
Oracle® Streams
Concepts and Administration

12c Release 2 (12.2)
E85771-01
April 2017

Oracle Streams Concepts and Administration, 12c Release 2 (12.2)

E85771-01

Copyright © 2002, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Roopesh Ashok Kumar

Contributors: Randy Urbano, Sundeep Abraham, Geeta Arora, Nimar Arora, Lance Ashdown, Ram
Avudaiappan, Neerja Bhatt, Ragamayi Bhyravabhotla, Chipper Brown, Jack Chung, Alan Downing, Jacco
Draaijer, Curt Elsbernd, Yong Feng, Jairaj Galagali, Lei Gao, Connie Green, Richard Huang, Thuvan Hoang,
Lewis Kaplan, Joydip Kundu, Tianshu Li, Jing Liu, Edwina Lu, Raghu Mani, Rui Mao, Pat McElroy,
Shailendra Mishra, Valarie Moore, Bhagat Nainani, Srikanth Nalla, Maria Pratt, Arvind Rajaram, Ashish Ray,
Abhishek Saxena, Viv Schupmann, Vipul Shah, Neeraj Shodhan, Wayne Smith, Jim Stamos, Janet Stern,
Mahesh Subramaniam, Bob Thome, Byron Wang, Wei Wang, James M. Wilson, Lik Wong, Jingwei Wu,
Haobo Xu, Jun Yuan, David Zhang, Ying Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxi

Documentation Accessibility xxxi

Related Documents xxxii

Conventions xxxii

 Changes in This Release for Oracle Streams Concepts and
Administration

Changes in Oracle Database 12c Release 1 (12.1) xxxiii

Part I Essential Oracle Streams Concepts

1 Introduction to Oracle Streams

1.1 Overview of Oracle Streams 1-1

1.2 What Can Oracle Streams Do? 1-2

1.2.1 Capture Messages at a Database 1-2

1.2.2 Stage Messages in a Queue 1-3

1.2.3 Propagate Messages from One Queue to Another 1-3

1.2.4 Consume Messages 1-3

1.2.5 Detect and Resolve Conflicts 1-3

1.2.6 Transform Messages 1-4

1.2.7 Track Messages with Oracle Streams Tags 1-5

1.2.8 Share Information with Non-Oracle Databases 1-5

1.3 What Are the Uses of Oracle Streams? 1-6

1.3.1 Data Replication 1-6

1.3.2 Data Warehouse Loading 1-6

1.3.3 Database Availability During Upgrade and Maintenance Operations 1-7

1.3.4 Message Queuing 1-7

1.3.5 Event Management and Notification 1-8

1.3.6 Data Protection 1-9

iii

1.4 Sample Oracle Streams Configurations 1-9

1.4.1 Sample Hub-and-Spoke Replication Configuration 1-9

1.4.2 Sample Replication Configuration with Downstream Capture 1-12

1.4.3 Sample Replication Configuration That Uses Synchronous Captures 1-13

1.4.4 Sample N-Way Replication Configuration 1-13

1.4.5 Sample Configuration That Performs Capture and Apply in a Single
Database 1-15

1.4.6 Sample Messaging Configuration 1-15

1.5 Oracle Streams Documentation Roadmap 1-16

1.5.1 Documentation for Learning About Oracle Streams 1-17

1.5.2 Documentation About Setting Up or Extending an Oracle Streams
Environment 1-19

1.5.3 Documentation About Managing an Oracle Streams Environment 1-20

1.5.4 Documentation About Monitoring an Oracle Streams Environment 1-22

1.5.5 Documentation About Using Oracle Streams for Upgrade and
Maintenance 1-24

2 Oracle Streams Information Capture

2.1 Ways to Capture Information with Oracle Streams 2-1

2.1.1 Implicit Capture 2-1

2.1.1.1 Capture Processes 2-2

2.1.1.2 Synchronous Captures 2-2

2.1.2 Explicit Capture 2-3

2.2 Types of Information Captured with Oracle Streams 2-3

2.2.1 Logical Change Records (LCRs) 2-3

2.2.1.1 Row LCRs 2-4

2.2.1.2 DDL LCRs 2-7

2.2.1.3 Extra Information in LCRs 2-8

2.2.2 User Messages 2-9

2.3 Summary of Information Capture Options with Oracle Streams 2-10

2.4 Instantiation in an Oracle Streams Environment 2-11

2.5 Implicit Capture with an Oracle Streams Capture Process 2-12

2.5.1 Introduction to Capture Processes 2-12

2.5.2 Capture Process Rules 2-14

2.5.3 Data Types Captured by Capture Processes 2-14

2.5.4 Types of DML Changes Captured by Capture Processes 2-16

2.5.5 Supplemental Logging in an Oracle Streams Environment 2-16

2.5.6 Local Capture and Downstream Capture 2-17

2.5.6.1 Local Capture 2-17

2.5.6.2 Downstream Capture 2-19

2.5.7 SCN Values Related to a Capture Process 2-24

iv

2.5.7.1 Captured SCN and Applied SCN 2-24

2.5.7.2 First SCN and Start SCN 2-25

2.5.8 Oracle Streams Capture Processes and RESTRICTED SESSION 2-27

2.5.9 Capture Process Subcomponents 2-27

2.5.10 Capture User 2-28

2.5.11 Capture Process States 2-29

2.5.12 Capture Process Parameters 2-30

2.5.13 Persistent Capture Process Status Upon Database Restart 2-30

2.6 Implicit Capture with Synchronous Capture 2-31

2.6.1 Introduction to Synchronous Capture 2-31

2.6.2 Synchronous Capture and Queues 2-32

2.6.3 Synchronous Capture Rules 2-33

2.6.4 Data Types Captured by Synchronous Capture 2-34

2.6.5 Types of DML Changes Captured by Synchronous Capture 2-35

2.6.6 Capture User for Synchronous Capture 2-35

2.6.7 Multiple Synchronous Captures in a Single Database 2-36

2.7 Explicit Capture by Applications 2-36

2.7.1 Types of Messages That Can Be Enqueued Explicitly 2-36

2.7.1.1 User Messages 2-37

2.7.1.2 Logical Change Records (LCRs) and Messaging 2-37

2.7.2 Enqueue Features 2-38

3 Oracle Streams Staging and Propagation

3.1 Introduction to Message Staging and Propagation 3-1

3.2 Queues 3-2

3.2.1 ANYDATA Queues and Typed Queues 3-2

3.2.2 Persistent Queues and Buffered Queues 3-3

3.2.2.1 Queues and Oracle Streams Clients 3-4

3.3 Message Propagation Between Queues 3-6

3.3.1 Propagation Rules 3-7

3.3.2 Queue-to-Queue Propagations 3-8

3.3.3 Ensured Message Delivery 3-8

3.3.4 Directed Networks 3-9

3.3.4.1 Queue Forwarding and Apply Forwarding 3-10

4 Oracle Streams Information Consumption

4.1 Overview of Information Consumption with Oracle Streams 4-1

4.1.1 Ways to Consume Information with Oracle Streams 4-1

4.1.1.1 Implicit Consumption 4-2

v

4.1.1.2 Explicit Consumption 4-2

4.1.2 Types of Information Consumed with Oracle Streams 4-2

4.1.2.1 Captured LCRs 4-3

4.1.2.2 Persistent LCRs 4-3

4.1.2.3 Buffered LCRs 4-3

4.1.2.4 Persistent User Messages 4-4

4.1.2.5 Buffered User Messages 4-4

4.1.3 Summary of Information Consumption Options 4-4

4.2 Implicit Consumption with an Apply Process 4-6

4.2.1 Introduction to the Apply Process 4-6

4.2.2 Apply Process Rules 4-6

4.2.3 Types of Messages That Can Be Processed with an Apply Process 4-7

4.2.4 Message Processing Options for an Apply Process 4-8

4.2.4.1 DML Handlers 4-9

4.2.4.2 Error Handlers 4-13

4.2.4.3 DDL Handlers 4-14

4.2.4.4 Message Handlers 4-14

4.2.4.5 Precommit Handlers 4-15

4.2.4.6 Considerations for Apply Handlers 4-17

4.2.4.7 Summary of Message Processing Options 4-18

4.2.5 The Source of Messages Applied by an Apply Process 4-19

4.2.6 Data Types Applied 4-20

4.2.7 Automatic Data Type Conversion During Apply 4-21

4.2.7.1 Automatic Trimming of Character Data Types During Apply 4-23

4.2.7.2 Automatic Conversion and LOB Data Types 4-23

4.2.8 SQL Generation 4-23

4.2.8.1 Interfaces for Performing SQL Generation 4-24

4.2.8.2 SQL Generation Formats 4-24

4.2.8.3 SQL Generation and Data Types 4-25

4.2.8.4 SQL Generation and Character Sets 4-27

4.2.8.5 Sample Generated SQL Statements 4-27

4.2.9 Oracle Streams Apply Processes and RESTRICTED SESSION 4-30

4.2.10 Apply Process Subcomponents 4-30

4.2.10.1 Reader Server States 4-31

4.2.10.2 Coordinator Process States 4-32

4.2.10.3 Apply Server States 4-32

4.2.11 Apply User 4-33

4.2.12 Apply Process Parameters 4-34

4.2.13 Persistent Apply Process Status Upon Database Restart 4-34

4.2.14 The Error Queue 4-34

4.3 Explicit Consumption with a Messaging Client 4-36

vi

4.4 Explicit Consumption with Manual Dequeue 4-37

5 How Rules Are Used in Oracle Streams

5.1 Overview of How Rules Are Used in Oracle Streams 5-1

5.2 Rule Sets and Rule Evaluation of Messages 5-3

5.2.1 Oracle Streams Client with No Rule Set 5-4

5.2.2 Oracle Streams Client with a Positive Rule Set Only 5-4

5.2.3 Oracle Streams Client with a Negative Rule Set Only 5-4

5.2.4 Oracle Streams Client with Both a Positive and a Negative Rule Set 5-4

5.2.5 Oracle Streams Client with One or More Empty Rule Sets 5-5

5.2.6 Summary of Rule Sets and Oracle Streams Client Behavior 5-5

5.3 System-Created Rules 5-5

5.3.1 Global Rules 5-11

5.3.1.1 Global Rules Example 5-12

5.3.1.2 System-Created Global Rules Avoid Empty Rule Conditions
Automatically 5-13

5.3.2 Schema Rules 5-15

5.3.2.1 Schema Rule Example 5-16

5.3.3 Table Rules 5-17

5.3.3.1 Table Rules Example 5-18

5.3.4 Subset Rules 5-20

5.3.4.1 Subset Rules Example 5-21

5.3.4.2 Row Migration and Subset Rules 5-24

5.3.4.3 Subset Rules and Supplemental Logging 5-28

5.3.4.4 Guidelines for Using Subset Rules 5-29

5.3.5 Message Rules 5-31

5.3.5.1 Message Rule Example 5-31

5.3.6 System-Created Rules and Negative Rule Sets 5-33

5.3.6.1 Negative Rule Set Example 5-35

5.3.7 System-Created Rules with Added User-Defined Conditions 5-37

6 Rule-Based Transformations

6.1 Declarative Rule-Based Transformations 6-1

6.2 Custom Rule-Based Transformations 6-2

6.2.1 Custom Rule-Based Transformations and Action Contexts 6-4

6.2.2 Required Privileges for Custom Rule-Based Transformations 6-5

6.3 Rule-Based Transformations and Oracle Streams Clients 6-5

6.3.1 Rule-Based Transformations and Capture Processes 6-6

6.3.1.1 Rule-Based Transformation Errors During Capture by a Capture
Process 6-8

vii

6.3.2 Rule-Based Transformations and Synchronous Captures 6-8

6.3.2.1 Rule-Based Transformations and Errors During Capture by a
Synchronous Capture 6-10

6.3.3 Rule-Based Transformations and Propagations 6-11

6.3.3.1 Rule-Based Transformation Errors During Propagation 6-13

6.3.4 Rule-Based Transformations and an Apply Process 6-13

6.3.4.1 Rule-Based Transformation Errors During Apply Process
Dequeue 6-14

6.3.4.2 Apply Errors on Transformed Messages 6-15

6.3.5 Rule-Based Transformations and a Messaging Client 6-15

6.3.5.1 Rule-Based Transformation Errors During Messaging Client
Dequeue 6-16

6.3.6 Multiple Rule-Based Transformations 6-16

6.4 Transformation Ordering 6-16

6.4.1 Declarative Rule-Based Transformation Ordering 6-16

6.4.1.1 Default Declarative Transformation Ordering 6-17

6.4.1.2 User-Specified Declarative Transformation Ordering 6-18

6.5 Considerations for Rule-Based Transformations 6-19

Part II Advanced Oracle Streams Concepts

7 Advanced Capture Process Concepts

7.1 Multiple Capture Processes in a Single Database 7-1

7.2 Capture Process Checkpoints 7-2

7.2.1 Required Checkpoint SCN 7-2

7.2.2 Maximum Checkpoint SCN 7-3

7.2.3 Checkpoint Retention Time 7-3

7.3 A New First SCN Value and Purged LogMiner Data Dictionary Information 7-4

7.4 ARCHIVELOG Mode and a Capture Process 7-6

7.5 Capture Process Creation 7-7

7.5.1 The LogMiner Data Dictionary for a Capture Process 7-8

7.5.1.1 Scenario Illustrating Why a Capture Process Needs a LogMiner
Data Dictionary 7-10

7.5.1.2 Multiple Capture Processes for the Same Source Database 7-10

7.6 The Oracle Streams Data Dictionary 7-13

7.7 Capture Process Rule Evaluation 7-14

8 Advanced Queue Concepts

8.1 Secure Queues 8-1

8.1.1 Secure Queues and the SET_UP_QUEUE Procedure 8-1

viii

8.1.2 Secure Queues and Oracle Streams Clients 8-2

8.2 Transactional and Nontransactional Queues 8-3

8.3 Commit-Time Queues 8-4

8.3.1 When to Use Commit-Time Queues 8-5

8.3.1.1 Transactional Dependency Ordering During Dequeue 8-5

8.3.1.2 Consistent Browse of Messages in a Queue 8-6

8.3.2 How Commit-Time Queues Work 8-7

9 Advanced Propagation Concepts

9.1 Propagation Jobs 9-1

9.1.1 Propagation Scheduling and Oracle Streams Propagations 9-2

9.1.2 Propagation Jobs and RESTRICTED SESSION 9-3

9.2 Oracle Streams Data Dictionary for Propagations 9-3

9.3 Binary File Propagation 9-4

10

Advanced Apply Process Concepts

10.1 Apply Process Creation 10-1

10.2 Apply Processes and Dependencies 10-2

10.2.1 How Dependent Transactions Are Applied 10-3

10.2.2 Row LCR Ordering During Apply 10-3

10.2.3 Dependencies and Constraints 10-4

10.2.4 Dependency Detection, Rule-Based Transformations, and Apply
Handlers 10-5

10.2.5 Virtual Dependency Definitions 10-5

10.2.5.1 Value Dependency 10-6

10.2.5.2 Object Dependency 10-7

10.2.6 Barrier Transactions 10-7

10.3 Considerations for Applying DML Changes to Tables 10-8

10.3.1 Constraints and Applying DML Changes to Tables 10-8

10.3.2 Substitute Key Columns 10-9

10.3.3 Apply Process Behavior for Column Discrepancies 10-10

10.3.3.1 Missing Columns at the Destination Database 10-11

10.3.3.2 Extra Columns at the Destination Database 10-11

10.3.3.3 Column Data Type Mismatch 10-11

10.3.4 Conflict Resolution and an Apply Process 10-12

10.3.5 Handlers and Row LCR Processing 10-12

10.3.5.1 No Relevant Handlers 10-13

10.3.5.2 Relevant Update Conflict Handler 10-13

10.3.5.3 DML Handler But No Relevant Update Conflict Handler 10-13

10.3.5.4 DML Handler And a Relevant Update Conflict Handler 10-14

ix

10.3.5.5 Statement DML Handler and Procedure DML Handler 10-15

10.3.5.6 Error Handler But No Relevant Update Conflict Handler 10-15

10.3.5.7 Error Handler And a Relevant Update Conflict Handler 10-16

10.3.5.8 Statement DML Handler and Relevant Error Handler 10-16

10.3.5.9 Statement DML Handler, Error Handler, and Relevant Update
Conflict Handler 10-17

10.4 Considerations for Applying DDL Changes 10-17

10.4.1 System-Generated Names 10-18

10.4.2 CREATE TABLE AS SELECT Statements 10-18

10.4.3 DML Statements within DDL Statements 10-19

10.4.3.1 The DDL Statement Contains Derived Values 10-19

10.4.3.2 The DDL Statement Fires DML Triggers 10-19

10.5 Instantiation SCN and Ignore SCN for an Apply Process 10-20

10.6 The Oldest SCN for an Apply Process 10-21

10.7 Low-Watermark and High-Watermark for an Apply Process 10-22

10.8 Apply Processes and Triggers 10-22

10.8.1 Trigger Firing Property 10-22

10.8.2 Apply Processes and Triggers Created with the ON SCHEMA Clause 10-24

10.9 Oracle Streams Data Dictionary for an Apply Process 10-24

10.10 Multiple Apply Processes in a Single Database 10-25

11

Advanced Rule Concepts

11.1 The Components of a Rule 11-1

11.1.1 Rule Condition 11-2

11.1.1.1 Variables in Rule Conditions 11-2

11.1.1.2 Simple Rule Conditions 11-3

11.1.2 Rule Evaluation Context 11-5

11.1.2.1 Explicit and Implicit Variables 11-6

11.1.2.2 Evaluation Context Association with Rule Sets and Rules 11-7

11.1.2.3 Evaluation Function 11-8

11.1.3 Rule Action Context 11-9

11.2 Rule Set Evaluation 11-11

11.2.1 Rule Set Evaluation Process 11-12

11.2.2 Partial Evaluation 11-13

11.3 Database Objects and Privileges Related to Rules 11-14

11.3.1 Privileges for Creating Database Objects Related to Rules 11-15

11.3.2 Privileges for Altering Database Objects Related to Rules 11-16

11.3.3 Privileges for Dropping Database Objects Related to Rules 11-16

11.3.4 Privileges for Placing Rules in a Rule Set 11-16

11.3.5 Privileges for Evaluating a Rule Set 11-17

11.3.6 Privileges for Using an Evaluation Context 11-17

x

11.4 Evaluation Contexts Used in Oracle Streams 11-17

11.4.1 Evaluation Context for Global, Schema, Table, and Subset Rules 11-17

11.4.2 Evaluation Contexts for Message Rules 11-19

11.5 Oracle Streams and Event Contexts 11-21

11.6 Oracle Streams and Action Contexts 11-21

11.6.1 Purposes of Action Contexts in Oracle Streams 11-21

11.6.1.1 Internal LCR Transformations in Subset Rules 11-22

11.6.1.2 Information About Declarative Rule-Based Transformations 11-22

11.6.1.3 Custom Rule-Based Transformations 11-23

11.6.1.4 Execution Directives for Messages During Apply 11-23

11.6.1.5 Enqueue Destinations for Messages During Apply 11-23

11.6.2 Ensure That Only One Rule Can Evaluate to TRUE for a Particular
Rule Condition 11-24

11.6.3 Action Context Considerations for Schema and Global Rules 11-24

11.7 User-Created Rules, Rule Sets, and Evaluation Contexts 11-25

11.7.1 User-Created Rules and Rule Sets 11-25

11.7.1.1 Rule Conditions for Specific Types of Operations 11-26

11.7.1.2 Rule Conditions that Instruct Oracle Streams Clients to Discard
Unsupported LCRs 11-27

11.7.1.3 Complex Rule Conditions 11-29

11.7.1.4 Rule Conditions with Undefined Variables that Evaluate to NULL 11-31

11.7.1.5 Variables as Function Parameters in Rule Conditions 11-32

11.7.2 User-Created Evaluation Contexts 11-33

12

Combined Capture and Apply Optimization

12.1 About Combined Capture and Apply Optimization 12-1

12.2 Combined Capture and Apply Requirements 12-1

12.3 How to Use Combined Capture and Apply 12-2

12.4 How to Determine Whether Combined Capture and Apply Is Being Used 12-3

12.5 Combined Capture and Apply and Point-in-Time Recovery 12-3

13

Oracle Streams High Availability Environments

13.1 Overview of Oracle Streams High Availability Environments 13-1

13.2 Protection from Failures 13-1

13.2.1 Oracle Streams Replica Database 13-2

13.2.1.1 Updates at the Replica Database 13-3

13.2.1.2 Heterogeneous Platform Support 13-3

13.2.1.3 Multiple Character Sets 13-3

13.2.1.4 Mining the Online Redo Logs to Minimize Latency 13-3

13.2.1.5 Fast Failover 13-3

xi

13.2.1.6 Single Capture for Multiple Destinations 13-4

13.2.2 When Not to Use Oracle Streams 13-4

13.2.3 Application-Maintained Copies 13-4

13.3 Best Practices for Oracle Streams High Availability Environments 13-5

13.3.1 Configuring Oracle Streams for High Availability 13-5

13.3.1.1 Directly Connecting Every Database to Every Other Database 13-5

13.3.1.2 Creating Hub-and-Spoke Configurations 13-5

13.3.1.3 Local or Downstream Capture with Oracle Streams Capture
Processes 13-6

13.3.2 Recovering from Failures 13-7

13.3.2.1 Automatic Capture Process Restart After a Failover 13-7

13.3.2.2 Database Links Reestablishment After a Failover 13-7

13.3.2.3 Propagation Job Restart After a Failover 13-8

13.3.2.4 Automatic Apply Process Restart After a Failover 13-8

Part III Oracle Streams Administration

14

Introduction to Oracle Streams Administration

14.1 Oracle-Supplied PL/SQL Packages 14-1

14.1.1 DBMS_APPLY_ADM Package 14-1

14.1.2 DBMS_CAPTURE_ADM Package 14-2

14.1.3 DBMS_COMPARISON Package 14-2

14.1.4 DBMS_PROPAGATION_ADM Package 14-2

14.1.5 DBMS_RULE Package 14-2

14.1.6 DBMS_RULE_ADM Package 14-2

14.1.7 DBMS_STREAMS Package 14-2

14.1.8 DBMS_STREAMS_ADM Package 14-2

14.1.9 DBMS_STREAMS_ADVISOR_ADM Package 14-3

14.1.10 DBMS_STREAMS_AUTH Package 14-3

14.1.11 DBMS_STREAMS_HANDLER_ADM Package 14-3

14.1.12 DBMS_STREAMS_MESSAGING Package 14-3

14.1.13 DBMS_STREAMS_TABLESPACE_ADM Package 14-3

14.1.14 UTL_SPADV Package 14-3

14.2 Oracle Streams Data Dictionary Views 14-4

14.3 Oracle Streams Tool in Oracle Enterprise Manager Cloud Control 14-4

15

Managing Oracle Streams Implicit Capture

15.1 Managing a Capture Process 15-1

15.1.1 Starting a Capture Process 15-2

xii

15.1.2 Stopping a Capture Process 15-2

15.1.3 Managing the Rule Set for a Capture Process 15-3

15.1.3.1 Specifying a Rule Set for a Capture Process 15-3

15.1.3.2 Adding Rules to a Rule Set for a Capture Process 15-4

15.1.3.3 Removing a Rule from a Rule Set for a Capture Process 15-5

15.1.3.4 Removing a Rule Set for a Capture Process 15-6

15.1.4 Setting a Capture Process Parameter 15-7

15.1.5 Setting the Capture User for a Capture Process 15-8

15.1.6 Managing the Checkpoint Retention Time for a Capture Process 15-8

15.1.6.1 Setting the Checkpoint Retention Time for a Capture Process to
a New Value 15-9

15.1.6.2 Setting the Checkpoint Retention Time for a Capture Process to
Infinite 15-9

15.1.7 Adding an Archived Redo Log File to a Capture Process Explicitly 15-9

15.1.8 Setting the First SCN for an Existing Capture Process 15-10

15.1.9 Setting the Start SCN for an Existing Capture Process 15-11

15.1.10 Specifying Whether Downstream Capture Uses a Database Link 15-12

15.1.11 Dropping a Capture Process 15-13

15.2 Managing a Synchronous Capture 15-13

15.2.1 Managing the Rule Set for a Synchronous Capture 15-14

15.2.1.1 Specifying a Rule Set for a Synchronous Capture 15-14

15.2.1.2 Adding Rules to a Rule Set for a Synchronous Capture 15-15

15.2.1.3 Removing a Rule from a Rule Set for a Synchronous Capture 15-16

15.2.2 Setting the Capture User for a Synchronous Capture 15-16

15.2.3 Dropping a Synchronous Capture 15-17

15.3 Managing Extra Attributes in Captured LCRs 15-17

15.3.1 Including Extra Attributes in Implicitly Captured LCRs 15-18

15.3.2 Excluding Extra Attributes from Implicitly Captured LCRs 15-18

15.4 Switching From a Capture Process to a Synchronous Capture 15-19

15.5 Switching from a Synchronous Capture to a Capture Process 15-25

16

Managing Staging and Propagation

16.1 Managing Queues 16-1

16.1.1 Enabling a User to Perform Operations on a Secure Queue 16-1

16.1.2 Disabling a User from Performing Operations on a Secure Queue 16-3

16.1.3 Removing a Queue 16-4

16.2 Managing Oracle Streams Propagations and Propagation Jobs 16-5

16.2.1 Starting a Propagation 16-5

16.2.2 Stopping a Propagation 16-6

16.2.3 Altering the Schedule of a Propagation Job 16-6

xiii

16.2.3.1 Altering the Schedule of a Propagation Job for a Queue-to-
Queue Propagation 16-6

16.2.3.2 Altering the Schedule of a Propagation Job for a Queue-to-
Dblink Propagation 16-7

16.2.4 Specifying the Rule Set for a Propagation 16-7

16.2.4.1 Specifying a Positive Rule Set for a Propagation 16-8

16.2.4.2 Specifying a Negative Rule Set for a Propagation 16-8

16.2.5 Adding Rules to the Rule Set for a Propagation 16-8

16.2.5.1 Adding Rules to the Positive Rule Set for a Propagation 16-9

16.2.5.2 Adding Rules to the Negative Rule Set for a Propagation 16-9

16.2.6 Removing a Rule from the Rule Set for a Propagation 16-10

16.2.7 Removing a Rule Set for a Propagation 16-11

16.2.8 Dropping a Propagation 16-11

17

Managing Oracle Streams Information Consumption

17.1 Starting an Apply Process 17-2

17.2 Stopping an Apply Process 17-2

17.3 Managing the Rule Set for an Apply Process 17-3

17.3.1 Specifying the Rule Set for an Apply Process 17-3

17.3.1.1 Specifying a Positive Rule Set for an Apply Process 17-3

17.3.1.2 Specifying a Negative Rule Set for an Apply Process 17-3

17.3.2 Adding Rules to the Rule Set for an Apply Process 17-4

17.3.2.1 Adding Rules to the Positive Rule Set for an Apply Process 17-4

17.3.2.2 Adding Rules to the Negative Rule Set for an Apply Process 17-5

17.3.3 Removing a Rule from the Rule Set for an Apply Process 17-5

17.3.4 Removing a Rule Set for an Apply Process 17-6

17.4 Setting an Apply Process Parameter 17-6

17.5 Setting the Apply User for an Apply Process 17-7

17.6 Managing a DML Handler 17-8

17.6.1 Managing a Statement DML Handler 17-8

17.6.1.1 Creating a Statement DML Handler and Adding It to an Apply
Process 17-9

17.6.1.2 Adding Statements to a Statement DML Handler 17-14

17.6.1.3 Modifying a Statement in a Statement DML Handler 17-16

17.6.1.4 Removing Statements from a Statement DML Handler 17-17

17.6.1.5 Removing a Statement DML Handler from an Apply Process 17-18

17.6.1.6 Dropping a Statement DML Handler 17-18

17.6.2 Managing a Procedure DML Handler 17-19

17.6.2.1 Creating a Procedure DML Handler 17-19

17.6.2.2 Setting a Procedure DML Handler 17-21

17.6.2.3 Unsetting a Procedure DML Handler 17-23

xiv

17.7 Managing a DDL Handler 17-23

17.7.1 Creating a DDL Handler for an Apply Process 17-23

17.7.2 Setting the DDL Handler for an Apply Process 17-24

17.7.3 Removing the DDL Handler for an Apply Process 17-25

17.8 Managing the Message Handler for an Apply Process 17-25

17.8.1 Setting the Message Handler for an Apply Process 17-25

17.8.2 Unsetting the Message Handler for an Apply Process 17-26

17.9 Managing the Precommit Handler for an Apply Process 17-26

17.9.1 Creating a Precommit Handler for an Apply Process 17-26

17.9.2 Setting the Precommit Handler for an Apply Process 17-27

17.9.3 Unsetting the Precommit Handler for an Apply Process 17-28

17.10 Specifying That Apply Processes Enqueue Messages 17-28

17.10.1 Setting the Destination Queue for Messages that Satisfy a Rule 17-28

17.10.2 Removing the Destination Queue Setting for a Rule 17-29

17.11 Specifying Execute Directives for Apply Processes 17-30

17.11.1 Specifying that Messages that Satisfy a Rule Are Not Executed 17-30

17.11.2 Specifying that Messages that Satisfy a Rule Are Executed 17-31

17.12 Managing an Error Handler 17-32

17.12.1 Creating an Error Handler 17-32

17.12.2 Setting an Error Handler 17-36

17.12.3 Unsetting an Error Handler 17-37

17.13 Managing Apply Errors 17-37

17.13.1 Retrying Apply Error Transactions 17-38

17.13.1.1 Retrying a Specific Apply Error Transaction 17-38

17.13.1.2 Retrying All Error Transactions for an Apply Process 17-41

17.13.2 Deleting Apply Error Transactions 17-41

17.13.2.1 Deleting a Specific Apply Error Transaction 17-41

17.13.2.2 Deleting All Error Transactions for an Apply Process 17-41

17.14 Managing the Substitute Key Columns for a Table 17-42

17.14.1 Setting Substitute Key Columns for a Table 17-42

17.14.2 Removing the Substitute Key Columns for a Table 17-43

17.15 Using Virtual Dependency Definitions 17-43

17.15.1 Setting and Unsetting Value Dependencies 17-44

17.15.1.1 Schema Differences and Value Dependencies 17-44

17.15.1.2 Undefined Constraints at the Destination Database and Value
Dependencies 17-45

17.15.2 Creating and Dropping Object Dependencies 17-46

17.15.2.1 Creating an Object Dependency 17-47

17.15.2.2 Dropping an Object Dependency 17-48

17.16 Dropping an Apply Process 17-48

xv

18

Managing Rules

18.1 Managing Rule Sets 18-2

18.1.1 Creating a Rule Set 18-2

18.1.2 Adding a Rule to a Rule Set 18-3

18.1.3 Removing a Rule from a Rule Set 18-4

18.1.4 Dropping a Rule Set 18-4

18.2 Managing Rules 18-4

18.2.1 Creating a Rule 18-5

18.2.1.1 Creating a Rule without an Action Context 18-5

18.2.1.2 Creating a Rule with an Action Context 18-6

18.2.2 Altering a Rule 18-7

18.2.2.1 Changing a Rule Condition 18-7

18.2.2.2 Modifying a Name-Value Pair in a Rule Action Context 18-8

18.2.2.3 Adding a Name-Value Pair to a Rule Action Context 18-9

18.2.2.4 Removing a Name-Value Pair from a Rule Action Context 18-10

18.2.3 Modifying System-Created Rules 18-11

18.2.4 Dropping a Rule 18-12

18.3 Managing Privileges on Evaluation Contexts, Rule Sets, and Rules 18-12

18.3.1 Granting System Privileges on Evaluation Contexts, Rule Sets, and
Rules 18-13

18.3.2 Granting Object Privileges on an Evaluation Context, Rule Set, or Rule 18-13

18.3.3 Revoking System Privileges on Evaluation Contexts, Rule Sets, and
Rules 18-14

18.3.4 Revoking Object Privileges on an Evaluation Context, Rule Set, or
Rule 18-14

19

Managing Rule-Based Transformations

19.1 Managing Declarative Rule-Based Transformations 19-1

19.1.1 Adding Declarative Rule-Based Transformations 19-1

19.1.1.1 Adding a Declarative Rule-Based Transformation that Renames
a Table 19-2

19.1.1.2 Adding a Declarative Rule-Based Transformation that Adds a
Column 19-2

19.1.2 Overwriting an Existing Declarative Rule-Based Transformation 19-3

19.1.3 Removing Declarative Rule-Based Transformations 19-4

19.2 Managing Custom Rule-Based Transformations 19-5

19.2.1 Creating a Custom Rule-Based Transformation 19-6

19.2.2 Altering a Custom Rule-Based Transformation 19-11

19.2.3 Unsetting a Custom Rule-Based Transformation 19-12

xvi

20

Using Oracle Streams to Record Table Changes

20.1 About Using Oracle Streams to Record Changes to Tables 20-1

20.2 Preparing for an Oracle Streams Environment That Records Table Changes 20-2

20.2.1 Decisions to Make Before Running the MAINTAIN_CHANGE_TABLE
Procedure 20-2

20.2.1.1 Decide Which Type of Environment to Configure 20-3

20.2.1.2 Decide Which Columns to Track 20-5

20.2.1.3 Decide Which Metadata to Record 20-5

20.2.1.4 Decide Which Values to Track for Update Operations 20-6

20.2.1.5 Decide Whether to Configure a KEEP_COLUMNS
Transformation 20-6

20.2.1.6 Decide Whether to Specify CREATE TABLE Options for the
Change Table 20-7

20.2.1.7 Decide Whether to Perform the Configuration Actions Directly or
with a Script 20-8

20.2.1.8 Decide Whether to Replicate the Source Table 20-8

20.2.2 Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure 20-9

20.2.2.1 Configure an Oracle Streams Administrator on All Databases 20-10

20.2.2.2 Configure Network Connectivity and Database Links 20-10

20.2.2.3 Ensure That the Source Database Is in ARCHIVELOG Mode 20-10

20.2.2.4 Set Initialization Parameters That Are Relevant to Oracle
Streams 20-10

20.2.2.5 Configure the Oracle Streams Pool 20-11

20.2.2.6 Configure Log File Transfer to a Downstream Capture Database 20-11

20.2.2.7 Configure Standby Redo Logs for Real-Time Downstream
Capture 20-11

20.2.2.8 Configure the Required Directory Object If You Are Using a
Script 20-11

20.2.2.9 Instantiate the Source Table at the Destination Database 20-12

20.3 Configuring an Oracle Streams Environment That Records Table Changes 20-12

20.3.1 Recording Table Changes Using Local Capture and Apply on One
Database 20-13

20.3.2 Recording Table Changes Using Local Capture and Remote Apply
with Replication 20-16

20.3.3 Recording Table Changes Using Downstream Capture and Local
Apply 20-19

20.3.4 Recording Table Changes Using Downstream Capture and Remote
Apply 20-23

20.4 Managing an Oracle Streams Environment That Records Table Changes 20-29

20.4.1 Unsetting and Setting a Change Handler 20-29

20.4.2 Recording Changes to a Table Using Existing Oracle Streams
Components 20-30

20.4.3 Maintaining Change Tables 20-33

xvii

20.4.4 Managing the Oracle Streams Environment 20-34

20.5 Monitoring an Oracle Streams Environment That Records Table Changes 20-35

20.5.1 Monitoring a Change Table 20-35

20.5.2 Monitoring Change Handlers 20-36

20.5.2.1 Displaying General Information About Change Handlers 20-36

20.5.2.2 Displaying the Change Table and Source Table for Change
Handlers 20-37

20.5.3 Monitoring the Oracle Streams Environment 20-37

21

Other Oracle Streams Management Tasks

21.1 Performing Full Database Export/Import in an Oracle Streams Environment 21-1

21.2 Removing an Oracle Streams Configuration 21-5

Part IV Monitoring Oracle Streams

22

Monitoring an Oracle Streams Environment

22.1 Summary of Oracle Streams Static Data Dictionary Views 22-1

22.2 Summary of Oracle Streams Dynamic Performance Views 22-4

23

Monitoring the Oracle Streams Topology and Performance

23.1 About the Oracle Streams Topology 23-1

23.2 About the Oracle Streams Performance Advisor 23-2

23.2.1 Oracle Streams Performance Advisor Data Dictionary Views 23-2

23.2.2 Oracle Streams Components and Statistics 23-3

23.3 About Stream Paths in an Oracle Streams Topology 23-4

23.3.1 Separate Stream Paths in an Oracle Streams Environment 23-5

23.3.2 Shared Stream Paths in an Oracle Streams Replication Environment 23-6

23.4 About the Information Gathered by the Oracle Streams Performance Advisor 23-8

23.5 Gathering Information About the Oracle Streams Topology and Performance 23-9

23.6 Viewing the Oracle Streams Topology and Analyzing Oracle Streams
Performance 23-10

23.6.1 Viewing the Oracle Streams Topology 23-13

23.6.1.1 Viewing the Databases in the Oracle Streams Environment 23-13

23.6.1.2 Viewing the Oracle Streams Components at Each Database 23-14

23.6.1.3 Viewing Each Stream Path in an Oracle Streams Topology 23-16

23.6.2 Viewing Performance Statistics for Oracle Streams Components 23-19

23.6.2.1 Checking for Bottleneck Components in the Oracle Streams
Topology 23-19

23.6.2.2 Viewing Component-Level Statistics 23-21

xviii

23.6.2.3 Viewing Session-Level Statistics 23-27

23.6.2.4 Viewing Statistics for the Stream Paths in an Oracle Streams
Environment 23-32

23.7 Using the UTL_SPADV Package 23-33

23.7.1 Collecting Oracle Streams Statistics Using the UTL_SPADV Package 23-34

23.7.2 Checking Whether an Oracle Streams Monitoring Job Is Currently
Running 23-35

23.7.3 Altering an Oracle Streams Monitoring Job 23-36

23.7.4 Stopping an Oracle Streams Monitoring Job 23-37

23.7.5 Showing Oracle Streams Statistics Using the UTL_SPADV Package 23-37

24

Monitoring Oracle Streams Implicit Capture

24.1 Monitoring a Capture Process 24-1

24.1.1 Displaying the Queue, Rule Sets, and Status of Each Capture Process 24-2

24.1.2 Displaying Session Information About Each Capture Process 24-3

24.1.3 Displaying Change Capture Information About Each Capture Process 24-4

24.1.4 Displaying State Change and Message Creation Time for Each
Capture Process 24-5

24.1.5 Displaying Elapsed Time Performing Capture Operations for Each
Capture Process 24-5

24.1.6 Displaying Information About Each Downstream Capture Process 24-6

24.1.7 Displaying the Registered Redo Log Files for Each Capture Process 24-8

24.1.8 Displaying the Redo Log Files That Are Required by Each Capture
Process 24-9

24.1.9 Displaying SCN Values for Each Redo Log File Used by Each Capture
Process 24-10

24.1.10 Displaying the Last Archived Redo Entry Available to Each Capture
Process 24-11

24.1.11 Listing the Parameter Settings for Each Capture Process 24-12

24.1.12 Determining the Applied SCN for All Capture Processes in a
Database 24-13

24.1.13 Determining Redo Log Scanning Latency for Each Capture Process 24-14

24.1.14 Determining Message Enqueuing Latency for Each Capture Process 24-14

24.1.15 Displaying Information About Rule Evaluations for Each Capture
Process 24-15

24.1.16 Determining Which Capture Processes Use Combined Capture and
Apply 24-16

24.1.17 Displaying Information About Split and Merge Operations 24-17

24.1.17.1 Displaying the Names of the Original and Cloned Oracle
Streams Components 24-18

24.1.17.2 Displaying the Actions and Thresholds for Split and Merge
Operations 24-19

24.1.17.3 Displaying the Lag Time of the Cloned Capture Process 24-21

xix

24.1.17.4 Displaying Information About the Split and Merge Jobs 24-22

24.1.17.5 Displaying Information About Past Split and Merge Operations 24-23

24.1.18 Monitoring Supplemental Logging 24-24

24.1.18.1 Displaying Supplemental Log Groups at a Source Database 24-24

24.1.18.2 Displaying Database Supplemental Logging Specifications 24-25

24.1.18.3 Displaying Supplemental Logging Specified During Preparation
for Instantiation 24-26

24.2 Monitoring a Synchronous Capture 24-29

24.2.1 Displaying the Queue and Rule Set of Each Synchronous Capture 24-29

24.2.2 Displaying the Tables For Which Synchronous Capture Captures
Changes 24-30

24.3 Viewing the Extra Attributes Captured by Implicit Capture 24-31

25

Monitoring Oracle Streams Queues and Propagations

25.1 Monitoring Queues and Messaging 25-1

25.1.1 Displaying the ANYDATA Queues in a Database 25-2

25.1.2 Viewing the Messaging Clients in a Database 25-2

25.1.3 Viewing Message Notifications 25-3

25.1.4 Determining the Consumer of Each Message in a Persistent Queue 25-4

25.1.5 Viewing the Contents of Messages in a Persistent Queue 25-4

25.2 Monitoring Buffered Queues 25-6

25.2.1 Determining the Number of Messages in Each Buffered Queue 25-6

25.2.2 Viewing the Capture Processes for the LCRs in Each Buffered Queue 25-7

25.2.3 Displaying Information About Propagations that Send Buffered
Messages 25-9

25.2.4 Displaying the Number of Messages and Bytes Sent By Propagations 25-10

25.2.5 Displaying Performance Statistics for Propagations that Send Buffered
Messages 25-10

25.2.6 Viewing the Propagations Dequeuing Messages from Each Buffered
Queue 25-11

25.2.7 Displaying Performance Statistics for Propagations That Receive
Buffered Messages 25-13

25.2.8 Viewing the Apply Processes Dequeuing Messages from Each
Buffered Queue 25-13

25.3 Monitoring Oracle Streams Propagations and Propagation Jobs 25-14

25.3.1 Displaying the Queues and Database Link for Each Propagation 25-15

25.3.2 Determining the Source Queue and Destination Queue for Each
Propagation 25-16

25.3.3 Determining the Rule Sets for Each Propagation 25-16

25.3.4 Displaying Information About the Schedules for Propagation Jobs 25-17

25.3.5 Determining the Total Number of Messages and Bytes Propagated 25-18

25.3.6 Displaying Information About Propagation Senders 25-19

xx

25.3.7 Displaying Information About Propagation Receivers 25-20

25.3.8 Displaying Session Information About Each Propagation 25-21

26

Monitoring Oracle Streams Apply Processes

26.1 Determining the Queue, Rule Sets, and Status for Each Apply Process 26-2

26.2 Displaying General Information About Each Apply Process 26-3

26.3 Listing the Parameter Settings for Each Apply Process 26-3

26.4 Displaying Information About Apply Handlers 26-5

26.4.1 Displaying Information About DML Handlers 26-5

26.4.1.1 Displaying Information About All DML Handlers 26-5

26.4.1.2 Displaying Information About Statement DML Handlers 26-6

26.4.1.3 Displaying Information About Procedure DML Handlers 26-9

26.4.2 Displaying the DDL Handler for Each Apply Process 26-10

26.4.3 Displaying All of the Error Handlers for Local Apply Processes 26-11

26.4.4 Displaying the Message Handler for Each Apply Process 26-11

26.4.5 Displaying the Precommit Handler for Each Apply Process 26-12

26.5 Displaying Session Information About Each Apply Process 26-13

26.6 Displaying Information About the Reader Server for Each Apply Process 26-14

26.7 Monitoring Transactions and Messages Spilled by Each Apply Process 26-15

26.8 Determining Capture to Dequeue Latency for a Message 26-16

26.9 Displaying General Information About Each Coordinator Process 26-17

26.10 Displaying Information About Transactions Received and Applied 26-18

26.11 Determining the Capture to Apply Latency for a Message for Each Apply
Process 26-19

26.11.1 Example V$STREAMS_APPLY_COORDINATOR Query for Latency 26-20

26.11.2 Example DBA_APPLY_PROGRESS Query for Latency 26-20

26.12 Displaying Information About the Apply Servers for Each Apply Process 26-21

26.13 Displaying Effective Apply Parallelism for an Apply Process 26-22

26.14 Viewing Rules that Specify a Destination Queue on Apply 26-23

26.15 Viewing Rules that Specify No Execution on Apply 26-23

26.16 Determining Which Apply Processes Use Combined Capture and Apply 26-24

26.17 Displaying the Substitute Key Columns Specified at a Destination Database
26-25

26.18 Monitoring Virtual Dependency Definitions 26-26

26.18.1 Displaying Value Dependencies 26-26

26.18.2 Displaying Object Dependencies 26-27

26.19 Checking for Apply Errors 26-27

26.20 Displaying Detailed Information About Apply Errors 26-28

xxi

27

Monitoring Rules

27.1 Displaying All Rules Used by All Oracle Streams Clients 27-2

27.2 Displaying the Oracle Streams Rules Used by a Specific Oracle Streams
Client 27-4

27.2.1 Displaying the Rules in the Positive Rule Set for an Oracle Streams
Client 27-4

27.2.2 Displaying the Rules in the Negative Rule Set for an Oracle Streams
Client 27-5

27.3 Displaying the Current Condition for a Rule 27-6

27.4 Displaying Modified Rule Conditions for Oracle Streams Rules 27-7

27.5 Displaying the Evaluation Context for Each Rule Set 27-8

27.6 Displaying Information About the Tables Used by an Evaluation Context 27-9

27.7 Displaying Information About the Variables Used in an Evaluation Context 27-9

27.8 Displaying All of the Rules in a Rule Set 27-10

27.9 Displaying the Condition for Each Rule in a Rule Set 27-10

27.10 Listing Each Rule that Contains a Specified Pattern in Its Condition 27-11

27.11 Displaying Aggregate Statistics for All Rule Set Evaluations 27-12

27.12 Displaying Information About Evaluations for Each Rule Set 27-13

27.13 Determining the Resources Used by Evaluation of Each Rule Set 27-14

27.14 Displaying Evaluation Statistics for a Rule 27-15

28

Monitoring Rule-Based Transformations

28.1 Displaying Information About All Rule-Based Transformations 28-1

28.2 Displaying Declarative Rule-Based Transformations 28-2

28.2.1 Displaying Information About ADD COLUMN Transformations 28-4

28.2.2 Displaying Information About RENAME TABLE Transformations 28-5

28.3 Displaying Custom Rule-Based Transformations 28-5

29

Monitoring Other Oracle Streams Components

29.1 Monitoring Oracle Streams Administrators and Other Oracle Streams Users 29-1

29.1.1 Listing Local Oracle Streams Administrators 29-2

29.1.2 Listing Users Who Allow Access to Remote Oracle Streams
Administrators 29-3

29.2 Monitoring the Oracle Streams Pool 29-3

29.2.1 Query Result that Advises Increasing the Oracle Streams Pool Size 29-5

29.2.2 Query Result that Advises Retaining the Current Oracle Streams Pool
Size 29-6

29.2.3 Query Result that Advises Decreasing the Oracle Streams Pool Size 29-7

29.3 Monitoring Compatibility in an Oracle Streams Environment 29-8

29.3.1 Monitoring Compatibility for Capture Processes 29-8

xxii

29.3.1.1 Listing the Database Objects That Are Not Compatible with
Capture Processes 29-8

29.3.1.2 Listing the Database Objects Recently Compatible with Capture
Processes 29-10

29.3.2 Listing Database Objects and Columns Not Compatible with
Synchronous Captures 29-11

29.3.3 Monitoring Compatibility for Apply Processes 29-13

29.3.3.1 Listing Database Objects and Columns Not Compatible with
Apply Processes 29-13

29.3.3.2 Listing Columns That Have Become Compatible with Apply
Processes Recently 29-14

29.4 Monitoring Oracle Streams Performance Using AWR and Statspack 29-16

Part V Troubleshooting an Oracle Streams Environment

30

Identifying Problems in an Oracle Streams Environment

30.1 Viewing Oracle Streams Alerts 30-1

30.2 Using the Streams Configuration Report and Health Check Script 30-3

30.3 Handling Performance Problems Because of an Unavailable Destination 30-4

30.4 Checking the Trace Files and Alert Log for Problems 30-4

30.4.1 Does a Capture Process Trace File Contain Messages About Capture
Problems? 30-5

30.4.2 Do the Trace Files Related to Propagation Jobs Contain Messages
About Problems? 30-5

30.4.3 Does an Apply Process Trace File Contain Messages About Apply
Problems? 30-6

31

Troubleshooting Implicit Capture

31.1 Troubleshooting Capture Process Problems 31-1

31.1.1 Is Capture Process Creation or Data Dictionary Build Taking a Long
Time? 31-1

31.1.2 Is the Capture Process Enabled? 31-2

31.1.3 Is the Capture Process Waiting for Redo? 31-3

31.1.4 Is the Capture Process Paused for Flow Control? 31-3

31.1.5 Is the Capture Process Current? 31-4

31.1.6 Are Required Redo Log Files Missing? 31-5

31.1.7 Is a Downstream Capture Process Waiting for Redo Data? 31-6

31.1.8 Are You Trying to Configure Downstream Capture Incorrectly? 31-8

31.1.9 Are You Trying to Configure Downstream Capture without Proper
Authentication? 31-8

xxiii

31.1.10 Are More Actions Required for Downstream Capture without a
Database Link? 31-9

31.2 Troubleshooting Synchronous Capture Problems 31-9

31.2.1 Is a Synchronous Capture Failing to Capture Changes to Tables? 31-10

32

Troubleshooting Propagation

32.1 Does the Propagation Use the Correct Source and Destination Queue? 32-1

32.2 Is the Propagation Enabled? 32-2

32.3 Is Security Configured Properly for the ANYDATA Queue? 32-3

32.3.1 ORA-24093 AQ Agent not granted privileges of database user 32-3

32.3.2 ORA-25224 Sender name must be specified for enqueue into secure
queues 32-4

33

Troubleshooting Apply

33.1 Is the Apply Process Enabled? 33-1

33.2 Is the Apply Process Current? 33-2

33.3 Does the Apply Process Apply Captured LCRs? 33-3

33.4 Is the Apply Process's Queue Receiving the Messages to be Applied? 33-4

33.5 Is a Custom Apply Handler Specified? 33-5

33.6 Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero? 33-5

33.7 Does the Apply User Have the Required Privileges? 33-6

33.8 Is the Apply Process Encountering Contention? 33-6

33.9 Is the Apply Process Waiting for a Dependent Transaction? 33-8

33.10 Is an Apply Server Performing Poorly for Certain Transactions? 33-9

33.11 Are There Any Apply Errors in the Error Queue? 33-10

33.11.1 Using a DML Handler to Correct Error Transactions 33-11

33.11.2 Troubleshooting Specific Apply Errors 33-11

33.11.2.1 ORA-01031 Insufficient Privileges 33-12

33.11.2.2 ORA-01403 No Data Found 33-12

33.11.2.3 ORA-23605 Invalid Value for Oracle Streams Parameter 33-13

33.11.2.4 ORA-23607 Invalid Column 33-14

33.11.2.5 ORA-24031 Invalid Value, parameter_name Should Be Non-
NULL 33-15

33.11.2.6 ORA-26687 Instantiation SCN Not Set 33-15

33.11.2.7 ORA-26688 Missing Key in LCR 33-16

33.11.2.8 ORA-26689 Column Type Mismatch 33-17

33.11.2.9 ORA-26786 A row with key exists but has conflicting column(s)
in table 33-18

33.11.2.10 ORA-26787 The row with key column_value does not exist in
table table_name 33-19

xxiv

34

Troubleshooting Rules and Rule-Based Transformations

34.1 Are Rules Configured Properly for the Oracle Streams Client? 34-1

34.1.1 Checking Schema and Global Rules 34-2

34.1.2 Checking Table Rules 34-3

34.1.3 Checking Subset Rules 34-4

34.1.4 Checking for Message Rules 34-5

34.1.5 Resolving Problems with Rules 34-6

34.2 Are Declarative Rule-Based Transformations Configured Properly? 34-8

34.3 Are the Custom Rule-Based Transformations Configured Properly? 34-8

34.4 Are Incorrectly Transformed LCRs in the Error Queue? 34-9

Part VI Oracle Streams Information Provisioning

35

Information Provisioning Concepts

35.1 Overview of Information Provisioning 35-1

35.2 Bulk Provisioning of Large Amounts of Information 35-2

35.2.1 Data Pump Export/Import 35-3

35.2.2 Transportable Tablespace from Backup with RMAN 35-3

35.2.3 DBMS_STREAMS_TABLESPACE_ADM Procedures 35-4

35.2.3.1 File Group Repository 35-4

35.2.3.2 Tablespace Repository 35-5

35.2.3.3 Read-Only Tablespaces Requirement During Export 35-7

35.2.3.4 Automatic Platform Conversion for Tablespaces 35-7

35.2.4 Options for Bulk Information Provisioning 35-8

35.3 Incremental Information Provisioning with Oracle Streams 35-8

35.4 On-Demand Information Access 35-10

36

Using Information Provisioning

36.1 Using a Tablespace Repository 36-1

36.1.1 Creating and Populating a Tablespace Repository 36-2

36.1.2 Using a Tablespace Repository for Remote Reporting with a Shared
File System 36-4

36.1.3 Using a Tablespace Repository for Remote Reporting without a
Shared File System 36-9

36.2 Using a File Group Repository 36-14

xxv

37

Monitoring File Group and Tablespace Repositories

37.1 Monitoring a File Group Repository 37-1

37.1.1 Displaying General Information About the File Groups in a Database 37-2

37.1.2 Displaying Information About File Group Versions 37-3

37.1.3 Displaying Information About File Group Files 37-3

37.2 Monitoring a Tablespace Repository 37-4

37.2.1 Displaying Information About the Tablespaces in a Tablespace
Repository 37-5

37.2.2 Displaying Information About the Tables in a Tablespace Repository 37-5

37.2.3 Displaying Export Information About Versions in a Tablespace
Repository 37-6

Part VII Appendixes

A How Oracle Streams Works with Other Database Components

A.1 Oracle Streams and Oracle Real Application Clusters A-1

A.1.1 Capture Processes and Oracle Real Application Clusters A-1

A.1.2 Synchronous Capture and Oracle Real Application Clusters A-2

A.1.3 Combined Capture and Apply and Oracle Real Application Clusters A-3

A.1.4 Queues and Oracle Real Application Clusters A-3

A.1.5 Propagations and Oracle Real Application Clusters A-4

A.1.6 Apply Processes and Oracle Real Application Clusters A-5

A.2 Oracle Streams and Transparent Data Encryption A-6

A.2.1 Capture Processes and Transparent Data Encryption A-6

A.2.2 Synchronous Capture and Transparent Data Encryption A-7

A.2.3 Explicit Capture and Transparent Data Encryption A-7

A.2.4 Queues and Transparent Data Encryption A-7

A.2.5 Propagations and Transparent Data Encryption A-8

A.2.6 Apply Processes and Transparent Data Encryption A-9

A.2.7 Messaging Clients and Transparent Data Encryption A-9

A.2.8 Manual Dequeue and Transparent Data Encryption A-9

A.3 Oracle Streams and Flashback Data Archive A-10

A.4 Oracle Streams and Recovery Manager (RMAN) A-10

A.4.1 RMAN and Instantiation A-11

A.4.2 RMAN and Archived Redo Log Files Required by a Capture Process A-11

A.4.2.1 RMAN and Local Capture Processes A-12

A.4.2.2 RMAN and Downstream Capture Processes A-12

A.4.3 The Recovery Catalog and Oracle Streams A-14

A.5 Oracle Streams and Distributed Transactions A-14

xxvi

A.6 Oracle Streams and Oracle Database Vault A-15

B Oracle Streams Restrictions

B.1 Capture Process Restrictions B-1

B.1.1 Unsupported Data Types for Capture Processes B-1

B.1.2 Unsupported Changes for Capture Processes B-3

B.1.2.1 Unsupported Schemas for Capture Processes B-3

B.1.2.2 Unsupported Table Types for Capture Processes B-4

B.1.2.3 Unsupported DDL Changes for Capture Processes B-4

B.1.2.4 Changes Ignored by a Capture Process B-5

B.1.2.5 NOLOGGING and UNRECOVERABLE Keywords for SQL
Operations B-6

B.1.2.6 UNRECOVERABLE Clause for Direct Path Loads B-7

B.1.3 Supplemental Logging Data Type Restrictions B-7

B.1.4 Operational Requirements for Downstream Capture B-8

B.1.5 Capture Processes Do Not Support Oracle Label Security B-8

B.1.6 Capture Process Interoperability with Oracle Streams Apply Processes B-9

B.2 Synchronous Capture Restrictions B-9

B.2.1 Synchronous Captures Only Use Table Rules B-9

B.2.2 Unsupported Data Types for Synchronous Captures B-9

B.2.3 Unsupported Changes for Synchronous Captures B-11

B.2.3.1 Unsupported Schemas for Synchronous Captures B-11

B.2.3.2 Unsupported Table Types for Synchronous Captures B-11

B.2.3.3 Changes Ignored by Synchronous Capture B-12

B.2.4 Synchronous Capture Rules and the DBMS_STREAMS_ADM Package B-13

B.2.5 Synchronous Captures Do Not Support Oracle Label Security B-13

B.3 Queue Restrictions B-13

B.3.1 Explicit Enqueue Restrictions for ANYDATA Queues B-14

B.3.2 Restrictions for Buffered Messaging B-14

B.3.3 Triggers and Queue Tables B-15

B.4 Propagation Restrictions B-15

B.4.1 Connection Qualifiers and Propagations B-15

B.4.2 Character Set Restrictions for Propagations B-15

B.4.3 Compatibility Requirements for Queue-To-Queue Propagations B-15

B.5 Apply Process Restrictions B-16

B.5.1 Unsupported Data Types for Apply Processes B-16

B.5.2 Unsupported Data Types for Apply Handlers B-17

B.5.3 Types of DDL Changes Ignored by an Apply Process B-17

B.5.4 Database Structures in an Oracle Streams Environment B-18

B.5.5 Current Schema User Must Exist at Destination Database B-19

B.5.6 Apply Processes Do Not Support Oracle Label Security B-19

xxvii

B.5.7 Apply Process Interoperability with Oracle Streams Capture
Components B-19

B.6 Messaging Client Restrictions B-20

B.6.1 Messaging Clients and Buffered Messages B-20

B.7 Rule Restrictions B-20

B.7.1 Restrictions for Subset Rules B-20

B.7.2 Restrictions for Action Contexts B-21

B.7.3 Restrictions on Data Type B-21

B.8 Rule-Based Transformation Restrictions B-21

B.8.1 Unsupported Data Types for Declarative Rule-Based Transformations B-22

B.8.2 Unsupported Data Types for Custom Rule-Based Transformations B-22

B.9 Oracle Multitenant Option Restrictions for Oracle Streams B-22

C XML Schema for LCRs

C.1 Definition of the XML Schema for LCRs C-1

D Online Database Upgrade and Maintenance with Oracle Streams

D.1 Overview of Using Oracle Streams for Upgrade and Maintenance Operations D-1

D.1.1 The Capture Database During the Upgrade or Maintenance Operation D-3

D.1.2 Assumptions for the Database Being Upgraded or Maintained D-4

D.1.3 Considerations for Job Slaves and PL/SQL Package Subprograms D-4

D.1.4 Unsupported Database Objects Are Excluded D-5

D.2 Preparing for a Database Upgrade or Maintenance Operation D-6

D.2.1 Preparing for Downstream Capture D-6

D.2.2 Preparing for Upgrade or Maintenance of a Database with User-Defined
Types D-9

D.2.3 Preparing for Upgrades to User-Created Applications D-10

D.2.3.1 Handling Modifications to Schema Objects D-10

D.2.3.2 Handling Logical Dependencies D-11

D.2.4 Deciding Whether to Configure Oracle Streams Directly or Generate a
Script D-12

D.2.5 Deciding Which Utility to Use for Instantiation D-12

D.3 Performing a Database Upgrade or Maintenance Operation Using Oracle
Streams D-14

D.3.1 Task 1: Beginning the Operation D-15

D.3.2 Task 2: Setting Up Oracle Streams Before Instantiation D-17

D.3.2.1 The Source Database Is the Capture Database D-18

D.3.2.2 The Destination Database Is the Capture Database D-19

D.3.2.3 A Third Database Is the Capture Database D-20

D.3.3 Task 3: Instantiating the Database D-21

xxviii

D.3.3.1 Instantiating the Database Using Export/Import D-21

D.3.3.2 Instantiating the Database Using the RMAN DUPLICATE
Command D-22

D.3.3.3 Instantiating the Database Using the RMAN CONVERT
DATABASE Command D-25

D.3.4 Task 4: Setting Up Oracle Streams After Instantiation D-28

D.3.4.1 The Source Database Is the Capture Database D-29

D.3.4.2 The Destination Database Is the Capture Database D-30

D.3.4.3 A Third Database Is the Capture Database D-31

D.3.5 Task 5: Finishing the Upgrade or Maintenance Operation and
Removing Oracle Streams D-32

E Online Upgrade of an Earlier Database with Oracle Streams

E.1 Overview of Using Oracle Streams in the Database Upgrade Process E-1

E.1.1 The Capture Database During the Upgrade Process E-3

E.1.2 Assumptions for the Database Being Upgraded E-3

E.1.3 Considerations for Job Queue Processes and PL/SQL Package
Subprograms E-4

E.2 Preparing for a Database Upgrade Using Oracle Streams E-4

E.2.1 Preparing to Upgrade a Database with User-Defined Types E-4

E.2.2 Deciding Which Utility to Use for Instantiation E-5

E.3 Performing a Database Upgrade Using Oracle Streams E-6

E.3.1 Task 1: Beginning the Upgrade E-6

E.3.2 Task 2: Setting Up Oracle Streams Before Instantiation E-8

E.3.2.1 The Source Database Is the Capture Database E-8

E.3.2.2 The Destination Database Is the Capture Database E-9

E.3.2.3 A Third Database Is the Capture Database E-11

E.3.3 Task 3: Instantiating the Database E-12

E.3.3.1 Instantiating the Database Using Export/Import E-12

E.3.3.2 Instantiating the Database Using RMAN E-12

E.3.4 Task 4: Setting Up Oracle Streams After Instantiation E-15

E.3.4.1 The Source Database Is the Capture Database E-15

E.3.4.2 The Destination Database Is the Capture Database E-16

E.3.4.3 A Third Database Is the Capture Database E-17

E.3.5 Task 5: Finishing the Upgrade and Removing Oracle Streams E-19

Glossary

xxix

Index

xxx

Preface

Oracle Streams Concepts and Administration describes the features and functionality
of Oracle Streams. This document contains conceptual information about Oracle
Streams, along with information about managing an Oracle Streams environment. In
addition, this document contains detailed examples that configure an Oracle Streams
capture and apply environment and a rule-based application.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle Streams Concepts and Administration is intended for database administrators
who create and maintain Oracle Streams environments. These administrators perform
one or more of the following tasks:

• Plan for an Oracle Streams environment

• Configure an Oracle Streams environment

• Administer an Oracle Streams environment

• Monitor an Oracle Streams environment

• Perform necessary troubleshooting activities

To use this document, you must be familiar with relational database concepts, SQL,
distributed database administration, Advanced Queuing concepts, PL/SQL, and the
operating systems under which you run an Oracle Streams environment.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xxxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, see these Oracle resources:

• Oracle Streams Replication Administrator's Guide

• Oracle Database Concepts

• Oracle Database Administrator's Guide

• Oracle Database SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database PL/SQL Language Reference

• Oracle Database Utilities

• Oracle Database Heterogeneous Connectivity User's Guide

• Oracle Database Advanced Queuing User's Guide

• The online Help for the Oracle Streams tool in Oracle Enterprise Manager Cloud
Control

Many of the examples in this book use the sample schemas. See Oracle Database
Sample Schemas for information about these schemas.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxxii

Changes in This Release for Oracle
Streams Concepts and Administration

This preface contains:

• Changes in Oracle Database 12c Release 1 (12.1)

Changes in Oracle Database 12c Release 1 (12.1)
The following are changes in Oracle Streams Concepts and Administration for Oracle
Database 12c Release 1 (12.1).

Deprecated Features
• Oracle Streams is deprecated in Oracle Database 12c Release 1 (12.1). Use

Oracle GoldenGate to replace all replication features of Oracle Streams.

Oracle Streams does not support any Oracle Database features added in Oracle
Database 12c Release 1 (12.1) or later releases.

Note:

Oracle Database Advanced Queuing is independent of Oracle Streams and
continues to be enhanced.

See Also:

The Oracle GoldenGate documentation

xxxiii

Part I
Essential Oracle Streams Concepts

This part describes conceptual information about Oracle Streams and contains the
following chapters:

• Introduction to Oracle Streams

• Oracle Streams Information Capture

• Oracle Streams Staging and Propagation

• Oracle Streams Information Consumption

• How Rules Are Used in Oracle Streams

• Rule-Based Transformations

1
Introduction to Oracle Streams

This chapter briefly describes the basic concepts and terminology related to Oracle
Streams. These concepts are described in more detail in other chapters in this book
and in the Oracle Streams Replication Administrator's Guide.

This chapter contains these topics:

• Overview of Oracle Streams

• What Can Oracle Streams Do?

• What Are the Uses of Oracle Streams?

• Sample Oracle Streams Configurations

• Oracle Streams Documentation Roadmap

1.1 Overview of Oracle Streams
Oracle Streams enables information sharing. Using Oracle Streams, each unit of
shared information is called a message, and you can share these messages in a
stream. The stream can propagate information within a database or from one
database to another. You specify which information is routed and the destinations to
which it is routed. The result is a feature that provides greater functionality and
flexibility than traditional solutions for capturing and managing messages, and sharing
the messages with other databases and applications. Oracle Streams provides the
capabilities needed to build and operate distributed enterprises and applications, data
warehouses, and high availability solutions. You can use all of the capabilities of
Oracle Streams at the same time. If your needs change, then you can implement a
new capability of Oracle Streams without sacrificing existing capabilities.

Using Oracle Streams, you control what information is put into a stream, how the
stream flows or is routed from database to database, what happens to messages in
the stream as they flow into each database, and how the stream terminates. By
configuring specific capabilities of Oracle Streams, you can address specific
requirements. Based on your specifications, Oracle Streams can capture, stage, and
manage messages in the database automatically, including, but not limited to, data
manipulation language (DML) changes and data definition language (DDL) changes.
You can also put user-defined messages into a stream, and Oracle Streams can
propagate the information to other databases or applications automatically. When
messages reach a destination, Oracle Streams can consume them based on your
specifications.

Figure 1-1 shows the Oracle Streams information flow.

1-1

Figure 1-1 Oracle Streams Information Flow

ConsumptionCapture Staging

1.2 What Can Oracle Streams Do?
The following sections provide an overview of what Oracle Streams can do:

• Capture Messages at a Database

• Stage Messages in a Queue

• Propagate Messages from One Queue to Another

• Consume Messages

• Detect and Resolve Conflicts

• Transform Messages

• Track Messages with Oracle Streams Tags

• Share Information with Non-Oracle Databases

1.2.1 Capture Messages at a Database
Oracle Streams provides two ways to capture database changes implicitly: capture
processes and synchronous captures. A capture process can capture DML changes
made to tables, schemas, or an entire database, and DDL changes. A synchronous
capture can capture DML changes made to tables. Rules determine which changes
are captured by a capture process or synchronous capture.

Database changes are recorded in the redo log for the database. A capture process
captures changes from the redo log and formats each captured change into a
message called a logical change record (LCR). The messages captured by a capture
process are called captured LCRs.

A synchronous capture uses an internal mechanism to capture changes and format
each captured change into an LCR. The messages captured by a synchronous
capture are called persistent LCRs.

The rules used by a capture process or a synchronous capture determine which
changes it captures. When changes are captured by a capture process, the database
where changes are generated in the redo log is the source database. When changes
are captured by a synchronous capture, the database where the synchronous capture
is configured is the source database.

A capture process can capture changes locally at the source database, or it can
capture changes remotely at a downstream database. A synchronous capture can only
capture changes locally at the source database. Both a capture process and a
synchronous capture enqueue logical change records (LCRs) into a queue. When a
capture process or a synchronous capture captures changes, it is referred to as
implicit capture.

Chapter 1
What Can Oracle Streams Do?

1-2

Users and applications can also enqueue messages manually. These messages can
be LCRs, or they can be messages of a user-defined type called user messages.
When users and applications enqueue messages manually, it is referred to as explicit
capture.

1.2.2 Stage Messages in a Queue
Messages are stored (or staged) in a queue. These messages can be logical change
records (LCRs) or user messages. Capture processes and synchronous captures
enqueue messages into an ANYDATA queue, which can stage messages of different
types. Users and applications can enqueue messages into an ANYDATA queue or into a
typed queue. A typed queue can stage messages of one specific type only.

1.2.3 Propagate Messages from One Queue to Another
Oracle Streams propagations can propagate messages from one queue to another.
These queues can be in the same database or in different databases. Rules determine
which messages are propagated by a propagation.

Oracle Streams enables you to configure an environment in which changes are shared
through directed networks. In a directed network, propagated messages pass
through one or more intermediate databases before arriving at a destination database
where they are consumed. The messages might or might not be consumed at an
intermediate database in addition to the destination database. Using Oracle Streams,
you can choose which messages are propagated to each destination database, and
you can specify the route messages will traverse on their way to a destination
database.

1.2.4 Consume Messages
A message is consumed when it is dequeued from a queue. An apply process can
dequeue messages implicitly. A user, application, or messaging client can dequeue
messages explicitly. The database where messages are consumed is called the
destination database. In some configurations, the source database and the destination
database can be the same.

Rules determine which messages are dequeued and processed by an apply process.
An apply process can apply messages directly to database objects or pass messages
to custom PL/SQL subprograms for processing.

Rules determine which messages are dequeued by a messaging client. A messaging
client dequeues messages when it is invoked by an application or a user.

1.2.5 Detect and Resolve Conflicts
An apply process detects conflicts automatically when directly applying LCRs in a
replication environment. A conflict is a mismatch between the old values in an LCR
and the expected data in a table. Typically, a conflict results when the same row in the
source database and destination database is changed at approximately the same
time.

When a conflict occurs, you need a mechanism to ensure that the conflict is resolved
in accordance with your business rules. Oracle Streams offers a variety of prebuilt
conflict handlers. Using these prebuilt handlers, you can define a conflict resolution
system for each of your databases that resolves conflicts in accordance with your

Chapter 1
What Can Oracle Streams Do?

1-3

business rules. If you have a unique situation that prebuilt conflict resolution handlers
cannot resolve, then you can build your own conflict resolution handlers.

If a conflict is not resolved, or if a handler procedure raises an error, then all messages
in the transaction that raised the error are saved in the error queue for later analysis
and possible reexecution.

See Also:

• Oracle Streams Replication Administrator's Guide

1.2.6 Transform Messages
A rule-based transformation is any modification to a message that results when a
rule in a positive rule set evaluates to TRUE. There are two types of rule-based
transformations: declarative and custom.

Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs, including renaming a schema, renaming a table, adding a
column, renaming a column, keeping columns, and deleting a column. You specify (or
declare) such a transformation using Oracle Enterprise Manager Cloud Control or a
procedure in the DBMS_STREAMS_ADM package. Oracle Streams performs declarative
transformations internally, without invoking PL/SQL.

A custom rule-based transformation requires a user-defined PL/SQL function to
perform the transformation. Oracle Streams invokes the PL/SQL function to perform
the transformation. A custom rule-based transformation can modify either LCRs or
user messages. For example, a custom rule-based transformation can change the
data type of a particular column in an LCR.

Either type of rule-based transformation can occur at the following times:

• During enqueue of a message by a capture process, which can be useful for
formatting a message in a manner appropriate for all destination databases

• During propagation of a message, which can be useful for transforming a message
before it is sent to a specific remote site

• During dequeue of a message by an apply process or messaging client, which can
be useful for formatting a message in a manner appropriate for a specific
destination database

When a transformation is performed during apply, an apply process can apply the
transformed message directly or send the transformed message to an apply handler
for processing.

Chapter 1
What Can Oracle Streams Do?

1-4

Note:

• A rule must be in a positive rule set for its rule-based transformation to be
invoked. A rule-based transformation specified for a rule in a negative rule
set is ignored by capture processes, propagations, apply processes, and
messaging clients.

• Throughout this document, "rule-based transformation" is used when the
text applies to both declarative and custom rule-based transformations.
This document distinguishes between the two types of rule-based
transformations when necessary.

See Also:

Rule-Based Transformations

1.2.7 Track Messages with Oracle Streams Tags
Every redo entry in the redo log has a tag associated with it. The data type of the tag
is RAW. By default, when a user or application generates redo entries, the value of the
tag is NULL for each redo entry, and a NULL tag consumes no space in the redo entry.
The size limit for a tag value is 2000 bytes.

In Oracle Streams, rules can have conditions relating to tag values to control the
behavior of Oracle Streams clients. For example, you can use a tag to determine
whether an LCR contains a change that originated in the local database or at a
different database, so that you can avoid change cycling (sending an LCR back to the
database where it originated). Also, you can use a tag to specify the set of destination
databases for each LCR. Tags can be used for other LCR tracking purposes as well.

You can specify Oracle Streams tags for redo entries generated by a certain session
or by an apply process. These tags then become part of the LCRs captured by a
capture process or synchronous capture. Typically, tags are used in Oracle Streams
replication environments, but you can use them whenever it is necessary to track
database changes and LCRs.

See Also:

• Oracle Streams Replication Administrator's Guide

1.2.8 Share Information with Non-Oracle Databases
In addition to information sharing between Oracle databases, Oracle Streams supports
heterogeneous information sharing between Oracle databases and non-Oracle
databases.

Chapter 1
What Can Oracle Streams Do?

1-5

See Also:

• Oracle Streams Replication Administrator's Guide

1.3 What Are the Uses of Oracle Streams?
The following topics briefly describe some of the reasons for using Oracle Streams:

• Data Replication

• Data Warehouse Loading

• Database Availability During Upgrade and Maintenance Operations

• Message Queuing

• Event Management and Notification

• Data Protection

In some cases, Oracle Streams components provide an infrastructure for various
features of Oracle.

1.3.1 Data Replication
Oracle Streams can capture data manipulation language (DML) and data definition
language (DDL) changes made to database objects and replicate those changes to
one or more other databases. An Oracle Streams capture process or synchronous
capture captures changes made to source database objects and formats them into
LCRs, which can be propagated to destination databases and then applied by Oracle
Streams apply processes.

The destination databases can allow DML and DDL changes to the same database
objects, and these changes might or might not be propagated to the other databases
in the environment. In other words, you can configure an Oracle Streams environment
with one database that propagates changes, or you can configure an environment
where changes are propagated between databases bidirectionally. Also, the tables for
which data is shared do not need to be identical copies at all databases. Both the
structure and the contents of these tables can differ at different databases, and the
information in these tables can be shared between these databases.

See Also:

• Oracle Streams Replication Administrator's Guide for more information
using Oracle Streams for replication

1.3.2 Data Warehouse Loading
Data warehouse loading is a special case of data replication. Some of the most critical
tasks in creating and maintaining a data warehouse include refreshing existing data,
and adding new data from the operational databases. Oracle Streams components

Chapter 1
What Are the Uses of Oracle Streams?

1-6

can capture changes made to a production system and send those changes to a
staging database or directly to a data warehouse or operational data store. Oracle
Streams capture of redo data with a capture process avoids unnecessary overhead on
the production systems. Oracle Streams provides a "one-step" procedure
(DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE) that configures Oracle Streams to record the
changes made to a table. Support for data transformations and user-defined apply
procedures enables the necessary flexibility to reformat data or update warehouse-
specific data fields as data is loaded.

See Also:

• Using Oracle Streams to Record Table Changes

• Oracle Database Data Warehousing Guide for more information about
data warehouses

1.3.3 Database Availability During Upgrade and Maintenance
Operations

You can use the features of Oracle Streams to achieve little or no database down time
during database upgrade and maintenance operations. Maintenance operations
include migrating a database to a different platform, migrating a database to a different
character set, modifying database schema objects to support upgrades to user-
created applications, and applying an Oracle software patch.

See Also:

• Online Upgrade of an Earlier Database with Oracle Streams

• Online Database Upgrade and Maintenance with Oracle Streams

1.3.4 Message Queuing
Oracle Database Advanced Queuing (AQ) enables user applications to enqueue
messages into a queue, propagate messages to subscribing queues, notify user
applications that messages are ready for consumption, and dequeue messages at the
destination. A queue can be configured to stage messages of a particular type only, or
a queue can be configured as an ANYDATA queue. Messages of almost any type can be
wrapped in an ANYDATA wrapper and staged in ANYDATA queues. Oracle Streams AQ
supports all the standard features of message queuing systems, including
multiconsumer queues, publish and subscribe, content-based routing, Internet
propagation, transformations, and gateways to other messaging subsystems.

You can create a queue at a database, and applications can enqueue messages into
the queue explicitly. Subscribing applications or messaging clients can dequeue
messages directly from this queue. If an application is remote, then a queue can be
created in a remote database that subscribes to messages published in the source
queue. The destination application can dequeue messages from the remote queue.

Chapter 1
What Are the Uses of Oracle Streams?

1-7

Alternatively, the destination application can dequeue messages directly from the
source queue using a variety of standard protocols.

See Also:

• Oracle Database Advanced Queuing User's Guide for more information
about Oracle Streams AQ

1.3.5 Event Management and Notification
Business events are valuable communications between applications or organizations.
An application can enqueue messages that represent events into a queue explicitly, or
an Oracle Streams capture process or synchronous capture can capture database
events and encapsulate them into messages called LCRs. These messages can be
the results of DML or DDL changes. Propagations can propagate messages in a
stream through multiple queues. Finally, a user application can dequeue messages
explicitly, or an Oracle Streams apply process can dequeue messages implicitly. An
apply process can reenqueue these messages explicitly into the same queue or a
different queue if necessary.

You can configure queues to retain explicitly-enqueued messages after consumption
for a specified period of time. This capability enables you to use Oracle Database
Advanced Queuing (AQ) as a business event management system. Oracle Streams
AQ stores all messages in the database in a transactional manner, where they can be
automatically audited and tracked. You can use this audit trail to extract intelligence
about the business operations.

Oracle Streams capture processes, synchronous captures, propagations, apply
processes, and messaging clients perform actions based on rules. You specify which
events are captured, propagated, applied, and dequeued using rules, and a built-in
rules engine evaluates events based on these rules. The ability to capture events and
propagate them to relevant consumers based on rules means that you can use Oracle
Streams for event notification. Messages representing events can be staged in a
queue and dequeued explicitly by a messaging client or an application, and then
actions can be taken based on these events, which can include an e-mail notification,
or passing the message to a wireless gateway for transmission to a cell phone or
pager.

See Also:

• Oracle Streams Staging and Propagation

• Managing Staging and Propagation

• Oracle Database Advanced Queuing User's Guide

• Oracle Streams Extended Examples for a sample environment that
explicitly dequeues messages

Chapter 1
What Are the Uses of Oracle Streams?

1-8

1.3.6 Data Protection
One solution for data protection is to create a local or remote copy of a production
database. In the event of human error or a catastrophe, you can use the copy to
resume processing.

You can use Oracle Data Guard SQL Apply, a data protection feature that uses some
of the same infrastructure as Oracle Streams, to create and maintain a logical standby
database, which is a logically equivalent standby copy of a production database. As in
Oracle Streams replication, a capture process captures changes in the redo log and
formats these changes into LCRs. These LCRs are applied at the standby databases.
The standby databases are open for read/write and can include specialized indexes or
other database objects. Therefore, these standby databases can be queried as
updates are applied.

It is important to move the updates to the remote site as soon as possible with a
logical standby database. Doing so ensures that, in the event of a failure, lost
transactions are minimal. By directly and synchronously writing the redo logs at the
remote database, you can achieve no data loss in the event of a disaster. At the
standby system, the changes are captured and directly applied to the standby
database with an apply process.

See Also:

• Oracle Streams High Availability Environments

• Oracle Data Guard Concepts and Administration for more information
about logical standby databases

1.4 Sample Oracle Streams Configurations
Each of the following sections provide an overview of a sample Oracle Streams
configuration:

• Sample Hub-and-Spoke Replication Configuration

• Sample Replication Configuration with Downstream Capture

• Sample Replication Configuration That Uses Synchronous Captures

• Sample N-Way Replication Configuration

• Sample Configuration That Performs Capture and Apply in a Single Database

• Sample Messaging Configuration

1.4.1 Sample Hub-and-Spoke Replication Configuration
Figure 1-2 shows a sample hub-and-spoke replication configuration. A hub-and-spoke
replication configuration typically is used to distribute information to multiple target
databases and to consolidate information from multiple databases to a single
database.

Chapter 1
Sample Oracle Streams Configurations

1-9

A hub-and-spoke replication configuration is one in which a central database, or hub,
communicates with one or more secondary databases, or spokes. The spokes do not
communicate directly with each other. In a hub-and-spoke replication configuration,
the spokes might or might not allow changes to the replicated database objects.

In the sample hub-and-spoke replication configuration shown in Figure 1-2, there is
one hub database and two spoke databases. The spoke databases allow changes to
the replicated database objects.

Chapter 1
Sample Oracle Streams Configurations

1-10

Figure 1-2 Sample Hub-and-Spoke Replication Configuration

Capture Process

capture_hns

Enqueue�
Changes

propagation_spoke1

Send Changes

propagation_spoke2

Send Changes

Enqueue�
Changes

propagation_spoke2

Send Changes

propagation_spoke1

Send Changes

Tables in hr �
Schema

Apply Process

apply_spoke1

Apply

Changes

Queue

destination_spoke1

Dequeue�
Changes

Oracle Database

spoke1.example.com

Capture Process

capture_hns

Queue

destination_spoke2

Queue

source_hns

Oracle Database

hub.example.com

Apply Process

apply_spoke 1

Apply

Changes

Apply Process

apply_spoke 2

Apply�
Changes

Queue

destination_spoke1

Dequeue�
Changes

Capture �
DML Changes �
to hr �
Schema

Dequeue�
Changes

Enqueue�
Changes

Capture Process

capture_hns

Apply Process

apply_spoke2

Queue

destination_spoke2

Oracle Database �
spoke2.example.com

Apply

Changes

Dequeue�
Changes

Tables in hr

Schema Redo

Log

Record�
Changes

Redo

Log

Record�
Changes

Capture DML�
Changes to �
hr Schema

Redo

Log

Record�
Changes

Queue

source_hns

Queue

source_hns

Tables in hr

Schema

Capture DML�
Changes to �
hr Schema

Chapter 1
Sample Oracle Streams Configurations

1-11

For more information about this configuration, see Oracle Streams Replication
Administrator's Guide.

1.4.2 Sample Replication Configuration with Downstream Capture
Figure 1-3 shows a sample replication configuration that uses a downstream capture
process. Downstream capture means that the capture process runs on a remote
database instead of the source database. Using downstream capture removes the
capture workload from the production database.

In the sample replication configuration shown in Figure 1-3, the downstream capture
process runs at the remote database dest.example.com, and the redo data is sent from
the source database src.example.com to the remote database. At the remote database,
a downstream capture process captures the changes in the redo data sent from the
source database and an apply process applies these changes to the local database
objects.

Figure 1-3 Sample Replication Configuration with Downstream Capture

Sent by Redo Transport Services

Oracle Database

src.example.com

Queue

streams_queue

Oracle Database

dest.example.com

Enqueue�
Changes

Dequeue

Changes

Apply�
Changes

Record�
Changes

Capture DML

Changes to

hr Schema

Redo�
Log

Redo Log from�
src.example.com

Capture Process

capture

Apply Process

apply

Tables in

hr schema

Tables in

hr schema

For more information about this configuration, see Oracle Streams Replication
Administrator's Guide.

Chapter 1
Sample Oracle Streams Configurations

1-12

1.4.3 Sample Replication Configuration That Uses Synchronous
Captures

Figure 1-4 shows a sample replication configuration that uses synchronous captures to
capture changes instead of capture processes. You can use a synchronous capture
replication configuration to replicate changes to tables with infrequent data changes in
a highly active database or in situations where capturing changes from the redo logs is
not possible.

Figure 1-4 Sample Replication Configuration with Synchronous Captures

send_emp_dep�
Send �
Changes

send_emp_dep�
Send �
Changes

Synchronous Capture

sync_capture

Queue

capture_queue

Apply Process

apply_emp_dep

Tables

hr.employees

hr.departments

Queue

apply_queue

Oracle Database

sync1.example.com

Synchronous Capture

sync_capture

Apply Process

apply_emp_dep

Queue

capture_queue

Oracle Database

sync2.example.com

Queue

apply_queue

Enqueue�
Changes

Dequeue�
Changes

Enqueue�
Changes

Apply

Changes

Dequeue�
Changes

Apply�
Changes

Tables

hr.employees

hr.departments Capture DML Changes

to Tables

Capture DML Changes

to Tables

For more information about this configuration, see Oracle Streams Replication
Administrator's Guide.

1.4.4 Sample N-Way Replication Configuration
Figure 1-5 shows a sample n-way replication configuration. An n-way replication
configuration typically is used in an environment with several peer databases and each

Chapter 1
Sample Oracle Streams Configurations

1-13

database must replicate data with each of the other databases. An n-way replication
configuration can provide load balancing, and it can provide failover protection if a
single database becomes unavailable.

An n-way replication configuration is one in which each database communicates
directly with each other database in the environment. The changes made to replicated
database objects at one database are captured and sent directly to each of the other
databases in the environment, where they are applied.

In the sample n-way replication configuration shown in Figure 1-5, each of the three
databases captures changes to the replicated database objects and sends these
changes to the other two databases in the configuration. Apply processes at each
database apply the changes sent from the other two databases.

Figure 1-5 Sample N-Way Replication Configuration

hrmult Schema

countries

departments

employees

job_history

jobs�
locations

regions

Oracle Database �
mult1.example.com

Capture_Process

capture_hrmult

hrmult Schema

countries

departments

employees

job_history

jobs�
locations

regions

Oracle Database �
mult3.example.com

Capture Process�

capture_hrmult

hrmult Schema

countries

departments

employees

job_history

jobs�
locations

regions

Oracle Database �
mult2.example.com

Capture_Process

capture_hrmult

Apply Process�

apply_from_mult3

Apply Process�

apply_from_mult1

Queue

from_mult3

Queue

from_mult1

mult1_to_mult3

mult3_to_mult1

mult2_to_mult1

mult1_to_mult2

mult2_to_mult3

mult3_to_mult2

Apply Process�

apply_from_mult3

Apply Process�

apply_from_mult2

Apply Process�

apply_from_mult2

Apply Process�

apply_from_mult1

Apply changes

Apply changes

Dequeue�
changes

Enqueue�
changes

Enqueue�
changes

Dequeue�
changes

Enqueue�
changes

Dequeue�
changes

Apply changes

Queue

captured_mult3

Queue

from_mult3

Queue

from_mult2

Queue

from_mult2

Queue

from_mult1

Queue

captured_mult1

Queue

captured_mult2

Chapter 1
Sample Oracle Streams Configurations

1-14

For more information about this configuration, see Oracle Streams Extended
Examples.

1.4.5 Sample Configuration That Performs Capture and Apply in a
Single Database

Figure 1-6 shows a sample configuration that captures database changes with a
capture process and applies these changes with an apply process in a single
database. In this configuration, the apply process reenqueues the changes into the
queue for processing by an application. Also, a procedure DML handler inserts rows
that were deleted from the hr.employees table into a hr.emp_del table.

Figure 1-6 Sample Single Database Capture and Apply Configuration

strmadmin.streams_queue

Capture Process�

capture_emp

Oracle

Database �
cpap.example.com Dequeue Row LCRs with

DML Changes to the

hr.employees Table

Enqueue DML

changes to

hr.employees

Table

Apply Process�

apply_emp

hr.emp_del Table

Send row LCRs

to DML Handler

Insert Records for

Employees Deleted

from the hr.employees

Table

emp_dml_handler

PL/SQL Procedure

Reenqueue All LCRs

For more information about this configuration, see Oracle Streams Extended
Examples.

1.4.6 Sample Messaging Configuration
Figure 1-7 shows a sample messaging configuration. A messaging configuration
sends messages from one queue to another queue. The two queues can be in the
same database or in different databases. The messages can be dequeued and
processed by applications in a customized way.

In the sample messaging configuration shown in Figure 1-7, a trigger at one database
creates and enqueues messages. A propagation sends the messages to another
database, where a PL/SQL procedure dequeues the messages and processes them.

Chapter 1
Sample Oracle Streams Configurations

1-15

Figure 1-7 Sample Messaging Configuration

send_orders Propagation�
Send Messages

Table

oe.orders

Trigger

enqueue_orders

Queue

streams_queue

Oracle Database �
ii1.example.com

Messaging Client / Subscriber

strmadmin

Queue

streams_queue

Oracle Database �
ii2.example.com

Dequeue Messages

Using the dequeue_orders

PL/SQL Procedure

Enqueue Messages of �
Type order_id_date

Fire on�
INSERT

1.5 Oracle Streams Documentation Roadmap
Oracle Streams provides many options for setting up, managing, and monitoring
information-sharing environments. This section provides a documentation roadmap to
help you find the documentation you need.

The Oracle Streams documentation set includes the following documents:

• Oracle Streams Concepts and Administration contains detailed conceptual
information about Oracle Streams, detailed instructions for managing Oracle
Streams components using Oracle-supplied packages, and detailed instructions
for monitoring Oracle Streams components with data dictionary views.

• Oracle Streams Replication Administrator's Guide contains conceptual information
that relates to Oracle Streams replication environments, information about
configuring an Oracle Streams replication environment using Oracle-supplied
packages, and information about managing an Oracle Streams replication
environment using Oracle-supplied packages.

• Oracle Streams Extended Examples contains detailed example that configure
different types of Oracle Streams environment, including replication environments,
using Oracle-supplied packages.

• Oracle Database Advanced Queuing User's Guide contains conceptual
information about Oracle Streams messaging (Advanced Queuing) environments,
information about configuring a messaging environment, and information about

Chapter 1
Oracle Streams Documentation Roadmap

1-16

managing a messaging environment using Oracle-supplied packages and other
administrative interfaces.

• Oracle Database PL/SQL Packages and Types Reference contains reference
information about the Oracle-supplied packages and types related to Oracle
Streams.

• Oracle Database Reference contains reference information about the data
dictionary views related to Oracle Streams.

• The Oracle Streams online help in Oracle Enterprise Manager Cloud Control
contains instructions for setting up, managing, and monitoring an Oracle Streams
environment using Oracle Enterprise Manager Cloud Control.

This documentation roadmap is intended to guide you to the information you need in
these documents.

This section contains the following topics:

• Documentation for Learning About Oracle Streams

• Documentation About Setting Up or Extending an Oracle Streams Environment

• Documentation About Managing an Oracle Streams Environment

• Documentation About Monitoring an Oracle Streams Environment

• Documentation About Using Oracle Streams for Upgrade and Maintenance

1.5.1 Documentation for Learning About Oracle Streams
Before setting up an Oracle Streams environment, it is best to understand the features
of Oracle Streams and how you can use them. Table 1-1 helps you find conceptual
information about Oracle Streams.

Table 1-1 Documentation for Learning About Oracle Streams

For conceptual information about See

apply processes "Implicit Consumption with an Apply Process" for general apply process
concepts

Advanced Apply Process Concepts for advanced apply process concepts,
such as information about applying changes with dependencies and
applying DML and DDL changes

capture processes "Implicit Capture with an Oracle Streams Capture Process" for general
capture process concepts

Advanced Capture Process Concepts for advanced capture process
concepts, such as information about multiple capture processes in a single
database and capture process checkpoints

Oracle Streams Replication Administrator's Guide for conceptual
information about supplemental logging

capturing messages with applications
(explicit capture)

"Explicit Capture by Applications" for an overview of capturing messages
with applications

Oracle Database Advanced Queuing User's Guide for detailed information
about capturing messages with applications

combined capture and apply
optimization

Combined Capture and Apply Optimization for information about improving
performance by sending database changes more efficiently from capture
processes to apply processes in a replication environment

Chapter 1
Oracle Streams Documentation Roadmap

1-17

Table 1-1 (Cont.) Documentation for Learning About Oracle Streams

For conceptual information about See

comparing and converging data Oracle Streams Replication Administrator's Guide for detailed information
about comparing database objects at two different databases and
converging differences in these database objects

conflicts and conflict resolution Oracle Streams Replication Administrator's Guide for detailed information
about conflicts and conflict resolution

consuming messages with
applications (explicit consumption)

"Explicit Consumption with Manual Dequeue" for an overview of consuming
messages with applications

Oracle Database Advanced Queuing User's Guide for detailed information
about consuming messages with applications

heterogeneous information sharing Oracle Database XStream Guide for information about using XStream for
heterogeneous information sharing

Oracle Streams Replication Administrator's Guide for detailed information
about working with non-Oracle databases

high availability Oracle Streams High Availability Environments

Oracle Database High Availability Overview for information about your high
availability options

information provisioning Information Provisioning Concepts for information about moving or copying
large amounts of information efficiently

instantiation "Instantiation in an Oracle Streams Environment" for essential information
about preparing database objects for replication at two or more databases

Oracle Streams Replication Administrator's Guide for detailed information
about instantiation

logical change records (LCRs) "Logical Change Records (LCRs)" for information about how Oracle
Streams uses messages that describe database changes

messaging clients "Explicit Consumption with a Messaging Client"

Oracle Streams best practices Oracle Streams Replication Administrator's Guide

Oracle Streams capabilities "What Can Oracle Streams Do?"

Oracle Streams interoperability with
other Oracle Database components

How Oracle Streams Works with Other Database Components

Oracle Streams restrictions Oracle Streams Restrictions

Oracle Streams uses "What Are the Uses of Oracle Streams?"

propagations "Message Propagation Between Queues" for general propagation concepts

Advanced Propagation Concepts for advanced propagation concepts

queues "Queues" for essential information about how queues store messages

Advanced Queue Concepts for advanced queue concepts

Oracle Database Advanced Queuing User's Guide for detailed information
about queues

rules How Rules Are Used in Oracle Streams for information about the ways in
which rules determine the behavior of Oracle Streams clients

Advanced Rule Concepts for advanced rule concepts

rule-based transformations Rule-Based Transformations for detailed information about rule-based
transformations

synchronous captures "Implicit Capture with Synchronous Capture" for detailed information about
synchronous captures

Chapter 1
Oracle Streams Documentation Roadmap

1-18

Table 1-1 (Cont.) Documentation for Learning About Oracle Streams

For conceptual information about See

tags Oracle Streams Replication Administrator's Guide for detailed information
about tags

user messages "User Messages" for essential information about messages that are
created and enqueued by users and applications

Oracle Database Advanced Queuing User's Guide for detailed information
about user messages

1.5.2 Documentation About Setting Up or Extending an Oracle
Streams Environment

You can set up many different types of Oracle Streams environments, and you have
several options for setting them up. Table 1-2 helps you find the documentation you
need to set up an Oracle Streams environment.

Table 1-2 Documentation About Setting Up or Extending an Oracle Streams Environment

For instructions about See

setting up an Oracle Streams
replication environment using
Oracle Enterprise Manager Cloud
Control

Online help for the Setup Streams Replication Wizard in Oracle Enterprise
Manager Cloud Control

Oracle Streams Replication Administrator's Guide for instructions about
opening the Setup Streams Replication Wizard in Oracle Enterprise Manager
Cloud Control

setting up an Oracle Streams
replication environment using a
one-step procedure

Oracle Streams Replication Administrator's Guide for detailed instructions
about using the one-step procedures in the DBMS_STREAMS_ADM package,
including information about decisions to make and tasks to complete before
running a procedure

Oracle Database PL/SQL Packages and Types Reference for reference
information about the one-step procedures in the DBMS_STREAMS_ADM
package

setting up an Oracle Streams
replication environment by
configuring components individually

Oracle Streams Replication Administrator's Guide for step-by-step
instructions to set up an Oracle Streams replication environment by
configuring individual components in the correct order

Oracle Streams Replication Administrator's Guide for an example that
provides step-by-step instructions for setting up an Oracle Streams
replication environment that uses synchronous captures

Oracle Streams Extended Examples for the following examples:

• An example that provides step-by-step instructions for setting up a
simple replication environment that replicates changes to a single table

• An example that provides step-by-step instructions for setting up a
heterogeneous replication environment that includes a rule-based
transformation

• An example that provides step-by-step instructions for setting up an n-
way replication environment with conflict resolution

Oracle Database PL/SQL Packages and Types Reference for reference
information about the packages that can set up an Oracle Streams
replication environment. These packages are described in "Oracle-Supplied
PL/SQL Packages".

Chapter 1
Oracle Streams Documentation Roadmap

1-19

Table 1-2 (Cont.) Documentation About Setting Up or Extending an Oracle Streams
Environment

For instructions about See

extending an Oracle Streams
replication environment using
Oracle Enterprise Manager Cloud
Control

Oracle Enterprise Manager Cloud Control online help for examples that use
Oracle Enterprise Manager Cloud Control to extend the most common types
of Oracle Streams replication environments by adding databases and tables

extending an Oracle Streams
replication environment using a
one-step procedure

Oracle Streams Replication Administrator's Guide for examples that use the
one-step procedures in the DBMS_STREAMS_ADM package to extend the most
common types of Oracle Streams replication environments by adding
databases and tables

Oracle Database PL/SQL Packages and Types Reference for reference
information about the one-step procedures that can extend an Oracle
Streams replication environment

extending an Oracle Streams
replication environment by
configuring components individually

Oracle Streams Replication Administrator's Guide for step-by-step
instructions to extend an Oracle Streams replication environment by
configuring individual components in the correct order

Oracle Streams Extended Examples for an example that provides step-by-
step instructions for extending a heterogeneous replication environment

Oracle Database PL/SQL Packages and Types Reference for reference
information about the packages that can extend an Oracle Streams
replication environment. These packages are described in "Oracle-Supplied
PL/SQL Packages".

setting up an Oracle Streams
messaging environment

Oracle Database Advanced Queuing User's Guide for detailed instructions
about setting up messaging environments

Oracle Database PL/SQL Packages and Types Reference for reference
information about the packages used to set up messaging environments,
including DBMS_STREAMS_ADM, DBMS_STREAMS_MESSAGING, DBMS_AQADM, and
DBMS_AQ

Oracle Streams best practices Oracle Streams Replication Administrator's Guide for information about the
best practices to follow when setting up an Oracle Streams environment

setting up a tablespace repository "Using a Tablespace Repository"

setting up a file group repository "Using a File Group Repository"

1.5.3 Documentation About Managing an Oracle Streams Environment
You can use Oracle-supplied PL/SQL packages and Oracle Enterprise Manager Cloud
Control to manage an Oracle Streams environment. Table 1-3 helps you find the
documentation you need to manage an Oracle Streams environment.

Table 1-3 Documentation About Managing an Oracle Streams Environment

For instructions about managing See

apply processes Oracle Enterprise Manager Cloud Control online help for information
about managing apply handlers and apply tags using Oracle Enterprise
Manager Cloud Control, and about dropping apply processes using
Oracle Enterprise Manager Cloud Control

Managing Oracle Streams Information Consumption for information about
managing apply processes using Oracle-supplied packages

Chapter 1
Oracle Streams Documentation Roadmap

1-20

Table 1-3 (Cont.) Documentation About Managing an Oracle Streams Environment

For instructions about managing See

capture processes Oracle Enterprise Manager Cloud Control online help for information
about setting a first SCN or start SCN for a capture process using Oracle
Enterprise Manager Cloud Control, and about dropping a capture process
using Oracle Enterprise Manager Cloud Control

"Managing a Capture Process" for information about managing capture
processes using Oracle-supplied packages

Oracle Streams Replication Administrator's Guide for information about
managing supplemental logging

changing the DBID or global name of
an Oracle Streams database

Oracle Streams Replication Administrator's Guide

comparing and converging data Oracle Streams Replication Administrator's Guide for detailed information
about using the DBMS_COMPARISON package and its related data dictionary
views

conflicts and conflict resolution Oracle Streams Replication Administrator's Guide for information about
avoiding conflicts and configuring conflict resolution

export/import and Oracle Streams "Performing Full Database Export/Import in an Oracle Streams
Environment"

information provisioning Using Information Provisioning

instantiation Oracle Streams Replication Administrator's Guide for information about
performing instantiations

logical change records (LCRs) "Managing Extra Attributes in Captured LCRs"

Oracle Streams Replication Administrator's Guide

Oracle Streams best practices Oracle Streams Replication Administrator's Guide for information about
the best practices to follow when managing an Oracle Streams
environment

Oracle Streams replication
environments

Oracle Streams Replication Administrator's Guide

Oracle-supplied packages related to
Oracle Streams

Oracle Database PL/SQL Packages and Types Reference for reference
information about the packages that you can use to manage an Oracle
Streams environment. These packages are briefly described in "Oracle-
Supplied PL/SQL Packages".

point-in-time recovery and Oracle
Streams

Oracle Streams Replication Administrator's Guide

propagations Oracle Enterprise Manager Cloud Control online help for information
about scheduling, unscheduling, and dropping propagations using Oracle
Enterprise Manager Cloud Control

"Managing Oracle Streams Propagations and Propagation Jobs" for
information about managing propagations using Oracle-supplied
packages

Oracle Database Advanced Queuing User's Guide for information about
managing propagations using Oracle-supplied packages and other
administrative interfaces

Chapter 1
Oracle Streams Documentation Roadmap

1-21

Table 1-3 (Cont.) Documentation About Managing an Oracle Streams Environment

For instructions about managing See

queues Oracle Enterprise Manager Cloud Control online help for information
about managing queues, queue tables, and Advanced Queuing
transformations using Oracle Enterprise Manager Cloud Control

Oracle Database Advanced Queuing User's Guide for information about
managing queues using Oracle-supplied packages and other
administrative interfaces

"Managing Queues"

removing an Oracle Streams
configuration

"Removing an Oracle Streams Configuration"

resynchronizing a source database Oracle Streams Replication Administrator's Guide

rules Oracle Enterprise Manager Cloud Control online help for information
about managing rules using Oracle Enterprise Manager Cloud Control

Managing Rules for information about managing rules using Oracle-
supplied packages

rule-based transformations Oracle Enterprise Manager Cloud Control online help for information
about managing rule-based transformations using Oracle Enterprise
Manager Cloud Control

Managing Rule-Based Transformations for information about managing
rule-based transformations using Oracle-supplied packages

synchronous captures "Managing a Synchronous Capture" for information about managing
synchronous captures using Oracle-supplied packages

tags Oracle Streams Replication Administrator's Guide

troubleshooting Oracle Enterprise Manager Cloud Control online help for information
about troubleshooting an Oracle Streams environment using Oracle
Enterprise Manager Cloud Control

Troubleshooting an Oracle Streams Environment for information about
troubleshooting an Oracle Streams environment

unavailable destination database Oracle Streams Replication Administrator's Guide for information about
splitting off an unavailable destination database from a replication
environment and merging the database back into the replication
environment when it becomes available again

1.5.4 Documentation About Monitoring an Oracle Streams
Environment

You primarily use Oracle supplied PL/SQL packages, data dictionary views, and
Oracle Enterprise Manager Cloud Control to manage an Oracle Streams environment.
Table 1-4 helps you find the documentation you need to manage an Oracle Streams
environment.

Chapter 1
Oracle Streams Documentation Roadmap

1-22

Table 1-4 Documentation About Monitoring an Oracle Streams Environment

For instructions about monitoring See

apply processes Oracle Enterprise Manager Cloud Control online help for information
about monitoring apply process parameters, apply handlers, and apply
errors using Oracle Enterprise Manager Cloud Control

Monitoring Oracle Streams Apply Processes for information about
monitoring apply processes using data dictionary views

capture processes Oracle Enterprise Manager Cloud Control online help for information
about monitoring capture process parameters using Oracle Enterprise
Manager Cloud Control

"Monitoring a Capture Process" for information about monitoring capture
processes using data dictionary views

combined capture and apply
optimization

"Determining Which Capture Processes Use Combined Capture and
Apply"

"Determining Which Apply Processes Use Combined Capture and Apply"

compatibility "Monitoring Compatibility in an Oracle Streams Environment" for
information about listing database objects that are not compatible with
Oracle Streams clients

conflicts and conflict resolution Oracle Streams Replication Administrator's Guide for information about
monitoring conflict detection and update conflict handlers using data
dictionary views

data dictionary views related to Oracle
Streams

Table 22-1

Oracle Database Reference

information provisioning Monitoring File Group and Tablespace Repositories

instantiation Oracle Streams Replication Administrator's Guide

logical change records (LCRs) Oracle Streams Replication Administrator's Guide for information about
tracking LCRs through a stream

messaging Oracle Database Advanced Queuing User's Guide for information about
monitoring messaging environments using data dictionary views

"Monitoring Queues and Messaging"

"Monitoring Buffered Queues"

Oracle Streams administrators "Monitoring Oracle Streams Administrators and Other Oracle Streams
Users"

Oracle Streams pool "Monitoring the Oracle Streams Pool"

Oracle Streams topology and
performance statistics

Monitoring the Oracle Streams Topology and Performance

propagations Oracle Enterprise Manager Cloud Control online help for information
about monitoring propagation properties and statistics using Oracle
Enterprise Manager Cloud Control

"Monitoring Oracle Streams Propagations and Propagation Jobs" for
information about monitoring propagations using data dictionary views

rules Oracle Enterprise Manager Cloud Control online help for information
about monitoring rules using Oracle Enterprise Manager Cloud Control

Monitoring Rules for information about monitoring rules using data
dictionary views

rule-based transformations Monitoring Rule-Based Transformations for information about monitoring
rule-based transformations using data dictionary views

Chapter 1
Oracle Streams Documentation Roadmap

1-23

Table 1-4 (Cont.) Documentation About Monitoring an Oracle Streams Environment

For instructions about monitoring See

synchronous captures "Monitoring a Synchronous Capture" for information about monitoring
synchronous captures using data dictionary views

Note: Oracle Enterprise Manager Cloud Control currently does not
support monitoring synchronous captures.

tags Oracle Streams Replication Administrator's Guide for information about
monitoring tags using data dictionary views

1.5.5 Documentation About Using Oracle Streams for Upgrade and
Maintenance

You can use Oracle Streams to achieve little or no down time for one-time operations,
such as upgrading a database. Table 1-5 helps you find the documentation you need
to perform one-time operations with Oracle Streams.

Table 1-5 Documentation About Data Upgrade and Maintenance with Oracle Streams

For instructions about See

performing database upgrade and
maintenance operations and using Oracle
Streams to achieve little or no down time

Online Database Upgrade and Maintenance with Oracle Streams
for information about using Oracle Streams to perform a database
upgrade from an Oracle Database 10g Release 2 (10.2) or later
database to the current release with little or no down time and for
information about using Oracle Streams to perform a database
maintenance operations with little or no down time. These database
maintenance operations include migrating a database to a different
platform, migrating a database to a different character set,
modifying database schema objects to support upgrades to user-
created applications, and applying an Oracle Database software
patch or patch set.

upgrading a database and using Oracle
Streams to achieve little or no down time

Online Upgrade of an Earlier Database with Oracle Streams for
information about using Oracle Streams to perform a database
upgrade from an Oracle Database 10g Release 1 (10.1) or earlier
database to the current release with little or no down time

Chapter 1
Oracle Streams Documentation Roadmap

1-24

2
Oracle Streams Information Capture

Capturing information with Oracle Streams means creating a message that contains
the information and enqueuing the message into a queue. The captured information
can describe a database change, or it can be any other type of information.

The following topics contain conceptual information about capturing information with
Oracle Streams:

• Ways to Capture Information with Oracle Streams

• Types of Information Captured with Oracle Streams

• Summary of Information Capture Options with Oracle Streams

• Instantiation in an Oracle Streams Environment

• Implicit Capture with an Oracle Streams Capture Process

• Implicit Capture with Synchronous Capture

• Explicit Capture by Applications

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring implicit capture

• Managing Oracle Streams Implicit Capture

• "Troubleshooting Capture Process Problems"

• Monitoring Oracle Streams Implicit Capture

2.1 Ways to Capture Information with Oracle Streams
There are two ways to capture information with Oracle Streams: implicit capture and
explicit capture.

• Implicit Capture

• Explicit Capture

2.1.1 Implicit Capture
With implicit capture, data definition language (DDL) and data manipulation language
(DML) changes are captured automatically either by a capture process or by
synchronous capture. A specific type of message called logical change record (LCR)
describes these database changes. Both a capture process and synchronous capture
can filter database changes with user-defined rules. Therefore, only changes to
specified objects are captured.

2-1

The following topics describe capture processes and synchronous captures:

• Capture Processes

• Synchronous Captures

2.1.1.1 Capture Processes
A capture process retrieves change data from the redo log, either by mining the online
redo log or, if necessary, by mining archived log files. After retrieving the data, the
capture process formats it into an LCR and enqueues it for further processing.

A capture process enqueues information about database changes in the form of
messages containing LCRs. A message containing an LCR that was originally
captured and enqueued by a capture process is called a captured LCR. A capture
process always enqueues messages into a buffered queue. A buffered queue is the
portion of a queue that uses the Oracle Streams pool to store messages in memory
and a queue table to store messages that have spilled from memory.

A capture process is useful in the following situations:

• When you want to capture changes to a relatively large number of tables

• When you want to capture changes to schemas or to an entire database

• When you want to capture DDL changes

• When you want to capture changes at a database other than the source database
using downstream capture

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• "Persistent Queues and Buffered Queues"

2.1.1.2 Synchronous Captures
Synchronous capture uses an internal mechanism to capture DML changes
immediately after they happen. Synchronous capture enqueues information about
DML changes in the form of messages containing row LCRs. Synchronous capture
enqueues these LCRs into a persistent queue. Synchronous capture always enqueues
messages into a persistent queue. A persistent queue is the portion of a queue that
only stores messages on hard disk in a queue table, not in memory. The messages
captured by a synchronous capture are persistent LCRs.

Synchronous capture is useful in the following situations:

• For the best performance, when you want to capture DML changes to a relatively
small number of tables

• When you want to capture DML changes to a table immediately after these
changes are made

Chapter 2
Ways to Capture Information with Oracle Streams

2-2

See Also:

• "Implicit Capture with Synchronous Capture"

2.1.2 Explicit Capture
With explicit capture, applications generate messages and enqueue them. These
messages can be formatted as LCRs, or they can be formatted into different types of
messages for consumption by other applications. Messages can also be enqueued
explicitly by an apply process or by an apply handler for an apply process.

Explicit capture is useful in the following situations:

• When applications generate messages that must be processed by other
applications.

• When you have a heterogeneous replication environment in which an apply
process in an Oracle database applies changes that originated at a non-Oracle
database. In this case, an application captures LCRs based on the changes at the
non-Oracle database, and these LCRs are processed by an apply process at an
Oracle database.

See Also:

• "Explicit Capture by Applications"

• Oracle Streams Replication Administrator's Guide for more information
about heterogeneous information sharing with Oracle Streams

2.2 Types of Information Captured with Oracle Streams
The following types of information can be captured with Oracle Streams:

• Logical Change Records (LCRs)

• User Messages

2.2.1 Logical Change Records (LCRs)
An LCR is a message with a specific format that describes a database change. There
are two types of LCRs: row LCRs and DDL LCRs. A capture process, a synchronous
capture, or an application can capture LCRs.

You can capture the following types of LCRs with Oracle Streams:

• A captured LCR is an LCR that is captured implicitly by a capture process and
enqueued into the buffered queue portion of an ANYDATA queue.

• A persistent LCR is an LCR that is enqueued into the persistent queue portion of
an ANYDATA queue. A persistent LCR can be enqueued in one of the following
ways:

Chapter 2
Types of Information Captured with Oracle Streams

2-3

– Captured implicitly by a synchronous capture and enqueued

– Constructed explicitly by an application and enqueued

– Dequeued by an apply process and enqueued by the same apply process
using the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package

The only difference between the persistent LCRs captured in these three ways is
that persistent LCRs captured by a synchronous capture have more attributes than
those constructed by an application or enqueued by an apply process.

• A buffered LCR is and LCR that is constructed explicitly by an application and
enqueued into the buffered queue portion of an ANYDATA queue.

The following sections contain information about LCRs:

• Row LCRs

• DDL LCRs

• Extra Information in LCRs

See Also:

• "Persistent Queues and Buffered Queues"

• Oracle Streams Replication Administrator's Guide for information about
managing LCRs

• Oracle Database PL/SQL Packages and Types Reference for more
information about LCR types

• "Setting the Destination Queue for Messages that Satisfy a Rule" for more
information about the SET_ENQUEUE_DESTINATION procedure

2.2.1.1 Row LCRs
A row LCR describes a change to the data in a single row or a change to a single LOB
column, LONG column, LONG RAW column, or XMLType stored as CLOB column in a row. The
change results from a data manipulation language (DML) statement or a piecewise
operation. For example, a single DML statement can insert or merge multiple rows into
a table, can update multiple rows in a table, or can delete multiple rows from a table.
Applications can also construct LCRs that are enqueued for further processing.

A single DML statement can produce multiple row LCRs. That is, a capture process
creates a row LCR for each row that is changed by the DML statement. In addition, an
update to a LOB, LONG, LONG RAW, or XMLType stored as CLOB column in a single row can
result in more than one row LCR.

Each row LCR is encapsulated in an object of LCR$_ROW_RECORD type. Table 2-1
describes the attributes that are present in each row LCR.

Table 2-1 Attributes Present in All Row LCRs

Attribute Description

source_database_name The name of the source database where the row change occurred.

Chapter 2
Types of Information Captured with Oracle Streams

2-4

Table 2-1 (Cont.) Attributes Present in All Row LCRs

Attribute Description

command_type The type of DML statement that produced the change, either INSERT, UPDATE, DELETE,
LOB ERASE, LOB WRITE, or LOB TRIM.

object_owner The schema name that contains the table with the changed row.

object_name The name of the table that contains the changed row.

tag A raw tag that you can use to track the LCR.

transaction_id The identifier of the transaction in which the DML statement was run.

scn The system change number (SCN) at the time when the change was made.

old_values The old column values related to the change. These are the column values for the row
before the DML change. If the type of the DML statement is UPDATE or DELETE, then
these old values include some or all of the columns in the changed row before the
DML statement. If the type of the DML statement is INSERT, then there are no old
values. For UPDATE and DELETE statements, row LCRs created by a capture process
can include some or all of the old column values in the row, but row LCRs created by
a synchronous capture always contain all of the new column values in the row.

new_values The new column values related to the change. These are the column values for the
row after the DML change. If the type of the DML statement is UPDATE or INSERT, then
these new values include some or all of the columns in the changed row after the
DML statement. If the type of the DML statement is DELETE, then there are no new
values. For UPDATE and INSERT statements, row LCRs created by a capture process
can include some or all of the new column values in the row, but row LCRs created by
a synchronous capture always contain all of the new column values in the row.

position A unique identifier of RAW data type for each LCR. The position is strictly increasing
within a transaction and across transactions.

LCR position is commonly used in XStream configurations.

See Oracle Database XStream Guide.

Row LCRs that were captured by a capture process or a synchronous capture contain
additional attributes. Table 2-2 describes these additional attributes. This table also
shows whether the attribute is present in row LCRs captured by capture processes
and row LCRs captured by synchronous captures. These attributes are not present in
explicitly captured row LCRs.

Table 2-2 Additional Attributes in Captured Row LCRs

Attribute Description In Capture
Process Row
LCRs?

In Synchronous
Capture Row
LCRs?

commit_scn The commit system change number
(SCN) of the transaction to which
the LCR belongs.

Yes No

commit_scn_from_position The commit system change number
(SCN) of a transaction determined
by the input position, which is
generated by an XStream outbound
server.

Yes No

commit_time The commit time of the transaction
to which the LCR belongs.

Yes No

Chapter 2
Types of Information Captured with Oracle Streams

2-5

Table 2-2 (Cont.) Additional Attributes in Captured Row LCRs

Attribute Description In Capture
Process Row
LCRs?

In Synchronous
Capture Row
LCRs?

compatible The minimal database compatibility
required to support the LCR.

Yes Yes

instance_number The instance number of the
database instance that made the
change that is encapsulated in the
LCR. Typically, the instance number
is relevant in an Oracle Real
Application Clusters (Oracle RAC)
configuration.

Yes Yes

lob_information The LOB information for the
column, such as NOT_A_LOB or
LOB_CHUNK.

Yes No

lob_offset The LOB offset for the specified
column in the number of characters
for CLOB columns and the number of
bytes for BLOB columns.

Yes No

lob_operation_size The operation size for the LOB
column in the number of characters
for CLOB columns and the number of
bytes for BLOB columns.

Yes No

long_information The LONG information for the
column, such as NOT_A_LONG or
LONG_CHUNK.

Yes No

row_text The SQL statement for the change
that is encapsulated in the row LCR.

Yes Yes

scn_from_position The commit system change number
(SCN) of a transaction determined
by the input position, which is
generated by an XStream outbound
server.

Yes No

source_time The time when the change in an
LCR captured by a capture process
was generated in the redo log of the
source database, or the time when
a persistent LCR was created.

Yes Yes

xml_information The XML information for the
column, such as NOT_XML, XML_DOC,
or XML_DIFF.

Yes No

A row LCR captured by a capture process or synchronous capture can also contain
transaction control statements. These row LCRs contain transaction control directives
such as COMMIT and ROLLBACK. Such row LCRs are internal and are used by an apply
process to maintain transaction consistency between a source database and a
destination database.

Chapter 2
Types of Information Captured with Oracle Streams

2-6

2.2.1.2 DDL LCRs
A DDL LCR describes a data definition language (DDL) change. A DDL statement
changes the structure of the database. For example, a DDL statement can create,
alter, or drop a database object.

Each DDL LCR is encapsulated in an object of LCR$_DDL_RECORD type. Table 2-3
describes the attributes that are present in each DDL LCR.

Table 2-3 Attributes Present in All DDL LCRs

Attribute Description

source_database_name The name of the source database where the row change occurred.

command_type The type of DDL statement that produced the change, for example ALTER TABLE or
CREATE INDEX.

object_owner The schema name of the user who owns the database object on which the DDL
statement was run.

object_name The name of the database object on which the DDL statement was run.

object_type The type of database object on which the DDL statement was run, for example TABLE
or PACKAGE.

ddl_text The text of the DDL statement.

logon_user The logon user, which is the user whose session executed the DDL statement.

current_schema The schema that is used if no schema is specified for an object in the DDL text.

base_table_owner The base table owner. If the DDL statement is dependent on a table, then the base
table owner is the owner of the table on which it is dependent.

base_table_name The base table name. If the DDL statement is dependent on a table, then the base
table name is the name of the table on which it is dependent.

tag A raw tag that you can use to track the LCR.

transaction_id The identifier of the transaction in which the DDL statement was run.

scn The system change number (SCN) at the time when the change was made.

position A unique identifier of RAW data type for each LCR. The position is strictly increasing
within a transaction and across transactions.

LCR position is commonly used in XStream configurations.

See Oracle Database XStream Guide.

edition_name The name of the edition in which the DDL statement was executed.

DDL LCRs that were captured by a capture process contain additional attributes.
Table 2-2 describes these additional attributes. Synchronous captures cannot capture
DDL changes, and these attributes are not present in explicitly captured DDL LCRs.

Table 2-4 Additional Attributes in Captured DDL LCRs

Attribute Description

commit_scn The commit system change number (SCN) of the transaction to which the LCR
belongs.

commit_scn_from_position The commit system change number (SCN) of a transaction determined by the
input position, which is generated by an XStream outbound server.

Chapter 2
Types of Information Captured with Oracle Streams

2-7

Table 2-4 (Cont.) Additional Attributes in Captured DDL LCRs

Attribute Description

commit_time The commit time of the transaction to which the LCR belongs.

compatible The minimal database compatibility required to support the LCR.

instance_number The instance number of the database instance that made the change that is
encapsulated in the LCR. Typically, the instance number is relevant in an
Oracle Real Application Clusters (Oracle RAC) configuration.

scn_from_position The commit system change number (SCN) of a transaction determined by the
input position, which is generated by an XStream outbound server.

source_time The time when the change in an LCR captured by a capture process was
generated in the redo log of the source database, or the time when a persistent
LCR was created.

Note:

Both row LCRs and DDL LCRs contain the source database name of the
database where a change originated. If captured LCRs will be propagated by
a propagation or applied by an apply process, then, to avoid propagation and
apply problems, Oracle recommends that you do not rename the source
database after a capture process has started capturing changes.

See Also:

• Oracle Call Interface Programmer's Guide for a complete list of the types
of DDL statements in the "SQL Command Codes" table

• Oracle Database PL/SQL Packages and Types Reference

2.2.1.3 Extra Information in LCRs
In addition to the information discussed in the previous sections, row LCRs and DDL
LCRs optionally can include the extra information (or LCR attributes) described in
Table 2-5.

Table 2-5 Extra Attributes in LCRs

Attribute Description

row_id The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs or row
LCRs for index-organized tables.

serial# The serial number of the session that performed the change captured in the LCR.

session# The identifier of the session that performed the change captured in the LCR.

thread# The thread number of the instance in which the change captured in the LCR was performed.
Typically, the thread number is relevant only in an Oracle Real Application Clusters (Oracle RAC)
environment.

Chapter 2
Types of Information Captured with Oracle Streams

2-8

Table 2-5 (Cont.) Extra Attributes in LCRs

Attribute Description

tx_name The name of the transaction that includes the LCR.

username The name of the current user who performed the change captured in the LCR.

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package
to instruct a capture process or synchronous capture to capture one or more extra
attributes.

See Also:

• "Managing Extra Attributes in Captured LCRs"

• "Viewing the Extra Attributes Captured by Implicit Capture"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the INCLUDE_EXTRA_ATTRIBUTE procedure

• Oracle Database PL/SQL Language Reference for more information about
the current user

2.2.2 User Messages
Messages that do not contain LCRs are called user messages. User messages can
be of any type (except an LCR type). User messages can be created by an application
and consumed by an application. For example, a business application might create a
user message for each order, and these messages might be processed by another
application.

You can capture the following types of user messages with Oracle Streams:

• A persistent user message is a non-LCR message of a user-defined type that is
enqueued into a persistent queue. A persistent user message can be enqueued in
one of the following ways:

– Created explicitly by an application and enqueued

– Dequeued by an apply process and enqueued by the same apply process
using the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package

A persistent user message can be enqueued into the persistent queue portion of
an ANYDATA queue or a typed queue.

• A buffered user message is a non-LCR message of a user-defined type that is
created explicitly by an application and enqueued into a buffered queue. A
buffered user message can be enqueued into the buffered queue portion of an
ANYDATA queue or a typed queue.

Chapter 2
Types of Information Captured with Oracle Streams

2-9

Note:

Capture processes and synchronous captures never capture user messages.

See Also:

• "Persistent Queues and Buffered Queues"

• "Setting the Destination Queue for Messages that Satisfy a Rule" for more
information about the SET_ENQUEUE_DESTINATION procedure

• Oracle Database Advanced Queuing User's Guide for information about
using ANYDATA queues for messaging

2.3 Summary of Information Capture Options with Oracle
Streams

Table 2-6 summarizes the capture options available with Oracle Streams.

Table 2-6 Information Capture Options with Oracle Streams

Capture Type Capture Mechanism Message Types Enqueued Into Use When

Implicit Capture
with an Oracle
Streams Capture
Process

Mining of Redo Log Captured LCRs Buffered Queue You want to capture changes
to many tables.

You want to capture changes
to schemas or an entire
database.

You want to capture DDL
changes.

You want to capture changes
at a downstream database.

Implicit Capture
with Synchronous
Capture

Internal Mechanism Persistent LCRs Persistent Queue You want to capture DML
changes to a small number of
tables.

You want to capture DML
changes immediately after
they occur.

Explicit Capture by
Applications

Manual Message
Creation and Enqueue

Buffered LCRs

Persistent LCRs

Buffered User
Messages

Persistent User
Messages

Buffered Queue
or Persistent
Queue

You want to capture user
messages that will be
consumed by applications.

You want to capture LCRs in
a heterogeneous replication
environment.

You want to construct LCRs
by using an application
instead of by using a capture
process or a synchronous
capture.

Chapter 2
Summary of Information Capture Options with Oracle Streams

2-10

Note:

A single database can use any combination of the capture options
summarized in the table.

See Also:

• "Persistent Queues and Buffered Queues"

2.4 Instantiation in an Oracle Streams Environment
An Oracle Streams environment can share a database object within a single database
or between multiple databases. In an Oracle Streams environment that shares
database objects and uses implicit capture to capture changes to the database object,
the source database is the database where the change originated. The source
database is one of the following depending on the type of implicit capture used:

• If a capture process captures changes, then the source database is the database
where changes to the object are generated in the redo log.

• If synchronous capture captures changes, then the source database is the
database where synchronous capture is configured.

After changes are captured, they can be applied locally or propagated to other
databases and applied at destination databases.

In an Oracle Streams environment that shares database objects, you must instantiate
the shared source database objects before changes to them can be dequeued and
processed by an apply process. If a database where changes to the source database
objects will be applied is a different database than the source database, then the
destination database must have a copy of these database objects.

In Oracle Streams, the following general steps instantiate a database object:

1. Prepare the object for instantiation at the source database.

2. If a copy of the object does not exist at the destination database, then create an
object physically at the destination database based on an object at the source
database. You can use export/import, transportable tablespaces, or RMAN to copy
database objects for instantiation. If the database objects already exist at the
destination database, then this step is not necessary.

3. Set the instantiation SCN for the database object at the destination database. An
instantiation system change number (SCN) instructs an apply process at the
destination database to apply only changes that committed at the source database
after the specified SCN.

In some cases, Step 1 and Step 3 are completed automatically. For example, when
you add rules for an object to the positive rule set for a capture process by running a
procedure in the DBMS_STREAMS_ADM package, the procedure prepares the object for
instantiation automatically. Also, when you use export/import or transportable
tablespaces to copy database objects from a source database to a destination
database, instantiation SCNs can be set for these objects automatically during import.

Chapter 2
Instantiation in an Oracle Streams Environment

2-11

Instantiation is required whenever an apply process dequeues captured LCRs, even if
the apply process sends the LCRs to an apply handler that does not execute them.

See Also:

• Oracle Streams Replication Administrator's Guide for detailed information
about instantiation in an Oracle Streams replication environment

2.5 Implicit Capture with an Oracle Streams Capture
Process

This section explains the concepts related to the Oracle Streams capture process.

This section contains these topics:

• Introduction to Capture Processes

• Capture Process Rules

• Data Types Captured by Capture Processes

• Types of DML Changes Captured by Capture Processes

• Supplemental Logging in an Oracle Streams Environment

• Local Capture and Downstream Capture

• SCN Values Related to a Capture Process

• Oracle Streams Capture Processes and RESTRICTED SESSION

• Capture Process Subcomponents

• Capture User

• Capture Process States

• Capture Process Parameters

• Persistent Capture Process Status Upon Database Restart

2.5.1 Introduction to Capture Processes
Every Oracle database has a set of two or more redo log files. The redo log files for a
database are collectively known as the database redo log. The primary function of the
redo log is to record all of the changes made to the database.

Redo logs are used to guarantee recoverability in the event of human error or media
failure. A capture process is an optional Oracle background process that scans the
database redo log to capture data manipulation language (DML) and data definition
language (DDL) changes made to database objects. When a capture process is
configured to capture changes from a redo log, the database where the changes were
generated is called the source database for the capture process.

When a capture process captures a database change, it converts it into a specific
message format called a logical change record (LCR). After capturing an LCR, a
capture process enqueues a message containing the LCR into a queue. A capture

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-12

process is always associated with a single ANYDATA queue, and it enqueues messages
into this queue only. For improved performance, captured LCRs always are stored in a
buffered queue, which is System Global Area (SGA) memory associated with a queue.
You can create multiple queues and associate a different capture process with each
queue.

Captured LCRs can be sent to queues in the same database or other databases by
propagations. Captured LCRs can also be dequeued by apply processes. In some
situations, an optimization enables capture processes to send LCRs to apply
processes more efficiently. This optimization is called combined capture and apply.

A capture process can run on its source database or on a remote database. When a
capture process runs on its source database, the capture process is a local capture
process. When a capture process runs on a remote database, the capture process is
a downstream capture process, and the remote database is called the downstream
database.

Figure 2-1 shows a capture process capturing LCRs.

Figure 2-1 Capture Process

User Changes

Database Objects

Redo

Log

Queue

LCR

LCR

User Message

User Message

LCR

User Message

LCR

LCR

.

.

.

Capture

Process�

Enqueue�
LCRs

Capture

Changes

Log

Changes

Note:

• A capture process can be associated only with an ANYDATA queue, not with
a typed queue.

• A capture process and a synchronous capture should not capture changes
made to the same table.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-13

See Also:

• "Logical Change Records (LCRs)"

• "Supplemental Logging in an Oracle Streams Environment"

• Combined Capture and Apply Optimization

2.5.2 Capture Process Rules
A capture process either captures or discards changes based on rules that you define.
Each rule specifies the database objects and types of changes for which the rule
evaluates to TRUE. You can place these rules in a positive rule set or negative rule set
for the capture process.

If a rule evaluates to TRUE for a change, and the rule is in the positive rule set for a
capture process, then the capture process captures the change. If a rule evaluates to
TRUE for a change, and the rule is in the negative rule set for a capture process, then
the capture process discards the change. If a capture process has both a positive and
a negative rule set, then the negative rule set is always evaluated first.

You can specify capture process rules at the following levels:

• A table rule captures or discards either row changes resulting from DML changes
or DDL changes to a particular table. Subset rules are table rules that include a
subset of the row changes to a particular table.

• A schema rule captures or discards either row changes resulting from DML
changes or DDL changes to the database objects in a particular schema.

• A global rule captures or discards either all row changes resulting from DML
changes or all DDL changes in the database.

Note:

The capture process does not capture certain types of changes and changes
to certain data types in table columns. Also, a capture process never captures
changes in the SYS, SYSTEM, or CTXSYS schemas.

See Also:

• Advanced Rule Concepts

• How Rules Are Used in Oracle Streams

2.5.3 Data Types Captured by Capture Processes
When capturing the row changes resulting from DML changes made to tables, a
capture process can capture changes made to columns of the following data types:

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-14

• VARCHAR2

• NVARCHAR2

• FLOAT

• NUMBER

• LONG

• DATE

• BINARY_FLOAT

• BINARY_DOUBLE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• RAW

• LONG RAW

• CHAR

• NCHAR

• UROWID

• CLOB with BASICFILE or SECUREFILE storage

• NCLOB with BASICFILE or SECUREFILE storage

• BLOB with BASICFILE or SECUREFILE storage

• XMLType stored as CLOB

Note:

• Some of these data types might not be supported by Oracle Streams in
earlier releases of Oracle Database. If your Oracle Streams environment
includes one or more databases from an earlier release, then ensure that
row LCRs do not flow into a database that does not support all of the data
types in the row LCRs. See the Oracle Streams documentation for the
earlier release for information about supported data types.

• Capture processes can capture changes to SecureFiles LOB columns
only if the database compatibility level is set to 11.2.0 or higher.

• Capture processes do not support extended data types introduced in
Oracle Database 12c.

• XMLType stored as a CLOB is deprecated in this release.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-15

See Also:

• "Unsupported Data Types for Capture Processes" for information about
data type restrictions for capture processes, including restrictions for
SecureFiles LOBs

• How Rules Are Used in Oracle Streams

• "Data Types Applied"

• Oracle Database SQL Language Reference for more information about
data types

• Oracle Database Upgrade Guide for information about database
compatibility

2.5.4 Types of DML Changes Captured by Capture Processes
When you specify that DML changes made to certain tables should be captured, a
capture process captures the following types of DML changes made to these tables:

• INSERT

• UPDATE

• DELETE

• MERGE

• Piecewise operations

A capture process converts each MERGE change into an INSERT or UPDATE change. MERGE
is not a valid command type in a row LCR.

See Also:

• "Unsupported Table Types for Capture Processes"

• Oracle Streams Information Consumption for information about the types
of changes an apply process can apply

2.5.5 Supplemental Logging in an Oracle Streams Environment
Supplemental logging places additional column data into a redo log whenever an
operation is performed. A capture process captures this additional information and
places it in LCRs. Supplemental logging is always configured at a source database,
regardless of location of the capture process that captures changes to the source
database.

Typically, supplemental logging is required in Oracle Streams replication
environments. In these environments, an apply process needs the additional
information in the LCRs to properly apply changes that are replicated from a source
database to a destination database. However, supplemental logging can also be
required in environments where changes are not applied to database objects directly

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-16

by an apply process. In such environments, an apply handler can process the changes
without applying them to the database objects, and the supplemental information might
be needed by the apply handlers.

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about supplemental logging

• "Considerations for Applying DML Changes to Tables" for more
information about apply process behavior that might require supplemental
logging at the source database

• "Virtual Dependency Definitions" for more information about value
dependencies

• "Is the Apply Process Waiting for a Dependent Transaction?" for more
information about bitmap index columns and apply process parallelism

• Rule-Based Transformations

2.5.6 Local Capture and Downstream Capture
You can configure a capture process to run locally on a source database or remotely
on a downstream database. A single database can have one or more capture
processes that capture local changes and other capture processes that capture
changes from a remote source database. That is, you can configure a single database
to perform both local capture and downstream capture.

The following topics provide more information about local capture and downstream
capture:

• Local Capture

• Downstream Capture

2.5.6.1 Local Capture
Local capture means that a capture process runs on the source database. Figure 2-1
shows a database using local capture.

The following topics provide more information about local capture:

• The Source Database Performs All Change Capture Actions

• Advantages of Local Capture

2.5.6.1.1 The Source Database Performs All Change Capture Actions
If you configure local capture, then the following actions are performed at the source
database:

• The DBMS_CAPTURE_ADM.BUILD procedure is run to extract (or build) the data
dictionary to the redo log.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-17

• Supplemental logging at the source database places additional information in the
redo log. This information might be needed when captured changes are applied by
an apply process.

• The first time a capture process is started at the database, Oracle Database uses
the extracted data dictionary information in the redo log to create a LogMiner data
dictionary, which is separate from the primary data dictionary for the source
database. Additional capture processes can use this existing LogMiner data
dictionary, or they can create new LogMiner data dictionaries.

• A capture process scans the redo log for changes using LogMiner.

• The rules engine evaluates changes based on the rules in one or more of the
capture process rule sets.

• The capture process enqueues changes that satisfy the rules in its rule sets into a
local ANYDATA queue.

• If the captured changes are shared with one or more other databases, then one or
more propagations propagate these changes from the source database to the
other databases.

• If database objects at the source database must be instantiated at a destination
database, then the objects must be prepared for instantiation, and a mechanism
such as an Export utility must be used to make a copy of the database objects.

2.5.6.1.2 Advantages of Local Capture
The following are the advantages of using local capture:

• Configuration and administration of the capture process is simpler than when
downstream capture is used. When you use local capture, you do not need to
configure redo data copying to a downstream database, and you administer the
capture process locally at the database where the captured changes originated.

• A local capture process can scan changes in the online redo log before the
database writes these changes to an archived redo log file. When you use an
archived-log downstream capture process, archived redo log files are copied to the
downstream database after the source database has finished writing changes to
them, and some time is required to copy the redo log files to the downstream
database. However, a real-time downstream capture process can capture changes
in the online redo log sent from the source database.

• The amount of data being sent over the network is reduced, because the redo
data is not copied to the downstream database. Even if captured LCRs are
propagated to other databases, the captured LCRs can be a subset of the total
changes made to the database, and only the LCRs that satisfy the rules in the rule
sets for a propagation are propagated.

• Security might be improved because only the source (local) database can access
the redo data. For example, if the capture process captures changes in the hr
schema only, then, when you use local capture, only the source database can
access the redo data to enqueue changes to the hr schema into the capture
process queue. However, when you use downstream capture, the redo data is
copied to the downstream database, and the redo data contains all of the changes
made to the database, not just the changes made to the hr schema.

• Some types of custom rule-based transformations are simpler to configure if the
capture process is running at the local source database. For example, if you use
local capture, then a custom rule-based transformation can use cached

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-18

information in a PL/SQL session variable which is populated with data stored at
the source database.

• In an Oracle Streams environment where messages are captured and applied in
the same database, it might be simpler, and use fewer resources, to configure
local queries and computations that require information about captured changes
and the local data.

2.5.6.2 Downstream Capture
Downstream capture means that a capture process runs on a database other than the
source database. The following types of downstream capture configurations are
possible: real-time downstream capture and archived-log downstream capture. The
downstream_real_time_mine capture process parameter controls whether a downstream
capture process performs real-time downstream capture or archived-log downstream
capture. A real-time downstream capture process and one or more archived-log
downstream capture processes can coexist at a downstream database.

• Real-Time Downstream Capture

• Archived-Log Downstream Capture

• The Downstream Database Performs Most Change Capture Actions

• Advantages of Downstream Capture

• Optional Database Link From the Downstream Database to the Source Database

• Operational Requirements for Downstream Capture

Note:

• References to "downstream capture processes" in this document apply to
both real-time downstream capture processes and archived-log
downstream capture processes. This document distinguishes between the
two types of downstream capture processes when necessary.

• A downstream capture process only can capture changes from a single
source database. However, multiple downstream capture processes at a
single downstream database can capture changes from a single source
database or multiple source databases.

• To configure downstream capture, the source database must be an Oracle
Database 10g Release 1 or later database.

2.5.6.2.1 Real-Time Downstream Capture
A real-time downstream capture configuration works in the following way:

• Redo transport services at the source database sends redo data to the
downstream database either synchronously or asynchronously. At the same time,
the log writer process (LGWR) records redo data in the online redo log at the
source database.

• A remote file server process (RFS) at the downstream database receives the redo
data over the network and stores the redo data in the standby redo log.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-19

• A log switch at the source database causes a log switch at the downstream
database, and the ARCHn process at the downstream database archives the current
standby redo log file.

• The real-time downstream capture process captures changes from the standby
redo log whenever possible and from the archived standby redo log files whenever
necessary. A capture process can capture changes in the archived standby redo
log files if it falls behind. When it catches up, it resumes capturing changes from
the standby redo log.

Figure 2-2 Real-Time Downstream Capture

Downstream Database

Queue

LCR
User Message
LCR
LCR
LCR
User Message
.
.
.

Capture
Process

Enqueue
LCRs

Source Database

User Changes

Redo
Log

Online

Record
Changes

Send Redo
Data

Log
Changes

LGWR

RFS

ARCn

Redo
Log Files

Archived

Redo
Log

Standby

Log
Changes

Read Redo
Data

Write Redo
Data

Record
Changes

Database Objects

Redo
Transport
Services

The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required to
capture changes made at the source database. The time is reduced because the real-
time downstream capture process does not need to wait for the redo log file to be
archived before it can capture data from it.

Note:

You can configure more than one real-time downstream capture process that
captures changes from the same source database, but you cannot configure
real-time downstream capture for multiple source databases at one
downstream database.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-20

2.5.6.2.2 Archived-Log Downstream Capture
An archived-log downstream capture configuration means that archived redo log
files from the source database are copied to the downstream database, and the
capture process captures changes in these archived redo log files. You can copy the
archived redo log files to the downstream database using redo transport services, the
DBMS_FILE_TRANSFER package, file transfer protocol (FTP), or some other mechanism.

Figure 2-3 Archived-Log Downstream Capture

Downstream Database

Queue

LCR

User Message

LCR

LCR

LCR

User Message

.

.

.

Capture

Process�

LGWR

ARCn

Capture

Changes

Enqueue�
LCRs

Source Database

User Changes

Redo

Log

Online

Redo

Log Files

Source

Record

Changes

Log

Changes

Write�
Redo�
Data

Copy Redo

Log Files

Read Redo

Data

Database Objects

Redo

Log Files

Archived

The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes from multiple source databases at a downstream database. You can copy
redo log files from multiple source databases to a single downstream database and
configure multiple archived-log downstream capture processes to capture changes in
these redo log files.

See Also:

Oracle Data Guard Concepts and Administration for more information about
redo transport services

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-21

2.5.6.2.3 The Downstream Database Performs Most Change Capture Actions
If you configure either real-time or archived-log downstream capture, then the following
actions are performed at the downstream database:

• The first time a downstream capture process is started at the downstream
database, Oracle Database uses data dictionary information in the redo data from
the source database to create a LogMiner data dictionary at the downstream
database. The DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to
extract the source data dictionary information to the redo log at the source
database. Next, the redo data is copied to the downstream database from the
source database. Additional downstream capture processes for the same source
database can use this existing LogMiner data dictionary, or they can create new
LogMiner data dictionaries. Also, a real-time downstream capture process can
share a LogMiner data dictionary with one or more archived-log downstream
capture processes.

• A capture process scans the redo data from the source database for changes
using LogMiner.

• The rules engine evaluates changes based on the rules in one or more of the
capture process rule sets.

• The capture process enqueues changes that satisfy the rules in its rule sets into a
local ANYDATA queue. The capture process formats the changes as LCRs.

• If the captured LCRs are shared with one or more other databases, then one or
more propagations propagate these LCRs from the downstream database to the
other databases.

In a downstream capture configuration, the following actions are performed at the
source database:

• The DBMS_CAPTURE_ADM.BUILD procedure is run at the source database to extract the
data dictionary to the redo log.

• Supplemental logging at the source database places additional information that
might be needed for apply in the redo log.

• If database objects at the source database must be instantiated at other
databases in the environment, then the objects must be prepared for instantiation,
and a mechanism such as an Export utility must be used to make a copy of the
database objects.

In addition, the redo data must be copied from the computer system running the
source database to the computer system running the downstream database. In a real-
time downstream capture configuration, redo transport services sends redo data to the
downstream database. Typically, in an archived-log downstream capture configuration,
redo transport services copy the archived redo log files to the downstream database.

See Also:

How Rules Are Used in Oracle Streams for more information about rule sets
for Oracle Streams clients and for information about how messages satisfy
rule sets

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-22

2.5.6.2.4 Advantages of Downstream Capture
The following are the advantages of using downstream capture:

• Capturing changes uses fewer resources at the source database because the
downstream database performs most of the required work.

• If you plan to capture changes originating at multiple source databases, then
capture process administration can be simplified by running multiple archived-log
downstream capture processes with different source databases at one
downstream database. That is, one downstream database can act as the central
location for change capture from multiple sources. In such a configuration, one
real-time downstream capture process can run at the downstream database in
addition to the archived-log downstream capture processes.

• Copying redo data to one or more downstream databases provides improved
protection against data loss. For example, redo log files at the downstream
database can be used for recovery of the source database in some situations.

• The ability to configure at one or more downstream databases multiple capture
processes that capture changes from a single source database provides more
flexibility and can improve scalability.

2.5.6.2.5 Optional Database Link From the Downstream Database to the Source Database
When you create or alter a downstream capture process, you optionally can specify
the use of a database link from the downstream database to the source database. This
database link must have the same name as the global name of the source database.
Such a database link simplifies the creation and administration of a downstream
capture process. You specify that a downstream capture process uses a database link
by setting the use_database_link parameter to TRUE when you run the CREATE_CAPTURE or
ALTER_CAPTURE procedure on the downstream capture process. The name of the
database link must match the global name of the source database.

When a downstream capture process uses a database link to the source database, the
capture process connects to the source database to perform the following
administrative actions automatically:

• In certain situations, runs the DBMS_CAPTURE_ADM.BUILD procedure at the source
database to extract the data dictionary at the source database to the redo log
when a capture process is created.

• Prepares source database objects for instantiation.

• Obtains the first SCN for the downstream capture process if the first system
change number (SCN) is not specified during capture process creation. The first
SCN is needed to create a capture process.

If a downstream capture process does not use a database link, then you must perform
these actions manually.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-23

Note:

During the creation of a downstream capture process, if the first_scn
parameter is set to NULL in the CREATE_CAPTURE procedure, then the
use_database_link parameter must be set to TRUE. Otherwise, an error is
raised.

See Also:

Oracle Streams Replication Administrator's Guide for information about when
the DBMS_CAPTURE_ADM.BUILD procedure is run automatically during capture
process creation if the downstream capture process uses a database link

2.5.6.2.6 Operational Requirements for Downstream Capture
The following are operational requirements for using downstream capture:

• The source database must be running at least Oracle Database 10g and the
downstream capture database must be running the same release of Oracle
Database as the source database or later.

• The downstream database must be running Oracle Database 10g Release 2 or
later to configure real-time downstream capture. In this case, the source database
must be running Oracle Database 10g Release 1 or later.

• The operating system on the source and downstream capture sites must be the
same, but the operating system release does not need to be the same. In addition,
the downstream sites can use a different directory structure than the source site.

• The hardware architecture on the source and downstream capture sites must be
the same. For example, a downstream capture configuration with a source
database on a 32-bit Sun system must have a downstream database that is
configured on a 32-bit Sun system. Other hardware elements, such as the number
of CPUs, memory size, and storage configuration, can be different between the
source and downstream sites.

2.5.7 SCN Values Related to a Capture Process
This section describes system change number (SCN) values that are important for a
capture process. You can query the DBA_CAPTURE data dictionary view to display these
values for one or more capture processes.

