
Oracle®
Universal Connection Pool Developer's Guide

12c Release 2 (12.2)
E85765-01
June 2017

Oracle Universal Connection Pool Developer's Guide, 12c Release 2 (12.2)

E85765-01

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tulika Das

Contributing Authors: Tanmay Choudhury, Joseph Ruzzi, Tong Zhou, Yuri Dolgov, Paul Lo, Kuassi Mensah,
Frances Zhao

Contributors: Rajkumar Irudayaraj

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions ix

 Changes in This Release for Oracle Universal Connection Pool
Developer's Guide

Changes in Oracle Database 12c Release 2 (12.2.0.1) xi

1 Introduction to UCP

1.1 Overview of Connection Pool 1-1

1.2 Benefits of Using a Connection Pool 1-1

1.3 Overview of Universal Connection Pool 1-2

1.3.1 Conceptual Architecture 1-2

1.3.2 Connection Pool Properties 1-3

1.3.3 Connection Pool Manager 1-3

1.3.4 High Availability and Performance Scenarios 1-4

2 Getting Started

2.1 Requirements for using UCP 2-1

2.2 Basic Connection Steps in UCP 2-1

2.3 UCP API Overview 2-2

2.4 Basic Connection Example Using UCP 2-3

3 Getting Database Connections in UCP

3.1 About Borrowing Connections from UCP 3-1

3.1.1 Overview of Borrowing Connections from UCP 3-1

3.1.2 Using the Pool-Enabled Data Source 3-2

iii

3.1.3 Using the Pool-Enabled XA Data Source 3-3

3.1.4 Setting Connection Properties 3-4

3.1.5 Using JNDI to Borrow a Connection 3-4

3.1.6 About Connection Initialization Callback 3-5

3.1.6.1 Overview of Connection Initialization Callback 3-5

3.1.6.2 Creating an Initialization Callback 3-6

3.1.6.3 Registering an Initialization Callback 3-6

3.1.6.4 Removing or Unregistering an Initialization Callback 3-6

3.2 Setting Connection Pool Properties for UCP 3-7

3.3 Overview of Validating Connections in UCP 3-7

3.3.1 Validating When Borrowing 3-7

3.3.2 Minimizing Connection Validation with
setSecondsToTrustIdleConnection() Method 3-8

3.3.3 Checking If a Connection Is Valid 3-9

3.4 Returning Borrowed Connections to UCP 3-10

3.5 Removing Connections from UCP 3-10

3.6 UCP Integration with Third-Party Products 3-11

4 Optimizing Universal Connection Pool Behavior

4.1 Optimizing Connection Pools 4-1

4.2 About Controlling the Pool Size in UCP 4-2

4.2.1 Setting the Initial Pool Size 4-2

4.2.2 Setting the Minimum Pool Size 4-2

4.2.3 Setting the Maximum Pool Size 4-3

4.3 About Optimizing Real-World Performance with Static Connection Pools 4-3

4.4 Stale Connections in UCP 4-4

4.4.1 What is Connection Reuse? 4-5

4.4.1.1 Setting the Maximum Connection Reuse Time 4-5

4.4.1.2 Setting the Maximum Connection Reuse Count 4-5

4.4.2 Setting the Abandon Connection Timeout 4-6

4.4.3 Setting the Time-To-Live Connection Timeout 4-6

4.4.4 Setting the Connection Wait Timeout 4-7

4.4.5 Setting the Inactive Connection Timeout 4-7

4.4.6 Setting the Query Timeout 4-7

4.4.7 Setting the Timeout Check Interval 4-8

4.5 About Harvesting Connections in UCP 4-8

4.5.1 Overview of Harvesting Connections in UCP 4-8

4.5.2 Setting a Connection to Harvestable 4-9

4.5.3 Setting the Harvest Trigger Count 4-9

4.5.4 Setting the Harvest Maximum Count 4-9

4.6 About Caching SQL Statements in UCP 4-10

iv

4.6.1 Overview of Statement Caching in UCP 4-10

4.6.2 Enabling Statement Caching in UCP 4-11

5 Labeling Connections in UCP

5.1 Overview of Labeling Connections in UCP 5-1

5.2 Implementation of a Labeling Callback in UCP 5-1

5.2.1 When to Use a Labeling Callback in UCP 5-2

5.2.2 Creating a Labeling Callback in UCP 5-2

5.2.2.1 Example of Labeling Callback in UCP 5-3

5.2.3 Registering a Labeling Callback in UCP 5-4

5.2.4 Removing a Labeling Callback in UCP 5-5

5.3 Integration of UCP with DRCP 5-5

5.4 Applying Connection Labels in UCP 5-5

5.5 Borrowing Labeled Connections from UCP 5-6

5.6 Checking Unmatched Labels in UCP 5-6

5.7 Removing a Connection Label in UCP 5-6

6 Controlling Reclaimable Connection Behavior

6.1 AbandonedConnectionTimeoutCallback Interface 6-1

6.2 TimeToLiveConnectionTimeoutCallback Interface 6-1

7 Using the Connection Pool Manager

7.1 Overview of Using the UCP Manager 7-1

7.1.1 About Connection Pool Manager 7-1

7.1.2 Creating a Connection Pool Manager for UCP 7-1

7.1.3 Life Cycle States of a Connection 7-1

7.1.3.1 Creating a Connection Pool 7-2

7.1.3.2 Starting a Connection Pool 7-3

7.1.3.3 Stopping a Connection Pool 7-3

7.1.3.4 Destroying a Connection Pool 7-3

7.1.4 Maintenance of Universal Connection Pool 7-3

7.1.4.1 Refreshing a Connection Pool 7-4

7.1.4.2 Recycling a Connection Pool 7-4

7.1.4.3 Purging a Connection Pool 7-5

7.2 Overview of JMX-Based Management in UCP 7-5

7.2.1 UniversalConnectionPoolManagerMBean 7-6

7.2.2 UniversalConnectionPoolMBean 7-6

v

8 Shared Pool Support for Multitenant Data Sources

8.1 Overview of Shared Pool Support 8-1

8.2 Prerequisites for Supporting Shared Pool 8-4

8.3 Configuring the Shared Pool 8-5

8.4 UCP APIs for Shared Pool Support 8-6

8.5 Sample XML Configuration File for Shared Pool 8-7

9 Using Oracle RAC Features

9.1 Overview of Oracle RAC Features 9-1

9.2 About Fast Connection Failover 9-2

9.2.1 Overview of Fast Connection Failover 9-2

9.2.2 What is Fast Connection Failover? 9-4

9.2.2.1 What the Application Sees 9-4

9.2.2.2 How FCF Works 9-5

9.2.3 Fast Connection Failover Prerequisites 9-5

9.2.4 Example of Fast Connection Failover Configuration 9-6

9.2.5 Enabling Fast Connection Failover 9-6

9.2.6 What is ONS? 9-7

9.2.6.1 Overview of ONS Configuration File 9-7

9.2.6.2 Remote Configuration of ONS 9-10

9.2.6.3 Configuration of Client-Side ONS Daemon 9-11

9.2.7 Configuring the Connection URL 9-13

9.3 About Run-Time Connection Load Balancing 9-14

9.3.1 Overview of Run-Time Connection Load Balancing 9-14

9.3.2 Setting Up Run-Time Connection Load Balancing 9-15

9.4 About Connection Affinity 9-16

9.4.1 Overview of Connection Affinity 9-16

9.4.2 Setting Up Connection Affinity 9-17

9.4.2.1 Creating a Connection Affinity Callback 9-18

9.4.2.2 Registering a Connection Affinity Callback 9-19

9.4.2.3 Removing a Connection Affinity Callback 9-19

9.4.2.4 Strict Affinity Mode 9-19

9.5 Global Data Services 9-20

9.5.1 Overview of Global Data Services 9-20

9.5.2 Configuring an Application for Using GDS 9-20

10

Ensuring Application Continuity

10.1 Overview of Ensuring Application Continuity with UCP 10-1

10.2 Configuring the Data Source for Application Continuity 10-1

vi

10.3 Using Connection Labeling for Application Continuity 10-2

10.4 Using Connection Initialization Callback for Application Continuity 10-2

11

Shared Pool for Sharded Databases

11.1 Overview of UCP Shared Pool for Database Sharding 11-1

11.2 About Handling Connection Requests for a Sharded Database 11-2

11.2.1 About Building the Sharding Key 11-3

11.2.2 How to Checkout Connections from a Pool with a Sharding Key 11-4

11.2.3 About Checking Out Connections without Providing the Sharding Keys 11-5

11.2.4 About Connecting to the Shard Catalog or Co-ordinator for Multi Shard
Queries 11-5

11.2.5 About Configuring the Number of Connections Per Shard 11-5

11.2.6 Pool Connection Selection Algorithm During Connection Checkout 11-6

11.2.7 Failover or Resharding Event Handling in UCP 11-6

11.3 UCP APIs for Database Sharding Support 11-6

11.4 UCP Sharding Example 11-8

12

Diagnosing a Connection Pool

12.1 Pool Statistics 12-1

12.2 Dynamic Monitoring Service Metrics 12-1

12.3 About Viewing Oracle RAC Statistics 12-2

12.3.1 Fast Connection Failover Statistics 12-2

12.3.2 Run-Time Connection Load Balance Statistics 12-3

12.3.3 Connection Affinity Statistics 12-3

12.4 Overview of Logging in UCP 12-3

12.4.1 Using a Logging Properties File 12-3

12.4.2 Using UCP and JDK API 12-4

12.4.3 Enabling or Disabling Feature-Specific Logging at Runtime 12-4

12.4.4 About Using the Logging Properties File for Feature-Specific Logging 12-5

12.4.5 Supported Log Levels 12-6

12.5 Exceptions and Error Codes 12-6

A Error Codes Reference

A.1 General Structure of UCP Error Messages A-1

A.2 Connection Pool Layer Error Messages A-1

A.3 JDBC Data Sources and Dynamic Proxies Error Messages A-5

vii

Index

viii

Preface

The Oracle Universal Connection Pool (UCP) is a full-featured connection pool for
managing database connections. Java applications that are database-intensive, use
the connection pool to improve performance and better utilize system resources.

The instructions in this guide detail how to use the UCP API and cover a wide range of
use cases. The guide does not provide detailed information about using Oracle JDBC
Drivers, Oracle Database, or SQL except as required to understand UCP.

Audience
This guide is primarily written for Application Developers and System Architects who
want to learn how to use UCP to create and manage database connections for their
Java applications. Users must be familiar with Java and JDBC to use this guide.
Knowledge of Oracle Database concepts (such as Oracle RAC and ONS) is required
when using some UCP features.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information about using Java with the Oracle Database, see the following
documents in the Oracle Database documentation set:

• Oracle Database JDBC Developer's Guide

• Oracle Database 2 Day + Java Developer's Guide

• Oracle Database Java Developer's Guide

Conventions
The following text conventions are used in this document:

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

Changes in This Release for Oracle
Universal Connection Pool Developer's
Guide

This preface contains:

• Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 12c Release 2 (12.2.0.1)
The following are changes in Oracle Universal Connection Pool Developer's Guide for
Oracle Database 12c Release 2 (12.2.0.1).

New Features
The following features are new in this release:

• Shared Pool Support for Sharded Databases

See "Shared Pool for Sharded Databases"

• Shared Pool Support for Multitenant Data Sources

See "Shared Pool Support for Multitenant Data Sources"

• Switch Service Enhancement

Starting from Oracle Database 12c Release 2 (12.2.0.1), you can use the SET
CONTAINER statement in the following way, if you want to switch among pluggable
databases, while continuing to use user services with full service functionality:

ALTER SESSION SET CONTAINER=<container name> SERVICE=<service name>;

• Support for setting connection validation frequency

See "Minimizing Connection Request Delay"

• Support for feature-specific logging at runtime

"Enabling or Disabling Feature-Specific Logging at Runtime"

• Real-World Performance Enhancement

See "About Optimizing Real-World Performance with Static Connection Pools"

xi

1
Introduction to UCP

The following sections are included in this chapter:

• Overview of Connection Pool

• Overview of Universal Connection Pool

1.1 Overview of Connection Pool
A connection pool is a cache of database connection objects. The objects represent
physical database connections that can be used by an application to connect to a
database. At run time, the application requests a connection from the pool. If the pool
contains a connection that can satisfy the request, it returns the connection to the
application. If no connections are found, a new connection is created and returned to
the application. The application uses the connection to perform some work on the
database and then returns the object back to the pool. The connection is then
available for the next connection request.

Connection pools promote the reuse of connection objects and reduce the number of
times that connection objects are created. Connection pools significantly improve
performance for database-intensive applications because creating connection objects
is costly both in terms of time and resources. Tasks such as network communication,
reading connection strings, authentication, transaction enlistment, and memory
allocation all contribute to the amount of time and resources it takes to create a
connection object. In addition, because the connections are already created, the
application waits less time to get the connection.

Connection pools often provide properties that are used to optimize the performance
of a pool. The properties control behaviors such as the minimum and maximum
number of connections allowed in the pool or the amount of time a connection can
remain idle before it is returned to the pool. The best configured connection pools
balance quick response times with the memory spent maintaining connections in the
pool. It is often necessary to try different settings until the best balance is achieved for
a specific application.

1.2 Benefits of Using a Connection Pool
Applications that are database-intensive, generally benefit the most from connection
pools. As a policy, applications should use a connection pool whenever database
usage is known to affect application performance.

A connection pool provides the following benefits:

• Reduces the number of times new connection objects are created.

• Promotes connection object reuse.

• Quickens the process of getting a connection.

• Reduces the amount of effort required to manually manage connection objects.

1-1

• Minimizes the number of stale connections.

• Controls the amount of resources spent on maintaining connections.

1.3 Overview of Universal Connection Pool
UCP provides a connection pool implementation for caching JDBC connections. Java
applications that are database-intensive use the connection pool to improve
performance and better utilize system resources.

A UCP JDBC connection pool can use any JDBC driver to create physical connections
that are then maintained by the pool. The pool can be configured and provides a full
set of properties that are used to optimize pool behavior based on the performance
and availability requirements of an application. For more advanced applications, UCP
provides a pool manager that can be used to manage a pool instance.

The pool also leverages many high availability and performance features available
through an Oracle Real Application Clusters (Oracle RAC) database. These features
include Fast Connection Failover (FCF), Run-time connection Load Balancing (RLB),
and Connection Affinity.

Note:

Starting from Oracle Database 11g Release 2, FCF is also supported by
Oracle Restart on a single instance database. Oracle Restart is also known as
Oracle Grid Infrastructure for Independent Servers.

See Also:

Oracle Database Administrator’s Guide for more information about Oracle
Restart.

1.3.1 Conceptual Architecture
Applications use a UCP pool-enabled data source to get connections from a UCP
JDBC connection pool instance. The PoolDataSource data source is used for getting
regular connections (java.sql.Connection), and the PoolXADataSource data source is
used for getting XA (eXtended API) connections (javax.sql.XAConnection). The same
pool features are included in both XA and non-XA UCP JDBC connection pools.

The pool-enabled data source relies on a connection factory class to create the
physical connections that are maintained by the pool. An application can choose to
use any factory class that is capable of creating Connection or XAConnection objects.
The pool-enabled data sources provide a method for setting the connection factory
class, as well as methods for setting the database URL and database credentials that
are used by the factory class to connect to a database.

Applications borrow a connection handle from the pool to perform work on a database.
Once the work is completed, the connection is closed and the connection handle is
returned to pool and is available to be used again. The following figure shows the

Chapter 1
Overview of Universal Connection Pool

1-2

conceptual view of the interaction between an application and a UCP JDBC
connection pool.

Figure 1-1 Conceptual View of a UCP JDBC Connection Pool

Related Topics:

• Getting Database Connections in UCP

1.3.2 Connection Pool Properties
UCP JDBC Connection pool properties are configured through methods available on
the pool-enabled data source. The pool properties are used to control the pool size,
handle stale connections, and make autonomous decisions about how long
connections can remain borrowed before they are returned to the pool. The optimal
settings for the pool properties depend on the application and hardware resources.
Typically, there is a trade-off between the time it takes for an application to get a
connection versus the amount of memory it takes to maintain a certain pool size. In
many cases, experimentation is required to find the optimal balance to achieve the
desired performance for a specific application.

Related Topics:

• Optimizing Universal Connection Pool Behavior

1.3.3 Connection Pool Manager
UCP includes a connection pool manager that is used by applications that require
administrative control over a connection pool. The manager is used to explicitly control
the life cycle of a pool and to perform maintenance on a pool. The manager also
provides the opportunity for an application to expose the pool and its manageability
through an administrative console.

Related Topics:

• Using the Connection Pool Manager

Chapter 1
Overview of Universal Connection Pool

1-3

1.3.4 High Availability and Performance Scenarios
A UCP JDBC connection pool provides many features that are used to ensure high
connection availability and performance. Many of these features, such as refreshing a
pool or validating connections, are generic and work across driver and database
implementations. Some of these features, such as run-time connection load balancing,
and connection affinity, require the use of an Oracle JDBC driver and an Oracle RAC
database.

Related Topics:

• Using Oracle RAC Features

Chapter 1
Overview of Universal Connection Pool

1-4

2
Getting Started

The following sections are included in this chapter:

• Requirements for using UCP

• Basic Connection Steps in UCP

• UCP API Overview

• Basic Connection Example Using UCP

2.1 Requirements for using UCP
UCP has the following design-time and run-time requirements:

• JRE 1.5 or higher

• A JDBC diver or a connection factory class capable of returning a
java.sql.Connection and javax.sql.XAConnection object

Note:

Oracle drivers from releases 10.1 or higher are supported. Advanced Oracle
Database features, such as Oracle RAC and Fast Connection Failover, require
the Oracle Notification Service library (ons.jar) that is included with the Oracle
Client software.

• The ucp.jar library included in the classpath of the application

• The ojdbc8.jar library included in the classpath of the application

Note:

Even if you use UCP with a third-party database and driver, you must use the
Oracle ojdbc8.jar library because UCP has dependencies on this library.

• A database that supports SQL. Advanced features, such as Oracle RAC and Fast
Connection Failover, require an Oracle Database.

2.2 Basic Connection Steps in UCP
UCP provides a pool-enabled data source that is used by applications to borrow
connections from a UCP JDBC connection pool. A connection pool is not explicitly
defined for the most basic use case. Instead, a default connection pool is implicitly
created when the connection is borrowed.

2-1

The following steps describe how to get a connection from a UCP pool-enabled data
source in order to access a database. The complete example is provided in
Example 2-1:

1. Use the UCP data source factory (oracle.ucp.jdbc.PoolDataSourceFactory) to get
an instance of a pool-enabled data source using the getPoolDataSource method.
The data source instance must be of the type PoolDataSource. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

2. Set the connection properties that are required to get a physical connection to a
database. These properties are set on the data source instance and include: the
URL, the user name, and password to connect to the database and the connection
factory used to get the physical connection. These properties are specific to a
JDBC driver and database. For example:

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

3. Set any pool properties in order to override the connection pool's default behavior.
the pool properties are set on the data source instance. For example:

pds.setInitialPoolSize(5);

4. Get a connection using the data source instance. The returned connection is a
logical handle to a physical connection in the data source's connection pool. For
example:

Connection conn = pds.getConnection();

5. Use the connection to perform some work on the database:

Statement stmt = conn.createStatement ();
stmt.execute("SELECT * FROM foo");

6. Close the connection and return it to the pool.

conn.close();

2.3 UCP API Overview
The following section provides a quick overview of the most commonly used packages
of the UCP API.

See Also:

Oracle Universal Connection Pool Java API Reference for complete details on
the API.

oracle.ucp.jdbc

This package includes various interfaces and classes that are used by applications to
work with JDBC connections and a connection pool. Among the interfaces found in
this package, the PoolDataSource and PoolXADataSource data source interfaces are used
by an application to get connections as well as get and set connection pool properties.

Chapter 2
UCP API Overview

2-2

Data source instances implementing these two interfaces automatically create a
connection pool.

oracle.ucp.admin

This package includes interfaces for using a connection pool manager as well as
MBeans that allow users to access connection pool and the connection pool manager
operations and attributes using JMX operations. Among the interfaces, the
UniversalConnectionPoolManager interface provides methods for creating and
maintaining connection pool instances.

oracle.ucp

This package includes both required and optional callback interfaces that are used to
implement connection pool features. For example, the ConnectionAffinityCallback
interface is used to create a callback that enables or disables connection affinity and
can also be used to customize connection affinity behavior. This package also
contains statistics classes, UCP specific exception classes, and the logic to use the
UCP directly, without using data sources.

2.4 Basic Connection Example Using UCP
The following example is a program that connects to a database to do some work and
then exits. The example is simple and in some cases not very practical; however, it
does demonstrate the basic steps required to get a connection from a UCP pooled-
enabled data source in order to access a database.

Example 2-1 Basic Connection Example

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

public class BasicConnectionExample {
 public static void main(String args[]) throws SQLException {
 try
 {
 //Create pool-enabled data source instance.

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

 //set the connection properties on the data source.

 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
 pds.setUser("<user>");
 pds.setPassword("<password>");

 //Override any pool properties.

 pds.setInitialPoolSize(5);

 //Get a database connection from the datasource.

 Connection conn = pds.getConnection();

 System.out.println("\nConnection obtained from " +

Chapter 2
Basic Connection Example Using UCP

2-3

 "UniversalConnectionPool\n");

 //do some work with the connection.
 Statement stmt = conn.createStatement();
 stmt.execute("select * from foo");

 //Close the Connection.

 conn.close();
 conn=null;

 System.out.println("Connection returned to the " +
 "UniversalConnectionPool\n");

 }
 catch(SQLException e)
 {
 System.out.println("BasicConnectionExample - " +
 "main()-SQLException occurred : "
 + e.getMessage());
 }
 }
}

Chapter 2
Basic Connection Example Using UCP

2-4

3
Getting Database Connections in UCP

The following sections are included in this chapter:

• About Borrowing Connections from UCP

• Setting Connection Pool Properties for UCP

• Overview of Validating Connections in UCP

• Returning Borrowed Connections to UCP

• Removing Connections from UCP

• UCP Integration with Third-Party Products

3.1 About Borrowing Connections from UCP
An application borrows connections using a pool-enabled data source. This section
describes the following concepts about borrowing connections:

• Overview of Borrowing Connections from UCP

• Using the Pool-Enabled Data Source

• Using the Pool-Enabled XA Data Source

• Setting Connection Properties

• Using JNDI to Borrow a Connection

• About Connection Initialization Callback

Note:

The instructions in this section use a pool-enabled data source to implicitly
create and start a connection pool.

3.1.1 Overview of Borrowing Connections from UCP
The UCP API provides two pool-enabled data sources, one for borrowing regular
connections and one for borrowing XA connections. These data sources provide
access to UCP JDBC connection pool functionality and include a set of getConnection
methods that are used to borrow connections. The same pool features are included in
both XA and non-XA UCP JDBC connection pools.

UCP JDBC connection pools maintain both available connections and borrowed
connections. A connection is reused from the pool if an application requests to borrow
a connection that matches an available connection. A new connection is created if no
available connection in the pool match the requested connection. The number of
available connections and borrowed connections are subjected to pool properties such
as pool size, timeout intervals, and validation rules.

