tool and the dr opj ava tool. You
can also run the dr opj ava tool from within SQL commands.

After loading the classes and resources, you can access the USER_OBJECTS view
in your database schema to verify whether your classes and resources have
been loaded properly.

Related Topics:
e Schema Objects and Oracle JVM Utilities
Related Topics:

e About Using the Command-Line Interface

2.5.4.1 About Sharing of Metadata for User Classloaded Classes

Classes loaded by the built-in mechanism for loading database resident classes are
known as system classloaded, whereas those loaded by other means are called
user classloaded. When you load a class into the database, a representation of the
class is created in memory, part of which is referred to here as the class metadata.
The class metadata is the same for any session using the class and is potentially
sharable. Earlier, such sharing was available only for system classloaded classes.
Since Oracle Database 11g, you can also share class metadata of user classloaded
classes, at the discretion of the system administrator.

Related Topics:

» Classpath Extensions and User Classloaded Metadata

2.5.4.2 Defining the Same Class Twice

You cannot have two class objects with the same name in the same schema. This rule
affects you in two ways:

Note:

An exception to this rule is when you use the - pr ependj ar names option for
database resident JARs. If you use this option, then you can have two classes
with the same class name in the same schema.

* You can load either a particular Java . cl ass file or its . j ava file, but not both.

ORACLE 2-17

Chapter 2
Preparing Java Class Methods for Execution

Oracle Database tracks whether you loaded a class file or a source file. If you
want to update the class, then you must load the same type of file that you
originally loaded. If you want to update the other type, then you must drop the first
before loading the second. For example, if you loaded x. j ava as the source for
classy, then to load x. cl ass, you must first drop x. j ava.

* You cannot define the same class within two different schema objects in the same
schema. For example, suppose x. j ava defines class y and you want to move the
definition of y to z. j ava. If x. j ava has already been loaded, then the | oadj ava tool
rejects any attempt to load z. j ava, which also defines y. Instead, do either of the
following:

— Drop x.java, load z. j ava, which defines y, and then load the new x. j ava, which
does not define y.

— Load the new x. j ava, which does not define y, and then load z. j ava, which
defines'y.

Related Topics:
» Database Resident JARs

2.5.4.3 About Designating Database Privileges and JVM Permissions

You must have the following SQL database privileges to load classes:

e CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.
* CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into another schema.

e oracle.aurora.security.JServerPerm ssion.|oadLi braryl nC ass. cl assnane.

Related Topics:

e Permission for Loading Classes

2.5.4.4 About Loading JAR or ZIP Files

The | oadj ava tool accepts . cl ass, .j ava, . properties,.sqlj,.ser,.jar, or.zipfiles.
The JAR or ZIP files can contain source, class, and data files. When you pass a JAR
or ZIP file to the | oadj ava tool, it opens the archive and loads the members of the
archive individually. There is no JAR or ZIP schema object. If the JAR or ZIP content
has not changed since the last time it was loaded, then it is not reloaded. Therefore,
there is little performance penalty for loading JAR or ZIP files. In fact, loading JAR or
ZIP files is the simplest way to use the | oadj ava tool.

Note:

Oracle Database does not reload a class if it has not changed since the last
load. However, you can force a class to be reloaded using the - f or ce option.

2.5.4.5 Database Resident JARs

Starting with 11g release 1 (11.1), when you load the contents of a JAR into the
database, you have the option of creating a database object representing the JAR

ORACLE 2-18

Chapter 2
Preparing Java Class Methods for Execution

itself. In this way, you can retain an association between this JAR object and the class,
resource, and source objects loaded from the JAR. This enables you to:

» Use signed JARs and JAR namespace segregation in the same way as you use
them in standard JVM.

» Manage the classes that you have derived from a JAR while loading it into the
database as a single unit. This helps you to prevent individual redefinition of the
classes loaded from the JAR. It also enables you to drop the whole set of classes
loaded from the JAR, irrespective of the contents or the continued existence of the
JAR on the external file system, at the time of dropping it.

In order to load a JAR into the database, you have the following options of the
| oadj ava tool:

e -jarsasdbobjects

° -prependj arnanes

Related Topics:

e The loadjava Tool

2.5.5 Overview of Granting Execute Rights

If you load all classes within your own schema and do not reference any class outside
your schema, then you already have rights to run the classes. You have the privileges
necessary for your objects to call other objects loaded in the same schema. That is,
the ability for class A to call class B. Class A must be given the right to call class B.

The classes that define a Java application are stored within Oracle Database under
the SQL schema of their owner. By default, classes that reside in one user's schema
cannot be run by other users, because of security concerns. You can provide other
users the right to run your class in the following ways:

e Using the | oadj ava -grant option
e Using the following command:

SQ.> grant execute on nyclass to HR

where, nycl ass is the name of the underlying Java class.

Note:

Prior to Oracle Database 119 release 1 (11.1), granting execute right to a
stored procedure meant granting execute right to both the stored procedure
and the Java class referred by the stored procedure. Since Oracle Database
11g release, if you want to grant execute right on the underlying Java class as
well, then you must grant execute right on the class explicitly. This is
implemented for better security.

The following figure illustrates the rights required to run classes.

ORACLE 2-19

Chapter 2
Preparing Java Class Methods for Execution

Figure 2-3 Rights to Run Classes

Method invocation: Class A invokes Class B; Class B invokes Class C.
Execution rights for classes:

— Class A needs execution rights for B.

— Class A does not need execution rights for C.

— Class B needs execution rights for C.

Related Topics:
e The loadjava Tool
Related Topics:

» Oracle Database Java Application Performance

2.5.6 Overview of Controlling the Current User

ORACLE

During the execution of PL/SQL code, there is always a current user. The same
concept is used for the execution of Java code. Initially, the current user is the user,
who creates the session that invokes the Java code. A Java method is called from
SQL or PL/SQL through a corresponding wrapper. Java wrappers are special PL/SQL
entities, which expose Java methods to SQL and PL/SQL as PL/SQL stored
procedures or functions. Such a wrapper might change the current effective user. The
wrappers that change the current effective user to the owner of the wrapper are called
definer's rights wrappers. If a wrapper does not change the current effective user, then
the effective user remains unchanged.

By default, Java wrappers are definer's rights wrappers. If you want to override this,
then create the wrapper using the AUTH D CURRENT_USER option.

At any time during the execution of Java code, a Java call stack is maintained. The
stack contains frames corresponding to Java methods entered, with the innermost
frame corresponding to the currently executing method. By default, Java methods
execute on the stack without changing the current user, that is, with the privileges of
their current effective invoker, not their definer.

You can load a Java class to the database with the | oadj ava - defi ner option. Any
method of a class having the definer attribute marked, becomes a definer's rights
method. When such a method is entered, a special kind of frame called a definer's
frame is created onto the Java stack. This frame switches the current effective user to
the owner (definer) of such a class. A new user ID remains effective for all inner
frames until either the definer's frame is popped off the stack or a nested definer's
frame is entered.

Thus, at any given time during the execution of a Java method that is called from SQL
or PL/SQL through its wrapper, the effective user is one of the following:

* The innermost definer's frame on the Java stack

» Either the owner of the PL/SQL wrapper of the topmost Java method, if it is
definer's rights, or the user who called the wrapper.

2-20

ORACLE

Chapter 2
Preparing Java Class Methods for Execution

Consider a company that uses a definer's rights procedure to analyze sales. To
provide local sales statistics, the procedure anal yze must access sal es tables that
reside at each regional site. To do this, the procedure must also reside at each
regional site. This causes a maintenance problem. To solve the problem, the company
installs an invoker's rights version of the procedure anal yze at headquarters.

The following figure shows how all regional sites can use the same procedure to query
their own sal es tables.

Figure 2-4 Invoker's rights Solution

Schema HQ

Schema WEST Schema EAST

analyze
(IR)

Occasionally, you may want to override the default invoker's rights behavior. Suppose
headquarters wants the anal yze procedure to calculate sales commissions and update
a central payrol | table. This presents a problem, because invokers of anal yze should
not have direct access to the payrol | table, which stores employee salaries and other
sensitive data.

The following figure illustrates the solution, where the anal yze procedure call the
definer's rights procedure, cal cComm which in turn updates the payrol | table.

Figure 2-5 Indirect Access

analyze
(IR)

\

i no
i -
i -
i [
i -
i L
| L
T]
i vl
i o
i i
i Cl
i

| Vo
. calc_comm Vo
i i
i Cl
i Cl
i |
i i

i o
i i
i [
i -
i [
i -
i -
i [
i [

(DR)

Sales | Sales

Y

payroll

Related Topics:
e Writing Top-Level Call Specifications

2-21

Chapter 2
Preparing Java Class Methods for Execution

2.5.7 Overview of Checking Java Uploads

ORACLE

You can query the USER_OBJECTS database view to obtain information about schema
objects that you own, including Java sources, classes, and resources. This enables
you, for example, to verify whether sources, classes, or resources that you load are
properly stored in schema objects.

The following table lists the key columns in USER_OBJECTS and their description.

Table 2-7 Key USER_OBJECT Columns
|

Name Description

OBJECT_NAME Name of the object

OBJECT_TYPE Type of the object, such as JAVA SOURCE, JAVA CLASS, or JAVA
RESCURCE.

STATUS Status of the object. The values can be either VALI D or | NVALI D.

Itis always VALI D for JAVA RESOURCE.

Object Name and Type

An OBJECT_NAME in USER_OBJECTS is the alias. The fully qualified name is stored as an
alias if it exceeds 30 characters.

If the server uses an alias for a schema object, then you can use the LONGNAME()
function of the DBM5S_JAVA package to receive it from a query as a fully qualified name,
without having to know the alias or the conversion rules.

SQ.> SELECT dbns_j ava. | ongnane(obj ect _name) FROM user_obj ects WHERE
obj ect _type="JAVA SOURCE ;

This statement displays the fully qualified name of the Java source schema objects.
Where no alias is used, no conversion occurs.

Note:

SQL and PL/SQL are not case-sensitive.

You can use the SHORTNAME() function of the DBVS_JAVA package to use a fully qualified
name as a query criterion, without having to know whether it was converted to an alias
in the database.

SQL*Pl us> SELECT obj ect _type FROM user _objects WHERE
obj ect _name=dbns_j ava. short name("' known_f ul | nane');

This statement displays the OBJECT_TYPE of the schema object with the specified fully
qualified name. This presumes that the fully qualified name is representable in the
database character set.

SQ> select * fromjavasnm
SHORT LONGNAME

/ 78e6d350_Bi nar yExcept i onHandl sun/tool s/java/ Bi nar yExcepti onHandl er

2-22

Chapter 2
Preparing Java Class Methods for Execution

[b6c774bb_Cl assDecl aration sun/tool s/javal O assDecl aration
| af 5a8ef 3_Jar VerifierStreaml sun/tool s/jar/JarVerifierStreantl

This statement displays all the data stored in the j avasnmview.

Status

STATUS is a character string that indicates the validity of a Java schema object. A Java
source schema object is VALI D if it compiled successfully, and a Java class schema
object is VALI Dif it was resolved successfully. A Java resource schema object is
always VALI D, because resources are not resolved.

Example: Accessing USER_OBJECTS

The following SQL*Plus script accesses the USER_OBJECTS view to display information
about uploaded Java sources, classes, and resources:

COL object_name format a30

COL object_type format alb

SELECT obj ect _nane, object_type, status
FROM user _obj ects
WHERE obj ect _type IN (' JAVA SOURCE', 'JAVA CLASS , 'JAVA RESOURCE')
ORDER BY obj ect _type, object_nane;

You can optionally use wildcards in querying USER_OBJECTS, as in the following example:

SELECT obj ect _nane, object_type, status
FROM user _obj ects
VHERE obj ect _name LIKE ' %Al erter’;

The preceding statement finds any OBJECT NAME entries that end with the characters
Alerter.

Related Topics:

e Shortened Class Names

2.5.8 About Publishing Java Methods Loaded in the Database

Oracle Database enables clients and SQL to call Java methods that are loaded in the
database after they are published. You publish either the object itself or individual
methods. If you write a Java stored procedure that you intend to call with a trigger,
directly or indirectly in SQL data manipulation language (DML) or in PL/SQL, then you
must publish individual methods in the class. Using a call specification, specify how to
access the method. Java programs consist of many methods in many classes.
However, only a few st ati ¢ methods are typically exposed with call specifications.

Related Topics:

* Publishing Java Classes With Call Specifications

2.5.9 Overview of Auditing Java Classes Loaded in the Database

In releases prior to Oracle Database 10g release 2 (10.2), Java classes in the
database cannot be audited directly. However, you can audit the PL/SQL wrapper.
Typically, all Java stored procedures are started from some wrappers. Therefore, all
Java stored procedures can be audited, though not directly.

ORACLE 2-23

ORACLE

Chapter 2
Preparing Java Class Methods for Execution

Since Oracle Database 10g release 2 (10.2), you can audit DDL statements for
creating, altering, or dropping Java source, class, and resource schema objects, as
with any other DDL statement. Oracle Database provides auditing options for auditing
Java activities easily and directly. You can also audit any modification of Java sources,
classes, and resources.

You can audit database activities related to Java schema objects at two different
levels, statement level and object level. At the statement level you can audit all
activities related to a special pattern of statements.

Table 2-8 lists the statement auditing options and the corresponding SQL statements
related to Java schema objects.

Table 2-8 Statement Auditing Options Related to Java Schema Objects
|

Statement Option SQL Statements
CREATE JAVA SOURCE CREATE JAVA SOURCE
CREATE OR REPLACE JAVA SCURCE
ALTER JAVA SCURCE ALTER JAVA SOURCE
DRCOP JAVA SOURCE DROP JAVA SOURCE
CREATE JAVA CLASS CREATE JAVA CLASS
CREATE OR REPLACE JAVA CLASS
ALTER JAVA CLASS ALTER JAVA CLASS
DROP JAVA CLASS DROP JAVA CLASS
CREATE JAVA RESOURCE CREATE JAVA RESOURCE
CREATE OR REPLACE JAVA RESOURCE
ALTER JAVA RESOURCE ALTER JAVA RESOURCE
DROP JAVA RESOURCE DROP JAVA RESOURCE

For example, if you want to audit the ALTER JAVA SOURCE DDL statement, then enter the
following statement at the SQL prompt:

AUDI T ALTER JAVA SOURCE

Object level auditing provides finer granularity. It enables you to identify specific
problems by zooming into specific objects.

Table 2-9 lists the object auditing options for each Java schema object. The entry X in
a cell indicates that the corresponding SQL command can be audited for that Java
schema object. The entry NA indicates that the corresponding SQL command is not
applicable for that Java schema object.

Table 2-9 Object Auditing Options Related to Java Schema Options
|

Object Option Java Source Java Resource Java Class
ALTER X NA X
EXECUTE NA NA X
AUDI T X X X
GRANT X X X

2-24

Chapter 2
User Interfaces on the Server

¢ See Also:

* Oracle Database Security Guide

e Oracle Database SQL Language Reference

2.6 User Interfaces on the Server

ORACLE

Oracle Database furnishes all core Java class libraries on the server, including those
associated with presentation of the user interfaces. However, it is inappropriate for
code running on the server to attempt to materialize or display a user interface on the
server. Users running applications in Oracle JVM environment should not be expected
nor allowed to interact with or depend on the display and input hardware of the server
where Oracle Database is running.

To address compatibility issues on platforms that do not support display, keyboard, or
mouse, Java 1.4 outlines Headless Abstract Window Toolkit (AWT) support. The
Headless AWT API introduces a new publ i ¢ run-time exception class,

java. awt . Headl essExcepti on. The constructors of the Appl et class, all heavy-weight
components, and many of the methods in the Tool kit and G aphi csEnvi r onment
classes, which rely on the native display devices, are changed to throw

Headl essExcept i on if the platform does not support a display. In Oracle Database, user
interfaces are supported only on client applications. Accordingly, Oracle JVM is a
Headless Platform and throws Headl essExcepti on if these methods are called.

Most AWT computation that does not involve accessing the underlying native display
or input devices is allowed in Headless AWT. In fact, Headless AWT is quite powerful
as it provides programmers access to fonts, imaging, printing, and color and ICC
manipulation. For example, applications running in Oracle JVM can parse, manipulate,
and write out images as long as they do not try to physically display it on the server.
The standard JVM implementation can be started in the Headless mode, by supplying
the - Dj ava. awt . headl ess=t rue property, and run with the same Headless AWT
restrictions as Oracle JVM does. Oracle JVM fully complies with the Java Compatibility
Kit (JCK) with respect to Headless AWT.

¢ See Also:

http:// ww. oracl e. conftechnetwork/articl es/javase/ headl ess- 136834. ht n

Oracle JVM takes a similar approach for sound support. Applications in Oracle JVM
are not allowed to access the underlying sound system for purposes of sound
playback or recording. Instead, the system sound resources appear to be unavailable
in a manner consistent with the sound API specification of the methods that are trying
to access the resources. For example, methods in j avax. sound. mi di . M di Syst emthat
attempt to access the underlying system sound resources throw the

M di Unavai | abl eExcepti on checked exception to signal that the system is unavailable.
However, similar to the Headless AWT support, Oracle Database supports the APIs
that allow sound file manipulation, free of the native sound devices. Oracle JVM also
fully complies with the JCK, when it implements the sound API.

2-25

http://www.oracle.com/technetwork/articles/javase/headless-136834.html

Chapter 2
Shortened Class Names

2.7 Shortened Class Names

Each Java source, class, and resource is stored in its own schema object in the
server. The name of the schema object is derived from the fully qualified name, which
includes relevant path or package information. Dots are replaced by slashes.

Schema object names, however, have a maximum of only 30 characters, and all
characters must be legal and convertible to characters in the database character set. If
any fully qualified name is longer than 30 characters or contains illegal or
nonconvertible characters, then Oracle Database converts it to a short name, or alias,
to use as the name of the schema object. Oracle Database keeps track of both the
names and how to convert between them. If the fully qualified name is 30 characters
or less and has no illegal or inconvertible characters, then it is used as the schema
object name.

Because Java classes and methods can have names exceeding the maximum SQL
identifier length, Oracle Database uses abbreviated names internally for SQL access.
Oracle Database provides the LONGNAME() function within the DBMS_JAVA package for
retrieving the original Java class name for any truncated name.

FUNCTI ON | ongnane (shortname VARCHAR2) RETURN VARCHAR2

This function returns the fully qualified name of the Java schema object, which is
specified using its alias. The following is an example of a statement used to display the
fully qualified name of classes that are invalid:

SELECT dbns_j ava. | ongnane (obj ect _nanme) FROM user _objects WHERE obj ect _type = ' JAVA
CLASS' and status = 'INVALID ;

You can also specify a full name to the database by using the SHORTNAME() function of
the DBVS_JAVA package. The function takes a full name as input and returns the
corresponding short name. This function is useful for verifying whether the classes are
loaded successfully, by querying the USER_OBJECTS view.

FUNCTI ON shortnane (I ongname VARCHAR2) RETURN VARCHAR2

Related Topics:

e System Classes

2.8 Class.forName() in Oracle Database

ORACLE

The JLS provides the following description of C ass. f or Nane() :

Given the fully qualified name of a class, this method attempts to locate, load, and link
the class. If it succeeds, then a reference to the O ass object for the class is returned. If
it fails, then an instance of d assNot FoundExcept i on is thrown.

Class lookup is always on behalf of a referencing class and is done through an
instance of O assLoader . The difference between the Java Development Kit (JDK)
implementation and Oracle JVM implementation is the method in which the class is
found:

* The JDK uses one instance of d assLoader that searches the set of directory tree
roots specified by the CLASSPATH environment variable.

2-26

Chapter 2
Class.forName() in Oracle Database

* Oracle JVM defines several resolvers that specify how to locate classes. Every
class has a resolver associated with it, and each class can, potentially, have a
different resolver. When you run a method that calls d ass. f or Nang() , the resolver
of the currently running class, which is t hi s, is used to locate the class.

You can receive unexpected results if you try to locate a class with an incorrect
resolver. For example, if a class X in schema X requests a class Y in schema Y to look
up class z, you will experience an error if you expected the resolver of class X to be
used. Because class Y is performing the lookup, the resolver associated with class Y is
used to locate class Z. In summary, if the class exists in another schema and you
specified different resolvers for different classes, as would happen by default if they
are in different schemas, you may not find the class.

You can solve this resolver problem as follows:
* Avoid any class name lookup by passing the C ass object itself.

e Supply the d assLoader instance in the C ass. f or Name() method.