• Captured SCN and Applied SCN

• First SCN and Start SCN

2.5.7.1 Captured SCN and Applied SCN
The captured SCN is the SCN that corresponds to the most recent change scanned in
the redo log by a capture process. The applied SCN for a capture process is the SCN
of the most recent message dequeued by the relevant apply processes. All messages
lower than this SCN have been dequeued by all apply processes that apply changes

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-24

captured by the capture process. The applied SCN for a capture process is equivalent
to the low-watermark SCN for an apply process that applies changes captured by the
capture process.

2.5.7.2 First SCN and Start SCN
The following sections describe the first SCN and start SCN for a capture process:

• First SCN

• Start SCN

• Start SCN Must Be Greater Than or Equal to First SCN

• A Start SCN Setting That Is Before Preparation for Instantiation

2.5.7.2.1 First SCN
The first SCN is the lowest SCN in the redo log from which a capture process can
capture changes. If you specify a first SCN during capture process creation, then the
database must be able to access redo data from the SCN specified and higher.

The DBMS_CAPTURE_ADM.BUILD procedure extracts the source database data dictionary to
the redo log. When you create a capture process, you can specify a first SCN that
corresponds to this data dictionary build in the redo log. Specifically, the first SCN for
the capture process being created can be set to any value returned by the following
query:

COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES';

The value returned for the NAME column is the name of the redo log file that contains
the SCN corresponding to the first SCN. This redo log file, and all subsequent redo log
files, must be available to the capture process. If this query returns multiple distinct
values for FIRST_CHANGE#, then the DBMS_CAPTURE_ADM.BUILD procedure has been run
more than once on the source database. In this case, choose the first SCN value that
is most appropriate for the capture process you are creating.

In some cases, the DBMS_CAPTURE_ADM.BUILD procedure is run automatically when a
capture process is created. When this happens, the first SCN for the capture process
corresponds to this data dictionary build.

2.5.7.2.2 Start SCN
The start SCN is the SCN from which a capture process begins to capture changes.
You can specify a start SCN that is different than the first SCN during capture process
creation, or you can alter a capture process to set its start SCN. The start SCN does
not need to be modified for normal operation of a capture process. Typically, you reset
the start SCN for a capture process if point-in-time recovery must be performed on one
of the destination databases that receive changes from the capture process. In these
cases, the capture process can capture the changes made at the source database
after the point-in-time of the recovery.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-25

Note:

An existing capture process must be stopped before setting its start SCN.

2.5.7.2.3 Start SCN Must Be Greater Than or Equal to First SCN
If you specify a start SCN when you create or alter a capture process, then the start
SCN specified must be greater than or equal to the first SCN for the capture process.
A capture process always scans any unscanned redo log records that have higher
SCN values than the first SCN, even if the redo log records have lower SCN values
than the start SCN. So, if you specify a start SCN that is greater than the first SCN,
then the capture process might scan redo log records for which it cannot capture
changes, because these redo log records have a lower SCN than the start SCN.

Scanning redo log records before the start SCN should be avoided if possible because
it can take some time. Therefore, Oracle recommends that the difference between the
first SCN and start SCN be as small as possible during capture process creation to
keep the initial capture process startup time to a minimum.

Note:

When a capture process is started or restarted, it might need to scan redo log
files with a FIRST_CHANGE# value that is lower than start SCN. Removing
required redo log files before they are scanned by a capture process causes
the capture process to abort. You can query the DBA_CAPTURE data dictionary
view to determine the first SCN, start SCN, and required checkpoint SCN. A
capture process needs the redo log file that includes the required checkpoint
SCN, and all subsequent redo log files.

See Also:

• "Capture Process Creation" for more information about the first SCN and
start SCN for a capture process

2.5.7.2.4 A Start SCN Setting That Is Before Preparation for Instantiation
If you want to capture changes to a database object and apply these changes using an
apply process, then only changes that occurred after the database object has been
prepared for instantiation can be applied. Therefore, if you set the start SCN for a
capture process lower than the SCN that corresponds to the time when a database
object was prepared for instantiation, then any captured changes to this database
object before the prepare SCN cannot be applied by an apply process.

This limitation can be important during capture process creation. If a database object
was never prepared for instantiation before the time of capture process creation, then
an apply process cannot apply any captured changes to the object from a time before
capture process creation time.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-26

In some cases, database objects might have been prepared for instantiation before a
new capture process is created. For example, if you want to create a capture process
for a source database whose changes are already being captured by one or more
existing capture processes, then some or all of the database objects might have been
prepared for instantiation before the new capture process is created. If you want to
capture changes to a certain database object with a new capture process from a time
before the new capture process was created, then the following conditions must be
met for an apply process to apply these captured changes:

• The database object must have been prepared for instantiation before the new
capture process is created.

• The start SCN for the new capture process must correspond to a time before the
database object was prepared for instantiation.

• The redo logs for the time corresponding to the specified start SCN must be
available. Additional redo logs previous to the start SCN might be required as well.

Note:

• Oracle Streams Replication Administrator's Guide for more information
about preparing database objects for instantiation

• "Capture Process Creation"

2.5.8 Oracle Streams Capture Processes and RESTRICTED
SESSION

When you enable restricted session during system startup by issuing a STARTUP
RESTRICT statement, capture processes do not start, even if they were running when
the database shut down. When restricted session is disabled with an ALTER SYSTEM
statement, each capture process that was running when the database shut down is
started.

When restricted session is enabled in a running database by the SQL statement ALTER
SYSTEM ENABLE RESTRICTED SESSION clause, it does not affect any running capture
processes. These capture processes continue to run and capture changes. If a
stopped capture process is started in a restricted session, then the capture process
does not actually start until the restricted session is disabled.

2.5.9 Capture Process Subcomponents
A capture process is an optional Oracle background process whose process name is
CPnn, where nn can include letters and numbers. A capture process captures changes
from the redo log by using the infrastructure of LogMiner. Oracle Streams configures
LogMiner automatically. The underlying LogMiner process name is MSnn, where nn can
include letters and numbers. You can create, alter, start, stop, and drop a capture
process, and you can define capture process rules that control which changes a
capture process captures.

A capture process consists of the following subcomponents:

• One reader server that reads the redo log and divides the redo log into regions.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-27

• One or more preparer servers that scan the regions defined by the reader server
in parallel and perform prefiltering of changes found in the redo log. Prefiltering
involves sending partial information about changes, such as schema and object
name for a change, to the rules engine for evaluation, and receiving the results of
the evaluation. You can control the number of preparer servers using the
parallelism capture process parameter.

• One builder server that merges redo records from the preparer servers. These
redo records either evaluated to TRUE during partial evaluation or partial evaluation
was inconclusive for them. The builder server preserves the system change
number (SCN) order of these redo records and passes the merged redo records to
the capture process.

• The capture process (CPnn) performs the following actions for each change when it
receives merged redo records from the builder server:

– Formats the change into an LCR

– If the partial evaluation performed by a preparer server was inconclusive for
the change in the LCR, then sends the LCR to the rules engine for full
evaluation

– Receives the results of the full evaluation of the LCR if it was performed

– Discards the LCR if it satisfies the rules in the negative rule set for the capture
process or if it does not satisfy the rules in the positive rule set

– Enqueues the LCR into the queue associated with the capture process if the
LCR satisfies the rules in the positive rule set for the capture process

Each reader server, preparer server, and builder server is a process.

See Also:

• "Capture Process Rule Evaluation"

• "Capture Process Parameters"

2.5.10 Capture User
Changes are captured in the security domain of the capture user for a capture
process. The capture user captures all changes that satisfy the capture process rule
sets. In addition, the capture user runs all custom rule-based transformations specified
by the rules in these rule sets. The capture user must have the necessary privileges to
perform these actions, including EXECUTE privilege on the rule sets used by the capture
process, EXECUTE privilege on all custom rule-based transformation functions specified
for rules in the positive rule set, and privileges to enqueue messages into the capture
process queue. A capture process can be associated with only one user, but one user
can be associated with many capture processes.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-28

See Also:

• Oracle Streams Replication Administrator's Guide for information about
the required privileges

2.5.11 Capture Process States
The state of a capture process describes what the capture process is doing currently.
You can view the state of a capture process by querying the STATE column in the
V$STREAMS_CAPTURE dynamic performance view. The following capture process states
are possible:

• INITIALIZING - Starting up.

• WAITING FOR DICTIONARY REDO - Waiting for redo log files containing the dictionary
build related to the first SCN to be added to the capture process session. A
capture process cannot begin to scan the redo log files until all of the log files
containing the dictionary build have been added.

• DICTIONARY INITIALIZATION - Processing a dictionary build.

• MINING (PROCESSED SCN = scn_value) - Mining a dictionary build at the SCN
scn_value.

• LOADING (step X of Y) - Processing information from a dictionary build and currently
at step X in a process that involves Y steps, where X and Y are numbers.

• CAPTURING CHANGES - Scanning the redo log for changes that satisfy the capture
process rule sets.

• WAITING FOR REDO - Waiting for new redo log files to be added to the capture process
session. The capture process has finished processing all of the redo log files
added to its session. This state is possible if there is no activity at a source
database. For a downstream capture process, this state is possible if the capture
process is waiting for new log files to be added to its session.

• EVALUATING RULE - Evaluating a change against a capture process rule set.

• CREATING LCR - Converting a change into a logical change record (LCR).

• ENQUEUING MESSAGE - Enqueuing an LCR that satisfies the capture process rule sets
into the capture process queue.

• PAUSED FOR FLOW CONTROL - Unable to enqueue LCRs either because of low memory
or because propagations and apply processes are consuming messages slower
than the capture process is creating them. This state indicates flow control that is
used to reduce spilling of captured LCRs when propagation or apply has fallen
behind or is unavailable.

• WAITING FOR A SUBSCRIBER TO BE ADDED - Waiting for a subscriber to the capture
process's queue to be added. A subscriber can be a propagation or an apply
process.

• WAITING FOR THE BUFFERED QUEUE TO SHRINK - Waiting for the buffered queue to change
to a smaller size. The buffered queue shrinks when there is a memory limitation or
when an administrator reduces its size.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-29

• WAITING FOR n SUBSCRIBER(S) INITIALIZING - Waiting for apply processes that receive
LCRs from the capture process to start, where n is the number of apply processes.

• WAITING FOR TRANSACTION - Waiting for LogMiner to provide more transactions.

• WAITING FOR INACTIVE DEQUEUERS - Waiting for capture process's queue subscribers
to start. The capture process stops enqueuing LCRs if there are no active
subscribers to the queue.

• SUSPENDED FOR AUTO SPLIT/MERGE - Waiting for a merge operation to complete.

• SHUTTING DOWN - Stopping.

• ABORTING - Aborting.

See Also:

• "Displaying Change Capture Information About Each Capture Process" for
a query that displays the state of a capture process

• Oracle Streams Replication Administrator's Guide for information about
split and merge operations

2.5.12 Capture Process Parameters
After creation, a capture process is disabled so that you can set the capture process
parameters for your environment before starting it for the first time. Capture process
parameters control the way a capture process operates. For example, the parallelism
capture process parameter controls the number of preparer servers used by a capture
process, and the time_limit capture process parameter specifies the amount of time a
capture process runs before it is shut down automatically. You set capture process
parameters using the DBMS_CAPTURE_ADM.SET_PARAMETER procedure.

See Also:

• "Setting a Capture Process Parameter"

• "Capture Process Subcomponents" for more information about preparer
servers

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about all of the capture process parameters

2.5.13 Persistent Capture Process Status Upon Database Restart
A capture process maintains a persistent status when the database running the
capture process is shut down and restarted. For example, if a capture process is
enabled when the database is shut down, then the capture process automatically
starts when the database is restarted. Similarly, if a capture process is disabled or
aborted when a database is shut down, then the capture process is not started and
retains the disabled or aborted status when the database is restarted.

Chapter 2
Implicit Capture with an Oracle Streams Capture Process

2-30

2.6 Implicit Capture with Synchronous Capture
This section explains the concepts related to synchronous capture.

This section discusses the following topics:

• Introduction to Synchronous Capture

• Synchronous Capture and Queues

• Synchronous Capture Rules

• Data Types Captured by Synchronous Capture

• Types of DML Changes Captured by Synchronous Capture

• Capture User for Synchronous Capture

• Multiple Synchronous Captures in a Single Database

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring synchronous capture

• "Managing a Synchronous Capture"

• "Monitoring a Synchronous Capture"

• Oracle Streams Replication Administrator's Guide

2.6.1 Introduction to Synchronous Capture
Synchronous capture is an optional Oracle Streams client that captures data
manipulation language (DML) changes made to tables. Synchronous capture uses an
internal mechanism to capture DML changes to specified tables. When synchronous
capture is configured to capture changes to tables, the database that contains these
tables is called the source database.

When a DML change it made to a table, it can result in changes to one or more rows in
the table. Synchronous capture captures each row change and converts it into a
specific message format called a row logical change record (row LCR). After capturing
a row LCR, synchronous capture enqueues a message containing the row LCR into a
queue. Row LCRs created by synchronous capture always contain values for all the
columns in a row, even if some of the columns where not modified by the change.

Figure 2-4 shows a synchronous capture capturing LCRs.

Chapter 2
Implicit Capture with Synchronous Capture

2-31

Figure 2-4 Synchronous Capture

User Changes

Database Objects

Queue

LCR

LCR

User Message

User Message

LCR

User Message

LCR

LCR

.

.

.

Synchronous�
Capture

Enqueue�
LCRs

Capture

Changes

Note:

A synchronous capture and a capture process should not capture changes
made to the same table.

See Also:

• "Commit-Time Queues"

• "Managing a Synchronous Capture"

2.6.2 Synchronous Capture and Queues
Synchronous capture is always associated with a single ANYDATA queue, and it
enqueues messages into this queue only. The queue used by synchronous capture
must be a commit-time queue. Commit-time queues ensure that messages are
grouped into transactions, and that transactions groups are in commit system change
number (CSCN) order. Synchronous capture always enqueues row LCRs into the
persistent queue. The persistent queue is the portion of a queue that only stores
messages on hard disk in a queue table, not in memory. You can create multiple
queues and associate a different synchronous capture with each queue.

Although synchronous capture must enqueue messages into a commit-time queue,
messages captured by synchronous capture can be propagated to queues that are not
commit-time queues. Therefore, any intermediate queues that store messages
captured by synchronous capture do not need to be commit-time queue. Also, apply

Chapter 2
Implicit Capture with Synchronous Capture

2-32

processes that apply messages captured by synchronous capture can use queues that
are not commit-time queues.

Note:

• Synchronous capture can be associated only with an ANYDATA queue, not
with a typed queue.

• Synchronous capture should not enqueue messages that is used by a
capture process.

2.6.3 Synchronous Capture Rules
Synchronous capture either captures or discards changes based on rules that you
define. Each rule specifies the database objects and types of changes for which the
rule evaluates to TRUE. You can place these rules in a positive rule set. If a rule
evaluates to TRUE for a change, and the rule is in the positive rule set for synchronous
capture, then synchronous capture captures the change. Synchronous capture does
not use negative rule sets.

You can specify synchronous capture rules at the table level. A table rule captures or
discards row changes resulting from DML changes to a particular table. Subset rules
are table rules that include a subset of the row changes to a particular table.
Synchronous capture does not use schema or global rules.

All synchronous capture rules must be created with one of the following procedures in
the DBMS_STREAMS_ADM package:

• ADD_TABLE_RULES

• ADD_SUBSET_RULES

Synchronous capture does not capture changes based on the following types of rules:

• Rules added to the synchronous capture rules set by any procedure other than
ADD_TABLE_RULES or ADD_SUBSET_RULES in the DBMS_STREAMS_ADM package.

• Rules created by the DBMS_RULE_ADM package.

If these types of rules are in a synchronous capture rule set, then synchronous capture
ignores these rules.

A synchronous capture can use a rule set created by the CREATE_RULE_SET procedure in
the DBMS_RULE_ADM package, but you must add rules to the rule set with the
ADD_TABLE_RULES or ADD_SUBSET_RULES procedure.

If the specified synchronous capture does not exist when you run the ADD_TABLE_RULES
or ADD_SUBSET_RULES procedure, then the procedure creates it automatically. You can
also use the CREATE_SYNC_CAPTURE procedure in the DBMS_CAPTURE_ADM package to create
a synchronous capture.

Chapter 2
Implicit Capture with Synchronous Capture

2-33

Note:

• Synchronous capture does not capture certain types of changes and
changes to certain data types in table columns. Also, synchronous capture
never captures changes in the SYS, SYSTEM, or CTXSYS schemas.

• When a rule is in the rule set for a synchronous capture, do not change
the following rule conditions: :dml.get_object_name
and :dml.get_object_owner. Changing these conditions can cause the
synchronous capture not to capture changes to the database object. You
can change other conditions in synchronous capture rules.

See Also:

• Advanced Rule Concepts

• How Rules Are Used in Oracle Streams

• Oracle Streams Replication Administrator's Guide for information about
configuring a synchronous capture

2.6.4 Data Types Captured by Synchronous Capture
When capturing the row changes resulting from DML changes made to tables,
synchronous capture can capture changes made to columns of the following data
types:

• VARCHAR2

• NVARCHAR2

• NUMBER

• FLOAT

• DATE

• BINARY_FLOAT

• BINARY_DOUBLE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• RAW

• CHAR

• NCHAR

Chapter 2
Implicit Capture with Synchronous Capture

2-34

• UROWID

Note:

Synchronous captures do not support extended data types introduced in
Oracle Database 12c.

See Also:

• "Unsupported Data Types for Synchronous Captures"

• "Data Types Applied" for information about the data types that can be
applied by an apply process

• Oracle Database SQL Language Reference for more information about
data types

2.6.5 Types of DML Changes Captured by Synchronous Capture
When you specify that DML changes made to specific tables should be captured,
synchronous capture captures the following types of DML changes made to these
tables:

• INSERT

• UPDATE

• DELETE

• MERGE

Synchronous capture converts each MERGE change into an INSERT or UPDATE change.
MERGE is not a valid command type in a row LCR.

See Also:

• "Unsupported Changes for Synchronous Captures"

• Oracle Streams Information Consumption for information about the types
of changes an apply process can apply

2.6.6 Capture User for Synchronous Capture
Changes are captured in the security domain of the capture user for a synchronous
capture. The capture user captures all changes that satisfy the synchronous capture
rule set. In addition, the capture user runs all custom rule-based transformations
specified by the rules in these rule sets. The capture user must have the necessary
privileges to perform these actions, including EXECUTE privilege on the rule set used by
synchronous capture, EXECUTE privilege on all custom rule-based transformation

Chapter 2
Implicit Capture with Synchronous Capture

2-35

functions specified for rules in the rule set, and privileges to enqueue messages into
the synchronous capture queue. A synchronous capture can be associated with only
one user, but one user can be associated with many synchronous captures.

See Also:

Oracle Streams Replication Administrator's Guide for information about the
required privileges

2.6.7 Multiple Synchronous Captures in a Single Database
Oracle recommends that each ANYDATA queue used by a synchronous capture,
propagation, or apply process have messages from at most one synchronous capture
from a particular source database. Therefore, use a separate queue for each
synchronous capture that captures changes originating at a particular source
database, and ensure that each queue has its own queue table. Also, messages from
two or more synchronous captures in the same source database should not be
propagated to the same destination queue.

2.7 Explicit Capture by Applications
When applications enqueue messages manually, it is called explicit capture. After
enqueue, these messages can be propagated by Oracle Streams propagations within
the same database or to a different database. These messages can also be consumed
by applications, apply processes, and messaging clients. You can use either the
DBMS_STREAMS_MESSAGING package or the DBMS_AQADM package to enqueue messages.

The following sections describe conceptual information about enqueuing messages:

• Types of Messages That Can Be Enqueued Explicitly

• Enqueue Features

See Also:

• Oracle Database Advanced Queuing User's Guide contains the primary
documentation about enqueuing messages

2.7.1 Types of Messages That Can Be Enqueued Explicitly
Applications can create and enqueue different types of messages for various purposes
in an Oracle Streams environment. These messages can be messages of a user-
defined type called user messages, or they can be LCRs.

This section contains these topics:

• User Messages

• Logical Change Records (LCRs) and Messaging

Chapter 2
Explicit Capture by Applications

2-36

2.7.1.1 User Messages
An application can construct a message of a user-defined type and enqueue it. The
queue can be a queue of the same type as the message, or it can be an ANYDATA
queue. Typically, these user messages are consumed by applications or apply
processes.

User messages enqueued into a buffered queue are called buffered user messages.
Buffered user messages can be dequeued by an application only. An application
processes the messages after it dequeues them.

User messages enqueued into a persistent queue are called persistent user
messages. Persistent user messages can be dequeued by:

• Messaging clients: A messaging client passes the messages to the application
that invoked the messaging client for processing.

• Applications: An application processes the messages after it dequeues them.

• Apply processes: An apply process passes the messages to a message handler
for processing. The queue must be an ANYDATA queue for an apply process to
dequeue messages from it.

2.7.1.2 Logical Change Records (LCRs) and Messaging
An application can construct and enqueue LCRs into an ANYDATA queue. Row LCRs
describe the results of DML changes, and DDL LCRs describe DDL changes.
Typically, LCRs are consumed by apply processes, but they can also be consumed by
messaging clients and applications. Heterogeneous replication environment can use
explicit enqueue of LCRs to replicate database changes from a non-Oracle database
to an Oracle database.

LCRs enqueued explicitly into a buffered queue are called buffered LCRs. Buffered
LCRs can be dequeued only by applications. An application processes the buffered
LCRs after it dequeues them.

LCRs enqueued explicitly into a persistent queue are called persistent LCRs.
Persistent LCRs can be dequeued by:

• Messaging clients: A messaging client passes the messages to the application
that invoked the messaging client for processing.

• Applications: An application processes the messages after it dequeues them.

• Apply processes: An apply process can apply the LCRs directly or pass them to
an apply handler for processing.

See Also:

• "Logical Change Records (LCRs)"

Chapter 2
Explicit Capture by Applications

2-37

2.7.2 Enqueue Features
The enqueue features available with Oracle Database Advanced Queuing include the
following:

• Enqueue into a buffered queue or a persistent queue

• Ordering of messages by priority enqueue time, or commit time

• Array enqueue of messages

• Correlation identifiers

• Message grouping

• Sender identification

• Time specification and scheduling

See Also:

• Oracle Database Advanced Queuing User's Guide for information about
these features and for information about other features available with
Oracle Database Advanced Queuing

Chapter 2
Explicit Capture by Applications

2-38

3
Oracle Streams Staging and Propagation

The following topics contain conceptual information about staging messages in queues
and propagating messages from one queue to another:

• Introduction to Message Staging and Propagation

• Queues

• Message Propagation Between Queues

See Also:

• Managing Staging and Propagation

• "Monitoring Queues and Messaging"

• "Monitoring Oracle Streams Propagations and Propagation Jobs"

• Troubleshooting Propagation

3.1 Introduction to Message Staging and Propagation
Oracle Streams uses queues to stage messages. Staged messages can be consumed
or propagated, or both. Staged messages can be consumed by an apply process, a
messaging client, or a user application. A running apply process implicitly dequeues
messages, but messaging clients and user applications explicitly dequeue messages.
Even after a message is consumed, it can remain in the queue if you also have
configured an Oracle Streams propagation to propagate, or send, the message to one
or more other queues or if message retention is specified for the queue. Message
retention applies to messages captured by a synchronous capture or enqueued
explicitly, but it does not apply to messages captured by a capture process.

See Also:

• Managing Staging and Propagation

• "Monitoring Queues and Messaging"

• "Monitoring Oracle Streams Propagations and Propagation Jobs"

• Troubleshooting Propagation

• Oracle Database Advanced Queuing User's Guide

3-1

3.2 Queues
A queue is an abstract storage unit used by a messaging system to store messages.
This section includes the following topics:

• ANYDATA Queues and Typed Queues

• Persistent Queues and Buffered Queues

See Also:

• Managing Queues

• "Queue Restrictions"

• Advanced Queue Concepts

3.2.1 ANYDATA Queues and Typed Queues
A queue of ANYDATA type can stage messages of almost any type and is called an
ANYDATA queue. A typed queue can stage messages of a specific type. Oracle
Streams clients always use ANYDATA queues.

In an Oracle Streams replication environment, logical change records (LCRs) must be
staged in ANYDATA queues. In an Oracle Streams messaging environment, both ANYDATA
queues and typed queues can stage messages. Publishing applications can enqueue
messages into a single queue, and subscribing applications can dequeue these
messages.

Two types of messages can be encapsulated into an ANYDATA object and staged in an
ANYDATA queue: LCRs and user messages. An LCR is an object that contains
information about a change to a database object. A user message is a message of a
user-defined type created by users or applications. Both types of messages can be
used for information sharing within a single database or between databases.

ANYDATA queues can stage user messages whose payloads are of ANYDATA type. An
ANYDATA payload can be a wrapper for payloads of different data types.

By using ANYDATA wrappers for message payloads, publishing applications can
enqueue messages of different types into a single queue, and subscribing applications
can dequeue these messages, either explicitly using a messaging client or an
application, or implicitly using an apply process. If the subscribing application is
remote, then the messages can be propagated to the remote site, and the subscribing
application can dequeue the messages from a local queue in the remote database.
Alternatively, a remote subscribing application can dequeue messages directly from
the source queue using a variety of standard protocols, such as PL/SQL and OCI.

You can wrap almost any type of payload in an ANYDATA payload. To do this, you use
the Convertdata_type static functions of the ANYDATA type, where data_type is the type of
object to wrap. These functions take the object as input and return an ANYDATA object.

Oracle Streams includes the features of Oracle Database Advanced Queuing (AQ),
which supports all the standard features of message queuing systems, including

Chapter 3
Queues

3-2

multiconsumer queues, publish and subscribe, content-based routing, internet
propagation, transformations, and gateways to other messaging subsystems.

See Also:

• "Queue Restrictions"

• Oracle Database Advanced Queuing User's Guide for more information
relating to ANYDATA queues, such as wrapping payloads in an ANYDATA
wrapper, programmatic environments for enqueuing messages into and
dequeuing messages from an ANYDATA queue, propagation, and user-
defined types

• Oracle Database PL/SQL Packages and Types Reference for more
information about the ANYDATA type

3.2.2 Persistent Queues and Buffered Queues
Oracle Streams supports the following message modes:

• Persistent messaging: Messages are always stored on disk in a database table
called a queue table. This type of storage is sometimes called persistent queue
storage.

• Buffered messaging: Messages are stored in memory but can spill to a queue
table under certain conditions. This type of storage is sometimes called buffered
queue storage. The memory includes Oracle Streams pool memory that is
associated with a queue that contains messages that were captured by a capture
process or enqueued by applications.

Buffered queues enable Oracle to optimize messages by buffering them in the System
Global Area (SGA) instead of always storing them in a queue table. Buffered
messaging provides better performance, but it does not support some messaging
features, such as message retention. Message retention lets you specify the amount
of time a message is retained in the queue table after being dequeued.

If the size of the Oracle Streams pool is not managed automatically, then you should
increase the size of the Oracle Streams pool by 10 MB for each buffered queue in a
database. Buffered queues improve performance, but some of the information in a
buffered queue can be lost if the instance containing the buffered queue shuts down
normally or abnormally. Oracle Streams automatically recovers from these cases,
assuming full database recovery is performed on the instance.

Messages in a buffered queue can spill from memory into the queue table if they have
been staged in the buffered queue for a period of time without being dequeued, or if
there is not enough space in memory to hold all of the messages. Messages that spill
from memory are stored in the appropriate AQ$_queue_table_name_p table, where
queue_table_name is the name of the queue table for the queue. Also, for each spilled
message, information is stored in the AQ$_queue_table_name_d table about any
propagations and apply processes that are eligible for processing the message.

LCRs that were captured by a capture process are always stored in a buffered queue,
but LCRs that were captured by a synchronous capture are always stored in a
persistent queue. Other types of messages might or might not be stored in a buffered
queue. When an application enqueues a message, the enqueue operation specifies

Chapter 3
Queues

3-3

whether the enqueued message is stored in the buffered queue or in the persistent
queue. The delivery_mode attribute in the enqueue_options parameter of the
DBMS_AQ.ENQUEUE procedure determines whether a message is stored in the buffered
queue or the persistent queue. Specifically, if the delivery_mode attribute is the default
PERSISTENT, then the message is enqueued into the persistent queue. If it is set to
BUFFERED, then the message is enqueued as the buffered queue. When a transaction is
moved to the error queue, all messages in the transaction always are stored in a
queue table, not in a buffered queue.

Note:

Although buffered and persistent messages can be stored in the same queue,
it is sometimes more convenient to think of a queue having a buffered portion
and a persistent portion, referred to here as "buffered queue" and "persistent
queue." Also, both ANYDATA queues and typed queues can include both a
buffered queue and a persistent queue.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring the Oracle Streams pool

• Oracle Database Advanced Queuing User's Guide for detailed conceptual
information about buffered messaging and for information about using
buffered messaging

3.2.2.1 Queues and Oracle Streams Clients
Oracle Streams clients always use ANYDATA queues. The following sections discuss
how queues interact with Oracle Streams clients:

• Queues and Capture Processes

• Queues and Synchronous Capture

• Queues and Propagations

• Queues and Apply Processes

• Queues and Messaging Clients

See Also:

• "Persistent Queues and Buffered Queues"

• Oracle Database Advanced Queuing User's Guide for detailed conceptual
information about buffered messaging and for information about using
buffered messaging

Chapter 3
Queues

3-4

3.2.2.1.1 Queues and Capture Processes
A capture processes can only enqueue LCRs into a buffered queue. LCRs enqueued
into a buffered queue by a capture process can be dequeued only by an apply
process. Captured LCRs cannot be dequeued by applications or users.

3.2.2.1.2 Queues and Synchronous Capture
A synchronous capture can only enqueue LCRs into a persistent queue. LCRs
captured by synchronous capture can be dequeued by apply processes, messaging
clients, applications, and users.

3.2.2.1.3 Queues and Propagations
A propagation propagates any messages in its source queue that satisfy its rule sets.
These messages can be stored in a buffered queue or in a persistent queue. A
propagation can propagate both types of messages if the messages satisfy the rule
sets used by the propagation.

3.2.2.1.4 Queues and Apply Processes
A single apply process can either dequeue messages from a buffered queue or a
persistent queue, but not both. Apply processes can dequeue and process captured
LCRs in a buffered queue. To dequeue captured LCRs, the apply process must be
configured with the apply_captured parameter set to TRUE. Apply processes cannot
dequeue buffered LCRs or buffered user messages. To dequeue persistent LCRs or
persistent user messages, the apply process must be configured with the
apply_captured parameter set to FALSE.

3.2.2.1.5 Queues and Messaging Clients
A messaging clients can only dequeue messages from a persistent queue. In addition,
the DBMS_STREAMS_MESSAGING package cannot be used to enqueue messages into or
dequeue messages from a buffered queue.

Note:

The DBMS_AQ and DBMS_AQADM packages support buffered messaging.

See Also:

Oracle Database Advanced Queuing User's Guide for more information about
using the DBMS_AQ and DBMS_AQADM packages

Chapter 3
Queues

3-5

3.3 Message Propagation Between Queues
You can use Oracle Streams to configure message propagation between two queues.
These queues can reside in the same database or in different databases. Oracle
Streams uses Oracle Scheduler jobs to propagate messages.

A propagation is always between a source queue and a destination queue. Although
propagation is always between two queues, a single queue can participate in many
propagations. That is, a single source queue can propagate messages to multiple
destination queues, and a single destination queue can receive messages from
multiple source queues. Also, a single queue can be a destination queue for some
propagations and a source queue for other propagations. However, only one
propagation is allowed between a particular source queue and a particular destination
queue.

Figure 3-1 shows propagation from a source queue to a destination queue.

Figure 3-1 Propagation from a Source Queue to a Destination Queue

Source

Queue

LCR

User Message

LCR

LCR

LCR

User Message

.

.

.

Destination

Queue

User Message

LCR

User Message

LCR

LCR

.

.

.

Propagate

Messages

You can create, alter, and drop a propagation, and you can define propagation rules
that control which messages are propagated. The user who owns the source queue is
the user who propagates messages, and this user must have the necessary privileges
to propagate messages. These privileges include the following:

• EXECUTE privilege on the rule sets used by the propagation

• EXECUTE privilege on all custom rule-based transformation functions used in the rule
sets

• Enqueue privilege on the destination queue if the destination queue is in the same
database

If the propagation propagates messages to a destination queue in a remote database,
then the owner of the source queue must be able to use the database link used by the
propagation, and the user to which the database link connects at the remote database
must have enqueue privilege on the destination queue.

A propagation can propagate all of the messages in a source queue to a destination
queue, or a propagation can propagate only a subset of the messages. A single
propagation can propagate messages in both the buffered queue portion and
persistent queue portion of a queue. Also, a single propagation can propagate LCRs
and user messages. You can use rules to control which messages in the source
queue are propagated to the destination queue and which messages are discarded.

Chapter 3
Message Propagation Between Queues

3-6

Depending on how you set up your Oracle Streams environment, changes could be
sent back to the site where they originated. You must ensure that your environment is
configured to avoid cycling a change in an endless loop. You can use Oracle Streams
tags to avoid such a change cycling loop.

The following sections describe propagations in more detail:

• Propagation Rules

• Queue-to-Queue Propagations

• Ensured Message Delivery

• Directed Networks

See Also:

• "Managing Oracle Streams Propagations and Propagation Jobs"

• Advanced Propagation Concepts

• Oracle Database Advanced Queuing User's Guide for detailed information
about the propagation infrastructure in Oracle Streams AQ

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams tags

3.3.1 Propagation Rules
A propagation either propagates or discards messages based on rules that you define.
For LCRs, each rule specifies the database objects and types of changes for which the
rule evaluates to TRUE. For user messages, you can create rules to control propagation
behavior for specific types of messages. You can place these rules in a positive rule
set or a negative rule set used by the propagation.

If a rule evaluates to TRUE for a message, and the rule is in the positive rule set for a
propagation, then the propagation propagates the change. If a rule evaluates to TRUE
for a message, and the rule is in the negative rule set for a propagation, then the
propagation discards the change. If a propagation has both a positive and a negative
rule set, then the negative rule set is always evaluated first.

You can specify propagation rules for LCRs at the following levels:

• A table rule propagates or discards either row changes resulting from DML
changes or DDL changes to a particular table. Subset rules are table rules that
include a subset of the row changes to a particular table.

• A schema rule propagates or discards either row changes resulting from DML
changes or DDL changes to the database objects in a particular schema.

• A global rule propagates or discards either all row changes resulting from DML
changes or all DDL changes in the source queue.

A queue subscriber that specifies a condition causes the system to generate a rule.
The rule sets for all subscribers to a queue are combined into a single system-
generated rule set to make subscription more efficient.

Chapter 3
Message Propagation Between Queues

3-7

See Also:

• Advanced Rule Concepts

• How Rules Are Used in Oracle Streams

• Managing Rules

3.3.2 Queue-to-Queue Propagations
A propagation can be queue-to-queue or queue-to-database link (queue-to-dblink). A
queue-to-queue propagation always has its own exclusive propagation job to
propagate messages from the source queue to the destination queue. Because each
propagation job has its own propagation schedule, the propagation schedule of each
queue-to-queue propagation can be managed separately. Even when multiple queue-
to-queue propagations use the same database link, you can enable, disable, or set the
propagation schedule for each queue-to-queue propagation separately. Propagation
jobs are described in detail later in this chapter.

A single database link can be used by multiple queue-to-queue propagations. The
database link must be created with the service name specified as the global name of
the database that contains the destination queue.

In contrast, a queue-to-dblink propagation shares a propagation job with other queue-
to-dblink propagations from the same source queue that use the same database link.
Therefore, these propagations share the same propagation schedule, and any change
to the propagation schedule affects all of the queue-to-dblink propagations from the
same source queue that use the database link.

See Also:

• "Queues and Oracle Real Application Clusters"

• "Propagation Jobs"

• Managing Staging and Propagation

3.3.3 Ensured Message Delivery
A captured LCR is propagated successfully to a destination queue when both of the
following actions are completed:

• The message is processed by all relevant apply processes associated with the
destination queue.

• The message is propagated successfully from the source queue to all of its
relevant destination queues.

Any other type of message is propagated successfully to a destination queue when the
enqueue into the destination queue is committed. Other types of messages include
buffered LCRs, buffered user messages, persistent LCRs, and buffered user
messages.

Chapter 3
Message Propagation Between Queues

3-8

When a message is successfully propagated between two queues, the destination
queue acknowledges successful propagation of the message. If the source queue is
configured to propagate a message to multiple destination queues, then the message
remains in the source queue until each destination queue has sent confirmation of
message propagation to the source queue. When each destination queue
acknowledges successful propagation of the message, and all local consumers in the
source queue database have consumed the message, the source queue can drop the
message.

This confirmation system ensures that messages are always propagated from the
source queue to the destination queue, but, in some configurations, the source queue
can become larger than an optimal size. When a source queue increases, it uses more
System Global Area (SGA) memory and might use more disk space.

There are two common reasons for a source queue to become larger:

• If a message cannot be propagated to a specified destination queue for some
reason (such as a network problem), then the message remains in the source
queue until the destination queue becomes available. This situation could cause
the source queue to become large. So, you should monitor your queues regularly
to detect problems early.

• Suppose a source queue is propagating messages captured by a capture process
or synchronous capture to multiple destination queues, and one or more
destination databases acknowledge successful propagation of messages much
more slowly than the other queues. In this case, the source queue can grow
because the slower destination databases create a backlog of messages that have
already been acknowledged by the faster destination databases. In such an
environment, consider creating more than one capture process or synchronous
capture to capture changes at the source database. Doing so lets you use one
source queue for the slower destination databases and another source queue for
the faster destination databases.

See Also:

– Oracle Streams Information Capture

– "Monitoring Queues and Messaging"

3.3.4 Directed Networks
A directed network is one in which propagated messages pass through one or more
intermediate databases before arriving at a destination database. A message might or
might not be processed by an apply process at an intermediate database. Using
Oracle Streams, you can choose which messages are propagated to each destination
database, and you can specify the route that messages will traverse on their way to a
destination database. Figure 3-2 shows an example of a directed networks
environment.

Chapter 3
Message Propagation Between Queues

3-9

Figure 3-2 Example Directed Networks Environment

Destination Database

in New York

Queue

Destination Database

in Miami

Queue

Intermediate Database

in Chicago

Queue

This queue is:

•	Destination queue

	 for the source queue

	 in Hong Kong.

•	Source queue for the

	 destination queues in

	 New York and Miami.

Source Database

in Hong Kong

Queue Propagate�
Messages

Propagate

Messages

Propagate

Messages

The advantage of using a directed network is that a source database does not need to
have a physical network connection with a destination database. So, if you want
messages to propagate from one database to another, but there is no direct network
connection between the computers running these databases, then you can still
propagate the messages without reconfiguring your network, if one or more
intermediate databases connect the source database to the destination database.

If you use directed networks, and an intermediate site goes down for an extended
period of time or is removed, then you might need to reconfigure the network and the
Oracle Streams environment.

3.3.4.1 Queue Forwarding and Apply Forwarding
An intermediate database in a directed network can propagate messages using either
queue forwarding or apply forwarding. Queue forwarding means that the messages
being forwarded at an intermediate database are the messages received by the
intermediate database. The source database for a message is the database where the
message originated.

Apply forwarding means that the messages being forwarded at an intermediate
database are first processed by an apply process. These messages are then
recaptured by a capture process or a synchronous capture at the intermediate
database and forwarded. When you use apply forwarding, the intermediate database
becomes the new source database for the messages. Either a capture process
recaptures the messages from the redo log generated at the intermediate database, or
a synchronous capture configured at the intermediate database recaptures the
messages.

Consider the following differences between queue forwarding and apply forwarding
when you plan your Oracle Streams environment:

• With queue forwarding, a message is propagated through the directed network
without being changed, assuming there are no capture or propagation
transformations. With apply forwarding, messages are applied and recaptured at

Chapter 3
Message Propagation Between Queues

3-10

intermediate databases and can be changed by conflict resolution, apply handlers,
or apply transformations.

• With queue forwarding, a destination database must have a separate apply
process to apply messages from each source database. With apply forwarding,
fewer apply processes might be required at a destination database because
recapturing of messages at intermediate databases can result in fewer source
databases when changes reach a destination database.

• With queue forwarding, one or more intermediate databases are in place between
a source database and a destination database. With apply forwarding, because
messages are recaptured at intermediate databases, the source database for a
message can be the same as the intermediate database connected directly with
the destination database.

A single Oracle Streams environment can use a combination of queue forwarding and
apply forwarding.

3.3.4.1.1 Advantages of Queue Forwarding
Queue forwarding has the following advantages compared with apply forwarding:

• Performance might be improved because a message is captured only once.

• Less time might be required to propagate a message from the database where the
message originated to the destination database, because the messages are not
applied and recaptured at one or more intermediate databases. In other words,
latency might be lower with queue forwarding.

• The origin of a message can be determined easily by running the
GET_SOURCE_DATABASE_NAME member procedure on the LCR contained in the
message. If you use apply forwarding, then determining the origin of a message
requires the use of Oracle Streams tags and apply handlers.

• Parallel apply might scale better and provide more throughput when separate
apply processes are used because there are fewer dependencies, and because
there are multiple apply coordinators and apply reader processes to perform the
work.

• If one intermediate database goes down, then you can reroute the queues and
reset the start SCN at the capture site to reconfigure end-to-end capture,
propagation, and apply.

If you use apply forwarding, then substantially more work might be required to
reconfigure end-to-end capture, propagation, and apply of messages, because the
destination database(s) downstream from the unavailable intermediate database
were using the SCN information of this intermediate database. Without this SCN
information, the destination databases cannot apply the changes properly.

3.3.4.1.2 Advantages of Apply Forwarding
Apply forwarding has the following advantages compared with queue forwarding:

• An Oracle Streams environment might be easier to configure because each
database can apply changes only from databases directly connected to it, rather
than from multiple remote source databases.

• In a large Oracle Streams environment where intermediate databases apply
changes, the environment might be easier to monitor and manage because fewer
apply processes might be required. An intermediate database that applies

Chapter 3
Message Propagation Between Queues

3-11

changes must have one apply process for each source database from which it
receives changes. In an apply forwarding environment, the source databases of an
intermediate database are only the databases to which it is directly connected. In a
queue forwarding environment, the source databases of an intermediate database
are all of the other source databases in the environment, whether they are directly
connected to the intermediate database or not.

See Also:

• Oracle Streams Information Consumption

• Oracle Streams Extended Examples for an example of an environment
that uses queue forwarding

• Oracle Streams Replication Administrator's Guide for an example of an
environment that uses apply forwarding

Chapter 3
Message Propagation Between Queues

3-12

4
Oracle Streams Information Consumption

The following topics contain information about consuming information with Oracle
Streams.

• Overview of Information Consumption with Oracle Streams

• Implicit Consumption with an Apply Process

• Explicit Consumption with a Messaging Client

• Explicit Consumption with Manual Dequeue

See Also:

• Managing Oracle Streams Information Consumption

• Monitoring Oracle Streams Apply Processes

• Troubleshooting Apply

4.1 Overview of Information Consumption with Oracle
Streams

Consuming information with Oracle Streams means dequeuing a message that
contains the information from a queue and either processing or discarding the
message. The consumed information can describe a database change, or it can be
any other type of information. A dequeued message might have originated at the same
database where it is dequeued, or it might have originated at a different database.

This section contains these topics:

• Ways to Consume Information with Oracle Streams

• Types of Information Consumed with Oracle Streams

• Summary of Information Consumption Options

4.1.1 Ways to Consume Information with Oracle Streams
The following are ways to consume information with Oracle Streams:

• Implicit Consumption

• Explicit Consumption

4-1

4.1.1.1 Implicit Consumption
With implicit consumption, an apply process automatically dequeues either captured
LCRs, persistent LCRs, or persistent user messages. The queue must be an
ANYDATA queue. If a message contains a logical change record (LCR), then the
apply process can either apply it directly or call a user-specified procedure for
processing. If the message does not contain an LCR, then the apply process can
invoke a user-specified procedure called a message handler to process it.

Note:

Captured LCRs must be dequeued by an apply process. However, if an apply
process or a user procedure called by an apply process re-enqueues a
captured LCR, then the LCR becomes a persistent LCR and can be explicitly
dequeued.

4.1.1.2 Explicit Consumption
With explicit consumption, messages are dequeued in one of the following ways:

• A messaging client explicitly dequeues persistent LCRs or persistent user
messages. The queue must be an ANYDATA queue. A messaging client dequeues
messages when it is invoked by an application, and the application processes the
messages after the messaging client dequeues them.

• An application explicitly dequeues messages manually and processes them. An
application can dequeue the following types of messages: persistent LCRs,
persistent user messages, buffered LCRs, and buffered user messages. The
queue from which the messages are dequeued can be an ANYDATA queue or a
typed queue.

4.1.2 Types of Information Consumed with Oracle Streams
The following types of information can be consumed with Oracle Streams:

• Captured LCRs

• Persistent LCRs

• Buffered LCRs

• Persistent User Messages

• Buffered User Messages

See Also:

• "Types of Information Captured with Oracle Streams"

• "Summary of Information Capture Options with Oracle Streams"

Chapter 4
Overview of Information Consumption with Oracle Streams

4-2

4.1.2.1 Captured LCRs
A captured LCR is a logical change record (LCR) that was captured implicitly by a
capture process and enqueued into the buffered queue portion of an ANYDATA
queue.

Only an apply process can dequeue captured LCRs. After dequeue, an apply process
can apply the captured LCR directly to make a database change, discard the captured
LCR, send the captured LCR to an apply handler for processing, or re-enqueue the
captured LCR into a persistent queue.

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• "Implicit Consumption with an Apply Process"

4.1.2.2 Persistent LCRs
A persistent LCR is a logical change record (LCR) that was enqueued into the
persistent queue portion of an ANYDATA queue. A persistent LCR can be enqueued in
one of the following ways:

• Captured implicitly by a synchronous capture and enqueued

• Constructed explicitly by an application and enqueued

• Dequeued by an apply process and enqueued by the same apply process using
the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package

Persistent LCRs can be dequeued by an apply process, a messaging client, or an
application.

See Also:

• "Implicit Capture with Synchronous Capture"

• "Explicit Capture by Applications"

• "Implicit Consumption with an Apply Process"

• "Explicit Consumption with a Messaging Client"

• "Explicit Consumption with Manual Dequeue"

4.1.2.3 Buffered LCRs
A buffered LCR is a logical change record (LCR) that was constructed explicitly by an
application and enqueued into the buffered queue portion of an ANYDATA queue. Only
an application can dequeue buffered LCRs.

Chapter 4
Overview of Information Consumption with Oracle Streams

4-3

See Also:

• "Explicit Capture by Applications"

• "Explicit Consumption with Manual Dequeue"

4.1.2.4 Persistent User Messages
A persistent user message is a non-LCR message of a user-defined type that was
enqueued into a persistent queue. A persistent user message can be enqueued in one
of the following ways:

• Created explicitly by an application and enqueued

• Dequeued by an apply process and enqueued by the same apply process using
the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package

Apply processes and messaging clients can only dequeue persistent user messages
that are in an ANYDATA queue. Applications can dequeue persistent user messages
that are in an ANYDATA queue or a typed queue.

See Also:

• "Explicit Capture by Applications"

• "Implicit Consumption with an Apply Process"

• "Explicit Consumption with a Messaging Client"

• "Explicit Consumption with Manual Dequeue"

4.1.2.5 Buffered User Messages
A buffered user message is a non-LCR message of a user-defined type that was
created explicitly by an application and enqueued into a buffered queue. A buffered
user message can be enqueued into the buffered queue portion of an ANYDATA
queue or a typed queue. Only an application can dequeue buffered user messages.

See Also:

• "Explicit Capture by Applications"

• "Explicit Consumption with Manual Dequeue"

4.1.3 Summary of Information Consumption Options
Table 4-1 summarizes the information consumption options available with Oracle
Streams.

Chapter 4
Overview of Information Consumption with Oracle Streams

4-4

Table 4-1 Information Consumption Options with Oracle Streams

Consumption Type Dequeues Messages Message Types Use When

Implicit Consumption
with an Apply Process

Continually and
automatically when
enabled

Captured LCRs

Persistent LCRs

Persistent user
messages

You want to dequeue and process
captured LCRs.

You want to dequeue persistent LCRs or
persistent user messages continually and
automatically from the persistent queue
portion of an ANYDATA queue.

You want to dequeue LCRs that must be
applied directly to database objects to
make database changes.

You want to dequeue messages and
process them with an apply handler.

Explicit Consumption
with a Messaging Client

When invoked by an
application

Persistent LCRs

Persistent user
messages

You want to use a simple method for
dequeuing on demand persistent LCRs or
persistent user messages from the
persistent queue portion of an ANYDATA
queue.

You want to send messages to an
application for processing after dequeue.

Explicit Consumption
with Manual Dequeue

Manually according to
application logic

Persistent LCRs

Buffered LCRs

Persistent user
messages

Buffered user
messages

You want an application to dequeue
manually persistent LCRs or buffered
LCRs from an ANYDATA queue and
process them.

You want an application to dequeue
manually persistent user messages or
buffered user messages from an ANYDATA
queue or a typed queue and process
them.

Note:

A single database can use any combination of the information consumption
options summarized in the table.

See Also:

• Oracle Streams Information Capture

• Oracle Database Advanced Queuing User's Guide for information about
enqueuing messages

• Oracle Streams Replication Administrator's Guide for more information
about managing LCRs

Chapter 4
Overview of Information Consumption with Oracle Streams

4-5

4.2 Implicit Consumption with an Apply Process
This section explains the concepts related to Oracle Streams apply processes.

This section contains these topics:

• Introduction to the Apply Process

• Apply Process Rules

• Types of Messages That Can Be Processed with an Apply Process

• Message Processing Options for an Apply Process

• The Source of Messages Applied by an Apply Process

• Data Types Applied

• Automatic Data Type Conversion During Apply

• SQL Generation

• Oracle Streams Apply Processes and RESTRICTED SESSION

• Apply Process Subcomponents

• Apply User

• Apply Process Parameters

• Persistent Apply Process Status Upon Database Restart

• The Error Queue

4.2.1 Introduction to the Apply Process
An apply process is an optional Oracle background process that dequeues messages
from a specific queue and either applies each message directly, discards it, passes it
as a parameter to an apply handler, or re-enqueues it. These messages can be logical
change records (LCRs) or user messages.

Note:

An apply process can only dequeue messages from an ANYDATA queue, not
a typed queue.

4.2.2 Apply Process Rules
An apply process applies messages based on rules that you define. For LCRs, each
rule specifies the database objects and types of changes for which the rule evaluates
to TRUE. For user messages, you can create rules to control apply process behavior for
specific types of messages. You can place these rules in the positive rule set or
negative rule set for the apply process.

If a rule evaluates to TRUE for a message, and the rule is in the positive rule set for an
apply process, then the apply process dequeues and processes the message. If a rule
evaluates to TRUE for a message, and the rule is in the negative rule set for an apply

Chapter 4
Implicit Consumption with an Apply Process

4-6

process, then the apply process discards the message. If an apply process has both a
positive and a negative rule set, then the negative rule set is always evaluated first.

You can specify apply process rules for LCRs at the following levels:

• A table rule applies or discards either row changes resulting from DML changes or
DDL changes to a particular table. A subset rule is a table rule that include a
subset of the row changes to a particular table.

• A schema rule applies or discards either row changes resulting from DML changes
or DDL changes to the database objects in a particular schema.

• A global rule applies or discards either all row changes resulting from DML
changes or all DDL changes in the queue associated with an apply process.

See Also:

• Advanced Rule Concepts

• How Rules Are Used in Oracle Streams

• " Managing Rules"

4.2.3 Types of Messages That Can Be Processed with an Apply
Process

Apply processes can dequeue the following types of messages:

• Captured LCRs: A logical change record (LCR) that was captured implicitly by a
capture process and enqueued into the buffered queue portion of an ANYDATA
queue. In some situations, an optimization enables capture processes to send
LCRs to apply processes more efficiently. This optimization is called combined
capture and apply.

• Persistent LCRs: An LCR that was captured implicitly by a synchronous capture,
constructed and enqueued persistently by an application, or enqueued by an apply
process. A persistent LCR is enqueued into the persistent queue portion of an
ANYDATA queue.

• Persistent user messages: A non-LCR message of a user-defined type that was
enqueued explicitly by an application or an apply process. A persistent user
message is enqueued into the persistent queue portion of an ANYDATA queue. In
addition, a user message can be enqueued into an ANYDATA queue or a typed
queue, but an apply process can dequeue only user messages in an ANYDATA
queue.

A single apply process cannot dequeue both from the buffered queue and persistent
queue portions of a queue. If messages in both the buffered queue and persistent
queue must be processed by an apply process, then the destination database must
have at least two apply processes to process the messages.

Chapter 4
Implicit Consumption with an Apply Process

4-7

See Also:

• "Introduction to Message Staging and Propagation"

• Oracle Streams Replication Administrator's Guide for information about
creating an apply process

• Combined Capture and Apply Optimization

4.2.4 Message Processing Options for an Apply Process
An apply process can either apply messages directly or send messages to an apply
handler for processing. Your options for message processing depend on whether the
message received by an apply process is a row logical change record (row LCR), a
DDL logical change record (DDL LCR), or a user message.

Figure 4-1 shows the message processing options for an apply process and which
options can be used for different types of messages.

Figure 4-1 Apply Process Message Processing Options

Database Objects

Queue

LCR

LCR

User Message

User Message

LCR

User Message

LCR

LCR

.

.

.

Message

Handler

Procedure

LCRs or User

Messages

User�
Messages

Apply

LCRs

DML

Handler

Procedure

DDL

Handler

Procedure

Row

LCRs

DDL

LCRs

Statement

Handler

Row

LCRs

Precommit

Handler

Procedure

LCRs�
or User�
Messages

Apply

Process�

By default, an apply process applies LCRs directly. The apply process executes the
change in the LCR on the database object identified in the LCR. The apply process
either successfully applies the change in the LCR or, if a conflict or an apply error is
encountered, tries to resolve the error with a conflict handler or a user-specified
procedure called an error handler.

If a conflict handler can resolve the conflict, then it either applies the LCR or it discards
the change in the LCR. If an error handler can resolve the error, then it should apply
the LCR, if appropriate. An error handler can resolve an error by modifying the LCR
before applying it. If the conflict handler or error handler cannot resolve the error, then
the apply process places the transaction, and all LCRs associated with the transaction,
into the error queue.

Instead of applying LCRs directly, you can process LCRs in a customized way with
apply handlers. When you use an apply handler, an apply process passes a message
to a collection of SQL statements or to a user-defined PL/SQL procedure for
processing. An apply handler can process the message in a customized way.

Chapter 4
Implicit Consumption with an Apply Process

4-8

An apply process cannot apply user messages directly. An apply process that
dequeues user messages must have a message handler to process the user
messages.

There are several types of apply handlers. This section uses the following categories
to describe apply handlers:

Table 4-2 Characteristics of Apply Handlers

Category Description

Mechanism The means by which the apply handler processes messages.
The mechanism for an apply handler is either SQL statements or
a user-defined PL/SQL procedure.

Type of message The type of message processed by the apply handler. The
message type is either row logical change record (row LCR),
DDL logical change record (DDL LCR), persistent user message,
or transaction control directive.

Message creator The component that creates the messages processed by the
apply handler. The message creator is either a capture process,
a synchronous capture, or an application.

Scope The level at which the apply handler is set. The scope is either
one operation on one table or all operations on all database
objects.

Number allowed for each
apply process

The number of apply handlers of a specific type allowed for each
apply process. The number allowed is either one or many.

The following sections describe different types of apply handlers:

• DML Handlers

• DDL Handlers

• Message Handlers

• Precommit Handlers

• Considerations for Apply Handlers

Note:

An apply process cannot apply non-LCR messages directly. Each user
message dequeued by an apply process must be processed with a message
handler.

4.2.4.1 DML Handlers
DML handlers process row logical change records (row LCRs) dequeued by an apply
process. There are two types of DML handlers: statement DML handlers and
procedure DML handlers. A statement DML handler uses a collection of SQL
statements to process row LCRs, while a procedure DML handler uses a PL/SQL
procedure to process row LCRs.

The following sections describe DML handlers and error handlers:

Chapter 4
Implicit Consumption with an Apply Process

4-9

• Statement DML Handlers

• Procedure DML Handlers

4.2.4.1.1 Statement DML Handlers
A statement DML handler has the following characteristics:

• Mechanism: A collection of SQL statements

• Type of message: Row LCR

• Message creator: Capture process, synchronous capture, or application

• Scope: One operation on one table

• Number allowed for each apply process: Many, and many can be specified for the
same operation on the same table

Each SQL statement included in a statement DML handler has a unique execution
sequence number. When a statement DML handler is invoked, it executes its
statements in order from the statement with the lowest execution sequence number to
the statement with the highest execution sequence number. An execution sequence
number can be a positive number, a negative number, or a decimal number.

For each table associated with an apply process, you can set a separate statement
DML handler to process each of the following types of operations in row LCRs:

• INSERT

• UPDATE

• DELETE

A statement DML handler is invoked when the apply process dequeues a row LCR
that performs the specified operation on the specified table. For example, the
hr.employees table can have one statement DML handler to process INSERT operations
and a different statement DML handler to process UPDATE operations. Alternatively, the
hr.employees table can use the same statement DML handler for each type of
operation.

You can specify multiple statement DML handlers for the same operation on the same
table. In this case, these statement DML handlers can execute in any order, and each
statement DML handler receives a copy of the original row LCR that was dequeued by
the apply process.

A SQL statement in a statement DML handler can include the following types of
operations in row LCRs:

• INSERT

• UPDATE

• DELETE

• MERGE

For example, a SQL statement in a statement DML handler can process a row LCR
that updates the hr.employees table, and this statement can include an INSERT
operation that inserts a row into a different table.

Statement DML handlers can run valid DML statements on row LCRs, but statement
DML handlers cannot modify the column values in row LCRs. However, statement
DML handlers can use SQL to insert a row or update a row with column values that

Chapter 4
Implicit Consumption with an Apply Process

4-10

are different than the ones in the row LCR. Also, statement DML handlers should
never commit and never roll back.

To execute a row LCR in a statement DML handler, invoke the EXECUTE member
procedure for the row LCR. A statement that runs the EXECUTE member procedure can
be placed anywhere in the execution sequence order of the statement DML handler. It
is not necessary to execute a row LCR unless the goal is to apply the changes in the
row LCR to a table in addition to performing any other SQL statements in the
statement DML handler.

To add a statement to a statement DML handler, use the ADD_STMT_TO_HANDLER
procedure in the DBMS_STREAMS_HANDLER_ADM package. To add a statement DML handler
to an apply process, use the ADD_STMT_HANDLER procedure in the DBMS_APPLY_ADM
package. You can either add a statement DML handler to a specific apply process, or
you can add a statement DML handler as a general statement DML handler that is
used by all apply processes in the database. If a statement DML handler for an
operation on a table is used by a specific apply process, and another statement DML
handler is a general handler for the same operation on the same table, then both
handlers are invoked when an apply process dequeues a row LCR with the operation
on the table. Each statement DML handler receives the original row LCR, and the
statement DML handlers can execute in any order.

Statement DML handlers are often used to record the changes made to tables.
Statement DML handlers can also perform changes that do not modify column values.
For example, statement DML handlers can change the data type of a column.

Note:

• When you run the ADD_STMT_HANDLER procedure, you specify the object for
which the handler is used. This object does not need to exist at the
destination database when you run the procedure.

• A change handler is a special type of statement DML handler that tracks
table changes and was created by either the
DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure or the
DBMS_APPLY_ADM.SET_CHANGE_HANDLER procedure.

See Also:

• "Managing a Statement DML Handler"

• "Displaying Information About Statement DML Handlers"

• "Row LCRs"

• "Unsupported Data Types for Apply Handlers"

• Using Oracle Streams to Record Table Changes for information about
change handlers

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE member procedure for LCR types

Chapter 4
Implicit Consumption with an Apply Process

4-11

4.2.4.1.2 Procedure DML Handlers
A procedure DML handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of message: Row LCR

• Message creator: Capture process, synchronous capture, or application

• Scope: One operation on one table

• Number allowed for each apply process: Many, but only one can be specified for
the same operation on the same table

For each table associated with an apply process, you can set a separate procedure
DML handler to process each of the following types of operations in row LCRs:

• INSERT

• UPDATE

• DELETE

• LOB_UPDATE

A procedure DML handler is invoked when the apply process dequeues a row LCR
that performs the specified operation on the specified table. For example, the
hr.employees table can have one procedure DML handler to process INSERT operations
and a different procedure DML handler to process UPDATE operations. Alternatively, the
hr.employees table can use the same procedure DML handler for each type of
operation.

The PL/SQL procedure can perform any customized processing of row LCRs. For
example, if you want each insert into a particular table at the source database to result
in inserts into multiple tables at the destination database, then you can create a user-
defined PL/SQL procedure that processes INSERT operations on the table to
accomplish this. Unlike statement DML handlers, procedure DML handlers can modify
the column values in row LCRs.

A procedure DML handler should never commit and never roll back, except to a
named savepoint that the user-defined PL/SQL procedure has established. To execute
a row LCR inside a procedure DML handler, invoke the EXECUTE member procedure for
the row LCR. Also, a procedure DML handler should handle any errors that might
occur during processing.

To set a procedure DML handler, use the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package. You can either set a procedure DML handler for a specific
apply process, or you can set a procedure DML handler to be a general procedure
DML handler that is used by all apply processes in the database. If a procedure DML
handler for an operation on a table is set for a specific apply process, and another
procedure DML handler is a general handler for the same operation on the same table,
then the specific procedure DML handler takes precedence over the general
procedure DML handler.

Typically, procedure DML handlers are used in Oracle Streams replication
environments to perform custom processing of row LCRs, but procedure DML
handlers can be used in nonreplication environments as well. For example, you can
use such handlers to record changes made to database objects without replicating
these changes.

Chapter 4
Implicit Consumption with an Apply Process

4-12

Note:

When you run the SET_DML_HANDLER procedure, you specify the object for which
the handler is used. This object does not need to exist at the destination
database when you run the procedure.

See Also:

• "Row LCRs"

• "Unsupported Data Types for Apply Handlers"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE member procedure for LCR types

• "Managing a DML Handler"

4.2.4.2 Error Handlers
An error handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of message: Row LCR

• Message creator: Capture process, synchronous capture, or application

• Scope: One operation on one table

• Number allowed for each apply process: Many, but only one can be specified for
the same operation on the same table

An error handler is similar to a procedure DML handler. The difference between the
two is that an error handler is invoked only if an apply error results when an apply
process tries to apply a row LCR for the specified operation on the specified table.

You create an error handler in the same way that you create a procedure DML
handler, except that you set the error_handler parameter to TRUE when you run the
SET_DML_HANDLER procedure.

An error handler cannot coexist with a procedure DML handler for the same operation
on the same table. However, an error handler can coexist with a statement DML
handler for the same operation on the same table.

Note:

Statement DML handlers cannot be used as error handlers.

Chapter 4
Implicit Consumption with an Apply Process

4-13

See Also:

• "Row LCRs"

• "Unsupported Data Types for Apply Handlers"

4.2.4.3 DDL Handlers
A DDL handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of message: DDL LCR

• Message creator: Capture process or application

• Scope: All DDL LCRs dequeued by the apply process

• Number allowed for each apply process: One

The user-defined PL/SQL procedure can perform any customized processing of DDL
LCRs. For example, to log DDL changes before applying them, you can create a
procedure that processes DDL operations to accomplish this.

To execute a DDL LCR inside a DDL handler, invoke the EXECUTE member procedure
for the DDL LCR. To associate a DDL handler with a particular apply process, use the
ddl_handler parameter in the CREATE_APPLY or the ALTER_APPLY procedure in the
DBMS_APPLY_ADM package.

Typically, DDL handlers are used in Oracle Streams replication environments to
perform custom processing of DDL LCRs, but these handlers can be used in
nonreplication environments as well. For example, you can use such handlers to
record changes made to database objects without replicating these changes.

See Also:

• "DDL LCRs"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE member procedure for LCR types

• "Managing a DDL Handler" for more information about DDL handlers

4.2.4.4 Message Handlers
A message handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of message: Persistent user message (non-LCR)

• Message creator: Application

• Scope: All user messages dequeued by the apply process

• Number allowed for each apply process: One

Chapter 4
Implicit Consumption with an Apply Process

4-14

A message handler offers advantages in any environment that has applications that
must update one or more remote databases or perform some other remote action.
These applications can enqueue persistent user messages into a queue at the local
database, and Oracle Streams can propagate each persistent user message to the
appropriate queues at destination databases. If there are multiple destinations, then
Oracle Streams provides the infrastructure for automatic propagation and processing
of these messages at these destinations. If there is only one destination, then Oracle
Streams still provides a layer between the application at the source database and the
application at the destination database, so that, if the application at the remote
database becomes unavailable, then the application at the source database can
continue to function normally.

For example, a message handler can convert a persistent user message into an
electronic mail message. In this case, the persistent user message can contain the
attributes you would expect in an electronic mail message, such as from, to, subject,
text_of_message, and so on. After converting a message into an electronic mail
messages, the message handler can send it out through an electronic mail gateway.

You can specify a message handler for an apply process using the message_handler
parameter in the CREATE_APPLY or the ALTER_APPLY procedure in the DBMS_APPLY_ADM
package. An Oracle Streams apply process always assumes that a non-LCR message
has no dependencies on any other messages in the queue. If parallelism is greater
than 1 for an apply process that applies persistent user messages, then these
messages can be dequeued by a message handler in any order. Therefore, if
dependencies exist between these messages in your environment, then Oracle
recommends that you set apply process parallelism to 1.

See Also:

• "Managing the Message Handler for an Apply Process"

4.2.4.5 Precommit Handlers
A precommit handler has the following characteristics:

• Mechanism: A user-defined PL/SQL procedure

• Type of message: Commit directive for transactions that include row LCRs or
persistent user messages

• Message creator: Capture process, synchronous capture, or application

• Scope: All row LCRs with commit directives dequeued by the apply process

• Number allowed for each apply process: One

You can use a precommit handler to audit commit directives for captured LCRs and
transaction boundaries for persistent LCRs and persistent user messages. A commit
directive is a transaction control directive that contains a COMMIT. A precommit handler
is a user-defined PL/SQL procedure that can receive the commit information for a
transaction and process the commit information in any customized way. A precommit
handler can work with a statement DML handler, procedure DML handler, or message
handler.

Chapter 4
Implicit Consumption with an Apply Process

4-15

For example, a precommit handler can improve performance by caching data for the
length of a transaction. This data can include cursors, temporary LOBs, data from a
message, and so on. The precommit handler can release or execute the objects
cached by the handler when a transaction completes.

A precommit handler executes when the apply process commits a transaction. You
can use the commit_serialization apply process parameter to control the commit order
for an apply process.

The following list describes commit directives and transaction boundaries:

• Commit Directives for Captured LCRs: When you are using a capture process,
and a user commits a transaction, the capture process captures an internal
commit directive for the transaction if the transaction contains row LCRs that were
captured by the capture process. The capture process also records the transaction
identifier in each captured LCR in a transaction.

Once enqueued, these commit directives can be propagated to destination
queues, along with the LCRs in a transaction. A precommit handler receives each
commit SCN for these internal commit directives in the queue of an apply process
before they are processed by the apply process.

• Transaction Boundaries for Persistent LCRs Enqueued by Synchronous
Captures: When you are using a synchronous capture, and a user commits a
transaction, the persistent LCRs that were enqueued by the synchronous capture
are organized into a message group. The synchronous capture records the
transaction identifier in each persistent LCR in a transaction.

After persistent LCRs are enqueued by a synchronous capture, the persistent
LCRs in the message group can be propagated to other queues. When an apply
process is configured to process these persistent LCRs, it generates a commit
SCN for all of the persistent LCRs in a message group. The commit SCN values
generated by an individual apply process have no relation to the source
transaction, or to the values generated by any other apply process. A precommit
handler configured for such an apply process receives the commit SCN supplied
by the apply process.

• Transaction Boundaries for Messages Enqueued by Applications: An
application can enqueue persistent LCRs and persistent user messages, as well
as other types of messages. When the user performing these enqueue operations
issues a COMMIT statement to end the transaction, the enqueued persistent LCRs
and persistent user messages are organized into a message group.

When messages that were enqueued by an application are organized into a
message group, the messages in the message group can be propagated to other
queues. When an apply process is configured to process these messages, it
generates a single transaction identifier and commit SCN for all the messages in a
message group. Transaction identifiers and commit SCN values generated by an
individual apply process have no relation to the source transaction, or to the
values generated by any other apply process. A precommit handler configured for
such an apply process receives the commit SCN supplied by the apply process.

Chapter 4
Implicit Consumption with an Apply Process

4-16

See Also:

• "Managing the Precommit Handler for an Apply Process"

• Oracle Database PL/SQL Packages and Types Reference for information
about apply process parameters

4.2.4.6 Considerations for Apply Handlers
The following are considerations for using apply handlers:

• Both statement DML handlers and procedure DML handlers process row LCRs.
Procedure DML handlers require PL/SQL processing while statement DML
handlers do not. Therefore, statement DML handlers typically perform better than
procedure DML handlers. Statement DML handlers also are usually easier to
configure that procedure DML handlers. However, procedure DML handlers can
perform operations that are not possible with a statement DML handler, such as
controlling program flow and trapping errors. In addition, procedure DML handlers
can modify column values in row LCRs while statement DML handlers cannot.

• Statement DML handlers, procedure DML handlers, error handlers, DDL handlers,
and message handlers can execute an LCR by calling the LCR's EXECUTE member
procedure.

• All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the
EXECUTE member procedure of a DDL LCR, then a commit is performed
automatically.

• An apply handler that uses a PL/SQL procedure can set an Oracle Streams
session tag. Statement DML handlers cannot set an Oracle Streams session tag.

• An apply handler that uses a user-defined PL/SQL procedure can call a Java
stored procedure that is published (or wrapped) in a PL/SQL procedure. Statement
DML handlers cannot call a Java stored procedure.

• If an apply process tries to invoke an apply handler that does not exist or is invalid,
then the apply process aborts.

• If an apply handler that uses a PL/SQL procedure invokes a procedure or function
in an Oracle-supplied package, then the user who runs the apply handler must
have direct EXECUTE privilege on the package. It is not sufficient to grant this
privilege through a role. The DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure
grants EXECUTE privilege on all Oracle Streams packages, and other privileges
relevant to Oracle Streams. A statement DML handler cannot invoke a procedure
or function.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE member procedure for LCR types

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams tags

Chapter 4
Implicit Consumption with an Apply Process

4-17

4.2.4.7 Summary of Message Processing Options
The table in this section summarizes the message processing options available when
you are using one or more of the apply handlers described in the previous sections.
Apply handlers are optional for row LCRs and DDL LCRs because an apply process
can apply these messages directly. However, a message handler is required for
processing persistent user messages. In addition, an apply process dequeues a
message only if the message satisfies the rule sets for the apply process. In general, a
message satisfies the rule sets for an apply process if no rules in the negative rule set
evaluate to TRUE for the message, and at least one rule in the positive rule set
evaluates to TRUE for the message.

Table 4-3 summarizes the message processing options for an apply process.

Table 4-3 Summary of Message Processing Options

Message
Processing
Option

Mechanism Type of Message Message Creator Default
Apply
Process
Behavior

Scope of
Handler

Number
Allowed
for Each
Apply
Process

Apply
Message
Directly

Not
applicable

Row LCR or DDL
LCR

Capture process,
synchronous
capture, or
application

Execute DML
or DDL

Not
applicable

Not
applicable

Statement
DML Handler

SQL
statements

Row LCR Capture process,
synchronous
capture, or
application

Execute DML One
operation on
one table

Many, and
many can
be specified
for the
same
operation
on the
same table

Procedure
DML Handler
or Error
Handler

User-defined
PL/SQL
procedure

Row LCR Capture process,
synchronous
capture, or
application

Execute DML One
operation on
one table

Many, but
only one
can be
specified for
the same
operation
on the
same table

DDL Handler User-defined
PL/SQL
procedure

DDL LCR Capture process or
application

Execute DDL Entire apply
process

One

Message
Handler

User-defined
PL/SQL
procedure

Persistent user
message

Application Create error
transaction (if
no message
handler
exists)

Entire apply
process

One

Precommit
Handler

User-defined
PL/SQL
procedure

Commit directive
for transactions
that include row
LCRs or user
messages

Capture process,
synchronous
capture, or
application

Commit
transaction

Entire apply
process

One

Chapter 4
Implicit Consumption with an Apply Process

4-18

In addition to the message processing options described in this section, you can use
the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package to instruct an
apply process to enqueue messages into the persistent queue portion of a specified
destination queue. Also, you can control message execution using the SET_EXECUTE
procedure in the DBMS_APPLY_ADM package.

See Also:

• How Rules Are Used in Oracle Streams

• "Specifying That Apply Processes Enqueue Messages"

• "Specifying Execute Directives for Apply Processes"

4.2.5 The Source of Messages Applied by an Apply Process
The following list describes the source database for different types of messages that
are processed by an apply process:

• For a captured LCR, the source database is the database where the change
encapsulated in the LCR was generated in the redo log.

• For a persistent LCR captured by a synchronous capture, the source database is
the database where the synchronous capture that captured the row LCR is
configured.

• For a persistent LCR constructed and enqueued by an application, the source
database is the database where the message was first enqueued.

• For a user message, the source database is the database where the message
was first enqueued.

A single apply process can apply user messages that originated at multiple databases.
However, a single apply process can apply captured LCRs from only one source
database. Similarly, a single apply process can apply persistent LCRs captured by a
synchronous capture from only one source database. Applying these LCRs requires
knowledge of the dependencies, meaningful transaction ordering, and transactional
boundaries at the source database.

Captured LCRs from multiple databases can be sent to a single destination queue.
The same is true for persistent LCRs captured by a synchronous capture. However, if
a single queue contains these LCRs from multiple source databases, then there must
be multiple apply processes retrieving these LCRs. Each of these apply processes
should be configured to receive messages from exactly one source database using
rules. Oracle recommends that you use a separate ANYDATA queue for messages from
each source database.

Also, each apply process can apply captured LCRs from only one capture process. If
multiple capture processes are running on a source database, and LCRs from more
than one of these capture processes are applied at a destination database, then there
must be one apply process to apply changes from each capture process. In such an
environment, Oracle recommends that each ANYDATA queue used by a capture process,
propagation, or apply process have captured LCRs from at most one capture process
from a particular source database. A queue can contain LCRs from more than one

Chapter 4
Implicit Consumption with an Apply Process

4-19

capture process if each capture process is capturing changes that originated at a
different source database.

The same restriction applies to persistent LCRs captured by multiple synchronous
captures at the same source database. Store these LCRs in separate ANYDATA queues,
and use a separate apply process to apply the LCRs from each synchronous capture.

Note:

Captured LCRs are in the buffered queue portion of a queue while persistent
LCRs are in the persistent queue portion of a queue. Therefore, a single apply
process cannot apply both captured LCRs and persistent LCRs.

See Also:

• "Types of Messages That Can Be Processed with an Apply Process"

4.2.6 Data Types Applied
When applying row LCRs resulting from DML changes to tables, an apply process
applies changes made to columns of the following data types:

• VARCHAR2

• NVARCHAR2

• NUMBER

• FLOAT

• LONG

• DATE

• BINARY_FLOAT

• BINARY_DOUBLE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• RAW

• LONG RAW

• CHAR

• NCHAR

• CLOB with BASICFILE or SECUREFILE storage

Chapter 4
Implicit Consumption with an Apply Process

4-20

• NCLOB with BASICFILE or SECUREFILE storage

• BLOB with BASICFILE or SECUREFILE storage

• UROWID

• XMLType stored as CLOB, object relationally, or as binary XML

Note:

• Oracle Streams capture processes can only capture changes to XMLType
columns that are stored as CLOBs. However, apply processes can apply
these captured LCRs to XMLType columns that are stored as CLOBs, object
relationally, or as binary XML.

• Apply processes do not support extended data types introduced in Oracle
Database 12c.

• XMLType stored as a CLOB is deprecated in this release.

See Also:

• "Listing Database Objects and Columns Not Compatible with Apply
Processes"

• "Unsupported Data Types for Apply Processes"

• How Rules Are Used in Oracle Streams

• "Data Types Captured by Capture Processes"

• Oracle Database SQL Language Reference for more information about
these data types

4.2.7 Automatic Data Type Conversion During Apply
During apply, an apply process automatically converts certain data types when there is
a mismatch between the data type of a column in the row logical change record (row
LCR) and the data type of the corresponding column in a table.

Table 4-4 shows which data type combinations are converted automatically during
apply.

Table 4-4 Data Type Combinations Converted Automatically During Apply

Data Types To CHAR To NCHAR To
VARCHAR2

To
NVARCHAR2

To CLOB To BLOB To DATE To
TIMESTAMP

From CHAR Not
Applicable

Yes Yes Yes Yes No No No

From NCHAR Yes Not
Applicable

Yes Yes Yes No No No

Chapter 4
Implicit Consumption with an Apply Process

4-21

Table 4-4 (Cont.) Data Type Combinations Converted Automatically During Apply

Data Types To CHAR To NCHAR To
VARCHAR2

To
NVARCHAR2

To CLOB To BLOB To DATE To
TIMESTAMP

From
VARCHAR2

Yes Yes Not
Applicable

Yes Yes No No No

From
NVARCHAR2

Yes Yes Yes Not
Applicable

Yes No No No

From
NUMBER

Yes Yes Yes Yes No No No No

From LONG No No No No Yes No No No

From LONG
RAW

No No No No No Yes Yes No

From RAW No No No No No Yes Yes No

From DATE No No No No No No Not
Applicable

Yes

From
TIMESTAMP

No No No No No No Yes Not
Applicable

An apply process automatically performs data type conversion for a data type
combination when Table 4-4 specifies "Yes" for the combination. An apply process
does not perform data type conversion for a data type combination when Table 4-4
specifies "No" for the combination. For example, an apply process automatically
converts a CHAR to an NCHAR, but it does not convert a CHAR to a BLOB.

Also, if the corresponding table column is not large enough to hold the converted string
from a row LCR column, then the apply process raises an error.

The following sections provide more information about automatic data type conversion
during apply:

• Automatic Trimming of Character Data Types During Apply

• Automatic Conversion and LOB Data Types

Note:

An apply process must be part of Oracle Database 11g Release 1 (11.1.0.7)
or later to perform automatic data type conversion. However, an apply process
can convert columns in row LCRs that were captured or constructed on an
earlier Oracle Database release.

See Also:

Oracle Database SQL Language Reference for more information about data
types

Chapter 4
Implicit Consumption with an Apply Process

4-22

4.2.7.1 Automatic Trimming of Character Data Types During Apply
The rtrim_on_implicit_conversion apply process parameter determines whether the
apply process trims data when it converts a CHAR or NCHAR to a VARCHAR2, NVARCHAR2, or
CLOB. When this parameter is set to Y, the apply process automatically removes blank
padding from the right end of a column during data type conversion. When this
parameter is set to N, the apply process preserves blank padding during data type
conversion.

Consider the following example:

• A row LCR contains 'abc' for a CHAR(10) column.

• The corresponding table column for the row LCR is NVARCHAR2(10).

If the rtrim_on_implicit_conversion apply process parameter is set to Y, the apply
process inserts 'abc' into the table column and trims the padding after these
characters. If the rtrim_on_implicit_conversion apply process parameter is set to N,
then the apply process inserts 'abc' into the table column, and the remaining space in
the column is filled with blanks.

See Also:

Oracle Database PL/SQL Packages and Types Reference

4.2.7.2 Automatic Conversion and LOB Data Types
Procedure DML handlers and error handlers can use LOB assembly for data that has
been converted from LONG to CLOB or from LONG RAW to BLOB.

See Also:

Oracle Streams Replication Administrator's Guide

4.2.8 SQL Generation
SQL generation is the ability to generate the SQL statement required to perform the
change encapsulated in a row logical change record (row LCR). Apply processes can
generate the SQL statement necessary to perform the insert, update, or delete
operation in a row LCR.

This section contains these topics:

• Interfaces for Performing SQL Generation

• SQL Generation Formats

• SQL Generation and Data Types

• SQL Generation and Character Sets

• Sample Generated SQL Statements

Chapter 4
Implicit Consumption with an Apply Process

4-23

Note:

This section describes using SQL generation with the PL/SQL interface. You
can also use SQL generation with XStream interfaces.

See Also:

• "Creating a Procedure DML Handler" for an example of a procedure DML
handler that uses SQL generation

• Oracle Database XStream Guide for information about using SQL
generation with XStream

4.2.8.1 Interfaces for Performing SQL Generation
You can use the GET_ROW_TEXT and GET_WHERE_CLAUSE member procedures for row LCRs
to perform SQL generation. The PL/SQL interface generates SQL in a CLOB data type.

See Also:

Oracle Database PL/SQL Packages and Types Reference

4.2.8.2 SQL Generation Formats
SQL statement can be generated in one of two formats: inline values or bind variables.
Use inline values when the returned SQL statement is relatively small. For larger SQL
statements, use bind variables. In this case, the bind variables are passed in a
separate list that includes pointers to both old and new column values.

For information about using bind variables with each interface, see the documentation
about the GET_ROW_TEXT and GET_WHERE_CLAUSE row LCR member procedures in Oracle
Database PL/SQL Packages and Types Reference.

Note:

For generated SQL statements with the values inline, SQL injection is
possible. SQL injection is a technique for maliciously exploiting applications
that use client-supplied data in SQL statements, thereby gaining unauthorized
access to a database in order to view or manipulate restricted data. Oracle
strongly recommends using bind variables if you plan to execute the
generated SQL statement. See Oracle Database PL/SQL Language
Reference for more information about SQL injection.

Chapter 4
Implicit Consumption with an Apply Process

4-24

4.2.8.3 SQL Generation and Data Types
SQL generation supports the following data types:

• VARCHAR2

• NVARCHAR2

• NUMBER

• FLOAT

• DATE

• BINARY_FLOAT

• BINARY_DOUBLE

• LONG

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• RAW

• LONG RAW

• CHAR

• NCHAR

• CLOB with BASICFILE storage

• NCLOB with BASICFILE storage

• BLOB with BASICFILE storage

• XMLType stored as CLOB

Note:

SQL generation does not support extended data types introduced in Oracle
Database 12c.

4.2.8.3.1 SQL Generation and Automatic Data Type Conversion
An apply process performs implicit data type conversion where it is possible, and the
generated SQL follows ANSI standards where it is possible. The following are
considerations for automatic data type conversions:

• NULL is specified as "NULL".

• Single quotation marks are converted into double quotation marks for the following
data types when they are inline values: CHAR, VARCHAR2, NVARCHAR2, NCHAR, CLOB, and
NCLOB.

Chapter 4
Implicit Consumption with an Apply Process

4-25

• LONG data is converted into CLOB data.

• LONG RAW data is converted into BLOB data.

4.2.8.3.2 SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types
For INSERT and UPDATE operations on LOB columns, an apply process automatically
assembles the LOB chunks using LOB assembly. For these operations, the generated
SQL includes a non-NULL empty value. The actual values of the chunked columns
arrive in subsequent LCRs. For each chunk, you must perform the correct SQL
operation on the correct column.

Similarly, for LONG, LONG RAW, and XMLType data types, an apply process generates a non-
NULL empty value, and the actual values of the column arrive in chunks in subsequent
LCRs. For each chunk, you must perform the correct SQL operation on the correct
column.

In the inline version of the generated SQL, for LOB, LONG, LONG RAW, and XMLType data
type columns, the following SQL is generated for inserts and updates:

• For CLOB, NCLOB, and LONG data type columns:

EMPTY_CLOB()

• For BLOB and LONG RAW data type columns:

EMPTY_BLOB()

• For XMLType columns:

XMLTYPE.CREATEXML('xml /')

where xml / is the XML chunk.

After the LCR that contains the DML statement arrives, the data for these changes
arrive in separate chunks. You can generate the WHERE clause for such a change and
use the generated WHERE clause to identify the row for the modifications contained in
the chunks. For example, in PL/SQL you can use the GET_WHERE_CLAUSE row LCR
member procedure to generate the WHERE clause for a row change.

For INSERT and UPDATE operations, the generated WHERE clause identifies the row after
the insert or update. For example, consider the following update to the hr.departments
table:

UPDATE hr.departments SET department_name='Management'
 WHERE department_name='Administration';

The generated WHERE clause for this change is the following:

WHERE "DEPARTMENT_NAME"='Management'

For piecewise LOB operation performed by subprograms in the DBMS_LOB package
(including the WRITE, TRIM, and ERASE procedures), the generated SQL includes a SELECT
FOR UPDATE statement.

For example, a LOB_WRITE operation on a clob_col results in generated SQL similar to
the following:

SELECT "CLOB_COL" FROM "HR"."LOB_TAB" WHERE "N1"=2 FOR UPDATE

The selected clob_col must be defined. You can use the LOB locator to perform
piecewise LOB operations with the LOB chunks that follow the row LCR.

Chapter 4
Implicit Consumption with an Apply Process

4-26

See Also:

• "Sample Generated SQL Statements for a Table With LOB Columns"

• Oracle Streams Replication Administrator's Guide for information about
LOB assembly

4.2.8.4 SQL Generation and Character Sets
When you use the LCR methods, the generated SQL is in the database character set.
SQL keywords, such as INSERT, UPDATE, and INTO, do not change with the character set.

See Also:

• Oracle Database Globalization Support Guide for information about data
conversion in JDBC

• Oracle Database SQL Language Reference for information about SQL
keywords

4.2.8.5 Sample Generated SQL Statements
This section provides examples of generated SQL statements:

• Sample Generated SQL Statements for the hr.employees Table

• Sample Generated SQL Statements for a Table With LOB Columns

4.2.8.5.1 Sample Generated SQL Statements for the hr.employees Table
This section provides examples of SQL statements generated by an apply process for
changes made to the hr.employees table.

This section includes these examples:

• Example 4-1

• Example 4-2

• Example 4-3

Note:

Generated SQL is in a single line and is not formatted.

Example 4-1 Generated Insert

Assume the following insert is executed:

Chapter 4
Implicit Consumption with an Apply Process

4-27

INSERT INTO hr.employees (employee_id,
 last_name,
 email,
 hire_date,
 job_id,
 salary,
 commission_pct)
 VALUES (207,
 'Gregory',
 'pgregory@example.com',
 SYSDATE,
 'PU_CLERK',
 9000,
 NULL);

The following is the generated SQL with inline values:

INSERT INTO "HR"."EMPLOYEES"("EMPLOYEE_ID","FIRST_NAME","LAST_NAME",
"EMAIL","PHONE_NUMBER","HIRE_DATE","JOB_ID","SALARY","COMMISSION_PCT",
"MANAGER_ID","DEPARTMENT_ID") VALUES (207, NULL,'Gregory',
'pgregory@example.com', NULL , TO_DATE(' 2009-04-15','syyyy-mm-dd'),
'PU_CLERK',9000, NULL , NULL , NULL)

The following is the generated SQL with bind variables:

INSERT INTO "HR"."EMPLOYEES"("EMPLOYEE_ID","FIRST_NAME","LAST_NAME",
"EMAIL","PHONE_NUMBER","HIRE_DATE","JOB_ID","SALARY",
"COMMISSION_PCT","MANAGER_ID","DEPARTMENT_ID") VALUES (:1 ,:2 ,:3
,:4 ,:5 ,:6 ,:7 ,:8 ,:9 ,:10 ,:11)

Example 4-2 Generated Update

Assume the following update is executed:

UPDATE hr.employees SET salary=10000 WHERE employee_id=207;

The following is the generated SQL with inline values:

UPDATE "HR"."EMPLOYEES" SET "SALARY"=10000 WHERE "EMPLOYEE_ID"=207
AND "SALARY"=9000

The following is the generated SQL with bind variables:

UPDATE "HR"."EMPLOYEES" SET "SALARY"=:1 WHERE "EMPLOYEE_ID"=:2
AND "SALARY"=:3

Example 4-3 Generated Delete

Assume the following delete is executed:

DELETE FROM hr.employees WHERE employee_id=207;

The following is the generated SQL with inline values:

DELETE FROM "HR"."EMPLOYEES" WHERE "EMPLOYEE_ID"=207 AND "FIRST_NAME" IS NULL
AND "LAST_NAME"='Gregory' AND "EMAIL"='pgregory@example.com' AND
"PHONE_NUMBER" IS NULL AND "HIRE_DATE"= TO_DATE(' 2009-04-15','syyyy-mm-dd')
AND "JOB_ID"='PU_CLERK' AND "SALARY"=10000 AND "COMMISSION_PCT" IS NULL
AND "MANAGER_ID" IS NULL AND "DEPARTMENT_ID" IS NULL

The following is the generated SQL with bind variables:

Chapter 4
Implicit Consumption with an Apply Process

4-28

DELETE FROM "HR"."EMPLOYEES" WHERE "EMPLOYEE_ID"=:1 AND "FIRST_NAME"=:2
AND "LAST_NAME"=:3 AND "EMAIL"=:4 AND "PHONE_NUMBER"=:5 AND
"HIRE_DATE"=:6 AND "JOB_ID"=:7 AND "SALARY"=:8 AND
"COMMISSION_PCT"=:9 AND "MANAGER_ID"=:10 AND "DEPARTMENT_ID"=:11

4.2.8.5.2 Sample Generated SQL Statements for a Table With LOB Columns
This section provides examples of SQL statements generated by an apply process for
changes made to the following table:

CREATE TABLE hr.lob_tab(
 n1 number primary key,
 clob_col CLOB,
 nclob_col NCLOB,
 blob_col BLOB);

This section includes these examples:

• Example 4-4

• Example 4-5

• Example 4-6

Note:

Generated SQL is in a single line and is not formatted.

The GET_WHERE_CLAUSE member procedure generates the following WHERE clause for this
insert:

• Inline:

WHERE "N1"=2

• Bind variables:

WHERE "N1"=:1

You can use the WHERE clause to identify the row that was inserted when the
subsequent chunks arrive for the LOB column change.

Example 4-4 Generated Insert for a Table with LOB Columns

Assume the following insert is executed:

INSERT INTO hr.lob_tab VALUES (2, 'test insert', NULL, NULL);

The following is the generated SQL with inline values:

INSERT INTO "HR"."LOB_TAB"("N1","BLOB_COL","CLOB_COL","NCLOB_COL")
VALUES (2,, EMPTY_CLOB() ,)

The following is the generated SQL with bind variables:

INSERT INTO "HR"."LOB_TAB"("N1","BLOB_COL","CLOB_COL","NCLOB_COL")
VALUES (:1 ,:2 ,:3 ,:4)

Chapter 4
Implicit Consumption with an Apply Process

4-29

Example 4-5 Generated Update for a Table with LOB Columns

Assume the following update is executed:

UPDATE hr.lob_tab SET clob_col='test update' WHERE n1=2;

The following is the generated SQL with inline values:

UPDATE "HR"."LOB_TAB" SET "CLOB_COL"= EMPTY_CLOB() WHERE "N1"=2

The following is the generated SQL with bind variables:

UPDATE "HR"."LOB_TAB" SET "CLOB_COL"=:1 WHERE "N1"=:2

Example 4-6 Generated Delete for a Table with LOB Columns

Assume the following delete is executed:

DELETE FROM hr.lob_tab WHERE n1=2;

The following is the generated SQL with inline values:

DELETE FROM "HR"."LOB_TAB" WHERE "N1"=2

The following is the generated SQL with bind variables:

DELETE FROM "HR"."LOB_TAB" WHERE "N1"=:1

4.2.9 Oracle Streams Apply Processes and RESTRICTED SESSION
When restricted session is enabled during system startup by issuing a STARTUP
RESTRICT statement, apply processes do not start, even if they were running when the
database shut down. When the restricted session is disabled, each apply process that
was not stopped is started.

When restricted session is enabled in a running database by the SQL statement ALTER
SYSTEM ENABLE RESTRICTED SESSION, it does not affect any running apply processes.
These apply processes continue to run and apply messages. If a stopped apply
process is started in a restricted session, then the apply process does not actually
start until the restricted session is disabled.

4.2.10 Apply Process Subcomponents
An apply process consists of the following subcomponents:

• A reader server that dequeues messages. The reader server is a process that
computes dependencies between logical change records (LCRs) and assembles
messages into transactions. The reader server then returns the assembled
transactions to the coordinator process.

• A coordinator process that gets transactions from the reader server and passes
them to apply servers. The coordinator process name is APnn, where nn can
include letters and numbers. The coordinator process is an Oracle background
process.

• One or more apply servers that apply LCRs to database objects as DML or DDL
statements or that pass the LCRs to their appropriate apply handlers. For non-
LCR messages, the apply servers pass the messages to the message handler.
Apply servers can also enqueue LCR and non-LCR messages into the persistent

Chapter 4
Implicit Consumption with an Apply Process

4-30

queue portion of a queue specified by the DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION
procedure. Each apply server is a process. If an apply server encounters an error,
then it then tries to resolve the error with a user-specified conflict handler or error
handler. If an apply server cannot resolve an error, then it rolls back the
transaction and places the entire transaction, including all of its messages, in the
error queue.

When an apply server commits a completed transaction, this transaction has been
applied. When an apply server places a transaction in the error queue and
commits, this transaction also has been applied.

The reader server and the apply server process names are ASnn, where nn can include
letters and numbers. If a transaction being handled by an apply server has a
dependency on another transaction that is not known to have been applied, then the
apply server contacts the coordinator process and waits for instructions. The
coordinator process monitors all of the apply servers to ensure that transactions are
applied and committed in the correct order.

The following sections describe the possible states for each apply process
subcomponent:

• Reader Server States

• Coordinator Process States

• Apply Server States

See Also:

• "Apply Processes and Dependencies"

4.2.10.1 Reader Server States
The state of a reader server describes what the reader server is doing currently. You
can view the state of the reader server for an apply process by querying the
V$STREAMS_APPLY_READER dynamic performance view. The following reader server states
are possible:

• INITIALIZING - Starting up

• IDLE - Performing no work

• DEQUEUE MESSAGES - Dequeuing messages from the apply process's queue

• SCHEDULE MESSAGES - Computing dependencies between messages and assembling
messages into transactions

• SPILLING - Spilling unapplied messages from memory to hard disk

• PAUSED - WAITING FOR DDL TO COMPLETE - Paused while waiting for a DDL LCR to be
applied

Chapter 4
Implicit Consumption with an Apply Process

4-31

See Also:

• "Displaying Information About the Reader Server for Each Apply Process"
for a query that displays the state of an apply process reader server

4.2.10.2 Coordinator Process States
The state of a coordinator process describes what the coordinator process is doing
currently. You can view the state of a coordinator process by querying the
V$STREAMS_APPLY_COORDINATOR dynamic performance view. The following coordinator
process states are possible:

• INITIALIZING - Starting up

• IDLE - Performing no work

• APPLYING - Passing transactions to apply servers

• SHUTTING DOWN CLEANLY - Stopping without an error

• ABORTING - Stopping because of an apply error

See Also:

• "Displaying General Information About Each Coordinator Process" for a
query that displays the state of a coordinator process

4.2.10.3 Apply Server States
The state of an apply server describes what the apply server is doing currently. You
can view the state of each apply server for an apply process by querying the
V$STREAMS_APPLY_SERVER dynamic performance view. The following apply server states
are possible:

• INITIALIZING - Starting up.

• IDLE - Performing no work.

• RECORD LOW-WATERMARK - Performing an administrative action that maintains
information about the apply progress, which is used in the ALL_APPLY_PROGRESS and
DBA_APPLY_PROGRESS data dictionary views.

• ADD PARTITION - Performing an administrative action that adds a partition that is
used for recording information about in-progress transactions.

• DROP PARTITION - Performing an administrative action that drops a partition that was
used to record information about in-progress transactions.

• EXECUTE TRANSACTION - Applying a transaction.

• WAIT COMMIT - Waiting to commit a transaction until all other transactions with a
lower commit SCN are applied. This state is possible only if the
commit_serialization apply process parameter is set to a value other than

Chapter 4
Implicit Consumption with an Apply Process

4-32

DEPENDENT_TRANSACTIONS and the parallelism apply process parameter is set to a
value greater than 1.

• WAIT DEPENDENCY - Waiting to apply an LCR in a transaction until another
transaction, on which it has a dependency, is applied. This state is possible only if
the PARALLELISM apply process parameter is set to a value greater than 1.

• WAIT FOR CLIENT - Waiting for an XStream In client application to request more
logical change records (LCRs).

• WAIT FOR NEXT CHUNK - Waiting for the next set of LCRs for a large transaction.

• ROLLBACK TRANSACTION - Rolling back a transaction.

• TRANSACTION CLEANUP - Cleaning up an applied transaction, which includes removing
LCRs from the apply process's queue.

See Also:

• "Displaying Information About the Apply Servers for Each Apply Process"
for a query that displays the state of each apply process apply server

• Oracle Database PL/SQL Packages and Types Reference for information
about apply process parameters

• Oracle Database XStream Guide

4.2.11 Apply User
An apply process applies messages in the security domain of its apply user. The apply
user dequeues all messages that satisfy the apply process rule sets. The apply user
can apply messages directly to database objects. In addition, the apply user runs all
custom rule-based transformations specified by the rules in these rule sets. The apply
user also runs user-defined apply handlers.

The apply user must have the necessary privileges to apply changes, including the
following privileges:

• EXECUTE privilege on the rule sets used by the apply process

• EXECUTE privilege on all custom rule-based transformation functions specified for
rules in the positive rule set

• EXECUTE privilege on any apply handlers

• Privileges to dequeue messages from the apply process's queue

An apply process can be associated with only one user, but one user can be
associated with many apply processes.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
the required privileges

Chapter 4
Implicit Consumption with an Apply Process

4-33

4.2.12 Apply Process Parameters
After creation, an apply process is disabled so that you can set the apply process
parameters for your environment before starting the process for the first time. Apply
process parameters control the way an apply process operates. For example, the
parallelism apply process parameter specifies the number of apply servers that can
concurrently apply transactions, and the time_limit apply process parameter specifies
the amount of time an apply process runs before it is shut down automatically. After
you set the apply process parameters, you can start the apply process.

See Also:

• "Setting an Apply Process Parameter"

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about all of the apply process parameters

4.2.13 Persistent Apply Process Status Upon Database Restart
An apply process maintains a persistent status when the database running the apply
process is shut down and restarted. For example, if an apply process is enabled when
the database is shut down, then the apply process automatically starts when the
database is restarted. Similarly, if an apply process is disabled or aborted when a
database is shut down, then the apply process is not started and retains the disabled
or aborted status when the database is restarted.

4.2.14 The Error Queue
The error queue contains all of the current apply errors for a database. If there are
multiple apply processes in a database, then the error queue contains the apply errors
for each apply process. To view information about apply errors, query the
DBA_APPLY_ERROR data dictionary view or use Oracle Enterprise Manager Cloud Control.

The error queue stores information about transactions that could not be applied
successfully by the apply processes running in a database. A transaction can include
many messages. When an unhandled error occurs during apply, an apply process
automatically moves all of the messages in the transaction that satisfy the apply
process rule sets to the error queue.

You can correct the condition that caused an error and then reexecute the transaction
that caused the error. For example, you might modify a row in a table to correct the
condition that caused an error.

When the condition that caused the error has been corrected, you can either
reexecute the transaction in the error queue using the EXECUTE_ERROR or
EXECUTE_ALL_ERRORS procedure, or you can delete the transaction from the error queue
using the DELETE_ERROR or DELETE_ALL_ERRORS procedure. These procedures are in the
DBMS_APPLY_ADM package.

When you reexecute a transaction in the error queue, you can specify that the
transaction be executed either by the user who originally placed the error in the error

Chapter 4
Implicit Consumption with an Apply Process

4-34

queue or by the user who is reexecuting the transaction. Also, the current Oracle
Streams tag for the apply process is used when you reexecute a transaction in the
error queue.

A reexecuted transaction uses any relevant apply handlers and conflict resolution
handlers. If, to resolve the error, a row LCR in an error queue must be modified before
it is executed, then you can configure a procedure DML handler to process the row
LCR that caused the error in the error queue. In this case, the DML handler can modify
the row LCR to avoid a repetition of the same error. The row LCR is passed to the
DML handler when you reexecute the error containing the row LCR. For example, a
statement DML handler might insert different values than the ones present in an insert
row LCR, while a procedure DML handler might modify one or more columns in the
row LCR to avoid a repetition of the same error.

The error queue contains information about errors encountered at the local destination
database only. It does not contain information about errors for apply processes
running in other databases in an Oracle Streams environment.

The error queue uses the exception queues in the database. When you create an
ANYDATA queue using the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package, the
procedure creates a queue table for the queue if one does not already exist. When a
queue table is created, an exception queue is created automatically for the queue
table. Multiple queues can use a single queue table, and each queue table has one
exception queue. Therefore, a single exception queue can store errors for multiple
queues and multiple apply processes.

An exception queue only contains the apply errors for its queue table, but the Oracle
Streams error queue contains information about all of the apply errors in each
exception queue in a database. You should use the procedures in the DBMS_APPLY_ADM
package to manage Oracle Streams apply errors. You should not dequeue apply
errors from an exception queue directly.

Note:

If a messaging client encounters an error when it is dequeuing messages,
then the messaging client moves these messages to the exception queue
associated with the its queue table. However, information about messaging
client errors is not stored in the error queue. Only information about apply
process errors is stored in the error queue.

Chapter 4
Implicit Consumption with an Apply Process

4-35

See Also:

• "Managing Apply Errors"

• "Checking for Apply Errors"

• "Displaying Detailed Information About Apply Errors"

• "Managing an Error Handler"

• How Rules Are Used in Oracle Streams

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_APPLY_ADM package

• Oracle Database Reference for more information about the
DBA_APPLY_ERROR data dictionary view

4.3 Explicit Consumption with a Messaging Client
A messaging client dequeues messages from its persistent queue when it is invoked
by an application or a user. You use rules to specify which messages in the queue are
dequeued by a messaging client. These messages can be persistent LCRs or
persistent user messages.

You can create a messaging client by specifying dequeue for the streams_type
parameter when you run one of the following procedures in the DBMS_STREAMS_ADM
package:

• ADD_MESSAGE_RULE

• ADD_TABLE_RULES

• ADD_SUBSET_RULES

• ADD_SCHEMA_RULES

• ADD_GLOBAL_RULES

When you create a messaging client, you specify the name of the messaging client
and the ANYDATA queue from which the messaging client dequeues messages. These
procedures can also add rules to the positive rule set or negative rule set of a
messaging client. You specify the message type for each rule, and a single messaging
client can dequeue messages of different types.

The user who creates a messaging client is granted the privileges to dequeue from the
queue using the messaging client. This user is the messaging client user. The
messaging client user can dequeue messages that satisfy the messaging client rule
sets. A messaging client can be associated with only one user, but one user can be
associated with many messaging clients.

Figure 4-2 shows a messaging client dequeuing messages.

Chapter 4
Explicit Consumption with a Messaging Client

4-36

Figure 4-2 Messaging Client

Explicity Dequeue �
Persistent LCRs or �
Persistent User Messages

Invoke �
Messaging�
Client

Queue

Persistent LCR�
Persistent User Message�
Persistent User Message�
Persistent User Message�
Persistent LCR�
Persistent LCR�
.

.

.

Messaging�
Client

Application�
or User

See Also:

• How Rules Are Used in Oracle Streams

• "Messaging Client Restrictions"

• Oracle Database Advanced Queuing User's Guide for information about
the DBMS_AQ package

4.4 Explicit Consumption with Manual Dequeue
With explicit consumption with manual dequeue, an application explicitly dequeues
buffered LCRs, persistent LCRs, buffered user messages, or persistent user
messages manually and processes them. The queue from which the messages are
dequeued can be an ANYDATA queue or a typed queue. You can use either the
DBMS_STREAMS_MESSAGING package or the DBMS_AQ package to dequeue messages.

The dequeue features available with Oracle Database Advanced Queuing include the
following:

• Dequeue from a buffered queue or a persistent queue

• Concurrent dequeues

• Dequeue methods

• Dequeue modes

• Dequeue an array of messages

• Message states

• Navigation of messages in dequeuing

• Waiting for messages

• Retries with delays

• Optional transaction protection

• Exception queues

Chapter 4
Explicit Consumption with Manual Dequeue

4-37

See Also:

• Oracle Database Advanced Queuing User's Guide for detailed information
about these features and for information about other features available
with Oracle Database Advanced Queuing

• "Restrictions for Buffered Messaging"

Chapter 4
Explicit Consumption with Manual Dequeue

4-38

5
How Rules Are Used in Oracle Streams

The following topics contain information about how rules are used in Oracle Streams:

• Overview of How Rules Are Used in Oracle Streams

• Rule Sets and Rule Evaluation of Messages

• System-Created Rules

See Also:

• Advanced Rule Concepts

• Managing Rules

• Monitoring Rules

• Troubleshooting Rules and Rule-Based Transformations

5.1 Overview of How Rules Are Used in Oracle Streams
In Oracle Streams, each of the following mechanisms is called an Oracle Streams
client because each one is a client of a rules engine (when the mechanism is
associated with one or more rule sets):

• Capture process

• Synchronous capture

• Propagation

• Apply process

• Messaging client

Except for synchronous capture, each of these clients can be associated with at most
two rule sets: a positive rule set and a negative rule set. A synchronous capture can
be associated with at most one positive rule set. A synchronous capture cannot be
associated with a negative rule set.

A single rule set can be used by multiple capture processes, synchronous captures,
propagations, apply processes, and messaging clients within the same database.
Also, a single rule set can be a positive rule set for one Oracle Streams client and a
negative rule set for another Oracle Streams client.

Figure 5-1 illustrates how multiple clients of a rules engine can use one rule set.

5-1

Figure 5-1 One Rule Set Can Be Used by Multiple Clients of a Rules Engine

Rule

Set

PropagationCapture

Process

Apply

Process

Synchronous�
Capture

Messaging

Client

An Oracle Streams client performs a task if a message satisfies its rule sets. In
general, a message satisfies the rule sets for an Oracle Streams client if no rules in
the negative rule set evaluate to TRUE for the message, and at least one rule in the
positive rule set evaluates to TRUE for the message.

"Rule Sets and Rule Evaluation of Messages" contains more detailed information
about how a message satisfies the rule sets for an Oracle Streams client, including
information about Oracle Streams client behavior when one or more rule sets are not
specified.

You use rule sets in Oracle Streams in the following ways:

• Specify the changes that a capture process captures from the redo log or discards.
That is, if a change found in the redo log satisfies the rule sets for a capture
process, then the capture process captures the change. If a change found in the
redo log causes does not satisfy the rule sets for a capture process, then the
capture process discards the change.

• Specify the changes that a synchronous capture captures. That is, if DML change
satisfies the rule set for a synchronous capture, then the synchronous capture
captures the change immediately after the change is committed. If a DML change
made to a table does not satisfy the rule set for a synchronous capture, then the
synchronous capture does not capture the change.

• Specify the messages that a propagation propagates from one queue to another
or discards. That is, if a message in a queue satisfies the rule sets for a
propagation, then the propagation propagates the message. If a message in a
queue does not satisfy the rule sets for a propagation, then the propagation
discards the message.

• Specify the messages that an apply process dequeues or discards. That is, if a
message in a queue satisfies the rule sets for an apply process, then the message
is dequeued and processed by the apply process. If a message in a queue does
not satisfy the rule sets for an apply process, then the apply process discards the
message.

• Specify the persistent LCRs or persistent user messages that a messaging client
dequeues or discards. That is, if a message in a persistent queue satisfies the rule
sets for a messaging client, then the user or application that is using the
messaging client dequeues the message. If a message in a persistent queue does
not satisfy the rule sets for a messaging client, then the user or application that is
using the messaging client discards the message.

For a propagation, the messages evaluated against the rule sets can be any type of
message, including captured LCRs, persistent LCRs, buffered LCRs, persistent user
messages or buffered user messages.

Chapter 5
Overview of How Rules Are Used in Oracle Streams

5-2

For an apply process, the messages evaluated against the rule sets can be captured
LCRs, persistent LCRs, or persistent user messages.

If there are conflicting rules in the positive rule set associated with a client, then the
client performs the task if either rule evaluates to TRUE. For example, if a rule in the
positive rule set for a capture process contains one rule that instructs the capture
process to capture the results of data manipulation language (DML) changes to the
hr.employees table, but another rule in the rule set instructs the capture process not to
capture the results of DML changes to the hr.employees table, then the capture
process captures these changes.

Similarly, if there are conflicting rules in the negative rule set associated with a client,
then the client discards a message if either rule evaluates to TRUE for the message. For
example, if a rule in the negative rule set for a capture process contains one rule that
instructs the capture process to discard the results of DML changes to the
hr.departments table, but another rule in the rule set instructs the capture process not
to discard the results of DML changes to the hr.departments table, then the capture
process discards these changes.

See Also:

• Oracle Streams Information Capture

• "Message Propagation Between Queues"

• Oracle Streams Information Consumption

• "Explicit Consumption with a Messaging Client"

5.2 Rule Sets and Rule Evaluation of Messages
Oracle Streams clients perform the following tasks based on rules:

• A capture process captures changes in the redo log, converts the changes into
logical change records (LCRs), and enqueues messages containing these LCRs
into the capture process queue.

• A synchronous capture captures the results of DML changes made to tables,
converts the changes into row logical change records (row LCRs), and enqueues
messages containing these row LCRs into the synchronous capture queue.

• A propagation propagates any type of message from a source queue to a
destination queue.

• An apply process dequeues either captured LCRs, persistent LCRs, or persistent
user messages from its queue and applies these messages directly or sends the
messages to an apply handler.

• A messaging client dequeues persistent LCRs or persistent user messages from
its queue.

These Oracle Streams clients are all clients of the rules engine. An Oracle Streams
client performs its task for a message when the message satisfies the rule sets used
by the Oracle Streams client. An Oracle Streams client can have no rule set, only a
positive rule set, only a negative rule set, or both a positive and a negative rule set.

Chapter 5
Rule Sets and Rule Evaluation of Messages

5-3

The following sections explain how rule evaluation works in each of these cases:

• Oracle Streams Client with No Rule Set

• Oracle Streams Client with a Positive Rule Set Only

• Oracle Streams Client with a Negative Rule Set Only

• Oracle Streams Client with Both a Positive and a Negative Rule Set

• Oracle Streams Client with One or More Empty Rule Sets

• Summary of Rule Sets and Oracle Streams Client Behavior

5.2.1 Oracle Streams Client with No Rule Set
An Oracle Streams client with no rule set performs its task for all of the messages it
encounters. An empty rule set is not the same as no rule set at all.

A capture process should always have at least one rule set because it must not try to
capture changes to unsupported database objects. If a propagation should always
propagate all messages in its source queue, or if an apply process should always
dequeue all messages in its queue, then removing all rule sets from the propagation or
apply process might improve performance. A synchronous capture must have a
positive rule set. A synchronous capture cannot be configured without a rule set.

5.2.2 Oracle Streams Client with a Positive Rule Set Only
An Oracle Streams client with a positive rule set, but no negative rule set, performs its
task for a message if any rule in the positive rule set evaluates to TRUE for the
message. However, if all of the rules in a positive rule set evaluate to FALSE for the
message, then the Oracle Streams client discards the message.

5.2.3 Oracle Streams Client with a Negative Rule Set Only
An Oracle Streams client with a negative rule set, but no positive rule set, discards a
message if any rule in the negative rule set evaluates to TRUE for the message.
However, if all of the rules in a negative rule set evaluate to FALSE for the message,
then the Oracle Streams client performs its task for the message. A synchronous
capture cannot have a negative rule set.

5.2.4 Oracle Streams Client with Both a Positive and a Negative Rule
Set

If an Oracle Streams client has both a positive and a negative rule set, then the
negative rule set is evaluated first for a message. If any rule in the negative rule set
evaluates to TRUE for the message, then the message is discarded, and the message is
never evaluated against the positive rule set.

However, if all of the rules in the negative rule set evaluate to FALSE for the message,
then the message is evaluated against the positive rule set. At this point, the behavior
is the same as when the Oracle Streams client only has a positive rule set. That is, the
Oracle Streams client performs its task for a message if any rule in the positive rule set
evaluates to TRUE for the message. If all of the rules in a positive rule set evaluate to
FALSE for the message, then the Oracle Streams client discards the message.

Chapter 5
Rule Sets and Rule Evaluation of Messages

5-4

A synchronous capture cannot have a negative rule set.

5.2.5 Oracle Streams Client with One or More Empty Rule Sets
An Oracle Streams client can have one or more empty rule sets. An Oracle Streams
client behaves in the following ways if it has one or more empty rule sets:

• If an Oracle Streams client has no positive rule set, and its negative rule set is
empty, then the Oracle Streams client performs its task for all messages.

• If an Oracle Streams client has both a positive and a negative rule set, and the
negative rule set is empty but its positive rule set contains rules, then the Oracle
Streams client performs its task based on the rules in the positive rule set.

• If an Oracle Streams client has a positive rule set that is empty, then the Oracle
Streams client discards all messages, regardless of the state of its negative rule
set.

5.2.6 Summary of Rule Sets and Oracle Streams Client Behavior
Table 5-1 summarizes the Oracle Streams client behavior described in the previous
sections.

Table 5-1 Rule Sets and Oracle Streams Client Behavior

Negative Rule Set Positive Rule Set Oracle Streams Client Behavior

None None Performs its task for all messages

None Exists with rules Performs its task for messages that evaluate to
TRUE against the positive rule set

Exists with rules None Discards messages that evaluate to TRUE
against the negative rule set, and performs its
task for all other messages

Exists with rules Exists with rules Discards messages that evaluate to TRUE
against the negative rule set, and performs its
task for remaining messages that evaluate to
TRUE against the positive rule set. The negative
rule set is evaluated first.

Exists but is empty None Performs its task for all messages

Exists but is empty Exists with rules Performs its task for messages that evaluate to
TRUE against the positive rule set

None Exists but is empty Discards all messages

Exists but is empty Exists but is empty Discards all messages

Exists with rules Exists but is empty Discards all messages

5.3 System-Created Rules
An Oracle Streams client performs its task for a message if the message satisfies its
rule sets. A system-created rule is created by the DBMS_STREAMS_ADM package and can
specify one of the following levels of granularity: table, schema, or global. This section
describes each of these levels. You can specify more than one level for a particular
task. For example, you can instruct a single apply process to perform table-level apply
for specific tables in the oe schema and schema-level apply for the entire hr schema.

Chapter 5
System-Created Rules

5-5

In addition, a single rule pertains to either the results of data manipulation language
(DML) changes or data definition language (DDL) changes. So, for example, you must
use at least two system-created rules to include all of the changes to a particular table:
one rule for the results of DML changes and another rule for DDL changes. The results
of a DML change are the row changes that result from the DML change, or the row
LCRs in a queue that encapsulate each row change.

Table 5-2 shows what each level of rule means for each Oracle Streams task.
Remember that a negative rule set is evaluated before a positive rule set.

Table 5-2 Types of Tasks and Rule Levels

Task Table Rule Schema Rule Global Rule

Capture with a
capture process

If the table rule is in a
negative rule set, then
discard the changes in the
redo log for the specified
table.

If the table rule is in a
positive rule set, then
capture all or a subset of the
changes in the redo log for
the specified table, convert
them into logical change
records (LCRs), and
enqueue them.

If the schema rule is in a negative
rule set, then discard the changes
in the redo log for the schema
itself and for the database objects
in the specified schema.

If the schema rule is in a positive
rule set, then capture the changes
in the redo log for the schema
itself and for the database objects
in the specified schema, convert
them into LCRs, and enqueue
them.

If the global rule is in a
negative rule set, then
discard the changes to all of
the database objects in the
database.

If the global rule is in a
positive rule set, then
capture the changes to all of
the database objects in the
database, convert them into
LCRs, and enqueue them.

Capture with a
synchronous
capture

If the table rule is in a
positive rule set, then
capture all or a subset of the
changes made to the
specified table, convert
them into logical change
records (LCRs), and
enqueue them.

A synchronous capture
cannot have a negative rule
set.

A synchronous capture cannot use
schema rules.

A synchronous capture
cannot use global rules.

Propagate with a
propagation

If the table rule is in a
negative rule set, then
discard the LCRs relating to
the specified table in the
source queue.

If the table rule is in a
positive rule set, then
propagate all or a subset of
the LCRs relating to the
specified table in the source
queue to the destination
queue.

If the schema rule is in a negative
rule set, then discard the LCRs
related to the specified schema
itself and the LCRs related to
database objects in the schema in
the source queue.

If the schema rule is in a positive
rule set, then propagate the LCRs
related to the specified schema
itself and the LCRs related to
database objects in the schema in
the source queue to the
destination queue.

If the global rule is in a
negative rule set, then
discard all of the LCRs in
the source queue.

If the global rule is in a
positive rule set, then
propagate all of the LCRs in
the source queue to the
destination queue.

Chapter 5
System-Created Rules

5-6

Table 5-2 (Cont.) Types of Tasks and Rule Levels

Task Table Rule Schema Rule Global Rule

Apply with an
apply process

If the table rule is in a
negative rule set, then
discard the LCRs in the
queue relating to the
specified table.

If the table rule is in a
positive rule set, then apply
all or a subset of the LCRs
in the queue relating to the
specified table.

If the schema rule is in a negative
rule set, then discard the LCRs in
the queue relating to the specified
schema itself and the database
objects in the schema.

If the schema rule is in a positive
rule set, then apply the LCRs in
the queue relating to the specified
schema itself and the database
objects in the schema.

If the global rule is in a
negative rule set, then
discard all of the LCRs in
the queue.

If the global rule is in a
positive rule set, then apply
all of the LCRs in the queue.

Dequeue with a
messaging client

If the table rule is in a
negative rule set, then,
when the messaging client
is invoked, discard the
persistent LCRs relating to
the specified table in the
queue.

If the table rule is in a
positive rule set, then, when
the messaging client is
invoked, dequeue all or a
subset of the persistent
LCRs relating to the
specified table in the queue.

If the schema rule is in a negative
rule set, then, when the
messaging client is invoked,
discard the persistent LCRs
relating to the specified schema
itself and the database objects in
the schema in the queue.

If the schema rule is in a positive
rule set, then, when the
messaging client is invoked,
dequeue the persistent LCRs
relating to the specified schema
itself and the database objects in
the schema in the queue.

If the global rule is in a
negative rule set, then,
when the messaging client
is invoked, discard all of the
persistent LCRs in the
queue.

If the global rule is in a
positive rule set, then, when
the messaging client is
invoked, dequeue all of the
persistent LCRs in the
queue.

You can use procedures in the DBMS_STREAMS_ADM package to create rules at each of
these levels. A system-created rule can include conditions that modify the Oracle
Streams client behavior beyond the descriptions in Table 5-2. For example, some
rules can specify a particular source database for LCRs, and, in this case, the rule
evaluates to TRUE only if an LCR originated at the specified source database. Table 5-3
lists the types of system-created rule conditions that can be specified in the rules
created by the DBMS_STREAMS_ADM package.

Table 5-3 System-Created Rule Conditions Generated by DBMS_STREAMS_ADM Package

Rule Condition Evaluates to TRUE for Oracle Streams
Client

Create Using Procedure

All row changes recorded in the redo log
because of DML changes to any of the tables
in a particular database

Capture Process ADD_GLOBAL_RULES

All DDL changes recorded in the redo log to
any of the database objects in a particular
database

Capture Process ADD_GLOBAL_RULES

All row changes recorded in the redo log
because of DML changes to any of the tables
in a particular schema

Capture Process ADD_SCHEMA_RULES

All DDL changes recorded in the redo log to a
particular schema and any of the database
objects in the schema

Capture Process ADD_SCHEMA_RULES

Chapter 5
System-Created Rules

5-7

Table 5-3 (Cont.) System-Created Rule Conditions Generated by DBMS_STREAMS_ADM
Package

Rule Condition Evaluates to TRUE for Oracle Streams
Client

Create Using Procedure

All row changes recorded in the redo log
because of DML changes to a particular table

Capture Process ADD_TABLE_RULES

All DDL changes recorded in the redo log to a
particular table

Capture Process ADD_TABLE_RULES

All row changes recorded in the redo log
because of DML changes to a subset of rows
in a particular table

Capture Process ADD_SUBSET_RULES

All row changes made to a particular table
resulting from DML statements

Synchronous Capture ADD_TABLE_RULES

All row changes made to a subset of rows in a
particular table resulting from DML statements

Synchronous Capture ADD_SUBSET_RULES

All row LCRs in the source queue Propagation ADD_GLOBAL_PROPAGATION_RULES

All DDL LCRs in the source queue Propagation ADD_GLOBAL_PROPAGATION_RULES

All row LCRs in the source queue relating to
the tables in a particular schema

Propagation ADD_SCHEMA_PROPAGATION_RULES

All DDL LCRs in the source queue relating to
a particular schema and any of the database
objects in the schema

Propagation ADD_SCHEMA_PROPAGATION_RULES

All row LCRs in the source queue relating to a
particular table

Propagation ADD_TABLE_PROPAGATION_RULES

All DDL LCRs in the source queue relating to
a particular table

Propagation ADD_TABLE_PROPAGATION_RULES

All row LCRs in the source queue relating to a
subset of rows in a particular table

Propagation ADD_SUBSET_PROPAGATION_RULES

All user messages in the source queue of the
specified type that satisfy the user-specified
rule condition

Propagation ADD_MESSAGE_PROPAGATION_RULE

All row LCRs in the queue used by the apply
process

Apply Process ADD_GLOBAL_RULES

All DDL LCRs in the queue used by the apply
process

Apply Process ADD_GLOBAL_RULES

All row LCRs in the queue used by the apply
process relating to the tables in a particular
schema

Apply Process ADD_SCHEMA_RULES

All DDL LCRs in the queue used by the apply
process relating to a particular schema and
any of the database objects in the schema

Apply Process ADD_SCHEMA_RULES

All row LCRs in the queue used by the apply
process relating to a particular table

Apply Process ADD_TABLE_RULES

All DDL LCRs in the queue used by the apply
process relating to a particular table

Apply Process ADD_TABLE_RULES

All row LCRs in the queue used by the apply
process relating to a subset of rows in a
particular table

Apply Process ADD_SUBSET_RULES

Chapter 5
System-Created Rules

5-8

Table 5-3 (Cont.) System-Created Rule Conditions Generated by DBMS_STREAMS_ADM
Package

Rule Condition Evaluates to TRUE for Oracle Streams
Client

Create Using Procedure

All persistent user messages in the queue
used by the apply process of the specified
type that satisfy the user-specified rule
condition

Apply Process ADD_MESSAGE_RULE

All persistent row LCRs in the queue used by
the messaging client

Messaging Client ADD_GLOBAL_RULES

All persistent DDL LCRs in the queue used by
the messaging client

Messaging Client ADD_GLOBAL_RULES

All persistent row LCRs in the queue used by
the messaging client relating to the tables in a
particular schema

Messaging Client ADD_SCHEMA_RULES

All persistent DDL LCRs in the queue used by
the messaging client relating to a particular
schema and any of the database objects in
the schema

Messaging Client ADD_SCHEMA_RULES

All persistent row LCRs in the queue for the
messaging client relating to a particular table

Messaging Client ADD_TABLE_RULES

All persistent DDL LCRs in the queue used by
the messaging client relating to a particular
table

Messaging Client ADD_TABLE_RULES

All persistent row LCRs in the queue used by
the messaging client relating to a subset of
rows in a particular table

Messaging Client ADD_SUBSET_RULES

All persistent messages in the queue used by
the messaging client of the specified type that
satisfy the user-specified rule condition

Messaging Client ADD_MESSAGE_RULE

Each procedure listed in Table 5-3 does the following:

• Creates a capture process, synchronous capture, propagation, apply process, or
messaging client if it does not already exist.

• Creates a rule set for the specified capture process, synchronous capture,
propagation, apply process, or messaging client if a rule set does not already exist
for it. For a capture process, propagation, apply process, or messaging client, the
rule set can be a positive rule set or a negative rule set. You can create each type
of rule set by running the procedure at least twice. For a synchronous capture, the
rule set must be a positive rule set.

• Creates zero or more rules and adds the rules to the rule set for the specified
capture process, synchronous capture, propagation, apply process, or messaging
client. Based on your specifications when you run one of these procedures, the
procedure adds the rules either to the positive rule set or to the negative rule set.

Except for the ADD_MESSAGE_RULE and ADD_MESSAGE_PROPAGATION_RULE procedures, these
procedures create rule sets that use the SYS.STREAMS$_EVALUATION_CONTEXT evaluation
context, which is an Oracle-supplied evaluation context for Oracle Streams
environments.

Chapter 5
System-Created Rules

5-9

Global, schema, table, and subset rules use the SYS.STREAMS$_EVALUATION_CONTEXT
evaluation context. However, when you create a rule using either the ADD_MESSAGE_RULE
or the ADD_MESSAGE_PROPAGATION_RULE procedure, the rule uses a system-generated
evaluation context that is customized specifically for each message type. Rule sets
created by the ADD_MESSAGE_RULE or the ADD_MESSAGE_PROPAGATION_RULE procedure do not
have an evaluation context.

Except for ADD_SUBSET_RULES, ADD_SUBSET_PROPAGATION_RULES, ADD_MESSAGE_RULE, and
ADD_MESSAGE_PROPAGATION_RULE, these procedures create either zero, one, or two rules.
If you want to perform the Oracle Streams task for only the row changes resulting from
DML changes or only for only DDL changes, then only one rule is created. If, however,
you want to perform the Oracle Streams task for both the results of DML changes and
DDL changes, then a rule is created for each. If you create a DML rule for a table now,
then you can create a DDL rule for the same table in the future without modifying the
DML rule created earlier. The same applies if you create a DDL rule for a table first
and a DML rule for the same table in the future.

The ADD_SUBSET_RULES and ADD_SUBSET_PROPAGATION_RULES procedures always create
three rules for three different types of DML operations on a table: INSERT, UPDATE, and
DELETE. These procedures do not create rules for DDL changes to a table. You can use
the ADD_TABLE_RULES or ADD_TABLE_PROPAGATION_RULES procedure to create a DDL rule for
a table. In addition, you can add subset rules to positive rule sets only, not to negative
rule sets.

The ADD_MESSAGE_RULE and ADD_MESSAGE_PROPAGATION_RULE procedures always create one
rule with a user-specified rule condition. These procedures create rules for user
messages. They do not create rules for the results of DML changes or DDL changes
to a table.

When you create propagation rules for captured LCRs, Oracle recommends that you
specify a source database for the changes. An apply process uses transaction control
messages to assemble captured LCRs into committed transactions. These transaction
control messages, such as COMMIT and ROLLBACK, contain the name of the source
database where the message occurred. To avoid unintended cycling of these
messages, propagation rules should contain a condition specifying the source
database, and you accomplish this by specifying the source database when you create
the propagation rules.

The following sections describe system-created rules in more detail:

• Global Rules

• Schema Rules

• Table Rules

• Subset Rules

• Message Rules

• System-Created Rules and Negative Rule Sets

• System-Created Rules with Added User-Defined Conditions

Chapter 5
System-Created Rules

5-10

Note:

• To create rules with more complex rule conditions, such as rules that use
the NOT or OR logical conditions, either use the and_condition parameter,
which is available with some of the procedures in the DBMS_STREAMS_ADM
package, or use the DBMS_RULE_ADM package.

• Each example in the sections that follow should be completed by an
Oracle Streams administrator that has been granted the appropriate
privileges, unless specified otherwise.

• Some of the examples in this section have additional prerequisites. For
example, a queue specified by a procedure parameter must exist.

See Also:

• "Managing Rules"

• "Rule Sets and Rule Evaluation of Messages" for information about how
messages satisfy the rule sets for an Oracle Streams client

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_STREAMS_ADM package and the DBMS_RULE_ADM
package

• "Evaluation Contexts Used in Oracle Streams"

• "Logical Change Records (LCRs)"

• "Complex Rule Conditions"

5.3.1 Global Rules
When you use a rule to specify an Oracle Streams task that is relevant either to an
entire database or to an entire queue, you are specifying a global rule. You can
specify a global rule for DML changes, a global rule for DDL changes, or a global rule
for each type of change (two rules total).

A single global rule in the positive rule set for a capture process means that the
capture process captures the results of either all DML changes or all DDL changes to
the source database. A single global rule in the negative rule set for a capture process
means that the capture process discards the results of either all DML changes or all
DDL changes to the source database.

A single global rule in the positive rule set for a propagation means that the
propagation propagates either all row LCRs or all DDL LCRs in the source queue to
the destination queue. A single global rule in the negative rule set for a propagation
means that the propagation discards either all row LCRs or all DDL LCRs in the
source queue.

A single global rule in the positive rule set for an apply process means that the apply
process applies either all row LCRs or all DDL LCRs in its queue for a specified source
database. A single global rule in the negative rule set for an apply process means that

Chapter 5
System-Created Rules

5-11

the apply process discards either all row LCRs or all DDL LCRs in its queue for a
specified source database.

If you want to use global rules, but you are concerned about changes to database
objects that are not supported by Oracle Streams, then you can create rules using the
DBMS_RULE_ADM package to discard unsupported changes.

See Also:

• "Rule Conditions that Instruct Oracle Streams Clients to Discard
Unsupported LCRs"

5.3.1.1 Global Rules Example
Suppose you use the ADD_GLOBAL_RULES procedure in the DBMS_STREAMS_ADM package to
instruct an Oracle Streams capture process to capture all DML changes and DDL
changes in a database.

Run the ADD_GLOBAL_RULES procedure to create the rules:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => NULL,
 inclusion_rule => TRUE);
END;
/

Notice that the inclusion_rule parameter is set to TRUE. This setting means that the
system-created rules are added to the positive rule set for the capture process.

NULL can be specified for the source_database parameter because rules are being
created for a local capture process. You can also specify the global name of the local
database. When creating rules for a downstream capture process or apply process
using ADD_GLOBAL_RULES, specify a source database name.

The ADD_GLOBAL_RULES procedure creates two rules: one for row LCRs (which contain
the results of DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:

(:dml.is_null_tag() = 'Y')

Notice that the condition in the DML rule begins with the variable :dml. The value is
determined by a call to the specified member function for the row LCR being
evaluated. So, :dml.is_null_tag() is a call to the IS_NULL_TAG member function for the
row LCR being evaluated.

Here is the rule condition used by the DDL LCR rule:

(:ddl.is_null_tag() = 'Y')

Chapter 5
System-Created Rules

5-12

Notice that the condition in the DDL rule begins with the variable :ddl. The value is
determined by a call to the specified member function for the DDL LCR being
evaluated. So, :ddl.is_null_tag() is a call to the IS_NULL_TAG member function for the
DDL LCR being evaluated.

For a capture process, these conditions indicate that the tag must be NULL in a redo
record for the capture process to capture a change. For a propagation, these
conditions indicate that the tag must be NULL in an LCR for the propagation to
propagate the LCR. For an apply process, these conditions indicate that the tag must
be NULL in an LCR for the apply process to apply the LCR.

Given the rules created by this example in the positive rule set for the capture process,
the capture process captures all supported DML and DDL changes made to the
database.

Note:

If you add global rules to the positive rule set for a capture process, then
ensure that you add rules to the negative capture process rule set to exclude
database objects that are not support by capture processes. Query the
DBA_STREAMS_UNSUPPORTED data dictionary view to determine which database
objects are not supported by capture processes. If unsupported database
objects are not excluded, then capture errors will result.

If you add global rules to the positive rule set for an apply process, then
ensure that the apply process does not attempt to apply changes to
unsupported columns. To do so, you can add rules to the negative apply
process rule set to exclude the table that contains the column, or you can
exclude the column with a rule-based transformation or DML handler. Query
the DBA_STREAMS_COLUMNS data dictionary view to determine which columns are
not supported by apply processes. If unsupported columns are not excluded,
then apply errors will result.

See Also:

• "Listing the Database Objects That Are Not Compatible with Capture
Processes"

• "Listing Database Objects and Columns Not Compatible with Apply
Processes"

• Rule-Based Transformations

• "DML Handlers"

5.3.1.2 System-Created Global Rules Avoid Empty Rule Conditions
Automatically

You can omit the is_null_tag condition in system-created rules by specifying TRUE for
the include_tagged_lcr parameter when you run a procedure in the DBMS_STREAMS_ADM

Chapter 5
System-Created Rules

5-13

package. For example, the following ADD_GLOBAL_RULES procedure creates rules without
the is_null_tag condition:

BEGIN DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture_002',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => NULL,
 inclusion_rule => TRUE);
END;
/

When you set the include_tagged_lcr parameter to TRUE for a global rule, and the
source_database_name parameter is set to NULL, the rule condition used by the row LCR
rule is the following:

((:dml.get_source_database_name()>=' ' OR
:dml.get_source_database_name()<=' '))

Here is the rule condition used by the DDL LCR rule:

((:ddl.get_source_database_name()>=' ' OR
:ddl.get_source_database_name()<=' '))

The system-created global rules contain these conditions to enable all row and DDL
LCRs to evaluate to TRUE.

These rule conditions are specified to avoid NULL rule conditions for these rules. NULL
rule conditions are not supported. In this case, if you want to capture all DML and DDL
changes to a database, and you do not want to use any rule-based transformations for
these changes upon capture, then you can choose to run the capture process without
a positive rule set instead of specifying global rules.

Note:

• When you create a capture process using a procedure in the
DBMS_STREAMS_ADM package and generate one or more rules for the capture
process, the objects for which changes are captured are prepared for
instantiation automatically, unless it is a downstream capture process and
there is no database link from the downstream database to the source
database.

• The capture process does not capture some types of DML and DDL
changes, and it does not capture changes made in the SYS, SYSTEM, or
CTXSYS schemas.

Chapter 5
System-Created Rules

5-14

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about capture process rules and preparation for instantiation

• Oracle Streams Information Capture for more information about the
capture process and for detailed information about which DML and DDL
statements are captured by a capture process

• Advanced Rule Concepts for more information about variables in
conditions

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams tags

• "Rule Sets and Rule Evaluation of Messages" for more information about
running a capture process with no positive rule set

5.3.2 Schema Rules
When you use a rule to specify an Oracle Streams task that is relevant to a schema,
you are specifying a schema rule. You can specify a schema rule for DML changes, a
schema rule for DDL changes, or a schema rule for each type of change to the
schema (two rules total).

A single schema rule in the positive rule set for a capture process means that the
capture process captures either the DML changes or the DDL changes to the schema.
A single schema rule in the negative rule set for a capture process means that the
capture process discards either the DML changes or the DDL changes to the schema.

A single schema rule in the positive rule set for a propagation means that the
propagation propagates either the row LCRs or the DDL LCRs in the source queue
that contain changes to the schema. A single schema rule in the negative rule set for a
propagation means that the propagation discards either the row LCRs or the DDL
LCRs in the source queue that contain changes to the schema.

A single schema rule in the positive rule set for an apply process means that the apply
process applies either the row LCRs or the DDL LCRs in its queue that contain
changes to the schema. A single schema rule in the negative rule set for an apply
process means that the apply process discards either the row LCRs or the DDL LCRs
in its queue that contain changes to the schema.

If you want to use schema rules, but you are concerned about changes to database
objects in a schema that are not supported by Oracle Streams, then you can create
rules using the DBMS_RULE_ADM package to discard unsupported changes.

See Also:

• "Rule Conditions that Instruct Oracle Streams Clients to Discard
Unsupported LCRs"

Chapter 5
System-Created Rules

5-15

5.3.2.1 Schema Rule Example
Suppose you use the ADD_SCHEMA_PROPAGATION_RULES procedure in the DBMS_STREAMS_ADM
package to instruct an Oracle Streams propagation to propagate row LCRs and DDL
LCRs relating to the hr schema from a queue at the dbs1.example.com database to a
queue at the dbs2.example.com database.

Run the ADD_SCHEMA_PROPAGATION_RULES procedure at dbs1.example.com to create the
rules:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES(
 schema_name => 'hr',
 streams_name => 'dbs1_to_dbs2',
 source_queue_name => 'streams_queue',
 destination_queue_name => 'streams_queue@dbs2.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Notice that the inclusion_rule parameter is set to TRUE. This setting means that the
system-created rules are added to the positive rule set for the propagation.

The ADD_SCHEMA_PROPAGATION_RULES procedure creates two rules: one for row LCRs
(which contain the results of DML changes) and one for DDL LCRs.

Here is the rule condition used by the row LCR rule:

((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y'
and :dml.get_source_database_name() = 'DBS1.EXAMPLE.COM')

Here is the rule condition used by the DDL LCR rule:

((:ddl.get_object_owner() = 'HR' or :ddl.get_base_table_owner() = 'HR')
and :ddl.is_null_tag() = 'Y' and :ddl.get_source_database_name() =
'DBS1.EXAMPLE.COM')

The GET_BASE_TABLE_OWNER member function is used in the DDL LCR rule because the
GET_OBJECT_OWNER function can return NULL if a user who does not own an object
performs a DDL change on the object.

Given these rules in the positive rule set for the propagation, the following list provides
examples of changes propagated by the propagation:

• A row is inserted into the hr.countries table.

• The hr.loc_city_ix index is altered.

• The hr.employees table is truncated.

• A column is added to the hr.countries table.

• The hr.update_job_history trigger is altered.

• A new table named candidates is created in the hr schema.

• Twenty rows are inserted into the hr.candidates table.

Chapter 5
System-Created Rules

5-16

The propagation propagates the LCRs that contain all of the changes previously listed
from the source queue to the destination queue.

Now, given the same rules, suppose a row is inserted into the oe.inventories table.
This change is ignored because the oe schema was not specified in a schema rule,
and the oe.inventories table was not specified in a table rule.

Note:

If you add schema rules to the positive rule set for a capture process, then
ensure that you add rules to the negative capture process rule set to exclude
database objects in the schema that are not support by capture processes.
Query the DBA_STREAMS_UNSUPPORTED data dictionary view to determine which
database objects are not supported by capture processes. If unsupported
database objects are not excluded, then capture errors will result.

If you add schema rules to the positive rule set for an apply process, then
ensure that the apply process does not attempt to apply changes to
unsupported columns. To do so, you can add rules to the negative apply
process rule set to exclude the table that contains the column, or you can
exclude the column with a rule-based transformation or DML handler. Query
the DBA_STREAMS_COLUMNS data dictionary view to determine which columns are
not supported by apply processes. If unsupported columns are not excluded,
then apply errors will result.

See Also:

• "Listing the Database Objects That Are Not Compatible with Capture
Processes"

• "Listing Database Objects and Columns Not Compatible with Apply
Processes"

• Rule-Based Transformations

• "DML Handlers"

5.3.3 Table Rules
When you use a rule to specify an Oracle Streams task that is relevant only for an
individual table, you are specifying a table rule. You can specify a table rule for DML
changes, a table rule for DDL changes, or a table rule for each type of change to a
specific table (two rules total).

A single table rule in the positive rule set for a capture process means that the capture
process captures the results of either the DML changes or the DDL changes to the
table. A single table rule in the negative rule set for a capture process means that the
capture process discards the results of either the DML changes or the DDL changes to
the table.

Chapter 5
System-Created Rules

5-17

A single table rule in the positive rule set for a synchronous capture means that the
synchronous capture captures the results of either the DML changes to the table. A
synchronous capture cannot have a negative rule set.

A single table rule in the positive rule set for a propagation means that the propagation
propagates either the row LCRs or the DDL LCRs in the source queue that contain
changes to the table. A single table rule in the negative rule set for a propagation
means that the propagation discards either the row LCRs or the DDL LCRs in the
source queue that contain changes to the table.

A single table rule in the positive rule set for an apply process means that the apply
process applies either the row LCRs or the DDL LCRs in its queue that contain
changes to the table. A single table rule in the negative rule set for an apply process
means that the apply process discards either the row LCRs or the DDL LCRs in its
queue that contain changes to the table.

5.3.3.1 Table Rules Example
Suppose you use the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to
instruct an Oracle Streams apply process to behave in the following ways:

• Apply All Row LCRs Related to the hr.locations Table

• Apply All DDL LCRs Related to the hr.countries Table

5.3.3.1.1 Apply All Row LCRs Related to the hr.locations Table
The changes in these row LCRs originated at the dbs1.example.com source database.

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.locations',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Notice that the inclusion_rule parameter is set to TRUE. This setting means that the
system-created rule is added to the positive rule set for the apply process.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to the
following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'LOCATIONS'))
and :dml.is_null_tag() = 'Y' and :dml.get_source_database_name() =
'DBS1.EXAMPLE.COM')

5.3.3.1.2 Apply All DDL LCRs Related to the hr.countries Table
The changes in these DDL LCRs originated at the dbs1.example.com source database.

Chapter 5
System-Created Rules

5-18

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.countries',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_dml => FALSE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Notice that the inclusion_rule parameter is set to TRUE. This setting means that the
system-created rule is added to the positive rule set for the apply process.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to the
following:

(((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'COUNTRIES')
or (:ddl.get_base_table_owner() = 'HR'
and :ddl.get_base_table_name() = 'COUNTRIES')) and :ddl.is_null_tag() = 'Y'
and :ddl.get_source_database_name() = 'DBS1.EXAMPLE.COM')

The GET_BASE_TABLE_OWNER and GET_BASE_TABLE_NAME member functions are used in the
DDL LCR rule because the GET_OBJECT_OWNER and GET_OBJECT_NAME functions can return
NULL if a user who does not own an object performs a DDL change on the object.

The generated DDL table rule evaluates to TRUE for any DDL change that operates on
the table or on an object that is part of the table, such as an index or trigger on the
table. The rule evaluates to FALSE for any DDL change that either does not refer to the
table or refers to the table in a subordinate way. For example, the rule evaluates to
FALSE for changes that create synonyms or views based on the table. The rule also
evaluates to FALSE for a change to a PL/SQL subprogram that refers to the table.

5.3.3.1.3 Summary of Rules
In this example, the following table rules were defined:

• A table rule that evaluates to TRUE if a row LCR contains a row change that results
from a DML operation on the hr.locations table.

• A table rule that evaluates to TRUE if a DDL LCR contains a DDL change performed
on the hr.countries table.

Given these rules, the following list provides examples of changes applied by an apply
process:

• A row is inserted into the hr.locations table.

• Five rows are deleted from the hr.locations table.

• A column is added to the hr.countries table.

The apply process dequeues the LCRs containing these changes from its associated
queue and applies them to the database objects at the destination database.

Given these rules, the following list provides examples of changes that are ignored by
the apply process:

Chapter 5
System-Created Rules

5-19

• A row is inserted into the hr.employees table. This change is not applied because a
change to the hr.employees table does not satisfy any of the rules.

• A row is updated in the hr.countries table. This change is a DML change, not a
DDL change. This change is not applied because the rule on the hr.countries
table is for DDL changes only.

• A column is added to the hr.locations table. This change is a DDL change, not a
DML change. This change is not applied because the rule on the hr.locations
table is for DML changes only.

Note:

Do not add table rules to the positive rule set of a capture process for tables
that are not supported by capture processes. Query the
DBA_STREAMS_UNSUPPORTED data dictionary view to determine which tables are not
supported by capture processes. If unsupported table are not excluded, then
capture errors will result.

If you add table rules to the positive rule set for a synchronous capture or an
apply process, then ensure that these Oracle Streams clients do not attempt to
process changes to unsupported columns. If a table includes an unsupported
column, then you can exclude the column with a rule-based transformation or,
for an apply process, with a DML handler. Query the DBA_STREAMS_COLUMNS data
dictionary view to determine which columns are not supported by synchronous
captures and apply processes. If unsupported columns are not excluded, then
errors will result.

See Also:

• "Listing the Database Objects That Are Not Compatible with Capture
Processes"

• "Listing Database Objects and Columns Not Compatible with Synchronous
Captures"

• "Listing Database Objects and Columns Not Compatible with Apply
Processes"

• Rule-Based Transformations

• "DML Handlers"

5.3.4 Subset Rules
A subset rule is a special type of table rule for DML changes that is relevant only to a
subset of the rows in a table. You can create subset rules for capture processes,
synchronous captures, apply processes, and messaging clients using the
ADD_SUBSET_RULES procedure. You can create subset rules for propagations using the
ADD_SUBSET_PROPAGATION_RULES procedure. These procedures enable you to use a
condition similar to a WHERE clause in a SELECT statement to specify the following:

Chapter 5
System-Created Rules

5-20

• That a capture process only captures a subset of the row changes resulting from
DML changes to a particular table

• That a synchronous capture only captures a subset of the row changes resulting
from DML changes to a particular table

• That a propagation only propagates a subset of the row LCRs relating to a
particular table

• That an apply process only applies a subset of the row LCRs relating to a
particular table

• That a messaging client only dequeues a subset of the row LCRs relating to a
particular table

The ADD_SUBSET_RULES procedure and the ADD_SUBSET_PROPAGATION_RULES procedure can
add subset rules to the positive rule set only of an Oracle Streams client. You cannot
add subset rules to the negative rule set for an Oracle Streams client using these
procedures.