3-1

3.1.2 Using the Pool-Enabled Data Source
UCP provides a pool-enabled data source (oracle.ucp.jdbc.PoolDataSource) that is
used to get connections to a database. The oracle.ucp.jdbc.PoolDataSourceFactory
factory class provides a getPoolDataSource() method that creates the pool-enabled
data source instance. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

The pool-enabled data source requires a connection factory class in order to get an
actual physical connection. The connection factory is typically provided as part of a
JDBC driver and can be a data source itself. A UCP JDBC connection pool can use
any JDBC driver to create physical connections that are then maintained by the pool.
The setConnectionFactoryClassName(String) method is used to define the connection
factory for the pool-enabled data source instance. The following example uses
Oracle's oracle.jdbc.pool.OracleDataSource connection factory class included with the
JDBC driver. If you are using a different vendor's JDBC driver, refer to the vendor's
documentation for an appropriate connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

In addition to the connection factory class, a pool-enabled data source requires the
URL, user name, and password that is used to connect to a database. A pool-enabled
data source instance includes methods to set each of these properties. The following
example uses an Oracle JDBC Thin driver syntax. If you are using a different vendor's
JDBC driver, refer to the vendor's documentation for the appropriate URL syntax to
use.

pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

See Also:

Oracle Database JDBC Developer’s Guide for detailed Oracle URL syntax
usage.

Lastly, a pool-enabled data source provides a set of getConnection methods. The
methods include:

• getConnection() : Returns a connection that is associated with the user name and
password that was used to connect to the database.

• getConnection(String username, String password): Returns a connection that is
associated with the given user name and password.

• getConnection(java.util.Properties labels): Returns a connection that matches a
given label.

• getConnection(String username, String password, java.util.Properties labels) :
Returns a connection that is associated with a given user name and password and
that matches a given label.

An application uses the getConnection methods to borrow a connection handle from the
pool that is of the type java.sql.Connection. If a connection handle is already in the

Chapter 3
About Borrowing Connections from UCP

3-2

pool that matches the requested connection (same URL, user name, and password)
then it is returned to the application; or else, a new connection is created and a new
connection handle is returned to the application. An example for both Oracle and
MySQL are provided.

Oracle Example

The following example demonstrates borrowing a connection when using the JDBC
Thin driver:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

MySQL Example

The following example demonstrates borrowing a connection when using the
Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/dbname");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

3.1.3 Using the Pool-Enabled XA Data Source
UCP provides a pool-enabled XA data source (oracle.ucp.jdbc.PoolXADataSource) that
is used to get XA connections that can be enlisted in a distributed transaction. UCP
JDBC XA pools have the same features as non-XA UCP JDBC pools. The
oracle.ucp.jdbc.PoolDataSourceFactory factory class provides a getPoolXADataSource()
method that creates the pool-enabled XA data source instance. For example:

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

A pool-enabled XA data source instance, like a non-XA data source instance, requires
the connection factory, URL, user name, and password in order to get an actual
physical connection. These properties are set in the same way as a non-XA data
source instance (see above). However, an XA-specific connection factory class is
required to get XA connections. The XA connection factory is typically provided as part
of a JDBC driver and can be a data source itself. The following example uses Oracle's
oracle.jdbc.xa.client.OracleXADataSource XA connection factory class included with
the JDBC driver. If a different vendor's JDBC driver is used, refer to the vendor's
documentation for an appropriate XA connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

Chapter 3
About Borrowing Connections from UCP

3-3

Lastly, a pool-enabled XA data source provides a set of getXAConnection methods that
are used to borrow a connection handle from the pool that is of the type
javax.sql.XAConnection. The getXAConnection methods are the same as the
getConnection methods previously described. The following example demonstrates
borrowing an XA connection.

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

XAConnection conn = pds.getXAConnection();

Related Topics:

• Labeling Connections in UCP

3.1.4 Setting Connection Properties
Oracle's connection factories support properties that configure connections with
specific features. UCP pool-enabled data sources provide the
setConnectionProperties(Properties) method, which is used to set properties on a
given connection factory. The following example demonstrates setting connection
properties for Oracle's JDBC driver. If you are using a JDBC driver from a different
vendor, then refer to the vendor-specific documentation to check whether setting
properties in this manner is supported and what properties are available:

Properties connProps = new Properties();
connProps.put("fixedString", false);
connProps.put("remarksReporting", false);
connProps.put("restrictGetTables", false);
connProps.put("includeSynonyms", false);
connProps.put("defaultNChar", false);
connProps.put("AccumulateBatchResult", false);

pds.setConnectionProperties(connProps);

The UCP JDBC connection pool does not remove connections that are already
created if setConnectionProperties is called after the pool is created and in use.

See Also:

Oracle Database JDBC Java API Reference for a detailed list of supported
properties to configure the connection. For example, to set the auto-commit
mode, you can use the OracleConnection.CONNECTION_PROPERTY_AUTOCOMMIT
property.

3.1.5 Using JNDI to Borrow a Connection
A connection can be borrowed from a connection pool by performing a JNDI look up
for a pool-enabled data source and then calling getConnection() on the returned object.
The pool-enabled data source must first be bound to a JNDI context and a logical

Chapter 3
About Borrowing Connections from UCP

3-4

name. This assumes that an application includes a Service Provider Interface (SPI)
implementation for a naming and directory service where object references can be
registered and located.

The following example uses Sun's file system JNDI service provider, which can be
downloaded from the JNDI software download page:

http://www.oracle.com/technetwork/java/index.html

The example demonstrates creating an initial context and then performing a lookup for
a pool-enabled data source that is bound to the name MyPooledDataSource. The object
returned is then used to borrow a connection from the connection pool.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:/tmp");

ctx = new InitialContext(env);

PoolDataSource jpds = (PoolDataSource)ctx.lookup(MyPooledDataSource);
Connection conn = jpds.getConnection();

In the example, MyPoolDataSource must be bound to the context. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

ctx.bind(MyPooledDataSource, pds);

3.1.6 About Connection Initialization Callback
The Connection Initialization Callback enables applications and frameworks to initialize
connections retrieved from Universal Connection Pool. It is executed at every
connection checkout from the pool, as well as at each successful reconnection during
failover.

This section discusses initialization callbacks in the following sections:

• Overview of Connection Initialization Callback

• Creating an Initialization Callback

• Registering an Initialization Callback

• Removing or Unregistering an Initialization Callback

3.1.6.1 Overview of Connection Initialization Callback
If an application cannot use connection labeling because it cannot be changed, then
the connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is
borrowed from the pool and at each successful reconnection following a recoverable
error. Using the same callback at both run time and replay ensures that exactly the

Chapter 3
About Borrowing Connections from UCP

3-5

http://www.oracle.com/technetwork/java/index.html

same initialization, which was used when the original session was established, is
reestablished at run time. If the callback invocation fails, then replay is disabled on that
connection.

3.1.6.2 Creating an Initialization Callback
To create a UCP connection initialization callback, an application implements the
oracle.ucp.jdbc.ConnectionInitializationCallback interface. This interface has the
following method:

void initialize(java.sql.Connection connection) throws SQLException;

Note:

• One callback is created for every connection pool.

• This callback is not used if a labeling callback is registered for the
connection pool.

Example

The following example demonstrates how to create a simple initialization callback:

import oracle.ucp.jdbc.ConnectionInitializationCallback;
class MyConnectionInitializationCallback implements ConnectionInitializationCallback
{
 public MyConnectionInitializationCallback()
 {
 ...
 }
 public void initialize(java.sql.Connection connection) throws SQLException
 {
 // Reset the state for the connection, if necessary (like ALTER SESSION)
 }
}

3.1.6.3 Registering an Initialization Callback
UCP provides the registerConnectionInitializationCallback method in the
oracle.ucp.jdbc.PoolDataSource interface for registering a connection initialization
callback.

public void registerConnectionInitializationCallback
(ConnectionInitializationCallback cbk) throws SQLException;

One callback may be registered on each connection pool instance.

3.1.6.4 Removing or Unregistering an Initialization Callback
UCP provides the unregisterConnectionInitializationCallback method in the
oracle.ucp.jdbc.PoolDataSource interface for unregistering a connection initialization
callback.

public void unregisterConnectionInitializationCallback
(ConnectionInitializationCallback cbk) throws SQLException;

Chapter 3
About Borrowing Connections from UCP

3-6

See Also:

Oracle Universal Connection Pool Java API Reference for more information

3.2 Setting Connection Pool Properties for UCP
UCP JDBC connection pools are configured using connection pool properties. The
properties have get and set methods that are available through a pool-enabled data
source instance. The methods are a convenient way to programmatically configure a
pool. If no pool properties are set, then a connection pool uses default property values.

The following example demonstrates configuring connection pool properties. The
example sets the connection pool name and the maximum/minimum number of
connections allowed in the pool.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);

UCP JDBC connection pool properties may be set in any order and can be
dynamically changed at run time. For example, setMaxPoolSize could be changed at
any time and the pool recognizes the new value and adapts accordingly.

Related Topics:

• Optimizing Universal Connection Pool Behavior

3.3 Overview of Validating Connections in UCP
Connections can be validated using pool properties when the connection is borrowed,
and also programmatically using the ValidConnection interface. Both approaches are
detailed in this section. Invalid connections can affect application performance and
availability.

3.3.1 Validating When Borrowing
A connection can be validated by executing a SQL statement on a connection when
the connection is borrowed from the connection pool. Two connection pool properties
are used in conjunction in order to enable connection validation:

• setValidateConnectionOnBorrow(boolean): Specifies whether or not connections are
validated when the connection is borrowed from the connection pool. The method
enables validation for every connection that is borrowed from the pool. A value of
false means no validation is performed. The default value is false.

• setSQLForValidateConnection(String): Specifies the SQL statement that is
executed on a connection when it is borrowed from the pool.

Chapter 3
Setting Connection Pool Properties for UCP

3-7

Note:

The setSQLForValidateConnection property is not recommended when using an
Oracle JDBC driver. UCP performs an internal ping when using an Oracle
JDBC driver. The mechanism is faster than executing an SQL statement and
is overridden if this property is set. Instead, set the
setValidateConnectionOnBorrow property to true and do not include the
setSQLForValidateConnection property.

The following example demonstrates validating a connection when borrowing the
connection from the pool. The example uses Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/mysql");
pds.setUser("<user>");
pds.setPassword("<password>");

pds.setValidateConnectionOnBorrow(true);
pds.setSQLForValidateConnection("select * from mysql.user");

Connection conn = pds.getConnection();

See Also:

Minimizing Connection Request Delay

3.3.2 Minimizing Connection Validation with
setSecondsToTrustIdleConnection() Method

In UCP, when you set the value of the setValidateConnectionOnBorrow(boolean) method
to true, then each connection is validated during the checkout. This validation may
incur significant overhead in applications that checkout database connections
frequently.

To minimize the impact of frequent connection validation, you can now set the
setSecondsToTrustIdleConnection(int) method with an appropriate value to trust
recently-used or recently-tested database connections. Setting this value skips the
connection validation test and improves application performance significantly.

The following table describes the new methods available in Oracle Database 12c
Release 2 (12.2.0.1) for using this feature:

Chapter 3
Overview of Validating Connections in UCP

3-8

Method Description

setSecondsToTrustIdleConnection(int

secondsToTrustIdleConnection)

Sets the time in seconds to trust a recently-
used or recently-tested database connection
and skip the validation test during connection
checkout.

getSecondsToTrustIdleConnection() Retrieves the value that was set using the
setSecondsToTrustIdleConnection(int)

method.

When you set the setSecondsToTrustIdleConnection(int) method to a positive value,
then the connection validation is skipped, if the connection was used within the time
specified in the secondsToTrustIdleConnection(int) method. The default value is 0
seconds, which means that the feature is disabled.

Note:

The setSecondsToTrustIdleConnection(int) method works only if the
setValidateConnectionOnBorrow(boolean) method is set to true. If you set the
setSecondsToTrustIdleConnection(int) method to a non-zero value, without
setting the setValidateConnectionOnBorrow(boolean) method to true, then UCP
throws the following exception:

Invalid seconds to trust idle connection value or usage.

3.3.3 Checking If a Connection Is Valid
The oracle.ucp.jdbc.ValidConnection interface provides two methods: isValid and
setInvalid. The isValid method returns whether or not a connection is usable and the
setInvalid method is used to indicate that a connection should be removed from the
pool instance.

The isValid method is used to check if a connection is still usable after an SQL
exception has been thrown. This method can be used at any time to check if a
borrowed connection is valid. The method is particularly useful in combination with a
retry mechanism, such as the Fast Connection Failover actions that are triggered after
a down event of Oracle RAC.

Note:

The isValid method checks with the pool instance and Oracle JDBC driver to
determine whether a connection is still valid. The isValid method results in a
round-trip to the database only if both the pool and the driver report that a
connection is still valid. The round-trip is used to check for database failures
that are not immediately discovered by the pool or the driver.

The isValid method is also helpful when used in conjunction with the connection
timeout and connection harvesting features. These features may return a connection

Chapter 3
Overview of Validating Connections in UCP

3-9

to the pool while a connection is still held by an application. In such cases, the isValid
method returns false, allowing the application to get a new connection.

The following example demonstrates using the isValid method:

try { conn = poolDataSouorce.getConnection ...}catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

For XA applications, before calling the isValid() method, you must cast any
XAConnection that is obtained from PoolXADataSource to a ValidConnection. If you cast a
Connection that is obtained by calling the XAConnection.getConnection() method to
ValidConnecion, then it may throw an exception.

Related Topics:

• Using Oracle RAC Features

Related Topics:

• Removing Connections from UCP

3.4 Returning Borrowed Connections to UCP
Borrowed connections that are no longer being used should be returned to the pool so
that they can be available for the next connection request. The close method closes
connections and automatically returns them to the pool. The close method does not
physically remove the connection from the pool.

Borrowed connections that are not closed will remain borrowed; subsequent requests
for a connection result in a new connection being created if no connections are
available. This behavior can cause many connections to be created and can affect
system performance.

The following example demonstrates closing a connection and returning it to the pool:

Connection conn = pds.getConnection();

//do some work with the connection.

conn.close();
conn=null;

3.5 Removing Connections from UCP
The setInvalid method of the ValidConnection interface indicates that a connection
should be removed from the connection pool when it is closed. The method is typically
used when a connection is no longer usable, such as after an exception or if the
isValid method of the ValidConnection interface returns false. The method can also be
used if an application deems the state on a connection to be bad. The following
example demonstrates using the setInvalid method to close and remove a connection
from the pool:

Chapter 3
Returning Borrowed Connections to UCP

3-10

Connection conn = pds.getConnection();
...

((ValidConnection) conn).setInvalid();
...

conn.close();
conn=null;

3.6 UCP Integration with Third-Party Products
Third-party products, such as middleware platforms or frameworks, can use UCP to
provide connection pooling functionality for their applications and services. UCP
integration includes the same connection pool features that are available to stand-
alone applications and offers the same tight integration with the Oracle Database.

Two data source classes are available as integration points with UCP:
PoolDataSourceImpl for non-XA connection pools and PoolXADataSourceImpl for XA
connection pools. Both classes are located in the oracle.ucp.jdbc package. These
classes are implementations of the PoolDataSource and PoolXADataSource interfaces,
respectively, and contain default constructors.

See Also:

Oracle Universal Connection Pool Java API Reference for more information on
the implementation classes.

These implementations explicitly create connection pool instances and can return
connections. For example:

PoolXADataSource pds = new PoolXADataSourceImpl();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

XAConnection conn = pds.getXAConnection();

Third-party products can instantiate these data source implementation classes. In
addition, the methods of these interfaces follow the JavaBean design pattern and can
be used to set connection pool properties on the class using reflection. For example, a
UCP data source that uses an Oracle JDBC connection factory and database might be
defined as follows and loaded into a JNDI registry:

<data-sources>
 <data-source
 name="UCPDataSource"
 jndi-name="jdbc/UCP_DS"
 data-source-class="oracle.ucp.jdbc.PoolDataSourceImpl">
 <property name="ConnectionFactoryClassName"
 value="oracle.jdbc.pool.OracleDataSource"/>
 <property name="URL" value="jdbc:oracle:thin:@//localhost:1521:oracle"/>
 <property name="User" value"user"/>
 <property name="Password" value="password"/>

Chapter 3
UCP Integration with Third-Party Products

3-11

 <property name="ConnectionPoolName" value="MyPool"/>
 <property name="MinPoolSize" value="5"/>
 <property name="MaxPoolSize" value="50"/>
 </data-source>
</data-sources>

When using reflection, the name attribute matches (case sensitive) the name of the
setter method used to set the property. An application could then use the data source
as follows:

Connection connection = null;
try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource) context.lookup("jdbc/UCP_DS");
 connection = ds.getConnection();
 ...

Chapter 3
UCP Integration with Third-Party Products

3-12

4
Optimizing Universal Connection Pool
Behavior

This chapter describes the following concepts:

• Optimizing Connection Pools

• About Controlling the Pool Size in UCP

• About Optimizing Real-World Performance with Static Connection Pools

• Stale Connections in UCP

• About Harvesting Connections in UCP

• About Caching SQL Statements in UCP

4.1 Optimizing Connection Pools
This section provides instructions for setting connection pool properties in order to
optimize pooling behavior. Upon creation, UCP JDBC connection pools are pre-
configured with a default setup. The default setup provides a general, all-purpose
connection pool. However, different applications may have different database
connection requirements and may want to modify the default behavior of the
connection pool. Behaviors, such as pool size and connection timeouts can be
configured and can improve overall connection pool performance as well as
connection availability. In many cases, the best way to tune a connection pool for a
specific application is to try different property combinations using different values until
optimal performance and throughput is achieved.

Setting Connection Pool Properties

Connection pool properties are set either when getting a connection through a pool-
enabled data source or when creating a connection pool using the connection pool
manager.

The following example demonstrates setting connection pool properties though a pool-
enabled data source:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);
...

The following example demonstrates setting connection pool properties when creating
a connection pool using the connection pool manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);pds.setMaxPoolSize(20);

4-1

...

mgr.createConnectionPool(pds);

4.2 About Controlling the Pool Size in UCP
UCP JDBC connection pools include a set of properties that are used to control the
size of the pool. The properties allow the number of connections in the pool to
increase and decrease as demand increases and decreases. This dynamic behavior
helps conserve system resources that are otherwise lost on maintaining unnecessary
connections.

This section describes the following topics:

• Setting the Initial Pool Size

• Setting the Minimum Pool Size

• Setting the Maximum Pool Size

4.2.1 Setting the Initial Pool Size
The initial pool size property specifies the number of available connections that are
created when the connection pool is initially created or re-initialized. This property is
typically used to reduce the ramp-up time incurred by priming the pool to its optimal
size.

A value of 0 indicates that no connections are pre-created. The default value is 0. The
following example demonstrates configuring an initial pool size:

pds.setInitialPoolSize(5);

If the initial pool size property is greater than the maximum pool size property, then
only the maximum number of connections are initialized.

If the initial pool size property is less than the minimum pool size property, then only
the initial number of connections are initialized and maintained until enough
connections are created to meet the minimum pool size value.

4.2.2 Setting the Minimum Pool Size
The minimum pool size property specifies the minimum amount of available
connections and borrowed connections that a pool maintains. A connection pool
always tries to return to the minimum pool size specified unless the minimum amount
is yet to be reached. For example, if the minimum limit is set to 10 and only 2
connections are ever created and borrowed, then the number of connections
maintained by the pool remains at 2 because this number is less than the minimum
pool size.

This property allows the number of connections in the pool to decrease as demand
decreases. At the same time, the property ensures that system resources are not
wasted on maintaining connections that are unnecessary.

The default value is 0. The following example demonstrates configuring a minimum
pool size:

pds.setMinPoolSize(2);

Chapter 4
About Controlling the Pool Size in UCP

4-2

4.2.3 Setting the Maximum Pool Size
The maximum pool size property specifies the maximum number of available and
borrowed (in use) connections that a pool maintains. If the maximum number of
connections are borrowed, no connections will be available until a connection is
returned to the pool.

This property allows the number of connections in the pool to increase as demand
increases. At the same time, the property ensures that the pool does not grow to the
point of exhausting the resources of a system, which ultimately affects the
performance and availability of an application.

A value of 0 indicates that no connections are maintained by the pool. An attempt to
get a connection results in an exception. The default value is to allow the pool to
continue to create connections up to Integer.MAX_VALUE (2147483647 by default). The
following example demonstrates configuring a maximum pool size:

pds.setMaxPoolSize(100);

4.3 About Optimizing Real-World Performance with Static
Connection Pools

Most on-line transaction processing (OLTP) performance problems that the Real-
World Performance group investigates relate to the connection strategy used by the
application. For this reason, designing a sound connection strategy is crucial for
system performance, especially in enterprise environments that must scale to meet
increasing demand.

Most applications use a dynamic pool of connections to the database, configured with
a minimum number of connections to keep open on the database and a maximum
number of connections that can be made to the database. When an application needs
a connection to the database, then it requests one from the pool. If there are no
connections available, then the application creates a new connection, if it has not
reached the maximum number of connections already. If a connection has not been
used for a specified duration of time, then the application closes the connection, if
there are more than the minimum number of connections available.

This configuration conserves system resources by only maintaining the number of
connections actively needed by the application. In the real world, this configuration
enables connection storms and database system CPU oversubscription, quickly
destabilizing a system. A connection storm can occur when there are lots of activities
on the application server requiring database connections. If there are not enough
connections to the database to serve all of the requests, then the application server
opens new connections. Creating a new connection to the database is a resource
intensive activity, and when lots of connections are made in a short period of time, it
can overwhelm the CPU resources on the database system.

So, for creating a static connection pool, the number of connections to the database
system must be based on the CPU cores available on the system. Oracle
recommends 1-10 connections per CPU core. The ideal number varies depending on
the application and the system hardware. However, the value is somewhere within that
range. the Real-World Performance group recommends creating a static pool of

Chapter 4
About Optimizing Real-World Performance with Static Connection Pools

4-3

connections to the database by setting the minimum and maximum number of
connections to the same value. This prevents connection storms by keeping the
number of database connections constant to a predefined value.

For example, if a database server has 2 CPUs, 12 cores per CPU, and 2 threads per
CPU, then there are 24 cores available and the number of connections to the
database should be between 12 and 120. The number of threads is not taken into
consideration as only the CPU cores are able to retire instructions. This number is
cumulative for all applications connecting to the system and for all databases, if there
is more than one database on the system. If there are two application servers, then the
maximum number of connections (for example, 120 in this case) should be divided
between them. If there are two databases running on the system, then the maximum
number of connections that is, 120 connections needs to be divided between them.

See Also:

• https://www.youtube.com/watch?v=Oo-tBpVewP4

• https://www.youtube.com/watch?v=XzN8Rp6glEo

4.4 Stale Connections in UCP
Stale connections are connections that remain either available or borrowed, but are no
longer being used. Stale connections that remain borrowed may affect connection
availability. In addition, stale connections may impact system resources that are
otherwise wasted on maintaining unused connections for extended periods of time.
The pool properties discussed in this section are used to control stale connections.