* Supply the class and the schema it resides in to the cl assFor NaneAndSchema()
method.

e Supply the schema and class hame to C assFor Nare. | ookupd ass() .

e Serialize your objects with the schema name and the class name.

Note:

Another unexpected behavior can occur if system classes invoke

O ass. forName() . The desired class is found only if it resides in SYS or in PUBLI C.
If your class does not exist in either SYS or PUBLI C, then you can declare a
PUBLI C synonym for the class.

This section covers the following topics:

* Supply ClassLoader in Class.forName()

* Supply Class and Schema Names to classForNameAndSchema()
* Supply Class and Schema Names to lookupClass()

* Supply Class and Schema Names when Serializing

e Class.forName Example

Related Topics:

* Overview of Resolving Class Dependencies

2.8.1 Supply ClassLoader in Class.forName()

ORACLE

Oracle Database uses resolvers for locating classes within schemas. Every class has
a specified resolver associated with it, and each class can have a different resolver
associated with it. As a result, the locating of classes is dependent on the definition of
the associated resolver. The d assLoader instance knows which resolver to use, based
on the class that is specified. When you supply a O assLoader instance to

O ass. for Name(), your class is looked up in the schemas defined in the resolver of the
class. The syntax of this variant of O ass. f or Nang() is as follows:

2-27

Chapter 2
Class.forName() in Oracle Database

Cass.forNane (String nane, boolean initialize, COassLoader |oader);

The following examples show how to supply the class loader of either the current class
instance or the calling class instance.

Example 2-1 Retrieve Resolver from Current Class

You can retrieve the class loader of any instance by using the d ass. get O assLoader ()
method. The following example retrieves the class loader of the class represented by
instance x:

Cass cl = dass.forName (x.whatC ass(), true, x.getC ass().getC assLoader());

Example 2-2 Retrieve Resolver from Calling Class

You can retrieve the class of the instance that called the running method by using the
oracl e. aurora. vm Oracl eRunti ne. get Cal | er 0 ass() method. After you retrieve the class,
call the d ass. get O assLoader () method on the returned class. The following example
retrieves the class of the instance that called the wor kFor Cal | er () method. Then, its
class loader is retrieved and supplied to the d ass. f or Nane() method. As a result, the
resolver used for looking up the class is the resolver of the calling class.

voi d workFor Cal | er ()

{
C assLoader cl=oracle.aurora.vm Oracl eRuntine. get Cal | erCl ass().get d assLoader();
C ass c¢=C ass. forName(nane, true, cl);

}...

2.8.2 Supply Class and Schema Names to
classForNameAndSchema()

ORACLE

You can resolve the problem of where to find the class by supplying the resolver,
which can identify the schemas to be searched. Alternatively, you can supply the
schema in which the class is loaded. If you know in which schema the class is loaded,
then you can use the cl assFor NameAndSchena() method, which is in the DbnsJava class
provided by Oracle Database. This method takes both the name of the class and the
schema in which the class resides and locates the class within the designated
schema.

Example 2-3 Providing Schema and Class Names

The following example shows how you can save the schema and class names using
the save() method. Both names are retrieved, and the class is located using the
DbnsJava. ¢l assFor NaneAndSchema() method.

import oracle. aurora.rdbns. O assHandl e;
i mport oracle. aurora.rdbns. Schemg;
i mport oracle. aurora.rdbns. DbnsJava,;

voi d save (Cass cl)
{
Cl assHandl e handl e = C assHandl e. | ookup(cl);
Schema schema = handl e. schema();
writeName (schema. get Nane());
writeName (cl.getName());

2-28

Chapter 2
Class.forName() in Oracle Database

Cass restore()
{
String schemaNane = readName();
String classNane = readNane();
return DbnsJava. cl assFor NameAndSchema (schemaNane, cl assNane);

}

2.8.3 Supply Class and Schema Names to lookupClass()

You can supply a String value containing both the schema and class names to the
oracle.aurora.util.C assForNane. | ookupCl ass() method. When called, this method
locates the class in the specified schema. The string must be in the following format:

"<schenma>: <cl ass>"

For example, to locate com package. nmycl ass in the HR schema, use the following:

oracle.aurora.util.d assForNane. | ookupd ass("HR: com package. mycl ass");

Note:

Use uppercase characters for the schema name. In this case, the schema
name is case-sensitive.

2.8.4 Supply Class and Schema Names when Serializing

When you deserialize a class, part of the operation is to lookup a class based on a
name. To ensure that the lookup is successful, the serialized object must contain both
the class and schema names.

Oracle Database provides the following classes for serializing and deserializing
objects:

e oracle.aurora.rdbms. Donshj ect Qut put St ream

This class extends j ava. i 0. Obj ect Qut put Streamand adds schema names in the
appropriate places.

e oracle.aurora. rdbms. Donshj ect | nput St ream

This class extends j ava. i 0. Obj ect | nput St reamand reads streams written by

Dbs Qbj ect Qut put Stream You can use this class in any environment. If used within
Oracle Database, then the schema names are read out and used when performing
the class lookup. If used on a client, then the schema names are ignored.

2.8.5 Class.forName Example

ORACLE

The following example shows several methods for looking up a class:

i mport oracle.aurora.vm Oracl eRunt i me;
i mport oracl e. aurora.rdbns. Scheng;
i mport oracl e.aurora.rdbns. DbnsJava;

public class ForName

{

private dass from

2-29

Chapter 2
About Managing Your Operating System Resources

/* Supply an explicit class to the constructor */
public ForNanme(d ass from
{

this.from= from

}

/* Use the class of the code containing the "new ForName()" */
publ i c For Nane()
{
from= Oacl eRuntine. getCallerdass();
1

/* 1ookup relative to Cass supplied to constructor */
public O ass | ookupWthd assLoader (String name) throws C assNot FoundException
{

/* A O assLoader uses the resolver associated with the class*/

return O ass.forName(nane, true, from getC assLoader());

}

/* In case the schema containing the class is known */
static C ass | ookupWthSchema(String nane, String schenm)
{

Schema s = Schena. | ookup(schems) ;

return DbmsJava. cl assFor NameAndSchenma(nane, s);

}

}

The preceding example uses the following methods for locating a class:

» To use the resolver of the class of an instance, call | ookupW t hd assLoader () . This
method supplies a class loader to the d ass. f or Nane() method in the fromvariable.
The class loader specified in the fromvariable defaults to this class.

* To use the resolver from a specific class, call For Name() with the designated class
name, followed by | ookupW t hd assLoader (). The For Nane() method sets the from
variable to the specified class. The | ookupW t hd assLoader () method uses the class
loader from the specified class.

e To use the resolver from the calling class, first call the For Nane() method without
any parameters. It sets the fromvariable to the calling class. Then, call the
| ookupW t hG assLoader () method to locate the class using the resolver of the
calling class.

* To lookup a class in a specified schema, call the | ookupW t hSchema() method. This
provides the class and schema name to the cl assFor NaneAndSchema() method.

2.9 About Managing Your Operating System Resources

ORACLE

Operating system resources are a limited commaodity on any computer. Because Java
is targeted at providing a computing platform as well as a programming language, it

contains platform-independent classes and frameworks for accessing platform-specific
resources. The Java class methods access operating system resources through JVM.

Java has potential problems with this model because programmers rely on the

garbage collector to manage all resources, when all that the garbage collector
manages is Java objects and not the operating system resources that the Java objects
hold on to.

2-30

Chapter 2
About Managing Your Operating System Resources

In addition, when you use shared servers, your operating system resources, which are
contained within Java objects, can be invalidated if they are maintained across calls
within a session.

The following sections discuss these potential problems:
e Overview of Operating System Resources
e Garbage Collection and Operating System Resources

Related Topics:

* Operating System Resources Affected Across Calls

2.9.1 Overview of Operating System Resources

In general, your operating system resources contain the following:

Operating System Description

Resources

memory

files and sockets

threads

Oracle Database manages memory internally, allocating memory as you create objects
and freeing objects as you no longer need them. The language and class libraries do not
support a direct means to allocate and free memory.

Java contains classes that represent file or socket resources. Instances of these classes
hold on to the file or socket constructs, such as file handles, of the operating system.

Oracle JVM threads provide no additional scalability over what is provided by the database
support of multiple concurrently executing sessions. However, Oracle JVM supports the full
Java threading API.

Operating System Resource Access

By default, a Java user does not have direct access to most operating system
resources. A system administrator can give permissions to a user to access these
resources by modifying JVM security restrictions. JVM security enforced upon system
resources conforms to Java 2 security.

Operating System Resource Lifetime

You can access operating system resources using the standard core Java classes and
methods. Once you access a resource, the time that it remains active varies according
to the type of resource. Memory is garbage collected. Files, threads, and sockets
persist across calls when you use a dedicated mode server. In shared server mode,
files, threads, and sockets terminate when the call ends.

Related Topics:
* Overview of Java 2 Security Features

* Operating System Resources Affected Across Calls

2.9.2 Garbage Collection and Operating System Resources

ORACLE

Imagine that memory is divided into two realms: Java object memory and operating
system constructs. The Java object memory realm contains all objects and variables.
Operating system constructs include resources that the operating system allocates to
the object when it asks. These resources include files, sockets, and so on.

2-31

Chapter 2
About Managing Your Operating System Resources

Basic programming rules dictate that you close all memory, both Java objects and
operating system constructs. Java programmers incorrectly assume that memory is
freed by the garbage collector. The garbage collector was created to collect all unused
Java object memory. However, it does not close operating system constructs. All
operating system constructs must be closed by the program before the Java object is
garbage collected.

For example, whenever an object opens a file, the operating system creates the file
and gives the object a file handle. If the file is not closed, then the operating system
holds the file handle construct open until the call ends or JVM exits. This may cause
you to run out of these constructs earlier than necessary. There are a finite number of
handles within each operating system. To guarantee that you do not run out of
handles, close your resources before exiting the method. This includes closing the
streams attached to your sockets before closing the socket.

For performance reasons, the garbage collector cannot examine each object to see if
it contains a handle. As a result, the garbage collector collects Java objects and
variables, but does not issue the appropriate operating system methods for freeing any
handles.

Example 2-4 shows how to close the operating system constructs.

If you do not close i nFi | e, then eventually the Fi | e object will be garbage collected.
Even after the Fi | e object is garbage collected, the operating system treats the file as
if it were in use, because it was not closed.

Note:

You may want to use Java finalizers to close resources. However, finalizers
are not guaranteed to run in a timely manner. Instead, finalizers are put on a
gueue to run when the garbage collector has time. If you close your resources
within your finalizer, then it might not be freed until JVM exits. The best
approach is to close your resources within the method.

Example 2-4 Closing Your Operating System Resources

public static void addFile(String[] newrile)
{

File inFile = new File(newFile);
Fi | eReader in = new Fil eReader (inFile);
int i;

while ((i =in.read()) '=-1)
out.write(i);

I*closing the file, which frees up the operating systemfile handle*/
in.close();

ORACLE 2-32

Chapter 2
About Using the Runtime.exec Functionality in Oracle Database

2.10 About Using the Runtime.exec Functionality in Oracle
Database

Java Virtual Machine fully supports the family of Java Standard Edition

java.lang. Runti ne. exec methods. These methods spawn a new operating system (OS)
process to run a user-supplied command. On the server, you must use these methods
with caution. In Java Virtual Machine, OS command execution permissions are not
granted to all database users by default and are issued only by privileged
administrators. If you are a DBA, then you must know how to use the Runti ne. exec
functionality in Oracle Database and follow the recommendations. Also, you must be
selective about issuing these permissions to database users.

Related Topics:

e Secure Use of Runtime.exec Functionality in Oracle Database

2.11 Managing Your Applications Using JMX

This section contain the following topics:

* Overview of IMX

* Enabling and Starting JMX in a Session

e Setting Oracle JVM JMX Defaults and Configurability
* Examples of SQL calls to dbms_java.start_jmx_agent
* Using JConsole to Monitor and Control Oracle JVM

* Important Security Notes

e Shared Server Limitations for IMX

2.11.1 Overview of JMX

JMX (Java Management Extensions) is a Java technology that supplies tools for
managing and monitoring applications, system objects, devices, service-oriented
networks, and JVM (Java Virtual Machine). This API allows its classes to be
dynamically constructed and changed. So, you can use this technology to monitor and
manage resources as they are created, installed, and implemented. The JMX API also
includes remote access, S0 a remote management program can interact with a running
application for these purposes.

In JMX, a given resource is instrumented by one or more Java objects known as
MBeans (Managed Beans). These MBeans are registered in a core managed object
server, known as an MBean server, that acts as a management agent and can run on
most devices enabled for the Java programming language. A JMX agent consists of
an MBean server, in which MBeans are registered, and a set of services for handling
MBeans.

ORACLE 2-33

Chapter 2
Managing Your Applications Using JMX

¢ See Also:

e http://ww. oracl e. conltechnetwork/javaljavasel/tech/
j avananagenent - 140525. ht ni

e http://docs.oracl e.confjavase/ 7/ docs/t echnot es/ gui des/ security/jsse/
JSSERef Qui de. ht ni

2.11.2 Enabling and Starting JMX in a Session

To help in enabling and running JMX services in sessions running Java, the JMXSERVER
role and the dbns_j ava. start_j mk_agent procedure are provided. The JMXSERVER role is
granted specific Java permissions that enable you to start and run MBeanServer and
JMX agent in a session. The procedure dbns_j ava. start_j mx_agent starts the agentin a
specific session that generally remains active for the duration of the session. Perform
the following to enable and start IMX:

1. Obtain JMXSERVER from SYS or SYSTEM

SQ> grant jnxserver to HR

where, HR is the user name.

2. Invoke the procedure dbrs_j ava. start _j mx_agent to startup JMX in the session.
The dbms_j ava. start _j mx_agent procedure can be invoked with the following
arguments:

port : the port for the JMX listener. The value of this parameter sets the Java
property com sun. nanagenent . j nxrenot e. port .

ssl : sets the value for the Java property com sun. managenent . j nxrenot e. ssl . Case
for true and f al se values is ignored.

aut h: the value for the property com sun. management . j nxr enot e. aut henti cat e,
otherwise a semicolon-separated list of Java Authentication and Authorization
Service (JAAS) credentials. The value is not case-sensitive.

Each of these arguments can be nul | or omitted, with nul | as the default value.
when an argument is nul |, it does not alter the previously present value of the
corresponding property in the session.

Note:

The Java properties corresponding to the parameters of

dbns_j ava. start_j mk_agent are from the set of Java properties specified in
standard Java 5.0 JMX documentation. For the full list of Java JMX properties
please refer to

http:// ww. oracl e. conl t echnet wor k/ j aval j avase/ t ech/
j avananagenent - 140525. ht ni

The dbms_j ava. start _j mx_agent procedure starts an agent activating OJVM JMX
server and a listener. The JMX server runs as one or more daemon threads in the

ORACLE 2-34

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Chapter 2
Managing Your Applications Using JMX

current session and in general is available for the duration of the session. Once
JMX Agent is started in a session, Java code running in the session can be
monitored.

The dbnms_j ava. start _j mx_agent procedure is a PL/SQL wrapper for the Java
method or acl e. aur or a. r doms. JMXAgent . st art QJVMAgent , which by itself can also be
called programmatically from Java stored procedures. The st art QJVMAgent method
starts the JMX Server and the JMX connectivity daemon threads, and then exits.
On dedicated servers, these threads may remain active for the duration of the
session, but go into an inert state for the time intervals between calls. When these
intervals are short, then the same socket connections resume transparently. This
enables clients such as JConsole to remain connected across multiple calls.

A different mode of JIMX monitoring is possible with the

EXI T_CALL_WHEN ALL_THREADS TERM NATE policy. By setting the call exit policy to

Oracl eRuntime. EXI T_CALL_WHEN_ALL_THREADS_TERM NATE, you can configure the
session to run JMX server continuously in a call that invokes the st art QJVMAgent
method till the Java call is exited programmatically. This mode is convenient when
various Java tasks are fired up from a JMX client as operations of specific
MBeans. This way, continuous JMX management and monitoring is driven by
these operations. Please refer to the JVM JMX demo for such a bean, for
example, j nxserv. Load.

Related Topics:

» Shared Server Limitations for IMX

2.11.3 Setting Oracle JVM JMX Defaults and Configurability

ORACLE

When dbns_j ava. start_j mx_agent is activated, the property

com sun. management . j nxrenot e is set to true. Before invoking start _j nx_agent, a
JMXSERVER-privileged user can preset various management properties in the
following ways:

e Using the PL/SQL function dbms_j ava. set _property
* Invoking method j ava. | ang. Syst em set Property

The JMXSERVER role user can also preset the properties in database resident Java
resource specified by Java property com sun. managenent . confi g. fil e. The default name
for this resource, tried when com sun. managenent . confi g. fil e is not set, is

l'i b. management . managenent . properties. This resource mechanism is Oracle JVM
extension of standard file-based JMX configuration management. This mechanism is
superior for Oracle JVM as it provides more security and per-schema management.
When the resource does not exist in schema, a file-read is attempted as a fall-back.
The default file path, tried when com sun. managenent . config.fil e is not set, is $

(j ava. home) /i b/ managenent / managenent . properties. In Oracle Database 12c this file
contains the following presets:

com sun. managenent . j nxrenot e. ssl . need. client.auth = true
com sun. managenent . j mxrenot e. aut henticate = fal se

The property com sun. managenent . j mxr enot e. ssl . need. cl i ent. aut h in conjunction with
com sun. managenent . j nxrenot e. ssl , sets JMX for two-way encrypted SSL authentication
with client and server certificates. The default value of

com sun. management . j nxrenot e. ssl is true. This configuration is the default and is
preferred over JAAS password authentication.

2-35

Chapter 2
Managing Your Applications Using JMX

Note:
For more information visit the following:

e http://ww. oracle.contechnetwork/javaljavase/tech/
j avamanagenent - 140525. ht ni

°* http://docs.oracle.contjavase/ 7/ docs/t echnot es/ gui des/ security/jsse/
JSSERef Qui de. ht ni

Note:

The default IMX Login Module providing file-based store for passwords is not
supported in Oracle JVM for security reasons. So, if JAAS password
authentication must be used instead of SSL client authentication, then pass
transient JAAS credentials securely as the aut h parameter to

dbns_j ava. start_j mx_agent as illustrated in this section, or configure JMX to
use a secure custom LDAP login module.

2.11.4 Examples of SQL calls to doms_java.start_jmx_agent

Following are some examples of starting the JMX server:

ORACLE

Starts the JMX server and the listener using the default settings as described in
the preceding sections or the values set earlier in the same session:

call dbms_java.start_jmx_agent();

Starts the JMX server and the listener using the default settings as described in
the preceding sections or the values set earlier in the same session:

call dbns_java.start_jm_agent(null, null, null);

Starts the JMX server and the listener on port 9999 with the other JIMX settings
having the default values or the values set earlier in the same session:

call dbns_java.start_j m_agent('9999');

Starts the JMX server and the listener on port 9999 with the other JIMX settings
having the default values or the values set earlier in the same session:

call dbns_java.start_jm_agent('9999', null, null);

Starts the JMX server and the listener with the JMX settings having the default
values or the values set earlier in the same session and with JAAS credentials
noni t or Rol e/ 1z2x and cont r ol Rol e/ 2p3o0:

call dbns_java.start_jm_agent(null, null, "nonitorRolel1z2x; control Rol e/ 2p30');

These credentials are transient. The property
com sun. managenent . j mxr enot e. aut henti cat e is set to true.

Starts JMX listener on port 9999 with no SSL and no JAAS authentication. Used
only for development or demonstration.

call dbns_java.start_jnx_agent('9999', 'false', 'false');

2-36

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Chapter 2
Managing Your Applications Using JMX

Related Topics:

* Important Security Notes

2.11.5 Using JConsole to Monitor and Control Oracle JVM

This section describes how to use JConsole, a standard JMX client tool, for monitoring
and controlling Oracle JVM. JConsole is a part of standard Java JDK.

This section discusses the following topics:

e Using the jconsole Command
e About Using the JConsole interface
e The OracleRuntime MBean

e Memory Thresholds

¢ Note:

To monitor Java in the database with JConsole, you should have a server-side
Java session running JMX Agent.