The following sections describe subset rules in more detail:

• Subset Rules Example

• Row Migration and Subset Rules

• Subset Rules and Supplemental Logging

• Guidelines for Using Subset Rules

See Also:

• "Restrictions for Subset Rules"

5.3.4.1 Subset Rules Example
This example instructs an Oracle Streams apply process to apply a subset of row
LCRs relating to the hr.regions table where the region_id is 2. These changes
originated at the dbs1.example.com source database.

Run the ADD_SUBSET_RULES procedure to create three rules:

BEGIN
 DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name => 'hr.regions',
 dml_condition => 'region_id=2',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com');
END;
/

The ADD_SUBSET_RULES procedure creates three rules: one for INSERT operations, one for
UPDATE operations, and one for DELETE operations.

Here is the rule condition used by the insert rule:

Chapter 5
System-Created Rules

5-21

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.EXAMPLE.COM'
AND :dml.get_command_type() IN ('UPDATE','INSERT')
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_command_type()='INSERT'
OR ((:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (((:dml.get_value('OLD','"REGION_ID"').AccessNumber() IS NOT NULL)
AND NOT (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2))
OR ((:dml.get_value('OLD','"REGION_ID"').AccessNumber() IS NULL)
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL
WHERE (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2))))))

Based on this rule condition, row LCRs are evaluated in the following ways:

• For an insert, if the new value in the row LCR for region_id is 2, then the insert is
applied.

• For an insert, if the new value in the row LCR for region_id is not 2 or is NULL, then
the insert is filtered out.

• For an update, if the old value in the row LCR for region_id is not 2 or is NULL and
the new value in the row LCR for region_id is 2, then the update is converted into
an insert and applied. This automatic conversion is called row migration. See "Row
Migration and Subset Rules" for more information.

Here is the rule condition used by the update rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.EXAMPLE.COM'
AND :dml.get_command_type()='UPDATE'
AND (:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2)

Based on this rule condition, row LCRs are evaluated in the following ways:

• For an update, if both the old value and the new value in the row LCR for
region_id are 2, then the update is applied as an update.

• For an update, if either the old value or the new value in the row LCR for region_id
is not 2 or is NULL, then the update does not satisfy the update rule. The LCR can
satisfy the insert rule, the delete rule, or neither rule.

Here is the rule condition used by the delete rule:

:dml.get_object_owner()='HR' AND :dml.get_object_name()='REGIONS'
AND :dml.is_null_tag()='Y' AND :dml.get_source_database_name()='DBS1.EXAMPLE.COM'
AND :dml.get_command_type() IN ('UPDATE','DELETE')
AND (:dml.get_value('OLD','"REGION_ID"') IS NOT NULL)
AND (:dml.get_value('OLD','"REGION_ID"').AccessNumber()=2)
AND (:dml.get_command_type()='DELETE'
OR ((:dml.get_value('NEW','"REGION_ID"') IS NOT NULL)
AND (((:dml.get_value('NEW','"REGION_ID"').AccessNumber() IS NOT NULL)
AND NOT (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2))
OR ((:dml.get_value('NEW','"REGION_ID"').AccessNumber() IS NULL)
AND NOT EXISTS (SELECT 1 FROM SYS.DUAL
WHERE (:dml.get_value('NEW','"REGION_ID"').AccessNumber()=2))))))

Based on this rule condition, row LCRs are evaluated in the following ways:

Chapter 5
System-Created Rules

5-22

• For a delete, if the old value in the row LCR for region_id is 2, then the delete is
applied.

• For a delete, if the old value in the row LCR for region_id is not 2 or is NULL, then
the delete is filtered out.

• For an update, if the old value in the row LCR for region_id is 2 and the new value
in the row LCR for region_id is not 2 or is NULL, then the update is converted into a
delete and applied. This automatic conversion is called row migration. See "Row
Migration and Subset Rules" for more information.

Given these subset rules, the following list provides examples of changes applied by
an apply process:

• A row is updated in the hr.regions table where the old region_id is 4 and the new
value of region_id is 2. This update is transformed into an insert.

• A row is updated in the hr.regions table where the old region_id is 2 and the new
value of region_id is 1. This update is transformed into a delete.

The apply process dequeues row LCRs containing these changes from its associated
queue and applies them to the hr.regions table at the destination database.

Given these subset rules, the following list provides examples of changes that are
ignored by the apply process:

• A row is inserted into the hr.employees table. This change is not applied because a
change to the hr.employees table does not satisfy the subset rules.

• A row is updated in the hr.regions table where the region_id was 1 before the
update and remains 1 after the update. This change is not applied because the
subset rules for the hr.regions table evaluate to TRUE only when the new or old (or
both) values for region_id is 2.

Note:

Do not add subset rules to the positive rule set of a capture process for tables
that are not supported by capture processes. Query the
DBA_STREAMS_UNSUPPORTED data dictionary view to determine which tables are not
supported by capture processes. If unsupported table are not excluded, then
capture errors will result.

If you add subset rules to the positive rule set for a synchronous capture or an
apply process, then ensure that these Oracle Streams clients do not attempt to
process changes to unsupported columns. If a table includes an unsupported
column, then you can exclude the column with a rule-based transformation or,
for an apply process, with a DML handler. Query the DBA_STREAMS_COLUMNS data
dictionary view to determine which columns are not supported by synchronous
captures and apply processes. If unsupported columns are not excluded, then
errors will result.

Chapter 5
System-Created Rules

5-23

See Also:

• "Listing the Database Objects That Are Not Compatible with Capture
Processes"

• "Listing Database Objects and Columns Not Compatible with Synchronous
Captures"

• "Listing Database Objects and Columns Not Compatible with Apply
Processes"

5.3.4.2 Row Migration and Subset Rules
When you use subset rules, an update operation can be converted into an insert or
delete operation when it is captured, propagated, applied, or dequeued. This
automatic conversion is called row migration and is performed by an internal
transformation specified automatically in the action context for a subset rule. The
following sections describe row migration during capture, propagation, apply, and
dequeue.

This section contains these topics:

• Row Migration During Capture

• Row Migration During Propagation

• Row Migration During Apply

• Row Migration During Dequeue by a Messaging Client

Note:

Subset rules should reside only in positive rule sets. Do not add subset rules
to negative rule sets. Doing so can have unpredictable results, because row
migration would not be performed on LCRs that are not discarded by the
negative rule set. Also, row migration is not performed on LCRs discarded
because they evaluate to TRUE against a negative rule set.

5.3.4.2.1 Row Migration During Capture
When a subset rule is in the rule set for a capture process or synchronous capture, an
update that satisfies the subset rule can be converted into an insert or delete when it is
captured.

For example, suppose you use a subset rule to specify that a capture process or a
synchronous capture captures changes to the hr.employees table where the
employee's department_id is 50 using the following subset condition: department_id = 50.
Assume that the table at the source database contains records for employees from all
departments. If a DML operation changes an employee's department_id from 80 to 50,
then the subset rule converts the update operation into an insert operation and
captures the change. Therefore, a row LCR that contains an INSERT is enqueued into
the queue. Figure 5-2 illustrates this example with a subset rule for a capture process.

Chapter 5
System-Created Rules

5-24

Figure 5-2 Row Migration During Capture by a Capture Process

Source Database

UPDATE hr.employees

SET department_id = 50

WHERE employee_id = 167;

Redo

Log

Enqueue

Transformed

LCR

Capture

Change

Record

Change

Propagate

LCR

hr.employees Table

Destination Database

Apply

Process�

Dequeue

LCR

Apply

change

as

INSERT

hr.employees

Subset Table

Queue

Only employees

with

department_id = 50

Queue

Capture

Process�

Subset Rule

Transformation:

UPDATE to INSERT

Similarly, if a captured update changes an employee's department_id from 50 to 20,
then a capture process or synchronous capture with this subset rule converts the
update operation into a DELETE operation.

5.3.4.2.2 Row Migration During Propagation
When a subset rule is in the rule set for a propagation, an update operation can be
converted into an insert or delete operation when a row LCR is propagated.

For example, suppose you use a subset rule to specify that a propagation propagates
changes to the hr.employees table where the employee's department_id is 50 using the
following subset condition: department_id = 50. If the source queue for the propagation
contains a row LCR with an update operation on the hr.employees table that changes
an employee's department_id from 50 to 80, then the propagation with the subset rule
converts the update operation into a delete operation and propagates the row LCR to
the destination queue. Therefore, a row LCR that contains a DELETE is enqueued into
the destination queue. Figure 5-3 illustrates this example.

Chapter 5
System-Created Rules

5-25

Figure 5-3 Row Migration During Propagation

Source Database

(Before UPDATE,

department_id is 50

for employee_id 190)

UPDATE hr.employees

SET department_id = 80

WHERE employee_id = 190;

Redo

Log

Capture

Process�

Enqueue

LCR

Capture

Change

Record

Change

Dequeue

LCR to Begin

Propagation

Continue

Propagation

of LCR

hr.employees Table

Destination Database

Apply

Process�

Dequeue

LCR

Apply

change

as

DELETE

hr.employees

Subset Table

Queue

Only employees

with

department_id = 50

Queue

Subset Rule

Transformation:

UPDATE to

DELETE

Similarly, if a captured update changes an employee's department_id from 80 to 50,
then a propagation with this subset rule converts the update operation into an INSERT
operation.

5.3.4.2.3 Row Migration During Apply
When a subset rule is in the rule set for an apply process, an update operation can be
converted into an insert or delete operation when a row LCR is applied.

For example, suppose you use a subset rule to specify that an apply process applies
changes to the hr.employees table where the employee's department_id is 50 using the
following subset condition: department_id = 50. Assume that the table at the destination
database is a subset table that only contains records for employees whose
department_id is 50. If a source database captures a change to an employee that
changes the employee's department_id from 80 to 50, then the apply process with the
subset rule at a destination database applies this change by converting the update
operation into an insert operation. This conversion is needed because the employee's
row does not exist in the destination table. Figure 5-4 illustrates this example.

Chapter 5
System-Created Rules

5-26

Figure 5-4 Row Migration During Apply

Source Database

UPDATE hr.employees

SET department_id = 50

WHERE employee_id = 145;

Redo

Log

Capture

Process�

Enqueue

LCR

Capture

Change

Record Change

Propagate

LCR

hr.employees Table

Destination Database

Subset Rule

Transformation:

UPDATE to

INSERT

Apply

Process�

Continue

Dequeue

Dequeue

LCR

Apply

change

as

INSERT

hr.employees

Subset Table

Queue

Only employees

with

department_id = 50

Queue

Similarly, if a captured update changes an employee's department_id from 50 to 20,
then an apply process with this subset rule converts the update operation into a DELETE
operation.

5.3.4.2.4 Row Migration During Dequeue by a Messaging Client
When a subset rule is in the rule set for a messaging client, an update operation can
be converted into an insert or delete operation when a row LCR is dequeued.

For example, suppose you use a subset rule to specify that a messaging client
dequeues changes to the hr.employees table when the employee's department_id is 50
using the following subset condition: department_id = 50. If the queue for a messaging
client contains a persistent row LCR with an update operation on the hr.employees
table that changes an employee's department_id from 50 to 90, then when a user or
application invokes a messaging client with this subset rule, the messaging client
converts the update operation into a delete operation and dequeues the row LCR.
Therefore, a row LCR that contains a DELETE is dequeued. The messaging client can
process this row LCR in any customized way. For example, it can send the row LCR to
a custom application. Figure 5-5 illustrates this example.

Chapter 5
System-Created Rules

5-27

Figure 5-5 Row Migration During Dequeue by a Messaging Client

Oracle Database

Subset Rule�
Transformation:�

UPDATE to �
DELETE

Messaging�
Client

User or�
Application

Dequeue�
LCR

Continue�
Dequeue

Queue

Enqueue row LCR that updates �
the hr. employees table. The old �
value for the department_id �
column is 50. The new value for �
this column is 90.

Similarly, if a persistent row LCR contains an update that changes an employee's
department_id from 90 to 50, then a messaging client with this subset rule converts the
UPDATE operation into an INSERT operation during dequeue.

5.3.4.3 Subset Rules and Supplemental Logging
Supplemental logging is required when you specify the following types of subset rules:

• Subset rules for a capture process

• Subset rules for a propagation that will propagate LCRs captured by a capture
process

• Subset rules for an apply process that will apply LCRs captured by a capture
process

In any of these cases, an unconditional supplemental log group must be specified at
the source database for all the columns in the subset condition and all of the columns
in the table(s) at the destination database(s) that will apply these changes. In some
cases, when a subset rule is specified, an update can be converted to an insert, and,
in these cases, supplemental information might be needed for some or all of the
columns.

For example, if you specify a subset rule for an apply process that will apply captured
LCRs at database dbs2.example.com on the postal_code column in the hr.locations
table, and the source database for changes to this table is dbs1.example.com, then
specify supplemental logging at dbs1.example.com for all of the columns that exist in the
hr.locations table at dbs2.example.com, and for the postal_code column, even if this
column does not exist in the table at the destination database.

Chapter 5
System-Created Rules

5-28

Note:

Supplemental logging is not required when subset rules are used by a
synchronous capture. Also, supplemental logging is not required propagations
or apply processes process LCRs captured by synchronous capture.

See Also:

• Oracle Streams Replication Administrator's Guide for detailed information
about supplemental logging

• "Supplemental Logging in an Oracle Streams Environment"

5.3.4.4 Guidelines for Using Subset Rules
The following sections provide guidelines for using subset rules:

• Use Capture Subset Rules When All Destinations Need Only a Subset of Changes

• Use Propagation or Apply Subset Rules When Some Destinations Need Subsets

• Ensure That the Table Where Subset Row LCRs Are Applied Is a Subset Table

5.3.4.4.1 Use Capture Subset Rules When All Destinations Need Only a Subset of
Changes

Use subset rules with a capture process or a synchronous capture when all destination
databases of the captured changes need only row changes that satisfy the subset
condition for the table. In this case, a capture process or a synchronous capture
captures a subset of the DML changes to the table, and one or more propagations
propagate these changes in the form of row LCRs to one or more destination
databases. At each destination database, an apply process applies these row LCRs to
a subset table in which all of the rows satisfy the subset condition in the subset rules
for the capture process. None of the destination databases need all of the DML
changes made to the table. When you use subset rules for a local capture process or
a synchronous capture, some additional overhead is incurred to perform row
migrations at the site running the source database.

5.3.4.4.2 Use Propagation or Apply Subset Rules When Some Destinations Need Subsets
Use subset rules with a propagation or an apply process when some destinations in an
environment need only a subset of captured DML changes. The following are
examples of such an environment:

• Most of the destination databases for captured DML changes to a table need a
different subset of these changes.

• Most of the destination databases need all of the captured DML changes to a
table, but some destination databases need only a subset of these changes.

In these types of environments, the capture process or synchronous capture must
capture all of the changes to the table, but you can use subset rules with propagations

Chapter 5
System-Created Rules

5-29

and apply processes to ensure that subset tables at destination databases only apply
the correct subset of captured DML changes.

Consider these factors when you decide to use subset rules with a propagation in this
type of environment:

• You can reduce network traffic because fewer row LCRs are propagated over the
network.

• The site that contains the source queue for the propagation incurs some additional
overhead to perform row migrations.

Consider these factors when you decide to use subset rules with an apply process in
this type of environment:

• The queue used by the apply process can contain all row LCRs for the subset
table. In a directed networks environment, propagations can propagate any of the
row LCRs for the table to destination queues as appropriate, whether the apply
process applies these row LCRs.

• The site that is running the apply process incurs some additional overhead to
perform row migrations.

5.3.4.4.3 Ensure That the Table Where Subset Row LCRs Are Applied Is a Subset Table
If an apply process might apply row LCRs that have been transformed by a row
migration, then Oracle recommends that the table at the destination database be a
subset table where each row matches the condition in the subset rule. If the table is
not such a subset table, then apply errors might result.

For example, consider a scenario in which a subset rule for a capture process has the
condition department_id = 50 for DML changes to the hr.employees table. If the
hr.employees table at a destination database of this capture process contains rows for
employees in all departments, not just in department 50, then a constraint violation
might result during apply:

1. At the source database, a DML change updates the hr.employees table and
changes the department_id for the employee with an employee_id of 100 from 90 to
50.

2. A capture process using the subset rule captures the change and converts the
update into an insert and enqueues the change into the capture process's queue
as a row LCR.

3. A propagation propagates the row LCR to the destination database without
modifying it.

4. An apply process attempts to apply the row LCR as an insert at the destination
database, but an employee with an employee_id of 100 already exists in the
hr.employees table, and an apply error results.

In this case, if the table at the destination database were a subset of the hr.employees
table and only contained rows of employees whose department_id was 50, then the
insert would have been applied successfully.

Similarly, if an apply process might apply row LCRs that have been transformed by a
row migration to a table, and you allow users or applications to perform DML
operations on the table, then Oracle recommends that all DML changes satisfy the
subset condition. If you allow local changes to the table, then the apply process cannot
ensure that all rows in the table meet the subset condition. For example, suppose the

Chapter 5
System-Created Rules

5-30

condition is department_id = 50 for the hr.employees table. If a user or an application
inserts a row for an employee whose department_id is 30, then this row remains in the
table and is not removed by the apply process. Similarly, if a user or an application
updates a row locally and changes the department_id to 30, then this row also remains
in the table.

5.3.5 Message Rules
When you use a rule to specify an Oracle Streams task that is relevant only for a user
message of a specific, non-LCR message type, you are specifying a message rule.
You can specify message rules for propagations, apply processes, and messaging
clients.

A single message rule in the positive rule set for a propagation means that the
propagation propagates the user messages of the message type in the source queue
that satisfy the rule condition. A single message rule in the negative rule set for a
propagation means that the propagation discards the user messages of the message
type in the source queue that satisfy the rule condition.

A single message rule in the positive rule set for an apply process means that the
apply process dequeues user messages of the message type that satisfy the rule
condition. The apply process then sends these user messages to its message handler.
A single message rule in the negative rule set for an apply process means that the
apply process discards user messages of the message type in its queue that satisfy
the rule condition.

A single message rule in the positive rule set for a messaging client means that a user
or an application can use the messaging client to dequeue user messages of the
message type that satisfy the rule condition. A single message rule in the negative rule
set for a messaging client means that the messaging client discards user messages of
the message type in its queue that satisfy the rule condition. Unlike propagations and
apply processes, which propagate or apply messages automatically when they are
running, a messaging client does not automatically dequeue or discard messages.
Instead, a messaging client must be invoked by a user or application to dequeue or
discard messages.

5.3.5.1 Message Rule Example
Suppose you use the ADD_MESSAGE_RULE procedure in the DBMS_STREAMS_ADM package to
instruct an Oracle Streams client to behave in the following ways:

• Dequeue User Messages If region Is EUROPE and priority Is 1

• Send User Messages to a Message Handler If region Is AMERICAS and priority Is
2

The first instruction in the previous list pertains to a messaging client, while the second
instruction pertains to an apply process.

The rules created in these examples are for messages of the following type:

CREATE TYPE strmadmin.region_pri_msg AS OBJECT(
 region VARCHAR2(100),
 priority NUMBER,
 message VARCHAR2(3000))
/

Chapter 5
System-Created Rules

5-31

5.3.5.1.1 Dequeue User Messages If region Is EUROPE and priority Is 1
Run the ADD_MESSAGE_RULE procedure to create a rule for messages of region_pri_msg
type:

BEGIN
 DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
 message_type => 'strmadmin.region_pri_msg',
 rule_condition => ':msg.region = ''EUROPE'' AND ' ||
 ':msg.priority = ''1'' ',
 streams_type => 'dequeue',
 streams_name => 'msg_client',
 queue_name => 'streams_queue',
 inclusion_rule => TRUE);
END;
/

Notice that dequeue is specified for the streams_type parameter. Therefore, this
procedure creates a messaging client named msg_client if it does not already exist. If
this messaging client already exists, then this procedure adds the message rule to its
rule set. Also, notice that the inclusion_rule parameter is set to TRUE. This setting
means that the system-created rule is added to the positive rule set for the messaging
client. The user who runs this procedure is granted the privileges to dequeue from the
queue using the messaging client.

The ADD_MESSAGE_RULE procedure creates a rule with a rule condition similar to the
following:

:"VAR$_52".region = 'EUROPE' AND :"VAR$_52".priority = '1'

The variables in the rule condition that begin with VAR$ are variables that are specified
in the system-generated evaluation context for the rule.

See Also:

"Evaluation Contexts Used in Oracle Streams"

5.3.5.1.2 Send User Messages to a Message Handler If region Is AMERICAS and priority
Is 2

Run the ADD_MESSAGE_RULE procedure to create a rule for messages of region_pri_msg
type:

BEGIN
 DBMS_STREAMS_ADM.ADD_MESSAGE_RULE (
 message_type => 'strmadmin.region_pri_msg',
 rule_condition => ':msg.region = ''AMERICAS'' AND ' ||
 ':msg.priority = ''2'' ',
 streams_type => 'apply',
 streams_name => 'apply_msg',
 queue_name => 'streams_queue',
 inclusion_rule => TRUE);
END;
/

Chapter 5
System-Created Rules

5-32

Notice that apply is specified for the streams_type parameter. Therefore, this procedure
creates an apply process named apply_msg if it does not already exist. If this apply
process already exists, then this procedure adds the message rule to its rule set. Also,
notice that the inclusion_rule parameter is set to TRUE. This setting means that the
system-created rule is added to the positive rule set for the messaging client.

The ADD_MESSAGE_RULE procedure creates a rule with a rule condition similar to the
following:

:"VAR$_56".region = 'AMERICAS' AND :"VAR$_56".priority = '2'

The variables in the rule condition that begin with VAR$ are variables that are specified
in the system-generated evaluation context for the rule.

See Also:

"Evaluation Contexts Used in Oracle Streams"

5.3.5.1.3 Summary of Rules
In this example, the following message rules were defined:

• A message rule for a messaging client named msg_client that evaluates to TRUE if a
message has EUROPE for its region and 1 for its priority. Given this rule, a user or
application can use the messaging client to dequeue messages of region_pri_msg
type that satisfy the rule condition.

• A message rule for an apply process named apply_msg that evaluates to TRUE if a
message has AMERICAS for its region and 2 for its priority. Given this rule, the apply
process dequeues messages of region_pri_msg type that satisfy the rule condition
and sends these messages to its message handler or reenqueues the messages
into a specified queue.

See Also:

• "Message Handlers"

• "Enqueue Destinations for Messages During Apply"

5.3.6 System-Created Rules and Negative Rule Sets
You add system-created rules to a negative rule set to specify that you do not want an
Oracle Streams client to perform its task for changes that satisfy these rules.
Specifically, a system-created rule in a negative rule set means the following for each
type of Oracle Streams client:

• A capture process discards changes that satisfy the rule.

• A propagation discards messages in its source queue that satisfy the rule.

• An apply process discards messages in its queue that satisfy the rule.

• A messaging client discards messages in its queue that satisfy the rule.

Chapter 5
System-Created Rules

5-33

Note:

A synchronous capture cannot have a negative rule set.

If an Oracle Streams client does not have a negative rule set, then you can create a
negative rule set and add rules to it by running one of the following procedures and
setting the inclusion_rule parameter to FALSE:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

• DBMS_STREAMS_ADM.ADD_MESSAGE_RULE

• DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_MESSAGE_PROPAGATION_RULE

If a negative rule set already exists for the Oracle Streams client when you run one of
these procedures, then the procedure adds the system-created rules to the existing
negative rule set.

Alternatively, you can create a negative rule set when you create an Oracle Streams
client by running one of the following procedures and specifying a non-NULL value for
the negative_rule_set_name parameter:

• DBMS_CAPTURE_ADM.CREATE_CAPTURE

• DBMS_PROPAGATION_ADM.CREATE_PROPAGATION

• DBMS_APPLY_ADM.CREATE_APPLY

Also, you can specify a negative rule set for an existing Oracle Streams client by
altering the client. For example, to specify a negative rule set for an existing capture
process, use the DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure. After an Oracle Streams
client has a negative rule set, you can use the procedures in the DBMS_STREAMS_ADM
package listed previously to add system-created rules to it.

Instead of adding rules to a negative rule set, you can also exclude changes to certain
tables or schemas in the following ways:

• Do not add system-created rules for the table or schema to a positive rule set for
an Oracle Streams client. For example, to capture DML changes to all of the
tables in a particular schema except for one table, add a DML table rule for each
table in the schema, except for the excluded table, to the positive rule set for the
capture process. The disadvantages of this approach are that there can be many
tables in a schema and each one requires a separate DML rule, and, if a new table
is added to the schema, and you want to capture changes to this new table, then a
new DML rule must be added for this table to the positive rule set for the capture
process.

• Use the NOT logical condition in the rule condition of a complex rule in the positive
rule set for an Oracle Streams client. For example, to capture DML changes to all
of the tables in a particular schema except for one table, use the

Chapter 5
System-Created Rules

5-34

DBMS_STREAMS_ADM.ADD_SCHEMA_RULES procedure to add a system-created DML
schema rule to the positive rule set for the capture process that instructs the
capture process to capture changes to the schema, and use the and_condition
parameter to exclude the table with the NOT logical condition. The disadvantages to
this approach are that it involves manually specifying parts of rule conditions,
which can be error prone, and rule evaluation is not as efficient for complex rules
as it is for unmodified system-created rules.

Given the goal of capturing DML changes to all of the tables in a particular schema
except for one table, you can add a DML schema rule to the positive rule set for the
capture process and a DML table rule for the excluded table to the negative rule set for
the capture process.

This approach has the following advantages over the alternatives described
previously:

• You add only two rules to achieve the goal.

• If a new table is added to the schema, and you want to capture DML changes to
the table, then the capture process captures these changes without requiring
modifications to existing rules or additions of new rules.

• You do not need to specify or edit rule conditions manually.

• Rule evaluation is more efficient because you avoid using complex rules.

See Also:

• "Complex Rule Conditions"

• "System-Created Rules with Added User-Defined Conditions"

5.3.6.1 Negative Rule Set Example
Suppose you want to apply row LCRs that contain the results of DML changes to all of
the tables in hr schema except for the job_history table. To do so, you can use the
ADD_SCHEMA_RULES procedure in the DBMS_STREAMS_ADM package to instruct an Oracle
Streams apply process to apply row LCRs that contain the results of DML changes to
the tables in the hr schema. In this case, the procedure creates a schema rule and
adds the rule to the positive rule set for the apply process.

You can use the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM package to instruct
the Oracle Streams apply process to discard row LCRs that contain the results of DML
changes to the tables in the hr.job_history table. In this case, the procedure creates a
table rule and adds the rule to the negative rule set for the apply process.

The following sections explain how to run these procedures:

• Apply All DML Changes to the Tables in the hr Schema

• Discard Row LCRs Containing DML Changes to the hr.job_history Table

5.3.6.1.1 Apply All DML Changes to the Tables in the hr Schema
These changes originated at the dbs1.example.com source database.

Chapter 5
System-Created Rules

5-35

Run the ADD_SCHEMA_RULES procedure to create this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(
 schema_name => 'hr',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Notice that the inclusion_rule parameter is set to TRUE. This setting means that the
system-created rule is added to the positive rule set for the apply process.

The ADD_SCHEMA_RULES procedure creates a rule with a rule condition similar to the
following:

((:dml.get_object_owner() = 'HR') and :dml.is_null_tag() = 'Y'
and :dml.get_source_database_name() = 'DBS1.EXAMPLE.COM')

5.3.6.1.2 Discard Row LCRs Containing DML Changes to the hr.job_history Table
These changes originated at the dbs1.example.com source database.

Run the ADD_TABLE_RULES procedure to create this rule:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.job_history',
 streams_type => 'apply',
 streams_name => 'apply',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => FALSE,
 include_tagged_lcr => TRUE,
 source_database => 'dbs1.example.com',
 inclusion_rule => FALSE);
END;
/

Notice that the inclusion_rule parameter is set to FALSE. This setting means that the
system-created rule is added to the negative rule set for the apply process.

Also notice that the include_tagged_lcr parameter is set to TRUE. This setting means
that all changes for the table, including tagged LCRs that satisfy all of the other rule
conditions, will be discarded. In most cases, specify TRUE for the include_tagged_lcr
parameter if the inclusion_rule parameter is set to FALSE.

The ADD_TABLE_RULES procedure creates a rule with a rule condition similar to the
following:

(((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'JOB_HISTORY'))
and :dml.get_source_database_name() = 'DBS1.EXAMPLE.COM')

Chapter 5
System-Created Rules

5-36

5.3.6.1.3 Summary of Rules
In this example, the following rules were defined:

• A schema rule that evaluates to TRUE if a DML operation is performed on the tables
in the hr schema. This rule is in the positive rule set for the apply process.

• A table rule that evaluates to TRUE if a DML operation is performed on the
hr.job_history table. This rule is in the negative rule set for the apply process.

Given these rules, the following list provides examples of changes applied by the apply
process:

• A row is inserted into the hr.departments table.

• Five rows are updated in the hr.employees table.

• A row is deleted from the hr.countries table.

The apply process dequeues these changes from its associated queue and applies
them to the database objects at the destination database.

Given these rules, the following list provides examples of changes that are ignored by
the apply process:

• A row is inserted into the hr.job_history table.

• A row is updated in the hr.job_history table.

• A row is deleted from the hr.job_history table.

These changes are not applied because they satisfy a rule in the negative rule set for
the apply process.

See Also:

"Rule Sets and Rule Evaluation of Messages"

5.3.7 System-Created Rules with Added User-Defined Conditions
Some of the procedures that create rules in the DBMS_STREAMS_ADM package include an
and_condition parameter. This parameter enables you to add conditions to system-
created rules. The condition specified by the and_condition parameter is appended to
the system-created rule condition using an AND clause in the following way:

(system_condition) AND (and_condition)

The variable in the specified condition must be :lcr. For example, to specify that the
table rules generated by the ADD_TABLE_RULES procedure evaluate to TRUE only if the
table is hr.departments, the source database is dbs1.example.com, and the Oracle
Streams tag is the hexadecimal equivalent of '02', run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'apply',
 streams_name => 'apply_02',

Chapter 5
System-Created Rules

5-37

 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE,
 and_condition => ':lcr.get_tag() = HEXTORAW(''02'')');
END;
/

The ADD_TABLE_RULES procedure creates a DML rule with the following condition:

(((((:dml.get_object_owner() = 'HR' and :dml.get_object_name() = 'DEPARTMENTS'))
 and :dml.get_source_database_name() = 'DBS1.EXAMPLE.COM'))
and (:dml.get_tag() = HEXTORAW('02')))

It creates a DDL rule with the following condition:

(((((:ddl.get_object_owner() = 'HR' and :ddl.get_object_name() = 'DEPARTMENTS')
or (:ddl.get_base_table_owner() = 'HR'
and :ddl.get_base_table_name() = 'DEPARTMENTS'))
and :ddl.get_source_database_name() = 'DBS1.EXAMPLE.COM'))
and (:ddl.get_tag() = HEXTORAW('02')))

Notice that the :lcr in the specified condition is converted to :dml or :ddl, depending
on the rule that is being generated. If you are specifying an LCR member subprogram
that is dependent on the LCR type (row or DDL), then ensure that this procedure only
generates the appropriate rule. Specifically, if you specify an LCR member
subprogram that is valid only for row LCRs, then specify TRUE for the include_dml
parameter and FALSE for the include_ddl parameter. If you specify an LCR member
subprogram that is valid only for DDL LCRs, then specify FALSE for the include_dml
parameter and TRUE for the include_ddl parameter.

For example, the GET_OBJECT_TYPE member function only applies to DDL LCRs.
Therefore, if you use this member function in an and_condition, then specify FALSE for
the include_dml parameter and TRUE for the include_ddl parameter.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about LCR member subprograms

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams tags

Chapter 5
System-Created Rules

5-38

6
Rule-Based Transformations

A rule-based transformation is any modification to a message when a rule in a
positive rule set evaluates to TRUE. There are two types of rule-based transformations:
declarative and custom.

The following topics contain information about rule-based transformations:

• Declarative Rule-Based Transformations

• Custom Rule-Based Transformations

• Rule-Based Transformations and Oracle Streams Clients

• Transformation Ordering

• Considerations for Rule-Based Transformations

See Also:

• Managing Rule-Based Transformations

• Monitoring Rule-Based Transformations

• Troubleshooting Rules and Rule-Based Transformations

6.1 Declarative Rule-Based Transformations
Declarative rule-based transformations cover a set of common transformation
scenarios for row LCRs.

You specify (or declare) such a transformation using one of the following procedures in
the DBMS_STREAMS_ADM package:

• ADD_COLUMN either adds or removes a declarative transformation that adds a column
to a row LCR.

• DELETE_COLUMN either adds or removes a declarative transformation that deletes a
column from a row LCR.

• KEEP_COLUMNS either adds or removes a declarative transformation that keeps a list
of columns in a row LCR. The transformation removes columns that are not in the
list from the row LCR.

• RENAME_COLUMN either adds or removes a declarative transformation that renames a
column in a row LCR.

• RENAME_SCHEMA either adds or removes a declarative transformation that renames
the schema in a row LCR.

• RENAME_TABLE either adds or removes a declarative transformation that renames the
table in a row LCR.

6-1

When you specify a declarative rule-based transformation, you specify the rule that is
associated with it. When the specified rule evaluates to TRUE for a row LCR, Oracle
Streams performs the declarative transformation internally on the row LCR, without
invoking PL/SQL.

Declarative rule-based transformations provide the following advantages:

• Performance is improved because the transformations are run internally without
using PL/SQL.

• Complexity is reduced because custom PL/SQL functions are not required.

Note:

Declarative rule-based transformations can transform row LCRs only. These
row LCRs can be captured LCRs or persistent LCRs. Therefore, a DML rule
must be specified when you run one of the procedures to add a declarative
transformation. If a DDL rule is specified, then an error is raised.

See Also:

• "Managing Declarative Rule-Based Transformations"

• "Unsupported Data Types for Declarative Rule-Based Transformations"

• "Row LCRs"

• Oracle Database SQL Language Reference for information about data
types

6.2 Custom Rule-Based Transformations
Custom rule-based transformations require a user-defined PL/SQL function to
perform the transformation. The function takes as input an ANYDATA object containing a
message and returns either an ANYDATA object containing the transformed message or
an array that contains zero or more ANYDATA encapsulations of a message. A custom
rule-based transformation function that returns one message is a one-to-one
transformation function. A custom rule-based transformation function that can return
more than one message in an array is a one-to-many transformation function. One-to-
one transformation functions are supported for any type of Oracle Streams client, but
one-to-many transformation functions are supported only for Oracle Streams capture
processes and synchronous captures.

To specify a custom rule-based transformation, use the
DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION procedure. You can use a custom rule-
based transformation to modify captured LCRs, persistent LCRs, and persistent user
messages.

For example, a custom rule-based transformation can be used when the data type of a
particular column in a table is different at two different databases. The column might
be a NUMBER column in the source database and a VARCHAR2 column in the destination
database. In this case, the transformation takes as input an ANYDATA object containing a

Chapter 6
Custom Rule-Based Transformations

6-2

row LCR with a NUMBER data type for a column and returns an ANYDATA object containing
a row LCR with a VARCHAR2 data type for the same column.

Other examples of custom transformations on messages include:

• Splitting a column into several columns

• Combining several columns into one column

• Modifying the contents of a column

• Modifying the payload of a user message

Custom rule-based transformations provide the following advantages:

• Flexibility is increased because you can use PL/SQL to perform custom
transformations.

• A wider range of messages can be transformed, including DDL LCRs and user
messages, as well as row LCRs.

The following considerations apply to custom rule-based transformations:

• When you perform custom rule-based transformations on DDL LCRs, you
probably need to modify the DDL text in the DDL LCR to match any other
modifications. For example, if the rule-based transformation changes the name of
a table in the DDL LCR, then the rule-based transformation should change the
table name in the DDL text in the same way.

• If possible, avoid specifying a custom rule-based transformation for a global rule or
schema rule if the transformation pertains to a relatively small number of LCRs
that will evaluate to TRUE for the rule. For example, a custom rule-based
transformation that operates on a single table can be specified for a schema rule,
and this schema can contain hundreds of tables. Specifying such a rule-based
transformation has performance implications because extra processing is required
for the LCRs that will not be transformed.

To avoid specifying such a custom rule-based transformation, either you can use a
procedure DML handler to perform the transformation, or you can specify the
transformation for a table rule instead of a global or schema rule. However,
replacing a global or schema rule with table rules results in an increase in the total
number of rules and additional maintenance when a new table is added.

• When a custom rule-based transformation that uses a one-to-one transformation
function receives a captured LCR or persistent LCR, the transformation can
construct a new LCR and return it. Similarly, when a custom rule-based
transformation that uses a one-to-many transformation function receives a
captured LCR or a persistent LCR, the transformation can construct multiple new
LCRs and return them in an array.

For any LCR constructed and returned by a custom rule-based transformation, the
source_database_name, transaction_id, and scn parameter values must match the
values in the original LCR. Oracle automatically specifies the values in the original
LCR for these parameters, even if an attempt is made to construct LCRs with
different values.

• A custom rule-based transformation that receives a user message can construct a
new message and return it. In this case, the returned message can be an LCR
constructed by the custom rule-based transformation.

• A custom rule-based transformation cannot convert an LCR into a non-LCR
message. This restriction applies to captured LCRs and persistent LCRs.

Chapter 6
Custom Rule-Based Transformations

6-3

• A custom rule-based transformation cannot convert a row LCR into a DDL LCR or
a DDL LCR into a row LCR. This restriction applies to captured LCRs and
persistent LCRs.

See Also:

• "Required Privileges for Custom Rule-Based Transformations"

• "Managing Custom Rule-Based Transformations"

• "Unsupported Data Types for Custom Rule-Based Transformations"

• " How Rules Are Used in Oracle Streams"

• "Types of Messages That Can Be Processed with an Apply Process"

• Oracle Database PL/SQL Packages and Types Reference for information
about the SET_RULE_TRANSFORM_FUNCTION procedure

• "Logical Change Records (LCRs)"

6.2.1 Custom Rule-Based Transformations and Action Contexts
You use the SET_RULE_TRANSFORM_FUNCTION procedure in the DBMS_STREAMS_ADM package
to specify a custom rule-based transformation for a rule. This procedure modifies the
action context of a rule to specify the transformation. A rule action context is optional
information associated with a rule that is interpreted by the client of the rules engine
after the rule evaluates to TRUE for a message. The client of the rules engine can be a
user-created application or an internal feature of Oracle, such as Oracle Streams. The
information in an action context is an object of type SYS.RE$NV_LIST, which consists of a
list of name-value pairs.

A custom rule-based transformation in Oracle Streams always consists of the following
name-value pair in an action context:

• If the function is a one-to-one transformation function, then the name is
STREAMS$_TRANSFORM_FUNCTION. If the function is a one-to-many transformation
function, then the name is STREAMS$_ARRAY_TRANS_FUNCTION.

• The value is an ANYDATA instance containing a PL/SQL function name specified as
a VARCHAR2. This function performs the transformation.

You can display the existing custom rule-based transformations in a database by
querying the DBA_STREAMS_TRANSFORM_FUNCTION data dictionary view.

When a rule in a positive rule set evaluates to TRUE for a message in an Oracle
Streams environment, and an action context that contains a name-value pair with the
name STREAMS$_TRANSFORM_FUNCTION or STREAMS$_ARRAY_TRANS_FUNCTION is returned, the
PL/SQL function is run, taking the message as an input parameter. Other names in an
action context beginning with STREAMS$_ are used internally by Oracle and must not be
directly added, modified, or removed. Oracle Streams ignores any name-value pair
that does not begin with STREAMS$_ or APPLY$_.

When a rule evaluates to FALSE for a message in an Oracle Streams environment, the
rule is not returned to the client, and any PL/SQL function appearing in a name-value
pair in the action context is not run. Different rules can use the same or different
transformations. For example, different transformations can be associated with

Chapter 6
Custom Rule-Based Transformations

6-4

different operation types, tables, or schemas for which messages are being captured,
propagated, applied, or dequeued.

6.2.2 Required Privileges for Custom Rule-Based Transformations
The user who calls the transformation function must have EXECUTE privilege on the
function. The following list describes which user calls the transformation function:

• If a transformation is specified for a rule used by a capture process, then the
capture user for the capture process calls the transformation function.

• If a transformation is specified for a rule used by a synchronous capture, then the
capture user for the synchronous capture calls the transformation function.

• If a transformation is specified for a rule used by a propagation, then the owner of
the source queue for the propagation calls the transformation function.

• If a transformation is specified on a rule used by an apply process, then the apply
user for the apply process calls the transformation function.

• If a transformation is specified on a rule used by a messaging client, then the user
who invokes the messaging client calls the transformation function.

See Also:

• Managing Rule-Based Transformations

• Oracle Streams Information Capture

• Message Propagation Between Queues

• Oracle Streams Information Consumption

6.3 Rule-Based Transformations and Oracle Streams
Clients

The following sections provide more information about rule-based transformations and
Oracle Streams clients:

• Rule-Based Transformations and Capture Processes

• Rule-Based Transformations and Synchronous Captures

• Rule-Based Transformations and Propagations

• Rule-Based Transformations and an Apply Process

• Rule-Based Transformations and a Messaging Client

• Multiple Rule-Based Transformations

The information in this section applies to both declarative and custom rule-based
transformations.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-5

Note:

• Managing Rule-Based Transformations

• "Rule Action Context"

• "Types of Messages That Can Be Processed with an Apply Process"

6.3.1 Rule-Based Transformations and Capture Processes
For a transformation to be performed during capture by a capture process, a rule that
is associated with a rule-based transformation in the positive rule set for the capture
process must evaluate to TRUE for a particular change found in the redo log.

If the transformation is a declarative rule-based transformation, then Oracle transforms
the captured LCR internally when the rule in a positive rule set evaluates to TRUE for
the message. If the transformation is a custom rule-based transformation, then an
action context containing a name-value pair with the name
STREAMS$_TRANSFORM_FUNCTION or STREAMS$_ARRAY_TRANS_FUNCTION is returned to the
capture process when the rule in a positive rule set evaluates to TRUE for the captured
LCR.

The capture process completes the following steps to perform a rule-based
transformation:

1. Formats the change in the redo log into an LCR.

2. Converts the LCR into an ANYDATA object.

3. Transforms the LCR. If the transformation is a declarative rule-based
transformation, then Oracle transforms the ANYDATA object internally based on the
specifications of the declarative transformation. If the transformation is a custom
rule-based transformation, then the capture user for the capture process runs the
PL/SQL function in the name-value pair to transform the ANYDATA object.

4. Enqueues one or more transformed ANYDATA objects into the queue associated with
the capture process, or discards the LCR if an array that contains zero elements is
returned by the transformation function.

All actions are performed by the capture user for the capture process. Figure 6-1
shows a transformation during capture by a capture process.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-6

Figure 6-1 Transformation During Capture by a Capture Process

User Changes

Database Objects

Redo

Log

QueueCapture

Process�

Transformation

Enqueue

Transformed

LCRs

Capture

Changes

Log

Changes

For example, if an LCR is transformed during capture by a capture process, then the
transformed LCR is enqueued into the queue used by the capture process. Therefore,
if such a captured LCR is propagated from the dbs1.example.com database to the
dbs2.example.com and the dbs3.example.com databases, then the queues at
dbs2.example.com and dbs3.example.com will contain the transformed LCR after
propagation.

The advantages of performing transformations during capture by a capture process
are the following:

• Security can be improved if the transformation removes or changes private
information, because this private information does not appear in the source queue
and is not propagated to any destination queue.

• Space consumption can be reduced, depending on the type of transformation
performed. For example, a transformation that reduces the amount of data results
in less data to enqueue, propagate, and apply.

• Transformation overhead is reduced when there are multiple destinations for a
transformed LCR, because the transformation is performed only once at the
source, not at multiple destinations.

• A capture process transformation can transform a single message into multiple
messages.

The possible disadvantages of performing transformations during capture by a capture
process are the following:

• The transformation overhead occurs in the source database if the capture process
is a local capture process. However, if the capture process is a downstream

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-7

capture process, then this overhead occurs at the downstream database, not at
the source database.

• All sites receive the transformed LCR.

Note:

A rule-based transformation cannot be used with a capture process to modify
or remove a column of a data type that is not supported by Oracle Streams.

See Also:

• "Data Types Captured by Capture Processes"

• " Managing Rule-Based Transformations "

6.3.1.1 Rule-Based Transformation Errors During Capture by a Capture
Process

If an error occurs when the transformation is run during capture by a capture process,
then the error is returned to the capture process. The behavior of the capture process
depends on the type of transformation being performed and the type of error
encountered. The following capture process behaviors are possible:

• If the transformation is a declarative rule-based transformation, and the capture
process can ignore the error, then the capture process performs the
transformation and captures the change. For example, if a capture process tries to
perform a DELETE_COLUMN declarative rule-based transformation, and the column
specified for deletion does not exist in the row LCR, then the capture process
captures the change and continues to run.

• If the transformation is a declarative rule-based transformation, and the capture
process cannot ignore the error, then the change is not captured, and the capture
process becomes disabled. For example, if a capture process tries to perform an
ADD_COLUMN declarative rule-based transformation, and the column specified for
addition already exists in the row LCR, then the change is not captured, and the
capture process becomes disabled.

• Whenever an error is encountered in a custom rule-based transformation, the
change is not captured, and the capture process becomes disabled.

If the capture process becomes disabled, then you must either change or remove the
rule-based transformation to avoid the error before the capture process can be
enabled.

6.3.2 Rule-Based Transformations and Synchronous Captures
For a transformation to be performed during capture by a synchronous capture, a rule
that is associated with a rule-based transformation in the positive rule set for the
synchronous capture must evaluate to TRUE for a particular DML change made to a
table.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-8

If the transformation is a declarative rule-based transformation, then Oracle transforms
the persistent LCR internally when the rule in a positive rule set evaluates to TRUE for
the message. If the transformation is a custom rule-based transformation, then an
action context containing a name-value pair with the name
STREAMS$_TRANSFORM_FUNCTION is returned to the capture process when the rule in a
positive rule set evaluates to TRUE for the persistent LCR.

The synchronous capture completes the following steps to perform a rule-based
transformation:

1. Formats the change in the redo log into a row LCR.

2. Converts the row LCR into an ANYDATA object.

3. Transforms the LCR. If the transformation is a declarative rule-based
transformation, then Oracle transforms the ANYDATA object internally based on the
specifications of the declarative transformation. If the transformation is a custom
rule-based transformation, then the capture user for the synchronous capture runs
the PL/SQL function in the name-value pair to transform the ANYDATA object.

4. Enqueues the transformed ANYDATA object into the queue associated with the
synchronous capture.

All actions are performed by the capture user for the synchronous capture. Figure 6-2
shows a transformation during capture.

Figure 6-2 Transformation During Capture by a Synchronous Capture

User Changes

Database Objects

Queue

LCR

LCR

User Message

User Message

LCR

User Message

LCR

LCR

.

.

.

Synchronous�
Capture

Enqueue �
Transformed�
LCRs

Capture

Changes

Transformation

For example, if a row LCR is transformed during capture by a synchronous capture,
then the transformed row LCR is enqueued into the queue used by the synchronous
capture. Therefore, if such a captured LCR is propagated from the dbs1.example.com
database to the dbs2.example.com and the dbs3.example.com databases, then the

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-9

queues at dbs2.example.com and dbs3.example.com will contain the transformed row LCR
after propagation.

The advantages of performing transformations during capture by a synchronous
capture are the following:

• Security can be improved if the transformation removes or changes private
information, because this private information does not appear in the source queue
and is not propagated to any destination queue.

• Space consumption can be reduced, depending on the type of transformation
performed. For example, a transformation that reduces the amount of data results
in less data to enqueue, propagate, and apply.

• Transformation overhead is reduced when there are multiple destinations for a
transformed row LCR, because the transformation is performed only once at the
source, not at multiple destinations.

The possible disadvantages of performing transformations during capture by a
synchronous capture are the following:

• The transformation overhead occurs in the source database.

• All sites receive the transformed LCR.

Note:

A rule-based transformation cannot be used with a synchronous capture to
modify or remove a column of a data type that is not supported by Oracle
Streams.

See Also:

"Data Types Captured by Synchronous Capture".

6.3.2.1 Rule-Based Transformations and Errors During Capture by a
Synchronous Capture

If an error occurs when the transformation is run during capture by a synchronous
capture, then the error is returned to the synchronous capture. The behavior of the
synchronous capture depends on the type of transformation being performed and the
type of error encountered. The following synchronous capture behaviors are possible:

• If the transformation is a declarative rule-based transformation, and the
synchronous capture can ignore the error, then the synchronous capture performs
the transformation and captures the change. For example, if a synchronous
capture tries to perform a DELETE_COLUMN declarative rule-based transformation, and
the column specified for deletion does not exist in the row LCR, then the
synchronous capture captures the change.

• If the transformation is a declarative rule-based transformation, and the
synchronous capture cannot ignore the error, then the change is not captured, and
the DML operation aborts. For example, if a synchronous capture tries to perform

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-10

an ADD_COLUMN declarative rule-based transformation, and the column specified for
addition already exists in the row LCR, then the change is not captured, and the
DML aborts.

• Whenever an error is encountered in a custom rule-based transformation, the
change is not captured, and the DML aborts.

If the DML aborts because of a rule-based transformation, then you must either
change or remove the rule-based transformation to perform the DML operation.

6.3.3 Rule-Based Transformations and Propagations
For a transformation to be performed during propagation, a rule that is associated with
a rule-based transformation in the positive rule set for the propagation must evaluate
to TRUE for a message in the source queue for the propagation. This message can be a
captured LCR, buffered LCR, buffered user message, persistent LCR, and persistent
user message.

If the transformation is a declarative rule-based transformation, then Oracle transforms
the message internally when the rule in a positive rule set evaluates to TRUE for the
message. If the transformation is a custom rule-based transformation, then an action
context containing a name-value pair with the name STREAMS$_TRANSFORM_FUNCTION is
returned to the propagation when the rule in a positive rule set evaluates to TRUE for the
message.

The propagation completes the following steps to perform a rule-based transformation:

1. Starts dequeuing the message from the source queue.

2. Transforms the message. If the transformation is a declarative rule-based
transformation, then Oracle transforms the message internally based on the
specifications of the declarative transformation. If the transformation is a custom
rule-based transformation, then the source queue owner runs the PL/SQL function
in the name-value pair to transform the message.

3. Completes dequeuing the transformed message.

4. Propagates the transformed message to the destination queue.

Note:

"Ways to Consume Information with Oracle Streams"

Figure 6-3 shows a transformation during propagation.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-11

Figure 6-3 Transformation During Propagation

Source

Queue

Destination

Queue

PropagateTransformation

During Dequeue

For example, suppose you use a rule-based transformation for a propagation that
propagates messages from the dbs1.example.com database to the dbs2.example.com
database, but you do not use a rule-based transformation for a propagation that
propagates messages from the dbs1.example.com database to the dbs3.example.com
database.

In this case, a message in the queue at dbs1.example.com can be transformed before it
is propagated to dbs2.example.com, but the same message can remain in its original
form when it is propagated to dbs3.example.com. In this case, after propagation, the
queue at dbs2.example.com contains the transformed message, and the queue at
dbs3.example.com contains the original message.

The advantages of performing transformations during propagation are the following:

• Security can be improved if the transformation removes or changes private
information before messages are propagated.

• Some destination queues can receive a transformed message, while other
destination queues can receive the original message.

• Different destinations can receive different variations of the same transformed
message.

The possible disadvantages of performing transformations during propagation are the
following:

• Once a message is transformed, any database to which it is propagated after the
first propagation receives the transformed message. For example, if
dbs2.example.com propagates the message to dbs4.example.com, then
dbs4.example.com receives the transformed message.

• When the first propagation in a directed network performs the transformation, and
a local capture process captured the message, the transformation overhead
occurs on the source database. However, if the capture process is a downstream
capture process, then this overhead occurs at the downstream database, not at
the source database.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-12

• When the first propagation in a directed network performs the transformation, and
a synchronous capture captured the message, the transformation overhead occurs
on the source database.

• The same transformation can be done multiple times on a message when different
propagations send the message to multiple destination databases.

6.3.3.1 Rule-Based Transformation Errors During Propagation
If an error occurs during the transformation, then the message that caused the error is
not dequeued or propagated, and the error is returned to the propagation. Before the
message can be propagated, you must change or remove the rule-based
transformation to avoid the error.

6.3.4 Rule-Based Transformations and an Apply Process
For a transformation to be performed during apply, a rule that is associated with a rule-
based transformation in the positive rule set for the apply process must evaluate to
TRUE for a message in the queue for the apply process. This message can be a
captured LCR, a persistent LCR, or a persistent user message.

If the transformation is a declarative rule-based transformation, then Oracle transforms
the message internally when the rule in a positive rule set evaluates to TRUE for the
message. If the transformation is a custom rule-based transformation, then an action
context containing a name-value pair with the name STREAMS$_TRANSFORM_FUNCTION is
returned to the apply process when the rule in a positive rule set evaluates to TRUE for
the message.

The apply process completes the following steps to perform a rule-based
transformation:

1. Starts to dequeue the message from the queue.

2. Transforms the message. If the transformation is a declarative rule-based
transformation, then Oracle transforms the message internally based on the
specifications of the declarative transformation. If the transformation is a custom
rule-based transformation, then the apply user runs the PL/SQL function in the
name-value pair to transform the message.

3. Completes dequeuing the transformed message.

4. Applies the transformed message, which can entail changing database objects at
the destination database or sending the transformed message to an apply handler.

All actions are performed by the apply user.

Note:

"Ways to Consume Information with Oracle Streams"

Figure 6-4 shows a transformation during apply.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-13

Figure 6-4 Transformation During Apply

Queue
Dequeue

Messages

Apply

Handlers

Continue Dequeue

of Transformed

Messages

Apply Transformed

Messages Directly

Send Transformed �
Messages to Apply �
Handlers

Transformation

During Dequeue

Database Objects

Apply

Process

For example, suppose a message is propagated from the dbs1.example.com database
to the dbs2.example.com database in its original form. When the apply process
dequeues the message at dbs2.example.com, the message is transformed.

The possible advantages of performing transformations during apply are the following:

• Any database to which the message is propagated after the first propagation can
receive the message in its original form. For example, if dbs2.example.com
propagates the message to dbs4.example.com, then dbs4.example.com can receive
the original message.

• The transformation overhead does not occur on the source database when the
source and destination database are different.

The possible disadvantages of performing transformations during apply are the
following:

• Security might be a concern if the messages contain private information, because
all databases to which the messages are propagated receive the original
messages.

• The same transformation can be done multiple times when multiple destination
databases need the same transformation.

Note:

Before modifying one or more rules for an apply process, you should stop the
apply process.

6.3.4.1 Rule-Based Transformation Errors During Apply Process Dequeue
If an error occurs when the transformation function is run during apply process
dequeue, then the message that caused the error is not dequeued, the transaction
containing the message is not applied, the error is returned to the apply process, and
the apply process is disabled. Before the apply process can be enabled, you must
change or remove the rule-based transformation to avoid the error.

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-14

6.3.4.2 Apply Errors on Transformed Messages
If an apply error occurs for a transaction in which some of the messages have been
transformed by a rule-based transformation, then the transformed messages are
moved to the error queue with all of the other messages in the transaction. If you use
the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package to reexecute a transaction
in the error queue that contains transformed messages, then the transformation is not
performed on the messages again because the apply process rule set containing the
rule is not evaluated again.

6.3.5 Rule-Based Transformations and a Messaging Client
For a transformation to be performed during dequeue by a messaging client, a rule
that is associated with a rule-based transformation in the positive rule set for the
messaging client must evaluate to TRUE for a message in the queue for the messaging
client.

If the transformation is a declarative rule-based transformation, then Oracle transforms
the message internally when the rule in a positive rule set evaluates to TRUE for the
message. If the transformation is a custom rule-based transformation, then an action
context containing a name-value pair with the name STREAMS$_TRANSFORM_FUNCTION is
returned to the messaging client when the rule in a positive rule set evaluates to TRUE
for the message.

The messaging client completes the following steps to perform a rule-based
transformation:

1. Starts to dequeue the message from the queue.

2. Transforms the message. If the transformation is a declarative rule-based
transformation, then the message must be a persistent LCR, and Oracle
transforms the row LCR internally based on the specifications of the declarative
transformation. If the transformation is a custom rule-based transformation, then
the message can be a persistent LCR or a persistent user message. The user who
invokes the messaging client runs the PL/SQL function in the name-value pair to
transform the message during dequeue.

3. Completes dequeuing the transformed message.

All actions are performed by the user who invokes the messaging client.

Figure 6-5 shows a transformation during messaging client dequeue.

Figure 6-5 Transformation During Messaging Client Dequeue

Queue
Dequeue

Messages

Messaging�
Client

Continue Dequeue

of Transformed

Events

Transformation

During Dequeue

Chapter 6
Rule-Based Transformations and Oracle Streams Clients

6-15

For example, suppose a message is propagated from the dbs1.example.com database
to the dbs2.example.com database in its original form. When the messaging client
dequeues the message at dbs2.example.com, the message is transformed.

One possible advantage of performing transformations during dequeue in a messaging
environment is that any database to which the message is propagated after the first
propagation can receive the message in its original form. For example, if
dbs2.example.com propagates the message to dbs4.example.com, then dbs4.example.com
can receive the original message.

The possible disadvantages of performing transformations during dequeue in a
messaging environment are the following:

• Security might be a concern if the messages contain private information, because
all databases to which the messages are propagated receive the original
messages.

• The same transformation can be done multiple times when multiple destination
databases need the same transformation.

6.3.5.1 Rule-Based Transformation Errors During Messaging Client Dequeue
If an error occurs when the transformation function is run during messaging client
dequeue, then the message that caused the error is not dequeued, and the error is
returned to the messaging client. Before the message can be dequeued by the
messaging client, you must change or remove the rule-based transformation to avoid
the error.

6.3.6 Multiple Rule-Based Transformations
You can transform a message during capture, propagation, apply, or dequeue, or
during any combination of capture, propagation, apply, and dequeue. For example, if
you want to hide sensitive data from all recipients, then you can transform a message
during capture. If some recipients require additional custom transformations, then you
can transform the previously transformed message during propagation, apply, or
dequeue.

6.4 Transformation Ordering
In addition to declarative rule-based transformations and custom rule-based
transformations, a row migration is an internal transformation that takes place when a
subset rule evaluates to TRUE. If all three types of transformations are specified for a
single rule, then Oracle Database performs the transformations in the following order
when the rule evaluates to TRUE:

1. Row migration

2. Declarative rule-based transformation

3. Custom rule-based transformation

6.4.1 Declarative Rule-Based Transformation Ordering
If more than one declarative rule-based transformation is specified for a single rule,
then Oracle must perform the transformations in a particular order. You can use the
default ordering for declarative transformations, or you can specify the order.

Chapter 6
Transformation Ordering

6-16

This section contains the following topics:

• Default Declarative Transformation Ordering

• User-Specified Declarative Transformation Ordering

6.4.1.1 Default Declarative Transformation Ordering
By default, Oracle Database performs declarative transformations in the following
order when the rule evaluates to TRUE:

1. Keep columns

2. Delete column

3. Rename column

4. Add column

5. Rename table

6. Rename schema

The results of a declarative transformation are used in each subsequent declarative
transformation. For example, suppose the following declarative transformations are
specified for a single rule:

• Delete column address

• Add column address

Assuming column address exists in a row LCR, both declarative transformations should
be performed in this case because column address is deleted from the row LCR before
column address is added back to the row LCR. The following table shows the
transformation ordering for this example.

Step
Number

Transformation
Type

Transformation Details Transformation
Performed?

1 Keep columns - -

2 Delete column Delete column address from row LCR Yes

3 Rename column - -

4 Add column Add column address to row LCR Yes

5 Rename table - -

6 Rename schema - -

Another scenario might rename a table and then rename a schema. For example,
suppose the following declarative transformations are specified for a single rule:

• Rename table john.customers to sue.clients

• Rename schema sue to mary

Notice that the rename table transformation also renames the schema for the table. In
this case, both transformations should be performed and, after both transformations,
the table name becomes mary.clients. The following table shows the transformation
ordering for this example.

Chapter 6
Transformation Ordering

6-17

Step
Number

Transformation
Type

Transformation Details Transformation
Performed?

1 Keep columns - -

2 Delete column - -

3 Rename column - -

4 Add column - -

5 Rename table Rename table john.customers to
sue.clients

Yes

6 Rename schema Rename schema sue to mary Yes

Consider a similar scenario in which the following declarative transformations are
specified for a single rule:

• Rename table john.customers to sue.clients

• Rename schema john to mary

In this case, the first transformation is performed, but the second one is not. After the
first transformation, the table name is sue.clients. The second transformation is not
performed because the schema of the table is now sue, not john. The following table
shows the transformation ordering for this example.

Step
Number

Transformation
Type

Transformation Details Transformation
Performed?

1 Keep columns - -

2 Delete column - -

3 Rename column - -

4 Add column - -

5 Rename table Rename table john.customers to
sue.clients

Yes

6 Rename schema Rename schema john to mary No

The rename schema transformation is not performed, but it does not result in an error.
In this case, the row LCR is transformed by the rename table transformation, and a
row LCR with the table name sue.clients is returned.

6.4.1.2 User-Specified Declarative Transformation Ordering
If you do not want to use the default declarative rule-based transformation ordering for
a particular rule, then you can specify step numbers for each declarative
transformation specified for the rule. If you specify a step number for one or more
declarative transformations for a particular rule, then the declarative transformations
for the rule behave in the following way:

• Declarative transformations are performed in order of increasing step number.

• The default step number for a declarative transformation is 0 (zero). A declarative
transformation uses this default if no step number is specified for it explicitly.

Chapter 6
Transformation Ordering

6-18

• If two or more declarative transformations have the same step number, then these
declarative transformations follow the default ordering described in "Default
Declarative Transformation Ordering".

For example, you can reverse the default ordering for declarative transformations by
specifying the following step numbers for transformations associated with a particular
rule:

• Keep columns with step number 6

• Delete column with step number 5

• Rename column with step number 4

• Add column with step number 3

• Rename table with step number 2

• Rename schema with step number 1

With this ordering specified, rename schema transformations are performed first, and
delete column transformations are performed last.

6.5 Considerations for Rule-Based Transformations
The following considerations apply to both declarative rule-based transformations and
custom rule-based transformations:

• For a rule-based transformation to be performed by an Oracle Streams client, the
rule must be in the positive rule set for the Oracle Streams client. If the rule is in
the negative rule set for the Oracle Streams client, then the Oracle Streams client
ignores the rule-based transformation.

• Rule-based transformations are different from transformations performed using the
DBMS_TRANSFORM package. This document does not discuss transformations
performed with the DBMS_TRANSFORM package.

• If a large percentage of row LCRs will be transformed in your environment, or if
you must make expensive transformations on row LCRs, then consider making
these modifications within a DML handler instead, because DML handlers can
execute in parallel when apply parallelism is greater than 1.

Note:

Oracle Database Advanced Queuing User's Guide and Oracle Database
PL/SQL Packages and Types Reference for more information about the
DBMS_TRANSFORM package

Chapter 6
Considerations for Rule-Based Transformations

6-19

Part II
Advanced Oracle Streams Concepts

This part describes advanced Oracle Streams concepts. This part contains the
following chapters:

• Advanced Capture Process Concepts

• Advanced Queue Concepts

• Advanced Propagation Concepts

• Advanced Apply Process Concepts

• Advanced Rule Concepts

• Combined Capture and Apply Optimization

• Oracle Streams High Availability Environments

7
Advanced Capture Process Concepts

Capturing information with Oracle Streams means creating a message that contains
the information and enqueuing the message into a queue. The captured information
can describe a database change, or it can be any other type of information.

The following topics contain conceptual information about capturing information with
Oracle Streams:

• Multiple Capture Processes in a Single Database

• Capture Process Checkpoints

• A New First SCN Value and Purged LogMiner Data Dictionary Information

• ARCHIVELOG Mode and a Capture Process

• Capture Process Creation

• The Oracle Streams Data Dictionary

• Capture Process Rule Evaluation

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• "Managing a Capture Process"

• "Monitoring a Capture Process"

• " Troubleshooting Implicit Capture"

7.1 Multiple Capture Processes in a Single Database
If you run multiple capture processes in a single database, increase the size of the
System Global Area (SGA) for each instance. Use the SGA_MAX_SIZE initialization
parameter to increase the SGA size. Also, if the size of the Oracle Streams pool is not
managed automatically in the database, then increase the size of the Oracle Streams
pool by 10 MB for each capture process parallelism. For example, if you have two
capture processes running in a database, and the parallelism parameter is set to 4 for
one of them and 1 for the other, then increase the Oracle Streams pool by 50 MB (4 +
1 = 5 parallelism).

Also, Oracle recommends that each ANYDATA queue used by a capture process,
propagation, or apply process store captured LCRs from at most one capture process
from a particular source database. Therefore, use a separate queue for each capture
process that captures changes originating at a particular source database, and make
sure each queue has its own queue table. Also, do not propagate messages from two
or more capture processes with the same source database to the same queue.

7-1

Note:

The size of the Oracle Streams pool is managed automatically if the
MEMORY_TARGET, MEMORY_MAX_TARGET, or SGA_TARGET initialization parameter is set
to a nonzero value.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring the Oracle Streams pool

• Oracle Streams Replication Administrator's Guide for more information
about the STREAMS_POOL_SIZE initialization parameter

7.2 Capture Process Checkpoints
A checkpoint is information about the current state of a capture process that is stored
persistently in the data dictionary of the database running the capture process. A
capture process tries to record a checkpoint at regular intervals called checkpoint
intervals.

The following topics provide more information about capture process checkpoints:

• Required Checkpoint SCN

• Maximum Checkpoint SCN

• Checkpoint Retention Time

7.2.1 Required Checkpoint SCN
The system change number (SCN) that corresponds to the lowest checkpoint for
which a capture process requires redo data is the required checkpoint SCN. The
redo log file that contains the required checkpoint SCN, and all subsequent redo log
files, must be available to the capture process. If a capture process is stopped and
restarted, then it starts scanning the redo log from the SCN that corresponds to its
required checkpoint SCN. The required checkpoint SCN is important for recovery if a
database stops unexpectedly. Also, if the first SCN is reset for a capture process, then
it must be set to a value that is less than or equal to the required checkpoint SCN for
the captured process. You can determine the required checkpoint SCN for a capture
process by querying the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data
dictionary view.

See Also:

"Displaying the Redo Log Files That Are Required by Each Capture Process"

Chapter 7
Capture Process Checkpoints

7-2

7.2.2 Maximum Checkpoint SCN
The SCN that corresponds to the last checkpoint recorded by a capture process is the
maximum checkpoint SCN. If you create a capture process that captures changes
from a source database, and other capture processes already exist which capture
changes from the same source database, then the maximum checkpoint SCNs of the
existing capture processes can help you to decide whether the new capture process
should create a LogMiner data dictionary or share one of the existing LogMiner data
dictionaries. You can determine the maximum checkpoint SCN for a capture process
by querying the MAX_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary view.

7.2.3 Checkpoint Retention Time
The checkpoint retention time is the amount of time, in number of days, that a
capture process retains checkpoints before purging them automatically. A capture
process periodically computes the age of a checkpoint by subtracting the NEXT_TIME of
the archived redo log file that corresponds to the checkpoint from FIRST_TIME of the
archived redo log file containing the required checkpoint SCN for the capture process.
If the resulting value is greater than the checkpoint retention time, then the capture
process automatically purges the checkpoint by advancing its first SCN value.
Otherwise, the checkpoint is retained. The DBA_REGISTERED_ARCHIVED_LOG view displays
the FIRST_TIME and NEXT_TIME for archived redo log files, and the
REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE view displays the required
checkpoint SCN for a capture process.

Figure 7-1 shows an example of a checkpoint being purged when the checkpoint
retention time is set to 20 days.

Figure 7-1 Checkpoint Retention Time Set to 20 Days

TIME

Archived Redo�
Log File Sequence #200�

 NEXT_TIME=�

May 2, 11AM

Checkpoint at�
SCN 435250

Purge�
Checkpoint

Archived Redo�
Log File Sequence #220�

 NEXT_TIME=�

May 15, 11AM

Checkpoint at�
SCN 479315

Retain�
Checkpoint

Archived Redo�
Log File Sequence #230�

 FIRST_TIME=�

May 23, 11AM

Capture Process�
Required Checkpoint�

SCN at 494623

Compute Age�
of Checkpoints

.

In Figure 7-1, with the checkpoint retention time set to 20 days, the checkpoint at SCN
435250 is purged because it is 21 days old, while the checkpoint at SCN 479315 is
retained because it is 8 days old.

Whenever the first SCN is reset for a capture process, the capture process purges
information about archived redo log files before the new first SCN from its LogMiner
data dictionary. After this information is purged, the archived redo log files remain on
the hard disk, but the files are not needed by the capture process. The PURGEABLE
column in the DBA_REGISTERED_ARCHIVED_LOG view displays YES for the archived redo log

Chapter 7
Capture Process Checkpoints

7-3

files that are no longer needed. These files can be removed from disk or moved to
another location without affecting the capture process.

If you create a capture process using the CREATE_CAPTURE procedure in the
DBMS_CAPTURE_ADM package, then you can specify the checkpoint retention time, in days,
using the checkpoint_retention_time parameter. The default checkpoint retention time
is 60 days if the checkpoint_retention_time parameter is not specified in the
CREATE_CAPTURE procedure, or if you use the DBMS_STREAMS_ADM package to create the
capture process. The CHECKPOINT_RETENTION_TIME column in the DBA_CAPTURE view
displays the current checkpoint retention time for a capture process.

You can change the checkpoint retention time for a capture process by specifying a
new time period in the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package. If you
do not want checkpoints for a capture process to be purged automatically, then specify
DBMS_CAPTURE_ADM.INFINITE for the checkpoint_retention_time parameter in
CREATE_CAPTURE or ALTER_CAPTURE.

Note:

To specify a checkpoint retention time for a capture process, the compatibility
level of the database running the capture process must be 10.2.0 or higher. If
the compatibility level is lower than 10.2.0 for a database, then the checkpoint
retention time for all capture processes running on the database is infinite.

See Also:

• "The LogMiner Data Dictionary for a Capture Process"

• "A New First SCN Value and Purged LogMiner Data Dictionary
Information"

• "Managing the Checkpoint Retention Time for a Capture Process"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the CREATE_CAPTURE and ALTER_CAPTURE procedures

7.3 A New First SCN Value and Purged LogMiner Data
Dictionary Information

If you reset the first SCN value for an existing capture process, or if the first SCN is
reset automatically when checkpoints are purged, then Oracle automatically purges
LogMiner data dictionary information before the new first SCN setting. If the start SCN
for a capture process corresponds to redo information that has been purged, then
Oracle Database automatically resets the start SCN to the same value as the first
SCN. However, if the start SCN is higher than the new first SCN setting, then the start
SCN remains unchanged.

Figure 7-2 shows how Oracle automatically purges LogMiner data dictionary
information prior to a new first SCN setting, and how the start SCN is not changed if it
is higher than the new first SCN setting.

Chapter 7
A New First SCN Value and Purged LogMiner Data Dictionary Information

7-4

Figure 7-2 Start SCN Higher than Reset First SCN

Time 1

Time 2

SCN values in the Log Miner data dictionary

SCN values in the Log Miner data dictionary

Start SCN

479502

First SCN

407835

Start SCN

479502

New first SCN setting

423667

Purged Information

Given this example, if the first SCN is reset again to a value higher than the start SCN
value for a capture process, then the start SCN no longer corresponds to existing
information in the LogMiner data dictionary. Figure 7-3 shows how Oracle Database
resets the start SCN automatically if it is lower than a new first SCN setting.

Figure 7-3 Start SCN Lower than Reset First SCN

Time 3

Time 4

SCN values in the Log Miner data dictionary

SCN values in the Log Miner data dictionary

Start SCN

479502

First SCN

423667

New first SCN setting. Start SCN

automatically set to this value.

502631Purged Information

As you can see, the first SCN and start SCN for a capture process can continually
increase over time, and, as the first SCN moves forward, it might no longer correspond
to an SCN established by the DBMS_CAPTURE_ADM.BUILD procedure.

See Also:

• "First SCN and Start SCN"

• "Setting the Start SCN for an Existing Capture Process"

• The DBMS_CAPTURE_ADM.ALTER_CAPTURE procedure in the Oracle Database
PL/SQL Packages and Types Reference for information about altering a
capture process

Chapter 7
A New First SCN Value and Purged LogMiner Data Dictionary Information

7-5

7.4 ARCHIVELOG Mode and a Capture Process
The following list describes how different types of capture processes read the redo
data:

• A local capture process reads from the redo log buffer whenever possible. If it
cannot read from the log buffer, then it reads from the online redo logs. If it cannot
read from the log buffer or the online redo logs, then it reads from the archived
redo log files. Therefore, the source database must be running in ARCHIVELOG mode
when a local capture process is configured to capture changes.

• A real-time downstream capture process reads online redo data from its source
database whenever possible and archived redo log files that contain redo data
from the source database otherwise. In this case, the redo data from the source
database is stored in the standby redo log at the downstream database, and the
archiver at the downstream database archives the redo data in the standby redo
log. Therefore, both the source database and the downstream database must be
running in ARCHIVELOG mode when a real-time downstream capture process is
configured to capture changes.

• An archived-log downstream capture process always reads archived redo log files
from its source database. Therefore, the source database must be running in
ARCHIVELOG mode when an archived-log downstream capture process is configured
to capture changes.

You can query the REQUIRED_CHECKPOINT_SCN column in the DBA_CAPTURE data dictionary
view to determine the required checkpoint SCN for a capture process. When the
capture process is restarted, it scans the redo log from the required checkpoint SCN
forward. Therefore, the redo log file that includes the required checkpoint SCN, and all
subsequent redo log files, must be available to the capture process.

You must keep an archived redo log file available until you are certain that no capture
process will need that file. The first SCN for a capture process can be reset to a higher
value, but it cannot be reset to a lower value. Therefore, a capture process will never
need the redo log files that contain information before its first SCN. Query the
DBA_LOGMNR_PURGED_LOG data dictionary view to determine which archived redo log files
will never be needed by any capture process.

When a local capture process falls behind, there is a seamless transition from reading
an online redo log to reading an archived redo log, and, when a local capture process
catches up, there is a seamless transition from reading an archived redo log to reading
an online redo log. Similarly, when a real-time downstream capture process falls
behind, there is a seamless transition from reading the standby redo log to reading an
archived redo log, and, when a real-time downstream capture process catches up,
there is a seamless transition from reading an archived redo log to reading the standby
redo log.

Chapter 7
ARCHIVELOG Mode and a Capture Process

7-6

Note:

At a downstream database in a downstream capture configuration, log files
from a remote source database should be kept separate from local database
log files. In addition, if the downstream database contains log files from
multiple source databases, then the log files from each source database
should be kept separate from each other.

See Also:

• Oracle Database Administrator's Guide for information about running a
database in ARCHIVELOG mode

• "Displaying SCN Values for Each Redo Log File Used by Each Capture
Process" for a query that determines which redo log files are no longer
needed

7.5 Capture Process Creation
You can create a capture process using a procedure in the DBMS_STREAMS_ADM package
or the DBMS_CAPTURE_ADM package. Using a procedure the DBMS_STREAMS_ADM package to
create a capture process is simpler because the procedure automatically uses defaults
for some configuration options. In addition, when you use a procedure in the
DBMS_STREAMS_ADM package, a rule set is created for the capture process, and rules can
be added to the rule set automatically. The rule set is a positive rule set if the
inclusion_rule parameter is set to TRUE (the default) in the procedure, or it is a
negative rule set if the inclusion_rule parameter is set to FALSE in the procedure.

Alternatively, using the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package to
create a capture process is more flexible, and you create one or more rule sets and
rules for the capture process either before or after it is created. You can use the
procedures in the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package to add rules
to a rule set for the capture process. To create a capture process at a downstream
database, you must use the DBMS_CAPTURE_ADM package.

When you create a capture process using a procedure in the DBMS_STREAMS_ADM
package and generate one or more rules in the positive rule set for the capture
process, the objects for which changes are captured are prepared for instantiation
automatically, unless it is a downstream capture process and there is no database link
from the downstream database to the source database.

When you create a capture process using the CREATE_CAPTURE procedure in the
DBMS_CAPTURE_ADM package, you should prepare for instantiation any objects for which
you plan to capture changes. Prepare these objects for instantiations as soon as
possible after capture process creation. You can prepare objects for instantiation using
one of the following procedures in the DBMS_CAPTURE_ADM package:

• PREPARE_TABLE_INSTANTIATION prepares a single table for instantiation.

• PREPARE_SCHEMA_INSTANTIATION prepares for instantiation all of the objects in a
schema and all objects added to the schema in the future.

Chapter 7
Capture Process Creation

7-7

• PREPARE_GLOBAL_INSTANTIATION prepares for instantiation all of the objects in a
database and all objects added to the database in the future.

These procedures can also enable supplemental logging for the key columns or for all
columns in the table or tables prepared for instantiation.

Note:

After creating a capture process, avoid changing the DBID or global name of
the source database for the capture process. If you change either the DBID or
global name of the source database, then the capture process must be
dropped and re-created.

Note:

• Oracle Streams Replication Administrator's Guide and Oracle Database
PL/SQL Packages and Types Reference for more information about the
procedures that can create a capture process

• Oracle Streams Replication Administrator's Guide for more information
about capture process rules and preparation for instantiation, and for more
information about changing the DBID or global name of a source database

7.5.1 The LogMiner Data Dictionary for a Capture Process
A capture process requires a data dictionary that is separate from the primary data
dictionary for the source database. This separate data dictionary is called a LogMiner
data dictionary. There can be more than one LogMiner data dictionary for a particular
source database. If there are multiple capture processes capturing changes from the
source database, then two or more capture processes can share a LogMiner data
dictionary, or each capture process can have its own LogMiner data dictionary. If the
LogMiner data dictionary that is needed by a capture process does not exist, then the
capture process populates it using information in the redo log when the capture
process is started for the first time.

The DBMS_CAPTURE_ADM.BUILD procedure extracts data dictionary information to the redo
log, and this procedure must be run at least once on the source database before any
capture process configured to capture changes originating at the source database is
started. The extracted data dictionary information in the redo log is consistent with the
primary data dictionary at the time when the DBMS_CAPTURE_ADM.BUILD procedure is run.
This procedure also identifies a valid first SCN value that you can use to create a
capture process.

You can perform a build of data dictionary information in the redo log multiple times,
and a particular build might or might not be used by a capture process to create a
LogMiner data dictionary. The amount of information extracted to a redo log when you
run the BUILD procedure depends on the number of database objects in the database.
Typically, the BUILD procedure generates a large amount of redo data that a capture
process must scan subsequently. Therefore, you should run the BUILD procedure only
when necessary.

Chapter 7
Capture Process Creation

7-8

In most cases, if a build is required when a capture process is created using a
procedure in the DBMS_STREAMS_ADM or DBMS_CAPTURE_ADM package, then the procedure
runs the BUILD procedure automatically. However, the BUILD procedure is not run
automatically during capture process creation in the following cases:

• You use CREATE_CAPTURE and specify a non-NULL value for the first_scn parameter.
In this case, the specified first SCN must correspond to a previous build.

• You create a downstream capture process that does not use a database link. In
this case, the command at the downstream database cannot communicate with
the source database to run the BUILD procedure automatically. Therefore, you must
run it manually on the source database and specify the first SCN that corresponds
to the build during capture process creation.

A capture process requires a LogMiner data dictionary because the information in the
primary data dictionary might not apply to the changes being captured from the redo
log. These changes might have occurred minutes, hours, or even days before they are
captured by a capture process. For example, consider the following scenario:

1. A capture process is configured to capture changes to tables.

2. A database administrator stops the capture process. When the capture process is
stopped, it records the SCN of the change it was currently capturing.

3. User applications continue to make changes to the tables while the capture
process is stopped.

4. The capture process is restarted three hours after it was stopped.

In this case, to ensure data consistency, the capture process must begin capturing
changes in the redo log at the time when it was stopped. The capture process starts
capturing changes at the SCN that it recorded when it was stopped.

The redo log contains raw data. It does not contain database object names and
column names in tables. Instead, it uses object numbers and internal column numbers
for database objects and columns, respectively. Therefore, when a change is
captured, a capture process must reference a data dictionary to determine the details
of the change.

Because a LogMiner data dictionary might be populated when a capture process is
started for the first time, it might take some time to start capturing changes. The
amount of time required depends on the number of database objects in the database.
You can query the STATE column in the V$STREAMS_CAPTURE dynamic performance view to
monitor the progress while a capture process is processing a data dictionary build.

See Also:

• "Capture Process Rule Evaluation"

• "First SCN and Start SCN"

• "Capture Process States"

• Oracle Streams Replication Administrator's Guide for more information
about preparing database objects for instantiation

Chapter 7
Capture Process Creation

7-9

7.5.1.1 Scenario Illustrating Why a Capture Process Needs a LogMiner Data
Dictionary

Consider a scenario in which a capture process has been configured to capture
changes to table t1, which has columns a and b, and the following changes are made
to this table at three different points in time:

Time 1: Insert values a=7 and b=15.

Time 2: Add column c.

Time 3: Drop column b.

If for some reason the capture process is capturing changes from an earlier time, then
the primary data dictionary and the relevant version in the LogMiner data dictionary
contain different information. Table 7-1 illustrates how the information in the LogMiner
data dictionary is used when the current time is different than the change capturing
time.

Table 7-1 Information About Table t1 in the Primary and LogMiner Data Dictionaries

Current
Time

Change Capturing
Time

Primary Data Dictionary LogMiner Data Dictionary

1 1 Table t1 has columns a and b. Table t1 has columns a and b at time 1.

2 1 Table t1 has columns a, b, and c at
time 2.

Table t1 has columns a and b at time 1.

3 1 Table t1 has columns a and c at
time 3.

Table t1 has columns a and b at time 1.

Assume that the capture process captures the change resulting from the insert at
time 1 when the actual time is time 3. If the capture process used the primary data
dictionary, then it might assume that a value of 7 was inserted into column a and a
value of 15 was inserted into column c, because those are the two columns for table t1
at time 3 in the primary data dictionary. However, a value of 15 actually was inserted
into column b, not column c.

Because the capture process uses the LogMiner data dictionary, the error is avoided.
The LogMiner data dictionary is synchronized with the capture process and continues
to record that table t1 has columns a and b at time 1. So, the captured change
specifies that a value of 15 was inserted into column b.

7.5.1.2 Multiple Capture Processes for the Same Source Database
If one or more capture processes are capturing changes made to a source database,
and you want to create a capture process that captures changes to the same source
database, then the new capture process can either create a LogMiner data dictionary
or share one of the existing LogMiner data dictionaries with one or more other capture
processes.

Whether a new LogMiner data dictionary is created for a new capture process
depends on the setting for the first_scn parameter when you run CREATE_CAPTURE to
create a capture process.

Chapter 7
Capture Process Creation

7-10

If multiple LogMiner data dictionaries exist, and you specify NULL for the first_scn
parameter during capture process creation, then the new capture process
automatically attempts to share the LogMiner data dictionary of one of the existing
capture processes that has taken at least one checkpoint. You can view the maximum
checkpoint SCN for all existing capture processes by querying the MAX_CHECKPOINT_SCN
column in the DBA_CAPTURE data dictionary view. During capture process creation, if the
first_scn parameter is NULL and the start_scn parameter is non-NULL, then an error is
raised if the start_scn parameter setting is lower than all of the first SCN values for all
existing capture processes.

If multiple LogMiner data dictionaries exist, and you specify a non-NULL value for the
first_scn parameter during capture process creation, then the new capture process
creates a new LogMiner data dictionary the first time it is started. In this case, before
you create the new capture process, you must run the BUILD procedure in the
DBMS_CAPTURE_ADM package on the source database. The BUILD procedure generates a
corresponding valid first SCN value that you can specify when you create the new
capture process.

You can find a first SCN generated by the BUILD procedure by running the following
query:

COLUMN FIRST_CHANGE# HEADING 'First SCN' FORMAT 999999999
COLUMN NAME HEADING 'Log File Name' FORMAT A50

SELECT DISTINCT FIRST_CHANGE#, NAME FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES';

This query can return more than one row if the BUILD procedure was run more than
once.

The most important factor to consider when deciding whether a new capture process
should share an existing LogMiner data dictionary or create one is the difference
between the maximum checkpoint SCN values of the existing capture processes and
the start SCN of the new capture process. If the new capture process shares a
LogMiner data dictionary, then it must scan the redo log from the point of the
maximum checkpoint SCN of the shared LogMiner data dictionary onward, even
though the new capture process cannot capture changes before its first SCN. If the
start SCN of the new capture process is much higher than the maximum checkpoint
SCN of the existing capture process, then the new capture process must scan a large
amount of redo data before it reaches its start SCN.

A capture process creates a new LogMiner data dictionary when the first_scn
parameter is non-NULL during capture process creation. Follow these guidelines when
you decide whether a new capture process should share an existing LogMiner data
dictionary or create one:

• If one or more maximum checkpoint SCN values is greater than the start SCN you
want to specify, and if this start SCN is greater than the first SCN of one or more
existing capture processes, then it might be better to share the LogMiner data
dictionary of an existing capture process. In this case, you can assume there is a
checkpoint SCN that is less than the start SCN and that the difference between
this checkpoint SCN and the start SCN is small. The new capture process will
begin scanning the redo log from this checkpoint SCN and will catch up to the start
SCN quickly.

• If no maximum checkpoint SCN is greater than the start SCN, and if the difference
between the maximum checkpoint SCN and the start SCN is small, then it might
be better to share the LogMiner data dictionary of an existing capture process. The

Chapter 7
Capture Process Creation

7-11

new capture process will begin scanning the redo log from the maximum
checkpoint SCN, but it will catch up to the start SCN quickly.

• If no maximum checkpoint SCN is greater than the start SCN, and if the difference
between the highest maximum checkpoint SCN and the start SCN is large, then it
might take a long time for the capture process to catch up to the start SCN. In this
case, it might be better for the new capture process to create a LogMiner data
dictionary. It will take some time to create the new LogMiner data dictionary when
the new capture process is first started, but the capture process can specify the
same value for its first SCN and start SCN, and thereby avoid scanning a large
amount of redo data unnecessarily.

Figure 7-4 illustrates these guidelines.

Figure 7-4 Deciding Whether to Share a LogMiner Data Dictionary

SCN values Increasing

Start SCN of

New Capture

Process
First SCN of Existing

Capture Process

Maximum checkpoint

SCN of Existing

Capture Process

SCN values Increasing

Maximum Checkpoint

SCN of Existing

Capture Process

Start SCN of New

Capture Process

SCN values Increasing

Maximum Checkpoint

SCN of Existing

Capture Process

Start SCN of

New Capture

Process

New Capture Process

Should Create a New

LogMiner Data

Dictionary

New Capture Process

Should Share LogMiner

Data Dictionary of

Existing Capture

Process

10000 70000 90000

10000 3000000

70000 90000

Note:

• If you create a capture process using one of the procedures in the
DBMS_STREAMS_ADM package, then it is the same as specifying NULL for the
first_scn and start_scn parameters in the CREATE_CAPTURE procedure.

• You must prepare database objects for instantiation if a new capture
process will capture changes made to these database objects. This
requirement holds even if the new capture process shares a LogMiner
data dictionary with one or more other capture processes for which these
database objects have been prepared for instantiation.

Chapter 7
Capture Process Creation

7-12

See Also:

• "First SCN and Start SCN"

• "Capture Process Checkpoints"

• Oracle Database PL/SQL Packages and Types Reference for more
information about setting the first_scn and start_scn parameters in the
CREATE_CAPTURE procedure

7.6 The Oracle Streams Data Dictionary
Propagations and apply processes use an Oracle Streams data dictionary to keep
track of the database objects from a particular source database. An Oracle Streams
data dictionary is populated whenever one or more database objects are prepared for
instantiation at a source database. Specifically, when a database object is prepared for
instantiation, it is recorded in the redo log. When a capture process scans the redo log,
it uses this information to populate the local Oracle Streams data dictionary for the
source database. For local capture, this Oracle Streams data dictionary is at the
source database. For downstream capture, this Oracle Streams data dictionary is at
the downstream database.

When you prepare a database object for instantiation, you are informing Oracle
Streams that information about the database object is needed by propagations that
propagate changes to the database object and apply processes that apply changes to
the database object. Any database that propagates or applies these changes requires
an Oracle Streams data dictionary for the source database where the changes
originated.

After an object has been prepared for instantiation, the local Oracle Streams data
dictionary is updated when a DDL statement on the object is processed by a capture
process. In addition, an internal message containing information about this DDL
statement is captured and placed in the queue for the capture process. Propagations
can then propagate these internal messages to destination queues at databases.

An Oracle Streams data dictionary is multiversioned. If a database has multiple
propagations and apply processes, then all of them use the same Oracle Streams data
dictionary for a particular source database. A database can contain only one Oracle
Streams data dictionary for a particular source database, but it can contain multiple
Oracle Streams data dictionaries if it propagates or applies changes from multiple
source databases.

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about instantiation

• "Oracle Streams Data Dictionary for Propagations"

• "Oracle Streams Data Dictionary for an Apply Process"

Chapter 7
The Oracle Streams Data Dictionary

7-13

7.7 Capture Process Rule Evaluation
A capture process evaluates changes it finds in the redo log against its positive and
negative rule sets. The capture process evaluates a change against the negative rule
set first. If one or more rules in the negative rule set evaluate to TRUE for the change,
then the change is discarded, but if no rule in the negative rule set evaluates to TRUE
for the change, then the change satisfies the negative rule set. When a change
satisfies the negative rule set for a capture process, the capture process evaluates the
change against its positive rule set. If one or more rules in the positive rule set
evaluate to TRUE for the change, then the change satisfies the positive rule set, but if no
rule in the positive rule set evaluates to TRUE for the change, then the change is
discarded. If a capture process only has one rule set, then it evaluates changes
against this one rule set only.

A running capture process completes the following series of actions to capture
changes:

1. Finds changes in the redo log.

2. Performs prefiltering of the changes in the redo log. During this step, a capture
process evaluates rules in its rule sets at a basic level to place changes found in
the redo log into two categories: changes that should be converted into LCRs and
changes that should not be converted into LCRs. Prefiltering is done in two
phases. In the first phase, information that can be evaluated during prefiltering
includes schema name, object name, and command type. If more information is
needed to determine whether a change should be converted into an LCR, then
information that can be evaluated during the second phase of prefiltering includes
tag values and column values when appropriate.

Prefiltering is a safe optimization done with incomplete information. This step
identifies relevant changes to be processed subsequently, such that:

• A capture process converts a change into an LCR if the change satisfies the
capture process rule sets. In this case, proceed to Step 3.

• A capture process does not convert a change into an LCR if the change does
not satisfy the capture process rule sets.

• Regarding MAYBE evaluations, the rule evaluation proceeds as follows:

– If a change evaluates to MAYBE against both the positive and negative rule
set for a capture process, then the capture process might not have
enough information to determine whether the change will definitely satisfy
both of its rule sets. In this case, further evaluation is necessary. Proceed
to Step 3.

– If the change evaluates to FALSE against the negative rule set and MAYBE
against the positive rule set for the capture process, then the capture
process might not have enough information to determine whether the
change will definitely satisfy both of its rule sets. In this case, further
evaluation is necessary. Proceed to Step 3.

– If the change evaluates to MAYBE against the negative rule set and TRUE
against the positive rule set for the capture process, then the capture
process might not have enough information to determine whether the
change will definitely satisfy both of its rule sets. In this case, further
evaluation is necessary. Proceed to Step 3.

Chapter 7
Capture Process Rule Evaluation

7-14

– If the change evaluates to TRUE against the negative rule set and MAYBE
against the positive rule set for the capture process, then the capture
process discards the change.

– If the change evaluates to MAYBE against the negative rule set and FALSE
against the positive rule set for the capture process, then the capture
process discards the change.

3. Converts changes that satisfy, or might satisfy, the capture process rule sets into
LCRs based on prefiltering.

4. Performs LCR filtering. During this step, a capture process evaluates rules
regarding information in each LCR to separate the LCRs into two categories:
LCRs that should be enqueued and LCRs that should be discarded.

5. Discards the LCRs that should not be enqueued because they did not satisfy the
capture process rule sets.

6. Enqueues the remaining captured LCRs into the queue associated with the
capture process.

For example, suppose the following rule is defined in the positive rule set for a capture
process: Capture changes to the hr.employees table where the department_id is 50. No
other rules are defined for the capture process, and the parallelism parameter for the
capture process is set to 1.

Given this rule, suppose an UPDATE statement on the hr.employees table changes 50
rows in the table. The capture process performs the following series of actions for
each row change:

1. Finds the next change resulting from the UPDATE statement in the redo log.

2. Determines that the change resulted from an UPDATE statement to the hr.employees
table and must be captured. If the change was made to a different table, then the
capture process ignores the change.

3. Captures the change and converts it into an LCR.

4. Filters the LCR to determine whether it involves a row where the department_id is
50.

5. Either enqueues the LCR into the queue associated with the capture process if it
involves a row where the department_id is 50, or discards the LCR if it involves a
row where the department_id is not 50 or is missing.

See Also:

• "Capture Process Subcomponents"

• How Rules Are Used in Oracle Streams for more information about rule
sets for Oracle Streams clients and for information about how messages
satisfy rule sets

Figure 7-5 illustrates capture process rule evaluation in a flowchart.

Chapter 7
Capture Process Rule Evaluation

7-15

Figure 7-5 Flowchart Showing Capture Process Rule Evaluation

Could

the change pass the

capture process rule sets �
during prefiltering?

Does

the LCR pass the

capture process

rule sets?

END

START

Find change in Redo Log

Convert Change into LCR

Yes

No

No

Yes

Enqueue LCR Ignore ChangeDiscard LCR

Chapter 7
Capture Process Rule Evaluation

7-16

8
Advanced Queue Concepts

The following topics contain conceptual information about staging messages in queues
and propagating messages from one queue to another:

• Secure Queues

• Transactional and Nontransactional Queues

• Commit-Time Queues

See Also:

• "Message Propagation Between Queues"

• "Managing Queues"

• "Queue Restrictions"

8.1 Secure Queues
Secure queues are queues for which Oracle Database Advanced Queuing (AQ)
agents must be associated explicitly with one or more database users who can
perform queue operations, such as enqueue and dequeue. The owner of a secure
queue can perform all queue operations on the queue, but other users cannot perform
queue operations on a secure queue, unless they are configured as secure queue
users. In Oracle Streams, you can use secure queues to ensure that only the
appropriate users and Oracle Streams clients enqueue messages and dequeue
messages.

8.1.1 Secure Queues and the SET_UP_QUEUE Procedure
All ANYDATA queues created using the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM
package are secure queues. When you use the SET_UP_QUEUE procedure to create a
queue, any user specified by the queue_user parameter is configured as a secure
queue user of the queue automatically, if possible. The queue user is also granted
ENQUEUE and DEQUEUE privileges on the queue. To enqueue messages and dequeue
messages, a queue user must also have EXECUTE privilege on the
DBMS_STREAMS_MESSAGING package or the DBMS_AQ package. The SET_UP_QUEUE procedure
does not grant either of these privileges. Also, a message cannot be enqueued unless
a subscriber who can dequeue the message is configured.

To configure a queue user as a secure queue user, the SET_UP_QUEUE procedure
creates an Oracle Streams AQ agent with the same name as the user name, if one
does not already exist. The user must use this agent to perform queue operations on
the queue. If an agent with this name already exists and is associated with the queue
user only, then the existing agent is used. SET_UP_QUEUE then runs the ENABLE_DB_ACCESS
procedure in the DBMS_AQADM package, specifying the agent and the user.

8-1

If you use the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to create a
secure queue, and you want a user who is not the queue owner and who was not
specified by the queue_user parameter to perform operations on the queue, then you
can configure the user as a secure queue user of the queue manually. Alternatively,
you can run the SET_UP_QUEUE procedure again and specify a different queue_user for the
queue. In this case, SET_UP_QUEUE skips queue creation, but it configures the user
specified by queue_user as a secure queue user of the queue.

If you create an ANYDATA queue using the DBMS_AQADM package, then you use the secure
parameter when you run the CREATE_QUEUE_TABLE procedure to specify whether the
queue is secure or not. The queue is secure if you specify TRUE for the secure
parameter when you run this procedure. When you use the DBMS_AQADM package to
create a secure queue, and you want to allow users to perform queue operations on
the secure queue, you must configure these secure queue users manually.

8.1.2 Secure Queues and Oracle Streams Clients
When you create a capture process or an apply process, an Oracle Streams AQ agent
of the secure queue associated with the Oracle Streams process is configured
automatically, and the user who runs the Oracle Streams process is specified as a
secure queue user for this queue automatically. Therefore, a capture process is
configured to enqueue into its secure queue automatically, and an apply process is
configured to dequeue from its secure queue automatically. In either case, the Oracle
Streams AQ agent has the same name as the Oracle Streams client.

For a capture process, the user specified as the capture_user is the user who runs the
capture process. For an apply process, the user specified as the apply_user is the user
who runs the apply process. If no capture_user or apply_user is specified, then the user
who invokes the procedure that creates the Oracle Streams process is the user who
runs the Oracle Streams process.

When you create a synchronous capture, an Oracle Streams AQ agent of the secure
queue with the same name as the synchronous capture is associated with the user
specified as the capture_user. If no capture_user is specified, then the user who
invokes the procedure that creates the synchronous capture is the capture_user. The
capture_user is specified as a secure queue user for this queue automatically.
Therefore, the synchronous capture can enqueue into its secure queue automatically.

If you change the capture_user for a capture process or synchronous capture or the
apply_user for an apply process, then the specified capture_user or apply_user is
configured as a secure queue user of the queue used by the Oracle Streams client.
However, the old capture user or apply user remains configured as a secure queue
user of the queue. To remove the old user, run the DISABLE_DB_ACCESS procedure in the
DBMS_AQADM package, specifying the old user and the relevant Oracle Streams AQ
agent. You might also want to drop the agent if it is no longer needed. You can view
the Oracle Streams AQ agents and their associated users by querying the
DBA_AQ_AGENT_PRIVS data dictionary view.

When you create a messaging client, an Oracle Streams AQ agent of the secure
queue with the same name as the messaging client is associated with the user who
runs the procedure that creates the messaging client. This messaging client user is
specified as a secure queue user for this queue automatically. Therefore, this user can
use the messaging client to dequeue messages from the queue.

A capture process, a synchronous capture, an apply process, or a messaging client
can be associated with only one user. However, one user can be associated with

Chapter 8
Secure Queues

8-2

multiple Oracle Streams clients, including multiple capture processes, synchronous
captures, apply processes, and messaging clients. For example, an apply process
cannot have both hr and oe as apply users, but hr can be the apply user for multiple
apply processes.

If you drop a capture process, synchronous capture, apply process, or messaging
client, then the users who were configured as secure queue users for these Oracle
Streams clients remain secure queue users of the queue. To remove these users as
secure queue users, run the DISABLE_DB_ACCESS procedure in the DBMS_AQADM package
for each user. You might also want to drop the agent if it is no longer needed.

Note:

No configuration is necessary for propagations and secure queues. Therefore,
when a propagation is dropped, no additional steps are necessary to remove
secure queue users from the propagation's queues.

See Also:

• "Enabling a User to Perform Operations on a Secure Queue"

• "Disabling a User from Performing Operations on a Secure Queue"

• Oracle Database PL/SQL Packages and Types Reference for more
information about Oracle Streams AQ agents and using the DBMS_AQADM
package

8.2 Transactional and Nontransactional Queues
A transactional queue is a queue in which messages can be grouped into a set that
are applied as one transaction. That is, an apply process performs a COMMIT after it
applies all the messages in a group. A nontransactional queue is one in which each
message is its own transaction. That is, an apply process performs a COMMIT after each
message it applies. In either case, the messages can be LCRs or user messages.

The SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package always creates a
transactional queue. The difference between transactional and nontransactional
queues is important only for messages that were enqueued by an application, a
synchronous capture, or an apply process. An apply process always applies captured
LCRs in transactions that preserve the transactions executed at the source database.

Table 8-1 shows apply process behavior for each type of message and each type of
queue.

Chapter 8
Transactional and Nontransactional Queues

8-3

Table 8-1 Apply Process Behavior for Transactional and Nontransactional
Queues

Message Type Transactional Queue Nontransactional Queue

Captured LCRs Apply process preserves the
original transaction.

Apply process preserves the
original transaction.

Persistent LCRs or
Persistent User
Messages

Apply process applies a user-
specified group of messages as
one transaction.

Apply process applies each
message in its own transaction.

When it is important to preserve the transactions executed at the source database,
use transactional queues to store the messages. Ensure that LCRs captured by
synchronous captures are stored in transactional queues.

See Also:

• "Managing Queues"

• Oracle Database Advanced Queuing User's Guide for more information
about message grouping

8.3 Commit-Time Queues
You can control the order in which messages in a persistent queue are browsed or
dequeued. Message ordering in a queue is determined by its queue table, and you can
specify message ordering for a queue table during queue table creation. Specifically,
the sort_list parameter in the DBMS_AQADM.CREATE_QUEUE_TABLE procedure determines
how messages are ordered. Each message in a commit-time queue is ordered by an
approximate commit system change number (approximate CSCN), which is obtained
when the transaction that enqueued each message commits.

Commit-time ordering is specified for a queue table, and queues that use the queue
table are called commit-time queues. When commit_time is specified for the sort_list
parameter in the DBMS_AQADM.CREATE_QUEUE_TABLE procedure, the resulting queue table
uses commit-time ordering.

For Oracle Database 10g Release 2 and later, the default sort_list setting for queue
tables created by the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package is
commit_time. For releases before Oracle Database 10g Release 2, the default is
enq_time, which is described in the section that follows. When the queue_table
parameter in the SET_UP_QUEUE procedure specifies an existing queue table, message
ordering in the queue created by SET_UP_QUEUE is determined by the existing queue
table.

Note:

A synchronous capture always enqueues into a commit-time queue to ensure
that transactions are ordered properly.

Chapter 8
Commit-Time Queues

8-4

8.3.1 When to Use Commit-Time Queues
A user or application can share information by enqueuing messages into a queue in an
Oracle database. The enqueued messages can be shared within a single database or
propagated to other databases, and the messages can be LCRs or user messages.
For example, messages can be enqueued when an application-specific message
occurs or when a trigger is fired for a database change. Also, in a heterogeneous
environment, an application can enqueue at an Oracle database messages that
originated at a non-Oracle database.

Other than commit_time, the settings for the sort_list parameter in the
CREATE_QUEUE_TABLE procedure are priority and enq_time. The priority setting orders
messages by the priority specified during enqueue, highest priority to lowest priority.
The enq_time setting orders messages by the time when they were enqueued, oldest
to newest.

Commit-time queues are useful when an environment must support either of the
following requirements for concurrent enqueues of messages:

• Transactional Dependency Ordering During Dequeue

• Consistent Browse of Messages in a Queue

Commit-time queues support these requirements. Neither priority nor enqueue time
ordering supports these requirements because both allow transactional dependency
violations and inconsistent browses. Both settings allow transactional dependency
violations, because messages are dequeued independent of the original
dependencies. Also, both settings allow inconsistent browses of the messages in a
queue, because multiple browses performed without any dequeue operations between
them can result in different sets of messages.

See Also:

• "Introduction to Message Staging and Propagation"

• "Message Propagation Between Queues"

• Oracle Streams Replication Administrator's Guide for more information
about heterogeneous information sharing

8.3.1.1 Transactional Dependency Ordering During Dequeue
A transactional dependency occurs when one database transaction requires that
another database transaction commits before it can commit successfully. Messages
that contain information about database transactions can be enqueued. For example,
a database trigger can fire to enqueue messages. Figure 8-1 shows how enqueue
time ordering does not support transactional dependency ordering during dequeue of
such messages.

Chapter 8
Commit-Time Queues

8-5

Figure 8-1 Transactional Dependency Violation During Dequeue

Session 1

Transaction T1

e3: Update a

row in the

hr.employees

table where

the �
employee_id �
is 207

Commit

Session 2 Session 3

Source Destination

Commit

e1: Insert a

row into the

hr.departments

table

Dequeue

CommitDequeue

Dequeue

e3

e2

e1

Error: no data found

Incorrect information �
in the hr.employees �
table for the row �
with an employee_id �
of 207

Successful

Transaction T2

Commit

e2: insert a

row into the

hr.employees

table with an

employee_id

of 207

T
IM

E

Apply

Apply

Apply

Figure 8-1 shows how transactional dependency ordering can be violated with
enqueue time ordering. The transaction that enqueued message e2 was committed
before the transaction that enqueued messages e1 and e3 was committed, and the
update in message e3 depends on the insert in message e2. So, the correct dequeue
order that supports transactional dependencies is e2, e1, e3. However, with enqueue
time ordering, e3 can be dequeued before e2. Therefore, when e3 is dequeued, an
error results when an application attempts to apply the change in e3 to the
hr.employees table. Also, after all three messages are dequeued, a row in the
hr.employees table contains the wrong information because the change in e3 was not
executed.

8.3.1.2 Consistent Browse of Messages in a Queue
Figure 8-2 shows how enqueue time ordering does not support consistent browse of
messages in a queue.

Chapter 8
Commit-Time Queues

8-6

Figure 8-2 Inconsistent Browse of Messages in a Queue

Session 1

Transaction T1

Enqueue e3

Commit

Session 2 Session 3

Commit

Enqueue e1

Browse Set 1

Browse

CommitBrowse

Browse

Browse Set 2

Browse

CommitBrowse

Browse

e1

e3

e2

e3

e2

e1

Transaction T2

Commit

Enqueue e2

The two browse sets

return messages in �
a different order.

T
IM

E

Figure 8-2 shows that a client browsing messages in a queue is not guaranteed a
definite order with enqueue time ordering. Sessions 1 and 2 are concurrent sessions
that are enqueuing messages. Session 3 shows two sets of client browses that return
the three enqueued messages in different orders. If the client requires deterministic
ordering of messages, then the client might fail. For example, the client might perform
a browse to initiate a program state, and a subsequent dequeue might return
messages in a different order than expected.

8.3.2 How Commit-Time Queues Work
The commit system change number (CSCN) for a message that is enqueued into a
queue is not known until Oracle Database writes the redo record for the commit of the
transaction that includes the message to the redo log. The CSCN cannot be recorded
when the message is enqueued. Commit-time queues use the current SCN of the
database when a transaction is committed as the approximate CSCN for all of the
messages in the transaction. The order of messages in a commit-time queue is based
on the approximate CSCN of the transaction that enqueued the messages.

In a commit-time queue, messages in a transaction are not visible to dequeue and
browse operations until a deterministic order for the messages can be established
using the approximate CSCN. When multiple transactions are enqueuing messages
concurrently into the same commit-time queue, two or more transactions can commit
at nearly the same time, and the commit intervals for these transactions can overlap.
In this case, the messages in these transactions are not visible until all of the

Chapter 8
Commit-Time Queues

8-7

transactions have committed. At that time, the order of the messages can be
determined using the approximate CSCN of each transaction. Dependencies are
maintained by using the approximate CSCN for messages rather than the enqueue
time. Read consistency for browses is maintained by ensuring that only messages with
a fully determined order are visible.

A commit-time queue always maintains transactional dependency ordering for
messages that are based on database transactions. However, applications and users
can enqueue messages that are not based on database transactions. For these
messages, if dependencies exist between transactions, then the application or user
must ensure that transactions are committed in the correct order and that the commit
intervals of the dependent transactions do not overlap.

The approximate CSCNs of transactions recorded by a commit-time queue might not
reflect the actual commit order of these transactions. For example, transaction 1 and
transaction 2 can commit at nearly the same time after enqueuing their messages. The
approximate CSCN for transaction 1 can be lower than the approximate CSCN for
transaction 2, but transaction 1 can take more time to complete the commit than
transaction 2. In this case, the actual CSCN for transaction 2 is lower than the actual
CSCN for transaction 1.

Note:

The sort_list parameter in CREATE_QUEUE_TABLE can be set to the following:

priority, commit_time

In this case, ordering is done by priority first and commit time second.
Therefore, this setting does not ensure transactional dependency ordering and
browse read consistency for messages with different priorities. However,
transactional dependency ordering and browse read consistency are ensured
for messages with the same priority.

See Also:

Oracle Streams Replication Administrator's Guide for information about
creating a commit-time queue

Chapter 8
Commit-Time Queues

8-8

9
Advanced Propagation Concepts

The following topics contain conceptual information about staging messages in queues
and propagating messages from one queue to another:

• Propagation Jobs

• Oracle Streams Data Dictionary for Propagations

• Binary File Propagation

See Also:

• "Message Propagation Between Queues"

• "Managing Oracle Streams Propagations and Propagation Jobs"

• Oracle Database Advanced Queuing User's Guide for detailed information
about the propagation infrastructure in Oracle Streams AQ

9.1 Propagation Jobs
An Oracle Streams propagation is configured internally using Oracle Scheduler.
Therefore, a propagation job is a job that propagates messages from a source queue
to a destination queue. Like other Oracle Scheduler jobs, propagation jobs have an
owner, and they use slave processes (jnnn) as needed to execute jobs.

The following procedures can create a propagation job when they create a
propagation:

• The ADD_GLOBAL_PROPAGATION_RULES procedure in the DBMS_STREAMS_ADM package

• The ADD_SCHEMA_PROPAGATION_RULES procedure in the DBMS_STREAMS_ADM package

• The ADD_TABLE_PROPAGATION_RULES procedure in the DBMS_STREAMS_ADM package

• The ADD_SUBSET_PROPAGATION_RULE procedure in the DBMS_STREAMS_ADM package

• The CREATE_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package

When one of these procedures creates a propagation, a new propagation job is
created in the following cases:

• If the queue_to_queue parameter is set to TRUE, then a new propagation job always
is created for the propagation. Each queue-to-queue propagation has its own
propagation job. However, a slave process can be used by multiple propagation
jobs.

• If the queue_to_queue parameter is set to FALSE, then a propagation job is created
when no propagation job exists for the source queue and database link specified.
If a propagation job already exists for the specified source queue and database
link, then the new propagation uses the existing propagation job and shares this

9-1

propagation job with all of the other queue-to-dblink propagations that use the
same database link.

This section contains the following topics:

• Propagation Scheduling and Oracle Streams Propagations

• Propagation Jobs and RESTRICTED SESSION

Note:

The source queue owner performs the propagation, but the propagation job is
owned by the user who creates it. These two users might or might not be the
same.

See Also:

• "Queue-to-Queue Propagations"

• Oracle Database Administrator's Guide for more information about Oracle
Scheduler

9.1.1 Propagation Scheduling and Oracle Streams Propagations
A propagation schedule specifies how often a propagation job propagates messages
from a source queue to a destination queue. Each queue-to-queue propagation has its
own propagation job and propagation schedule, but queue-to-dblink propagations that
use the same propagation job have the same propagation schedule.

A default propagation schedule is established when a new propagation job is created
by a procedure in the DBMS_STREAMS_ADM or DBMS_PROPAGATION_ADM package.

The default schedule has the following properties:

• The start time is SYSDATE().

• The duration is NULL, which means infinite.

• The next time is NULL, which means that propagation restarts as soon as it finishes
the current duration.

• The latency is three seconds, which is the wait time after a queue becomes empty
to resubmit the propagation job. Therefore, the latency is the maximum wait, in
seconds, in the propagation window for a message to be propagated after it is
enqueued.

You can alter the schedule for a propagation job using the ALTER_PROPAGATION_SCHEDULE
procedure in the DBMS_AQADM package. Changes made to a propagation job affect all
propagations that use the propagation job.

Chapter 9
Propagation Jobs

9-2

See Also:

• "Propagation Jobs"

• "Altering the Schedule of a Propagation Job"

9.1.2 Propagation Jobs and RESTRICTED SESSION
When the restricted session is enabled during system startup by issuing a STARTUP
RESTRICT statement, propagation jobs with enabled propagation schedules do not
propagate messages. When the restricted session is disabled, each propagation
schedule that is enabled and ready to run will run when there is an available slave
process.

When the restricted session is enabled in a running database by the SQL statement
ALTER SYSTEM ENABLE RESTRICTED SESSION, any running propagation job continues to run to
completion. However, any new propagation job submitted for a propagation schedule
is not started. Therefore, propagation for an enabled schedule can eventually come to
a halt.

9.2 Oracle Streams Data Dictionary for Propagations
When a database object is prepared for instantiation at a source database, an Oracle
Streams data dictionary is populated automatically at the database where changes to
the object are captured by a capture process. The Oracle Streams data dictionary is a
multiversioned copy of some of the information in the primary data dictionary at a
source database. The Oracle Streams data dictionary maps object numbers, object
version information, and internal column numbers from the source database into table
names, column names, and column data types. This mapping keeps each captured
LCR as small as possible, because the message can store numbers rather than
names internally.

The mapping information in the Oracle Streams data dictionary at the source database
is needed to evaluate rules at any database that propagates the captured LCRs from
the source database. To make this mapping information available to a propagation,
Oracle automatically populates a multiversioned Oracle Streams data dictionary at
each database that has an Oracle Streams propagation. Oracle automatically sends
internal messages that contain relevant information from the Oracle Streams data
dictionary at the source database to all other databases that receive captured LCRs
from the source database.

The Oracle Streams data dictionary information contained in these internal messages
in a queue might or might not be propagated by a propagation. Which Oracle Streams
data dictionary information to propagate depends on the rule sets for the propagation.
When a propagation encounters Oracle Streams data dictionary information for a
table, the propagation rule sets are evaluated with partial information that includes the
source database name, table name, and table owner. If the partial rule evaluation of
these rule sets determines that there might be relevant LCRs for the given table from
the specified database, then the Oracle Streams data dictionary information for the
table is propagated.

When Oracle Streams data dictionary information is propagated to a destination
queue, it is incorporated into the Oracle Streams data dictionary at the database that

Chapter 9
Oracle Streams Data Dictionary for Propagations

9-3

contains the destination queue, in addition to being enqueued into the destination
queue. Therefore, a propagation reading the destination queue in a directed networks
configuration can forward LCRs immediately without waiting for the Oracle Streams
data dictionary to be populated. In this way, the Oracle Streams data dictionary for a
source database always reflects the correct state of the relevant database objects for
the LCRs relating to these database objects.

See Also:

• "The Oracle Streams Data Dictionary"

• How Rules Are Used in Oracle Streams

9.3 Binary File Propagation
You can propagate a binary file between databases by using Oracle Streams. To do
so, you put one or more BFILE attributes in a message payload and then propagate the
message to a remote queue. Each BFILE referenced in the payload is transferred to the
remote database after the message is propagated, but before the message
propagation is committed. The directory object and filename of each propagated BFILE
are preserved, but you can map the directory object to different directories on the
source and destination databases. The message payload can be a BFILE wrapped in
an ANYDATA payload, or the message payload can be one or more BFILE attributes of an
object wrapped in an ANYDATA payload.

The following are not supported in a message payload:

• One or more BFILE attributes in a varray

• A user-defined type object with an ANYDATA attribute that contains one or more
BFILE attributes

Propagating a BFILE in Oracle Streams has the same restrictions as the procedure
DBMS_FILE_TRANSFER.PUT_FILE.

See Also:

Oracle Database Administrator's Guide, and Oracle Database PL/SQL
Packages and Types Reference for more information about transferring files
with the DBMS_FILE_TRANSFER package

Chapter 9
Binary File Propagation

9-4

10
Advanced Apply Process Concepts

The following topics contain information about consuming information with Oracle
Streams.

• Apply Process Creation

• Apply Processes and Dependencies

• Considerations for Applying DML Changes to Tables

• Considerations for Applying DDL Changes

• Instantiation SCN and Ignore SCN for an Apply Process

• The Oldest SCN for an Apply Process

• Low-Watermark and High-Watermark for an Apply Process

• Apply Processes and Triggers

• Oracle Streams Data Dictionary for an Apply Process

• Multiple Apply Processes in a Single Database

See Also:

• "Implicit Consumption with an Apply Process"

• Managing Oracle Streams Information Consumption

• Monitoring Oracle Streams Apply Processes

10.1 Apply Process Creation
You can create an apply process using the DBMS_STREAMS_ADM package or the
DBMS_APPLY_ADM package. Using the DBMS_STREAMS_ADM package to create an apply
process is simpler because defaults are used automatically for some configuration
options. Alternatively, using the DBMS_APPLY_ADM package to create an apply process is
more flexible.

When you create an apply process by running the CREATE_APPLY procedure in the
DBMS_APPLY_ADM package, you can specify nondefault values for the apply_captured,
apply_database_link, and apply_tag parameters. You can use the procedures in the
DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package to add rules to a rule set for
the apply process.

If you create more than one apply process in a database, then the apply processes are
completely independent of each other. These apply processes do not synchronize with
each other, even if they apply LCRs from the same source database.

10-1

Table 10-1 describes the differences between using the DBMS_STREAMS_ADM package and
the DBMS_APPLY_ADM package for apply process creation.

Table 10-1 DBMS_STREAMS_ADM and DBMS_APPLY_ADM Apply Process
Creation

DBMS_STREAMS_ADM Package DBMS_APPLY_ADM Package

A rule set is created automatically for the apply
process and rules can be added to the rule set
automatically. The rule set is a positive rule set
if the inclusion_rule parameter is set to TRUE
(the default). It is a negative rule set if the
inclusion_rule parameter is set to FALSE.
You can use the procedures in the
DBMS_STREAMS_ADM and DBMS_RULE_ADM
package to manage rule sets and rules for the
apply process after the apply process is
created.

You create one or more rule sets and rules for
the apply process either before or after it is
created. You can use the procedures in the
DBMS_RULE_ADM package to create rule sets
and add rules to rule sets either before or after
the apply process is created. You can use the
procedures in the DBMS_STREAMS_ADM package
to create rule sets and add rules to rule sets
for the apply process after the apply process is
created.

The apply process can apply messages only
at the local database.

You specify whether the apply process applies
messages at the local database or at a remote
database during apply process creation.

Changes applied by the apply process
generate tags in the redo log at the destination
database with a value of 00 (double zero).

You specify the tag value for changes applied
by the apply process during apply process
creation. The default value for the tag is 00
(double zero).

See Also:

• Oracle Streams Replication Administrator's Guide for information about
creating an apply process

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams tags

10.2 Apply Processes and Dependencies
The following sections describe how apply processes handle dependencies:

• How Dependent Transactions Are Applied

• Row LCR Ordering During Apply

• Dependencies and Constraints

• Dependency Detection, Rule-Based Transformations, and Apply Handlers

• Virtual Dependency Definitions

• Barrier Transactions

Chapter 10
Apply Processes and Dependencies

10-2

10.2.1 How Dependent Transactions Are Applied
The parallelism apply process parameter controls the parallelism of an apply process.
When apply process parallelism is set to 1, a single apply server applies transactions
in the same order as the order in which they were committed on the source database.
In this case, dependencies are not an issue. For example, if transaction A is
committed before transaction B on the source database, then, on the destination
database, all of the LCRs in transaction A are applied before any LCRs in
transaction B.

However, when apply process parallelism is set to a value greater than 1, multiple
apply servers apply transactions simultaneously. When an apply process is applying
transactions in parallel, it applies the row LCRs in these transactions until it detects a
row LCR that depends on a row LCR in another transaction. When a dependent row
LCR is detected, an apply process finishes applying the LCRs in the transaction with
the lower commit system change number (CSCN) and commits this transaction before
it finishes applying the remaining row LCRs in the transaction with the higher CSCN.

For example, consider two transactions: transaction A and transaction B. The
transactions are dependent transactions, and each transaction contains 100 row
LCRs. Transaction A committed on the source database before transaction B.
Therefore, transaction A has the lower CSCN of the two transactions. An apply
process can apply these transactions in parallel in the following way:

1. The apply process begins to apply row LCRs from both transactions in parallel.

2. Using a constraint in the destination database's data dictionary or a virtual
dependency definition at the destination database, the apply process detects a
dependency between a row LCR in transaction A and a row LCR in transaction B.

3. Because transaction B has the higher CSCN of the two transactions, the apply
process waits to apply transaction B and does not apply the dependent row LCR in
transaction B. The row LCRs before the dependent row LCR in transaction B have
been applied. For example, if the dependent row LCR in transaction B is the 81st
row LCR, then the apply process could have applied 80 of the 100 row LCRs in
transaction B.

4. Because transaction A has the lower CSCN of the two transactions, the apply
process applies all the row LCRs in transaction A and commits.

5. The apply process applies the dependent row LCR in transaction B and the
remaining row LCRs in transaction B. When all of the row LCRs in transaction B
are applied, the apply process commits transaction B.

Note:

You can set the parallelism apply process parameter using the SET_PARAMETER
procedure in the DBMS_APPLY_ADM package.

10.2.2 Row LCR Ordering During Apply
An apply process orders and applies row LCRs in the following way:

Chapter 10
Apply Processes and Dependencies

10-3

• Row LCRs within a single transaction are always applied in the same order as the
corresponding changes on the source database.

• Row LCRs that depend on each other in different transactions are always applied
in the same order as the corresponding changes on the source database. When
apply process parallelism is greater than 1, and the apply process detects a
dependency between row LCRs in different transactions, the apply process always
executes the transaction with the lower CSCN before executing the dependent row
LCR. This behavior is described in more detail in "How Dependent Transactions
Are Applied".

• If commit_serialization apply process parameter is set to FULL, then the apply
process commits all transactions, regardless of whether they contain dependent
row LCRs, in the same order as the corresponding transactions on the source
database.

• If commit_serialization apply process parameter is set to DEPENDENT_TRANSACTIONS,
then the apply process might apply transactions that do not depend on each other
in a different order than the commit order of the corresponding transactions on the
source database.

Note:

You can set the commit_serialization apply process parameter using the
SET_PARAMETER procedure in the DBMS_APPLY_ADM package.

10.2.3 Dependencies and Constraints
If the names of shared database objects are the same at the source and destination
databases, and if the objects are in the same schemas at these databases, then an
apply process automatically detects dependencies between row LCRs, assuming
constraints are defined for the database objects at the destination database.
Information about these constraints is stored in the data dictionary at the destination
database.

Regardless of the setting for the commit_serialization parameter and apply process
parallelism, an apply process always respects dependencies between transactions
that are enforced by database constraints. When an apply process is applying a
transaction that contains row LCRs that depend on row LCRs in another transaction,
the apply process ensures that the row LCRs are applied in the correct order and that
the transactions are committed in the correct order to maintain the dependencies.
Apply processes detect dependencies for captured row LCRs and persistent row
LCRs.

However, some environments have dependencies that are not enforced by database
constraints, such as environments that enforce dependencies using applications. If
your environment has dependencies for shared database objects that are not enforced
by database constraints, then set the commit_serialization parameter to FULL for apply
processes that apply changes to these database objects.

Chapter 10
Apply Processes and Dependencies

10-4

10.2.4 Dependency Detection, Rule-Based Transformations, and
Apply Handlers

When rule-based transformations are specified for rules used by an apply process,
and apply handlers are configured for the apply process, LCRs are processed in the
following order:

1. The apply process dequeues LCRs from its queue.

2. The apply process runs rule-based transformations on LCRs, when appropriate.

3. The apply process detects dependencies between LCRs.

4. The apply process passes LCRs to apply handlers, when appropriate.

See Also:

"Apply Process Subcomponents"

10.2.5 Virtual Dependency Definitions
In some cases, an apply process requires additional information to detect
dependencies in row LCRs that are being applied in parallel. The following are
examples of cases in which an apply process requires additional information to detect
dependencies:

• The data dictionary at the destination database does not contain the required
information. The following are examples of this case:

– The apply process cannot find information about a database object in the data
dictionary of the destination database. This can happen when there are data
dictionary differences for shared database objects between the source and
destination databases. For example, a shared database object can have a
different name or can be in a different schema at the source database and
destination database.

– A relationship exists between two or more tables, and the relationship is not
recorded in the data dictionary of the destination database. This can happen
when database constraints are not defined to improve performance or when
an application enforces dependencies during database operations instead of
database constraints.

• Data is denormalized by an apply handler after dependency computation. For
example, the information in a single row LCR can be used to create multiple row
LCRs that are applied to multiple tables.

Apply errors or incorrect processing can result when an apply process cannot
determine dependencies properly. In some of the cases described in the previous list,
you can use rule-based transformations to avoid apply problems. For example, if a
shared database object is in different schemas at the source and destination
databases, then a rule-based transformation can change the schema in the
appropriate LCRs. However, the disadvantage with using rule-based transformations
is that they cannot be executed in parallel.

Chapter 10
Apply Processes and Dependencies

10-5

A virtual dependency definition is a description of a dependency that is used by an
apply process to detect dependencies between transactions at a destination database.
A virtual dependency definition is not described as a constraint in the data dictionary of
the destination database. Instead, it is specified using procedures in the
DBMS_APPLY_ADM package. Virtual dependency definitions enable an apply process to
detect dependencies that it would not be able to detect by using only the constraint
information in the data dictionary. After dependencies are detected, an apply process
schedules LCRs and transactions in the correct order for apply.

Virtual dependency definitions provide required information so that apply processes
can detect dependencies correctly before applying LCRs directly or passing LCRs to
apply handlers. Virtual dependency definitions enable apply handlers to process these
LCRs correctly, and the apply handlers can process them in parallel to improve
performance.

A virtual dependency definition can define one of the following types of dependencies:

• Value Dependency

• Object Dependency

Note:

A destination database must be running Oracle Database 10g Release 2 or
later to specify virtual dependency definitions.

See Also:

• "Using Virtual Dependency Definitions"

• "Monitoring Virtual Dependency Definitions"

10.2.5.1 Value Dependency
A value dependency defines a table constraint, such as a unique key, or a
relationship between the columns of two or more tables. A value dependency is set for
one or more columns, and an apply process uses a value dependency to detect
dependencies between row LCRs that contain values for these columns. Value
dependencies can define virtual foreign key relationships between tables, but, unlike
foreign key relationships, value dependencies can involve more than two tables.

Value dependencies are useful when relationships between columns in tables are not
described by constraints in the data dictionary of the destination database. Value
dependencies describe these relationships, and an apply process uses the value
dependencies to determine when two or more row LCRs in different transactions
involve the same row in a table at the destination database. For transactions that are
being applied in parallel, when two or more row LCRs involve the same row, the
transactions that include these row LCRs are dependent transactions.

Use the SET_VALUE_DEPENDENCY procedure in the DBMS_APPLY_ADM package to define or
remove a value dependency at a destination database. In this procedure, table
columns are specified as attributes.

Chapter 10
Apply Processes and Dependencies

10-6

The following restrictions pertain to value dependencies:

• The row LCRs that involve the database objects specified in a value dependency
must originate from a single source database.

• Each value dependency must contain only one set of attributes for a particular
database object.

Also, any columns specified in a value dependency at a destination database must be
supplementally logged at the source database. These columns must be
unconditionally logged.

See Also:

"Supplemental Logging in an Oracle Streams Environment"

10.2.5.2 Object Dependency
An object dependency defines a parent-child relationship between two objects at a
destination database. An apply process schedules execution of transactions that
involve the child object after all transactions with lower commit system change number
(CSCN) values that involve the parent object have been committed. An apply process
uses the object identifier in each row LCR to detect dependencies. The apply process
does not use column values in the row LCRs to detect object dependencies.

Object dependencies are useful when relationships between tables are not described
by constraints in the data dictionary of the destination database. Object dependencies
describe these relationships, and an apply process uses the object dependencies to
determine when two or more row LCRs in different transactions involve these tables.
For transactions that are being applied in parallel, when a row LCR in one transaction
involves the child table, and a row LCR in a different transaction involves the parent
table, the transactions that include these row LCRs are dependent transactions.

Use the CREATE_OBJECT_DEPENDENCY procedure to create an object dependency at a
destination database. Use the DROP_OBJECT_DEPENDENCY procedure to drop an object
dependency at a destination database. Both of these procedures are in the in the
DBMS_APPLY_ADM package.

Note:

Tables with circular dependencies can result in apply process deadlocks when
apply process parallelism is greater than 1. The following is an example of a
circular dependency: Table A has a foreign key constraint on table B, and
table B has a foreign key constraint on table A. Apply process deadlocks are
possible when two or more transactions that involve the tables with circular
dependencies commit at the same SCN.

10.2.6 Barrier Transactions
When an apply process cannot identify the table row or the database object specified
in a row LCR by using the destination database's data dictionary and virtual

Chapter 10
Apply Processes and Dependencies

10-7

dependency definitions, the transaction that contains the row LCR is applied after all of
the other transactions with lower CSCN values. Such a transaction is called a barrier
transaction. Transactions with higher CSCN values than the barrier transaction are
not applied until after the barrier transaction has committed. In addition, all DDL
transactions are barrier transactions.

10.3 Considerations for Applying DML Changes to Tables
The following sections discuss considerations for applying DML changes to tables:

• Constraints and Applying DML Changes to Tables

• Substitute Key Columns

• Apply Process Behavior for Column Discrepancies

• Conflict Resolution and an Apply Process

• Handlers and Row LCR Processing

10.3.1 Constraints and Applying DML Changes to Tables
You must ensure that the primary key columns at the destination database are logged
in the redo log at the source database for every update. A unique key or foreign key
constraint at a destination database that contains data from more that one column at
the source database requires additional logging at the source database.

There are various ways to ensure that a column is logged at the source database. For
example, whenever the value of a column is updated, the column is logged. Also,
Oracle has a feature called supplemental logging that automates the logging of
specified columns.

For a unique key and foreign key constraint at a destination database that contains
data from only one column at a source database, no supplemental logging is required.
However, for a constraint that contains data from multiple columns at the source
database, you must create a conditional supplemental log group containing all the
columns at the source database that are used by the constraint at the destination
database.

Typically, unique key and foreign key constraints include the same columns at the
source database and destination database. However, in some cases, an apply handler
or custom rule-based transformation can combine a multi-column constraint from the
source database into a single key column at the destination database. Also, an apply
handler or custom rule-based transformation can separate a single key column from
the source database into a multi-column constraint at the destination database. In
such cases, the number of columns in the constraint at the source database
determines whether a conditional supplemental log group is required. If there is more
than one column in the constraint at the source database, then a conditional
supplemental log group containing all the constraint columns is required at the source
database. If there is only one column in the constraint at the source database, then no
supplemental logging is required for the key column.

Chapter 10
Considerations for Applying DML Changes to Tables

10-8

See Also:

Oracle Streams Replication Administrator's Guide for more information about
supplemental logging

10.3.2 Substitute Key Columns
If possible, each table for which changes are applied by an apply process should have
a primary key. When a primary key is not possible, Oracle recommends that each
table have a set of columns that can be used as a unique identifier for each row of the
table. If the tables that you plan to use in your Oracle Streams environment do not
have a primary key or a set of unique columns, then consider altering these tables
accordingly.

To detect conflicts and handle errors accurately, Oracle must be able to identify
uniquely and match corresponding rows at different databases. By default, Oracle
Streams uses the primary key of a table to identify rows in the table, and if a primary
key does not exist, Oracle Streams uses the smallest unique key that has at least one
NOT NULL column to identify rows in the table. When a table at a destination database
does not have a primary key or a unique key with at least one NOT NULL column, or
when you want to use columns other than the primary key or unique key for the key,
you can designate a substitute key at the destination database. A substitute key is a
column or set of columns that Oracle can use to identify rows in the table during apply.

You can specify the substitute primary key for a table using the SET_KEY_COLUMNS
procedure in the DBMS_APPLY_ADM package. Unlike true primary keys, the substitute key
columns can contain nulls. Also, the substitute key columns take precedence over any
existing primary key or unique keys for the specified table for all apply processes at
the destination database.

If you specify a substitute key for a table in a destination database, and these columns
are not a primary key for the same table at the source database, then you must create
an unconditional supplemental log group containing the substitute key columns at the
source database.

In the absence of substitute key columns, primary key constraints, and unique key
constraints, an apply process uses all of the columns in the table as the key columns,
excluding columns of the following data types: LOB, LONG, LONG RAW, user-defined types
(including object types, REFs, varrays, nested tables), and Oracle-supplied types
(including Any types, XML types, spatial types, and media types). In this case, you
must create an unconditional supplemental log group containing these columns at the
source database. Using substitute key columns is preferable when there is no primary
key constraint for a table because fewer columns are needed in the row LCR.

Chapter 10
Considerations for Applying DML Changes to Tables

10-9

Note:

• Oracle recommends that each column you specify as a substitute key
column be a NOT NULL column. You should also create a single index that
includes all of the columns in a substitute key. Following these guidelines
improves performance for changes because the database can locate the
relevant row more efficiently.

• LOB, LONG, LONG RAW, user-defined type, and Oracle-supplied type columns
cannot be specified as substitute key columns.

See Also:

• The DBMS_APPLY_ADM.SET_KEY_COLUMNS procedure in the Oracle Database
PL/SQL Packages and Types Reference

• Oracle Streams Replication Administrator's Guide for more information
about supplemental logging

• Oracle Database SQL Language Reference for information about data
types

• "Managing the Substitute Key Columns for a Table"

10.3.3 Apply Process Behavior for Column Discrepancies
A column discrepancy is any difference in the columns in a table at a source database
and the columns in the same table at a destination database. If there are column
discrepancies in your Oracle Streams environment, then use rule-based
transformations, statement DML handlers, or procedure DML handlers to make the
columns in row LCRs being applied by an apply process match the columns in the
relevant tables at a destination database.

The following sections describe apply process behavior for common column
discrepancies.

• Missing Columns at the Destination Database

• Extra Columns at the Destination Database

• Column Data Type Mismatch

See Also:

• "DML Handlers"

• Rule-Based Transformations

• Oracle Database PL/SQL Packages and Types Reference for more
information about LCRs

Chapter 10
Considerations for Applying DML Changes to Tables

10-10

10.3.3.1 Missing Columns at the Destination Database
If the table at the destination database is missing one or more columns that are in the
table at the source database, then an apply process raises an error and moves the
transaction that caused the error into the error queue. You can avoid such an error by
creating a rule-based transformation or procedure DML handler that deletes the
missing columns from the LCRs before they are applied. Specifically, the
transformation or handler can remove the extra columns using the DELETE_COLUMN
member procedure on the row LCR. You can also create a statement DML handler
with a SQL statement that excludes the missing columns.

10.3.3.2 Extra Columns at the Destination Database
If the table at the destination database has more columns than the table at the source
database, then apply process behavior depends on whether the extra columns are
required for dependency computations. If the extra columns are not used for
dependency computations, then an apply process applies changes to the destination
table. In this case, if column defaults exist for the extra columns at the destination
database, then these defaults are used for these columns for all inserts. Otherwise,
these inserted columns are NULL.

If, however, the extra columns are used for dependency computations, then an apply
process places the transactions that include these changes in the error queue. The
following types of columns are required for dependency computations:

• For all changes, all key columns

• For INSERT and DELETE statements, all columns involved with constraints

• For UPDATE statements, if a constraint column is changed, such as a unique key
constraint column or a foreign key constraint column, then all columns involved in
the constraint

When the extra columns are used for dependency computations, one way to avoid
apply errors is to use statement DML handlers to add the extra columns.

See Also:

"Statement DML Handlers"

10.3.3.3 Column Data Type Mismatch
A column data type mismatch results when the data type for a column in a table at the
destination database does not match the data type for the same column at the source
database. An apply process can automatically convert certain data types when it
encounters a column data type mismatch. If an apply process cannot automatically
convert the data type, then apply process places transactions containing the changes
to the mismatched column into the error queue. To avoid such an error, you can create
a custom rule-based transformation or DML handler that converts the data type.

Chapter 10
Considerations for Applying DML Changes to Tables

10-11

See Also:

"Automatic Data Type Conversion During Apply"

10.3.4 Conflict Resolution and an Apply Process
Conflicts are possible in an Oracle Streams configuration where data is shared
between multiple databases. A conflict is a mismatch between the old values in an
LCR and the expected data in a table. A conflict can occur if DML changes are allowed
to a table for which changes are captured and to a table where these changes are
applied.

For example, a transaction at the source database can update a row at nearly the
same time as a different transaction that updates the same row at a destination
database. In this case, if data consistency between the two databases is important,
then when the change is propagated to the destination database, an apply process
must be instructed either to keep the change at the destination database or replace it
with the change from the source database. When data conflicts occur, you need a
mechanism to ensure that the conflict is resolved in accordance with your business
rules.

Oracle Streams automatically detects conflicts and, for update conflicts, tries to use an
update conflict handler to resolve them if one is configured. Oracle Streams offers a
variety of prebuilt handlers that enable you to define a conflict resolution system for
your database that resolves conflicts in accordance with your business rules. If you
have a unique situation that a prebuilt conflict resolution handler cannot resolve, then
you can build and use your own custom conflict resolution handlers in an error handler
or procedure DML handler. Conflict detection can be disabled for nonkey columns.

See Also:

Oracle Streams Replication Administrator's Guide

10.3.5 Handlers and Row LCR Processing
Any of the following handlers can process a row LCR:

• DML handler (either statement DML handler or procedure DML handler)

• Error handler

• Update conflict handler

The following sections describe the possible scenarios involving these handlers:

• No Relevant Handlers

• Relevant Update Conflict Handler

• DML Handler But No Relevant Update Conflict Handler

• DML Handler And a Relevant Update Conflict Handler

• Statement DML Handler and Procedure DML Handler

Chapter 10
Considerations for Applying DML Changes to Tables

10-12

• Error Handler But No Relevant Update Conflict Handler

• Error Handler And a Relevant Update Conflict Handler

• Statement DML Handler and Relevant Error Handler

• Statement DML Handler, Error Handler, and Relevant Update Conflict Handler

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE member procedure for row LCRs

• "DML Handlers"

• How Rules Are Used in Oracle Streams

• Oracle Streams Replication Administrator's Guide

10.3.5.1 No Relevant Handlers
If there are no relevant handlers for a row LCR, then an apply process tries to apply
the change specified in the row LCR directly. If the apply process can apply the row
LCR, then the change is made to the row in the table. If there is a conflict or an error
during apply, then the transaction containing the row LCR is rolled back, and all of the
LCRs in the transaction that should be applied according to the apply process rule sets
are moved to the error queue.

10.3.5.2 Relevant Update Conflict Handler
Consider a case where there is a relevant update conflict handler configured, but no
other relevant handlers are configured. An apply process tries to apply the change
specified in a row LCR directly. If the apply process can apply the row LCR, then the
change is made to the row in the table.

If there is an error during apply that is caused by a condition other than an update
conflict, including a uniqueness conflict or a delete conflict, then the transaction
containing the row LCR is rolled back, and all of the LCRs in the transaction that
should be applied according to the apply process rule sets are moved to the error
queue.

If there is an update conflict during apply, then the relevant update conflict handler is
invoked. If the update conflict handler resolves the conflict successfully, then the apply
process either applies the LCR or discards the LCR, depending on the resolution of
the update conflict, and the apply process continues applying the other LCRs in the
transaction that should be applied according to the apply process rule sets. If the
update conflict handler cannot resolve the conflict, then the transaction containing the
row LCR is rolled back, and all of the LCRs in the transaction that should be applied
according to the apply process rule sets are moved to the error queue.

10.3.5.3 DML Handler But No Relevant Update Conflict Handler
Consider a case where an apply process passes a row LCR to a DML handler, and
there is no relevant update conflict handler configured. The DML handler can be a
statement DML handler or a procedure DML handler.

Chapter 10
Considerations for Applying DML Changes to Tables

10-13

The DML handler processes the row LCR. The designer of the DML handler has
complete control over this processing. Some DML handlers can perform SQL
operations or run the EXECUTE member procedure of the row LCR. If the DML handler
runs the EXECUTE member procedure of the row LCR, then the apply process tries to
apply the row LCR. This row LCR might have been modified by the DML handler.

10.3.5.3.1 Statement DML Handler Failure
An apply process can have multiple statement DML handlers for the same operation
on the same table. These statement DML handlers can run in any order, and each
statement DML handler receives the original row LCR. If any SQL operation performed
by any statement DML handler fails, or if an attempt to run the EXECUTE member
procedure fails, then the transaction containing the row LCR is rolled back, and all of
the LCRs in the transaction that should be applied according to the apply process rule
sets are moved to the error queue.

10.3.5.3.1.1 Procedure DML Handler Failure

If any SQL operation performed by a procedure DML handler fails, or if an attempt to
run the EXECUTE member procedure fails, then the procedure DML handler can try to
handle the exception. If the procedure DML handler does not raise an exception, then
the apply process assumes the procedure DML handler has performed the appropriate
action with the row LCR, and the apply process continues applying the other LCRs in
the transaction that should be applied according to the apply process rule sets.

If the procedure DML handler cannot handle the exception, then the procedure DML
handler should raise an exception. In this case, the transaction containing the row LCR
is rolled back, and all of the LCRs in the transaction that should be applied according
to the apply process rule sets are moved to the error queue.

10.3.5.4 DML Handler And a Relevant Update Conflict Handler
Consider a case where an apply process passes a row LCR to a DML handler and
there is a relevant update conflict handler configured. The DML handler can be a
statement DML handler or a procedure DML handler. An apply process can have
multiple statement DML handlers for the same operation on the same table. These
statement DML handlers can run in any order, and each statement DML handler
receives the original row LCR.

The DML handler processes the row LCR. The designer of the DML handler has
complete control over this processing. Some DML handlers might perform SQL
operations or run the EXECUTE member procedure of the row LCR. If the DML handler
runs the EXECUTE member procedure of the row LCR, then the apply process tries to
apply the row LCR. If the DML handler is a procedure DML handler, then this row LCR
could have been modified by the procedure DML handler.

If any SQL operation performed by a DML handler fails, or if an attempt to run the
EXECUTE member procedure fails for any reason other than an update conflict, then the
behavior is the same as that described in "DML Handler But No Relevant Update
Conflict Handler". Note that uniqueness conflicts and delete conflicts are not update
conflicts.

If an attempt to run the EXECUTE member procedure fails because of an update conflict,
then the behavior depends on the setting of the conflict_resolution parameter in the
EXECUTE member procedure:

Chapter 10
Considerations for Applying DML Changes to Tables

10-14

The conflict_resolution Parameter Is Set to TRUE
If the conflict_resolution parameter is set to TRUE, then the relevant update conflict
handler is invoked. If the update conflict handler resolves the conflict successfully,
and all other operations performed by the DML handler succeed, then the DML
handler finishes without raising an exception, and the apply process continues
applying the other LCRs in the transaction that should be applied according to the
apply process rule sets.
If the update conflict handler cannot resolve the conflict, and the DML handler is a
statement DML handler, then the transaction containing the row LCR is rolled back,
and all of the LCRs in the transaction that should be applied according to the apply
process rule sets are moved to the error queue.
If the update conflict handler cannot resolve the conflict, and the DML handler is a
procedure DML handler, then a procedure DML handler can try to handle the
exception. If the procedure DML handler does not raise an exception, then the apply
process assumes the procedure DML handler has performed the appropriate action
with the row LCR, and the apply process continues applying the other LCRs in the
transaction that should be applied according to the apply process rule sets. If the
procedure DML handler cannot handle the exception, then the procedure DML
handler should raise an exception. In this case, the transaction containing the row
LCR is rolled back, and all of the LCRs in the transaction that should be applied
according to the apply process rule sets are moved to the error queue.

The conflict_resolution Parameter Is Set to FALSE
If the conflict_resolution parameter is set to FALSE, then the relevant update conflict
handler is not invoked. In this case, the behavior is the same as that described in
"DML Handler But No Relevant Update Conflict Handler".

10.3.5.5 Statement DML Handler and Procedure DML Handler
Consider a case where an apply process passes a row LCR to both a statement DML
handler and a procedure DML handler for the same operation on the same table. In
this case, the DML handlers can be run in any order, and each DML handler receives
each original row LCR. Also, an apply process can have multiple statement DML
handlers for the same operation on the same table. These statement DML handlers
can run in any order, and each statement DML handler receives the original row LCR.
Each DML handler processes the row LCR independently, and the behavior is the
same as any other scenario that involves a DML handler.

If any statement DML handler or procedure DML handler fails, then the transaction
containing the row LCR is rolled back, and all of the LCRs in the transaction that
should be applied according to the apply process rule sets are moved to the error
queue.

10.3.5.6 Error Handler But No Relevant Update Conflict Handler
Consider a case where an apply process encounters an error when it tries to apply a
row LCR. This error can be caused by a conflict or by some other condition. There is
an error handler for the table operation but no relevant update conflict handler
configured.

The row LCR is passed to the error handler. The error handler processes the row
LCR. The designer of the error handler has complete control over this processing.
Some error handlers might perform SQL operations or run the EXECUTE member
procedure of the row LCR. If the error handler runs the EXECUTE member procedure of

Chapter 10
Considerations for Applying DML Changes to Tables

10-15

the row LCR, then the apply process tries to apply the row LCR. This row LCR could
have been modified by the error handler.

If any SQL operation performed by the error handler fails, or if an attempt to run the
EXECUTE member procedure fails, then the error handler can try to handle the exception.
If the error handler does not raise an exception, then the apply process assumes the
error handler has performed the appropriate action with the row LCR, and the apply
process continues applying the other LCRs in the transaction that should be applied
according to the apply process rule sets.