This section describes the following topics:

• What is Connection Reuse?

• Setting the Abandon Connection Timeout

• Setting the Time-To-Live Connection Timeout

• Setting the Connection Wait Timeout

• Setting the Inactive Connection Timeout

• Setting the Query Timeout

• Setting the Timeout Check Interval

Note:

It is good practice to close all connections that are no longer required by an
application. Closing connections helps minimize the number of stale
connections that remain borrowed.

Chapter 4
Stale Connections in UCP

4-4

https://www.youtube.com/watch?v=Oo-tBpVewP4
https://www.youtube.com/watch?v=XzN8Rp6glEo

4.4.1 What is Connection Reuse?
The connection reuse feature allows connections to be gracefully closed and removed
from a connection pool after a specific amount of time or after the connection has been
used a specific number of times. This feature saves system resources that are
otherwise wasted on maintaining unusable connections.

4.4.1.1 Setting the Maximum Connection Reuse Time
The maximum connection reuse time allows connections to be gracefully closed and
removed from the pool after a connection has been in use for a specific amount of
time. The timer for this property starts when a connection is physically created.
Borrowed connections are closed only after they are returned to the pool and the
reuse time is exceeded.

This feature is typically used when a firewall exists between the pool tier and the
database tier and is setup to block connections based on time restrictions. The
blocked connections remain in the pool even though they are unusable. In such
scenarios, the connection reuse time is set to a smaller value than the firewall timeout
policy.

Note:

The maximum connection reuse time is different from the time-to-live
connection timeout. The time-to-live connection timeout starts when a
connection is borrowed from the pool; while, the maximum connection reuse
time starts when the connection is physically created. In addition, with a time-
to-live timeout, a connection is closed and returned to the pool for reuse if the
timeout expires during the borrowed period. With maximum connection reuse
time, a connection is closed and discarded from the pool after the timeout
expires.

The maximum connection reuse time value represents seconds. A value of 0 indicates
that this feature is disabled. The default value is 0. The following example
demonstrates configuring a maximum connection reuse time:

pds.setMaxConnectionReuseTime(300);

Related Topics:

• Setting the Time-To-Live Connection Timeout

4.4.1.2 Setting the Maximum Connection Reuse Count
The maximum connection reuse count allows connections to be gracefully closed and
removed from the connection pool after a connection has been borrowed a specific
number of times. This property is typically used to periodically recycle connections in
order to eliminate issues such as memory leaks.

A value of 0 indicates that this feature is disabled. The default value is 0. The following
example demonstrates configuring a maximum connection reuse count:

pds.setMaxConnectionReuseCount(100);

Chapter 4
Stale Connections in UCP

4-5

4.4.2 Setting the Abandon Connection Timeout
The abandoned connection timeout (ACT) enables borrowed connections to be
reclaimed back into the connection pool after a connection has not been used for a
specific amount of time. Abandonment is determined by monitoring calls to the
database. This timeout feature helps maximize connection reuse and conserves
system resources that are otherwise lost on maintaining borrowed connections that
are no longer in use.

Note:

UCP either cancels or rolls back connections that have local transactions
pending before reclaiming connections for reuse.

The ACT value represents seconds. A value of 0 indicates that the feature is disabled.
The default value is set to 0. The following example demonstrates configuring an
abandoned connection timeout:

pds.setAbandonedConnectionTimeout(10);

Every connection is reaped after a specific period of time. Either it is reaped when
ACT expires, or, if it is immune from ACT, then it is reaped after the immunity expires.
If you set ACT on a pool, then:

• If a statement is executed without calling the Statement.setQueryTimeout method on
that statement, then the connection is reaped if ACT is exceeded, even though the
connection is waiting for the server to respond to the query.

• If a statement is executed with calling the Statement.setQueryTimeout method, then
the connection is reaped after the query timeout and ACT have expired. The
connection is not reaped while waiting on the query timeout. The expiration of the
query timeout is an event that resets the ACT timer. If the ACT expires while
waiting for the cancel action that occurs at the expiration of the query time out,
then the connection is reaped.

• If a connection has two statements: s1 with a query timeout and s2 without a query
timeout, then ACT does not reap the connection while s1 waits for the query
timeout, but reaps the connection if s2 hangs.

Note that the two statements execute sequentially based on JDBC requirement.

4.4.3 Setting the Time-To-Live Connection Timeout
The time-to-live connection timeout enables borrowed connections to remain borrowed
for a specific amount of time before the connection is reclaimed by the pool. This
timeout feature helps maximize connection reuse and helps conserve systems
resources that are otherwise lost on maintaining connections longer than their
expected usage.

Chapter 4
Stale Connections in UCP

4-6

Note:

UCP either cancels or rolls back connections that have local transactions
pending before reclaiming connections for reuse.

The time-to-live connection timeout value represents seconds. A value of 0 indicates
that the feature is disabled. The default value is set to 0. The following example
demonstrates configuring a time-to-live connection timeout:

pds.setTimeToLiveConnectionTimeout(18000)

4.4.4 Setting the Connection Wait Timeout
The connection wait timeout specifies how long an application request waits to obtain
a connection if there are no longer any connections in the pool. A connection pool runs
out of connections if all connections in the pool are being used (borrowed) and if the
pool size has reached it's maximum connection capacity as specified by the maximum
pool size property. The request receives an SQL exception if the timeout value is
reached. The application can then retry getting a connection. This timeout feature
improves overall application usability by minimizing the amount of time an application
is blocked and provides the ability to implement a graceful recovery.

The connection wait timeout value represents seconds. A value of 0 indicates that the
feature is disabled. The default value is set to 3 seconds. The following example
demonstrates configuring a connection wait timeout:

pds.setConnectionWaitTimeout(10);

4.4.5 Setting the Inactive Connection Timeout
The inactive connection timeout specifies how long an available connection can
remain idle before it is closed and removed from the pool. This timeout property is only
applicable to available connections and does not affect borrowed connections. This
property helps conserve resources that are otherwise lost on maintaining connections
that are no longer being used. The inactive connection timeout (together with the
maximum pool size) allows a connection pool to grow and shrink as application load
changes.

The inactive connection timeout value represents seconds. A value of 0 indicates that
the feature is disabled. The default value is set to 0. The following example
demonstrates configuring an inactive connection timeout:

pds.setInactiveConnectionTimeout(60);

4.4.6 Setting the Query Timeout

Starting from Oracle Database 12c Release 2 (12.2.0.2), UCP introduces the
queryTimeout property. This property specifies the number of seconds UCP waits for a
Statement object to execute. If the limit is exceeded, then a DatabaseException is
thrown. Use the setQueryTimeout method for setting this property in the following way:

Chapter 4
Stale Connections in UCP

4-7

...
PoolDataSourceImpl pds = new PoolDataSourceImpl();
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL(<url>);
pds.setUser("scott");
pds.setPassword(<password>);
pds.setConnectionPoolName("my_pool");
pds.setQueryTimeout(60); // 60 seconds to wait on query
...

4.4.7 Setting the Timeout Check Interval
The timeout check interval property controls how frequently the timeout properties
(abandoned connection timeout, time-to-live connection timeout, and inactive
connection timeout) are enforced. Connections that have timed-out are reclaimed
when the timeout check cycle runs. This means that a connection may not actually be
reclaimed by the pool at the moment that the connection times-out. The lag time
between the connection timeout and actually reclaiming the connection may be
considerable depending on the size of the timeout check interval.

The timeout check interval property represents seconds. The default value is set to 30.
The following example demonstrates configuring a property check interval:

pds.setTimeoutCheckInterval(60);

See Also:

Oracle Database Net Services Administrator's Guide for more information
about Oracle Net Services

4.5 About Harvesting Connections in UCP
The connection harvesting feature allows a specified number of borrowed connections
to be reclaimed when the connection pool reaches a specified number of available
connections. This section describes the following concepts:

• Overview of Harvesting Connections in UCP

• Setting a Connection to Harvestable

• Setting the Harvest Trigger Count

• Setting the Harvest Maximum Count

4.5.1 Overview of Harvesting Connections in UCP
This feature helps ensure that a certain number of connections are always available in
the pool and helps maximize performance. The feature is particularly useful if an
application caches connection handles. Caching is typically performed for performance
reasons because it minimizes re-initialization of state necessary for connections to
participate in a transaction.

For example, a connection is borrowed from the pool, initialized with necessary
session state, and then held in a context object. Holding connections in this manner
may cause the connection pool to run out of available connections. The connection

Chapter 4
About Harvesting Connections in UCP

4-8

harvest feature reclaims the borrowed connections, if appropriate, and allows the
connections to be reused.

Connection harvesting is controlled using the HarvestableConnection interface and
configured or enabled using two pool properties: Connection Harvest Trigger Count
and Connection Harvest Maximum Count. The interface and properties are used
together when implementing the connection harvest feature.

4.5.2 Setting a Connection to Harvestable
The setConnectionHarvestable(boolean) method of the
oracle.ucp.jdbc.HarvestableConnection interface controls whether or not a connection
will be harvested. This method is used as a locking mechanism when connection
harvesting is enabled. For example, the method is set to false on a connection when
the connection is being used within a transaction and must not be harvested. After the
transaction completes, the method is set to true on the connection and the connection
can be harvested if required.

Note:

All connections are harvestable, by default, when the connection harvest
feature is enabled. If the feature is enabled, the setConnectionHarvestable
method should always be used to explicitly control whether a connection is
harvestable.

The following example demonstrates using the setConnectionHarvestable method to
indicate that a connection is not harvestable when the connection harvest feature
attempts to harvest connections:

Connection conn = pds.getConnection();

((HarvestableConnection) conn).setConnectionHarvestable(false);

4.5.3 Setting the Harvest Trigger Count
The connection harvest trigger count specifies the available connection threshold that
triggers connection harvesting. For example, if the connection harvest trigger count is
set to 10, then connection harvesting is triggered when the number of available
connections in the pool drops to 10.

A value of Integer.MAX_VALUE (2147483647 by default) indicates that connection
harvesting is disabled. The default value is Integer.MAX_VALUE.

The following example demonstrates enabling connection harvesting by configuring a
connection harvest trigger count.

pds.setConnectionHarvestTriggerCount(2);

4.5.4 Setting the Harvest Maximum Count
The connection harvest maximum count property specifies how many borrowed
connections should be returned to the pool once the harvest trigger count has been
reached. The number of connections actually harvested may be anywhere from 0 to

Chapter 4
About Harvesting Connections in UCP

4-9

the connection harvest maximum count value. Least recently used connections are
harvested first which allows very active user sessions to keep their connections the
most.

The harvest maximum count value can range from 0 to the maximum connection
property value. The default value is 1. An SQLException is thrown if an out-of-range
value is specified.

The following example demonstrates configuring a connection harvest maximum
count.

pds.setConnectionHarvestMaxCount(5);

Note:

• If connection harvesting and abandoned connection timeout features are
enabled at the same time, then the timeout processing does not reclaim
the connections that are designated as nonharvestable.

• If connection harvesting and time-to-live connection timeout features are
enabled at the same time, then the timeout processing reclaims the
connections that are designated as nonharvestable.

Related Topics:

• Controlling Reclaimable Connection Behavior

4.6 About Caching SQL Statements in UCP
This section describes how to cache SQL statements in UCP, in the following sections:

• Overview of Statement Caching in UCP

• Enabling Statement Caching in UCP

4.6.1 Overview of Statement Caching in UCP
Statement caching makes working with statements more efficient. Statement caching
improves performance by caching executable statements that are used repeatedly and
makes it unnecessary for programmers to explicitly reuse prepared statements.
Statement caching eliminates overhead due to repeated cursor creation, repeated
statement parsing and creation and reduces overhead of communication between
applications and the database. Statement caching and reuse is transparent to an
application. Each statement cache is associated with a physical connection. That is,
each physical connection will have its own statement cache.

The match criteria for cached statements are as follows:

• The SQL string in the statement must be the same (case-sensitive) to one in the
cache.

• The statement type must be the same (prepared or callable) to the one in the
cache.

Chapter 4
About Caching SQL Statements in UCP

4-10

• The scrollable type of result sets produced by the statement must be the same
(forward-only or scrollable) as the one in the cache.

Statement caching is implemented and enabled differently depending on the JDBC
driver vendor. The instructions in this section are specific to Oracle's JDBC driver.
Statement caching on other vendors' drivers can be configured by setting a connection
property on a connection factory. Refer to the JDBC vendor's documentation to
determine whether statement caching is supported and if it can be set as a connection
property. UCP does support JDBC 4.0 (JDK16) APIs to enable statement pooling if a
JDBC vendor supports it.

Related Topics:

• Setting Connection Properties

4.6.2 Enabling Statement Caching in UCP
The maximum number of statements property specifies the number of statements to
cache for each connection. The property only applies to the Oracle JDBC driver. If the
property is not set, or if it is set to 0, then statement caching is disabled. By default,
statement caching is disabled. When statement caching is enabled, a statement cache
is associated with each physical connection maintained by the connection pool. A
single statement cache is not shared across all physical connections.

The following example demonstrates enabling statement caching:

pds.setMaxStatements(10);

Determining the Statement Cache Size

The cache size should be set to the number of distinct statements the application
issues to the database. If the number of statements that an application issues to the
database is unknown, use the JDBC performance metrics to assist with determining
the statement cache size.

Statement Cache Size Resource Issues

Each connection is associated with its own statement cache. Statements held in a
connection's statement cache may hold on to database resources. It is possible that
the number of opened connections combined with the number of cached statements
for each connection could exceed the limit of open cursors allowed for the database.
This issue may be avoided by reducing the number of statements allowed in the
cache, or by increasing the limit of open cursors allowed by the database.

Chapter 4
About Caching SQL Statements in UCP

4-11

5
Labeling Connections in UCP

This chapter discusses the following topics:

• Overview of Labeling Connections in UCP

• Implementation of a Labeling Callback in UCP

• Applying Connection Labels in UCP

• Borrowing Labeled Connections from UCP

• Checking Unmatched Labels in UCP

• Integration of UCP with DRCP

• Removing a Connection Label in UCP

5.1 Overview of Labeling Connections in UCP
Applications often initialize connections retrieved from a connection pool before using
the connection. The initialization varies and could include simple state re-initialization
that requires method calls within the application code or database operations that
require round trips over the network. The cost of such initialization may be significant.

Labeling connections enables an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool. By associating particular labels with particular connection states, an
application can retrieve an already initialized connection from the pool and avoid the
time and cost of re-initialization. The connection labeling feature does not impose any
meaning on user-defined keys or values; the meaning of user-defined keys and values
is defined solely by the application.

Some of the examples for connection labeling include, role, NLS language settings,
transaction isolation levels, stored procedure calls, or any other state initialization that
is expensive and necessary on the connection before work can be executed by the
resource.

Connection labeling is application-driven and requires the use of two interfaces. The
oracle.ucp.jdbc.LabelableConnection interface is used to apply and remove connection
labels, as well as retrieve labels that have been set on a connection. The
oracle.ucp.ConnectionLabelingCallback interface is used to create a labeling callback
that determines whether or not a connection with a requested label already exists. If
no connections exist, the interface allows current connections to be configured as
required. The methods of these interfaces are described in detail throughout this
chapter.

5.2 Implementation of a Labeling Callback in UCP
UCP uses Database Resident Connection Pooling (DRCP) tagging infrastructure to
support labeling in UCP, whether you work with single labels or multiple labels.

5-1

However, the behavior with multiple labels can be a little different when you use the
UCP and DRCP combination instead of only UCP.

This section discusses the following topics:

• When to Use a Labeling Callback in UCP

• Creating a Labeling Callback in UCP

• Registering a Labeling Callback in UCP

• Removing a Labeling Callback in UCP

See Also:

"Integration of UCP with DRCP"

5.2.1 When to Use a Labeling Callback in UCP
A labeling callback is used to define how the connection pool selects labeled
connections and allows the selected connection to be configured before returning it to
an application. Applications that use the connection labeling feature must provide a
callback implementation.

A labeling callback is used when a labeled connection is requested but there are no
connections in the pool that match the requested labels. The callback determines
which connection requires the least amount of work in order to be re-configured to
match the requested label and then enables the connection labels to be updated
before returning the connection to the application. This section describes the following
topics:

5.2.2 Creating a Labeling Callback in UCP
To create a labeling callback, an application implements the
oracle.ucp.ConnectionLabelingCallback interface. One callback is created per
connection pool. The interface provides the following two methods:

• The cost Method

• The configure Method

The cost Method

This method projects the cost of configuring connections considering label-matching
differences. Upon a connection request, the connection pool uses this method to
select a connection with the least configuration cost.

public int cost(Properties requestedLabels, Properties currentLabels);

The configure Method

This method is called by the connection pool on the selected connection before
returning it to the application. The method is used to set the state of the connection
and apply or remove any labels to/from the connection.

public boolean configure(Properties requestedLabels, Connection conn);

Chapter 5
Implementation of a Labeling Callback in UCP

5-2

The connection pool iterates over each connection available in the pool. For each
connection, it calls the cost method. The result of the cost method is an integer which
represents an estimate of the cost required to reconfigure the connection to the
required state. The larger the value, the costlier it is to reconfigure the connection. The
connection pool always returns connections with the lowest cost value. The algorithm
is as follows:

• If the cost method returns 0 for a connection, then the connection is a match. The
connection pool does not call the configure method on the connection found and
returns the connection as it is.

• If the cost method returns a value greater than 0, then the connection pool iterates
until it finds a connection with a cost value of 0 or runs out of available
connections.

• If the pool has iterated through all available connections and the lowest cost of a
connection is Integer.MAX_VALUE (2147483647 by default), then no connection in
the pool is able to satisfy the connection request. The pool creates and returns a
new connection. If the pool has reached the maximum pool size (it cannot create a
new connection), then the pool either throws an SQL exception or waits if the
connection wait timeout attribute is specified.

• If the pool has iterated through all available connections and the lowest cost of a
connection is less than Integer.MAX_VALUE, then the configure method is called on
the connection and the connection is returned. If multiple connections are less
than Integer.MAX_VALUE, the connection with the lowest cost is returned.

Note:

A cost of 0 does not imply that requestedLabels equals currentLabels.

5.2.2.1 Example of Labeling Callback in UCP
The following example demonstrates a simple labeling callback implementation that
implements both the cost and configure methods. The callback is used to find a
labeled connection that is initialized with a specific transaction isolation level.

class MyConnectionLabelingCallback
 implements ConnectionLabelingCallback {

 public MyConnectionLabelingCallback()
 {
 }

 public int cost(Properties reqLabels, Properties currentLabels)
 {
 // Case 1: exact match
 if (reqLabels.equals(currentLabels))
 {
 System.out.println("## Exact match found!! ##");
 return 0;
 }

 // Case 2: some labels match with no unmatched labels
 String iso1 = (String) reqLabels.get("TRANSACTION_ISOLATION");
 String iso2 = (String) currentLabels.get("TRANSACTION_ISOLATION");

Chapter 5
Implementation of a Labeling Callback in UCP

5-3

 boolean match =
 (iso1 != null && iso2 != null && iso1.equalsIgnoreCase(iso2));
 Set rKeys = reqLabels.keySet();
 Set cKeys = currentLabels.keySet();
 if (match && rKeys.containsAll(cKeys))
 {
 System.out.println("## Partial match found!! ##");
 return 10;
 }

 // No label matches to application's preference.
 // Do not choose this connection.
 System.out.println("## No match found!! ##");
 return Integer.MAX_VALUE;
 }

 public boolean configure(Properties reqLabels, Object conn)
 {
 try
 {
 String isoStr = (String) reqLabels.get("TRANSACTION_ISOLATION");
 ((Connection)conn).setTransactionIsolation(Integer.valueOf(isoStr));
 LabelableConnection lconn = (LabelableConnection) conn;

 // Find the unmatched labels on this connection
 Properties unmatchedLabels =
 lconn.getUnmatchedConnectionLabels(reqLabels);

 // Apply each label <key,value> in unmatchedLabels to conn
 for (Map.Entry<Object, Object> label : unmatchedLabels.entrySet())
 {
 String key = (String) label.getKey();
 String value = (String) label.getValue();
 lconn.applyConnectionLabel(key, value);
 }
 }
 catch (Exception exc)
 {
 return false;
 }
 return true;
 }
}

5.2.3 Registering a Labeling Callback in UCP
A pool-enabled data source provides the
registerConnectionLabelingCallback(ConnectionLabelingCallback callback) method for
registering labeling callbacks. Only one callback may be registered on a connection
pool. The following example demonstrates registering a labeling callback that is
implemented in the MyConnectionLabelingCallback class:

MyConnectionLabelingCallback callback = new MyConnectionLabelingCallback();
pds.registerConnectionLabelingCallback(callback);

Chapter 5
Implementation of a Labeling Callback in UCP

5-4

5.2.4 Removing a Labeling Callback in UCP
A pool-enabled data source provides the removeConnectionLabelingCallback() method
for removing a labeling callback. The following example demonstrates removing a
labeling callback.

pds.removeConnectionLabelingCallback(callback);

5.3 Integration of UCP with DRCP
Natively, DRCP supports connection tagging, which is a single label without weights.
So, labeling with single label works transparently if you use UCP with DRCP. Multiple
label UCP connections work, but they have the following behavior changes:

• The cost method in the ConnectionLabelingCallback API is not invoked if you use
UCP with DRCP using connection labeling

• UCP can invoke the configure method in the ConnectionLabelingCallback API more
with DRCP configuration than without DRCP configuration.

See Also:

Oracle Database JDBC Developer's Guide for more information about DRCP

5.4 Applying Connection Labels in UCP
Labels are applied on a borrowed connection using the applyConnectionLabel method
from the LabelableConnection interface. This method is typically called from the
configure method of the labeling callback. Any number of connection labels may be
cumulatively applied on a borrowed connection. Each time a label is applied to a
connection, the supplied key/value pair is added to the collection of labels already
applied to the connection. Only the last applied value is retained for any given key.

Note:

A labeling callback must be registered on the connection pool before a label
can be applied on a borrowed connection; otherwise, an exception is thrown.

The following example demonstrates initializing a connection with a transaction
isolation level and then applying a label to the connection:

String pname = "property1";
String pvalue = "value";
Connection conn = pds.getConnection();

// initialize the connection as required.

conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

Chapter 5
Integration of UCP with DRCP

5-5

((LabelableConnection) conn).applyConnectionLabel(pname, pvalue);

In order to remove a given key from the set of connection labels applied, apply a label
with the key to be removed and a null value. This may be used to clear a particular
key/value pair from the set of connection labels.