Related Topics:
e Enabling and Starting JMX in a Session

2.11.5.1 Using the jconsole Command

ORACLE

Use the j consol e command syntax to start JConsole. The simplest format to start the
JConsole tool is the following:

jconsol e [host Nane: port Nunj

where:

* host nane is the name of the system running the application
e portNumis the port number of the JMX listener

In the following examples, we connect to a host with name exanpl e. comthrough default
port 9999. This mode assumes no authentication and encryption. This mode is
adequate only for demo or testing, and can be used to connect to Oracle JVM JMX
sessions that are started with the following command:

call dbns_java.start_jmx_agent (portNum false, false);

Remember that you can connect to and interact with Oracle JVM from JConsole, only
when the daemon threads of the server are running and are not dormant. This means
that there should be an active Java call in the session, which is running the JMX
server on the specified port. During the time interval between subsequent Java calls,
JMX server preserves its state and statistics, but is unable to communicate with
JConsole.

Related Topics:

* Important Security Notes

2-37

Chapter 2
Managing Your Applications Using JMX

2.11.5.2 About Using the JConsole interface

The JConsole interface consists of the following tabs:
e Summary tab
It displays summary information on Oracle JVM and the values monitored by JMX.
Memory tab
It displays information on memory usage.
e Threads tab
It displays information on thread usage.
* Classes tab
It displays information on class loading.
* MBeans tab
It displays information on MBeans.
e VMtab

It displays information on Oracle JVM.

Note:

In Oracle Database 12c¢ Release 1 (12.1), the data collected and passed to
JConsole is limited to the Oracle JVM session that runs the JMX agent. This
data does not include the attributes of other sessions that may be running in
Oracle JVM. One exception is the Oracl eRunti me MBean that provides
information about many WholeJVM __ Attributes and operations of Oracle JVM.

Related Topics:

¢ The OracleRuntime MBean

2.11.5.3 About Viewing Oracle JVM Summary Information

You can use the Summary tab of the JConsole interface to view Oracle JVM Summary
Information. This tab displays key monitoring information on thread usage, memory
consumption, class loading, and other VM and operating system specifics.

If JConsole successfully connects to an Oracle JVM session running a JMX Agent,
then the Overview Tab looks the following image:

ORACLE 2-38

ORACLE

Chapter 2
Managing Your Applications Using JMX

Figure 2-6 The Overview Tab of the JConsole Interface

|£| Connection ‘Window Help

Heap Mermory Usage:

»
Overview | Memary | Threads | Classes | ¥M Summary | MBeans i

Time Range: hd

Threads

20 Mb

15 Mb

10Mb

6.0 Mb

20

Used
4 11,494,888

s Live threads
« 3
8

Classes

12:30 13:00

13:30

Used: 11.5Mb Committed: 23.4 Mb - Max: 14 Gh

14:00 12:30 13:00 13:30 14:00

Live: 9 Peak: 11 Total: 47

CPU Usage

2,000

1,000

4
1,500 / i

0.2%

Loaded
1742

CPU Usage
0.0% < 00%

12:30 13:00

13:30

Loaded: 1,742 Unloaded: 0 Total: 1,742

14:00 12:30 13:00 13:30 14:00

CPU Usage: 0.0%

Table 2-10 provides description of the fields present in the Overview tab.

Table 2-10 Description of the Overview Tab Fields in JConsole Interface

Field

Description

Uptime

Process CPU time

Live threads
Peak
Daemon threads

Total started

Current heap size
Committed memory
Maximum heap size

Objects pending for
finalization

Garbage collector
information

The duration for which the Oracle JVM session has been
running.

This information is not gathered for Oracle JVM sessions in
Oracle Database 12c¢ Release 1 (12.1).

The current number of live daemon and non-daemon threads.
Highest number of live threads since Oracle JVM started.
Current number of live daemon threads.

Total number of threads started since Oracle JVM started. It
includes daemon, non-daemon, and terminated threads.

Number of kilobytes currently occupied by the heap.
Total amount of memory allocated for use by the heap.
Maximum number of kilobytes occupied by the heap.

Number of objects pending for finalization.

Information about the garbage collector, which includes name,
number of collections performed, and total time spent performing
garbage collection.

2-39

Chapter 2
Managing Your Applications Using JMX

Table 2-10 (Cont.) Description of the Overview Tab Fields in JConsole Interface

Field Description

Current classes loaded Number of classes currently loaded into memory for execution.

Total classes loaded Total number of classes loaded into session memory since the
session started.

Total classes unloaded Number of classes unloaded from memory. Typically this is zero
for Oracle Database 12¢ Release 1 (12.1).

Total physical memory This information is not gathered for Oracle JVM sessions in
Oracle Database 12c¢ Release 1 (12.1). So, the value displayed
is zero.

Free physical memory This information is not gathered for Oracle JVM sessions in
Oracle Database 12c¢ Release 1 (12.1). So, the value displayed
is zero.

Committed virtual memory This information is not gathered for Oracle JVM sessions in
Oracle Database 12c¢ Release 1 (12.1). So, the value displayed
is zero.

2.11.5.4 About Monitoring Memory Consumption

You can use the Memory tab of the JConsole interface to monitor memory
consumption. This tab provides information on memory consumption and memory
pools. Figure 2—7 shows the Memory tab.

Figure 2-7 The Memory Tab of the JConsole Interface

Connection

Summany Memony Threads Classes | MBeans VM |

Chart: Heap Memory Usage = | Perform GC

70 Mb
60 Mb
50 Mb
40 Mb
30 Mb
20 Mb

10 Mb f}

0.0 Mb

Wsed
4 24790048

1551 15:52 1553

Details

Time: 2008-04-22 15:53:40 100% ~ — il
Used: 25,834 kbytes
Committed: 111,407 kbytes ‘

Max: 13,107,455 koytes
1 minute seconds on 5%

GC time:
GCManager (12,362 collections) e L u

The chart on the Memory tab shows Oracle JVM memory usages versus time, for the
whole memory space and also for specific memory pools. The memory pools available

ORACLE 2-40

ORACLE

Chapter 2
Managing Your Applications Using JMX

for Oracle JVM reflect the internal organization of Oracle JVM and correspond to
object memories of Oracle JVM Memory Manager. The available memory pools in this
release of Oracle Database are:

New Generation Space

This is the memory pool from which memory is initially allocated for most objects.
This pool is also referred to as the Eden Space.

Old Generation Space

This memory pool contains objects that have survived the garbage collection
process in Eden Space. This pool is also referred to as the Survival Space.

Malloc/Free Space

This memory pool contains objects for which memory is allocated and freed in
malloc/free fashion.

End of Migration Space
This memory pool contains objects surviving end-of-session migration.
Dedicated Session Space

This memory pool is used to allocate memory to session objects in Oracle
Dedicated Sessions mode.

Paged Session Space

This memory pool is used to allocate memory to session objects that are big and
paged.

Run space
This memory pool is used to allocate memory to temporary and auxiliary objects.
Stack space

This memory pool is used to allocate memory to temporary objects for which
memory is allocated and freed in stack-like fashion.

The Details area in the Memory tab displays current memory matrixes that include the
following:

Used

This matrix indicates the amount of memory currently used by the process running
the session.

Committed

This matrix indicates the amount of memory guaranteed to be available for use by
Oracle JVM, as if the memory has already been allocated. The amount of
Committed memory may change over time. But Committed memory will always be
greater than or equal to Used memory.

Max

This matrix indicates the maximum amount of memory that can be used for
memory management. It usually corresponds to the initial configuration of Oracle
JVM.

The bar chart at the lower right corner of the Memory tab shows memory consumed by
the individual memory pools. The bar turns red when the memory used exceeds the
memory usage threshold. You can set the memory usage threshold through an
attribute of the Menor yMXBean.

2-41

Chapter 2
Managing Your Applications Using JMX

Related Topics:
¢ Memory Thresholds

2.11.5.5 About Monitoring Thread Use

You can use the Threads tab of the JConsole interface to monitor thread usage.

Figure 2-8 The Threads Tab of the JConsole Interface

Connection

Summary . Memony Thraads] Classes | MBeans | VM l

Time Range: All b

Number of Threads
40
Feak
30 + 32
Total Startes
20 — , Tol sated
10 i ERp IO LR e TS ‘I;w Threads
i i 4

15:51 15:52 1553 15:54 15:55 15:56 15:57 1558 | =1

Live Threaids
thl’CP Connection(3)-141.144.65.230 |~ java.lang.Objectwait(Native Method) =l
iJHK server connection timeout 9 com.sun. jmucremote.internal ArrayMotificationBuffer fetchNg—
RMI LeaseChecker corm.sun jrmremote.internal AmrayMotific ationBuffer§Share, =
Im TCP Accept-9099 com.sunjmcremote.internal. ServerNotifF orwarder. fetchNa
!Rﬂl TCP Accept.0 | Jjavaxmanagementremote. rmi RMIConnectionimpl fetc hiNg__|
T 0 | [sup.reflect NativeMethodAccessormulinvokeQMative Meth ™|
imer = i | f 5

Filter: i 1 |

The chart on the Threads tab displays the number of live threads versus time, with a
particular color representing a particular type of thread:

e Magenta signifies total number of threads
e Red signifies peak number of threads
e Blue signifies number of live threads

The list of threads on this tab displays the active threads. Select a thread in the list to
display information about that thread on the right pane. This information includes
name, state, and stack trace of the thread.

The Filter field helps to narrow the threads.

2.11.5.6 About Monitoring Class Loading

You can use the Classes tab of the JConsole interface to monitor class loading. The
chart on this tab plots the number of classes loaded versus time.

ORACLE 2-42

Chapter 2
Managing Your Applications Using JMX

Figure 2-9 The Classes tab of the JConsole interface

Connection
Summary ' Memory | Threads | Classes [MBeans [VM |

Time Range: All v‘ ¥ Verbose Output

Number of Loaded Classes

2,000

1,500 aded

-"l‘nzd‘ecl
« 1
1,000
16:28 16:29 16:30

Details

Time: 2008-04-28 16:30:03
Cwrrent classes loaded: 1,171
Total classes loaded: 1,171
Total classes unloaded: 0

2.11.5.7 About Monitoring and Managing MBeans

You can use the MBeans tab to monitor and manage MBeans. This tab displays
information on all the MBeans registered with the platform MBean server.

The tree on the left pane of the MBean tab is called the MBean tree and it shows all
the MBeans, organized according to their object Names. When you select an MBean
in the MBean tree, then its attributes, operations, notifications, and other information
are displayed on the right pane. For example, in Figure 2-10, we have selected the O d
Gener ati on MemoryPool MBean in the MBean tree on the left and the attributes of the
O d Generati on MemoryPool MBean are displayed on the right.

ORACLE' 2.43

Chapter 2
Managing Your Applications Using JMX

Figure 2-10 Displaying the Attributes of an MBean

Connection
[Summary | Memory | Threads rCImes rMBeans r\ﬂ'l'l |
MBeans
[Tres . i | operati | Notificati nfo_ |
ﬂ-lj..JMImnlemeniahon e Valne
¢ [Tiavalang collectionUsage AT q 1L.CO...
@ classLoading ‘[CollectionUsageThreshold 0
@ Compilation ‘| CallectiohUsageTrresholdCount [0
o] tarbageCollector ‘| CollectionsageThresholdExce, . [tue
@@ Memary -| CollectionUsageThresholdSupp... |frue
o= [Memarykanager ‘| MemaryManagertames java.l ang. String[3]
¢ =] MemoryPool [Mame Old Generation
@ Dadicated Session Space - [Peaklsage livax.management.openmbean.Co..,
@ End Of Migration Space [Tipe HEAF
@ Malloc/Free Space Uzage [avax.management.openmbean.Co..
@ New Generation UsageThreshold 0
@ UsageThresholdCount 0
@@ Paged Session Space : UsagaThrasholdExeeded true
@ Run Space | UsageThresh 12 true
@ Stack Space -|valic e
@ DperatingSyslem :
& Runtime
@ Thraading
o [java util logging
o [jmusen
Refresh

You can set the values of an attribute, if it is writeable. The writeable values are
displayed in blue color. For example, in Figure 2-10, the attributes
Col I ecti onUaageThr eshol d and UsageThr eshol d are writable.

You can also display a chart of the values of an attribute versus time, by double-
clicking on the attribute value. For example, if you click on the value of the

Col I ecti onTi me property of the GCManager MBean, then you will see a chart similar to
Figure 2-11:

Figure 2-11 Displaying a Chart of the Values of an Attribute

Connection
" Summary | Memory | Threads | Classes | MBeans | vm |
MBeans
Eiree | attributes | Operations | Notifications | infa
*leJHImplementaTan e e N e s e i [
¢ ljava.lang “[CollectionCount 27894
@ ClassLoading © : = ; T
@ Compilation ¢
¢ [GarbageCaollec! 1300,000
@ GCManaget -
2 1250,000 |
o g::mE:Manage b zctgbﬁmnnm I
: 200,000 1 | 1
4 CoMemonyPool _|CollectionTime
4@ Dedicated € 150,000
@ End O Migr: *
@ Malloc/Free © 100,000
@@ Mew Gener: |
: 16:39
& Old Generat - | [
@ Paged Sest :{LastGelnfo Jjavax.management.openmbean.CompositeD... |
@ Run Space |MemorPoolNames Java.lang String[6]
@ Stack Space [Name |GCManager
@ OperatingSyste ‘fvalig e
@@ Runtime :
@@ Threading
¢ [=] jawa.util logging :
@ Logging : i
7] e e] kasBaemh |

ORACLE 2-44

ORACLE"

Managing Your

Chapter 2
Applications Using JMX

You can display the details of a complex attribute by clicking on the attribute. For
example, you can display the details of Usage and PeakUsage attributes of the Memory
Pools as shown in Figure 2-12:

Figure 2-12 Displaying Details of a Complex Attribute in the MBeans Tab

MBeans

Connection
[Summary r Memory Threads = Classes r MBeans VM
EFTrQe | Attributes | Operations | Motifications ! Info |
¢ 3 Mimplementation i NET valis |
® MBeanServerDelegale =
7 ﬁj'gvalang Compaosite Navigation
@ ClassLoading
@@ Compilation : TR
¢~ GarbageCollector Peakusage commitied 112742400
@ Memory : init o84
o] MemoryManager miax |268304384
¢ 3 MemonyFool : used 1112742400
@ Dedicated Session Space
@@ End Of Migration Space g
@@ MallociFree Space
@@ New Generation :
43 Old Generalion A Type HEAP =
;; ;igegpsaizsmn Space < Tabular Navigation
@ Stack Space i
@ OperatingSystem [Compuosite Navigation
@ Runlime
@@ Threading i Name
o (3 java.utillogging Nusage committed 112742400
o jreserv ; init 984
max 268304384
used |2779136
=

Refresh

The Operations tab of an MBean provides manageability interface. For example,

garbage collection can be invoked on a Memory Pool or Memory Manager by clicking
Perform Garbage Collection. The JMX demo of Oracle JVM, namely, j avavnf deno/

j m/ , provides several additional custom MBeans that are loaded into Oracle JVM.

Here is an example shows the result of the get Prop operation of the DBProps Mbean:

2-45

Chapter 2
Managing Your Applications Using JMX

Figure 2-13 Operations Tab of the MBeans Tab of the JConsole Interface

Connection

[Summary rﬂamury r Threads r Classgaij’ MBeans [|

] Ao agECOmEC T
@ Memory

o [MemoryManager

9 [MemoryPool

@ Malloc/Free Space
@ New Generation
@ 0ld Generation

@ Run Space
@ Stack Space
@ OperatingSystem
@ Runtime
@ Threading
o= [java.util logging
¢ imxsery
@ DEProps
@ FilePermission
@ Load
@@ PermissionManager
@ PropertyPermission

@@ Dedicated Session Spa
@ End OfMigration Space ||

@@ Paped Session Space

4 1]

[T»]

| attributes | Operations | Notifications ! info |

g (p1| osname |)

|,p2[sting

Refresh

2.11.5.8 About Viewing VM Information

You can use the VM tab of the JConsole interface to view VM information.

ORACLE"

2-46

Chapter 2
Managing Your Applications Using JMX

Figure 2-14 The VM Tab of the JConsole Interface

| £| Connection Window Help

| Overview || Memory | Threads Classes-ﬁmuéaﬁ'iﬁ'iéﬁ"'

m
*

| VM Summary

Wednesday, November 2, 2011 8:36:41 PM VET

| Connection name: your machine name 9990
| Virtual Machine: JServer VM version 1.6.0
Vendor: Oracle Corporation
Name: (PID=211645ID=1T}@v cur machine name

Uptime: 4 minutes
Process CPU time: 0.000 seconds
JIT compiler: Oracle 11g
Total compile time: Unavailable

Live threads:

Peak:

Daemon threads:
Total threads started:

W=l @ m

Current classes loaded: 1,293
Total classes loaded: 1,293
Total classes unloaded:]

Current heap size: 8,176 kbytes
Maximum heap size: 13,632, 255 kbytes

minutes

Garbage collector: Name ="GCManager, Collections = 54,061, Total time spent =2

Committed memory: 20,509
kbytes
Pending finalization: 0 objects

Operating System: Linux 2.6.18-238.0.0.0.1 el5xen
Architecture: x86 64
Number of processors: 1
Committed virtual memory: 0 kbytes

Total physical memeory:

0 kbytes
0 kbytes
0 kbytes
0 kbytes

Free physical memory:
Total swap space:
Free swap space:

| VM arguments: DEDICATED MODE
Class path:

Library path: <your env libpath>

2.11.5.9 The OracleRuntime MBean

| Boot class path: Unavailable

Starting from Oracle Database 11g Release 2 (11.2), a new MBean, O acl eRunti ne is
added to the list of Oracle JVM platform MBeans, when the dbns_j ava. start _j mx_agent
procedure is called. This MBean is specific to Oracle JVM.

The Attributes Tab of the Oracl eRunti me MBean exposes most of the parameters
manipulated by the or acl e. aurora. vm O acl eRunti ne class. Figure 2-15 shows the

Attributes tab of the Oracl eRunti ne MBean.

ORACLE

2-47

Chapter 2
Managing Your Applications Using JMX

Figure 2-15 Attributes Tab of the OracleRuntime MBean

Connection
| Summary | Memory | Threads | Classes [N‘Beans !VM |
MBeans
0 Tree Attributes [Operations | Notifications | Info I
o= 3 JMimplemeniation FERE T
o= [java. ang CallExitPalicy ExtCaltwhenaliManDaermnThraadsTermi. |«
o= [java, Jtillogaing efaulthlewepaca e raPolicy 0
o= LT imesern Forceactive Th'ead TherminationAtizall . [false
¢ 3 oracle j#m IntarnTahleh a¥siza 6201456 L
< [OracieRurimel [IntzinTableSize [1227658
JavaFoolSize 83886080
JaraStackSize 4194304 —
MayMemonSize 268435456
MaxRunzpaceSize 4294967295
Max3assionSize 4294967295
\MinHewszpaceTenurePolicy 0
MNewspacaEnablad true
MevsspacekaxGeneraticn 2
\NevsopaceSize 524288
MeveopaceTenureGenerazion 0 |
Flatorm Linux Fort b
Refresh

The parameters displayed in black color are read-only and cannot be modified. For
example, JavaPool Si ze, Pl at f orm and so on. Values in blue color are read/write, which
means you can modify them. Most of the attributes of the O acl eRunti ne MBean are
local to the current session.

The Wol eJVM_ attributes of the Oracl eRunti me MBean are global. These attributes
reflect the totals of Oracle JVM memory usage statistics across all Java-enabled
sessions in the Database instance, as gathered from the v$sessi on and v$sesst at
performance views. Figure 2-16 displays the Wol eJVM_attributes of the Oracl eRunti me
MBean.

ORACLE"

2-48

Chapter 2
Managing Your Applications Using JMX

Figure 2-16 OracleRuntime MBean

Connection
[Summary | Memory | Threads | Classes | MBeans | VM |
MBeans
@Tree | Attributes r Operations [’Not'rﬁcalions Info |
o 9 M plermentation T TS
. e i
:éj:;: :Jatlr:?ugcfing AThreadStack3z2 262144 =]
sty Avhcleduhl_CallHeapCo lectedBytes 41220187136
o= I jmxarv JwhcleJVM_CallHeapCo lectedCourt (213694031
¢ arazle jvm {whcleJvh_CallHeapGoCount 5513
@ wihcleyM_CallHeapLiveObjectCount 111143
wihcledyM_CallHeapLiveObjectCount.. [671365
“AVihcledM_CallHeapLiveSize 6735312
wihcleyM_CallHeapiiveSzeMax 00262144
WihcledvM_CallHeapOh eciCount 111143
AWhcledVid_CallHeapOh eciCounthax |ﬁ?13ﬁﬁ
AvhcleJvh_CsllHeapTota Size |81312l:ll34
“AWhcledJVM_CsliHeapTota SizeMax |18T—145248 =
Awhcledyid_CsliHeapilsadSize 082418
AWhcleJvid_CsliHeaptlsadSizekax 103351600
AWhcledvid_ExacutionElapsedTime 11442016193
Refresh

The Operations Tab of the O acl eRunti me MBean exposes many of the operations of
the oracl e. aurora. vm Oracl eRunt i me class.