If the error handler cannot handle the exception, then the error handler should raise an
exception. In this case, the transaction containing the row LCR is rolled back, and all
of the LCRs in the transaction that should be applied according to the apply process
rule sets are moved to the error queue.

10.3.5.7 Error Handler And a Relevant Update Conflict Handler
Consider a case where an apply process encounters an error when it tries to apply a
row LCR. There is an error handler for the table operation, and there is a relevant
update conflict handler configured.

The handler that is invoked to handle the error depends on the type of error it is:

• If the error is caused by a condition other than an update conflict, including a
uniqueness conflict or a delete conflict, then the error handler is invoked, and the
behavior is the same as that described in "Error Handler But No Relevant Update
Conflict Handler".

• If the error is caused by an update conflict, then the update conflict handler is
invoked. If the update conflict handler resolves the conflict successfully, then the
apply process continues applying the other LCRs in the transaction that should be
applied according to the apply process rule sets. In this case, the error handler is
not invoked.

If the update conflict handler cannot resolve the conflict, then the error handler is
invoked. If the error handler does not raise an exception, then the apply process
assumes the error handler has performed the appropriate action with the row LCR,
and the apply process continues applying the other LCRs in the transaction that
should be applied according to the apply process rule sets. If the error handler
cannot process the LCR, then the error handler should raise an exception. In this
case, the transaction containing the row LCR is rolled back, and all of the LCRs in
the transaction that should be applied according to the apply process rule sets are
moved to the error queue.

10.3.5.8 Statement DML Handler and Relevant Error Handler
Consider a case where an apply process passes a row LCR to a statement DML
handler and there is a relevant error handler configured.

The statement DML handler processes the row LCR. The designer of the statement
DML handler has complete control over this processing. Some statement DML
handlers might perform SQL operations or run the EXECUTE member procedure of the
row LCR. If the statement DML handler runs the EXECUTE member procedure of the row
LCR, then the apply process tries to apply the row LCR.

Chapter 10
Considerations for Applying DML Changes to Tables

10-16

Also, an apply process can have multiple statement DML handlers for the same
operation on the same table. These statement DML handlers can run in any order, and
each statement DML handler receives the original row LCR.

If any SQL operation performed by any statement DML handler fails, or if an attempt to
run the EXECUTE member procedure fails for any reason, then the behavior is the same
as that described in "Error Handler But No Relevant Update Conflict Handler". The
error handler gets the original row LCR, not the row LCR processed by the statement
DML handler.

Note:

You cannot have a procedure DML handler and an error handler
simultaneously for the same operation on the same table. Therefore, there is
no scenario in which they could both be invoked.

10.3.5.9 Statement DML Handler, Error Handler, and Relevant Update Conflict
Handler

Consider a case where an apply process passes a row LCR to a statement DML
handler and there is a relevant error handler and a relevant update conflict handler
configured.

The statement DML handler processes the row LCR. The designer of the statement
DML handler has complete control over this processing. Some statement DML
handlers might perform SQL operations or run the EXECUTE member procedure of the
row LCR. If the statement DML handler runs the EXECUTE member procedure of the row
LCR, then the apply process tries to apply the row LCR.

Also, an apply process can have multiple statement DML handlers for the same
operation on the same table. These statement DML handlers can run in any order, and
each statement DML handler receives the original row LCR.

If any SQL operation performed by any statement DML handler fails, or if an attempt to
run the EXECUTE member procedure fails for any reason, then the behavior is the same
as that described in "Error Handler And a Relevant Update Conflict Handler".

Note:

You cannot have a procedure DML handler and an error handler
simultaneously for the same operation on the same table. Therefore, there is
no scenario in which they could both be invoked.

10.4 Considerations for Applying DDL Changes
The following sections discuss considerations for applying DDL changes to tables:

• System-Generated Names

• CREATE TABLE AS SELECT Statements

Chapter 10
Considerations for Applying DDL Changes

10-17

• DML Statements within DDL Statements

10.4.1 System-Generated Names
If you plan to capture DDL changes at a source database and apply these DDL
changes at a destination database, then avoid using system-generated names. If a
DDL statement results in a system-generated name for an object, then the name of the
object typically will be different at the source database and each destination database
applying the DDL change from this source database. Different names for objects can
result in apply errors for future DDL changes.

For example, suppose the following DDL statement is run at a source database:

CREATE TABLE sys_gen_name (n1 NUMBER NOT NULL);

This statement results in a NOT NULL constraint with a system-generated name. For
example, the NOT NULL constraint might be named sys_001500. When this change is
applied at a destination database, the system-generated name for this constraint might
be sys_c1000.

Suppose the following DDL statement is run at the source database:

ALTER TABLE sys_gen_name DROP CONSTRAINT sys_001500;

This DDL statement succeeds at the source database, but it fails at the destination
database and results in an apply error.

To avoid such an error, explicitly name all objects resulting from DDL statements. For
example, to name a NOT NULL constraint explicitly, run the following DDL statement:

CREATE TABLE sys_gen_name (n1 NUMBER CONSTRAINT sys_gen_name_nn NOT NULL);

10.4.2 CREATE TABLE AS SELECT Statements
When applying a change resulting from a CREATE TABLE AS SELECT statement, an apply
process performs two steps:

1. The CREATE TABLE AS SELECT statement is executed at the destination database, but
it creates only the structure of the table. It does not insert any rows into the table. If
the CREATE TABLE AS SELECT statement fails, then an apply process error results.
Otherwise, the statement automatically commits, and the apply process performs
Step 2.

2. The apply process inserts the rows that were inserted at the source database
because of the CREATE TABLE AS SELECT statement into the corresponding table at the
destination database. It is possible that a capture process, a propagation, or an
apply process will discard all of the row LCRs with these inserts based on their
rule sets. In this case, the table remains empty at the destination database.

See Also:

How Rules Are Used in Oracle Streams

Chapter 10
Considerations for Applying DDL Changes

10-18

10.4.3 DML Statements within DDL Statements
When an apply process applies a data definition language (DDL) change, Oracle
Streams ensures that the data manipulation language (DML) changes on the DDL
target within the same transaction are not replicated at the destination database.
Therefore, the source database and destination database can diverge in some cases.
Divergence can result in apply process errors when the old values in row logical
change records (LCRs) do not match the current values in a destination table.

The following cases cause the source database and destination database to diverge:

• The DDL Statement Contains Derived Values

• The DDL Statement Fires DML Triggers

10.4.3.1 The DDL Statement Contains Derived Values
When a DDL statement contains a non-literal value that is derived, the value that is
derived might not match at the source database and destination database. For
example, the following DDL statement adds a column to the hr.employees table and
inserts a date value derived from the computer system running the source database:

ALTER TABLE hr.employees ADD(start_date DATE DEFAULT SYSDATE);

Assume that a replication environment maintains DML and DDL changes made to the
hr.employees table between a source database and a destination database. In this
case, the SYSDATE function is executed independently at the source database and at the
destination database. Therefore, the DATE value inserted at the source database will
not match the DATE value inserted at the destination database.

10.4.3.2 The DDL Statement Fires DML Triggers
When a DDL statement fires a DML trigger defined on the destination table, the DML
changes made by the trigger are not replicated at the destination database. Because
the DML changes made by the triggers occur in the same transaction as the DDL
statement, and operate on the table that is the target of the DDL statement, the
triggered DML changes are not replicated at the destination database.

For example, assume you create the following table:

CREATE TABLE hr.temp_employees(
 emp_id NUMBER PRIMARY KEY,
 first_name VARCHAR2(64),
 last_name VARCHAR2(64),
 modify_date TIMESTAMP);

Assume you create a trigger on the table so that whenever the table is updated the
modify_date column is updated to reflect the time of change:

CREATE OR REPLACE TRIGGER hr.trg_mod_dt BEFORE UPDATE ON hr.temp_employees
 REFERENCING
 NEW AS NEW_ROW FOR EACH ROW
BEGIN
 :NEW_ROW.modify_date:= SYSTIMESTAMP;
END;
/

Chapter 10
Considerations for Applying DDL Changes

10-19

Assume that a replication environment maintains DML and DDL changes made to the
hr.temp_employees table between a source database and a destination database. In
this case, the hr.temp_employees table is maintained correctly at the destination
database for direct DML changes made to this table at the source database. However,
if an ADD COLUMN statement at the source database adds a column to this table, then the
hr.trg_mod_dt update trigger changes the modify_date column of all of the rows in the
table to a new timestamp. These changes to the modify_date column are not replicated
at the destination database.

10.5 Instantiation SCN and Ignore SCN for an Apply
Process

In an Oracle Streams environment that shares information within a single database or
between multiple databases, a source database is the database where changes are
generated in the redo log. Suppose an environment has the following characteristics:

• A capture process or a synchronous capture captures changes to tables at the
source database and stages the changes as LCRs in a queue.

• An apply process applies these LCRs, either at the same database or at a
destination database to which the LCRs have been propagated.

In such an environment, for each table, only changes that committed after a specific
system change number (SCN) at the source database are applied. An instantiation
SCN specifies this value for each table.

An instantiation SCN can be set during instantiation, or an instantiation SCN can be
set using a procedure in the DBMS_APPLY_ADM package. If the tables do not exist at the
destination database before the Oracle Streams replication environment is configured,
then these table are physically created (instantiated) using copies from the source
database, and the instantiation SCN is set for each table during instantiation. If the
tables already exist at the destination database before the Oracle Streams replication
environment is configured, then these table are not instantiated using copies from the
source database. Instead, the instantiation SCN must be set manually for each table
using one of the following procedures in the DBMS_APPLY_ADM package:
SET_TABLE_INSTANTIATION_SCN, SET_SCHEMA_INSTANATIATION_SCN, or
SET_GLOBAL_INSTANTIATION_SCN.

The instantiation SCN for a database object controls which LCRs that contain changes
to the database object are ignored by an apply process and which LCRs are applied
by an apply process. If the commit SCN of an LCR for a database object from a source
database is less than or equal to the instantiation SCN for that database object at a
destination database, then the apply process at the destination database discards the
LCR. Otherwise, the apply process applies the LCR.

Also, if there are multiple source databases for a shared database object at a
destination database, then an instantiation SCN must be set for each source
database, and the instantiation SCN can be different for each source database. You
can set instantiation SCNs by using export/import or transportable tablespaces. You
can also set an instantiation SCN by using a procedure in the DBMS_APPLY_ADM package.

Oracle Streams also records the ignore SCN for each database object. The ignore
SCN is the SCN below which changes to the database object cannot be applied. The
instantiation SCN for an object cannot be set lower than the ignore SCN for the object.
This value corresponds to the SCN value at the source database at the time when the

Chapter 10
Instantiation SCN and Ignore SCN for an Apply Process

10-20

object was prepared for instantiation. An ignore SCN is set for a database object only
when the database object is instantiated using Oracle Data Pump.

You can view the instantiation SCN and ignore SCN for database objects by querying
the DBA_APPLY_INSTANTIATED_OBJECTS data dictionary view.

See Also:

Oracle Streams Replication Administrator's Guide

10.6 The Oldest SCN for an Apply Process
If an apply process is running, then the oldest SCN is the earliest SCN of the
transactions currently being dequeued and applied. For a stopped apply process, the
oldest SCN is the earliest SCN of the transactions that were being applied when the
apply process was stopped.

The following are two common scenarios in which the oldest SCN is important:

• You must recover the database in which the apply process is running to a certain
point in time.

• You stop using an existing capture process that captures changes for the apply
process and use a different capture process to capture changes for the apply
process.

In both cases, you should determine the oldest SCN for the apply process by querying
the DBA_APPLY_PROGRESS data dictionary view. The OLDEST_MESSAGE_NUMBER column in this
view contains the oldest SCN. Next, set the start SCN for the capture process that is
capturing changes for the apply process to the same value as the oldest SCN value. If
the capture process is capturing changes for other apply processes, then these other
apply processes might receive duplicate LCRs when you reset the start SCN for the
capture process. In this case, the other apply processes automatically discard the
duplicate LCRs.

Note:

The oldest SCN is only valid for apply processes that apply LCRs that were
captured by a capture process. The oldest SCN does not pertain to apply
processes that apply LCRs captured by synchronous capture or LCRs
enqueued explicitly.

See Also:

• "SCN Values Related to a Capture Process"

• Oracle Streams Replication Administrator's Guide

Chapter 10
The Oldest SCN for an Apply Process

10-21

10.7 Low-Watermark and High-Watermark for an Apply
Process

The low-watermark for an apply process is the system change number (SCN) up to
which all LCRs have been applied. That is, LCRs that were committed at an SCN less
than or equal to the low-watermark number have definitely been applied, but some
LCRs that were committed with a higher SCN also might have been applied. The low-
watermark SCN for an apply process is equivalent to the applied SCN for a capture
process.

The high-watermark for an apply process is the SCN beyond which no LCRs have
been applied. That is, no LCRs that were committed with an SCN greater than the
high-watermark have been applied.

You can view the low-watermark and high-watermark for one or more apply processes
by querying the V$STREAMS_APPLY_COORDINATOR and ALL_APPLY_PROGRESS data dictionary
views.

10.8 Apply Processes and Triggers
This section describes how Oracle Streams apply processes interact with triggers.

This section contains these topics:

• Trigger Firing Property

• Apply Processes and Triggers Created with the ON SCHEMA Clause

See Also:

• "The DDL Statement Fires DML Triggers"

• Oracle Database Concepts

10.8.1 Trigger Firing Property
You can control a DML or DDL trigger's firing property using the
SET_TRIGGER_FIRING_PROPERTY procedure in the DBMS_DDL package. This procedure lets
you specify whether a trigger always fires, fires once, or fires for apply process
changes only.

The SET_TRIGGER_FIRING_PROPERTY procedure is overloaded. Set a trigger's firing
property in one of the following ways:

• To specify that a trigger always fires, set the fire_once procedure parameter to
FALSE.

• To specify that a trigger fires once, set the fire_once parameter to TRUE.

• To specify that a trigger fires for apply process changes only, set the property
parameter to DBMS_DDL.APPLY_SERVER_ONLY.

Chapter 10
Low-Watermark and High-Watermark for an Apply Process

10-22

If DBMS_DDL.APPLY_SERVER_ONLY property is set for a trigger, then the trigger only fires for
apply process changes, regardless of the setting of the fire_once parameter. That is,
setting DBMS_DDL.APPLY_SERVER_ONLY for the property parameter overrides the fire_once
parameter setting.

A trigger's firing property determines whether the trigger fires in each of the following
cases:

• When a triggering event is executed by a user process

• When a triggering event is executed by an apply process

• When a triggering event results from the execution of one or more apply errors
using the EXECUTE_ERROR or EXECUTE_ALL_ERRORS procedure in the DBMS_APPLY_ADM
package

Table 10-2 shows when a trigger fires based on its trigger firing property.

Table 10-2 Trigger Firing Property

Trigger Firing
Property

User Process Causes
Triggering Event

Apply Process Causes
Triggering Event

Apply Error Execution
Causes Triggering Event

Always fire Trigger Fires Trigger Fires Trigger Fires

Fire once Trigger Fires Trigger Does Not Fire Trigger Does Not Fire

For for apply process
changes only

Trigger Does Not Fire Trigger Fires Trigger Fires

For example, in the hr schema, the update_job_history trigger adds a row to the
job_history table when data is updated in the job_id or department_id column in the
employees table. Suppose, in an Oracle Streams environment, the following
configuration exists:

• A capture process or synchronous capture captures changes to both of these
tables at the dbs1.example.com database.

• A propagation propagates these changes to the dbs2.example.com database.

• An apply process applies these changes at the dbs2.example.com database.

• The update_job_history trigger exists in the hr schema in both databases.

If the update_job_history trigger is set to always fire at dbs2.example.com in this
scenario, then these actions result:

1. The job_id column is updated for an employee in the employees table at
dbs1.example.com.

2. The update_job_history trigger fires at dbs1.example.com and adds a row to the
job_history table that records the change.

3. The capture process or synchronous capture at dbs1.example.com captures the
changes to both the employees table and the job_history table.

4. A propagation propagates these changes to the dbs2.example.com database.

5. An apply process at the dbs2.example.com database applies both changes.

6. The update_job_history trigger fires at dbs2.example.com when the apply process
updates the employees table.

Chapter 10
Apply Processes and Triggers

10-23

In this case, the change to the employees table is recorded twice at the
dbs2.example.com database: when the apply process applies the change to the
job_history table and when the update_job_history trigger fires to record the change
made to the employees table by the apply process.

A database administrator might not want the update_job_history trigger to fire at the
dbs2.example.com database when a change is made by the apply process. Similarly, a
database administrator might not want a trigger to fire because of the execution of an
apply error transaction. If the update_job_history trigger's firing property is set to fire
once, then it does not fire at dbs2.example.com when the apply process applies a
change to the employees table, and it does not fire when an executed error transaction
updates the employees table.

Note:

Only DML and DDL triggers can be set to fire once. All other types of triggers
always fire.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about setting a trigger's firing property with the
SET_TRIGGER_FIRING_PROPERTY procedure

10.8.2 Apply Processes and Triggers Created with the ON SCHEMA
Clause

If you use the ON SCHEMA clause to create a schema trigger, then the schema trigger
fires only if the schema performs a relevant change. Therefore, when an apply process
is applying changes, a schema trigger that is set to fire always fires only if the apply
user is the same as the schema specified in the schema trigger. If the schema trigger
is set to fire once, then it never fires when an apply process applies changes,
regardless of whether the apply user is the same as the schema specified in the
schema trigger.

For example, if you specify a schema trigger that always fires on the hr schema at a
source database and destination database, but the apply user at a destination
database is strmadmin, then the trigger fires when the hr user performs a relevant
change on the source database, but the trigger does not fire when this change is
applied at the destination database. However, if you specify a schema trigger that
always fires on the strmadmin schema at the destination database, then this trigger
fires whenever a relevant change is made by the apply process, regardless of any
trigger specifications at the source database.

10.9 Oracle Streams Data Dictionary for an Apply Process
When a database object is prepared for instantiation at a source database, an Oracle
Streams data dictionary is populated automatically at the database where changes to

Chapter 10
Oracle Streams Data Dictionary for an Apply Process

10-24

the object are captured by a capture process. The Oracle Streams data dictionary is a
multiversioned copy of some of the information in the primary data dictionary at a
source database. The Oracle Streams data dictionary maps object numbers, object
version information, and internal column numbers from the source database into table
names, column names, and column data types. This mapping keeps each captured
LCR as small as possible because a captured LCR can often use numbers rather than
names internally.

Unless a captured LCR is passed as a parameter to a custom rule-based
transformation during capture or propagation, the mapping information in the Oracle
Streams data dictionary at the source database is needed to interpret the contents of
the LCR at any database that applies the captured LCR. To make this mapping
information available to an apply process, Oracle automatically populates a
multiversioned Oracle Streams data dictionary at each destination database that has
an Oracle Streams apply process. Oracle automatically propagates relevant
information from the Oracle Streams data dictionary at the source database to all other
databases that apply captured LCRs from the source database.

See Also:

• "The Oracle Streams Data Dictionary"

• "Oracle Streams Data Dictionary for Propagations"

10.10 Multiple Apply Processes in a Single Database
If you run multiple apply processes in a single database, consider increasing the size
of the System Global Area (SGA). Use the SGA_MAX_SIZE initialization parameter to
increase the SGA size. Also, if the size of the Oracle Streams pool is not managed
automatically in the database, then you should increase the size of the Oracle Streams
pool by 1 MB for each apply process parallelism. For example, if you have two apply
processes running in a database, and the parallelism parameter is set to 4 for one of
them and 1 for the other, then increase the Oracle Streams pool by 5 MB (4 + 1 = 5
parallelism).

Note:

The size of the Oracle Streams pool is managed automatically if the
MEMORY_TARGET, MEMORY_MAX_TARGET, or SGA_TARGET initialization parameter is set
to a nonzero value.

Chapter 10
Multiple Apply Processes in a Single Database

10-25

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring the Oracle Streams pool

• Oracle Streams Replication Administrator's Guide for more information
about the STREAMS_POOL_SIZE initialization parameter

Chapter 10
Multiple Apply Processes in a Single Database

10-26

11
Advanced Rule Concepts

The following topics contain information about rules.

• The Components of a Rule

• Rule Set Evaluation

• Database Objects and Privileges Related to Rules

• Evaluation Contexts Used in Oracle Streams

• Oracle Streams and Event Contexts

• Oracle Streams and Action Contexts

• User-Created Rules, Rule Sets, and Evaluation Contexts

See Also:

• How Rules Are Used in Oracle Streams

• Managing Rules

• Oracle Streams Extended Examples

11.1 The Components of a Rule
A rule is a database object that enables a client to perform an action when an event
occurs and a condition is satisfied. A rule consists of the following components:

• Rule Condition

• Rule Evaluation Context (optional)

• Rule Action Context (optional)

Each rule is specified as a condition that is similar to the condition in the WHERE clause
of a SQL query. You can group related rules together into rule sets. A single rule can
be in one rule set, multiple rule sets, or no rule sets.

Rule sets are evaluated by a rules engine, which is a built-in part of Oracle. Both user-
created applications and Oracle features, such as Oracle Streams, can be clients of
the rules engine.

Note:

A rule must be in a rule set for it to be evaluated.

11-1

11.1.1 Rule Condition
A rule condition combines one or more expressions and conditions and returns a
Boolean value, which is a value of TRUE, FALSE, or NULL (unknown). An expression is a
combination of one or more values and operators that evaluate to a value. A value can
be data in a table, data in variables, or data returned by a SQL function or a PL/SQL
function. For example, the following expression includes only a single value:

salary

The following expression includes two values (salary and .1) and an operator (*):

salary * .1

The following condition consists of two expressions (salary and 3800) and a condition
(=):

salary = 3800

This logical condition evaluates to TRUE for a given row when the salary column is 3800.
Here, the value is data in the salary column of a table.

A single rule condition can include more than one condition combined with the AND, OR,
and NOT logical conditions to a form compound condition. A logical condition combines
the results of two component conditions to produce a single result based on them or to
invert the result of a single condition. For example, consider the following compound
condition:

salary = 3800 OR job_title = 'Programmer'

This rule condition contains two conditions joined by the OR logical condition. If either
condition evaluates to TRUE, then the rule condition evaluates to TRUE. If the logical
condition were AND instead of OR, then both conditions must evaluate to TRUE for the
entire rule condition to evaluate to TRUE.

11.1.1.1 Variables in Rule Conditions
Rule conditions can contain variables. When you use variables in rule conditions,
precede each variable with a colon (:). The following is an example of a variable used
in a rule condition:

:x = 55

Variables let you refer to data that is not stored in a table. A variable can also improve
performance by replacing a commonly occurring expression. Performance can
improve because, instead of evaluating the same expression multiple times, the
variable is evaluated once.

A rule condition can also contain an evaluation of a call to a subprogram. Such a
condition is evaluated in the same way as other conditions. That is, it evaluates to a
value of TRUE, FALSE, or NULL (unknown). The following is an example of a condition that
contains a call to a simple function named is_manager that determines whether an
employee is a manager:

is_manager(employee_id) = 'Y'

Chapter 11
The Components of a Rule

11-2

Here, the value of employee_id is determined by data in a table where employee_id is a
column.

You can use user-defined types for variables. Therefore, variables can have attributes.
When a variable has attributes, each attribute contains partial data for the variable. In
rule conditions, you specify attributes using dot notation. For example, the following
condition evaluates to TRUE if the value of attribute z in variable y is 9:

:y.z = 9

Note:

A rule cannot have a NULL (or empty) rule condition.

See Also:

• Oracle Database SQL Language Reference for more information about
conditions, expressions, and operators

• Oracle Database Object-Relational Developer's Guide for more
information about user-defined types

11.1.1.2 Simple Rule Conditions
A simple rule condition is a condition that has one of the following forms:

• simple_rule_expression condition constant

• constant condition simple_rule_expression

• constant condition constant

11.1.1.2.1 Simple Rule Expressions
In a simple rule condition, a simple_rule_expression is one of the following:

• Table column.

• Variable.

• Variable attribute.

• Method result where the method either takes no arguments or constant arguments
and the method result can be returned by the variable method function, so that the
expression is one of the data types supported for simple rules. Such methods
include LCR member subprograms that meet these requirements, such as GET_TAG,
GET_VALUE, GET_COMPATIBLE, GET_EXTRA_ATTRIBUTE, and so on.

For table columns, variables, variable attributes, and method results, the following data
types can be used in simple rule conditions:

• VARCHAR2

• NVARCHAR2

Chapter 11
The Components of a Rule

11-3

• NUMBER

• DATE

• BINARY_FLOAT

• BINARY_DOUBLE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• RAW

• CHAR

Use of other data types in expressions results in nonsimple rule conditions.

11.1.1.2.2 Conditions
In a simple rule condition, a condition is one of the following:

• <=

• <

• =

• >

• >=

• !=

• IS NULL

• IS NOT NULL

Use of other conditions results in nonsimple rule conditions.

11.1.1.2.3 Constants
A constant is a fixed value. A constant can be:

• A number, such as 12 or 5.4

• A character, such as x or $

• A character string, such as "this is a string"

11.1.1.2.4 Examples of Simple Rule Conditions
The following conditions are simple rule conditions, assuming the data types used in
expressions are supported in simple rule conditions:

• tab1.col = 5

• tab2.col != 5

• :v1 > 'aaa'

• :v2.a1 < 10.01

• :v3.m() = 10

• :v4 IS NOT NULL

Chapter 11
The Components of a Rule

11-4

• 1 = 1

• 'abc' > 'AB'

• :date_var < to_date('04-01-2004, 14:20:17', 'mm-dd-yyyy, hh24:mi:ss')

• :adt_var.ts_attribute >= to_timestamp('04-01-2004, 14:20:17 PST', 'mm-dd-yyyy,

hh24:mi:ss TZR')

• :my_var.my_to_upper('abc') = 'ABC'

Rules with simple rule conditions are called simple rules. You can combine two or
more simple conditions with the logical conditions AND and OR for a rule, and the rule
remains simple. For example, rules with the following conditions are simple rules:

• tab1.col = 5 AND :v1 > 'aaa'

• tab1.col = 5 OR :v1 > 'aaa'

However, using the NOT logical condition in a rule condition causes the rule to be
nonsimple.

11.1.1.2.5 Benefits of Simple Rules
Simple rules are important for the following reasons:

• Simple rules are indexed by the rules engine internally.

• Simple rules can be evaluated without executing SQL.

• Simple rules can be evaluated with partial data.

When a client uses the DBMS_RULE.EVALUATE procedure to evaluate an event, the client
can specify that only simple rules should be evaluated by specifying TRUE for the
simple_rules_only parameter.

See Also:

• Oracle Database SQL Language Reference for more information about
conditions and logical conditions

• Oracle Database PL/SQL Packages and Types Reference for more
information about LCR types and their member subprograms

11.1.2 Rule Evaluation Context
An evaluation context is a database object that defines external data that can be
referenced in rule conditions. The external data can exist as variables, table data, or
both. The following analogy might be helpful: If the rule condition were the WHERE clause
in a SQL query, then the external data in the evaluation context would be the tables
and bind variables referenced in the FROM clause of the query. That is, the expressions
in the rule condition should reference the tables, table aliases, and variables in the
evaluation context to make a valid WHERE clause.

A rule evaluation context provides the necessary information for interpreting and
evaluating the rule conditions that reference external data. For example, if a rule refers
to a variable, then the information in the rule evaluation context must contain the

Chapter 11
The Components of a Rule

11-5

variable type. Or, if a rule refers to a table alias, then the information in the evaluation
context must define the table alias.

The objects referenced by a rule are determined by the rule evaluation context
associated with it. The rule owner must have the necessary privileges to access these
objects, such as READ or SELECT privilege on tables, EXECUTE privilege on types, and so
on. The rule condition is resolved in the schema that owns the evaluation context.

For example, consider a rule evaluation context named hr_evaluation_context that
contains the following information:

• Table alias dep corresponds to the hr.departments table.

• Variables loc_id1 and loc_id2 are both of type NUMBER.

The hr_evaluation_context rule evaluation context provides the necessary information
for evaluating the following rule condition:

dep.location_id IN (:loc_id1, :loc_id2)

In this case, the rule condition evaluates to TRUE for a row in the hr.departments table if
that row has a value in the location_id column that corresponds to either of the values
passed in by the loc_id1 or loc_id2 variables. The rule cannot be interpreted or
evaluated properly without the information in the hr_evaluation_context rule evaluation
context. Also, notice that dot notation is used to specify the column location_id in the
dep table alias.

Note:

Views are not supported as base tables in evaluation contexts.

11.1.2.1 Explicit and Implicit Variables
The value of a variable referenced in a rule condition can be explicitly specified when
the rule is evaluated, or the value of a variable can be implicitly available given the
event.

Explicit variables are supplied by the caller at evaluation time. These values are
specified by the variable_values parameter when the DBMS_RULE.EVALUATE procedure is
run.

Implicit variables are not given a value supplied by the caller at evaluation time. The
value of an implicit variable is obtained by calling the variable value function. You
define this function when you specify the variable_types list during the creation of an
evaluation context using the CREATE_EVALUATION_CONTEXT procedure in the DBMS_RULE_ADM
package. If the value for an implicit variable is specified during evaluation, then the
specified value overrides the value returned by the variable value function.

Specifically, the variable_types list is of type SYS.RE$VARIABLE_TYPE_LIST, which is a list
of variables of type SYS.RE$VARIABLE_TYPE. Within each instance of
SYS.RE$VARIABLE_TYPE in the list, the function used to determine the value of an implicit
variable is specified as the variable_value_function attribute.

Whether variables are explicit or implicit is the choice of the designer of the application
using the rules engine. The following are reasons for using an implicit variable:

Chapter 11
The Components of a Rule

11-6

• The caller of the DBMS_RULE.EVALUATE procedure does not need to know anything
about the variable, which can reduce the complexity of the application using the
rules engine. For example, a variable can call a function that returns a value based
on the data being evaluated.

• The caller might not have EXECUTE privileges on the variable value function.

• The caller of the DBMS_RULE.EVALUATE procedure does not know the variable value
based on the event, which can improve security if the variable value contains
confidential information.

• The variable will be used infrequently, and the variable's value always can be
derived if necessary. Making such variables implicit means that the caller of the
DBMS_RULE.EVALUATE procedure does not need to specify many uncommon
variables.

For example, in the following rule condition, the values of variable x and variable y
could be specified explicitly, but the value of the variable max could be returned by
running the max function:

:x = 4 AND :y < :max

Alternatively, variable x and y could be implicit variables, and variable max could be an
explicit variable. So, there is no syntactic difference between explicit and implicit
variables in the rule condition. You can determine whether a variable is explicit or
implicit by querying the DBA_EVALUATION_CONTEXT_VARS data dictionary view. For explicit
variables, the VARIABLE_VALUE_FUNCTION field is NULL. For implicit variables, this field
contains the name of the function called by the implicit variable.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_RULE and DBMS_RULE_ADM packages, and for more
information about the Oracle-supplied rule types

• Oracle Database Reference for more information about the
DBA_EVALUATION_CONTEXT_VARS data dictionary view

11.1.2.2 Evaluation Context Association with Rule Sets and Rules
To be evaluated, each rule must be associated with an evaluation context or must be
part of a rule set that is associated with an evaluation context. A single evaluation
context can be associated with multiple rules or rule sets. The following list describes
which evaluation context is used when a rule is evaluated:

• If an evaluation context is associated with a rule, then it is used for the rule
whenever the rule is evaluated, and any evaluation context associated with the
rule set being evaluated is ignored.

• If a rule does not have an evaluation context, but an evaluation context was
specified for the rule when it was added to a rule set using the ADD_RULE procedure
in the DBMS_RULE_ADM package, then the evaluation context specified in the ADD_RULE
procedure is used for the rule when the rule set is evaluated.

Chapter 11
The Components of a Rule

11-7

• If no rule evaluation context is associated with a rule and none was specified by
the ADD_RULE procedure, then the evaluation context of the rule set is used for the
rule when the rule set is evaluated.

Note:

If a rule does not have an evaluation context, and you try to add it to a rule set
that does not have an evaluation context, then an error is raised, unless you
specify an evaluation context when you run the ADD_RULE procedure.

11.1.2.3 Evaluation Function
You have the option of creating an evaluation function to be run with a rule evaluation
context. You can use an evaluation function for the following reasons:

• You want to bypass the rules engine and instead evaluate events using the
evaluation function.

• You want to filter events so that some events are evaluated by the evaluation
function and other events are evaluated by the rules engine.

You associate a function with a rule evaluation context by specifying the function name
for the evaluation_function parameter when you create the rule evaluation context with
the CREATE_EVALUATION_CONTEXT procedure in the DBMS_RULE_ADM package. The rules
engine invokes the evaluation function during the evaluation of any rule set that uses
the evaluation context.

The DBMS_RULE.EVALUATE procedure is overloaded. The function must have each
parameter in one of the DBMS_RULE.EVALUATE procedures, and the type of each
parameter must be same as the type of the corresponding parameter in the
DBMS_RULE.EVALUATE procedure, but the names of the parameters can be different.

An evaluation function has the following return values:

• DBMS_RULE_ADM.EVALUATION_SUCCESS: The user specified evaluation function
completed the rule set evaluation successfully. The rules engine returns the
results of the evaluation obtained by the evaluation function to the rules engine
client using the DBMS_RULE.EVALUATE procedure.

• DBMS_RULE_ADM.EVALUATION_CONTINUE: The rules engine evaluates the rule set as if
there were no evaluation function. The evaluation function is not used, and any
results returned by the evaluation function are ignored.

• DBMS_RULE_ADM.EVALUATION_FAILURE: The user-specified evaluation function failed.
Rule set evaluation stops, and an error is raised.

If you always want to bypass the rules engine, then the evaluation function should
return either EVALUATION_SUCCESS or EVALUATION_FAILURE. However, if you want to filter
events so that some events are evaluated by the evaluation function and other events
are evaluated by the rules engine, then the evaluation function can return all three
return values, and it returns EVALUATION_CONTINUE when the rules engine should be used
for evaluation.

If you specify an evaluation function for an evaluation context, then the evaluation
function is run during evaluation when the evaluation context is used by a rule set or
rule.

Chapter 11
The Components of a Rule

11-8

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the evaluation function specified in the
DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT procedure and for more information
about the overloaded DBMS_RULE.EVALUATE procedure

11.1.3 Rule Action Context
An action context contains optional information associated with a rule that is
interpreted by the client of the rules engine when the rule is evaluated for an event.
The client of the rules engine can be a user-created application or an internal feature
of Oracle, such as Oracle Streams. Each rule has only one action context. The
information in an action context is of type SYS.RE$NV_LIST, which is a type that contains
an array of name-value pairs.

The rule action context information provides a context for the action taken by a client
of the rules engine when a rule evaluates to TRUE or MAYBE. The rules engine does not
interpret the action context. Instead, it returns the action context, and a client of the
rules engine can interpret the action context information.

For example, suppose an event is defined as the addition of a new employee to a
company. If the employee information is stored in the hr.employees table, then the
event occurs whenever a row is inserted into this table. The company wants to specify
that several actions are taken when a new employee is added, but the actions depend
on which department the employee joins. One of these actions is that the employee is
registered for a course relating to the department.

In this scenario, the company can create a rule for each department with an
appropriate action context. Here, an action context returned when a rule evaluates to
TRUE specifies the number of a course that an employee should take. Here are parts of
the rule conditions and the action contexts for three departments:

Rule Name Part of the Rule Condition Action Context Name-Value Pair

rule_dep_10 department_id = 10 course_number, 1057

rule_dep_20 department_id = 20 course_number, 1215

rule_dep_30 department_id = 30 NULL

These action contexts return the following instructions to the client application:

• The action context for the rule_dep_10 rule instructs the client application to enroll
the new employee in course number 1057.

• The action context for the rule_dep_20 rule instructs the client application to enroll
the new employee in course number 1215.

• The NULL action context for the rule_dep_30 rule instructs the client application not
to enroll the new employee in any course.

Each action context can contain zero or more name-value pairs. If an action context
contains more than one name-value pair, then each name in the list must be unique. In
this example, the client application to which the rules engine returns the action context
registers the new employee in the course with the returned course number. The client

Chapter 11
The Components of a Rule

11-9

application does not register the employee for a course if a NULL action context is
returned or if the action context does not contain a course number.

If multiple clients use the same rule, or if you want an action context to return more
than one name-value pair, then you can list more than one name-value pair in an
action context. For example, suppose the company also adds a new employee to a
department electronic mailing list. In this case, the action context for the rule_dep_10
rule might contain two name-value pairs:

Name Value

course_number 1057

dist_list admin_list

The following are considerations for names in name-value pairs:

• If different applications use the same action context, then use different names or
prefixes of names to avoid naming conflicts.

• Do not use $ and # in names because they can cause conflicts with Oracle-
supplied action context names.

You add a name-value pair to an action context using the ADD_PAIR member procedure
of the RE$NV_LIST type. You remove a name-value pair from an action context using the
REMOVE_PAIR member procedure of the RE$NV_LIST type. If you want to modify an
existing name-value pair in an action context, then you should first remove it using the
REMOVE_PAIR member procedure and then add an appropriate name-value pair using
the ADD_PAIR member procedure.

Note:

Oracle Streams uses action contexts for custom rule-based transformations
and, when subset rules are specified, for internal transformations that might be
required on LCRs containing UPDATE operations. Oracle Streams also uses
action contexts to specify a destination queue into which an apply process
enqueues messages that satisfy the rule. In addition, Oracle Streams uses
action contexts to specify whether a message that satisfies an apply process
rule is executed by the apply process.

See Also:

• "Oracle Streams and Action Contexts"

• "Restrictions for Action Contexts"

• "Creating a Rule with an Action Context" and "Altering a Rule" for
examples that add and modify name-value pairs

• Oracle Database PL/SQL Packages and Types Reference for more
information about the RE$NV_LIST type

Chapter 11
The Components of a Rule

11-10

11.2 Rule Set Evaluation
The rules engine evaluates rule sets against an event. An event is an occurrence that
is defined by the client of the rules engine. The client initiates evaluation of an event by
calling the DBMS_RULE.EVALUATE procedure. This procedure enables the client to send
some information about the event to the rules engine for evaluation against a rule set.
The event itself can have more information than the information that the client sends to
the rules engine.

The following information is specified by the client when it calls the DBMS_RULE.EVALUATE
procedure:

• The name of the rule set that contains the rules to use to evaluate the event.

• The evaluation context to use for evaluation. Only rules that use the specified
evaluation context are evaluated.

• Table values and variable values. The table values contain rowids that refer to the
data in table rows, and the variable values contain the data for explicit variables.
Values specified for implicit variables override the values that might be obtained
using a variable value function. If a specified variable has attributes, then the client
can send a value for the entire variable, or the client can send values for any
number of the attributes of the variable. However, clients cannot specify attribute
values if the value of the entire variable is specified.

• An optional event context. An event context is a varray of type SYS.RE$NV_LIST
that contains name-value pairs that contain information about the event. This
optional information is not used directly or interpreted by the rules engine. Instead,
it is passed to client callbacks, such as an evaluation function, a variable value
function (for implicit variables), and a variable method function.

The client can also send other information about how to evaluate an event against the
rule set using the DBMS_RULE.EVALUATE procedure. For example, the caller can specify if
evaluation must stop as soon as the first TRUE rule or the first MAYBE rule (if there are no
TRUE rules) is found.

If the client wants all of the rules that evaluate to TRUE or MAYBE returned to it, then the
client can specify whether evaluation results should be sent back in a complete list of
the rules that evaluated to TRUE or MAYBE, or evaluation results should be sent back
iteratively. When evaluation results are sent iteratively to the client, the client can
retrieve each rule that evaluated to TRUE or MAYBE one by one using the GET_NEXT_HIT
function in the DBMS_RULE package.

The rules engine uses the rules in the specified rule set for evaluation and returns the
results to the client. The rules engine returns rules using two OUT parameters in the
EVALUATE procedure. This procedure is overloaded and the two OUT parameters are
different in each version of the procedure:

• One version of the procedure returns all of the rules that evaluate to TRUE in one list
or all of the rules that evaluate to MAYBE in one list, and the two OUT parameters for
this version of the procedure are true_rules and maybe_rules. That is, the
true_rules parameter returns rules in one list that evaluate to TRUE, and the
maybe_rules parameter returns rules in one list that might evaluate to TRUE given
more information.

• The other version of the procedure returns all of the rules that evaluate to TRUE or
MAYBE iteratively at the request of the client, and the two OUT parameters for this

Chapter 11
Rule Set Evaluation

11-11

version of the procedure are true_rules_iterator and maybe_rules_iterator. That
is, the true_rules_iterator parameter returns rules that evaluate to TRUE one by
one, and the maybe_rules_iterator parameter returns rules one by one that might
evaluate to TRUE given more information.

11.2.1 Rule Set Evaluation Process
Figure 11-1 shows the rule set evaluation process:

1. A client-defined event occurs.

2. The client initiates evaluation of a rule set by sending information about an event
to the rules engine using the DBMS_RULE.EVALUATE procedure.

3. The rules engine evaluates the rule set for the event using the relevant evaluation
context. The client specifies both the rule set and the evaluation context in the call
to the DBMS_RULE.EVALUATE procedure. Only rules that are in the specified rule set,
and use the specified evaluation context, are used for evaluation.

4. The rules engine obtains the results of the evaluation. Each rule evaluates to
either TRUE, FALSE, or NULL (unknown).

5. The rules engine returns rules that evaluated to TRUE to the client, either in a
complete list or one by one. Each returned rule is returned with its entire action
context, which can contain information or can be NULL.

6. The client performs actions based on the results returned by the rules engine. The
rules engine does not perform actions based on rule evaluations.

Figure 11-1 Rule Set Evaluation

Rules

Engine

Client

Event

True, False,

or Unknown

Optional

Action Context

Rules and

Evaluation

Contexts

Action

2

5

6

Event

1

3

4

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_RULE.EVALUATE procedure

• "Rule Conditions with Undefined Variables that Evaluate to NULL" for
information about Oracle Streams clients and maybe_rules

Chapter 11
Rule Set Evaluation

11-12

11.2.2 Partial Evaluation
Partial evaluation occurs when the DBMS_RULE.EVALUATE procedure is run without data
for all the tables and variables in the specified evaluation context. During partial
evaluation, some rules can reference columns, variables, or attributes that are
unavailable, while some other rules can reference only available data.

For example, consider a scenario where only the following data is available during
evaluation:

• Column tab1.col = 7

• Attribute v1.a1 = 'ABC'

The following rules are used for evaluation:

• Rule R1 has the following condition:

(tab1.col = 5)

• Rule R2 has the following condition:

(:v1.a2 > 'aaa')

• Rule R3 has the following condition:

(:v1.a1 = 'ABC') OR (:v2 = 5)

• Rule R4 has the following condition:

(:v1.a1 = UPPER('abc'))

Given this scenario, R1 and R4 reference available data, R2 references unavailable
data, and R3 references available data and unavailable data.

Partial evaluation always evaluates only simple conditions within a rule. If the rule
condition has parts which are not simple, then the rule might or might not be evaluated
completely, depending on the extent to which data is available. If a rule is not
completely evaluated, then it can be returned as a MAYBE rule.

Given the rules in this scenario, R1 and the first part of R3 are evaluated, but R2 and R4
are not evaluated. The following results are returned to the client:

• R1 evaluates to FALSE, and so is not returned.

• R2 is returned as MAYBE because information about attribute v1.a2 is not available.

• R3 is returned as TRUE because R3 is a simple rule and the value of v1.a1 matches
the first part of the rule condition.

• R4 is returned as MAYBE because the rule condition is not simple. The client must
supply the value of variable v1 for this rule to evaluate to TRUE or FALSE.

See Also:

"Simple Rule Conditions"

Chapter 11
Rule Set Evaluation

11-13

11.3 Database Objects and Privileges Related to Rules
You can create the following types of database objects directly using the DBMS_RULE_ADM
package:

• Evaluation contexts

• Rules

• Rule sets

You can create rules and rule sets indirectly using the DBMS_STREAMS_ADM package. You
control the privileges for these database objects using the following procedures in the
DBMS_RULE_ADM package:

• GRANT_OBJECT_PRIVILEGE

• GRANT_SYSTEM_PRIVILEGE

• REVOKE_OBJECT_PRIVILEGE

• REVOKE_SYSTEM_PRIVILEGE

To allow a user to create rule sets, rules, and evaluation contexts in the user's own
schema, grant the user the following system privileges:

• CREATE_RULE_SET_OBJ

• CREATE_RULE_OBJ

• CREATE_EVALUATION_CONTEXT_OBJ

These privileges, and the privileges discussed in the following sections, can be
granted to the user directly or through a role.

This section contains these topics:

• Privileges for Creating Database Objects Related to Rules

• Privileges for Altering Database Objects Related to Rules

• Privileges for Dropping Database Objects Related to Rules

• Privileges for Placing Rules in a Rule Set

• Privileges for Evaluating a Rule Set

• Privileges for Using an Evaluation Context

Chapter 11
Database Objects and Privileges Related to Rules

11-14

Note:

When you grant a privilege on "ANY" object (for example, ALTER_ANY_RULE), and
the initialization parameter O7_DICTIONARY_ACCESSIBILITY is set to FALSE, you
give the user access to that type of object in all schemas except the SYS
schema. By default, the initialization parameter O7_DICTIONARY_ACCESSIBILITY is
set to FALSE.

If you want to grant access to an object in the SYS schema, then you can grant
object privileges explicitly on the object. Alternatively, you can set the
O7_DICTIONARY_ACCESSIBILITY initialization parameter to TRUE. Then privileges
granted on "ANY" object will allow access to any schema, including SYS.

See Also:

• "The Components of a Rule" for more information about these database
objects

• Oracle Database PL/SQL Packages and Types Reference for more
information about the system and object privileges for these database
objects

• Oracle Database Concepts and Oracle Database Security Guide for
general information about user privileges

• How Rules Are Used in Oracle Streams for more information about
creating rules and rule sets indirectly using the DBMS_STREAMS_ADM package

11.3.1 Privileges for Creating Database Objects Related to Rules
To create an evaluation context, rule, or rule set in a schema, a user must meet at
least one of the following conditions:

• The schema must be the user's own schema, and the user must be granted the
create system privilege for the type of database object being created. For
example, to create a rule set in the user's own schema, a user must be granted
the CREATE_RULE_SET_OBJ system privilege.

• The user must be granted the create any system privilege for the type of database
object being created. For example, to create an evaluation context in any schema,
a user must be granted the CREATE_ANY_EVALUATION_CONTEXT system privilege.

Note:

When creating a rule with an evaluation context, the rule owner must have
privileges on all objects accessed by the evaluation context.

Chapter 11
Database Objects and Privileges Related to Rules

11-15

11.3.2 Privileges for Altering Database Objects Related to Rules
To alter an evaluation context, rule, or rule set, a user must meet at least one of the
following conditions:

• The user must own the database object.

• The user must be granted the alter object privilege for the database object if it is in
another user's schema. For example, to alter a rule set in another user's schema,
a user must be granted the ALTER_ON_RULE_SET object privilege on the rule set.

• The user must be granted the alter any system privilege for the database object.
For example, to alter a rule in any schema, a user must be granted the
ALTER_ANY_RULE system privilege.

11.3.3 Privileges for Dropping Database Objects Related to Rules
To drop an evaluation context, rule, or rule set, a user must meet at least one of the
following conditions:

• The user must own the database object.

• The user must be granted the drop any system privilege for the database object.
For example, to drop a rule set in any schema, a user must be granted the
DROP_ANY_RULE_SET system privilege.

11.3.4 Privileges for Placing Rules in a Rule Set
This section describes the privileges required to place a rule in a rule set. The user
must meet at least one of the following conditions for the rule:

• The user must own the rule.

• The user must be granted the execute object privilege on the rule if the rule is in
another user's schema. For example, to place a rule named depts in the hr
schema in a rule set, a user must be granted the EXECUTE_ON_RULE privilege for the
hr.depts rule.

• The user must be granted the execute any system privilege for rules. For example,
to place any rule in a rule set, a user must be granted the EXECUTE_ANY_RULE system
privilege.

The user also must meet at least one of the following conditions for the rule set:

• The user must own the rule set.

• The user must be granted the alter object privilege on the rule set if the rule set is
in another user's schema. For example, to place a rule in the human_resources rule
set in the hr schema, a user must be granted the ALTER_ON_RULE_SET privilege for
the hr.human_resources rule set.

• The user must be granted the alter any system privilege for rule sets. For example,
to place a rule in any rule set, a user must be granted the ALTER_ANY_RULE_SET
system privilege.

In addition, the rule owner must have privileges on all objects referenced by the rule.
These privileges are important when the rule does not have an evaluation context
associated with it.

Chapter 11
Database Objects and Privileges Related to Rules

11-16

11.3.5 Privileges for Evaluating a Rule Set
To evaluate a rule set, a user must meet at least one of the following conditions:

• The user must own the rule set.

• The user must be granted the execute object privilege on the rule set if it is in
another user's schema. For example, to evaluate a rule set named
human_resources in the hr schema, a user must be granted the EXECUTE_ON_RULE_SET
privilege for the hr.human_resources rule set.

• The user must be granted the execute any system privilege for rule sets. For
example, to evaluate any rule set, a user must be granted the
EXECUTE_ANY_RULE_SET system privilege.

Granting EXECUTE object privilege on a rule set requires that the grantor have the
EXECUTE privilege specified WITH GRANT OPTION on all rules currently in the rule set.

11.3.6 Privileges for Using an Evaluation Context
To use an evaluation context in a rule or a rule set, the user who owns the rule or rule
set must meet at least one of the following conditions for the evaluation context:

• The user must own the evaluation context.

• The user must be granted the EXECUTE_ON_EVALUATION_CONTEXT privilege on the
evaluation context, if it is in another user's schema.

• The user must be granted the EXECUTE_ANY_EVALUATION_CONTEXT system privilege for
evaluation contexts.

11.4 Evaluation Contexts Used in Oracle Streams
The following sections describe the system-created evaluation contexts used in Oracle
Streams.

• Evaluation Context for Global, Schema, Table, and Subset Rules

• Evaluation Contexts for Message Rules

11.4.1 Evaluation Context for Global, Schema, Table, and Subset
Rules

When you create global, schema, table, and subset rules, the system-created rule sets
and rules use a built-in evaluation context in the SYS schema named
STREAMS$_EVALUATION_CONTEXT. PUBLIC is granted the EXECUTE privilege on this evaluation
context. Global, schema, table, and subset rules can be used by capture processes,
synchronous captures, propagations, apply processes, and messaging clients.

During Oracle installation, the following statement creates the Oracle Streams
evaluation context:

DECLARE
 vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
 vt := SYS.RE$VARIABLE_TYPE_LIST(

Chapter 11
Evaluation Contexts Used in Oracle Streams

11-17

 SYS.RE$VARIABLE_TYPE('DML', 'SYS.LCR$_ROW_RECORD',
 'SYS.DBMS_STREAMS_INTERNAL.ROW_VARIABLE_VALUE_FUNCTION',
 'SYS.DBMS_STREAMS_INTERNAL.ROW_FAST_EVALUATION_FUNCTION'),
 SYS.RE$VARIABLE_TYPE('DDL', 'SYS.LCR$_DDL_RECORD',
 'SYS.DBMS_STREAMS_INTERNAL.DDL_VARIABLE_VALUE_FUNCTION',
 'SYS.DBMS_STREAMS_INTERNAL.DDL_FAST_EVALUATION_FUNCTION'));
 SYS.RE$VARIABLE_TYPE(NULL, 'SYS.ANYDATA',
 NULL,
 'SYS.DBMS_STREAMS_INTERNAL.ANYDATA_FAST_EVAL_FUNCTION'));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'SYS.STREAMS$_EVALUATION_CONTEXT',
 variable_types => vt,
 evaluation_function =>
 'SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION');
END;
/

This statement includes references to the following internal functions in the
SYS.DBMS_STREAM_INTERNAL package:

• ROW_VARIABLE_VALUE_FUNCTION

• DDL_VARIABLE_VALUE_FUNCTION

• EVALUATION_CONTEXT_FUNCTION

• ROW_FAST_EVALUATION_FUNCTION

• DDL_FAST_EVALUATION_FUNCTION

• ANYDATA_FAST_EVAL_FUNCTION

Note:

Information about these internal functions is provided for reference purposes
only. You should never run any of these functions directly.

The ROW_VARIABLE_VALUE_FUNCTION converts an ANYDATA payload, which encapsulates a
SYS.LCR$_ROW_RECORD instance, into a SYS.LCR$_ROW_RECORD instance before evaluating
rules on the data.

The DDL_VARIABLE_VALUE_FUNCTION converts an ANYDATA payload, which encapsulates a
SYS.LCR$_DDL_RECORD instance, into a SYS.LCR$_DDL_RECORD instance before evaluating
rules on the data.

The EVALUATION_CONTEXT_FUNCTION is specified as an evaluation_function in the call to
the CREATE_EVALUATION_CONTEXT procedure. This function supplements normal rule
evaluation for captured LCRs. A capture process enqueues row LCRs and DDL LCRs
into its queue, and this function enables it to enqueue other internal messages into the
queue, such as commits, rollbacks, and data dictionary changes. This information that
is enqueued by capture processes is also used during rule evaluation for a
propagation or apply process. Synchronous captures do not use the
EVALUATION_CONTEXT_FUNCTION.

ROW_FAST_EVALUATION_FUNCTION improves performance by optimizing access to the
following LCR$_ROW_RECORD member functions during rule evaluation:

• GET_OBJECT_OWNER

Chapter 11
Evaluation Contexts Used in Oracle Streams

11-18

• GET_OBJECT_NAME

• IS_NULL_TAG

• GET_SOURCE_DATABASE_NAME

• GET_COMMAND_TYPE

DDL_FAST_EVALUATION_FUNCTION improves performance by optimizing access to the
following LCR$_DDL_RECORD member functions during rule evaluation if the condition is <,
<=, =, >=, or > and the other operand is a constant:

• GET_OBJECT_OWNER

• GET_OBJECT_NAME

• IS_NULL_TAG

• GET_SOURCE_DATABASE_NAME

• GET_COMMAND_TYPE

• GET_BASE_TABLE_NAME

• GET_BASE_TABLE_OWNER

ANYDATA_FAST_EVAL_FUNCTION improves performance by optimizing access to values
inside an ANYDATA object.

Rules created using the DBMS_STREAMS_ADM package use ROW_FAST_EVALUATION_FUNCTION
or DDL_FAST_EVALUATION_FUNCTION, except for subset rules created using the
ADD_SUBSET_RULES or ADD_SUBSET_PROPAGATION_RULES procedure.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about LCRs and their member functions

11.4.2 Evaluation Contexts for Message Rules
When you use either the ADD_MESSAGE_RULE procedure or the
ADD_MESSAGE_PROPAGATION_RULE procedure to create a message rule, the message rule
uses a user-defined message type that you specify when you create the rule. Such a
system-created message rule uses a system-created evaluation context. The name of
the system-created evaluation context is different for each message type used to
create message rules. Such an evaluation context has a system-generated name and
is created in the schema that owns the rule. Only the user who owns this evaluation
context is granted the EXECUTE privilege on it.

The evaluation context for this type of message rule contains a variable that is the
same type as the message type. The name of this variable is in the form VAR$_number,
where number is a system-generated number. For example, if you specify
strmadmin.region_pri_msg as the message type when you create a message rule, then
the system-created evaluation context has a variable of this type, and the variable is
used in the rule condition. Assume that the following statement created the
strmadmin.region_pri_msg type:

Chapter 11
Evaluation Contexts Used in Oracle Streams

11-19

CREATE TYPE strmadmin.region_pri_msg AS OBJECT(
 region VARCHAR2(100),
 priority NUMBER,
 message VARCHAR2(3000))
/

When you create a message rule using this type, you can specify the following rule
condition:

:msg.region = 'EUROPE' AND :msg.priority = '1'

The system-created message rule replaces :msg in the rule condition you specify with
the name of the variable. The following is an example of a message rule condition that
might result:

:VAR$_52.region = 'EUROPE' AND :VAR$_52.priority = '1'

In this case, VAR$_52 is the variable name, the type of the VAR$_52 variable is
strmadmin.region_pri_msg, and the evaluation context for the rule contains this variable.

The message rule itself has an evaluation context. A statement similar to the following
creates an evaluation context for a message rule:

DECLARE
 vt SYS.RE$VARIABLE_TYPE_LIST;
BEGIN
 vt := SYS.RE$VARIABLE_TYPE_LIST(
 SYS.RE$VARIABLE_TYPE('VAR$_52', 'STRMADMIN.REGION_PRI_MSG',
 'SYS.DBMS_STREAMS_INTERNAL.MSG_VARIABLE_VALUE_FUNCTION', NULL));
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT(
 evaluation_context_name => 'STRMADMIN.EVAL_CTX$_99',
 variable_types => vt,
 evaluation_function => NULL);
END;
/

The name of the evaluation context is in the form EVAL_CTX$_number, where number is
a system-generated number. In this example, the name of the evaluation context is
EVAL_CTX$_99.

This statement also includes a reference to the MSG_VARIABLE_VALUE_FUNCTION internal
function in the SYS.DBMS_STREAM_INTERNAL package. This function converts an ANYDATA
payload, which encapsulates a message instance, into an instance of the same type
as the variable before evaluating rules on the data. For example, if the variable type is
strmadmin.region_pri_msg, then the MSG_VARIABLE_VALUE_FUNCTION converts the message
payload from an ANYDATA payload to a strmadmin.region_pri_msg payload.

If you create rules for different message types, then Oracle creates a different
evaluation context for each message type. If you create a rule with the same message
type as an existing rule, then the new rule uses the evaluation context for the existing
rule. When you use the ADD_MESSAGE_RULE or ADD_MESSAGE_PROPAGATION_RULE to create a
rule set for a messaging client or apply process, the new rule set does not have an
evaluation context.

Chapter 11
Evaluation Contexts Used in Oracle Streams

11-20

See Also:

• "Message Rules"

• "Evaluation Context for Global, Schema, Table, and Subset Rules"

• "Displaying the Oracle Streams Rules Used by a Specific Oracle Streams
Client"

11.5 Oracle Streams and Event Contexts
In Oracle Streams, capture processes, synchronous captures, and messaging clients
do not use event contexts, but propagations and apply processes do. The following
types of messages can be staged in a queue: captured LCRs, buffered LCRs, buffered
user messages, persistent LCRs, and persistent user messages. When a message is
staged in a queue, a propagation or apply process can send the message, along with
an event context, to the rules engine for evaluation. An event context always has the
following name-value pair: AQ$_MESSAGE as the name and the message as the value.

If you create a custom evaluation context, then you can create propagation and apply
process rules that refer to Oracle Streams events using implicit variables. The variable
value function for each implicit variable can check for event contexts with the name
AQ$_MESSAGE. If an event context with this name is found, then the variable value
function returns a value based on a message. You can also pass the event context to
an evaluation function and a variable method function.

See Also:

• "Rule Set Evaluation" for more information about event contexts

• "Explicit and Implicit Variables" for more information about variable value
functions

• "Evaluation Function"

11.6 Oracle Streams and Action Contexts
The following sections describe the purposes of action contexts in Oracle Streams and
the importance of ensuring that only one rule in a rule set can evaluate to TRUE for a
particular rule condition.

11.6.1 Purposes of Action Contexts in Oracle Streams
In Oracle Streams, an action context serves the following purposes:

• Internal LCR Transformations in Subset Rules

• Information About Declarative Rule-Based Transformations

• Custom Rule-Based Transformations

Chapter 11
Oracle Streams and Event Contexts

11-21

• Execution Directives for Messages During Apply

• Enqueue Destinations for Messages During Apply

A different name-value pair can exist in the action context of a rule for each of these
purposes. If an action context for a rule contains more than one of these name-value
pairs, then the actions specified or described by the name-value pairs are performed in
the following order:

1. Perform subset transformation.

2. Display information about declarative rule-based transformation.

3. Perform custom rule-based transformation.

4. Follow execution directive and perform execution if directed to do so (apply only).

5. Enqueue into a destination queue (apply only).

Note:

The actions specified in the action context for a rule are performed only if the
rule is in the positive rule set for a capture process, synchronous capture,
propagation, apply process, or messaging client. If a rule is in a negative rule
set, then these Oracle Streams clients ignore the action context of the rule.

11.6.1.1 Internal LCR Transformations in Subset Rules
When you use subset rules, an update operation can be converted into an insert or
delete operation when it is captured, propagated, applied, or dequeued. This
automatic conversion is called row migration and is performed by an internal
transformation specified in the action context when the subset rule evaluates to TRUE.
The name-value pair for a subset transformation has STREAMS$_ROW_SUBSET for the name
and either INSERT or DELETE for the value.

See Also:

• "Subset Rules"

• Managing Rule-Based Transformations for information about using rule-
based transformation with subset rules

11.6.1.2 Information About Declarative Rule-Based Transformations
A declarative rule-based transformation is an internal modification of a row LCR that
results when a rule evaluates to TRUE. The name-value pair for a declarative rule-based
transformation has STREAMS$_INTERNAL_TRANFORM for the name and the name of a data
dictionary view that provides additional information about the transformation for the
value.

The name-value pair added for a declarative rule-based transformation is for
information purposes only. These name-value pairs are not used by Oracle Streams
clients. However, the declarative rule-based transformations described in an action

Chapter 11
Oracle Streams and Action Contexts

11-22

context are performed internally before any custom rule-based transformations
specified in the same action context.

See Also:

• "Declarative Rule-Based Transformations"

• "Managing Declarative Rule-Based Transformations"

11.6.1.3 Custom Rule-Based Transformations
A custom rule-based transformation is any modification made by a user-defined
function to a message when a rule evaluates to TRUE. The name-value pair for a
custom rule-based transformation has STREAMS$_TRANSFORM_FUNCTION for the name and
the name of the transformation function for the value.

See Also:

• "Custom Rule-Based Transformations"

• "Managing Custom Rule-Based Transformations"

11.6.1.4 Execution Directives for Messages During Apply
The SET_EXECUTE procedure in the DBMS_APPLY_ADM package specifies whether a
message that satisfies the specified rule is executed by an apply process. The name-
value pair for an execution directive has APPLY$_EXECUTE for the name and NO for the
value if the apply process should not execute the message. If a message that satisfies
a rule should be executed by an apply process, then this name-value pair is not
present in the action context of the rule.

See Also:

"Specifying Execute Directives for Apply Processes"

11.6.1.5 Enqueue Destinations for Messages During Apply
The SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package sets the queue
where a message that satisfies the specified rule is enqueued automatically by an
apply process. The name-value pair for an enqueue destination has APPLY$_ENQUEUE for
the name and the name of the destination queue for the value.

Chapter 11
Oracle Streams and Action Contexts

11-23

See Also:

"Specifying That Apply Processes Enqueue Messages"

11.6.2 Ensure That Only One Rule Can Evaluate to TRUE for a
Particular Rule Condition

If you use a non-NULL action context for one or more rules in a positive rule set, then
ensure that only one rule can evaluate to TRUE for a particular rule condition. If more
than one rule evaluates to TRUE for a particular condition, then only one of the rules is
returned, which can lead to unpredictable results.

For example, suppose two rules evaluate to TRUE if an LCR contains a DML change to
the hr.employees table. The first rule has a NULL action context. The second rule has an
action context that specifies a custom rule-based transformation. If there is a DML
change to the hr.employees table, then both rules evaluate to TRUE for the change, but
only one rule is returned. In this case, the transformation might or might not occur,
depending on which rule is returned.

You might want to ensure that only one rule in a positive rule set can evaluate to TRUE
for any condition, regardless of whether any of the rules have a non-NULL action
context. By following this guideline, you can avoid unpredictable results if, for example,
a non-NULL action context is added to a rule in the future.

See Also:

Rule-Based Transformations

11.6.3 Action Context Considerations for Schema and Global Rules
If you use an action context for a custom rule-based transformation, enqueue
destination, or execute directive with a schema rule or global rule, then the action
specified by the action context is carried out on a message if the message causes the
schema or global rule to evaluate to TRUE. For example, if a schema rule has an action
context that specifies a custom rule-based transformation, then the transformation is
performed on LCRs for the tables in the schema.

You might want to use an action context with a schema or global rule but exclude a
subset of LCRs from the action performed by the action context. For example, if you
want to perform a custom rule-based transformation on all of the tables in the hr
schema except for the job_history table, then ensure that the transformation function
returns the original LCR if the table is job_history.

If you want to set an enqueue destination or an execute directive for all of the tables in
the hr schema except for the job_history table, then you can use a schema rule and
add the following condition to it:

:dml.get_object_name() != 'JOB_HISTORY'

Chapter 11
Oracle Streams and Action Contexts

11-24

In this case, if you want LCRs for the job_history table to evaluate to TRUE, but you do
not want to perform the enqueue or execute directive, then you can add a table rule for
the table to a positive rule set. That is, the schema rule would have the enqueue
destination or execute directive, but the table rule would not.

See Also:

"System-Created Rules" for more information about schema and global rules

11.7 User-Created Rules, Rule Sets, and Evaluation
Contexts

The DBMS_STREAMS_ADM package generates system-created rules and rule sets, and it
can specify an Oracle-supplied evaluation context for rules and rule sets or generate
system-created evaluation contexts. If you must create rules, rule sets, or evaluation
contexts that cannot be created using the DBMS_STREAMS_ADM package, then you can use
the DBMS_RULE_ADM package to create them.

Use the DBMS_RULE_ADM package for the following reasons:

• You must create rules with rule conditions that cannot be created using the
DBMS_STREAMS_ADM package, such as rule conditions for specific types of operations,
or rule conditions that use the LIKE condition.

• You must create custom evaluation contexts for the rules in your Oracle Streams
environment.

You can create a rule set using the DBMS_RULE_ADM package, and you can associate it
with a capture process, synchronous capture, propagation, apply process, or
messaging client. Such a rule set can be a positive rule set or negative rule set for an
Oracle Streams client, and a rule set can be a positive rule set for one Oracle Streams
client and a negative rule set for another.

This section contains the following topics:

• User-Created Rules and Rule Sets

• User-Created Evaluation Contexts

See Also:

– "Specifying a Rule Set for a Capture Process"

– "Specifying the Rule Set for a Propagation"

– "Specifying the Rule Set for an Apply Process"

11.7.1 User-Created Rules and Rule Sets
The following sections describe some of the types of rules and rule sets that you can
create using the DBMS_RULE_ADM package:

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-25

• Rule Conditions for Specific Types of Operations

• Rule Conditions that Instruct Oracle Streams Clients to Discard Unsupported
LCRs

• Complex Rule Conditions

• Rule Conditions with Undefined Variables that Evaluate to NULL

• Variables as Function Parameters in Rule Conditions

Note:

You can add user-defined conditions to a system-created rule by using the
and_condition parameter that is available in some of the procedures in the
DBMS_STREAMS_ADM package. Using the and_condition parameter is sometimes
easier than creating rules with the DBMS_RULE_ADM package.

See Also:

"System-Created Rules with Added User-Defined Conditions" for more
information about the and_condition parameter

11.7.1.1 Rule Conditions for Specific Types of Operations
In some cases, you might want to capture, propagate, apply, or dequeue only changes
that contain specific types of operations. For example, you might want to apply
changes containing only insert operations for a particular table, but not other
operations, such as update and delete.

Suppose you want to specify a rule condition that evaluates to TRUE only for INSERT
operations on the hr.employees table. You can accomplish this by specifying the INSERT
command type in the rule condition:

:dml.get_command_type() = 'INSERT' AND :dml.get_object_owner() = 'HR'
AND :dml.get_object_name() = 'EMPLOYEES' AND :dml.is_null_tag() = 'Y'

Similarly, suppose you want to specify a rule condition that evaluates to TRUE for all
DML operations on the hr.departments table, except DELETE operations. You can
accomplish this by specifying the following rule condition:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS' AND
:dml.is_null_tag() = 'Y' AND (:dml.get_command_type() = 'INSERT' OR
:dml.get_command_type() = 'UPDATE')

This rule condition evaluates to TRUE for INSERT and UPDATE operations on the
hr.departments table, but not for DELETE operations. Because the hr.departments table
does not include any LOB columns, you do not need to specify the LOB command
types for DML operations (LOB ERASE, LOB WRITE, and LOB TRIM), but these command
types should be specified in such a rule condition for a table that contains one or more
LOB columns.

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-26

The following rule condition accomplishes the same behavior for the hr.departments
table. That is, the following rule condition evaluates to TRUE for all DML operations on
the hr.departments table, except DELETE operations:

:dml.get_object_owner() = 'HR' AND :dml.get_object_name() = 'DEPARTMENTS' AND
:dml.is_null_tag() = 'Y' AND :dml.get_command_type() != 'DELETE'

The example rule conditions described previously in this section are all simple rule
conditions. However, when you add custom conditions to system-created rule
conditions, the entire condition might not be a simple rule condition, and nonsimple
rules might not evaluate efficiently. In general, you should use simple rule conditions
whenever possible to improve rule evaluation performance. Rule conditions created
using the DBMS_STREAMS_ADM package, without custom conditions added, are always
simple.

See Also:

• "Simple Rule Conditions"

• "Complex Rule Conditions"

11.7.1.2 Rule Conditions that Instruct Oracle Streams Clients to Discard
Unsupported LCRs

You can use the following functions in rule conditions to instruct an Oracle Streams
client to discard LCRs that encapsulate unsupported changes:

• The GET_COMPATIBLE member function for LCRs. This function returns the minimal
database compatibility required to support an LCR.

• The COMPATIBLE_9_2 function, COMPATIBLE_10_1 function, COMPATIBLE_10_2 function,
COMPATIBLE_11_1 function, COMPATIBLE_11_2 function, COMPATIBLE_12_1 function, and
MAX_COMPATIBLE function in the DBMS_STREAMS package. These functions return
constant values that correspond to 9.2.0, 10.1.0, 10.2.0, 11.1.0, 11.2.0, 12.1.0,
and maximum compatibility in a database, respectively. You control the
compatibility of an Oracle database using the COMPATIBLE initialization parameter.

For example, consider the following rule:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.dml_compat_9_2',
 condition => ':dml.GET_COMPATIBLE() > DBMS_STREAMS.COMPATIBLE_9_2()');
END;
/

If this rule is in the negative rule set for an Oracle Streams client, such as a capture
process, a propagation, or an apply process, then the Oracle Streams client discards
any row LCR that is not compatible with Oracle9i Release 2 (9.2).

The following is an example that is more appropriate for a positive rule set:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.dml_compat_9_2',

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-27

 condition => ':dml.GET_COMPATIBLE() <= DBMS_STREAMS.COMPATIBLE_10_1()');
END;
/

If this rule is in the positive rule set for an Oracle Streams client, then the Oracle
Streams client discards any row LCR that is not compatible with Oracle Database 10g
Release 1 or earlier. That is, the Oracle Streams client processes any row LCR that is
compatible with Oracle9i Release 2 (9.2) or Oracle Database 10g Release 1 (10.1)
and satisfies the other rules in its rule sets, but it discards any row LCR that is not
compatible with these releases.

You can add the following rule to a positive rule set to discard row LCRs that are not
supported by Oracle Streams in your current release of Oracle Database:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.dml_compat_max',
 condition => ':dml.GET_COMPATIBLE() < DBMS_STREAMS.MAX_COMPATIBLE()');
END;
/

The MAX_COMPATIBLE function always returns the maximum compatibility, which is
greater than the compatibility constants returned by the DBMS_STREAMS package.
Therefore, when you use this function in rule conditions, the rule conditions do not
need to be changed when you upgrade to a later release of Oracle Database. Newly
supported changes in a later release will automatically be captured and LCRs
containing newly supported changes will not be discarded.

The rules in the previous examples evaluate efficiently. If you use schema rules or
global rules created by the DBMS_STREAMS_ADM package to capture, propagate, apply, or
dequeue LCRs, then you can use rules such as these to discard LCRs that are not
supported by a particular database.

Note:

• You can determine which database objects in a database are not
supported by Oracle Streams by querying the DBA_STREAMS_UNSUPPORTED
and DBA_STREAMS_COLUMNS data dictionary views.

• Instead of using the DBMS_RULE_ADM package to create rules with
GET_COMPATIBLE conditions, you can use one of the procedures in the
DBMS_STREAMS_ADM package to create such rules by specifying the
GET_COMPATIBLE condition in the AND_CONDITION parameter.

• DDL LCRs always return DBMS_STREAMS.COMPATIBLE_9_2.

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-28

See Also:

• "Monitoring Compatibility in an Oracle Streams Environment"

• "Global Rules Example", "Schema Rule Example", and "System-Created
Rules with Added User-Defined Conditions"

• Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization parameter

11.7.1.3 Complex Rule Conditions
Complex rule conditions are rule conditions that do not meet the requirements for
simple rule conditions described in "Simple Rule Conditions". In an Oracle Streams
environment, the DBMS_STREAMS_ADM package creates rules with simple rule conditions
only, assuming no custom conditions are added to the system-created rules.

Table 5-3 describes the types of system-created rule conditions that you can create
with the DBMS_STREAMS_ADM package. If you must create rules with complex conditions,
then you can use the DBMS_RULE_ADM package.

There is a wide range of complex rule conditions. The following sections contain some
examples of complex rule conditions.

Note:

• Complex rule conditions can degrade rule evaluation performance.

• In rule conditions, if you specify the name of a database, then ensure that
you include the full database name, including the domain name.

11.7.1.3.1 Rule Conditions Using the NOT Logical Condition to Exclude Objects
You can use the NOT logical condition to exclude certain changes from being captured,
propagated, applied, or dequeued in an Oracle Streams environment.

For example, suppose you want to specify rule conditions that evaluate to TRUE for all
DML and DDL changes to all database objects in the hr schema, except for changes
to the hr.regions table. You can use the NOT logical condition to accomplish this with
two rules: one for DML changes and one for DDL changes. Here are the rule
conditions for these rules:

(:dml.get_object_owner() = 'HR' AND NOT :dml.get_object_name() = 'REGIONS')
AND :dml.is_null_tag() = 'Y' ((:ddl.get_object_owner() = 'HR' OR :ddl.get_base_
table_owner() = 'HR') AND NOT :ddl.get_object_name() = 'REGIONS') AND :ddl.is_
null_tag() = 'Y'

Notice that object names, such as HR and REGIONS are specified in all uppercase
characters in these examples. For rules to evaluate properly, the case of the
characters in object names, such as tables and users, must match the case of the
characters in the data dictionary. Therefore, if no case was specified for an object
when the object was created, then specify the object name in all uppercase in rule

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-29

conditions. However, if a particular case was specified with double quotation marks
when the objects was created, then specify the object name in the same case in rule
conditions. However, the object name cannot be enclosed in double quotes in rule
conditions.

For example, if the REGIONS table in the HR schema was actually created as "Regions",
then specify Regions in rule conditions that involve this table, as in the following
example:

:dml.get_object_name() = 'Regions'

You can use the Oracle Streams evaluation context when you create these rules using
the DBMS_RULE_ADM package. The following example creates a rule set to hold the
complex rules, creates rules with the previous conditions, and adds the rules to the
rule set:

BEGIN
 -- Create the rule set
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.complex_rules',
 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
 -- Create the complex rules
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.hr_not_regions_dml',
 condition => ' (:dml.get_object_owner() = ''HR'' AND NOT ' ||
 ' :dml.get_object_name() = ''REGIONS'') AND ' ||
 ' :dml.is_null_tag() = ''Y'' ');
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.hr_not_regions_ddl',
 condition => ' ((:ddl.get_object_owner() = ''HR'' OR ' ||
 ' :ddl.get_base_table_owner() = ''HR'') AND NOT ' ||
 ' :ddl.get_object_name() = ''REGIONS'') AND ' ||
 ' :ddl.is_null_tag() = ''Y'' ');
 -- Add the rules to the rule set
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.hr_not_regions_dml',
 rule_set_name => 'strmadmin.complex_rules');
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.hr_not_regions_ddl',
 rule_set_name => 'strmadmin.complex_rules');
END;
/

In this case, the rules inherit the Oracle Streams evaluation context from the rule set.

Note:

In most cases, you can avoid using complex rules with the NOT logical condition
by using the DBMS_STREAMS_ADM package to add rules to the negative rule set for
an Oracle Streams client

See Also:

"System-Created Rules and Negative Rule Sets"

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-30

11.7.1.3.2 Rule Conditions Using the LIKE Condition
You can use the LIKE condition to create complex rules that evaluate to TRUE when a
condition in the rule matches a specified pattern. For example, suppose you want to
specify rule conditions that evaluate to TRUE for all DML and DDL changes to all
database objects in the hr schema that begin with the pattern JOB. You can use the
LIKE condition to accomplish this with two rules: one for DML changes and one for
DDL changes. Here are the rule conditions for these rules:

(:dml.get_object_owner() = 'HR' AND :dml.get_object_name() LIKE 'JOB%')
AND :dml.is_null_tag() = 'Y'

((:ddl.get_object_owner() = 'HR' OR :ddl.get_base_table_owner() = 'HR')
AND :ddl.get_object_name() LIKE 'JOB%') AND :ddl.is_null_tag() = 'Y'

11.7.1.4 Rule Conditions with Undefined Variables that Evaluate to NULL
During evaluation, an implicit variable in a rule condition is undefined if the variable
value function for the variable returns NULL. An explicit variable without any attributes in
a rule condition is undefined if the client does not send the value of the variable to the
rules engine when it runs the DBMS_RULE.EVALUATE procedure.

Regarding variables with attributes, a variable is undefined if the client does not send
the value of the variable, or any of its attributes, to the rules engine when it runs the
DBMS_RULE.EVALUATE procedure. For example, if variable x has attributes a and b, then
the variable is undefined if the client does not send the value of x and does not send
the value of a and b. However, if the client sends the value of at least one attribute,
then the variable is defined. In this case, if the client sends the value of a, but not b,
then the variable is defined.

An undefined variable in a rule condition evaluates to NULL for Oracle Streams clients
of the rules engine, which include capture processes, synchronous captures,
propagations, apply processes, and messaging clients. In contrast, for non-Oracle
Streams clients of the rules engine, an undefined variable in a rule condition can
cause the rules engine to return maybe_rules to the client. When a rule set is evaluated,
maybe_rules are rules that might evaluate to TRUE given more information.

The number of maybe_rules returned to Oracle Streams clients is reduced by treating
each undefined variable as NULL. Reducing the number of maybe_rules can improve
performance if the reduction results in more efficient evaluation of a rule set when a
message occurs. Rules that would result in maybe_rules for non-Oracle Streams clients
can result in TRUE or FALSE rules for Oracle Streams clients, as the following examples
illustrate.

11.7.1.4.1 Examples of Undefined Variables that Result in TRUE Rules for Oracle Streams
Clients

Consider the following user-defined rule condition:

:m IS NULL

If the value of the variable m is undefined during evaluation, then a maybe rule results
for non-Oracle Streams clients of the rules engine. However, for Oracle Streams
clients, this condition evaluates to TRUE because the undefined variable m is treated as
a NULL. You should avoid adding rules such as this to rule sets for Oracle Streams

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-31

clients, because such rules will evaluate to TRUE for every message. So, for example, if
the positive rule set for a capture process has such a rule, then the capture process
might capture messages that you did not intend to capture.

Here is another user-specified rule condition that uses an Oracle Streams :dml
variable:

:dml.get_object_owner() = 'HR' AND :m IS NULL

For Oracle Streams clients, if a message consists of a row change to a table in the hr
schema, and the value of the variable m is not known during evaluation, then this
condition evaluates to TRUE because the undefined variable m is treated as a NULL.

11.7.1.4.2 Examples of Undefined Variables that Result in FALSE Rules for Oracle
Streams Clients

Consider the following user-defined rule condition:

:m = 5

If the value of the variable m is undefined during evaluation, then a maybe rule results
for non-Oracle Streams clients of the rules engine. However, for Oracle Streams
clients, this condition evaluates to FALSE because the undefined variable m is treated as
a NULL.

Consider another user-specified rule condition that uses an Oracle Streams :dml
variable:

:dml.get_object_owner() = 'HR' AND :m = 5

For Oracle Streams clients, if a message consists of a row change to a table in the hr
schema, and the value of the variable m is not known during evaluation, then this
condition evaluates to FALSE because the undefined variable m is treated as a NULL.

See Also:

"Rule Set Evaluation"

11.7.1.5 Variables as Function Parameters in Rule Conditions
Oracle recommends that you avoid using :dml and :ddl variables as function
parameters for rule conditions. The following example uses the :dml variable as a
parameter to a function named my_function:

my_function(:dml) = 'Y'

Rule conditions such as these can degrade rule evaluation performance and can result
in the capture or propagation of extraneous Oracle Streams data dictionary
information.

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-32

See Also:

"The Oracle Streams Data Dictionary"

11.7.2 User-Created Evaluation Contexts
You can use a custom evaluation context in an Oracle Streams environment. Any
user-defined evaluation context involving LCRs must include all the variables in
SYS.STREAMS$_EVALUATION_CONTEXT. The type of each variable and its variable value
function must be the same for each variable as the ones defined in
SYS.STREAMS$_EVALUATION_CONTEXT. In addition, when creating the evaluation context
using DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT, the
SYS.DBMS_STREAMS_INTERNAL.EVALUATION_CONTEXT_FUNCTION must be specified for the
evaluation_function parameter. You can alter an existing evaluation context using the
DBMS_RULE_ADM.ALTER_EVALUATION_CONTEXT procedure.

You can find information about an evaluation context in the following data dictionary
views:

• ALL_EVALUATION_CONTEXT_TABLES

• ALL_EVALUATION_CONTEXT_VARS

• ALL_EVALUATION_CONTEXTS

If necessary, you can use the information in these data dictionary views to build a new
evaluation context based on the SYS.STREAMS$_EVALUATION_CONTEXT.

Note:

Avoid using variable names with special characters, such as $ and #, to
ensure that there are no conflicts with Oracle-supplied evaluation context
variables.

See Also:

Oracle Database Reference for more information about these data dictionary
views

Chapter 11
User-Created Rules, Rule Sets, and Evaluation Contexts

11-33

12
Combined Capture and Apply Optimization

The following topics contain information about the combined capture and apply
optimization:

• Combined Capture and Apply Requirements

• How to Use Combined Capture and Apply

• How to Determine Whether Combined Capture and Apply Is Being Used

• Combined Capture and Apply and Point-in-Time Recovery

12.1 About Combined Capture and Apply Optimization
For improved efficiency, a capture process can create a propagation sender to
transmit logical change records (LCRs) directly to a propagation receiver under
specific conditions. The propagation receiver enqueues the LCRs into the buffered
queue portion of the destination queue, and an apply process dequeues the LCRs.
This optimization is called combined capture and apply.

12.2 Combined Capture and Apply Requirements
Combined capture and apply can be used when the capture process and apply
process run on the same database instance or on different databases.

When the capture process and apply process run on the same database instance,
combined capture and apply is possible only if all of the following conditions are met:

• The capture process and apply process must use the same queue.

• The queue must have a single publisher, and it must be the capture process.

When the capture process and apply process run on different databases, or on
different instances in the same database, combined capture and apply is possible only
if all of the following conditions are met:

• The capture process's queue must have a single publisher, and it must be the
capture process.

• A propagation must be configured between the capture process's queue and the
apply process's queue. There can be no intermediate queues (no directed
network).

• Each apply process that applies changes from the same source database must
use a different queue.

12-1

Note:

• Combined capture and apply is not possible with synchronous capture.

• Combined capture and apply is not possible when an Oracle Database
10g or earlier database is part of the configuration.

• The combined capture and apply requirements are different in Oracle
Database 11g Release 2 (11.2) and later and Oracle Database 11g
Release 1 (11.1). If a database in a combined capture and apply
optimization is an Oracle Database 11g Release 1 (11.1) database, then
the Oracle Database 11g Release 1 (11.1) requirements must be met.
See Oracle Streams Concepts and Administration for Oracle Database
11g Release 1 (11.1) for information about these requirements.

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• "Persistent Queues and Buffered Queues"

• "Directed Networks"

• "Implicit Consumption with an Apply Process"

12.3 How to Use Combined Capture and Apply
After you meet the requirements for combined capture and apply, you do not need to
perform any other configuration tasks to use it. The capture process automatically
detects that combined capture and apply is possible when it is started. After it creates
a propagation sender to establish a connection with the propagation receiver, the
propagation sender sends captured LCRs directly to the propagation receiver.

If combined capture and apply is used, and you change the configuration so that it no
longer meets the requirements of combined capture and apply, then the capture
process detects this change and restarts. After the capture process restarts, it no
longer uses combined capture and apply.

If combined capture and apply is not used, and you change the configuration so that it
meets the requirements of combined capture and apply, then combined capture and
apply is used automatically when the capture process is restarted. In this case, you
must restart the capture process manually. It is not restarted automatically.

See Also:

"Combined Capture and Apply Requirements"

Chapter 12
How to Use Combined Capture and Apply

12-2

12.4 How to Determine Whether Combined Capture and
Apply Is Being Used

Check the following dynamic performance views to determine whether combined
capture and apply is used:

• For the capture process, combined capture and apply is used when the
OPTIMIZATION column is greater than zero in the V$STREAMS_CAPTURE view.

• For the apply process, combined capture and apply is used when the PROXY_SID
column is not NULL in the V$STREAMS_APPLY_READER view.

See Also:

• "Determining Which Capture Processes Use Combined Capture and
Apply"

• "Determining Which Apply Processes Use Combined Capture and Apply"

• "Capture Process States"

• Oracle Database Reference for information about data dictionary views

12.5 Combined Capture and Apply and Point-in-Time
Recovery

When you use combined capture and apply in a single-source replication environment,
the Oracle Streams clients handle point-in-time recovery of the destination database
automatically. The Oracle Streams client include the capture process, propagation,
and apply process that form the combined capture and apply optimization.

In a single-source replication environment that uses combined capture and apply,
complete these general steps to perform point-in-time recovery on the destination
database:

1. Stop the capture process and apply process, and disable the propagation.

2. Perform the point-in-time recovery on the destination database.

3. Ensure that the capture process has access to the archived redo log files for the
previous point in time.

4. Start the apply process.

5. Enable the propagation.

6. Start the capture process.

When you follow these steps, the capture process determines its start SCN
automatically, and no other steps are required.

Chapter 12
How to Determine Whether Combined Capture and Apply Is Being Used

12-3

See Also:

Oracle Streams Replication Administrator's Guide for more information about
performing point-in-time recovery in an Oracle Streams replication
environment

Chapter 12
Combined Capture and Apply and Point-in-Time Recovery

12-4

13
Oracle Streams High Availability
Environments

The following topics contain information about Oracle Streams high availability
environments:

• Overview of Oracle Streams High Availability Environments

• Protection from Failures

• Best Practices for Oracle Streams High Availability Environments

13.1 Overview of Oracle Streams High Availability
Environments

Configuring a high availability solution requires careful planning and analysis of failure
scenarios. Database backups and physical standby databases provide physical copies
of a source database for failover protection. Oracle Data Guard, in SQL apply mode,
implements a logical standby database in a high availability environment. Because
Oracle Data Guard is designed for a high availability environment, it handles most
failure scenarios. However, some environments might require the flexibility available in
Oracle Streams, so that they can take advantage of the extended feature set offered
by Oracle Streams.

This chapter discusses some of the scenarios that can benefit from an Oracle
Streams-based solution and explains Oracle Streams-specific issues that arise in high
availability environments.

See Also:

• Oracle Data Guard Concepts and Administration for more information
about Oracle Data Guard

• Oracle Real Application Clusters Administration and Deployment Guide

13.2 Protection from Failures
Oracle Real Application Clusters (Oracle RAC) is the preferred method for protecting
from an instance or system failure. After a failure, services are provided by a surviving
node in the cluster. However, clustering does not protect from user error, media
failure, or disasters. These types of failures require redundant copies of the database.
You can make both physical and logical copies of a database.

13-1

Physical copies are identical, block for block, with the source database, and are the
preferred means of protecting data. There are three types of physical copies: database
backup, mirrored or multiplexed database files, and a physical standby database.

Logical copies contain the same information as the source database, but the
information can be stored differently within the database. Creating a logical copy of
your database offers many advantages. However, you should always create a logical
copy in addition to a physical copy, not instead of physical copy.

A logical copy has the following benefits:

• A logical copy can be open while being updated. This ability makes the logical
copy useful for near real-time reporting.

• A logical copy can have a different physical layout that is optimized for its own
purpose. For example, it can contain additional indexes, and thereby improve the
performance of reporting applications that use the logical copy.

• A logical copy provides better protection from corruptions. Because data is
logically captured and applied, it is very unlikely that a physical corruption can
propagate to the logical copy of the database.

There are three types of logical copies of a database:

• Logical standby databases

• Oracle Streams replica databases

• Application-maintained copies

Logical standby databases are best maintained using Oracle Data Guard in SQL apply
mode. The rest of this chapter discusses Oracle Streams replica databases and
application maintained copies.

See Also:

• "Oracle Streams and Oracle Real Application Clusters"

• Oracle Database Backup and Recovery User's Guide for more information
about database backups and mirroring or multiplexing database files

• Oracle Data Guard Concepts and Administration for more information
about physical standby databases and logical standby databases

13.2.1 Oracle Streams Replica Database
Like Oracle Data Guard in SQL apply mode, Oracle Streams can capture database
changes, propagate them to destinations, and apply the changes at these
destinations. Oracle Streams is optimized for replicating data. Oracle Streams can
capture changes at a source database, and the captured changes can be propagated
asynchronously to replica databases. This optimization can reduce the latency and
can enable the replicas to lag the primary database by no more than a few seconds.

Nevertheless, you might choose to use Oracle Streams to configure and maintain a
logical copy of your production database. Although using Oracle Streams might
require additional work, it offers increased flexibility that might be required to meet
specific business requirements. A logical copy configured and maintained using Oracle

Chapter 13
Protection from Failures

13-2

Streams is called a replica, not a logical standby, because it provides many
capabilities that are beyond the scope of the normal definition of a standby database.
Some of the requirements that can best be met using an Oracle Streams replica are
listed in the following sections.

See Also:

Oracle Streams Replication Administrator's Guide for more information about
replicating database changes with Oracle Streams

13.2.1.1 Updates at the Replica Database
The greatest difference between a replica database and a standby database is that a
replica database can be updated and a standby database cannot. Applications that
must update data can run against the replica, including jobs and reporting applications
that log reporting activity. Replica databases also allow local applications to operate
autonomously, protecting local applications from WAN failures and reducing latency
for database operations.

13.2.1.2 Heterogeneous Platform Support
The production and the replica do not need to be running on the exact same platform.
This provides more flexibility in using computing assets, and facilitates migration
between platforms.

13.2.1.3 Multiple Character Sets
Oracle Streams replicas can use different character sets than the production
database. Data is automatically converted from one character set to another before
being applied. This ability is extremely important if you have global operations and you
must distribute data in multiple countries.

13.2.1.4 Mining the Online Redo Logs to Minimize Latency
If the replica is used for near real-time reporting, Oracle Streams can lag the
production database by no more than a few seconds, providing up-to-date and
accurate queries. Changes can be read from the online redo logs as the logs are
written, rather than from the redo logs after archiving.

13.2.1.5 Fast Failover
Oracle Streams replicas can be open to read/write operations at all times. If a primary
database fails, then Oracle Streams replicas are able to instantly resume processing.
A small window of data might be left at the primary database, but this data will be
automatically applied when the primary database recovers. This ability can be
important if you value fast recovery time over no lost data. Assuming the primary
database can eventually be recovered, the data is only temporarily unavailable.

Chapter 13
Protection from Failures

13-3

13.2.1.6 Single Capture for Multiple Destinations
In a complex environment, changes need only be captured once. These changes can
then be sent to multiple destinations. When a capture process is used to capture
changes, this ability enables more efficient use of the resources needed to mine the
redo logs for changes.

13.2.2 When Not to Use Oracle Streams
As mentioned previously, there are scenarios in which you might choose to use Oracle
Streams to meet some of your high availability requirements. One of the rules of high
availability is to keep it simple. Oracle Data Guard is designed for high availability and
is easier to implement than an Oracle Streams-based high availability solution. If you
decide to leverage the flexibility offered by Oracle Streams, then you must be prepared
to invest in the expertise and planning required to make an Oracle Streams-based
solution robust. You might need to write scripts to implement much of the automation
and management tools provided with Oracle Data Guard.

13.2.3 Application-Maintained Copies
The best availability can be achieved by designing the maintenance of logical copies
of data directly into an application. The application knows what data is valuable and
must be immediately moved off-site to guarantee no data loss. It can also
synchronously replicate truly critical data, while asynchronously replicating less critical
data. Applications maintain copies of data by either synchronously or asynchronously
sending data to other applications that manage another logical copy of the data.
Synchronous operations are performed using the distributed SQL or remote procedure
features of the database. Asynchronous operations are performed using Advanced
Queuing. Advanced Queuing is a database message queuing feature that is part of
Oracle Streams.

Although the highest levels of availability can be achieved with application-maintained
copies of data, great care is required to realize these results. Typically, a great amount
of custom development is required. Many of the difficult boundary conditions that have
been analyzed and solved with solutions such as Oracle Data Guard and Oracle
Streams replication must be reanalyzed and solved by the custom application
developers. In addition, standard solutions like Oracle Data Guard and Oracle Streams
replication undergo stringent testing both by Oracle and its customers. It will take a
great deal of effort before a custom-developed solution can exhibit the same degree of
maturity. For these reasons, only organizations with substantial patience and expertise
should attempt to build a high availability solution with application maintained copies.

See Also:

Oracle Database Advanced Queuing User's Guide for more information about
developing applications with Advanced Queuing

Chapter 13
Protection from Failures

13-4

13.3 Best Practices for Oracle Streams High Availability
Environments

Implementing Oracle Streams in a high availability environment requires consideration
of possible failure and recovery scenarios, and the implementation of procedures to
ensure Oracle Streams continues to capture, propagate, and apply changes after a
failure. Some of the issues that must be examined include the following:

• Configuring Oracle Streams for High Availability

• Recovering from Failures

13.3.1 Configuring Oracle Streams for High Availability
When configuring a solution using Oracle Streams, it is important to anticipate failures
and design availability into the architecture. You must examine every database in the
distributed system, and design a recovery plan in case of failure of that database. In
some situations, failure of a database affects only services accessing data on that
database. In other situations, a failure is multiplied, because it can affect other
databases.

This section contains these topics:

• Directly Connecting Every Database to Every Other Database

• Creating Hub-and-Spoke Configurations

• Local or Downstream Capture with Oracle Streams Capture Processes

13.3.1.1 Directly Connecting Every Database to Every Other Database
A configuration where each database is directly connected to every other database in
the distributed system is the most resilient to failures, because a failure of one
database will not prevent any other databases from operating or communicating.
Assuming all data is replicated, services that were using the failed database can
connect to surviving replicas.

See Also:

• Oracle Streams Extended Examples for a detailed example of such an
environment

• "Queue Forwarding and Apply Forwarding"

13.3.1.2 Creating Hub-and-Spoke Configurations
Although configurations where each database is directly connected to every other
database provide the best high availability characteristics, they can become difficult to
manage when the number of databases becomes large. Hub-and-spoke configurations
solve this manageability issue by funneling changes from many databases into a hub
database, and then to other hub databases, or to other spoke databases. To add a

Chapter 13
Best Practices for Oracle Streams High Availability Environments

13-5

new source or destination, you simply connect it to a hub database, rather than
establishing connections to every other database.

A hub, however, becomes a very important node in your distributed environment.
Should it fail, all communications flowing through the hub will fail. Due to the
asynchronous nature of the messages propagating through the hub, it can be very
difficult to redirect a stream from one hub to another. A better approach is to make the
hub resilient to failures.

The same techniques used to make a single database resilient to failures also apply to
distributed hub databases. Oracle recommends Oracle Real Application Clusters
(Oracle RAC) to provide protection from instance and node failures. This configuration
should be combined with a "no loss" physical standby database, to protect from
disasters and data errors. Oracle does not recommend using an Oracle Streams
replica as the only means to protect from disasters or data errors.

See Also:

• Oracle Streams Replication Administrator's Guide for a detailed example
of a hub-and-spoke replication environment

• "Oracle Streams and Oracle Real Application Clusters"

13.3.1.3 Local or Downstream Capture with Oracle Streams Capture
Processes

Oracle Streams capture processes support capturing changes from the redo log on the
local source database or at a downstream database at a different site. The choice of
local capture or downstream capture has implications for availability. When a failure
occurs at a source database, some changes might not have been captured. With local
capture, those changes might not be available until the source database is recovered.
In the event of a catastrophic failure, those changes might be lost.

Downstream capture at a remote database reduces the window of potential data loss
in the event of a failure. Depending on the configuration, downstream capture enables
you to guarantee all changes committed at the source database are safely copied to a
remote site, where they can be captured and propagated to other databases and
applications. Oracle Streams uses the same mechanism as Oracle Data Guard to
copy redo data or log files to remote destinations, and supports the same operational
modes, including maximum protection, maximum availability, and maximum
performance.

Note:

Synchronous capture is always configured at the source database.

Chapter 13
Best Practices for Oracle Streams High Availability Environments

13-6

See Also:

"Local Capture and Downstream Capture"

13.3.2 Recovering from Failures
The following sections provide best practices for recovering from failures.

This section contains these topics:

• Automatic Capture Process Restart After a Failover

• Database Links Reestablishment After a Failover

• Propagation Job Restart After a Failover

• Automatic Apply Process Restart After a Failover

13.3.2.1 Automatic Capture Process Restart After a Failover
After a failure and restart of a single-node database, or a failure and restart of a
database on another node in a cold failover cluster, the capture process automatically
returns to the status it was in at the time of the failure. That is, if it was running at the
time of the failure, then the capture process restarts automatically.

See Also:

• "Capture Processes and Oracle Real Application Clusters"

• "Starting a Capture Process"

• "Queues and Oracle Real Application Clusters" for information about
primary and secondary instance ownership for queues

13.3.2.2 Database Links Reestablishment After a Failover
It is important to ensure that a propagation continues to function after a failure of a
destination database instance. A propagation job will retry (with increasing delay
between retries) its database link sixteen times after a failure until the connection is
reestablished. If the connection is not reestablished after sixteen tries, then the
propagation schedule is aborted.

If the database is restarted on the same node, or on a different node in a cold failover
cluster, then the connection should be reestablished. In some circumstances, the
database link could be waiting on a read or write, and will not detect the failure until a
lengthy time out expires. The time out is controlled by the TCP_KEEPALIVE_INTERVAL
TCP/IP parameter. In such circumstances, you should drop and re-create the
database link to ensure that communication is reestablished quickly.

In a high availability environment, you can prepare scripts that will drop and re-create
all necessary database links. After a failover, you can execute these scripts so that
Oracle Streams can resume propagation.

Chapter 13
Best Practices for Oracle Streams High Availability Environments

13-7

See Also:

• Oracle Streams Replication Administrator's Guide for information about
creating database links in an Oracle Streams environment

• "Propagations and Oracle Real Application Clusters" for more information
about database links in an Oracle RAC environment

13.3.2.3 Propagation Job Restart After a Failover
For messages to be propagated from a source queue to a destination queue, a
propagation job must run on the instance owning the source queue. In a single-node
database, or cold failover cluster, propagation resumes when the single database
instance is restarted.

See Also:

"Propagations and Oracle Real Application Clusters"

13.3.2.4 Automatic Apply Process Restart After a Failover
After a failure and restart of a single-node database, or a failure and restart of a
database on another node in a cold failover cluster, the apply process automatically
returns to the status it was in at the time of the failure. That is, if it was running at the
time of the failure, then the apply process restarts automatically.

See Also:

• "Apply Processes and Oracle Real Application Clusters"

• "Starting an Apply Process"

• "Queues and Oracle Real Application Clusters" for information about
primary and secondary instance ownership for queues

Chapter 13
Best Practices for Oracle Streams High Availability Environments

13-8

Part III
Oracle Streams Administration

This part describes managing an Oracle Streams environment, including step-by-step
instructions for configuring, administering, monitoring and troubleshooting. This part
contains the following chapters:

• Introduction to Oracle Streams Administration

• Managing Oracle Streams Implicit Capture

• Managing Staging and Propagation

• Managing Oracle Streams Information Consumption

• Managing Rules

• Managing Rule-Based Transformations

• Using Oracle Streams to Record Table Changes

• Other Oracle Streams Management Tasks

14
Introduction to Oracle Streams
Administration

Several tools are available for configuring, administering, and monitoring your Oracle
Streams environment. Oracle-supplied PL/SQL packages are the primary
configuration and management tools, and the Oracle Streams tool in Oracle Enterprise
Manager Cloud Control provides some configuration, administration, and monitoring
capabilities to help you manage your environment. Additionally, Oracle Streams data
dictionary views keep you informed about your Oracle Streams environment.

The following topics describe the tools that you can use for Oracle Streams
administration:

• Oracle-Supplied PL/SQL Packages

• Oracle Streams Data Dictionary Views

• Oracle Streams Tool in Oracle Enterprise Manager Cloud Control

14.1 Oracle-Supplied PL/SQL Packages
The following Oracle-supplied PL/SQL packages contain procedures and functions for
configuring and managing an Oracle Streams environment.

• DBMS_APPLY_ADM Package

• DBMS_CAPTURE_ADM Package

• DBMS_COMPARISON Package

• DBMS_PROPAGATION_ADM Package

• DBMS_RULE Package

• DBMS_RULE_ADM Package

• DBMS_STREAMS Package

• DBMS_STREAMS_ADM Package

• DBMS_STREAMS_ADVISOR_ADM Package

• DBMS_STREAMS_AUTH Package

• DBMS_STREAMS_HANDLER_ADM Package

• DBMS_STREAMS_MESSAGING Package

• DBMS_STREAMS_TABLESPACE_ADM Package

• UTL_SPADV Package

14.1.1 DBMS_APPLY_ADM Package
The DBMS_APPLY_ADM package provides an administrative interface for starting, stopping,
and configuring an apply process. This package includes procedures that enable you

14-1

to configure apply handlers, set enqueue destinations for messages, and specify
execution directives for messages. This package also provides administrative
procedures that set the instantiation SCN for objects at a destination database. This
package also includes subprograms for configuring conflict detection and resolution
and for managing apply errors.

14.1.2 DBMS_CAPTURE_ADM Package
The DBMS_CAPTURE_ADM package provides an administrative interface for starting,
stopping, and configuring a capture process. It also provides an administrative
interface for configuring a synchronous capture. This package also provides
administrative procedures that prepare database objects at the source database for
instantiation at a destination database.

14.1.3 DBMS_COMPARISON Package
The DBMS_COMPARISON package provides interfaces to compare and converge database
objects at different databases.

14.1.4 DBMS_PROPAGATION_ADM Package
The DBMS_PROPAGATION_ADM package provides an administrative interface for configuring
propagation from a source queue to a destination queue.

14.1.5 DBMS_RULE Package
The DBMS_RULE package contains the EVALUATE procedure, which evaluates a rule set.
The goal of this procedure is to produce the list of satisfied rules, based on the data.
This package also contains subprograms that enable you to use iterators during rule
evaluation. Instead of returning all rules that evaluate to TRUE or MAYBE for an
evaluation, iterators can return one rule at a time.

14.1.6 DBMS_RULE_ADM Package
The DBMS_RULE_ADM package provides an administrative interface for creating and
managing rules, rule sets, and rule evaluation contexts. This package also contains
subprograms for managing privileges related to rules.

14.1.7 DBMS_STREAMS Package
The DBMS_STREAMS package provides interfaces to convert ANYDATA objects into LCR
objects, to return information about Oracle Streams attributes and Oracle Streams
clients, and to annotate redo entries generated by a session with a tag. This tag can
affect the behavior of a capture process, a synchronous capture, a propagation, an
apply process, or a messaging client whose rules include specifications for these tags
in redo entries or LCRs.

14.1.8 DBMS_STREAMS_ADM Package
The DBMS_STREAMS_ADM package provides an administrative interface for adding and
removing simple rules for capture processes, propagations, and apply processes at
the table, schema, and database level. This package also enables you to add rules

Chapter 14
Oracle-Supplied PL/SQL Packages

14-2

that control which messages a propagation propagates and which messages a
messaging client dequeues. This package also contains procedures for creating
queues and for managing Oracle Streams metadata, such as data dictionary
information. This package also contains procedures that enable you to configure and
maintain an Oracle Streams replication environment. This package is provided as an
easy way to complete common tasks in an Oracle Streams environment. You can use
other packages, such as the DBMS_CAPTURE_ADM, DBMS_PROPAGATION_ADM, DBMS_APPLY_ADM,
DBMS_RULE_ADM, and DBMS_AQADM packages, to complete these same tasks, as well as
tasks that require additional customization.

14.1.9 DBMS_STREAMS_ADVISOR_ADM Package
The DBMS_STREAMS_ADVISOR_ADM package provides an interface to gather information
about an Oracle Streams environment and advise database administrators based on
the information gathered. This package is part of the Oracle Streams Performance
Advisor.

14.1.10 DBMS_STREAMS_AUTH Package
The DBMS_STREAMS_AUTH package provides interfaces for granting privileges to and
revoking privileges from Oracle Streams administrators.

14.1.11 DBMS_STREAMS_HANDLER_ADM Package
The DBMS_STREAMS_HANDLER_ADM package provides interfaces for managing statement
DML handlers.

14.1.12 DBMS_STREAMS_MESSAGING Package
The DBMS_STREAMS_MESSAGING package provides interfaces to enqueue messages into
and dequeue messages from an ANYDATA queue.

14.1.13 DBMS_STREAMS_TABLESPACE_ADM Package
The DBMS_STREAMS_TABLESPACE_ADM package provides administrative procedures for
creating and managing a tablespace repository. This package also provides
administrative procedures for copying tablespaces between databases and moving
tablespaces from one database to another. This package uses transportable
tablespaces, Data Pump, and the DBMS_FILE_TRANSFER package.

14.1.14 UTL_SPADV Package
The UTL_SPADV package provides subprograms to collect and analyze statistics for the
Oracle Streams components in a distributed database environment. This package
uses the Oracle Streams Performance Advisor to gather statistics.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about these packages

Chapter 14
Oracle-Supplied PL/SQL Packages

14-3

14.2 Oracle Streams Data Dictionary Views
Every database in an Oracle Streams environment has Oracle Streams data dictionary
views. These views maintain administrative information about local rules, objects,
capture processes, propagations, apply processes, and messaging clients. You can
use these views to monitor your Oracle Streams environment.

See Also:

• Monitoring an Oracle Streams Environment

• Oracle Database Reference for more information about these data
dictionary views

14.3 Oracle Streams Tool in Oracle Enterprise Manager
Cloud Control

To help configure, administer, and monitor Oracle Streams environments, Oracle
provides an Oracle Streams tool in Oracle Enterprise Manager Cloud Control. You can
also use the Oracle Streams tool to generate Oracle Streams configuration scripts,
which you can then modify and run to configure your Oracle Streams environment.
The Oracle Streams tool online Help contains the primary documentation for this tool.

See Also:

The online Help for the Oracle Streams tool in the Oracle Enterprise Manager
Cloud Control

Chapter 14
Oracle Streams Data Dictionary Views

14-4

15
Managing Oracle Streams Implicit Capture

Both capture processes and synchronous captures perform implicit capture. This
chapter contains instructions for managing implicit capture.

The following topics describe managing Oracle Streams implicit capture:

• Managing a Capture Process

• Managing a Synchronous Capture

• Managing Extra Attributes in Captured LCRs

• Switching From a Capture Process to a Synchronous Capture

• Switching from a Synchronous Capture to a Capture Process

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

See Also:

• Oracle Streams Information Capture

• Oracle Streams Replication Administrator's Guide for information about
creating an Oracle Streams administrator

• " Monitoring Oracle Streams Implicit Capture "

• Troubleshooting Implicit Capture

15.1 Managing a Capture Process
A capture process captures changes in a redo log, reformats each captured change
into a logical change record (LCR), and enqueues the LCR into an ANYDATA queue.

The following topics describe managing a capture process:

• Starting a Capture Process

• Stopping a Capture Process

• Managing the Rule Set for a Capture Process

• Setting a Capture Process Parameter

• Setting the Capture User for a Capture Process

• Managing the Checkpoint Retention Time for a Capture Process

• Adding an Archived Redo Log File to a Capture Process Explicitly

• Setting the First SCN for an Existing Capture Process

15-1

• Setting the Start SCN for an Existing Capture Process

• Specifying Whether Downstream Capture Uses a Database Link

• Dropping a Capture Process

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

• The Oracle Enterprise Manager Cloud Control online help for instructions
on managing a capture process with Oracle Enterprise Manager Cloud
Control

15.1.1 Starting a Capture Process
You run the START_CAPTURE procedure in the DBMS_CAPTURE_ADM package to start an
existing capture process. For example, the following procedure starts a capture
process named strm01_capture:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'strm01_capture');
END;
/

Note:

If a new capture process will use a new LogMiner data dictionary, then, when
you first start the new capture process, some time might be required to
populate the new LogMiner data dictionary. A new LogMiner data dictionary is
created if a non-NULL first SCN value was specified when the capture process
was created.

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions
about starting a capture process with Oracle Enterprise Manager Cloud
Control

15.1.2 Stopping a Capture Process
You run the STOP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to stop an
existing capture process. For example, the following procedure stops a capture
process named strm01_capture:

Chapter 15
Managing a Capture Process

15-2

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'strm01_capture');
END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions
about stopping a capture process with Oracle Enterprise Manager Cloud
Control

15.1.3 Managing the Rule Set for a Capture Process
This section contains instructions for completing the following tasks:

• Specifying a Rule Set for a Capture Process

• Adding Rules to a Rule Set for a Capture Process

• Removing a Rule from a Rule Set for a Capture Process

• Removing a Rule Set for a Capture Process

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

15.1.3.1 Specifying a Rule Set for a Capture Process
You can specify one positive rule set and one negative rule set for a capture process.
The capture process captures a change if it evaluates to TRUE for at least one rule in
the positive rule set and evaluates to FALSE for all the rules in the negative rule set. The
negative rule set is evaluated before the positive rule set.

15.1.3.1.1 Specifying a Positive Rule Set for a Capture Process
You specify an existing rule set as the positive rule set for an existing capture process
using the rule_set_name parameter in the ALTER_CAPTURE procedure. This procedure is in
the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the positive rule set for a capture process
named strm01_capture to strm02_rule_set.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

Chapter 15
Managing a Capture Process

15-3

15.1.3.1.2 Specifying a Negative Rule Set for a Capture Process
You specify an existing rule set as the negative rule set for an existing capture process
using the negative_rule_set_name parameter in the ALTER_CAPTURE procedure. This
procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the negative rule set for a capture process
named strm01_capture to strm03_rule_set.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 negative_rule_set_name => 'strmadmin.strm03_rule_set');
END;
/

15.1.3.2 Adding Rules to a Rule Set for a Capture Process
To add rules to a rule set for an existing capture process, you can run one of the
following procedures in the DBMS_STREAMS_ADM package and specify the existing capture
process:

• ADD_TABLE_RULES

• ADD_SUBSET_RULES

• ADD_SCHEMA_RULES

• ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the
positive rule set or negative rule set for a capture process. The ADD_SUBSET_RULES
procedure can add rules only to the positive rule set for a capture process.

See Also:

"System-Created Rules"

15.1.3.2.1 Adding Rules to the Positive Rule Set for a Capture Process
The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM
package to add rules to the positive rule set of a capture process named
strm01_capture:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => TRUE);
END;
/

Chapter 15
Managing a Capture Process

15-4

Running this procedure performs the following actions:

• Creates two rules. One rule evaluates to TRUE for DML changes to the
hr.departments table, and the other rule evaluates to TRUE for DDL changes to the
hr.departments table. The rule names are system generated.

• Adds the two rules to the positive rule set associated with the capture process
because the inclusion_rule parameter is set to TRUE.

• Prepares the hr.departments table for instantiation by running the
PREPARE_TABLE_INSTANTIATION procedure in the DBMS_CAPTURE_ADM package.

• Enables supplemental logging for any primary key, unique key, bitmap index, and
foreign key columns in the hr.departments table. When the
PREPARE_TABLE_INSTANTIATION procedure is run, the default value (keys) is specified
for the supplemental_logging parameter.

If the capture process is performing downstream capture, then the table is prepared for
instantiation and supplemental logging is enabled for key columns only if the
downstream capture process uses a database link to the source database. If a
downstream capture process does not use a database link to the source database,
then the table must be prepared for instantiation manually and supplemental logging
must be enabled manually.

15.1.3.2.2 Adding Rules to the Negative Rule Set for a Capture Process
The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM
package to add rules to the negative rule set of a capture process named
strm01_capture:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.job_history',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 inclusion_rule => FALSE);
END;
/

Running this procedure performs the following actions:

• Creates two rules. One rule evaluates to TRUE for DML changes to the
hr.job_history table, and the other rule evaluates to TRUE for DDL changes to the
hr.job_history table. The rule names are system generated.

• Adds the two rules to the negative rule set associated with the capture process,
because the inclusion_rule parameter is set to FALSE.

15.1.3.3 Removing a Rule from a Rule Set for a Capture Process
You remove a rule from the rule set for a capture process if you no longer want the
capture process to capture the changes specified in the rule. For example, assume
that the departments3 rule specifies that DML changes to the hr.departments table be
captured. If you no longer want a capture process to capture changes to the
hr.departments table, then remove the departments3 rule from its rule set.

Chapter 15
Managing a Capture Process

15-5

You remove a rule from a rule set for an existing capture process by running the
REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following
procedure removes a rule named departments3 from the positive rule set of a capture
process named strm01_capture.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
 streams_type => 'capture',
 streams_name => 'strm01_capture',
 drop_unused_rule => TRUE,
 inclusion_rule => TRUE);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to
TRUE, which is the default setting. Therefore, if the rule being removed is not in any
other rule set, then it will be dropped from the database. If the drop_unused_rule
parameter is set to FALSE, then the rule is removed from the rule set, but it is not
dropped from the database.

If the inclusion_rule parameter is set to FALSE, then the REMOVE_RULE procedure
removes the rule from the negative rule set for the capture process, not the positive
rule set.

To remove all of the rules in a rule set for the capture process, specify NULL for the
rule_name parameter when you run the REMOVE_RULE procedure.

See Also:

"Oracle Streams Client with One or More Empty Rule Sets"

15.1.3.4 Removing a Rule Set for a Capture Process
You remove a rule set from an existing capture process using the ALTER_CAPTURE
procedure in the DBMS_CAPTURE_ADM package. This procedure can remove the positive
rule set, negative rule set, or both. Specify TRUE for the remove_rule_set parameter to
remove the positive rule set for the capture process. Specify TRUE for the
remove_negative_rule_set parameter to remove the negative rule set for the capture
process.

For example, the following procedure removes both the positive and negative rule set
from a capture process named strm01_capture.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 remove_rule_set => TRUE,
 remove_negative_rule_set => TRUE);
END;
/

Chapter 15
Managing a Capture Process

15-6

Note:

If a capture process does not have a positive or negative rule set, then the
capture process captures all supported changes to all objects in the database,
excluding database objects in the SYS, SYSTEM, and CTXSYS schemas.

15.1.4 Setting a Capture Process Parameter
Set a capture process parameter using the SET_PARAMETER procedure in the
DBMS_CAPTURE_ADM package. Capture process parameters control the way a capture
process operates.

For example, the following procedure sets the parallelism parameter for a capture
process named strm01_capture to 4.

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'strm01_capture',
 parameter => 'parallelism',
 value => '4');
END;
/

Note:

• Setting the parallelism parameter automatically stops and restarts a
capture process.

• The value parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.

• If the value parameter is set to NULL or is not specified, then the parameter
is set to its default value.

See Also:

• The Oracle Enterprise Manager Cloud Control online help for instructions
about setting capture process parameters with Oracle Enterprise Manager
Cloud Control

• "Capture Process Subcomponents"

• The DBMS_CAPTURE_ADM.SET_PARAMETER procedure in the Oracle Database
PL/SQL Packages and Types Reference for detailed information about the
capture process parameters

Chapter 15
Managing a Capture Process

15-7

15.1.5 Setting the Capture User for a Capture Process
The capture user is the user who captures all DML changes and DDL changes that
satisfy the capture process rule sets. Set the capture user for a capture process using
the capture_user parameter in the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM
package.

To change the capture user, the user who invokes the ALTER_CAPTURE procedure must
be granted DBA role. Only the SYS user can set the capture_user to SYS.

For example, the following procedure sets the capture user for a capture process
named strm01_capture to hr.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 capture_user => 'hr');
END;
/

Running this procedure grants the new capture user enqueue privilege on the queue
used by the capture process and configures the user as a secure queue user of the
queue. In addition, ensure that the capture user has the following privileges:

• EXECUTE privilege on the rule sets used by the capture process

• EXECUTE privilege on all custom rule-based transformation functions used in the rule
set

These privileges can be granted to the capture user directly or through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages,
including Oracle-supplied packages, that are invoked in rule-based transformations
run by the capture process. These privileges must be granted directly to the capture
user. They cannot be granted through roles.

Note:

If Oracle Database Vault is installed, then the user who changes the capture
user must be granted the BECOME USER system privilege. Granting this privilege
to the user is not required if Oracle Database Vault is not installed. You can
revoke the BECOME USER system privilege from the user after capture user is
changed, if necessary.

15.1.6 Managing the Checkpoint Retention Time for a Capture
Process

The checkpoint retention time is the amount of time that a capture process retains
checkpoints before purging them automatically.

Set the checkpoint retention time for a capture process using
checkpoint_retention_time parameter in the ALTER_CAPTURE procedure of the
DBMS_CAPTURE_ADM package.

Chapter 15
Managing a Capture Process

15-8

This section contains these topics:

• Setting the Checkpoint Retention Time for a Capture Process to a New Value

• Setting the Checkpoint Retention Time for a Capture Process to Infinite

See Also:

• "Capture Process Checkpoints"

15.1.6.1 Setting the Checkpoint Retention Time for a Capture Process to a
New Value

When you set the checkpoint retention time, you can specify partial days with decimal
values. For example, run the following procedure to specify that a capture process
named strm01_capture should purge checkpoints automatically every ten days and
twelve hours:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 checkpoint_retention_time => 10.5);
END;
/

15.1.6.2 Setting the Checkpoint Retention Time for a Capture Process to
Infinite

To specify that a capture process should not purge checkpoints automatically, set the
checkpoint retention time to DBMS_CAPTURE_ADM.INFINITE. For example, the following
procedure sets the checkpoint retention time for a name strm01_capture to infinite:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 checkpoint_retention_time => DBMS_CAPTURE_ADM.INFINITE);
END;
/

15.1.7 Adding an Archived Redo Log File to a Capture Process
Explicitly

You can add an archived redo log file to a capture process manually using the
following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE
 file_name FOR capture_process;

Here, file_name is the name of the archived redo log file being added, and
capture_process is the name of the capture process that will use the redo log file at the
downstream database. The capture_process is equivalent to the logminer_session_name

Chapter 15
Managing a Capture Process

15-9

and must be specified. The redo log file must be present at the site running capture
process.

For example, to add the /usr/log_files/1_3_486574859.dbf archived redo log file to a
capture process named strm03_capture, issue the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE '/usr/log_files/1_3_486574859.dbf'
 FOR 'strm03_capture';

See Also:

Oracle Database SQL Language Reference for more information about the
ALTER DATABASE statement and Oracle Data Guard Concepts and Administration
for more information registering redo log files

15.1.8 Setting the First SCN for an Existing Capture Process
You can set the first SCN for an existing capture process.

The specified first SCN must meet the following requirements:

• It must be greater than the current first SCN for the capture process.

• It must be less than or equal to the current applied SCN for the capture process.
However, this requirement does not apply if the current applied SCN for the
capture process is zero.

• It must be less than or equal to the required checkpoint SCN for the capture
process.

You can determine the current first SCN, applied SCN, and required checkpoint SCN
for each capture process in a database using the following query:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
 FROM DBA_CAPTURE;

When you reset a first SCN for a capture process, information below the new first SCN
setting is purged from the LogMiner data dictionary for the capture process
automatically. Therefore, after the first SCN is reset for a capture process, the start
SCN for the capture process cannot be set lower than the new first SCN. Also, redo
log files that contain information before the new first SCN setting will never be needed
by the capture process.

For example, the following procedure sets the first SCN for a capture process named
strm01_capture to 351232 using the ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM
package:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 first_scn => 351232);
END;
/

Chapter 15
Managing a Capture Process

15-10

Note:

• If the specified first SCN is higher than the current start SCN for the
capture process, then the start SCN is set automatically to the new value
of the first SCN.

• If you must capture changes in the redo log from a point in time in the
past, then you can create a capture process and specify a first SCN that
corresponds to a previous data dictionary build in the redo log. The BUILD
procedure in the DBMS_CAPTURE_ADM package performs a data dictionary
build in the redo log.

• You can query the DBA_LOGMNR_PURGED_LOG data dictionary view to
determine which redo log files will never be needed by any capture
process.

See Also:

• "SCN Values Related to a Capture Process"

• "The LogMiner Data Dictionary for a Capture Process"

• "Displaying SCN Values for Each Redo Log File Used by Each Capture
Process" for a query that determines which redo log files are no longer
needed

15.1.9 Setting the Start SCN for an Existing Capture Process
You can set the start SCN for an existing capture process. Typically, you reset the
start SCN for a capture process if point-in-time recovery must be performed on one of
the destination databases that receive changes from the capture process.

The specified start SCN must be greater than or equal to the first SCN for the capture
process. When you reset a start SCN for a capture process, ensure that the required
redo log files are available to the capture process.

You can determine the first SCN for each capture process in a database using the
following query:

SELECT CAPTURE_NAME, FIRST_SCN FROM DBA_CAPTURE;

For example, to set the start SCN for a capture process named strm01_capture to
750338, complete the following steps:

1. Stop the capture process. See "Stopping a Capture Process" for more information.

2. Run the ALTER_CAPTURE procedure to set the start SCN:

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm01_capture',
 start_scn => 750338);
END;
/

Chapter 15
Managing a Capture Process

15-11

3. Start the capture process. See "Starting a Capture Process" for more information.

See Also:

• "SCN Values Related to a Capture Process"

• Oracle Streams Replication Administrator's Guide for information about
performing database point-in-time recovery on a destination database in
an Oracle Streams environment

15.1.10 Specifying Whether Downstream Capture Uses a Database
Link

You specify whether an existing downstream capture process uses a database link to
the source database for administrative purposes using the ALTER_CAPTURE procedure in
the DBMS_CAPTURE_ADM package. Set the use_database_link parameter to TRUE to specify
that the downstream capture process uses a database link, or you set the
use_database_link parameter to FALSE to specify that the downstream capture process
does not use a database link.

If you want a capture process that is not using a database link currently to begin using
a database link, then specify TRUE for the use_database_link parameter. In this case, a
database link with the same name as the global name as the source database must
exist at the downstream database.

If you want a capture process that is using a database link currently to stop using a
database link, then specify FALSE for the use_database_link parameter. In this case,
some administration must be performed manually after you alter the capture process.
For example, if you add new capture process rules using the DBMS_STREAMS_ADM
package, then you must prepare the objects relating to the rules for instantiation
manually at the source database.

If you specify NULL for the use_database_link parameter, then the current value of this
parameter for the capture process is not changed.

To create a database link to the source database dbs1.example.com and specify that
this capture process uses the database link, complete the following steps:

1. In SQL*Plus, connect to the downstream database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create the database link to the source database. Ensure that the database link
connects to the Oracle Streams administrator at the source database. For
example:

CREATE DATABASE LINK dbs1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'dbs1.example.com';

3. Alter the capture process to use the database link. For example:

Chapter 15
Managing a Capture Process

15-12

BEGIN
 DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name => 'strm05_capture',
 use_database_link => TRUE);
END;
/

See Also:

"Local Capture and Downstream Capture"

15.1.11 Dropping a Capture Process
You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to drop an
existing capture process. For example, the following procedure drops a capture
process named strm02_capture:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'strm02_capture',
 drop_unused_rule_sets => TRUE);
END;
/

Because the drop_unused_rule_sets parameter is set to TRUE, this procedure also drops
any rule sets used by the strm02_capture capture process, unless a rule set is used by
another Oracle Streams client. If the drop_unused_rule_sets parameter is set to TRUE,
then both the positive rule set and negative rule set for the capture process might be
dropped. If this procedure drops a rule set, then it also drops any rules in the rule set
that are not in another rule set.

Note:

The status of a capture process must be DISABLED or ABORTED before it can be
dropped. You cannot drop an ENABLED capture process.

15.2 Managing a Synchronous Capture
A synchronous capture uses an internal mechanism to capture data manipulation
language (DML) changes made to tables. A synchronous capture reformats each
captured change into a logical change record (LCR), and enqueues the LCR into an
ANYDATA queue.

This section contains these topics:

• Managing the Rule Set for a Synchronous Capture

• Setting the Capture User for a Synchronous Capture

• Dropping a Synchronous Capture

Chapter 15
Managing a Synchronous Capture

15-13

See Also:

• "Implicit Capture with Synchronous Capture"

• "Monitoring a Synchronous Capture"

• Oracle Streams Replication Administrator's Guide for an example that
configures a replication environment that uses synchronous capture

15.2.1 Managing the Rule Set for a Synchronous Capture
This section contains instructions for completing the following tasks:

• Specifying a Rule Set for a Synchronous Capture

• Adding Rules to a Rule Set for a Synchronous Capture

• Removing a Rule from a Rule Set for a Synchronous Capture

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

15.2.1.1 Specifying a Rule Set for a Synchronous Capture
You can specify one positive rule set for a synchronous capture. The synchronous
capture captures a change if it evaluates to TRUE for at least one rule in the positive rule
set.

You specify an existing rule set as the positive rule set for an existing synchronous
capture using the rule_set_name parameter in the ALTER_SYNC_CAPTURE procedure. This
procedure is in the DBMS_CAPTURE_ADM package.

For example, the following procedure sets the positive rule set for a synchronous
capture named sync_capture to sync_rule_set.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name => 'sync_capture',
 rule_set_name => 'strmadmin.sync_rule_set');
END;
/

Note:

You cannot remove the rule set for a synchronous capture.

Chapter 15
Managing a Synchronous Capture

15-14

15.2.1.2 Adding Rules to a Rule Set for a Synchronous Capture
To add rules to a rule set for an existing synchronous capture, you can run one of the
following procedures in the DBMS_STREAMS_ADM package and specify the existing
synchronous capture:

• ADD_TABLE_RULES

• ADD_SUBSET_RULES

See Also:

"System-Created Rules"

The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM
package to add rules to the positive rule set of a synchronous capture named
sync_capture:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 queue_name => 'strmadmin.streams_queue',
 include_dml => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates one rule which evaluates to TRUE for DML changes to the hr.departments
table. The rule name is system generated.

• Adds the rule to the positive rule set associated with the synchronous capture.

• Prepares the hr.departments table for instantiation by running the
PREPARE_SYNC_INSTANTIATION function in the DBMS_CAPTURE_ADM package.

Note:

• A synchronous capture captures changes to a table only if the
ADD_TABLE_RULES or ADD_SUBSET_RULES procedure was used to add the rule or
rules for the table to the synchronous capture rule set. Synchronous
capture does not capture changes to a table if a table or subset rule is
added to its rule set using the ADD_RULE procedure in the DBMS_RULE_ADM
package. In addition, a synchronous capture ignores all non-table and
non-subset rules in its rule set, including global and schema rules.

• When the ADD_TABLE_RULES or the ADD_SUBSET_RULES procedure adds rules to
a synchronous capture rule set, the procedure must obtain an exclusive
lock on the specified table. If there are outstanding transactions on the
specified table, then the procedure waits until it can obtain a lock.

Chapter 15
Managing a Synchronous Capture

15-15

15.2.1.3 Removing a Rule from a Rule Set for a Synchronous Capture
You remove a rule from the rule set for a synchronous capture if you no longer want
the synchronous capture to capture the changes specified in the rule. For example,
assume that the departments3 rule specifies that DML changes to the hr.departments
table be captured. If you no longer want a synchronous capture to capture changes to
the hr.departments table, then remove the departments3 rule from its rule set.

You remove a rule from a rule set for an existing synchronous capture by running the
REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following
procedure removes a rule named departments3 from the positive rule set of a
synchronous capture named sync_capture.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
 streams_type => 'sync_capture',
 streams_name => 'sync_capture',
 drop_unused_rule => TRUE);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to
TRUE, which is the default setting. Therefore, if the rule being removed is not in any
other rule set, then it will be dropped from the database. If the drop_unused_rule
parameter is set to FALSE, then the rule is removed from the rule set, but it is not
dropped from the database.

To remove all of the rules in a rule set for the synchronous capture, specify NULL for the
rule_name parameter when you run the REMOVE_RULE procedure.

See Also:

"Oracle Streams Client with One or More Empty Rule Sets"

15.2.2 Setting the Capture User for a Synchronous Capture
The capture user is the user who captures all DML changes that satisfy the
synchronous capture rule set. Set the capture user for a synchronous capture using
the capture_user parameter in the ALTER_SYNC_CAPTURE procedure in the
DBMS_CAPTURE_ADM package.

To change the capture user, the user who invokes the ALTER_SYNC_CAPTURE procedure
must be granted DBA role. Only the SYS user can set the capture_user to SYS.

For example, the following procedure sets the capture user for a synchronous capture
named sync_capture to hr.

BEGIN
 DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name => 'sync_capture',
 capture_user => 'hr');
END;
/

Chapter 15
Managing a Synchronous Capture

15-16

Running this procedure grants the new capture user enqueue privilege on the queue
used by the synchronous capture and configures the user as a secure queue user of
the queue. In addition, ensure that the capture user has the following privileges:

• EXECUTE privilege on the rule set used by the synchronous capture

• EXECUTE privilege on all custom rule-based transformation functions used in the rule
set

These privileges can be granted to the capture user directly or through roles.

In addition, the capture user must be granted EXECUTE privilege on all packages,
including Oracle-supplied packages, that are invoked in rule-based transformations
run by the synchronous capture. These privileges must be granted directly to the
capture user. They cannot be granted through roles.

Note:

If Oracle Database Vault is installed, then the user who changes the capture
user must be granted the BECOME USER system privilege. Granting this privilege
to the user is not required if Oracle Database Vault is not installed. You can
revoke the BECOME USER system privilege from the user after capture user is
changed, if necessary.

15.2.3 Dropping a Synchronous Capture
You run the DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package to drop an
existing synchronous capture. For example, the following procedure drops a
synchronous capture named sync_capture:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'sync_capture',
 drop_unused_rule_sets => TRUE);
END;
/

Because the drop_unused_rule_sets parameter is set to TRUE, this procedure also drops
any rule sets used by the sync_capture synchronous capture, unless a rule set is used
by another Oracle Streams client. If the drop_unused_rule_sets parameter is set to TRUE,
then the rule set for the synchronous capture might be dropped. If this procedure
drops a rule set, then it also drops any rules in the rule set that are not in another rule
set.

15.3 Managing Extra Attributes in Captured LCRs
You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package
to instruct a capture process or a synchronous capture to capture one or more extra
attributes. You can also use this procedure to instruct a capture process or
synchronous capture to exclude an extra attribute that it is capturing currently.

The extra attributes are the following:

• row_id (row LCRs only)

Chapter 15
Managing Extra Attributes in Captured LCRs

15-17

• serial#

• session#

• thread#

• tx_name

• username

This section contains instructions for completing the following tasks:

• Including Extra Attributes in Implicitly Captured LCRs

• Excluding Extra Attributes from Implicitly Captured LCRs

See Also:

• "Extra Information in LCRs"

• "Viewing the Extra Attributes Captured by Implicit Capture"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the INCLUDE_EXTRA_ATTRIBUTE procedure

15.3.1 Including Extra Attributes in Implicitly Captured LCRs
To include an extra attribute in the LCRs captured by a capture process or
synchronous capture, run the INCLUDE_EXTRA_ATTRIBUTES procedure, and set the include
parameter to TRUE. For example, to instruct a capture process or synchronous capture
named strm01_capture to include the transaction name in each LCR that it captures,
run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'strm01_capture',
 attribute_name => 'tx_name',
 include => TRUE);
END;
/

15.3.2 Excluding Extra Attributes from Implicitly Captured LCRs
To exclude an extra attribute from the LCRs captured by a capture process or
synchronous capture, run the INCLUDE_EXTRA_ATTRIBUTES procedure, and set the include
parameter to FALSE. For example, to instruct a capture process or synchronous capture
named strm01_capture to exclude the transaction name from each LCR that it
captures, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'strm01_capture',
 attribute_name => 'tx_name',
 include => FALSE);
END;
/

Chapter 15
Managing Extra Attributes in Captured LCRs

15-18

15.4 Switching From a Capture Process to a Synchronous
Capture

This section describes how to switch from a capture process to a synchronous
capture. Typically, a synchronous capture is used to capture data manipulation
language (DML) changes to a relatively small number of tables. You might decide to
make this switch if you are currently capturing changes to a small number of tables
with a capture process instead of a synchronous capture.

You should not switch from a capture process to a synchronous capture if any of the
following conditions are true:

• Instead of capturing the changes made to a small number of tables, the capture
process is capturing changes made to an entire database, one or more schemas,
or a large number of tables, and you want to continue to capture these changes.

• The capture process is capturing data definition language (DDL) changes, and you
want to continue to capture DDL changes. A synchronous capture cannot capture
DDL changes.

• The capture process uses a negative rule set, and you want to continue to use a
negative rule set. A synchronous capture cannot use negative rule set.

• The capture process is a downstream capture process. Downstream capture is not
possible with a synchronous capture.

This section uses an example to describe how to switch from a capture process to a
synchronous capture. Table 15-1 shows the Oracle Streams components in the
sample environment before the switch and after the switch.

Table 15-1 Sample Switch From a Capture Process to a Synchronous Capture

Oracle Streams Component Before Switch After Switch

Capture Process cap_proc None

Capture Process Rule Set cap_rules None

Synchronous Capture None sync_cap

Synchronous Capture Rule
Set

None cap_rules

Propagation cap_proc_prop sync_cap_prop

Propagation Rule Set prop_rules prop_rules

Source Queue cap_proc_source sync_cap_source

Destination Queue cap_proc_dest sync_cap_dest

Apply Process apply_cap_proc apply_sync_cap

Apply Process Rule Set apply_rules apply_rules

In Table 15-1, notice that the Oracle Streams environment uses the same rule sets
before the switch and after the switch. Also, for the example in this section, assume
that the source database is db1.example.com and the destination database is
db2.example.com.

Chapter 15
Switching From a Capture Process to a Synchronous Capture

15-19

Note:

The example in this section assumes that the Oracle Streams environment
only involves two databases. If you are using a directed network to send
changes through multiple databases, then you might need to configure
additional propagations and queues for the new synchronous capture stream
of changes, and you might need to drop additional propagations and queues
that were used by the capture process stream.

To switch from a capture process to a synchronous capture, complete the following
steps:

1. In SQL*Plus, log in to the source database as the Oracle Streams administrator.

This example assumes that the Oracle Streams administrator is strmadmin at each
database. See Oracle Streams Replication Administrator's Guide for information
about creating an Oracle Streams administrator.

2. Stop the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'cap_proc');
END;
/

3. In SQL*Plus, log in to the destination database as the Oracle Streams
administrator.

4. Create a commit-time queue for the apply process that will apply the changes that
were captured by the synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.sync_cap_dest_qt',
 queue_name => 'strmadmin.sync_cap_dest');
END;
/

5. Create an apply process that applies the changes in the queue created in Step 4.
Ensure that the apply_captured parameter is set to FALSE. Also, ensure that the
rule_set_name parameter specifies the rule set used by the existing apply process.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.sync_cap_dest',
 apply_name => 'apply_sync_cap',
 rule_set_name => 'strmadmin.apply_rules',
 apply_captured => FALSE);
END;
/

Chapter 15
Switching From a Capture Process to a Synchronous Capture

15-20

Ensure that the apply process is configured properly for your environment.
Specifically, ensure that the new apply process is configured properly regarding
the following items:

• Apply user

• Apply handlers

• Apply tag

If appropriate, then ensure that the new apply process is configured in the same
way as the existing apply process regarding these items.

See Oracle Streams Replication Administrator's Guide for information about
creating an apply process.

6. In SQL*Plus, log in to the source database as the Oracle Streams administrator.

7. Create a commit-time queue for the synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.sync_cap_source_qt',
 queue_name => 'strmadmin.sync_cap_source');
END;
/

See Oracle Streams Replication Administrator's Guide for information about
configuring queues.

8. Create a propagation that sends changes from the queue created in Step 7 to the
queue created in Step 4. Ensure that the rule_set_name parameter specifies the
rule set used by the existing propagation.

In this example, run the following procedure:

BEGIN
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'sync_cap_prop',
 source_queue => 'strmadmin.sync_cap_source',
 destination_queue => 'strmadmin.sync_cap_dest',
 destination_dblink => 'db2.example.com',
 rule_set_name => 'strmadmin.prop_rules');
END;
/

See Oracle Streams Replication Administrator's Guide for information about
creating propagations.

9. Create a synchronous capture. Ensure that the queue_name parameter specifies the
queue created in Step 7. Also, ensure that the rule_set_name parameter specifies
the rule set used by the existing capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_SYNC_CAPTURE(
 queue_name => 'strmadmin.sync_cap_source',
 capture_name => 'sync_cap',
 rule_set_name => 'strmadmin.capture_rules');
END;
/

Chapter 15
Switching From a Capture Process to a Synchronous Capture

15-21

The specified rule set must only contain rules that were created using the
ADD_TABLE_RULES and ADD_SUBSET_RULES procedures in the DBMS_STREAMS_ADM
package. If the current capture process rule set contains other types of rules, then
create a rule set for the synchronous capture and use the ADD_TABLE_RULES and
ADD_SUBSET_RULES procedures to add rules to the new rule set.

In addition, a synchronous capture cannot have a negative rule set. If the current
capture process has a negative rule set, and you want the synchronous capture to
behave the same as the capture process, then add rules to the positive
synchronous capture rule set that result in the same behavior.

If the existing capture process uses a capture user that is not the Oracle Streams
administrator, then ensure that you use the capture_user parameter in the
CREATE_SYNC_CAPTURE procedure to specify the correct capture user for the new
synchronous capture.

See Oracle Streams Replication Administrator's Guide for information about
configuring synchronous capture.

10. Verify that the tables that are configured for synchronous capture are the same as
the ones configured for the existing capture process by running the following
query:

SELECT * FROM DBA_SYNC_CAPTURE_TABLES ORDER BY TABLE_OWNER, TABLE_NAME;

If any table is missing or not enabled, then use the ADD_TABLE_RULES or
ADD_SUBSET_RULES procedure to add the table.

11. Prepare the replicated tables for instantiation. The replicated tables are the tables
for which the synchronous capture captures changes.

For example, if the synchronous capture captures changes to the hr.employees and
hr.departments tables, then run the following function:

SET SERVEROUTPUT ON
DECLARE
 tables DBMS_UTILITY.UNCL_ARRAY;
 prepare_scn NUMBER;
 BEGIN
 tables(1) := 'hr.departments';
 tables(2) := 'hr.employees';
 prepare_scn := DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names => tables);
 DBMS_OUTPUT.PUT_LINE('Prepare SCN = ' || prepare_scn);
END;
/

The returned prepare system change number (SCN) is used in steps later in this
procedure. This example assumes that the prepare SCN is 2700000.

All of the replicated tables must be included in one call to the
PREPARE_SYNC_INSTANTIATION function.

See Oracle Streams Replication Administrator's Guide for more information about
preparing database objects for instantiation.

12. In SQL*Plus, log in to the destination database as the Oracle Streams
administrator.

13. Set the apply process that applies changes from the capture process to stop
applying changes when it reaches the SCN returned in Step 11 plus 1.

Chapter 15
Switching From a Capture Process to a Synchronous Capture

15-22

For example, if the prepare SCN is 2700000, then run the following procedure to set
the maximum_scn parameter to 2700001 (2700000 + 1).:

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_cap_proc',
 parameter => 'maximum_scn',
 value => '2700001');
END;
/

14. In SQL*Plus, log in to the source database as the Oracle Streams administrator.

15. Start the capture process that you stopped in Step 2.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'cap_proc');
END;
/

16. In SQL*Plus, log in to the destination database as the Oracle Streams
administrator.

17. Wait until the apply process that applies changes that were captured by the
capture process has reached the SCN specified in Step 13. When this event
occurs, the apply process is automatically disabled with error ORA-26717 to
indicate the SCN limit has reached.

To determine if the apply process has reached this point, query the DBA_APPLY view.
In this example, run the following query:

SELECT 1 FROM DBA_APPLY
 WHERE STATUS = 'DISABLED' AND
 ERROR_NUMBER = 26717 AND
 APPLY_NAME = 'APPLY_CAP_PROC';

Do not proceed to the next step until this query returns a row.

18. Set the instantiation SCN for the replicated tables to the SCN value the SCN
returned in Step 11.

In this example, run the following procedures:

BEGIN
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.employees',
 source_database_name => 'db1.example.com',
 instantiation_scn => 2700000);
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.departments',
 source_database_name => 'db1.example.com',
 instantiation_scn => 2700000);
END;
/

See Oracle Streams Replication Administrator's Guide for more information about
setting the instantiation SCN.

Chapter 15
Switching From a Capture Process to a Synchronous Capture

15-23

19. Start the apply process that you created in Step 5.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_sync_cap');
END;
/

20. Drop the apply process that applied changes that were captured by the capture
process.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name => 'apply_cap_proc');
END;
/

21. If it is no longer needed, then drop the queue that was used by the apply process
that you dropped in Step 20.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.cap_proc_dest',
 drop_unused_queue_table => TRUE);
END;
/

22. In SQL*Plus, log in to the source database as the Oracle Streams administrator.

23. Stop the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name => 'cap_proc');
END;
/

24. Drop the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'cap_proc');
END;
/

25. Drop the propagation that sent changes that were captured by the capture
process.

In this example, run the following procedure:

BEGIN
 DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name => 'cap_proc_prop');
END;
/

Chapter 15
Switching From a Capture Process to a Synchronous Capture

15-24

26. If it is no longer needed, then drop the queue that was used by the capture
process and propagation that you dropped in Steps 24 and 25.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.cap_proc_source',
 drop_unused_queue_table => TRUE);
END;
/

If you have a bi-directional replication environment, then you can perform these steps
independently to switch from a capture process to synchronous capture in both
directions.

See Also:

• Oracle Streams Information Capture

• How Rules Are Used in Oracle Streams

15.5 Switching from a Synchronous Capture to a Capture
Process

This section describes how to switch from a synchronous capture to a capture
process. You might decide to make this switch for one or more of the following
reasons:

• You are currently capturing changes to a small number of tables but want to
expand your environment to capture changes to a large number of tables, one or
more schemas, or an entire database.

• You want to use a negative rule set during change capture.

• You want to capture data definition language (DDL) changes to database objects.

This section uses an example to describe how to switch from a synchronous capture
to a capture process. Table 15-2 shows the Oracle Streams components in the sample
environment before the switch and after the switch.

Table 15-2 Sample Switch From a Synchronous Capture to a Capture Process

Oracle Streams Component Before Switch After Switch

Synchronous Capture sync_proc None

Synchronous Capture Rule
Set

cap_rules None

Capture Process None cap_proc

Capture Process Rule Set None cap_rules

Propagation sync_cap_prop cap_proc_prop

Propagation Rule Set prop_rules prop_rules

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-25

Table 15-2 (Cont.) Sample Switch From a Synchronous Capture to a Capture
Process

Oracle Streams Component Before Switch After Switch

Source Queue sync_cap_source cap_proc_source

Destination Queue sync_cap_dest cap_proc_dest

Apply Process apply_sync_cap apply_cap_proc

Apply Process Rule Set apply_rules apply_rules

In Table 15-2, notice that the Oracle Streams environment uses the same rule sets
before the switch and after the switch. Also, for the example in this section, assume
that the source database is db1.example.com and the destination database is
db2.example.com.

Note:

The example in this section assumes that the Oracle Streams environment
only involves two databases. If you are using a directed network to send
changes through multiple databases, then you might need to configure
additional propagations and queues for the new capture process stream of
changes, and you might need to drop additional propagations and queues that
were used by the synchronous capture stream.

To switch from a synchronous capture to a capture process, complete the following
steps:

1. Ensure that the source database is running in ARCHIVELOG mode. See
"ARCHIVELOG Mode and a Capture Process" and Oracle Database
Administrator's Guide for more information.

2. In SQL*Plus, log in to the destination database as the Oracle Streams
administrator.

This example assumes that the Oracle Streams administrator is strmadmin at each
database. See Oracle Streams Replication Administrator's Guide for information
about creating an Oracle Streams administrator.

3. Create the queue for the apply process that will apply the changes that were
captured by the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.cap_proc_dest_qt',
 queue_name => 'strmadmin.cap_proc_dest');
END;
/

See Oracle Streams Replication Administrator's Guide for information about
configuring queues.