Related Topics:

• Implementation of a Labeling Callback in UCP

5.5 Borrowing Labeled Connections from UCP
A pool-enabled data source provides two getConnection methods that are used to
borrow a labeled connection from the pool. The methods are shown below:

public Connection getConnection(java.util.Properties labels)
 throws SQLException;

public Connection getConnection(String user, String password,
 java.util.Properties labels)
 throws SQLException;

The methods require that the label be passed to the getConnection method as a
Properties object. The following example demonstrates getting a connection with the
label property1, value.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connection conn = pds.getConnection(label);

5.6 Checking Unmatched Labels in UCP
A connection may have multiple labels that each uniquely identifies the connection
based on some desired criteria. The getUnmatchedConnectionLabels method is used to
verify which connection labels matched from the requested labels and which did not.
The method is used after a connection with multiple labels is borrowed from the
connection pool and is typically used by a labeling callback. The following example
demonstrates checking for unmatched labels.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connecion conn = pds.getConnection(label);
Properties unmatched = ((LabelableConnection)
 connection).getUnmatchedConnectionLabels (label);

5.7 Removing a Connection Label in UCP
The removeConnectionLabel method is used to remove a label from a connection. This
method is used after a labeled connection is borrowed from the connection pool. The
following example demonstrates removing a connection label.

Chapter 5
Borrowing Labeled Connections from UCP

5-6

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
Connection conn = pds.getConnection(label);
((LabelableConnection) conn).removeConnectionLabel(pname);

Chapter 5
Removing a Connection Label in UCP

5-7

6
Controlling Reclaimable Connection
Behavior

This chapter describes the following interfaces:

• AbandonedConnectionTimeoutCallback Interface

• TimeToLiveConnectionTimeoutCallback Interface

6.1 AbandonedConnectionTimeoutCallback Interface
The AbandonedConnectionTimeoutCallback callback interface is used for the abandoned
connection timeout feature. This feature enables applications to provide customized
handling of abandoned connections.The callback object either uses one of its logical
connection proxies or it is registered with each pooled connection. This enables
applications to perform customized handling, when a particular connection is deemed
abandoned by the pool. The handleTimedOutConnection method is invoked when a
borrowed connection is deemed abandoned by the Universal Connection Pool.
Applications can perform one of the following operations on the connection:

• Completely override the pool-handling process

• Invoke additional handling actions

• Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the
abandoned connection within the handleTimedOutConnection method.

Note:

If you try to register more than one AbandonedConnectionTimeoutCallback
interface on the same connection, then it results in an exception. This
exception can be a UniversalConnectionPoolException at the pool layer or a
java.sql.SQLException, specific to the type of the UCP Adapter like JDBC, JCA
and so on.

6.2 TimeToLiveConnectionTimeoutCallback Interface
The TimeToLiveConnectionTimeoutCallback callback interface used for the time-to-live
(TTL) connection timeout feature. This enables applications to provide customized
handling for TTL timed-out connections.

The callback object either uses one of its logical connection proxies or it is registered
with each pooled connection. This enables applications to perform customized
handling, when the TTL of the particular connection times out.

6-1

The handleTimedOutConnection method is invoked when a borrowed connection is found
to be TTL timed-out by the Universal Connection Pool. Applications can perform one
of the following operations on the connection:

• Completely override the pool-handling process

• Invoke additional handling actions

• Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the
abandoned connection within the handleTimedOutConnection method.

Note:

If you try to register more than one TimeToLiveConnectionTimeoutCallback
interface on the same connection, then it results in an exception. This
exception can be a UniversalConnectionPoolException at the pool layer or a
java.sql.SQLException, specific to the type of the UCP Adapter like JDBC,
JCA, and so on.

Chapter 6
TimeToLiveConnectionTimeoutCallback Interface

6-2

7
Using the Connection Pool Manager

The following sections are included in this chapter:

• Overview of Using the UCP Manager

• Overview of JMX-based Management

7.1 Overview of Using the UCP Manager
The Universal Connection Pool (UCP) manager creates and maintains UCP instances.
A pool instance is registered with the pool manager every time a new pool is created.
This section covers the following topics:

• About Connection Pool Manager

• Creating a Connection Pool Manager for UCP

• Life Cycle States of a Connection

• Maintenance of Universal Connection Pool

7.1.1 About Connection Pool Manager
Applications use a connection pool manager to explicitly create and manage UCP
JDBC connection pools. Applications use the manager because it offers full life cycle
control, such as creating, starting, stopping, and destroying a connection pool.
Applications also use the manager to perform routine maintenance on the connection
pool, such as refreshing, recycling, and purging connections in a pool. Lastly,
applications use the connection pool manager because it offers a centralized
integration point for administrative tools and consoles.

7.1.2 Creating a Connection Pool Manager for UCP
A connection pool manager is an instance of the UniversalConnectionPoolManager
interface, which is located in the oracle.ucp.admin package. The manager is a
Singleton instance that is used to manage multiple connection pools per JVM. The
interface includes methods for interacting with a connection pool manager. UCP
includes an implementation that is used to get a connection pool manager instance.
The following example demonstrates creating a connection pool manager instance
using the implementation:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

7.1.3 Life Cycle States of a Connection
Applications use the connection pool manager to explicitly control the life cycle of
connection pools. The manager is used to create, start, stop, and destroy connection
pools. Life cycle methods are included as part of the UniversalConnectionPoolManager
interface.

7-1

Understanding Life Cycle States

The life cycle states of a connection pool affects what manager operations can be
performed on a connection pool. Applications that explicitly control the life cycle of a
pool must ensure that the manager's operations are used only when the pool is in an
appropriate state. Life cycle constraints are discussed throughout this section.

The following list describes the life cycle states of a pool:

• Starting : Indicates that the connection pool's start method has been called and it
is in the process of starting up.

• Running : Indicates that the connection pool has been started and is ready to give
out connections.

• Stopping : Indicates that the connection pool is in the process of stopping.

• Stopped : Indicates that the connection pool is stopped.

• Failed : Indicates that the connection pool has encountered failures during starting,
stopping, or execution.

7.1.3.1 Creating a Connection Pool
The CreateConnectionPool method of the Connection Manager creates and registers a
connection pool. The manager uses a connection pool adapter to create the pool and
relies on a pool-enabled data source to configure the pool properties. An application
must not implicitly start a connection pool before using the createConnectionPool
method to explicitly create the same pool.

The following example demonstrates creating a connection pool instance using the
manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionPoolName("mgr_pool");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

mgr.createConnectionPool((UniversalConnectionPoolAdapter)pds);

An application does not have to use the manager to create a pool in order for the pool
to be managed. A pool that is implicitly created (that is, automatically created when
using a pool-enabled data source) and configured with a pool name, is automatically
registered and managed by the pool manager. Oracle recommends implicit pool
creation.

Pool Naming Convention

A connection pool name must be defined as part of the configuration. The pool name
provides a way to refer to specific pools when interacting with the manager. A
connection pool name must be unique and cannot be used by more than one
connection pool. The manager throws a pool already exists exception if a connection
pool already exists with the same name.

Chapter 7
Overview of Using the UCP Manager

7-2

Compatibility with JBoss

JBoss users can use the JBoss-specific silent reload functionality by setting the
oracle.ucp.destroyOnReload JVM system property to true. When the
oracle.ucp.destroyOnReload property is set to true, then the JBoss-specific behavior
automatically destroys an old pool instance prior to creating a new one with the same
name. If this system property is not set or set to false, then UCP throws a pool
already exists exception.

7.1.3.2 Starting a Connection Pool
The manager's startConnectionPool method starts a connection pool using the pool
name as a parameter to determine which pool to start. The pool name is defined as a
pool property on a pool-enabled data source.

The following example demonstrates starting a connection pool:

mgr.startConnectionPool("mgr_pool");

An application must always create a connection pool using the manager's
createConnectionPool method prior to starting the pool. In addition, a life cycle state
exception occurs if an application attempts to start a pool that has been previously
started or if the pool is in a state other than stopped or failed.

7.1.3.3 Stopping a Connection Pool
The manager's stopConnectionPool method stops a connection pool using the pool
name as a parameter to determine which pool to stop. The pool name is defined as a
pool property on the pool-enabled data source. Stopping a connection pool closes all
available and borrowed connections.

The following example demonstrates stopping a connection pool:

mgr.stopConnectionPool("mgr_pool");

An application can use the manager to stop a connection pool that was started
implicitly or explicitly. An error occurs if an application attempts to stop a pool that
does not exist or if the pool is in a state other than started or starting.

7.1.3.4 Destroying a Connection Pool
The manager's destroyConnectionPool method stops a connection pool and removes it
from the connection pool manager. A pool name is used as a parameter to determine
which pool to destroy. The pool name is defined as a pool property on the pool-
enabled data source.

The following example demonstrates destroying a connection pool:

mgr.destroyConnectionPool("mgr_pool");

An application cannot start a connection pool that has been destroyed and must
explicitly create and start a new connection pool.

7.1.4 Maintenance of Universal Connection Pool
Applications use the connection pool manager to perform maintenance on a
connection pool. Maintenance includes refreshing, recycling, and purging a connection

Chapter 7
Overview of Using the UCP Manager

7-3

pool. The maintenance methods are included as part of the
UniversalConnectionPoolManager interface.

Maintenance is typically performed to remove and replace invalid connections and
ensures a high availability of valid connections. Invalid connections typically cannot be
used to connect to a database but are still maintained by the pool. These connections
waste system resources and directly affect a pool's maximum connection limit.
Ultimately, too many invalid connections negatively affects an applications
performance.

Note:

Applications can check whether or not a connection is valid when borrowing
the connection from the pool. If an application consistently has a high number
of invalid connections, additional testing should be performed to determine the
cause.

Related Topics:

• Overview of Validating Connections in UCP

7.1.4.1 Refreshing a Connection Pool
Refreshing a connection pool replaces every connection in the pool with a new
connection. Any connections that are currently borrowed are marked for removal and
refreshed after the connection is returned to the pool. The manager's
refreshConnectionPool method refreshes a connection pool using the pool name as a
parameter to determine which pool to refresh. The pool name is defined as a pool
property on the pool-enabled data source.

The following example demonstrates refreshing a connection pool:

mgr.refreshConnectionPool("mgr_pool");

7.1.4.2 Recycling a Connection Pool
Recycling a connection pool replaces only invalid connection in the pool with a new
connection and does not replace borrowed connections. The manager's
recycleConnectionPool method recycles a connection pool using the pool name as a
parameter to determine which pool to recycle. The pool name is defined as a pool
property on the pool-enabled data source.

The setSQLForValidateConnection property must be set when using non-Oracle drivers.
UCP uses this property to determine whether or not a connection is valid before
recycling the connection.

The following example demonstrates recycling a connection pool:

mgr.recycleConnectionPool("mgr_pool");

Related Topics:

• Overview of Validating Connections in UCP

Chapter 7
Overview of Using the UCP Manager

7-4

7.1.4.3 Purging a Connection Pool
Purging a connection pool removes every connection (available and borrowed) from
the connection pool and leaves the connection pool empty. Subsequent requests for a
connection result in a new connection being created. The manager's
purgeConnectionPool method purges a connection pool using the pool name as a
parameter to determine which pool to purge. The pool name is defined as a pool
property on the pool-enabled data source.

The following example demonstrates purging a connection pool:

mgr.purgeConnectionPool("mgr_pool");

Note:

Connection pool properties, such as minPoolSize and initialPoolSize, may not
be enforced after a connection pool is purged.

7.2 Overview of JMX-Based Management in UCP
JMX (Java Management Extensions) is a Java technology that supplies tools for
managing and monitoring applications, system objects, devices, service-oriented
networks, and JVM (Java Virtual Machine). In JMX, a given resource is instrumented
by one or more Java objects known as MBeans (Managed Beans). An MBean is
composed of an MBean interface and a class. The MBean interface lists the methods
for all exposed attributes and operations. The class implements this interface and
provides the functionality of the instrumented resource.

The MBeans are registered in a core managed object server, known as an MBean
server, which acts as a management agent and can run on most devices enabled for
the Java programming language. A JMX agent consists of an MBean server, in which
MBeans are registered, and a set of services for handling MBeans.

See Also:

• https://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

• Oracle Universal Connection Pool Java API Reference

UCP provides the following two MBeans for pool management support:

• UniversalConnectionPoolManagerMBean

• UniversalConnectionPoolMBean

Chapter 7
Overview of JMX-Based Management in UCP

7-5

https://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html

Note:

All MBean attributes and operations are available only when the
UniversalConnectionPoolManager.isJmxEnabled method returns true. The
default value of this flag is true. This default value can be altered by calling the
UniversalConnectionPoolManager.setJmxEnabled method. When an
MBeanServer is not available, the jmxFlag is automatically set to false.

7.2.1 UniversalConnectionPoolManagerMBean
The UniversalConnectionPoolManagerMBean is a manager MBean that includes all the
functionalities of a conventional connection pool manager. The
UniversalConnectionPoolManagerMBean provides the following functionalities:

• Registering and unregistering pool MBeans

• Pool management operations like starting the pool, stopping the pool, refreshing
the pool, and so on

• Starting and stopping DMS statistics

• Logging

7.2.2 UniversalConnectionPoolMBean
The UniversalConnectionPoolMBean is a pool MBean that covers dynamic configuration
of pool properties and pool statistics. The UniversalConnectionPoolMBean provides the
following functionalities:

• Configuring pool property attributes like size, timeouts, and so on

• Pool management operations like refreshing the pool, recycling the pool, and so
on

• Monitoring pool statistics and life cycle states

Chapter 7
Overview of JMX-Based Management in UCP

7-6

8
Shared Pool Support for Multitenant Data
Sources

Starting from Oracle Database 12c Release 2 (12.2.0.1), multiple data sources of
multitenant data sources can share a common pool of connections in UCP and
repurpose connections in the common connection pool, whenever needed. This
section describes the following concepts related to new Shared Pool feature:

Note:

• Only the JDBC Thin driver supports the Shared Pool feature, and not the
JDBC OCI driver.

• For using this feature, you must use an XML configuration file.

• Overview of Shared Pool Support

• Prerequisites for Supporting Shared Pool

• Configuring the Shared Pool

• APIs for Shared Pool Support

• Sample XML Configuration File for Shared Pool

Related Topics:

• Sample XML Configuration File for Shared Pool

8.1 Overview of Shared Pool Support
In UCP, the pool instances have a one-to-one mapping with the data sources. Every
data source creates its own connection pool instance and that instance is not
accessible or shared by another data source, even if they internally create and cache
connections to the same database and service. In this architecture, a lot of isolated
connection pools are created, which causes a scalability problem because a database
can scale up to only a certain number of connections.

Starting from Oracle Database 12c Release 2 (12.2.0.1), UCP supports multiple data
sources, connected to the same database, to share the same connection pool. This
common connection pool is called as Shared Pool. The Shared Pool optimizes system
resources for a scalable deployment of multitenant Java applications in Oracle
Database Multitenant environment. This feature provides more flexibility in situations
when there is an uneven load on each data source. When individual pool per data
sources are created, then it is impossible to move around idle resources from an idle
connection pool to a loaded one. However, when a Shared Pool is used, connections
can be utilized in an efficient way by sharing and repurposing connections between the

8-1

data sources. So, this feature reduces the total number of database connections, and
improves resource usage, diagnosability, manageability, and scaling at the database
servers.

Following are the two scenarios in which this feature can be implemented:

• Single Multitenant Data Source Using Shared Pool

• One Data Source per Tenant Using Shared Pool

Single Multitenant Data Source Using Shared Pool

With this configuration, multiple tenants use the common data source and a common
pool to serve connections with different services applicable to each of the tenants, as
illustrated in the following diagram:

Figure 8-1 Single Multitenant Data Source Using Shared Pool

The following code snippet explains how this feature works:

 PoolDataSource multiTenantDS = PoolDataSourceFactory.getPoolDataSource();

 //common user for the CDB
 multiTenantDS.setUser("c##common_user");
 multiTenantDS.setPassword("password");

 //Points to the root service of the CDB
 multiTenantDS.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"
 + "(HOST=myhost)(PORT=5521))
(CONNECT_DATA=(SERVICE_NAME=root.oracle.com)))");

 // password enabled role for tenant-1
 Properties tenant1Roles = new Properties();
 tenant1Roles.put("tenant1-role", "tenant1-password");

 //Create Connection to Tenant-1 and apply the tenant specific PDB roles.
 Connection tenant1Connection =
 multiTenantDS.createConnectionBuilder()
 .serviceName("tenant1Svc.oracle.com")
 .pdbRoles(tenant1Roles)
 .build();

Chapter 8
Overview of Shared Pool Support

8-2

 // password enabled role for tenant-2
 Properties tenant2Roles = new Properties();
 tenant1Roles.put("tenant2-role", "tenant2-password");

 //Create Connection to Tenant-2 and apply the tenant specific PDB roles.
 Connection tenant2Connection =
 multiTenantDS.createConnectionBuilder()
 .serviceName("tenant2Svc.oracle.com")
 .pdbRoles(tenant2Roles)
 .build();

Refer to the “UCP APIs for Shared Pool Support” section for more information about
the new APIs.

One Data Source per Tenant Using Shared Pool

With this configuration, multitenant applications have separate data sources per tenant
and a common Shared Pool for connections. This results in the individual data sources
being configured with tenant specific service information and sharing a common pool,
as illustrated in the following diagram:

Figure 8-2 One Data Source per Tenant Using Shared Pool

The following code snippet explains how this feature works:

 // UCP XML configuration file path in case of Unix
 String file_URI = "file:/user/app/sharedpool/initial-shared-pool-config.xml";

 // UCP XML configuration file path in case of Windows
 String file_URI = "file:/D:/user/app/sharedpool/initial-shared-pool-config.xml";

 // Java system property to specify XML configuration file location
 System.setProperty("oracle.ucp.jdbc.xmlConfigFile",<file_URI>);

 // Get the datasource instance, named as "pds1" in XML configuration
file(initial-shared-pool-config.xml)
 PoolDataSource pds1 = PoolDataSourceFactory.getPoolDataSource("pds1");
 Connection pds1Conn = pds1.getConnection();

 // Get the datasource instance, named as "pds2" in XML configuration

Chapter 8
Overview of Shared Pool Support

8-3

file(initial-shared-pool-config.xml)
 PoolDataSource pds2 = PoolDataSourceFactory.getPoolDataSource("pds2");
 Connection pds2Conn = pds2.getConnection();

 // Reconfigure datasource(pds1) using the new properties
 Properties newProps = new Properties();
 newProps.put("serviceName", <newServiceName>);
 pds1.reconfigureDataSource(newProps);

 // Configure a new datasource(pds3) to running pool using the new data source
properties
 Properties dataSourceProps = new Properties();
 dataSourceProps.put("serviceName", <serviceName>);
 dataSourceProps.put("connectionPoolName", <poolName>);
 dataSourceProps.put("dataSourceName", <dataSourceName>);
 PoolDataSource pds3 = PoolDataSourceFactory.getPoolDataSource(dataSourceProps);

 // Reconfigure connection pool("pool1") using the new properties

 Properties newPoolProps = new Properties();
 newPoolProps.put("initialPoolSize", <newInitialPoolSizeValue>);
 newPoolProps.put("maxPoolSize", <newMaxPoolSizeValue>);
 UniversalConnectionPoolManager ucpMgr =
UniversalConnectionPoolManagerImpl.getUniversalConnectionPoolManager();
 ucpMgr.reconfigureConnectionPool("pool1", newPoolProps);

Note:

• UCP uses a service switch for implementing this feature. However, the
service switch in Shared Pools is supported only for homogenous
services. There is no support for heterogeneous services (heterogeneity in
terms of service attributes like Transaction Guard and Application
Continuity) in Shared Pools.

• For the XML configuration file used in the code snippets, refer to the “XML
Configuration File Required for Shared Pool Support” section.

8.2 Prerequisites for Supporting Shared Pool
Following are the prerequisites for multitenant data sources to use the Shared Pool:

• You must provide the initial configuration of Shared Pools through an XML
configuration file. You can specify the initial XML configuration file for UCP through
the system property oracle.ucp.jdbc.xmlConfigFile. The location of the initial XML
configuration file should be specified as a URI. For example, file:/
user_directory/ucp.xml.

The configuration.xsd schema file is included in the ucp.jar file for reference.
Refer to this file while creating a UCP XML configuration file.

• During the reconfiguration of a shared pool, updated pool properties should be
provided through reconfiguration APIs.

Chapter 8
Prerequisites for Supporting Shared Pool

8-4

• Always use application service for the services used for Shared Pool, and for the
individual tenant data source specific services. Connections are not repurposed or
reused when an Administrative service or default PDB services are used.

• The various services accessed through the Shared Pool must be homogenous,
that is, they should have similar properties with respect to Application Continuity
(AC), DRCP (Database Resident Connection Pool), and so on.

• The Shared Pool must be configured with a single user, and this user should be a
common user configured on the CDB. The common user should have the following
privileges - CREATE SESSION, ALTER SESSION, and SET CONTAINER. The common user
should also have the execute permission on the DBMS_SERVICE_PRVT package.

Note:

– If the common user needs specific roles or password-enabled roles per
tenant, then these roles should be specified in the respective tenant data
source properties.

– The advantage of the SET CONTAINER statement is that the pool does not
have to create a new connection to a PDB, if there is an existing
connection to a different PDB. The pool can use the existing connection
and can connect to the desired PDB through the SET CONTAINER statement.

• Connection repurposing among various tenant connections in the Shared Pool
happens only when the total number of the connections in the pool reaches the
connection repurpose threshold (if configured on the pool) and the minimum pool
size.

• The URL specified for the Shared Pool in the XML configuration file must have the
LONG format, with service name explicitly specified. Short format or Easy
Connection URL is not supported.

8.3 Configuring the Shared Pool
The following sections describe the Shared Pool configuration:

• Initial Configuration of the Pool

• Reconfiguration of the Pool

Initial Configuration of the Pool

For the initial configuration of the pool, get a data source instance by using the XML
configuration file and then, using that data source, get a connection from a Shared
Pool.

 // Get the data source instance, named as "pds1" in the XML configuration
file(initial-shared-pool-config.xml)
 PoolDataSource pds1 = PoolDataSourceFactory.getPoolDataSource("pds1");
 Connection pds1Conn = pds1.getConnection();

Reconfiguration of the Pool

• The following code snippet shows how to reconfigure the data source that you
obtained during the initial configuration of the pool:

Chapter 8
Configuring the Shared Pool

8-5

 // Reconfigure datasource(pds1) using the new propertries for reconfiguration

Properties newProps = new Properties();
newProps.put("serviceName",<newServiceName>);
pds1.reconfigureDataSource(newProps);

• The following code snippet shows how to add a new data source to an already
running Shared Pool:

// Configure a new datasource(pds3) to the running pool using the new data
source properties

Properties dataSourceProps = new Properties();
dataSourceProps.put("serviceName", <serviceName>);
dataSourceProps.put("connectionPoolName", <poolName>);
dataSourceProps.put("dataSourceName", <dataSourceName>);
PoolDataSource pds3 = PoolDataSourceFactory.getPoolDataSource(dataSourceProps);

• The following code snippet shows how to reconfigure the connection pool:

// Reconfigure connection pool("pool1") using the new properties

Properties newPoolProps = new Properties();
newPoolProps.put("initialPoolSize", <newInitialPoolSizeValue>);
newPoolProps.put("maxPoolSize", <newMaxPoolSizeValue>);
UniversalConnectionPoolManager ucpMgr =
UniversalConnectionPoolManagerImpl.getUniversalConnectionPoolManager();
ucpMgr.reconfigureConnectionPool("pool1", newPoolProps);

8.4 UCP APIs for Shared Pool Support

New Methods in PoolDataSource Interface

The following methods have been introduced in the oracle.ucp.jdbc.PoolDataSource
interface:

• reconfigureDataSource(Properties configuration)

• getMaxConnectionsPerService()

• getServiceName()

• getPdbRoles()

• getConnectionRepurposeThreshold()

• setConnectionRepurposeThreshold(int threshold)

New Methods in PoolDataSourceFactory Class

The following methods have been introduced in the
oracle.ucp.jdbc.PoolDataSourceFactory class:

• getPoolDataSource(String dataSourceName)

• getPoolDataSource(Properties configuration)

• getPoolXADataSource(String dataSourceName)

• getPoolXADataSource(Properties configuration)

Chapter 8
UCP APIs for Shared Pool Support

8-6

New Method in oracle.ucp.admin.UniversalConnectionPoolManager Interface

The following method has been introduced in the
oracle.ucp.admin.UniversalConnectionPoolManager interface:

reconfigureConnectionPool(String poolName , Properties configuration)

New Method in oracle.ucp.admin.UniversalConnectionPool Interface

The following method has been introduced in the
oracle.ucp.admin.UniversalConnectionPool interface:

• isShareable()

• getMaxConnectionsPerService()

• setMaxConnectionsPerService(int maxConnectionsPerService)

See Also:

Oracle Universal Connection Pool Java API Reference for more information
about these methods.