In addition, individual memory consumption statistics of a specific Java-active
Database session can be monitored using the sessi onsRunni ngJava and
sessi onDet ai | sBySI D operations as shown in Figure 2-17 and Figure 2-18.

Figure 2-17 Operation sessionsRunningJava

Connection
'Summaw rﬂsmuw [Threads]’Classas ;Hﬂeans [m

MBeans

EaTree] Attributes | Operations [Notifications rll‘lfl:l |

o=] JMimplementation =

o [(javalang | iavalang.String | sessionsRunningJava | ()
o [java.util.logging
o (] jmxsen | javalang.String Operation return value

% [oracle.jvm

@ OracleRuntime SRR

true

java.lang.String
java.lang.String

void

77— |
&
2
(=]
m
=
o

Al [] :

ORACLE 2.49

Chapter 2
Managing Your Applications Using JMX

Figure 2-18 Operation sessionDetailsBySID

Connection

[Summary | Memory | Threads | Classes | MBeans | WM

MBeans

m Operation return value

L] Tee Operations' l Notifications | Info |
o= @ java call heap collected bytes: 206719744
- J java call heap collected count: 4648546 ‘ exitCallwhenMainThread Terminates
-] java call heap gc count: 11707

o g " java call heap live object count: 18924 0
? 0

java call heap live object count max: 22427
jawa call heap live size: 1048616 inEndofCall | ()
java call heap live size max: 1186968 -
java call heap object count: 26293 - —
java call heap object count masx: 27158 m (po String)
java call heap total size: 10964992

jawa call heap total size max: 10964992

java call heap used size: 1383152
java call heap used size max: 1441944

I sessionDetailsBySID | (p0 | 88 |

L*]

2.11.5.10 Memory Thresholds

ORACLE"

The usage threshold is a manageable attribute of the memory pools. Collection usage
threshold is a manageable attribute of some of the garbage-collected memory pools.
You can set each of these to a positive value to enable corresponding threshold
checking for a pool. Setting a threshold to zero disables the threshold checking for the
memory pool. By default, threshold checking for all Oracle JVM pools is disabled.

The usage threshold and the collection usage threshold are set in the MBeans tab. For
example, if you select the Old Generation memory pool from the tree on the left pane,
and set the usage threshold of this memory pool to 20 megabytes and the collection
threshold to 1 megabyte, then after a while, the threshold counts will show the number
of threshold crossing events as shown in Figure 2-19:

2-50

Chapter 2
Managing Your Applications Using JMX

Figure 2-19 Setting the Usage Threshold and Collection Usage Threshold in
the MBeans Tab

Connection

[Summary | Memory | Threads | Classes | MBeans | VM |

MBeans
E—‘Trea |~ Attributes | Dpera‘lions V' Notifications | Info |
¢ I IMimplementation I e [Valla
® MBeanServerDelegate CollectionUsage javax.management.openmbean.Com...
§ Ejava.lang CollectionUsageThreshold |1000000
@ ClassLoading CollectionUsageThresholdCounti6a
@@ Compilation | CollectionUsageThresholdExc... [frue
o] GarbageCollector CollectionUsageThresholdSup... [true
@ Memory MemoryManagerNames javadang.String[3]
o= (3 MemoryManager Name |01d Generation
9 I MemoryPool =| ‘| PeakUsage management.openmbean.Com...
d® Dedicated Session Spa Type HEAP
@ End Of Migration Space Usage management.openmbean.Com...
¥ Malloc/Free Space UsageThreshold 20000000
@ New Generation UsageThresholdCount 244
& Old Generation \UsageThresholdExceeded [true
@@ Paged Session Space UUsageThresholdSupported true
¥ Run Space Valid [true
@@ Stack Space
@@ OperalingSyslem L
@@ Runtime |
@@ Threading =
<] [Iv]

When the memory usage of the Old Generation memory pool exceeds 20 megabytes,
then part of the bar representing the Old Generation memory pool in the JConsole
interface turns red. The red portion indicates the portion of used memory that exceeds
the usage threshold. The bar representing the heap memory also turns red as shown
in Figure 2-20:

ORACLE" 2-51

Chapter 2
Managing Your Applications Using JMX

Figure 2-20 Memory Tab of the JConsole Interface When Used Memory
Exceeds the Usage Threshold

Connection
Summary | Memory | Threads | Classes | MBeans | VM
Chart: Memory Pool “Old Generation® ~ | Perform GC
il
80 Mb
70 Mb
60 Mb Used
50 Mb « w08
40 Mb
30 Mb Threshald
20 Mb 4 20,000,000
0.0 Mb 4
15:55 16:00 16:05 16:10
Details
Time: 2002-04-22 16:11.08 100% - —
Used: 48,826 koytes 5% -
Committed: 110, 100 kbytes
Max: 262,016 kbytes ol
Usage Threshold: 19,531 kbytes »% -
GC time: 3 lln‘..l.'tES seconds on GCManager 0 .. L | |
" Gat et TN
_____ ']

2.11.6 Important Security Notes

By starting the remote listener with disabled SSL and authentication you violate the
general security guidelines and hence make server vulnerable to attacks. Therefore, it
is always advisable not to use such mode in production environment. This mode is
supported for compatibility with JDK and for development; any production use of JIMX
in Oracle JVM must use secure JMX connections.

When supplying security-related property values to donms_j ava. set _property,

System set Property, or dbns_j ava. start_j mx_agent, use a hon-echo listener or invoke
these through an encrypted JDBC connection from a secure application layer, such as
Oracle Application Server. Do not store passwords in clear-text files. Use Oracle
Wallet to create and manage certificates. Use client certificates for SSL authentication
for better security.

See Also:

Oracle Database Security Guide

2.11.7 Shared Server Limitations for JMX

ORACLE

On dedicated mode servers, JMX connectivity is supported for the duration of a
session. Shared server JMX connectivity is typically limited to a single call. The main
factor causing this limitation is the fact that JMX connectivity intrinsically depends on
operating system resources such as threads and sockets. These resources do not

2-52

Chapter 2
Overview of Threading in Oracle Database

survive shared server call boundaries. As the result, IMX connectivity is fully
supported only for the duration of a single call.

Note:

This restriction only affects agent connectivity and not the state of the
MBeanSrver and Mbeans registered in it. The state of the MBeanSrver and
Mbeans, and in particular, the statistics, are persevered across shared server
call boundaries.

If using dedicated server mode is not feasible, you can still establish IMX connectivity
and monitor shared servers by following these guidelines:

» Plan for all IMX management and monitoring activities to happen within a single
Java call.

* Do not set the com sun. managenent . j nxrenot e. port property by calling the
DBMS_JAVA. set _property function and do not use the DBVS_JAVA. start _j nx_agent
method because these calls activate JMX and introduce a shared server call
boundary. Instead, start the JMX agent by calling the
oracl e. auror a. rdoms. JMXAgent . st art QJVMAgent method directly from the Java code
to be monitored. The value for the com sun. managenent . j nxr emot e. port property
should be passed to the st art QlvMAgent method. JMX-related properties other than
the com sun. managenent . j nxrenot e. port property do not wake up a JIMX Agent and
can be set using any means.

Related Topics:

e Shared Servers Considerations

2.12 Overview of Threading in Oracle Database

Oracle JVM is based on the database session model, which is a single-client,
nonpreemptive threading model. Although Java in Oracle Database allows running
threaded programs, it is single-threaded at the execution level. In this model, JVM runs
all Java threads associated with a database session on a single operating system
thread. Once dispatched, a thread continues execution until it explicitly yields by
calling Thread. yi el d(), blocks by calling Socket . read(), or is preempted by the
execution engine. Once a thread yields, blocks or is preempted, JVM dispatches
another thread.

Note:

Starting with 11g release 1 (11.1), Oracle JVM supports thread preemption.
Thread preemption is not mandated by the Java specification, but is needed to
support the new j ava. util . concurrent API, present in JDK1.5, properly.

Oracle JVM has added the following features for better performance and thread
management:

ORACLE 2-53

Chapter 2
Overview of Threading in Oracle Database

e System calls are at a minimum. Oracle JVM has exchanged some of the standard
system calls with nonsystem solutions. For example, entering a monitor-
synchronized block or method does not require a system call.

 Deadlocks are detected.

— Oracle JVM monitors for deadlocks between threads. If a deadlock occurs,
then Oracle JVM terminates one of the threads and throws the
oracl e. aur ora. vm Deadl ockErr or exception.

— Single-threaded applications cannot suspend. If the application has only a
single thread and you try to suspend it, then the oracl e. aur ora. vm Li mhoEr r or
exception is thrown.

2.12.1 Thread Life Cycle

ORACLE

In a single-threaded application, a call ends when one of the following events occurs:

e The thread returns to its caller.
* An exception is thrown and is not caught in Java code.

* The Systemexit(), Oracl eRuntine. exit Session(), or
oracle.aurora.vm Oracl eRuntine. exit Cal | () method is called.

e The DBVS_JAVA. endsessi on() or DBVM5_JAVA. endsessi on_and_rel ated_state() method
is called.

If the initial thread creates and starts other Java threads, then the call ends in one of
the following ways:

* The main thread returns to its caller or an exception is thrown and not caught in
this thread and in either case all other non-daemon threads are processed. Non-
daemon threads complete either by returning from their initial method or because
an exception is thrown and not caught in the thread.

e Any thread calls the Systemexit(), O acl eRuntine. exit Session(), or
oracle.aurora.vm Oracl eRuntine. exit Cal | () method.

e Acall to DBVS_JAVA. endsessi on() or DBVS_JAVA. endsessi on_and_rel ated_state()
method.

Prior to 11g release 1 (11.1), when a call ended because of a call to Systemexit() or
oracl e. aurora.vm Oracl eRuntime. exi t Cal | (), Oracle JVM ended the call abruptly and
terminated all threads, in both the dedicated and shared server modes. Since 11g
release 1 (11.1), this is addressed by the addition of the following PL/SQL functions to
the DBMS_JAVA package:

o FUNCTI ON endsessi on RETURN VARCHAR?;
* FUNCTI ON endsession_and_rel ated_state RETURN VARCHARZ;

During a call, a Java program can recursively cause more Java code to be run. For
example, your program can issue a SQL query using JDBC or SQLJ that, in turn, calls
a trigger written in Java. All the preceding remarks regarding call lifetime apply to the
top-most call to Java code, not to the recursive call. For example, a call to

System exi t () from within a recursive call exits the entire top-most call to Java, not just
the recursive call.

Related Topics:

* Operating System Resources Affected Across Calls

2-54

Chapter 2
Overview of Threading in Oracle Database

e Two-Tier Duration for Java Session State

2.12.2 System.exit(), OracleRuntime.exitSession(), and
OracleRuntime.exitCall()

ORACLE

The System exit () method terminates JVM, preserving no Java state. It does not
cause the database session to terminate or the client to disconnect. However, the
database session may, and often does, terminate itself immediately afterward.

Oracl eRunti me. exi t Sessi on() also terminates JVM, preserving no Java state. However,
it also terminates the database session and disconnects the client.

The behavior of Oracl eRuntime. exit Cal | () varies depending on

Oracl eRunti ne. t hreadTer mi nati onPol i cy() . This method returns a bool ean value. If this
value is true, then any active thread should be terminated, rather than left quiescent,
at the end of a database call.

* In ashared server process, t hreadTer i nati onPol i cy() is always true.

* In a shadow (dedicated) process, the default value is f al se. You can change the
value by calling Oracl eRunt i ne. set Thr eadTer ni nati onPol i cy().

— If you set the value to false, that is the default value, all threads are left
guiescent but receive a Thr eadDeat h exception for graceful termination.

— If the value is true, all threads are terminated abruptly.

In addition, there is another method, O acl eRunt i ne. cal | Exi t Pol i cy() . This method
determines when a call is exited if none of the Oracl eRunti ne. exi t Sessi on(),

Oracl eRuntine. exitCall (), or Systemexit() methods were ever called. The call exit
policy can be set to one of the following, using Oracl eRunt i me. set Cal | Exi t Pol i cy():

« Oracl eRuntine. EXI T_CALL_WHEN MAI N THREAD TERM NATES

If set to this value, then as soon as the main thread returns or an uncaught
exception occurs on the main thread, all remaining threads, both daemon and non-
daemon are:

— Killed, if t hreadTer mi nati onPol i cy() is true, always in shared server mode.
— Left quiescent, if t hreadTer ni nati onPol i cy() is false.
e OacleRuntine. EXIT_CALL_WHEN ALL_NON DAENON THREADS TERM NATE

This is the default value. If this value is set, then the call ends when only daemon
threads are left running. At this point:

— Ifthe threadTerni nati onPolicy() is true, always in shared server mode, then
the daemon threads are killed.

— Ifthe threadTerninationPol i cy() is fal se, then the daemon threads are left
guiescent until the next call. This is the default setting for shadow (dedicated)
server mode.

« Oracl eRuntime. EXI T_CALL_WHEN ALL_THREADS_TERM NATE

If set to this value, then the call ends only when all threads have either returned or
ended due to an uncaught exception. At this point, the call ends regardless of the
value of t hreadTer ni nati onPol i cy().

2-55

Chapter 2
Shared Servers Considerations

Note:

In Oracle database 9.x and earlier database releases, JVM behaves as if the
cal | ExitPolicy() were

Oracl eRunti me. EXI T_CALL_WHEN ALL_NON DAEMON THREADS TERM NATE and the

t hreadTer i nati onPol i cy() were true for both shared and dedicated server
processes. This means kill the daemon threads at this point. Also, if exitCal | ()
were executed, then all threads are killed before the call is ended, in both
shared and dedicated server processes.

2.13 Shared Servers Considerations

Note:

Oracle recommends dedicated servers for performance reasons. Additionally,
dedicated servers support a class of applications that rely on threads and
sockets that stay open across calls. For example, the JMX agent connectivity
functionality.

For sessions that use shared servers, certain limitations exist across calls. The reason
is that a session that uses a shared server is not guaranteed to connect to the same
process on a subsequent database call, and hence the session-specific memory and
objects that need to live across calls are saved in the SGA. This means that process-
specific resources, such as threads, open files, and sockets, must be cleaned up at
the end of each call, and therefore, will not be available for the next call.

This section covers the following topics:

e End-of-Call Migration

e Oracle-Specific Support for End-of-Call Optimization
e The EndOfCallRegistry.registerCallback() Method

e The EndOfCallRegistry.runCallbacks() Method

* The Callback Interface

e The Callback.act() method

e Operating System Resources Affected Across Calls

Related Topics:
* Managing Your Applications Using JMX

2.13.1 End-of-Call Migration

ORACLE

In the shared server mode, Oracle Database preserves the state of your Java program
between calls by migrating all objects that are reachable from st ati ¢ variables to
session space at the end of the call. Session space exists within the session of the
client to store st ati ¢ variables and objects that exist between calls. Oracle JVM
automatically performs this migration operation at the end of every call.

2-56

Chapter 2
Shared Servers Considerations

This migration operation is a memory and performance consideration. Hence, you
should be aware of what you designate to exist between calls and keep the static
variables and objects to a minimum. If you store objects in st ati ¢ variables needlessly,
then you impose an unnecessary burden on the memory manager to perform the
migration and consume per-session resources. By limiting your st ati ¢ variables to
only what is necessary, you help the memory manager and improve the performance
of your server.

To maximize the number of users who can run your Java program at the same time, it
is important to minimize the footprint of a session. In particular, to achieve maximum
scalability, an inactive session should take up as little memory space as possible. A
simple technique to minimize footprint is to release large data structures at the end of
every call. You can lazily re-create many data structures when you need them again in
another call. For this reason, Oracle JVM has a mechanism for calling a specified Java
method when a session is about to become inactive, such as at the end of a call.

This mechanism is the End(f Cal | Regi st ry notification. It enables you to clear static
variables at the end of the call and reinitialize the variables using a lazy initialization
technique when the next call comes in. You should run this only if you are concerned
about the amount of storage you require the memory manager to store in between
calls. It becomes a concern only for complex stateful server applications that you
implement in Java.

The decision of whether to null-out data structures at the end of the call and then re-
create them for each new call is a typical time and space trade-off. There is some
extra time spent in re-creating the structure, but you can save significant space by not
holding on to the structure between calls. In addition, there is a time consideration,
because objects, especially large objects, are more expensive to access after they
have been migrated to session space. The penalty results from the differences in
representation of session, as opposed to objects based on call-space.

Examples of data structures that are candidates for this type of optimization include:

» Buffers or caches.

e Static fields, such as arrays, which once initialized can remain unchanged during
the course of the program.

e Any dynamically built data structure that can have a space-efficient representation
between calls and a more speed-efficient representation for the duration of a call.
This can be tricky and may complicate your code, making it hard to maintain.
Therefore, you should consider doing this only after demonstrating that the space
saved is worth the effort.

2.13.2 Oracle-Specific Support for End-of-Call Optimization

ORACLE

You can register the st at i ¢ variables that you want cleared at the end of the call when
the buffer, field, or data structure is created. Within the

oracl e. aur or a. nenor yManager . EndCf Cal | Regi stry class, the regi st er Cal | back() method
takes an object that implements a Cal | back object. The regi st er Cal | back() method
stores this object until the end of the call. At the end of the call, Oracle JVM calls the
act () method within all registered Cal | back objects. The act () method within the

Cal | back object is implemented to clear the user-defined buffer, field, or data structure.
Once cleared, the Cal | back object is removed from the registry.

2-57

ORACLE

Chapter 2
Shared Servers Considerations

Note:

If the end of the call is also the end of the session, then callbacks are not
started, because the session space will be cleared anyway.

A weak table holds the registry of end-of-call callbacks. If either the Cal | back object or
value are not reachable from the Java program, then both the object and the value will
be dropped from the table. The use of a weak table to hold callbacks also means that
registering a callback will not prevent the garbage collector from reclaiming that object.
Therefore, you must hold on to the callback yourself if you need it, and you cannot rely
on the table holding it back.

The way you use EndOf Cal | Regi st ry depends on whether you are dealing with objects
held in st ati ¢ fields or instance fields.

Static fields

Use EndOf Cal | Regi stry to clear state associated with an entire class. In this case, the
Cal | back object should be held in a private static field. Any code that requires access
to the cached data that was dropped between calls must call a method that lazily
creates, or re-creates, the cached data.

Consider the following example:

i mport oracl e. aurora. menor yManager . Cal | back;
i mport oracl e. aurora. menor yManager . EndCf Cal | Regi stry;

class Exanple

{
static Object cachedField = null;
private static Callback thunk = null;

static void clearCachedFiel d()

{
/1 clear out both the cached field, and the thunk so they don't
/1 take up session space between calls
cachedField = null;

thunk = null;
}
private static Object getCachedField()
{

if (cachedField == null)

{

Il save thunk in static field so it doesn't get reclainmed
/'l by garbage col |l ector
thunk = new Cal | back () {

public void act(Cbject obj)

{

Exanpl e. cl ear CachedFi el d();

}

¥

Il register thunk to clear cachedField at end-of-call.
EndCf Cal | Regi stry. regi sterCal | back(thunk);

Il finally, set cached field

cachedFiel d = createCachedFiel d();

2-58

ORACLE

Chapter 2
Shared Servers Considerations

}
return cachedFi el d;
1
private static Object createCachedFiel d()
{
1

}

The preceding example does the following:

1. Creates a Cal | back object within a stati ¢ field, t hunk.
2. Registers this Cal | back object for end-of-call migration.

3. Implements the Cal | back. act () method to free up all stati ¢ variables, including the
Cal | back object itself.

4. Provides a method, creat eCachedFi el d(), for lazily re-creating the cache.

When you create the cache, the Cal | back object is automatically registered within the
get CachedFi el d() method. At end-of-call, Oracle JVM calls the registered
Cal | back. act () method, which frees the static memory.

Instance fields

Use EndOf Cal | Regi stry to clear state in data structures held in instance fields. For
example, when a state is associated with each instance of a class, each instance has
a field that holds the cached state for the instance and fills in the cached field as
necessary. You can access the cached field with a method that ensures the state is
cached.