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-26

4. Create an apply process that applies the changes in the queue created in Step 3.
Ensure that the apply_captured parameter is set to TRUE. Also, ensure that the
rule_set_name parameter specifies the rule set used by the existing apply process.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name => 'strmadmin.cap_proc_dest',
 apply_name => 'apply_cap_proc',
 rule_set_name => 'strmadmin.apply_rules',
 apply_captured => TRUE);
END;
/

Ensure that the apply process is configured properly for your environment.
Specifically, ensure that the new apply process is configured properly regarding
the following items:

• Apply user

• Apply handlers

• Apply tag

If appropriate, then ensure that the new apply process is configured in the same
way as the existing apply process regarding these items.

See Oracle Streams Replication Administrator's Guide for information about
creating an apply process.

5. Stop the apply process that applies changes captured by the synchronous
capture.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.STOP_APPLY(
 apply_name => 'apply_sync_cap');
END;
/

6. In SQL*Plus, log in to the source database as the Oracle Streams administrator.

7. Create the queue for the capture process.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.cap_proc_source_qt',
 queue_name => 'strmadmin.cap_proc_source');
END;
/

8. Create a propagation that sends changes from the queue created in Step 7 to the
queue created in Step 3. Ensure that the rule_set_name parameter specifies the
rule set used by the existing propagation.

In this example, run the following procedure:

BEGIN
 DBMS_PROPAGATION_ADM.CREATE_PROPAGATION(
 propagation_name => 'cap_proc_prop',
 source_queue => 'strmadmin.cap_proc_source',
 destination_queue => 'strmadmin.cap_proc_dest',

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-27

 destination_dblink => 'db2.example.com',
 rule_set_name => 'strmadmin.prop_rules');
END;
/

See Oracle Streams Replication Administrator's Guide for information about
creating propagations.

9. Create a capture process. Ensure that the parameters are set properly in the
CREATE_CAPTURE procedure:

• Set the queue_name parameter to the queue created in Step 7.

• Set the rule_set_name parameter to the rule set used by the existing
synchronous capture.

• If the existing synchronous capture uses a capture user that is not the Oracle
Streams administrator, then set the capture_user parameter to the correct
capture user for the new capture process.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name => 'strmadmin.cap_proc_source',
 capture_name => 'cap_proc',
 rule_set_name => 'strmadmin.cap_rules');
END;
/

See Oracle Streams Replication Administrator's Guide for more information about
configuring a capture process.

10. Prepare the replicated tables for instantiation. The replicated tables are the tables
for which the capture process captures changes.

For example, if the capture process captures changes to the hr.employees and
hr.departments tables, then run the following procedures:

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.employees',
 supplemental_logging => 'keys');
END;
/

BEGIN
 DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name => 'hr.departments',
 supplemental_logging => 'keys');
END;
/

See Oracle Streams Replication Administrator's Guide for more information about
preparing database objects for instantiation.

11. Lock all of the replicated tables in SHARE MODE.

In this example, run the following SQL statement:

LOCK TABLE hr.employees, hr.departments IN SHARE MODE;

12. Determine the current system change number (SCN) by running the following
query:

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-28

SELECT CURRENT_SCN FROM V$DATABASE;

The returned switch SCN is used in later steps in this procedure. This example
assumes that the switch SCN is 2700000.

13. Run a COMMIT statement to release the lock on the replicated tables:

COMMIT;

14. In SQL*Plus, log in to the destination database as the Oracle Streams
administrator.

15. Set the apply process that applies changes from the synchronous capture to stop
applying changes when it reaches the SCN returned in Step 12 plus 1.

For example, if the switch SCN is 2700000, then run the following procedure to set
the maximum_scn parameter to 2700001 (2700000 + 1):

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'apply_sync_cap',
 parameter => 'maximum_scn',
 value => '2700001');
END;
/

16. Start the apply process that applies changes from the synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_sync_cap');
END;
/

17. Wait until the apply process that applies changes that were captured by the
synchronous capture has reached the SCN specified in Step 15. When this event
occurs, the apply process is automatically disabled with error ORA-26717 to
indicate the SCN limit has reached.

To determine if the apply process has reached this point, query the DBA_APPLY view.
In this example, run the following query:

SELECT 1 FROM DBA_APPLY
 WHERE STATUS = 'DISABLED' AND
 ERROR_NUMBER = 26717 AND
 APPLY_NAME = 'APPLY_SYNC_CAP';

Do not proceed to the next step until this query returns a row.

18. Set the instantiation SCN for the replicated tables to the SCN value returned in
Step 12.

In this example, run the following procedures:

BEGIN
 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.employees',
 source_database_name => 'db1.example.com',
 instantiation_scn => 2700000);
END;
/

BEGIN

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-29

 DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name => 'hr.departments',
 source_database_name => 'db1.example.com',
 instantiation_scn => 2700000);
END;
/

See Oracle Streams Replication Administrator's Guide for more information about
setting the instantiation SCN.

19. Start the apply process that you created in Step 4.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_cap_proc');
END;
/

20. Drop the apply process that applied changes that were captured by the
synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name => 'apply_sync_cap');
END;
/

21. If it is no longer needed, then drop the queue that was used by the apply process
that you dropped in Step 20.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.sync_cap_dest',
 drop_unused_queue_table => TRUE);
END;
/

22. In SQL*Plus, log in to the source database as the Oracle Streams administrator.

23. Start the capture process that you created in Step 9.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'cap_proc');
END;
/

24. Drop the synchronous capture.

In this example, run the following procedure:

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'sync_cap');
END;
/

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-30

25. Drop the propagation that sent changes that were captured by the synchronous
capture.

In this example, run the following procedure:

BEGIN
 DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name => 'sync_cap_prop');
END;
/

26. If it is no longer needed, then drop the queue that was used by the synchronous
capture and propagation that you dropped in Steps 24 and 25.

In this example, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.sync_cap_source',
 drop_unused_queue_table => TRUE);
END;
/

If you have a bi-directional replication environment, then you can perform these steps
independently to switch from a synchronous capture to a capture process in both
directions.

See Also:

• Oracle Streams Information Capture

• How Rules Are Used in Oracle Streams

Chapter 15
Switching from a Synchronous Capture to a Capture Process

15-31

16
Managing Staging and Propagation

The following topics describe managing ANYDATA queues and propagations:

• Managing Queues

• Managing Oracle Streams Propagations and Propagation Jobs

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

See Also:

• Oracle Streams Staging and Propagation

• Oracle Streams Replication Administrator's Guide for information about
creating an Oracle Streams administrator

• "Monitoring Queues and Messaging"

• "Monitoring Oracle Streams Propagations and Propagation Jobs"

• Troubleshooting Propagation

16.1 Managing Queues
An ANYDATA queue stages messages whose payloads are of ANYDATA type. Therefore,
an ANYDATA queue can stage a message with a payload of nearly any type, if the
payload is wrapped in an ANYDATA wrapper. Each Oracle Streams capture process,
apply process, and messaging client is associated with one ANYDATA queue, and each
Oracle Streams propagation is associated with one ANYDATA source queue and one
ANYDATA destination queue.

This section contains instructions for completing the following tasks related to queues:

• Enabling a User to Perform Operations on a Secure Queue

• Disabling a User from Performing Operations on a Secure Queue

• Removing a Queue

16.1.1 Enabling a User to Perform Operations on a Secure Queue
For a user to perform queue operations, such as enqueue and dequeue, on a secure
queue, the user must be configured as a secure queue user of the queue. If you use
the SET_UP_QUEUE procedure in the DBMS_STREAMS_ADM package to create the secure
queue, then the queue owner and the user specified by the queue_user parameter are
configured as secure users of the queue automatically. If you want to enable other

16-1

users to perform operations on the queue, then you can configure these users in one
of the following ways:

• Run SET_UP_QUEUE and specify a queue_user. Queue creation is skipped if the queue
already exists, but a new queue user is configured if one is specified.

• Associate the user with an Oracle Database Advanced Queuing (AQ) agent
manually.

The following example illustrates associating a user with an Oracle Streams AQ agent
manually. Suppose you want to enable the oe user to perform queue operations on a
queue named streams_queue. The following steps configure the oe user as a secure
queue user of streams_queue:

1. In SQL*Plus, connect as an administrative user who can create Oracle Streams
AQ agents and alter users.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create an agent:

EXEC DBMS_AQADM.CREATE_AQ_AGENT(agent_name => 'streams_queue_agent');

3. If the user must be able to dequeue messages from queue, then make the agent a
subscriber of the secure queue:

DECLARE
 subscriber SYS.AQ$_AGENT;
BEGIN
 subscriber := SYS.AQ$_AGENT('streams_queue_agent', NULL, NULL);
 DBMS_AQADM.ADD_SUBSCRIBER(
 queue_name => 'strmadmin.streams_queue',
 subscriber => subscriber,
 rule => NULL,
 transformation => NULL);
END;
/

4. Associate the user with the agent:

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'streams_queue_agent',
 db_username => 'oe');
END;
/

5. Grant the user EXECUTE privilege on the DBMS_STREAMS_MESSAGING package or the
DBMS_AQ package, if the user is not already granted these privileges:

GRANT EXECUTE ON DBMS_STREAMS_MESSAGING TO oe;

GRANT EXECUTE ON DBMS_AQ TO oe;

When these steps are complete, the oe user is a secure user of the streams_queue
queue and can perform operations on the queue. You still must grant the user specific
privileges to perform queue operations, such as enqueue and dequeue privileges.

Chapter 16
Managing Queues

16-2

See Also:

• "Secure Queues"

• Oracle Database PL/SQL Packages and Types Reference for more
information about Oracle Streams AQ agents and using the DBMS_AQADM
package

16.1.2 Disabling a User from Performing Operations on a Secure
Queue

You might want to disable a user from performing queue operations on a secure
queue for the following reasons:

• You dropped a capture process or a synchronous capture, but you did not drop the
queue that was used by the capture process or synchronous capture, and you do
not want the user who was the capture user to be able to perform operations on
the remaining secure queue.

• You dropped an apply process, but you did not drop the queue that was used by
the apply process, and you do not want the user who was the apply user to be
able to perform operations on the remaining secure queue.

• You used the ALTER_APPLY procedure in the DBMS_APPLY_ADM package to change the
apply_user for an apply process, and you do not want the old apply_user to be able
to perform operations on the apply process's queue.

• You enabled a user to perform operations on a secure queue by completing the
steps described in Enabling a User to Perform Operations on a Secure Queue, but
you no longer want this user to be able to perform operations on the secure
queue.

To disable a secure queue user, you can revoke ENQUEUE and DEQUEUE privilege on the
queue from the user, or you can run the DISABLE_DB_ACCESS procedure in the DBMS_AQADM
package. For example, suppose you want to disable the oe user from performing
queue operations on a queue named streams_queue.

Note:

If an Oracle Streams AQ agent is used for multiple secure queues, then
running DISABLE_DB_ACCESS for the agent prevents the user associated with the
agent from performing operations on all of these queues.

1. Run the following procedure to disable the oe user from performing queue
operations on the secure queue streams_queue:

BEGIN
 DBMS_AQADM.DISABLE_DB_ACCESS(
 agent_name => 'streams_queue_agent',
 db_username => 'oe');
END;
/

Chapter 16
Managing Queues

16-3

2. If the agent is no longer needed, you can drop the agent:

BEGIN
 DBMS_AQADM.DROP_AQ_AGENT(
 agent_name => 'streams_queue_agent');
END;
/

3. Revoke privileges on the queue from the user, if the user no longer needs these
privileges.

BEGIN
 DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege => 'ALL',
 queue_name => 'strmadmin.streams_queue',
 grantee => 'oe');
END;
/

See Also:

• "Secure Queues"

• Oracle Database PL/SQL Packages and Types Reference for more
information about Oracle Streams AQ agents and using the DBMS_AQADM
package

16.1.3 Removing a Queue
You use the REMOVE_QUEUE procedure in the DBMS_STREAMS_ADM package to remove an
existing ANYDATA queue. When you run the REMOVE_QUEUE procedure, it waits until any
existing messages in the queue are consumed. Next, it stops the queue, which means
that no further enqueues into the queue or dequeues from the queue are allowed.
When the queue is stopped, it drops the queue.

You can also drop the queue table for the queue if it is empty and is not used by
another queue. To do so, specify TRUE, the default, for the drop_unused_queue_table
parameter.

In addition, you can drop any Oracle Streams clients that use the queue by setting the
cascade parameter to TRUE. By default, the cascade parameter is set to FALSE.

For example, to remove an ANYDATA queue named streams_queue in the strmadmin
schema and drop its empty queue table, run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.streams_queue',
 cascade => FALSE,
 drop_unused_queue_table => TRUE);
END;
/

In this case, because the cascade parameter is set to FALSE, this procedure drops the
streams_queue only if no Oracle Streams clients use the queue. If the cascade

Chapter 16
Managing Queues

16-4

parameter is set to FALSE and any Oracle Streams client uses the queue, then an error
is raised.

16.2 Managing Oracle Streams Propagations and
Propagation Jobs

A propagation propagates messages from an Oracle Streams source queue to an
Oracle Streams destination queue. This section provides instructions for completing
the following tasks:

• Starting a Propagation

• Stopping a Propagation

• Altering the Schedule of a Propagation Job

• Specifying the Rule Set for a Propagation

• Adding Rules to the Rule Set for a Propagation

• Removing a Rule from the Rule Set for a Propagation

• Removing a Rule Set for a Propagation

• Dropping a Propagation

In addition, you can use the features of Oracle Database Advanced Queuing (AQ) to
manage Oracle Streams propagations.

See Also:

• "Message Propagation Between Queues"

• The Oracle Enterprise Manager Cloud Control online help for instructions
on managing propagations with Oracle Enterprise Manager Cloud Control

• Oracle Database Advanced Queuing User's Guide for more information
about managing propagations with the features of Oracle Streams AQ

16.2.1 Starting a Propagation
You run the START_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to start
an existing propagation. For example, the following procedure starts a propagation
named strm01_propagation:

BEGIN
 DBMS_PROPAGATION_ADM.START_PROPAGATION(
 propagation_name => 'strm01_propagation');
END;
/

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-5

16.2.2 Stopping a Propagation
You run the STOP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to stop
an existing propagation. For example, the following procedure stops a propagation
named strm01_propagation:

BEGIN
 DBMS_PROPAGATION_ADM.STOP_PROPAGATION(
 propagation_name => 'strm01_propagation',
 force => FALSE);
END;
/

To clear the statistics for the propagation when it is stopped, set the force parameter
to TRUE. If there is a problem with a propagation, then stopping the propagation with the
force parameter set to TRUE and restarting the propagation might correct the problem. If
the force parameter is set to FALSE, then the statistics for the propagation are not
cleared.

16.2.3 Altering the Schedule of a Propagation Job
To alter the schedule of an existing propagation job, use the
ALTER_PROPAGATION_SCHEDULE procedure in the DBMS_AQADM package. The following
sections contain examples that alter the schedule of a propagation job for a queue-to-
queue propagation and for a queue-to-dblink propagation. These examples set the
propagation job to propagate messages every 15 minutes (900 seconds), with each
propagation lasting 300 seconds, and a 25-second wait before new messages in a
completely propagated queue are propagated.

This section contains these topics:

• Altering the Schedule of a Propagation Job for a Queue-to-Queue Propagation

• Altering the Schedule of a Propagation Job for a Queue-to-Dblink Propagation

See Also:

• Oracle Database Advanced Queuing User's Guide for more information
about using the ALTER_PROPAGATION_SCHEDULE procedure

• "Queue-to-Queue Propagations"

• "Propagation Jobs"

16.2.3.1 Altering the Schedule of a Propagation Job for a Queue-to-Queue
Propagation

To alter the schedule of a propagation job for a queue-to-queue propagation that
propagates messages from the strmadmin.strm_a_queue source queue to the
strmadmin.strm_b_queue destination queue using the dbs2.example.com database link,
run the following procedure:

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-6

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.strm_a_queue',
 destination => 'dbs2.example.com',
 duration => 300,
 next_time => 'SYSDATE + 900/86400',
 latency => 25,
 destination_queue => 'strmadmin.strm_b_queue');
END;
/

Because each queue-to-queue propagation has its own propagation job, this
procedure alters only the schedule of the propagation that propagates messages
between the two queues specified. The destination_queue parameter must specify the
name of the destination queue to alter the propagation schedule of a queue-to-queue
propagation.

16.2.3.2 Altering the Schedule of a Propagation Job for a Queue-to-Dblink
Propagation

To alter the schedule of a propagation job for a queue-to-dblink propagation that
propagates messages from the strmadmin.streams_queue source queue using the
dbs3.example.com database link, run the following procedure:

BEGIN
 DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(
 queue_name => 'strmadmin.streams_queue',
 destination => 'dbs3.example.com',
 duration => 300,
 next_time => 'SYSDATE + 900/86400',
 latency => 25);
END;
/

Because the propagation is a queue-to-dblink propagation, the destination_queue
parameter is not specified. Completing this task affects all queue-to-dblink
propagations that propagate messages from the source queue to all destination
queues that use the dbs3.example.com database link.

16.2.4 Specifying the Rule Set for a Propagation
You can specify one positive rule set and one negative rule set for a propagation. The
propagation propagates a message if it evaluates to TRUE for at least one rule in the
positive rule set and discards a change if it evaluates to TRUE for at least one rule in the
negative rule set. The negative rule set is evaluated before the positive rule set.

This section contains these topics:

• Specifying a Positive Rule Set for a Propagation

• Specifying a Negative Rule Set for a Propagation

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-7

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

16.2.4.1 Specifying a Positive Rule Set for a Propagation
You specify an existing rule set as the positive rule set for an existing propagation
using the rule_set_name parameter in the ALTER_PROPAGATION procedure. This procedure
is in the DBMS_PROPAGATION_ADM package.

For example, the following procedure sets the positive rule set for a propagation
named strm01_propagation to strm02_rule_set.

BEGIN
 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name => 'strm01_propagation',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

16.2.4.2 Specifying a Negative Rule Set for a Propagation
You specify an existing rule set as the negative rule set for an existing propagation
using the negative_rule_set_name parameter in the ALTER_PROPAGATION procedure. This
procedure is in the DBMS_PROPAGATION_ADM package.

For example, the following procedure sets the negative rule set for a propagation
named strm01_propagation to strm03_rule_set.

BEGIN
 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name => 'strm01_propagation',
 negative_rule_set_name => 'strmadmin.strm03_rule_set');
END;
/

16.2.5 Adding Rules to the Rule Set for a Propagation
To add rules to the rule set of a propagation, you can run one of the following
procedures:

• DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_PROPAGATION_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES

Excluding the ADD_SUBSET_PROPAGATION_RULES procedure, these procedures can add
rules to the positive rule set or negative rule set for a propagation. The
ADD_SUBSET_PROPAGATION_RULES procedure can add rules only to the positive rule set for
a propagation.

This section contains these topics:

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-8

• Adding Rules to the Positive Rule Set for a Propagation

• Adding Rules to the Negative Rule Set for a Propagation

See Also:

• "Message Propagation Between Queues"

• "System-Created Rules"

16.2.5.1 Adding Rules to the Positive Rule Set for a Propagation
The following example runs the ADD_TABLE_PROPAGATION_RULES procedure in the
DBMS_STREAMS_ADM package to add rules to the positive rule set of an existing
propagation named strm01_propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.locations',
 streams_name => 'strm01_propagation',
 source_queue_name => 'strmadmin.strm_a_queue',
 destination_queue_name => 'strmadmin.strm_b_queue@dbs2.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates two rules. One rule evaluates to TRUE for row LCRs that contain the results
of DML changes to the hr.locations table. The other rule evaluates to TRUE for
DDL LCRs that contain DDL changes to the hr.locations table. The rule names
are system generated.

• Specifies that both rules evaluate to TRUE only for LCRs whose changes originated
at the dbs1.example.com source database.

• Adds the two rules to the positive rule set associated with the propagation
because the inclusion_rule parameter is set to TRUE.

16.2.5.2 Adding Rules to the Negative Rule Set for a Propagation
The following example runs the ADD_TABLE_PROPAGATION_RULES procedure in the
DBMS_STREAMS_ADM package to add rules to the negative rule set of an existing
propagation named strm01_propagation:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_PROPAGATION_RULES(
 table_name => 'hr.departments',
 streams_name => 'strm01_propagation',
 source_queue_name => 'strmadmin.strm_a_queue',
 destination_queue_name => 'strmadmin.strm_b_queue@dbs2.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-9

 source_database => 'dbs1.example.com',
 inclusion_rule => FALSE);
END;
/

Running this procedure performs the following actions:

• Creates two rules. One rule evaluates to TRUE for row LCRs that contain the results
of DML changes to the hr.departments table, and the other rule evaluates to TRUE
for DDL LCRs that contain DDL changes to the hr.departments table. The rule
names are system generated.

• Specifies that both rules evaluate to TRUE only for LCRs whose changes originated
at the dbs1.example.com source database.

• Adds the two rules to the negative rule set associated with the propagation
because the inclusion_rule parameter is set to FALSE.

16.2.6 Removing a Rule from the Rule Set for a Propagation
You remove a rule from the rule set for an existing propagation by running the
REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following
procedure removes a rule named departments3 from the positive rule set of a
propagation named strm01_propagation.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
 streams_type => 'propagation',
 streams_name => 'strm01_propagation',
 drop_unused_rule => TRUE,
 inclusion_rule => TRUE);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to
TRUE, which is the default setting. Therefore, if the rule being removed is not in any
other rule set, then it will be dropped from the database. If the drop_unused_rule
parameter is set to FALSE, then the rule is removed from the rule set, but it is not
dropped from the database even if it is not in any other rule set.

If the inclusion_rule parameter is set to FALSE, then the REMOVE_RULE procedure
removes the rule from the negative rule set for the propagation, not the positive rule
set.

To remove all of the rules in the rule set for the propagation, then specify NULL for the
rule_name parameter when you run the REMOVE_RULE procedure.

See Also:

"Oracle Streams Client with One or More Empty Rule Sets"

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-10

16.2.7 Removing a Rule Set for a Propagation
You remove a rule set from a propagation using the ALTER_PROPAGATION procedure in
the DBMS_PROPAGATION_ADM package. This procedure can remove the positive rule set,
negative rule set, or both. Specify TRUE for the remove_rule_set parameter to remove
the positive rule set for the propagation. Specify TRUE for the remove_negative_rule_set
parameter to remove the negative rule set for the propagation.

For example, the following procedure removes both the positive and the negative rule
set from a propagation named strm01_propagation.

BEGIN
 DBMS_PROPAGATION_ADM.ALTER_PROPAGATION(
 propagation_name => 'strm01_propagation',
 remove_rule_set => TRUE,
 remove_negative_rule_set => TRUE);
END;
/

Note:

If a propagation does not have a positive or negative rule set, then the
propagation propagates all messages in the source queue to the destination
queue.

16.2.8 Dropping a Propagation
You run the DROP_PROPAGATION procedure in the DBMS_PROPAGATION_ADM package to drop
an existing propagation. For example, the following procedure drops a propagation
named strm01_propagation:

BEGIN
 DBMS_PROPAGATION_ADM.DROP_PROPAGATION(
 propagation_name => 'strm01_propagation',
 drop_unused_rule_sets => TRUE);
END;
/

Because the drop_unused_rule_sets parameter is set to TRUE, this procedure also drops
any rule sets used by the propagation strm01_propagation, unless a rule set is used by
another Oracle Streams client. If the drop_unused_rule_sets parameter is set to TRUE,
then both the positive rule set and negative rule set for the propagation might be
dropped. If this procedure drops a rule set, then it also drops any rules in the rule set
that are not in another rule set.

Note:

When you drop a propagation, the propagation job used by the propagation is
dropped automatically, if no other propagations are using the propagation job.

Chapter 16
Managing Oracle Streams Propagations and Propagation Jobs

16-11

17
Managing Oracle Streams Information
Consumption

An apply process implicitly consumes information in an Oracle Streams environment.
An apply process dequeues logical change records (LCRs) and user messages from a
specific queue and either applies each one directly or passes it as a parameter to a
user-defined procedure.

The following topics describe managing Oracle Streams apply processes:

• Starting an Apply Process

• Stopping an Apply Process

• Managing the Rule Set for an Apply Process

• Setting an Apply Process Parameter

• Setting the Apply User for an Apply Process

• Managing a DML Handler

• Managing a DDL Handler

• Managing the Message Handler for an Apply Process

• Managing the Precommit Handler for an Apply Process

• Specifying That Apply Processes Enqueue Messages

• Specifying Execute Directives for Apply Processes

• Managing an Error Handler

• Managing Apply Errors

• Managing the Substitute Key Columns for a Table

• Using Virtual Dependency Definitions

• Dropping an Apply Process

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

17-1

See Also:

• Oracle Streams Information Consumption

• " Monitoring Oracle Streams Apply Processes"

• Troubleshooting Apply

• Oracle Streams Replication Administrator's Guide for information about
creating an Oracle Streams administrator

• The Oracle Enterprise Manager Cloud Control online Help for instructions
on managing an apply process with Oracle Enterprise Manager Cloud
Control

17.1 Starting an Apply Process
You run the START_APPLY procedure in the DBMS_APPLY_ADM package to start an existing
apply process. For example, the following procedure starts an apply process named
strm01_apply:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'strm01_apply');
END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions
about starting an apply process with Oracle Enterprise Manager Cloud Control

17.2 Stopping an Apply Process
You run the STOP_APPLY procedure in the DBMS_APPLY_ADM package to stop an existing
apply process. For example, the following procedure stops an apply process named
strm01_apply:

BEGIN
 DBMS_APPLY_ADM.STOP_APPLY(
 apply_name => 'strm01_apply');
END;
/

See Also:

The Oracle Enterprise Manager Cloud Control online help for instructions
about stopping an apply process with Oracle Enterprise Manager Cloud
Control

Chapter 17
Starting an Apply Process

17-2

17.3 Managing the Rule Set for an Apply Process
This section contains instructions for completing the following tasks:

• Specifying the Rule Set for an Apply Process

• Adding Rules to the Rule Set for an Apply Process

• Removing a Rule from the Rule Set for an Apply Process

• Removing a Rule Set for an Apply Process

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

17.3.1 Specifying the Rule Set for an Apply Process
You can specify one positive rule set and one negative rule set for an apply process.
The apply process applies a message if it evaluates to TRUE for at least one rule in the
positive rule set and discards a message if it evaluates to TRUE for at least one rule in
the negative rule set. The negative rule set is evaluated before the positive rule set.

17.3.1.1 Specifying a Positive Rule Set for an Apply Process
You specify an existing rule set as the positive rule set for an existing apply process
using the rule_set_name parameter in the ALTER_APPLY procedure. This procedure is in
the DBMS_APPLY_ADM package.

For example, the following procedure sets the positive rule set for an apply process
named strm01_apply to strm02_rule_set.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 rule_set_name => 'strmadmin.strm02_rule_set');
END;
/

17.3.1.2 Specifying a Negative Rule Set for an Apply Process
You specify an existing rule set as the negative rule set for an existing apply process
using the negative_rule_set_name parameter in the ALTER_APPLY procedure. This
procedure is in the DBMS_APPLY_ADM package.

For example, the following procedure sets the negative rule set for an apply process
named strm01_apply to strm03_rule_set.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 negative_rule_set_name => 'strmadmin.strm03_rule_set');

Chapter 17
Managing the Rule Set for an Apply Process

17-3

END;
/

17.3.2 Adding Rules to the Rule Set for an Apply Process
To add rules to the rule set for an apply process, you can run one of the following
procedures:

• DBMS_STREAMS_ADM.ADD_TABLE_RULES

• DBMS_STREAMS_ADM.ADD_SUBSET_RULES

• DBMS_STREAMS_ADM.ADD_SCHEMA_RULES

• DBMS_STREAMS_ADM.ADD_GLOBAL_RULES

Excluding the ADD_SUBSET_RULES procedure, these procedures can add rules to the
positive rule set or negative rule set for an apply process. The ADD_SUBSET_RULES
procedure can add rules only to the positive rule set for an apply process.

See Also:

"System-Created Rules"

17.3.2.1 Adding Rules to the Positive Rule Set for an Apply Process
The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM
package to add rules to the positive rule set of an apply process named strm01_apply:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.departments',
 streams_type => 'apply',
 streams_name => 'strm01_apply',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'dbs1.example.com',
 inclusion_rule => TRUE);
END;
/

Running this procedure performs the following actions:

• Creates one rule that evaluates to TRUE for row LCRs that contain the results of
DML changes to the hr.departments table. The rule name is system generated.

• Creates one rule that evaluates to TRUE for DDL LCRs that contain DDL changes to
the hr.departments table. The rule name is system generated.

• Specifies that both rules evaluate to TRUE only for LCRs whose changes originated
at the dbs1.example.com source database.

• Adds the rules to the positive rule set associated with the apply process because
the inclusion_rule parameter is set to TRUE.

Chapter 17
Managing the Rule Set for an Apply Process

17-4

17.3.2.2 Adding Rules to the Negative Rule Set for an Apply Process
The following example runs the ADD_TABLE_RULES procedure in the DBMS_STREAMS_ADM
package to add rules to the negative rule set of an apply process named strm01_apply:

BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'hr.regions',
 streams_type => 'apply',
 streams_name => 'strm01_apply',
 queue_name => 'streams_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 source_database => 'dbs1.example.com',
 inclusion_rule => FALSE);
END;
/

Running this procedure performs the following actions:

• Creates one rule that evaluates to TRUE for row LCRs that contain the results of
DML changes to the hr.regions table. The rule name is system generated.

• Creates one rule that evaluates to TRUE for DDL LCRs that contain DDL changes to
the hr.regions table. The rule name is system generated.

• Specifies that both rules evaluate to TRUE only for LCRs whose changes originated
at the dbs1.example.com source database.

• Adds the rules to the negative rule set associated with the apply process because
the inclusion_rule parameter is set to FALSE.

17.3.3 Removing a Rule from the Rule Set for an Apply Process
You remove a rule from a rule set for an existing apply process by running the
REMOVE_RULE procedure in the DBMS_STREAMS_ADM package. For example, the following
procedure removes a rule named departments3 from the positive rule set of an apply
process named strm01_apply.

BEGIN
 DBMS_STREAMS_ADM.REMOVE_RULE(
 rule_name => 'departments3',
 streams_type => 'apply',
 streams_name => 'strm01_apply',
 drop_unused_rule => TRUE,
 inclusion_rule => TRUE);
END;
/

In this example, the drop_unused_rule parameter in the REMOVE_RULE procedure is set to
TRUE, which is the default setting. Therefore, if the rule being removed is not in any
other rule set, then it will be dropped from the database. If the drop_unused_rule
parameter is set to FALSE, then the rule is removed from the rule set, but it is not
dropped from the database even if it is not in any other rule set.

If the inclusion_rule parameter is set to FALSE, then the REMOVE_RULE procedure
removes the rule from the negative rule set for the apply process, not from the positive
rule set.

Chapter 17
Managing the Rule Set for an Apply Process

17-5

To remove all of the rules in a rule set for the apply process, then specify NULL for the
rule_name parameter when you run the REMOVE_RULE procedure.

See Also:

"Oracle Streams Client with One or More Empty Rule Sets"

17.3.4 Removing a Rule Set for an Apply Process
You remove a rule set from an existing apply process using the ALTER_APPLY procedure
in the DBMS_APPLY_ADM package. This procedure can remove the positive rule set,
negative rule set, or both. Specify TRUE for the remove_rule_set parameter to remove
the positive rule set for the apply process. Specify TRUE for the
remove_negative_rule_set parameter to remove the negative rule set for the apply
process.

For example, the following procedure removes both the positive and negative rule sets
from an apply process named strm01_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 remove_rule_set => TRUE,
 remove_negative_rule_set => TRUE);
END;
/

Note:

If an apply process that dequeues messages from a buffered queues does not
have a positive or negative rule set, then the apply process dequeues all
captured LCRs in its queue. Similarly, if an apply process that dequeues
messages from a persistent queue does not have a positive or negative rule
set, the apply process dequeues all persistent LCRs and persistent user
messages in its queue.

17.4 Setting an Apply Process Parameter
Set an apply process parameter using the SET_PARAMETER procedure in the
DBMS_APPLY_ADM package. Apply process parameters control the way an apply process
operates.

For example, the following procedure sets the commit_serialization parameter for an
apply process named strm01_apply to DEPENDENT_TRANSACTIONS. This setting for the
commit_serialization parameter enables the apply process to commit transactions in
any order.

BEGIN
 DBMS_APPLY_ADM.SET_PARAMETER(
 apply_name => 'strm01_apply',
 parameter => 'commit_serialization',

Chapter 17
Setting an Apply Process Parameter

17-6

 value => 'DEPENDENT_TRANSACTIONS');
END;
/

Note:

• The value parameter is always entered as a VARCHAR2 value, even if the
parameter value is a number.

• If the value parameter is set to NULL or is not specified, then the parameter
is set to its default value.

• If you set the parallelism apply process parameter to a value greater than
1, then you must specify a conditional supplemental log group at the
source database for all of the unique key and foreign key columns in the
tables for which an apply process applies changes. supplemental logging
might be required for other columns in these tables as well, depending on
your configuration.

See Also:

• "Apply Process Parameters"

• The Oracle Enterprise Manager Cloud Control online help for instructions
about setting an apply process parameter with Oracle Enterprise Manager
Cloud Control

• The DBMS_APPLY_ADM.SET_PARAMETER procedure in the Oracle Database
PL/SQL Packages and Types Reference for detailed information about the
apply process parameters

• Oracle Streams Replication Administrator's Guide for more information
about specifying supplemental logging

17.5 Setting the Apply User for an Apply Process
The apply user is the user who applies all DML changes and DDL changes that satisfy
the apply process rule sets and who runs user-defined apply handlers. Set the apply
user for an apply process using the apply_user parameter in the ALTER_APPLY procedure
in the DBMS_APPLY_ADM package.

To change the apply user, the user who invokes the ALTER_APPLY procedure must be
granted DBA role. Only the SYS user can set the apply_user to SYS.

For example, the following procedure sets the apply user for an apply process named
strm03_apply to hr.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm03_apply',
 apply_user => 'hr');

Chapter 17
Setting the Apply User for an Apply Process

17-7

END;
/

Running this procedure grants the new apply user dequeue privilege on the queue
used by the apply process and configures the user as a secure queue user of the
queue. In addition, ensure that the apply user has the following privileges:

• The necessary privileges to perform DML and DDL changes on the apply objects

• EXECUTE privilege on the rule sets used by the apply process

• EXECUTE privilege on all custom rule-based transformation functions used in the rule
set

• EXECUTE privilege on all apply handler procedures

These privileges can be granted to the apply user directly or through roles.

In addition, the apply user must be granted EXECUTE privilege on all packages, including
Oracle-supplied packages, that are invoked in subprograms run by the apply process.
These privileges must be granted directly to the apply user. They cannot be granted
through roles.

Note:

If Oracle Database Vault is installed, then the user who changes the apply
user must be granted the BECOME USER system privilege. Granting this privilege
to the user is not required if Oracle Database Vault is not installed. You can
revoke the BECOME USER system privilege from the user after apply user is
changed, if necessary.

17.6 Managing a DML Handler
DML handlers process row logical change records (row LCRs) dequeued by an apply
process. There are two types of DML handlers: statement DML handlers and
procedure DML handlers. A statement DML handler uses a collection of SQL
statements to process row LCRs, while a procedure DML handler uses a PL/SQL
procedure to process row LCRs.

This section contains instructions for managing a DML handler:

• Managing a Statement DML Handler

• Managing a Procedure DML Handler

See Also:

"Message Processing Options for an Apply Process"

17.6.1 Managing a Statement DML Handler
This section contains the following instructions for managing a statement DML
handler:

Chapter 17
Managing a DML Handler

17-8

• Creating a Statement DML Handler and Adding It to an Apply Process

• Adding Statements to a Statement DML Handler

• Modifying a Statement in a Statement DML Handler

• Removing Statements from a Statement DML Handler

• Removing a Statement DML Handler from an Apply Process

• Dropping a Statement DML Handler

See Also:

• "Statement DML Handlers"

• "Displaying Information About Statement DML Handlers"

17.6.1.1 Creating a Statement DML Handler and Adding It to an Apply Process
There are two ways to create a statement DML handler and add it to an apply process:

• One way creates the statement DML handler, adds one statement to it, and adds
the statement DML handler to an apply process all in one step.

• The other way uses distinct steps to create the statement DML handler, add one
or more statements to it, and add the statement DML handler to an apply process.

Typically, the one-step method is best when a statement DML handler will have only
one statement. The multiple-step method is best when a statement DML handler will
have several statements.

The following sections include examples that illustrate each method in detail:

• Creating a Statement DML Handler With One Statement

• Creating a Statement DML Handler With More Than One Statement

17.6.1.1.1 Creating a Statement DML Handler With One Statement
In some Oracle Streams replication environments, a replicated table is not exactly the
same at the databases that share the table. In such environments, a statement DML
handler can modify the DML change performed by row LCRs. Statement DML
handlers cannot change the values of the columns in a row LCR. However, statement
DML handlers can use SQL to insert a row or update a row with column values that
are different than the ones in the row LCR.

The example in this section makes the following assumptions:

• An Oracle Streams replication environment is configured to replicate changes to
the oe.orders table between a source database and a destination database.
Changes to the oe.orders table are captured by a capture process or a
synchronous capture at the source database, sent to the destination database by
a propagation, and applied by an apply process at the destination database.

• At the source database, the oe.orders table includes an order_status column.
Assume that when an insert with an order_status of 1 is applied at the destination
database, the order_status should be changed to 2. The statement DML handler in

Chapter 17
Managing a DML Handler

17-9

this example makes this change. For inserts with an order_status that is not equal
to 1, the statement DML handler applies the original change in the row LCR
without changing the order_status value.

To create a statement DML handler that modifies inserts to the oe.orders table,
complete the following steps:

1. For the purposes of this example, specify the required supplemental logging at the
source database:

a. Connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Specify an unconditional supplemental log group that includes the
order_status column in the oe.orders table:

ALTER TABLE oe.orders ADD SUPPLEMENTAL LOG GROUP log_group_ord_stat
(order_status) ALWAYS;

Any columns used by a statement DML handler at a destination database
must be in an unconditional log group at the source database.

2. Connect to the destination database the Oracle Streams administrator.

3. Create the statement DML handler and add it to the apply process:

DECLARE
 stmt CLOB;
BEGIN
 stmt := 'INSERT INTO oe.orders(
 order_id,
 order_date,
 order_mode,
 customer_id,
 order_status,
 order_total,
 sales_rep_id,
 promotion_id)
 VALUES(
 :new.order_id,
 :new.order_date,
 :new.order_mode,
 :new.customer_id,
 DECODE(:new.order_status, 1, 2, :new.order_status),
 :new.order_total,
 :new.sales_rep_id,
 :new.promotion_id)';
 DBMS_APPLY_ADM.ADD_STMT_HANDLER(
 object_name => 'oe.orders',
 operation_name => 'INSERT',
 handler_name => 'modify_orders',
 statement => stmt,
 apply_name => 'apply$_sta_2',
 comment => 'Modifies inserts into the orders table');
END;
/

Notice that the DECODE function changes an order_status of 1 to 2. If the
order_status in the row LCR is not 1, then the DECODE function uses the original

Chapter 17
Managing a DML Handler

17-10

order_status value by specifying :new.order_status for the default in the DECODE
function.

The ADD_STMT_HANDLER procedure creates the modify_orders statement DML handler
and adds it to the apply$_sta_2 apply process. The statement DML handler is
invoked when this apply process dequeues a row LCR that performs an insert on
the oe.orders table. To modify row LCRs that perform updates and deletes made
to this table, separate statement DML handlers are required.

Note:

• This statement in the modify_orders statement DML handler performs the
row change on the destination table. Therefore, you do not need to add an
execute statement to the statement DML handler. The row change
performed by the statement is committed when the apply process
dequeues a commit directive for the row LCR's transaction.

• The ADD_STMT_HANDLER procedure in this example adds the statement DML
handler to the apply$_sta_2 apply process. To add a general statement
DML handler that is used by all of the apply processes in the database,
omit the apply_name parameter in this procedure or set the apply_name
parameter to NULL.

17.6.1.1.2 Creating a Statement DML Handler With More Than One Statement
A statement DML handler can track the changes made to a table. The statement DML
handler in this example tracks the updates made to the hr.jobs table.

The example in this section makes the following assumptions:

• An Oracle Streams replication environment is configured to replicate changes to
the hr.jobs table between a source database and a destination database.
Changes to the hr.jobs table are captured by a capture process or a synchronous
capture at the source database, sent to the destination database by a propagation,
and applied by an apply process at the destination database. The hr.jobs table
contains the minimum and maximum salary for various jobs at an organization.

• The goal is to track the updates to the salary information and when these updates
were made. To accomplish this goal, the statement DML handler inserts rows into
the hr.track_jobs table.

• The apply process must also execute the row LCRs to replicate the changes to the
hr.jobs table.

To create a statement DML handler that tracks updates to the hr.jobs, complete the
following steps:

1. Connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Specify an unconditional supplemental log group that includes all of the columns in
the hr.jobs table. For example:

ALTER TABLE hr.jobs ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

Chapter 17
Managing a DML Handler

17-11

Any columns used by a statement DML handler at a destination database must be
in an unconditional log group at the source database.

3. Connect to the destination database as the hr user.

4. Create a sequence for the tracking table:

CREATE SEQUENCE hr.track_jobs_seq
 START WITH 1
 INCREMENT BY 1;

5. Create the table that will track the changes to the hr.jobs table:

CREATE TABLE hr.track_jobs(
 change_id NUMBER CONSTRAINT track_jobs_pk PRIMARY KEY,
 job_id VARCHAR2(10),
 job_title VARCHAR2(35),
 min_salary_old NUMBER(6),
 min_salary_new NUMBER(6),
 max_salary_old NUMBER(6),
 max_salary_new NUMBER(6),
 timestamp TIMESTAMP);

The statement DML handler will use the sequence created in Step 4 to insert a
unique value for each change that it tracks into the change_id column of the
hr.track_jobs table.

6. Connect to the destination database as the Oracle Streams administrator.

7. Create the statement DML handler:

BEGIN
 DBMS_STREAMS_HANDLER_ADM.CREATE_STMT_HANDLER(
 handler_name => 'track_jobs',
 comment => 'Tracks updates to the jobs table');
END;
/

8. Add a statement to the statement DML handler that executes the row LCR:

DECLARE
 stmt CLOB;
BEGIN
 stmt := ':lcr.execute TRUE';
 DBMS_STREAMS_HANDLER_ADM.ADD_STMT_TO_HANDLER(
 handler_name => 'track_jobs',
 statement => stmt,
 execution_sequence => 10);
END;
/

The TRUE argument is for the conflict_resolution parameter in the EXECUTE
member procedure for the LCR$_ROW_RECORD type. The TRUE argument indicates that
any conflict resolution defined for the table is used when the row LCR is executed.
Specify FALSE if you do not want conflict resolution to be used when the row LCR is
executed.

Tip:

If you want to track the changes to a table without replicating them, then do
not include an execute statement in the statement DML handler.

Chapter 17
Managing a DML Handler

17-12

See Also:

Oracle Database PL/SQL Packages and Types Reference

9. Add a statement to the statement DML handler that tracks the changes the row
LCR:

DECLARE
 stmt CLOB;
BEGIN
 stmt := 'INSERT INTO hr.track_jobs(
 change_id,
 job_id,
 job_title,
 min_salary_old,
 min_salary_new,
 max_salary_old,
 max_salary_new,
 timestamp)
 VALUES(
 hr.track_jobs_seq.NEXTVAL,
 :new.job_id,
 :new.job_title,
 :old.min_salary,
 :new.min_salary,
 :old.max_salary,
 :new.max_salary,
 :source_time)';
 DBMS_STREAMS_HANDLER_ADM.ADD_STMT_TO_HANDLER(
 handler_name => 'track_jobs',
 statement => stmt,
 execution_sequence => 20);
END;
/

This statement inserts a row into the hr.track_jobs table for each row LCR that
updates a row in the hr.jobs table. Notice that the values inserted into the
hr.track_jobs table use the old and new values in the row LCR to track the old and
new value for each salary column. Also, notice that the source_time attribute in the
row LCR is used to populate the timestamp column.

10. Add the statement DML handler to the apply process. For example, the following
procedure adds the statement DML handler to an apply process named
apply$_sta_2:

BEGIN
 DBMS_APPLY_ADM.ADD_STMT_HANDLER(
 object_name => 'hr.jobs',
 operation_name => 'UPDATE',
 handler_name => 'track_jobs',
 apply_name => 'apply$_sta_2');
END;
/

Chapter 17
Managing a DML Handler

17-13

Note:

The ADD_STMT_HANDLER procedure in this example adds the statement DML
handler to the apply$_sta_2 apply process. To add a general statement DML
handler that is used by all of the apply processes in the database, omit the
apply_name parameter in this procedure or set the apply_name parameter to
NULL.

17.6.1.2 Adding Statements to a Statement DML Handler
To add statements to a statement DML handler, run the ADD_STMT_TO_HANDLER
procedure in the DBMS_STREAMS_HANDLER_ADM package and specify an execution
sequence number that has not been specified for the statement DML handler.

The example in this section adds a statement to the modify_orders statement DML
handler. This statement DML handler is created in "Creating a Statement DML Handler
With One Statement". It modifies inserts into the oe.orders table.

For the example in this section, assume that the destination database should discount
orders by 10% for a specific customer. This customer has a customer_id value of 118 in
the oe.orders table. To do this, the SQL statement in the statement DML handler
multiplies the order_total value by .9 for inserts into the oe.orders table with a
customer_id value of 118.

Complete the following steps to add a statement to the modify_orders statement DML
handler:

1. Connect to the destination database where the apply process is configured as the
Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Check the execution sequence numbers that are already used by the statements
in the statement DML handler:

COLUMN HANDLER_NAME HEADING 'Statement|Handler' FORMAT A15
COLUMN EXECUTION_SEQUENCE HEADING 'Execution|Sequence' FORMAT 999999
COLUMN STATEMENT HEADING 'Statement' FORMAT A50

SET LONG 8000
SET PAGES 8000
SELECT HANDLER_NAME,
 EXECUTION_SEQUENCE,
 STATEMENT
 FROM DBA_STREAMS_STMTS
 WHERE HANDLER_NAME = 'MODIFY_ORDERS'
 ORDER BY EXECUTION_SEQUENCE;

Your output is similar to the following:

Statement Execution
Handler Sequence Statement
--------------- --------- --
MODIFY_ORDERS 1 INSERT INTO oe.orders(
 order_id,
 order_date,
 order_mode,

Chapter 17
Managing a DML Handler

17-14

 customer_id,
 order_status,
 order_total,
 sales_rep_id,
 promotion_id)
 VALUES(
 :new.order_id,
 :new.order_date,
 :new.order_mode,
 :new.customer_id,
 DECODE(:new.order_status, 1, 2, :new.
 order_status),
 :new.order_total,
 :new.sales_rep_id,
 :new.promotion_id)

This output shows that the statement DML handler has only one statement, and
this one statement is at execution sequence number 1.

3. Add a statement to the statement DML handler that discounts all orders by 10%:

DECLARE
 stmt CLOB;
BEGIN
 stmt := 'UPDATE oe.orders SET order_total=order_total*.9
 WHERE order_id=:new.order_id AND :new.customer_id=118';
 DBMS_STREAMS_HANDLER_ADM.ADD_STMT_TO_HANDLER(
 handler_name => 'modify_orders',
 statement => stmt,
 execution_sequence => 10);
END;
/

This statement updates the row that was inserted by the statement with execution
sequence number 1. Therefore, this statement must have an execution sequence
number that is greater than 1. This example specifies 10 for the execution
sequence number of the added statement.

Tip:

When the execution_sequence parameter is set to NULL in the
ADD_STMT_TO_HANDLER procedure, the statement is added to the statement DML
handler with an execution sequence number that is larger than the execution
sequence number for any statement in the statement DML handler. Therefore,
in this example, the execution_sequence parameter can be omitted or set to
NULL.

After completing these steps, the output for the query in Step 2 shows:

Statement Execution
Handler Sequence Statement
--------------- --------- --
MODIFY_ORDERS 1 INSERT INTO oe.orders(
 order_id,
 order_date,
 order_mode,
 customer_id,
 order_status,

Chapter 17
Managing a DML Handler

17-15

 order_total,
 sales_rep_id,
 promotion_id)
 VALUES(
 :new.order_id,
 :new.order_date,
 :new.order_mode,
 :new.customer_id,
 DECODE(:new.order_status, 1, 2, :new.
 order_status),
 :new.order_total,
 :new.sales_rep_id,
 :new.promotion_id)

MODIFY_ORDERS 10 UPDATE oe.orders SET order_total=order_total*.9
 WHERE order_id=:new.order_id AND :new.
 customer_id=118

This output shows that the new statement with execution sequence number 10 is
added to the statement DML handler.

17.6.1.3 Modifying a Statement in a Statement DML Handler
To modify a statement in a statement DML handler, run the ADD_STMT_TO_HANDLER
procedure in the DBMS_STREAMS_HANDLER_ADM package and specify the execution
sequence number of the statement you are modifying.

The example in this section modifies the statement with execution sequence number
20 in the track_jobs statement DML handler. This statement DML handler is created in
"Creating a Statement DML Handler With More Than One Statement". It uses the
hr.track_jobs table to track changes to the hr.jobs table.

For the example in this section, assume that you also want to track which user
updated the hr.jobs table. To do this, you must add this information to the row LCRs
captured at the source database, add a user_name column to the hr.track_jobs table,
and modify the statement in the statement DML handler to track the user.

Complete the following steps to modify the statement in the statement DML handler:

1. Connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Add the username to the row LCR information captured at the source database:

BEGIN
 DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name => 'sta$cap',
 attribute_name => 'username',
 include => TRUE);
END;
/

In the capture_name parameter, specify the capture process or synchronous
capture that captures the changes that will be processed by the statement DML
handler.

3. Connect to the destination database as the Oracle Streams administrator.

4. Add the user_name column to the hr.track_jobs table:

Chapter 17
Managing a DML Handler

17-16

ALTER TABLE hr.track_jobs
 ADD (user_name VARCHAR2(30));

5. Modify the statement with execution sequence number 20 in the track_jobs
statement DML handler:

DECLARE
 stmt CLOB;
BEGIN
 stmt := 'INSERT INTO hr.track_jobs(
 change_id,
 job_id,
 job_title,
 min_salary_old,
 min_salary_new,
 max_salary_old,
 max_salary_new,
 timestamp,
 user_name)
 VALUES(
 hr.track_jobs_seq.NEXTVAL,
 :new.job_id,
 :new.job_title,
 :old.min_salary,
 :new.min_salary,
 :old.max_salary,
 :new.max_salary,
 :source_time,
 :extra_attribute.username)';
 DBMS_STREAMS_HANDLER_ADM.ADD_STMT_TO_HANDLER(
 handler_name => 'track_jobs',
 statement => stmt,
 execution_sequence => 20);
END;
/

The modified statement adds user tracking by inserting the username information in
the row LCR into the user_name column in the hr.track_jobs table. Notice that
username is an extra LCR attribute and must be specified using the following
syntax:

:extra_attribute.username

See Also:

"Extra Information in LCRs"

17.6.1.4 Removing Statements from a Statement DML Handler
To remove a statement from a statement DML handler, run the
REMOVE_STMT_FROM_HANDLER procedure in the DBMS_STREAMS_HANDLER_ADM package and
specify the execution sequence number of the statement you are removing.

The example in this section removes the statement with execution sequence number
10 from the track_jobs statement DML handler. This statement DML handler is created
in "Creating a Statement DML Handler With More Than One Statement". It uses the
hr.track_jobs table to track changes to the hr.jobs table.

Chapter 17
Managing a DML Handler

17-17

For the example in this section, assume that you no longer want to execute the row
LCRs with updates to the hr.jobs table. To do this, you must remove the statement
that executes the row LCRs, and this statement uses execution sequence number 10
in the track_jobs statement DML handler.

Complete the following steps to remove the statement from the statement DML
handler:

1. Connect to the database that contains the statement DML handler as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Remove the statement from the statement DML handler:

BEGIN
 DBMS_STREAMS_HANDLER_ADM.REMOVE_STMT_FROM_HANDLER(
 handler_name => 'track_jobs',
 execution_sequence => 10);
END;
/

17.6.1.5 Removing a Statement DML Handler from an Apply Process
To remove a statement DML handler from an apply process, run the
REMOVE_STMT_HANDLER procedure in the DBMS_APPLY_ADM package.

The example in this section removes the track_jobs statement DML handler from the
apply$_sta_2 apply process. This statement DML handler is created in "Creating a
Statement DML Handler With More Than One Statement". It uses the hr.track_jobs
table to track changes to the hr.jobs table.

Complete the following steps to remove the statement DML handler from the apply
process:

1. Connect to the database that contains the apply process as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Remove the statement DML handler from the apply process:

BEGIN
 DBMS_APPLY_ADM.REMOVE_STMT_HANDLER(
 object_name => 'hr.jobs',
 operation_name => 'UPDATE',
 handler_name => 'track_jobs',
 apply_name => 'apply$_sta_2');
END;
/

After the statement DML handler is removed from the apply process, the statement
DML handler still exists in the database.

17.6.1.6 Dropping a Statement DML Handler
To drop a statement DML handler from a database, run the DROP_STMT_HANDLER
procedure in the DBMS_STREAMS_HANDLER_ADM package.

Chapter 17
Managing a DML Handler

17-18

The example in this section drops the track_jobs statement DML handler. This
statement DML handler is created in "Creating a Statement DML Handler With More
Than One Statement". It uses the hr.track_jobs table to track changes to the hr.jobs
table.

Complete the following steps to drop the statement DML handler:

1. Connect to the database that contains the statement DML handler as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Drop the statement DML handler:

exec DBMS_STREAMS_HANDLER_ADM.DROP_STMT_HANDLER('track_jobs');

17.6.2 Managing a Procedure DML Handler
This section contains the following instructions for managing a procedure DML
handler:

• Creating a Procedure DML Handler

• Setting a Procedure DML Handler

• Unsetting a Procedure DML Handler

See Also:

• "Procedure DML Handlers"

• "Displaying Information About DML Handlers"

17.6.2.1 Creating a Procedure DML Handler
A procedure DML handler must have the following signature:

PROCEDURE user_procedure (
 parameter_name IN ANYDATA);

Here, user_procedure stands for the name of the procedure and parameter_name stands
for the name of the parameter passed to the procedure. The parameter passed to the
procedure is an ANYDATA encapsulation of a row logical change record (row LCR).

The following restrictions apply to the user procedure:

• Do not execute COMMIT or ROLLBACK statements. Doing so can endanger the
consistency of the transaction that contains the row LCR.

• If you are manipulating a row using the EXECUTE member procedure for the row
LCR, then do not attempt to manipulate more than one row in a row operation.
You must construct and execute manually any DML statements that manipulate
more than one row.

• If the command type is UPDATE or DELETE, then row operations resubmitted using the
EXECUTE member procedure for the LCR must include the entire key in the list of old

Chapter 17
Managing a DML Handler

17-19

values. The key is the primary key or the smallest unique key that has at least one
NOT NULL column, unless a substitute key has been specified by the SET_KEY_COLUMNS
procedure. If there is no specified key, then the key consists of all table columns,
except for columns of the following data types: LOB, LONG, LONG RAW, user-defined
types (including object types, REFs, varrays, nested tables), and Oracle-supplied
types (including Any types, XML types, spatial types, and media types).

• If the command type is INSERT, then row operations resubmitted using the EXECUTE
member procedure for the LCR should include the entire key in the list of new
values. Otherwise, duplicate rows are possible. The key is the primary key or the
smallest unique key that has at least one NOT NULL column, unless a substitute key
has been specified by the SET_KEY_COLUMNS procedure. If there is no specified key,
then the key consists of all non LOB, non LONG, and non LONG RAW columns.

A procedure DML handler can be used for any customized processing of row LCRs.
For example, the handler can modify an LCR and then execute it using the EXECUTE
member procedure for the LCR. When you execute a row LCR in a procedure DML
handler, the apply process applies the LCR without calling the procedure DML handler
again.

You can also use SQL generation in a procedure DML handler to record the DML
changes made to a table. You can record these changes in a table or in a file. For
example, the sample procedure DML handler in this section uses SQL generation to
record each UPDATE SQL statement made to the hr.departments table using the
GET_ROW_TEXT member procedure. The procedure DML handler also applies the row
LCR using the EXECUTE member procedure.

To create the procedure used in this procedure DML handler, complete the following
steps:

1. In SQL*Plus, connect to the database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create the directory object for the directory that contains the text file.

In this example, the apply process writes the UPDATE SQL statements performed on
the hr.departments table to the text file in this directory.

For example, to create a directory object named SQL_GEN_DIR for the /usr/sql_gen
directory, enter the following SQL statement:

CREATE DIRECTORY SQL_GEN_DIR AS '/usr/sql_gen';

3. Ensure that the text file to which the SQL statements will be written exists in the
directory specified in Step 2.

In this example, ensure that the sql_gen_file.txt file exists in the /usr/sql_gen
directory on the file system.

4. Create the procedure for the procedure DML handler:

CREATE OR REPLACE PROCEDURE strmadmin.sql_gen_dep(lcr_anydata IN SYS.ANYDATA) IS
 lcr SYS.LCR$_ROW_RECORD;
 int PLS_INTEGER;
 row_txt_clob CLOB;
 fp UTL_FILE.FILE_TYPE;
BEGIN
 int := lcr_anydata.GETOBJECT(lcr);
 DBMS_LOB.CREATETEMPORARY(row_txt_clob, TRUE);
 -- Generate SQL from row LCR and save to file

Chapter 17
Managing a DML Handler

17-20

 lcr.GET_ROW_TEXT(row_txt_clob);
 fp := UTL_FILE.FOPEN (
 location => 'SQL_GEN_DIR',
 filename => 'sql_gen_file.txt',
 open_mode => 'a',
 max_linesize => 5000);
 UTL_FILE.PUT_LINE(
 file => fp,
 buffer => row_txt_clob,
 autoflush => TRUE);
 DBMS_LOB.TRIM(row_txt_clob, 0);
 UTL_FILE.FCLOSE(fp);
 -- Apply row LCR
 lcr.EXECUTE(TRUE);
END;
/

After you create the procedure, you can set it as a procedure DML handler by
following the instructions in "Setting a Procedure DML Handler".

Note:

• You must specify an unconditional supplemental log group at the source
database for any columns needed by a procedure DML handler at the
destination database. This sample procedure DML handler does not
require any additional supplemental logging because it records the SQL
statement and does not manipulate the row LCR in any other way.

• To test a procedure DML handler before using it, or to debug a procedure
DML handler, you can construct row LCRs and run the procedure DML
handler procedure outside the context of an apply process.

See Also:

• "SQL Generation"

• Oracle Database PL/SQL Packages and Types Reference for information
about the GET_ROW_TEXT row LCR member function

• "Supplemental Logging in an Oracle Streams Environment"

• Oracle Streams Replication Administrator's Guide

• "Are There Any Apply Errors in the Error Queue?" for information about
common apply errors that you might want to handle in a procedure DML
handler

• Oracle Database SQL Language Reference for information about data
types

17.6.2.2 Setting a Procedure DML Handler
A procedure DML handler processes each row LCR dequeued by any apply process
that contains a specific operation on a specific table. You can specify multiple

Chapter 17
Managing a DML Handler

17-21

procedure DML handlers on the same table, to handle different operations on the
table. All apply processes that apply changes to the specified table in the local
database use the specified procedure DML handler.

Set the procedure DML handler using the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package. For example, the following procedure sets the procedure
DML handler for UPDATE operations on the hr.departments table. Therefore, when any
apply process that applies changes locally dequeues a row LCR containing an UPDATE
operation on the hr.departments table, the apply process sends the row LCR to the
sql_gen_dep PL/SQL procedure in the strmadmin schema for processing. The apply
process does not apply a row LCR containing such a change directly.

In this example, the apply_name parameter is set to NULL. Therefore, the procedure DML
handler is a general procedure DML handler that is used by all of the apply processes
in the database.

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.departments',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => FALSE,
 user_procedure => 'strmadmin.sql_gen_dep',
 apply_database_link => NULL,
 apply_name => NULL);
END;
/

Note:

• To specify the procedure DML handler for only one apply process, specify
the apply process name in the apply_name parameter.

• If an apply process applies changes to a remote non-Oracle database,
then it can use a different procedure DML handler for the same table. You
can run the SET_DML_HANDLER procedure in the DBMS_APPLY_ADM package to
specify a procedure DML handler for changes that will be applied to a
remote non-Oracle database by setting the apply_database_link parameter
to a non-NULL value.

• You can specify DEFAULT for the operation_name parameter to set the
procedure as the default procedure DML handler for the database object.
In this case, the procedure DML handler is used for any INSERT, UPDATE,
DELETE, and LOB_WRITE on the database object, if another procedure DML
handler is not specifically set for the operation on the database object.

See Also:

Oracle Streams Replication Administrator's Guide

Chapter 17
Managing a DML Handler

17-22

17.6.2.3 Unsetting a Procedure DML Handler
You unset a procedure DML handler using the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package. When you run that procedure, set the user_procedure
parameter to NULL for a specific operation on a specific table. After the procedure DML
handler is unset, any apply process that applies changes locally will apply a row LCR
containing such a change directly.

For example, the following procedure unsets the procedure DML handler for UPDATE
operations on the hr.departments table:

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.departments',
 object_type => 'TABLE',
 operation_name => 'UPDATE',
 error_handler => FALSE,
 user_procedure => NULL,
 apply_name => NULL);
END;
/

17.7 Managing a DDL Handler
This section contains instructions for creating, specifying, and removing the DDL
handler for an apply process.

Note:

All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls
the EXECUTE member procedure of a DDL LCR, then a commit is performed
automatically.

See Also:

• "Message Processing Options for an Apply Process"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE member procedure for LCR types

17.7.1 Creating a DDL Handler for an Apply Process
A DDL handler must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN ANYDATA);

Here, handler_procedure stands for the name of the procedure and parameter_name
stands for the name of the parameter passed to the procedure. The parameter passed
to the procedure is an ANYDATA encapsulation of a DDL LCR.

Chapter 17
Managing a DDL Handler

17-23

A DDL handler can be used for any customized processing of DDL LCRs. For
example, the handler can modify the LCR and then execute it using the EXECUTE
member procedure for the LCR. When you execute a DDL LCR in a DDL handler, the
apply process applies the LCR without calling the DDL handler again.

You can also use a DDL handler to record the history of DDL changes. For example, a
DDL handler can insert information about an LCR it processes into a table and then
apply the LCR using the EXECUTE member procedure.

To create such a DDL handler, first create a table to hold the history information:

CREATE TABLE strmadmin.history_ddl_lcrs(
 timestamp DATE,
 source_database_name VARCHAR2(128),
 command_type VARCHAR2(30),
 object_owner VARCHAR2(32),
 object_name VARCHAR2(32),
 object_type VARCHAR2(18),
 ddl_text CLOB,
 logon_user VARCHAR2(32),
 current_schema VARCHAR2(32),
 base_table_owner VARCHAR2(32),
 base_table_name VARCHAR2(32),
 tag RAW(10),
 transaction_id VARCHAR2(10),
 scn NUMBER);

CREATE OR REPLACE PROCEDURE history_ddl(in_any IN ANYDATA)
 IS
 lcr SYS.LCR$_DDL_RECORD;
 rc PLS_INTEGER;
 ddl_text CLOB;
 BEGIN
 -- Access the LCR
 rc := in_any.GETOBJECT(lcr);
 DBMS_LOB.CREATETEMPORARY(ddl_text, TRUE);
 lcr.GET_DDL_TEXT(ddl_text);
 -- Insert DDL LCR information into history_ddl_lcrs table
 INSERT INTO strmadmin.history_ddl_lcrs VALUES(
 SYSDATE, lcr.GET_SOURCE_DATABASE_NAME(), lcr.GET_COMMAND_TYPE(),
 lcr.GET_OBJECT_OWNER(), lcr.GET_OBJECT_NAME(), lcr.GET_OBJECT_TYPE(),
 ddl_text, lcr.GET_LOGON_USER(), lcr.GET_CURRENT_SCHEMA(),
 lcr.GET_BASE_TABLE_OWNER(), lcr.GET_BASE_TABLE_NAME(), lcr.GET_TAG(),
 lcr.GET_TRANSACTION_ID(), lcr.GET_SCN());
 -- Apply DDL LCR
 lcr.EXECUTE();
 -- Free temporary LOB space
 DBMS_LOB.FREETEMPORARY(ddl_text);
END;
/

17.7.2 Setting the DDL Handler for an Apply Process
A DDL handler processes all DDL LCRs dequeued by an apply process. Set the DDL
handler for an apply process using the ddl_handler parameter in the ALTER_APPLY
procedure in the DBMS_APPLY_ADM package. For example, the following procedure sets
the DDL handler for an apply process named strep01_apply to the history_ddl
procedure in the strmadmin schema.

Chapter 17
Managing a DDL Handler

17-24

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 ddl_handler => 'strmadmin.history_ddl');
END;
/

17.7.3 Removing the DDL Handler for an Apply Process
A DDL handler processes all DDL LCRs dequeued by an apply process. You remove
the DDL handler for an apply process by setting the remove_ddl_handler parameter to
TRUE in the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For example, the
following procedure removes the DDL handler from an apply process named
strep01_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strep01_apply',
 remove_ddl_handler => TRUE);
END;
/

17.8 Managing the Message Handler for an Apply Process
A message handler is an apply handler that processes persistent user messages. The
following sections contain instructions for setting and unsetting the message handler
for an apply process:

• Setting the Message Handler for an Apply Process

• Unsetting the Message Handler for an Apply Process

See Also:

• "Types of Messages That Can Be Processed with an Apply Process"

• "Message Handlers"

• Oracle Database Advanced Queuing User's Guide for an example that
creates a message handler

17.8.1 Setting the Message Handler for an Apply Process
Set the message handler for an apply process using the message_handler parameter in
the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For example, the following
procedure sets the message handler for an apply process named strm03_apply to the
mes_handler procedure in the oe schema.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm03_apply',
 message_handler => 'oe.mes_handler');
END;
/

Chapter 17
Managing the Message Handler for an Apply Process

17-25

The user who runs the ALTER_APPLY procedure must have EXECUTE privilege on the
specified message handler. If the message handler is already set for an apply process,
then you can run the ALTER_APPLY procedure to change the message handler for the
apply process.

17.8.2 Unsetting the Message Handler for an Apply Process
You unset the message handler for an apply process by setting the
remove_message_handler parameter to TRUE in the ALTER_APPLY procedure in the
DBMS_APPLY_ADM package. For example, the following procedure unsets the message
handler for an apply process named strm03_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm03_apply',
 remove_message_handler => TRUE);
END;
/

17.9 Managing the Precommit Handler for an Apply Process
A precommit handler is an apply handler that can receive the commit information for a
transaction and process the commit information in any customized way.

The following sections contain instructions for creating, setting, and unsetting the
precommit handler for an apply process:

• Creating a Precommit Handler for an Apply Process

• Setting the Precommit Handler for an Apply Process

• Unsetting the Precommit Handler for an Apply Process

17.9.1 Creating a Precommit Handler for an Apply Process
A precommit handler must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN NUMBER);

Here, handler_procedure stands for the name of the procedure and parameter_name
stands for the name of the parameter passed to the procedure. The parameter passed
to the procedure is a commit SCN from an internal commit directive in the queue used
by the apply process.

You can use a precommit handler to record information about commits processed by
an apply process. The apply process can apply captured LCRs, persistent LCRs, or
persistent user messages. For a captured row LCR, a commit directive contains the
commit SCN of the transaction from the source database. For a persistent LCRs and
persistent user messages, the commit SCN is generated by the apply process.

The precommit handler procedure must conform to the following restrictions:

• Any work that commits must be an autonomous transaction.

• Any rollback must be to a named save point created in the procedure.

If a precommit handler raises an exception, then the entire apply transaction is rolled
back, and all of the messages in the transaction are moved to the error queue.

Chapter 17
Managing the Precommit Handler for an Apply Process

17-26

For example, a precommit handler can be used for auditing the row LCRs applied by
an apply process. Such a precommit handler is used with one or more separate
procedure DML handlers to record the source database commit SCN for a transaction,
and possibly the time when the apply process applies the transaction, in an audit table.

Specifically, this example creates a precommit handler that is used with a procedure
DML handler that records information about row LCRs in the following table:

CREATE TABLE strmadmin.history_row_lcrs(
 timestamp DATE,
 source_database_name VARCHAR2(128),
 command_type VARCHAR2(30),
 object_owner VARCHAR2(32),
 object_name VARCHAR2(32),
 tag RAW(10),
 transaction_id VARCHAR2(10),
 scn NUMBER,
 commit_scn NUMBER,
 old_values SYS.LCR$_ROW_LIST,
 new_values SYS.LCR$_ROW_LIST)
 NESTED TABLE old_values STORE AS old_values_ntab
 NESTED TABLE new_values STORE AS new_values_ntab;

The procedure DML handler inserts a row in the strmadmin.history_row_lcrs table for
each row LCR processed by an apply process. The precommit handler created in this
example inserts a row into the strmadmin.history_row_lcrs table when a transaction
commits.

Create the procedure that inserts the commit information into the history_row_lcrs
table:

CREATE OR REPLACE PROCEDURE strmadmin.history_commit(commit_number IN NUMBER)
 IS
 BEGIN
 -- Insert commit information into the history_row_lcrs table
 INSERT INTO strmadmin.history_row_lcrs (timestamp, commit_scn)
 VALUES (SYSDATE, commit_number);
END;
/

See Also:

• "Precommit Handlers"

• "Managing a DML Handler"

17.9.2 Setting the Precommit Handler for an Apply Process
A precommit handler processes all commit directives dequeued by an apply process.
When you set a precommit handler for an apply process, the apply process uses it to
process all of the commit directives that it dequeues. An apply process can have only
one precommit handler.

Set the precommit handler for an apply process using the precommit_handler parameter
in the ALTER_APPLY procedure in the DBMS_APPLY_ADM package. For example, the

Chapter 17
Managing the Precommit Handler for an Apply Process

17-27

following procedure sets the precommit handler for an apply process named
strm01_apply to the history_commit procedure in the strmadmin schema.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 precommit_handler => 'strmadmin.history_commit');
END;
/

You can also specify a precommit handler when you create an apply process using the
CREATE_APPLY procedure in the DBMS_APPLY_ADM package. If the precommit handler is
already set for an apply process, then you can run the ALTER_APPLY procedure to
change the precommit handler for the apply process.

17.9.3 Unsetting the Precommit Handler for an Apply Process
You unset the precommit handler for an apply process by setting the
remove_precommit_handler parameter to TRUE in the ALTER_APPLY procedure in the
DBMS_APPLY_ADM package. For example, the following procedure unsets the precommit
handler for an apply process named strm01_apply.

BEGIN
 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name => 'strm01_apply',
 remove_precommit_handler => TRUE);
END;
/

17.10 Specifying That Apply Processes Enqueue Messages
This section contains instructions for setting a destination queue into which apply
processes that use a specified rule in a positive rule set will enqueue messages that
satisfy the rule. This section also contains instructions for removing destination queue
settings.

See Also:

"Viewing Rules that Specify a Destination Queue on Apply"

17.10.1 Setting the Destination Queue for Messages that Satisfy a
Rule

You use the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package to set a
destination queue for messages that satisfy a specific rule. For example, to set the
destination queue for a rule named employees5 to the queue hr.change_queue, run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
 rule_name => 'employees5',
 destination_queue_name => 'hr.change_queue');

Chapter 17
Specifying That Apply Processes Enqueue Messages

17-28

END;
/

This procedure modifies the action context of the rule to specify the queue. Any apply
process in the local database with the employees5 rule in its positive rule set will
enqueue a message into hr.change_queue if the message satisfies the employees5 rule.
To change the destination queue for the employees5 rule, run the
SET_ENQUEUE_DESTINATION procedure again and specify a different queue.

The apply user of each apply process using the specified rule must have the
necessary privileges to enqueue messages into the specified queue. If the queue is a
secure queue, then the apply user must be a secure queue user of the queue.

A message that has been enqueued using the SET_ENQUEUE_DESTINATION procedure is
the same as any other message that is enqueued manually. Such messages can be
manually dequeued, applied by an apply process created with the apply_captured
parameter set to FALSE, or propagated to another queue.

Note:

• The specified rule must be in the positive rule set for an apply process. If
the rule is in the negative rule set for an apply process, then the apply
process does not enqueue the message into the destination queue.

• The apply process always enqueues messages into a persistent queue. It
cannot enqueue messages into a buffered queue.

See Also:

• "Enabling a User to Perform Operations on a Secure Queue"

• "Enqueue Destinations for Messages During Apply" for more information
about how the SET_ENQUEUE_DESTINATION procedure modifies the action
context of the specified rule

17.10.2 Removing the Destination Queue Setting for a Rule
You use the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package to
remove a destination queue for messages that satisfy a specified rule. Specifically,
you set the destination_queue_name parameter in this procedure to NULL for the rule.
When a destination queue specification is removed for a rule, messages that satisfy
the rule are no longer enqueued into the queue by an apply process.

For example, to remove the destination queue for a rule named employees5, run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
 rule_name => 'employees5',
 destination_queue_name => NULL);
END;
/

Chapter 17
Specifying That Apply Processes Enqueue Messages

17-29

Any apply process in the local database with the employees5 rule in its positive rule set
no longer enqueues a message into hr.change_queue if the message satisfies the
employees5 rule.

17.11 Specifying Execute Directives for Apply Processes
This section contains instructions for setting an apply process execute directive for
messages that satisfy a specified rule in the positive rule set for the apply process.

See Also:

"Viewing Rules that Specify No Execution on Apply"

17.11.1 Specifying that Messages that Satisfy a Rule Are Not
Executed

You use the SET_EXECUTE procedure in the DBMS_APPLY_ADM package to specify that apply
processes do not execute messages that satisfy a specified rule. Specifically, you set
the execute parameter in this procedure to FALSE for the rule. After setting the execution
directive to FALSE for a rule, an apply process with the rule in its positive rule set does
not execute a message that satisfies the rule.

For example, to specify that apply processes do not execute messages that satisfy a
rule named departments8, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_EXECUTE(
 rule_name => 'departments8',
 execute => FALSE);
END;
/

This procedure modifies the action context of the rule to specify the execution
directive. Any apply process in the local database with the departments8 rule in its
positive rule set will not execute a message if the message satisfies the departments8
rule. That is, if the message is an LCR, then an apply process does not apply the
change in the LCR to the relevant database object. Also, an apply process does not
send a message that satisfies this rule to any apply handler.

Chapter 17
Specifying Execute Directives for Apply Processes

17-30

Note:

• The specified rule must be in the positive rule set for an apply process for
the apply process to follow the execution directive. If the rule is in the
negative rule set for an apply process, then the apply process ignores the
execution directive for the rule.

• The SET_EXECUTE procedure can be used with the SET_ENQUEUE_DESTINATION
procedure to enqueue messages that satisfy a particular rule into a
destination queue without executing these messages. After a message is
enqueued using the SET_ENQUEUE_DESTINATION procedure, it is the same as
any message that is enqueued manually. Therefore, it can be manually
dequeued, applied by an apply process, or propagated to another queue.

See Also:

• "Execution Directives for Messages During Apply" for more information
about how the SET_EXECUTE procedure modifies the action context of the
specified rule

• "Specifying That Apply Processes Enqueue Messages"

17.11.2 Specifying that Messages that Satisfy a Rule Are Executed
You use the SET_EXECUTE procedure in the DBMS_APPLY_ADM package to specify that apply
processes execute messages that satisfy a specified rule. Specifically, you set the
execute parameter in this procedure to TRUE for the rule. By default, each apply process
executes messages that satisfy a rule in the positive rule set for the apply process,
assuming that the message does not satisfy a rule in the negative rule set for the apply
process. Therefore, you must set the execute parameter to TRUE for a rule only if this
parameter was set to FALSE for the rule earlier.

For example, to specify that apply processes executes messages that satisfy a rule
named departments8, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_EXECUTE(
 rule_name => 'departments8',
 execute => TRUE);
END;
/

Any apply process in the local database with the departments8 rule in its positive rule
set will execute a message if the message satisfies the departments8 rule. That is, if the
message is an LCR, then an apply process applies the change in the LCR to the
relevant database object. Also, an apply process sends a message that satisfies this
rule to an apply handler if it is configured to do so.

Chapter 17
Specifying Execute Directives for Apply Processes

17-31

17.12 Managing an Error Handler
An error handler handles errors resulting from a row LCR dequeued by any apply
process that contains a specific operation on a specific table.

The following sections contain instructions for creating, setting, and unsetting an error
handler:

• Creating an Error Handler

• Setting an Error Handler

• Unsetting an Error Handler

See Also:

• "Types of Messages That Can Be Processed with an Apply Process"

• "Message Processing Options for an Apply Process"

17.12.1 Creating an Error Handler
You create an error handler by running the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package and setting the error_handler parameter to TRUE.

An error handler must have the following signature:

PROCEDURE user_procedure (
 message IN ANYDATA,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN emsg_array);

Here, user_procedure stands for the name of the procedure. Each parameter is
required and must have the specified data type. However, you can change the names
of the parameters. The emsg_array parameter must be a user-defined array that is a
PL/SQL table of type VARCHAR2 with at least 76 characters.

Note:

Some conditions on the user procedure specified in SET_DML_HANDLER must be
met for error handlers. See "Managing a DML Handler" for information about
these conditions.

Running an error handler results in one of the following outcomes:

• The error handler successfully resolves the error, applies the row LCR if
appropriate, and returns control back to the apply process.

• The error handler fails to resolve the error, and the error is raised. The raised error
causes the transaction to be rolled back and placed in the error queue.

Chapter 17
Managing an Error Handler

17-32

If you want to retry the DML operation, then have the error handler procedure run the
EXECUTE member procedure for the LCR.

The following example creates an error handler named regions_pk_error that resolves
primary key violations for the hr.regions table. At a destination database, assume
users insert rows into the hr.regions table and an apply process applies changes to
the hr.regions table that originated from a capture process at a remote source
database. In this environment, there is a possibility of errors resulting from users at the
destination database inserting a row with the same primary key value as an insert row
LCR applied from the source database.

This example creates a table in the strmadmin schema called errorlog to record the
following information about each primary key violation error on the hr.regions table:

• The time stamp when the error occurred

• The name of the apply process that raised the error

• The user who caused the error (sender), which is the capture process name for
captured LCRs, the synchronous capture name for persistent LCRs captured by
the synchronous capture, or the name of the Oracle Database Advanced Queuing
(AQ) agent for persistent LCRs and persistent user messages enqueued by an
application

• The name of the object on which the DML operation was run, because errors for
other objects might be logged in the future

• The type of command used in the DML operation

• The name of the constraint violated

• The error message

• The LCR that caused the error

This error handler resolves only errors that are caused by a primary key violation on
the hr.regions table. To resolve this type of error, the error handler modifies the
region_id value in the row LCR using a sequence and then executes the row LCR to
apply it. If other types of errors occur, then you can use the row LCR you stored in the
errorlog table to resolve the error manually.

For example, the following error is resolved by the error handler:

1. At the destination database, a user inserts a row into the hr.regions table with a
region_id value of 6 and a region_name value of 'LILLIPUT'.

2. At the source database, a user inserts a row into the hr.regions table with a
region_id value of 6 and a region_name value of 'BROBDINGNAG'.

3. A capture process at the source database captures the change described in
Step 2.

4. A propagation propagates the LCR containing the change from a queue at the
source database to the queue used by the apply process at the destination
database.

5. When the apply process tries to apply the LCR, an error results because of a
primary key violation.

6. The apply process invokes the error handler to handle the error.

7. The error handler logs the error in the strmadmin.errorlog table.

Chapter 17
Managing an Error Handler

17-33

8. The error handler modifies the region_id value in the LCR using a sequence and
executes the LCR to apply it.

Complete the following steps to create the regions_pk_error error handler:

1. In SQL*Plus, connect to the database as the hr user.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create the sequence used by the error handler to assign new primary key values:

CREATE SEQUENCE hr.reg_exception_s START WITH 9000;

This example assumes that users at the destination database will never insert a
row into the hr.regions table with a region_id greater than 8999.

3. Grant the Oracle Streams administrator ALL privilege on the sequence:

GRANT ALL ON reg_exception_s TO strmadmin;

4. Connect to the database as the Oracle Streams administrator.

5. Create the errorlog table:

CREATE TABLE strmadmin.errorlog(
 logdate DATE,
 apply_name VARCHAR2(30),
 sender VARCHAR2(100),
 object_name VARCHAR2(32),
 command_type VARCHAR2(30),
 errnum NUMBER,
 errmsg VARCHAR2(2000),
 text VARCHAR2(2000),
 lcr SYS.LCR$_ROW_RECORD);

6. Create a package that includes the regions_pk_error procedure:

CREATE OR REPLACE PACKAGE errors_pkg
AS
 TYPE emsg_array IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;
 PROCEDURE regions_pk_error(
 message IN ANYDATA,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN EMSG_ARRAY);
END errors_pkg ;
/

7. Create the package body:

CREATE OR REPLACE PACKAGE BODY errors_pkg AS
 PROCEDURE regions_pk_error (
 message IN ANYDATA,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN EMSG_ARRAY)
 IS
 reg_id NUMBER;
 ad ANYDATA;
 lcr SYS.LCR$_ROW_RECORD;
 ret PLS_INTEGER;
 vc VARCHAR2(30);
 apply_name VARCHAR2(30);
 errlog_rec errorlog%ROWTYPE ;

Chapter 17
Managing an Error Handler

17-34

 ov2 SYS.LCR$_ROW_LIST;
 BEGIN
 -- Access the error number from the top of the stack.
 -- In case of check constraint violation,
 -- get the name of the constraint violated.
 IF error_numbers(1) IN (1 , 2290) THEN
 ad := DBMS_STREAMS.GET_INFORMATION('CONSTRAINT_NAME');
 ret := ad.GetVarchar2(errlog_rec.text);
 ELSE
 errlog_rec.text := NULL ;
 END IF ;
 -- Get the name of the sender and the name of the apply process.
 ad := DBMS_STREAMS.GET_INFORMATION('SENDER');
 ret := ad.GETVARCHAR2(errlog_rec.sender);
 apply_name := DBMS_STREAMS.GET_STREAMS_NAME();
 -- Try to access the LCR.
 ret := message.GETOBJECT(lcr);
 errlog_rec.object_name := lcr.GET_OBJECT_NAME() ;
 errlog_rec.command_type := lcr.GET_COMMAND_TYPE() ;
 errlog_rec.errnum := error_numbers(1) ;
 errlog_rec.errmsg := error_messages(1) ;
 INSERT INTO strmadmin.errorlog VALUES (SYSDATE, apply_name,
 errlog_rec.sender, errlog_rec.object_name, errlog_rec.command_type,
 errlog_rec.errnum, errlog_rec.errmsg, errlog_rec.text, lcr);
 -- Add the logic to change the contents of LCR with correct values.
 -- In this example, get a new region_id number
 -- from the hr.reg_exception_s sequence.
 ov2 := lcr.GET_VALUES('new', 'n');
 FOR i IN 1 .. ov2.count
 LOOP
 IF ov2(i).column_name = 'REGION_ID' THEN
 SELECT hr.reg_exception_s.NEXTVAL INTO reg_id FROM DUAL;
 ov2(i).data := ANYDATA.ConvertNumber(reg_id) ;
 END IF ;
 END LOOP ;
 -- Set the NEW values in the LCR.
 lcr.SET_VALUES(value_type => 'NEW', value_list => ov2);
 -- Execute the modified LCR to apply it.
 lcr.EXECUTE(TRUE);
 END regions_pk_error;
END errors_pkg;
/

Chapter 17
Managing an Error Handler

17-35

Note:

• For subsequent changes to the modified row to be applied successfully,
you should converge the rows at the two databases as quickly as
possible. That is, you should make the region_id for the row match at the
source and destination database. If you do not want these manual
changes to be recaptured at a database, then use the SET_TAG procedure
in the DBMS_STREAMS package to set the tag for the session in which you
make the change to a value that is not captured.

• This example error handler illustrates the use of the GET_VALUES member
function and SET_VALUES member procedure for the LCR. If you are
modifying only one value in the LCR, then the GET_VALUE member function
and SET_VALUE member procedure might be more convenient and more
efficient.

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about setting tag values generated by the current session

• "Are There Any Apply Errors in the Error Queue?" for information about
specific error messages to handle in an error handler

17.12.2 Setting an Error Handler
An error handler handles errors resulting from a row LCR dequeued by any apply
process that contains a specific operation on a specific table. You can specify multiple
error handlers on the same table, to handle errors resulting from different operations
on the table. You can either set an error handler for a specific apply process, or you
can set an error handler as a general error handler that is used by all apply processes
that apply the specified operation to the specified table.

Set an error handler using the SET_DML_HANDLER procedure in the DBMS_APPLY_ADM
package. When you run this procedure to set an error handler, set the error_handler
parameter to TRUE.

For example, the following procedure sets the error handler for INSERT operations on
the hr.regions table. Therefore, when any apply process dequeues a row LCR
containing an INSERT operation on the local hr.regions table, and the row LCR results
in an error, the apply process sends the row LCR to the
strmadmin.errors_pkg.regions_pk_error PL/SQL procedure for processing. If the error
handler cannot resolve the error, then the row LCR and all of the other row LCRs in
the same transaction are moved to the error queue.

In this example, the apply_name parameter is set to NULL. Therefore, the error handler is
a general error handler that is used by all of the apply processes in the database.

Run the following procedure to set the error handler:

Chapter 17
Managing an Error Handler

17-36

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.regions',
 object_type => 'TABLE',
 operation_name => 'INSERT',
 error_handler => TRUE,
 user_procedure => 'strmadmin.errors_pkg.regions_pk_error',
 apply_database_link => NULL,
 apply_name => NULL);
END;
/

If the error handler is already set, then you can run the SET_DML_HANDLER procedure to
change the error handler.

17.12.3 Unsetting an Error Handler
You unset an error handler using the SET_DML_HANDLER procedure in the DBMS_APPLY_ADM
package. When you run that procedure, set the user_procedure parameter to NULL for a
specific operation on a specific table.

For example, the following procedure unsets the error handler for INSERT operations on
the hr.regions table:

BEGIN
 DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name => 'hr.regions',
 object_type => 'TABLE',
 operation_name => 'INSERT',
 user_procedure => NULL,
 apply_name => NULL);
END;
/

Note:

The error_handler parameter does not need to be specified.

17.13 Managing Apply Errors
The following sections contain instructions for retrying and deleting apply errors:

• Retrying Apply Error Transactions

• Deleting Apply Error Transactions

Chapter 17
Managing Apply Errors

17-37

See Also:

• "The Error Queue"

• "Checking for Apply Errors"

• "Displaying Detailed Information About Apply Errors"

• The Oracle Enterprise Manager Cloud Control online help for information
about managing apply errors in Oracle Enterprise Manager Cloud Control

• "Considerations for Applying DML Changes to Tables" for information
about the possible causes of apply errors

17.13.1 Retrying Apply Error Transactions
You can retry a specific error transaction or you can retry all error transactions for an
apply process. You might need to make DML or DDL changes to database objects to
correct the conditions that caused one or more apply errors before you retry error
transactions. You can also have one or more capture processes or synchronous
captures configured to capture changes to the same database objects, but you might
not want the changes captured. In this case, you can set the session tag to a value
that will not be captured for the session that makes the changes.

The following topics provide more information about retrying apply error transactions:

• Retrying a Specific Apply Error Transaction

• Retrying All Error Transactions for an Apply Process

See Also:

Oracle Streams Replication Administrator's Guide for more information about
setting tag values generated by the current session

17.13.1.1 Retrying a Specific Apply Error Transaction
When you retry an error transaction, you can execute it immediately or send the error
transaction to a user procedure for modifications before executing it. The following
sections provide instructions for each method:

• Retrying a Specific Apply Error Transaction Without a User Procedure

• Retrying a Specific Apply Error Transaction with a User Procedure

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the EXECUTE_ERROR procedure

Chapter 17
Managing Apply Errors

17-38

17.13.1.1.1 Retrying a Specific Apply Error Transaction Without a User Procedure
After you correct the conditions that caused an apply error, you can retry the
transaction by running the EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package
without specifying a user procedure. In this case, the transaction is executed without
any custom processing.

For example, to retry a transaction with the transaction identifier 5.4.312, run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id => '5.4.312',
 execute_as_user => FALSE,
 user_procedure => NULL);
END;
/

If execute_as_user is TRUE, then the apply process executes the transaction in the
security context of the current user. If execute_as_user is FALSE, then the apply process
executes the transaction in the security context of the original receiver of the
transaction. The original receiver is the user who was processing the transaction when
the error was raised.

In either case, the user who executes the transaction must have privileges to perform
DML and DDL changes on the apply objects and to run any apply handlers. This user
must also have dequeue privileges on the queue used by the apply process.

17.13.1.1.2 Retrying a Specific Apply Error Transaction with a User Procedure
You can retry an error transaction by running the EXECUTE_ERROR procedure in the
DBMS_APPLY_ADM package, and specify a user procedure to modify one or more
messages in the transaction before the transaction is executed. The modifications
should enable successful execution of the transaction. The messages in the
transaction can be LCRs or user messages.

For example, consider a case in which an apply error resulted because of a conflict.
Examination of the error transaction reveals that the old value for the salary column in
a row LCR contained the wrong value. Specifically, the current value of the salary of
the employee with employee_id of 197 in the hr.employees table did not match the old
value of the salary for this employee in the row LCR. Assume that the current value for
this employee is 3250 in the hr.employees table.

Given this scenario, the following user procedure modifies the salary in the row LCR
that caused the error:

CREATE OR REPLACE PROCEDURE strmadmin.modify_emp_salary(
 in_any IN ANYDATA,
 error_record IN DBA_APPLY_ERROR%ROWTYPE,
 error_message_number IN NUMBER,
 messaging_default_processing IN OUT BOOLEAN,
 out_any OUT ANYDATA)
AS
 row_lcr SYS.LCR$_ROW_RECORD;
 row_lcr_changed BOOLEAN := FALSE;
 res NUMBER;
 ob_owner VARCHAR2(32);
 ob_name VARCHAR2(32);

Chapter 17
Managing Apply Errors

17-39

 cmd_type VARCHAR2(30);
 employee_id NUMBER;
BEGIN
 IF in_any.getTypeName() = 'SYS.LCR$_ROW_RECORD' THEN
 -- Access the LCR
 res := in_any.GETOBJECT(row_lcr);
 -- Determine the owner of the database object for the LCR
 ob_owner := row_lcr.GET_OBJECT_OWNER;
 -- Determine the name of the database object for the LCR
 ob_name := row_lcr.GET_OBJECT_NAME;
 -- Determine the type of DML change
 cmd_type := row_lcr.GET_COMMAND_TYPE;
 IF (ob_owner = 'HR' AND ob_name = 'EMPLOYEES' AND cmd_type = 'UPDATE') THEN
 -- Determine the employee_id of the row change
 IF row_lcr.GET_VALUE('old', 'employee_id') IS NOT NULL THEN
 employee_id := row_lcr.GET_VALUE('old', 'employee_id').ACCESSNUMBER();
 IF (employee_id = 197) THEN
 -- error_record.message_number should equal error_message_number
 row_lcr.SET_VALUE(
 value_type => 'OLD',
 column_name => 'salary',
 column_value => ANYDATA.ConvertNumber(3250));
 row_lcr_changed := TRUE;
 END IF;
 END IF;
 END IF;
 END IF;
 -- Specify that the apply process continues to process the current message
 messaging_default_processing := TRUE;
 -- assign out_any appropriately
 IF row_lcr_changed THEN
 out_any := ANYDATA.ConvertObject(row_lcr);
 ELSE
 out_any := in_any;
 END IF;
END;
/

To retry a transaction with the transaction identifier 5.6.924 and process the
transaction with the modify_emp_salary procedure in the strmadmin schema before
execution, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id => '5.6.924',
 execute_as_user => FALSE,
 user_procedure => 'strmadmin.modify_emp_salary');
END;
/

Note:

The user who runs the procedure must have SELECT privilege on
DBA_APPLY_ERROR data dictionary view.

Chapter 17
Managing Apply Errors

17-40

See Also:

"Displaying Detailed Information About Apply Errors"

17.13.1.2 Retrying All Error Transactions for an Apply Process
After you correct the conditions that caused all of the apply errors for an apply
process, you can retry all of the error transactions by running the EXECUTE_ALL_ERRORS
procedure in the DBMS_APPLY_ADM package. For example, to retry all of the error
transactions for an apply process named strm01_apply, you can run the following
procedure:

BEGIN
 DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
 apply_name => 'strm01_apply',
 execute_as_user => FALSE);
END;
/

Note:

If you specify NULL for the apply_name parameter, and you have multiple apply
processes, then all of the apply errors are retried for all of the apply processes.

17.13.2 Deleting Apply Error Transactions
You can delete a specific error transaction or you can delete all error transactions for
an apply process.

17.13.2.1 Deleting a Specific Apply Error Transaction
If an error transaction should not be applied, then you can delete the transaction from
the error queue using the DELETE_ERROR procedure in the DBMS_APPLY_ADM package. For
example, to delete a transaction with the transaction identifier 5.4.312, run the
following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ERROR(local_transaction_id => '5.4.312');

17.13.2.2 Deleting All Error Transactions for an Apply Process
If none of the error transactions should be applied, then you can delete all of the error
transactions by running the DELETE_ALL_ERRORS procedure in the DBMS_APPLY_ADM
package. For example, to delete all of the error transactions for an apply process
named strm01_apply, you can run the following procedure:

EXEC DBMS_APPLY_ADM.DELETE_ALL_ERRORS(apply_name => 'strm01_apply');

Chapter 17
Managing Apply Errors

17-41

Note:

If you specify NULL for the apply_name parameter, and you have multiple apply
processes, then all of the apply errors are deleted for all of the apply
processes.

17.14 Managing the Substitute Key Columns for a Table
The following topics contain instructions for setting and removing the substitute key
columns for a table.

• Setting Substitute Key Columns for a Table

• Removing the Substitute Key Columns for a Table

See Also:

• "Substitute Key Columns"

• "Displaying the Substitute Key Columns Specified at a Destination
Database"

17.14.1 Setting Substitute Key Columns for a Table
When an apply process applies changes to a table, substitute key columns can either
replace the primary key columns for a table that has a primary key or act as the
primary key columns for a table that does not have a primary key. Set the substitute
key columns for a table using the SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM
package. This setting applies to all of the apply processes that apply local changes to
the database.

For example, to set the substitute key columns for the hr.employees table to the
first_name, last_name, and hire_date columns, replacing the employee_id column, run
the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name => 'hr.employees',
 column_list => 'first_name,last_name,hire_date');
END;
/

Chapter 17
Managing the Substitute Key Columns for a Table

17-42

Note:

• You must specify an unconditional supplemental log group at the source
database for all of the columns specified as substitute key columns in the
column_list or column_table parameter at the destination database. In this
example, you would specify an unconditional supplemental log group
including the first_name, last_name, and hire_date columns in the
hr.employees table.

• If an apply process applies changes to a remote non-Oracle database,
then it can use different substitute key columns for the same table. You
can run the SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM package to
specify substitute key columns for changes that will be applied to a remote
non-Oracle database by setting the apply_database_link parameter to a
non-NULL value.

See Also:

• "Supplemental Logging in an Oracle Streams Environment"

• Oracle Streams Replication Administrator's Guide

17.14.2 Removing the Substitute Key Columns for a Table
You remove the substitute key columns for a table by specifying NULL for the
column_list or column_table parameter in the SET_KEY_COLUMNS procedure in the
DBMS_APPLY_ADM package. If the table has a primary key, then the table's primary key is
used by any apply process for local changes to the database after you remove the
substitute primary key.

For example, to remove the substitute key columns for the hr.employees table, run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name => 'hr.employees',
 column_list => NULL);
END;
/

17.15 Using Virtual Dependency Definitions
A virtual dependency definition is a description of a dependency that is used by an
apply process to detect dependencies between transactions being applied at a
destination database. Virtual dependency definitions are useful when apply process
parallelism is greater than 1 and dependencies are not described by constraints in the
data dictionary at the destination database. There are two types of virtual dependency
definitions: value dependencies and object dependencies.

Chapter 17
Using Virtual Dependency Definitions

17-43

A value dependency defines a table constraint, such as a unique key, or a relationship
between the columns of two or more tables. An object dependency defines a parent-
child relationship between two objects at a destination database.

The following sections describe using virtual dependency definitions:

• Setting and Unsetting Value Dependencies

• Creating and Dropping Object Dependencies

See Also:

"Apply Processes and Dependencies" for more information about virtual
dependency definitions

17.15.1 Setting and Unsetting Value Dependencies
Use the SET_VALUE_DEPENDENCY procedure in the DBMS_APPLY_ADM package to set or unset
a value dependency. The following sections describe scenarios for using value
dependencies:

• Schema Differences and Value Dependencies

• Undefined Constraints at the Destination Database and Value Dependencies

17.15.1.1 Schema Differences and Value Dependencies
This scenario involves an environment that shares many tables between a source
database and destination database, but the schema that owns the tables is different at
these two databases. Also, in this replication environment, the source database is in
the United States and the destination database is in England. A design firm uses
dozens of tables to describe product designs, but the tables use United States
measurements (inches, feet, and so on) in the source database and metric
measurements in the destination database. The name of the schema that owns the
database objects at the source database is us_designs, while the name of the schema
at the destination database is uk_designs. Therefore, the schema name of the shared
database objects must be changed before apply, and all of the measurements must be
converted from United States measurements to metric measurements. Both databases
use the same constraints to enforce dependencies between database objects.

Rule-based transformations could make the required changes, but the goal is to apply
multiple LCRs in parallel. Rule-based transformations must apply LCRs serially. So, a
procedure DML handler is configured at the destination database to make the required
changes to the LCRs, and apply process parallelism is set to 5. In this environment,
the destination database has no information about the schema us_designs in the LCRs
being sent from the source database. Because an apply process calculates
dependencies before passing LCRs to apply handlers, the apply process must be
informed about the dependencies between LCRs. Value dependencies can describe
these dependencies.

In this scenario, suppose several tables describe different designs, and each of these
tables has a primary key. One of these tables is design_53, and the primary key column
is key_53. Also, a table named all_designs_summary includes a summary of all of the
individual designs, and this table has a foreign key column for each design table. The

Chapter 17
Using Virtual Dependency Definitions

17-44

all_designs_summary includes a key_53 column, which is a foreign key of the primary
key in the design_53 table. To inform an apply process about the relationship between
these tables, run the following procedures to create a value dependency at the
destination database:

BEGIN
 DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name => 'key_53_foreign_key',
 object_name => 'us_designs.design_53',
 attribute_list => 'key_53');
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name => 'key_53_foreign_key',
 object_name => 'us_designs.all_designs_summary',
 attribute_list => 'key_53');
END;
/

Notice that the value dependencies use the schema at the source database
(us_designs) because LCRs contain the source database schema. The schema will be
changed to uk_designs by the procedure DML handler after the apply process passes
the row LCRs to the handler.

To unset a value dependency, run the SET_VALUE_DEPENDENCY procedure, and specify
the name of the value dependency in the dependency_name parameter and NULL in the
object_name parameter. For example, to unset the key_53_foreign_key value
dependency that was set previously, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name => 'key_53_foreign_key',
 object_name => NULL,
 attribute_list => NULL);
END;
/

See Also:

"Managing a DML Handler"

17.15.1.2 Undefined Constraints at the Destination Database and Value
Dependencies

This scenarios involves an environment in which foreign key constraints are used for
shared tables at the source database, but no constraints are used for these tables at
the destination database. In the replication environment, the destination database is
used as a data warehouse where data is written to the database far more often than it
is queried. To optimize write operations, no constraints are defined at the destination
database.

Chapter 17
Using Virtual Dependency Definitions

17-45

In such an environment, an apply processes running on the destination database must
be informed about the constraints to apply transactions consistently. Value
dependencies can inform the apply process about these constraints.

For example, assume that the orders and order_items tables in the oe schema are
shared between the source database and the destination database in this
environment. On the source database, the order_id column is a primary key in the
orders table, and the order_id column in the order_items table is a foreign key that
matches the primary key column in the orders table. At the destination database, these
constraints have been removed. Run the following procedures to create a value
dependency at the destination database that informs apply processes about the
relationship between the columns in these tables:

BEGIN
 DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name => 'order_id_foreign_key',
 object_name => 'oe.orders',
 attribute_list => 'order_id');
END;
/

BEGIN
 DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name => 'order_id_foreign_key',
 object_name => 'oe.order_items',
 attribute_list => 'order_id');
END;
/

Also, in this environment, the following actions should be performed so that apply
processes can apply transactions consistently:

• Value dependencies should be set for each column that has a unique key or
bitmap index at the source database.

• The DBMS_APPLY_ADM.SET_KEY_COLUMNS procedure should set substitute key columns
for the columns that are primary key columns at the source database.

To unset the value dependency that was set previously, run the following procedure:

BEGIN
 DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name => 'order_id_foreign_key',
 object_name => NULL,
 attribute_list => NULL);
END;
/

See Also:

"Managing the Substitute Key Columns for a Table"

17.15.2 Creating and Dropping Object Dependencies
Use the CREATE_OBJECT_DEPENDENCY and DROP_OBJECT_DEPENDENCY procedures in the
DBMS_APPLY_ADM package to create or drop an object dependency.

Chapter 17
Using Virtual Dependency Definitions

17-46

The following topics provide detailed instructions for creating and dropping object
dependencies:

• Creating an Object Dependency

• Dropping an Object Dependency

17.15.2.1 Creating an Object Dependency
An object dependency can be used when row LCRs for a particular table always
should be applied before the row LCRs for another table, and the data dictionary of the
destination database does not contain a constraint to enforce this relationship. When
you define an object dependency, the table whose row LCRs should be applied first is
the parent table and the table whose row LCRs should be applied second is the child
table.

For example, consider an Oracle Streams replication environment with the following
characteristics:

• The following tables in the ord schema are shared between a source and
destination database:

– The customers table contains information about customers, including each
customer's shipping address.

– The orders table contains information about each order.

– The order_items table contains information about the items ordered in each
order.

– The ship_orders table contains information about orders that are ready to ship,
but it does not contain detailed information about the customer or information
about individual items to ship with each order.

• The ship_orders table has no relationships, defined by constraints, with the other
tables.

• Information about orders is entered into the source database and propagated to
the destination database, where it is applied.

• The destination database site is a warehouse where orders are shipped to
customers. At this site, a procedure DML handler uses the information in the
ship_orders, customers, orders, and order_items tables to generate a report that
includes the customer's shipping address and the items to ship.

The information in the report generated by the procedure DML handler must be
consistent with the time when the ship order record was created. An object
dependency at the destination database can accomplish this goal. In this case, the
ship_orders table is the parent table of the following child tables: customers, orders, and
order_items. Because ship_orders is the parent of these tables, any changes to these
tables made after a record in the ship_orders table was entered will not be applied until
the procedure DML handler has generated the report for the ship order.

To create these object dependencies, run the following procedures at the destination
database:

BEGIN
 DBMS_APPLY_ADM.CREATE_OBJECT_DEPENDENCY(
 object_name => 'ord.customers',
 parent_object_name => 'ord.ship_orders');

Chapter 17
Using Virtual Dependency Definitions

17-47

END;
/

BEGIN
 DBMS_APPLY_ADM.CREATE_OBJECT_DEPENDENCY(
 object_name => 'ord.orders',
 parent_object_name => 'ord.ship_orders');
END;
/

BEGIN
 DBMS_APPLY_ADM.CREATE_OBJECT_DEPENDENCY(
 object_name => 'ord.order_items',
 parent_object_name => 'ord.ship_orders');
END;
/

See Also:

"Managing a DML Handler"

17.15.2.2 Dropping an Object Dependency
To drop the object dependencies created in "Creating an Object Dependency", run the
following procedure:

BEGIN
 DBMS_APPLY_ADM.DROP_OBJECT_DEPENDENCY(
 object_name => 'ord.customers',
 parent_object_name => 'ord.ship_orders');
END;
/

BEGIN
 DBMS_APPLY_ADM.DROP_OBJECT_DEPENDENCY(
 object_name => 'ord.orders',
 parent_object_name => 'ord.ship_orders');
END;
/

BEGIN
 DBMS_APPLY_ADM.DROP_OBJECT_DEPENDENCY(
 object_name => 'ord.order_items',
 parent_object_name => 'ord.ship_orders');
END;
/

17.16 Dropping an Apply Process
You run the DROP_APPLY procedure in the DBMS_APPLY_ADM package to drop an existing
apply process. For example, the following procedure drops an apply process named
strm02_apply:

BEGIN
 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name => 'strm02_apply',

Chapter 17
Dropping an Apply Process

17-48

 drop_unused_rule_sets => TRUE);
END;
/

Because the drop_unused_rule_sets parameter is set to TRUE, this procedure also drops
any rule sets used by the strm02_apply apply process, unless a rule set is used by
another Oracle Streams client. If the drop_unused_rule_sets parameter is set to TRUE,
then both the positive and negative rule set for the apply process might be dropped. If
this procedure drops a rule set, then it also drops any rules in the rule set that are not
in another rule set.

An error is raised if you try to drop an apply process and there are errors in the error
queue for the specified apply process. Therefore, if there are errors in the error queue
for an apply process, delete the errors before dropping the apply process.

See Also:

• "Managing Apply Errors"

Chapter 17
Dropping an Apply Process

17-49

18
Managing Rules

An Oracle Streams environment uses rules to control the behavior of Oracle Streams
clients (capture processes, propagations, apply processes, and messaging clients). In
addition, you can create custom applications that are clients of the rules engine. This
chapter contains instructions for managing rule sets, rules, and privileges related to
rules.

The following topics describe managing rules:

• Managing Rule Sets

• Managing Rules

• Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

Note:

Modifying the rules and rule sets used by an Oracle Streams client changes
the behavior of the Oracle Streams client.

Note:

This chapter does not contain examples for creating evaluation contexts, nor
does it contain examples for evaluating events using the DBMS_RULE.EVALUATE
procedure. See Oracle Streams Extended Examples for these examples.

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

• Rule-Based Transformations

• Oracle Streams Replication Administrator's Guide for information about
creating an Oracle Streams administrator

• Troubleshooting Rules and Rule-Based Transformations

18-1

18.1 Managing Rule Sets
You can modify a rule set without stopping Oracle Streams capture processes,
propagations, and apply processes that use the rule set. Oracle Streams will detect
the change immediately after it is committed. If you need precise control over which
messages use the new version of a rule set, then complete the following steps:

1. Stop the relevant capture processes, propagations, and apply processes.

2. Modify the rule set.

3. Restart the Oracle Streams clients you stopped in Step 1.

This section provides instructions for completing the following tasks:

• Creating a Rule Set

• Adding a Rule to a Rule Set

• Removing a Rule from a Rule Set

• Dropping a Rule Set

See Also:

• "Stopping a Capture Process"

• "Stopping a Propagation"

• "Stopping an Apply Process"

• Troubleshooting Rules and Rule-Based Transformations

18.1.1 Creating a Rule Set
The following example runs the CREATE_RULE_SET procedure in the DBMS_RULE_ADM
package to create a rule set:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE_SET(
 rule_set_name => 'strmadmin.hr_capture_rules',
 evaluation_context => 'SYS.STREAMS$_EVALUATION_CONTEXT');
END;
/

Running this procedure performs the following actions:

• Creates a rule set named hr_capture_rules in the strmadmin schema. A rule set
with the same name and owner must not exist.

• Associates the rule set with the SYS.STREAMS$_EVALUATION_CONTEXT evaluation
context, which is the Oracle-supplied evaluation context for Oracle Streams.

You can also use the following procedures in the DBMS_STREAMS_ADM package to create a
rule set automatically, if one does not exist for an Oracle Streams capture process,
propagation, apply process, or messaging client:

Chapter 18
Managing Rule Sets

18-2

• ADD_MESSAGE_PROPAGATION_RULE

• ADD_MESSAGE_RULE

• ADD_TABLE_PROPAGATION_RULES

• ADD_TABLE_RULES

• ADD_SUBSET_PROPAGATION_RULES

• ADD_SUBSET_RULES

• ADD_SCHEMA_PROPAGATION_RULES

• ADD_SCHEMA_RULES

• ADD_GLOBAL_PROPAGATION_RULES

• ADD_GLOBAL_RULES

Except for ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES, these procedures can
create either a positive rule set or a negative rule set for an Oracle Streams client.
ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES can only create a positive rule set
for an Oracle Streams client.

See Also:

Oracle Streams Replication Administrator's Guide for information about
creating Streams clients

18.1.2 Adding a Rule to a Rule Set
When you add rules to a rule set, the behavior of the Oracle Streams clients that use
the rule set changes. Ensure that you understand how rules to a rule set will affect
Oracle Streams clients before proceeding.

The following example runs the ADD_RULE procedure in the DBMS_RULE_ADM package to
add the hr_dml rule to the hr_capture_rules rule set:

BEGIN
 DBMS_RULE_ADM.ADD_RULE(
 rule_name => 'strmadmin.hr_dml',
 rule_set_name => 'strmadmin.hr_capture_rules',
 evaluation_context => NULL);
END;
/

In this example, no evaluation context is specified when running the ADD_RULE
procedure. Therefore, if the rule does not have its own evaluation context, it will inherit
the evaluation context of the hr_capture_rules rule set. If you want a rule to use an
evaluation context other than the one specified for the rule set, then you can set the
evaluation_context parameter to this evaluation context when you run the ADD_RULE
procedure.

Chapter 18
Managing Rule Sets

18-3

18.1.3 Removing a Rule from a Rule Set
When you remove a rule from a rule set, the behavior of the Oracle Streams clients
that use the rule set changes. Ensure that you understand how removing a rule from a
rule set will affect Oracle Streams clients before proceeding.

The following example runs the REMOVE_RULE procedure in the DBMS_RULE_ADM package to
remove the hr_dml rule from the hr_capture_rules rule set:

BEGIN
 DBMS_RULE_ADM.REMOVE_RULE(
 rule_name => 'strmadmin.hr_dml',
 rule_set_name => 'strmadmin.hr_capture_rules');
END;
/

After running the REMOVE_RULE procedure, the rule still exists in the database and, if it
was in any other rule sets, it remains in those rule sets.

See Also:

"Dropping a Rule"

18.1.4 Dropping a Rule Set
The following example runs the DROP_RULE_SET procedure in the DBMS_RULE_ADM package
to drop the hr_capture_rules rule set from the database:

BEGIN
 DBMS_RULE_ADM.DROP_RULE_SET(
 rule_set_name => 'strmadmin.hr_capture_rules',
 delete_rules => FALSE);
END;
/

In this example, the delete_rules parameter in the DROP_RULE_SET procedure is set to
FALSE, which is the default setting. Therefore, if the rule set contains any rules, then
these rules are not dropped. If the delete_rules parameter is set to TRUE, then any rules
in the rule set that are not in another rule set are dropped from the database
automatically. Rules in the rule set that are in one or more other rule sets are not
dropped.

18.2 Managing Rules
You can modify a rule without stopping Oracle Streams capture processes,
propagations, and apply processes that use the rule. Oracle Streams will detect the
change immediately after it is committed. If you need precise control over which
messages use the new version of a rule, then complete the following steps:

1. Stop the relevant capture processes, propagations, and apply processes.

2. Modify the rule.

Chapter 18
Managing Rules

18-4

3. Restart the Oracle Streams clients you stopped in Step 1.

This section provides instructions for completing the following tasks:

• Creating a Rule

• Altering a Rule

• Modifying System-Created Rules

• Dropping a Rule

See Also:

• "Stopping a Capture Process"

• "Stopping a Propagation"

• "Stopping an Apply Process"

18.2.1 Creating a Rule
The following examples use the CREATE_RULE procedure in the DBMS_RULE_ADM package to
create a rule without an action context and a rule with an action context:

• Creating a Rule without an Action Context

• Creating a Rule with an Action Context

18.2.1.1 Creating a Rule without an Action Context
To create a rule without an action context, run the CREATE_RULE procedure and specify
the rule name using the rule_name parameter and the rule condition using the condition
parameter, as in the following example:

BEGIN
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.hr_dml',
 condition => ' :dml.get_object_owner() = ''HR'' ');
END;
/

Running this procedure performs the following actions:

• Creates a rule named hr_dml in the strmadmin schema. A rule with the same name
and owner must not exist.

• Creates a condition that evaluates to TRUE for any DML change to a table in the hr
schema.

In this example, no evaluation context is specified for the rule. Therefore, the rule will
either inherit the evaluation context of any rule set to which it is added, or it will be
assigned an evaluation context explicitly when the DBMS_RULE_ADM.ADD_RULE procedure
is run to add it to a rule set. At this point, the rule cannot be evaluated because it is not
part of any rule set.

You can also use the following procedures in the DBMS_STREAMS_ADM package to create
rules and add them to a rule set automatically:

Chapter 18
Managing Rules

18-5

• ADD_MESSAGE_PROPAGATION_RULE

• ADD_MESSAGE_RULE

• ADD_TABLE_PROPAGATION_RULES

• ADD_TABLE_RULES

• ADD_SUBSET_PROPAGATION_RULES

• ADD_SUBSET_RULES

• ADD_SCHEMA_PROPAGATION_RULES

• ADD_SCHEMA_RULES

• ADD_GLOBAL_PROPAGATION_RULES

• ADD_GLOBAL_RULES

Except for ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES, these procedures can
add rules to either the positive rule set or the negative rule set for an Oracle Streams
client. ADD_SUBSET_PROPAGATION_RULES and ADD_SUBSET_RULES can add rules only to the
positive rule set for an Oracle Streams client.

See Also:

Oracle Streams Replication Administrator's Guide for information about
creating Streams clients

18.2.1.2 Creating a Rule with an Action Context
To create a rule with an action context, run the CREATE_RULE procedure and specify the
rule name using the rule_name parameter, the rule condition using the condition
parameter, and the rule action context using the action_context parameter. You add a
name-value pair to an action context using the ADD_PAIR member procedure of the
RE$NV_LIST type

The following example creates a rule with a non-NULL action context:

DECLARE
 ac SYS.RE$NV_LIST;
BEGIN
 ac := SYS.RE$NV_LIST(NULL);
 ac.ADD_PAIR('course_number', ANYDATA.CONVERTNUMBER(1057));
 DBMS_RULE_ADM.CREATE_RULE(
 rule_name => 'strmadmin.rule_dep_10',
 condition => ' :dml.get_object_owner()=''HR'' AND ' ||
 ' :dml.get_object_name()=''EMPLOYEES'' AND ' ||
 ' (:dml.get_value(''NEW'', ''DEPARTMENT_ID'').AccessNumber()=10) AND ' ||
 ' :dml.get_command_type() = ''INSERT'' ',
 action_context => ac);
END;
/

Running this procedure performs the following actions:

• Creates a rule named rule_dep_10 in the strmadmin schema. A rule with the same
name and owner must not exist.

Chapter 18
Managing Rules

18-6

• Creates a condition that evaluates to TRUE for any insert into the hr.employees table
where the department_id is 10.

• Creates an action context with one name-value pair that has course_number for the
name and 1057 for the value.

See Also:

"Rule Action Context" for a scenario that uses such a name-value pair in an
action context

18.2.2 Altering a Rule
You can use the ALTER_RULE procedure in the DBMS_RULE_ADM package to alter an
existing rule. Specifically, you can use this procedure to do the following:

• Change a rule condition

• Change a rule evaluation context

• Remove a rule evaluation context

• Modify a name-value pair in a rule action context

• Add a name-value pair to a rule action context

• Remove a name-value pair from a rule action context

• Change the comment for a rule

• Remove the comment for a rule

The following topics contains examples for some of these alterations:

• Changing a Rule Condition

• Modifying a Name-Value Pair in a Rule Action Context

• Adding a Name-Value Pair to a Rule Action Context

• Removing a Name-Value Pair from a Rule Action Context

18.2.2.1 Changing a Rule Condition
You use the condition parameter in the ALTER_RULE procedure to change the condition
of an existing rule. For example, suppose you want to change the condition of the rule
created in "Creating a Rule". The condition in the existing hr_dml rule evaluates to TRUE
for any DML change to any object in the hr schema. If you want to exclude changes to
the employees table in this schema, then you can alter the rule so that it evaluates to
FALSE for DML changes to the hr.employees table, but continues to evaluate to TRUE for
DML changes to any other table in this schema. The following procedure alters the
rule in this way:

BEGIN
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.hr_dml',
 condition => ' :dml.get_object_owner() = ''HR'' AND NOT ' ||
 ' :dml.get_object_name() = ''EMPLOYEES'' ',
 evaluation_context => NULL);

Chapter 18
Managing Rules

18-7

END;
/

Note:

• Changing the condition of a rule affects all rule sets that contain the rule.

• To alter a rule but retain the rule action context, specify NULL for
action_context parameter in the ALTER_RULE procedure. NULL is the default
value for the action_context parameter.

• When a rule is in the rule set for a synchronous capture, do not change
the following rule conditions: :dml.get_object_name
and :dml.get_object_owner. Changing these conditions can cause the
synchronous capture not to capture changes to the database object. You
can change other conditions in synchronous capture rules.

18.2.2.2 Modifying a Name-Value Pair in a Rule Action Context
To modify a name-value pair in a rule action context, you first remove the name-value
pair from the rule action context and then add a different name-value pair to the rule
action context.

This example modifies a name-value pair for rule rule_dep_10 by first removing the
name-value pair with the name course_name from the rule action context and then
adding a different name-value pair back to the rule action context with the same name
(course_name) but a different value. This name-value pair being modified was added to
the rule in the example in "Creating a Rule with an Action Context".

If an action context contains name-value pairs in addition to the name-value pair that
you are modifying, then be cautious when you modify the action context so that you do
not change or remove any of the other name-value pairs.

Complete the following steps to modify a name-value pair in an action context:

1. You can view the name-value pairs in the action context of a rule by performing
the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A25
COLUMN AC_VALUE_NUMBER HEADING 'Action Context Number Value' FORMAT 9999

SELECT
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSNUMBER() AC_VALUE_NUMBER
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME = 'RULE_DEP_10';

This query displays output similar to the following:

Action Context Name Action Context Number Value
------------------------- ---------------------------
course_number 1057

2. Modify the name-value pair. Ensure that no other users are modifying the action
context at the same time. This step first removes the name-value pair containing
the name course_number from the action context for the rule_dep_10 rule using the
REMOVE_PAIR member procedure of the RE$NV_LIST type. Next, this step adds a

Chapter 18
Managing Rules

18-8

name-value pair containing the new name-value pair to the rule action context
using the ADD_PAIR member procedure of this type. In this case, the name is
course_number and the value is 1108 for the added name-value pair.

To preserve any existing name-value pairs in the rule action context, this example
selects the rule action context into a variable before altering it:

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'course_number';
BEGIN
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='RULE_DEP_10';
 action_ctx.REMOVE_PAIR(ac_name);
 action_ctx.ADD_PAIR(ac_name,
 ANYDATA.CONVERTNUMBER(1108));
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.rule_dep_10',
 action_context => action_ctx);
END;
/

To ensure that the name-value pair was altered properly, you can rerun the query
in Step 1. The query should display output similar to the following:

Action Context Name Action Context Number Value
------------------------- ---------------------------
course_number 1108

18.2.2.3 Adding a Name-Value Pair to a Rule Action Context
You can preserve the existing name-value pairs in the action context by selecting the
action context into a variable before adding a new pair using the ADD_PAIR member
procedure of the RE$NV_LIST type. Ensure that no other users are modifying the action
context at the same time. The following example preserves the existing name-value
pairs in the action context of the rule_dep_10 rule and adds a new name-value pair with
dist_list for the name and admin_list for the value:

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'dist_list';
BEGIN
 action_ctx := SYS.RE$NV_LIST(SYS.RE$NV_ARRAY());
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='RULE_DEP_10';
 action_ctx.ADD_PAIR(ac_name,
 ANYDATA.CONVERTVARCHAR2('admin_list'));
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.rule_dep_10',
 action_context => action_ctx);
END;
/

To ensure that the name-value pair was added successfully, you can run the following
query:

Chapter 18
Managing Rules

18-9

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A25
COLUMN AC_VALUE_NUMBER HEADING 'Action Context|Number Value' FORMAT 9999
COLUMN AC_VALUE_VARCHAR2 HEADING 'Action Context|Text Value' FORMAT A25

SELECT
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSNUMBER() AC_VALUE_NUMBER,
 AC.NVN_VALUE.ACCESSVARCHAR2() AC_VALUE_VARCHAR2
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME = 'RULE_DEP_10';

This query should display output similar to the following:

 Action Context Action Context
Action Context Name Number Value Text Value
------------------------- -------------- -------------------------
course_number 1088
dist_list admin_list

See Also:

"Rule Action Context" for a scenario that uses similar name-value pairs in an
action context

18.2.2.4 Removing a Name-Value Pair from a Rule Action Context
You remove a name-value pair in the action context of a rule using the REMOVE_PAIR
member procedure of the RE$NV_LIST type. Ensure that no other users are modifying
the action context at the same time.

Removing a name-value pair means altering the action context of a rule. If an action
context contains name-value pairs in addition to the name-value pair being removed,
then be cautious when you modify the action context so that you do not change or
remove any other name-value pairs.

This example assumes that the rule_dep_10 rule has the following name-value pairs:

Name Value

course_number 1088

dist_list admin_list

See Also:

You added these name-value pairs to the rule_dep_10 rule if you completed
the examples in the following sections:

• "Creating a Rule with an Action Context"

• "Modifying a Name-Value Pair in a Rule Action Context"

• "Adding a Name-Value Pair to a Rule Action Context"

Chapter 18
Managing Rules

18-10

This example preserves existing name-value pairs in the action context of the
rule_dep_10 rule that should not be removed by selecting the existing action context
into a variable and then removing the name-value pair with dist_list for the name.

DECLARE
 action_ctx SYS.RE$NV_LIST;
 ac_name VARCHAR2(30) := 'dist_list';
BEGIN
 SELECT RULE_ACTION_CONTEXT
 INTO action_ctx
 FROM DBA_RULES R
 WHERE RULE_OWNER='STRMADMIN' AND RULE_NAME='RULE_DEP_10';
 action_ctx.REMOVE_PAIR(ac_name);
 DBMS_RULE_ADM.ALTER_RULE(
 rule_name => 'strmadmin.rule_dep_10',
 action_context => action_ctx);
END;
/

To ensure that the name-value pair was removed successfully without removing any
other name-value pairs in the action context, you can run the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A25
COLUMN AC_VALUE_NUMBER HEADING 'Action Context|Number Value' FORMAT 9999
COLUMN AC_VALUE_VARCHAR2 HEADING 'Action Context|Text Value' FORMAT A25

SELECT
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSNUMBER() AC_VALUE_NUMBER,
 AC.NVN_VALUE.ACCESSVARCHAR2() AC_VALUE_VARCHAR2
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME = 'RULE_DEP_10';

This query should display output similar to the following:

 Action Context Action Context
Action Context Name Number Value Text Value
------------------------- -------------- -------------------------
course_number 1108

18.2.3 Modifying System-Created Rules
System-created rules are rules created by running a procedure in the DBMS_STREAMS_ADM
package. If you cannot create a rule with the exact rule condition you need using the
DBMS_STREAMS_ADM package, then you can create a rule with a condition based on a
system-created rule by following these general steps:

1. Copy the rule condition of the system-created rule. You can view the rule condition
of a system-created rule by querying the DBA_STREAMS_RULES data dictionary view.

2. Modify the condition.

3. Create a rule with the modified condition.

4. Add the new rule to a rule set for an Oracle Streams capture process, propagation,
apply process, or messaging client.

5. Remove the original rule if it is no longer needed using the REMOVE_RULE procedure
in the DBMS_STREAMS_ADM package.

Chapter 18
Managing Rules

18-11

See Also:

• Rule-Based Transformations

• Monitoring an Oracle Streams Environment for more information about the
data dictionary views related to Oracle Streams

18.2.4 Dropping a Rule
The following example runs the DROP_RULE procedure in the DBMS_RULE_ADM package to
drop the hr_dml rule from the database:

BEGIN
 DBMS_RULE_ADM.DROP_RULE(
 rule_name => 'strmadmin.hr_dml',
 force => FALSE);
END;
/

In this example, the force parameter in the DROP_RULE procedure is set to FALSE, which
is the default setting. Therefore, the rule cannot be dropped if it is in one or more rule
sets. If the force parameter is set to TRUE, then the rule is dropped from the database
and automatically removed from any rule sets that contain it.

18.3 Managing Privileges on Evaluation Contexts, Rule
Sets, and Rules

This section provides instructions for completing the following tasks:

• Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules

• Granting Object Privileges on an Evaluation Context, Rule Set, or Rule

• Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules

• Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule

See Also:

• "Database Objects and Privileges Related to Rules"

• The GRANT_SYSTEM_PRIVILEGE and GRANT_OBJECT_PRIVILEGE procedures in the
DBMS_RULE_ADM package in Oracle Database PL/SQL Packages and Types
Reference

Chapter 18
Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

18-12

18.3.1 Granting System Privileges on Evaluation Contexts, Rule Sets,
and Rules

You can use the GRANT_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM package to
grant system privileges on evaluation contexts, rule sets, and rules to users and roles.
These privileges enable a user to create, alter, execute, or drop these objects in the
user's own schema or, if the "ANY" version of the privilege is granted, in any schema.

For example, to grant the hr user the privilege to create an evaluation context in the
user's own schema, enter the following while connected as a user who can grant
privileges and alter users:

BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 grantee => 'hr',
 grant_option => FALSE);
END;
/

In this example, the grant_option parameter in the GRANT_SYSTEM_PRIVILEGE procedure is
set to FALSE, which is the default setting. Therefore, the hr user cannot grant the
CREATE_EVALUATION_CONTEXT_OBJ system privilege to other users or roles. If the
grant_option parameter were set to TRUE, then the hr user could grant this system
privilege to other users or roles.

18.3.2 Granting Object Privileges on an Evaluation Context, Rule Set,
or Rule

You can use the GRANT_OBJECT_PRIVILEGE procedure in the DBMS_RULE_ADM package to
grant object privileges on a specific evaluation context, rule set, or rule. These
privileges enable a user to alter or execute the specified object.

For example, to grant the hr user the privilege to both alter and execute a rule set
named hr_capture_rules in the strmadmin schema, enter the following:

BEGIN
 DBMS_RULE_ADM.GRANT_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET,
 object_name => 'strmadmin.hr_capture_rules',
 grantee => 'hr',
 grant_option => FALSE);
END;
/

In this example, the grant_option parameter in the GRANT_OBJECT_PRIVILEGE procedure is
set to FALSE, which is the default setting. Therefore, the hr user cannot grant the
ALL_ON_RULE_SET object privilege for the specified rule set to other users or roles. If the
grant_option parameter were set to TRUE, then the hr user could grant this object
privilege to other users or roles.

Chapter 18
Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

18-13

18.3.3 Revoking System Privileges on Evaluation Contexts, Rule Sets,
and Rules

You can use the REVOKE_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM package to
revoke system privileges on evaluation contexts, rule sets, and rules.

For example, to revoke from the hr user the privilege to create an evaluation context in
the user's own schema, enter the following while connected as a user who can grant
privileges and alter users:

BEGIN
 DBMS_RULE_ADM.REVOKE_SYSTEM_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ,
 revokee => 'hr');
END;
/

18.3.4 Revoking Object Privileges on an Evaluation Context, Rule Set,
or Rule

You can use the REVOKE_OBJECT_PRIVILEGE procedure in the DBMS_RULE_ADM package to
revoke object privileges on a specific evaluation context, rule set, or rule.

For example, to revoke from the hr user the privilege to both alter and execute a rule
set named hr_capture_rules in the strmadmin schema, enter the following:

BEGIN
 DBMS_RULE_ADM.REVOKE_OBJECT_PRIVILEGE(
 privilege => SYS.DBMS_RULE_ADM.ALL_ON_RULE_SET,
 object_name => 'strmadmin.hr_capture_rules',
 revokee => 'hr');
END;
/

Chapter 18
Managing Privileges on Evaluation Contexts, Rule Sets, and Rules

18-14

19
Managing Rule-Based Transformations

In Oracle Streams, a rule-based transformation is any modification to a message that
results when a rule in a positive rule set evaluates to TRUE. There are two types of rule-
based transformations: declarative and custom.

The following sections describe managing rule-based transformations:

• Managing Declarative Rule-Based Transformations

• Managing Custom Rule-Based Transformations

Note:

A transformation specified for a rule is performed only if the rule is in a positive
rule set. If the rule is in the negative rule set for a capture process,
propagation, apply process, or messaging client, then these Oracle Streams
clients ignore the rule-based transformation.

See Also:

• Rule-Based Transformations

19.1 Managing Declarative Rule-Based Transformations
You can use the following procedures in the DBMS_STREAMS_ADM package to manage
declarative rule-based transformations: ADD_COLUMN, DELETE_COLUMN, KEEP_COLUMNS,
RENAME_COLUMN, RENAME_SCHEMA, and RENAME_TABLE.

This section provides instructions for completing the following tasks:

• Adding Declarative Rule-Based Transformations

• Overwriting an Existing Declarative Rule-Based Transformation

• Removing Declarative Rule-Based Transformations

19.1.1 Adding Declarative Rule-Based Transformations
The following topics contain examples that add declarative rule-based transformations
to DML rules:

• Adding a Declarative Rule-Based Transformation that Adds a Column

• Adding a Declarative Rule-Based Transformation that Renames a Table

19-1

Note:

Declarative rule-based transformations can be specified for DML rules only.
They cannot be specified for DDL rules.

19.1.1.1 Adding a Declarative Rule-Based Transformation that Renames a
Table

Use the RENAME_TABLE procedure in the DBMS_STREAMS_ADM package to add a declarative
rule-based transformation that renames a table in a row LCR. For example, the
following procedure adds a declarative rule-based transformation to the jobs12 rule in
the strmadmin schema:

BEGIN
 DBMS_STREAMS_ADM.RENAME_TABLE(
 rule_name => 'strmadmin.jobs12',
 from_table_name => 'hr.jobs',
 to_table_name => 'hr.assignments',
 step_number => 0,
 operation => 'ADD');
END;
/

The declarative rule-based transformation added by this procedure renames the table
hr.jobs to hr.assignments in a row LCR when the rule jobs12 evaluates to TRUE for the
row LCR. If more than one declarative rule-based transformation is specified for the
jobs12 rule, then this transformation follows default transformation ordering because
the step_number parameter is set to 0 (zero). In addition, the operation parameter is set
to ADD to indicate that the transformation is being added to the rule, not removed from
it.

The RENAME_TABLE procedure can also add a transformation that renames the schema
in addition to the table. For example, in the previous example, to specify that the
schema should be renamed to oe, specify oe.assignments for the to_table_name
parameter.

19.1.1.2 Adding a Declarative Rule-Based Transformation that Adds a Column
Use the ADD_COLUMN procedure in the DBMS_STREAMS_ADM package to add a declarative
rule-based transformation that adds a column to a row in a row LCR. For example, the
following procedure adds a declarative rule-based transformation to the employees35
rule in the strmadmin schema:

BEGIN
 DBMS_STREAMS_ADM.ADD_COLUMN(
 rule_name => 'employees35',
 table_name => 'hr.employees',
 column_name => 'birth_date',
 column_value => ANYDATA.ConvertDate(NULL),
 value_type => 'NEW',
 step_number => 0,
 operation => 'ADD');
END;
/

Chapter 19
Managing Declarative Rule-Based Transformations

19-2

The declarative rule-based transformation added by this procedure adds a birth_date
column of data type DATE to an hr.employees table row in a row LCR when the rule
employees35 evaluates to TRUE for the row LCR.

Notice that the ANYDATA.ConvertDate function specifies the column type and the column
value. In this example, the added column value is NULL, but a valid date can also be
specified. Use the appropriate ANYDATA function for the column being added. For
example, if the data type of the column being added is NUMBER, then use the
ANYDATA.ConvertNumber function.

The value_type parameter is set to NEW to indicate that the column is added to the new
values in a row LCR. You can also specify OLD to add the column to the old values.

If more than one declarative rule-based transformation is specified for the employees35
rule, then the transformation follows default transformation ordering because the
step_number parameter is set to 0 (zero). In addition, the operation parameter is set to
ADD to indicate that the transformation is being added, not removed.

Note:

The ADD_COLUMN procedure is overloaded. A column_function parameter can
specify that the current system date or time stamp is the value for the added
column. The column_value and column_function parameters are mutually
exclusive.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about AnyData type functions

19.1.2 Overwriting an Existing Declarative Rule-Based Transformation
When the operation parameter is set to ADD in a procedure that adds a declarative rule-
based transformation, an existing declarative rule-based transformation is overwritten
if the parameters in the following list match the existing transformation parameters:

• ADD_COLUMN procedure: rule_name, table_name, column_name, and step_number
parameters

• DELETE_COLUMN procedure: rule_name, table_name, column_name, and step_number
parameters

• KEEP_COLUMNS procedure: rule_name, table_name, column_list, and step_number
parameters, or rule_name, table_name, column_table, and step_number parameters
(The column_list and column_table parameters are mutually exclusive.)

• RENAME_COLUMN procedure: rule_name, table_name, from_column_name, and step_number
parameters

• RENAME_SCHEMA procedure: rule_name, from_schema_name, and step_number parameters

• RENAME_TABLE procedure: rule_name, from_table_name, and step_number parameters

Chapter 19
Managing Declarative Rule-Based Transformations

19-3

For example, suppose an existing declarative rule-based transformation was creating
by running the following procedure:

BEGIN
 DBMS_STREAMS_ADM.RENAME_COLUMN(
 rule_name => 'departments33',
 table_name => 'hr.departments',
 from_column_name => 'manager_id',
 to_column_name => 'lead_id',
 value_type => 'NEW',
 step_number => 0,
 operation => 'ADD');
END;
/

Running the following procedure overwrites this existing declarative rule-based
transformation:

BEGIN
 DBMS_STREAMS_ADM.RENAME_COLUMN(
 rule_name => 'departments33',
 table_name => 'hr.departments',
 from_column_name => 'manager_id',
 to_column_name => 'lead_id',
 value_type => '*',
 step_number => 0,
 operation => 'ADD');
END;
/

In this case, the value_type parameter in the declarative rule-based transformation was
changed from NEW to *. That is, in the original transformation, only new values were
renamed in row LCRs, but, in the new transformation, both old and new values are
renamed in row LCRs.

19.1.3 Removing Declarative Rule-Based Transformations
To remove a declarative rule-based transformation from a rule, use the same
procedure used to add the transformation, but specify REMOVE for the operation
parameter. For example, to remove the transformation added in "Adding a Declarative
Rule-Based Transformation that Renames a Table", run the following procedure:

BEGIN
 DBMS_STREAMS_ADM.RENAME_TABLE(
 rule_name => 'strmadmin.jobs12',
 from_table_name => 'hr.jobs',
 to_table_name => 'hr.assignments',
 step_number => 0,
 operation => 'REMOVE');
END;
/

When the operation parameter is set to REMOVE in any of the declarative transformation
procedures listed in "Managing Declarative Rule-Based Transformations", the other
parameters in the procedure are optional, excluding the rule_name parameter. If these
optional parameters are set to NULL, then they become wildcards.

The RENAME_TABLE procedure in the previous example behaves in the following way
when one or more of the optional parameters are set to NULL:

Chapter 19
Managing Declarative Rule-Based Transformations

19-4

from_table_nam
e Parameter

to_table_name
Parameter

step_number
Parameter

Result

NULL NULL NULL Remove all rename table
transformations for the specified
rule

non-NULL NULL NULL Remove all rename table
transformations with the specified
from_table_name for the specified
rule

NULL non-NULL NULL Remove all rename table
transformations with the specified
to_table_name for the specified rule

NULL NULL non-NULL Remove all rename table
transformations with the specified
step_number for the specified rule

non-NULL non-NULL NULL Remove all rename table
transformations with the specified
from_table_name and
to_table_name for the specified rule

NULL non-NULL non-NULL Remove all rename table
transformations with the specified
to_table_name and step_number for
the specified rule

non-NULL NULL non-NULL Remove all rename table
transformations with the specified
from_table_name and step_number
for the specified rule

The other declarative transformation procedures work in a similar way when optional
parameters are set to NULL and the operation parameter is set to REMOVE.

19.2 Managing Custom Rule-Based Transformations
Use the SET_RULE_TRANSFORM_FUNCTION procedure in the DBMS_STREAMS_ADM package to set
or unset a custom rule-based transformation for a rule. This procedure modifies the
rule action context to specify the custom rule-based transformation.

This section provides instructions for completing the following tasks:

• Creating a Custom Rule-Based Transformation

• Altering a Custom Rule-Based Transformation

• Unsetting a Custom Rule-Based Transformation

Note:

Do not modify LONG, LONG RAW, LOB, or XMLType column data in an LCR with a
custom rule-based transformation.

Chapter 19
Managing Custom Rule-Based Transformations

19-5

Note:

• There is no automatic locking mechanism for a rule action context.
Therefore, ensure that an action context is not updated by two or more
sessions at the same time.

• When you perform custom rule-based transformations on DDL LCRs, you
probably need to modify the DDL text in the DDL LCR to match any other
modification. For example, if the transformation changes the name of a
table in the DDL LCR, then the transformation should change the table
name in the DDL text in the same way.

19.2.1 Creating a Custom Rule-Based Transformation
A custom rule-based transformation function always operates on one message, but it
can return one message or many messages. A custom rule-based transformation
function that returns one message is a one-to-one transformation function. A one-to-
one transformation function must have the following signature:

FUNCTION user_function (
 parameter_name IN ANYDATA)
RETURN ANYDATA;

Here, user_function stands for the name of the function and parameter_name stands for
the name of the parameter passed to the function. The parameter passed to the
function is an ANYDATA encapsulation of a message, and the function must return an
ANYDATA encapsulation of a message.

A custom rule-based transformation function that can return more than one message
is a one-to-many transformation function. A one-to-many transformation function must
have the following signature:

FUNCTION user_function (
 parameter_name IN ANYDATA)
RETURN STREAMS$_ANYDATA_ARRAY;

Here, user_function stands for the name of the function and parameter_name stands for
the name of the parameter passed to the function. The parameter passed to the
function is an ANYDATA encapsulation of a message, and the function must return an
array that contains zero or more ANYDATA encapsulations of a message. If the array
contains zero ANYDATA encapsulations of a message, then the original message is
discarded. One-to-many transformation functions are supported only for Oracle
Streams capture processes and synchronous captures.

The STREAMS$_ANYDATA_ARRAY type is an Oracle-supplied type that has the following
definition:

CREATE OR REPLACE TYPE SYS.STREAMS$_ANYDATA_ARRAY
 AS VARRAY(2147483647) of SYS.ANYDATA
/

The following steps outline the general procedure for creating a custom rule-based
transformation that uses a one-to-one function:

Chapter 19
Managing Custom Rule-Based Transformations

19-6

1. In SQL*Plus, connect to the database as an administrative user or as the user who
will own the PL/SQL function. For this example, connect as hr user.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a PL/SQL function that performs the transformation.

Note:

Ensure that the transformation function is deterministic. A deterministic
function always returns the same value for any given set of input argument
values, now and in the future. Also, ensure that the transformation function
does not raise any exceptions. Exceptions can cause a capture process,
propagation, or apply process to become disabled, and you will need to
correct the transformation function before the capture process, propagation, or
apply process can proceed. Exceptions raised by a custom rule-based
transformation for a synchronous capture aborts the DML statement that
caused the exception. Exceptions raised by a custom rule-based
transformation for a messaging client can prevent the messaging client from
dequeuing messages.

The following example creates a function called executive_to_management in the hr
schema that changes the value in the department_name column of the departments
table from Executive to Management. Such a transformation might be necessary if
one branch in a company uses a different name for this department.

CREATE OR REPLACE FUNCTION hr.executive_to_management(in_any IN ANYDATA)
RETURN ANYDATA
IS
 lcr SYS.LCR$_ROW_RECORD;
 rc NUMBER;
 ob_owner VARCHAR2(30);
 ob_name VARCHAR2(30);
 dep_value_anydata ANYDATA;
 dep_value_varchar2 VARCHAR2(30);
BEGIN
 -- Get the type of object
 -- Check if the object type is SYS.LCR$_ROW_RECORD
 IF in_any.GETTYPENAME='SYS.LCR$_ROW_RECORD' THEN
 -- Put the row LCR into lcr
 rc := in_any.GETOBJECT(lcr);
 -- Get the object owner and name
 ob_owner := lcr.GET_OBJECT_OWNER();
 ob_name := lcr.GET_OBJECT_NAME();
 -- Check for the hr.departments table
 IF ob_owner = 'HR' AND ob_name = 'DEPARTMENTS' THEN
 -- Get the old value of the department_name column in the LCR
 dep_value_anydata := lcr.GET_VALUE('old','DEPARTMENT_NAME');
 IF dep_value_anydata IS NOT NULL THEN
 -- Put the column value into dep_value_varchar2
 rc := dep_value_anydata.GETVARCHAR2(dep_value_varchar2);
 -- Change a value of Executive in the column to Management
 IF (dep_value_varchar2 = 'Executive') THEN
 lcr.SET_VALUE('OLD','DEPARTMENT_NAME',
 ANYDATA.CONVERTVARCHAR2('Management'));
 END IF;

Chapter 19
Managing Custom Rule-Based Transformations

19-7

 END IF;
 -- Get the new value of the department_name column in the LCR
 dep_value_anydata := lcr.GET_VALUE('new', 'DEPARTMENT_NAME', 'n');
 IF dep_value_anydata IS NOT NULL THEN
 -- Put the column value into dep_value_varchar2
 rc := dep_value_anydata.GETVARCHAR2(dep_value_varchar2);
 -- Change a value of Executive in the column to Management
 IF (dep_value_varchar2 = 'Executive') THEN
 lcr.SET_VALUE('new','DEPARTMENT_NAME',
 ANYDATA.CONVERTVARCHAR2('Management'));
 END IF;
 END IF;
 END IF;
 RETURN ANYDATA.CONVERTOBJECT(lcr);
 END IF;
RETURN in_any;
END;
/

3. Grant the Oracle Streams administrator EXECUTE privilege on the
hr.executive_to_management function.

GRANT EXECUTE ON hr.executive_to_management TO strmadmin;

4. Connect to the database as the Oracle Streams administrator.

5. Create subset rules for DML operations on the hr.departments table. The subset
rules will use the transformation created in Step 2.

Subset rules are not required to use custom rule-based transformations. This
example uses subset rules to illustrate an action context with more than one
name-value pair. This example creates subset rules for an apply process on a
database named dbs1.example.com. These rules evaluate to TRUE when an LCR
contains a DML change to a row with a location_id of 1700 in the hr.departments
table. This example assumes that an ANYDATA queue named streams_queue already
exists in the database.

To create these rules, run the following ADD_SUBSET_RULES procedure:

BEGIN
 DBMS_STREAMS_ADM.ADD_SUBSET_RULES(
 table_name => 'hr.departments',
 dml_condition => 'location_id=1700',
 streams_type => 'apply',
 streams_name => 'strm01_apply',
 queue_name => 'streams_queue',
 include_tagged_lcr => FALSE,
 source_database => 'dbs1.example.com');
END;
/

Chapter 19
Managing Custom Rule-Based Transformations

19-8

Note:

• To create the rule and the rule set, the Oracle Streams administrator must
have CREATE_RULE_SET_OBJ (or CREATE_ANYRULE_SET_OBJ) and CREATE_RULE_OBJ
(or CREATE_ANY_RULE_OBJ) system privileges. You grant these privileges
using the GRANT_SYSTEM_PRIVILEGE procedure in the DBMS_RULE_ADM package.

• This example creates the rule using the DBMS_STREAMS_ADM package.
Alternatively, you can create a rule, add it to a rule set, and specify a
custom rule-based transformation using the DBMS_RULE_ADM package.
Oracle Streams Extended Examples contains an example of this
procedure.

• The ADD_SUBSET_RULES procedure adds the subset rules to the positive rule
set for the apply process.

6. Determine the names of the system-created rules by running the following query:

SELECT RULE_NAME, SUBSETTING_OPERATION FROM DBA_STREAMS_RULES
 WHERE OBJECT_NAME='DEPARTMENTS' AND DML_CONDITION='location_id=1700';

This query displays output similar to the following:

RULE_NAME SUBSET
------------------------------ ------
DEPARTMENTS5 INSERT
DEPARTMENTS6 UPDATE
DEPARTMENTS7 DELETE

Note:

You can also obtain this information using the OUT parameters when you run
ADD_SUBSET_RULES.

Because these are subset rules, two of them contain a non-NULL action context that
performs an internal transformation:

• The rule with a subsetting condition of INSERT contains an internal
transformation that converts updates into inserts if the update changes the
value of the location_id column to 1700 from some other value. The internal
transformation does not affect inserts.

• The rule with a subsetting condition of DELETE contains an internal
transformation that converts updates into deletes if the update changes the
value of the location_id column from 1700 to a different value. The internal
transformation does not affect deletes.