8.5 Sample XML Configuration File for Shared Pool

initial-shared-pool-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<ucp-properties>
 <connection-pool
 connection-pool-name="pool1"
 connection-factory-class-name="oracle.jdbc.pool.OracleDataSource"
 url="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=host_name)(PORT=1521)
(PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))"
 user="C##CommonUser"
 password=password
 initial-pool-size="10"
 min-pool-size="5"
 max-pool-size="20"
 connection-repurpose-threshold="13"
 max-connections-per-service="15"
 validate-connection-on-borrow="true"
 sql-for-validate-connection="select 1 from dual"
 shared="true"
 >

 <connection-property name="oracle.jdbc.ReadTimeout" value="2000"/>
 <connection-property name="oracle.net.OUTBOUND_CONNECT_TIMEOUT"
value="2000"/>

 <data-source
 data-source-name="pds1"
 service=pdb1_service_name
 description="pdb1 data source"/>

Chapter 8
Sample XML Configuration File for Shared Pool

8-7

 <data-source
 data-source-name="pds2"
 service=pdb2_service_name
 description="pdb2 data source"/>

 </connection-pool>
</ucp-properties>

Chapter 8
Sample XML Configuration File for Shared Pool

8-8

9
Using Oracle RAC Features

The following sections are included in this chapter:

• Overview of Oracle RAC Features

• About Fast Connection Failover

• About Run-Time Connection Load Balancing

• About Connection Affinity

• Global Data Services

9.1 Overview of Oracle RAC Features
UCP JDBC connection pools provide a tight integration with various Oracle Real
Application Clusters (Oracle RAC) Database features. The features include Fast
Connection Failover (FCF), Run-Time Connection Load Balancing, and Connection
Affinity. These features require the use of an Oracle JDBC driver, Oracle RAC
database, and the Oracle Notification Service library (ons.jar) that is included with the
Oracle Client software.

Applications use Oracle RAC features to maximize connection performance and
availability and to mitigate down-time due to connection problems. Applications have
different availability and performance requirements and should implement Oracle RAC
features accordingly.

Note:

Starting from Oracle Database 11g Release 1 (11.2), FCF is also supported by
Oracle Restart on a single instance database. Oracle Restart was previously
known as Single-Instance High Availability (SIHA).

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide for
more information about these technologies

• Oracle Database Administrator's Guide for more information about Oracle
Restart

Generic High Availability and Performance Features

The UCP APIs and connection pool properties include many high availability and
performance features that do not require an Oracle RAC database. These features
work well with both Oracle and non-Oracle connections and are discussed throughout

9-1

this guide. For example: validating connections on borrow; setting timeout properties;
setting maximum reuse properties; and connection pool manager operations are all
used to ensure a high-level of connection availability and optimal performance.

Note:

Generic high availability and performance features work slightly better when
using Oracle connections because UCP leverages Oracle JDBC internal APIs.

Database Version Compatibility for Oracle RAC

The following table lists supported Database versions for various Oracle RAC features:

Table 9-1 Oracle RAC Version Compatibility

Feature Supported Database Version

Fast Connection Failover Oracle Database 10.1.x and later versions

Run-time Connection Load-
Balancing

Oracle Database 10.2.x and later versions

Web Session Affinity Oracle Database 11.1.x and later versions

Transaction-Based Affinity Oracle Database 10.2.x and later versions (Oracle Database
11.1.x recommended)

Oracle JDBC Driver Version Compatibility for Oracle RAC

Oracle JDBC driver 10.1.x and later versions are supported with Oracle RAC features.

9.2 About Fast Connection Failover
This section contains the following subsections:

• Overview of Fast Connection Failover

• What is Fast Connection Failover

• Fast Connection Failover Prerequisites

• Example of Fast Connection Failover Configuration

• Enabling Fast Connection Failover

• What is ONS

• Configuring the Connection URL

9.2.1 Overview of Fast Connection Failover
The Fast Connection Failover (FCF) feature is a Fast Application Notification (FAN)
client implemented through the connection pool. The feature requires the use of an
Oracle JDBC driver and an Oracle RAC database or an Oracle Restart on a single
instance database.

Chapter 9
About Fast Connection Failover

9-2

Note:

This section only describes the steps that an application must perform when
using FCF with Oracle RAC.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
more information on setting up an Oracle RAC database, or consult an Oracle
database administrator.

FCF manages pooled connections for high availability and provides the following
features:

• FCF supports unplanned outages. Dead connections are rapidly detected and
then the connections are aborted and removed from the pool. Connection removal
relies on abort to rapidly sever socket connections in order to prevent hangs.
Borrowed and in-use connections are interrupted only for unplanned outages.

• FCF supports planned outages. Borrowed or in-use connections are not
interrupted and closed until work is done and control of the connection is returned
to the pool.

• FCF encapsulates fatal connection errors and exceptions into the isValid API for
robust and efficient retries.

• FCF recognizes new nodes that join an Oracle RAC cluster and places new
connections on that node appropriately in order to deliver maximum quality of
service to applications at run time. This facilitates middle-tier integration of Oracle
RAC node joins and work-request routing from the application tier.

• FCF distributes run-time work requests to all active Oracle RAC instances.

Unplanned Shutdown Scenarios

FCF supports unplanned shutdown scenarios by detecting and removing stale
connections to an Oracle RAC cluster. Stale connections include connections that do
not have a service available on any instance in an Oracle RAC cluster due to service-
down and node-down events. Borrowed connections and available connections that
are stale are detected, and their network connection is severed before removing them
from the pool. These removed connections are not replaced by the pool. Instead, the
application must retry connections before performing any work with a connection.

Note:

Borrowed connections are immediately aborted and closed during unplanned
shutdown scenarios. Any on-going transactions immediately receive an
exception.

Chapter 9
About Fast Connection Failover

9-3

Planned Shutdown Scenarios

FCF supports planned shutdown scenarios where an Oracle RAC service can be
gracefully shutdown. In such scenarios, stale borrowed connections are marked and
will only be aborted and removed after they are returned to the pool. Any on-going
transactions do not see any difference and proceed to complete.

The primary difference between unplanned and planned shutdown scenarios is how
borrowed connections are handled. Stale connections that are idle in the pool (not
borrowed) are removed in the same manner as the unplanned shutdown scenario.

Starting from Oracle Database 12c Release 1 (12.1.0.2), UCP supports graceful
connection draining from any planned-down Oracle RAC instance. Affected borrowed
connections are removed smoothly over a grace period, instead of immediate removal
upon their return to the pool. This helps in avoiding throughput impact and logon
storms during any service relocation.

Oracle RAC Instance Rejoin and New Instance Scenarios

FCF supports scenarios where an Oracle RAC cluster adds instances that provide a
service of interest. The instance may be new to the cluster or may have been restarted
after a down event. In both cases, UCP recognizes the new instance and creates
connections to the node as required.

Related Topics:

• Checking If a Connection Is Valid

• Enabling Fast Connection Failover

9.2.2 What is Fast Connection Failover?
After Fast Connection Failover is enabled, the mechanism is automatic; no application
intervention is needed. This section discusses how a connection failover is presented
to an application and what steps the application takes to recover, in the following
sections:

• What the Application Sees

• How FCF Works

9.2.2.1 What the Application Sees
By the time an Oracle RAC service failure is propagated to the JDBC application, the
database already rolls back the local transaction. The cache manager then cleans up
all invalid connections. When an application holding an invalid connection tries to do
work through that connection, it is possible to receive SQLException, ORA-17008, Closed
Connection.

When an application receives a Closed Connection error message, it should do the
following:

1. Retry the connection request. This is essential, because the old connection is no
longer open.

2. Replay the transaction. All work done before the connection was closed has been
lost.

Chapter 9
About Fast Connection Failover

9-4

Note:

The application should not try to roll back the transaction. The transaction was
already rolled back in the database by the time the application received the
exception.

9.2.2.2 How FCF Works
Under Fast Connection Failover, each connection in the cache maintains a mapping to
a service, instance, database, and host name.

When a database generates an Oracle RAC event, that event is forwarded to the JVM
in which JDBC is running. A daemon thread inside the JVM receives the Oracle RAC
event and passes it on to the Connection Cache Manager. The Connection Cache
Manager then throws SQL exceptions to the applications affected by the Oracle RAC
event.

A typical failover scenario may work like the following:

1. A database instance fails, leaving several stale connections in the cache.

2. The Oracle RAC mechanism in the database generates an Oracle RAC event
which is sent to the JVM containing JDBC.

3. The daemon thread inside the JVM finds all the connections affected by the Oracle
RAC event, notifies them of the closed connection through SQL exceptions, and
rolls back any open transactions.

4. Each individual connection receives a SQL exception and must retry.

9.2.3 Fast Connection Failover Prerequisites
Fast Connection Failover is available under the following circumstances:

• The Universal Connection Pool is enabled.

Fast Connection Failover works in conjunction with the JDBC connection caching
mechanism. This helps applications manage connections to ensure high
availability.

• The application uses service names to connect to the database.

The application cannot use service identifiers.

• The underlying database has Oracle Database 12c Release 1 (12.1) Real
Application Clusters (Oracle RAC) capability or Oracle Data Guard configured with
either single instance Databases or Oracle RAC.

If failover events are not propagated, then connection failover cannot occur.

• Oracle Notification Service (ONS) is configured and available on the node where
JDBC is running.

JDBC depends on ONS to propagate database events and notify JDBC of them.

• The Java Virtual Machine (JVM) in which your JDBC instance is running must
have oracle.ons.oraclehome set to point to your ORACLE_HOME.

Chapter 9
About Fast Connection Failover

9-5

9.2.4 Example of Fast Connection Failover Configuration
The following example demonstrates a connection pool that uses the FCF feature.
FCF is configured through a pool-enabled data source. The example includes enabling
FCF, configuring the Oracle Notification Service (ONS) and configuring a connection
URL. These topics are discussed after the example.

The isValid method of the oracle.ucp.jdbc.ValidConnection interface is typically used
in conjunction with the FCF feature and is used to check if a borrowed connection is
still usable after an SQL exception has been thrown due to an Oracle RAC down
event. For example:

try { conn = pds.getConnection; ...}catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

Example 9-1 Fast Connection Failover Configuration Example

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");
pds.setFastConnectionFailoverEnabled(true);
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=
/oracle11/onswalletfile");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode1) (PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode2) (PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");
...

Related Topics:

• Checking If a Connection Is Valid

9.2.5 Enabling Fast Connection Failover
The FCF pool property is used to enable and disable FCF. FCF is disabled by default.
The following example demonstrates enabling FCF as shown in Example 9-1.

pds.setFastConnectionFailoverEnabled(true);

Chapter 9
About Fast Connection Failover

9-6

Note:

Starting from Oracle Database 12c Release 1 (12.1.0.2), UCP supports the
oracle.ucp.PlannedDrainingPeriod system property. It specifies the grace time
period (in integer seconds) over which the pool smoothly drains the borrowed
connections affected by a planned shut down. Draining starts when the same
Database service becomes available on another instance different from the
one that is going down.

When this property is not set, or set to 0, then the pool closes any affected
borrowed connection immediately when it is returned to the pool.

Querying Fast Connection Failover Status

An application determines if Fast Connection Failover is enabled by calling
OracleDataSource.getFastConnectionFailoverEnabled, which returns true if failover is
enabled, false otherwise.

Note:

FCF must also be enabled to use run-time connection load balancing and
connection affinity. These features are discussed later in this chapter.

9.2.6 What is ONS?
FCF relies on the Oracle Notification Service (ONS) to propagate database events
between the connection pool and the Oracle RAC database. At run time, the
connection pool must be able to setup an ONS environment. ONS (ons.jar) is included
as part of the Oracle Client software. ONS can be configured using either remote
configuration or client-side ONS daemon configuration. Remote configuration is the
preferred configuration for standalone client applications. This section discusses the
following topics:

• Overview of ONS Configuration File

• Remote Configuration of ONS

• Configuration of Client-Side ONS Daemon

9.2.6.1 Overview of ONS Configuration File
ONS configuration is controlled by the ONS configuration file, ORACLE_HOME/opmn/conf/
ons.config. This file tells the ONS daemon how it should behave. Configuration
information within ons.config is defined in simple name and value pairs.

Some parameters in the ons.config file are required and some are optional. Table 9-2
lists the required ONS configuration parameters and Table 9-3 lists the optional ONS
configuration parameters. ONS must be refreshed after updating the ons.config file.

Chapter 9
About Fast Connection Failover

9-7

Table 9-2 Required ONS Configuration Parameters

Parameter Explanation

localport Specifies the port that ONS binds to on the local host interface to talk to
local clients.

For example, localport=4100

remoteport Specifies the port that ONS binds to on all interfaces for talking to other
ONS daemons.

For example, remoteport=4200

nodes Specifies a list of other ONS daemons to talk to. Node values are given as
a comma-delimited list of either host names or IP addresses plus ports. The
port value that is given is the remote port that each ONS instance is
listening on. In order to maintain an identical file on all nodes, the
host:port of the current ONS node can also be listed in the nodes list. It
will be ignored when reading the list.

For example, nodes=myhost.example.com:4200,123.123.123.123:4200

The nodes listed in the nodes line correspond to the individual nodes in the
Oracle RAC instance. Listing the nodes ensures that the middle-tier node
can communicate with the Oracle RAC nodes. At least one middle-tier node
and one node in the Oracle RAC instance must be configured to see one
another. As long as one node on each side is aware of the other, all nodes
are visible. You need not list every single cluster and middle-tier node in the
ONS configuration file of each Oracle RAC node. In particular, if one ONS
configuration file cluster node is aware of the middle tier, then all nodes in
the cluster are aware of it.

Chapter 9
About Fast Connection Failover

9-8

Table 9-3 Optional ONS Configuration Parameters

Parameter Description

logcomp Specifies the ONS components to log. The format is as follows:

<component>[<subcomponent>,...];<component>[<subcomponent>,...];...

If no subcomponents need to be specified, then do not include the brackets
([]) after the component name. To exclude messages from a
subcomponent, precede the subcomponent name with an exclamation mark
(!). For example, to exclude messages from the topology subcomponent,
you use the following format:

[all,!topology]

Note that before specifying a subcomponent from which you want to
exclude messages, you must first ensure that the subcomponent includes
the messages.

Following are the valid values for components:

• internal

• ons

If you specify the component as internal, then there are no valid values
for subcomponent. If you specify the component as ons, then you can
specify the following values for subcomponent:

• all: Specifies all messages
• ons: ONS local information
• listener: ONS listener information
• discover: ONS discover (server or multicast) information
• servers: ONS remote servers currently up and connected to the

cluster
• topology: ONS current cluster wide server connection topology
• server: ONS remote server connection information
• client: ONS client connection information
• connect: ONS generic connection information
• subscribe: ONS client subscription information
• message: ONS notification receiving and processing information
• deliver: ONS notification delivery information
• special: ONS special notification processing
• internal: ONS internal resource information
• secure: ONS SSL operation information
• workers: ONS worker threads
The following example shows that you want to log messages for all the
subcomponents under ons, except the secure subcomponent:

logcomp=ons[all,!secure]

logfile Specifies a log file that ONS should use for logging messages. The default
value for log file is $ORACLE_HOME/opmn/logs/ons.log.

For example, logfile=/private/oraclehome/opmn/logs/myons.log

Chapter 9
About Fast Connection Failover

9-9

Table 9-3 (Cont.) Optional ONS Configuration Parameters

Parameter Description

walletfile Specifies the wallet file used by the Oracle Secure Sockets Layer (SSL) to
store SSL certificates. If a wallet file is specified to ONS, then it uses SSL
when communicating with other ONS instances and require SSL certificate
authentication from all ONS instances that try to connect to it. This means
that if you want to turn on SSL for one ONS instance, then you must turn it
on for all instances that are connected. This value should point to the
directory where your ewallet.p12 file is located.

For example, walletfile=/private/oraclehome/opmn/conf/ssl.wlt/
default

useocr Specifies the value, reserved for use on the server-side, to indicate ONS
whether it should store all Oracle RAC nodes and port numbers in Oracle
Cluster Registry (OCR) instead of the ONS configuration file or not. A value
of useocr=on is used to store all Oracle RAC nodes and port numbers in
Oracle Cluster Registry (OCR).

Do not use this option on the client-side.

allowgroup Specifies the ONS setting to indicate the user group connecting to the
localport. When set to true, ONS allows users within the same OS group
to connect to its local port. When set to false, ONS only allows the same
user running the ONS daemon to access its local port. The default value of
this parameter is false. When using remote ONS configuration, there is no
need to set this parameter.

The ons.config file allows blank lines and comments on lines that begin with the
number sign (#).

9.2.6.2 Remote Configuration of ONS
UCP supports remote configuration of ONS through the ONSConfiguration pool
property. The ONSConfiguration pool property value is a string that closely resembles
the content of the ons.config file. The string contains a list of name=value pairs
separated by a new line character (\n). You can set this pool property in the following
two ways:

• The name can be one of the following: nodes, walletfile, or walletpassword. The
parameter string should at least specify the ONS configuration nodes attribute as a
list of host:port pairs separated by a comma. SSL is used when the walletfile
attribute is specified as an Oracle wallet file.

The following example demonstrates an ONS configuration string as shown in
Example 9-1:

...
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=/oracle11/
onswalletfile");
...

• The name can be only propertiesfile. The value is the location of an ONS-
specific Java properties file. This file must contain the oracle.ons.nodes property,
and one or both of the following ONS Java properties:

– oracle.ons.walletfile

– oracle.ons.walletpassword

Chapter 9
About Fast Connection Failover

9-10

The following example illustrates such an ONSConfiguration string:

pds.setONSConfiguration("propertiesfile=/usr/ons/ons.properties");

The following is an example of the content of the Java properties
ons.properties file:

oracle.ons.nodes=racnode1:4200,racnode2:4200
oracle.ons.walletfile=/oracle11/onswalletfile

Note:

The parameters in the configuration string must match those for the Oracle
RAC Database. In addition, if you are using Oracle Application Server, then
you must configure ONS using procedures that are applicable to the server.

For standalone Java applications, you must configure ONS using the
setONSConfiguration method. However, if your application meets the following
requirements, then you no longer need to call the setONSConfiguration method
for enabling FCF:

• Your application is using Oracle Database 12c Release 1 (12.1) UCP and
Oracle RAC Database 12c Release 1 (12.1)

• Your application does not require ONS wallet or keystore

9.2.6.3 Configuration of Client-Side ONS Daemon
Client-side ONS daemon configuration is typical of applications that run on a middle-
tier server such as the Oracle Application Server. Clients in this scenario directly
configure ONS by updating the ons.config file. The location of the file may be different
depending on the platform. Example 9-2 demonstrates an ons.config file for
Example 9-1:

Note:

For client-side ONS daemon configuration, if the operating system (OS) user
that starts the connection pool and the OS user that starts the client-side
daemon are different, then they both must belong to the same OS group. Also,
the value of the allowgroup parameter must be set to true in the ons.config file.

After configuring ONS, you start the ONS daemon with the onsctl command. You must
make sure that an ONS daemon is running at all times.

Using the onsctl Command

After configuring, use ORACLE_HOME/opmn/bin/onsctl to start, stop, reconfigure, and
monitor the ONS daemon. Table 9-4 is a summary of the commands that onsctl
supports.

Chapter 9
About Fast Connection Failover

9-11

Table 9-4 onsctl Commands

Command Effect Output

start Starts the ONS daemon onsctl: ons started

stop Stops the ONS daemon onsctl: shutting down ons daemon...

ping Verifies whether or not the
ONS daemon is running

ons is running ...

reconfig Triggers a reload of the ONS
configuration without shutting
down the ONS daemon

help Prints a help summary
message for onsctl

detailed Prints a detailed help message
for onsctl

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Note:

• The Java Virtual Machine (JVM), in which your JDBC instance is running,
must have the oracle.ons.oraclehome system property set to the location of
ORACLE_HOME before starting the application. For example:

java -Doracle.ons.oraclehome=$ORACLE_HOME ...

• Oracle recommends remote configuration of ONS for UCP.

Chapter 9
About Fast Connection Failover

9-12

Note:

In Oracle RAC 12.1.0.2.0, by default, server installation requires the value of
the walletfile ONS parameter to be set, and enforces the use of SSL for all
ONS connections.

If you have a UCP application that is already using the walletfile parameter
in the ONS remote configuration string or local configuration file, then the only
requirement is that, for the same topology, the wallet file on the client side
must have the same content as the wallet file on the server side. You can
make a copy of the server-side file and make it available on the client side.

For UCP applications that are using Oracle RAC features without setting the
walletfile parameter, you must perform one of the following:

• Add the walletfile parameter setting to the ONS remote configuration string
or local configuration file, as shown in Example 9-1. Keep in mind that, for
the same topology, the wallet file on the client side must have the same
content as the wallet file on the Oracle RAC server side.

• Run the following command to remove the walletfile parameter setting
from both client and server ONS configuration string and the local
configuration file:

srvctl modify nodeapps -clientdata

For secure communication, the ONS auto-configuration in Oracle RAC 12.1.x
no longer works when Oracle RAC 12.1.0.2.0 is first installed or patched.
Applications have to use explicit ONS configuration (remote or local) instead,
and make one of the changes previously discussed.

Example 9-2 Example of a Sample ons.config File

This is an example ons.config file
#
The first three values are required
localport=4100
remoteport=4200
nodes=racnode1.example.com:4200,racnode2.example.com:4200

9.2.7 Configuring the Connection URL
The connection URL of a connection factory must use the service name syntax when
using FCF. The service name is used to map the connection pool to the service. In
addition, the factory class must be an Oracle factory class. The following example
demonstrates configuring the connection URL as shown in Example 9-1:

...
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@//host:port/service_name");
...

Chapter 9
About Fast Connection Failover

9-13

Note:

An exception is thrown if a service identifier (SID) is specified for the
connection URL when FCF is enabled.