Consider the following example:

i mport oracl e. aurora. menoryManager . Cal | back;
i mport oracl e.aurora. menor yManager . EndOf Cal | Regi stry;

class Exanpl e2 inplements Cal |l back
{

private Cbject cachedField = null;

public voidact (Cbject obj)
{
/I clear cached field
cachedField = null;
obj = null;

}

/'l our accessor method
private static bject getCachedField()

{
if (cachedField == null)
{
Il if cachedField is not filled in then you nust
Il register self, and fill it in.
EndCf Cal | Regi stry. registerCal | back(sel f);
cachedFiel d = createCachedFiel d();
}
return cachedFi el d;
1

2-59

Chapter 2
Shared Servers Considerations

private Chject createCachedField()
{

=
}

The preceding example does the following:

1. Implements the instance as a Cal | back object.
2. Implements the Cal | back. act () method to free up the instance fields.

3. When you request a cache, the Cal | back object registers itself for the end-of-call
migration.

4. Provides a method, creat eCachedFi el d(), for lazily re-creating the cache.

When you create the cache, the Cal | back object is automatically registered within the
get CachedFi el d() method. At end-of-call, Oracle JVM calls the registered
Cal | back. act () method, which frees the cache.

This approach ensures that the lifetime of the Cal | back object is identical to the lifetime
of the instance, because they are the same object.

2.13.3 The EndOfCallRegistry.registerCallback() Method

The regi st erCal | back() method installs a Cal | back object within a registry. At the end
of the call, Oracle JVM calls the act () method of all registered Cal | back objects.

You can register your Cal | back object by itself or with an Obj ect instance. If you need
additional information stored within an object to be passed into act (), then you can
register this object with the val ue parameter, which is an instance of j ect .

The following are the valid signatures of the regi st er Cal | back() method:

public static void registerCallback(Callback thunk, Object value);

public static void registerCallback(Callback thunk);

The following table lists the parameters of regi st er Cal | back and their description:

Parameter Description
t hunk The Cal | back object to be called at the end-of-call migration.
val ue If you need additional information stored within an object to be passed into

act (), then you can register this object with the val ue parameter. In some
cases, the val ue parameter is necessary to hold the state that the callback
needs. However, most users do not need to specify a value for this
parameter.

2.13.4 The EndOfCallRegistry.runCallbacks() Method

ORACLE

The signature of the runcCal | backs() method is as follows:
static void runCall backs()
JVM calls this method at end-of-call and calls act () for every Cal | back object

registered using regi st er Cal | back() . It is called at end-of-call, before object migration
and before the last finalization step.

2-60

Note:

Chapter 2
Shared Servers Considerations

Do not call this method in your code.

2.13.5 The Callback Interface

The interface is declared as follows:

Interface oracle.aurora. nenor yManager . Cal | back

Any object you want to register using EndCf Cal | Regi stry. regi ster Cal | back() must
implement the Cal | back interface. This interface can be useful in your application,
where you require notification at end-of-call.

2.13.6 The Callback.act() method

The signature of the act () method is as follows:

public void act(Cbject val ue)

You can implement any activity that you require to occur at the end of the call. Usually,
this method contains procedures for clearing any memory that would be saved to

session space.

2.13.7 Operating System Resources Affected Across Calls

In the shared server mode, Oracle JVM closes any open operating system resources
at the end of a database call, as shown in the following table:

Resource Lifetime

Files The system closes all files left open when a database call ends.
Threads All threads are terminated when a call ends.

Sockets » Client sockets can exist across calls.

Objects that depend
on operating system
resources

. Server sockets terminate when the call ends.

Regardless of the usable lifetime of the object, the Java object can be
valid for the duration of the session. This can occur, for example, if the
Java object is stored in a st ati ¢ class variable, or a class variable
references it directly or indirectly. If you attempt to use one of these
Java objects after its usable lifetime is over, then Oracle Database will
throw an exception. This is true for the following examples:

e Ifan attempt is made to read from a j ava. i 0. Fi | el nput Stream
that was closed at the end of a previous call, then a
java.io.| CException is raised.

e java.lang.Thread.isAlive() isfal se for any Thread object
running in a previous call and still accessible in a subsequent call.

You should close resources that are local to a single call when the call ends. However,
for st ati ¢ objects that hold on to operating system resources, you must be aware of
how these resources are affected after the call ends.

ORACLE

2-61

ORACLE

Chapter 2
Shared Servers Considerations

Files

In the shared server mode, Oracle JVM automatically closes open operating system
constructs when the call ends. This can affect any operating system resources within
your Java object. If you have a file opened within a st ati ¢ variable, then the file handle
is closed at the end of the call for you. Therefore, if you hold on to the Fi | e object
across calls, then the next usage of the file handle throws an exception.

In the following example, the Concat class enables multiple files to be written into a
single file, out Fi | e. On the first call, out Fi | e is created. The first input file is opened,
read, written to out Fi | e, and the call ends. Because outFi | e is defined as a static
variable, it is moved into session space between call invocations. However, the file
handle is closed at the end of the call. The next time you call addFi | e(), you will get an
exception.

Example 2-5 Compromising Your Operating System Resources

public class Concat

{
static File outFile = new File("outnme.txt");
FileWiter out = new FileWiter(outFile);
public static void addFile(String[] newFile)
{
File inFile = new File(newFile);
Fi | eReader in = new Fil eReader (inFile);
inti;
while ((i =inread()) '=-1)
out.write(i);
in.close();
1
1

There are workarounds. To ensure that your handles stay valid, close your files,
buffers, and so on, at the end of every call, and reopen the resource at the beginning
of the next call. Another option is to use the database rather than using operating
system resources. For example, try to use database tables rather than a file.
Alternatively, do not store operating system resources within st ati ¢ objects that are
expected to live across calls. Instead, use operating system resources only within
objects local to the call.

The following example shows how you can perform concatenation, without
compromising your operating system resources. The addFi | ¢() method opens the

out ne. txt file within each call, ensuring that anything written into the file is appended to
the end. At the end of each call, the file is closed. Two things occur:

e The Fil e object no longer exists outside a call.

* The operating system resource, the out me. t xt file, is reopened for each call. If you
had made the Fil e object a st ati ¢ variable, then the closing of out ne. t xt within
each call would ensure that the operating system resource is not compromised.

Example 2-6 Correctly Managing Your Operating System Resources

public class Concat

{

public static void addFile(String[] newFile)

2-62

ORACLE

Chapter 2
Shared Servers Considerations

[*open the output file each call; make sure the input*/
[*file is witten out to the end by nmaking it "append=true"*/
FileWiter out = new FileWiter("outne.txt", TRUE);

File inFile = new File(newFile);

Fi | eReader in = new Fil eReader (inFile);

int i;

while ((i =in.read()) !'=-1)
out.write(i);
in.close();

/*close the output file between calls*/
out.close();

}
}

Sockets

Sockets are used in setting up a connection between a client and a server. For each
database connection, sockets are used at either end of the connection. Your
application does not set up the connection. The connection is set up by the underlying
networking protocol, TTC or IIOP of Oracle Net.

See Also:

"Configuring Oracle JVM" for information about how to configure your
connection.

You may also want to set up another connection, for example, connecting to a
specified URL from within one of the classes stored within the database. To do so,
instantiate sockets for servicing the client and server sides of the connection using the
following:

 Thejava. net. Socket () constructor creates a client socket.
e Thejava. net. Server Socket () constructor creates a server socket.

A socket exists at each end of the connection. The server side of the connection that
listens for incoming calls is serviced by a Server Socket instance. The client side of the
connection that sends requests is serviced through a Socket instance. You can use
sockets as defined within JVM with the restriction that a Ser ver Socket instance within a
shared server cannot exist across calls.

The following table lists the socket types and their description:

Socket Type Description

Socket Because the client side of the connection is outbound, the Socket
instance can be serviced across calls within a shared server.

ServerSocket The server side of the connection is a listener. The Ser ver Socket
instance is closed at the end of a call within a shared server. The
shared servers move on to another client at the end of every call. You
will receive an I/O exception stating that the socket was closed, if you
try to use the Server Socket instance outside of the call it was created
in.

2-63

ORACLE

Chapter 2
Shared Servers Considerations

Threads

In the shared server mode, when a call ends because of a return or uncaught
exceptions, Oracle JVM throws Thr eadDeat hExcept i on in all daemon threads.

Thr eadDeat hExcept i on essentially forces threads to stop running. Code that depends on
threads living across calls does not behave as expected in the shared server mode.
For example, the value of a stati c variable that tracks initialization of a thread may
become incorrect in subsequent calls because all threads are killed at the end of a
database call.

As a specific example, the standard RMI Server functions in the shared server mode.
However, it is useful only within the context of a single call. This is because the RMI
Server forks daemon threads, which are in the shared server mode, are killed at the
end of call, that is, the daemon thread are killed when all non-daemon threads return.
If the RMI server session is reentered in a subsequent call, then these daemon
threads are not restarted and the RMI server fails to function properly.

2-64

Calling Java Methods in Oracle Database

This chapter provides an overview and examples of calling Java methods that reside
in Oracle Database. It contains the following sections:

Invoking Java Methods
How To Tell You Are Running on the Server

About Redirecting Output on the Server

3.1 Invoking Java Methods

The type of the Java application determines how the client calls a Java method. The
following sections discuss each of the Java application programming interfaces (APIs)
available for calling a Java method:

Using PL/SQL Wrappers

About JNI Support

About Utilizing SQLJ and JDBC with Java in the Database
About Using the Command-Line Interface

Overview of Using the Client-Side Stub

3.1.1 Using PL/SQL Wrappers

You can run Java stored procedures in the same way as PL/SQL stored procedures.
In Oracle Database, Java is usually invoked through PL/SQL interface.

ORACLE

To call a Java stored procedure, you must publish it through a call specification. The
following example shows how to create, resolve, load, and publish a simple Java
stored procedure that returns a string:

1.

Define a class, Hel | o, as follows:

public class Hello

{
public static String world()
{

}
}

return "Hello world";

Save the file as a Hel | 0. j ava file.

Compile the class on your client system using the standard Java compiler, as
follows:

javac Hello.java

3-1

ORACLE

Chapter 3
Invoking Java Methods

It is a good idea to specify the CLASSPATH on the command line with the j avac
command, especially when writing shell scripts or make files. The Java compiler
produces a Java binary file, in this case, Hel | 0. ¢l ass.

You must determine the location at which this Java code will run. If you run

Hel | 0. cl ass on your client system, then it searches the CLASSPATH for all the
supporting core classes that Hel | 0. ¢l ass needs for running. This search should
result in locating the dependent classes in one of the following:

» As individual files in one or more directories, where the directories are
specified in the CLASSPATH

e Within .jar or.zip files, where the directories containing these files are
specified in the CLASSPATH

Decide on the resolver for the Hel | o class.

In this case, load Hel | o. cl ass on the server, where it is stored in the database as a
Java schema object. When you call the wor| d() method, Oracle JVM locates the
necessary supporting classes, such as String, using a resolver. In this case,
Oracle JVM uses the default resolver. The default resolver looks for these classes,
first in the current schema, and then in PUBLI C. All core class libraries, including the
java. | ang package, are found in PUBLI C. You may need to specify different
resolvers. You can trace problems earlier, rather than at run time, by forcing
resolution to occur when you use the | oadj ava tool.

Load the class on the server using the | oadj ava tool. You must specify the user
name and password. Run the | oadj ava tool as follows:

| oadj ava -user HR Hello.class
Password: password

Publish the stored procedure through a call specification.

To call a Java stati ¢ method with a SQL call, you must publish the method with a
call specification. A call specification defines the arguments that the method takes
and the SQL types that it returns.

In SQL*Plus, connect to the database and define a top-level call specification for
Hel | 0. worl d() as follows:

sqgl plus HR

Enter password: password

connect ed

SQL> CREATE OR REPLACE FUNCTI ON hel | owor | d RETURN VARCHAR2 AS
2 LANGUAGE JAVA NAME 'Hello.world () return java.lang. String';
3/

Function created.

Call the stored procedure, as follows:

SQ.> VARI ABLE nyString VARCHAR2(20);
SQ> CALL helloworld() INTO :nyString;
Cal | conpl et ed.

SQ> PRINT nyString;

MYSTRI NG

Hel 1 o world

sQL>

3-2

Chapter 3
Invoking Java Methods

The call helloworld() into :nyString statement performs a top-level call in
Oracle Database. SQL and PL/SQL see no difference between a stored procedure
that is written in Java, PL/SQL, or any other language. The call specification
provides a means to tie inter-language calls together in a consistent manner. Call
specifications are necessary only for entry points that are called with triggers or
SQL and PL/SQL calls. Furthermore, JDeveloper can automate the task of writing
call specifications.

Related Topics:
* Overview of Resolving Class Dependencies
* Schema Objects and Oracle JVM Utilities

» Developing Java Stored Procedures

3.1.2 About JNI Support

The Java Native Interface (JNI) is a standard programming interface for writing Java
native methods and embedding the JVM into native applications. The primary goal of
JNI is to provide binary compatibility of Java applications that use platform-specific
native libraries.

Native methods can cause server failure, violate security, and corrupt data. Oracle
Database does not support the use of JNI in Java applications. If you use JNI, then
your application is not 100 percent pure Java and the native methods require porting
between platforms.

3.1.3 About Utilizing SQLJ and JDBC with Java in the Database

ORACLE

You can use SQLJ and Java Database Connectivity (JDBC) APIs from a Java client.
Both APIs establish a session with a given user name and password on the database
and run SQL queries against the database. The following table lists the APIs and their
description:

API Description

JDBC Use this API for more complex or dynamic SQL queries. JDBC requires you
to establish the session, construct the query, and so on.

SQLJ Use this API for easy SQL queries, both static and dynamic. SQLJ typically

runs against a known table with known column names.

This section covers the following topics:

e Using JDBC

* Using SQLJ

» Example Comparing JDBC and SQLJ
e SQLJ Strong Typing Paradigm

e Translating a SQLJ Program

e Interaction with PL/SQL

3-3

Chapter 3
Invoking Java Methods

3.1.3.1 Using JDBC

JDBC is an industry-standard API that lets you embed SQL statements as Java
method arguments. JDBC is based on the X/Open SQL Call Level Interface (CLI) and
complies with the Entry Level of SQL-92 standard. Each vendor, such as Oracle,
creates its JDBC implementation by implementing the interfaces of the standard

java. sgl package. Oracle provides the following JDBC drivers that implement these
standard interfaces:

e The JDBC Thin driver, a 100 percent pure Java solution that you can use for either
client-side applications or applets and requires no Oracle client installation.

* The JDBC OCI driver, which you use for client-side applications and requires an
Oracle client installation.

* The server-side JDBC driver embedded in Oracle Database.

Using JDBC is a step-by-step process of performing the following tasks:

1. Obtaining a connection handle

2. Creating a statement object of some type for your desired SQL operation
3. Assigning any local variables that you want to bind to the SQL operation
4. Carrying out the operation

5. Optionally retrieving the result sets

This process is sufficient for many applications, but becomes cumbersome for any
complicated statements. Dynamic SQL operations, where the operations are not
known until run time, require JDBC. However, in typical applications, this represents a
minority of the SQL operations.

See Also:
Oracle Database JDBC Developer’s Guide

3.1.3.2 Using SQLJ

ORACLE

SQLJ offers an industry-standard way to embed any static SQL operation directly into
the Java source code in one simple step, without requiring the multiple steps of JDBC.
Oracle SQLJ complies with the X3H2-98-320 American National Standards Institute
(ANSI) standard.

SQLJ consists of a translator, which is a precompiler that supports standard SQLJ
programming syntax, and a run-time component. After creating your SQLJ source
code in a.sqlj file, you process it with the translator. The translator translates the
SQLJ source code to standard Java source code, with SQL operations converted to
calls to the SQLJ run time. In Oracle Database SQLJ implementation, the translator
calls a Java compiler to compile the Java source code. When your SQLJ application
runs, the SQLJ run time calls JDBC to communicate with the database.

SQLJ also enables you to catch errors in your SQL statements before run time. JDBC
code, being pure Java, is compiled directly. The compiler cannot detect SQL errors.
On the other hand, when you translate SQLJ code, the translator analyzes the

3-4

ORACLE

Chapter 3
Invoking Java Methods

embedded SQL statements semantically and syntactically, catching SQL errors during
development, instead of allowing an end user to catch them when running the
application.

Following is a complete example of a simple SQLJ program:
inmport java.sql.*;

import sqlj.runtime.ref. DefaultContext;
import oracle.sqlj.runtine. Oacle;

#sql iterator Mylter (String first_name, int enployee_id, float salary);

public class MyExanmpl e

{
public static void main (String args[]) throws SQ.Exception
{
Oracl e. connect ("jdbc: oracl e: thin: @ocal host:5521: orcl”, "HR', "<password>");
#sql { INSERT INTO enpl oyees (first_nane, enployee_ id, salary) VALUES (' SMTH ,
32, 20000) };
Mlter iter;
#sql iter={ SELECT first_nane, enployee_id, salary FROM enpl oyees };
while (iter.next())
{
Systemout.printIn(iter.first_name()+" "+iter.enployee id()+" "+iter.salary());
}
}
}

In the preceding example, you perform the following:

1. Declare your iterators.

SQLJ uses a strongly-typed version of JDBC result sets, known as iterators. An
iterator has a specific number of columns of specific data types. You must define
your iterator types before using them, as in this example.

#sql | TERATOR Mylter (String first_name, int enployee_id, float salary);

This declaration results in SQLJ creating an iterator class, Ml ter . Iterators of type
MWl ter can store results whose first column maps to a Java String, second column
maps to a Java i nt, and third column maps to a Java f | oat . This definition also
names the three columns as first_nane, enpl oyee_i d, and sal ary, to match the
column names of the referenced table in the database. WIter is a named iterator.

2. Connect to the database.
Oracl e. connect ("j dbc: oracl e: thin: @ocal host: 5521: orcl ", "HR', "<password>");
SQLJ provides the O acl e class and its connect () method accomplishes the
following important tasks:

a. Registers Oracle JDBC drivers that SQLJ uses to access the database, in this
case, the JDBC Thin driver.

b. Opens a database connection for the specified schema, in this case, user HR
with the specified password, at the specified URL. In this case, the URL points
to host | ocal host, port 5521, and SID orcl .

c. Establishes this connection as the default connection for the SQLJ statements.
Although each JDBC statement must explicitly specify a connection object, a
SQLJ statement can either implicitly use a default connection or optionally
specify a different connection.

3-5

Chapter 3
Invoking Java Methods

3. Process a SQL statement. The following is accomplished:

a. Insert a row into the enpl oyees table:

#sql {1 NSERT I NTO enpl oyees (first_name, enployee_id, salary) VALUES
("SMTH, 32, 20000)};

b. Instantiate and populate the iterator:

Mlter iter;
#sql iter={SELECT first_name, enployee_ id, salary FROM enpl oyees};

4. Access the data that was populated within the iterator.

while (iter.next())
{

Systemout.printIn(iter.first_name()+" "+iter.enployee id()+" "+iter.salary());

}

The next () method is common to all iterators and plays the same role as the

next () method of a JDBC result set, returning t rue and moving to the next row of
data, if any rows remain. You can access the data in each row by calling iterator
accessor methods whose names match the column names. This is a characteristic
of all named iterators. In this example, you access the data using the methods
first_nanme(), enpl oyee_id(), and sal ary().

See Also:
Oracle Database SQLJ Developer’s Guide

3.1.3.3 Example Comparing JDBC and SQLJ

ORACLE

The following is an example of a JDBC code and a SQLJ code that perform a simple
operation:

JDBC:

/1 Assume you al ready have a JDBC Connection object conn
/1 Define Java variabl es

String nane;

int id=37115;

float sal ary=20000;

/1 Set up JDBC prepared statenent.

PreparedSt at ement pstmt = conn. prepar eSt at enent

(" SELECT first_name FROM enpl oyees WHERE enpl oyee i d=? AND sal ary>?");
pstnt.setint(1, id);

pstnt.setFloat (2, salary);

/| Execute query; retrieve name and assign it to Java variable.
Resul t Set rs = pstnt.executeQuery();
while (rs.next())

{
name=rs. get String(1);
Systemout.printIn("Name is: " + nane);

}

/] Cose result set and statenent objects.