In this example, you can confirm that the rules DEPARTMENTS5 and DEPARTMENTS7 have
a non-NULL action context, and that the rule DEPARTMENTS6 has a NULL action context,
by running the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A13
COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A27
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action Context Value' FORMAT A30

Chapter 19
Managing Custom Rule-Based Transformations

19-9

SELECT
 RULE_NAME,
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME IN ('DEPARTMENTS5','DEPARTMENTS6','DEPARTMENTS7');

This query displays output similar to the following:

Rule Name Action Context Name Action Context Value
------------- --------------------------- ------------------------------
DEPARTMENTS5 STREAMS$_ROW_SUBSET INSERT
DEPARTMENTS7 STREAMS$_ROW_SUBSET DELETE

The DEPARTMENTS6 rule does not appear in the output because its action context is
NULL.

7. Set the custom rule-based transformation for each subset rule by running the
SET_RULE_TRANSFORM_FUNCTION procedure. This step runs this procedure for each
rule and specifies hr.executive_to_management as the transformation function.
Ensure that no other users are modifying the action context at the same time.

BEGIN
 DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name => 'departments5',
 transform_function => 'hr.executive_to_management');
 DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name => 'departments6',
 transform_function => 'hr.executive_to_management');
 DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name => 'departments7',
 transform_function => 'hr.executive_to_management');
END;
/

Specifically, this procedure adds a name-value pair to each rule action context that
specifies the name STREAMS$_TRANSFORM_FUNCTION and a value that is an ANYDATA
instance containing the name of the PL/SQL function that performs the
transformation. In this case, the transformation function is
hr.executive_to_management.

Note:

The SET_RULE_TRANSFORM_FUNCTION does not verify that the specified
transformation function exists. If the function does not exist, then an error is
raised when an Oracle Streams process or job tries to invoke the
transformation function.

Now, if you run the query that displays the name-value pairs in the action context for
these rules, each rule, including the DEPARTMENTS6 rule, shows the name-value pair for
the custom rule-based transformation:

SELECT
 RULE_NAME,
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME IN ('DEPARTMENTS5','DEPARTMENTS6','DEPARTMENTS7');

Chapter 19
Managing Custom Rule-Based Transformations

19-10

This query displays output similar to the following:

Rule Name Action Context Name Action Context Value
------------- --------------------------- ------------------------------
DEPARTMENTS5 STREAMS$_ROW_SUBSET INSERT
DEPARTMENTS5 STREAMS$_TRANSFORM_FUNCTION "HR"."EXECUTIVE_TO_MANAGEMENT"
DEPARTMENTS6 STREAMS$_TRANSFORM_FUNCTION "HR"."EXECUTIVE_TO_MANAGEMENT"
DEPARTMENTS7 STREAMS$_ROW_SUBSET DELETE
DEPARTMENTS7 STREAMS$_TRANSFORM_FUNCTION "HR"."EXECUTIVE_TO_MANAGEMENT"

You can also view transformation functions using the DBA_STREAMS_TRANSFORM_FUNCTION
data dictionary view.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the SET_RULE_TRANSFORM_FUNCTION and the rule types used in
this example

19.2.2 Altering a Custom Rule-Based Transformation
To alter a custom rule-based transformation, you can either edit the transformation
function or run the SET_RULE_TRANSFORM_FUNCTION procedure to specify a different
transformation function. This example runs the SET_RULE_TRANSFORM_FUNCTION procedure
to specify a different transformation function. The SET_RULE_TRANSFORM_FUNCTION
procedure modifies the action context of a specified rule to run a different
transformation function. If you edit the transformation function itself, then you do not
need to run this procedure.

This example alters a custom rule-based transformation for rule DEPARTMENTS5 by
changing the transformation function from hr.execute_to_management to
hr.executive_to_lead. The hr.execute_to_management rule-based transformation was
added to the DEPARTMENTS5 rule in the example in "Creating a Custom Rule-Based
Transformation".

In Oracle Streams, subset rules use name-value pairs in an action context to perform
internal transformations that convert UPDATE operations into INSERT and DELETE
operations in some situations. Such a conversion is called a row migration. The
SET_RULE_TRANSFORM_FUNCTION procedure preserves the name-value pairs that perform
row migrations.

See Also:

"Row Migration and Subset Rules" for more information about row migration

Complete the following steps to alter a custom rule-based transformation:

1. You can view all of the name-value pairs in the action context of a rule by
performing the following query:

COLUMN ACTION_CONTEXT_NAME HEADING 'Action Context Name' FORMAT A30
COLUMN ACTION_CONTEXT_VALUE HEADING 'Action Context Value' FORMAT A30

Chapter 19
Managing Custom Rule-Based Transformations

19-11

SELECT
 AC.NVN_NAME ACTION_CONTEXT_NAME,
 AC.NVN_VALUE.ACCESSVARCHAR2() ACTION_CONTEXT_VALUE
 FROM DBA_RULES R, TABLE(R.RULE_ACTION_CONTEXT.ACTX_LIST) AC
 WHERE RULE_NAME = 'DEPARTMENTS5';

This query displays output similar to the following:

Action Context Name Action Context Value
------------------------------ ------------------------------
STREAMS$_ROW_SUBSET INSERT
STREAMS$_TRANSFORM_FUNCTION "HR"."EXECUTIVE_TO_MANAGEMENT"

2. Run the SET_RULE_TRANSFORM_FUNCTION procedure to set the transformation function
to executive_to_lead for the DEPARTMENTS5 rule. In this example, it is assumed that
the new transformation function is hr.executive_to_lead and that the strmadmin
user has EXECUTE privilege on it.

BEGIN
 DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name => 'departments5',
 transform_function => 'hr.executive_to_lead');
END;
/

To ensure that the transformation function was altered properly, you can rerun the
query in Step 1. You should alter the action context for the DEPARTMENTS6 and
DEPARTMENTS7 rules in a similar way to keep the three subset rules consistent.

Note:

• The SET_RULE_TRANSFORM_FUNCTION does not verify that the specified
transformation function exists. If the function does not exist, then an error
is raised when an Oracle Streams process or job tries to invoke the
transformation function.

• If a custom rule-based transformation function is modified at the same
time that an Oracle Streams client tries to access it, then an error might be
raised.

19.2.3 Unsetting a Custom Rule-Based Transformation
To unset a custom rule-based transformation from a rule, run the
SET_RULE_TRANSFORM_FUNCTION procedure and specify NULL for the transformation
function. Specifying NULL unsets the name-value pair that specifies the custom rule-
based transformation in the rule action context. This example unsets a custom rule-
based transformation for rule DEPARTMENTS5. This transformation was added to the
DEPARTMENTS5 rule in the example in "Creating a Custom Rule-Based Transformation".

In Oracle Streams, subset rules use name-value pairs in an action context to perform
internal transformations that convert UPDATE operations into INSERT and DELETE
operations in some situations. Such a conversion is called a row migration. The
SET_RULE_TRANSFORM_FUNCTION procedure preserves the name-value pairs that perform
row migrations.

Chapter 19
Managing Custom Rule-Based Transformations

19-12

See Also:

"Row Migration and Subset Rules" for more information about row migration

Run the following procedure to unset the custom rule-based transformation for rule
DEPARTMENTS5:

BEGIN
 DBMS_STREAMS_ADM.SET_RULE_TRANSFORM_FUNCTION(
 rule_name => 'departments5',
 transform_function => NULL);
END;
/

To ensure that the transformation function was unset, you can run the query in Step 1.
You should alter the action context for the DEPARTMENTS6 and DEPARTMENTS7 rules in a
similar way to keep the three subset rules consistent.

See Also:

"Row Migration and Subset Rules" for more information about row migration

Chapter 19
Managing Custom Rule-Based Transformations

19-13

20
Using Oracle Streams to Record Table
Changes

This chapter describes using Oracle Streams to record data manipulation language
(DML) changes made to tables.

This chapter contains these topics:

• About Using Oracle Streams to Record Changes to Tables

• Preparing for an Oracle Streams Environment That Records Table Changes

• Configuring an Oracle Streams Environment That Records Table Changes

• Managing an Oracle Streams Environment That Records Table Changes

• Monitoring an Oracle Streams Environment That Records Table Changes

20.1 About Using Oracle Streams to Record Changes to
Tables

Oracle Streams can record information about the changes made to database tables,
including information about inserts, updates, and deletes. The table for which changes
are recorded is called the source table, and the information about the recorded
changes is stored in another table called the change table. Also, the database that
contains the source table is called the source database, while the database that
contains the change table is called the destination database. The destination
database can be the same database as the source database, or it can be a different
database.

The recorded information describes the data that was changed in each row because of
a DML operation, and metadata about each change. Typically, data warehouse
environments record information about table changes, but other types of environments
might track table changes as well.

To record table changes in a change table, an Oracle Stream apply process uses a
change handler. A change handler is a special type of statement DML handler that
tracks table changes and was created by either the
DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure or the
DBMS_APPLY_ADM.SET_CHANGE_HANDLER procedure. This chapter describes using these
procedures to create and manage change handlers. Information about change
handlers is stored in the ALL_APPLY_CHANGE_HANDLERS and DBA_APPLY_CHANGE_HANDLERS
views.

20-1

Note:

It is possible to create a statement DML handler that tracks table changes
without using the change handler procedures. Such statement DML handlers
are not technically considered change handlers, and information about them is
not stored in the ALL_APPLY_CHANGE_HANDLERS and DBA_APPLY_CHANGE_HANDLERS
views.

See Also:

• "Statement DML Handlers"

• "Managing a Statement DML Handler"

• "Displaying Information About Statement DML Handlers"

• Oracle Database PL/SQL Packages and Types Reference

20.2 Preparing for an Oracle Streams Environment That
Records Table Changes

The MAINTAIN_CHANGE_TABLE procedure in the DBMS_STREAMS_ADM package can configure
an Oracle Streams environment that records changes to a source table. This
procedure configures all of the required Oracle Streams components. This procedure
also enables you to identify the metadata to record for each change. For example, you
can choose to record the username of the user who made the change and the time
when the change was made, as well as many other types of metadata.

Before you use the MAINTAIN_CHANGE_TABLE procedure to configure an Oracle Stream
environment that records the changes to a table, you have decisions to make and
prerequisites to complete.

The following sections describe the decisions and prerequisites for the
MAINTAIN_CHANGE_TABLE procedure:

• Decisions to Make Before Running the MAINTAIN_CHANGE_TABLE Procedure

• Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure

20.2.1 Decisions to Make Before Running the
MAINTAIN_CHANGE_TABLE Procedure

The following sections describe the decisions to make before running the
MAINTAIN_CHANGE_TABLE procedure:

• Decide Which Type of Environment to Configure

• Decide Which Columns to Track

• Decide Which Metadata to Record

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-2

• Decide Which Values to Track for Update Operations

• Decide Whether to Configure a KEEP_COLUMNS Transformation

• Decide Whether to Specify CREATE TABLE Options for the Change Table

• Decide Whether to Perform the Configuration Actions Directly or with a Script

• Decide Whether to Replicate the Source Table

20.2.1.1 Decide Which Type of Environment to Configure
An Oracle Streams environment that records table changes has the following
components:

1. A capture process captures information about changes to the source table from
the redo log. The capture process encapsulates the information for each row
change in a row logical change record (row LCR). The database where the
changes originated is called the source database. The database that contains the
capture process is called the capture database.

2. If the source table and change table are on different databases, then a
propagation sends the captured row LCRs to the database that contains the
change table. The propagation is not needed if the source table and change table
are in the same database.

3. An apply process records the information in the change table. The apply process
uses statement DML handlers to insert the information in the row LCRs into the
change table.

You can configure these components in the following ways:

• Local capture and apply on one database: The source table, capture process,
apply process, and change table are all in the same database. This option is the
easiest to configure and maintain because all of the components are contained in
one database.

• Local capture and remote apply: The source table and capture process are in
one database, and the apply process and change table are in another database. A
propagation sends row LCRs from the source database to the destination
database. This option is best when you want easy configuration and maintenance
and when the source table and change table must reside in different databases.

• Downstream capture and local apply: The source table is in one database, and
the capture process, apply process, and change table are in another database.
This option is best when you want to optimize the performance of the database
with the source table and want to offload change capture to another database.
With this option, most of the components run on the database with the change
table.

• Downstream capture and remote apply: The source table is in one database,
the apply process and change table are in another database, and the capture
process is in a third database. This option is best when you want to optimize the
performance of both the database with the source table and the database with the
change table. With this option, the capture process runs on a third database, and a
propagation sends row LCRs from the capture database to the destination
database.

The capture database is always the database on which the MAINTAIN_CHANGE_TABLE
procedure is run. Table 20-1 describes where to run the procedure to configure each
type of environment.

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-3

Table 20-1 Configuration Options for MAINTAIN_CHANGE_TABLE

Type of Environment Where to Run MAINTAIN_CHANGE_TABLE

Local capture and apply on one database On the source database that contains the source table

Local capture and remote apply On the source database that contains the source table

Downstream capture and local apply On the destination database that does not contain the source table
but will contain the change table

Downstream capture and remote apply On a third database that does not contain the source table and will
not contain the change table

Additional requirements must be met to configure downstream capture. See
"Operational Requirements for Downstream Capture" for information.

If you decide to configure a downstream capture process, then you must decide which
type of downstream capture process you want to configure. The following types are
available:

• A real-time downstream capture process configuration means that redo
transport services at the source database sends redo data to the downstream
database, and a remote file server process (RFS) at the downstream database
receives the redo data over the network and stores the redo data in the standby
redo log.

• An archived-log downstream capture process configuration means that
archived redo log files from the source database are copied to the downstream
database, and the capture process captures changes in these archived redo log
files. These log files can be transferred automatically using redo transport
services, or they can be transferred manually using a method such as FTP.

The advantage of real-time downstream capture over archived-log downstream
capture is that real-time downstream capture reduces the amount of time required to
capture changes made at the source database. The time is reduced because the real-
time downstream capture process does not need to wait for the redo log file to be
archived before it can capture changes from it. You can configure more than one real-
time downstream capture process that captures changes from the same source
database, but you cannot configure real-time downstream capture for multiple source
databases at one downstream database.

The advantage of archived-log downstream capture over real-time downstream
capture is that archived-log downstream capture allows downstream capture
processes for multiple source databases at a downstream database. You can copy
redo log files from multiple source databases to a single downstream database and
configure multiple archived-log downstream capture processes to capture changes in
these redo log files.

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-4

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• Oracle Streams Staging and Propagation

• "Implicit Consumption with an Apply Process"

• "Statement DML Handlers"

20.2.1.2 Decide Which Columns to Track
The column_type_list parameter in the MAINTAIN_CHANGE_TABLE procedure enables you
to specify which columns to track in the change table. The Oracle Streams
environment records changes for the listed columns only. To track all of the columns in
the table, list all of the columns in this parameter. To track a subset of columns, list the
columns to track. In the column_type_list parameter, you can specify the data type of
the column and any valid column properties, such as inline constraint specifications.

You might choose to omit columns from the list for various reasons. For example,
some columns might contain sensitive information, such as salary data, that you do
not want to populate in the change table. Or, the table might contain hundreds of
columns, and you might be interested in tracking only a small number of them.

20.2.1.3 Decide Which Metadata to Record
The extra_column_list parameter in the MAINTAIN_CHANGE_TABLE procedure enables you
to specify which metadata to record in the change table. The following types of
metadata can be listed in this parameter:

• value_type

• source_database_name

• command_type

• object_owner

• object_name

• tag

• transaction_id

• scn

• commit_scn

• commit_time

• position

• compatible

• instance_number

• message_number

• row_text

• row_id

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-5

• serial#

• session#

• source_time

• thread#

• tx_name

• username

In the change table, a dollar sign ($) is appended to the column name for each
metadata attribute. For example, the metadata for the command_type attribute is stored
in the command_type$ column in the change table.

All of these metadata attributes, except for value_type and message_number, are row
LCR attributes that can be stored in row LCRs.

The value_type$ column in the change table contains either OLD or NEW, depending on
whether the column value is the original column value or the new column value,
respectively.

The message_number$ column in the change table contains the identification number of
each row LCR within a transaction. The message number increases incrementally for
each row LCR within a transaction and shows the order of the row LCRs within a
transaction.

Note:

LCR position is commonly used in XStream configurations.

See Also:

• "Row LCRs"

• "Extra Information in LCRs"

• Oracle Database XStream Guide

20.2.1.4 Decide Which Values to Track for Update Operations
The capture_values parameter in the MAINTAIN_CHANGE_TABLE procedure enables you to
specify the values to record in the change table for update operations on the source
table. When an update operation is performed on a row, the old value for each column
is the value before the update operation and the new value is the value after the
update operation. You can choose to record old values, new values, or both old and
new values.

20.2.1.5 Decide Whether to Configure a KEEP_COLUMNS Transformation
The keep_change_columns_only parameter in the MAINTAIN_CHANGE_TABLE procedure
enables you to specify whether to configure a KEEP_COLUMNS declarative rule-based
transformation. The KEEP_COLUMNS declarative rule-based transformation keeps the list

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-6

of columns specified in the column_type_list parameter in a row LCR. The
transformation removes columns that are not in the list from the row LCR.

For example, suppose a table has ten columns, but only three of these columns need
to be tracked in a change table. In this case, it is usually more efficient to configure
one KEEP_COLUMNS declarative rule-based transformation that keeps the three columns
that must be tracked than to configure seven DELETE_COLUMN declarative rule-based
transformations that remove the seven columns that should not be tracked.

The keep_change_columns_only parameter is relevant only if you specify a subset of the
table columns in the column_type_list parameter. In this case, you might choose to
configure the transformation to reduce the amount of information sent over the network
or to eliminate sensitive information from row LCRs.

Set the keep_change_columns_only parameter to FALSE when information about columns
that are not included in the column_type_list parameter is needed at the destination
database. For example, if the execute_lcr parameter is set to TRUE and the
configuration will replicate all of the columns in a source table, but the
column_type_list parameter includes a subset of these columns, then set the
keep_change_columns_only parameter to FALSE.

See Also:

• "Declarative Rule-Based Transformations"

• "Decide Which Columns to Track"

• "Decide Whether to Replicate the Source Table"

20.2.1.6 Decide Whether to Specify CREATE TABLE Options for the Change
Table

The options_string parameter in the MAINTAIN_CHANGE_TABLE procedure enables you to
append a string of options to the CREATE TABLE statement that creates the change table.
The string is appended to the generated CREATE TABLE statement after the closing
parenthesis that defines the columns of the table. The string must be syntactically
correct. For example, you can specify a TABLESPACE clause to store the table in a
specific tablespace. You can also partition the change table. The advantage of
partitioning a change table is that you can truncate a partition using the TRUNCATE
PARTITION clause of an ALTER TABLE statement instead of deleting rows with a DELETE
statement.

See Also:

Oracle Database SQL Language Reference for information about CREATE TABLE
options

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-7

20.2.1.7 Decide Whether to Perform the Configuration Actions Directly or with a
Script

The MAINTAIN_CHANGE_TABLE procedure can configure the Oracle Streams environment
directly, or it can generate a script that configures the environment. Using the
procedure to configure directly is simpler than running a script, and the environment is
configured immediately. However, you might choose to generate a script for the
following reasons:

• You want to review the actions performed by the procedure before configuring the
environment.

• You want to modify the script to customize the configuration.

For example, you might want an apply process to use apply handlers for customized
processing of the changes before applying these changes. In this case, you can use
the procedure to generate a script and modify the script to add the apply handlers.

The perform_actions parameter controls whether the procedure configures the
environment directly:

• To configure the environment directly when you run the MAINTAIN_CHANGE_TABLE
procedure, set the perform_actions parameter to TRUE. The default value for this
parameter is TRUE.

• To generate a configuration script when you run the MAINTAIN_CHANGE_TABLE
procedure, set the perform_actions parameter to FALSE, and use the script_name
and script_directory_object parameters to specify the name and location of the
configuration script.

20.2.1.8 Decide Whether to Replicate the Source Table
In addition to a change table, some environments require that the source table is
replicated at the destination database. In this case, the source table is on a different
database than the change table, and an additional replica of the source table is in the
same database as the change table.

For example, consider an Oracle Streams environment that records the changes made
the hr.employees table. Assume that the change table is named hr.emp_change_table
and that the source table and the change table are on different databases. In this
case, the following tables are involved in an Oracle Streams environment that records
changes to the hr.employees table.

• hr.employees table in database 1

• hr.emp_change_table in database 2

The apply process at the destination database has a separate change handler that
records changes for each type of operation (insert, update, and delete).

If the Oracle Streams environment also replicates the hr.employees table at database
2, then the following tables are involved:

• hr.employees table in database 1

• hr.employees table (replica) in database 2

• hr.emp_change_table in database 2

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-8

In an environment that replicates the table in addition to recording its changes, an
additional change handler is added to the apply process at the destination database
for each type of operation (insert, update, and delete). These change handlers execute
the row LCRs to apply their changes to the replicated table.

The execute_lcr parameter controls whether the procedure configures replication of
the source table:

• To configure an Oracle Streams environment that replicates the source table, set
the execute_lcr parameter to TRUE.

• To configure an Oracle Streams environment that does not replicate the source
table, set the execute_lcr parameter to FALSE. The default value for this parameter
is FALSE.

Note:

When the keep_change_columns_only parameter is set to TRUE and the
column_list parameter includes a subset of the columns in the source table,
the execute_lcr parameter must be set to FALSE. Apply errors will result if the
row LCRs do not contain the column values required to replicate changes.

See Also:

"Decide Whether to Configure a KEEP_COLUMNS Transformation"

20.2.2 Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure
The DBMS_STREAMS_ADM package includes procedures that configure replication
environments, such as MAINTAIN_GLOBAL, MAINTAIN_SCHEMAS, and MAINTAIN_TABLES. Using
the MAINTAIN_CHANGE_TABLE procedure is similar to using these other procedures, and
many of the prerequisites are the same.

The following sections describe the prerequisites to complete before running the
MAINTAIN_CHANGE_TABLE procedure:

• Configure an Oracle Streams Administrator on All Databases

• Configure Network Connectivity and Database Links

• Ensure That the Source Database Is in ARCHIVELOG Mode

• Set Initialization Parameters That Are Relevant to Oracle Streams

• Configure the Oracle Streams Pool

• Configure Log File Transfer to a Downstream Capture Database

• Configure Standby Redo Logs for Real-Time Downstream Capture

• Configure the Required Directory Object If You Are Using a Script

• Instantiate the Source Table at the Destination Database

Many of these prerequisites are described in detail in Oracle Streams Replication
Administrator's Guide.

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-9

20.2.2.1 Configure an Oracle Streams Administrator on All Databases
Each database in the environment must have an Oracle Streams administrator to
configure and manage the Oracle Streams components. See Oracle Streams
Replication Administrator's Guide for more information.

20.2.2.2 Configure Network Connectivity and Database Links
Depending on the type of Oracle Streams environment you plan to configure, network
connectivity and one or more database links might be required. If the environment will
include more than one database, then network connectivity between the databases in
the environment is required.

The following database links are required for each type of Oracle Streams
environment:

• Local capture and apply on one database: No database links are required.

• Local capture and remote apply: A database link from the source database to
the destination database is required.

• Downstream capture and local apply: The following database links are required:

– A database link from the source database to the destination database

– A database link from the destination database to the source database

• Downstream capture and remote apply: The following database links are
required:

– A database link from the source database to the destination database

– A database link from the source database to the capture database

– A database link from the capture database to the source database

– A database link from the capture database to the destination database

See Oracle Streams Replication Administrator's Guide for more information.

20.2.2.3 Ensure That the Source Database Is in ARCHIVELOG Mode
The source database that contains the source table must be in ARCHIVELOG mode
because an Oracle Streams capture process scans the redo log to capture changes. If
you plan to configure a downstream capture process, then the capture database also
must be in ARCHIVELOG mode. See Oracle Database Administrator's Guide for more
information.

20.2.2.4 Set Initialization Parameters That Are Relevant to Oracle Streams
Some initialization parameters are important for the configuration, operation, reliability,
and performance of an Oracle Streams environment. Set these parameters
appropriately for your Oracle Streams environment. See Oracle Streams Replication
Administrator's Guide for more information.

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-10

20.2.2.5 Configure the Oracle Streams Pool
The Oracle Streams pool is a portion of memory in the System Global Area (SGA) that
is used by Oracle Streams. Configure your database memory so that there is enough
space available in the Oracle Streams pool. See Oracle Streams Replication
Administrator's Guide for more information.

20.2.2.6 Configure Log File Transfer to a Downstream Capture Database
If you decided to use a local capture process at the source database, then log file
transfer is not required. However, if you decided to use downstream capture that uses
redo transport services to transfer archived redo log files to the downstream database
automatically, then configure log file transfer from the source database to the capture
database before configuring the Oracle Streams environment. See Oracle Streams
Replication Administrator's Guide for more information.

See Also:

"Decide Which Type of Environment to Configure"

20.2.2.7 Configure Standby Redo Logs for Real-Time Downstream Capture
If you decided to use a real-time downstream capture process, then you must
configure standby redo logs at the capture database. See Oracle Streams Replication
Administrator's Guide for more information.

See Also:

"Decide Which Type of Environment to Configure"

20.2.2.8 Configure the Required Directory Object If You Are Using a Script
If you decided to generate a script with the MAINTAIN_CHANGE_TABLE procedure and
configure the Oracle Streams environment with the script, then create the directory
object that will store the script in the capture database. The capture database is the
database on which you will run the procedure. This directory object is not required if
you are not generating a script.

A directory object is similar to an alias for a directory on a file system. Each directory
object must be created using the SQL statement CREATE DIRECTORY, and the user who
invokes the MAINTAIN_CHANGE_TABLE procedure must have READ and WRITE privilege on
the directory object.

For example, the following statement creates a directory object named
db_files_directory that corresponds to the /usr/db_files directory:

CREATE DIRECTORY db_files_directory AS '/usr/db_files';

Chapter 20
Preparing for an Oracle Streams Environment That Records Table Changes

20-11

The user who creates the directory object automatically has READ and WRITE privilege
on the directory object. When you are configuring an Oracle Streams replication
environment, typically the Oracle Streams administrator creates the directory object.

See Also:

• "Decide Whether to Perform the Configuration Actions Directly or with a
Script"

• "Configure an Oracle Streams Administrator on All Databases"

20.2.2.9 Instantiate the Source Table at the Destination Database
If you decided to replicate the source table, then instantiate the source table at the
destination database. Instantiation is not required if you decided not to replicate the
source table.

If instantiation is required because you decided to replicate the source table, then
complete the following steps before running the MAINTAIN_CHANGE_TABLE procedure:

1. Prepare the source table for instantiation.

2. Ensure that the source table and the replica table are consistent.

3. Set the instantiation SCN for the replica table at the destination database.

See Also:

• Oracle Streams Replication Administrator's Guide for instantiation
instructions

• "Decide Whether to Replicate the Source Table"

20.3 Configuring an Oracle Streams Environment That
Records Table Changes

This section uses examples to illustrate how to configure an Oracle Streams
environment that records table changes. Specifically, this section illustrates the four
types of Oracle Streams environments that record table changes.

This section includes the following examples:

• Recording Table Changes Using Local Capture and Apply on One Database

• Recording Table Changes Using Local Capture and Remote Apply with
Replication

• Recording Table Changes Using Downstream Capture and Local Apply

• Recording Table Changes Using Downstream Capture and Remote Apply

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-12

20.3.1 Recording Table Changes Using Local Capture and Apply on
One Database

This example illustrates how to record the changes to a table using local capture and
apply on one database. Specifically, this example records the changes made to the
hr.jobs table.

The following table lists the decisions that were made about the Oracle Streams
environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Environment to
Configure

This example configures local capture and apply on one database.

Decide Which Columns to Track This example tracks all of the columns in the hr.jobs table.

Decide Which Metadata to Record This example records the command_type, value_type (OLD or NEW),
and commit_scn metadata.

Decide Which Values to Track for Update
Operations

This example tracks both the old and new column values when an
update is performed on the source table.

Decide Whether to Configure a
KEEP_COLUMNS Transformation

This example does not configure a KEEP_COLUMNS declarative rule-
based transformation.

Decide Whether to Specify CREATE TABLE
Options for the Change Table

This example does not specify any CREATE TABLE options. The
change table is created with the default CREATE TABLE options.

Decide Whether to Perform the Configuration
Actions Directly or with a Script

This example performs the configuration actions directly. It does
not use a script.

Decide Whether to Replicate the Source Table This example does not replicate the source table.

Figure 20-1 provides an overview of the Oracle Stream environment created in this
example.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-13

Figure 20-1 Recording Changes Using Local Capture and Apply on One
Database

Capture Process

Queue

Enqueue�
Changes

Dequeue�
Changes

Apply Process

Send

Updates

Change Handler�
for Updates

Change Handler�
for Inserts

Change Handler�
for Deletes

hr.jobs_change_table�
Table

Record�
Updates

Record�
Deletes

Record�
Inserts

Send�
Deletes

Send�
Inserts

hr.jobs Table

Record

Changes

Capture DML�
Changes

Oracle Database

Redo

Log

Complete the following steps to configure an Oracle Streams environment that records
the changes to a table using local capture and apply on one database:

1. Complete the required prerequisites before running the MAINTAIN_CHANGE_TABLE
procedure. See "Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure"
for more information.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator on the database. See "Configure
an Oracle Streams Administrator on All Databases".

• Ensure that the database is in ARCHIVELOG mode. See "Ensure That the Source
Database Is in ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at the database. See
"Set Initialization Parameters That Are Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at the database. See "Configure
the Oracle Streams Pool".

2. Connect to the database as the Oracle Streams administrator.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-14

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Run the MAINTAIN_CHANGE_TABLE procedure:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(
 change_table_name => 'hr.jobs_change_table',
 source_table_name => 'hr.jobs',
 column_type_list => 'job_id VARCHAR2(10),
 job_title VARCHAR2(35),
 min_salary NUMBER(6),
 max_salary NUMBER(6)',
 extra_column_list => 'command_type,value_type,commit_scn',
 capture_values => '*',
 keep_change_columns_only => FALSE);
END;
/

This procedure uses the default value for each parameter that is not specified. The
keep_change_columns_only parameter is set to FALSE because all of the columns in
the hr.jobs table are listed in the column_type_list parameter.

When this procedure completes, the Oracle Streams environment is configured.

If this procedure encounters an error and stops, then see Oracle Streams
Replication Administrator's Guide for information about either recovering from the
error or rolling back the configuration operation by using the
DBMS_STREAMS_ADM.RECOVER_OPERATION procedure.

The resulting Oracle Streams environment has the following characteristics:

• An unconditional supplemental log group includes all of the columns in the hr.jobs
table.

• The database has an hr.jobs_change_table. This change table has the following
definition:

 Name Null? Type
 --- -------- ---------------------------
 COMMAND_TYPE$ VARCHAR2(10)
 VALUE_TYPE$ VARCHAR2(3)
 COMMIT_SCN$ NUMBER
 JOB_ID VARCHAR2(10)
 JOB_TITLE VARCHAR2(35)
 MIN_SALARY NUMBER(6)
 MAX_SALARY NUMBER(6)

• The database has a queue with a system-generated name. This queue is used by
the capture process and apply process.

• A capture process with a system-generated name captures data manipulation
language (DML) changes made to the hr.jobs table.

• An apply process with a system-generated name. The apply process uses change
handlers with system-generated names to process the captured row LCRs for
inserts, updates, and deletes on the hr.jobs table. The change handlers use the
information in the row LCRs to populate the hr.jobs_change_table.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-15

See Also:

"Monitoring a Change Table" for an example that makes changes to the
hr.jobs table and then queries the hr.jobs_change_table to verify change
tracking

20.3.2 Recording Table Changes Using Local Capture and Remote
Apply with Replication

This example illustrates how to record the changes to a table using local capture and
remote apply. In addition to recording table changes, the Oracle Stream environment
configured by this example also replicates the changes made to the table.

Specifically, this example records the changes made to a subset of columns in the
hr.departments table. This example also replicates data manipulation language (DML)
changes made to all of the columns in the hr.departments table. The Oracle Streams
environment configured in this example captures the changes on the source database
ct1.example.com and sends the changes to the destination database ct2.example.com.
An apply process on ct2.example.com records the changes in a change table and
applies the changes to the replica hr.departments table.

The following table lists the decisions that were made about the Oracle Streams
environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Environment to
Configure

This example configures local capture and remote apply using two
databases: the source database is ct1.example.com and the
destination database is ct2.example.com. The capture process
will be a local capture process on ct1.example.com.

Decide Which Columns to Track This example tracks the department_id and manager_id columns
in the hr.departments table.

Decide Which Metadata to Record This example records the command_type and value_type (OLD or
NEW) metadata. This metadata is recorded by default when the
extra_column_list parameter is not specified in
MAINTAIN_CHANGE_TABLE.

Decide Which Values to Track for Update
Operations

This example tracks both the old and new column values when an
update is performed on the source table.

Decide Whether to Configure a
KEEP_COLUMNS Transformation

This example does not configure a KEEP_COLUMNS declarative rule-
based transformation because all of the table columns are
replicated.

Decide Whether to Specify CREATE TABLE
Options for the Change Table

This example does not specify any CREATE TABLE options. The
change table is created with the default CREATE TABLE options.

Decide Whether to Perform the Configuration
Actions Directly or with a Script

This example performs the configuration actions directly. It does
not use a script.

Decide Whether to Replicate the Source Table This example replicates the source table at the destination
database. Therefore, the hr.departments table exists on both the
source database and the destination database, and the
MAINTAIN_CHANGE_TABLE procedure configures a one-way
replication environment for this table from the source database to
the destination database.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-16

Figure 20-2 provides an overview of the Oracle Stream environment created in this
example.

Figure 20-2 Recording Changes Using Local Capture and Remote Apply with Replication

Capture Process

Queue

Send

Updates

Change Handler�
for Updates

Change Handler�
for Inserts

Change Handler�
for Deletes

hr.dep_change_table�
Table

hr.departments�
Table

Record�
Updates

Record�
Deletes

Record�
Inserts

Send�
Deletes

Send�
Inserts

Capture DML�
Changes

Oracle Database�
ct1.example.com

Redo

Log

Oracle Database�
ct2.example.com

hr.departments�
Table

Record Changes

Enqueue Changes Queue

Propagation�
Sends Changes

Dequeue Changes

Apply Process

Apply All DML�
Changes to �
Table

Complete the following steps to configure an Oracle Streams environment that records
and replicates the changes to a table local capture and remote apply:

1. Complete the required prerequisites before running the MAINTAIN_CHANGE_TABLE
procedure. See "Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure"
for more information.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator on both databases. See
"Configure an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between the source database
ct1.example.com and the destination database ct2.example.com.

– Create a database link from the source database ct1.example.com to the
destination database ct2.example.com.

See Oracle Streams Replication Administrator's Guide for more information.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-17

• Ensure that the source database is in ARCHIVELOG mode. In this example, the
source database is ct1.example.com. See "Ensure That the Source Database Is
in ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at all databases. See
"Set Initialization Parameters That Are Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at all databases. See "Configure
the Oracle Streams Pool".

• Because this example replicates the source table hr.departments, instantiate
the source table at the destination database. See "Instantiate the Source
Table at the Destination Database".

2. Connect to the source database ct1.example.com as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Run the MAINTAIN_CHANGE_TABLE procedure:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(
 change_table_name => 'hr.dep_change_table',
 source_table_name => 'hr.departments',
 column_type_list => 'department_id NUMBER(4),
 manager_id NUMBER(6)',
 capture_values => '*',
 source_database => 'ct1.example.com',
 destination_database => 'ct2.example.com',
 keep_change_columns_only => FALSE,
 execute_lcr => TRUE);
END;
/

This procedure uses the default value for each parameter that is not specified. The
keep_change_columns_only parameter is set to FALSE because the execute_lcr
parameter is set to TRUE. The row logical change records (LCRs) must contain
information about changes to all of the columns in the table because all of the
columns are replicated at the destination database. When the execute_lcr
parameter is set to TRUE, the keep_change_columns_only parameter can be set to
TRUE only if the column_type_list parameter includes all of the columns that are
replicated, which is not the case in this example.

When this procedure completes, the Oracle Streams environment is configured.

If this procedure encounters an error and stops, then see Oracle Streams
Replication Administrator's Guide for information about either recovering from the
error or rolling back the configuration operation by using the
DBMS_STREAMS_ADM.RECOVER_OPERATION procedure.

The resulting Oracle Streams environment has the following characteristics:

• An unconditional supplemental log group includes the columns in the
hr.departments table for which changes are recorded at the source database
ct1.example.com. These columns are the ones specified in the column_type_list
parameter of the MAINTAIN_CHANGE_TABLE procedure.

• The destination database ct2.example.com has an hr.dep_change_table. This
change table has the following definition:

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-18

 Name Null? Type
 --- -------- ---------------------------
 COMMAND_TYPE$ VARCHAR2(10)
 VALUE_TYPE$ VARCHAR2(3)
 DEPARTMENT_ID NUMBER(4)
 MANAGER_ID NUMBER(6)

• The source database ct1.example.com has a queue with a system-generated
name. This queue is used by the capture process.

• The destination database ct2.example.com has a queue with a system-generated
name. This queue is used by the apply process.

• The source database ct1.example.com has a local capture process with a system-
generated name that captures data manipulation language (DML) changes made
to the hr.departments table.

• The destination database ct2.example.com has an apply process with a system-
generated name. The apply process uses change handlers with system-generated
names to process the captured row LCRs for inserts, updates, and deletes on the
hr.departments table. The change handlers use the information in the row LCRs to
populate the hr.dep_change_table.

The apply process also includes change handlers with system-generated names
to execute row LCRs for each type of operation (insert, update, and delete). The
row LCRs are executed so that the changes made to the source table are applied
to the replica hr.departments table at the destination database.

• A propagation running on the ct1.example.com database with a system-generated
name sends the captured changes from the ct1.example.com database to the
ct2.example.com database.

20.3.3 Recording Table Changes Using Downstream Capture and
Local Apply

This example illustrates how to record the changes to a table using downstream
capture and local apply. Specifically, this example records the changes made to the
hr.locations table using a source database and a destination database. The
destination database is also the capture database for the downstream capture
process.

The following table lists the decisions that were made about the Oracle Streams
environment configured in this example.

Decision Assumption for This Example

Decide Which Type of Environment to
Configure

This example configures downstream capture and local apply
using the source database ct1.example.com and the destination
database ct2.example.com. The capture process will be a real-
time downstream capture process running on ct2.example.com.

Decide Which Columns to Track This example tracks all of the columns in the hr.locations table.

Decide Which Metadata to Record This example records the following metadata: command_type,
value_type (OLD or NEW), object_owner, object_name, and
username.

Decide Which Values to Track for Update
Operations

This example tracks both the old and new column values when an
update is performed on the source table.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-19

Decision Assumption for This Example

Decide Whether to Configure a
KEEP_COLUMNS Transformation

This example does not configure a KEEP_COLUMNS declarative rule-
based transformation.

Decide Whether to Specify CREATE TABLE
Options for the Change Table

This example does not specify any CREATE TABLE options. The
change table is created with the default CREATE TABLE options.

Decide Whether to Perform the Configuration
Actions Directly or with a Script

This example performs the configuration actions directly. It does
not use a script.

Decide Whether to Replicate the Source Table This example does not replicate the source table.

Figure 20-3 provides an overview of the Oracle Stream environment created in this
example.

Figure 20-3 Recording Changes Using Downstream Capture and Local Apply

Queue

Send
Updates

Change Handler
for Updates

Change Handler
for Inserts

Change Handler
for Deletes

hr.loc_change_table
Table

Record
Updates

Record
Deletes

Record
Inserts

Send
Deletes

Send
Inserts

Sent by Redo Transport Services

Oracle Database
ct1.example.com

Standby Redo Log from
ct1.example.com

Oracle Database
ct2.example.com

hr.locations
Table

Record Changes

Capture DML Changes

Dequeue Changes

Apply Process

ARCn Capture Process

Redo
Log

Archived Redo Log from
ct1.example.com

Enqueue
Changes

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-20

Complete the following steps to configure an Oracle Streams environment that records
the changes to a table using downstream capture and remote apply:

1. Complete the required prerequisites before running the MAINTAIN_CHANGE_TABLE
procedure. See "Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure"
for more information.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator on both databases. See
"Configure an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between the source database
ct1.example.com and the destination database ct2.example.com.

– Because downstream capture will be configured at the destination
database, create a database link from the source database
ct1.example.com to the destination database ct2.example.com. The
database link is used to send redo log data from ct1.example.com to
ct2.example.com.

– Because downstream capture will be configured at the destination
database, create a database link from the destination database
ct2.example.com to the source database ct1.example.com. The database
link is used to complete management tasks related to downstream capture
on the source database.

See Oracle Streams Replication Administrator's Guide for more information.

• Ensure that the source database and the destination database are in
ARCHIVELOG mode. In this example, the source database is ct1.example.com and
the destination database is ct2.example.com. See "Ensure That the Source
Database Is in ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at both databases.
See "Set Initialization Parameters That Are Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at both databases. See
"Configure the Oracle Streams Pool".

• Because a destination database will be the capture database for changes
made to the source database, configure log file copying from the source
database ct1.example.com to the capture database ct2.example.com. See
"Configure Log File Transfer to a Downstream Capture Database".

• Because this example configures a real-time downstream capture process,
add standby redo logs at the capture database, and configure standby redo
logs at the capture database ct2.example.com. See "Configure Standby Redo
Logs for Real-Time Downstream Capture".

2. Connect to the destination database ct2.example.com as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Run the MAINTAIN_CHANGE_TABLE procedure:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(
 change_table_name => 'hr.loc_change_table',
 source_table_name => 'hr.locations',

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-21

 column_type_list => 'location_id NUMBER(4),
 street_address VARCHAR2(40),
 postal_code VARCHAR2(12),
 city VARCHAR2(30),
 state_province VARCHAR2(25),
 country_id CHAR(2)',
 extra_column_list => 'command_type,value_type,object_owner,
 object_name,username',
 capture_values => '*',
 source_database => 'ct1.example.com',
 destination_database => 'ct2.example.com',
 keep_change_columns_only => FALSE);
END;
/

This procedure uses the default value for each parameter that is not specified. The
keep_change_columns_only parameter is set to FALSE because all of the columns in
the hr.locations table are listed in the column_type_list parameter.

When this procedure completes, the Oracle Streams environment is configured.

If this procedure encounters an error and stops, then see Oracle Streams
Replication Administrator's Guide for information about either recovering from the
error or rolling back the configuration operation by using the
DBMS_STREAMS_ADM.RECOVER_OPERATION procedure.

4. Set the downstream_real_time_mine capture process parameter to Y.

a. Query the CAPTURE_NAME column in the DBA_CAPTURE view to determine the name
of the capture process.

b. Run the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package to set the
downstream_real_time_mine capture process parameter to Y.

For example, if the capture process name is cap$chg5, then run the following
procedure:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'cap$chg5',
 parameter => 'downstream_real_time_mine',
 value => 'Y');
END;
/

5. Connect to the source database ct1.example.com as an administrative user with the
necessary privileges to switch log files.

6. Archive the current log file at the source database:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Archiving the current log file at the source database starts real time mining of the
source database redo log.

The resulting Oracle Streams environment has the following characteristics:

• An unconditional supplemental log group at the source database ct1.example.com
includes all o the columns in the hr.locations table.

• Because username is specified in the extra_column_list parameter, the source
database is configured to place additional information about the username of the
user who makes a change in the redo log. The capture process captures this

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-22

information, and it is recorded in the change table. The other values specified in
the extra_column_list parameter (command_type, value_type, object_owner, and
object_name) are always tracked in the redo log. Therefore, no additional
configuration is necessary to capture this information.

• The destination database ct2.example.com has an hr.loc_change_table. This
change table has the following definition:

 Name Null? Type
 --- -------- ---------------------------
 COMMAND_TYPE$ VARCHAR2(10)
 VALUE_TYPE$ VARCHAR2(3)
 OBJECT_OWNER$ VARCHAR2(30)
 OBJECT_NAME$ VARCHAR2(30)
 USERNAME$ VARCHAR2(30)
 LOCATION_ID NUMBER(4)
 STREET_ADDRESS VARCHAR2(40)
 POSTAL_CODE VARCHAR2(12)
 CITY VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(25)
 COUNTRY_ID CHAR(2)

• The destination database ct2.example.com has a queue with a system-generated
name. This queue is used by the downstream capture process and the apply
process.

• The destination database ct2.example.com has a real-time downstream capture
process with a system-generated name that captures data manipulation language
(DML) changes made to the hr.locations table.

• The destination database ct2.example.com has an apply process with a system-
generated name. The apply process uses change handlers with system-generated
names to process the captured row LCRs for inserts, updates, and deletes on the
hr.locations table. The change handlers use the information in the row LCRs to
populate the hr.loc_change_table.

See Also:

"Setting a Capture Process Parameter"

20.3.4 Recording Table Changes Using Downstream Capture and
Remote Apply

This example illustrates how to record the changes to a table using downstream
capture and remote apply. Specifically, this example records the changes made to the
hr.employees table using three databases: the source database, the destination
database, and the capture database.

The following table lists the decisions that were made about the Oracle Streams
environment configured in this example.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-23

Decision Assumption for This Example

Decide Which Type of Environment to
Configure

This example configures downstream capture and remote apply
using three databases: the source database is ct1.example.com,
the destination database is ct2.example.com, and the capture
database is ct3.example.com. The capture process will be a real-
time downstream capture process.

Decide Which Columns to Track This example tracks the columns in the hr.employees table,
except for the salary and commission_pct columns.

Decide Which Metadata to Record This example records the following metadata: command_type,
value_type (OLD or NEW), object_owner, object_name, and
username.

Decide Which Values to Track for Update
Operations

This example tracks both the old and new column values when an
update is performed on the source table.

Decide Whether to Configure a
KEEP_COLUMNS Transformation

This example configures a KEEP_COLUMNS declarative rule-based
transformation so that row LCRs do not contain salary and
commission percentage information for employees.

Decide Whether to Specify CREATE TABLE
Options for the Change Table

This example specifies a STORAGE clause in the CREATE TABLE
options.

Decide Whether to Perform the Configuration
Actions Directly or with a Script

This example performs the configuration actions directly. It does
not use a script.

Decide Whether to Replicate the Source Table This example does not replicate the source table.

Figure 20-4 provides an overview of the Oracle Stream environment created in this
example.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-24

Figure 20-4 Recording Changes Using Downstream Capture and Remote Apply

KEEP_COLUMNS
Declarative
Rule-Based
Transformation

Send
Updates

Change Handler
for Updates

Change Handler
for Inserts

Change Handler
for Deletes

hr.emp_change_table
Table

Record
Updates

Record
Deletes

Record
Inserts

Send
Deletes

Send
Inserts

Sent by Redo Transport Services

Propagation Sends Changes

Oracle Database
ct1.example.com

Standby Redo Log from
ct1.example.com

Oracle Database
ct3.example.com

hr.employees
Table

Record Changes

Capture DML Changes

Enqueue Changes

Dequeue Changes
Apply Process Queue

ARCn Capture Process

Redo
Log

Archived Redo Log from
ct1.example.com

Send
Changes

Queue

Oracle Database
ct2.example.com

Complete the following steps to configure an Oracle Streams environment that records
the changes to a table using downstream capture and remote apply:

1. Complete the required prerequisites before running the MAINTAIN_CHANGE_TABLE
procedure. See "Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure"
for more information.

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-25

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator on all of three databases. See
"Configure an Oracle Streams Administrator on All Databases".

• Configure network connectivity and database links:

– Configure network connectivity between the source database
ct1.example.com and the destination database ct2.example.com.

– Configure network connectivity between the source database
ct1.example.com and the third database ct3.example.com.

– Configure network connectivity between the destination database
ct2.example.com and the third database ct3.example.com.

– Create a database link from the source database ct1.example.com to the
destination database ct2.example.com.

– Because downstream capture will be configured at the third database,
create a database link from the source database ct1.example.com to the
third database ct3.example.com.

– Because downstream capture will be configured at the third database,
create a database link from the third database ct3.example.com to the
source database ct1.example.com.

– Because downstream capture will be configured at the third database,
create a database link from the third database ct3.example.com to the
destination database ct2.example.com.

See Oracle Streams Replication Administrator's Guide for more information.

• Ensure that the source database and the capture database are in ARCHIVELOG
mode. In this example, the source database is ct1.example.com and the
capture database is ct3.example.com. See "Ensure That the Source Database
Is in ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at all databases. See
"Set Initialization Parameters That Are Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at all databases. See "Configure
the Oracle Streams Pool".

• Because a third database (ct3.example.com) will be the capture database for
changes made to the source database, configure log file copying from the
source database ct1.example.com to the capture database ct3.example.com.
See "Configure Log File Transfer to a Downstream Capture Database".

• Because this example configures a real-time downstream capture process,
add standby redo logs at the capture database, and configure standby redo
logs at the capture database ct3.example.com. See "Configure Standby Redo
Logs for Real-Time Downstream Capture".

2. Connect to the capture database ct3.example.com as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Run the MAINTAIN_CHANGE_TABLE procedure:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-26

 change_table_name => 'hr.emp_change_table',
 source_table_name => 'hr.employees',
 column_type_list => 'employee_id VARCHAR2(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 manager_id NUMBER(6),
 department_id NUMBER(4)',
 capture_values => '*',
 options_string => 'STORAGE (INITIAL 6144
 NEXT 6144
 MINEXTENTS 1
 MAXEXTENTS 5)',
 source_database => 'ct1.example.com',
 destination_database => 'ct2.example.com',
 keep_change_columns_only => TRUE);
END;
/

This procedure uses the default value for each parameter that is not specified. The
options_string parameter specifies a storage clause for the change table. The
keep_change_columns_only parameter is set to TRUE to create a keep columns
declarative rule-based transformation that excludes the salary and commission_pct
columns from captured row logical change records (LCRs). The salary and
commission_pct columns are excluded because they are not in the column_type_list
parameter.

When this procedure completes, the Oracle Streams environment is configured.

If this procedure encounters an error and stops, then see Oracle Streams
Replication Administrator's Guide for information about either recovering from the
error or rolling back the configuration operation by using the
DBMS_STREAMS_ADM.RECOVER_OPERATION procedure.

4. Set the downstream_real_time_mine capture process parameter to Y.

a. Query the CAPTURE_NAME column in the DBA_CAPTURE view to determine the name
of the capture process.

b. Run the SET_PARAMETER procedure in the DBMS_CAPTURE_ADM package to set the
downstream_real_time_mine capture process parameter to Y.

For example, if the capture process name is cap$chg5, then run the following
procedure:

BEGIN
 DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name => 'cap$chg5',
 parameter => 'downstream_real_time_mine',
 value => 'Y');
END;
/

5. Connect to the source database ct1.example.com as an administrative user with the
necessary privileges to switch log files.

6. Archive the current log file at the source database:

ALTER SYSTEM ARCHIVE LOG CURRENT;

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-27

Archiving the current log file at the source database starts real time mining of the
source database redo log.

The resulting Oracle Streams environment has the following characteristics:

• An unconditional supplemental log group includes the columns in the hr.employees
table for which changes are recorded at the source database ct1.example.com.
These columns are the ones specified in the column_type_list parameter of the
MAINTAIN_CHANGE_TABLE procedure.

• The destination database ct2.example.com has an hr.emp_change_table. This
change table has the following definition:

 Name Null? Type
 --- -------- ---------------------------
 COMMAND_TYPE$ VARCHAR2(10)
 VALUE_TYPE$ VARCHAR2(3)
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

• The capture database ct3.example.com has a queue with a system-generated
name. This queue is used by the downstream capture process.

• The destination database ct2.example.com has a queue with a system-generated
name. This queue is used by the apply process.

• The capture database ct3.example.com has a real-time downstream capture
process with a system-generated name that captures data manipulation language
(DML) changes made to the hr.employees table.

• The capture database ct3.example.com has a KEEP_COLUMNS declarative rule-based
transformation that keeps all of the columns in the row LCRs for the hr.employees
table, except for the salary and commission_pct columns.

• A propagation running on the ct3.example.com database with a system-generated
name sends the captured changes from the ct3.example.com database to the
ct2.example.com database.

• The destination database ct2.example.com has an apply process with a system-
generated name. The apply process uses change handlers with system-generated
names to process the captured row LCRs for inserts, updates, and deletes on the
hr.employees table. The change handlers use the information in the row LCRs to
populate the hr.emp_change_table.

See Also:

"Setting a Capture Process Parameter"

Chapter 20
Configuring an Oracle Streams Environment That Records Table Changes

20-28

20.4 Managing an Oracle Streams Environment That
Records Table Changes

This section describes setting and unsetting change handlers.

This section contains these topics:

• Unsetting and Setting a Change Handler

• Recording Changes to a Table Using Existing Oracle Streams Components

• Maintaining Change Tables

• Managing the Oracle Streams Environment

20.4.1 Unsetting and Setting a Change Handler
The SET_CHANGE_HANDLER procedure in the DBMS_APPLY_ADM package can unset and set a
change handler for a specified operation on a specified table for a single apply
process. This procedure assumes that the Oracle Streams components are configured
to capture changes to the specified table and send the changes to the specified apply
process.

For the example in this section, assume that you want to unset the change handler for
update operations that was created in "Recording Table Changes Using Local Capture
and Remote Apply with Replication". Next, you want to reset this change handler.

Complete the following steps to set a change handler:

1. Connect to the database that contains the apply process as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Identify the change handler to modify.

This example unsets the change handler for UPDATE operations on the
hr.departments table. Assume that these changes are applied by the app$chg38
apply process. Run the following query to determine the owner of the change
table, the name of the change table, the capture values tracked in the change
table, and the name of the change handler:

COLUMN CHANGE_TABLE_OWNER HEADING 'Change Table Owner' FORMAT A20
COLUMN CHANGE_TABLE_NAME HEADING 'Change Table Name' FORMAT A20
COLUMN CAPTURE_VALUES HEADING 'Capture|Values' FORMAT A7
COLUMN HANDLER_NAME HEADING 'Change Handler Name' FORMAT A25

SELECT CHANGE_TABLE_OWNER,
 CHANGE_TABLE_NAME,
 CAPTURE_VALUES,
 HANDLER_NAME
 FROM DBA_APPLY_CHANGE_HANDLERS
 WHERE SOURCE_TABLE_OWNER = 'HR' AND
 SOURCE_TABLE_NAME = 'DEPARTMENTS' AND
 APPLY_NAME = 'APP$CHG38' AND
 OPERATION_NAME = 'UPDATE';

Chapter 20
Managing an Oracle Streams Environment That Records Table Changes

20-29

Your output looks similar to the following:

 Capture
Change Table Owner Change Table Name Values Change Handler Name
-------------------- -------------------- ------- -------------------------
HR DEP_CHANGE_TABLE * HR_DEPARTMENTS_CHG$10

Make a note of the values returned by this query, and use these values in the
subsequent steps in this example.

3. Unset the change handler.

To unset a change handler, specify NULL in the change_handler_name parameter in
the SET_CHANGE_HANDLER procedure, and specify the change table owner, change
table name, capture values, operation, source table, and apply process using the
other procedure parameters. For example:

BEGIN
 DBMS_APPLY_ADM.SET_CHANGE_HANDLER(
 change_table_name => 'hr.dep_change_table',
 source_table_name => 'hr.departments',
 capture_values => '*',
 apply_name => 'app$chg38',
 operation_name => 'UPDATE',
 change_handler_name => NULL);
END;
/

When this change handler is unset, it no longer records update changes.

4. Set the change handler.

To set the change handler, specify the change handler in the change_handler_name
parameter in the SET_CHANGE_HANDLER procedure, and specify the change table
owner, change table name, capture values, operation, source table, and apply
process using the other procedure parameters. For example:

BEGIN
 DBMS_APPLY_ADM.SET_CHANGE_HANDLER(
 change_table_name => 'hr.dep_change_table',
 source_table_name => 'hr.departments',
 capture_values => '*',
 apply_name => 'app$chg38',
 operation_name => 'UPDATE',
 change_handler_name => 'hr_departments_chg$10');
END;
/

When this change handler is reset, it records update changes.

20.4.2 Recording Changes to a Table Using Existing Oracle Streams
Components

You can configure existing Oracle Streams components to record changes to a table.
These existing components include capture processes, propagations, and apply
processes. To use existing components, specify the component names when you run
the MAINTAIN_CHANGE_TABLE procedure in the DBMS_STREAMS_ADM package.

The example in this section builds on the Oracle Streams environment created in
"Recording Table Changes Using Local Capture and Apply on One Database". That

Chapter 20
Managing an Oracle Streams Environment That Records Table Changes

20-30

example configured an Oracle Streams environment that records changes to the
hr.jobs table. The example in this section configures the existing capture process and
apply process to record changes to the hr.employees table as well.

The following table lists the decisions that were made about the changes that will be
recorded for the hr.employees table.

Decision Assumption for This Example

Decide Which Type of Environment to
Configure

This example uses existing Oracle Streams components that
perform local capture and apply on one database.

Decide Which Columns to Track This example tracks all of the columns in the hr.employees table.

Decide Which Metadata to Record This example records the command_type, value_type (OLD or NEW),
and commit_scn metadata.

Decide Which Values to Track for Update
Operations

This example tracks both the old and new column values when an
update is performed on the source table.

Decide Whether to Configure a
KEEP_COLUMNS Transformation

This example does not configure a KEEP_COLUMNS declarative rule-
based transformation.

Decide Whether to Specify CREATE TABLE
Options for the Change Table

This example does not specify any CREATE TABLE options. The
change table is created with the default CREATE TABLE options.

Decide Whether to Perform the Configuration
Actions Directly or with a Script

This example performs the configuration actions directly. It does
not use a script.

Decide Whether to Replicate the Source Table This example does not replicate the source table.

Complete the following steps to record changes to a table using existing Oracle
Streams components:

1. Ensure that the required prerequisites are met before running the
MAINTAIN_CHANGE_TABLE procedure. See "Prerequisites for the MAINTAIN_CHANGE
_TABLE Procedure" for more information.

For this configuration, the following tasks must be completed:

• Configure an Oracle Streams administrator on the database. See "Configure
an Oracle Streams Administrator on All Databases".

• Ensure that the database is in ARCHIVELOG mode. See "Ensure That the Source
Database Is in ARCHIVELOG Mode".

• Ensure that the initialization parameters are set properly at the database. See
"Set Initialization Parameters That Are Relevant to Oracle Streams".

• Configure the Oracle Streams pool properly at the database. See "Configure
the Oracle Streams Pool".

In this example, these requirements should already be met because an existing
Oracle Streams environment is recording changes to the hr.jobs table.

2. Determine the names of the existing Oracle Streams components.

In SQL*Plus, connect to the database that contains a component and query the
appropriate data dictionary view:

• Query the CAPTURE_NAME column in the DBA_CAPTURE view to determine the
names of the capture processes in a database.

• Query the PROPAGATION_NAME column in the DBA_PROPAGATION view to determine
the names of the propagations in a database.

Chapter 20
Managing an Oracle Streams Environment That Records Table Changes

20-31

• Query the APPLY_NAME column in the DBA_APPLY view to determine the names of
the apply processes in a database.

This example records changes using a capture process and apply process in a
single database. Therefore, it does not use a propagation.

Assume that the name of the capture process is cap$chg3 and that the name of the
apply process is app$chg4.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Connect to the database that contains the existing capture process as the Oracle
Streams administrator.

4. Run the MAINTAIN_CHANGE_TABLE procedure:

BEGIN
 DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE(
 change_table_name => 'hr.employees_change_table',
 source_table_name => 'hr.employees',
 column_type_list => 'employee_id VARCHAR2(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4)',
 extra_column_list => 'command_type,value_type,commit_scn',
 capture_values => '*',
 capture_name => 'cap$chg3',
 apply_name => 'app$chg4',
 keep_change_columns_only => FALSE);
END;
/

This procedure uses the default value for each parameter that is not specified. The
keep_change_columns_only parameter is set to FALSE because all of the columns in
the hr.jobs table are listed in the column_type_list parameter.

When this procedure completes, the Oracle Streams environment is configured.

If this procedure encounters an error and stops, then see Oracle Streams
Replication Administrator's Guide for information about either recovering from the
error or rolling back the configuration operation by using the
DBMS_STREAMS_ADM.RECOVER_OPERATION procedure.

The resulting Oracle Streams environment has the following characteristics:

• The characteristics previously described in "Recording Table Changes Using Local
Capture and Apply on One Database".

• An unconditional supplemental log group includes all of the columns in the
hr.employees table.

• The database has an hr.employees_change_table. This change table has the
following definition:

 Name Null? Type
 --- -------- ---------------------------

Chapter 20
Managing an Oracle Streams Environment That Records Table Changes

20-32

 COMMAND_TYPE$ VARCHAR2(10)
 VALUE_TYPE$ VARCHAR2(3)
 COMMIT_SCN$ NUMBER
 EMPLOYEE_ID VARCHAR2(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME VARCHAR2(25)
 EMAIL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE DATE
 JOB_ID VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

• The capture process cap$chg3 captures data manipulation language (DML)
changes made to the hr.employees table.

• An apply process app$chg4 uses change handlers with system-generated names to
process the captured row LCRs for inserts, updates, and deletes on the
hr.employees table. The change handlers use the information in the row LCRs to
populate the hr.employees_change_table.

20.4.3 Maintaining Change Tables
Change tables can grow large over time. You can query one or more change tables to
obtain a transactionally consistent set of change data. When the change data is no
longer needed, you can remove it from the change tables. To perform these
operations, configure the change table to track commit SCN metadata by including
commit_scn in the extra_column_list parameter when you run the MAINTAIN_CHANGE_TABLE
procedure. You can use the commit SCN to obtain consistent data and to specify
which data to remove when it is no longer needed.

The example in this section maintains the change tables created in the following
sections:

• The hr.jobs_change_table is created in the example in "Recording Table Changes
Using Local Capture and Apply on One Database"

• The hr.employees_change_table is created in the example in "Recording Changes
to a Table Using Existing Oracle Streams Components"

The example in this section queries the change tables to obtain a transactionally
consistent set of change data and then removes the change data that has been
viewed.

Complete the following steps to maintain change tables:

1. Determine the current low-watermark of the apply process that applies changes to
the change table. Changes that were committed at a system change number
(SCN) less than or equal to the low-watermark have definitely been applied.

For example, if the name of the apply process is app$chg4, then run the following
query to determine its low-watermark:

SELECT APPLIED_MESSAGE_NUMBER
 FROM DBA_APPLY_PROGRESS
 WHERE APPLY_NAME='APP$CHG4';

Chapter 20
Managing an Oracle Streams Environment That Records Table Changes

20-33

Make a note of the returned low-watermark SCN. For this example, assume that
the low-watermark SCN is 663090.

2. Query the change tables for changes that are less than or equal to the low-
watermark returned in Step 1.

For example, run the following query on the hr.jobs_change_table:

SELECT * FROM hr.jobs_change_table WHERE commit_scn$ <= 663090;

For example, run the following query on the hr.employees_change_table:

SELECT * FROM hr.employees_change_table WHERE commit_scn$ <= 663090;

These queries specify the low-watermark SCN returned in Step 1. The changes
returned are transactionally consistent up to the specified SCN.

3. When the changes viewed in Step 2 are no longer needed, run the following
statements to remove the changes:

DELETE FROM hr.jobs_change_table WHERE commit_scn$ <= 663090;

DELETE FROM hr.employees_change_table WHERE commit_scn$ <= 663090;

COMMIT;

These queries specify the same low-watermark SCN returned in Step 1 and used
in the queries in Step 2.

There are other ways to maintain change tables. For example, you can query them
using a range of changes between two SCN values. You can also create a view to
show a consistent set of data in two or more change tables.

See Also:

"Low-Watermark and High-Watermark for an Apply Process"

20.4.4 Managing the Oracle Streams Environment
After the MAINTAIN_CHANGE_TABLE procedure has configured the Oracle Streams
environment, you can manage the Oracle Streams environment by referring to the
sections in the following table.

To Manage See

Supplemental logging Oracle Streams Replication Administrator's Guide

Capture processes "Managing a Capture Process"

Apply processes Managing Oracle Streams Information Consumption

Statement DML handlers "Managing a Statement DML Handler"

Queues "Managing Queues"

Propagations "Managing Oracle Streams Propagations and Propagation Jobs"

Rules Managing Rules

Chapter 20
Managing an Oracle Streams Environment That Records Table Changes

20-34

20.5 Monitoring an Oracle Streams Environment That
Records Table Changes

This section describes monitoring the Oracle Streams components in a configuration
that tracks table changes.

This section contains these topics:

• Monitoring a Change Table

• Monitoring Change Handlers

• Monitoring the Oracle Streams Environment

20.5.1 Monitoring a Change Table
You can monitor a change table using SELECT statement the same way you monitor
other database tables. The columns in the change table depend on the
column_type_list parameter in the MAINTAIN_CHANGE_TABLE procedure. The change table
can include a tracking column for each column in the source table, or it can include a
subset of the columns in the source table. In addition, the change table can include
several additional columns that contain metadata about each change.

For example, the Oracle Streams environment configured in "Recording Table
Changes Using Local Capture and Apply on One Database" records changes to the
hr.jobs table. Each column in the hr.jobs table is tracked in the change table
hr.jobs_change_table, and the default metadata columns (command_type$, value_type$,
and commit_scn$) are included in the change table.

To monitor this sample change table, complete the following steps:

1. Connect to the database as hr user.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Make changes to the source table so that the change table is populated:

INSERT INTO hr.jobs VALUES('BN_CNTR','Bean Counter',6000,8000);
COMMIT;

UPDATE hr.jobs SET min_salary=7000 WHERE job_id='BN_CNTR';
COMMIT;

DELETE FROM hr.jobs WHERE job_id='BN_CNTR';
COMMIT;

3. Query the change table:

COLUMN COMMAND_TYPE$ HEADING 'Command Type' FORMAT A12
COLUMN VALUE_TYPE$ HEADING 'Value|Type' FORMAT A5
COLUMN COMMIT_SCN$ HEADING 'Commit SCN' FORMAT 9999999
COLUMN JOB_ID HEADING 'Job ID' FORMAT A10
COLUMN JOB_TITLE HEADING 'Job Title' FORMAT A12
COLUMN MIN_SALARY HEADING 'Minimum|Salary' FORMAT 9999999
COLUMN MAX_SALARY HEADING 'Maximum|Salary' FORMAT 9999999

SELECT * FROM hr.jobs_change_table;

Chapter 20
Monitoring an Oracle Streams Environment That Records Table Changes

20-35

Your output looks similar to the following:

 Value Minimum Maximum
Command Type Type Commit SCN Job ID Job Title Salary Salary
------------ ----- ---------- ---------- ------------ -------- --------
INSERT NEW 663075 BN_CNTR Bean Counter 6000 8000
UPDATE OLD 663082 BN_CNTR Bean Counter 6000 8000
UPDATE NEW 663082 BN_CNTR Bean Counter 7000 8000
DELETE OLD 663090 BN_CNTR Bean Counter 7000 8000

This output shows the changes made in Step 2.

20.5.2 Monitoring Change Handlers
This section describes monitoring change handlers.

This section contains these topics:

• Displaying General Information About Change Handlers

• Displaying the Change Table and Source Table for Change Handlers

20.5.2.1 Displaying General Information About Change Handlers
You can query the DBA_APPLY_CHANGE_HANDLERS view to display the following information
about each change handler in a database:

• The name of the change handler

• The captured values tracked by the change handler for update operations, either
NEW for new column values, OLD for old column values, or * for both new and old
column values

• The name of the apply process that uses the change handler

• The operation for which the change handler is invoked, either INSERT, UPDATE, or
DELETE

Run the following query to display this information:

COLUMN HANDLER_NAME HEADING 'Change Handler Name' FORMAT A30
COLUMN CAPTURE_VALUES HEADING 'Capture|Values' FORMAT A7
COLUMN APPLY_NAME HEADING 'Apply|Process' FORMAT A10
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A10

SELECT HANDLER_NAME,
 CAPTURE_VALUES,
 APPLY_NAME,
 OPERATION_NAME
 FROM DBA_APPLY_CHANGE_HANDLERS
 ORDER BY HANDLER_NAME;

Your output looks similar to the following:

 Capture Apply
Change Handler Name Values Process Operation
------------------------------ ------- ---------- ----------
HR_DEPARTMENTS_CHG$40 APP$CHG38 INSERT
HR_DEPARTMENTS_CHG$41 APP$CHG38 DELETE
HR_DEPARTMENTS_CHG$42 * APP$CHG38 UPDATE
HR_JOBS_CHG$80 APP$CHG79 INSERT

Chapter 20
Monitoring an Oracle Streams Environment That Records Table Changes

20-36

HR_JOBS_CHG$81 APP$CHG79 DELETE
HR_JOBS_CHG$82 * APP$CHG79 UPDATE

Notice that the "Capture Values" column is NULL for INSERT and DELETE operations. The
DBA_APPLY_CHANGE_HANDLERS view only displays captured values for change handlers that
track UPDATE operations. Only new column values are possible for inserts, and only old
column values are possible for deletes.

20.5.2.2 Displaying the Change Table and Source Table for Change Handlers
You can query the DBA_APPLY_CHANGE_HANDLERS view to display the following information
about each change handler in a database:

• The name of the change handler

• The owner of the change table that tracks changes to the source table

• The name of the change table that tracks changes to the source table

• The owner of the source table

• The name of the source table

Run the following query to display this information:

COLUMN HANDLER_NAME HEADING 'Change Handler Name' FORMAT A25
COLUMN CHANGE_TABLE_OWNER HEADING 'Change|Table|Owner' FORMAT A8
COLUMN CHANGE_TABLE_NAME HEADING 'Change|Table|Name' FORMAT A17
COLUMN SOURCE_TABLE_OWNER HEADING 'Source|Table|Owner' FORMAT A8
COLUMN SOURCE_TABLE_NAME HEADING 'Source|Table|Name' FORMAT A17

SELECT HANDLER_NAME,
 CHANGE_TABLE_OWNER,
 CHANGE_TABLE_NAME,
 SOURCE_TABLE_OWNER,
 SOURCE_TABLE_NAME
 FROM DBA_APPLY_CHANGE_HANDLERS
 ORDER BY HANDLER_NAME;

Your output looks similar to the following:

 Change Change Source Source
 Table Table Table Table
Change Handler Name Owner Name Owner Name
------------------------- -------- ----------------- -------- -----------------
HR_DEPARTMENTS_CHG$40 HR DEP_CHANGE_TABLE HR DEPARTMENTS
HR_DEPARTMENTS_CHG$41 HR DEP_CHANGE_TABLE HR DEPARTMENTS
HR_DEPARTMENTS_CHG$42 HR DEP_CHANGE_TABLE HR DEPARTMENTS
HR_JOBS_CHG$80 HR JOBS_CHANGE_TABLE HR JOBS
HR_JOBS_CHG$81 HR JOBS_CHANGE_TABLE HR JOBS
HR_JOBS_CHG$82 HR JOBS_CHANGE_TABLE HR JOBS

20.5.3 Monitoring the Oracle Streams Environment
After the MAINTAIN_CHANGE_TABLE procedure has configured the Oracle Streams
environment, you can monitor the Oracle Streams environment by referring to the
sections in the following table.

Chapter 20
Monitoring an Oracle Streams Environment That Records Table Changes

20-37

To Monitor See

Supplemental logging "Monitoring Supplemental Logging"

Capture processes "Monitoring a Capture Process"

Apply processes Monitoring Oracle Streams Apply Processes

Statement DML handlers "Displaying Information About Statement DML Handlers"

Queues "Monitoring Buffered Queues"

Propagations "Monitoring Oracle Streams Propagations and Propagation Jobs"

Rules Monitoring Rules

Chapter 20
Monitoring an Oracle Streams Environment That Records Table Changes

20-38

21
Other Oracle Streams Management Tasks

This chapter provides instructions for performing full database export/import in an
Oracle Streams environment. This chapter also provides instructions for removing an
Oracle Streams configuration.

The following topics describe Oracle Streams management tasks:

• Performing Full Database Export/Import in an Oracle Streams Environment

• Removing an Oracle Streams Configuration

Each task described in this chapter should be completed by an Oracle Streams
administrator that has been granted the appropriate privileges, unless specified
otherwise.

See Also:

Oracle Streams Replication Administrator's Guide for information about
creating an Oracle Streams administrator

21.1 Performing Full Database Export/Import in an Oracle
Streams Environment

This section describes how to perform a full database export/import on a database that
is running one or more Oracle Streams capture processes, propagations, or apply
processes. These instructions pertain to a full database export/import where the import
database and export database are running on different computers, and the import
database replaces the export database. The global name of the import database and
the global name of the export database must match. These instructions assume that
both databases already exist.

Note:

If you want to add a database to an existing Oracle Streams environment, then
do not use the instructions in this section. Instead, see Oracle Streams
Replication Administrator's Guide.

21-1

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about export/import parameters that are relevant to Oracle Streams

• Oracle Database Utilities for more information about performing a full
database export/import

Complete the following steps to perform a full database export/import on a database
that is using Oracle Streams:

1. If the export database contains any destination queues for propagations from other
databases, then stop each propagation that propagates messages to the export
database. You can stop a propagation using the STOP_PROPAGATION procedure in the
DBMS_PROPAGATION_ADM package.

2. Make the necessary changes to your network configuration so that the database
links used by the propagation jobs you disabled in Step 1 point to the computer
running the import database.

To complete this step, you might need to re-create the database links used by
these propagation jobs or modify your Oracle networking files at the databases
that contain the source queues.

3. Notify all users to stop making data manipulation language (DML) and data
definition language (DDL) changes to the export database, and wait until these
changes have stopped.

4. Make a note of the current export database system change number (SCN). You
can determine the current SCN using the GET_SYSTEM_CHANGE_NUMBER function in the
DBMS_FLASHBACK package. For example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 current_scn NUMBER;
BEGIN
 current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

In this example, assume that current SCN returned is 7000000.

After completing this step, do not stop any capture process running on the export
database. A later step in this procedure instructs you to use the V$STREAMS_CAPTURE
dynamic performance view to ensure that no DML or DDL changes were made to
the database after Step 3. The information about a capture process in this view is
reset if the capture process is stopped and restarted.

For the check in the later step to be valid, this information should not be reset for
any capture process. To prevent a capture process from stopping automatically,
you might need to set the message_limit and time_limit capture process
parameters to INFINITE if these parameters are set to another value for any
capture process.

5. If any downstream capture processes are capturing changes that originated at the
export database, then ensure that the log file containing the SCN determined in
Step 4 has been transferred to the downstream database and added to the

Chapter 21
Performing Full Database Export/Import in an Oracle Streams Environment

21-2

capture process session. See "Displaying the Registered Redo Log Files for Each
Capture Process" for queries that can determine this information.

6. If the export database is not running any apply processes, and is not propagating
messages, then start the full database export now. Ensure that the FULL export
parameter is set to y so that the required Oracle Streams metadata is exported.

If the export database is running one or more apply processes or is propagating
messages, then do not start the export and proceed to the next step.

7. If the export database is the source database for changes captured by any capture
processes, then complete the following steps for each capture process:

a. Wait until the capture process has scanned past the redo record that
corresponds to the SCN determined in Step 4. You can view the SCN of the
redo record last scanned by a capture process by querying the
CAPTURE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE dynamic performance
view. Ensure that the value of CAPTURE_MESSAGE_NUMBER is greater than or equal
to the SCN determined in Step 4 before you continue.

b. In SQL*Plus, connect to the database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

c. Monitor the Oracle Streams environment until the apply process at the
destination database has applied all of the changes from the capture
database. For example, if the name of the capture process is capture, the
name of the apply process is apply, the global name of the destination
database is dest.example.com, and the SCN value returned in Step 4 is
7000000, then run the following query at the capture database:

SELECT cap.ENQUEUE_MESSAGE_NUMBER
 FROM V$STREAMS_CAPTURE cap
 WHERE cap.CAPTURE_NAME = 'CAPTURE' AND
 cap.ENQUEUE_MESSAGE_NUMBER IN (
 SELECT DEQUEUED_MESSAGE_NUMBER
 FROM V$STREAMS_APPLY_READER@dest.example.com reader,
 V$STREAMS_APPLY_COORDINATOR@dest.example.com coord
 WHERE reader.APPLY_NAME = 'APPLY' AND
 reader.DEQUEUED_MESSAGE_NUMBER = reader.OLDEST_SCN_NUM AND
 coord.APPLY_NAME = 'APPLY' AND
 coord.LWM_MESSAGE_NUMBER = coord.HWM_MESSAGE_NUMBER AND
 coord.APPLY# = reader.APPLY#) AND
 cap.CAPTURE_MESSAGE_NUMBER >= 7000000;

When this query returns a row, all of the changes from the capture database
have been applied at the destination database, and you can move on to the
next step.

If this query returns no results for an inordinately long time, then ensure that
the Oracle Streams clients in the environment are enabled by querying the
STATUS column in the DBA_CAPTURE view at the source database and the
DBA_APPLY view at the destination database. You can check the status of the
propagation by running the query in "Displaying Information About the
Schedules for Propagation Jobs".

If an Oracle Streams client is disabled, then try restarting it. If an Oracle
Streams client will not restart, then troubleshoot the environment using the
information in Identifying Problems in an Oracle Streams Environment.

Chapter 21
Performing Full Database Export/Import in an Oracle Streams Environment

21-3

The query in this step assumes that a database link accessible to the Oracle
Streams administrator exists between the capture database and the
destination database. If such a database link does not exist, then you can
perform two separate queries at the capture database and destination
database.

d. Verify that the enqueue message number of each capture process is less than
or equal to the SCN determined in Step 4. You can view the enqueue
message number for each capture process by querying the
ENQUEUE_MESSAGE_NUMBER column in the V$STREAMS_CAPTURE dynamic performance
view.

If the enqueue message number of each capture process is less than or equal
to the SCN determined in Step 4, then proceed to Step 9.

However, if the enqueue message number of any capture process is higher
than the SCN determined in Step 4, then one or more DML or DDL changes
were made after the SCN determined in Step 4, and these changes were
captured and enqueued by a capture process. In this case, perform all of the
steps in this section again, starting with Step 1.

Note:

For this verification to be valid, each capture process must have been running
uninterrupted since Step 4.

8. If any downstream capture processes captured changes that originated at the
export database, then drop these downstream capture processes. You will re-
create them in a step later in this procedure.

9. If the export database has any propagations that are propagating messages, then
stop these propagations using the STOP_PROPAGATION procedure in the
DBMS_PROPAGATION package.

10. If the export database is running one or more apply processes, or is propagating
messages, then start the full database export now. Ensure that the FULL export
parameter is set to y so that the required Oracle Streams metadata is exported. If
you already started the export in Step 6, then proceed to Step 11.

11. When the export is complete, transfer the export dump file to the computer running
the import database.

12. Perform the full database import. Ensure that the STREAMS_CONFIGURATION and FULL
import parameters are both set to y so that the required Oracle Streams metadata
is imported. The default setting is y for the STREAMS_CONFIGURATION import
parameter. Also, ensure that no DML or DDL changes are made to the import
database during the import.

13. If any downstream capture processes are capturing changes that originated at the
database, then make the necessary changes so that log files are transferred from
the import database to the downstream database. See Oracle Streams Replication
Administrator's Guide for more information.

14. Re-create downstream capture processes:

a. Re-create any downstream capture processes that you dropped in Step 8, if
necessary. These dropped downstream capture processes were capturing
changes that originated at the export database. Configure the re-created

Chapter 21
Performing Full Database Export/Import in an Oracle Streams Environment

21-4

downstream capture processes to capture changes that originate at the import
database.

b. Re-create in the import database any downstream capture processes that
were running in the export database, if necessary. If the export database had
any downstream capture processes, then those downstream capture
processes were not exported.

See Also:

Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

15. If any local or downstream capture processes will capture changes that originate
at the database, then, at the import database, prepare the database objects whose
changes will be captured for instantiation. See Oracle Streams Replication
Administrator's Guide for information about preparing database objects for
instantiation.

16. Let users access the import database, and shut down the export database.

17. Enable any propagation jobs you disabled in Steps 1 and 9.

18. If you reset the value of a message_limit or time_limit capture process parameter
in Step 4, then, at the import database, reset these parameters to their original
settings.

21.2 Removing an Oracle Streams Configuration
You run the REMOVE_STREAMS_CONFIGURATION procedure in the DBMS_STREAMS_ADM package
to remove an Oracle Streams configuration at the local database.

Note:

Running this procedure is dangerous. You should run this procedure only if
you are sure you want to remove the entire Oracle Streams configuration at a
database.

To remove the Oracle Streams configuration at the local database, run the following
procedure while connected to the database as the Oracle Streams administrator:

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

After running this procedure, drop the Oracle Streams administrator at the database, if
possible.

Chapter 21
Removing an Oracle Streams Configuration

21-5

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the actions performed by the REMOVE_STREAMS_CONFIGURATION
procedure

Chapter 21
Removing an Oracle Streams Configuration

21-6

Part IV
Monitoring Oracle Streams

This part describes monitoring an Oracle Streams environment. This part contains the
following chapters:

• Monitoring an Oracle Streams Environment

• Monitoring the Oracle Streams Topology and Performance

• Monitoring Oracle Streams Implicit Capture

• Monitoring Oracle Streams Queues and Propagations

• Monitoring Oracle Streams Apply Processes

• Monitoring Rules

• Monitoring Rule-Based Transformations

• Monitoring Other Oracle Streams Components

22
Monitoring an Oracle Streams Environment

This chapter lists the static data dictionary views and dynamic performance views
related to Oracle Streams. You can use these views to monitor your Oracle Streams
environment.

The following sections contain data dictionary views for monitoring an Oracle Streams
environment:

• Summary of Oracle Streams Static Data Dictionary Views

• Summary of Oracle Streams Dynamic Performance Views

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
help for the Oracle Streams tool for more information.

See Also:

• Oracle Database Reference for information about the data dictionary
views described in this chapter

22.1 Summary of Oracle Streams Static Data Dictionary
Views

Table 22-1 lists the Oracle Streams static data dictionary views.

Table 22-1 Oracle Streams Static Data Dictionary Views

ALL_ Views DBA_ Views USER_ Views

ALL_APPLY DBA_APPLY N/A

ALL_APPLY_CHANGE_HANDLERS DBA_APPLY_CHANGE_HANDLERS N/A

ALL_APPLY_CONFLICT_COLUMNS DBA_APPLY_CONFLICT_COLUMNS N/A

ALL_APPLY_DML_HANDLERS DBA_APPLY_DML_HANDLERS N/A

ALL_APPLY_ENQUEUE DBA_APPLY_ENQUEUE N/A

ALL_APPLY_ERROR DBA_APPLY_ERROR N/A

ALL_APPLY_EXECUTE DBA_APPLY_EXECUTE N/A

22-1

Table 22-1 (Cont.) Oracle Streams Static Data Dictionary Views

ALL_ Views DBA_ Views USER_ Views

N/A DBA_APPLY_INSTANTIATED_GLOBAL N/A

N/A DBA_APPLY_INSTANTIATED_OBJECTS N/A

N/A DBA_APPLY_INSTANTIATED_SCHEMAS N/A

ALL_APPLY_KEY_COLUMNS DBA_APPLY_KEY_COLUMNS N/A

N/A DBA_APPLY_OBJECT_DEPENDENCIES N/A

ALL_APPLY_PARAMETERS DBA_APPLY_PARAMETERS N/A

ALL_APPLY_PROGRESS DBA_APPLY_PROGRESS N/A

N/A DBA_APPLY_SPILL_TXN N/A

ALL_APPLY_TABLE_COLUMNS DBA_APPLY_TABLE_COLUMNS N/A

N/A DBA_APPLY_VALUE_DEPENDENCIES N/A

ALL_CAPTURE DBA_CAPTURE N/A

ALL_CAPTURE_EXTRA_ATTRIBUTES DBA_CAPTURE_EXTRA_ATTRIBUTES N/A

ALL_CAPTURE_PARAMETERS DBA_CAPTURE_PARAMETERS N/A

ALL_CAPTURE_PREPARED_DATABASE DBA_CAPTURE_PREPARED_DATABASE N/A

ALL_CAPTURE_PREPARED_SCHEMAS DBA_CAPTURE_PREPARED_SCHEMAS N/A

ALL_CAPTURE_PREPARED_TABLES DBA_CAPTURE_PREPARED_TABLES N/A

N/A DBA_COMPARISON USER_COMPARISON

N/A DBA_COMPARISON_COLUMNS USER_COMPARISON_COLUMNS

N/A DBA_COMPARISON_ROW_DIF USER_COMPARISON_ROW_DIF

N/A DBA_COMPARISON_SCAN USER_COMPARISON_SCAN

N/A DBA_COMPARISON_SCAN_VALUES USER_COMPARISON_SCAN_VALUES

ALL_EVALUATION_CONTEXT_TABLES DBA_EVALUATION_CONTEXT_TABLES USER_EVALUATION_CONTEXT_TABLES

ALL_EVALUATION_CONTEXT_VARS DBA_EVALUATION_CONTEXT_VARS USER_EVALUATION_CONTEXT_VARS

ALL_EVALUATION_CONTEXTS DBA_EVALUATION_CONTEXTS USER_EVALUATION_CONTEXTS

ALL_FILE_GROUP_EXPORT_INFO DBA_FILE_GROUP_EXPORT_INFO USER_FILE_GROUP_EXPORT_INFO

ALL_FILE_GROUP_FILES DBA_FILE_GROUP_FILES USER_FILE_GROUP_FILES

ALL_FILE_GROUP_TABLES DBA_FILE_GROUP_TABLES USER_FILE_GROUP_TABLES

ALL_FILE_GROUP_TABLESPACES DBA_FILE_GROUP_TABLESPACES USER_FILE_GROUP_TABLESPACES

ALL_FILE_GROUP_VERSIONS DBA_FILE_GROUP_VERSIONS USER_FILE_GROUP_VERSIONS

ALL_FILE_GROUPS DBA_FILE_GROUPS USER_FILE_GROUPS

N/A DBA_HIST_STREAMS_APPLY_SUM N/A

N/A DBA_HIST_STREAMS_CAPTURE N/A

N/A DBA_HIST_STREAMS_POOL_ADVICE N/A

ALL_PROPAGATION DBA_PROPAGATION N/A

N/A DBA_RECOVERABLE_SCRIPT N/A

N/A DBA_RECOVERABLE_SCRIPT_BLOCKS N/A

N/A DBA_RECOVERABLE_SCRIPT_ERRORS N/A

Chapter 22
Summary of Oracle Streams Static Data Dictionary Views

22-2

Table 22-1 (Cont.) Oracle Streams Static Data Dictionary Views

ALL_ Views DBA_ Views USER_ Views

N/A DBA_RECOVERABLE_SCRIPT_HIST N/A

N/A DBA_RECOVERABLE_SCRIPT_PARAM N/A

N/A DBA_REGISTERED_ARCHIVED_LOG N/A

ALL_RULE_SET_RULES DBA_RULE_SET_RULES USER_RULE_SET_RULES

ALL_RULE_SETS DBA_RULE_SETS USER_RULE_SETS

ALL_RULES DBA_RULES USER_RULES

N/A DBA_STREAMS_ADD_COLUMN N/A

N/A DBA_STREAMS_ADMINISTRATOR N/A

ALL_STREAMS_COLUMNS DBA_STREAMS_COLUMNS N/A

N/A DBA_STREAMS_DELETE_COLUMN N/A

ALL_STREAMS_GLOBAL_RULES DBA_STREAMS_GLOBAL_RULES N/A

N/A DBA_STREAMS_KEEP_COLUMNS N/A

ALL_STREAMS_MESSAGE_CONSUMERS DBA_STREAMS_MESSAGE_CONSUMERS N/A

ALL_STREAMS_MESSAGE_RULES DBA_STREAMS_MESSAGE_RULES N/A

ALL_STREAMS_NEWLY_SUPPORTED DBA_STREAMS_NEWLY_SUPPORTED N/A

N/A DBA_STREAMS_RENAME_COLUMN N/A

N/A DBA_STREAMS_RENAME_SCHEMA N/A

N/A DBA_STREAMS_RENAME_TABLE N/A

ALL_STREAMS_RULES DBA_STREAMS_RULES N/A

ALL_STREAMS_SCHEMA_RULES DBA_STREAMS_SCHEMA_RULES N/A

N/A DBA_STREAMS_SPLIT_MERGE N/A

N/A DBA_STREAMS_SPLIT_MERGE_HIST N/A

N/A DBA_STREAMS_STMT_HANDLERS N/A

N/A DBA_STREAMS_STMTS N/A

ALL_STREAMS_TABLE_RULES DBA_STREAMS_TABLE_RULES N/A

N/A DBA_STREAMS_TRANSFORMATIONS N/A

ALL_STREAMS_TRANSFORM_FUNCTION DBA_STREAMS_TRANSFORM_FUNCTION N/A

N/A DBA_STREAMS_TP_COMPONENT N/A

N/A DBA_STREAMS_TP_COMPONENT_LINK N/A

N/A DBA_STREAMS_TP_COMPONENT_STAT N/A

N/A DBA_STREAMS_TP_DATABASE N/A

N/A DBA_STREAMS_TP_PATH_BOTTLENECK N/A

N/A DBA_STREAMS_TP_PATH_STAT N/A

ALL_STREAMS_UNSUPPORTED DBA_STREAMS_UNSUPPORTED N/A

ALL_SYNC_CAPTURE DBA_SYNC_CAPTURE N/A

ALL_SYNC_CAPTURE_PREPARED_TABS DBA_SYNC_CAPTURE_PREPARED_TABS N/A

N/A DBA_SYNC_CAPTURE_TABLES N/A

Chapter 22
Summary of Oracle Streams Static Data Dictionary Views

22-3

22.2 Summary of Oracle Streams Dynamic Performance
Views

The Oracle Streams dynamic performance views are:

• V$BUFFERED_PUBLISHERS

• V$BUFFERED_QUEUES

• V$BUFFERED_SUBSCRIBERS

• V$PROPAGATION_RECEIVER

• V$PROPAGATION_SENDER

• V$RULE

• V$RULE_SET

• V$RULE_SET_AGGREGATE_STATS

• V$STREAMS_APPLY_COORDINATOR

• V$STREAMS_APPLY_READER

• V$STREAMS_APPLY_SERVER

• V$STREAMS_CAPTURE

• V$STREAMS_POOL_ADVICE

• V$STREAMS_POOL_STATISTICS

• V$STREAMS_TRANSACTION

Note:

• When monitoring an Oracle Real Application Clusters (Oracle RAC)
database, use the GV$ versions of the dynamic performance views.

• To collect elapsed time statistics in these dynamic performance views, set
the TIMED_STATISTICS initialization parameter to TRUE.

Chapter 22
Summary of Oracle Streams Dynamic Performance Views

22-4

23
Monitoring the Oracle Streams Topology
and Performance

The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM
PL/SQL package and a collection of data dictionary views. The Oracle Streams
Performance Advisor enables you to monitor the topology and performance of an
Oracle Streams environment. The Oracle Streams topology includes information about
the components in an Oracle Streams environment, the links between the
components, and the way information flows from capture to consumption. The Oracle
Streams Performance Advisor also provides information about how Oracle Streams
components are performing.

The following topics contain information about the Oracle Streams Performance
Advisor:

• About the Oracle Streams Topology

• About the Oracle Streams Performance Advisor

• About Stream Paths in an Oracle Streams Topology

• About the Information Gathered by the Oracle Streams Performance Advisor

• Gathering Information About the Oracle Streams Topology and Performance

• Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

• Using the UTL_SPADV Package

23.1 About the Oracle Streams Topology
Oracle Streams enables you to send messages between multiple databases. An
Oracle Streams environment can send the following types of messages:

• Logical change records (LCRs) that contain database changes

• User messages that contain custom information based on user-defined types

The Oracle Streams topology is a representation of the databases in an Oracle
Streams environment, the Oracle Streams components configured in these databases,
and the flow of messages between these components.

The messages in the environment flow in separate stream paths. A stream path
begins where a capture process, a synchronous capture, or an application generates
messages and enqueues them. The messages can flow through one or more
propagations and queues in its stream path. The stream path ends where the
messages are dequeued by an apply process, a messaging client, or an application.

Currently, the Oracle Streams topology only gathers information about a stream path if
the stream path ends with an apply process. The Oracle Streams topology does not
track stream paths that end when a messaging client or an application dequeues
messages.

23-1

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• "Message Propagation Between Queues"

• "Implicit Consumption with an Apply Process"

• "Queues"

• "Types of Information Captured with Oracle Streams"

23.2 About the Oracle Streams Performance Advisor
The Oracle Streams Performance Advisor consists of the DBMS_STREAMS_ADVISOR_ADM
PL/SQL package and a collection of data dictionary views. You can use the
ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package to
gather information about the Oracle Streams topology and about the performance of
the Oracle Streams components in the topology.

This section contains the following topics:

• Oracle Streams Performance Advisor Data Dictionary Views

• Oracle Streams Components and Statistics

23.2.1 Oracle Streams Performance Advisor Data Dictionary Views
After information is gathered by the Oracle Streams Performance Advisor, you can
view it by querying the following data dictionary views:

• DBA_STREAMS_TP_COMPONENT contains information about each Oracle Streams
component at each database.

• DBA_STREAMS_TP_COMPONENT_LINK contains information about how messages flow
between Oracle Streams components.

• DBA_STREAMS_TP_COMPONENT_STAT contains temporary performance statistics and
session statistics about each Oracle Streams component.

• DBA_STREAMS_TP_DATABASE contains information about each database that contains
Oracle Streams components.

• DBA_STREAMS_TP_PATH_BOTTLENECK contains temporary information about Oracle
Streams components that might be slowing down the flow of messages in a
stream path.

• DBA_STREAMS_TP_PATH_STAT contains temporary performance statistics about each
stream path that exists in the Oracle Streams topology.

The topology information is stored permanently in the following data dictionary views:
DBA_STREAMS_TP_DATABASE, DBA_STREAMS_TP_COMPONENT, and
DBA_STREAMS_TP_COMPONENT_LINK.

The following views contain temporary information: DBA_STREAMS_TP_COMPONENT_STAT,
DBA_STREAMS_TP_PATH_BOTTLENECK, and DBA_STREAMS_TP_PATH_STAT. Some of the data in
these views is retained only for the user session that runs the

Chapter 23
About the Oracle Streams Performance Advisor

23-2

ANALYZE_CURRENT_PERFORMANCE procedure. When this user session ends, this temporary
information is purged.

See Also:

"Viewing the Oracle Streams Topology and Analyzing Oracle Streams
Performance"

23.2.2 Oracle Streams Components and Statistics
The DBMS_STREAMS_ADVISOR_ADM package gathers information about the following Oracle
Streams components:

• A QUEUE stores messages. The package gathers the following component-level
statistics for queues:

– ENQUEUE RATE

– SPILL RATE

– CURRENT QUEUE SIZE

• A CAPTURE is a capture process. A capture process captures database changes in
the redo log and enqueues the changes as logical change records (LCRs). Each
capture process has the following subcomponents:

– LOGMINER BUILDER is a builder server.

– LOGMINER PREPARER is a preparer server.

– LOGMINER READER is a reader server.

– CAPTURE SESSION is the capture process session.

The package gathers the following component-level statistics for each capture
process (CAPTURE):

– CAPTURE RATE

– ENQUEUE RATE

– LATENCY

The package also gathers session-level statistics for capture process
subcomponents.

• A PROPAGATION SENDER sends messages from a source queue to a destination
queue. The package gathers the following component-level statistics for
propagation senders:

– SEND RATE

– BANDWIDTH

– LATENCY

The package also gathers session-level statistics for propagation senders.

• A PROPAGATION RECEIVER enqueues messages sent by propagation senders into a
destination queue. The package gathers session-level statistics for propagation
receivers.

Chapter 23
About the Oracle Streams Performance Advisor

23-3

• An APPLY is an apply process. These components either apply messages directly
or send messages to apply handlers. This type of component has the following
subcomponents:

– APPLY READER is a reader server.

– APPLY COORDINATOR is a coordinator process.

– APPLY SERVER is an apply server.

The package gathers the following component-level statistics for this component
(APPLY):

– MESSAGE APPLY RATE

– TRANSACTION APPLY RATE

– LATENCY

The package also gathers session-level statistics for the subcomponents.

When the package gathers session-level statistics for a component or subcomponent,
the session-level statistics include the following:

• IDLE percentage

• FLOW CONTROL percentage

• EVENT percentage for wait events

Note:

Currently, the DBMS_STREAMS_ADVISOR_ADM package does not gather information
about synchronous captures or messaging clients.

See Also:

• "Viewing Component-Level Statistics" for detailed information about
component-level statistics

• "Viewing Session-Level Statistics" for detailed information about session-
level statistics

23.3 About Stream Paths in an Oracle Streams Topology
In the Oracle Streams topology, a stream path is a flow of messages from a source to
a destination. A stream path begins where a capture process, synchronous capture, or
application enqueues messages into a queue. A stream path ends where an apply
process dequeues the messages. The stream path might flow through multiple queues
and propagations before it reaches an apply process. Therefore, a single stream path
can consist of multiple source/destination component pairs before it reaches last
component.

The Oracle Streams topology assigns a number to each stream path so that you can
monitor each one easily. The Oracle Streams topology also assigns a number to each

Chapter 23
About Stream Paths in an Oracle Streams Topology

23-4

link between two components in a stream path. The number specifies the position of
the link in the overall stream path.

Table 23-1 shows the position of each link in a sample stream path.

Table 23-1 Position of Each Link in a Sample Stream Path

Start Component End Component Position

Capture process Queue 1

Queue Propagation sender 2

Propagation sender Propagation receiver 3

Propagation receiver Queue 4

Queue Apply process 5

When the Oracle Streams Performance Advisor gathers information about an Oracle
Streams environment, it tracks stream paths by starting with each apply process and
working backward to its source. When a capture process is the source, the Oracle
Streams Performance Advisor tracks the path from the apply process back to the
capture process. When a synchronous capture or an application that enqueues
messages is the source, the Oracle Streams Performance Advisor tracks the path
from the apply process back to the queue into which the messages are enqueued.

The following sections describe sample replication environments and the stream paths
in each one:

• Separate Stream Paths in an Oracle Streams Environment

• Shared Stream Paths in an Oracle Streams Replication Environment

See Also:

Oracle Streams Replication Administrator's Guide for information about best
practices for Oracle Streams replication environments

23.3.1 Separate Stream Paths in an Oracle Streams Environment
Consider an Oracle Streams environment with two databases. Each database
captures changes made to the replicated database objects with a capture process and
sends the changes to the other database, where they are applied by an apply process.
The stream paths in this environment are completely separate.

Figure 23-1 shows an example of this type of Oracle Streams replication environment.

Chapter 23
About Stream Paths in an Oracle Streams Topology

23-5

Figure 23-1 Oracle Streams Topology with Two Separate Stream Paths

Oracle �
Database

Propagation Receiver

Component ID-4

Stream 1

Queue

Component ID-5

Stream 1

Apply Process

Component ID-6

Oracle �
Database

Capture Process

Component ID-1

Stream 1

Queue

Component ID-2

Stream 1

Propagation Sender

Component ID-3

Stream 1

Stream 2

Queue

Component ID-8

Stream 2

Capture Process

Component ID-7

Apply Process

Component ID-12

Stream 2

Queue

Component ID-11

Stream 2

Propagation Receiver

Component ID-10

Stream 2

Propagation Sender

Component ID-9

Notice that the Oracle Streams Performance Advisor assigns a component ID to each
Oracle Streams component and a path ID to each path. The Oracle Streams topology
in Figure 23-1 shows the following information:

• There are twelve Oracle Streams components in the Oracle Streams environment.

• There are two stream paths in the Oracle Streams environment.

• Stream path 1 starts with component 1 and ends with component 6.

• Stream path 2 starts with component 7 and ends with component 12.

23.3.2 Shared Stream Paths in an Oracle Streams Replication
Environment

When there are multiple apply processes that apply changes generated by a single
source, a stream path splits into multiple stream paths. In this case, part of a stream
path is shared, but the path splits into two or more distinct stream paths.

Chapter 23
About Stream Paths in an Oracle Streams Topology

23-6

Figure 23-2 shows this type of Oracle Streams environment.

Figure 23-2 Oracle Streams Topology with Multiple Apply Processes for a
Single Source

Oracle �
Database

Oracle �
Database

Propagation Receiver

Component ID-5

Stream 1

Queue

Component ID-6

Stream 1

Apply Process

Component ID-7

Oracle �
Database

Capture Process

Component ID-1

Stream 1, 2

Queue

Component ID-2

Stream 1

Propagation Sender

Component ID-3

Stream 1

Stream 2

Queue

Component ID-9

Stream 2

Apply Process

Component ID-10

Stream 2

Propagation Sender

Component ID-4

Stream 2

Propagation Receiver

Component ID-8

The Oracle Streams topology in Figure 23-2 shows the following information:

• There are ten Oracle Streams components in the Oracle Streams environment.

• There are two stream paths in the Oracle Streams environment.

• Stream path 1 starts with component 1 and ends with component 7.

• Stream path 2 starts with component 1 and ends with component 10.

• The messages flowing between component 1 and component 2 are in both path 1
and path2.

Chapter 23
About Stream Paths in an Oracle Streams Topology

23-7

See Also:

"Message Propagation Between Queues"

23.4 About the Information Gathered by the Oracle Streams
Performance Advisor

The ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package
gathers information about the Oracle Streams topology and the performance of Oracle
Streams components. The procedure stores the information in a collection of data
dictionary views. To use the Oracle Streams Performance Advisor effectively, it is
important to understand how the procedure gathers information and calculates
statistics.

The procedure takes snapshots of the Oracle Streams environment to gather
information and calculate statistics. For some statistics, the information in a single
snapshot is sufficient. For example, only one snapshot is needed to determine the
current number of messages in a queue. However, to calculate other statistics, the
procedure must compare two snapshots. These statistics include the rate, bandwidth,
event, and flow control statistics. The first time the procedure is run in a user session,
it takes two snapshots to calculate these statistics. In each subsequent run in the
same user session, the procedure takes one snapshot and compares it with the
snapshot taken during the previous run.

Table 23-2 illustrates how the procedure gathers information in each advisor run in a
single user session.

Table 23-2 How the Oracle Streams Performance Advisor Gathers Information
in a Session

Advisor Run Information Gathered

1 1. Take snapshot of statistics.

2. Wait at least five seconds.

3. Take another snapshot of statistics.

4. Compare data from the first snapshot with data from the second
snapshot to calculate performance statistics.

2 1. Take snapshot of statistics.

2. Compare data from the last snapshot in advisor run 1 with the snapshot
taken in advisor run 2 to calculate performance statistics.

3 1. Take snapshot of statistics.

2. Compare data from the snapshot in advisor run 2 with the snapshot
taken in advisor run 3 to calculate performance statistics.

For the best results in an advisor run, meet the following criteria:

Chapter 23
About the Information Gathered by the Oracle Streams Performance Advisor

23-8

• Ensure that as many Oracle Streams components as possible are enabled during
the time period between the two snapshots used in the advisor run. Specifically,
capture processes, propagations, apply processes should be enabled, queues
should be started, and database links should be active.

• If data is replicated in the Oracle Streams environment, then ensure that the
replicated database objects are experiencing an average, or near average,
number of changes during the time period between the two snapshots used in the
advisor run. The Oracle Streams Performance Advisor gathers more accurate
statistics if it is run when the Oracle Streams replication environment is
experiencing typical replication activity.

• If messages are sent by applications in the Oracle Streams environment, then
ensure that the applications are sending an average, or near average, number of
messages during the time period between the two snapshots used in the advisor
run. The Oracle Streams Performance Advisor gathers more accurate statistics if it
is run when the Oracle Streams messaging environment is sending a typical
number of messages.

23.5 Gathering Information About the Oracle Streams
Topology and Performance

To gather information about the Oracle Streams topology and Oracle Streams
performance, complete the following steps:

1. Identify the database that you will use to gather the information. An administrative
user at this database must meet the following requirements:

• The user must have access to a database link to each database that contains
Oracle Streams components.

• The user must have been granted privileges using the
DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure, and each database link
must connect to a user at the remote database that has been granted
privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure.

If you configure an Oracle Streams administrator at each database with Oracle
Streams components, then the Oracle Streams administrator has the
necessary privileges. See Oracle Streams Replication Administrator's Guide
for information about creating an Oracle Streams administrator.

If no database in your environment meets these requirements, then choose a
database, configure the necessary database links, and grant the necessary
privileges to the users before proceeding.

The Oracle Streams Performance Advisor running on an Oracle Database 12c
database can monitor Oracle Database 10g Release 2 (10.2) and later databases.
It cannot monitor databases before Oracle Database 10g Release 2 (10.2).

2. In SQL*Plus, connect to the database you identified in Step 1 as a user that meets
the requirements listed in Step 1.

For example, connect to the hub.example.com database as the Oracle Streams
administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Chapter 23
Gathering Information About the Oracle Streams Topology and Performance

23-9

3. Run the ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM
package:

exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

4. Optionally, rerun the ANALYZE_CURRENT_PERFORMANCE procedure one or more times in
same session that ran the procedure in Step 3:

exec DBMS_STREAMS_ADVISOR_ADM.ANALYZE_CURRENT_PERFORMANCE;

5. Run the following query to identify the advisor run ID for the information gathered
in Step 4:

SELECT DISTINCT ADVISOR_RUN_ID FROM DBA_STREAMS_TP_COMPONENT_STAT
 ORDER BY ADVISOR_RUN_ID;

Your output is similar to the following:

ADVISOR_RUN_ID

 1
 2

The Oracle Streams Performance Advisor assigns an advisor run ID to the
statistics for each run. Use the last value in the output for the advisor run ID in the
queries in "Viewing Performance Statistics for Oracle Streams Components". In
this example, use 2 for the advisor run ID in the queries.

Remember that the Oracle Streams Performance Advisor purges some of the
performance statistics that it gathered when a user session ends. Therefore, run
the performance statistics queries in the same session that ran the
ANALYZE_CURRENT_PERFORMANCE procedure.

Complete these steps whenever you want to monitor the current performance of your
Oracle Streams environment.

You should also run the ANALYZE_CURRENT_PERFORMANCE procedure when new Oracle
Streams components are added to any database in the Oracle Streams environment.
Running the procedure updates the Oracle Streams topology with information about
any new components.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_STREAMS_ADVISOR_ADM package

• "About the Oracle Streams Topology"

23.6 Viewing the Oracle Streams Topology and Analyzing
Oracle Streams Performance

This section contains several queries that you can use to view your Oracle Streams
topology and monitor the performance of your Oracle Streams components. The
queries specify the views described in "About the Oracle Streams Topology".

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-10

The queries in this section can be run in any Oracle Stream environment. However,
the output shown for these queries is based on the sample Oracle Streams replication
environment shown in Figure 23-3.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-11

Figure 23-3 Sample Oracle Streams Replication Environment

Capture Process

capture_hns

Enqueue�
Changes

propagation_spoke1

Send Changes

propagation_spoke2

Send Changes

Enqueue�
Changes

propagation_spoke2

Send Changes

propagation_spoke1

Send Changes

Tables in hr �
Schema

Apply Process

apply_spoke1

Apply

Changes

Queue

destination_spoke1

Dequeue�
Changes

Oracle Database

spoke1.example.com

Capture Process

capture_hns

Queue

destination_spoke2

Queue

source_hns

Oracle Database

hub.example.com

Apply Process

apply_spoke 1

Apply

Changes

Apply Process

apply_spoke 2

Apply�
Changes

Queue

destination_spoke1

Dequeue�
Changes

Capture �
DML Changes �
to hr �
Schema

Dequeue�
Changes

Enqueue�
Changes

Capture Process

capture_hns

Apply Process

apply_spoke2

Queue

destination_spoke2

Oracle Database �
spoke2.example.com

Apply

Changes

Dequeue�
Changes

Tables in hr

Schema Redo

Log

Record�
Changes

Redo

Log

Record�
Changes

Capture DML�
Changes to �
hr Schema

Redo

Log

Record�
Changes

Queue

source_hns

Queue

source_hns

Tables in hr

Schema

Capture DML�
Changes to �
hr Schema

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-12

The Oracle Streams Replication Administrator's Guide contains instructions for
configuring the Oracle Streams replication environment shown in Figure 23-3. This
environment contains both of the following types of stream paths:

• Separate stream paths flow from the spoke1.example.com database to the
hub.example.com database and from the spoke2.example.com database to the
hub.example.com database. This type of stream path is described in "Separate
Stream Paths in an Oracle Streams Environment".

• Two stream paths that share a portion of the path flow from the hub.example.com
database to the spoke1.example.com and spoke2.example.com databases. This type
of stream path is described in "Shared Stream Paths in an Oracle Streams
Replication Environment".

This section contains the following topics:

• Viewing the Oracle Streams Topology

• Viewing Performance Statistics for Oracle Streams Components

23.6.1 Viewing the Oracle Streams Topology
To view the Oracle Streams topology, you must first gather information about the
Oracle Streams environment using the DBMS_STREAMS_ADVISOR_ADM package. See
"Gathering Information About the Oracle Streams Topology and Performance".

The following sections explain how to view different types of information in an Oracle
Streams topology:

• Viewing the Databases in the Oracle Streams Environment

• Viewing the Oracle Streams Components at Each Database

• Viewing Each Stream Path in an Oracle Streams Topology

23.6.1.1 Viewing the Databases in the Oracle Streams Environment
You can view the following information about the databases in an Oracle Streams
environment:

• The global name of each database

• The last time the Oracle Streams Performance Advisor was run at each database

• The version number of each database

• The compatibility level of each database

• Whether each database has access to the Oracle Diagnostics Pack and Oracle
Tuning Pack

To display this information, run the following query:

COLUMN GLOBAL_NAME HEADING 'Global Name' FORMAT A15
COLUMN LAST_QUERIED HEADING 'Last|Queried'
COLUMN VERSION HEADING 'Version' FORMAT A15
COLUMN COMPATIBILITY HEADING 'Compatibility' FORMAT A15
COLUMN MANAGEMENT_PACK_ACCESS HEADING 'Management Pack' FORMAT A20

SELECT GLOBAL_NAME, LAST_QUERIED, VERSION, COMPATIBILITY, MANAGEMENT_PACK_ACCESS
 FROM DBA_STREAMS_TP_DATABASE;

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-13

The following output shows the databases in the Oracle Streams replication
environment described in "Viewing the Oracle Streams Topology and Analyzing Oracle
Streams Performance":

 Last
Global Name Queried Version Compatibility Management Pack
--------------- --------- --------------- --------------- --------------------
HUB.EXAMPLE.COM 08-APR-08 11.1.0.7.0 11.1.0 DIAGNOSTIC+TUNING
SPOKE1.EXAMPLE. 08-APR-08 11.1.0.7.0 11.1.0 DIAGNOSTIC+TUNING
COM
SPOKE2.EXAMPLE. 08-APR-08 11.1.0.7.0 11.1.0 DIAGNOSTIC+TUNING
COM

This output shows the following information about the databases in the Oracle
Streams environment:

• The Global Name column shows that the global names of the databases are
hub.example.com, spoke1.example.com, and spoke2.example.com.

• The Last Queried column shows that the Oracle Streams Performance Advisor was
last run on April 8, 2008 at each database.

• The Version column shows that version of each database is Oracle Database 11g
Release 1 (11.1.0.7.0).

• The Compatibility column shows that the compatibility level of each database is
11.1.0.

• The Management Pack column shows that each database has access to the Oracle
Diagnostics Pack and Oracle Tuning Pack.

See Also:

Oracle Database Upgrade Guide for information about database compatibility

23.6.1.2 Viewing the Oracle Streams Components at Each Database
You can view the following information about the components in an Oracle Streams
environment:

• The component ID for each Oracle Streams component. The Oracle Streams
topology assigns an ID number to each component and uses the number to track
information about the component and about the stream path that flows through the
component.

• The name of the Oracle Streams component. For capture processes and apply
processes, the query lists the name of each process. For queues, the query lists
the name of each queue. For propagations, two Oracle Streams components are
tracked in the Oracle Streams topology:

– The name of a propagation sender is the source queue of the propagation and
the destination queue and database to which the propagation sends
messages. For example, a propagation sender with the strmadmin.source_hns
source queue that sends messages to the strmadmin.destination_spoke1
destination queue at the spoke1.example.com database is shown in the following
way:

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-14

"STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DESTINATION_SPOKE1"
 @SPOKE1.EXAMPLE.COM

– The name of a propagation receiver is the source queue and database from
which the messages are sent and the destination queue for the propagation.
For example, a propagation receiver that gets messages from the
strmadmin.source_hns source queue at the hub.example.com database and
enqueues them into the strmadmin.destination_spoke1 destination queue is
shown in the following way:

"STRMADMIN"."SOURCE_HNS"@HUB.EXAMPLE.COM=>"STRMADMIN".
 "DESTINATION_SPOKE1"

• The type of the Oracle Streams component. The following types are possible:

– CAPTURE for capture processes

– QUEUE for queues

– PROPAGATION SENDER for propagation senders

– PROPAGATION RECEIVER for propagation receivers

– APPLY for apply processes

• The database that contains the component

To display this information, run the following query:

COLUMN COMPONENT_ID HEADING 'ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Name' FORMAT A43
COLUMN COMPONENT_TYPE HEADING 'Type' FORMAT A20
COLUMN COMPONENT_DB HEADING 'Database' FORMAT A10

SELECT COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, COMPONENT_DB
 FROM DBA_STREAMS_TP_COMPONENT
 ORDER BY COMPONENT_ID;

The following output shows the components in the Oracle Streams replication
environment described in "Viewing the Oracle Streams Topology and Analyzing Oracle
Streams Performance":

 ID Name Type Database
---- --- -------------------- ----------
 1 "STRMADMIN"."DESTINATION_SPOKE1" QUEUE HUB.EXAMPL
 E.COM
 2 "STRMADMIN"."DESTINATION_SPOKE2" QUEUE HUB.EXAMPL
 E.COM
 3 "STRMADMIN"."SOURCE_HNS" QUEUE HUB.EXAMPL
 E.COM
 4 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER HUB.EXAMPL
 INATION_SPOKE1"@SPOKE1.EXAMPLE.COM E.COM
 5 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER HUB.EXAMPL
 INATION_SPOKE2"@SPOKE2.EXAMPLE.COM E.COM
 6 "STRMADMIN"."SOURCE_HNS"@SPOKE1.EXAMPLE.COM PROPAGATION RECEIVER HUB.EXAMPL
 =>"STRMADMIN"."DESTINATION_SPOKE1" E.COM
 7 "STRMADMIN"."SOURCE_HNS"@SPOKE2.EXAMPLE.COM PROPAGATION RECEIVER HUB.EXAMPL
 =>"STRMADMIN"."DESTINATION_SPOKE2" E.COM
 8 APPLY_SPOKE1 APPLY HUB.EXAMPL
 E.COM
 9 APPLY_SPOKE2 APPLY HUB.EXAMPL
 E.COM
 10 CAPTURE_HNS CAPTURE HUB.EXAMPL
 E.COM

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-15

 11 "STRMADMIN"."DESTINATION_SPOKE1" QUEUE SPOKE1.EXA
 MPLE.COM
 12 "STRMADMIN"."SOURCE_HNS" QUEUE SPOKE1.EXA
 MPLE.COM
 13 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER SPOKE1.EXA
 INATION_SPOKE1"@HUB.EXAMPLE.COM MPLE.COM
 14 "STRMADMIN"."SOURCE_HNS"@HUB.EXAMPLE.COM=>" PROPAGATION RECEIVER SPOKE1.EXA
 STRMADMIN"."DESTINATION_SPOKE1" MPLE.COM
 15 APPLY_SPOKE1 APPLY SPOKE1.EXA
 MPLE.COM
 16 CAPTURE_HNS CAPTURE SPOKE1.EXA
 MPLE.COM
 17 "STRMADMIN"."DESTINATION_SPOKE2" QUEUE SPOKE2.EXA
 MPLE.COM
 18 "STRMADMIN"."SOURCE_HNS" QUEUE SPOKE2.EXA
 MPLE.COM
 19 "STRMADMIN"."SOURCE_HNS"=>"STRMADMIN"."DEST PROPAGATION SENDER SPOKE2.EXA
 INATION_SPOKE2"@HUB.EXAMPLE.COM MPLE.COM
 20 "STRMADMIN"."SOURCE_HNS"@HUB.EXAMPLE.COM=>" PROPAGATION RECEIVER SPOKE2.EXA
 STRMADMIN"."DESTINATION_SPOKE2" MPLE.COM
 21 APPLY_SPOKE2 APPLY SPOKE2.EXA
 MPLE.COM
 22 CAPTURE_HNS CAPTURE SPOKE2.EXA
 MPLE.COM

See Also:

• "About the Oracle Streams Topology"

• "Viewing Component-Level Statistics" for a query that shows performance
statistics for each Oracle Streams component

• Oracle Streams Extended Examples for information about the n-way
replication environment shown in the output

23.6.1.3 Viewing Each Stream Path in an Oracle Streams Topology
You can view the following information about the stream paths in an Oracle Streams
topology:

• The path ID. The Oracle Streams topology assigns an ID number to each stream
path it identifies. The path ID is associated with each link in the path. For example,
a single path ID can be associated with the following component links:

– Capture process to queue

– Queue to propagation sender

– Propagation sender to propagation receiver

– Propagation receiver to queue

– Queue to apply process

• The source component ID. A source component is a component from which
messages flow to another component.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-16

• The name of the source component. See "Viewing the Oracle Streams
Components at Each Database" for information about how components are named
in the query output.

• The destination component ID. A destination component receives messages from
another component.

• The name of the destination component.

• The position in the stream path shows the location of a particular link in a path. For
example, a position might be the first link in a path, the second link in a path, and
so on.

To display this information, run the following query:

COLUMN PATH_ID HEADING 'Path|ID' FORMAT 9999
COLUMN SOURCE_COMPONENT_ID HEADING 'Source|Component|ID' FORMAT 9999
COLUMN SOURCE_COMPONENT_NAME HEADING 'Source|Component|Name' FORMAT A20
COLUMN DESTINATION_COMPONENT_ID HEADING 'Dest|Component|ID' FORMAT 9999
COLUMN DESTINATION_COMPONENT_NAME HEADING 'Dest|Component|Name' FORMAT A15
COLUMN POSITION HEADING 'Position' FORMAT 9999

SELECT PATH_ID,
 SOURCE_COMPONENT_ID,
 SOURCE_COMPONENT_NAME,
 DESTINATION_COMPONENT_ID,
 DESTINATION_COMPONENT_NAME,
 POSITION
 FROM DBA_STREAMS_TP_COMPONENT_LINK
 ORDER BY PATH_ID, POSITION;

The following output shows the paths in the Oracle Streams topology for the
components listed in "Viewing the Oracle Streams Components at Each Database":

 Source Source Dest Dest
 Path Component Component Component Component
 ID ID Name ID Name Position
----- --------- -------------------- --------- --------------- --------
 1 16 CAPTURE_HNS 12 "STRMADMIN"."SO 1
 URCE_HNS"
 1 12 "STRMADMIN"."SOURCE_ 13 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ 6 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@SPOKE
 ESTINATION_SPOKE1"@H 1.EXAMPLE.COM=>
 UB.EXAMPLE.COM "STRMADMIN"."DES
 TINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ 1 "STRMADMIN"."DE 4
 HNS"@SPOKE1.EXAMPLE. STINATION_SPOKE
 COM=>"STRMADMIN"."DE 1"
 STINATION_SPOKE1"
 1 1 "STRMADMIN"."DESTINA 8 APPLY_SPOKE1 5
 TION_SPOKE1"
 2 22 CAPTURE_HNS 18 "STRMADMIN"."SO 1
 URCE_HNS"
 2 18 "STRMADMIN"."SOURCE_ 19 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE2"@H

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-17

 UB.EXAMPLE.COM
 2 19 "STRMADMIN"."SOURCE_ 7 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@SPOKE
 ESTINATION_SPOKE2"@H 2.EXAMPLE.COM=>
 UB.EXAMPLE.COM "STRMADMIN"."DES
 TINATION_SPOKE2"
 2 7 "STRMADMIN"."SOURCE_ 2 "STRMADMIN"."DE 4
 HNS"@SPOKE2.EXAMPLE. STINATION_SPOKE
 COM=>"STRMADMIN"."DE 2"
 STINATION_SPOKE2"
 2 2 "STRMADMIN"."DESTINA 9 APPLY_SPOKE2 5
 TION_SPOKE2"
 3 10 CAPTURE_HNS 3 "STRMADMIN"."SO 1
 URCE_HNS"
 3 3 "STRMADMIN"."SOURCE_ 4 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE1"@S
 POKE1.EXAMPLE.CO
 M
 3 4 "STRMADMIN"."SOURCE_ 14 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@HUB.N
 ESTINATION_SPOKE1"@S ET=>"STRMADMIN"
 POKE1.EXAMPLE.COM ."DESTINATION_S
 POKE1"
 3 14 "STRMADMIN"."SOURCE_ 11 "STRMADMIN"."DE 4
 HNS"@HUB.EXAMPLE.COM STINATION_SPOKE
 =>"STRMADMIN"."DESTI 1"
 NATION_SPOKE1"
 3 11 "STRMADMIN"."DESTINA 15 APPLY_SPOKE1 5
 TION_SPOKE1"
 4 10 CAPTURE_HNS 3 "STRMADMIN"."SO 1
 URCE_HNS"
 4 3 "STRMADMIN"."SOURCE_ 5 "STRMADMIN"."SO 2
 HNS" URCE_HNS"=>"STR
 MADMIN"."DESTIN
 ATION_SPOKE2"@S
 POKE2.EXAMPLE.C
 OM
 4 5 "STRMADMIN"."SOURCE_ 20 "STRMADMIN"."SO 3
 HNS"=>"STRMADMIN"."D URCE_HNS"@HUB.N
 ESTINATION_SPOKE2"@S ET=>"STRMADMIN"
 POKE2.EXAMPLE.COM ."DESTINATION_S
 POKE2"
 4 20 "STRMADMIN"."SOURCE_ 17 "STRMADMIN"."DE 4
 HNS"@HUB.EXAMPLE.COM STINATION_SPOKE
 =>"STRMADMIN"."DESTI 2"
 NATION_SPOKE2"
 4 17 "STRMADMIN"."DESTINA 21 APPLY_SPOKE2 5
 TION_SPOKE2"

See Also:

• "About Stream Paths in an Oracle Streams Topology"

• "Viewing Statistics for the Stream Paths in an Oracle Streams
Environment"

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-18

23.6.2 Viewing Performance Statistics for Oracle Streams
Components

The DBMS_STREAMS_ADVISOR_ADM package and the Oracle Streams topology views
comprise the Oracle Streams Performance Advisor. The Oracle Streams topology
views enable you to display and analyze performance statistics for the Oracle Streams
components in your environment.

To view performance statistics for Oracle Streams components, you must first gather
information about the Oracle Streams environment using the DBMS_STREAMS_ADVISOR_ADM
package. See "Gathering Information About the Oracle Streams Topology and
Performance".

The following sections explain how to view performance statistics for Oracle Streams
components:

• Checking for Bottleneck Components in the Oracle Streams Topology

• Viewing Component-Level Statistics

• Viewing Session-Level Statistics

• Viewing Statistics for the Stream Paths in an Oracle Streams Environment

Note:

The performance of Oracle Streams components depends on several factors,
including the computer equipment used in the environment and the speed of
the network.

23.6.2.1 Checking for Bottleneck Components in the Oracle Streams Topology
A bottleneck component is the busiest component or the component with the least
amount of idle time. You can view the following information about the bottleneck
components in an Oracle Streams environment:

• The path ID of the path that includes the component.

• The component ID for each Oracle Streams component. The Oracle Streams
topology assigns an ID number to each component and uses the number to track
information about the component and about the stream path that flows through the
component.

• The name of the Oracle Streams component. See "Viewing the Oracle Streams
Components at Each Database" for information about how components are named
in the query output.

• The type of the Oracle Streams component. The following types are possible:

– CAPTURE for capture processes

– QUEUE for queues

– PROPAGATION SENDER for propagation senders

– PROPAGATION RECEIVER for propagation receivers

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-19

– APPLY for apply processes

• The database that contains the component

Run the following query to check for bottleneck components in your Oracle Streams
environment:

COLUMN PATH_ID HEADING 'Path ID' FORMAT 999
COLUMN COMPONENT_ID HEADING 'Component ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Name' FORMAT A20
COLUMN COMPONENT_TYPE HEADING 'Type' FORMAT A20
COLUMN COMPONENT_DB HEADING 'Database' FORMAT A15

SELECT PATH_ID,
 COMPONENT_ID,
 COMPONENT_NAME,
 COMPONENT_TYPE,
 COMPONENT_DB
 FROM DBA_STREAMS_TP_PATH_BOTTLENECK
 WHERE BOTTLENECK_IDENTIFIED='YES' AND
 ADVISOR_RUN_ID=2
 ORDER BY PATH_ID, COMPONENT_ID;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor
run ID for the advisor run you want to query. See "Gathering Information About the
Oracle Streams Topology and Performance" for information about determining the
ADVISOR_RUN_ID.

The following output shows the bottleneck components for the components listed in
"Viewing the Oracle Streams Components at Each Database":

Path ID Component ID Name Type Database
------- ------------ -------------------- -------------------- ---------------
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION RECEIVER HUB.EXAMPLE.COM
 HNS"@SPOKE1.EXAMPLE.
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 3 10 CAPTURE_HNS CAPTURE HUB.EXAMPLE.COM
 4 10 CAPTURE_HNS CAPTURE HUB.EXAMPLE.COM

If this query returns no results, then the Oracle Streams Performance Advisor did not
identify any bottleneck components in your environment. However, if this query returns
one or more bottleneck components, then check the status of these components. If
they are disabled, then you can enable them. If the components are enabled, then you
can examine the components to see if they can be modified to perform better.

In some cases, the Oracle Streams Performance Advisor cannot determine whether a
component is a bottleneck component. To view these components, set
BOTTLENECK_IDENTIFIED to 'NO' when you query the DBA_STREAMS_TP_PATH_BOTTLENECK
view. The output for the ADVISOR_RUN_REASON column shows why the Oracle Streams
Performance Advisor could not determine whether the component is a bottleneck
component. The following reasons can be specified in the ADVISOR_RUN_REASON column
output:

• PRE-11.1 DATABASE EXISTS means that the component is in a stream path that
includes a database before Oracle Database 11g Release 1. Bottleneck analysis
is not performed on these components.

• DIAGNOSTIC PACK REQUIRED means that the component is in a stream path that
includes a database that does not have the Oracle Diagnostics Pack. Bottleneck
analysis is not performed on these components.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-20

• NO BOTTLENECK IDENTIFIED means that either no bottleneck was identified in a stream
path or that there might be more than one bottleneck component in the stream
path.

See Also:

Identifying Problems in an Oracle Streams Environment

23.6.2.2 Viewing Component-Level Statistics
You can view statistics for the Oracle Streams components in the Oracle Streams
topology. The query in this section displays the following information for each
component:

• The ID of the path to which the component belongs

• The name of the Oracle Streams component

• The type of the Oracle Streams component. The following types are possible:

– CAPTURE for capture processes

– QUEUE for queues

– PROPAGATION SENDER for propagation senders

– PROPAGATION RECEIVER for propagation receivers

– APPLY for apply processes

• The statistic that was gathered for the component

• The value and unit of the statistic. For example, a LATENCY statistic shows a number
for the value and SECONDS for the unit. A TRANSACTION APPLY RATE statistic shows a
number for the value and TRANSACTIONS PER SECOND for the unit.

The ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package
gathers the statistics returned by the query in this section. Therefore, the statistics
returned by the query were the current statistics when the procedure was run. The
statistics are not updated automatically.

Table 23-3 describes each of the statistics that can be returned by the query in this
section:

Table 23-3 Component-Level Statistics for Oracle Streams Components

Component Type Statistic Unit Description

CAPTURE CAPTURE RATE MESSAGES PER
SECOND

The average number of database changes in the
redo log scanned by the capture process each
second.

A capture process captures and enqueues the
scanned changes that satisfy its rule sets.

CAPTURE ENQUEUE RATE MESSAGES PER
SECOND

The average number of logical change records
(LCRs) enqueued by the capture process each
second.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-21

Table 23-3 (Cont.) Component-Level Statistics for Oracle Streams Components

Component Type Statistic Unit Description

CAPTURE LATENCY SECONDS The amount of time between when the last redo
entry became available for the capture process and
the time when the last redo entry scanned by the
capture process was recorded in the redo log.

The purpose of the statistic is to show the amount
of time between when a change is recorded in the
redo log and when the redo record is scanned by
the capture process.

The capture process might or might not enqueue a
scanned change. A capture process only enqueues
a change if the change satisfies its rule sets.

PROPAGATION SENDER SEND RATE MESSAGES PER
SECOND

The average number of messages sent each
second by the propagation sender.

PROPAGATION SENDER BANDWIDTH BYTES PER
SECOND

The average number of bytes sent each second by
the propagation sender.

PROPAGATION SENDER LATENCY SECONDS The amount of time between when a message was
created at the source database and when the
message was sent to the destination queue by the
propagation sender.

The value shown is for a single message that was
sent from the source queue to the destination
queue by the propagation sender. This message
was the last message sent by the propagation
sender when the ANALYZE_CURRENT_PERFORMANCE
procedure was run.

Depending on the type of message sent by the
propagation, message creation time is one of the
following:

• For captured LCRs, the time when the redo
entry for the database change was recorded

• For persistent LCRs, the time when the LCR
was constructed

• For persistent user messages, the time when
the message was enqueued

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-22

Table 23-3 (Cont.) Component-Level Statistics for Oracle Streams Components

Component Type Statistic Unit Description

APPLY MESSAGE APPLY
RATE

MESSAGES PER
SECOND

The average number of messages applied each
second by the apply process.

A captured LCR or persistent LCR can be applied
in one of the following ways:

• The apply process makes the change
encapsulated in the LCR to a database object.

• The apply process passes the LCR to an apply
handler.

• If the LCR raises an error, then the apply
process sends the LCR to the error queue.

A persistent user message can be applied in one of
the following ways:

• The apply process sends the message to a
message handler.

• If the LCR raises an error, then the apply
process sends the message to the error
queue.

APPLY TRANSACTION
APPLY RATE

TRANSACTIONS
PER SECOND

The average number of transactions applied by the
apply process each second. Transactions typically
include multiple messages.

A transaction that includes captured LCRs or
persistent LCRs can be applied in one of the
following ways:

• The apply process makes all of the changes in
the transaction and commits the transaction.

• The apply process passes all of the LCRs in
the transaction to an apply handler.

• If the LCR raises an error, then the apply
process sends the transaction and all of the
LCRs in the transaction to the error queue.

A transaction that includes persistent user
messages can be applied in one of the following
ways:

• The apply process passes all of the messages
in the transaction to a message handler.

• If the LCR raises an error, then the apply
process sends all of the messages in the
transaction to the error queue.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-23

Table 23-3 (Cont.) Component-Level Statistics for Oracle Streams Components

Component Type Statistic Unit Description

APPLY LATENCY SECONDS For apply processes, the amount of time between
when the message was created at a source
database and when the message was applied by
the apply process at the destination database.

The value shown is for a single message that was
applied by the apply process. This message was
the last message applied when the
ANALYZE_CURRENT_PERFORMANCE procedure was run.

Depending on the type of message applied,
message creation time is one of the following:

• For captured LCRs, the time when the redo
entry for the database change was recorded

• For persistent LCRs, the time when the LCR
was constructed

• For user messages, the time when the
message was enqueued

QUEUE ENQUEUE RATE MESSAGES PER
SECOND

The average number of messages enqueued into
the queue each second.

QUEUE SPILL RATE MESSAGES PER
SECOND

The average number of messages that spilled from
the buffered queue to the queue table each
second.

QUEUE CURRENT QUEUE
SIZE

NUMBER OF
MESSAGES

The number of messages in the queue when the
ANALYZE_CURRENT_PERFORMANCE procedure was run.

CAPTURE, PROPAGATION
SENDER, PROPAGATION
RECEIVER, and APPLY

EVENT (Top wait
event)

PERCENT The percentage of time that the Oracle Streams
component spent waiting because of a wait event.

The Oracle Streams Performance Advisor only
gathers information about the top three events for
each component.

For example, a capture process might wait for a
redo log file to become available.

The following are general considerations for these performance statistics:

• Regarding rate, bandwidth, and event statistics, the time period is calculated as
the time difference between the two snapshots used by the
ANALYZE_CURRENT_PERFORMANCE procedure in the same user session. See "About the
Information Gathered by the Oracle Streams Performance Advisor" for information
about the snapshots. When a user session ends, the rate, bandwidth, and event
statistics are purged.

• When a latency statistic is -1 seconds, the ANALYZE_CURRENT_PERFORMANCE procedure
could not gather statistics for the component when it was run. In most cases, this
result indicates that the component was disabled when the procedure was run. For
example, if the LATENCY statistic for an apply process is -1, then the component was
probably disabled when the ANALYZE_CURRENT_PERFORMANCE procedure was run.

To display performance statistics for the components in an Oracle Streams topology,
run the following query:

COLUMN PATH_ID HEADING 'Path|ID' FORMAT 999
COLUMN COMPONENT_ID HEADING 'Component|ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Name' FORMAT A20

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-24

COLUMN COMPONENT_TYPE HEADING 'Type' FORMAT A12
COLUMN STATISTIC_NAME HEADING 'Statistic' FORMAT A15
COLUMN STATISTIC_VALUE HEADING 'Value' FORMAT 99999999999.99
COLUMN STATISTIC_UNIT HEADING 'Unit' FORMAT A15

SELECT DISTINCT
 cp.PATH_ID,
 cs.COMPONENT_ID,
 cs.COMPONENT_NAME,
 cs.COMPONENT_TYPE,
 cs.STATISTIC_NAME,
 cs.STATISTIC_VALUE,
 cs.STATISTIC_UNIT
 FROM DBA_STREAMS_TP_COMPONENT_STAT cs,
 (SELECT PATH_ID, SOURCE_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK
 UNION
 SELECT PATH_ID, DESTINATION_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK) cp
 WHERE cs.ADVISOR_RUN_ID = 2 AND
 cs.SESSION_ID IS NULL AND
 cs.SESSION_SERIAL# IS NULL AND
 cs.COMPONENT_ID = cp.COMPONENT_ID
 ORDER BY PATH_ID, COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor
run ID for the advisor run you want to query. See "Gathering Information About the
Oracle Streams Topology and Performance" for information about determining the
ADVISOR_RUN_ID.

The following output shows a partial list of the performance statistics for the
components listed in "Viewing the Oracle Streams Components at Each Database".
Specifically, the following output shows performance statistics for the components in
stream path 1 and stream path 3:

Path Component
 ID ID Name Type Statistic Value Unit
---- ---------- -------------------- ------------ --------------- --------------- ---------------
 1 1 "STRMADMIN"."DESTINA QUEUE CURRENT QUEUE S .00 NUMBER OF MESSA
 TION_SPOKE1" IZE GES
 1 1 "STRMADMIN"."DESTINA QUEUE ENQUEUE RATE 2573.21 MESSAGES PER SE
 TION_SPOKE1" COND
 1 1 "STRMADMIN"."DESTINA QUEUE SPILL RATE .00 MESSAGES PER SE
 TION_SPOKE1" COND
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: CPU + Wa 32.55 PERCENT
 HNS"@SPOKE1.EXAMPLE. RECEIVER it for CPU
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: SQL*Net 23.62 PERCENT
 HNS"@SPOKE1.EXAMPLE. RECEIVER more data from
 COM=>"STRMADMIN"."DE client
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: latch: r 2.10 PERCENT
 HNS"@SPOKE1.EXAMPLE. RECEIVER ow cache object
 COM=>"STRMADMIN"."DE s
 STINATION_SPOKE1"
 1 8 APPLY_SPOKE1 APPLY EVENT: CPU + Wa 23.10 PERCENT
 it for CPU
 1 8 APPLY_SPOKE1 APPLY EVENT: latch: r 1.31 PERCENT
 ow cache object
 s

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-25

 1 8 APPLY_SPOKE1 APPLY EVENT: latch: s 1.57 PERCENT
 hared pool
 1 8 APPLY_SPOKE1 APPLY LATENCY 2.13 SECONDS
 1 8 APPLY_SPOKE1 APPLY MESSAGE APPLY R 10004.00 MESSAGES PER SE
 ATE COND
 1 8 APPLY_SPOKE1 APPLY TRANSACTION APP 100.00 TRANSACTIONS PE
 LY RATE R SECOND
 1 12 "STRMADMIN"."SOURCE_ QUEUE CURRENT QUEUE S .00 NUMBER OF MESSA
 HNS" IZE GES
 1 12 "STRMADMIN"."SOURCE_ QUEUE ENQUEUE RATE 9932.00 MESSAGES PER SE
 HNS" COND

 1 12 "STRMADMIN"."SOURCE_ QUEUE SPILL RATE .00 MESSAGES PER SE
 HNS" COND
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION BANDWIDTH 32992.96 BYTES PER SECON
 HNS"=>"STRMADMIN"."D SENDER D
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: CPU + Wa 35.96 PERCENT
 HNS"=>"STRMADMIN"."D SENDER it for CPU
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: SQL*Net .26 PERCENT
 HNS"=>"STRMADMIN"."D SENDER message to dbli
 ESTINATION_SPOKE1"@H nk
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION EVENT: latch: r .26 PERCENT
 HNS"=>"STRMADMIN"."D SENDER ow cache object
 ESTINATION_SPOKE1"@H s
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION LATENCY 4.00 SECONDS
 HNS"=>"STRMADMIN"."D SENDER
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATION SEND RATE 2568.00 MESSAGES PER SE
 HNS"=>"STRMADMIN"."D SENDER COND
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 16 CAPTURE_HNS CAPTURE CAPTURE RATE 10464.00 MESSAGES PER SE
 COND
 1 16 CAPTURE_HNS CAPTURE ENQUEUE RATE 10002.00 MESSAGES PER SE
 COND
 1 16 CAPTURE_HNS CAPTURE EVENT: CPU + Wa 11.02 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE EVENT: CPU + Wa 35.96 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE EVENT: SQL*Net 5.51 PERCENT
 message from db
 link
 1 16 CAPTURE_HNS CAPTURE LATENCY 2.65 SECONDS
.
.
.

Note:

This output is for illustrative purposes only. Actual performance characteristics
vary depending on individual configurations and conditions.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-26

You can analyze this output along with the output for the queries in "Viewing the
Oracle Streams Components at Each Database" and "Viewing Each Stream Path in an
Oracle Streams Topology".

See Also:

• "About the Oracle Streams Topology"

• "Gathering Information About the Oracle Streams Topology and
Performance" for information about running the
ANALYZE_CURRENT_PERFORMANCE procedure to gather statistics

• "Message Processing Options for an Apply Process" for information about
apply handlers

• "The Error Queue"

23.6.2.3 Viewing Session-Level Statistics
You can view session-level statistics for the Oracle Streams components. The query in
this section displays the following information for each session-level statistic:

• The name of the Oracle Streams component

• The type of the Oracle Streams component. The following types are possible:

– CAPTURE for capture processes

– PROPAGATION SENDER for propagation senders

– PROPAGATION RECEIVER for propagation receivers

– APPLY for apply processes

• The type of the subcomponent. Only capture processes, apply processes have
subcomponents.

The following subcomponent types are possible for capture processes:

– LOGMINER READER for a builder server of a capture process

– LOGMINER PREPARER for a preparer server of a capture process

– LOGMINER BUILDER for a reader server of a capture process

– CAPTURE SESSION for a capture process session

The following subcomponent types are possible for apply processes:

– PROPAGATION SENDER+RECEIVER for sending LCRs from a capture process directly
to an apply process in a combined capture and apply optimization

– APPLY READER for a reader server

– APPLY COORDINATOR for a coordinator process

– APPLY SERVER for a reader server

• The statistic that was gathered for the component

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-27

• The value and unit of the statistic. Session-level statistics show PERCENT for the
unit. The value is the percentage of time spent either IDLE, paused for FLOW
CONTROL, or waiting for an EVENT.

The ANALYZE_CURRENT_PERFORMANCE procedure in the DBMS_STREAMS_ADVISOR_ADM package
gathers the statistics returned by the query in this section. Therefore, the statistics
returned by the query were the current statistics when the procedure was run. The
statistics are not updated automatically.

Table 23-4 describes each of the statistics that can be returned by the query in this
section:

Table 23-4 Session-Level Statistics for Oracle Streams Components

Statistic Unit Description

IDLE PERCENT The percentage of time that the session spent idle. When a session is idle, it is
not performing any work.

FLOW CONTROL PERCENT The percentage of time that the session was paused for flow control. See
"Capture Process States" for information about flow control.

EVENT (Top wait
event)

PERCENT The percentage of time that the session spent waiting because of a wait event.

The Oracle Streams Performance Advisor only gathers information about the
top three events for each session.

For example, an apply server might wait for a dependent transaction to be
applied before applying its transaction.

Regarding flow control and event statistics, the time period is calculated as the time
difference between the two snapshots used by the ANALYZE_CURRENT_PERFORMANCE
procedure in the same user session. See "About the Information Gathered by the
Oracle Streams Performance Advisor" for information about the snapshots. When a
user session ends, the flow control and event statistics are purged.

To display session-level performance statistics for the components in an Oracle
Streams topology, run the following query:

COLUMN PATH_ID HEADING 'Path|ID' FORMAT 999
COLUMN COMPONENT_ID HEADING 'Component|ID' FORMAT 999
COLUMN COMPONENT_NAME HEADING 'Component|Name' FORMAT A20
COLUMN COMPONENT_TYPE HEADING 'Component|Type' FORMAT A10
COLUMN SUB_COMPONENT_TYPE HEADING 'Subcomponent|Type' FORMAT A17
COLUMN STATISTIC_NAME HEADING 'Statistic' FORMAT A15
COLUMN STATISTIC_VALUE HEADING 'Value' FORMAT 999.99
COLUMN STATISTIC_UNIT HEADING 'Unit' FORMAT A7

SELECT DISTINCT
 cp.PATH_ID,
 cs.COMPONENT_ID,
 cs.COMPONENT_NAME,
 cs.COMPONENT_TYPE,
 cs.SUB_COMPONENT_TYPE,
 cs.STATISTIC_NAME,
 cs.STATISTIC_VALUE,
 cs.STATISTIC_UNIT
 FROM DBA_STREAMS_TP_COMPONENT_STAT cs,
 (SELECT PATH_ID, SOURCE_COMPONENT_ID AS COMPONENT_ID
 FROM DBA_STREAMS_TP_COMPONENT_LINK
 UNION
 SELECT PATH_ID, DESTINATION_COMPONENT_ID AS COMPONENT_ID

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-28

 FROM DBA_STREAMS_TP_COMPONENT_LINK) cp
 WHERE cs.ADVISOR_RUN_ID=2 AND
 cs.SESSION_ID IS NOT NULL AND
 cs.SESSION_SERIAL# IS NOT NULL AND
 cs.COMPONENT_ID = cp.COMPONENT_ID
 ORDER BY PATH_ID, COMPONENT_ID, COMPONENT_NAME, COMPONENT_TYPE, STATISTIC_NAME;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor
run ID for the advisor run you want to query. See "Gathering Information About the
Oracle Streams Topology and Performance" for information about determining the
ADVISOR_RUN_ID.

The following output shows a partial list of the session-level performance statistics for
the components listed in "Viewing the Oracle Streams Components at Each
Database". Specifically, the following output shows session-level performance
statistics for the components in stream path 1 and stream path 3:

Path Component Component Component Subcomponent
 ID ID Name Type Type Statistic Value Unit
---- --------- -------------------- ---------- ----------------- --------------- ------- -------
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: CPU + Wa 32.55 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER it for CPU
 COM=>"STRMADMIN"."DE
 STINATIO N_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: SQL*Net 23.62 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER more data from
 COM=>"STRMADMIN"."DE client
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: r 2.10 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER ow cache object
 COM=>"STRMADMIN"."DE s
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL .89 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 1 6 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 36.61 PERCENT
 HNS"@SPOKE1.EXAMPLE. N RECEIVER
 COM=>"STRMADMIN"."DE
 STINATION_SPOKE1"
 1 8 APPLY_SPOKE1 APPLY APPLY READER EVENT: CPU + Wa .26 PERCENT
 it for CPU
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER EVENT: CPU + Wa 23.10 PERCENT
 it for CPU
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER EVENT: latch: r 1.31 PERCENT
 ow cache object
 s
 1 8 APPLY_SPOKE1 APPLY APPLY READER EVENT: latch: s .26 PERCENT
 hared pool
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER EVENT: latch: s 1.57 PERCENT
 hared pool
 1 8 APPLY_SPOKE1 APPLY APPLY COORDINATOR FLOW CONTROL .00 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY READER FLOW CONTROL 10.76 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER FLOW CONTROL .00 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY COORDINATOR IDLE 6.21 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY READER IDLE 9.24 PERCENT
 1 8 APPLY_SPOKE1 APPLY APPLY SERVER IDLE 8.53 PERCENT
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: CPU + Wa 21.65 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER it for CPU
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-29

 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: SQL*Net .26 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER message to dbli
 ESTINATION_SPOKE1"@H nk
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: r .26 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER ow cache object
 ESTINATION_SPOKE1"@H s
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: s .26 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER hared pool
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL 7.37 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 13 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 67.41 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@H
 UB.EXAMPLE.COM
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER EVENT: ARCH wai .26 PERCENT
 t on c/f tx acq
 uire 2
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: CPU + Wa 35.96 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER EVENT: CPU + Wa .26 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER EVENT: CPU + Wa 11.02 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER EVENT: CPU + Wa .26 PERCENT
 it for CPU
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: SQL*Net 5.51 PERCENT
 message from db
 link
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: SQL*Net .26 PERCENT
 message to dbli
 nk
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: latch: r .26 PERCENT
 ow cache object
 s
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER EVENT: latch: r 1.84 PERCENT
 ow cache object
 s
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER EVENT: latch: r .79 PERCENT
 ow cache object
 s
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: latch: s .26 PERCENT
 hared pool
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER EVENT: latch: s .79 PERCENT
 hared pool
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION FLOW CONTROL 16.27 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER FLOW CONTROL .00 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER FLOW CONTROL .00 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER FLOW CONTROL .00 PERCENT
 1 16 CAPTURE_HNS CAPTURE CAPTURE SESSION IDLE 41.47 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER BUILDER IDLE 97.90 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER PREPARER IDLE 88.19 PERCENT
 1 16 CAPTURE_HNS CAPTURE LOGMINER READER IDLE 98.69 PERCENT
.
.
.