The following examples demonstrate valid connection URL syntax when connecting to
an Oracle RAC database. Examples for both the Oracle JDBC thin and Oracle OCI
driver are included. Notice that the URL can be used to explicitly enable load
balancing among Oracle RAC nodes:

Valid Connection URL Usage

pds.setURL("jdbc:oracle:thin@//host:port/service_name");

pds.setURL("jdbc:oracle:thin@//cluster-alias:port/service_name");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@TNS_ALIAS");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521)) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

9.3 About Run-Time Connection Load Balancing
This section contains the following subsections:

• Overview of Run-Time Connection Load Balancing

• Setting Up Run-Time Connection Load Balancing

9.3.1 Overview of Run-Time Connection Load Balancing
In an Oracle Real Application Clusters environment, a connection could belong to any
instance that provides the relevant service. In the best case, all instances perform
equally well and randomly retrieving a connection from the cache is appropriate.
However, when one instance performs better than others, random selection of a
connection is inefficient. The run-time connection load balancing feature enables
routing of work requests to an instance that offers the best performance, minimizing
the need to relocate work.

Chapter 9
About Run-Time Connection Load Balancing

9-14

UCP JDBC connection pools leverage the load balancing functionality provided by an
Oracle RAC database. Run-time connection load balancing requires the use of an
Oracle JDBC driver and an Oracle RAC database.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Run-time connection load balancing is useful when:

• Traditional balancing of workload is not optimal

• Requests must be routed to make optimal use of resources in a clustered
database

• Capacity within the cluster differs and is expected to change over time

• The need to avoid sending work to slow, hung, and dead nodes is required

UCP uses the Oracle RAC Load Balancing Advisory. The advisory is used to balance
work across Oracle RAC instances and is used to determine which instances offer the
best performance. Applications transparently receive connections from instances that
offer the best performance. Connection requests are quickly diverted from instances
that have slowed, are not responding, or that have failed.

Run-time connection load balancing provides the following benefits:

• Manages pooled connections for high performance and scalability

• Receives continuous recommendations on the percentage of work to route to
database instances

• Adjusts distribution of work based on different back-end node capacities such as
CPU capacity or response time

• Reacts quickly to changes in cluster reconfiguration, application workload,
overworked nodes, or hangs

• Receives metrics from the Oracle RAC Load Balance Advisory. Connections to
well performing instances are used most often. New and unused connections to
under-performing instances will gravitate away over time. When distribution
metrics are not received, connection are selected using a random choice.

9.3.2 Setting Up Run-Time Connection Load Balancing
Run-time connection load balancing requires that FCF is enabled and configured
properly.

In addition, you must configure the Oracle RAC Load Balancing Advisory with service-
level goals for each service for which load balancing is enabled:

• The service goal must be set to one of the following:

– DBMS_SERVICE.SERVICE_TIME

– DBMS_SERVICE.THROUGHPUT

The service goal can be set using the goal parameter, and the connection
balancing goal can be set using the clb_goal parameter.

Chapter 9
About Run-Time Connection Load Balancing

9-15

• The connection balancing goal must be set to SHORT. For example,

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_THROUGHPUT -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

Or

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_SERVICE_TIME -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

The connection balancing goal can also be set by calling the
DBMS_SERVICE.create_service procedure.

Note:

You can set the connection balancing goal to LONG. However, this is mostly
useful for closed workloads, that is, when the rate of completing work is equal
to the rate of starting new work.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide

Related Topics:

• About Fast Connection Failover

9.4 About Connection Affinity
This section contains the following subsections:

• Overview of Connection Affinity

• Setting Up Connection Affinity

9.4.1 Overview of Connection Affinity
UCP JDBC connection pools leverage affinity functionality provided by an Oracle RAC
database. Connection affinity requires the use of an Oracle JDBC driver and an Oracle
RAC database version 11.1.0.6 or higher.

Connection affinity is a performance feature that enables a connection pool to select
connections that are directed at a specific Oracle RAC instance. The pool uses run-
time connection load balancing (if configured) to select an Oracle RAC instance to
create the first connection and then subsequent connections are created with an
affinity to the same instance.

Chapter 9
About Connection Affinity

9-16

See Also:

• "Strict Affinity Mode"

• Oracle Real Application Clusters Administration and Deployment Guide for
more information about setting up an Oracle RAC database.

UCP JDBC connection pools support the following two types of connection affinity:

• Transaction-Based Affinity

• Web Session Affinity

Transaction-Based Affinity

Transaction-based affinity is an affinity to an Oracle RAC instance that can be
released by either the client application or a failure event. Applications typically use
this type of affinity when long-lived affinity to an Oracle RAC instance is desired or
when the cost (in terms of performance) of being redirected to a new Oracle RAC
instance is high. Distributed transactions are a good example of transaction-based
affinity. XA connections that are enlisted in a distributed transaction keep an affinity to
the Oracle RAC instance for the duration of the transaction. In this case, an application
would incur a significant performance cost if a connection is redirect to a different
Oracle RAC instance during the distributed transaction.

Web Session Affinity

Web session affinity is an affinity to an Oracle RAC instance that can be released by
either the instance, a client application, or a failure event. The Oracle RAC instance
uses a hint to communicate to a connection pool whether affinity has been enabled or
disabled on the instance. An Oracle RAC instance may disable affinity based on many
factors, such as performance or load. If an Oracle RAC instance can no longer support
affinity, the connections in the pool are refreshed to use a new instance and affinity is
established once again.

Applications typically use this type of affinity when short-lived affinity to an Oracle RAC
instance is expected or if the cost (in terms of performance) of being redirected to a
new Oracle RAC instance is minimal. For example, a mail client session might use
Web session affinity to an Oracle RAC instance to increase performance and is
relatively unaffected if a connection is redirected to a different instance.

9.4.2 Setting Up Connection Affinity
Perform the following steps to set up connection affinity:

• Enable FCF.

See Also:

"About Fast Connection Failover"

• Enable run-time connection load balancing.

Chapter 9
About Connection Affinity

9-17

See Also:

"About Run-Time Connection Load Balancing"

• Create a connection affinity callback.

• Register the callback.

Note:

Transaction-based affinity is strictly scoped between the application/middle-tier
and UCP. Therefore, transaction-based affinity requires only the
setFastConnectionFailoverEnabled property be set to true and does not require
complete FCF configuration.

In addition, transaction-based affinity does not technically require run-time
connection load balancing. However, it can help with performance and is
usually enabled regardless. If run-time connection load balancing is not
enabled, the connection pool randomly picks connections.

This section contains the following subsections:

• Creating a Connection Affinity Callback

• Registering a Connection Affinity Callback

• Removing a Connection Affinity Callback

9.4.2.1 Creating a Connection Affinity Callback
Connection affinity requires the use of a callback. The callback is an implementation of
the ConnectionAffinityCallback interface which is located in the oracle.ucp package.
The callback is used by the connection pool to establish and retrieve a connection
affinity context and is also used to set the affinity policy type (transaction-based or
Web session).

The following example demonstrates setting an affinity policy in a callback
implementation. The example also demonstrates manually setting an affinity context.
typically, the connection pool sets the affinity context inside an application. However,
the ability to manually set an affinity context is provided for applications that want to
customize affinity behavior and control the affinity context directly.

public class AffinityCallbackSample
 implements ConnectionAffinityCallback {

 Object appAffinityContext = null;
 ConnectionAffinityCallback.AffinityPolicy affinityPolicy =
 ConnectionAffinityCallback.AffinityPolicy.TRANSACTION_BASED_AFFINITY;

 //For Web session affinity, use WEBSESSION_BASED_AFFINITY;

 public void setAffinityPolicy(AffinityPolicy policy)
 {
 affinityPolicy = policy;
 }

Chapter 9
About Connection Affinity

9-18

 public AffinityPolicy getAffinityPolicy()
 {
 return affinityPolicy;
 }

 public boolean setConnectionAffinityContext(Object affCxt)
 {
 synchronized (lockObj)
 {
 appAffinityContext = affCxt;
 }
 return true;
 }

 public Object getConnectionAffinityContext()
 {
 synchronized (lockObj)
 {
 return appAffinityContext;
 }
 }
}

9.4.2.2 Registering a Connection Affinity Callback
A connection affinity callback is registered on a connection pool using the
registerConnectionAffinityCallback method. The callback is registered when creating
the connection pool. Only one callback can be registered per connection pool.

The following example demonstrates registering a connection affinity callback
implementation:

ConnectionAffinityCallback callback = new MyCallback();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.registerConnectionAffinityCallback(callback);
...

9.4.2.3 Removing a Connection Affinity Callback
A connection affinity callback is removed from a connection pool using the
removeConnectionAffinityCallback method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.removeConnectionAffinityCallback();
...

9.4.2.4 Strict Affinity Mode
By default, affinity is only a hint. A connection pool selects a new Oracle RAC instance
for connections if it does not find a connection on a desired instance. You can change
this behavior by switching the strict affinity mode on. The strict affinity mode throws a
UCP exception if a connection on a desired instance is not found.

Chapter 9
About Connection Affinity

9-19

Use the following pool properties to switch on the strict affinity mode:

• The useStrictWebSessionAffinity property

Set the useStrictWebSessionAffinity property to true or false for switching the
strict Web session affinity mode on or off respectively.

• The useStrictXAAffinity property

Set the useStrictXAAffinity property to true or false for switching the strict
transaction-based affinity mode on or off respectively.

These properties can be handled through the UniversalConnectionPoolMBean.

Related Topics:

• UniversalConnectionPoolMBean

9.5 Global Data Services
This section describes the new Global Data Services (GDS) feature that can be used
with Universal Connection Pool:

• Overview of Global Data Services

• Configuring an Application for Using GDS

9.5.1 Overview of Global Data Services
Global Data Services (GDS) is a new feature introduced in Oracle Database 12c
Release 1 (12.1). Through this feature, Fast Connection Failover, Run-time
Connection Load-Balancing, and Connection Affinity features that were available only
in Oracle RAC, are now extended to a set of replicated databases that offer common
services.

The set of databases may include Oracle RAC and single-instance Oracle databases
interconnected through Data Guard, GoldenGate, or any other replication technology.
A database service that can be provided by multiple databases is called a global
service, so that it can be distinguished from the traditional service that can be provided
only by a single database. This combination enables services to be deployed
anywhere within this globally distributed configuration, supporting load balancing, high
availability, database affinity, and so on.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide

9.5.2 Configuring an Application for Using GDS
UCP connects to Global Data Services in the same way that it connects to local
services on an Oracle RAC. The service name in the connection string should be the
name of the global service. The endpoint should be the endpoint of a GDS listener
instead of the endpoint for the local, remote, or SCAN listener of a database.

Chapter 9
Global Data Services

9-20

A client must specify its region in the REGION parameter of the connection string. This is
a new requirement for GDS. The region name is required because, in case of GDS,
Run-time Load Balancing advisory is customized for particular regions. Following is an
example of a typical connection string:

(DESCRIPTION=
 (ADDRESS=(GDS_protocol_address_information))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

Like with local services, UCP can specify multiple GDS listeners in the same
connection string for listener failover, load balancing, or both.

Note:

SCAN is not supported for GDS listeners, therefore endpoint for each listener
must be specified.

(DESCRIPTION=
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (FAILOVER=ON)
 (ADDRESS=(GDS_protocol_address_information))
 (ADDRESS=(GDS_protocol_address_information)))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

The REGION parameter is optional if only global service managers from the local region
are specified in the client connection string. This is the case when there is only one
region in the GDS configuration, or can be the case when there are multiple regions.
But, it is not feasible to change the connection string of the an existing client designed
to work with a single database. If the REGION parameter is not specified, then the
client's region is assumed to be the region of the global service manager used to
connect to the global service.

Note:

Unless the REGION parameter is specified in the connection string, you can use
a pre-12c thin JDBC client only with a GDS configuration that has a single
region.

All GDS listeners in the preceding example belong to the same region where UCP is
running, that is the local region. To provide high availability, when all GDSs in the local
region are unavailable, you can specify the GDS listeners for the buddy region in
additional ADDRESS_LIST descriptors.

(DESCRIPTION=
 (FAILOVER=on)
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)

Chapter 9
Global Data Services

9-21

 (ADDRESS=(global_protocol_address_information))
 (ADDRESS=(global_protocol_address_information)))
 (ADDRESS_LIST=
 (LOAD_BALANCE=ON)
 (ADDRESS=(global_protocol_address_information))
 (ADDRESS=(global_protocol_address_information)))
 (CONNECT_DATA=
 (SERVICE_NAME=global_service_name)
 (REGION=region_name)))

You do not need manual ONS configuration because UCP automatically retrieves the
ONS connection information that is optimally customized for the UCP region from
GDS.

Note:

• To enable automatic ONS configuration for GDS, you must enable Fast
Connection Failover (FCF) on UCP.

• Automatic ONS configuration works only with Oracle GDS and Oracle
RAC. It does not work with single-instance Oracle Databases.

Automatic ONS configuration does not support ONS wallet or keystore
parameters. If your application requires any of these parameters, then you
must configure ONS explicitly in either of the following two ways:

– Calling the PoolDataSource.setONSConfiguration(String) method

– Adding the ONS wallet or keystore parameters in the local ONS
configuration file

Chapter 9
Global Data Services

9-22

10
Ensuring Application Continuity

This chapter discusses the following concepts related to the Application Continuity
feature of Oracle Database:

• Overview of Ensuring Application Continuity with UCP

• Configuring the Data Source for Application Continuity

• Using Connection Labeling for Application Continuity

• Using Connection Initialization Callback for Application Continuity

10.1 Overview of Ensuring Application Continuity with UCP
Oracle Database 12c Release 1 (12.1) introduces the Application Continuity feature
that provides a general purpose, application-independent infrastructure. Application
Continuity enables recovery of work from an application perspective, after the
occurrence of a planned or unplanned outage that can be related to system,
communication, or hardware following a repair, a configuration change, or a patch
application.

See Also:

Oracle Database Development Guide for more information about Application
Continuity

For using Application Continuity, you must first configure your data source. After that,
use one of the following two features for implementing Application Continuity in your
applications using Universal Connection Pool (UCP):

• Using Connection Labeling for Application Continuity

• Using Connection Initialization Callback for Application Continuity

Related Topics:

• Configuring the Data Source for Application Continuity

• Using Connection Labeling for Application Continuity

• Using Connection Initialization Callback for Application Continuity

10.2 Configuring the Data Source for Application Continuity
To utilize the Application Continuity feature on a pool-enabled data source, the
application must make the following call on oracle.ucp.jdbc.PoolDataSource interface:

// pds is a PoolDataSource
pds.setConnectionFactoryClassName("oracle.jdbc.replay.OracleDataSourceImpl");

10-1

Always connect to a service, instead of using SID. Application Continuity is not
supported when connecting in the SID syntax.

When running against Oracle Real Application Clusters (Oracle RAC) or Data Guard,
the application should also enable Fast Connection Failover (FCF) as shown in the
following code snippet:

pds.setFastConnectionFailoverEnabled(true);

10.3 Using Connection Labeling for Application Continuity
Connection labeling enables an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool.

Connection labeling sets the initial state for each connection request. If the application
uses connection labeling or benefits from labeling connections, then a labeling
callback should be registered for Application Continuity to initialize clean connections
at failover.

Every time Application Continuity gets a new connection from the underlying data
source, the labeling callback executes. The callback executes during normal
connection check-out and also during replay. So, the state that is created at run time is
exactly re-created during replay. The initialization must be idempotent.

It is legal for the callback to execute a transaction as long as the transaction completes
(either it commits or rolls back) at the end of callback invocation. Application Continuity
repeats any action coded within the callback implementation, including such
transaction. If an outage occurs during the execution of a UCP labeling callback, then
Application Continuity may execute the callback more than once as part of the replay
attempt. Again, it is important for the callback actions to be idempotent.

Related Topics:

• Labeling Connections in UCP

10.4 Using Connection Initialization Callback for Application
Continuity

If an application cannot use connection labeling because it cannot be changed, then
the connection initialization callback is provided for such an application.

When registered, the initialization callback is executed every time a connection is
borrowed from the pool and at each successful reconnection following a recoverable
error..

Related Topics:

• About Connection Initialization Callback

Chapter 10
Using Connection Labeling for Application Continuity

10-2

11
Shared Pool for Sharded Databases

This chapter describes UCP Shared Pool for sharded database in the following
sections:

• Overview of UCP Shared Pool for Database Sharding

• About Handing Connection Requests for a Sharded Database

• UCP APIs for Database Sharding Support

• UCP Sharding Example

11.1 Overview of UCP Shared Pool for Database Sharding
Starting from Oracle Database 12c Release 2 (12.2.0.1), Universal Connection Pool
(UCP) supports database sharding. UCP recognizes the sharding keys specified and
connects to the specific shard. Sharding uses Global Data Services (GDS), where
GDS routes a client request to an appropriate database, based on various parameters
such as availability, load, network latency, and replication lag.

See Also:

• Oracle Database JDBC Developer’s Guide

• Oracle Database Administrator’s Guide

Use Case of UCP Shared Pool for Database Sharding

This section describes a use case of UCP Shared Pool for database sharding. In the
use case, the applications connecting to sharded database use UCP to store
connections to different shards and chunks of the sharded GDS database within the
same Shared Pool. The applications must provide the sharding key to UCP during the
connection request. Based on the sharding key, the pool routes the connection
request to the correct shard. The data distribution across the shards and chunks in the
database is transparent to the user. UCP transparently handles resharding and chunk
movements, minimizing the impact on the end users.

The following diagram illustrates this use case:

11-1

Figure 11-1 Universal Connection Pool (UCP) Using Sharded Database Architecture

Related Topics:

• Global Data Services

11.2 About Handling Connection Requests for a Sharded
Database

The following sections describe how Universal Connection Pool (UCP) handles
connection requests for a sharded database:

• About Building the Sharding Key

• How to Checkout Connections from a Pool with a Known Sharding key

• About Checking Out Connections without Providing the Sharding Keys

• About Connecting to the Catalog Database for Cross Shard Queries

• About Configuring the Number of Connections Per Shard

• Pool Connection Selection Algorithm During Connection Checkout

• Failover or Resharding Event handling in UCP

Chapter 11
About Handling Connection Requests for a Sharded Database

11-2

11.2.1 About Building the Sharding Key

The shard aware applications must identify and build the sharding key and the super
sharding key, which are required to establish a connection to the sharded database.
For achieving this, the shard aware applications must use the OracleShardingKey and
the OracleShardingKeyBuilder interfaces.

The OracleShardingKeyBuilder uses the following builder method for supporting
compound keys with different data types:

subkey(Object subkey, java.sql.SQLTYPE subkeyDataType)

There are multiple invocations of the subkey method on the builder for building a
compound sharding key, where each subkey can be of different data types. The data
type can be defined using the oracle.jdbc.OracleType enum or java.sql.JDBCType.

Example 11-1 Building a Sharding Key

The following example shows how to build a sharding key:

import java.sql.Connection;
import java.sql.Date;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;

public class ShardExample
{
 public static void main(String[] args) throws SQLException
 {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)(PORT=3216)
(PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=myservice)(REGION=east)))";
 String user="testuser1", pwd = password;

 OracleDataSource ods = new OracleDataSource();
 ods.setURL(url);
 ods.setUser(user);
 ods.setPassword(pwd);

 // build the sharding key object
 Date shardingKeyVal = new java.sql.Date(0L);
 OracleShardingKey sdkey = ods.createShardingKeyBuilder()
 .subkey(shardingKeyVal, OracleType.DATE)
 .build();

 Connection conn = ods.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

 Statement stmt = conn.createStatement();
 stmt.execute("... SQL statement here ...");
 stmt.close();
 conn.close();
 }
}

Chapter 11
About Handling Connection Requests for a Sharded Database

11-3

The following code snippet shows how to build a compound sharding key that consists
of String and Date data types:

...
Date shardingKeyVal = new java.sql.Date(0L);
...
OracleShardingKey shardingKey = datasource.createShardingKeyBuilder()
 .subkey("abc@xyz.com", JDBCType.VARCHAR)
 .subkey(shardingKeyVal, OracleType.DATE)
 .build();
...

Note:

• There is a fixed set of data types that are valid and supported. If any
unsupported data types are used as keys, then exceptions are thrown.
The following list specifies the supported data types:

– OracleType.VARCHAR2/JDBCType.VARCHAR

– OracleType.CHAR/JDBCType.CHAR

– OracleType.NVARCHAR/JDBCType.NVARCHAR

– OracleType.NCHAR/JDBCType.NCHAR

– OracleType.NUMBER/JDBCType.NUMERIC

– OracleType.FLOAT/ JDBCType.FLOAT

– OracleType.DATE/ JDBCType.DATE

– OracleType.TIMESTAMP/JDBCType.TIMESTAMP

– OracleType.TIMESTAMP_WITH_LOCAL_TIME_ZONE

– OracleType.RAW

• You must provide a sharding key that is compliant to the NLS formatting
specified in the database.

11.2.2 How to Checkout Connections from a Pool with a Sharding Key

When a connection is borrowed from UCP, then the shard aware application can
provide the sharding key and the super sharding key using the new connection builder
present in the PoolDataSource class. If sharding keys do not exist or do not map to the
data types specified by the database metadata, then an IllegalArgumentException is
thrown. The following code snippet shows how to checkout a connection with sharding
keys:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...
Connection conn = pds.createConnectionBuilder()
// Establish a connection using sharding key and super sharding key
 .shardingKey(shardingKey)
 .superShardingKey(superShardingKey)
 .build();

OracleShardingKey shardKey = pds.createShardingKeyBuilder()

Chapter 11
About Handling Connection Requests for a Sharded Database

11-4

// Build a compound sharding key with email address and customer ID as the two
sharding keys
 .subkey(<email>, OracleType.VARCHAR2)
 .subkey(<custid>, OracleType.NUMBER)
 .build();

OracleShardingKey superShardKey = pds.createShardingKeyBuilder()
// Build a super sharding key with the customer region
 .subkey(<cust_region>, OracleType.VARCHAR2)
 .build();

Note:

You must specify a sharding key during the connection checkout. Otherwise,
an error or exception is thrown back to the application. Race condition also
results in exception during connection usage.

11.2.3 About Checking Out Connections without Providing the
Sharding Keys

Providing sharding keys in a connection request through connection builder API is
mandatory when you use UCP data source for connecting to a sharded database. If
you do not provide the sharding key, then an exception is thrown back to the user.

11.2.4 About Connecting to the Shard Catalog or Co-ordinator for Multi
Shard Queries

When connecting to the Shard Catalog or Co-ordinator for running multi shard queries,
it is recommended that a separate pool be created using a new PoolDataSource
instance. You can run multi shard queries on connections retrieved from a data source
that is created on the coordinator service. The connection request for the coordinator
should not have sharding keys in the connection builder API.

11.2.5 About Configuring the Number of Connections Per Shard

When UCP is used to pool connections for a sharded database, the pool contains
connections to different shards. So, when connections are pulled, to ensure a fair
usage of the pool capacity across all shards connected, UCP uses the
MaxConnectionsPerShard parameter. This is a global parameter, which applies to every
shard in the sharded database, and is used to limit the total number of connections to
any shard below the specified limit.