3-6

Chapter 3
Invoking Java Methods

rs.close()
pstnt.close();

Assume that you have established a JDBC connection, conn. Next, you must do the
following:

1. Define the Java variables, nane, i d, and sal ary.
2. Create a PreparedSt at enent instance.

You can use a prepared statement whenever values in the SQL statement must
be dynamically set. You can use the same prepared statement repeatedly with
different variable values. The question marks (?) in the prepared statement are
placeholders for Java variables. In the preceding example, these variables are
assigned values using the pstnt . setInt() and pstnt.setFl oat () methods. The
first ? refers to the i nt variable i d and is set to a value of 37115. The second ?
refers to the fl oat variable sal ary and is set to a value of 20000.

3. Run the query and return the data into a Resul t Set object.

4. Retrieve the data of interest from the Resul t Set object and display it. In this case,
the first_name column. A result set usually contains multiple rows of data,
although this example has only one row.

SQLJ:

String naneg;

int id=37115;

float sal ary=20000;

#sql {SELECT first_name |INTO : name FROM enpl oyees WHERE enpl oyee id=:id AND
sal ary>: sal ary};

Systemout.printIn("Name is: " + name);

In addition to allowing SQL statements to be directly embedded in Java code, SQLJ
supports Java host expressions, also known as bind expressions, to be used directly
in the SQL statements. In the simplest case, a host expression is a simple variable, as
in this example. However, more complex expressions are allowed as well. Each host
expression is preceded by colon (:). This example uses Java host expressions, nane,
id, and sal ary. In SQLJ, because of its host expression support, you do not need a
result set or equivalent when you are returning only a single row of data.

Note:

All SQLJ statements, including declarations, start with the #sql token.

3.1.3.4 SQLJ Strong Typing Paradigm

ORACLE

SQLJ uses strong typing, such as iterators, instead of result sets. This enables the
SQL instructions to be checked against the database during translation. For example,
SQLJ can connect to a database and check your iterators against the database tables
that will be queried. The translator will verify that they match, enabling you to catch
SQL errors during translation that would otherwise not be caught until a user runs your
application. Furthermore, if changes are subsequently made to the schema, then you
can determine if these changes affect the application by rerunning the translator.

3-7

Chapter 3
Invoking Java Methods

3.1.3.5 Translating a SQLJ Program

Integrated development environments (IDEs), such as Oracle JDeveloper, can
translate, compile, and customize your SQLJ program as you build it. Oracle
JDeveloper is a Microsoft Windows-based visual development environment for Java
programming. If you are not using an IDE, then use the front-end SQLJ utility, sql j .
You can run it as follows:

9%qlj MyExanple.sql]j

The SQLJ translator checks the syntax and semantics of your SQL operations. You
can enable online checking to check your operations against the database. If you
choose to do this, then you must specify an example database schema in your
translator option settings. It is not necessary for the schema to have data identical to
the one that the program will eventually run against. However, the tables must have
columns with corresponding names and data types. Use the user option to enable
online checking and specify the user name, password, and URL of your schema, as in
the following example:

Usqlj -user=HR@dbc: oracle:thin: @ocal host:5521: orcl MyExanpl e. sql |
Password: password

3.1.3.6 Interaction with PL/SQL

All Oracle JDBC drivers communicate seamlessly with Oracle SQL and PL/SQL, and it
is important to note that SQLJ interoperates with PL/SQL. You can start using SQLJ
without having to rewrite any PL/SQL stored procedures. Oracle SQLJ includes syntax
for calling PL/SQL stored procedures and also lets you embed anonymous PL/SQL
blocks in SQLJ statements.

3.1.4 About Using the Command-Line Interface

ORACLE

The command-line interface to Oracle JVM is analogous to using the JDK or JRE shell
commands. You can:

e Use the standard - cl asspat h syntax to indicate where to find the classes to load
* Set the system properties by using the standard - D syntax

The interface is a PL/SQL function that takes a string (VARCHAR2) argument, parses it as
a command-line input and if it is properly formed, runs the indicated Java method in
Oracle JVM. To do this, PL/SQL package DBVS_JAVA provides the following functions:

° runjava
° runjava_in_current_session
runjava

This function takes the Java command line as its only argument and runs it in Oracle
JVM. The return value is null on successful completion, otherwise an error message.
The format of the command line is the same as that taken by the JDK shell command,
that is:

[option switches] name_of class_to_execute [argl arg2 ... argn]

3-8

ORACLE

Chapter 3
Invoking Java Methods

You can use the option switches -cl asspath, -D, -Xbootclasspath, and -jar. This
function differs from the runj ava_i n_current_sessi on function in that it clears any Java
state remaining from previous use of Java in the session, prior to running the current
command. This is necessary, in particular, to guarantee that static variable values
derived at class initialization time from - cl asspat h and - D arguments reflect the values
of those switches in the current command line.

FUNCTI ON runj ava(cndl i ne VARCHAR2) RETURN VARCHARZ;

runjava_in_current_session

This function is the same as the r unj ava function, except that it does not clear Java
state remaining from previous use of Java in the session, prior to executing the current
command line.

FUNCTI ON runj ava_i n_current _sessi on(cndl i ne VARCHAR2) RETURN VARCHARZ;

Syntax
The syntax of the command line is of the following form:

[-options] classname [arguments...]
[-options] -jar jarfile [argunents...]

Options

-classpath

-D

- Xboot cl asspat h

- Xboot cl asspath/ a
- Xboot cl asspat h/ p

.Cp

Note:

The effect of the first form is to run the main method of the class identified by
classname with the arguments. The effect of the second form is to run the
main method of the class identified by the Mai n- 0 ass attribute in the manifest
of the JAR file identified by JAR. This is analogous to how the JDK/JRE
interprets this syntax.

Argument Summary

The following table summarizes the command-line arguments.

Table 3-1 Command Line Argument Summary

__|
Argument Description

classpath Accepts a colon () separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives to search
for class files. In general, the value of - cl asspat h or similar
arguments refer to file system locations as they would in a standard
Java runtime. You also have an extension to this syntax to allow for
terms that refer to database resident Java objects and sets of bytes.

3-9

Chapter 3
Invoking Java Methods

Table 3-1 (Cont.) Command Line Argument Summary

__|
Argument Description

D Establishes values for system properties when there is no existing
Java session state. The default behavior of the command-line
interface, that is, the r unj ava function, is to terminate any existing
Java session prior to running the new command. On the other hand,
the alternative function, runj ava_i n_current _sessi on leaves any
existing session in place. So, values established with the - D option
always take effect when r unj ava function is used, but the values may
not take effect when runj ava_i n_current _sessi on function is used.

Xbootclasspath Accepts a colon () separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives. This
option is used to set search path for bootstrap classes and resources.

Xboot cl asspat h/ a Accepts a colon () separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives. This is
appended to the end of bootstrap class path.

Xboot cl asspat h/ p Accepts a colon () separated (semicolon-separated on Windows
systems) list of directories, JAR archives, and ZIP archives. This is
added in front of bootstrap class path.

cp Acts as a synonym of - ¢l asspat h.

Note:

System classes created by create java systemare always used before using
any file or folder that are found using the - Xboot cl asspat h option.

Related Topics:

* About Using the Command-Line Interface

3.1.5 Overview of Using the Client-Side Stub

ORACLE

Oracle Database 10g introduced the client-side stub, formerly known as native Java
interface, for calls to server-side Java code. It is a simplified application integration.
Client-side and middle-tier Java applications can directly call Java in the database
without defining a PL/SQL wrapper. The client-side stub uses the server-side Java
class reflection capability.

In previous releases, calling Java stored procedures and functions from a database
client required Java Database Connectivity (JDBC) calls to the associated PL/SQL
wrappers. Each wrapper had to be manually published with a SQL signature and a
Java implementation. This had the following disadvantages:

e The signatures permitted only Java types that had direct SQL equivalents
e Exceptions issued in Java were not properly returned

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), you can use the Oracle JVM
Web Services Call-Out Utility for generating the client-side stub.

3-10

Chapter 3
Invoking Java Methods

Related Topics:
* Architecture of Oracle JVM Web Services Call-Out Utility

3.1.5.1 Using the Default Service Feature

Starting from Oracle Database 11g release 1 (11.1), Oracle Database client provides a
new default connection feature. If you install Oracle Database client, then you need
not specify all the details of the database server in the connection URL. Under certain
conditions, Oracle Database connection adapter requires only the host name of the
computer where the database is installed.

For example, in the JDBC connection URL syntax, that is:

jdbc:oracle:driver_type:[username/ password] @//]host _name[: port][: ORCL]

,the following have become optional:

e /] is optional.
e :port is optional.

You must specify a port only if the default Oracle Net listener port (1521) is not
used.

e :ORCL or the service name is optional.

The connection adapter for Oracle Database Client connects to the default service
on the host. On the host, this is set to ORCL in the | i st ener. or a file.

Note:

Default service is a feature since Oracle Database 11g Release 1 (11.1). If
you use any version prior to Oracle Database 11g Client to connect to the
database, then you must specify the SI D.

3.1.5.2 Testing the Default Service with a Basic Configuration

ORACLE

The following code snippet shows a basic configuration of the |i st ener. ora file, where
the default service is defined:

MYLI STENER = (ADDRESS_LI| ST=(ADDRESS=(PROTOCOL=t cp) (HOST=t est ser ver 1) (PORT=1521)))
DEFAULT_SERVI CE_MYL| STENER=dbj f . app. myserver. com

SID LI ST_MYLI STENER = (SI D LI ST=(SI D_DESC=(S| D_NAVE=dbj f)

(GLOBAL_DBNAME=dbj f . app. nyserver. com) (ORACLE_HOVE=/test/oracl e))

)

After defining the i st ener. or a file, restart the listener with the following command:

I'snrctl start nylistener

Now, any of the following URLs should work with this configuration of the | i stener. ora
file:

e jdbc:oracle:thin: @/testserverl. nyserver.comcom

e jdbc:oracle:thin: @/testserverl. nyserver.com 1521

3-11

Chapter 3
How To Tell Whether You Are Running on the Server

e jdbc:oracle:thin: @estserverl. nyserver.com
° jdbc:oracle:thin: @estserverl. myserver.com 1521

* jdbc:oracle:thin: @DESCR PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=t est server 1. nyserver. con (PORT=1521)))

(
* jdbc:oracl e:thin: @DESCR PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=t est server 1. myserver. com))
(
(

* jdbc:oracl e:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=t est server 1. nyserver. con (PORT=1521)) (CONNECT_DATA=(SERVI CE_NAME=)))

3.2 How To Tell Whether You Are Running on the Server

You may want to write Java code that runs in a certain way on the server and in
another way on the client. In general, Oracle does not recommend this. In fact, JDBC
enable you to write portable code that avoids this problem, even though the drivers
used in the server and client are different.

If you want to determine whether your code is running on the server, then use the
System get Property() method, as follows:

System get Property ("oracle.jserver.version")
The get Property() method returns the following:

e A string that represents Oracle Database release, if running on the server

e null, if running on the client

3.3 About Redirecting Output on the Server

ORACLE

You can pass Java output to SQL statements to provide more extensive control over
the destination of output from Oracle JVM. The PL/SQL package DBMS_JAVA has been
enhanced by adding the following new functions, which provide extended functionality
to what was previously available only with the DBMS_JAVA. SET_OUTPUT procedure:

e set output_to_sql

* remove_output_to sql
* enable_output_to_sql

* disable_output to_sql

e query_output_to_sql

set_output_to_sql

set _out put _to_sgl defines a named output specification that constitutes an instruction
for executing a SQL statement, whenever output to the default System out and
System err streams occurs. The specification is defined either for the duration of the
current session, or till the renove_out put _to_sqgl function is called with its ID. The SQL
actions prescribed by the specification occur whenever there is Java output. This can
be stopped and started by calling the di sabl e_out put _to_sgl and enabl e_out put _t o_sq|
functions respectively. The return value of this function is null on success, otherwise
an error message.

3-12

ORACLE

Chapter 3
About Redirecting Output on the Server

FUNCTI ON set _out put _to_sqgl (id VARCHARZ,
stmt VARCHARZ,

bi ndi ngs VARCHAR?,

no_new i ne_stnt VARCHAR2 default null,
no_new i ne_bi ndi ngs VARCHAR2 default null,
new ine_only_stnm VARCHAR2 default null,
new i ne_only_bindi ngs VARCHAR2 default null,
maxi mum | i ne_segnent _| engt h NUMBER defaul t 0,
al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1,

i ncl ude_new i nes NUMBER default 0,

eager NUMBER default 0) return VARCHARZ;

Table 3-2 describes the arguments the set _out put _t o_sgl function takes.

Table 3-2 set_output_to_sql Argument Summary

___|
Argument Description

id The name of the specification. Multiple specifications may exist in the
same session, but each must have a distinct ID. The ID is used to
identify the specification in the functions r enove_out put _to_sql ,
enabl e_out put _to_sql, disable_output_to_sql, and
query_output _to_sql.

stmt The default SQL statement to execute when Java output occurs.

bindings A string containing tokens from the set ID, TEXT, LENGTH, LINENO,
SEGNO, NL, and ERROUT. This string defines how the SQL
statement st nt is bound. The position of a token in the bindings string
corresponds to the bind position in the SQL statement. The meanings
of the tokens are:

* IDis the ID of the specification. It is bound as a VARCHAR?2.

e TEXT is the text being output. It is bound as a VARCHAR2.

LENGTH is the length of the text. It is bound as a NUMBER.

* LINENO is the line number since the beginning of session output.
It is bound as a NUMBER.

* SEGNO is the segment number within a line that is being output
in more than one piece. It is bound as a NUMBER.

* NLis a boolean indicating whether the text is to be regarded as
newline terminated. It is bound as a NUMBER. The newline may
or may not actually be included in the text, depending on the
value of the i ncl ude_new i nes argument.

 ERROUT is a boolean indicating whether the output came from
System out or System err. Itis bound as a NUMBER. The value
is 0, if the output came from Syst em out .

no_newline_stmt An optional alternate SQL statement to execute, when the output is
not newline terminated.

no_newline_bindings A string with the same syntax as for the bindings argument discussed
previously, describing how the no_new i ne_st nt is bound.

newline_only_stmt An optional alternate SQL statement to execute when the output is a
single newline.

newline_only_bindings A string with the same syntax as for the bindings argument discussed
previously, describing how the newl i ne_onl y_st nt is bound.

3-13

ORACLE

Chapter 3
About Redirecting Output on the Server

Table 3-2 (Cont.) set_output_to_sql Argument Summary

Argument Description

maximum_line_segme The maximum number of characters that is bound in a given

nt_length execution of the SQL statement. Longer output sequences are broken
up into separate calls with distinct SEGNO values. A value of 0 means
no maxi mm

allow_replace Controls behavior when a previously defined specification with the

same ID exists. A value of 1 means replacing the old specification. 0
means returning an error message without modifying the old
specification.

from_stdout Controls whether output from Syst em out causes execution of the
SQL statement prescribed by the specification. A value of 0 means
that if the output came from Syst em out, then the statement is not
executed, even if the specification is otherwise enabled.

from_stderr Controls whether output from Syst em err causes execution of the
SQL statement prescribed by the specification. A value of 0 means
that if the output came from Syst em err, then the statement is not
executed, even if the specification is otherwise enabled.

include_newlines Controls whether newline characters are left in the output when they
are bound to text. A value of 0 means new lines are not included. But
the presence of the newline is still indicated by the NL binding and the
use of no_new i ne_stnt .

eager Controls whether output not terminated by a newline causes execution
of the SQL statement every time it is received, or accumulates such
output until a newline is received. A value of 0 means that
unterminated output is accumulated.

remove_output_to_sql

renove_out put _to_sqgl deletes a specification created by set _output _to_sql. If no such
specification exists, an error message is returned.

FUNCTI ON renove_out put _to_sql (id VARCHAR2) return VARCHARZ;

enable_output_to_sql

enabl e_out put _to_sgl reenables a specification created by set _out put _to_sqgl and
subsequently disabled by di sabl e_out put _to_sql . If no such specification exists, an
error message is returned. If the specification is not currently disabled, there is no
change.

FUNCTI ON enabl e_out put _to_sql (id VARCHAR2) return VARCHARZ;

disable_output_to_sql

di sabl e_out put _to_sql disables a specification created by set _out put_to_sql. You can
enable the specification by calling enabl e_out put _t o_sql . While disabled, the SQL
statement prescribed by the specification is not executed. If no such specification
exists, an error message is returned. If the specification is already disabled, there is no
change.

FUNCTI ON di sabl e_out put _to_sql (id VARCHAR2) return VARCHARZ;

3-14

ORACLE

Chapter 3
About Redirecting Output on the Server

query_output_to_sql

query_out put _to_sgl returns a message describing a specification created by
set _output _to_sgl. If no such specification exists, then an error message is returned.
Passing nul | to this function causes all existing specifications to be displayed.

FUNCTI ON query_output _to_sql (id VARCHAR2) return VARCHAR?;

Another way of achieving control over the destination of output from Oracle JVM is to
pass your Java output to an autonomous Java session. This provides a very general
mechanism for propagating the output to various kinds of targets, such as disk files,
sockets, and URLS. But, you must keep in mind that the Java session that processes
the output is logically distinct from the main session, so that there are no other,
unwanted interactions between them. To do this, PL/SQL package DBMS_JAVA provides
the following functions:

* set output_to java

° remove_output_to java
* enable_output_to_java

» disable_output to java
* query_output_to_java

e set output_to file

* remove_output_to_file

* enable_output_to_file

» disable_output_to file

e query_output_to_file

set_output_to_java

set _out put _to_j ava defines a named output specification that gives an instruction for
executing a Java method whenever output to the default Syst em out and Systemerr
streams occurs. The Java method prescribed by the specification is executed in a
separate VM context with separate Java session state from the rest of the session.

FUNCTI ON set _output _to_java (id VARCHARZ,
class_nanme VARCHARZ,

class_schema VARCHAR?,

met hod VARCHAR?,

bi ndi ngs VARCHAR?,

no_new i ne_net hod VARCHAR2 default null,
no_new i ne_bi ndi ngs VARCHAR2 default null,

new i ne_only_method VARCHAR2 default null,

new i ne_only_bindi ngs VARCHAR2 default null,
maxi mum | i ne_segnent | ength NUMBER defaul t O,
all ow repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1,

i ncl ude_new i nes NUMBER default 0,

eager NUMBER default 0,
initialization_statement VARCHAR2 default null,
finalization_statement VARCHAR2 default null)return VARCHARZ;

Table 3-3 describes the arguments the set _out put _t o_j ava method takes.

3-15

ORACLE

Chapter 3
About Redirecting Output on the Server

Table 3-3 set_output_to_java Argument Summary
|

Argument Description

class_name The name of the class defining one or more methods.

class_schema The schema in which the class is defined. A null value means the
class is defined in the current schema, or PUBLIC.

method The name of the method.

bindings A string that defines how the arguments to the method are bound.

This is a string of tokens with the same syntax as

set _out put _to_sql. The position of a token in the string determines
the position of the argument it describes. All arguments must be of
type INT, except for those corresponding to the tokens ID or TEXT,
which must be of type j ava. | ang. Stri ng.

no_newline_method An optional alternate method to execute when the output is not
newline terminated.

newline_only_method An optional alternate method to execute when the output is a single
newline.

initialization_statement An optional SQL statement that is executed once per Java session
prior to the first time the methods that receive output are executed.
This statement is executed in same Java VM context as the output
methods are executed. Typically such a statement is used to run a
Java stored procedure that initializes conditions in the separate VM
context so that the methods that receive output can function as
intended. For example, such a procedure might open a stream that
the output methods write to.

finalization_statement An optional SQL statement that is executed once when the output
specification is about to be removed or the session is ending. Like the
initialization_statenent, thisrunsinthe same JVM context as
the methods that receive output. It runs only if the initialization method
has run, or if there is no initialization method.

remove_output_to_java

renove_out put _to_j ava deletes a specification created by set _out put _to_j ava. If no such
specification exists, an error message is returned

FUNCTI ON renove_output _to_java (id VARCHAR2) return VARCHARZ;

enable_output_to_java

enabl e_out put _t o_j ava reenables a specification created by set _out put _to_j ava and
subsequently disabled by di sabl e_out put _to_j ava. If no such specification exists, an
error message is returned. If the specification is not currently disabled, there is no
change.