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-30

 3 4 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL 6.50 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@S
 POKE1.EXAMPLE.COM
 3 4 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 70.50 PERCENT
 HNS"=>"STRMADMIN"."D N SENDER
 ESTINATION_SPOKE1"@S
 POKE1.EXAMPLE.COM
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: ARCH wai 52.23 PERCENT
 t for archivelo
 g lock
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: CPU + Wa 7.35 PERCENT
 it for CPU
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION EVENT: control .52 PERCENT
 file sequential
 read
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION FLOW CONTROL 4.24 PERCENT
 3 10 CAPTURE_HNS CAPTURE CAPTURE SESSION IDLE 2.23 PERCENT
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: CPU + Wa 6.92 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER it for CPU
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: latch: r 2.23 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER ow cache object
 =>"STRMADMIN"."DESTI s
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO EVENT: library 3.79 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER cache: mutex X
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO FLOW CONTROL .67 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 14 "STRMADMIN"."SOURCE_ PROPAGATIO IDLE 85.04 PERCENT
 HNS"@HUB.EXAMPLE.COM N RECEIVER
 =>"STRMADMIN"."DESTI
 NATION_SPOKE1"
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR EVENT: latch: r 4.20 PERCENT
 ow cache object
 s
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR EVENT: latch: s .52 PERCENT
 hared pool
 3 15 APPLY_SPOKE1 APPLY APPLY READER EVENT: latch: s .26 PERCENT
 hared pool
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR FLOW CONTROL .00 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY READER FLOW CONTROL 1.56 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY SERVER FLOW CONTROL .00 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY COORDINATOR IDLE 87.28 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY READER IDLE 96.88 PERCENT
 3 15 APPLY_SPOKE1 APPLY APPLY SERVER IDLE 91.29 PERCENT

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-31

Note:

• This output is for illustrative purposes only. Actual performance
characteristics vary depending on individual configurations and conditions.

• You can view the session ID and serial number for each session by
adding the SESSION_ID and SESSION_SERIAL# columns to the query on the
DBA_STREAMS_TP_COMPONENT_STAT view.

See Also:

• "Capture Process Subcomponents" for more information about capture
process subcomponents

• "Apply Process Subcomponents" for more information about apply
process subcomponents

• Combined Capture and Apply Optimization

23.6.2.4 Viewing Statistics for the Stream Paths in an Oracle Streams
Environment

The query in this section shows the following information for each stream path in the
Oracle Streams topology:

• Whether optimization mode for Oracle Streams is used for the path. When the
OPTIMIZATION_MODE statistic is greater than 0 (zero) for a path, the path uses the
combined capture and apply optimization. When the OPTIMIZATION_MODE statistic is
0 (zero) for a path, the path does not use the combined capture and apply
optimization.

• The MESSAGE RATE value is the average number of messages sent each second
from the start of the path to the end of the path.

• The TRANSACTION RATE value is the average number of transactions sent each
second from the start of the path to the end of the path.

The time period for these statistics is calculated as the time difference between the
two snapshots used by the ANALYZE_CURRENT_PERFORMANCE procedure in the same user
session. See "About the Information Gathered by the Oracle Streams Performance
Advisor" for information about the snapshots. When a user session ends, these
statistics are purged.

To display this information, run the following query:

COLUMN PATH_ID HEADING 'Path ID' FORMAT 999
COLUMN STATISTIC_NAME HEADING 'Statistic' FORMAT A25
COLUMN STATISTIC_VALUE HEADING 'Value' FORMAT 99999999.99
COLUMN STATISTIC_UNIT HEADING 'Unit' FORMAT A25

SELECT PATH_ID,
 STATISTIC_NAME,
 STATISTIC_VALUE,

Chapter 23
Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance

23-32

 STATISTIC_UNIT
 FROM DBA_STREAMS_TP_PATH_STAT
 WHERE ADVISOR_RUN_ID=2
 ORDER BY PATH_ID, STATISTIC_NAME;

This example uses 2 for the ADVISOR_RUN_ID in the WHERE clause. Substitute the advisor
run ID for the advisor run you want to query. See "Gathering Information About the
Oracle Streams Topology and Performance" for information about determining the
ADVISOR_RUN_ID.

The following output shows the path statistics for the stream paths listed in "Viewing
Each Stream Path in an Oracle Streams Topology":

Path ID Statistic Value Unit
------- ------------------------- ------------ -------------------------
 1 OPTIMIZATION_MODE 1.00 NUMBER
 1 MESSAGE RATE 10004.00 MESSAGES PER SECOND
 1 TRANSACTION RATE 100.00 TRANSACTIONS PER SECOND
 2 OPTIMIZATION_MODE 1.00 NUMBER
 2 MESSAGE RATE 10028.25 MESSAGES PER SECOND
 2 TRANSACTION RATE 100.37 TRANSACTIONS PER SECOND
 3 OPTIMIZATION_MODE 1.00 NUMBER
 3 MESSAGE RATE 9623.20 MESSAGES PER SECOND
 3 TRANSACTION RATE 97.10 TRANSACTIONS PER SECOND
 4 OPTIMIZATION_MODE 1.00 NUMBER
 4 MESSAGE RATE 10180.05 MESSAGES PER SECOND
 4 TRANSACTION RATE 102.68 TRANSACTIONS PER SECOND

Note:

This output is for illustrative purposes only. Actual performance characteristics
vary depending on individual configurations and conditions.

See Also:

• "About Stream Paths in an Oracle Streams Topology"

• Combined Capture and Apply Optimization

23.7 Using the UTL_SPADV Package
The UTL_SPADV package provides subprograms to collect and analyze statistics for the
Oracle Streams components in a distributed database environment. The package uses
the Oracle Streams Performance Advisor to gather statistics.

The COLLECT_STATS and START_MONITORING procedures use the Oracle Streams
Performance Advisor to gather statistics about the Oracle Streams components and
subcomponents in a distributed database environment. The SHOW_STATS procedure
generates output that includes the statistics. The output is formatted so that it can be
imported into a spreadsheet easily and analyzed.

Chapter 23
Using the UTL_SPADV Package

23-33

You can use the COLLECT_STATS procedure to collect statistics each time the procedure
is called. The comp_stat_table and path_stat_table parameters specify the tables that
store the performance statistics. By default, these tables are
STREAMS$_ADVISOR_COMP_STAT and STREAMS$_ADVISOR_PATH_STAT, respectively.

You can also use the START_MONITORING procedure to create a monitoring job that
monitors Oracle Streams performance continually at specified intervals. The
monitoring job uses the COLLECT_STATS procedure to collect statistics. The
START_MONITORING procedure populates the STREAMS$_PA_MONITORING table, and the
SHOW_STATS_TABLE column in this table specifies the table that contains the performance
statistics. You can use the ALTER_MONITORING procedure to modify a monitoring job, and
you can use the STOP_MONITORING procedure to stop a monitoring job.

These procedures collect the same statistics as the Oracle Streams Performance
Advisor. These statistics are described in Table 23-3 and Table 23-4.

This section contains these topics:

• Collecting Oracle Streams Statistics Using the UTL_SPADV Package

• Checking Whether an Oracle Streams Monitoring Job Is Currently Running

• Altering an Oracle Streams Monitoring Job

• Stopping an Oracle Streams Monitoring Job

• Showing Oracle Streams Statistics Using the UTL_SPADV Package

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the UTL_SPADV package

23.7.1 Collecting Oracle Streams Statistics Using the UTL_SPADV
Package

To collect statistics using the UTL_SPADV package, complete the following steps:

1. Identify the database that you will use to gather the information. An administrative
user at this database must meet the following requirements:

• The user must have access to a database link to each database that contains
Oracle Streams components to monitor.

• The user must have been granted privileges using the
DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure, and each database link
must connect to a user at the remote database that has been granted
privileges using the DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure.

If you configure an Oracle Streams administrator at each database with Oracle
Streams components, then the Oracle Streams administrator has the
necessary privileges. See Oracle Streams Replication Administrator's Guide
for information about creating an Oracle Streams administrator.

If no database in your environment meets these requirements, then choose a
database, configure the necessary database links, and grant the necessary
privileges to the users before proceeding.

Chapter 23
Using the UTL_SPADV Package

23-34

2. In SQL*Plus, connect to the database you identified in Step 1 as a user that meets
the requirements listed in Step 1.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Run the utlspadv.sql script in the rdbms/admin directory in ORACLE_HOME to load the
UTL_SPADV package. For example:

@utlspadv.sql

4. Either collect the current Oracle Streams performance statistics once, or create a
job that continually monitors Oracle Streams performance:

• To collect the current Oracle Streams performance statistics once, run the
COLLECT_STATS procedure:

exec UTL_SPADV.COLLECT_STATS

This example uses the default values for the parameters in the COLLECT_STATS
procedure. Therefore, this example runs the Performance Advisor 10 times
with 60 seconds between each run. These values correspond with the default
values for the num_runs and interval parameters, respectively, in the
COLLECT_STATS procedure.

• To create a job that continually monitors Oracle Streams performance:

exec UTL_SPADV.START_MONITORING

This example creates a monitoring job, and the monitoring job gathers
performance statistics continually at set intervals. This example uses the
default values for the parameters in the START_MONITORING procedure.
Therefore, this example runs the Performance Advisor every 60 seconds. This
value corresponds with the default value for the interval parameter in the
START_MONITORING procedure. If an interval is specified in the START_MONITORING
procedure, then the specified interval is used for the interval parameter in the
COLLECT_STATS procedure.

These procedures include several parameters that you can use to adjust the way
performance statistics are gathered. See Oracle Database PL/SQL Packages and
Types Reference for more information.

You can show the statistics by running the SHOW_STATS procedure. See "Showing
Oracle Streams Statistics Using the UTL_SPADV Package".

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the UTL_SPADV package

23.7.2 Checking Whether an Oracle Streams Monitoring Job Is
Currently Running

To check whether a monitoring job is running using the UTL_SPADV package, complete
the following steps:

Chapter 23
Using the UTL_SPADV Package

23-35

1. Connect to the database as the user who submitted the monitoring job.

2. Run the IS_MONITORING function. For example, to determine whether a monitoring
job submitted by the current user with the full monitoring job name of
STREAM$_MONITORING_JOB is running, enter the following:

SET SERVEROUTPUT ON
DECLARE
 is_mon BOOLEAN;
BEGIN
 is_mon := UTL_SPADV.IS_MONITORING(
 job_name => 'STREAMS$_MONITORING_JOB',
 client_name => NULL);
 IF is_mon=TRUE THEN
 DBMS_OUTPUT.PUT_LINE('The monitoring job is running.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('No monitoring job was found.');
 END IF;
END;
/

The output displays the following text if a monitoring job with the specified full
monitoring job name is currently running:

The monitoring job is running.

The output displays the following text if no monitoring job with the specified full
monitoring job name is currently running:

No monitoring job was found.

Note:

When you submit a monitoring job, the client name and job name are
concatenated to form the full monitoring job name. The client name for a
monitoring job submitted by Oracle Enterprise Manager Cloud Control is
always EM.

23.7.3 Altering an Oracle Streams Monitoring Job
To alter a monitoring job using the UTL_SPADV package, complete the following steps:

1. Create a monitoring job if you have not done so already by completing the steps
described in "Collecting Oracle Streams Statistics Using the UTL_SPADV
Package". Ensure that you run the START_MONITORING procedure in Step 4.

2. Connect to the database as the user who submitted the monitoring job. Only the
user who submitted a monitoring job can alter the monitoring job, and each user
can submit only one monitoring job at a time.

3. Run the ALTER_MONITORING procedure. The following example sets the interval for
the monitoring job to 120 seconds:

BEGIN
 UTL_SPADV.ALTER_MONITORING(
 interval => 120);
END;
/

Chapter 23
Using the UTL_SPADV Package

23-36

After running this procedure, the monitoring job gathers statistics every 120
seconds.

23.7.4 Stopping an Oracle Streams Monitoring Job
To stop a monitoring job using the UTL_SPADV package, complete the following steps:

1. Connect to the database as the user who submitted the monitoring job. Only the
user who submitted a monitoring job can stop the monitoring job, and each user
can submit only one monitoring job at a time.

2. Run the STOP_MONITORING procedure:

exec UTL_SPADV.STOP_MONITORING

The STOP_MONITORING procedure includes a purge parameter that you can use to purge
the statistics gathered by the monitoring job from the result tables. By default, the
purge parameter is set to FALSE, and the results are retained. Set the purge parameter
to TRUE to purge the results.

See Also:

See Oracle Database PL/SQL Packages and Types Reference for more
information.

23.7.5 Showing Oracle Streams Statistics Using the UTL_SPADV
Package

The SHOW_STATS procedure displays the statistics that the Performance Advisor
gathered and stored. Use the path_stat_table parameter to specify the table that
contains the statistics.

When you gather statistics using the COLLECT_STATS procedure, this table is specified in
the path_stat_table parameter in the COLLECT_STATS procedure. By default, the table
name is STREAMS$_ADVISOR_PATH_STAT.

When you gather statistics using the START_MONITORING procedure, you can determine
the name for this table by querying the SHOW_STATS_TABLE column in the
STREAMS$_PA_MONITORING view. The default table for a monitoring job is
STREAMS$_PA_SHOW_PATH_STAT.

To show statistics collected using the UTL_SPADV package and stored in the
STREAMS$_ADVISOR_PATH_STAT table, complete the following steps:

1. Collect statistics by completing the steps described in "Collecting Oracle Streams
Statistics Using the UTL_SPADV Package".

2. Connect to the database as the user who collected the statistics.

3. If you are using a monitoring job, then query the SHOW_STATS_TABLE column in the
STREAMS$_PA_MONITORING view to determine the name of this table that stores the
statistics:

SELECT SHOW_STATS_TABLE FROM STREAMS$_PA_MONITORING;

4. Run the SHOW_STATS procedure.

Chapter 23
Using the UTL_SPADV Package

23-37

For example, if you are using a monitoring job and the default storage table, then
run the following procedure:

SET SERVEROUTPUT ON SIZE 50000
BEGIN
 UTL_SPADV.SHOW_STATS(
 path_stat_table => 'STREAMS$_PA_SHOW_PATH_STAT');
END;
/

The output includes the following legend:

LEGEND
<statistics>= <capture> [<queue> <psender> <preceiver> <queue>] <apply>
<bottleneck>
<capture> = '|<C>' <name> <msgs captured/sec> <msgs enqueued/sec> <latency>
 'LMR' <idl%> <flwctrl%> <topevt%> <topevt>
 'LMP' (<parallelism>) <idl%> <flwctrl%> <topevt%> <topevt>
 'LMB' <idl%> <flwctrl%> <topevt%> <topevt>
 'CAP' <idl%> <flwctrl%> <topevt%> <topevt>
 'CAP+PS' <msgs sent/sec> <bytes sent/sec> <latency> <idl%>
<flwctrl%> <topevt%> <topevt>
<apply> = '|<A>' <name> <msgs applied/sec> <txns applied/sec> <latency>
 'PS+PR' <idl%> <flwctrl%> <topevt%> <topevt>
 'APR' <idl%> <flwctrl%> <topevt%> <topevt>
 'APC' <idl%> <flwctrl%> <topevt%> <topevt>
 'APS' (<parallelism>) <idl%> <flwctrl%> <topevt%> <topevt>
<queue> = '|<Q>' <name> <msgs enqueued/sec> <msgs spilled/sec> <msgs in
queue>
<psender> = '|<PS>' <name> <msgs sent/sec> <bytes sent/sec> <latency> <idl%>
<flwctrl%> <topevt%> <topevt>
<preceiver> = '|<PR>' <name> <idl%> <flwctrl%> <topevt%> <topevt>
<bottleneck>= '|' <name> <sub_name> <sessionid> <serial#> <topevt%> <topevt>

The following table describes the abbreviations used in the legend:

Abbreviation Description

A Apply process

APC Coordinator process used by an apply process

APR Reader server used by an apply process

APS Apply server used by an apply process

B Bottleneck

C or CAP Capture process

CAP+PS Capture process session and propagation sender in a combined capture
and apply optimization

CCA Combined capture and apply (Y indicates that it is used for the path; N
indicates that it is not used for the path.)

flwctrl Flow control

idl Idle

LMB Builder server used by a capture process (LogMiner builder)

LMP Preparer server used by a capture process (LogMiner preparer)

LMR Reader server used by a capture process (LogMiner reader)

msgs Messages

preceiver or PR Propagation receiver

psender or PS Propagation sender

Chapter 23
Using the UTL_SPADV Package

23-38

Abbreviation Description

PS+PR Propagation sender and propagation receiver in a combined capture and
apply optimization in which the capture process and apply process are
running on the same database instance

Q Queue

serial# Session serial number

sec Second

sid Session identifier

sub_name Subcomponent name

topevt Top event

The following is sample output for when an apply process is the last component in a
path:

OUTPUT
PATH 1 RUN_ID 3 RUN_TIME 2009-JUL-02 05:59:38 CCA Y
|<C> DB2$CAP 10267 10040 3 LMR 95% 0% 3.3% "" LMP (1) 86.7% 0% 11.7% "" LMB 86.7% 0% 11.7% ""
CAP 71.7% 16.7% 11.7% "" |<Q> "STRMADMIN"."DB2$CAPQ" 2540.45 0 30 |<PS>
=>DB1.EXAMPLE.COM 2152.03 32992.96 4 59.2% 9.8% 0% "" |<PR> DB2.EXAMPLE.COM=> 98.5%
0% 0.6% "" |<Q> "STRMADMIN"."DB2$APPQ" 3657.03 0.01 460 |<A> APPLY$_DB2_2 10042 100 4
APR 93.3% 0% 6.7% "" APC 98.1% 0% 1.8% "" APS (4) 370% 0% 6.1% "" | NO BOTTLENECK
IDENTIFIED

PATH 1 RUN_ID 4 RUN_TIME 2009-JUL-02 06:01:39 CCA Y
|<C> DB2$CAP 10464 10002 3 LMR 95% 0% 1.7% "" LMP (1) 83.3% 0% 16.7% "" LMB 85% 0% 15% ""
CAP 62.9% 0% 35.7% "" |<Q> "STRMADMIN"."DB2$CAPQ" 2677.03 0.01 45 |<PS>
=>DB1.EXAMPLE.COM 2491.08 47883.46 4 65.5% 10.7% 0% "" |<PR> DB2.EXAMPLE.COM=> 0% 83.3%
13.3% "" |<Q> "STRMADMIN"."DB2$APPQ" 2444.03 0.01 0 |<A> APPLY$_DB2_2 10004 100 3
APR 42.9% 57.1% 0% "" APC 90% 0% 10% "" APS (4) 346% 0% 10.3% "" | NO BOTTLENECK
IDENTIFIED
.
.
.

Note:

This output is for illustrative purposes only. Actual performance characteristics
vary depending on individual configurations and conditions.

Use the legend and the abbreviations to determine the statistics in the output. For
example, the following output is for the db2$cap capture process in path 1, run ID 3:

|<C> DB2$CAP 10267 10040 3 LMR 95% 0% 3.3% "" LMP (1) 86.7% 0% 11.7% "" LMB 86.7% 0% 11.7% ""
CAP 71.7% 16.7% 11.7% ""

This output shows the following statistics:

• The capture process captured an average of 10267 database changes each
second.

• The capture process enqueued an average of 10040 messages each second.

• The capture process latency was 3 seconds.

• The reader server (LMR) used by the capture process spent 95% of its time idle.

Chapter 23
Using the UTL_SPADV Package

23-39

• The reader server used by the capture process spent 0% of its time in flow control
mode.

• The reader server used by the capture process spent 3.3% of its time on the top
wait event.

• The preparer server (LMP) parallelism was 1.

• The preparer server used by the capture process spent 86.7% of its time idle.

• The preparer server used by the capture process spent 0% of its time in flow
control mode.

• The preparer server used by the capture process spent 11.7% of its time on the
top wait event.

• The builder server (LMB) used by the capture process spent 86.7% of its time idle.

• The builder server used by the capture process spent 0% of its time in flow control
mode.

• The builder server used by the capture process spent 11.7% of its time on the top
wait event.

• The capture process session spent 71.7% of its time idle.

• The capture process session spent 16.7% of its time in flow control mode.

• The capture process session spent 11.7% of its time on the top wait event.

See Also:

Combined Capture and Apply Optimization

Chapter 23
Using the UTL_SPADV Package

23-40

24
Monitoring Oracle Streams Implicit Capture

Both capture processes and synchronous captures perform implicit capture.

The following topics describe monitoring Oracle Streams implicit capture:

• Monitoring a Capture Process

• Monitoring a Synchronous Capture

• Viewing the Extra Attributes Captured by Implicit Capture

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
Help for the Oracle Streams tool for more information.

See Also:

• Oracle Streams Information Capture

• Managing Oracle Streams Implicit Capture

• Troubleshooting Implicit Capture

• Oracle Database Reference for information about the data dictionary
views described in this chapter

24.1 Monitoring a Capture Process
This section provides sample queries that you can use to monitor Oracle Streams
capture processes.

This section contains these topics:

• Displaying the Queue, Rule Sets, and Status of Each Capture Process

• Displaying Session Information About Each Capture Process

• Displaying Change Capture Information About Each Capture Process

• Displaying State Change and Message Creation Time for Each Capture Process

• Displaying Elapsed Time Performing Capture Operations for Each Capture
Process

• Displaying Information About Each Downstream Capture Process

• Displaying the Registered Redo Log Files for Each Capture Process

24-1

• Displaying the Redo Log Files That Are Required by Each Capture Process

• Displaying SCN Values for Each Redo Log File Used by Each Capture Process

• Displaying the Last Archived Redo Entry Available to Each Capture Process

• Listing the Parameter Settings for Each Capture Process

• Determining the Applied SCN for All Capture Processes in a Database

• Determining Redo Log Scanning Latency for Each Capture Process

• Determining Message Enqueuing Latency for Each Capture Process

• Displaying Information About Rule Evaluations for Each Capture Process

• Determining Which Capture Processes Use Combined Capture and Apply

• Displaying Information About Split and Merge Operations

• Monitoring Supplemental Logging

24.1.1 Displaying the Queue, Rule Sets, and Status of Each Capture
Process

You can display the following information about each capture process in a database by
running the query in this section:

• The capture process name

• The name of the queue used by the capture process

• The name of the positive rule set used by the capture process

• The name of the negative rule set used by the capture process

• The status of the capture process, which can be ENABLED, DISABLED, or ABORTED

To display this general information about each capture process in a database, run the
following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, NEGATIVE_RULE_SET_NAME, STATUS
 FROM DBA_CAPTURE;

Your output looks similar to the following:

Capture Capture Capture
Process Process Positive Negative Process
Name Queue Rule Set Rule Set Status
--------------- --------------- --------------- --------------- ---------------
STRM01_CAPTURE STREAMS_QUEUE RULESET$_25 RULESET$_36 ENABLED

If the status of a capture process is ABORTED, then you can query the ERROR_NUMBER and
ERROR_MESSAGE columns in the DBA_CAPTURE data dictionary view to determine the error.

Chapter 24
Monitoring a Capture Process

24-2

See Also:

"Is the Capture Process Enabled?" for an example query that shows the error
number and error message if a capture process is aborted

24.1.2 Displaying Session Information About Each Capture Process
The query in this section displays the following session information about each session
associated with a capture process in a database:

• The capture process component

• The session identifier

• The serial number

• The operating system process identification number

• The process name of the capture process in the form CPnn, where nn can include
letters and numbers

To display this information for each capture process in a database, run the following
query:

COLUMN ACTION HEADING 'Capture Process Component' FORMAT A25
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 99999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A20
COLUMN PROCESS_NAME HEADING 'Process|Name' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='Streams' AND
 ACTION LIKE '%Capture%';

Your output looks similar to the following:

 Session
 Serial Operating System Process
Capture Process Component Session ID Number Process Number Name
------------------------- ---------- --------- -------------------- -------
EMDBA$CAP - Capture 74 9 10019 CP01

See Also:

"Capture Process Subcomponents" for information about capture process
parallelism

Chapter 24
Monitoring a Capture Process

24-3

24.1.3 Displaying Change Capture Information About Each Capture
Process

The query in this section displays the following information about each capture
process in a database:

• The name of the capture process.

• The process number CPnn, where nn can include letters and numbers

• The session identifier.

• The serial number of the session.

• The current state of the capture process

See "Capture Process States".

• The total number of redo entries passed by LogMiner to the capture process for
detailed rule evaluation. A capture process converts a redo entry into a message
and performs detailed rule evaluation on the message when capture process
prefiltering cannot discard the change.

• The total number LCRs enqueued since the capture process was last started.

To display this information for each capture process in a database, run the following
query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A7
COLUMN PROCESS_NAME HEADING 'Capture|Process|Number' FORMAT A7
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A20
COLUMN TOTAL_MESSAGES_CAPTURED HEADING 'Redo|Entries|Evaluated|In Detail' FORMAT
9999999
COLUMN TOTAL_MESSAGES_ENQUEUED HEADING 'Total|LCRs|Enqueued' FORMAT 9999999999

SELECT c.CAPTURE_NAME,
 SUBSTR(s.PROGRAM,INSTR(s.PROGRAM,'(')+1,4) PROCESS_NAME,
 c.SID,
 c.SERIAL#,
 c.STATE,
 c.TOTAL_MESSAGES_CAPTURED,
 c.TOTAL_MESSAGES_ENQUEUED
 FROM V$STREAMS_CAPTURE c, V$SESSION s
 WHERE c.SID = s.SID AND
 c.SERIAL# = s.SERIAL#;

Your output looks similar to the following:

 Redo
 Capture Session Entries Total
Capture Process Session Serial Evaluated LCRs
Name Number ID Number State In Detail Enqueued
------- ------- ------- ------- -------------------- --------- -----------
CAPTURE CP01 954 3 CAPTURING CHANGES 3719085 3389713
_HNS

The number of redo entries scanned can be higher than the number of DML and DDL
redo entries captured by a capture process. Only DML and DDL redo entries that
satisfy the rule sets of a capture process are captured and enqueued into the capture

Chapter 24
Monitoring a Capture Process

24-4

process queue. Also, the total LCRs enqueued includes LCRs that contain transaction
control statements. These row LCRs contain directives such as COMMIT and ROLLBACK.
Therefore, the total LCRs enqueued is a number higher than the number of row
changes and DDL changes enqueued by a capture process.

See Also:

"Row LCRs" for more information about transaction control statements

24.1.4 Displaying State Change and Message Creation Time for Each
Capture Process

The query in this section displays the following information for each capture process in
a database:

• The name of the capture process

• The current state of the capture process

See "Capture Process States".

• The date and time when the capture process state last changed

• The date and time when the capture process last created an LCR

To display this information for each capture process in a database, run the following
query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN STATE HEADING 'State' FORMAT A27
COLUMN STATE_CHANGED HEADING 'State|Change Time'
COLUMN CREATE_MESSAGE HEADING 'Last Message|Create Time'

SELECT CAPTURE_NAME,
 STATE,
 TO_CHAR(STATE_CHANGED_TIME, 'HH24:MI:SS MM/DD/YY') STATE_CHANGED,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_MESSAGE
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture State Last Message
Name State Change Time Create Time
--------------- --------------------------- ----------------- -----------------
CAPTURE_SIMP CAPTURING CHANGES 13:24:42 11/08/04 13:24:41 11/08/04

24.1.5 Displaying Elapsed Time Performing Capture Operations for
Each Capture Process

The query in this section displays the following information for each capture process in
a database:

• The name of the capture process

• The elapsed capture time, which is the amount of time (in seconds) spent
scanning for changes in the redo log since the capture process was last started

Chapter 24
Monitoring a Capture Process

24-5

• The elapsed rule evaluation time, which is the amount of time (in seconds) spent
evaluating rules since the capture process was last started

• The elapsed enqueue time, which is the amount of time (in seconds) spent
enqueuing messages since the capture process was last started

• The elapsed LCR creation time, which is the amount of time (in seconds) spent
creating logical change records (LCRs) since the capture process was last started

• The elapsed pause time, which is the amount of time (in seconds) spent paused
for flow control since the capture process was last started

Note:

All times for this query are displayed in seconds. The V$STREAMS_CAPTURE view
displays elapsed time in centiseconds by default. A centisecond is one-
hundredth of a second. The query in this section divides each elapsed time by
one hundred to display the elapsed time in seconds.

To display this information for each capture process in a database, run the following
query:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN ELAPSED_CAPTURE_TIME HEADING 'Elapsed|Capture|Time' FORMAT 99999999.99
COLUMN ELAPSED_RULE_TIME HEADING 'Elapsed|Rule|Evaluation|Time' FORMAT 99999999.99
COLUMN ELAPSED_ENQUEUE_TIME HEADING 'Elapsed|Enqueue|Time' FORMAT 99999999.99
COLUMN ELAPSED_LCR_TIME HEADING 'Elapsed|LCR|Creation|Time' FORMAT 99999999.99
COLUMN ELAPSED_PAUSE_TIME HEADING 'Elapsed|Pause|Time' FORMAT 99999999.99

SELECT CAPTURE_NAME,
 (ELAPSED_CAPTURE_TIME/100) ELAPSED_CAPTURE_TIME,
 (ELAPSED_RULE_TIME/100) ELAPSED_RULE_TIME,
 (ELAPSED_ENQUEUE_TIME/100) ELAPSED_ENQUEUE_TIME,
 (ELAPSED_LCR_TIME/100) ELAPSED_LCR_TIME,
 (ELAPSED_PAUSE_TIME/100) ELAPSED_PAUSE_TIME
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

 Elapsed Elapsed
 Elapsed Rule Elapsed LCR Elapsed
Capture Capture Evaluation Enqueue Creation Pause
Name Time Time Time Time Time
--------------- ------------ ------------ ------------ ------------ ------------
STM1$CAP 1213.92 .04 33.84 185.25 600.60

24.1.6 Displaying Information About Each Downstream Capture
Process

A downstream capture is a capture process that runs on a database other than the
source database. You can display the following information about each downstream
capture process in a database by running the query in this section:

• The capture process name

• The source database of the changes captured by the capture process

Chapter 24
Monitoring a Capture Process

24-6

• The name of the queue used by the capture process

• The status of the capture process, which can be ENABLED, DISABLED, or ABORTED

• Whether the downstream capture process uses a database link to the source
database for administrative actions

To display this information about each downstream capture process in a database, run
the following query:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Capture|Process|Queue' FORMAT A15
COLUMN STATUS HEADING 'Capture|Process|Status' FORMAT A15
COLUMN USE_DATABASE_LINK HEADING 'Uses|Database|Link?' FORMAT A8

SELECT CAPTURE_NAME,
 SOURCE_DATABASE,
 QUEUE_NAME,
 STATUS,
 USE_DATABASE_LINK
 FROM DBA_CAPTURE
 WHERE CAPTURE_TYPE = 'DOWNSTREAM';

Your output looks similar to the following:

Capture Capture Capture Uses
Process Source Process Process Database
Name Database Queue Status Link?
--------------- -------------------- --------------- --------------- --------
STRM03_CAPTURE DBS1.EXAMPLE.COM STRM03_QUEUE ENABLED YES

In this case, the source database for the capture process is dbs1.example.com, but the
local database running the capture process is not dbs1.example.com. Also, the capture
process returned by this query uses a database link to the source database to perform
administrative actions. The database link name is the same as the global name of the
source database, which is dbs1.example.com in this case.

If the status of a capture process is ABORTED, then you can query the ERROR_NUMBER and
ERROR_MESSAGE columns in the DBA_CAPTURE data dictionary view to determine the error.

Note:

At the source database for an Oracle Streams downstream capture process,
you can query the V$ARCHIVE_DEST_STATUS view to display information about the
downstream database. The following columns in the view relate to the
downstream database:

• The TYPE column shows DOWNSTREAM if redo log information is being shipped
to a downstream capture database.

• The DESTINATION column shows the name of the downstream capture
database.

Chapter 24
Monitoring a Capture Process

24-7

See Also:

• "Local Capture and Downstream Capture"

• Oracle Streams Replication Administrator's Guide for information about
creating a capture process

• "Is the Capture Process Enabled?" for an example query that shows the
error number and error message if a capture process is aborted

24.1.7 Displaying the Registered Redo Log Files for Each Capture
Process

You can display information about the archived redo log files that are registered for
each capture process in a database by running the query in this section. This query
displays information about these files for both local capture processes and
downstream capture processes.

The query displays the following information for each registered archived redo log file:

• The name of a capture process that uses the file

• The source database of the file

• The sequence number of the file

• The name and location of the file at the local site

• Whether the file contains the beginning of a data dictionary build

• Whether the file contains the end of a data dictionary build

To display this information about each registered archive redo log file in a database,
run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A20
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME,
 r.DICTIONARY_BEGIN,
 r.DICTIONARY_END
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;

Your output looks similar to the following:

Capture Dictionary Dictionary
Process Source Sequence Archived Redo Log Build Build
Name Database Number File Name Begin End
--------------- ---------- -------- -------------------- ---------- ----------
STRM02_CAPTURE DBS2.EXAMP 15 /orc/dbs/log/arch2_1 NO NO

Chapter 24
Monitoring a Capture Process

24-8

 LE.COM _15_478347508.arc
STRM02_CAPTURE DBS2.EXAMP 16 /orc/dbs/log/arch2_1 NO NO
 LE.COM _16_478347508.arc
STRM03_CAPTURE DBS1.EXAMP 45 /remote_logs/arch1_1 YES YES
 LE.COM _45_478347335.arc
STRM03_CAPTURE DBS1.EXAMP 46 /remote_logs/arch1_1 NO NO
 LE.COM _46_478347335.arc
STRM03_CAPTURE DBS1.EXAMP 47 /remote_logs/arch1_1 NO NO
 LE.COM _47_478347335.arc

Assume that this query was run at the dbs2.example.com database, and that
strm02_capture is a local capture process, and strm03_capture is a downstream capture
process. The source database for the strm03_capture downstream capture process is
dbs1.example.com. This query shows that there are two registered archived redo log
files for strm02_capture and three registered archived redo log files for strm03_capture.
This query shows the name and location of each of these files in the local file system.

See Also:

• "The LogMiner Data Dictionary for a Capture Process" for more
information about data dictionary builds

• "Local Capture and Downstream Capture"

• Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

• "ARCHIVELOG Mode and a Capture Process"

24.1.8 Displaying the Redo Log Files That Are Required by Each
Capture Process

A capture process needs the redo log file that includes the required checkpoint SCN,
and all subsequent redo log files. You can query the REQUIRED_CHECKPOINT_SCN column
in the DBA_CAPTURE data dictionary view to determine the required checkpoint SCN for a
capture process. Redo log files before the redo log file that contains the required
checkpoint SCN are no longer needed by the capture process. These redo log files
can be stored offline if they are no longer needed for any other purpose. If you reset
the start SCN for a capture process to a lower value in the future, then these redo log
files might be needed.

The query displays the following information for each required archived redo log file:

• The name of a capture process that uses the file

• The source database of the file

• The sequence number of the file

• The name and location of the required redo log file at the local site

To display this information about each required archive redo log file in a database, run
the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10

Chapter 24
Monitoring a Capture Process

24-9

COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 99999
COLUMN NAME HEADING 'Required|Archived Redo Log|File Name' FORMAT A40

SELECT r.CONSUMER_NAME,
 r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME AND
 r.NEXT_SCN >= c.REQUIRED_CHECKPOINT_SCN;

Your output looks similar to the following:

Capture Required
Process Source Sequence Archived Redo Log
Name Database Number File Name
--------------- ---------- -------- --
STRM02_CAPTURE DBS2.EXAMP 16 /orc/dbs/log/arch2_1_16_478347508.arc
 LE.COM
STRM03_CAPTURE DBS1.EXAMP 47 /remote_logs/arch1_1_47_478347335.arc
 LE.COM

See Also:

"Required Checkpoint SCN"

24.1.9 Displaying SCN Values for Each Redo Log File Used by Each
Capture Process

You can display information about the SCN values for archived redo log files that are
registered for each capture process in a database by running the query in this section.
This query displays information the SCN values for these files for both local capture
processes and downstream capture processes. This query also identifies redo log files
that are no longer needed by any capture process at the local database.

The query displays the following information for each registered archived redo log file:

• The capture process name of a capture process that uses the file

• The name and location of the file at the local site

• The lowest SCN value for the information contained in the redo log file

• The lowest SCN value for the next redo log file in the sequence

• Whether the redo log file is purgeable

To display this information about each registered archive redo log file in a database,
run the following query:

COLUMN CONSUMER_NAME HEADING 'Capture|Process|Name' FORMAT A15
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A25
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999999
COLUMN NEXT_SCN HEADING 'Next SCN' FORMAT 99999999999
COLUMN PURGEABLE HEADING 'Purgeable?' FORMAT A10

SELECT r.CONSUMER_NAME,
 r.NAME,

Chapter 24
Monitoring a Capture Process

24-10

 r.FIRST_SCN,
 r.NEXT_SCN,
 r.PURGEABLE
 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE r.CONSUMER_NAME = c.CAPTURE_NAME;

Your output looks similar to the following:

Capture
Process Archived Redo Log
Name File Name First SCN Next SCN Purgeable?
--------------- ------------------------- ------------ ------------ ----------
CAPTURE_SIMP /private1/ARCHIVE_LOGS/1_ 509686 549100 YES
 3_502628294.dbf

CAPTURE_SIMP /private1/ARCHIVE_LOGS/1_ 549100 587296 YES
 4_502628294.dbf

CAPTURE_SIMP /private1/ARCHIVE_LOGS/1_ 587296 623107 NO
 5_502628294.dbf

The redo log files with YES for Purgeable? for all capture processes will never be needed
by any capture process at the local database. These redo log files can be removed
without affecting any existing capture process at the local database. The redo log files
with NO for Purgeable? for one or more capture processes must be retained.

See Also:

"ARCHIVELOG Mode and a Capture Process"

24.1.10 Displaying the Last Archived Redo Entry Available to Each
Capture Process

For a local capture process, the last archived redo entry available is the last entry from
the online redo log flushed to an archived log file. For a downstream capture process,
the last archived redo entry available is the redo entry with the most recent system
change number (SCN) in the last archived log file added to the LogMiner session used
by the capture process.

You can display the following information about the last redo entry that was made
available to each capture process by running the query in this section:

• The name of the capture process

• The identification number of the LogMiner session used by the capture process

• The highest SCN available for the capture process

For local capture, this SCN is the last redo SCN flushed to the log files. For
downstream capture, this SCN is the last SCN added to LogMiner through the
archive logs.

• The timestamp of the highest SCN available for the capture process

Chapter 24
Monitoring a Capture Process

24-11

For local capture, this timestamp is the time the SCN was written to the log file.
For downstream capture, this timestamp is the time of the most recent archive log
(containing the most recent SCN) available to LogMiner.

The information displayed by this query is valid only for an enabled capture process.

Run the following query to display this information for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A20
COLUMN LOGMINER_ID HEADING 'LogMiner ID' FORMAT 9999
COLUMN AVAILABLE_MESSAGE_NUMBER HEADING 'Highest|Available SCN' FORMAT 9999999999
COLUMN AVAILABLE_MESSAGE_CREATE_TIME HEADING 'Time of|Highest|Available SCN'

SELECT CAPTURE_NAME,
 LOGMINER_ID,
 AVAILABLE_MESSAGE_NUMBER,
 TO_CHAR(AVAILABLE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY')
 AVAILABLE_MESSAGE_CREATE_TIME
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

 Time of
Capture Highest Highest
Name LogMiner ID Available SCN Available SCN
-------------------- ----------- ------------- -----------------
DB1$CAP 1 1506751 09:46:11 06/29/09

24.1.11 Listing the Parameter Settings for Each Capture Process
The following query displays the current setting for each capture process parameter
for each capture process in a database:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A25
COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A10
COLUMN SET_BY_USER HEADING 'Set by|User?' FORMAT A10

SELECT CAPTURE_NAME,
 PARAMETER,
 VALUE,
 SET_BY_USER
 FROM DBA_CAPTURE_PARAMETERS;

Your output looks similar to the following:

Capture
Process Set by
Name Parameter Value User?
------------------------- ------------------------------ ---------- ----------
DA$CAP CAPTURE_IDKEY_OBJECTS N NO
DA$CAP CAPTURE_SEQUENCE_NEXTVAL N NO
DA$CAP DISABLE_ON_LIMIT N NO
DA$CAP DOWNSTREAM_REAL_TIME_MINE Y NO
DA$CAP EXCLUDETRANS NO
DA$CAP EXCLUDEUSER NO
DA$CAP EXCLUDEUSERID NO
DA$CAP GETAPPLOPS Y NO
DA$CAP GETREPLICATES N NO
DA$CAP IGNORE_TRANSACTION NO
DA$CAP IGNORE_UNSUPPORTED_TABLE * NO

Chapter 24
Monitoring a Capture Process

24-12

DA$CAP MAXIMUM_SCN INFINITE NO
DA$CAP MAX_SGA_SIZE INFINITE NO
DA$CAP MERGE_THRESHOLD 60 NO
DA$CAP MESSAGE_LIMIT INFINITE NO
DA$CAP MESSAGE_TRACKING_FREQUENCY 2000000 NO
DA$CAP PARALLELISM 1 NO
DA$CAP SKIP_AUTOFILTERED_TABLE_DDL Y NO
DA$CAP SPLIT_THRESHOLD 1800 NO
DA$CAP STARTUP_SECONDS 0 NO
DA$CAP TIME_LIMIT INFINITE NO
DA$CAP TRACE_LEVEL 0 NO
DA$CAP WRITE_ALERT_LOG Y NO
DA$CAP XOUT_CLIENT_EXISTS N NO

Note:

If the Set by User? column is NO for a parameter, then the parameter is set to its
default value. If the Set by User? column is YES for a parameter, then the
parameter was set by a user and might or might not be set to its default value.

See Also:

• "Capture Process Subcomponents"

• "Setting a Capture Process Parameter"

24.1.12 Determining the Applied SCN for All Capture Processes in a
Database

The applied system change number (SCN) for a capture process is the SCN of the
most recent message dequeued by the relevant apply processes. All changes below
this applied SCN have been dequeued by all apply processes that apply changes
captured by the capture process.

To display the applied SCN for all of the capture processes in a database, run the
following query:

COLUMN CAPTURE_NAME HEADING 'Capture Process Name' FORMAT A30
COLUMN APPLIED_SCN HEADING 'Applied SCN' FORMAT 99999999999

SELECT CAPTURE_NAME, APPLIED_SCN FROM DBA_CAPTURE;

Your output looks similar to the following:

Capture Process Name Applied SCN
------------------------------ -----------
CAPTURE_EMP 177154

Chapter 24
Monitoring a Capture Process

24-13

24.1.13 Determining Redo Log Scanning Latency for Each Capture
Process

You can find the following information about each capture process by running the
query in this section:

• The redo log scanning latency, which specifies the number of seconds between
the creation time of the most recent redo log entry scanned by a capture process
and the current time. This number might be relatively large immediately after you
start a capture process.

• The seconds since last recorded status, which is the number of seconds since a
capture process last recorded its status.

• The current capture process time, which is the latest time when the capture
process recorded its status.

• The message creation time, which is the time when the data manipulation
language (DML) or data definition language (DDL) change generated the redo
data at the source database for the most recently captured LCR.

The information displayed by this query is valid only for an enabled capture process.

Run the following query to determine the redo scanning latency for each capture
process:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN LAST_STATUS HEADING 'Seconds Since|Last Status' FORMAT 999999
COLUMN CAPTURE_TIME HEADING 'Current|Process|Time'
COLUMN CREATE_TIME HEADING 'Message|Creation Time' FORMAT 999999

SELECT CAPTURE_NAME,
 ((SYSDATE - CAPTURE_MESSAGE_CREATE_TIME)*86400) LATENCY_SECONDS,
 ((SYSDATE - CAPTURE_TIME)*86400) LAST_STATUS,
 TO_CHAR(CAPTURE_TIME, 'HH24:MI:SS MM/DD/YY') CAPTURE_TIME,
 TO_CHAR(CAPTURE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Latency Current
Process in Seconds Since Process Message
Name Seconds Last Status Time Creation Time
---------- ------- ------------- ----------------- -----------------
DA$CAP 1 1 12:33:39 07/14/10 12:33:39 07/14/10

The "Latency in Seconds" returned by this query is the difference between the current
time (SYSDATE) and the "Message Creation Time." The "Seconds Since Last Status"
returned by this query is the difference between the current time (SYSDATE) and the
"Current Process Time."

24.1.14 Determining Message Enqueuing Latency for Each Capture
Process

You can find the following information about each capture process by running the
query in this section:

Chapter 24
Monitoring a Capture Process

24-14

• The message enqueuing latency, which specifies the number of seconds between
when an entry was recorded in the redo log at the source database and when the
message was enqueued by the capture process

• The message creation time, which is the time when the data manipulation
language (DML) or data definition language (DDL) change generated the redo
data at the source database for the most recently enqueued message

• The enqueue time, which is when the capture process enqueued the message into
its queue

• The message number of the enqueued message

The information displayed by this query is valid only for an enabled capture process.

Run the following query to determine the message capturing latency for each capture
process:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN LATENCY_SECONDS HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN CREATE_TIME HEADING 'Message Creation|Time' FORMAT A20
COLUMN ENQUEUE_TIME HEADING 'Enqueue Time' FORMAT A20
COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Message|Number' FORMAT 9999999999

SELECT CAPTURE_NAME,
 (ENQUEUE_TIME-ENQUEUE_MESSAGE_CREATE_TIME)*86400 LATENCY_SECONDS,
 TO_CHAR(ENQUEUE_MESSAGE_CREATE_TIME, 'HH24:MI:SS MM/DD/YY') CREATE_TIME,
 TO_CHAR(ENQUEUE_TIME, 'HH24:MI:SS MM/DD/YY') ENQUEUE_TIME,
 ENQUEUE_MESSAGE_NUMBER
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Latency
Process in Message Creation Message
Name Seconds Time Enqueue Time Number
---------- ------- -------------------- -------------------- -------
CAPTURE 0 10:56:51 03/01/02 10:56:51 03/01/02 253962

The "Latency in Seconds" returned by this query is the difference between the "Enqueue
Time" and the "Message Creation Time."

24.1.15 Displaying Information About Rule Evaluations for Each
Capture Process

You can display the following information about rule evaluation for each capture
process by running the query in this section:

• The name of the capture process.

• The number of changes discarded during prefiltering since the capture process
was last started. The capture process determined that these changes definitely did
not satisfy the capture process rule sets during prefiltering.

• The number of changes kept during prefiltering since the capture process was last
started. The capture process determined that these changes definitely satisfied the
capture process rule sets during prefiltering. Such changes are converted into
LCRs and enqueued into the capture process queue.

Chapter 24
Monitoring a Capture Process

24-15

• The total number of prefilter evaluations since the capture process was last
started.

• The number of undecided changes after prefiltering since the capture process was
last started. These changes might or might not satisfy the capture process rule
sets. Some of these changes might be filtered out after prefiltering without
requiring full evaluation. Other changes require full evaluation to determine
whether they satisfy the capture process rule sets.

• The number of full evaluations since the capture process was last started. Full
evaluations can be expensive. Therefore, capture process performance is best
when this number is relatively low.

The information displayed by this query is valid only for an enabled capture process.

Run the following query to display this information for each capture process:

COLUMN CAPTURE_NAME HEADING 'Capture|Name' FORMAT A15
COLUMN TOTAL_PREFILTER_DISCARDED HEADING 'Prefilter|Changes|Discarded'
 FORMAT 9999999999
COLUMN TOTAL_PREFILTER_KEPT HEADING 'Prefilter|Changes|Kept' FORMAT 9999999999
COLUMN TOTAL_PREFILTER_EVALUATIONS HEADING 'Prefilter|Evaluations'
 FORMAT 9999999999
COLUMN UNDECIDED HEADING 'Undecided|After|Prefilter' FORMAT 9999999999
COLUMN TOTAL_FULL_EVALUATIONS HEADING 'Full|Evaluations' FORMAT 9999999999

SELECT CAPTURE_NAME,
 TOTAL_PREFILTER_DISCARDED,
 TOTAL_PREFILTER_KEPT,
 TOTAL_PREFILTER_EVALUATIONS,
 (TOTAL_PREFILTER_EVALUATIONS -
 (TOTAL_PREFILTER_KEPT + TOTAL_PREFILTER_DISCARDED)) UNDECIDED,
 TOTAL_FULL_EVALUATIONS
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

 Prefilter Prefilter Undecided
Capture Changes Changes Prefilter After Full
Name Discarded Kept Evaluations Prefilter Evaluations
--------------- ---------- ----------- ----------- ----------- -----------
CAPTURE_HNS 927409 3271491 4198900 0 9

The total number of prefilter evaluations equals the sum of the prefilter changes
discarded, the prefilter changes kept, and the undecided changes.

See Also:

"Capture Process Rule Evaluation"

24.1.16 Determining Which Capture Processes Use Combined
Capture and Apply

A combined capture and apply environment is efficient because the capture process
acts as the propagation sender, and the buffered queue is optimized to make
replication of changes more efficient.

Chapter 24
Monitoring a Capture Process

24-16

When a capture process uses combined capture and apply, the OPTIMIZATION column
in the V$STREAMS_CAPTURE data dictionary view is greater than zero. When a capture
process does not use combined capture and apply, the OPTIMIZATION column is 0
(zero).

To determine whether a capture process uses combined capture and apply, run the
following query:

COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30
COLUMN OPTIMIZATION HEADING 'Optimized?' FORMAT A10

SELECT CAPTURE_NAME,
 DECODE(OPTIMIZATION,
 0, 'No',
 'Yes') OPTIMIZATION
 FROM V$STREAMS_CAPTURE;

Your output looks similar to the following:

Capture Name Optimized?
------------------------------ ----------
CAPTURE_HNS Yes

This output indicates that the capture_hns capture process uses combined capture and
apply.

See Also:

Combined Capture and Apply Optimization

24.1.17 Displaying Information About Split and Merge Operations
Splitting and merging an Oracle Streams destination is useful under the following
conditions:

• A single capture process captures changes that are sent to two or more apply
processes.

• An apply process stops accepting changes captured by the capture process. The
apply process might stop accepting changes if, for example, the apply process is
disabled, the database that contains the apply process goes down, there is a
network problem, the computer system running the database that contains the
apply process goes down, or for some other reason.

When these conditions are met, it is best to split the problem destination stream off
from the other destination streams to avoid degraded performance. When the problem
is corrected, the destination stream that was split off can be merged back into the
other destination streams for the capture process.

By default, split and merge operations are performed automatically when Oracle
Streams detects a problem destination. Two capture process parameters,
split_threshold and merge_threshold, control automatic split and merge operations.

The following sections contain queries that you can run to monitor current and past
automatic split and merge operations:

Chapter 24
Monitoring a Capture Process

24-17

• Displaying the Names of the Original and Cloned Oracle Streams Components

• Displaying the Actions and Thresholds for Split and Merge Operations

• Displaying the Lag Time of the Cloned Capture Process

• Displaying Information About the Split and Merge Jobs

• Displaying Information About Past Split and Merge Operations

Note:

The queries in these sections only show information about automatic split and
merge operations. These queries do not show information about operations
that split streams manually using the SPLIT_STREAMS procedure in the
DBMS_STREAMS_ADM package.

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about split and merge operations

• Oracle Database PL/SQL Packages and Types Reference for more
information about capture process parameters

24.1.17.1 Displaying the Names of the Original and Cloned Oracle Streams
Components

The query in this section shows the following information about the Oracle Streams
components that are involved in a split and merge operation:

• The name of the original capture process from which a destination stream was
split off

• The name of the cloned capture process that captures changes for the problem
destination

• The name of the original propagation or apply process that was part of the stream
that was split off

In a multiple-database configuration, a propagation sends changes from the
capture process's queue to the apply process's queue, and a propagation is
shown in this query. In a single-database configuration, an apply process
dequeues changes from the queue that is used by the capture process, and an
apply process is shown in this query.

• The name of the cloned propagation or apply process that processes changes for
the problem destination

• The type of the Oracle Streams component that receives changes from the
capture process, either PROPAGATION or APPLY

Run the following query to display this information:

Chapter 24
Monitoring a Capture Process

24-18

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A15
COLUMN CLONED_CAPTURE_NAME HEADING 'Cloned|Capture|Process' FORMAT A15
COLUMN ORIGINAL_STREAMS_NAME HEADING 'Original|Streams|Name' FORMAT A15
COLUMN CLONED_STREAMS_NAME HEADING 'Cloned|Streams|Name' FORMAT A15
COLUMN STREAMS_TYPE HEADING 'Streams|Type' FORMAT A11

SELECT ORIGINAL_CAPTURE_NAME,
 CLONED_CAPTURE_NAME,
 ORIGINAL_STREAMS_NAME,
 CLONED_STREAMS_NAME,
 STREAMS_TYPE
 FROM DBA_STREAMS_SPLIT_MERGE;

Your output looks similar to the following:

Original Cloned Original Cloned
Capture Capture Streams Streams Streams
Process Process Name Name Type
--------------- --------------- --------------- --------------- -----------
DB$CAP CLONED$_DB$CAP_ PROPAGATION$_17 CLONED$_PROPAGA PROPAGATION
 1 TION$_17_2

See Also:

Oracle Streams Replication Administrator's Guide for more information about
split and merge operations

24.1.17.2 Displaying the Actions and Thresholds for Split and Merge
Operations

The query in this section shows the following information about the actions performed
by the split and merge operation and the thresholds that were set for splitting and
merging a problem destination:

• The name of the original capture process from which a destination stream was
split off

• The script status of the split or merge job, either GENERATING, NOT EXECUTED,
EXECUTING, EXECUTED, or ERROR

• The type of action performed by the job, either SPLIT, MERGE, or MONITOR

When a SPLIT job determines that a split must be performed, a row with SPLIT
action type is inserted into the DBA_STREAMS_SPLIT_MERGE view.

When the split operation is complete, the SPLIT action type row is copied to the
DBA_STREAMS_SPLIT_MERGE_HIST view, and a MERGE job is created. A row with MERGE
action type is inserted into the DBA_STREAMS_SPLIT_MERGE view. When merge
operation is complete, the MERGE action type row is moved to the
DBA_STREAMS_SPLIT_MERGE_HIST view, and the SPLIT action type row is deleted from
the DBA_STREAMS_SPLIT_MERGE view. The SPLIT action type row was previously copied
to the DBA_STREAMS_SPLIT_MERGE_HIST view.

Each original capture process has a SPLIT job that monitors all of its destinations.
This type of job displays the MONITOR action type in rows in the
DBA_STREAMS_SPLIT_MERGE view. MONITOR action type rows are moved to the

Chapter 24
Monitoring a Capture Process

24-19

DBA_STREAMS_SPLIT_MERGE_HIST view only if the SPLIT job is disabled. A SPLIT job can
be disabled either by setting the split_threshold capture process parameter to
INFINITE or by dropping the capture process.

• The capture process parameter threshold set for the operation, in seconds

For SPLIT jobs, the threshold is set by the split_threshold capture process
parameter. For MERGE jobs, the threshold is set by the merge_threshold capture
process parameter.

• The status of the action

For SPLIT actions, the status can be SPLITTING, SPLIT DONE, or ERROR. The SPLITTING
status indicates that the split operation is being performed. The SPLIT DONE status
indicates that the split operation is complete. The ERROR status indicates that an
error was returned during the split operation.

For MERGE actions, the status can be NOTHING TO MERGE, MERGING, MERGE DONE, or ERROR.
The NOTHING TO MERGE status indicates that a split was performed but the split
stream is not yet ready to merge. The MERGING status indicates that the merge
operation is being performed. The MERGE DONE status indicates that the merge
operation is complete. The ERROR status indicates that an error was returned during
the merge operation.

For MONITOR actions, the status can be any of the SPLIT and MERGE status values. In
addition, a MONITOR action can show NOTHING TO SPLIT or NONSPLITTABLE for its status.
The NOTHING TO SPLIT status indicates that the streams flowing from the capture
process are being processed at all destinations, and no stream should be split.
The NONSPLITTABLE status indicates that it is not possible to split the stream for the
capture process. A NONSPLITTABLE status is possible in the following cases:

– The capture process is disabled or aborted.

– The capture process's queue has at least one publisher in addition to the
capture process. The additional publisher can be another capture process or a
propagation that sends messages to the queue.

– The capture process has only one destination. Split and merge operations are
possible only when there are two or more destinations for the changes
captured by the capture process.

• The date and time when the job status was last updated

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A10
COLUMN SCRIPT_STATUS HEADING 'Script|Status' FORMAT A12
COLUMN ACTION_TYPE HEADING 'Action|Type' FORMAT A7
COLUMN ACTION_THRESHOLD HEADING 'Action|Threshold' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A16
COLUMN STATUS_UPDATE_TIME HEADING 'Status|Update|Time' FORMAT A15

SELECT ORIGINAL_CAPTURE_NAME,
 SCRIPT_STATUS,
 ACTION_TYPE,
 ACTION_THRESHOLD,
 STATUS,
 STATUS_UPDATE_TIME
 FROM DBA_STREAMS_SPLIT_MERGE
 ORDER BY STATUS_UPDATE_TIME DESC;

Your output looks similar to the following:

Chapter 24
Monitoring a Capture Process

24-20

Original Status
Capture Script Action Action Update
Process Status Type Threshold Status Time
---------- ------------ ------- --------------- ---------------- ---------------
DB$CAP EXECUTED SPLIT 1800 SPLIT DONE 31-MAR-09 01.31
 .37.133788 PM

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about split and merge operations

• Oracle Database PL/SQL Packages and Types Reference for more
information about capture process parameters

24.1.17.3 Displaying the Lag Time of the Cloned Capture Process
After a stream is split off from a capture process for a problem destination, you must
correct the problem at the destination and ensure that the cloned capture process is
enabled. When the cloned capture process is sending changes to the problem
destination, and the apply process at the problem destination is applying these
changes, an Oracle Scheduler job runs the MERGE_STREAMS_JOB procedure according to
its schedule.

The MERGE_STREAMS_JOB procedure queries the CAPTURE_MESSAGE_CREATE_TIME in the
GV$STREAMS_CAPTURE view. When the difference between CAPTURE_MESSAGE_CREATE_TIME of
the cloned capture process and the original capture process is less than or equal to
the value of the merge_threshold capture process parameter, the MERGE_STREAMS_JOB
procedure determines that the streams are ready to merge. The MERGE_STREAMS_JOB
procedure runs the MERGE_STREAMS procedure automatically to merge the streams.

The LAG column in the DBA_STREAMS_SPLIT_MERGE view tracks the time in seconds that the
cloned capture process lags behind the original capture process. The following query
displays the lag time:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original Capture Process' FORMAT A25
COLUMN CLONED_CAPTURE_NAME HEADING 'Cloned Capture Process' FORMAT A25
COLUMN LAG HEADING 'Lag' FORMAT 999999999999999

SELECT ORIGINAL_CAPTURE_NAME,
 CLONED_CAPTURE_NAME,
 LAG
 FROM DBA_STREAMS_SPLIT_MERGE;

Your output looks similar to the following:

Original Capture Process Cloned Capture Process Lag
------------------------- ------------------------- ----------------
DB$CAP CLONED$_DB$CAP_1 526

When the MERGE_STREAMS_JOB runs and the lag time is less than or equal to the value of
the merge_threshold capture process parameter, the merge operation begins.

Chapter 24
Monitoring a Capture Process

24-21

See Also:

Oracle Streams Replication Administrator's Guide for more information about
split and merge operations

24.1.17.4 Displaying Information About the Split and Merge Jobs
The query in this section shows the following information about split and merge jobs:

• The name of the original capture process from which a destination stream was
split off

• The owner of the job

• The name of the job

• The current state of the job, either DISABLED, RETRY SCHEDULED, SCHEDULED, RUNNING,
COMPLETED, BROKEN, FAILED, REMOTE, SUCCEEDED, or CHAIN_STALLED

See Oracle Database Administrator's Guide for information about these job states.

• The date and time when the job will run next

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A10
COLUMN JOB_OWNER HEADING 'Job Owner' FORMAT A10
COLUMN JOB_NAME HEADING 'Job Name' FORMAT A15
COLUMN JOB_STATE HEADING 'Job State' FORMAT A15
COLUMN JOB_NEXT_RUN_DATE HEADING 'Job Next|Run Date' FORMAT A20

SELECT ORIGINAL_CAPTURE_NAME,
 JOB_OWNER,
 JOB_NAME,
 JOB_STATE,
 JOB_NEXT_RUN_DATE
 FROM DBA_STREAMS_SPLIT_MERGE;

Your output looks similar to the following:

Original
Capture Job Next
Process Job Owner Job Name Job State Run Date
---------- ---------- --------------- --------------- --------------------
DB$CAP SYS STREAMS_SPLITJO SCHEDULED 01-APR-09 01.14.55.0
 B$_3 00000 PM -07:00
DB$CAP SYS STREAMS_MERGEJO SCHEDULED 01-APR-09 01.17.08.0
 B$_6 00000 PM -07:00

See Also:

Oracle Streams Replication Administrator's Guide for more information about
split and merge operations

Chapter 24
Monitoring a Capture Process

24-22

24.1.17.5 Displaying Information About Past Split and Merge Operations
The query in this section shows the following historical information about split and
merge operations that were performed in the past:

• The name of the original capture process from which a destination stream was
split off

• The script status of split or merge job

• The type of action performed by the job, either SPLIT or MERGE

• The status of the action performed by the job

See "Displaying the Actions and Thresholds for Split and Merge Operations" for
information about the status values.

• The owner of the job

• The name of the job

• The recoverable script ID

Run the following query to display this information:

COLUMN ORIGINAL_CAPTURE_NAME HEADING 'Original|Capture|Process' FORMAT A8
COLUMN SCRIPT_STATUS HEADING 'Script|Status' FORMAT A12
COLUMN ACTION_TYPE HEADING 'Action|Type' FORMAT A8
COLUMN STATUS HEADING 'Status' FORMAT A10
COLUMN JOB_OWNER HEADING 'Job Owner' FORMAT A10
COLUMN JOB_NAME HEADING 'Job Name' FORMAT A10
COLUMN RECOVERABLE_SCRIPT_ID HEADING 'Recoverable|Script ID' FORMAT A15

SELECT ORIGINAL_CAPTURE_NAME,
 SCRIPT_STATUS,
 ACTION_TYPE,
 STATUS,
 JOB_OWNER,
 JOB_NAME,
 RECOVERABLE_SCRIPT_ID
 FROM DBA_STREAMS_SPLIT_MERGE_HIST;

Your output looks similar to the following:

Original
Capture Script Action Recoverable
Process Status Type Status Job Owner Job Name Script ID
-------- ------------ -------- ---------- ---------- ---------- ---------------
DB1$CAP EXECUTED SPLIT SPLIT DONE SYS STREAMS_SP 6E5C6C49CDB5798
 LITJOB$_9 3E040578C891704
 87

DB1$CAP EXECUTED MERGE MERGE DONE SYS STREAMS_ME 6E5BA57554F1C4C
 RGEJOB$_12 3E040578C89170A
 1F

Chapter 24
Monitoring a Capture Process

24-23

See Also:

Oracle Streams Replication Administrator's Guide for more information about
split and merge operations

24.1.18 Monitoring Supplemental Logging
The following sections contain queries that you can run to monitor supplemental
logging at a source database:

• Displaying Supplemental Log Groups at a Source Database

• Displaying Database Supplemental Logging Specifications

• Displaying Supplemental Logging Specified During Preparation for Instantiation

The total supplemental logging at a database is determined by the results shown in all
three of the queries in these sections combined. For example, supplemental logging
can be enabled for columns in a table even if no results for the table are returned by
the query in the "Displaying Supplemental Log Groups at a Source Database " section.
That is, supplemental logging can be enabled for the table if database supplemental
logging is enabled or if the table is in a schema for which supplemental logging was
enabled during preparation for instantiation.

Supplemental logging places additional column data into a redo log when an operation
is performed. A capture process captures this additional information and places it in
LCRs. An apply process that applies these captured LCRs might need this additional
information to schedule or apply changes correctly.

See Also:

• "Supplemental Logging in an Oracle Streams Environment"

• Oracle Streams Replication Administrator's Guide

24.1.18.1 Displaying Supplemental Log Groups at a Source Database
To check whether one or more log groups are specified for the table at the source
database, run the following query:

COLUMN LOG_GROUP_NAME HEADING 'Log Group' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table' FORMAT A15
COLUMN ALWAYS HEADING 'Conditional or|Unconditional' FORMAT A14
COLUMN LOG_GROUP_TYPE HEADING 'Type of Log Group' FORMAT A20

SELECT
 LOG_GROUP_NAME,
 TABLE_NAME,
 DECODE(ALWAYS,
 'ALWAYS', 'Unconditional',
 'CONDITIONAL', 'Conditional') ALWAYS,
 LOG_GROUP_TYPE
 FROM DBA_LOG_GROUPS;

Chapter 24
Monitoring a Capture Process

24-24

Your output looks similar to the following:

 Conditional or
Log Group Table Unconditional Type of Log Group
-------------------- --------------- -------------- --------------------
LOG_GROUP_DEP_PK DEPARTMENTS Unconditional USER LOG GROUP
SYS_C002105 REGIONS Unconditional PRIMARY KEY LOGGING
SYS_C002106 REGIONS Conditional FOREIGN KEY LOGGING
SYS_C002110 LOCATIONS Unonditional ALL COLUMN LOGGING
SYS_C002111 COUNTRIES Conditional ALL COLUMN LOGGING
LOG_GROUP_JOBS_CR JOBS Conditional USER LOG GROUP

If the output for the type of log group shows how the log group was created:

• If the output is USER LOG GROUP, then the log group was created using the ADD
SUPPLEMENTAL LOG GROUP clause of the ALTER TABLE statement.

• Otherwise, the log group was created using the ADD SUPPLEMENTAL LOG DATA clause of
the ALTER TABLE statement.

If the type of log group is USER LOG GROUP, then you can list the columns in the log group
by querying the DBA_LOG_GROUP_COLUMNS data dictionary view.

Note:

If the type of log group is not USER LOG GROUP, then the DBA_LOG_GROUP_COLUMNS
data dictionary view does not contain information about the columns in the log
group. Instead, Oracle supplementally logs the correct columns when an
operation is performed on the table. For example, if the type of log group is
PRIMARY KEY LOGGING, then Oracle logs the current primary key column(s) when
a change is performed on the table.

24.1.18.2 Displaying Database Supplemental Logging Specifications
To display the database supplemental logging specifications, query the V$DATABASE
dynamic performance view, as in the following example:

COLUMN log_min HEADING 'Minimum|Supplemental|Logging?' FORMAT A12
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging?' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging?' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging?' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging?' FORMAT A12

SELECT SUPPLEMENTAL_LOG_DATA_MIN log_min,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM V$DATABASE;

Your output looks similar to the following:

Minimum Primary Key Foreign Key Unique All Columns
Supplemental Supplemental Supplemental Supplemental Supplemental
Logging? Logging? Logging? Logging? Logging?

Chapter 24
Monitoring a Capture Process

24-25

------------ ------------ ------------ ------------- ------------
YES YES YES YES NO

These results show that minimum, primary key, foreign key, and unique key columns
are being supplementally logged for all of the tables in the database. Because unique
key columns are supplementally logged, bitmap index columns also are
supplementally logged. However, all columns are not being supplementally logged.

24.1.18.3 Displaying Supplemental Logging Specified During Preparation for
Instantiation

Supplemental logging can be enabled when database objects are prepared for
instantiation using one of the three procedures in the DBMS_CAPTURE_ADM package. A
data dictionary view displays the supplemental logging enabled by each of these
procedures: PREPARE_TABLE_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and
PREPARE_GLOBAL_INSTANTIATION.

• The DBA_CAPTURE_PREPARED_TABLES view displays the supplemental logging enabled
by the PREPARE_TABLE_INSTANTIATION procedure.

• The DBA_CAPTURE_PREPARED_SCHEMAS view displays the supplemental logging enabled
by the PREPARE_SCHEMA_INSTANTIATION procedure.

• The DBA_CAPTURE_PREPARED_DATABASE view displays the supplemental logging
enabled by the PREPARE_GLOBAL_INSTANTIATION procedure.

Each of these views has the following columns:

• SUPPLEMENTAL_LOG_DATA_PK shows whether primary key supplemental logging was
enabled by a procedure.

• SUPPLEMENTAL_LOG_DATA_UI shows whether unique key and bitmap index
supplemental logging was enabled by a procedure.

• SUPPLEMENTAL_LOG_DATA_FK shows whether foreign key supplemental logging was
enabled by a procedure.

• SUPPLEMENTAL_LOG_DATA_ALL shows whether supplemental logging for all columns
was enabled by a procedure.

Each of these columns can display one of the following values:

• IMPLICIT means that the relevant procedure enabled supplemental logging for the
columns.

• EXPLICIT means that supplemental logging was enabled for the columns manually
using an ALTER TABLE or ALTER DATABASE statement with an ADD SUPPLEMENTAL LOG DATA
clause.

• NO means that supplemental logging was not enabled for the columns using a
prepare procedure or an ALTER TABLE or ALTER DATABASE statement with an ADD
SUPPLEMENTAL LOG DATA clause. Supplemental logging might not be enabled for the
columns. However, supplemental logging might be enabled for the columns at
another level (table, schema, or database), or it might have been enabled using an
ALTER TABLE statement with an ADD SUPPLEMENTAL LOG GROUP clause.

The following sections contain queries that display the supplemental logging enabled
by these procedures:

• Displaying Supplemental Logging Enabled by
PREPARE_TABLE_INSTANTIATION

Chapter 24
Monitoring a Capture Process

24-26

• Displaying Supplemental Logging Enabled by
PREPARE_SCHEMA_INSTANTIATION

• Displaying Supplemental Logging Enabled by
PREPARE_GLOBAL_INSTANTIATION

24.1.18.3.1 Displaying Supplemental Logging Enabled by
PREPARE_TABLE_INSTANTIATION

The following query displays the supplemental logging enabled by the
PREPARE_TABLE_INSTANTIATION procedure for the tables in the hr schema:

COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging' FORMAT A12

SELECT TABLE_NAME,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM DBA_CAPTURE_PREPARED_TABLES
 WHERE TABLE_OWNER = 'HR';

Your output looks similar to the following:

 Primary Key Foreign Key Unique All Columns
 Supplemental Supplemental Supplemental Supplemental
Table Name Logging Logging Logging Logging
--------------- ------------ ------------ -------------- ------------
COUNTRIES NO NO NO NO
REGIONS IMPLICIT IMPLICIT IMPLICIT NO
DEPARTMENTS IMPLICIT IMPLICIT IMPLICIT NO
LOCATIONS EXPLICIT NO NO NO
EMPLOYEES NO NO NO IMPLICIT
JOB_HISTORY NO NO NO NO
JOBS NO NO NO NO

These results show the following:

• The PREPARE_TABLE_INSTANTIATION procedure enabled supplemental logging for the
primary key, unique key, bitmap index, and foreign key columns in the hr.regions
and hr.departments tables.

• The PREPARE_TABLE_INSTANTIATION procedure enabled supplemental logging for all
columns in the hr.employees table.

• An ALTER TABLE statement with an ADD SUPPLEMENTAL LOG DATA clause enabled primary
key supplemental logging for the hr.locations table.

Note:

Omit the WHERE clause in the query to list the information for all of the tables in
the database.

Chapter 24
Monitoring a Capture Process

24-27

24.1.18.3.2 Displaying Supplemental Logging Enabled by
PREPARE_SCHEMA_INSTANTIATION

The following query displays the supplemental logging enabled by the
PREPARE_SCHEMA_INSTANTIATION procedure:

COLUMN SCHEMA_NAME HEADING 'Schema Name' FORMAT A20
COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging' FORMAT A12

SELECT SCHEMA_NAME,
 SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM DBA_CAPTURE_PREPARED_SCHEMAS;

Your output looks similar to the following:

 Primary Key Foreign Key Unique All Columns
 Supplemental Supplemental Supplemental Supplemental
Schema Name Logging Logging Logging Logging
-------------------- ------------ ------------ -------------- ------------
HR NO NO NO IMPLICIT
OE IMPLICIT IMPLICIT IMPLICIT NO

These results show the following:

• The PREPARE_SCHEMA_INSTANTIATION procedure enabled supplemental logging for all
columns in tables in the hr schema.

• The PREPARE_SCHEMA_INSTANTIATION procedure enabled supplemental logging for the
primary key, unique key, bitmap index, and foreign key columns in the tables in the
oe schema.

24.1.18.3.3 Displaying Supplemental Logging Enabled by
PREPARE_GLOBAL_INSTANTIATION

The following query displays the supplemental logging enabled by the
PREPARE_GLOBAL_INSTANTIATION procedure:

COLUMN log_pk HEADING 'Primary Key|Supplemental|Logging' FORMAT A12
COLUMN log_fk HEADING 'Foreign Key|Supplemental|Logging' FORMAT A12
COLUMN log_ui HEADING 'Unique|Supplemental|Logging' FORMAT A12
COLUMN log_all HEADING 'All Columns|Supplemental|Logging' FORMAT A12

SELECT SUPPLEMENTAL_LOG_DATA_PK log_pk,
 SUPPLEMENTAL_LOG_DATA_FK log_fk,
 SUPPLEMENTAL_LOG_DATA_UI log_ui,
 SUPPLEMENTAL_LOG_DATA_ALL log_all
 FROM DBA_CAPTURE_PREPARED_DATABASE;

Your output looks similar to the following:

Chapter 24
Monitoring a Capture Process

24-28

Primary Key Foreign Key Unique All Columns
Supplemental Supplemental Supplemental Supplemental
Logging Logging Logging Logging
------------ ------------ -------------- ------------
IMPLICIT IMPLICIT IMPLICIT NO

These results show that the PREPARE_GLOBAL_INSTANTIATION procedure enabled
supplemental logging for the primary key, unique key, bitmap index, and foreign key
columns in all of the tables in the database.

24.2 Monitoring a Synchronous Capture
This section provides sample queries that you can use to monitor Oracle Streams
synchronous captures.

This section contains these topics:

• Displaying the Queue and Rule Set of Each Synchronous Capture

• Displaying the Tables For Which Synchronous Capture Captures Changes

See Also:

• "Implicit Capture with Synchronous Capture"

• Oracle Streams Replication Administrator's Guide for information about
configuring synchronous capture

• "Managing a Synchronous Capture"

• Oracle Streams Replication Administrator's Guide for an example that
configures a replication environment that uses synchronous capture

24.2.1 Displaying the Queue and Rule Set of Each Synchronous
Capture

You can display the following information about each synchronous capture in a
database by running the query in this section:

• The synchronous capture name

• The name of the queue used by the synchronous capture

• The name of the positive rule set used by the synchronous capture

• The capture user for the synchronous capture

To display this general information about each synchronous capture in a database, run
the following query:

COLUMN CAPTURE_NAME HEADING 'Synchronous|Capture Name' FORMAT A20
COLUMN QUEUE_NAME HEADING 'Synchronous|Capture Queue' FORMAT A20
COLUMN RULE_SET_NAME HEADING 'Positive Rule Set' FORMAT A20
COLUMN CAPTURE_USER HEADING 'Capture User' FORMAT A15

SELECT CAPTURE_NAME, QUEUE_NAME, RULE_SET_NAME, CAPTURE_USER

Chapter 24
Monitoring a Synchronous Capture

24-29

 FROM DBA_SYNC_CAPTURE;

Your output looks similar to the following:

Synchronous Synchronous
Capture Name Capture Queue Positive Rule Set Capture User
-------------------- -------------------- -------------------- ---------------
SYNC01_CAPTURE STRM01_QUEUE RULESET$_21 STRMADMIN
SYNC02_CAPTURE STRM02_QUEUE SYNC02_RULE_SET HR

24.2.2 Displaying the Tables For Which Synchronous Capture
Captures Changes

The DBA_SYNC_CAPTURE_TABLES view displays the tables whose DML changes are
captured by any synchronous capture in the local database. The
DBA_STREAMS_TABLE_RULES view has information about each synchronous capture name
and the rules used by each synchronous capture. You can display the following
information by running the query in this section:

• The name of each synchronous capture

• The name of each rule used by the synchronous capture

• If the rule is a subset rule, then the type of subsetting operation covered by the
rule

• The owner of each table specified in each rule

• The name of each table specified in each rule

• Whether synchronous capture is enabled or disabled for the table. If the
synchronous capture is enabled for a table, then it captures DML changes made to
the table. If synchronous capture is not enabled for a table, then it does not
capture DML changes made to the table.

To display this information, run the following query:

COLUMN STREAMS_NAME HEADING 'Synchronous|Capture Name' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN SUBSETTING_OPERATION HEADING 'Subsetting|Operation' FORMAT A10
COLUMN TABLE_OWNER HEADING 'Table|Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN ENABLED HEADING 'Enabled?' FORMAT A8

SELECT r.STREAMS_NAME,
 r.RULE_NAME,
 r.SUBSETTING_OPERATION,
 t.TABLE_OWNER,
 t.TABLE_NAME,
 t.ENABLED
 FROM DBA_STREAMS_TABLE_RULES r,
 DBA_SYNC_CAPTURE_TABLES t
 WHERE r.STREAMS_TYPE = 'SYNC_CAPTURE' AND
 r.TABLE_OWNER = t.TABLE_OWNER AND
 r.TABLE_NAME = t.TABLE_NAME;

Your output looks similar to the following:

Synchronous Subsetting Table
Capture Name Rule Name Operation Owner Table Name Enabled?

Chapter 24
Monitoring a Synchronous Capture

24-30

--------------- --------------- ---------- ---------- --------------- --------
SYNC01_CAPTURE EMPLOYEES20 HR EMPLOYEES YES
SYNC02_CAPTURE DEPARTMENTS24 DELETE HR DEPARTMENTS YES
SYNC02_CAPTURE DEPARTMENTS23 UPDATE HR DEPARTMENTS YES
SYNC02_CAPTURE DEPARTMENTS22 INSERT HR DEPARTMENTS YES

This output indicates that synchronous capture sync01_capture captures DML changes
made to the hr.employees table. This output also indicates that synchronous capture
sync02_capture captures a subset of the changes to the hr.departments table.

If the ENABLED column shows NO for a table, then synchronous capture does not capture
changes to the table. The ENABLED column shows NO when a table rule is added to a
synchronous capture rule set by a procedure other than ADD_TABLE_RULES or
ADD_SUBSET_RULES in the DBMS_STREAMS_ADM package. For example, if the ADD_RULE
procedure in the DBMS_RULE_ADM package adds a table rule to a synchronous capture
rule set, then the table appears when you query the DBA_SYNC_CAPTURE_TABLES view, but
synchronous capture does not capture DML changes to the table. No results appear in
the DBA_SYNC_CAPTURE_TABLES view for schema and global rules.

24.3 Viewing the Extra Attributes Captured by Implicit
Capture

You can use the INCLUDE_EXTRA_ATTRIBUTE procedure in the DBMS_CAPTURE_ADM package
to instruct a capture process or synchronous capture to capture one or more extra
attributes and include the extra attributes in LCRs. The following query displays the
extra attributes included in the LCRs captured by each capture process and
synchronous capture in the local database:

COLUMN CAPTURE_NAME HEADING 'Capture Process or|Synchronous Capture' FORMAT A20
COLUMN ATTRIBUTE_NAME HEADING 'Attribute Name' FORMAT A15
COLUMN INCLUDE HEADING 'Include Attribute in LCRs?' FORMAT A30

SELECT CAPTURE_NAME, ATTRIBUTE_NAME, INCLUDE
 FROM DBA_CAPTURE_EXTRA_ATTRIBUTES
 ORDER BY CAPTURE_NAME;

Your output looks similar to the following:

Capture Process or Attribute Name Include Attribute in LCRs?
Synchronous Capture
-------------------- --------------- ------------------------------
SYNC_CAPTURE ROW_ID NO
SYNC_CAPTURE SERIAL# NO
SYNC_CAPTURE SESSION# NO
SYNC_CAPTURE THREAD# NO
SYNC_CAPTURE TX_NAME YES
SYNC_CAPTURE USERNAME NO

Based on this output, the capture process or synchronous capture named sync_capture
includes the transaction name (tx_name) in the LCRs that it captures, but this capture
process or synchronous capture does not include any other extra attributes in the
LCRs that it captures. To determine whether name returned by the CAPTURE_NAME
column is a capture process or a synchronous capture, query the DBA_CAPTURE and
DBA_SYNC_CAPTURE views.

Chapter 24
Viewing the Extra Attributes Captured by Implicit Capture

24-31

See Also:

• "Extra Information in LCRs"

• "Managing Extra Attributes in Captured LCRs"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the INCLUDE_EXTRA_ATTRIBUTE procedure

Chapter 24
Viewing the Extra Attributes Captured by Implicit Capture

24-32

25
Monitoring Oracle Streams Queues and
Propagations

The following topics describe monitoring Oracle Streams queues and propagations:

• Monitoring Queues and Messaging

• Monitoring Buffered Queues

• Monitoring Oracle Streams Propagations and Propagation Jobs

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
help for the Oracle Streams tool for more information.

See Also:

• Oracle Streams Staging and Propagation

• Managing Staging and Propagation

• Oracle Database Reference for information about the data dictionary
views described in this chapter

25.1 Monitoring Queues and Messaging
The following topics describe displaying information about queues and messaging:

• Displaying the ANYDATA Queues in a Database

• Viewing the Messaging Clients in a Database

• Viewing Message Notifications

• Determining the Consumer of Each Message in a Persistent Queue

• Viewing the Contents of Messages in a Persistent Queue

25-1

See Also:

• Oracle Streams Staging and Propagation

• Managing Staging and Propagation

25.1.1 Displaying the ANYDATA Queues in a Database
To display all of the ANYDATA queues in a database, run the following query:

COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN NAME HEADING 'Queue Name' FORMAT A28
COLUMN QUEUE_TABLE HEADING 'Queue Table' FORMAT A22
COLUMN USER_COMMENT HEADING 'Comment' FORMAT A15

SELECT q.OWNER, q.NAME, t.QUEUE_TABLE, q.USER_COMMENT
 FROM DBA_QUEUES q, DBA_QUEUE_TABLES t
 WHERE t.OBJECT_TYPE = 'SYS.ANYDATA' AND
 q.QUEUE_TABLE = t.QUEUE_TABLE AND
 q.OWNER = t.OWNER;

Your output looks similar to the following:

Owner Queue Name Queue Table Comment
---------- ---------------------------- ---------------------- ---------------
STRMADMIN DB$APPQ DB$APPQT
STRMADMIN AQ$_DB$APPQT_E DB$APPQT exception queue
STRMADMIN DA$CAPQ DA$CAPQT
STRMADMIN AQ$_DA$CAPQT_E DA$CAPQT exception queue
IX STREAMS_QUEUE STREAMS_QUEUE_TABLE
IX AQ$_STREAMS_QUEUE_TABLE_E STREAMS_QUEUE_TABLE exception queue

An exception queue is created automatically when you create an ANYDATA queue.

See Also:

"Managing Queues"

25.1.2 Viewing the Messaging Clients in a Database
You can view the messaging clients in a database by querying the
DBA_STREAMS_MESSAGE_CONSUMERS data dictionary view. The query in this section displays
the following information about each messaging client:

• The name of the messaging client

• The queue used by the messaging client

• The positive rule set used by the messaging client

• The negative rule set used by the messaging client

Run the following query to view this information about messaging clients:

Chapter 25
Monitoring Queues and Messaging

25-2

COLUMN STREAMS_NAME HEADING 'Messaging|Client' FORMAT A25
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A18
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A11
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A11

SELECT STREAMS_NAME,
 QUEUE_OWNER,
 QUEUE_NAME,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_NAME
 FROM DBA_STREAMS_MESSAGE_CONSUMERS;

Your output looks similar to the following:

Messaging Queue Positive Negative
Client Owner Queue Name Rule Set Rule Set
------------------------- ---------- ------------------ ----------- -----------
SCHEDULER_PICKUP SYS SCHEDULER$_JOBQ RULESET$_8
SCHEDULER_COORDINATOR SYS SCHEDULER$_JOBQ RULESET$_4
HR STRMADMIN STREAMS_QUEUE RULESET$_15

See Also:

Oracle Streams Staging and Propagation for more information about
messaging clients

25.1.3 Viewing Message Notifications
You can configure a message notification to send a notification when a message that
can be dequeued by a messaging client is enqueued into a queue. The notification can
be sent to an e-mail address, to an HTTP URL, or to a PL/SQL procedure. Run the
following query to view the message notifications configured in a database:

COLUMN STREAMS_NAME HEADING 'Messaging|Client' FORMAT A10
COLUMN QUEUE_OWNER HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A20
COLUMN NOTIFICATION_TYPE HEADING 'Notification|Type' FORMAT A15
COLUMN NOTIFICATION_ACTION HEADING 'Notification|Action' FORMAT A25

SELECT STREAMS_NAME,
 QUEUE_OWNER,
 QUEUE_NAME,
 NOTIFICATION_TYPE,
 NOTIFICATION_ACTION
 FROM DBA_STREAMS_MESSAGE_CONSUMERS
 WHERE NOTIFICATION_TYPE IS NOT NULL;

Your output looks similar to the following:

Messaging Queue Notification Notification
Client Owner Queue Name Type Action
---------- ----- -------------------- --------------- -------------------------
OE OE NOTIFICATION_QUEUE MAIL mary.smith@example.com

Chapter 25
Monitoring Queues and Messaging

25-3

See Also:

Oracle Database Advanced Queuing User's Guide

25.1.4 Determining the Consumer of Each Message in a Persistent
Queue

To determine the consumer for each message in a persistent queue, query
AQ$queue_table_name in the queue owner's schema, where queue_table_name is the
name of the queue table. For example, to find the consumers of the messages in the
oe_q_table_any queue table, run the following query:

COLUMN MSG_ID HEADING 'Message ID' FORMAT 9999
COLUMN MSG_STATE HEADING 'Message State' FORMAT A13
COLUMN CONSUMER_NAME HEADING 'Consumer' FORMAT A30

SELECT MSG_ID, MSG_STATE, CONSUMER_NAME FROM AQ$OE_Q_TABLE_ANY;

Your output looks similar to the following:

Message ID Message State Consumer
-------------------------------- ------------- ------------------------------
B79AC412AE6E08CAE034080020AE3E0A PROCESSED OE
B79AC412AE6F08CAE034080020AE3E0A PROCESSED OE
B79AC412AE7008CAE034080020AE3E0A PROCESSED OE

Note:

This query lists only messages in a persistent queue, not captured LCRs or
other messages in a buffered queue.

See Also:

Oracle Database Advanced Queuing User's Guide for an example that
enqueues messages into an ANYDATA queue

25.1.5 Viewing the Contents of Messages in a Persistent Queue
In an ANYDATA queue, to view the contents of a payload that is encapsulated within an
ANYDATA payload, you query the queue table using the Accessdata_type static functions
of the ANYDATA type, where data_type is the type of payload to view.

Chapter 25
Monitoring Queues and Messaging

25-4

See Also:

Oracle Database Advanced Queuing User's Guide for an example that
enqueues the messages shown in the queries in this section into an ANYDATA
queue

For example, to view the contents of payload of type NUMBER in a queue with a queue
table named oe_queue_table, run the following query as the queue owner:

SELECT qt.user_data.AccessNumber() "Numbers in Queue"
 FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following:

Numbers in Queue

 16

Similarly, to view the contents of a payload of type VARCHAR2 in a queue with a queue
table named oe_q_table_any, run the following query:

SELECT qt.user_data.AccessVarchar2() "Varchar2s in Queue"
 FROM strmadmin.oe_q_table_any qt;

Your output looks similar to the following:

Varchar2s in Queue
--
Chemicals - SW

To view the contents of a user-defined data type, you query the queue table using a
custom function that you create. For example, to view the contents of a payload of
oe.cust_address_typ, create a function similar to the following:

CREATE OR REPLACE FUNCTION oe.view_cust_address_typ(
in_any IN ANYDATA)
RETURN oe.cust_address_typ
IS
 address oe.cust_address_typ;
 num_var NUMBER;
BEGIN
 IF (in_any.GetTypeName() = 'OE.CUST_ADDRESS_TYP') THEN
 num_var := in_any.GetObject(address);
 RETURN address;
 ELSE RETURN NULL;
 END IF;
END;
/

GRANT EXECUTE ON oe.view_cust_address_typ TO strmadmin;

GRANT EXECUTE ON oe.cust_address_typ TO strmadmin;

Query the queue table using the function, as in the following example:

SELECT oe.view_cust_address_typ(qt.user_data) "Customer Addresses"
 FROM strmadmin.oe_q_table_any qt
 WHERE qt.user_data.GetTypeName() = 'OE.CUST_ADDRESS_TYP';

Chapter 25
Monitoring Queues and Messaging

25-5

Your output looks similar to the following:

Customer Addresses(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID
--
CUST_ADDRESS_TYP('1646 Brazil Blvd', '361168', 'Chennai', 'Tam', 'IN')

25.2 Monitoring Buffered Queues
A buffered queue includes the following storage areas:

• System Global Area (SGA) memory associated with a queue

• Part of the queue table for a queue that stores messages that have spilled from
memory

Buffered queues are stored in the Oracle Streams pool, and the Oracle Streams pool
is a portion of memory in the SGA that is used by Oracle Streams. In an Oracle
Streams environment, LCRs captured by a capture process always are stored in the
buffered queue of an ANYDATA queue. Users and application can also enqueue
messages into buffered queues, and these buffered queues be part of ANYDATA queues
or part of typed queues.

Buffered queues enable Oracle databases to optimize messages by storing them in
the SGA instead of always storing them in a queue table. Captured LCRs always are
stored in buffered queues, but other types of messages can be stored in buffered
queues or persistently in queue tables. Messages in a buffered queue can spill from
memory if they have been staged in the buffered queue for a period of time without
being dequeued, or if there is not enough space in memory to hold all of the
messages. Messages that spill from memory are stored in the appropriate queue
table.

The following sections describe queries that monitor buffered queues:

• Determining the Number of Messages in Each Buffered Queue

• Viewing the Capture Processes for the LCRs in Each Buffered Queue

• Displaying Information About Propagations that Send Buffered Messages

• Displaying the Number of Messages and Bytes Sent By Propagations

• Displaying Performance Statistics for Propagations that Send Buffered Messages

• Viewing the Propagations Dequeuing Messages from Each Buffered Queue

• Displaying Performance Statistics for Propagations That Receive Buffered
Messages

• Viewing the Apply Processes Dequeuing Messages from Each Buffered Queue

25.2.1 Determining the Number of Messages in Each Buffered Queue
The V$BUFFERED_QUEUES dynamic performance view contains information about the
number of messages in a buffered queue. The messages can be captured LCRs,
buffered LCRs, or buffered user messages.

You can determine the following information about each buffered queue in a database
by running the query in this section:

• The queue owner

Chapter 25
Monitoring Buffered Queues

25-6

• The queue name

• The number of messages currently in memory

• The number of messages that have spilled from memory into the queue table

• The total number of messages in the buffered queue, which includes the
messages in memory and the messages spilled to the queue table

To display this information, run the following query:

COLUMN QUEUE_SCHEMA HEADING 'Queue Owner' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A15
COLUMN MEM_MSG HEADING 'Messages|in Memory' FORMAT 99999999
COLUMN SPILL_MSGS HEADING 'Messages|Spilled' FORMAT 99999999
COLUMN NUM_MSGS HEADING 'Total Messages|in Buffered Queue' FORMAT 99999999

SELECT QUEUE_SCHEMA,
 QUEUE_NAME,
 (NUM_MSGS - SPILL_MSGS) MEM_MSG,
 SPILL_MSGS,
 NUM_MSGS
 FROM V$BUFFERED_QUEUES;

Your output looks similar to the following:

 Messages Messages Total Messages
Queue Owner Queue Name in Memory Spilled in Buffered Queue
--------------- --------------- ------------- ------------- -------------------
STRMADMIN STREAMS_QUEUE 534 21 555

25.2.2 Viewing the Capture Processes for the LCRs in Each Buffered
Queue

A capture process is a queue publisher that enqueues captured LCRs into a buffered
queue. These LCRs can be propagated to other queues subsequently. By querying
the V$BUFFERED_PUBLISHERS dynamic performance view, you can display each capture
process that captured the LCRs in the buffered queue. These LCRs might have been
captured at the local database, or they might have been captured at a remote
database and propagated to the queue specified in the query.

The query in this section assumes that the buffered queues in the local database only
store captured LCRs, not buffered LCRs or buffered user messages. The query
displays the following information about each capture process:

• The name of a capture process that captured the LCRs in the buffered queue

• If the capture process is running on a remote database, and the captured LCRs
have been propagated to the local queue, then the name of the queue and
database from which the captured LCRs were last propagated

• The name of the local queue staging the captured LCRs

• The total number of LCRs captured by a capture process that have been staged in
the buffered queue since the database instance was last started

• The message number of the LCR last enqueued into the buffered queue from the
sender

• The percentage of the Streams pool used at the capture process database

Chapter 25
Monitoring Buffered Queues

25-7

• The state of the publisher. The capture process is the publisher, and the following
states are possible:

– PUBLISHING MESSAGES

– IN FLOW CONTROL: TOO MANY UNBROWSED MESSAGES

– IN FLOW CONTROL: OVERSPILLED MESSAGES

– IN FLOW CONTROL: INSUFFICIENT MEMORY AND UNBROWSED MESSAGES

To display this information, run the following query:

COLUMN SENDER_NAME HEADING 'Capture|Process' FORMAT A10
COLUMN SENDER_ADDRESS HEADING 'Sender Queue' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue Name' FORMAT A10
COLUMN CNUM_MSGS HEADING 'Number|of LCRs|Enqueued' FORMAT 99999999
COLUMN LAST_ENQUEUED_MSG HEADING 'Last|Enqueued|LCR' FORMAT 9999999999
COLUMN MEMORY_USAGE HEADING 'Percent|Streams|Pool|Used' FORMAT 999
COLUMN PUBLISHER_STATE HEADING 'Publisher|State' FORMAT A10

SELECT SENDER_NAME,
 SENDER_ADDRESS,
 QUEUE_NAME,
 CNUM_MSGS,
 LAST_ENQUEUED_MSG,
 MEMORY_USAGE,
 PUBLISHER_STATE
 FROM V$BUFFERED_PUBLISHERS;

Your output looks similar to the following:

 Percent
 Number Last Streams
Capture of LCRs Enqueued Pool Publisher
Process Sender Queue Queue Name Enqueued LCR Used State
---------- --------------- ---------- --------- ----------- ------- ----------
DB1$CAP DB1$CAPQ 3670 1002253 21 PUBLISHING
 MESSAGES

DB2$CAP "STRMADMIN"."DB DB2$APPQ 3427 981066 21 PUBLISHING
 2$CAPQ"@DB2.EXA MESSAGES
 MPLE.COM

This output shows following:

• 3670 LCRs from the local db1$cap capture process were enqueued into the local
queue named db1$capq. The capture process is local because the Sender Queue
column is NULL. The message number of the last enqueued LCR from this capture
process was 1002253. 21% of the Streams pool is used at the capture process
database, and the capture process is publishing messages normally.

• 3427 LCRs from the db2$cap capture process running on a remote database were
propagated from a queue named db2$capq on database db2.example.com to the
local queue named db2$appq. The message number of the last enqueued LCR
from this sender was 961066. 21% of the Streams pool is used at the remote
capture process database, and the capture process is publishing messages
normally.

Chapter 25
Monitoring Buffered Queues

25-8

25.2.3 Displaying Information About Propagations that Send Buffered
Messages

The query in this section displays the following information about each propagation
that sends buffered messages from a buffered queue in the local database:

• The name of the propagation

• The queue owner

• The queue name

• The name of the database link used by the propagation

• The status of the propagation schedule

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A10
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN DBLINK HEADING 'Database|Link' FORMAT A10
COLUMN SCHEDULE_STATUS HEADING 'Schedule Status' FORMAT A20

SELECT p.PROPAGATION_NAME,
 s.QUEUE_SCHEMA,
 s.QUEUE_NAME,
 s.DBLINK,
 s.SCHEDULE_STATUS
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

 Queue Queue Database
Propagation Owner Name Link Schedule Status
--------------- ---------- --------------- ---------- --------------------
PROPAGATION$_6 STRMADMIN DB1$CAPQ "STRMADMIN SCHEDULE OPTIMIZED
 "."DB1$APP
 Q"@DB2.EXA
 MPLE.COM

When the SCHEDULE_STATUS column in the V$PROPAGATION_SENDER view shows SCHEDULE
OPTIMIZED for a propagation, it means that the propagation is part of a combined
capture and apply optimization.

See Also:

Combined Capture and Apply Optimization

Chapter 25
Monitoring Buffered Queues

25-9

25.2.4 Displaying the Number of Messages and Bytes Sent By
Propagations

The query in this section displays the number of messages and the number of bytes
sent by each propagation that sends buffered messages from a buffered queue in the
local database:

• The name of the propagation

• The queue name

• The name of the database link used by the propagation

• The total number of messages sent since the database instance was last started

• The total number of bytes sent since the database instance was last started

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A15
COLUMN DBLINK HEADING 'Database|Link' FORMAT A20
COLUMN TOTAL_MSGS HEADING 'Total|Messages' FORMAT 99999999
COLUMN TOTAL_BYTES HEADING 'Total|Bytes' FORMAT 999999999999

SELECT p.PROPAGATION_NAME,
 s.QUEUE_NAME,
 s.DBLINK,
 s.TOTAL_MSGS,
 s.TOTAL_BYTES
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

 Queue Database Total Total
Propagation Name Link Messages Bytes
--------------- --------------- -------------------- --------- ---------
MULT1_TO_MULT3 STREAMS_QUEUE MULT3.EXAMPLE.COM 79 71467
MULT1_TO_MULT2 STREAMS_QUEUE MULT2.EXAMPLE.COM 79 71467

25.2.5 Displaying Performance Statistics for Propagations that Send
Buffered Messages

The query in this section displays the amount of time that a propagation sending
buffered messages spends performing various tasks. Each propagation sends
messages from the source queue to the destination queue. Specifically, the query
displays the following information:

• The name of the propagation

• The queue name

• The name of the database link used by the propagation

Chapter 25
Monitoring Buffered Queues

25-10

• The amount of time spent dequeuing messages from the queue since the
database instance was last started, in seconds

• The amount of time spent pickling messages since the database instance was last
started, in seconds. Pickling involves changing a message in memory into a series
of bytes that can be sent over a network.

• The amount of time spent propagating messages since the database instance was
last started, in seconds

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A13
COLUMN DBLINK HEADING 'Database|Link' FORMAT A9
COLUMN ELAPSED_DEQUEUE_TIME HEADING 'Dequeue|Time' FORMAT 99999999.99
COLUMN ELAPSED_PICKLE_TIME HEADING 'Pickle|Time' FORMAT 99999999.99
COLUMN ELAPSED_PROPAGATION_TIME HEADING 'Propagation|Time' FORMAT 99999999.99

SELECT p.PROPAGATION_NAME,
 s.QUEUE_NAME,
 s.DBLINK,
 (s.ELAPSED_DEQUEUE_TIME / 100) ELAPSED_DEQUEUE_TIME,
 (s.ELAPSED_PICKLE_TIME / 100) ELAPSED_PICKLE_TIME,
 (s.ELAPSED_PROPAGATION_TIME / 100) ELAPSED_PROPAGATION_TIME
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

 Queue Database Dequeue Pickle Propagation
Propagation Name Link Time Time Time
--------------- ------------- --------- ------------ ------------ ------------
MULT1_TO_MULT2 STREAMS_QUEUE MULT2.EXA 30.65 45.10 10.91
 MPLE.COM
MULT1_TO_MULT3 STREAMS_QUEUE MULT3.EXA 25.36 37.07 8.35
 MPLE.COM

25.2.6 Viewing the Propagations Dequeuing Messages from Each
Buffered Queue

Propagations are queue subscribers that can dequeue messages. By querying the
V$BUFFERED_SUBSCRIBERS dynamic performance view, you can display all the
propagations that can dequeue buffered messages.

Apply processes also are queue subscribers. This query joins with the DBA_PROPAGATION
and V$BUFFERED_QUEUES views to limit the output to propagations only and to show the
propagation name of each propagation.

The query in this section displays the following information about each propagation
that can dequeue messages from queues:

• The name of the propagation.

• The owner and name of the queue to which the propagation subscribes

This queue is the source queue for the propagation.

Chapter 25
Monitoring Buffered Queues

25-11

• The subscriber address

For a propagation, the subscriber address is the propagation's destination queue
and destination database

• The time when the propagation last started

• The cumulative number of messages dequeued by the propagation since the
database last started

• The total number of messages dequeued by the propagation since the
propagation last started

• The message number of the message most recently dequeued by the propagation

To display this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A11
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A5
COLUMN SUBSCRIBER_ADDRESS HEADING 'Subscriber|Address' FORMAT A15
COLUMN STARTUP_TIME HEADING 'Startup|Time' FORMAT A9
COLUMN CNUM_MSGS HEADING 'Cumulative|Messages' FORMAT 99999999
COLUMN TOTAL_DEQUEUED_MSG HEADING 'Total|Messages' FORMAT 99999999
COLUMN LAST_DEQUEUED_NUM HEADING 'Last|Dequeued|Message|Number' FORMAT 99999999

SELECT p.PROPAGATION_NAME,
 s.QUEUE_SCHEMA,
 s.QUEUE_NAME,
 s.SUBSCRIBER_ADDRESS,
 s.STARTUP_TIME,
 s.CNUM_MSGS,
 s.TOTAL_DEQUEUED_MSG,
 s.LAST_DEQUEUED_NUM
FROM DBA_PROPAGATION p, V$BUFFERED_SUBSCRIBERS s
WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.PROPAGATION_NAME = s.SUBSCRIBER_NAME AND
 s.SUBSCRIBER_ADDRESS LIKE '%' || p.DESTINATION_DBLINK;

Your output looks similar to the following:

 Last
 Dequeued
 Queue Queue Subscriber Startup Cumulative Total Message
Propagation Owner Name Address Time Messages Messages Number
----------- ----- ----- --------------- --------- ---------- --------- ---------
PROPAGATION STRMA DB1$C "STRMADMIN"."DB 25-JUN-09 11079 11079 1525762
$_5 DMIN APQ 1$APPQ"@DB2.EXA
 MPLE.COM

Note:

If there are multiple propagations using the same database link but
propagating messages to different queues at the destination database, then
the statistics returned by this query are approximate rather than accurate.

Chapter 25
Monitoring Buffered Queues

25-12

25.2.7 Displaying Performance Statistics for Propagations That
Receive Buffered Messages

The query in this section displays the amount of time that each propagation receiving
buffered messages spends performing various tasks. Each propagation receives the
messages and enqueues them into the destination queue for the propagation.
Specifically, the query displays the following information:

• The name of the source queue from which messages are propagated.

• The name of the source database.

• The amount of time spent unpickling messages since the database instance was
last started, in seconds. Unpickling involves changing a series of bytes that can be
sent over a network back into a buffered message in memory.

• The amount of time spent evaluating rules for propagated messages since the
database instance was last started, in seconds.

• The amount of time spent enqueuing messages into the destination queue for the
propagation since the database instance was last started, in seconds.

To display this information, run the following query:

COLUMN SRC_QUEUE_NAME HEADING 'Source|Queue|Name' FORMAT A20
COLUMN SRC_DBNAME HEADING 'Source|Database' FORMAT A20
COLUMN ELAPSED_UNPICKLE_TIME HEADING 'Unpickle|Time' FORMAT 99999999.99
COLUMN ELAPSED_RULE_TIME HEADING 'Rule|Evaluation|Time' FORMAT 99999999.99
COLUMN ELAPSED_ENQUEUE_TIME HEADING 'Enqueue|Time' FORMAT 99999999.99

SELECT SRC_QUEUE_NAME,
 SRC_DBNAME,
 (ELAPSED_UNPICKLE_TIME / 100) ELAPSED_UNPICKLE_TIME,
 (ELAPSED_RULE_TIME / 100) ELAPSED_RULE_TIME,
 (ELAPSED_ENQUEUE_TIME / 100) ELAPSED_ENQUEUE_TIME
 FROM V$PROPAGATION_RECEIVER;

Your output looks similar to the following:

Source Rule
Queue Source Unpickle Evaluation Enqueue
Name Database Time Time Time
-------------------- -------------------- ------------ ------------ ------------
STREAMS_QUEUE MULT2.EXAMPLE.COM 45.65 5.44 45.85
STREAMS_QUEUE MULT3.EXAMPLE.COM 53.35 8.01 50.41

25.2.8 Viewing the Apply Processes Dequeuing Messages from Each
Buffered Queue

Apply processes are queue subscribers that can dequeue messages. By querying the
V$BUFFERED_SUBSCRIBERS dynamic performance view, you can display all the apply
processes that can dequeue messages.

This query joins with the V$BUFFERED_QUEUES views to show the name of the queue. In
addition, propagations also are queue subscribers, and this query limits the output to
subscribers where the SUBSCRIBER_ADDRESS is NULL to return only apply processes.

Chapter 25
Monitoring Buffered Queues

25-13

The query in this section displays the following information about the apply processes
that can dequeue messages from queues:

• The name of the apply process

• The queue owner

• The queue name

• The time when the apply process last started

• The cumulative number of messages dequeued by the apply process since the
database last started

• The total number of messages dequeued by the apply process since the apply
process last started

• The message number of the message most recently dequeued by the apply
process

To display this information, run the following query:

COLUMN SUBSCRIBER_NAME HEADING 'Apply Process' FORMAT A16
COLUMN QUEUE_SCHEMA HEADING 'Queue|Owner' FORMAT A5
COLUMN QUEUE_NAME HEADING 'Queue|Name' FORMAT A5
COLUMN STARTUP_TIME HEADING 'Startup|Time' FORMAT A9
COLUMN CNUM_MSGS HEADING 'Cumulative|Messages' FORMAT 99999999
COLUMN TOTAL_DEQUEUED_MSG HEADING 'Number of|Dequeued|Messages'
 FORMAT 99999999
COLUMN LAST_DEQUEUED_NUM HEADING 'Last|Dequeued|Message|Number' FORMAT 99999999

SELECT s.SUBSCRIBER_NAME,
 q.QUEUE_SCHEMA,
 q.QUEUE_NAME,
 s.STARTUP_TIME,
 s.CNUM_MSGS,
 s.TOTAL_DEQUEUED_MSG,
 s.LAST_DEQUEUED_NUM
FROM V$BUFFERED_QUEUES q, V$BUFFERED_SUBSCRIBERS s, DBA_APPLY a
WHERE q.QUEUE_ID = s.QUEUE_ID AND
 s.SUBSCRIBER_ADDRESS IS NULL AND
 s.SUBSCRIBER_NAME = a.APPLY_NAME;

Your output looks similar to the following:

 Last
 Number of Dequeued
 Queue Queue Startup Cumulative Dequeued Message
Apply Process Owner Name Time Messages Messages Number
---------------- ----- ----- --------- ---------- ---------- ---------
APPLY$_DB2_2 STRMA DB2$A 25-JUN-09 11039 11039 1509859
 DMIN PPQ

25.3 Monitoring Oracle Streams Propagations and
Propagation Jobs

The following topics describe monitoring propagations and propagation jobs:

• Displaying the Queues and Database Link for Each Propagation

• Determining the Source Queue and Destination Queue for Each Propagation

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-14

• Determining the Rule Sets for Each Propagation

• Displaying Information About the Schedules for Propagation Jobs

• Determining the Total Number of Messages and Bytes Propagated

• Displaying Information About Propagation Senders

• Displaying Information About Propagation Receivers

• Displaying Session Information About Each Propagation

See Also:

• Oracle Streams Staging and Propagation

• "Managing Oracle Streams Propagations and Propagation Jobs"

• Troubleshooting Propagation

25.3.1 Displaying the Queues and Database Link for Each
Propagation

You can display information about each propagation by querying the DBA_PROPAGATION
data dictionary view. This view contains information about each propagation with a
source queue is at the local database.

The query in this section displays the following information about each propagation:

• The propagation name

• The source queue name

• The database link used by the propagation

• The destination queue name

• The status of the propagation, either ENABLED, DISABLED, or ABORTED

• Whether the propagation is a queue-to-queue propagation

To display this information about each propagation in a database, run the following
query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A19
COLUMN SOURCE_QUEUE_NAME HEADING 'Source|Queue|Name' FORMAT A17
COLUMN DESTINATION_DBLINK HEADING 'Database|Link' FORMAT A9
COLUMN DESTINATION_QUEUE_NAME HEADING 'Dest|Queue|Name' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN QUEUE_TO_QUEUE HEADING 'Queue-|to-|Queue?' FORMAT A6

SELECT PROPAGATION_NAME,
 SOURCE_QUEUE_NAME,
 DESTINATION_DBLINK,
 DESTINATION_QUEUE_NAME,
 STATUS,
 QUEUE_TO_QUEUE
 FROM DBA_PROPAGATION;

Your output looks similar to the following:

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-15

 Source Dest Queue-
Propagation Queue Database Queue to-
Name Name Link Name Status Queue?
------------------- ----------------- --------- --------------- -------- ------
PROPAGATION$_6 DA$CAPQ DB.EXAMPL DA$APPQ ENABLED TRUE
 E.COM

25.3.2 Determining the Source Queue and Destination Queue for
Each Propagation

You can determine the source queue and destination queue for each propagation by
querying the DBA_PROPAGATION data dictionary view.

The query in this section displays the following information about each propagation:

• The propagation name

• The source queue owner

• The source queue name

• The database that contains the source queue

• The destination queue owner

• The destination queue name

• The database that contains the destination queue

To display this information about each propagation in a database, run the following
query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN SOURCE_QUEUE_OWNER HEADING 'Source|Queue|Owner' FORMAT A10
COLUMN 'Source Queue' HEADING 'Source|Queue' FORMAT A15
COLUMN DESTINATION_QUEUE_OWNER HEADING 'Dest|Queue|Owner' FORMAT A10
COLUMN 'Destination Queue' HEADING 'Destination|Queue' FORMAT A15

SELECT p.PROPAGATION_NAME,
 p.SOURCE_QUEUE_OWNER,
 p.SOURCE_QUEUE_NAME ||'@'||
 g.GLOBAL_NAME "Source Queue",
 p.DESTINATION_QUEUE_OWNER,
 p.DESTINATION_QUEUE_NAME ||'@'||
 p.DESTINATION_DBLINK "Destination Queue"
 FROM DBA_PROPAGATION p, GLOBAL_NAME g;

Your output looks similar to the following:

 Source Dest
Propagation Queue Source Queue Destination
Name Owner Queue Owner Queue
-------------------- ---------- --------------- ---------- ---------------
PROPAGATION$_6 STRMADMIN DA$CAPQ@DA.EXAM STRMADMIN DA$APPQ@DB.EXAM
 PLE.COM PLE.COM

25.3.3 Determining the Rule Sets for Each Propagation
The query in this section displays the following information for each propagation:

• The propagation name

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-16

• The owner of the positive rule set for the propagation

• The name of the positive rule set used by the propagation

• The owner of the negative rule set used by the propagation

• The name of the negative rule set used by the propagation

To display this general information about each propagation in a database, run the
following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN RULE_SET_OWNER HEADING 'Positive|Rule Set|Owner' FORMAT A10
COLUMN RULE_SET_NAME HEADING 'Positive Rule|Set Name' FORMAT A15
COLUMN NEGATIVE_RULE_SET_OWNER HEADING 'Negative|Rule Set|Owner' FORMAT A10
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative Rule|Set Name' FORMAT A15

SELECT PROPAGATION_NAME,
 RULE_SET_OWNER,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_OWNER,
 NEGATIVE_RULE_SET_NAME
 FROM DBA_PROPAGATION;

Your output looks similar to the following:

 Positive Negative
Propagation Rule Set Positive Rule Rule Set Negative Rule
Name Owner Set Name Owner Set Name
-------------------- ---------- --------------- ---------- ---------------
PROPAGATION$_6 STRMADMIN RULESET$_7 STRMADMIN RULESET$_9

25.3.4 Displaying Information About the Schedules for Propagation
Jobs

The query in this section displays the following information about the propagation
schedules for each propagation job used by a propagation in the database:

• The name of the propagation

• The latency of the propagation job, which is the maximum wait time to propagate a
new message during the duration, when all other messages in the queue to the
relevant destination have been propagated

• Whether the propagation job is enabled

• The name of the process that most recently executed the schedule

• The number of consecutive times schedule execution has failed, if any

After 16 consecutive failures, a propagation job is aborted automatically.

• Whether the propagation is queue-to-queue or queue-to-dblink

• The error message text of the last unsuccessful propagation execution

Run this query at the database that contains the source queue:

COLUMN PROPAGATION_NAME HEADING 'Propagation' FORMAT A15
COLUMN LATENCY HEADING 'Latency|in Seconds' FORMAT 99999
COLUMN SCHEDULE_DISABLED HEADING 'Status' FORMAT A8
COLUMN PROCESS_NAME HEADING 'Process' FORMAT A8
COLUMN FAILURES HEADING 'Failures' FORMAT 999

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-17

COLUMN QUEUE_TO_QUEUE HEADING 'Queue|to|Queue'
COLUMN LAST_ERROR_MSG HEADING 'Last Error|Message' FORMAT A15

SELECT p.PROPAGATION_NAME,
 s.LATENCY,
 DECODE(s.SCHEDULE_DISABLED,
 'Y', 'Disabled',
 'N', 'Enabled') SCHEDULE_DISABLED,
 s.PROCESS_NAME,
 s.FAILURES,
 p.QUEUE_TO_QUEUE,
 s.LAST_ERROR_MSG
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE s.MESSAGE_DELIVERY_MODE = 'BUFFERED'
 AND s.DESTINATION LIKE '%' || p.DESTINATION_DBLINK
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME
 ORDER BY PROPAGATION_NAME;

Your output looks similar to the following:

 Queue
 Latency to Last Error
Propagation in Seconds Status Process Failures Queue Message
--------------- ---------- -------- -------- -------- ------ ---------------
PROPAGATION$_6 19 Enabled CS00 0 TRUE

See Also:

• "Propagation Scheduling and Oracle Streams Propagations" for more
information about the default propagation schedule for an Oracle Streams
propagation job

• "Queue-to-Queue Propagations"

• "Is the Propagation Enabled?" if the propagation job is disabled

• Oracle Database Advanced Queuing User's Guide and Oracle Database
Reference for more information about the DBA_QUEUE_SCHEDULES data
dictionary view

25.3.5 Determining the Total Number of Messages and Bytes
Propagated

A propagation can be queue-to-queue or queue-to-database link (queue-to-dblink). A
queue-to-queue propagation always has its own exclusive propagation job to
propagate messages from the source queue to the destination queue. Because each
propagation job has its own propagation schedule, the propagation schedule of each
queue-to-queue propagation can be managed separately. All queue-to-dblink
propagations that share the same database link have a single propagation schedule.

The query in this section displays the following information for each propagation:

• The name of the propagation

• The total time spent by the system executing the propagation schedule

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-18

• The total number of messages propagated by the propagation schedule

• The total number of bytes propagated by the propagation schedule

Run the following query to display this information for each propagation with a source
queue at the local database:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A20
COLUMN TOTAL_TIME HEADING 'Total Time|Executing|in Seconds' FORMAT 999999
COLUMN TOTAL_NUMBER HEADING 'Total Messages|Propagated' FORMAT 999999999
COLUMN TOTAL_BYTES HEADING 'Total Bytes|Propagated' FORMAT 9999999999999

SELECT p.PROPAGATION_NAME, s.TOTAL_TIME, s.TOTAL_NUMBER, s.TOTAL_BYTES
 FROM DBA_QUEUE_SCHEDULES s, DBA_PROPAGATION p
 WHERE s.DESTINATION LIKE '%' || p.DESTINATION_DBLINK
 AND s.SCHEMA = p.SOURCE_QUEUE_OWNER
 AND s.QNAME = p.SOURCE_QUEUE_NAME
 AND s.MESSAGE_DELIVERY_MODE = 'BUFFERED';

Your output looks similar to the following:

 Total Time
Propagation Executing Total Messages Total Bytes
Name in Seconds Propagated Propagated
-------------------- ---------- -------------- --------------
PROPAGATION$_6 0 432615 94751013

See Also:

Oracle Database Advanced Queuing User's Guide and Oracle Database
Reference for more information about the DBA_QUEUE_SCHEDULES data dictionary
view

25.3.6 Displaying Information About Propagation Senders
A propagation sender sends messages from a source queue to a destination queue.

The query in this section displays the following information about each propagation
sender in a database:

• The name of the propagation

• The session identifier of the propagation sender

• The session serial number of the propagation sender

• The operating system process identification number of the propagation sender

• The state of the propagation sender

In a combined capture and apply optimization, the capture process acts as the
propagation sender and transmits messages directly to the propagation receiver.
When a propagation is part of a combined capture and apply optimization, this query
shows the capture process session ID, session serial number, operating system
process ID, and state.

When a propagation is not part of a combined capture and apply optimization, this
query shows the propagation job session ID, session serial number, operating system
process ID, and state.

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-19

To view this information, run the following query:

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A11
COLUMN SESSION_ID HEADING 'Session ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial Number' FORMAT 9999
COLUMN SPID HEADING 'Operating System|Process ID' FORMAT A24
COLUMN STATE HEADING 'State' FORMAT A16

SELECT p.PROPAGATION_NAME,
 s.SESSION_ID,
 s.SERIAL#,
 s.SPID,
 s.STATE
 FROM DBA_PROPAGATION p, V$PROPAGATION_SENDER s
 WHERE p.SOURCE_QUEUE_OWNER = s.QUEUE_SCHEMA AND
 p.SOURCE_QUEUE_NAME = s.QUEUE_NAME AND
 p.DESTINATION_QUEUE_OWNER = s.DST_QUEUE_SCHEMA AND
 p.DESTINATION_QUEUE_NAME = s.DST_QUEUE_NAME;

Your output looks similar to the following:

Propagation Session Operating System
Name Session ID Serial Number Process ID State
----------- ---------- ------------- ------------------------ ----------------
PROPAGATION 61 17 21145 Waiting on empty
$_6 queue

Note:

When column SCHEDULE_STATUS in the V$PROPAGATION_SENDER view shows
SCHEDULE OPTIMIZED, it means that the propagation is part of a combined
capture and apply optimization.

See Also:

Combined Capture and Apply Optimization

25.3.7 Displaying Information About Propagation Receivers
A propagation receiver enqueues messages sent by propagation senders into a
destination queue. The query in this section displays the following information about
each propagation receiver in a database:

• The name of the propagation

• The session ID of the propagation receiver

• The session serial number propagation receiver

• The operating system process identification number of the propagation receiver

• The state of the propagation receiver

To view this information, run the following query:

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-20

COLUMN PROPAGATION_NAME HEADING 'Propagation|Name' FORMAT A15
COLUMN SESSION_ID HEADING 'Session ID' FORMAT 999999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 999999
COLUMN SPID HEADING 'Operating|System|Process ID' FORMAT 999999
COLUMN STATE HEADING 'State' FORMAT A16

SELECT PROPAGATION_NAME,
 SESSION_ID,
 SERIAL#,
 SPID,
 STATE
 FROM V$PROPAGATION_RECEIVER;

Your output looks similar to the following:

 Session Operating
Propagation Serial System
Name Session ID Number Process ID State
--------------- ---------- ------- ------------------------ ----------------
PROPAGATION$_5 60 5 21050 Waiting for mess
 age from propaga
 tion sender

25.3.8 Displaying Session Information About Each Propagation
The query in this section displays the following session information about each session
associated with a propagation in a database:

• The Oracle Streams component

• The session identifier

• The serial number

• The operating system process identification number

• The process names of the propagation sender and propagation receiver
processes

To display this information for each propagation in a database, run the following query:

COLUMN ACTION HEADING 'Streams Component' FORMAT A28
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A20
COLUMN PROCESS_NAME HEADING 'Process|Names' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='Streams' AND
 ACTION LIKE '%Propagation%';

Your output looks similar to the following:

 Session
 Serial Operating System Process
Streams Component Session ID Number Process Number Names
---------------------------- ---------- -------- -------------------- -------

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-21

APPLY$_DB_3 - Propagation Re 60 5 21048 TNS
ceiver CCA

PROPAGATION$_6 - Propagation 61 17 21145 CS00
Sender CCA

The CCA in the Streams component sample output indicates that the propagation is part
of a combined capture and apply optimization. The TNS process name indicates that
the propagation receiver was initiated remotely by a capture process.

See Also:

Combined Capture and Apply Optimization

Chapter 25
Monitoring Oracle Streams Propagations and Propagation Jobs

25-22

26
Monitoring Oracle Streams Apply
Processes

The following topics describe monitoring Oracle Streams apply processes:

• Determining the Queue, Rule Sets, and Status for Each Apply Process

• Displaying General Information About Each Apply Process

• Listing the Parameter Settings for Each Apply Process

• Displaying Information About Apply Handlers

• Displaying Session Information About Each Apply Process

• Displaying Information About the Reader Server for Each Apply Process

• Monitoring Transactions and Messages Spilled by Each Apply Process

• Determining Capture to Dequeue Latency for a Message

• Displaying General Information About Each Coordinator Process

• Displaying Information About Transactions Received and Applied

• Determining the Capture to Apply Latency for a Message for Each Apply Process

• Displaying Information About the Apply Servers for Each Apply Process

• Displaying Effective Apply Parallelism for an Apply Process

• Viewing Rules that Specify a Destination Queue on Apply

• Viewing Rules that Specify No Execution on Apply

• Determining Which Apply Processes Use Combined Capture and Apply

• Displaying the Substitute Key Columns Specified at a Destination Database

• Monitoring Virtual Dependency Definitions

• Checking for Apply Errors

• Displaying Detailed Information About Apply Errors

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the Oracle
Enterprise Manager Cloud Control online help for the Oracle Streams tool for
more information.

26-1

See Also:

• Oracle Streams Information Consumption

• Managing Oracle Streams Information Consumption

• Troubleshooting Apply

• Oracle Database Reference for information about the data dictionary
views described in this chapter

26.1 Determining the Queue, Rule Sets, and Status for Each
Apply Process

You can determine the following information for each apply process in a database by
running the query in this section:

• The apply process name

• The name of the queue used by the apply process

• The name of the positive rule set used by the apply process

• The name of the negative rule set used by the apply process

• The status of the apply process, either ENABLED, DISABLED, or ABORTED

To display this general information about each apply process in a database, run the
following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A15
COLUMN QUEUE_NAME HEADING 'Apply|Process|Queue' FORMAT A15
COLUMN RULE_SET_NAME HEADING 'Positive|Rule Set' FORMAT A15
COLUMN NEGATIVE_RULE_SET_NAME HEADING 'Negative|Rule Set' FORMAT A15
COLUMN STATUS HEADING 'Apply|Process|Status' FORMAT A15

SELECT APPLY_NAME,
 QUEUE_NAME,
 RULE_SET_NAME,
 NEGATIVE_RULE_SET_NAME,
 STATUS
 FROM DBA_APPLY;

Your output looks similar to the following:

Apply Apply Apply
Process Process Positive Negative Process
Name Queue Rule Set Rule Set Status
--------------- --------------- --------------- --------------- ---------------
STRM01_APPLY STREAMS_QUEUE RULESET$_36 ENABLED
APPLY_EMP STREAMS_QUEUE RULESET$_16 DISABLED
APPLY STREAMS_QUEUE RULESET$_21 RULESET$_23 ENABLED

If the status of an apply process is ABORTED, then you can query the ERROR_NUMBER and
ERROR_MESSAGE columns in the DBA_APPLY data dictionary view to determine the error.
These columns are populated when an apply process aborts or when an apply

Chapter 26
Determining the Queue, Rule Sets, and Status for Each Apply Process

26-2

process is disabled after reaching a limit. These columns are cleared when an apply
process is restarted.

Note:

The ERROR_NUMBER and ERROR_MESSAGE columns in the DBA_APPLY data dictionary
view are not related to the information in the DBA_APPLY_ERROR data dictionary
view.

See Also:

"Checking for Apply Errors" to check for apply errors if the apply process
status is ABORTED

26.2 Displaying General Information About Each Apply
Process

You can display the following general information about each apply process in a
database by running the query in this section:

• The apply process name.

• The type of messages applied by the apply process. An apply process either can
apply either captured LCRs, or an apply process can apply persistent LCRs and
persistent user messages.

• The apply user.

To display this general information about each apply process in a database, run the
following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN APPLY_CAPTURED HEADING 'Applies Captured LCRs?' FORMAT A22
COLUMN APPLY_USER HEADING 'Apply User' FORMAT A20

SELECT APPLY_NAME, APPLY_CAPTURED, APPLY_USER
 FROM DBA_APPLY;

Your output looks similar to the following:

Apply Process Name Applies Captured LCRs? Apply User
-------------------- ---------------------- --------------------
STRM01_APPLY YES STRMADMIN
SYNC_APPLY NO STRMADMIN

26.3 Listing the Parameter Settings for Each Apply Process
The following query displays the current setting for each apply process parameter for
each apply process in a database:

Chapter 26
Displaying General Information About Each Apply Process

26-3

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15
COLUMN PARAMETER HEADING 'Parameter' FORMAT A30
COLUMN VALUE HEADING 'Value' FORMAT A22
COLUMN SET_BY_USER HEADING 'Set by|User?' FORMAT A10

SELECT APPLY_NAME,
 PARAMETER,
 VALUE,
 SET_BY_USER
 FROM DBA_APPLY_PARAMETERS;

Your output looks similar to the following:

Apply Process Set by
Name Parameter Value User?
--------------- ------------------------------ ---------------------- ----------
APPLY$_DB_3 ALLOW_DUPLICATE_ROWS N NO
APPLY$_DB_3 APPLY_SEQUENCE_NEXTVAL N NO
APPLY$_DB_3 COMMIT_SERIALIZATION DEPENDENT_TRANSACTIONS NO
APPLY$_DB_3 COMPARE_KEY_ONLY N NO
APPLY$_DB_3 DISABLE_ON_ERROR Y NO
APPLY$_DB_3 DISABLE_ON_LIMIT N NO
APPLY$_DB_3 GROUPTRANSOPS 250 NO
APPLY$_DB_3 IGNORE_TRANSACTION NO
APPLY$_DB_3 MAXIMUM_SCN INFINITE NO
APPLY$_DB_3 MAX_SGA_SIZE INFINITE NO
APPLY$_DB_3 PARALLELISM 4 NO
APPLY$_DB_3 PRESERVE_ENCRYPTION Y NO
APPLY$_DB_3 RTRIM_ON_IMPLICIT_CONVERSION Y NO
APPLY$_DB_3 STARTUP_SECONDS 0 NO
APPLY$_DB_3 TIME_LIMIT INFINITE NO
APPLY$_DB_3 TRACE_LEVEL 0 NO
APPLY$_DB_3 TRANSACTION_LIMIT INFINITE NO
APPLY$_DB_3 TXN_AGE_SPILL_THRESHOLD 900 NO
APPLY$_DB_3 TXN_LCR_SPILL_THRESHOLD 10000 NO
APPLY$_DB_3 WRITE_ALERT_LOG Y NO

Note:

If the Set by User? column is NO for a parameter, then the parameter is set to its
default value. If the Set by User? column is YES for a parameter, then the
parameter was set by a user and might or might not be set to its default value.

Chapter 26
Listing the Parameter Settings for Each Apply Process

26-4

See Also:

• "Apply Process Parameters"

• "Setting an Apply Process Parameter"

• The DBMS_APPLY_ADM.SET_PARAMETER procedure in the Oracle Database
PL/SQL Packages and Types Reference for detailed information about the
apply process parameters

• Oracle Enterprise Manager Cloud Control online help for information about
setting an apply process parameter using Oracle Enterprise Manager
Cloud Control

26.4 Displaying Information About Apply Handlers
This section contains instructions for displaying information about the apply handlers
for apply processes.

This section contains these topics:

• Displaying Information About DML Handlers

• Displaying the DDL Handler for Each Apply Process

• Displaying All of the Error Handlers for Local Apply Processes

• Displaying the Message Handler for Each Apply Process

• Displaying the Precommit Handler for Each Apply Process

26.4.1 Displaying Information About DML Handlers
The following sections contain instructions for displaying information about DML
handlers:

• Displaying Information About All DML Handlers

• Displaying Information About Statement DML Handlers

• Displaying Information About Procedure DML Handlers

See Also:

• "DML Handlers"

• "Managing a DML Handler"

26.4.1.1 Displaying Information About All DML Handlers
You can display the following information about all of the DML handlers in a database,
including all statement DML handlers and all procedure DML handlers:

• The owner and name of the table for which the DML handler is set

Chapter 26
Displaying Information About Apply Handlers

26-5

• The operation for which the DML handler is set

• The name of the DML handler

• The type of the DML handler, either statement or procedure

• The name of the apply process that uses the DML handler

To display this information for each DML handler in a database, run the following
query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A7
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A11
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A9
COLUMN HANDLER HEADING 'DML Handler' FORMAT A13
COLUMN HANDLER_TYPE HEADING 'Handler|Type' FORMAT A9
COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A15

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 NVL(USER_PROCEDURE,HANDLER_NAME) Handler,
 DECODE(HANDLER_TYPE,'PROCEDURE HANDLER','PROCEDURE','STMT HANDLER',
 'STATEMENT','UNKNOWN') HANDLER_TYPE,
 APPLY_NAME
 FROM DBA_APPLY_DML_HANDLERS
 WHERE ERROR_HANDLER = 'N' AND
 APPLY_DATABASE_LINK IS NULL
 ORDER BY OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

 Apply
Table Handler Process
Owner Table Name Operation DML Handler Type Name
------- ----------- --------- ------------- --------- ---------------
HR DEPARTMENTS UPDATE "STRMADMIN"." PROCEDURE
 SQL_GEN_DEP"
HR JOBS UPDATE TRACK_JOBS STATEMENT APPLY$_PROD_25
OE ORDERS INSERT MODIFY_ORDERS STATEMENT APPLY$_PROD_25

Because Apply Process Name is NULL for the strmadmin.sql_gen_dep procedure DML
handler, this handler is a general handler that runs for all of the local apply processes.

26.4.1.2 Displaying Information About Statement DML Handlers
The following sections contain queries that display information about the statement
DML handlers in a database:

• Displaying the Statement DML Handlers in a Database

• Displaying the Statement DML Handlers Used by Each Apply Process

• Displaying All of the Statements in Statement DML Handlers

Chapter 26
Displaying Information About Apply Handlers

26-6

See Also:

• "Statement DML Handlers"

• "Managing a Statement DML Handler"

26.4.1.2.1 Displaying the Statement DML Handlers in a Database
You can display the following information about the statement DML handlers in a
database:

• The name of the statement DML handler

• The comment for the statement DML handler

• The time when the statement DML handler was created

• The time when the statement DML handler was last modified

To display this information for each statement DML handler in a database, run the
following query:

COLUMN HANDLER_NAME HEADING 'Handler Name' FORMAT A15
COLUMN HANDLER_COMMENT HEADING 'Comment' FORMAT A35
COLUMN CREATION_TIME HEADING 'Creation|Time' FORMAT A10
COLUMN MODIFICATION_TIME HEADING 'Last|Change|Time' FORMAT A10

SELECT HANDLER_NAME,
 HANDLER_COMMENT,
 CREATION_TIME,
 MODIFICATION_TIME
 FROM DBA_STREAMS_STMT_HANDLERS
 ORDER BY HANDLER_NAME;

Your output looks similar to the following:

 Last
 Creation Change
Handler Name Comment Time Time
--------------- ----------------------------------- ---------- ----------
MODIFY_ORDERS Modifies inserts into the orders ta 12-MAR-09
 ble 07.59.56.9
 46180 AM

TRACK_JOBS Tracks updates to the jobs table 11-MAR-09
 10.47.52.7
 76489 AM

When the MODIFICATION_TIME is NULL, shown in this output by Last Change Time, it
indicates that the handler has not been modified since its creation.

26.4.1.2.2 Displaying the Statement DML Handlers Used by Each Apply Process
When you specify a statement DML handler using the ADD_STMT_HANDLER procedure in
the DBMS_APPLY_ADM package at a destination database, you can either specify that the
handler runs for a specific apply process or that the handler is a general handler that
runs for all apply processes in the database that apply changes locally. If a statement
DML handler for an operation on a table is used by a specific apply process, and

Chapter 26
Displaying Information About Apply Handlers

26-7

another statement DML handler is a general handler for the same operation on the
same table, then both handlers are invoked when an apply process dequeues a row
LCR with the operation on the table. Each statement DML handler receives the original
row LCR, and the statement DML handlers can execute in any order.

You can display the following information about the statement DML handlers used by
the apply processes in the database:

• The owner and name of the table for which the statement DML handler is set

• The operation for which the statement DML handler is set

• The name of the apply process that uses the statement DML handler

• The name of the statement DML handler

To display this information for the statement DML handlers used by each apply
process, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A10
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A10
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A9
COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15
COLUMN HANDLER_NAME HEADING 'Statement DML|Handler Name' FORMAT A30

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 APPLY_NAME,
 HANDLER_NAME
 FROM DBA_APPLY_DML_HANDLERS
 WHERE HANDLER_TYPE='STMT HANDLER'
 ORDER BY OBJECT_OWNER, OBJECT_NAME, OPERATION_NAME;

Your output looks similar to the following:

Table Apply Process Statement DML
Owner Table Name Operation Name Handler Name
---------- ---------- --------- --------------- ------------------------------
HR JOBS UPDATE APPLY$_PROD_25 TRACK_JOBS
OE ORDERS INSERT APPLY$_PROD_25 MODIFY_ORDERS

When Apply Process Name is NULL for a statement DML handler, the handler is a general
handler that runs for all of the local apply processes.

26.4.1.2.3 Displaying All of the Statements in Statement DML Handlers
The query in this section displays the following information about the statements in
statement DML handlers in a database:

• The name of the statement DML handler that includes each statement

• The execution order of each statement

• The text of each statement

To display this information, run the following query:

COLUMN HANDLER_NAME HEADING 'Statement|Handler' FORMAT A15
COLUMN EXECUTION_SEQUENCE HEADING 'Execution|Sequence' FORMAT 999999
COLUMN STATEMENT HEADING 'Statement' FORMAT A50

SET LONG 8000

Chapter 26
Displaying Information About Apply Handlers

26-8

SET PAGES 8000
SELECT HANDLER_NAME,
 EXECUTION_SEQUENCE,
 STATEMENT
 FROM DBA_STREAMS_STMTS
 ORDER BY HANDLER_NAME, EXECUTION_SEQUENCE;

Your output looks similar to the following:

Statement Execution
Handler Sequence Statement
--------------- --------- --
MODIFY_ORDERS 1 INSERT INTO oe.orders(
 order_id,
 order_date,
 order_mode,
 customer_id,
 order_status,
 order_total,
 sales_rep_id,
 promotion_id)
 VALUES(
 :new.order_id,
 :new.order_date,
 :new.order_mode,
 :new.customer_id,
 DECODE(:new.order_status, 1, 2, :new.
 order_status),
 :new.order_total,
 :new.sales_rep_id,
 :new.promotion_id)

TRACK_JOBS 10 :lcr.execute TRUE
TRACK_JOBS 20 INSERT INTO hr.track_jobs(
 change_id,
 job_id,
 job_title,
 min_salary_old,
 min_salary_new,
 max_salary_old,
 max_salary_new,
 timestamp)
 VALUES(
 hr.track_jobs_seq.NEXTVAL,
 :new.job_id,
 :new.job_title,
 :old.min_salary,
 :new.min_salary,
 :old.max_salary,
 :new.max_salary,
 :source_time)

26.4.1.3 Displaying Information About Procedure DML Handlers
When you specify a local procedure DML handler using the SET_DML_HANDLER procedure
in the DBMS_APPLY_ADM package at a destination database, you can either specify that
the handler runs for a specific apply process or that the handler is a general handler
that runs for all apply processes in the database that apply changes locally, when
appropriate. A specific procedure DML handler takes precedence over a generic

Chapter 26
Displaying Information About Apply Handlers

26-9

procedure DML handler. A DML handler is run for a specified operation on a specific
table.

To display the procedure DML handler for each apply process in a database, run the
following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A11
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A15
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A9
COLUMN USER_PROCEDURE HEADING 'Handler Procedure' FORMAT A25
COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 USER_PROCEDURE,
 APPLY_NAME
 FROM DBA_APPLY_DML_HANDLERS
 WHERE ERROR_HANDLER = 'N' AND
 USER_PROCEDURE IS NOT NULL
 ORDER BY OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

Table Apply Process
Owner Table Name Operation Handler Procedure Name
----------- --------------- --------- ------------------------- ---------------
HR DEPARTMENTS UPDATE "STRMADMIN"."SQL_GEN_DEP"

Because Apply Process Name is NULL for the strmadmin.sql_gen_dep procedure DML
handler, this handler is a general handler that runs for all of the local apply processes.

See Also:

• "Procedure DML Handlers"

• "Managing a Procedure DML Handler"

26.4.2 Displaying the DDL Handler for Each Apply Process
To display the DDL handler for each apply process in a database, run the following
query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN DDL_HANDLER HEADING 'DDL Handler' FORMAT A40

SELECT APPLY_NAME, DDL_HANDLER FROM DBA_APPLY;

Your output looks similar to the following:

Apply Process Name DDL Handler
-------------------- --
STREP01_APPLY "STRMADMIN"."HISTORY_DDL"

Chapter 26
Displaying Information About Apply Handlers

26-10

See Also:

"Managing a DDL Handler"

26.4.3 Displaying All of the Error Handlers for Local Apply Processes
When you specify a local error handler using the SET_DML_HANDLER procedure in the
DBMS_APPLY_ADM package at a destination database, you can specify either that the
handler runs for a specific apply process or that the handler is a general handler that
runs for all apply processes in the database that apply changes locally when an error
is raised by an apply process. A specific error handler takes precedence over a
generic error handler. An error handler is run for a specified operation on a specific
table.

To display the error handler for each apply process that applies changes locally in a
database, run the following query:

COLUMN OBJECT_OWNER HEADING 'Table|Owner' FORMAT A5
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A10
COLUMN OPERATION_NAME HEADING 'Operation' FORMAT A10
COLUMN USER_PROCEDURE HEADING 'Handler Procedure' FORMAT A30
COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 OPERATION_NAME,
 USER_PROCEDURE,
 APPLY_NAME
 FROM DBA_APPLY_DML_HANDLERS
 WHERE ERROR_HANDLER = 'Y'
 ORDER BY OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

Table Apply Process
Owner Table Name Operation Handler Procedure Name
----- ---------- ---------- ------------------------------ --------------
HR REGIONS INSERT "STRMADMIN"."ERRORS_PKG"."REGI
 ONS_PK_ERROR"

Apply Process Name is NULL for the strmadmin.errors_pkg.regions_pk_error error handler.
Therefore, this handler is a general handler that runs for all of the local apply
processes.

See Also:

"Managing an Error Handler"

26.4.4 Displaying the Message Handler for Each Apply Process
To display each message handler in a database, run the following query:

Chapter 26
Displaying Information About Apply Handlers

26-11

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN MESSAGE_HANDLER HEADING 'Message Handler' FORMAT A20

SELECT APPLY_NAME, MESSAGE_HANDLER FROM DBA_APPLY
 WHERE MESSAGE_HANDLER IS NOT NULL;

Your output looks similar to the following:

Apply Process Name Message Handler
-------------------- --------------------
STRM03_APPLY "OE"."MES_HANDLER"

See Also:

"Managing the Message Handler for an Apply Process"

26.4.5 Displaying the Precommit Handler for Each Apply Process
You can display the following information about each precommit handler used by an
apply process in a database by running the query in this section:

• The apply process name.

• The owner and name of the precommit handler

• The type of messages applied by the apply process. An apply process either can
apply either captured LCRs, or an apply process can apply persistent LCRs and
persistent user messages.

To display each this information for each precommit handler in the database, run the
following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A15
COLUMN PRECOMMIT_HANDLER HEADING 'Precommit Handler' FORMAT A30
COLUMN APPLY_CAPTURED HEADING 'Applies Captured|Messages?' FORMAT A20

SELECT APPLY_NAME, PRECOMMIT_HANDLER, APPLY_CAPTURED
 FROM DBA_APPLY
 WHERE PRECOMMIT_HANDLER IS NOT NULL;

Your output looks similar to the following:

 Applies Captured
Apply Process Name Precommit Handler Messages?
-------------------- ------------------------------ --------------------
STRM01_APPLY "STRMADMIN"."HISTORY_COMMIT" YES

See Also:

"Managing the Precommit Handler for an Apply Process"

Chapter 26
Displaying Information About Apply Handlers

26-12

26.5 Displaying Session Information About Each Apply
Process

The query in this section displays the following session information about each session
associated with a apply process in a database:

• The apply process component

• The session identifier

• The serial number

• The operating system process identification number

• The process names of the coordinator process, the reader process, and the apply
servers

To display this information for each capture process in a database, run the following
query:

COLUMN ACTION HEADING 'Apply Process Component' FORMAT A30
COLUMN SID HEADING 'Session ID' FORMAT 99999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 99999999
COLUMN PROCESS HEADING 'Operating System|Process Number' FORMAT A17
COLUMN PROCESS_NAME HEADING 'Process|Names' FORMAT A7

SELECT /*+PARAM('_module_action_old_length',0)*/ ACTION,
 SID,
 SERIAL#,
 PROCESS,
 SUBSTR(PROGRAM,INSTR(PROGRAM,'(')+1,4) PROCESS_NAME
 FROM V$SESSION
 WHERE MODULE ='Streams' AND
 ACTION LIKE '%Apply%';

Your output looks similar to the following:

 Session
 Serial Operating System Process
Apply Process Component Session ID Number Process Number Names
------------------------------ ---------- --------- ----------------- -------
APPLY$_EMDBB_3 - Apply Coordin 17 3040 9863 AP01
ator
APPLY$_EMDBB_3 - Apply Server 58 52788 9869 AS02
APPLY$_EMDBB_3 - Apply Reader 63 21 9865 AS01
APPLY$_EMDBB_3 - Apply Server 64 37 9872 AS03
APPLY$_EMDBB_3 - Apply Server 67 22 9875 AS04
APPLY$_EMDBB_3 - Apply Server 69 1 9877 AS05

See Also:

"Apply Process Subcomponents"

Chapter 26
Displaying Session Information About Each Apply Process

26-13

26.6 Displaying Information About the Reader Server for
Each Apply Process

The reader server for an apply process dequeues messages from the queue. The
reader server is a process that computes dependencies between LCRs and
assembles messages into transactions. The reader server then returns the assembled
transactions to the coordinator, which assigns them to idle apply servers.

The query in this section displays the following information about the reader server for
each apply process:

• The name of the apply process

• The type of messages dequeued by the reader server. An apply process either
can dequeue either captured LCRs, or an apply process can dequeue persistent
LCRs and persistent user messages.

• The name of the process used by the reader server. The process name is in the
form ASnn, where nn can be letters and numbers.

• The current state of the reader server

See "Reader Server States".