The following table describes the APIs for setting and retrieving this parameter:

Method Description

poolDatasource.setMaxConnectionsPerShar
d(<max_connections_per_shard_limit>)

Sets the maximum number of connections per
shard.

Chapter 11
About Handling Connection Requests for a Sharded Database

11-5

Method Description

poolDatasource.getMaxConnectionsPerShar
d()

Retrieves the value that was set using the
setMaxConnectionsPerShard(<max_connectio
ns_per_shard_limit>) method.

Note:

You cannot use the MaxConnectionsPerShard parameter in a sharded database
with Oracle Golden Gate configuration.

11.2.6 Pool Connection Selection Algorithm During Connection
Checkout

Whenever new connections are created through UCP to different shards in the
sharded database, the pool incrementally learns and builds a shard routing cache
internally.

The routing cache maps the sharding keys to the respective shards, on which the keys
exist. While looking up connections in the pool for a connection request with specific
sharding keys, UCP uses the cache to redirect the request to the correct shard. This
feature, called Fast Path Connection Borrow, enables efficient reuse of connections in
the pool, based on the requested sharding keys. This feature also helps in avoiding
going to the sharded database for routing the requests.

11.2.7 Failover or Resharding Event Handling in UCP

After a resharding or failover event, an attempt is made to keep the UCP shard routing
cache in sync with the data on the server. The cache is kept up-to-date by subscribing
to the ONS notification for various changes on the database.

11.3 UCP APIs for Database Sharding Support

The UCPConnection Builder Class

The UCPConnectionBuilder class is used for building connection objects with additional
parameters other than the username, password, and label. To use the builder, you must
call the corresponding builder method for each parameter that needs to be a part of
the connection request, followed by a build method. The order in which the builder
methods are called is not important. However, if the same builder attribute is applied
more than once, then only the most recent value is considered while building the
connection.

Syntax

public abstract class UCPConnectionBuilder<S> implements
OracleConnectionBuilder<UCPConnectionBuilder<S>,S>

Chapter 11
UCP APIs for Database Sharding Support

11-6

The UCPConnectionBuilder class also provides the validate method and several
constructors for setting the data for a specific user.

Example 11-2 Creating the Connection Builder

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
..//set the required properties on the datasource
ShardingKey superShardingKey = ds.createShardingKeyBuilder()
 .subkey("EASTERN_
REGION", JDBCType.VARCHAR)
 .build();
ShardingKey superShardingKey = ds.createShardingKeyBuilder()
 .subkey("PITTSBUR
GH_BRANCH", JDBCType.VARCHAR)
 .build();
Connection conn = pds.createConnectionBuilder()
 .shardingKey(superShardingKey)
 .superShardingKey(superShardingKey)
 .build();

New Methods in PoolDataSource Interface

The following methods have been introduced in the oracle.ucp.jdbc.PoolDataSource
interface:

/**
 * Creates a new UCPConnectionBuilder instance.
 *
 * @param <S>
 * Connection type for this ConnectionBuilder
 * @param
 * Builder type to use
 * @return The OracleConnectionBuilder instance that was created
 */
 public UCPConnectionBuilder createConnectionBuilder();

/**
 * Creates a new OracleShardingKeyBuilder instance
 *
 * @return The OracleShardingKeyBuilder instance that was created
 */
 public default OracleShardingKeyBuilder createShardingKeyBuilder() {
 return new OracleShardingKeyBuilderImpl();
 }

New Method in PoolXADataSource Interface

The following method has been introduced in the
oracle.ucp.admin.UniversalConnectionPoolManager interface:

/**
 * Creates a new XAConnectionBuilder instance.
 *
 * @return The XAConnectionBuilder instance that was created
 */
 public UCPXAConnectionBuilder createXAConnectionBuilder();

Chapter 11
UCP APIs for Database Sharding Support

11-7

11.4 UCP Sharding Example

Example

The following code snippet shows how to use UCP sharding APIs:

Example 11-3 UCP Sharding Example

 PoolDataSource pds = new PoolDataSourceImpl();
 pds.setURL(url);
 pds.setUser("system");
 pds.setPassword("manager");
 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

 OracleShardingKey employeeNamekey =
 pds.createShardingKeyBuilder()
 .subkey("Mary", JDBCType.VARCHAR) // First Name
 .subkey("Claire", JDBCType.VARCHAR) // Last Name
 .build();

 OracleShardingKey locationKey = pds.createShardingKeyBuilder()
 .subkey("US", JDBCType.VARCHAR)//Location
 .build();

 OracleConnection connection = pds.createConnectionBuilder()
 .shardingKey(employeeNamekey)
 .superShardingKey(locationKey)
 .build();

Chapter 11
UCP Sharding Example

11-8

12
Diagnosing a Connection Pool

The following parameters are used for diagnosing Universal Connection Pool (UCP):

• Pool Statistics

• Dynamic Monitoring Service Metrics

• About Viewing Oracle RAC Statistics

• Overview of Logging in UCP

• Exceptions and Error Codes

12.1 Pool Statistics
Universal Connection Pool (UCP) provides a set of run-time statistics for the
connection pool. These statistics can be divided into the following two categories:

• Noncumulative

These statistics apply only to the current running connection pool instance.

• Cumulative

These statistics are collected across multiple pool start/stop cycles.

The oracle.ucp.UniversalConnectionPoolStatistics interface provides methods that are
used to query the connection pool statistics. The methods of this interface can be
called from a pool-enabled data source and pool-enabled XA data source, using the
oracle.ucp.jdbc.PoolDataSource.getStatistics method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...
...
int totalConnsCount = pds.getStatistics().getTotalConnectionsCount();
System.out.println("The total connetion count in the pool is "+ totalConnsCount
+".");

The oracle.ucp.jdbc.PoolDataSource.getStatistics method can also be called by itself
to return all connection pool statistics as a String.

12.2 Dynamic Monitoring Service Metrics
UCP supports all the pool statistics to be in the form of Dynamic Monitoring Service
(DMS) metrics. You must include the dms.jar file in the class path of the application to
collect and utilize these DMS metrics.

UCP supports DMS metrics collection in both the pool manager interface and the pool
manager MBean. You can use the
UnversalConnectionPoolManager.startMetricsCollection method to start collecting DMS
metrics for the specified connection pool instance, and use the
UnversalConnectionPoolManager.stopMetricsCollection method to stop DMS metrics
collection. The metrics update interval can be specified using the

12-1

UnversalConnectionPoolManager.setMetricUpdateInterval method. The pool manager
MBean exports similar operations.

12.3 About Viewing Oracle RAC Statistics
UCP provides a set of Oracle RAC run-time statistics that are used to determine how
well a connection pool is utilizing Oracle RAC features and are also used to help
determine whether the connection pool has been configured properly to use the Oracle
RAC features. The statistics report FCF processing information, run-time connection
load balance success/failure rate, and affinity context success/failure rate.

The OracleJDBCConnectionPoolStatistics interface that is located in the
oracle.ucp.jdbc.oracle package provides methods that are used to query the
connection pool for Oracle RAC statistics. The methods of this interface can be called
from a pool-enabled and pool-enabled XA data source using the data source's
getStatistics method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...

Long rclbS = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getSuccessfulRCLBBasedBorrowCount();
System.out.println("The RCLB success rate is "+rclbS+".");

The data source's getStatistics method can also be called by itself and returns all
connection pool statistics as a String and includes the Oracle RAC statistics.

12.3.1 Fast Connection Failover Statistics
The getFCFProcessingInfo method provides information on recent Fast Connection
Failover (FCF) attempts in the form of a String. The FCF information is typically used
to help diagnose FCF problems. The information includes the outcome of each FCF
attempt (successful or failed), the relevant Oracle RAC instances, the number of
connections that were cleaned up, the exception that triggered the FCF attempt failure,
and more. The following example demonstrates using the getFCFProcessingInfo
method:

Sting fcfInfo = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFCFProcessingInfo();
System.out.println("The FCF information: "+fcfInfo+".");

Following is a sample output string from the getFCFProcessingInfo() method:

 Oct 28, 2008 12:34:02 SUCCESS <Reason:planned> <Type:SERVICE_UP> \
 <Service:"svvc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2) \
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0
Closed=2) \
 TornDown=2 MarkedToClose=2 Cardinality=2
 ...
 Oct 28, 2008 12:09:52 SUCCESS <Reason:unplanned> <Type:SERVICE_DOWN> \
 <Service:"svc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2) \
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0
Closed=2)
 ...
 Oct 28, 2008 11:14:53 FAILURE <Type:HOST_DOWN> <Host:"host1"> \
 Connections:(Available=6 Affected=4 FailedToProcess=0 MarkedDown=4 Closed=4) \

Chapter 12
About Viewing Oracle RAC Statistics

12-2

 (Borrowed=6 Affected=4 FailedToProcess=0 MarkedDown=4 MarkedDeferredClose=0
Closed=4)

If you enable logging, then the preceding information will also be available in the UCP
logs and you will be able to verify the FCF outcome.

12.3.2 Run-Time Connection Load Balance Statistics
The run-time connection load balance statistics are used to determine if a connection
pool is effectively utilizing the run-time connection load balancing feature of Oracle
RAC. The statistics report how many requests successfully used the run-time
connection load balancing algorithms and how many requests failed to use the
algorithms. The getSuccessfulRCLBBasedBorrowCount method and the
getFailedRCLBBasedBorrowCount method, respectively, are used to get the statistics. The
following example demonstrates using the getFailedRCLBBasedBorrowCount method:

Long rclbF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedRCLBBasedBorrowCount();
System.out.println("The RCLB failure rate is: "+rclbF+".");

A high failure rate may indicate that the Oracle RAC Load Balancing Advisory or
connection pool is not configured properly.

12.3.3 Connection Affinity Statistics
The connection affinity statistics are used to determine if a connection pools is
effectively utilizing connection affinity. The statistics report the number of borrow
requests that succeeded in matching the affinity context and how many requests failed
to match the affinity context. The getSuccessfulAffinityBasedBorrowCount method and
the getFailedAffinityBasedBorrowCount method, respectively, are used to get the
statistics. The following example demonstrates using the
getFailedAffinityBasedBorrowCount method:

Long affF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedAffinityBasedBorrowCount();
System.out.println("The connection affinity failure rate is: "+affF+".");

12.4 Overview of Logging in UCP
UCP leverages the JDK logging facility (java.util.logging). Logging is not enabled by
default and must be configured in order to print log messages. Logging can be
configured using a log configuration file as well as through API-level configuration.

Note:

The default log level is null. This ensures that a parent logger's log level is
used by default.

12.4.1 Using a Logging Properties File
Logging can be configured using a properties file. The location of the properties file
must be set as a Java property for the logging configuration file property. For example:

Chapter 12
Overview of Logging in UCP

12-3

java -Djava.util.logging.config.file=log.properties

The logging properties file defines the handler to use for writing logs, the formatter to
use for formatting logs, a default log level, as well as log levels for specific packages
or classes. For example:

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

oracle.ucp.level = FINEST
oracle.ucp.jdbc.PoolDataSource = WARNING

A custom formatter is included with UCP and can be entered as the value for the
formatter property. For example:

java.util.logging.ConsoleHandler.formatter = oracle.ucp.util.logging.UCPFormatter

You can also download the ucpdemos.jar file, which is shipped with UCP, from Oracle
Technology Network (OTN). This file contains a list of sample logging property files.
For example, this file contains the logging property file that can be used for
troubleshooting the Fast Connection Failover (FCF) feature.

12.4.2 Using UCP and JDK API
Logging can be dynamically configured though either the UCP API or the JDK API.
When using the UCP API, logging is configured using a connection pool manager.
When using the JDK, logging is configured using the java.util.logging
implementation.

The following example demonstrates using the UCP API to configure logging:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

mgr.setLogLevel(Level.FINE);

The following example demonstrate using the JDK logging implementation directly:

Logger.getLogger("oracle.ucp").setLevel(Level.FINEST);
Logger.getLogger("oracle.ucp.jdbc.PoolDataSource").setLevel(Level.FINEST);

12.4.3 Enabling or Disabling Feature-Specific Logging at Runtime

Starting from Oracle Database 12c Release 2 (12.2.0.1), UCP provides support for
enabling and disabling logging for selected features during runtime. For example, you
can enable logging only for Load Balancing feature, while disabling logging for other
features of UCP. Again, during the same run, you can enable logging for Fast Failover
feature and disable logging for Load Balancing feature.

By default, logging for all features is enabled.

The logging switching feature of UCP is a part of the OracleDiagnosabilityMBean. For
using this bean, start JConsole and connect to the application.

Displaying Supported Features
For a list of supported features, use the following method:

Chapter 12
Overview of Logging in UCP

12-4

getTraceController().getSupportedFeatures()

Displaying Enabled Features
For a list of currently enabled features, use the following method:

getTraceController().getEnabledFeatures()

Enabling Logging for a Feature
For enabling logging for a specific feature or for all features, use the trace method in
the following ways:

trace(boolean enable, String feature_name)
trace(boolean enable, ALL)

Disabling Logging for a Feature
For disabling logging for a specific feature or for all features, use the trace method in
the following ways:

trace(boolean disable, String feature_name)
trace(boolean disable, ALL)

Suspending and Resuming Logging
Use the following methods for suspending and resuming logging respectively:

suspend()
resume()

12.4.4 About Using the Logging Properties File for Feature-Specific
Logging

Starting from Oracle Database 12c Release 2 (12.2.0.1), you can enable or disable
logging for specific features by adding a property in the logging properties file. By
default, logging is enabled for all features. Otherwise, you can enable logging for all
features using the following syntax: clio.feature.all = on. For feature-specific
enabling of logging, you can use the properties as mentioned in the following section:

Supported Features for feature-Based Granularity

clio.feature.pool_statistics = on
clio.feature.check_in = on
clio.feature.check_out = on
clio.feature.labeling = on
clio.feature.conn_construction = on
clio.feature.conn_destruction = on
clio.feature.high_availability = on
clio.feature.load_balancing = on
clio.feature.transaction_affinity = on
clio.feature.web_affinity = on
clio.feature.data_affinity = on
clio.feature.conn_harvesting = on
clio.feature.ttl_conn_timeout = on
clio.feature.abandoned_conn_timeout = on
clio.feature.admin = on
clio.feature.sharding = on

Chapter 12
Overview of Logging in UCP

12-5

12.4.5 Supported Log Levels
The following list describes each of the log levels that are supported for JDBC. Levels
lower than FINE produce output that may not be meaningful to users. Levels lower than
FINER will produce very large volumes of output.

• INTERNAL_ERROR – Internal Errors

• SEVERE – SQL Exceptions

• WARNING – SQL Warnings and other invisible problems

• INFO – Public events such as connection attempts or Oracle RAC events

• CONFIG – SQL statements

• FINE – Public APIs

• TRACE_10 – Internal events

• FINER – Internal APIs

• TRACE_20 – Internal debug

• TRACE_30 – High volume internal APIs

• FINEST – High volume internal debug

12.5 Exceptions and Error Codes
Many UCP methods throw the UniversalConnectionPoolException, with exception
chaining supported. You can call the printStackTrace method on the thrown exception,
to identify the root cause of the exception. The UniversalConnectionPoolException
includes standard Oracle error codes that are in the range of 45000 and 45499. The
getErrorCode method can be used to retrieve the error code for an exception.

Chapter 12
Exceptions and Error Codes

12-6

A
Error Codes Reference

This appendix briefly discusses the general structure of Universal Connection Pool
(UCP) error messages, UCP error messages for the connection pool layer, and UCP
error messages for JDBC data sources and dynamic proxies. The appendix is
organized as follows:

• General Structure of UCP Error Messages

• Connection Pool Layer Error Messages

• JDBC Data Sources and Dynamic Proxies Error Messages

Both the message lists are sorted by the error message number.

A.1 General Structure of UCP Error Messages
The general UCP error message structure enables run-time information to be
appended to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a closed statement error might be displayed as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next method (of a
result set object).

In some cases, the user can find the same information in a stack trace.

A.2 Connection Pool Layer Error Messages
This section lists UCP error messages for the connection pool layer.

Table A-1 Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45001 Universal Connection Pool internal error

UCP-45002 No available connections in the Universal Connection Pool

UCP-45003 Universal Connection Pool already exists

UCP-45004 Invalid connection retrieval information

UCP-45005 Callback already registered

UCP-45006 Invalid Universal Connection Pool configuration

UCP-45051 Inactive connection timeout timer scheduling failed

UCP-45052 Abandoned connection timeout timer scheduling failed

A-1

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45053 Time-to-live connection timeout timer scheduling failed

UCP-45054 The Universal Connection Pool cannot be null

UCP-45055 Error when removing an available connection

UCP-45057 The AvailableConnections object cannot be null

UCP-45058 The Failoverable object cannot be null

UCP-45059 MaxPoolsize is set to 0. There are no connections to return

UCP-45060 Invalid life cycle state. Check the status of the Universal Connection Pool

UCP-45061 Universal Connection Pool is not started. Start the Universal Connection
Pool before accessing

UCP-45062 The collection of available connections can only be set when the Universal
Connection Pool is in the initialization state

UCP-45063 Universal Connection Pool has been shutdown while attempting to get a
connection

UCP-45064 All connections in the Universal Connection Pool are in use

UCP-45065 Connection borrowing returned null

UCP-45091 Connection labeling callback already registered

UCP-45092 Borrowing labeled connection with no labeling callback registered

UCP-45093 Requested no-label connection but borrowing labeled connection

UCP-45097 Connection harvesting timer scheduling failed

UCP-45100 ConnectionFactoryAdapter returned null

UCP-45103 ConnectionFactoryAdapter must be an instance of
DataSourceConnectionFactoryAdapter

UCP-45104 ConnectionFactoryAdapter object cannot be null

UCP-45105 ConnectionFactoryAdapter must be an instance of
ConnectionPoolDataSourceConnectionFactoryAdapter

UCP-45106 ConnectionFactoryAdapter must be an instance of
XADataSourceConnectionFactoryAdapter

UCP-45150 UniversalPooledConnection cannot be null

UCP-45152 UniversalPooledConnectionStatus object cannot be null

UCP-45153 The connection label key cannot be null or an empty string

UCP-45154 The connection labeling operation cannot be invoked on closed
connections

UCP-45155 Connection harvesting callback already registered

UCP-45156 Abandoned connection timeout callback already registered

UCP-45157 Time-to-live connection timeout callback already registered

UCP-45201 The connection label key cannot be null or an empty string

UCP-45202 The cloning of the ConnectionRetrievalInfo object failed

UCP-45203 The Connection Request Info is null

UCP-45251 ConnectionPoolDataSource cannot be null

Appendix A
Connection Pool Layer Error Messages

A-2

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45252 Invalid ConnectionRetrievalInfo object

UCP-45253 SQLException occurred while getting PooledConnection from
ConnectionPoolDataSource

UCP-45254 Invalid connection type. Must be a javax.sql.PooledConnection

UCP-45255 SQLException while closing PooledConnection

UCP-45256 Data source cannot be null

UCP-45257 Cannot get Connection from Data source

UCP-45258 Invalid connection type. Must be a java.sql.Connection

UCP-45259 The connection to proxy must be an instance of java.sql.Connection

UCP-45260 XADatasource cannot be null

UCP-45261 SQLException occurred while getting XAConnection from XADataSource

UCP-45262 Invalid connection type. Must be a javax.sql.XAConnection

UCP-45263 SQLException occurred while closing XAConnection

UCP-45264 The connection cannot be null

UCP-45265 The connection to proxy must be an instance of java.sql.Statement

UCP-45266 The statement to proxy must be an instance of java.sql.ResultSet

UCP-45267 The connection to proxy must be an instance of javax.sql.XAConnection

UCP-45268 The Driver argument cannot be null

UCP-45269 The URL argument cannot be null

UCP-45301 Unable to get a connection for failover information

UCP-45302 Unable to execute SQL query to get failover information

UCP-45303 SQLException occurred while getting failover information

UCP-45304 The event type cannot be null

UCP-45305 The event type is invalid. Event type must be database/event/host or
database/event/service

UCP-45306 The failover event type is invalid. It must be an OracleFailoverEvent

UCP-45307 The affinity context is invalid. It must be an
OracleConnectionAffinityContext

UCP-45308 Exception occurred while enabling failover with remote ONS subscription

UCP-45350 Universal Connection Pool already exists in the Universal Connection Pool
Manager. Universal Connection Pool cannot be added to the Universal
Connection Pool Manager

UCP-45351 Universal Connection Pool not found in Universal Connection Pool
Manager. Register the Universal Connection Pool with Universal
Connection Pool Manager

UCP-45352 Cannot get Universal Connection Pool Manager instance

UCP-45353 Cannot get Universal Connection Pool Manager MBean instance

UCP-45354 MBean ObjectName is not in the right format. Use the right format to
construct ObjectName for MBean

Appendix A
Connection Pool Layer Error Messages

A-3

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45355 MBean exception occurred while registering or unregistering the MBean

UCP-45356 MBean already exits in the MBeanServer. Use a different name to register
MBean

UCP-45357 Exception occurred when trying to register an object in the MBean server
that is not a JMX compliant MBean

UCP-45358 The specified MBean does not exist in the repository

UCP-45359 Invalid target object type is specified. Check the managed resource

UCP-45360 Invalid MBean Descriptor is specified. Check the Universal Connection Pool
Manager MBean Descriptor

UCP-45361 Runtime exception occurred while building MBeanInfo for Universal
Connection Pool Manager MBean

UCP-45362 Runtime exception occurred while building constructors information for
Universal Connection Pool Manager MBean

UCP-45363 Runtime exception occurred while building attributes information for
Universal Connection Pool Manager MBean

UCP-45364 Runtime exception occurred while building operations information for
Universal Connection Pool Manager MBean

UCP-45365 Universal Connection Pool must be an instance of
ConnectionConnectionPool or OracleConnectionConnectionPool

UCP-45366 Invalid MBean Descriptor is specified. Check the JDBC Universal
Connection Pool MBean Descriptor

UCP-45367 Runtime exception occurred while building MBeanInfo for JDBC Universal
Connection Pool MBean

UCP-45368 Runtime exception occurred while building constructors information for
JDBC Universal Connection Pool MBean

UCP-45369 Runtime exception occurred while building attributes information for JDBC
Universal Connection Pool MBean

UCP-45370 Runtime exception occurred while building operations information for JDBC
Universal Connection Pool MBean

UCP-45371 Runtime exception occurred while building attributes information for
Universal Connection Pool MBean

UCP-45372 Runtime exception occurred while building operations information for
Universal Connection Pool MBean

UCP-45373 Invalid MBean Descriptor is specified. Check the Universal Connection Pool
MBean Descriptor

UCP-45374 Runtime exception occurred while building MBeanInfo for Universal
Connection Pool MBean

UCP-45375 Cannot stop the UCP metric collection. Exception occurred while trying to
stop the metric collection or while destroying the nouns or sensors.