FUNCTI ON enabl e_out put _to_java (id VARCHAR2) return VARCHARZ;

disable_output_to_java

di sabl e_out put _to_j ava disables a specification created by set _out put _to_java. The
specification may be reenabled by enabl e_out put _to_j ava. While disabled, the SQL
statement prescribed by the specification is not executed. If no such specification
exists, an error message is returned. If the specification is already disabled, there is no
change.

3-16

Chapter 3
About Redirecting Output on the Server

FUNCTI ON di sabl e_out put _to_java (id VARCHAR2) return VARCHAR?;

query_output_to_java

query_out put _to_j ava returns a message describing a specification created by
set _output _to_java. If no such specification exists, an error message is returned.
Passing nul | to this function causes all existing specifications to be displayed.

FUNCTI ON query_output _to_java (id VARCHAR?) return VARCHARZ;

set_output_to_file

set _output _to_file defines a named output specification that constitutes an instruction
to capture any output sent to the default Syst em out and System err streams and
append it to a specified file. This is implemented using a special case of

set _output _to_java. The argument file_pat h specifies the path to the file to which to
append the output. The arguments al | ow repl ace, from stdout, and from stderr are
all analogous to the arguments having the same name as in set _out put _to_sql .

FUNCTI ON set _output _to file (id VARCHAR?,
file_path VARCHARZ,

al l ow_repl ace NUMBER defaul t 1,

fromstdout NUMBER default 1,

fromstderr NUMBER default 1) return VARCHAR?;

remove_output_to_file
This function is analogous to renove_out put _to_j ava.

FUNCTI ON renove_output _to_file (id VARCHAR2) return VARCHARZ;

enable_output_to_file
This function is analogous to enabl e_out put _to_j ava.

FUNCTI ON enabl e_output _to_file (id VARCHAR2) return VARCHARZ;

disable_output_to_file
This function is analogous to di sabl e_out put _to_j ava.

FUNCTI ON di sabl e_output _to file (id VARCHAR2) return VARCHAR?;

query_output_to_file
This function is analogous to query_out put _to_j ava.

FUNCTI ON query_output _to file (id VARCHAR2) return VARCHARZ;

The following DBMS_JAVA functions control whether Java output appears in the . trc file:

* PROCEDURE enabl e_output _to_trc;
* PROCEDURE disabl e _output_to_trc;
e FUNCTION query_output _to trc return VARCHARZ;

ORACLE 3-17

Chapter 3
About Redirecting Output on the Server

Note:

Prior to 11g release 1 (11.1), the fact that Java output appeared in the . trc file
was not modifiable.

Redirecting the output to SQL*Plus Text Buffer

As in previous releases, you can use the DBVMS_JAVA package procedure SET_QUTPUT to
redirect output to the SQL*Plus text buffer:

SQ.> SET SERVEROUTPUT ON
SQ> CALL dbns_j ava. set _out put (2000) ;

The minimum and default buffer size is 2,000 bytes and the maximum size is
1,000,000 bytes. In the following example, the buffer size is increased to 5,000 bytes:

SQ.> SET SERVEROQUTPUT ON S| ZE 5000
SQ> CALL dbns_j ava. set _out put (5000) ;

The output is displayed at the end of the call.

ORACLE 3-18

Java Installation and Configuration

This chapter describes how to install and configure Oracle JVM. It also describes how
to enable the Java client. This chapter covers the following topics:

e About Initializing a Java-Enabled Database
e Configuring Oracle JVM

e The DBMS_JAVA Package

e Enabling the Java Client

* Two-Tier Duration for Java Session State

e About Setting System Properties

4.1 Initializing a Java-Enabled Database

If you install Oracle Database with Oracle JVM option, then the database is Java-
enabled. That is, it is ready to run Java stored procedures and Java Database
Connectivity (JDBC).

This section contains the following topics:

» Configuring the Oracle JVM Option within the Oracle Database Template
* Modifying an Existing Oracle Database to Include Oracle JVM

4.1.1 Configuring the Oracle JVM Option within the Oracle Database

Template

Configure Oracle JVM option within the database template. This is the recommended
method for Java installation.

The Database Configuration Assistant enables you to create database templates for
defining what each database instance installation will contain. Choose Oracle JVM
option to have the Java platform installed within your database.

4.1.2 Modifying an Existing Oracle Database to Include Oracle JVM

ORACLE

If you have already installed Oracle Database without Oracle JVM, then you can add
Java to your database through the modify mode of the Database Configuration
Assistant of Oracle Database 12¢ Release 1 (12.1). The modify mode enables you to
choose the features, such as Oracle JVM, that you would like to install on top of an
existing Oracle Database instance.

4-1

Chapter 4
Configuring Oracle JVM

4.2 Configuring Oracle JVM

Before you install Oracle JVM as part of your standard Oracle Database installation,

you must ensure that the configuration requirements for Oracle JVM are fulfilled. The
main configuration for Java classes within Oracle Database includes configuring the:
e Java memory requirements

You must have at least 50 MB of JAVA_POOL_SI ZE and 96 MB of SHARED POOL_SI ZE.

Note:

Oracle recommends that you increase the JAVA POOL_SI ZE and
SHARED POOL_SI ZE values when using large Java applications, or when a large
number of users are running Java in the database.

« Database processes

You must decide whether to use dedicated server processes or shared server
processes for your database server.

Note:

Oracle recommends that you use dedicated servers. Shared server incurs
extra Java states save in the database session, in SGA, at the end of the Java
call.

Related Topics:

e About Java Memory Usage

4.3 The DBMS_JAVA Package

Installing Oracle JVM creates the DBVS_JAVA PL/SQL package. The DBVS_JAVA package
functions can be used by both Database server and Database clients. The
corresponding Java class, DbnsJava, provides methods for accessing database
functionality from Java.

Related Topics:
- DBMS_JAVA Package

4.4 Enabling the Java Client

To run Java between the client and server, your must perform the following activities:

1. Installing Java SE on the Client

2. Setting Up Environment Variables

ORACLE 4-2

Chapter 4
Enabling the Java Client

4.4.1 Installing Java SE on the Client

The client requires Java Development Kit (JDK) 1.6 or later. To confirm the version of
JDK you are using, run the following commands on the command line:

$ which java
{usr/local/jdkl.6.0_26/bin/java

$ which javac
{usr/local/jdkl.6.0_26/bin/javac

$ java -version
java version "1.6.0_26"

4.4.2 Setting Up Environment Variables

ORACLE

After installing JDK on your client, add the directory path to the following environment
variables:

o $JAVA HOME

This variable must be set to the top directory of the installed JDK base.
* $PATH

This variable must include $JAVA HOVE/ bi n.
* $LD_LIBRARY_PATH

This variable must include $JAVA HOVE/ | i b,

JAR Files Necessary for Java Clients

To ensure that the Java client successfully communicates with the server, include the
following files in the CLASSPATH:

Note:

Specifics of CLASSPATH requirements may vary for Oracle JVMs running on
different platforms. You must ensure that all elements of CLASSPATH, as defined
in the script for Oracle JVM utilities, are present.

* For JDK 8, include $JAVA HOVE/ li b/ dt. jar
e For JRE 8, include $JAVA_HOME/ li b/rt . jar
* For any interaction with JDBC, include $ORACLE_HOME/ j dbc/ | i b/ oj dbc8. j ar

* For any client that uses SSL, include $ORACLE HOME/ j i b/jssl-1_2.jar
and $ORACLE_HOME/ j | i b/ j avax-ssl-1_2.jar

* For any client that uses the Java Transaction APl (JTA) functionality,
include $ORACLE HOME/ jlib/jta.jar

* For any client that uses the Java Naming and Directory Interface (JNDI)
functionality, include $ORACLE_HOVE/ j I b/ ndi.jar

4-3

Chapter 4
Two-Tier Duration for Java Session State

Server Application Development on the Client

If you develop and compile your server applications on the client and want to use the
same Java Archive (JAR) files that are loaded on the server, then

include $ORACLE_HOME/ | i b/ aur or a. zi p in CLASSPATH. This is not required for running Java
clients.

4.5 Two-Tier Duration for Java Session State

Prior to 11g release 1 (11.1), Java session state was single-tier, which included all
values associated with running Java, such as System property values and static
variable values, the set of classes loaded during the session and so on. The duration
of this state used to start with the first invocation of a Java method in the RDBMS
session and it used to last till JVM exited, either due to a call to j ava. | ang. Syst em exi t
or similar Oracl eRunti me methods, an uncaught exception, a fatal error, or the end of
the RDBMS session. This required modifying Java code and also failed to fully
complete the termination of the session before the end of the RDBMS call. This made
it impossible to start a new Java session within the same call.

Starting with 11g release 1 (11.1), Java session state is split into two tiers. One tier
has a longer duration and it encompasses the duration of the other tier. The duration
of the shorter tier is the same as before, that is, it starts when a Java method is
invoked and ends when JVM exits. The duration of the longer tier starts when a Java
method is invoked in the RDBMS session for the first time. This session lasts until the
RDBMS session ends or the session is explicitly terminated by a call to the function
dbms_j ava. endsessi on_and_rel at ed_st at e. This is addressed by the addition of the
following two PL/SQL functions to the DBVMS_JAVA package, which account for the two
kinds of Java session duration:

e FUNCTI ON endsessi on RETURN VARCHAR?;

This function clears any Java session state remaining from previous execution of
Java in the current RDBMS session. The return value is a message indicating the
action taken.

* FUNCTI ON endsession_and rel ated state RETURN VARCHARZ;

This function clears any Java session state remaining from previous execution of
Java in the current RDBMS session and all supporting data related to running
Java, such as property settings and output specifications. The return value is a
message indicating the action taken.

Most of the values associated with running Java remain in the shorter tier. The values
that can be useful for multiple invocations of JVM have been moved to the longer tier.
For example, the system property values established by dbns_j ava. set _property and
the output redirection specifications.

Related Topics:
e About Setting System Properties
e About Redirecting Output on the Server

4.6 About Setting System Properties

Within an RDBMS session you can maintain a set of values that are added to the
system properties whenever a Java session is started in the RDBMS session. This set

ORACLE 4-4

ORACLE

Chapter 4
About Setting System Properties

of values remains valid for the duration of the longer tier of Java session state, which
is typically the same as the duration of the RDBMS session.

There is a set of PL/SQL functions in the DBMS_JAVA package for setting, retrieving,
removing and displaying key value pairs in an internal, RDBMS session duration table,
where both elements of a pair are strings (VARCHAR?) and there is at most one pair for a
given key. These functions are as follows:

+ set_property
+ get_property
+ remove_property

e show_property

set_property

This function establishes a value for a system property that is then used for the
duration of the current RDBMS session, whenever a Java session is initialized. The
first argument is the name of the property and the second is the value to be
established for it. The return value for set _property is null unless there is some error.
For example, if an attempt is made to set a value for a prescribed property, then an
error message is returned.

FUNCTI ON set _property(name VARCHAR2, val ue VARCHAR2) RETURN VARCHARZ;

get_property

This function returns any value previously established by set _property. It returns null if
there is no such value.

FUNCTI ON get _property(name VARCHAR2) RETURN VARCHARZ;

remove_property

This function removes any value previously established by set_property. The return
value is null unless an error occurred, in which case an error message is returned.

FUNCTI ON renove_property(name VARCHAR2) RETURN VARCHARZ;

show_property

This function displays a message of the form nane = val ue for the input name, or for all
established property bindings, if name is null. The return value for this function is null
on successful completion, otherwise it is an error message. The output is displayed to
wherever you have currently directed your Java output.

FUNCTI ON show _property(name VARCHAR2) RETURN VARCHARZ;

Before initializing the Java session, the values from this table are added to the set of
default system property values already maintained by Oracle JVM. When you run a
Java method by using the command-line interface, the values determined by the -D
option, if present, override the values set in the table. As soon as you terminate the
Java session, the values established by the - D option become obsolete and the keys
are set to the original values as present in the table.

Related Topics:

e Two-Tier Duration for Java Session State

4-5

Introduction to Nashorn JavaScript Engine

Nashorn JavaScript engine enables running JavaScript directly in the database. The
ability to reuse existing client-side JavaScript in the database, and then combining it
with the Java SE libraries, enables the design of rich, powerful, and versatile data-
bound applications that can run directly in RDBMS sessions. This section describes
the Nashorn JavaScript Engine in the following sections:

e About Using Nashorn JavaScript Engine
« JavaScript Data Access using JDBC
 REST Enable Your JavaScript Application

5.1 About Using Nashorn JavaScript Engine

ORACLE

One of the important features of Java 8 is the Nashorn JavaScript engine. Starting
from Oracle Database 12¢ Release 2 (12.2.0.1), Oracle JVM supports Java 8, so you
can execute JavaScript in the database using the Nashorn JavaScript engine, built into
Oracle JVM running Java 8 codebase. Executing JavaScript directly in the database
provides the following benefits:

See Also:

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/
api.htmi

Benefits of Running JavaScript in Oracle Database

* Reusing existing skills and code.

» Avoiding shipping data residing in Oracle Database. Executing JavaScript in the
database enables in-place and faster processing of JSON documents inside the
database. This enables avoiding shipping data to external infrastructure and
improving performance as network overhead is avoided.

« Achieving new database capabilities.

For running JavaScript code, using the Nashorn engine of 12.2 Oracle JVM in your
sessions, your schema must be granted the DBJAVASCRIPT role. This role includes
the permissions that are required to run Nashorn in the database. The role can be
granted by your DBA and must be done only once per user.

The preferred way to maintain JavaScript sources in Oracle Database is to load them
into your schema as Java resources and then run the scripts within the database.

5-1

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.html

Chapter 5
About Using Nashorn JavaScript Engine

Note:

» The direct invocation of Nashorn classes is restricted in Oracle JVM.
* All scripting mode extensions are disabled in Oracle JVM.

* You can run scripts either from strings or from file streams, using standard
scripting APIs, but Oracle does not recommend it. Scripts invoked in this
way can run only in sandboxed mode, with the default permissions.

5.1.1 Loading JavaScript Code into a Schema

ORACLE

Use the | oadj ava command to load your JavaScript code into your database schema.
Scripts are loaded as Java resources. For example, suppose you have a JavaScript
file hel l 0. j s as follows:

function hello()

{

/*

*This is a sanple Javascript file that prints "Hello Wrld".
*/

var hellow = "Hello Wrld";

return hell ow

}

var output = hello();
print(output);

Use the following command to load the hel | 0. j s script file into a schema named
your schem:

| oadj ava -v -u yourschema hello.js

The | oadj ava command prompts you for a password and then creates a schema-local
resource hel | 0. j s with the following output:

argunents: '-u' 'yourschema/***' '-v' 'hello.js'
creating : resource hello.js
|oading : resource hello.js
Cl asses Loaded: 0

Resour ces Loaded: 1

Sour ces Loaded: 0

Publ i shed Interfaces: 0

Cl asses generated: 0

C asses skipped: 0

Synonyns Created: 0

Errors: 0

You can also use the following command to verify whether you have successfully
loaded the hel | 0. | s file into the database or not:

sel ect object_name, object_type fromuser_objects;

This resource can then be passed to the Nashorn engine using the ways mentioned in
the following sections:

5-2

Chapter 5
About Using Nashorn JavaScript Engine

5.1.2 How to run JavaScript in Oracle JVM

After loading the scripts in the database, you can run them in the following three ways:
e Using the DBMS_JAVASCRIPT.RUN PL/SQL Procedure
e Using the DbmsJavaScript Java Class

e Using the Standard javax.script Java Package

5.1.2.1 Using the DBMS_JAVASCRIPT.RUN PL/SQL Procedure

This approach is useful for JavaScript procedures that do not return any value. Invoke
the DBMS_JAVASCRI PT. RUN procedure for providing the resource name as the argument.
Make sure that your schema is granted the DBJAVASCRI PT role. The DBVS_JAVASCRI PT. RUN
procedure is a wrapper for the oracl e. auror a. r dbns. DonsJavaScri pt . run Java method,
which invokes Nashorn functionality internally.

From SQL

call dbns_javascript.run('hello.js");

If your JavaScript code returns an output value, then you must use the following
instructions to display the value on the standard output device:

SQ>set serveroutput on
SQ.>cal | dbms_j ava. set _out put (20000) ;
SQ.>cal | dbms_j avascript.run("hello.js");

From PL/SQL.:

dbns_j avascript.run(' hello.js");

If your JavaScript code returns an output value, then you must use the following
instructions to display the value on the standard output device:

SQL>set serveroutput on
SQ.>cal | dbns_j ava. set _out put (20000) ;
SQ.>cal | dbns_javascript.run("hello.js");

5.1.2.2 Using the DbmsJavaScript Java Class

This is the preferred way to invoke the scripts from Java code in Oracle JVM because
it enables you to apply the schema permissions to the JavaScript code. Invoke the
JavaScript that you loaded as resource hel | 0. j s from your Java code running in the
database. Invoke the method run of or acl e. aur or a. r dbrs. DonsJavaScri pt class, passing
in the resource name as the argument, as shown in the following code snippet:

Note:

Make sure that your schema is granted the DBJAVASCRI PT role.

ORACLE 5-3

Chapter 5
About Using Nashorn JavaScript Engine

i mport oracl e.aurora.rdbns. DomsJavaScri pt;

DonsJavaScript.run("hello.js");

5.1.2.3 Using the Standard javax.script Java Package

ORACLE

This approach is useful for JavaScript functions that return values. Typically, you
perform the following tasks:

Note:

You must make sure that your schema is granted the DBJAVASCRI PT role.

1. Load the JavaScript in the database as a Java resource, using the | oadj ava
command.

Use the j avax. scri pt package to run the JavaScript.
Instantiate a script manager

Create an engine

g H w D

Pass your resource stream reader as the argument to the eval method of the
engine

The following code snippet shows how to use the j avax. scri pt package to run code
from resource hello.js:

import javax.script.*;
inport java.net.*;
inport java.io.*;

Il create a script engine manager
Scri pt Engi neManager factory = new Scri pt Engi neManager () ;
Il create a JavaScript engine
Script Engi ne engine =
factory. get Engi neByNane("j avascript");
Il create schema resource URL
URL url = Thread. current Thread()
. get Cont ext O assLoader (). get Resource("hello.js");
engi ne. eval (new | nput StreanReader (url.openStreanm()));

You can also read the JavaScript code from a String. The following code snippet
shows how to read and evaluate JavaScript code from a String:

/'l evaluate JavaScript code from String
engi ne. eval (new StringReader (<script>));

Otherwise, you can also read the JavaScript code from a file. However, this involves
extra privileges. The following code snippet shows how to read and evaluate
JavaScript code from the scri pt _nane file:

inport javax.script.*;

Scri pt Engi ne engine = new Scri pt Engi neManager ()

5-4

ORACLE

Chapter 5
About Using Nashorn JavaScript Engine

. get Engi neByName(" JavaScript");

engi ne. eval (new Fi | eReader ("scri pt_name"));

After evaluating the JacaScript code, you typically perform the following tasks for
invoking JavaScript functions:

1.

Cast the Nashorn engine to | nvocabl e and use i nvokeFuncti on.

For example, if the hel | 0. j s script defines a JavaScript function named hel | o, then
you can perform these tasks as shown in the following code snippet:

/1 create a JavaScript engine as above
I nvocabl e invocabl e = (Invocabl e) engine;
(oj ect myResult = invocabl e.invokeFunction("hello");

Note:

An alternative way to use the i nvocabl e. i nvokeFunct i on is to pass the return
value to a Java method invoked from inside of a script. This alternative way is
preferable as it requires less boilerplate code and is compatible with the
DBMSJAVASCRI PT. RUN procedure.

For example, suppose your JavaScript resource hel | 0. j s defines the
sel ect Query function, and you want to pass the result to the print () Java
method, which is defined in your class QueryTest as follows:

public static void print (String results) {
Systemout.printIn("m results: \n" + results);

}

Then, to achieve this from JavaScript, add the following lines to the hel l 0. s
file:

var queryTest = Java.type("QueryTest");
queryTest. print(sel ect Query("all"));

Now, invoke hel | p. j s in one of the following ways:

DonsJavaScript.run("hello.js");

DBMVB_JAVASCRI PT. RUN(' hel 1 0.} s');

Create a PL/SQL procedure for invoking the JavaScript application, as shown in
the following example:

- Create a procedure for select
CREATE OR REPLACE PROCEDURE sel ectproc(id I'N varchar2)
IS
out put varchar2(10000);
BEG N
SELECT invokeScriptEval (id) INTO output from dual;
ht p. prn(out put);
END;
/
SHOW ERRCRS;

5-5

Chapter 5
JavaScript Data Access using JDBC

5.2 JavaScript Data Access using JDBC

ORACLE

This section describes how to access data in RDBMS using JavaScript. Currently,
there is no JavaScript standard for accessing data in RDBMS. The Nashorn
JavaScript engine enables using standard JDBC within JavaScript.