UCP-45376 Metrics update timer task scheduling failed

UCP-45377 Problem occurred while updating UCP metric sensors

UCP-45378 Universal Connection Pool is not an instance of
OracleJDBCConnectionPool and cannot access ONSConfiguration property

Appendix A
Connection Pool Layer Error Messages

A-4

Table A-1 (Cont.) Connection Pool Layer Error Messages

Error Message
Number

Message

UCP-45379 Cannot set the connection pool name in Universal Connection Pool MBean.
Check the connection pool name to avoid duplicates

UCP-45380 MBean object is null

UCP-45381 MBean object name is null

UCP-45382 MBean display name is null

UCP-45383 Invalid adapter for pool creation in Universal Connection Pool Manager

UCP-45384 Invalid adapter for pool creation in Universal Connection Pool Manager
MBean

UCP-45385 Error during pool creation in Universal Connection Pool Manager

UCP-45386 Error during pool creation in Universal Connection Pool Manager MBean

UCP-45401 Waiting threads LO watermark cannot be negative

UCP-45402 Waiting threads HI watermark cannot be negative

UCP-45403 Total worker threads limit cannot be negative

UCP-45404 Queue poll timeout cannot be negative

UCP-45405 The waiting threads HI watermark cannot be lower than the LO watermark

UCP-45406 The limit of total worker threads cannot be higher than the limit of waiting
threads

UCP-45407 The error number is out of range

UCP-45408 Invalid operation because the logger is null

A.3 JDBC Data Sources and Dynamic Proxies Error
Messages

This section lists UCP error messages for JDBC data sources and dynamic proxies
error messages.

Table A-2 JDBC Data Sources and Dynamic Proxies Error Messages

Error Message
Number

Message

SQL-0 Unable to start the Universal Connection Pool

SQL-1 Unable to build the Universal Connection Pool

SQL-2 Invalid minimum pool size

SQL-3 Invalid maximum pool size

SQL-4 Invalid inactive connection timeout

SQL-5 Invalid connection wait timeout

SQL-6 Invalid time-to-live connection timeout

SQL-7 Invalid abandoned connection timeout

SQL-8 Invalid timeout check interval

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

A-5

Table A-2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message
Number

Message

SQL-9 Failed to enable Failover

SQL-10 Failed to set the maxStatements value

SQL-11 Failed to set the SQL string for validation

SQL-12 Invalid connection harvest trigger count

SQL-13 Invalid connection harvest max count

SQL-14 Universal Connection Pool is created already. Can not create the Universal
Connection Pool again

SQL-15 Exception occurred while destroying the Universal Connection Pool

SQL-16 Operation only applies to Oracle connection pools

SQL-17 Exception occurred while setting ONS configuration string

SQL-18 Failed to register labeling callback

SQL-19 Failed to remove labeling callback

SQL-20 Failed to register affinity callback

SQL-21 Failed to remove affinity callback

SQL-22 Invalid Universal Connection Pool configuration

SQL-23 Unable to create factory class instance with provided factory class name

SQL-24 Unable to set the User

SQL-25 Unable to set the Password

SQL-26 Unable to set the URL

SQL-27 The factory class must be an instance of DataSource

SQL-28 Cannot create connections. There are no available connections

SQL-29 Exception occurred while getting connection

SQL-30 Universal Connection Pool is not started

SQL-31 The connection is closed

SQL-32 Error occurred when applying label

SQL-33 Error occurred when removing the connection label

SQL-34 Error occurred when getting labels

SQL-35 Error occurred when getting unmatched labels

SQL-36 Error occurred when setting connection harvestable

SQL-37 Error occurred when registering harvesting callback

SQL-38 Error occurred when removing harvesting callback

SQL-39 Error occurred when registering abandoned-connection callback

SQL-40 Error occurred when removing abandoned-connection callback

SQL-41 Error occurred when registering time-to-live-connection callback

SQL-42 Error occurred when removing time-to-live-connection callback

SQL-43 The result set is closed

SQL-44 The statement is closed

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

A-6

Table A-2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message
Number

Message

SQL-45 Cannot set the connection pool name. Check the connection pool name to
avoid duplicates

SQL-46 The SQL string is null

SQL-47 Error occurred when setting connection to be invalid

SQL-48 Unable to set the Connection properties

SQL-49 Unable to set the Database server name

SQL-50 Unable to set the Database port number

SQL-51 Unable to set the Database name

SQL-52 Unable to set the data source name

SQL-53 Unable to set the data source description

SQL-54 Unable to set the data source network protocol

SQL-55 Unable to set the data source role name

SQL-56 Invalid max connection reuse time

SQL-57 Invalid max connection reuse count

SQL-58 The method is disabled

SQL-59 Unable to set the connection factory properties

Appendix A
JDBC Data Sources and Dynamic Proxies Error Messages

A-7

Index

A
abandon connection timeout property, 4-6
AbandonedConnectionTimeoutCallback, 6-1
admin package, 2-3
affinity

transaction-based, 9-17
web session, 9-16

API overview, 2-2
application continuity

connection initialization callback, 10-2
connection labeling, 10-2
data source configuration, 10-1

Application Continuity, 10-1
applyConnectionLabel, 5-5
applying connection labels, 5-5

B
basic connection example, 2-3
benefits of connection pools, 1-1
benefits of FCF, 9-3
benefits of run-time connection load balancing,

9-15
borrowing connections

basic steps, 2-2
conceptual architecture, 1-2
labeled, 5-6
overview, 3-1
using JNDI, 3-4
using the pool-enabled data source, 3-2
using the pool-enabled XA data source, 3-3

C
caching statements, 4-10
callback

connection affinity, 9-18
labeling, 5-2

checking unmatched labels, 5-6
closing connections, 3-10
conceptual architecture, 1-2
configure method, 5-2
Configuring ONS, 9-7

client-side daemon configuration, 9-11

Configuring ONS (continued)
Remote Configuration, 9-10

connection affinity
create callback, 9-18
overview, 9-16
register callback, 9-19
remove callback, 9-19
setting up, 9-17
statistics, 12-3
transaction-based, 9-17
web session, 9-16

connection factory, 2-2
conceptual architecture, 1-2
requirements, 2-1
setting, 3-2, 3-3

connection labels
apply, 5-5
check unmatched, 5-6
implement callback, 5-2
overview, 5-1
removing, 5-6

Connection object, 1-2
connection pool

benefits, 1-1
create explicitly, 7-2
create implicitly, 2-1, 3-1
destroy, 7-3
general overview, 1-1
maintenance, 7-3
purge, 7-5
recycle, 7-4
refresh, 7-4
remove connection from, 3-10
start, 7-3
stop, 7-3
understanding lifecycle, 7-1

connection pool manager,
create, 7-1
create pool explicitly, 7-2
destroy pool, 7-3
overview, 1-3, 7-1
purge pool, 7-5
recycle pool, 7-4
refresh pool, 7-4
start pool, 7-3

Index-1

connection pool manager (continued)
stop pool, 7-3

connection pool properties,
abandon connection timeout, 4-6
connection wait timeout, 4-7
harvest maximum count, 4-9
harvest trigger count, 4-9
inactive connection timeout, 4-7
initial pool size, 4-2
maximum connection reuse count, 4-5
maximum connection reuse time, 4-5
maximum pool size, 4-3
maximum statements, 4-11
minimum pool size, 4-2
optimizing, 4-1
overview, 1-3
setting, 3-7, 4-1
time-to-live connection timeout, 4-6
timeout check interval, 4-8
validate on borrow, 3-7

connection properties, 3-4
connection reuse properties, setting, 4-5
connection steps, basic, 2-2

example, 2-3
connection URL, 9-13
connection wait timeout property, 4-7
ConnectionAffinityCallback interface, 9-18
ConnectionLabelingCallback interface, 5-1, 5-2
connections

basic steps, 2-2
borrowing, 3-1
borrowing labeled, 5-6
borrowing using JNDI, 3-4
checking if valid, 3-9
closing, 3-10
controlling stale, 4-4
harvesting, 4-8
labeling, 5-1
removing from the pool, 3-10
run-time load balancing, 9-15
using affinity, 9-16
validate on borrow, 3-7

cost method, 5-2
create connection pool

explicit, 7-2
implicit, 2-2

D
data source

PoolDataSource, 1-2, 3-2
PoolXADataSource, 1-2, 3-3

database requirements, 2-1
destroyConnectionPool, 7-3
destroying a connection pool, 7-3

E
enable FCF property, 9-6
errors

connection pool layer messages, A-1
general UCP message structure, A-1
JDBC data sources and dynamic proxies

messages, A-5
example

basic connection, 2-3
connection affinity callback, 9-18
FCF, 9-6
labeling callback, 5-3

F
FAN, 9-2
fast connection failover

prerequisites, 9-5
Fast Connection Failover

See FCF
FCF, 9-2

configure connection URL, 9-13
configure ONS, 9-7
enable, 9-6
example, 9-6
statistics, 12-2

G
GDS, 9-20
getAffinityPolicy, 9-18
getConnection methods, 3-2, 5-6
getPoolDataSource, 3-2
getPoolXADataSource, 3-3
getStatistics, 12-2
getting a connection, 3-2
getting an XA connection, 3-4
getUniversalConnectionPoolManager, 7-1
getUnmatchedConnectionLabels, 5-6
getXAConnection methods, 3-4
Global Data Services, 9-20

H
harvest connections, 4-8
harvest maximum count property, 4-9
harvest trigger count property, 4-9
HarvestableConnection interface, 4-9
high availability, 1-4, 9-1

I
inactive connection timeout property, 4-7
initial pool size property, 4-2

Index

Index-2

integration
third-party, 3-11

isValid, 3-9

J
JDBC connection pool

See UCP
JDBC driver

connection properties, 3-4
requirements, 2-1

jdbc package, 2-2
JNDI, 3-4
JRE requirements, 2-1

L
LabelableConnection interface, 5-1, 5-5
labeled connections

apply label, 5-5
borrowing, 5-6
check unmatched, 5-6
implement callback, 5-2
overview, 5-1
remove label, 5-6

labeling callback
create, 5-2
example, 5-3
register, 5-4
removing, 5-5
run-time algorithm, 5-3

lifecycle of connection pools, 7-1
lifecycle states, 7-2
Load Balance Advisory, 9-15
load balancing, 9-14, 9-15
logging, 12-3
logging configuration

programmatically, 12-4
properties file, 12-3

logging levels, 12-6

M
manager, connection pool, 7-1
maximum connection reuse count property, 4-5
maximum connection reuse time property, 4-5
maximum pool size property, 4-3
maximum statements property, 4-11
method, 3-3
minimum pool size property, 4-2

O
ONS, 9-7
ons.config file, 9-7

optimizing a connection pool, 4-1
Oracle Client software, 9-7
Oracle Client software requirements, 2-1
Oracle Notification Service

See ONS
Oracle RAC

connection affinity, 9-16
FCF, 9-2
features overview, 9-1
run-time connection load balancing, 9-15
statistics, 12-2

Oracle RAC Load Balance Advisory, 9-15
overview

API, 2-2
connection pool manager, 7-1
connection pool properties, 4-1
connection pools, general, 1-1
connection steps, 2-2
high availability and performance features,

1-4
labeling connections, 5-1
Oracle RAC features, 9-1
UCP, 1-2

P
password, 2-2, 3-2, 3-3
pool manager

See connection pool manager
pool properties

See connection pool properties
pool size, controlling

initial size, 4-2
maximum, 4-3
minimum, 4-2

pool-enabled data source
create instance, 3-2

pool-enabled XA data source
create instance, 3-3

PoolDataSource interface, 1-2, 3-2
PoolDataSourceFactory class, 3-2, 3-3
PoolDataSourceImpl, 3-11
PoolXADataSource interface, 1-2, 3-3
PoolXADataSourceImpl, 3-11
purgeConnectionPool, 7-5
purging a connection pool, 7-5

R
Real Application Clusters

See Oracle RAC, 1-2
recycleConnectionPool, 7-4
recycling a connection pool, 7-4
refreshConnectionPool, 7-4
refreshing a connection pool, 7-4

Index

3

registerConnectionAffinityCallback, 9-19
registerConnectionLabelingCallback, 5-4
removeConnectionAffinityCallback, 9-19
removeConnectionLabel, 5-6
removeConnectionLabelingCallback, 5-5
removing connection labels, 5-6
removing connections from the pool, 3-10
reuse properites

maximum count, 4-5
reuse properties

maximum time, 4-5
run-time connection load balancing

overview, 9-15
setting up, 9-15
statistics, 12-3

S
SERVICE_TIME, 9-15
setAbandonedConnectionTimeout, 4-6
setAffinityPolicy, 9-18
setConnectionAffinityContext, 9-18
setConnectionFactoryClassName, 3-2, 3-3
setConnectionHarvestable, 4-9
setConnectionHarvestMaxCount, 4-9
setConnectionHarvestTriggerCount, 4-9
setConnectionProperties, 3-4
setConnectionWaitTimeout, 4-7
setFastConnectionFailoverEnabled, 9-6
setInactiveConnectionTimeout, 4-7
setInitialPoolSize, 4-2
setInvalid, 3-9, 3-10
setMaxConnectionReuseCount, 4-5
setMaxConnectionReuseTime, 4-5
setMaxPoolSize, 4-3
setMaxStatements, 4-11
setMinPoolSize, 4-2
setONSConfiguration, 9-7
setPassword, 3-2, 3-3
setSQLForValidateConnection, 3-7
setTimeoutCheckInterval, 4-8
setTimeToLiveConnectionTimeout, 4-6
setURL, 3-2, 3-3
setUser, 3-2, 3-3
setValidateConnectionOnBorrow, 3-7
SHORT, 9-15
SQL statement caching, 4-10
stale connections, 4-4
startConnectionPool, 7-3
starting a connection pool, 7-3
statement caching, 4-10
statistics

connection affinity, 12-3
FCF, 12-2
Oracle RAC, 12-2

statistics (continued)
run-time connection load balancing, 12-3

stopConnectionPool, 7-3
stopping a connection pool, 7-3

T
third-party integration, 3-11
THROUGHPUT, 9-15
time-to-live connection timeout property, 4-6
timeout check interval property, 4-8
timeout properties

abandon, 4-6
check interval, 4-8
inactive, 4-7
time-to-live, 4-6
wait, 4-7

TimeToLiveConnectionTimeoutCallback, 6-1
transaction-based affinity, 9-17

U
UCP,

API overview, 2-2
basic connection steps, 2-1
conceptual architecture, 1-2
Oracle RAC features, 9-1
overview, 1-2
software requirements, 2-1

UCP for JDBC
connection pool properties, 3-7, 4-1

UCP manager
See connection pool manager

ucp package, 2-2
universal connection pool

See UCP
UniversalConnectionPoolManager interface, 7-1
UniversalConnectionPoolManagerImpl, 7-1
unmatched labels, 5-6
URL, 2-2, 3-2, 3-3, 9-13
username, 2-2, 3-2, 3-3

V
validate connections

on borrow, 3-7
programmatically, 3-9

ValidConnection interface, 3-9, 3-10

W
web session affinity, 9-16

Index

Index-4

X
XA connections, 1-2, 3-3

XAConnection object, 1-2

Index

5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Universal Connection Pool Developer's Guide
	Changes in Oracle Database 12c Release 2 (12.2.0.1)
	New Features

	1 Introduction to UCP
	1.1 Overview of Connection Pool
	1.2 Benefits of Using a Connection Pool
	1.3 Overview of Universal Connection Pool
	1.3.1 Conceptual Architecture
	1.3.2 Connection Pool Properties
	1.3.3 Connection Pool Manager
	1.3.4 High Availability and Performance Scenarios

	2 Getting Started
	2.1 Requirements for using UCP
	2.2 Basic Connection Steps in UCP
	2.3 UCP API Overview
	2.4 Basic Connection Example Using UCP

	3 Getting Database Connections in UCP
	3.1 About Borrowing Connections from UCP
	3.1.1 Overview of Borrowing Connections from UCP
	3.1.2 Using the Pool-Enabled Data Source
	3.1.3 Using the Pool-Enabled XA Data Source
	3.1.4 Setting Connection Properties
	3.1.5 Using JNDI to Borrow a Connection
	3.1.6 About Connection Initialization Callback
	3.1.6.1 Overview of Connection Initialization Callback
	3.1.6.2 Creating an Initialization Callback
	3.1.6.3 Registering an Initialization Callback
	3.1.6.4 Removing or Unregistering an Initialization Callback

	3.2 Setting Connection Pool Properties for UCP
	3.3 Overview of Validating Connections in UCP
	3.3.1 Validating When Borrowing
	3.3.2 Minimizing Connection Validation with setSecondsToTrustIdleConnection() Method
	3.3.3 Checking If a Connection Is Valid

	3.4 Returning Borrowed Connections to UCP
	3.5 Removing Connections from UCP
	3.6 UCP Integration with Third-Party Products

	4 Optimizing Universal Connection Pool Behavior
	4.1 Optimizing Connection Pools
	4.2 About Controlling the Pool Size in UCP
	4.2.1 Setting the Initial Pool Size
	4.2.2 Setting the Minimum Pool Size
	4.2.3 Setting the Maximum Pool Size

	4.3 About Optimizing Real-World Performance with Static Connection Pools
	4.4 Stale Connections in UCP
	4.4.1 What is Connection Reuse?
	4.4.1.1 Setting the Maximum Connection Reuse Time
	4.4.1.2 Setting the Maximum Connection Reuse Count

	4.4.2 Setting the Abandon Connection Timeout
	4.4.3 Setting the Time-To-Live Connection Timeout
	4.4.4 Setting the Connection Wait Timeout
	4.4.5 Setting the Inactive Connection Timeout
	4.4.6 Setting the Query Timeout
	4.4.7 Setting the Timeout Check Interval

	4.5 About Harvesting Connections in UCP
	4.5.1 Overview of Harvesting Connections in UCP
	4.5.2 Setting a Connection to Harvestable
	4.5.3 Setting the Harvest Trigger Count
	4.5.4 Setting the Harvest Maximum Count

	4.6 About Caching SQL Statements in UCP
	4.6.1 Overview of Statement Caching in UCP
	4.6.2 Enabling Statement Caching in UCP

	5 Labeling Connections in UCP
	5.1 Overview of Labeling Connections in UCP
	5.2 Implementation of a Labeling Callback in UCP
	5.2.1 When to Use a Labeling Callback in UCP
	5.2.2 Creating a Labeling Callback in UCP
	5.2.2.1 Example of Labeling Callback in UCP

	5.2.3 Registering a Labeling Callback in UCP
	5.2.4 Removing a Labeling Callback in UCP

	5.3 Integration of UCP with DRCP
	5.4 Applying Connection Labels in UCP
	5.5 Borrowing Labeled Connections from UCP
	5.6 Checking Unmatched Labels in UCP
	5.7 Removing a Connection Label in UCP

	6 Controlling Reclaimable Connection Behavior
	6.1 AbandonedConnectionTimeoutCallback Interface
	6.2 TimeToLiveConnectionTimeoutCallback Interface

	7 Using the Connection Pool Manager
	7.1 Overview of Using the UCP Manager
	7.1.1 About Connection Pool Manager
	7.1.2 Creating a Connection Pool Manager for UCP
	7.1.3 Life Cycle States of a Connection
	7.1.3.1 Creating a Connection Pool
	7.1.3.2 Starting a Connection Pool
	7.1.3.3 Stopping a Connection Pool
	7.1.3.4 Destroying a Connection Pool

	7.1.4 Maintenance of Universal Connection Pool
	7.1.4.1 Refreshing a Connection Pool
	7.1.4.2 Recycling a Connection Pool
	7.1.4.3 Purging a Connection Pool

	7.2 Overview of JMX-Based Management in UCP
	7.2.1 UniversalConnectionPoolManagerMBean
	7.2.2 UniversalConnectionPoolMBean

	8 Shared Pool Support for Multitenant Data Sources
	8.1 Overview of Shared Pool Support
	8.2 Prerequisites for Supporting Shared Pool
	8.3 Configuring the Shared Pool
	8.4 UCP APIs for Shared Pool Support
	8.5 Sample XML Configuration File for Shared Pool

	9 Using Oracle RAC Features
	9.1 Overview of Oracle RAC Features
	9.2 About Fast Connection Failover
	9.2.1 Overview of Fast Connection Failover
	9.2.2 What is Fast Connection Failover?
	9.2.2.1 What the Application Sees
	9.2.2.2 How FCF Works

	9.2.3 Fast Connection Failover Prerequisites
	9.2.4 Example of Fast Connection Failover Configuration
	9.2.5 Enabling Fast Connection Failover
	9.2.6 What is ONS?
	9.2.6.1 Overview of ONS Configuration File
	9.2.6.2 Remote Configuration of ONS
	9.2.6.3 Configuration of Client-Side ONS Daemon

	9.2.7 Configuring the Connection URL

	9.3 About Run-Time Connection Load Balancing
	9.3.1 Overview of Run-Time Connection Load Balancing
	9.3.2 Setting Up Run-Time Connection Load Balancing

	9.4 About Connection Affinity
	9.4.1 Overview of Connection Affinity
	9.4.2 Setting Up Connection Affinity
	9.4.2.1 Creating a Connection Affinity Callback
	9.4.2.2 Registering a Connection Affinity Callback
	9.4.2.3 Removing a Connection Affinity Callback
	9.4.2.4 Strict Affinity Mode

	9.5 Global Data Services
	9.5.1 Overview of Global Data Services
	9.5.2 Configuring an Application for Using GDS

	10 Ensuring Application Continuity
	10.1 Overview of Ensuring Application Continuity with UCP
	10.2 Configuring the Data Source for Application Continuity
	10.3 Using Connection Labeling for Application Continuity
	10.4 Using Connection Initialization Callback for Application Continuity

	11 Shared Pool for Sharded Databases
	11.1 Overview of UCP Shared Pool for Database Sharding
	11.2 About Handling Connection Requests for a Sharded Database
	11.2.1 About Building the Sharding Key
	11.2.2 How to Checkout Connections from a Pool with a Sharding Key
	11.2.3 About Checking Out Connections without Providing the Sharding Keys
	11.2.4 About Connecting to the Shard Catalog or Co-ordinator for Multi Shard Queries
	11.2.5 About Configuring the Number of Connections Per Shard
	11.2.6 Pool Connection Selection Algorithm During Connection Checkout
	11.2.7 Failover or Resharding Event Handling in UCP

	11.3 UCP APIs for Database Sharding Support
	11.4 UCP Sharding Example

	12 Diagnosing a Connection Pool
	12.1 Pool Statistics
	12.2 Dynamic Monitoring Service Metrics
	12.3 About Viewing Oracle RAC Statistics
	12.3.1 Fast Connection Failover Statistics
	12.3.2 Run-Time Connection Load Balance Statistics
	12.3.3 Connection Affinity Statistics

	12.4 Overview of Logging in UCP
	12.4.1 Using a Logging Properties File
	12.4.2 Using UCP and JDK API
	12.4.3 Enabling or Disabling Feature-Specific Logging at Runtime
	12.4.4 About Using the Logging Properties File for Feature-Specific Logging
	12.4.5 Supported Log Levels

	12.5 Exceptions and Error Codes

	A Error Codes Reference
	A.1 General Structure of UCP Error Messages
	A.2 Connection Pool Layer Error Messages
	A.3 JDBC Data Sources and Dynamic Proxies Error Messages

	Index