Perform the following steps to publish your application using JDBC with JavaScript as
a service:

1.

Create a table in the database and populate it using JSON, as shown in the
following example:

DROP TABLE enpl oyees PURGE;

CREATE TABLE enpl oyees (

id RAW 16) NOT NULL,

data CLOB,

CONSTRAI NT enpl oyees_pk PRI MARY KEY (id),

CONSTRAI NT enpl oyees_j son_chk CHECK (data IS JSON)

);
TRUNCATE TABLE enpl oyees;

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS_QUI),

{
"Enpl d" "100",
"FirstNane" : "Kuassi",
"Last Namre" "Mensah",
"Job" " Manager ",
"Emai | " "kuassi @r acl e. cont',
"Address" : {
"Cty" : "Redwood",
"Country" : "US"
}
)

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS_QUI),

{

"Enpl d" "200",

"FirstName" : "Nancy",

"Last Name" "G eenberg",

"Jobh" " Manager ",

"Emai | " "Nancy@r acl e. cont',

"Address" : {
"City" : "Boston",
"Country" : "US"

}
)

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS_QUI),

{
" Enpl d" "300",
"FirstNane" : "Suresh",
"Last Name" "Mhan",
"Jobh" "Devel oper",
"Emai | " " Suresh@r acl e. cont',
"Address" : {

5-6

ORACLE

Chapter 5
JavaScript Data Access using JDBC

"City" : "Bangalore",
“Country" : "India"
}
')

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS GUI D),

H
" Enpl d" . "400",
"FirstName" : "N rnala",
"Last Name" : "Sundarappa",
"Job" . "Manager",
"Emai | " © "N rmal a@r acl e. cont',
"Address" : {
"City" : "Redwood",
"Country" : "US"
}
')

I NSERT | NTO enpl oyees (id, data)
VALUES (SYS GUI D),

{
" Enpl d" . "500",
"FirstName" : "Amarnath",
"Last Name" : "Chandana",
"Job" . "Test Devl oper"”,
"Emai | " . "amar nat h@r acl e. cont',
"Address" : {
"City" . "Bangalore",
"Country" : "India"
}
P

Write a JavaScript application using JDBC, as shown in the following example and
load the JavaScript code into a schema:

var sel ectQery = function(id)

{
var Driver = Packages. oracle.jdbc. OracleDriver;
var oracleDriver = new Driver();
var url = "jdbc:defaul t:connection:";
var output =""
var connection = oracl eDriver. defaul t Connection();
var prepStnt;

/'l Prepare statenent
if(id=="all") {
prepStmt = connecti on. prepareSt at ement (" SELECT a. data FROM enpl oyees a");
} else {
prepStnt = connection. prepareSt at ement (" SELECT a. data FROM enpl oyees a
WHERE a. data. Enpld = ?");
prepStnt.setint(1, id);
}

/] execute Query
var resultSet = prepStnt.executeQuery();

/] display results
whil e(resultSet.next()) {
output = output + resultSet.getString(1l) + "
";

}

5-7

ORACLE

Chapter 5
JavaScript Data Access using JDBC

/1 cl eanup
resul t Set.cl ose();
prepStnt.close();
connection. cl ose();
return output;

}

Create a Java resource, as shown in the following example:

create or replace and conpile java source naned "InvokeScript" as
i mport javax.script.*;

inport java.net.*;

inport java.io.*;

public class InvokeScript {
public static String eval (String inputld) throws Exception {
String output = new String();
try {
Il create a script engine manager
Scri pt Engi neManager factory = new Scri pt Engi neManager () ;

/'l create a JavaScript engine
Script Engi ne engine = factory. get Engi neByName("j avascript");

//read the script as a java resource
engi ne. eval (new
I nput St reanmReader (| nvokeScri pt. cl ass. get Resour ceAsStrean("sel ect.js")));
/1 Alternative approach
/1
engi ne. eval (Thread. current Thread() . get Cont ext G assLoader (). get Resource("select.js

"))

I nvocabl e i nvocabl e = (Invocabl e) engine;
vj ect sel ectResult = invocable.invokeFunction("sel ectQuery", inputld);
output = selectResult.toString();
} catch(Exception e) {
out put =e. get Message();

}
}

return output;

}
/

Create a wrapper for the eval method of the engine, as shown in the following
example:

- Create function
CREATE OR REPLACE FUNCTI ON i nvokeScri pt Eval (i nputld varchar2) return varchar2 as
| anguage java
nane 'l nvokeScript.eval (java.lang. String) return java.lang.String';
/

Invoke the i nvokeScri pt Eval JavaScript function from SQL, as shown in the
following example:

CREATE OR REPLACE PROCEDURE sql demp(id IN varchar2)
IS
out put varchar2(10000);
BEG N
SELECT i nvokeScriptEval (id) INTO output from dual;
dbns_out put. put _I'i ne(out put);
END,

5-8

Chapter 5
REST Enable Your JavaScript Application

/
SHOW ERRCRS;

Invoke the sgl demo procedure from SQL, as shown in the following example:

SQ> set serveroutput on
SQ> cal | dbns_j ava. set _out put (5000) ;
SQ> cal | sql denmo(' 100');

Related Topics:

REST Enable Your JavaScript Application

5.3 REST Enable Your JavaScript Application

ORACLE

Perform the following steps to make your JavaScript application a cloud-enabled
service using Oracle REST Data Services (ORDS):

1.

Download the Oracle REST Data Services (ORDS) installer file from the following
location:

http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/
index.html

Note:

e You can perform similar steps for making your Java in the Database
application a cloud-enabled service using Oracle REST Data Services
(ORDS).

e For installing ORDS, you must have a USERS tablespace with at least 40
MB space.

Install ORDS by selecting the default options, except the following:

e When it prompts whether you want to use PL/SQL Gateway or not, select 2 for
skipping the step.

e When it prompts you to specify passwords for Application Express RESTful
Services database users (APEX_LISTENER, APEX_REST_ PUBLIC_USER),
select 2 for skipping the step.

e When it prompts whether you wish to start the service in standalone mode or
exit, select 1 for starting the service in standalone mode.

Assign a listening port to the service. By default, port 8080 is used, but you may
change this value in the ords_parans. properti es file under the . ../ parans directory.
Then, use the following command to bounce the jersey server:

java -jar ords.war

Create a procedure similar to the following as a wrapper to the i nvokeScri pt Eval
method:

Rem Create a procedure for select
CREATE OR REPLACE PROCEDURE sel ectproc(id IN varchar2)
IS
out put varchar2(10000);
BEG N

5-9

http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/rest-data-services/downloads/index.html

ORACLE

Chapter 5
REST Enable Your JavaScript Application

SELECT invokeScript Eval (i d) | NTO output from dual;
ht p. prn(out put);

END,

/

SHOW ERRCRS;

Create a procedure similar to the following for executing an external JavaScript
SELECT query:

begin
ords. create_service(
p_nodul e_nane => 'l oad.routes' ,
p_base_path =>'/load/routes/",

p_pattern => 'nashorn/sel ectbyid/:id",
p_source_type => 'plsql/block',
p_source => 'begin selectproc(:id); end;’
)
comit;
end;
/

Invoke the service from your browser, where the URL will be of the following
format:

http://<server>: <port>/ ords/ <workspace>/| oad/ r out es/ nashor n/ <your _JSON_query>/
<i nput >

For example:

http:// 1 ocal host: 8090/ ords/ ordstest/| oad/ rout es/ nashorn/ sel ect byi d/ 100

Here, 100 specifies the employee ID of the employee, whose details need to be
fetched. The following image illustrates the output:

5-10

Chapter 5
REST Enable Your JavaScript Application

Figure 5-1 Output of the JavaScript Application

"} Mozilla Firefox T

/8 Ehttp:,.l',flocal...ectbyidfallé-x \ 4k

P T

¥ | € @ localhost:8090/ords/ordstest/load/routes/nashom/selectbyid/a v@|| =

{ "Empld" : "100", "FirstName" : "Kuassi", "LastName" : "Mensah", "Job" :
"Manager", "Email" : "kuassi@oracle.com", "Address" : { "City" :
"Redwood", "Country" : "US" } }

{ "Empld" : "200", "FirstName" : "Nancy", "LastName" : "Greenberg",
"Job" : "Manager", "Email" : "Nancy@oracle.com", "Address" : { "City" :
"Boston", "Country" : "US" } }

{ "Empld" : "300", "FirstName" : "Suresh", "LastName" : "Mohan", "Job" :
"Developer”, "Email" : "Suresh@oracle.com", "Address" : { "City" :
"Bangalore", "Country" : "India" } }

{ "EmplId" : "400", "FirstName" : "Nirmala", "LastName" : "Sundarappa",
"Job" : "Manager", "Email" : "Nirmala@oracle.com", "Address" : { "City" :
"Redwood", "Country"” : "US" } }

{ "Empld" : "500", "FirstName" : "Amarnath", "LastName" : "Chandana",
"Job" : "Test Devloper”, "Email" : "amarnath@oracle.com", "Address" : {
"City" : "Bangalore”, "Country" : "India" } }

The output is displayed in JSON format.

ORACLE 5-11

Developing Java Stored Procedures

Oracle JVM has all the features you must build a new generation of enterprise-wide
applications at a low cost. The most important feature is the support for stored
procedures. Using stored procedures, you can implement business logic at the server
level, thereby improving application performance, scalability, and security.

This chapter contains the following sections:

» Stored Procedures and Run-Time Contexts
* Advantages of Stored Procedures

* Running Java Stored Procedures

* Debugging Java Stored Procedures

6.1 Stored Procedures and Run-Time Contexts

ORACLE

Stored procedures are Java methods published to SQL and stored in the database for
general use. To publish Java methods, you write call specifications, which map Java
method names, parameter types, and return types to their SQL counterparts.

Unlike a wrapper, which adds another layer of execution, a call specification publishes
the existence of a Java method. As a result, when you call the method through its call
specification, the run-time system dispatches the call with minimal overhead.

When called by client applications, a stored procedure can accept arguments,
reference Java classes, and return Java result values.

Figure 6-1 shows a stored procedure being called by various applications.

Figure 6-1 Calling a Stored Procedure

Applications m
/—pp\ Oracle Database
hire_emp(...); \\/
Stored Procedure
-) - .
hire_emp(...); - hire_emp(...)
P
—
-
hire_emp(...); v
-

6-1

Chapter 6
Stored Procedures and Run-Time Contexts

Except for graphical user interface (GUI) methods, Oracle JVM can run any Java
method as a stored procedure. The run-time contexts are:

* Functions and Procedures
- Database Triggers
* Object-Relational Methods

6.1.1 Functions and Procedures

Functions and procedures are named blocks that encapsulate a sequence of
statements. They are building blocks that you can use to construct modular,
maintainable applications.

Generally, you use a procedure to perform an action and a function to compute a
value. Therefore, you use procedure call specifications for voi d Java methods and
function call specifications for value-returning methods.

Only top-level and package-level PL/SQL functions and procedures can be used as
call specifications. When you define them using the SQL CREATE FUNCTI ON, CREATE
PROCEDURE, or CREATE PACKAGE statement, they are stored in the database, where they
are available for general use.

Java methods published as functions and procedures must be invoked explicitly. They
can accept arguments and are callable from:

* SQL data manipulation language (DML) statements
e SQL CALL statements
e PL/SQL blocks, subprograms, and packages

6.1.2 Database Triggers

A database trigger is a stored procedure that is associated with a specific table or
view. Oracle Database calls the trigger automatically whenever a given DML operation
modifies the table or view.

A trigger has the following parts:

» Atriggering event, which is generally a DML operation
* An optional trigger constraint

* Atrigger action

When the event occurs, the trigger is called. A CALL statement in the trigger calls a
Java method through the call specification of the method, to perform the action.

Database triggers are used to enforce complex business rules, derive column values
automatically, prevent invalid transactions, log events transparently, audit transactions,
and gather statistics.

6.1.3 Object-Relational Methods

A SQL object type is a user-defined composite data type that encapsulates a set of
variables, called attributes, with a set of operations, called methods, which can be
written in Java. The data structure formed by the set of attributes is publ i c. However,

ORACLE 6-2

Chapter 6
Advantages of Stored Procedures

as a good programming practice, you must ensure that your application does not
manipulate these attributes directly and uses the set of methods provided.

You can create an abstract template for some real-world object as a SQL object type.
The template specifies only those attributes and methods that the object will need in
the application environment. At run time, when you fill the data structure with values,
you create an instance of the object type. You can create as many instances as
required.

Typically, an object type corresponds to some business entity, such as a purchase
order. To accommodate a variable number of items, object types can use a VARRAY, a
nested table, or both.

For example, the purchase order object type can contain a variable number of line
items.

6.2 Advantages of Stored Procedures

Stored procedures offer several advantages. The following advantages are covered in
this section:

* Performance

e Productivity and Ease of Use
e Scalability

e Maintainability

* Interoperability

* Replication

e Security

6.2.1 Performance

Stored procedures are compiled once and stored in an executable form. As a result,
procedure calls are quick and efficient. Executable code is automatically cached and
shared among users. This lowers memory requirements and invocation overhead.

By grouping SQL statements, a stored procedure allows the statements to be
processed with a single call. This reduces network traffic and improves round-trip
response time.

Additionally, stored procedures enable you to take advantage of the computing
resources of the server. For example, you can move computation-bound procedures
from client to server, where they will run faster. Stored functions enhance performance
by running application logic within the server.

6.2.2 Productivity and Ease of Use

ORACLE

By designing applications around a common set of stored procedures, you can avoid
redundant coding and increase the productivity. Moreover, stored procedures let you
extend the functionality of the database.

You can use the Java integrated development environment (IDE) of your choice to
create stored procedures. They can be called by standard Java interfaces, such as
Java Database Connectivity (JDBC), and by programmatic interfaces and

6-3

Chapter 6
Advantages of Stored Procedures

development tools, such as SQLJ, Oracle Call Interface (OCI), Pro*C/C++, and
JDeveloper.

This broad access to stored procedures lets you share business logic across
applications. For example, a stored procedure that implements a business rule can be
called from various client-side applications, all of which can share that business rule.
In addition, you can leverage the Java facilities of the server while continuing to write
applications for a preferred programmatic interface.

6.2.3 Scalability

Java in the database inherits the scalable session model of Oracle Database. Stored
procedures increase scalability by isolating application processing on the server. In
addition, automatic dependency tracking for stored procedures helps in developing
scalable applications.

6.2.4 Maintainability

After a stored procedure is validated, you can use it with confidence in any number of
applications. If its definition changes, then only the procedure is affected, not the
applications that call it. This simplifies maintenance and enhancement. Also,
maintaining a procedure on the server is easier than maintaining copies on different
client computers.

6.2.5 Interoperability

Java in Oracle Database fully conforms to the Java Language Specification (JLS) and
furnishes all the advantages of a general-purpose, object-oriented programming
language. Also, as with PL/SQL, Java provides full access to Oracle data. As a result,
any procedure that is written in PL/SQL can also be written in Java.

PL/SQL stored procedures complement Java stored procedures. Typically, SQL
programmers who want procedural extensions favor PL/SQL, and Java programmers
who want easy access to Oracle data favor Java.

Oracle Database allows a high degree of interoperability between Java and PL/SQL.
Java applications can call PL/SQL stored procedures using an embedded JDBC
driver. Conversely, PL/SQL applications can call Java stored procedures directly.

6.2.6 Replication

With Oracle Advanced Replication, you can replicate stored procedures from one
Oracle Database instance to another. This enables you to use stored procedures to
implement a central set of business rules. Once you write the procedures, you can
replicate and distribute them to work groups and branch offices throughout the
company. In this way, you can revise policies on a central server rather than on
individual servers.

6.2.7 Security

Security is a large arena that includes:

* Network security for the connection

ORACLE 6-4

Chapter 6
Running Java Stored Procedures

» Access and execution control of operating system resources or of JVM and user-
defined classes

* Bytecode verification of JAR files imported from an external source.

In Oracle Database, all classes are loaded into a secure database and, therefore, are
untrusted. A user requires the appropriate permissions to access classes and
operating system resources. Likewise, all stored procedures are secured against other
users. You can grant the EXECUTE database privilege to users who need to access the
stored procedures.

You can restrict access to Oracle data by allowing users to manipulate the data only
through stored procedures that run with their definer's privileges. For example, you can
allow access to a procedure that updates a database table, but deny access to the
table itself.

Related Topics:

* Security for Oracle Database Java Applications

6.3 Running Java Stored Procedures

You can run Java stored procedures in the same way as PL/SQL stored procedures.
Usually, a call to a Java stored procedure is a result of database manipulation,
because it is usually the result of a trigger or SQL DML call. To call a Java stored
procedure, you must publish it through a call specification.

Before you can call Java stored procedures, you must load them into Oracle Database
instance and publish them to SQL. Loading and publishing are separate tasks. Many
Java classes, which are referenced only by other Java classes, are never published.

To load Java stored procedures automatically, you can use the | oadj ava tool. It loads
Java source, class, and resource files into a system-generated database table, and
then uses the SQL CREATE JAVA {SOURCE | CLASS | RESOURCE} statement to load the
Java files into Oracle Database instance. You can upload Java files from file systems,
popular Java IDEs, intranets, or the Internet.

You must perform the following steps for creating, loading, and calling Java stored
procedures:

e Creating or Reusing the Java Classes
e Loading and Resolving the Java Classes
e Publishing the Java Classes

e Calling the Stored Procedures

Note:

To load Java stored procedures manually, you can use the CREATE JAVA
statements. For example, in SQL*Plus, you can use the CREATE JAVA CLASS
statement to load Java class files from local BFI LE and LOB columns into Oracle
Database.

ORACLE 6-5

Chapter 6
Running Java Stored Procedures

6.3.1 Creating or Reusing the Java Classes

Use a preferred Java IDE to create classes, or reuse existing classes that meet your
requirements. Oracle Database supports many Java development tools and client-side
programmatic interfaces. For example, Oracle JVM accepts programs developed in
popular Java IDEs, such as Oracle JDeveloper, Symantec Visual Cafe, and Borland
JBuilder.

In the following example, you create the publ i ¢ class Gscar . It has a single method
named quot e() , which returns a quotation from Oscar Wilde.

public class GOscar

{

/1 return a quotation from Gscar Wl de
public static String quote()
{

return "I can resist everything except tenptation.";

}
}

Save the class as Gscar . j ava. Using a Java compiler, compile the . j ava file on your
client system, as follows:

javac Oscar.java

The compiler outputs a Java binary file, in this case, Gscar. cl ass.

6.3.2 Loading and Resolving the Java Classes

Using the | oadj ava tool, you can load Java source, class, and resource files into Oracle
Database instance, where they are stored as Java schema objects. You can run the

| oadj ava tool from the command line or from an application, and you can specify
several options including a resolver.

In the following example, the | oadj ava tool connects to the database using the default
JDBC OCI driver. You must specify the user name and password. By default, the Gscar
class is loaded into the schema of the user you log in as, in this case, HR.

$ | oadj ava -user HR Oscar.class
Password: password

When you call the quot e() method, the server uses a resolver to search for supporting
classes, such as String. In this case, the default resolver is used. The default resolver
first searches the current schema and then the SYS schema, where all the core Java
class libraries reside. If necessary, you can specify different resolvers.

6.3.3 Publishing the Java Classes

ORACLE

For each Java method that can be called from SQL or JDBC, you must write a call
specification, which exposes the top-level entry point of the method to Oracle
Database. Typically, only a few call specifications are needed. If preferred, you can
generate these call specifications using Oracle JDeveloper.

In the following example, from SQL*PIlus, you connect to the database and then define
a top-level call specification for the quot e() method:

6-6

Chapter 6
Debugging Java Stored Procedures

SQL> connect HR
Enter password: password

SQL> CREATE FUNCTI ON oscar _quot e RETURN VARCHAR2
2 AS LANGUAGE JAVA
3 NAME 'Cscar.quote() return java.lang.String';

Related Topics:

» Publishing Java Classes With Call Specifications

6.3.4 Calling the Stored Procedures

You can call Java stored procedures from JDBC, SQLJ, and all third party languages
that can access the call specification. Using the SQL CALL statement, you can also call
the stored procedures from the top level, for example, from SQL*P