• The total number of messages dequeued by the reader server since the last time
the apply process was started

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display this information for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A15
COLUMN APPLY_CAPTURED HEADING 'Dequeues Captured|Messages?' FORMAT A17
COLUMN PROCESS_NAME HEADING 'Process|Name' FORMAT A7
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_MESSAGES_DEQUEUED HEADING 'Total Messages|Dequeued' FORMAT 99999999

SELECT r.APPLY_NAME,
 ap.APPLY_CAPTURED,
 SUBSTR(s.PROGRAM,INSTR(s.PROGRAM,'(')+1,4) PROCESS_NAME,
 r.STATE,
 r.TOTAL_MESSAGES_DEQUEUED
 FROM V$STREAMS_APPLY_READER r, V$SESSION s, DBA_APPLY ap
 WHERE r.SID = s.SID AND
 r.SERIAL# = s.SERIAL# AND
 r.APPLY_NAME = ap.APPLY_NAME;

Your output looks similar to the following:

Apply Process Dequeues Captured Process Total Messages
Name Messages? Name State Dequeued
--------------- ----------------- ------- ----------------- --------------
APPLY_SPOKE YES AS01 DEQUEUE MESSAGES 54

Chapter 26
Displaying Information About the Reader Server for Each Apply Process

26-14

26.7 Monitoring Transactions and Messages Spilled by
Each Apply Process

If the txn_lcr_spill_threshold apply process parameter is set to a value other than
INFINITE, then an apply process can spill messages from memory to hard disk when
the number of messages in a transaction exceeds the specified number.

The first query in this section displays the following information about each transaction
currently being applied for which the apply process has spilled messages:

• The name of the apply process

• The transaction ID of the transaction with spilled messages

• The system change number (SCN) of the first message in the transaction

• The number of messages currently spilled in the transaction

To display this information for each apply process in a database, run the following
query:

COLUMN APPLY_NAME HEADING 'Apply Name' FORMAT A20
COLUMN 'Transaction ID' HEADING 'Transaction ID' FORMAT A15
COLUMN FIRST_SCN HEADING 'First SCN' FORMAT 99999999
COLUMN MESSAGE_COUNT HEADING 'Message Count' FORMAT 99999999

SELECT APPLY_NAME,
 XIDUSN ||'.'||
 XIDSLT ||'.'||
 XIDSQN "Transaction ID",
 FIRST_SCN,
 MESSAGE_COUNT
 FROM DBA_APPLY_SPILL_TXN;

Your output looks similar to the following:

Apply Name Transaction ID First SCN Message Count
-------------------- --------------- --------- -------------
APPLY_HR 1.42.2277 2246944 100

The next query in this section displays the following information about the messages
spilled by the apply processes in the local database:

• The name of the apply process

• The total number of messages spilled by the apply process since it last started

• The amount of time the apply process spent spilling messages, in seconds

To display this information for each apply process in a database, run the following
query:

COLUMN APPLY_NAME HEADING 'Apply Name' FORMAT A15
COLUMN TOTAL_MESSAGES_SPILLED HEADING 'Total|Spilled Messages' FORMAT 99999999
COLUMN ELAPSED_SPILL_TIME HEADING 'Elapsed Time|Spilling Messages' FORMAT 99999999.99

SELECT APPLY_NAME,
 TOTAL_MESSAGES_SPILLED,
 (ELAPSED_SPILL_TIME/100) ELAPSED_SPILL_TIME
 FROM V$STREAMS_APPLY_READER;

Chapter 26
Monitoring Transactions and Messages Spilled by Each Apply Process

26-15

Your output looks similar to the following:

 Total Elapsed Time
Apply Name Spilled Messages Spilling Messages
--------------- ---------------- -----------------
APPLY_HR 100 2.67

Note:

The elapsed time spilling messages is displayed in seconds. The
V$STREAMS_APPLY_READER view displays elapsed time in centiseconds by default.
A centisecond is one-hundredth of a second. The query in this section divides
each elapsed time by one hundred to display the elapsed time in seconds.

26.8 Determining Capture to Dequeue Latency for a
Message

The query in this section displays the following information about the last message
dequeued by each apply process:

• The name of the apply process.

• The latency. For captured LCRs, the latency is the amount of time between when
the message was created at a source database and when the message was
dequeued by the apply process. For any other type of message, the latency is the
amount of time between when the message enqueued at the local database and
when the message was dequeued by the apply process.

• The message creation time. For captured LCRs, the message creation time is the
time when the data manipulation language (DML) or data definition language
(DDL) change generated the redo data at the source database for the message.
For messages enqueued by an application or apply process, the message creation
time is the last time the message was enqueued. A message can be enqueued
one or more additional times by propagations before it reaches an apply process.

• The time when the message was dequeued by the apply process.

• The message number of the message that was last dequeued by the apply
process.

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display this information for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN LATENCY HEADING 'Latency|in|Seconds' FORMAT 999999
COLUMN CREATION HEADING 'Message Creation' FORMAT A17
COLUMN LAST_DEQUEUE HEADING 'Last Dequeue Time' FORMAT A20
COLUMN DEQUEUED_MESSAGE_NUMBER HEADING 'Dequeued|Message Number' FORMAT 9999999999

SELECT APPLY_NAME,
 (DEQUEUE_TIME-DEQUEUED_MESSAGE_CREATE_TIME)*86400 LATENCY,
 TO_CHAR(DEQUEUED_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY') CREATION,
 TO_CHAR(DEQUEUE_TIME,'HH24:MI:SS MM/DD/YY') LAST_DEQUEUE,
 DEQUEUED_MESSAGE_NUMBER
 FROM V$STREAMS_APPLY_READER;

Chapter 26
Determining Capture to Dequeue Latency for a Message

26-16

Your output looks similar to the following:

 Latency
Apply Process in Dequeued
Name Seconds Message Creation Last Dequeue Time Message Number
----------------- ------- ----------------- -------------------- --------------
APPLY$_STM1_14 1 15:22:15 06/13/05 15:22:16 06/13/05 502129

26.9 Displaying General Information About Each
Coordinator Process

A coordinator process gets transactions from the reader server and passes these
transactions to apply servers. The coordinator process name is APnn, where nn is a
coordinator process number.

The query in this section displays the following information about the coordinator
process for each apply process:

• The apply process name

• The number of the coordinator in the process name APnn, where nn can include
letters and numbers

• The session identifier of the coordinator's session

• The serial number of the coordinator's session

• The current state of the coordinator

See "Coordinator Process States".

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display this information for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN PROCESS_NAME HEADING 'Coordinator|Process|Name' FORMAT A11
COLUMN SID HEADING 'Session|ID' FORMAT 9999
COLUMN SERIAL# HEADING 'Session|Serial|Number' FORMAT 9999
COLUMN STATE HEADING 'State' FORMAT A21

SELECT c.APPLY_NAME,
 SUBSTR(s.PROGRAM,INSTR(s.PROGRAM,'(')+1,4) PROCESS_NAME,
 c.SID,
 c.SERIAL#,
 c.STATE
 FROM V$STREAMS_APPLY_COORDINATOR c, V$SESSION s
 WHERE c.SID = s.SID AND
 c.SERIAL# = s.SERIAL#;

Your output looks similar to the following:

 Coordinator Session
Apply Process Process Session Serial
Name Name ID Number State
----------------- ----------- ------- ------- ---------------------
APPLY_SPOKE AP01 944 5 IDLE

Chapter 26
Displaying General Information About Each Coordinator Process

26-17

26.10 Displaying Information About Transactions Received
and Applied

The query in this section displays the following information about the transactions
received, applied, and being applied by each apply process:

• The apply process name

• The total number of transactions received by the coordinator process since the
apply process was last started

• The total number of transactions successfully applied by the apply process since
the apply process was last started

• The number of transactions applied by the apply process that resulted in an apply
error since the apply process was last started

• The total number of transactions currently being applied by the apply process

• The total number of complete transactions that the coordinator process has
received but has not yet assigned to any apply servers

• The total number of transactions received by the coordinator process but ignored
because the apply process had already applied the transactions since the apply
process was last started

The information displayed by this query is valid only for an enabled apply process.

For example, to display this information for an apply process named apply, run the
following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN TOTAL_RECEIVED HEADING 'Total|Trans|Received' FORMAT 99999999
COLUMN TOTAL_APPLIED HEADING 'Total|Trans|Applied' FORMAT 99999999
COLUMN TOTAL_ERRORS HEADING 'Total|Apply|Errors' FORMAT 9999
COLUMN BEING_APPLIED HEADING 'Total|Trans Being|Applied' FORMAT 99999999
COLUMN UNASSIGNED_COMPLETE_TXNS HEADING 'Total|Unnasigned|Trans' FORMAT 99999999
COLUMN TOTAL_IGNORED HEADING 'Total|Trans|Ignored' FORMAT 99999999

SELECT APPLY_NAME,
 TOTAL_RECEIVED,
 TOTAL_APPLIED,
 TOTAL_ERRORS,
 (TOTAL_ASSIGNED - (TOTAL_ROLLBACKS + TOTAL_APPLIED)) BEING_APPLIED,
 UNASSIGNED_COMPLETE_TXNS,
 TOTAL_IGNORED
 FROM V$STREAMS_APPLY_COORDINATOR;

Your output looks similar to the following:

 Total Total Total Total Total Total
 Trans Trans Apply Trans Being Unnasigned Trans
Apply Process Name Received Applied Errors Applied Trans Ignored
-------------------- --------- --------- ------ ----------- ---------- ---------
APPLY_FROM_MULT1 81 73 2 6 4 0
APPLY_FROM_MULT2 114 96 0 14 7 4

Chapter 26
Displaying Information About Transactions Received and Applied

26-18

26.11 Determining the Capture to Apply Latency for a
Message for Each Apply Process

This section contains two different queries that show the capture to apply latency for a
particular message. That is, these queries show the amount of time between when the
message was created at a source database and when the message was applied by an
apply process. One query uses the V$STREAMS_APPLY_COORDINATOR dynamic performance
view. The other uses the DBA_APPLY_PROGRESS static data dictionary view.

The two queries differ in the following ways:

• You can use the query on the V$STREAMS_APPLY_COORDINATOR view to determine
capture to apply latency for captured LCRs or persistent LCRs. However, the
query on the DBA_APPLY_PROGRESS view only returns results for captured LCRs.

• The apply process must be enabled when you run the query on the
V$STREAMS_APPLY_COORDINATOR view, while the apply process can be enabled or
disabled when you run the query on the DBA_APPLY_PROGRESS view. Therefore, if the
apply process is currently disabled and change capture is performed by a capture
process, then run the query on the DBA_APPLY_PROGRESS view to determine the
capture to apply latency.

• The query on the V$STREAMS_APPLY_COORDINATOR view can show the latency for a
more recent transaction than the query on the DBA_APPLY_PROGRESS view.

Both queries display the following information about a message applied by each apply
process:

• The apply process name

• The capture to apply latency for the message

• The message creation time

For captured LCRs, the message creation time is the time when the data
manipulation language (DML) or data definition language (DDL) change generated
the redo data at the source database for the message.

For persistent LCRs, the message creation time is the time when the LCR was
constructed.

• The time when the message was applied by the apply process

• The message number of the message

Note:

These queries do not pertain to persistent user messages.

Chapter 26
Determining the Capture to Apply Latency for a Message for Each Apply Process

26-19

26.11.1 Example V$STREAMS_APPLY_COORDINATOR Query for
Latency

Run the following query to display the capture to apply latency using the
V$STREAMS_APPLY_COORDINATOR view for a captured LCR or a persistent LCR for each
apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A13
COLUMN 'Latency in Seconds' FORMAT 999999
COLUMN 'Message Creation' FORMAT A17
COLUMN 'Apply Time' FORMAT A17
COLUMN HWM_MESSAGE_NUMBER HEADING 'Applied|Message|Number' FORMAT 9999999999

SELECT APPLY_NAME,
 (HWM_TIME-HWM_MESSAGE_CREATE_TIME)*86400 "Latency in Seconds",
 TO_CHAR(HWM_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY')
 "Message Creation",
 TO_CHAR(HWM_TIME,'HH24:MI:SS MM/DD/YY') "Apply Time",
 HWM_MESSAGE_NUMBER
 FROM V$STREAMS_APPLY_COORDINATOR;

Your output looks similar to the following:

Apply Process Message
Name Latency in Seconds Message Creation Apply Time Number
------------- ------------------ ----------------- ----------------- -----------
APPLY$_DA_2 2 13:00:10 07/14/10 13:00:12 07/14/10 672733

26.11.2 Example DBA_APPLY_PROGRESS Query for Latency
Run the following query to display the capture to apply latency using the
DBA_APPLY_PROGRESS view for a captured LCR for each apply process:

COLUMN APPLY_NAME HEADING 'Apply Process|Name' FORMAT A17
COLUMN 'Latency in Seconds' FORMAT 999999
COLUMN 'Message Creation' FORMAT A17
COLUMN 'Apply Time' FORMAT A17
COLUMN APPLIED_MESSAGE_NUMBER HEADING 'Applied|Message|Number' FORMAT 9999999999

SELECT APPLY_NAME,
 (APPLY_TIME-APPLIED_MESSAGE_CREATE_TIME)*86400 "Latency in Seconds",
 TO_CHAR(APPLIED_MESSAGE_CREATE_TIME,'HH24:MI:SS MM/DD/YY')
 "Message Creation",
 TO_CHAR(APPLY_TIME,'HH24:MI:SS MM/DD/YY') "Apply Time",
 APPLIED_MESSAGE_NUMBER
 FROM DBA_APPLY_PROGRESS;

Your output looks similar to the following:

 Applied
Apply Process Message
Name Latency in Seconds Message Creation Apply Time Number
----------------- ------------------ ----------------- ----------------- -------
APPLY$_STM1_14 33 14:05:13 06/13/05 14:05:46 06/13/05 498215

Chapter 26
Determining the Capture to Apply Latency for a Message for Each Apply Process

26-20

26.12 Displaying Information About the Apply Servers for
Each Apply Process

An apply process can use one or more apply servers that apply LCRs to database
objects as DML statements or DDL statements or pass the LCRs to their appropriate
handlers. For non-LCR messages, the apply servers pass the messages to the
message handler. Each apply server is a process.

The query in this section displays the following information about the apply servers for
each apply process:

• The name of the apply process.

• The names of the reader server processes, in order. Each process name is in the
form ASnn, where nn can be letters and numbers.

• The current state of each apply server

See "Apply Server States".

• The total number of transactions assigned to each apply server since the last time
the apply process was started. A transaction can contain more than one message.

• The total number of messages applied by each apply server since the last time the
apply process was started.

The information displayed by this query is valid only for an enabled apply process.

Run the following query to display information about the apply servers for each apply
process:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A22
COLUMN PROCESS_NAME HEADING 'Process Name' FORMAT A12
COLUMN STATE HEADING 'State' FORMAT A17
COLUMN TOTAL_ASSIGNED HEADING 'Total|Transactions|Assigned' FORMAT 99999999
COLUMN TOTAL_MESSAGES_APPLIED HEADING 'Total|Messages|Applied' FORMAT 99999999

SELECT r.APPLY_NAME,
 SUBSTR(s.PROGRAM,INSTR(S.PROGRAM,'(')+1,4) PROCESS_NAME,
 r.STATE,
 r.TOTAL_ASSIGNED,
 r.TOTAL_MESSAGES_APPLIED
 FROM V$STREAMS_APPLY_SERVER R, V$SESSION S
 WHERE r.SID = s.SID AND
 r.SERIAL# = s.SERIAL#
 ORDER BY r.APPLY_NAME, r.SERVER_ID;

Your output looks similar to the following:

 Total Total
 Transactions Messages
Apply Process Name Process Name State Assigned Applied
---------------------- ------------ ----------------- ------------ ---------
APPLY$_DA_2 AS02 IDLE 1012 109190
APPLY$_DA_2 AS03 IDLE 996 107568
APPLY$_DA_2 AS04 IDLE 1006 108648
APPLY$_DA_2 AS05 IDLE 987 10659
6

Chapter 26
Displaying Information About the Apply Servers for Each Apply Process

26-21

26.13 Displaying Effective Apply Parallelism for an Apply
Process

In some environments, an apply process might not use all of the apply servers
available to it. For example, apply process parallelism can be set to five, but only three
apply servers are ever used by the apply process. In this case, the effective apply
parallelism is three.

The following query displays the effective apply parallelism for an apply process
named apply:

SELECT COUNT(SERVER_ID) "Effective Parallelism"
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'APPLY' AND
 TOTAL_MESSAGES_APPLIED > 0;

Your output looks similar to the following:

Effective Parallelism

 2

This query returned two for the effective parallelism. If parallelism is set to three for the
apply process named apply, then one apply server has not been used since the last
time the apply process was started.

You can display the total number of messages applied by each apply server by
running the following query:

COLUMN SERVER_ID HEADING 'Apply Server ID' FORMAT 99
COLUMN TOTAL_MESSAGES_APPLIED HEADING 'Total Messages Applied' FORMAT 999999

SELECT SERVER_ID, TOTAL_MESSAGES_APPLIED
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'APPLY'
 ORDER BY SERVER_ID;

Your output looks similar to the following:

Apply Server ID Total Messages Applied
--------------- ----------------------
 1 2141
 2 276
 3 0
 4 0

In this case, apply servers 3 and 4 have not been used by the apply process since it
was last started. If the parallelism setting for an apply process is much higher than the
effective parallelism for the apply process, then consider lowering the parallelism
setting. For example, if the parallelism setting is 6, but the effective parallelism for the
apply process is 2, then consider lowering the setting.

Chapter 26
Displaying Effective Apply Parallelism for an Apply Process

26-22

26.14 Viewing Rules that Specify a Destination Queue on
Apply

You can specify a destination queue for a rule using the SET_ENQUEUE_DESTINATION
procedure in the DBMS_APPLY_ADM package. If an apply process has such a rule in its
positive rule set, and a message satisfies the rule, then the apply process enqueues
the message into the destination queue.

To view destination queue settings for rules, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN DESTINATION_QUEUE_NAME HEADING 'Destination Queue' FORMAT A30

SELECT RULE_OWNER, RULE_NAME, DESTINATION_QUEUE_NAME
 FROM DBA_APPLY_ENQUEUE;

Your output looks similar to the following:

Rule Owner Rule Name Destination Queue
--------------- --------------- ------------------------------
STRMADMIN DEPARTMENTS17 "STRMADMIN"."STREAMS_QUEUE"

See Also:

• "Specifying That Apply Processes Enqueue Messages"

• "Enqueue Destinations for Messages During Apply"

26.15 Viewing Rules that Specify No Execution on Apply
You can specify an execution directive for a rule using the SET_EXECUTE procedure in
the DBMS_APPLY_ADM package. An execution directive controls whether a message that
satisfies the specified rule is executed by an apply process. If an apply process has a
rule in its positive rule set with NO for its execution directive, and a message satisfies
the rule, then the apply process does not execute the message and does not send the
message to any apply handler.

To view each rule with NO for its execution directive, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A20
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20

SELECT RULE_OWNER, RULE_NAME
 FROM DBA_APPLY_EXECUTE
 WHERE EXECUTE_EVENT = 'NO';

Your output looks similar to the following:

Rule Owner Rule Name
-------------------- --------------------
STRMADMIN DEPARTMENTS18

Chapter 26
Viewing Rules that Specify a Destination Queue on Apply

26-23

See Also:

• "Specifying Execute Directives for Apply Processes"

• "Execution Directives for Messages During Apply"

26.16 Determining Which Apply Processes Use Combined
Capture and Apply

A combined capture and apply environment is efficient because the capture process
acts as the propagation sender that sends logical change records (LCRs) directly to
the propagation receiver.

When an apply process uses combined capture and apply, the following columns in
the V$STREAMS_APPLY_READER data dictionary view are populated:

• PROXY_SID shows the session ID of the propagation receiver

• PROXY_SERIAL shows the serial number of the propagation receiver

• PROXY_SPID shows the process identification number of the propagation receiver

• CAPTURE_BYTES_RECEIVED shows the number of bytes received by the apply process
from the capture process since the apply process last started

When an apply process does not use combined capture and apply, the PROXY_SID and
PROXY_SERIAL columns are 0 (zero), and the PROXY_SPID and CAPTURE_BYTES_RECEIVED
columns are not populated.

To determine whether an apply process uses combined capture and apply, run the
following query:

COLUMN APPLY_NAME HEADING 'Apply Process Name' FORMAT A20
COLUMN PROXY_SID HEADING 'Propagation|Receiver|Session ID' FORMAT 99999999
COLUMN PROXY_SERIAL HEADING 'Propagation|ReceiverSerial|Number' FORMAT 99999999
COLUMN PROXY_SPID HEADING 'Propagation|Receiver|Process ID' FORMAT 99999999999
COLUMN CAPTURE_BYTES_RECEIVED HEADING 'Number of|Bytes Received' FORMAT 9999999999

SELECT APPLY_NAME,
 PROXY_SID,
 PROXY_SERIAL,
 PROXY_SPID,
 CAPTURE_BYTES_RECEIVED
 FROM V$STREAMS_APPLY_READER;

Your output looks similar to the following:

 Propagation Propagation Propagation
 Receiver ReceiverSerial Receiver Number of
Apply Process Name Session ID Number Process ID Bytes Received
-------------------- ----------- -------------- ------------ --------------
APPLY_SPOKE1 940 1 22636 4358614
APPLY_SPOKE2 928 4 29154 4310581

This output indicates that the apply_spoke1 apply process uses combined capture and
apply. Since it last started, this apply process has received 4358614 bytes from the

Chapter 26
Determining Which Apply Processes Use Combined Capture and Apply

26-24

capture process. The apply_spoke2 apply process also uses combined capture and
apply. Since it last started, this apply process has received 4310581 bytes from the
capture process.

See Also:

Combined Capture and Apply Optimization

26.17 Displaying the Substitute Key Columns Specified at a
Destination Database

You can designate a substitute key at a destination database, which is a column or set
of columns that Oracle can use to identify rows in the table during apply. You can use
substitute key columns to specify key columns for a table that has no primary key, or
they can be used instead of a table's primary key when the table is processed by any
apply process at a destination database.

To display all of the substitute key columns specified at a destination database, run the
following query:

COLUMN OBJECT_OWNER HEADING 'Table Owner' FORMAT A20
COLUMN OBJECT_NAME HEADING 'Table Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Substitute Key Name' FORMAT A20
COLUMN APPLY_DATABASE_LINK HEADING 'Database Link|for Remote|Apply' FORMAT A15

SELECT OBJECT_OWNER, OBJECT_NAME, COLUMN_NAME, APPLY_DATABASE_LINK
 FROM DBA_APPLY_KEY_COLUMNS
 ORDER BY APPLY_DATABASE_LINK, OBJECT_OWNER, OBJECT_NAME;

Your output looks similar to the following:

 Database Link
 for Remote
Table Owner Table Name Substitute Key Name Apply
-------------------- -------------------- -------------------- ---------------
HR DEPARTMENTS DEPARTMENT_NAME
HR DEPARTMENTS LOCATION_ID
HR EMPLOYEES FIRST_NAME
HR EMPLOYEES LAST_NAME
HR EMPLOYEES HIRE_DATE

Note:

This query shows the database link in the last column if the substitute key
columns are for a remote non-Oracle database. The last column is NULL if a
substitute key column is specified for the local destination database.

Chapter 26
Displaying the Substitute Key Columns Specified at a Destination Database

26-25

See Also:

• "Substitute Key Columns"

• "Managing the Substitute Key Columns for a Table"

• "Managing Apply Errors"

26.18 Monitoring Virtual Dependency Definitions
The following sections contain queries that display information about virtual
dependency definitions in a database:

• Displaying Value Dependencies

• Displaying Object Dependencies

See Also:

"Apply Processes and Dependencies" for more information about virtual
dependency definitions

26.18.1 Displaying Value Dependencies
To display the value dependencies in a database, run the following query:

COLUMN DEPENDENCY_NAME HEADING 'Dependency Name' FORMAT A25
COLUMN OBJECT_OWNER HEADING 'Object Owner' FORMAT A15
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A15

SELECT DEPENDENCY_NAME,
 OBJECT_OWNER,
 OBJECT_NAME,
 COLUMN_NAME
 FROM DBA_APPLY_VALUE_DEPENDENCIES;

Your output should look similar to the following:

Dependency Name Object Owner Object Name Column Name
------------------------- --------------- -------------------- ---------------
ORDER_ID_FOREIGN_KEY OE ORDERS ORDER_ID
ORDER_ID_FOREIGN_KEY OE ORDER_ITEMS ORDER_ID
KEY_53_FOREIGN_KEY US_DESIGNS ALL_DESIGNS_SUMMARY KEY_53
KEY_53_FOREIGN_KEY US_DESIGNS DESIGN_53 KEY_53

This output shows the following value dependencies:

• The order_id_foreign_key value dependency describes a dependency between the
order_id column in the oe.orders table and the order_id column in the
oe.order_items table.

Chapter 26
Monitoring Virtual Dependency Definitions

26-26

• The key_53_foreign_key value dependency describes a dependency between the
key_53 column in the us_designs.all_designs_summary table and the key_53 column
in the us_designs.design_53 table.

26.18.2 Displaying Object Dependencies
To display the object dependencies in a database, run the following query:

COLUMN OBJECT_OWNER HEADING 'Object Owner' FORMAT A15
COLUMN OBJECT_NAME HEADING 'Object Name' FORMAT A15
COLUMN PARENT_OBJECT_OWNER HEADING 'Parent Object Owner' FORMAT A20
COLUMN PARENT_OBJECT_NAME HEADING 'Parent Object Name' FORMAT A20

SELECT OBJECT_OWNER,
 OBJECT_NAME,
 PARENT_OBJECT_OWNER,
 PARENT_OBJECT_NAME
 FROM DBA_APPLY_OBJECT_DEPENDENCIES;

Your output should look similar to the following:

Object Owner Object Name Parent Object Owner Parent Object Name
--------------- --------------- -------------------- --------------------
ORD CUSTOMERS ORD SHIP_ORDERS
ORD ORDERS ORD SHIP_ORDERS
ORD ORDER_ITEMS ORD SHIP_ORDERS

This output shows an object dependency in which the ord.ship_orders table is a parent
table to the following child tables:

• ord.customers

• ord.orders

• ord.order_items

26.19 Checking for Apply Errors
To check for apply errors, run the following query:

COLUMN APPLY_NAME HEADING 'Apply|Process|Name' FORMAT A11
COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A10
COLUMN LOCAL_TRANSACTION_ID HEADING 'Local|Transaction|ID' FORMAT A11
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A20
COLUMN MESSAGE_COUNT HEADING 'Messages in|Error|Transaction' FORMAT 99999999

SELECT APPLY_NAME,
 SOURCE_DATABASE,
 LOCAL_TRANSACTION_ID,
 ERROR_NUMBER,
 ERROR_MESSAGE,
 MESSAGE_COUNT
 FROM DBA_APPLY_ERROR;

If there are any apply errors, then your output looks similar to the following:

Apply Local Messages in
Process Source Transaction Error
Name Database ID Error Number Error Message Transaction

Chapter 26
Checking for Apply Errors

26-27

----------- ---------- ----------- ------------ -------------------- -----------
APPLY$_DB_2 DB.EXAMPLE 13.16.334 26786 ORA-26786: A row wit 1
 .COM h key ("EMPLOYEE_ID"
) = (206) exists but
 has conflicting col
 umn(s) "SALARY" in t
 able HR.EMPLOYEES
 ORA-01403: no data f
 ound
APPLY$_DB_2 DB.EXAMPLE 15.17.540 26786 ORA-26786: A row wit 1
 .COM h key ("EMPLOYEE_ID"
) = (206) exists but
 has conflicting col
 umn(s) "SALARY" in t
 able HR.EMPLOYEES
 ORA-01403: no data f
 ound

If there are apply errors, then you can either try to reexecute the transactions that
encountered the errors, or you can delete the transactions. If you want to reexecute a
transaction that encountered an error, then first correct the condition that caused the
transaction to raise an error.

If you want to delete a transaction that encountered an error, then you might need to
resynchronize data manually if you are sharing data between multiple databases.
Remember to set an appropriate session tag, if necessary, when you resynchronize
data manually.

See Also:

• Troubleshooting Apply

• "The Error Queue"

• "Managing Apply Errors"

• "Considerations for Applying DML Changes to Tables" for information
about the possible causes of apply errors

• Oracle Streams Replication Administrator's Guide for more information
about setting tag values generated by the current session

26.20 Displaying Detailed Information About Apply Errors
This section contains SQL scripts that you can use to display detailed information
about the error transactions in the error queue in a database. These scripts are
designed to display information about LCRs, but you can extend them to display
information about any non-LCR messages used in your environment as well.

To use these scripts, complete the following steps:

1. Step 1, Grant Explicit SELECT Privilege on the DBA_APPLY_ERROR View

2. Step 2, Create a Procedure that Prints the Value in an ANYDATA Object

3. Step 3, Create a Procedure that Prints a Specified LCR

Chapter 26
Displaying Detailed Information About Apply Errors

26-28

4. Step 4, Create a Procedure that Prints All the LCRs in the Error Queue

5. Step 5, Create a Procedure that Prints All the Error LCRs for a Transaction

Note:

These scripts display only the first 253 characters for VARCHAR2 values in LCRs.

Step 1 Grant Explicit SELECT Privilege on the DBA_APPLY_ERROR View
The user who creates and runs the print_errors and print_transaction procedures
described in the following sections must be granted explicit SELECT privilege on the
DBA_APPLY_ERROR data dictionary view. This privilege cannot be granted through a role.
Running the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package on a
user grants this privilege to the user.
To grant this privilege to a user directly, complete the following steps:

1. In SQL*Plus, connect as an administrative user who can grant privileges.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Grant SELECT privilege on the DBA_APPLY_ERROR data dictionary view to the
appropriate user. For example, to grant this privilege to the strmadmin user, run
the following statement:

GRANT SELECT ON DBA_APPLY_ERROR TO strmadmin;

3. Grant EXECUTE privilege on the DBMS_APPLY_ADM package. For example, to grant this
privilege to the strmadmin user, run the following statement:

GRANT EXECUTE ON DBMS_APPLY_ADM TO strmadmin;

4. Connect to the database as the user to whom you granted the privilege in Step 2
and 3.

Step 2 Create a Procedure that Prints the Value in an ANYDATA Object
The following procedure prints the value in a specified ANYDATA object for some
selected data types. Optionally, you can add more data types to this procedure.

CREATE OR REPLACE PROCEDURE print_any(data IN ANYDATA) IS
 tn VARCHAR2(61);
 str VARCHAR2(4000);
 chr VARCHAR2(1000);
 num NUMBER;
 dat DATE;
 rw RAW(4000);
 res NUMBER;
BEGIN
 IF data IS NULL THEN
 DBMS_OUTPUT.PUT_LINE('NULL value');
 RETURN;
 END IF;
 tn := data.GETTYPENAME();
 IF tn = 'SYS.VARCHAR2' THEN
 res := data.GETVARCHAR2(str);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(str,0,253));
 ELSIF tn = 'SYS.CHAR' then

Chapter 26
Displaying Detailed Information About Apply Errors

26-29

 res := data.GETCHAR(chr);
 DBMS_OUTPUT.PUT_LINE(SUBSTR(chr,0,253));
 ELSIF tn = 'SYS.VARCHAR' THEN
 res := data.GETVARCHAR(chr);
 DBMS_OUTPUT.PUT_LINE(chr);
 ELSIF tn = 'SYS.NUMBER' THEN
 res := data.GETNUMBER(num);
 DBMS_OUTPUT.PUT_LINE(num);
 ELSIF tn = 'SYS.DATE' THEN
 res := data.GETDATE(dat);
 DBMS_OUTPUT.PUT_LINE(dat);
 ELSIF tn= 'SYS.TIMESTAMP' THEN
 res := data.GETTIMESTAMP(dat);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dat,'DD-MON-RR HH.MI.SSXFF AM'));
 ELSIF tn= 'SYS.TIMESTAMPTZ' THEN
 res := data.GETTIMESTAMPTZ(dat);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dat,'DD-MON-RR HH.MI.SSXFF AM'));
 ELSIF tn= 'SYS.TIMESTAMPLTZ' THEN
 res := data.GETTIMESTAMPLTZ(dat);
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(dat,'DD-MON-RR HH.MI.SSXFF AM'));
 ELSIF tn = 'SYS.RAW' THEN
 -- res := data.GETRAW(rw);
 -- DBMS_OUTPUT.PUT_LINE(SUBSTR(DBMS_LOB.SUBSTR(rw),0,253));
 DBMS_OUTPUT.PUT_LINE('BLOB Value');
 ELSIF tn = 'SYS.BLOB' THEN
 DBMS_OUTPUT.PUT_LINE('BLOB Found');
 ELSE
 DBMS_OUTPUT.PUT_LINE('typename is ' || tn);
 END IF;
END print_any;
/

Step 3 Create a Procedure that Prints a Specified LCR
The following procedure prints a specified LCR. It calls the print_any procedure
created in "Step 2, Create a Procedure that Prints the Value in an ANYDATA Object".

CREATE OR REPLACE PROCEDURE print_lcr(lcr IN ANYDATA) IS
 typenm VARCHAR2(61);
 ddllcr SYS.LCR$_DDL_RECORD;
 proclcr SYS.LCR$_PROCEDURE_RECORD;
 rowlcr SYS.LCR$_ROW_RECORD;
 res NUMBER;
 newlist SYS.LCR$_ROW_LIST;
 oldlist SYS.LCR$_ROW_LIST;
 ddl_text CLOB;
 ext_attr ANYDATA;
BEGIN
 typenm := lcr.GETTYPENAME();
 DBMS_OUTPUT.PUT_LINE('type name: ' || typenm);
 IF (typenm = 'SYS.LCR$_DDL_RECORD') THEN
 res := lcr.GETOBJECT(ddllcr);
 DBMS_OUTPUT.PUT_LINE('source database: ' ||
 ddllcr.GET_SOURCE_DATABASE_NAME);
 DBMS_OUTPUT.PUT_LINE('owner: ' || ddllcr.GET_OBJECT_OWNER);
 DBMS_OUTPUT.PUT_LINE('object: ' || ddllcr.GET_OBJECT_NAME);
 DBMS_OUTPUT.PUT_LINE('is tag null: ' || ddllcr.IS_NULL_TAG);
 DBMS_LOB.CREATETEMPORARY(ddl_text, TRUE);
 ddllcr.GET_DDL_TEXT(ddl_text);
 DBMS_OUTPUT.PUT_LINE('ddl: ' || ddl_text);

Chapter 26
Displaying Detailed Information About Apply Errors

26-30

 -- Print extra attributes in DDL LCR
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('serial#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('serial#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('session#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('session#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('thread#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('thread#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('tx_name');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('transaction name: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 ext_attr := ddllcr.GET_EXTRA_ATTRIBUTE('username');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('username: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 DBMS_LOB.FREETEMPORARY(ddl_text);
 ELSIF (typenm = 'SYS.LCR$_ROW_RECORD') THEN
 res := lcr.GETOBJECT(rowlcr);
 DBMS_OUTPUT.PUT_LINE('source database: ' ||
 rowlcr.GET_SOURCE_DATABASE_NAME);
 DBMS_OUTPUT.PUT_LINE('owner: ' || rowlcr.GET_OBJECT_OWNER);
 DBMS_OUTPUT.PUT_LINE('object: ' || rowlcr.GET_OBJECT_NAME);
 DBMS_OUTPUT.PUT_LINE('is tag null: ' || rowlcr.IS_NULL_TAG);
 DBMS_OUTPUT.PUT_LINE('command_type: ' || rowlcr.GET_COMMAND_TYPE);
 oldlist := rowlcr.GET_VALUES('old');
 FOR i IN 1..oldlist.COUNT LOOP
 IF oldlist(i) IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('old(' || i || '): ' || oldlist(i).column_name);
 print_any(oldlist(i).data);
 END IF;
 END LOOP;
 newlist := rowlcr.GET_VALUES('new', 'n');
 FOR i in 1..newlist.count LOOP
 IF newlist(i) IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('new(' || i || '): ' || newlist(i).column_name);
 print_any(newlist(i).data);
 END IF;
 END LOOP;
 -- Print extra attributes in row LCR
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('row_id');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('row_id: ' || ext_attr.ACCESSUROWID());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('serial#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('serial#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('session#');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('session#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('thread#');
 IF (ext_attr IS NOT NULL) THEN

Chapter 26
Displaying Detailed Information About Apply Errors

26-31

 DBMS_OUTPUT.PUT_LINE('thread#: ' || ext_attr.ACCESSNUMBER());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('tx_name');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('transaction name: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 ext_attr := rowlcr.GET_EXTRA_ATTRIBUTE('username');
 IF (ext_attr IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE('username: ' || ext_attr.ACCESSVARCHAR2());
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Non-LCR Message with type ' || typenm);
 END IF;
END print_lcr;
/

Step 4 Create a Procedure that Prints All the LCRs in the Error Queue
The following procedure prints all of the LCRs in all of the error queues. It calls the
print_lcr procedure created in "Step 3, Create a Procedure that Prints a Specified
LCR".

CREATE OR REPLACE PROCEDURE print_errors IS
 CURSOR c IS
 SELECT LOCAL_TRANSACTION_ID,
 SOURCE_DATABASE,
 MESSAGE_NUMBER,
 MESSAGE_COUNT,
 ERROR_NUMBER,
 ERROR_MESSAGE
 FROM DBA_APPLY_ERROR
 ORDER BY SOURCE_DATABASE, SOURCE_COMMIT_SCN;
 i NUMBER;
 txnid VARCHAR2(30);
 source VARCHAR2(128);
 msgno NUMBER;
 msgcnt NUMBER;
 errnum NUMBER := 0;
 errno NUMBER;
 errmsg VARCHAR2(2000);
 lcr ANYDATA;
 r NUMBER;
BEGIN
 FOR r IN c LOOP
 errnum := errnum + 1;
 msgcnt := r.MESSAGE_COUNT;
 txnid := r.LOCAL_TRANSACTION_ID;
 source := r.SOURCE_DATABASE;
 msgno := r.MESSAGE_NUMBER;
 errno := r.ERROR_NUMBER;
 errmsg := r.ERROR_MESSAGE;
DBMS_OUTPUT.PUT_LINE('***');
 DBMS_OUTPUT.PUT_LINE('----- ERROR #' || errnum);
 DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
 DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
 DBMS_OUTPUT.PUT_LINE('----Error in Message: '|| msgno);
 DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
 DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
 FOR i IN 1..msgcnt LOOP
 DBMS_OUTPUT.PUT_LINE('--message: ' || i);

Chapter 26
Displaying Detailed Information About Apply Errors

26-32

 lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid);
 print_lcr(lcr);
 END LOOP;
 END LOOP;
END print_errors;
/

To run this procedure after you create it, enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_errors

Step 5 Create a Procedure that Prints All the Error LCRs for a Transaction
The following procedure prints all the LCRs in the error queue for a particular
transaction. It calls the print_lcr procedure created in "Step 3, Create a Procedure
that Prints a Specified LCR".

CREATE OR REPLACE PROCEDURE print_transaction(ltxnid IN VARCHAR2) IS
 i NUMBER;
 txnid VARCHAR2(30);
 source VARCHAR2(128);
 msgno NUMBER;
 msgcnt NUMBER;
 errno NUMBER;
 errmsg VARCHAR2(2000);
 lcr ANYDATA;
BEGIN
 SELECT LOCAL_TRANSACTION_ID,
 SOURCE_DATABASE,
 MESSAGE_NUMBER,
 MESSAGE_COUNT,
 ERROR_NUMBER,
 ERROR_MESSAGE
 INTO txnid, source, msgno, msgcnt, errno, errmsg
 FROM DBA_APPLY_ERROR
 WHERE LOCAL_TRANSACTION_ID = ltxnid;
 DBMS_OUTPUT.PUT_LINE('----- Local Transaction ID: ' || txnid);
 DBMS_OUTPUT.PUT_LINE('----- Source Database: ' || source);
 DBMS_OUTPUT.PUT_LINE('----Error in Message: '|| msgno);
 DBMS_OUTPUT.PUT_LINE('----Error Number: '||errno);
 DBMS_OUTPUT.PUT_LINE('----Message Text: '||errmsg);
 FOR i IN 1..msgcnt LOOP
 DBMS_OUTPUT.PUT_LINE('--message: ' || i);
 lcr := DBMS_APPLY_ADM.GET_ERROR_MESSAGE(i, txnid); -- gets the LCR
 print_lcr(lcr);
 END LOOP;
END print_transaction;
/

To run this procedure after you create it, pass to it the local transaction identifier of an
error transaction. For example, if the local transaction identifier is 1.17.2485, then
enter the following:

SET SERVEROUTPUT ON SIZE 1000000

EXEC print_transaction('1.17.2485')

Chapter 26
Displaying Detailed Information About Apply Errors

26-33

27
Monitoring Rules

The following topics describe monitoring rules, rule sets, and evaluation contexts:

• Displaying All Rules Used by All Oracle Streams Clients

• Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client

• Displaying the Current Condition for a Rule

• Displaying Modified Rule Conditions for Oracle Streams Rules

• Displaying the Evaluation Context for Each Rule Set

• Displaying Information About the Tables Used by an Evaluation Context

• Displaying Information About the Variables Used in an Evaluation Context

• Displaying All of the Rules in a Rule Set

• Displaying the Condition for Each Rule in a Rule Set

• Listing Each Rule that Contains a Specified Pattern in Its Condition

• Displaying Aggregate Statistics for All Rule Set Evaluations

• Displaying Information About Evaluations for Each Rule Set

• Determining the Resources Used by Evaluation of Each Rule Set

• Displaying Evaluation Statistics for a Rule

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
Help for the Oracle Streams tool for more information.

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

• Managing Rules

• Troubleshooting Rules and Rule-Based Transformations

• "Modifying a Name-Value Pair in a Rule Action Context" for information
about viewing a rule action context

• Oracle Database Reference for information about the data dictionary
views described in this chapter

27-1

27.1 Displaying All Rules Used by All Oracle Streams
Clients

Oracle Streams rules are created using the DBMS_STREAMS_ADM package or the Oracle
Streams tool in Oracle Enterprise Manager Cloud Control. Oracle Streams rules in the
rule sets for an Oracle Streams client determine the behavior of the Oracle Streams
client. Oracle Streams clients include capture processes, propagations, apply
processes, and messaging clients. The rule sets for an Oracle Streams client can also
contain rules created using the DBMS_RULE_ADM package, and these rules also determine
the behavior of the Oracle Streams client.

For example, if a rule in the positive rule set for a capture process evaluates to TRUE for
DML changes to the hr.employees table, then the capture process captures DML
changes to this table. However, if a rule in the negative rule set for a capture process
evaluates to TRUE for DML changes to the hr.employees table, then the capture process
discards DML changes to this table.

You query the following data dictionary views to display all rules in the rule sets for
Oracle Streams clients, including Oracle Streams rules and rules created using the
DBMS_RULE_ADM package:

• ALL_STREAMS_RULES

• DBA_STREAMS_RULES

In addition, these two views display the current rule condition for each rule and
whether the rule condition has been modified.

The query in this section displays the following information about all of the rules used
by Oracle Streams clients in a database:

• The name of each Oracle Streams client that uses the rule

• The type of each Oracle Streams client that uses the rule, either CAPTURE for a
capture process, SYNCHRONOUS CAPTURE for a synchronous capture, PROPAGATION for a
propagation, APPLY for an apply process, or DEQUEUE for a messaging client

• The name of the rule

• The type of rule set that contains the rule for the Oracle Streams client, either
POSITIVE or NEGATIVE

• For Oracle Streams rules, the Oracle Streams rule level, either GLOBAL, SCHEMA, or
TABLE

• For Oracle Streams rules, the name of the schema for schema rules and table
rules

• For Oracle Streams rules, the name of the table for table rules

• For Oracle Streams rules, the rule type, either DML or DDL

Run the following query to display this information:

COLUMN STREAMS_NAME HEADING 'Oracle|Streams|Name' FORMAT A14
COLUMN STREAMS_TYPE HEADING 'Oracle|Streams|Type' FORMAT A11
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN RULE_SET_TYPE HEADING 'Rule Set|Type' FORMAT A8
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle|Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6

Chapter 27
Displaying All Rules Used by All Oracle Streams Clients

27-2

COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4

SELECT STREAMS_NAME,
 STREAMS_TYPE,
 RULE_NAME,
 RULE_SET_TYPE,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE
 FROM DBA_STREAMS_RULES;

Your output looks similar to the following:

 Oracle
Oracle Oracle Streams
Streams Streams Rule Rule Set Rule Schema Object Rule
Name Type Name Type Level Name Name Type
-------------- ----------- ------------ -------- ------- ------ ----------- ----
STRM01_CAPTURE CAPTURE JOBS4 POSITIVE TABLE HR JOBS DML
STRM01_CAPTURE CAPTURE JOBS5 POSITIVE TABLE HR JOBS DDL
DBS1_TO_DBS2 PROPAGATION HR18 POSITIVE SCHEMA HR DDL
DBS1_TO_DBS2 PROPAGATION HR17 POSITIVE SCHEMA HR DML
APPLY APPLY HR20 POSITIVE SCHEMA HR DML
APPLY APPLY JOB_HISTORY2 NEGATIVE TABLE HR JOB_HISTORY DML
OE DEQUEUE RULE$_28 POSITIVE

This output provides the following information about the rules used by Oracle Streams
clients in the database:

• The DML rule jobs4 and the DDL rule jobs5 are both table rules for the hr.jobs
table in the positive rule set for the capture process strm01_capture.

• The DML rule hr17 and the DDL rule hr18 are both schema rules for the hr schema
in the positive rule set for the propagation dbs1_to_dbs2.

• The DML rule hr20 is a schema rule for the hr schema in the positive rule set for
the apply process apply.

• The DML rule job_history2 is a table rule for the hr schema in the negative rule set
for the apply process apply.

• The rule rule$_28 is a messaging rule in the positive rule set for the messaging
client oe.

The ALL_STREAMS_RULES and DBA_STREAMS_RULES views also contain information about the
rule sets used by an Oracle Streams client, the current and original rule condition for
Oracle Streams rules, whether the rule condition has been changed, the subsetting
operation and DML condition for each Oracle Streams subset rule, the source
database specified for each Oracle Streams rule, and information about the message
type and message variable for Oracle Streams messaging rules.

The following data dictionary views also display Oracle Streams rules:

• ALL_STREAMS_GLOBAL_RULES

• DBA_STREAMS_GLOBAL_RULES

• ALL_STREAMS_MESSAGE_RULES

• DBA_STREAMS_MESSAGE_RULES

Chapter 27
Displaying All Rules Used by All Oracle Streams Clients

27-3

• ALL_STREAMS_SCHEMA_RULES

• DBA_STREAMS_SCHEMA_RULES

• ALL_STREAMS_TABLE_RULES

• DBA_STREAMS_TABLE_RULES

These views display Oracle Streams rules only. They do not display any manual
modifications to these rules made by the DBMS_RULE_ADM package, and they do not
display rules created using the DBMS_RULE_ADM package. These views can display the
original rule condition for each rule only. They do not display the current rule condition
for a rule if the rule condition was modified after the rule was created.

27.2 Displaying the Oracle Streams Rules Used by a
Specific Oracle Streams Client

To determine which rules are in a rule set used by a particular Oracle Streams client,
you can query the DBA_STREAMS_RULES data dictionary view. For example, suppose a
database is running an apply process named strm01_apply. The following sections
describe how to determine the rules in the positive rule set and negative rule set for
this apply process.

The following sections describe how to determine which rules are in a rule set used by
a particular Oracle Streams client:

• Displaying the Rules in the Positive Rule Set for an Oracle Streams Client

• Displaying the Rules in the Negative Rule Set for an Oracle Streams Client

See Also:

• "System-Created Rules"

27.2.1 Displaying the Rules in the Positive Rule Set for an Oracle
Streams Client

The following query displays all of the rules in the positive rule set for an apply
processs named strm01_apply:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A9

SELECT RULE_OWNER,
 RULE_NAME,
 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,

Chapter 27
Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client

27-4

 RULE_TYPE,
 SOURCE_DATABASE,
 INCLUDE_TAGGED_LCR
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'STRM01_APPLY' AND
 RULE_SET_TYPE = 'POSITIVE';

If this query returns any rows, then the apply process applies LCRs containing
changes that evaluate to TRUE for the rules.

Your output looks similar to the following:

 Oracle Streams Apply
 Rule Rule Schema Object Rule Tagged
Rule Owner Name Level Name Name Type Source LCRs?
---------- --------------- ------- ------ ----------- ---- ---------- ---------
STRMADMIN HR20 SCHEMA HR DML DBS1.EXAM NO
 PLE.COM
STRMADMIN HR21 SCHEMA HR DDL DBS1.EXAM NO
 PLE.COM

Assuming the rule conditions for the Oracle Streams rules returned by this query have
not been modified, these results show that the apply process applies LCRs containing
DML changes and DDL changes to the hr schema and that the LCRs originated at the
dbs1.example.com database. The rules in the positive rule set that instruct the apply
process to apply these LCRs are owned by the strmadmin user and are named hr20
and hr21. Also, the apply process applies an LCR that satisfies one of these rules only
if the tag in the LCR is NULL.

If the rule condition for an Oracle Streams rule has been modified, then you must
check the current rule condition to determine the effect of the rule on an Oracle
Streams client. Oracle Streams rules whose rule condition has been modified have NO
for the SAME_RULE_CONDITION column.

See Also:

• "Displaying Modified Rule Conditions for Oracle Streams Rules"

27.2.2 Displaying the Rules in the Negative Rule Set for an Oracle
Streams Client

The following query displays all of the rules in the negative rule set for an apply
process named strm01_apply:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A15
COLUMN STREAMS_RULE_TYPE HEADING 'Oracle Streams|Rule|Level' FORMAT A7
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A11
COLUMN RULE_TYPE HEADING 'Rule|Type' FORMAT A4
COLUMN SOURCE_DATABASE HEADING 'Source' FORMAT A10
COLUMN INCLUDE_TAGGED_LCR HEADING 'Apply|Tagged|LCRs?' FORMAT A9

SELECT RULE_OWNER,
 RULE_NAME,

Chapter 27
Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client

27-5

 STREAMS_RULE_TYPE,
 SCHEMA_NAME,
 OBJECT_NAME,
 RULE_TYPE,
 SOURCE_DATABASE,
 INCLUDE_TAGGED_LCR
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'APPLY' AND
 RULE_SET_TYPE = 'NEGATIVE';

If this query returns any rows, then the apply process discards LCRs containing
changes that evaluate to TRUE for the rules.

Your output looks similar to the following:

 Oracle Streams Apply
 Rule Rule Schema Object Rule Tagged
Rule Owner Name Level Name Name Type Source LCRs?
---------- --------------- ------- ------ ----------- ---- ---------- ---------
STRMADMIN JOB_HISTORY22 TABLE HR JOB_HISTORY DML DBS1.EXAMP YES
 LE.COM
STRMADMIN JOB_HISTORY23 TABLE HR JOB_HISTORY DDL DBS1.EXAMP YES
 LE.COM

Assuming the rule conditions for the Oracle Streams rules returned by this query have
not been modified, these results show that the apply process discards LCRs
containing DML changes and DDL changes to the hr.job_history table and that the
LCRs originated at the dbs1.example.com database. The rules in the negative rule set
that instruct the apply process to discard these LCRs are owned by the strmadmin user
and are named job_history22 and job_history23. Also, the apply process discards an
LCR that satisfies one of these rules regardless of the value of the tag in the LCR.

If the rule condition for an Oracle Streams rule has been modified, then you must
check the current rule condition to determine the effect of the rule on an Oracle
Streams client. Oracle Streams rules whose rule condition has been modified have NO
for the SAME_RULE_CONDITION column.

See Also:

• "Displaying Modified Rule Conditions for Oracle Streams Rules"

27.3 Displaying the Current Condition for a Rule
If you know the name of a rule, then you can display its rule condition. For example,
consider the rule returned by the query in "Displaying the Oracle Streams Rules Used
by a Specific Oracle Streams Client". The name of the rule is hr1, and you can display
its condition by running the following query:

SET LONG 8000
SET PAGES 8000
SELECT RULE_CONDITION "Current Rule Condition"
 FROM DBA_STREAMS_RULES
 WHERE RULE_NAME = 'HR1' AND
 RULE_OWNER = 'STRMADMIN';

Chapter 27
Displaying the Current Condition for a Rule

27-6

Your output looks similar to the following:

Current Rule Condition
--
((((:dml.get_object_owner() = 'HR') and :dml.get_source_database_name() = 'DA.EX
AMPLE.COM')) and (:dml.get_compatible() <= dbms_streams.compatible_11_2))

See Also:

• "Rule Condition"

• "System-Created Rules"

27.4 Displaying Modified Rule Conditions for Oracle
Streams Rules

It is possible to modify the rule condition of an Oracle Streams rule. These
modifications can change the behavior of the Oracle Streams clients using the Oracle
Streams rule. In addition, some modifications can degrade rule evaluation
performance.

The following query displays the rule name, the original rule condition, and the current
rule condition for each Oracle Streams rule whose condition has been modified:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A12
COLUMN ORIGINAL_RULE_CONDITION HEADING 'Original Rule Condition' FORMAT A33
COLUMN RULE_CONDITION HEADING 'Current Rule Condition' FORMAT A33

SET LONG 8000
SET PAGES 8000
SELECT RULE_NAME, ORIGINAL_RULE_CONDITION, RULE_CONDITION
 FROM DBA_STREAMS_RULES
 WHERE SAME_RULE_CONDITION = 'NO';

Your output looks similar to the following:

Rule Name Original Rule Condition Current Rule Condition
------------ --------------------------------- ---------------------------------
HR20 ((:dml.get_object_owner() = 'HR') ((:dml.get_object_owner() = 'HR')
 and :dml.is_null_tag() = 'Y') and :dml.is_null_tag() = 'Y' and
 :dml.get_object_name() != 'JOB_H
 ISTORY')

In this example, the output shows that the condition of the hr20 rule has been modified.
Originally, this schema rule evaluated to TRUE for all changes to the hr schema. The
current modified condition for this rule evaluates to TRUE for all changes to the hr
schema, except for DML changes to the hr.job_history table.

Chapter 27
Displaying Modified Rule Conditions for Oracle Streams Rules

27-7

Note:

The query in this section applies only to Oracle Streams rules. It does not
apply to rules created using the DBMS_RULE_ADM package because these rules
always show NULL for the ORIGINAL_RULE_CONDITION column and NULL for the
SAME_RULE_CONDITION column.

See Also:

• "Rule Condition"

• "System-Created Rules"

27.5 Displaying the Evaluation Context for Each Rule Set
The following query displays the default evaluation context for each rule set in a
database:

COLUMN RULE_SET_OWNER HEADING 'Rule Set|Owner' FORMAT A10
COLUMN RULE_SET_NAME HEADING 'Rule Set Name' FORMAT A20
COLUMN RULE_SET_EVAL_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A12
COLUMN RULE_SET_EVAL_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A30

SELECT RULE_SET_OWNER,
 RULE_SET_NAME,
 RULE_SET_EVAL_CONTEXT_OWNER,
 RULE_SET_EVAL_CONTEXT_NAME
 FROM DBA_RULE_SETS;

Your output looks similar to the following:

Rule Set Eval Context
Owner Rule Set Name Owner Eval Context Name
---------- -------------------- ------------ ------------------------------
STRMADMIN RULESET$_2 SYS STREAMS$_EVALUATION_CONTEXT
STRMADMIN STRM02_QUEUE_R STRMADMIN AQ$_STRM02_QUEUE_TABLE_V
STRMADMIN APPLY_OE_RS STRMADMIN OE_EVAL_CONTEXT
STRMADMIN OE_QUEUE_R STRMADMIN AQ$_OE_QUEUE_TABLE_V
STRMADMIN AQ$_1_RE STRMADMIN AQ$_OE_QUEUE_TABLE_V
SUPPORT RS SUPPORT EVALCTX
OE NOTIFICATION_QUEUE_R OE AQ$_NOTIFICATION_QUEUE_TABLE_V

See Also:

• "Rule Evaluation Context"

• "Evaluation Contexts Used in Oracle Streams"

Chapter 27
Displaying the Evaluation Context for Each Rule Set

27-8

27.6 Displaying Information About the Tables Used by an
Evaluation Context

The following query displays information about the tables used by an evaluation
context named evalctx, which is owned by the support user:

COLUMN TABLE_ALIAS HEADING 'Table Alias' FORMAT A20
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A40

SELECT TABLE_ALIAS,
 TABLE_NAME
 FROM DBA_EVALUATION_CONTEXT_TABLES
 WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
 EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

Table Alias Table Name
-------------------- --
PROB problems

See Also:

"Rule Evaluation Context"

27.7 Displaying Information About the Variables Used in an
Evaluation Context

The following query displays information about the variables used by an evaluation
context named evalctx, which is owned by the support user:

COLUMN VARIABLE_NAME HEADING 'Variable Name' FORMAT A15
COLUMN VARIABLE_TYPE HEADING 'Variable Type' FORMAT A15
COLUMN VARIABLE_VALUE_FUNCTION HEADING 'Variable Value|Function' FORMAT A20
COLUMN VARIABLE_METHOD_FUNCTION HEADING 'Variable Method|Function' FORMAT A20

SELECT VARIABLE_NAME,
 VARIABLE_TYPE,
 VARIABLE_VALUE_FUNCTION,
 VARIABLE_METHOD_FUNCTION
 FROM DBA_EVALUATION_CONTEXT_VARS
 WHERE EVALUATION_CONTEXT_OWNER = 'SUPPORT' AND
 EVALUATION_CONTEXT_NAME = 'EVALCTX';

Your output looks similar to the following:

 Variable Value Variable Method
Variable Name Variable Type Function Function
--------------- --------------- -------------------- --------------------
CURRENT_TIME DATE timefunc

Chapter 27
Displaying Information About the Tables Used by an Evaluation Context

27-9

See Also:

"Rule Evaluation Context"

27.8 Displaying All of the Rules in a Rule Set
The query in this section displays the following information about all of the rules in a
rule set:

• The owner of the rule.

• The name of the rule.

• The evaluation context for the rule, if any. If a rule does not have an evaluation
context, and no evaluation context is specified in the ADD_RULE procedure when the
rule is added to a rule set, then it inherits the evaluation context of the rule set.

• The evaluation context owner, if the rule has an evaluation context.

For example, to display this information for each rule in a rule set named oe_queue_r
that is owned by the user strmadmin, run the following query:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_EVALUATION_CONTEXT_NAME HEADING 'Eval Context Name' FORMAT A27
COLUMN RULE_EVALUATION_CONTEXT_OWNER HEADING 'Eval Context|Owner' FORMAT A11

SELECT R.RULE_OWNER,
 R.RULE_NAME,
 R.RULE_EVALUATION_CONTEXT_NAME,
 R.RULE_EVALUATION_CONTEXT_OWNER
 FROM DBA_RULES R, DBA_RULE_SET_RULES RS
 WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND
 RS.RULE_SET_NAME = 'OE_QUEUE_R' AND
 RS.RULE_NAME = R.RULE_NAME AND
 RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following:

 Eval Contex
Rule Owner Rule Name Eval Context Name Owner
---------- -------------------- --------------------------- -----------
STRMADMIN HR1 STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN APPLY_LCRS STREAMS$_EVALUATION_CONTEXT SYS
STRMADMIN OE_QUEUE$3
STRMADMIN APPLY_ACTION

27.9 Displaying the Condition for Each Rule in a Rule Set
The following query displays the condition for each rule in a rule set named hr_queue_r
that is owned by the user strmadmin:

SET LONGCHUNKSIZE 4000
SET LONG 4000
COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A45

Chapter 27
Displaying All of the Rules in a Rule Set

27-10

SELECT R.RULE_OWNER,
 R.RULE_NAME,
 R.RULE_CONDITION
 FROM DBA_RULES R, DBA_RULE_SET_RULES RS
 WHERE RS.RULE_SET_OWNER = 'STRMADMIN' AND
 RS.RULE_SET_NAME = 'HR_QUEUE_R' AND
 RS.RULE_NAME = R.RULE_NAME AND
 RS.RULE_OWNER = R.RULE_OWNER;

Your output looks similar to the following:

Rule Owner Rule Name Rule Condition
--------------- --------------- ---
STRMADMIN APPLY_ACTION hr.get_hr_action(tab.user_data) = 'APPLY'
STRMADMIN APPLY_LCRS :dml.get_object_owner() = 'HR' AND (:dml.get
 _object_name() = 'DEPARTMENTS' OR
 :dml.get_object_name() = 'EMPLOYEES')

STRMADMIN HR_QUEUE$3 hr.get_hr_action(tab.user_data) != 'APPLY'

See Also:

• "Rule Condition"

• "System-Created Rules"

27.10 Listing Each Rule that Contains a Specified Pattern in
Its Condition

To list each rule in a database that contains a specified pattern in its condition, you
can query the DBMS_RULES data dictionary view and use the DBMS_LOB.INSTR function to
search for the pattern in the rule conditions. For example, the following query lists
each rule that contains the pattern 'HR' in its condition:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A30
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30

SELECT RULE_OWNER, RULE_NAME FROM DBA_RULES
 WHERE DBMS_LOB.INSTR(RULE_CONDITION, 'HR', 1, 1) > 0;

Your output looks similar to the following:

Rule Owner Rule Name
------------------------------ ------------------------------
STRMADMIN DEPARTMENTS4
STRMADMIN DEPARTMENTS5
STRMADMIN DEPARTMENTS6

Chapter 27
Listing Each Rule that Contains a Specified Pattern in Its Condition

27-11

27.11 Displaying Aggregate Statistics for All Rule Set
Evaluations

You can query the V$RULE_SET_AGGREGATE_STATS dynamic performance view to display
statistics for all rule set evaluations since the database instance last started.

The query in this section contains the following information about rule set evaluations:

• The number of rule set evaluations.

• The number of rule set evaluations that were instructed to stop on the first hit.

• The number of rule set evaluations that were instructed to evaluate only simple
rules.

• The number of times a rule set was evaluated without issuing any SQL. Generally,
issuing SQL to evaluate rules is more expensive than evaluating rules without
issuing SQL.

• The number of centiseconds of CPU time used for rule set evaluation.

• The number of centiseconds spent on rule set evaluation.

• The number of SQL executions issued to evaluate a rule in a rule set.

• The number of rule conditions processed during rule set evaluation.

• The number of TRUE rules returned to the rules engine clients.

• The number of MAYBE rules returned to the rules engine clients.

• The number of times the following types of functions were called during rule set
evaluation: variable value function, variable method function, and evaluation
function.

Run the following query to display this information:

COLUMN NAME HEADING 'Name of Statistic' FORMAT A55
COLUMN VALUE HEADING 'Value' FORMAT 999999999

SELECT NAME, VALUE FROM V$RULE_SET_AGGREGATE_STATS;

Your output looks similar to the following:

Name of Statistic Value
--- ----------
rule set evaluations (all) 5584
rule set evaluations (first_hit) 5584
rule set evaluations (simple_rules_only) 3675
rule set evaluations (SQL free) 5584
rule set evaluation time (CPU) 179
rule set evaluation time (elapsed) 1053
rule set SQL executions 0
rule set conditions processed 11551
rule set true rules 10
rule set maybe rules 328
rule set user function calls (variable value function) 182
rule set user function calls (variable method function) 12794
rule set user function calls (evaluation function) 3857

Chapter 27
Displaying Aggregate Statistics for All Rule Set Evaluations

27-12

Note:

A centisecond is one-hundredth of a second. So, for example, this output
shows 1.79 seconds of CPU time and 10.53 seconds of elapsed time.

27.12 Displaying Information About Evaluations for Each
Rule Set

You can query the V$RULE_SET dynamic performance view to display information about
evaluations for each rule set since the database instance last started. The query in this
section contains the following information about each rule set in a database:

• The owner of the rule set.

• The name of the rule set.

• The total number of evaluations of the rule set since the database instance last
started.

• The total number of times SQL was executed to evaluate rules since the database
instance last started. Generally, issuing SQL to evaluate rules is more expensive
than evaluating rules without issuing SQL.

• The total number of evaluations on the rule set that did not issue SQL to evaluate
rules since the database instance last started.

• The total number of TRUE rules returned to the rules engine clients using the rule
set since the database instance last started.

• The total number of MAYBE rules returned to the rules engine clients using the rule
set since the database instance last started.

Run the following query to display this information for each rule set in the database:

COLUMN OWNER HEADING 'Rule Set|Owner' FORMAT A9
COLUMN NAME HEADING 'Rule Set|Name' FORMAT A11
COLUMN EVALUATIONS HEADING 'Total|Evaluations' FORMAT 99999999
COLUMN SQL_EXECUTIONS HEADING 'SQL|Executions' FORMAT 99999999
COLUMN SQL_FREE_EVALUATIONS HEADING 'SQL Free|Evaluations' FORMAT 99999999
COLUMN TRUE_RULES HEADING 'True|Rules' FORMAT 999999999
COLUMN MAYBE_RULES HEADING 'Maybe|Rules' FORMAT 99999999

SELECT OWNER,
 NAME,
 EVALUATIONS,
 SQL_EXECUTIONS,
 SQL_FREE_EVALUATIONS,
 TRUE_RULES,
 MAYBE_RULES
 FROM V$RULE_SET;

Your output looks similar to the following:

Rule Set Rule Set Total SQL SQL Free True Maybe
Owner Name Evaluations Executions Evaluations Rules Rules
--------- ----------- ----------- ---------- ----------- ---------- ---------
SYS ALERT_QUE_R 3 0 0 2 0

Chapter 27
Displaying Information About Evaluations for Each Rule Set

27-13

STRMADMIN RULESET$_4 86 0 0 43 1
STRMADMIN RULESET$_11 458 0 0 11 0
STRMADMIN RULESET$_9 87 0 0 1 42
STRMADMIN RULESET$_7 87 0 0 44 1

Note:

Querying the V$RULE_SET view can have a negative impact on performance if a
database has a large library cache.

27.13 Determining the Resources Used by Evaluation of
Each Rule Set

You can query the V$RULE_SET dynamic performance view to determine the resources
used by evaluation of a rule set since the database instance last started. If a rule set
was evaluated more than one time since the database instance last started, then some
statistics are cumulative, including statistics for the amount of CPU time, evaluation
time, and shared memory bytes used.

The query in this section contains the following information about each rule set in a
database:

• The owner of the rule set

• The name of the rule set

• The total number of seconds of CPU time used to evaluate the rule set since the
database instance last started

• The total number of seconds used to evaluate the rule set since the database
instance last started

• The total number of shared memory bytes used to evaluate the rule set since the
database instance last started

Run the following query to display this information for each rule set in the database:

COLUMN OWNER HEADING 'Rule Set|Owner' FORMAT A15
COLUMN NAME HEADING 'Rule Set Name' FORMAT A15
COLUMN CPU_SECONDS HEADING 'Seconds|of CPU|Time' FORMAT 999999.999
COLUMN ELAPSED_SECONDS HEADING 'Seconds of|Evaluation|Time' FORMAT 999999.999
COLUMN SHARABLE_MEM HEADING 'Bytes|of Shared|Memory' FORMAT 999999999

SELECT OWNER,
 NAME,
 (CPU_TIME/100) CPU_SECONDS,
 (ELAPSED_TIME/100) ELAPSED_SECONDS,
 SHARABLE_MEM
 FROM V$RULE_SET;

Your output looks similar to the following:

 Seconds Seconds of Bytes
Rule Set of CPU Evaluation of Shared
Owner Rule Set Name Time Time Memory
--------------- --------------- ----------- ----------- ----------
SYS ALERT_QUE_R .230 .490 25120

Chapter 27
Determining the Resources Used by Evaluation of Each Rule Set

27-14

STRMADMIN RULESET$_4 .060 .970 25097
STRMADMIN RULESET$_11 .040 .030 25098
STRMADMIN RULESET$_9 .220 3.040 25505
STRMADMIN RULESET$_7 .040 .380 21313

Note:

Querying the V$RULE_SET view can have a negative impact on performance if a
database has a large library cache.

27.14 Displaying Evaluation Statistics for a Rule
You can query the V$RULE dynamic performance view to display evaluation statistics for
a particular rule since the database instance last started. The query in this section
contains the following information about each rule set in a database:

• The total number of times the rule evaluated to TRUE since the database instance
last started.

• The total number of times the rule evaluated to MAYBE since the database instance
last started.

• The total number of evaluations on the rule that issued SQL since the database
instance last started. Generally, issuing SQL to evaluate a rule is more expensive
than evaluating the rule without issuing SQL.

For example, run the following query to display this information for the locations25 rule
in the strmadmin schema:

COLUMN TRUE_HITS HEADING 'True Evaluations' FORMAT 99999999999
COLUMN MAYBE_HITS HEADING 'Maybe Evaluations' FORMAT 99999999999
COLUMN SQL_EVALUATIONS HEADING 'SQL Evaluations' FORMAT 99999999999

SELECT TRUE_HITS, MAYBE_HITS, SQL_EVALUATIONS
 FROM V$RULE
 WHERE RULE_OWNER = 'STRMADMIN' AND
 RULE_NAME = 'LOCATIONS25';

Your output looks similar to the following:

True Evaluations Maybe Evaluations SQL Evaluations
---------------- ----------------- ---------------
 1518 154 0

Chapter 27
Displaying Evaluation Statistics for a Rule

27-15

28
Monitoring Rule-Based Transformations

A rule-based transformation is any modification to a message that results when a rule
in a positive rule set evaluates to TRUE. This chapter provides sample queries that you
can use to monitor rule-based transformations.

The following topics describe monitoring rule-based transformations:

• Displaying Information About All Rule-Based Transformations

• Displaying Declarative Rule-Based Transformations

• Displaying Custom Rule-Based Transformations

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
Help for the Oracle Streams tool for more information.

See Also:

• Rule-Based Transformations

• Managing Rule-Based Transformations

• Oracle Database Reference for information about the data dictionary
views described in this chapter

28.1 Displaying Information About All Rule-Based
Transformations

The query in this section displays the following information about each rule-based
transformation in a database:

• The owner of the rule for which a rule-based transformation is specified

• The name of the rule for which a rule-based transformation is specified

• The type of rule-based transformation:

– SUBSET RULE is displayed for subset rules, which use internal rule-based
transformations.

– DECLARATIVE TRANSFORMATION is displayed for declarative rule-based
transformations.

28-1

– CUSTOM TRANSFORMATION is displayed for custom rule-based transformations.

Run the following query to display this information for the rule-based transformations in
a database:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A20
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN TRANSFORM_TYPE HEADING 'Transformation Type' FORMAT A30

SELECT RULE_OWNER,
 RULE_NAME,
 TRANSFORM_TYPE
 FROM DBA_STREAMS_TRANSFORMATIONS;

Your output looks similar to the following:

Rule Owner Rule Name Transformation Type
-------------------- -------------------- ------------------------------
STRMADMIN EMPLOYEES23 DECLARATIVE TRANSFORMATION
STRMADMIN JOBS26 DECLARATIVE TRANSFORMATION
STRMADMIN DEPARTMENTS33 SUBSET RULE
STRMADMIN DEPARTMENTS32 SUBSET RULE
STRMADMIN DEPARTMENTS34 SUBSET RULE
STRMADMIN DEPARTMENTS32 CUSTOM TRANSFORMATION
STRMADMIN DEPARTMENTS33 CUSTOM TRANSFORMATION
STRMADMIN DEPARTMENTS34 CUSTOM TRANSFORMATION

28.2 Displaying Declarative Rule-Based Transformations
A declarative rule-based transformation is a rule-based transformation that covers one
of a common set of transformation scenarios for row LCRs. Declarative rule-based
transformations are run internally without using PL/SQL.

The query in this section displays the following information about each declarative
rule-based transformation in a database:

• The owner of the rule for which a declarative rule-based transformation is
specified.

• The name of the rule for which a declarative rule-based transformation is
specified.

• The type of declarative rule-based transformation specified. The following types
are possible: ADD COLUMN, DELETE COLUMN, KEEP COLUMNS, RENAME COLUMN, RENAME SCHEMA,
and RENAME TABLE.

• The precedence of the declarative rule-based transformation. The precedence is
the execution order of a transformation in relation to other transformations with the
same step number specified for the same rule. For transformations with the same
step number, the transformation with the lowest precedence is executed first.

• The step number of the declarative rule-based transformation. If more than one
declarative rule-based transformation is specified for the same rule, then the
transformation with the lowest step number is executed first. You can specify the
step number for a declarative rule-based transformation when you create the
transformation.

Run the following query to display this information for the declarative rule-based
transformations in a database:

Chapter 28
Displaying Declarative Rule-Based Transformations

28-2

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A15
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN DECLARATIVE_TYPE HEADING 'Declarative|Type' FORMAT A15
COLUMN PRECEDENCE HEADING 'Precedence' FORMAT 99999
COLUMN STEP_NUMBER HEADING 'Step Number' FORMAT 99999

SELECT RULE_OWNER,
 RULE_NAME,
 DECLARATIVE_TYPE,
 PRECEDENCE,
 STEP_NUMBER
 FROM DBA_STREAMS_TRANSFORMATIONS
 WHERE TRANSFORM_TYPE = 'DECLARATIVE TRANSFORMATION';

Your output looks similar to the following:

 Declarative
Rule Owner Rule Name Type Precedence Step Number
--------------- --------------- --------------- ---------- -----------
STRMADMIN JOBS26 RENAME TABLE 4 0
STRMADMIN EMPLOYEES23 ADD COLUMN 3 0

Based on this output, the ADD COLUMN transformation executes before the RENAME TABLE
transformation because the step number is the same (zero) for both transformations
and the ADD COLUMN transformation has the lower precedence.

When you determine which types of declarative rule-based transformations are in a
database, you can display more detailed information about each transformation. The
following data dictionary views contain detailed information about the various types of
declarative rule-based transformations:

• The DBA_STREAMS_ADD_COLUMN view contains information about ADD COLUMN declarative
transformations.

• The DBA_STREAMS_DELETE_COLUMN view contains information about DELETE COLUMN
declarative transformations.

• The DBA_STREAMS_KEEP_COLUMNS view contains information about KEEP COLUMNS
declarative transformations.

• The DBA_STREAMS_RENAME_COLUMN view contains information about RENAME COLUMN
declarative transformations.

• The DBA_STREAMS_RENAME_SCHEMA view contains information about RENAME SCHEMA
declarative transformations.

• The DBA_STREAMS_RENAME_TABLE view contains information about RENAME TABLE
declarative transformations.

For example, the previous query listed an ADD COLUMN transformation and a RENAME TABLE
transformation. The following sections contain queries that display detailed information
about these transformations:

• Displaying Information About ADD COLUMN Transformations

• Displaying Information About RENAME TABLE Transformations

Chapter 28
Displaying Declarative Rule-Based Transformations

28-3

Note:

Precedence and step number pertain only to declarative rule-based
transformations. They do not pertain to subset rule transformations or custom
rule-based transformations.

See Also:

• "Declarative Rule-Based Transformations"

• "Managing Declarative Rule-Based Transformations"

28.2.1 Displaying Information About ADD COLUMN Transformations
The following query displays detailed information about the ADD COLUMN declarative rule-
based transformations in a database:

COLUMN RULE_OWNER HEADING 'Rule|Owner' FORMAT A9
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A12
COLUMN SCHEMA_NAME HEADING 'Schema|Name' FORMAT A6
COLUMN TABLE_NAME HEADING 'Table|Name' FORMAT A9
COLUMN COLUMN_NAME HEADING 'Column|Name' FORMAT A10
COLUMN COLUMN_TYPE HEADING 'Column|Type' FORMAT A8

SELECT RULE_OWNER,
 RULE_NAME,
 SCHEMA_NAME,
 TABLE_NAME,
 COLUMN_NAME,
 ANYDATA.AccessDate(COLUMN_VALUE) "Value",
 COLUMN_TYPE
 FROM DBA_STREAMS_ADD_COLUMN;

Your output looks similar to the following:

Rule Rule Schema Table Column Column
Owner Name Name Name Name Value Type
--------- ------------ ------ --------- ---------- -------------------- --------
STRMADMIN EMPLOYEES23 HR EMPLOYEES BIRTH_DATE SYS.DATE

This output show the following information about the ADD COLUMN declarative rule-based
transformation:

• It is specified on the employees23 rule in the strmadmin schema.

• It adds a column to row LCRs that involve the employees table in the hr schema.

• The column name of the added column is birth_date.

• The value of the added column is NULL. Notice that the COLUMN_VALUE column in the
DBA_STREAMS_ADD_COLUMN view is type ANYDATA. In this example, because the column
type is DATE, the ANYDATA.AccessDate member function is used to display the value.
Use the appropriate member function to display values of other types.

• The type of the added column is DATE.

Chapter 28
Displaying Declarative Rule-Based Transformations

28-4

28.2.2 Displaying Information About RENAME TABLE
Transformations

The following query displays detailed information about the RENAME TABLE declarative
rule-based transformations in a database:

COLUMN RULE_OWNER HEADING 'Rule|Owner' FORMAT A10
COLUMN RULE_NAME HEADING 'Rule|Name' FORMAT A10
COLUMN FROM_SCHEMA_NAME HEADING 'From|Schema|Name' FORMAT A10
COLUMN TO_SCHEMA_NAME HEADING 'To|Schema|Name' FORMAT A10
COLUMN FROM_TABLE_NAME HEADING 'From|Table|Name' FORMAT A15
COLUMN TO_TABLE_NAME HEADING 'To|Table|Name' FORMAT A15

SELECT RULE_OWNER,
 RULE_NAME,
 FROM_SCHEMA_NAME,
 TO_SCHEMA_NAME,
 FROM_TABLE_NAME,
 TO_TABLE_NAME
 FROM DBA_STREAMS_RENAME_TABLE;

Your output looks similar to the following:

 From To From To
Rule Rule Schema Schema Table Table
Owner Name Name Name Name Name
---------- ---------- ---------- ---------- --------------- ---------------
STRMADMIN JOBS26 HR HR JOBS ASSIGNMENTS

This output show the following information about the RENAME TABLE declarative rule-
based transformation:

• It is specified on the jobs26 rule in the strmadmin schema.

• It renames the hr.jobs table in row LCRs to the hr.assignments table.

28.3 Displaying Custom Rule-Based Transformations
A custom rule-based transformation is a rule-based transformation that requires a
user-defined PL/SQL function. The query in this section displays the following
information about each custom rule-based transformation specified in a database:

• The owner of the rule on which the custom rule-based transformation is set

• The name of the rule on which the custom rule-based transformation is set

• The owner and name of the transformation function

• Whether the custom rule-based transformation is one-to-one or one-to-many

Run the following query to display this information:

COLUMN RULE_OWNER HEADING 'Rule Owner' FORMAT A20
COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A15
COLUMN TRANSFORM_FUNCTION_NAME HEADING 'Transformation Function' FORMAT A30
COLUMN CUSTOM_TYPE HEADING 'Type' FORMAT A11

SELECT RULE_OWNER, RULE_NAME, TRANSFORM_FUNCTION_NAME, CUSTOM_TYPE
 FROM DBA_STREAMS_TRANSFORM_FUNCTION;

Chapter 28
Displaying Custom Rule-Based Transformations

28-5

Your output looks similar to the following:

Rule Owner Rule Name Transformation Function Type
-------------------- --------------- ------------------------------ -----------
STRMADMIN DEPARTMENTS31 "HR"."EXECUTIVE_TO_MANAGEMENT" ONE TO ONE
STRMADMIN DEPARTMENTS32 "HR"."EXECUTIVE_TO_MANAGEMENT" ONE TO ONE
STRMADMIN DEPARTMENTS33 "HR"."EXECUTIVE_TO_MANAGEMENT" ONE TO ONE

Note:

The transformation function name must be of type VARCHAR2. If it is not, then the
value of TRANSFORM_FUNCTION_NAME is NULL. The VALUE_TYPE column in the
DBA_STREAMS_TRANSFORM_FUNCTION view displays the type of the transform
function name.

See Also:

• "Custom Rule-Based Transformations"

• "Managing Custom Rule-Based Transformations"

Chapter 28
Displaying Custom Rule-Based Transformations

28-6

29
Monitoring Other Oracle Streams
Components

This chapter provides sample queries that you can use to monitor various Oracle
Streams components.

The following topics describe monitoring various Oracle Streams components:

• Monitoring Oracle Streams Administrators and Other Oracle Streams Users

• Monitoring the Oracle Streams Pool

• Monitoring Compatibility in an Oracle Streams Environment

• Monitoring Oracle Streams Performance Using AWR and Statspack

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
Help for the Oracle Streams tool for more information.

See Also:

Oracle Database Reference for information about the data dictionary views
described in this chapter

29.1 Monitoring Oracle Streams Administrators and Other
Oracle Streams Users

The following sections contain queries that you can run to list Oracle Streams
administrators and other users who allow access to remote Oracle Streams
administrators:

• Listing Local Oracle Streams Administrators

• Listing Users Who Allow Access to Remote Oracle Streams Administrators

29-1

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about configuring Oracle Streams administrators and other Oracle
Streams users using the DBMS_STREAMS_AUTH package

29.1.1 Listing Local Oracle Streams Administrators
You can grant privileges to a local Oracle Streams administrator by running the
GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package. The
DBA_STREAMS_ADMINISTRATOR data dictionary view contains only the local Oracle Streams
administrators created with the grant_privileges parameter set to TRUE when the
GRANT_ADMIN_PRIVILEGE procedure was run for the user. If you created an Oracle
Streams administrator using generated scripts and set the grant_privileges parameter
to FALSE when the GRANT_ADMIN_PRIVILEGE procedure was run for the user, then the
DBA_STREAMS_ADMINISTRATOR data dictionary view does not list the user as an Oracle
Streams administrator.

To list the local Oracle Streams administrators created with the grant_privileges
parameter set to TRUE when running the GRANT_ADMIN_PRIVILEGE procedure, run the
following query:

COLUMN USERNAME HEADING 'Local Streams Administrator' FORMAT A30

SELECT USERNAME FROM DBA_STREAMS_ADMINISTRATOR
 WHERE LOCAL_PRIVILEGES = 'YES';

Your output looks similar to the following:

Local Streams Administrator

STRMADMIN

The GRANT_ADMIN_PRIVILEGE might not have been run on a user who is an Oracle
Streams administrator. Such administrators are not returned by the query in this
section. Also, you can change the privileges for the users listed after the
GRANT_ADMIN_PRIVILEGE procedure has been run for them. The
DBA_STREAMS_ADMINISTRATOR view does not track these changes unless they are
performed by the DBMS_STREAMS_AUTH package. For example, you can revoke the
privileges granted by the GRANT_ADMIN_PRIVILEGE procedure for a particular user using
the REVOKE SQL statement, but this user would be listed when you query the
DBA_STREAMS_ADMINISTRATOR view.

Oracle recommends using the REVOKE_ADMIN_PRIVILEGE procedure in the
DBMS_STREAMS_AUTH package to revoke privileges from a user listed by the query in this
section. When you revoke privileges from a user using this procedure, the user is
removed from the DBA_STREAMS_ADMINISTRATOR view.

See Also:

Oracle Streams Replication Administrator's Guide for information about
creating an Oracle Streams administrator

Chapter 29
Monitoring Oracle Streams Administrators and Other Oracle Streams Users

29-2

29.1.2 Listing Users Who Allow Access to Remote Oracle Streams
Administrators

You can configure a user to allow access to remote Oracle Streams administrators by
running the GRANT_REMOTE_ADMIN_ACCESS procedure in the DBMS_STREAMS_AUTH package.
Such a user allows the remote Oracle Streams administrator to perform administrative
actions in the local database using a database link.

Typically, you configure such a user at a local source database if a downstream
capture process captures changes originating at the local source database. The
Oracle Streams administrator at a downstream capture database administers the
source database using this connection.

To list the users who allow to remote Oracle Streams administrators, run the following
query:

COLUMN USERNAME HEADING 'Users Who Allow Remote Access' FORMAT A30

SELECT USERNAME FROM DBA_STREAMS_ADMINISTRATOR
 WHERE ACCESS_FROM_REMOTE = 'YES';

Your output looks similar to the following:

Users Who Allow Remote Access

STRMREMOTE

29.2 Monitoring the Oracle Streams Pool
The Oracle Streams pool is a portion of memory in the System Global Area (SGA) that
is used by Oracle Streams. The Oracle Streams pool stores enqueued messages in
memory, and it provides memory for capture processes and apply processes. The
Oracle Streams pool always stores LCRs captured by a capture process, and it can
store other types of messages that are enqueued manually into a buffered queue.

The Oracle Streams pool size is managed automatically when the MEMORY_TARGET,
MEMORY_MAX_TARGET, or SGA_TARGET initialization parameter is set to a nonzero value. If
these parameters are all set to 0 (zero), then you can specify the size of the Oracle
Streams pool in bytes using the STREAMS_POOL_SIZE initialization parameter. In this case,
the V$STREAMS_POOL_ADVICE dynamic performance view provides information about an
appropriate setting for the STREAMS_POOL_SIZE initialization parameter.

This section contains example queries that show when you should increase, retain, or
decrease the size of the Oracle Streams pool. Each query shows the following
information about the Oracle Streams pool:

• STREAMS_POOL_SIZE_FOR_ESTIMATE shows the size, in megabytes, of the Oracle
Streams pool for the estimate. The size ranges from values smaller than the
current Oracle Streams pool size to values larger than the current Oracle Streams
pool size, and there is a separate row for each increment. There always is an entry
that shows the current Oracle Streams pool size, and there always are 20
increments. The range and the size of the increments depend on the current size
of the Oracle Streams pool.

• STREAMS_POOL_SIZE_FACTOR shows the size factor of an estimate as it relates to the
current size of the Oracle Streams pool. For example, a size factor of.2 means that

Chapter 29
Monitoring the Oracle Streams Pool

29-3

the estimate is for 20% of the current size of the Oracle Streams pool, while a size
factor of 1.6 means that the estimate is for 160% of the current size of the Oracle
Streams pool. The row with a size factor of 1.0 shows the current size of the
Oracle Streams pool.

• ESTD_SPILL_COUNT shows the estimated number messages that will spill from
memory to the queue table for each STREAMS_POOL_SIZE_FOR_ESTIMATE and
STREAMS_POOL_SIZE_FACTOR returned by the query.

• ESTD_SPILL_TIME shows the estimated elapsed time, in seconds, spent spilling
messages from memory to the queue table for each
STREAMS_POOL_SIZE_FOR_ESTIMATE and STREAMS_POOL_SIZE_FACTOR returned by the
query.

• ESTD_UNSPILL_COUNT shows the estimated number messages that will unspill from
the queue table back into memory for each STREAMS_POOL_SIZE_FOR_ESTIMATE and
STREAMS_POOL_SIZE_FACTOR returned by the query.

• ESTD_UNSPILL_TIME shows the estimated elapsed time, in seconds, spent unspilling
messages from the queue table back into memory for each
STREAMS_POOL_SIZE_FOR_ESTIMATE and STREAMS_POOL_SIZE_FACTOR returned by the
query.

If any capture processes, propagations, or apply processes are disabled when you
query the V$STREAMS_POOL_ADVICE view, and you plan to enable them in the future, then
ensure that you consider the memory resources required by these Oracle Streams
clients before you decrease the size of the Oracle Streams pool.

Note:

• In general, the best size for the Oracle Streams pool is the smallest size
for which spilled and unspilled messages and times are close to zero.

• For the most accurate results, you should run a query on the
V$STREAMS_POOL_ADVICE view when there is a typical amount of dequeue
activity by propagations and apply processes in a database. If dequeue
activity is far lower than typical, or far higher than typical, then the query
results might not be a good guide for adjusting the size of the Oracle
Streams pool.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring the Oracle Streams pool

• Oracle Streams Replication Administrator's Guide for more information
about the STREAMS_POOL_SIZE initialization parameter

Chapter 29
Monitoring the Oracle Streams Pool

29-4

29.2.1 Query Result that Advises Increasing the Oracle Streams Pool
Size

Consider the following results returned by the V$STREAMS_POOL_ADVICE view:

COLUMN STREAMS_POOL_SIZE_FOR_ESTIMATE HEADING 'Oracle Streams Pool Size|for
Estimate(MB)'
 FORMAT 999999999999
COLUMN STREAMS_POOL_SIZE_FACTOR HEADING 'Oracle Streams Pool|Size|Factor' FORMAT 99.9
COLUMN ESTD_SPILL_COUNT HEADING 'Estimated|Spill|Count' FORMAT 99999999
COLUMN ESTD_SPILL_TIME HEADING 'Estimated|Spill|Time' FORMAT 99999999.99
COLUMN ESTD_UNSPILL_COUNT HEADING 'Estimated|Unspill|Count' FORMAT 99999999
COLUMN ESTD_UNSPILL_TIME HEADING 'Estimated|Unspill|Time' FORMAT 99999999.99

SELECT STREAMS_POOL_SIZE_FOR_ESTIMATE,
 STREAMS_POOL_SIZE_FACTOR,
 ESTD_SPILL_COUNT,
 ESTD_SPILL_TIME,
 ESTD_UNSPILL_COUNT,
 ESTD_UNSPILL_TIME
 FROM V$STREAMS_POOL_ADVICE;

 Oracle Streams Pool Estimated Estimated Estimated
Oracle Streams Pool Size Size Spill Spill Unspill
 for Estimate(MB) Factor Count Time Count
------------------------ ------------------- --------- ------------ ---------
 24 .1 158 62.00 0 .00
 48 .2 145 59.00 0 .00
 72 .3 137 53.00 0 .00
 96 .4 122 50.00 0 .00
 120 .5 114 48.00 0 .00
 144 .6 103 45.00 0 .00
 168 .7 95 39.00 0 .00
 192 .8 87 32.00 0 .00
 216 .9 74 26.00 0 .00
 240 1.0 61 21.00 0 .00
 264 1.1 56 17.00 0 .00
 288 1.2 43 15.00 0 .00
 312 1.3 36 11.00 0 .00
 336 1.4 22 8.00 0 .00
 360 1.5 9 2.00 0 .00
 384 1.6 0 .00 0 .00
 408 1.7 0 .00 0 .00
 432 1.8 0 .00 0 .00
 456 1.9 0 .00 0 .00
 480 2.0 0 .00 0 .00

Based on these results, 384 megabytes, or 160% of the size of the current Oracle
Streams pool, is the optimal size for the Oracle Streams pool. That is, this size is the
smallest size for which the estimated number of spilled and unspilled messages is
zero.

Chapter 29
Monitoring the Oracle Streams Pool

29-5

Note:

After you adjust the size of the Oracle Streams pool, it might take some time
for the new size to result in new output for the V$STREAMS_POOL_ADVICE view.

29.2.2 Query Result that Advises Retaining the Current Oracle
Streams Pool Size

Consider the following results returned by the V$STREAMS_POOL_ADVICE view:

COLUMN STREAMS_POOL_SIZE_FOR_ESTIMATE HEADING 'Oracle Streams Pool|Size for
Estimate'
 FORMAT 999999999999
COLUMN STREAMS_POOL_SIZE_FACTOR HEADING 'Oracle Streams Pool|Size|Factor' FORMAT 99.9
COLUMN ESTD_SPILL_COUNT HEADING 'Estimated|Spill|Count' FORMAT 99999999
COLUMN ESTD_SPILL_TIME HEADING 'Estimated|Spill|Time' FORMAT 99999999.99
COLUMN ESTD_UNSPILL_COUNT HEADING 'Estimated|Unspill|Count' FORMAT 99999999
COLUMN ESTD_UNSPILL_TIME HEADING 'Estimated|Unspill|Time' FORMAT 99999999.99

SELECT STREAMS_POOL_SIZE_FOR_ESTIMATE,
 STREAMS_POOL_SIZE_FACTOR,
 ESTD_SPILL_COUNT,
 ESTD_SPILL_TIME,
 ESTD_UNSPILL_COUNT,
 ESTD_UNSPILL_TIME
 FROM V$STREAMS_POOL_ADVICE;

 Oracle Streams Pool Estimated Estimated Estimated
Oracle Streams Pool Size Size Spill Spill Unspill
 for Estimate(MB) Factor Count Time Count
------------------------ ------------------- --------- ------------ ---------
 24 .1 89 52.00 0 .00
 48 .2 78 48.00 0 .00
 72 .3 71 43.00 0 .00
 96 .4 66 37.00 0 .00
 120 .5 59 32.00 0 .00
 144 .6 52 26.00 0 .00
 168 .7 39 20.00 0 .00
 192 .8 27 12.00 0 .00
 216 .9 15 5.00 0 .00
 240 1.0 0 .00 0 .00
 264 1.1 0 .00 0 .00
 288 1.2 0 .00 0 .00
 312 1.3 0 .00 0 .00
 336 1.4 0 .00 0 .00
 360 1.5 0 .00 0 .00
 384 1.6 0 .00 0 .00
 408 1.7 0 .00 0 .00
 432 1.8 0 .00 0 .00
 456 1.9 0 .00 0 .00
 480 2.0 0 .00 0 .00

Based on these results, the current size of the Oracle Streams pool is the optimal size.
That is, this size is the smallest size for which the estimated number of spilled and
unspilled messages is zero.

Chapter 29
Monitoring the Oracle Streams Pool

29-6

29.2.3 Query Result that Advises Decreasing the Oracle Streams Pool
Size

Consider the following results returned by the V$STREAMS_POOL_ADVICE view:

COLUMN STREAMS_POOL_SIZE_FOR_ESTIMATE HEADING 'Oracle Streams Pool|Size for
Estimate'
 FORMAT 999999999999
COLUMN STREAMS_POOL_SIZE_FACTOR HEADING 'Oracle Streams Pool|Size|Factor' FORMAT 99.9
COLUMN ESTD_SPILL_COUNT HEADING 'Estimated|Spill|Count' FORMAT 99999999
COLUMN ESTD_SPILL_TIME HEADING 'Estimated|Spill|Time' FORMAT 99999999.99
COLUMN ESTD_UNSPILL_COUNT HEADING 'Estimated|Unspill|Count' FORMAT 99999999
COLUMN ESTD_UNSPILL_TIME HEADING 'Estimated|Unspill|Time' FORMAT 99999999.99

SELECT STREAMS_POOL_SIZE_FOR_ESTIMATE,
 STREAMS_POOL_SIZE_FACTOR,
 ESTD_SPILL_COUNT,
 ESTD_SPILL_TIME,
 ESTD_UNSPILL_COUNT,
 ESTD_UNSPILL_TIME
 FROM V$STREAMS_POOL_ADVICE;

 Oracle Streams Pool Estimated Estimated Estimated
Oracle Streams Pool Size Size Spill Spill Unspill
 for Estimate(MB) Factor Count Time Count
------------------------ ------------------- --------- ------------ ---------
 24 .1 158 62.00 0 .00
 48 .2 145 59.00 0 .00
 72 .3 137 53.00 0 .00
 96 .4 122 50.00 0 .00
 120 .5 114 48.00 0 .00
 144 .6 103 45.00 0 .00
 168 .7 0 .00 0 .00
 192 .8 0 .00 0 .00
 216 .9 0 .00 0 .00
 240 1.0 0 .00 0 .00
 264 1.1 0 .00 0 .00
 288 1.2 0 .00 0 .00
 312 1.3 0 .00 0 .00
 336 1.4 0 .00 0 .00
 360 1.5 0 .00 0 .00
 384 1.6 0 .00 0 .00
 408 1.7 0 .00 0 .00
 432 1.8 0 .00 0 .00
 456 1.9 0 .00 0 .00
 480 2.0 0 .00 0 .00

Based on these results, 168 megabytes, or 70% of the size of the current Oracle
Streams pool, is the optimal size for the Oracle Streams pool. That is, this size is the
smallest size for which the estimated number of spilled and unspilled messages is
zero.

Chapter 29
Monitoring the Oracle Streams Pool

29-7

Note:

After you adjust the size of the Oracle Streams pool, it might take some time
for the new size to result in new output for the V$STREAMS_POOL_ADVICE view.

29.3 Monitoring Compatibility in an Oracle Streams
Environment

Some database objects and data types are not compatible with Oracle Streams
capture processes, synchronous captures, and apply processes. If one of these Oracle
Streams clients tries to process an unsupported database object or data type, errors
result.

The queries in the following sections show Oracle Streams compatibility for database
objects and columns in the local database:

• Monitoring Compatibility for Capture Processes

• Listing Database Objects and Columns Not Compatible with Synchronous
Captures

• Monitoring Compatibility for Apply Processes

29.3.1 Monitoring Compatibility for Capture Processes
This section contains these topics:

• Listing the Database Objects That Are Not Compatible with Capture Processes

• Listing the Database Objects Recently Compatible with Capture Processes

29.3.1.1 Listing the Database Objects That Are Not Compatible with Capture
Processes

A database object is not compatible with capture processes if capture processes
cannot capture changes to it. The query in this section displays the following
information about database objects that are not compatible with capture processes:

• The object owner

• The object name

• The reason why the object is not compatible with capture processes

• Whether capture processes automatically filter out changes to the database object
(AUTO_FILTERED column)

If capture processes automatically filter out changes to a database object, then the
rule sets used by the capture processes do not need to filter them out explicitly. For
example, capture processes automatically filter out changes to domain indexes.
However, if changes to incompatible database objects are not filtered out
automatically, then the rule sets used by the capture process must filter them out to
avoid errors.

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-8

For example, suppose the rule sets for a capture process instruct the capture process
to capture all of the changes made to a specific schema. Also suppose that the query
in this section shows that one object in this schema is not compatible with capture
processes, and that changes to the object are not filtered out automatically. In this
case, you can add a rule to the negative rule set for the capture process to filter out
changes to the incompatible database object.

Run the following query to list the database objects in the local database that are not
compatible with capture processes:

COLUMN OWNER HEADING 'Object|Owner' FORMAT A8
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A30
COLUMN REASON HEADING 'Reason' FORMAT A30
COLUMN AUTO_FILTERED HEADING 'Auto|Filtered?' FORMAT A9

SELECT OWNER, TABLE_NAME, REASON, AUTO_FILTERED FROM DBA_STREAMS_UNSUPPORTED;

Your output looks similar to the following:

Object Auto
Owner Object Name Reason Filtered?
-------- ------------------------------ ------------------------------ ---------
IX AQ$_ORDERS_QUEUETABLE_G column with user-defined type NO
IX AQ$_ORDERS_QUEUETABLE_H unsupported column exists NO
IX AQ$_ORDERS_QUEUETABLE_I unsupported column exists NO
IX AQ$_ORDERS_QUEUETABLE_L AQ queue table NO
IX AQ$_ORDERS_QUEUETABLE_S AQ queue table NO
IX AQ$_ORDERS_QUEUETABLE_T AQ queue table NO
IX AQ$_STREAMS_QUEUE_TABLE_C AQ queue table NO
IX AQ$_STREAMS_QUEUE_TABLE_G column with user-defined type NO
IX AQ$_STREAMS_QUEUE_TABLE_H unsupported column exists NO
IX AQ$_STREAMS_QUEUE_TABLE_I unsupported column exists NO
IX AQ$_STREAMS_QUEUE_TABLE_L AQ queue table NO
IX AQ$_STREAMS_QUEUE_TABLE_S AQ queue table NO
IX AQ$_STREAMS_QUEUE_TABLE_T AQ queue table NO
IX ORDERS_QUEUETABLE column with user-defined type NO
IX STREAMS_QUEUE_TABLE column with user-defined type NO
OE ACTION_TABLE column with user-defined type NO
OE CATEGORIES_TAB column with user-defined type NO
.
.
.

Notice that the Auto Filtered? column is YES for the sh.drsup_text_indxi domain
index. A capture process automatically filters out data manipulation language (DML)
changes to this database object, even if the rules sets for a capture process instruct
the capture process to capture changes to it. By default, a capture process also filters
out data definition language (DDL) changes to these database objects. However, if
you want to capture these DDL changes, then use the DBMS_CAPTURE_ADM.SET_PARAMETER
procedure to set the set_autofiltered_table_ddl capture process parameter to N and
configure the capture process rule sets to capture these DDL changes.

Because the Auto Filtered? column is NO for other database objects listed in the
example output, capture processes do not filter out changes to these database objects
automatically. If a capture process attempts to process changes to these unsupported
database objects, then the capture process raises an error. However, you can avoid
these errors by configuring rules sets that instruct the capture process not to capture
changes to these unsupported objects.

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-9

Note:

• The results of the query in this section depend on the compatibility level of
the database. More database objects are incompatible with capture
processes at lower compatibility levels. The COMPATIBLE initialization
parameter controls the compatibility level of the database.

• For capture processes, you cannot use rule-based transformations to
exclude a column of an unsupported data type. The entire database object
must be excluded to avoid capture errors.

• The DBA_STREAMS_UNSUPPORTED view only pertains to capture processes in
Oracle Database 11g Release 1 (11.1) and later databases. This view
does not pertain to synchronous captures and apply processes.

See Also:

• How Rules Are Used in Oracle Streams

• Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization parameter

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_CAPTURE_ADM.SET_PARAMETER procedure

29.3.1.2 Listing the Database Objects Recently Compatible with Capture
Processes

The query in this section displays the following information about database objects that
have become compatible with capture processes in a recent release of Oracle
Database:

• The object owner

• The object name

• The reason why the object was not compatible with capture processes in previous
releases of Oracle Database

• The Oracle Database release in which the object became compatible with capture
processes

Run the following query to display this information for the local database:

COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A20
COLUMN REASON HEADING 'Reason' FORMAT A30
COLUMN COMPATIBLE HEADING 'Compatible' FORMAT A10

SELECT OWNER, TABLE_NAME, REASON, COMPATIBLE FROM DBA_STREAMS_NEWLY_SUPPORTED;

The following is a sample of the output from this query:

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-10

Owner Object Name Reason Compatible
---------- -------------------- ------------------------------ ----------
HR COUNTRIES IOT 10.1
OE WAREHOUSES table with XMLType column 11.1
SH CAL_MONTH_SALES_MV materialized view 10.1
SH FWEEK_PSCAT_SALES_MV materialized view 10.1

The Compatible column shows the minimum database compatibility for capture
processes to support the database object. If the local database compatibility is equal
to or higher than the value in the Compatible column for a database object, then
capture processes can capture changes to the database object successfully. You
control the compatibility of a database using the COMPATIBLE initialization parameter.

If your Oracle Streams environment includes databases that are running different
versions of the Oracle Database, then you can configure rules that use the
GET_COMPATIBLE member function for LCRs to filter out LCRs that are not compatible
with particular databases. These rules can be added to the rule sets of capture
processes, synchronous captures, propagations, and apply processes to filter out
incompatible LCRs wherever necessary in a stream.

Note:

The DBA_STREAMS_NEWLY_SUPPORTED view only pertains to capture processes in
Oracle Database 11g Release 1 (11.1) and later databases. This view does
not pertain to synchronous captures and apply processes.

See Also:

• Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization parameter

• "Listing the Database Objects That Are Not Compatible with Capture
Processes"

• "Rule Conditions that Instruct Oracle Streams Clients to Discard
Unsupported LCRs" for information about creating rules that use the
GET_COMPATIBLE member function for LCRs

29.3.2 Listing Database Objects and Columns Not Compatible with
Synchronous Captures

A database object or a column in a table is not compatible with synchronous captures
if synchronous captures cannot capture changes to it. For example, synchronous
captures cannot capture changes to object tables. Synchronous captures can capture
changes to relational tables, but they cannot capture changes to columns of some
data types.

The query in this section displays the following information about database objects and
columns that are not compatible with synchronous captures:

• The object owner

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-11

• The object name

• The column name

• The reason why the column is not compatible with synchronous captures

To list the columns that are not compatible with synchronous captures in the local
database, run the following query:

COLUMN OWNER HEADING 'Object|Owner' FORMAT A8
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A20
COLUMN SYNC_CAPTURE_REASON HEADING 'Synchronous|Capture Reason' FORMAT A25

SELECT OWNER,
 TABLE_NAME,
 COLUMN_NAME,
 SYNC_CAPTURE_REASON
 FROM DBA_STREAMS_COLUMNS
 WHERE SYNC_CAPTURE_VERSION IS NULL;

When a query on the DBA_STREAMS_COLUMNS view returns NULL for SYNC_CAPTURE_VERSION, it
means that synchronous captures do not support the column. The WHERE clause in the
query ensures that the query only returns columns that are not supported by
synchronous captures.

The following is a sample of the output from this query:

Object Synchronous
Owner Object Name Column Name Capture Reason
-------- -------------------- -------------------- -------------------------
.
.
.
SH SALES_TRANSACTIONS_E UNIT_COST external table
 XT
OE LINEITEM_TABLE SYS_XDBPD$ object table
OE LINEITEM_TABLE ITEMNUMBER object table
PM PRINT_MEDIA AD_FINALTEXT table with nested table c
 olumn
.
.
.

To avoid synchronous capture errors, configure the synchronous capture rule set to
ensure that the synchronous capture does not try to capture changes to an
unsupported database object, such as an object table. To avoid synchronous capture
errors while capturing changes to relational tables, you have the following options:

• Configure the synchronous capture rule set to ensure that the synchronous
capture does not try to capture changes to a table that contains one or more
unsupported columns.

• Configure rule-based transformations to exclude columns that are not supported
by synchronous captures.

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-12

Note:

Synchronous capture is available in Oracle Database 11g Release 1 (11.1)
and later databases. It is not available in previous releases of Oracle
Database.

See Also:

• "Data Types Captured by Synchronous Capture"

• Rule-Based Transformations

• How Rules Are Used in Oracle Streams

29.3.3 Monitoring Compatibility for Apply Processes
This section contains these topics:

• Listing Database Objects and Columns Not Compatible with Apply Processes

• Listing Columns That Have Become Compatible with Apply Processes Recently

29.3.3.1 Listing Database Objects and Columns Not Compatible with Apply
Processes

A database object or a column in a table is not compatible with apply processes if
apply processes cannot apply changes to it. For example, apply processes cannot
apply changes to object tables. Apply processes can apply changes to relational
tables, but they cannot apply changes to columns of some data types.

The query in this section displays the following information about database objects and
columns that are not compatible with apply processes:

• The object owner

• The object name

• The column name

• The reason why the column is not compatible with apply processes

To list the columns that are not compatible with apply processes in the local database,
run the following query:

COLUMN OWNER HEADING 'Object|Owner' FORMAT A8
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A20
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A20
COLUMN APPLY_REASON HEADING 'Apply Process Reason' FORMAT A25

SELECT OWNER,
 TABLE_NAME,
 COLUMN_NAME,
 APPLY_REASON

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-13

 FROM DBA_STREAMS_COLUMNS
 WHERE APPLY_VERSION IS NULL;

When a query on the DBA_STREAMS_COLUMNS view returns NULL for APPLY_VERSION, it means
that apply processes do not support the column. The WHERE clause in the query ensures
that the query only returns columns that are not supported by apply processes.

The following is a sample of the output from this query:

Object
Owner Object Name Column Name Apply Process Reason
-------- -------------------- -------------------- -------------------------
.
.
.
SH SALES_TRANSACTIONS_E CHANNEL_ID external table
 XT
OE ACTION_TABLE ACTIONED_BY object table
OE LINEITEM_TABLE PART object table
PM ONLINE_MEDIA PRODUCT_AUDIO ADT column
OE CATEGORIES_TAB CATEGORY_DESCRIPTION object table
.
.
.

To avoid apply errors, configure the apply process rule sets to ensure that the apply
process does not try to apply changes to an unsupported database object, such as an
object table. To avoid apply errors while applying changes to relational tables, you
have the following options:

• Configure the apply process rule sets to ensure that the apply process does not try
to apply changes to a table that contains one or more unsupported columns.

• Configure rule-based transformations to exclude columns that are not supported
by apply processes.

• Configure procedure DML handlers to exclude columns that are not supported by
apply processes.

See Also:

• "Data Types Applied"

• Rule-Based Transformations

• "DML Handlers"

• How Rules Are Used in Oracle Streams

29.3.3.2 Listing Columns That Have Become Compatible with Apply Processes
Recently

The query in this section displays the following information about database objects and
columns that have become compatible with apply processes in a recent release of
Oracle Database:

• The object owner

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-14

• The object name

• The column name

• The reason why the object was not compatible with apply processes in previous
releases of Oracle Database

• The Oracle Database release in which the object became compatible with apply
processes

Run the following query to display this information for the local database:

COLUMN OWNER HEADING 'Object|Owner' FORMAT A8
COLUMN TABLE_NAME HEADING 'Object Name' FORMAT A15
COLUMN COLUMN_NAME HEADING 'Column Name' FORMAT A15
COLUMN APPLY_VERSION HEADING 'Apply|Process|Vesion' FORMAT 99.9
COLUMN APPLY_REASON HEADING 'Apply|Process Reason' FORMAT A25

SELECT OWNER,
 TABLE_NAME,
 COLUMN_NAME,
 APPLY_VERSION,
 APPLY_REASON
 FROM DBA_STREAMS_COLUMNS
 WHERE APPLY_VERSION > 11;

When a query on the DBA_STREAMS_COLUMNS view returns a non-NULL value for
APPLY_VERSION, it means that apply processes support the column. The WHERE clause in
the query ensures that the query only returns columns that are supported by apply
processes. This query returns the columns that have become supported by apply
processes in Oracle Database 11g Release 1 and later.

The following is a sample of the output from this query:

 Apply
Object Process Apply
Owner Object Name Column Name Vesion Process Reason
-------- --------------- --------------- ------- -------------------------
OE WAREHOUSES WAREHOUSE_SPEC 11.1 XMLType column

The Apply Process Version column shows the minimum database compatibility for apply
processes to support the column. If the local database compatibility is equal to or
higher than the value in the Apply Process Version column for a column, then apply
processes can apply changes to the column successfully. You control the compatibility
of a database using the COMPATIBLE initialization parameter.

If your Oracle Streams environment includes databases that are running different
versions of the Oracle Database, then you can configure rules that use the
GET_COMPATIBLE member function for LCRs to filter out LCRs that are not compatible
with particular databases. These rules can be added to the rule sets of capture
processes, synchronous captures, propagations, and apply processes to filter out
incompatible LCRs wherever necessary in a stream.

Note:

When this query returns NULL for Apply Process Reason, it means that the
column has always been supported by apply processes since the first Oracle
Database release that included Oracle Streams.

Chapter 29
Monitoring Compatibility in an Oracle Streams Environment

29-15

See Also:

• Oracle Database Reference and Oracle Database Upgrade Guide for
more information about the COMPATIBLE initialization parameter

• "Listing Database Objects and Columns Not Compatible with Apply
Processes"

• "Rule Conditions that Instruct Oracle Streams Clients to Discard
Unsupported LCRs" for information about creating rules that use the
GET_COMPATIBLE member function for LCRs

29.4 Monitoring Oracle Streams Performance Using AWR
and Statspack

You can use Automatic Workload Repository (AWR) to monitor performance statistics
related to Oracle Streams. If AWR is not available on your database, then you can use
the Statspack package to monitor performance statistics related to Oracle Streams.
The most current instructions and information about installing and using the Statspack
package are contained in the spdoc.txt file installed with your database. Refer to that
file for Statspack information. On UNIX systems, the file is located in the ORACLE_HOME/
rdbms/admin directory. On Windows systems, the file is located in the ORACLE_HOME\rdbms
\admin directory.

See Also:

• Oracle Database Performance Tuning Guide for more information about
AWR

• Monitoring the Oracle Streams Topology and Performance for information
about monitoring performance using the Oracle Streams Performance
Advisor

Chapter 29
Monitoring Oracle Streams Performance Using AWR and Statspack

29-16

Part V
Troubleshooting an Oracle Streams
Environment

This part describes troubleshooting an Oracle Streams environment. This part
contains the following chapters:

• Identifying Problems in an Oracle Streams Environment

• Troubleshooting Implicit Capture

• Troubleshooting Propagation

• Troubleshooting Apply

• Troubleshooting Rules and Rule-Based Transformations

30
Identifying Problems in an Oracle Streams
Environment

The following topics describe identifying and resolving common problems in an Oracle
Streams environment:

• Viewing Oracle Streams Alerts

• Using the Streams Configuration Report and Health Check Script

• Handling Performance Problems Because of an Unavailable Destination

• Checking the Trace Files and Alert Log for Problems

30.1 Viewing Oracle Streams Alerts
An alert is a warning about a potential problem or an indication that a critical threshold
has been crossed. There are two types of alerts:

• Stateless: Alerts that indicate single events that are not necessarily tied to the
system state. For example, an alert that indicates that a capture aborted with a
specific error is a stateless alert.

• Stateful: Alerts that are associated with a specific system state. Stateful alerts are
usually based on a numeric value, with thresholds defined at warning and critical
levels. For example, an alert on the current Oracle Streams pool memory usage
percentage, with the warning level at 85% and the critical level at 95%, is a stateful
alert.

An Oracle Database 11g Release 1 or later database generates a stateless Oracle
Streams alert under the following conditions:

• A capture process aborts.

• A propagation aborts after 16 consecutive errors.

• An apply process aborts.

• An apply process with an empty error queue encounters an apply error.

An Oracle Database 11g Release 1 or later database generates a stateful Oracle
Streams alert under the following condition:

• Oracle Streams pool memory usage exceeds the percentage specified by the
STREAMS_POOL_USED_PCT metric. You can manage this metric with the SET_THRESHOLD
procedure in the DBMS_SERVER_ALERT package.

You can view alerts in Oracle Enterprise Manager Cloud Control, or you can query the
following data dictionary views:

• The DBA_OUTSTANDING_ALERTS view records current stateful alerts. The
DBA_ALERT_HISTORY view records stateless alerts and stateful alerts that have been
cleared. For example, if the memory usage in the Oracle Streams pool exceeds

30-1

the specified threshold, then a stateful alert is recorded in the
DBA_OUTSTANDING_ALERTS view.

• The DBA_ALERT_HISTORY data dictionary view shows alerts that have been cleared
from the DBA_OUTSTANDING_ALERTS view. For example, if the memory usage in the
Oracle Streams pool falls below the specified threshold, then the alert recorded in
the DBA_OUTSTANDING_ALERTS view is cleared and moved to the DBA_ALERT_HISTORY
view.

For example, to list the current stateful Oracle Streams alerts, run the following query
on the DBA_OUTSTANDING_ALERTS view:

COLUMN REASON HEADING 'Reason for Alert' FORMAT A35
COLUMN SUGGESTED_ACTION HEADING 'Suggested Response' FORMAT A35

SELECT REASON, SUGGESTED_ACTION
 FROM DBA_OUTSTANDING_ALERTS
 WHERE MODULE_ID LIKE '%STREAMS%';

To list the Oracle Streams stateless alerts and cleared Oracle Streams stateful alerts,
run the following query on the DBA_ALERT_HISTORY view:

COLUMN REASON HEADING 'Reason for Alert' FORMAT A35
COLUMN SUGGESTED_ACTION HEADING 'Suggested Response' FORMAT A35

SELECT REASON, SUGGESTED_ACTION
 FROM DBA_ALERT_HISTORY
 WHERE MODULE_ID LIKE '%STREAMS%';

The following is example output from a query on the DBA_ALERT_HISTORY view:

Reason for Alert Suggested Response
----------------------------------- -----------------------------------
STREAMS apply process "APPLY_EMP_DE Obtain the exact error message in d
P" aborted with ORA-26714 ba_apply, take the appropriate acti
 on for this error, and restart the
 apply process using dbms_apply_adm.
 start_apply. If the error is an OR
 A-26714, consider setting the 'DISA
 BLE_ON_ERROR' apply parameter to 'N
 ' to avoid aborting on future user
 errors.

STREAMS error queue for apply proce Look at the contents of the error q
ss "APPLY_EMP_DEP" contains new tra ueue as well as dba_apply_error to
nsaction with ORA-26786 determine the cause of the error.
 Once the errors are resolved, reexe
 cute them using dbms_apply_adm.exec
 ute_error or dbms_apply_adm.execute
 _all_errors.

Note:

Oracle Streams alerts are informational only. They do not need to be
managed. If you monitor your Oracle Streams environment regularly and
address problems as they arise, then you might not need to monitor Oracle
Streams alerts.

Chapter 30
Viewing Oracle Streams Alerts

30-2

See Also:

• Oracle Enterprise Manager Cloud Control online help for more information
about Oracle Streams alerts

• Oracle Database 2 Day + Performance Tuning Guide for information about
managing alerts and metric thresholds

• Oracle Database Administrator's Guide for information about alerts and for
information about subscribing to the ALERT_QUE queue to receive
notifications when new alerts are generated

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SERVER_ALERT package

• Oracle Streams Replication Administrator's Guide for information about
setting initialization parameters that are relevant to Oracle Streams

• Oracle Streams Replication Administrator's Guide for information about
configuring the Oracle Streams pool

30.2 Using the Streams Configuration Report and Health
Check Script

The Streams Configuration Report and Health Check Script provides important
information about the Oracle Streams components in an individual Oracle database.
The report is useful to confirm that the prerequisites for Oracle Streams are met and to
identify the database objects of interest for Oracle Streams. The report also analyzes
the rules in the database to identify common problems with Oracle Streams rules.

The Streams Configuration Report and Health Check Script is available on the My
Oracle Support (formerly OracleMetaLink) Web site. To run the script, complete the
following steps:

1. Using a Web browser, go to the My Oracle Support Web site:

http://support.oracle.com/

2. Log in to My Oracle Support.

Note:

If you are not a My Oracle Support registered user, then click Register Here
and register.

3. Find the database bulletin with the following title:

Streams Configuration Report and Health Check Script

The doc ID for this bulletin is 273674.1.

4. Follow the instructions to download the script for your release, run the script, and
analyze the results.

Chapter 30
Using the Streams Configuration Report and Health Check Script

30-3

http://support.oracle.com/

30.3 Handling Performance Problems Because of an
Unavailable Destination

When a database in Oracle Streams replication environment has one capture process
that captures changes for multiple destination databases, performance problems can
result when one of the destination databases becomes unavailable. If this happens,
and the changes for the unavailable destination cannot be propagated, then these
changes can build up the capture process's queue and eventually spill to hard disk.
Spilling messages to hard disk at the capture database can degrade the performance
of the Oracle Streams replication environment. You can query the V$BUFFERED_QUEUES
view to check the number of messages in a queue and how many have spilled to hard
disk. Also, you can query the DBA_PROPAGATION and V$PROPAGATION_SENDER views to show
the propagations in a database and the status of each propagation.

If you encounter this situation, then you can use the SPLIT_STREAMS and
MERGE_STREAMS_JOB procedures in the DBMS_STREAMS_ADM package to address the
problem. The SPLIT_STREAMS procedure splits the problem stream off from the other
streams flowing from the capture process. By splitting the stream off, you can avoid
performance problems while the destination is unavailable. After the problem at the
destination is resolved, the MERGE_STREAMS_JOB procedure merges the stream back with
the other streams flowing from the capture process.

See Also:

Oracle Streams Replication Administrator's Guide for more information about
splitting and merging a destination

30.4 Checking the Trace Files and Alert Log for Problems
Messages about each capture process, propagation, and apply process are recorded
in trace files for the database in which the process or propagation job is running. A
local capture process runs on a source database, a downstream capture process runs
on a downstream database, a propagation job runs on the database containing the
source queue in the propagation, and an apply process runs on a destination
database. These trace file messages can help you to identify and resolve problems in
an Oracle Streams environment.

All trace files for background processes are written to the Automatic Diagnostic
Repository. The names of trace files are operating system specific, but each file
usually includes the name of the process writing the file.

For example, on some operating systems, the trace file name for a process is
sid_xxxx_iiiii.trc, where:

• sid is the system identifier for the database

• xxxx is the name of the process

• iiiii is the operating system process number

Chapter 30
Handling Performance Problems Because of an Unavailable Destination

30-4

Also, you can set the write_alert_log parameter to y for both a capture process and
an apply process. When this parameter is set to y, which is the default setting, the alert
log for the database contains messages about why the capture process or apply
process stopped.

You can control the information in the trace files by setting the trace_level capture
process or apply process parameter using the SET_PARAMETER procedure in the
DBMS_CAPTURE_ADM and DBMS_APPLY_ADM packages.

Use the following checklist to check the trace files related to Oracle Streams:

• Does a Capture Process Trace File Contain Messages About Capture Problems?

• Do the Trace Files Related to Propagation Jobs Contain Messages About
Problems?

• Does an Apply Process Trace File Contain Messages About Apply Problems?

See Also:

• Oracle Database Administrator's Guide for more information about trace
files and the alert log, and for more information about their names and
locations

• Oracle Database PL/SQL Packages and Types Reference for more
information about setting the trace_level capture process parameter and
the trace_level apply process parameter

• Your operating system specific Oracle documentation for more information
about the names and locations of trace files

30.4.1 Does a Capture Process Trace File Contain Messages About
Capture Problems?

A capture process is an Oracle background process named CPnn, where nn can include
letters and numbers. For example, on some operating systems, if the system identifier
for a database running a capture process is hqdb and the capture process number is
01, then the trace file for the capture process starts with hqdb_CP01.

See Also:

"Displaying Change Capture Information About Each Capture Process" for a
query that displays the capture process number of a capture process

30.4.2 Do the Trace Files Related to Propagation Jobs Contain
Messages About Problems?

Each propagation uses a propagation job that depends on one or more slave
processes named jnnn, where nnn is the slave process number. For example, on some
operating systems, if a slave process is 001, then the trace file for the slave process

Chapter 30
Checking the Trace Files and Alert Log for Problems

30-5

includes j001 in its name. You can check the process name by querying the
PROCESS_NAME column in the DBA_QUEUE_SCHEDULES data dictionary view.

See Also:

"Is the Propagation Enabled?" for a query that displays the job slave used by a
propagation job

30.4.3 Does an Apply Process Trace File Contain Messages About
Apply Problems?

An apply process is an Oracle background process named APnn, where nn can include
letters and numbers. For example, on some operating systems, if the system identifier
for a database running an apply process is hqdb and the apply process number is 01,
then the trace file for the apply process starts with hqdb_AP01.

An apply process also uses other processes. Information about an apply process
might be recorded in the trace file for one or more of these processes. The process
name of the reader server and apply servers is ASnn, where nn can include letters and
numbers. So, on some operating systems, if the system identifier for a database
running an apply process is hqdb and the process number is 01, then the trace file that
contains information about a process used by an apply process starts with hqdb_AS01.

See Also:

• "Displaying General Information About Each Coordinator Process" for a
query that displays the apply process number of an apply process

• "Displaying Information About the Reader Server for Each Apply Process"
for a query that displays the process used by the reader server of an apply
process

• "Displaying Information About the Apply Servers for Each Apply Process"
for a query that displays the processes used by the apply servers of an
apply process

Chapter 30
Checking the Trace Files and Alert Log for Problems

30-6

31
Troubleshooting Implicit Capture

The following topics describe identifying and resolving common problems with capture
processes and synchronous captures in an Oracle Streams environment:

• Troubleshooting Capture Process Problems

• Troubleshooting Synchronous Capture Problems

31.1 Troubleshooting Capture Process Problems
If a capture process is not capturing changes as expected, or if you are having other
problems with a capture process, then use the following checklist to identify and
resolve capture problems:

• Is Capture Process Creation or Data Dictionary Build Taking a Long Time?

• Is the Capture Process Enabled?

• Is the Capture Process Waiting for Redo?

• Is the Capture Process Paused for Flow Control?

• Is the Capture Process Current?

• Are Required Redo Log Files Missing?

• Is a Downstream Capture Process Waiting for Redo Data?

• Are You Trying to Configure Downstream Capture Incorrectly?

• Are You Trying to Configure Downstream Capture without Proper Authentication?

• Are More Actions Required for Downstream Capture without a Database Link?

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

• "Managing a Capture Process"

• "Monitoring a Capture Process"

31.1.1 Is Capture Process Creation or Data Dictionary Build Taking a
Long Time?

If capture process creation or a data dictionary build is taking an inordinately long time,
then it might be because one or more in-flight transactions have not yet committed. An

31-1

in-flight transaction is one that is active during capture process creation or a data
dictionary build.

To determine whether there are in-flight transactions, check the alert log for the
following messages:

wait for inflight txns at this scn
Done with waiting for inflight txns at this scn

If you see only the first message in the alert log, then the capture process creation or
data dictionary build is waiting for the inflight transactions and will complete after all of
the in-flight transactions have committed.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

• "Capture Process Creation"

• "Checking the Trace Files and Alert Log for Problems"

31.1.2 Is the Capture Process Enabled?
A capture process captures changes only when it is enabled.

You can check whether a capture process is enabled, disabled, or aborted by querying
the DBA_CAPTURE data dictionary view. For example, to check whether a capture process
named capture is enabled, run the following query:

SELECT STATUS FROM DBA_CAPTURE WHERE CAPTURE_NAME = 'CAPTURE';

If the capture process is disabled, then your output looks similar to the following:

STATUS

DISABLED

If the capture process is disabled, then try restarting it. If the capture process is
aborted, then you might need to correct an error before you can restart it successfully.

To determine why the capture process aborted, query the DBA_CAPTURE data dictionary
view or check the trace file for the capture process. The following query shows when
the capture process aborted and the error that caused it to abort:

COLUMN CAPTURE_NAME HEADING 'Capture|Process|Name' FORMAT A10
COLUMN STATUS_CHANGE_TIME HEADING 'Abort Time'
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT CAPTURE_NAME, STATUS_CHANGE_TIME, ERROR_NUMBER, ERROR_MESSAGE
 FROM DBA_CAPTURE WHERE STATUS='ABORTED';

Chapter 31
Troubleshooting Capture Process Problems

31-2

See Also:

• "Starting a Capture Process"

• "Checking the Trace Files and Alert Log for Problems"

• "Capture Processes and Oracle Real Application Clusters" for information
about restarting a capture process in an Oracle Real Application Clusters
(Oracle RAC) environment

31.1.3 Is the Capture Process Waiting for Redo?
If an enabled capture process is not capturing changes as expected, then the capture
process might be in WAITING FOR REDO state.

To check the state of each capture process in a database, run the following query:

COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30
COLUMN STATE HEADING 'State' FORMAT A30

SELECT CAPTURE_NAME, STATE FROM V$STREAMS_CAPTURE;

If the capture process state is WAITING FOR REDO, then the capture process is waiting for
new redo log files to be added to the capture process session. This state is possible if
a redo log file is missing or if there is no activity at a source database. For a
downstream capture process, this state is possible if the capture process is waiting for
new log files to be added to its session.

Additional information might be displayed along with the state information when you
query the V$STREAMS_CAPTURE view. The additional information can help you to
determine why the capture process is waiting for redo. For example, a statement
similar to the following might appear for the STATE column when you query the view:

WAITING FOR REDO: LAST SCN MINED 8077284

In this case, the output only identifies the last system change number (SCN) scanned
by the capture process. In other cases, the output might identify the redo log file name
explicitly. Either way, the additional information can help you identify the redo log file
for which the capture process is waiting. To correct the problem, make any missing
redo log files available to the capture process.

See Also:

"Is a Downstream Capture Process Waiting for Redo Data?"

31.1.4 Is the Capture Process Paused for Flow Control?
If an enabled capture process is not capturing changes as expected, then the capture
process might be in PAUSED FOR FLOW CONTROL state.

To check the state of each capture process in a database, run the following query:

Chapter 31
Troubleshooting Capture Process Problems

31-3

COLUMN CAPTURE_NAME HEADING 'Capture Name' FORMAT A30
COLUMN STATE HEADING 'State' FORMAT A30

SELECT CAPTURE_NAME, STATE FROM V$STREAMS_CAPTURE;

If the capture process state is PAUSED FOR FLOW CONTROL, then the capture process cannot
enqueue logical change records (LCRs) either because of low memory or because
propagations and apply processes are consuming messages at a slower rate than the
capture process is creating them. This state indicates flow control that is used to
reduce the spilling of captured LCRs when propagation or apply has fallen behind or is
unavailable.

If a capture process is in this state, then check for the following issues:

• An apply process is disabled or is performing slowly.

• A propagation is disabled or is performing poorly.

• There is not enough memory in the Streams pool.

You can query the V$STREAMS_APPLY_READER view to monitor the LCRs being received by
the apply process. You can also query V$STREAMS_APPLY_SERVER view to determine
whether all apply servers are applying LCRs and executing transactions.

Also, you can query the PUBLISHER_STATE column in the V$BUFFERED_PUBLISHERS view to
determine the exact reason why the capture process is paused for flow control.

To correct the problem, perform one or more of the following actions:

• If any propagation or apply process is disabled, then enable the propagation or
apply process.

• If the apply reader is not receiving data fast enough, then try removing propagation
and apply process rules or simplifying the rule conditions.

• If there is not enough memory in the Streams pool at the capture process
database, then try increasing the size of the Streams pool.

See Also:

• Managing Staging and Propagation

• Managing Oracle Streams Information Consumption

• Combined Capture and Apply Optimization

31.1.5 Is the Capture Process Current?
If a capture process has not captured recent changes, then the cause might be that
the capture process has fallen behind. To check, you can query the V$STREAMS_CAPTURE
dynamic performance view. If capture process latency is high, then you might be able
to improve performance by adjusting the setting of the parallelism capture process
parameter.

Chapter 31
Troubleshooting Capture Process Problems

31-4

See Also:

• "Determining Redo Log Scanning Latency for Each Capture Process"

• "Determining Message Enqueuing Latency for Each Capture Process"

• "Capture Process Subcomponents"

• "Setting a Capture Process Parameter"

31.1.6 Are Required Redo Log Files Missing?
When a capture process is started or restarted, it might need to scan redo log files that
were generated before the log file that contains the start SCN. You can query the
DBA_CAPTURE data dictionary view to determine the first SCN and start SCN for a
capture process. Removing required redo log files before they are scanned by a
capture process causes the capture process to abort and results in the following error
in a capture process trace file:

ORA-01291: missing logfile

If you see this error, then try restoring any missing redo log files and restarting the
capture process. You can check the V$LOGMNR_LOGS dynamic performance view to
determine the missing SCN range, and add the relevant redo log files. A capture
process needs the redo log file that includes the required checkpoint SCN and all
subsequent redo log files. You can query the REQUIRED_CHECKPOINT_SCN column in the
DBA_CAPTURE data dictionary view to determine the required checkpoint SCN for a
capture process.

If the capture process is disabled for longer than the amount of time specified in the
CONTROL_FILE_RECORD_KEEP_TIME initialization parameter, then information about the
missing redo log files might have been replaced in the control file. You can query the
V$ARCHIVE_LOG view to see if the log file names are listed. If they are not listed, then you
can register them with a ALTER DATABASE REGISTER OR REPLACE LOGFILE SQL statement.

If you are using the fast recovery area feature of Recovery Manager (RMAN) on a
source database in an Oracle Streams environment, then RMAN might delete archived
redo log files that are required by a capture process. RMAN might delete these files
when the disk space used by the recovery-related files is nearing the specified disk
quota for the fast recovery area. To prevent this problem in the future, complete one or
more of the following actions:

• Increase the disk quota for the fast recovery area. Increasing the disk quota
makes it less likely that RMAN will delete a required archived redo log file, but it
will not always prevent the problem.

• Configure the source database to store archived redo log files in a location other
than the fast recovery area. A local capture process will be able to use the log files
in the other location if the required log files are missing in the fast recovery area. In
this case, a database administrator must manage the log files manually in the
other location.

RMAN always ensures that archived redo log files are backed up before it deletes
them. If RMAN deletes an archived redo log file that is required by a capture process,
then RMAN records this action in the alert log.

Chapter 31
Troubleshooting Capture Process Problems

31-5

See Also:

• "ARCHIVELOG Mode and a Capture Process"

• "First SCN and Start SCN"

• "Displaying the Registered Redo Log Files for Each Capture Process"

• Oracle Database Backup and Recovery User's Guide for more information
about the fast recovery area feature

31.1.7 Is a Downstream Capture Process Waiting for Redo Data?
If a downstream capture process is not capturing changes, then it might be waiting for
redo data to scan. Redo log files can be registered implicitly or explicitly for a
downstream capture process. Redo log files registered implicitly typically are
registered in one of the following ways:

• For a real-time downstream capture process, redo transport services sends the
redo data from the source database to the standby redo log at the downstream
database. Next, the archiver at the downstream database registers the redo log
files with the downstream capture process when it archives them.

• For an archived-log downstream capture process, redo transport services transfer
the archived redo log files from the source database to the downstream database
and register the archived redo log files with the downstream capture process.

If redo log files are registered explicitly for a downstream capture process, then you
must manually transfer the redo log files to the downstream database and register
them with the downstream capture process.

Regardless of whether the redo log files are registered implicitly or explicitly, the
downstream capture process can capture changes made to the source database only
if the appropriate redo log files are registered with the downstream capture process.
You can query the V$STREAMS_CAPTURE dynamic performance view to determine whether
a downstream capture process is waiting for a redo log file. For example, run the
following query for a downstream capture process named strm05_capture:

SELECT STATE FROM V$STREAMS_CAPTURE WHERE CAPTURE_NAME='STRM05_CAPTURE';

If the capture process state is either WAITING FOR DICTIONARY REDO or WAITING FOR REDO,
then verify that the redo log files have been registered with the downstream capture
process by querying the DBA_REGISTERED_ARCHIVED_LOG and DBA_CAPTURE data dictionary
views. For example, the following query lists the redo log files currently registered with
the strm05_capture downstream capture process:

COLUMN SOURCE_DATABASE HEADING 'Source|Database' FORMAT A15
COLUMN SEQUENCE# HEADING 'Sequence|Number' FORMAT 9999999
COLUMN NAME HEADING 'Archived Redo Log|File Name' FORMAT A30
COLUMN DICTIONARY_BEGIN HEADING 'Dictionary|Build|Begin' FORMAT A10
COLUMN DICTIONARY_END HEADING 'Dictionary|Build|End' FORMAT A10

SELECT r.SOURCE_DATABASE,
 r.SEQUENCE#,
 r.NAME,
 r.DICTIONARY_BEGIN,
 r.DICTIONARY_END

Chapter 31
Troubleshooting Capture Process Problems

31-6

 FROM DBA_REGISTERED_ARCHIVED_LOG r, DBA_CAPTURE c
 WHERE c.CAPTURE_NAME = 'STRM05_CAPTURE' AND
 r.CONSUMER_NAME = c.CAPTURE_NAME;

If this query does not return any rows, then no redo log files are registered with the
capture process currently. If you configured redo transport services to transfer redo
data from the source database to the downstream database for this capture process,
then ensure that the redo transport services are configured correctly. If the redo
transport services are configured correctly, then run the ALTER SYSTEM ARCHIVE LOG
CURRENT statement at the source database to archive a log file. If you did not configure
redo transport services to transfer redo data, then ensure that the method you are
using for log file transfer and registration is working properly. You can register log files
explicitly using an ALTER DATABASE REGISTER LOGICAL LOGFILE statement.

If the downstream capture process is waiting for redo, then it also is possible that there
is a problem with the network connection between the source database and the
downstream database. There also might be a problem with the log file transfer
method. Check your network connection and log file transfer method to ensure that
they are working properly.

If you configured a real-time downstream capture process, and no redo log files are
registered with the capture process, then try switching the log file at the source
database. You might need to switch the log file more than once if there is little or no
activity at the source database.

Also, if you plan to use a downstream capture process to capture changes to historical
data, then consider the following additional issues:

• Both the source database that generates the redo log files and the database that
runs a downstream capture process must be Oracle Database 10g or later
databases.

• The start of a data dictionary build must be present in the oldest redo log file
added, and the capture process must be configured with a first SCN that matches
the start of the data dictionary build.

• The database objects for which the capture process will capture changes must be
prepared for instantiation at the source database, not at the downstream
database. In addition, you cannot specify a time in the past when you prepare
objects for instantiation. Objects are always prepared for instantiation at the
current database SCN, and only changes to a database object that occurred after
the object was prepared for instantiation can be captured by a capture process.

See Also:

• "Local Capture and Downstream Capture"

• Capture Process States

• Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

Chapter 31
Troubleshooting Capture Process Problems

31-7

31.1.8 Are You Trying to Configure Downstream Capture Incorrectly?
To create a downstream capture process, you must use one of the following
procedures:

• DBMS_CAPTURE_ADM.CREATE_CAPTURE

• DBMS_STREAMS_ADM.MAINTAIN_GLOBAL

• DBMS_STREAMS_ADM.MAINTAIN_SCHEMAS

• DBMS_STREAMS_ADM.MAINTAIN_SIMPLE_TTS

• DBMS_STREAMS_ADM.MAINTAIN_TABLES

• DBMS_STREAMS_ADM.MAINTAIN_TTS

• PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP in the DBMS_STREAMS_ADM
package

The procedures in the DBMS_STREAMS_ADM package can configure a downstream capture
process as well as the other Oracle Streams components in an Oracle Streams
replication environment.

If you try to create a downstream capture process without using one of these
procedures, then Oracle returns the following error:

ORA-26678: Streams capture process must be created first

To correct the problem, use one of these procedures to create the downstream
capture process.

If you are trying to create a local capture process using a procedure in the
DBMS_STREAMS_ADM package, and you encounter this error, then make sure the database
name specified in the source_database parameter of the procedure you are running
matches the global name of the local database.

See Also:

Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

31.1.9 Are You Trying to Configure Downstream Capture without
Proper Authentication?

If authentication is not configured properly between the source database and the
downstream capture database, redo data transfer fails with one of the following errors:

ORA-16191: Primary log shipping client not logged on standby

ORA-1017: Invalid username/password; login denied

Redo transport sessions are authenticated using either the Secure Sockets Layer
(SSL) protocol or a remote login password file.

Chapter 31
Troubleshooting Capture Process Problems

31-8

To correct the problem, ensure that the password file is the same at the source
database and the downstream capture database. If the source database has a remote
login password file, then, to correct the problem, copy it to the appropriate directory on
the downstream capture database system. After copying the file, you might need to
restart both databases for the change to take effect.

See Also:

Oracle Data Guard Concepts and Administration for detailed information about
authentication requirements for redo transport

31.1.10 Are More Actions Required for Downstream Capture without a
Database Link?

When downstream capture is configured with a database link, the database link can be
used to perform operations at the source database and obtain information from the
source database automatically. When downstream capture is configured without a
database link, these actions must be performed manually, and the information must be
obtained manually. If you do not complete these actions manually, then errors result
when you try to create the downstream capture process.

Specifically, the following actions must be performed manually when you configure
downstream capture without a database link:

• In certain situations, you must run the DBMS_CAPTURE_ADM.BUILD procedure at the
source database to extract the data dictionary at the source database to the redo
log before a capture process is created.

• You must prepare the source database objects for instantiation.

• You must obtain the first SCN for the downstream capture process and specify the
first SCN using the first_scn parameter when you create the capture process with
the CREATE_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

See Also:

Oracle Streams Replication Administrator's Guide for information about
configuring a capture process

31.2 Troubleshooting Synchronous Capture Problems
If a synchronous capture is not capturing changes as expected, then use this section
to identify and resolve synchronous capture problems.

Chapter 31
Troubleshooting Synchronous Capture Problems

31-9

See Also:

• "Implicit Capture with Synchronous Capture"

• Oracle Streams Replication Administrator's Guide for information about
configuring synchronous capture

• "Managing a Synchronous Capture"

• "Monitoring a Synchronous Capture"

31.2.1 Is a Synchronous Capture Failing to Capture Changes to
Tables?

If a synchronous capture is not capturing changes to tables as you expected, then the
rules in the synchronous capture rule set might not be configured properly. To avoid
problems, always use the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure in the
DBMS_STREAMS_ADM package to add rules to a synchronous capture rules set.

The following are common reasons why a synchronous capture is not capturing
changes as expected:

• Global rules or schema rules are being used to try to control the behavior of the
synchronous capture. A synchronous capture ignores global rules and schema
rules in its rule set. A synchronous capture only captures changes that satisfy
table rules and subset rules.

• The DBMS_RULE_ADM package was used to configure the rules for a synchronous
capture. A synchronous capture does not behave correctly when

– The DBMS_RULE_ADM package is used to create rules that are added to a
synchronous capture rule set.

– The DBMS_RULE_ADM package is used to add rules to a synchronous capture rule
set.

If a synchronous capture is not capturing changes to tables as expected, then
complete the following steps to identify and correct problems:

1. Query the DBA_SYNC_CAPTURE_TABLES data dictionary view to determine the tables for
which a synchronous capture is capturing changes. The synchronous capture
captures changes to a table only if the ENABLED column is set to YES for the table.

2. If the DBA_SYNC_CAPTURE_TABLES view does not list tables for which a synchronous
capture should capture changes, then use the ADD_TABLE_RULES or ADD_SUBSET_RULES
procedure in the DBMS_STREAMS_ADM package to add rules for the tables.

If the DBA_SYNC_CAPTURE_TABLES view shows ENABLED for a table, and a synchronous
capture still does not capture changes to the table, then there might be a problem with
the rule condition in the rule for the table. In this case, check the rule condition and
correct any errors, or drop the rule and re-create it using the ADD_TABLE_RULES or
ADD_SUBSET_RULES procedure.

Chapter 31
Troubleshooting Synchronous Capture Problems

31-10

Note:

Oracle recommends that you use the REMOVE_RULE procedure in the
DBMS_STREAMS_ADM package to remove a rule from a synchronous capture rule
set or drop a rule used by synchronous capture. However, you can also use
the REMOVE_RULE or DROP_RULE procedure in the DBMS_RULE_ADM package to
perform these actions.

See Also:

• "Displaying the Tables For Which Synchronous Capture Captures
Changes"

• "Adding Rules to a Rule Set for a Synchronous Capture"

• "Displaying the Condition for Each Rule in a Rule Set"

• "Removing a Rule from a Rule Set for a Synchronous Capture"

Chapter 31
Troubleshooting Synchronous Capture Problems

31-11

32
Troubleshooting Propagation

The following topics describe identifying and resolving common propagation problems
in an Oracle Streams environment:

• Does the Propagation Use the Correct Source and Destination Queue?

• Is the Propagation Enabled?

• Is Security Configured Properly for the ANYDATA Queue?

See Also:

• "Message Propagation Between Queues"

• Oracle Streams Replication Administrator's Guide for information about
creating propagations

• "Managing Oracle Streams Propagations and Propagation Jobs"

• "Monitoring Oracle Streams Propagations and Propagation Jobs"

32.1 Does the Propagation Use the Correct Source and
Destination Queue?

If messages are not appearing in the destination queue for a propagation as expected,
then the propagation might not be configured to propagate messages from the correct
source queue to the correct destination queue.

For example, to check the source queue and destination queue for a propagation
named dbs1_to_dbs2, run the following query:

COLUMN SOURCE_QUEUE HEADING 'Source Queue' FORMAT A35
COLUMN DESTINATION_QUEUE HEADING 'Destination Queue' FORMAT A35

SELECT
 p.SOURCE_QUEUE_OWNER||'.'||
 p.SOURCE_QUEUE_NAME||'@'||
 g.GLOBAL_NAME SOURCE_QUEUE,
 p.DESTINATION_QUEUE_OWNER||'.'||
 p.DESTINATION_QUEUE_NAME||'@'||
 p.DESTINATION_DBLINK DESTINATION_QUEUE
 FROM DBA_PROPAGATION p, GLOBAL_NAME g
 WHERE p.PROPAGATION_NAME = 'DBS1_TO_DBS2';

Your output looks similar to the following:

Source Queue Destination Queue
----------------------------------- -----------------------------------
STRMADMIN.QUEUE1@DBS1.EXAMPLE.COM STRMADMIN.QUEUE2@DBS2.EXAMPLE.COM

32-1

If the propagation is not using the correct queues, then create a different propagation.
You might need to remove the existing propagation if it is not appropriate for your
environment.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
creating propagations

• "Dropping a Propagation"

32.2 Is the Propagation Enabled?
For a propagation job to propagate messages, the propagation must be enabled. If
messages are not being propagated by a propagation as expected, then the
propagation might not be enabled.

You can find the following information about a propagation:

• The database link used to propagate messages from the source queue to the
destination queue

• Whether the propagation is ENABLED, DISABLED, or ABORTED

• The date of the last error, if there are any propagation errors

• If there are any propagation errors, then the error number of the last error

• The error message of the last error, if there are any propagation errors

For example, to check whether a propagation named streams_propagation is enabled,
run the following query:

COLUMN DESTINATION_DBLINK HEADING 'Database|Link' FORMAT A15
COLUMN STATUS HEADING 'Status' FORMAT A8
COLUMN ERROR_DATE HEADING 'Error|Date'
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A35

SELECT DESTINATION_DBLINK,
 STATUS,
 ERROR_DATE,
 ERROR_MESSAGE
 FROM DBA_PROPAGATION
 WHERE PROPAGATION_NAME = 'STREAMS_PROPAGATION';

If the propagation is disabled currently, then your output looks similar to the following:

Database Error
Link Status Date Error Message
--------------- -------- --------- -----------------------------------
D2.EXAMPLE.COM DISABLED 27-APR-05 ORA-25307: Enqueue rate too high, f
 low control enabled

If there is a problem, then try the following actions to correct it:

• If a propagation is disabled, then you can enable it using the START_PROPAGATION
procedure in the DBMS_PROPAGATION_ADM package, if you have not done so already.

Chapter 32
Is the Propagation Enabled?

32-2

• If the propagation is disabled or aborted, and the Error Date and Error Message
fields are populated, then diagnose and correct the problem based on the error
message.

• If the propagation is disabled or aborted, then check the trace file for the
propagation job process. The query in "Displaying Information About the
Schedules for Propagation Jobs" displays the propagation job process.

• If the propagation job is enabled, but is not propagating messages, then try
stopping and restarting the propagation.

See Also:

• "Starting a Propagation"

• "Checking the Trace Files and Alert Log for Problems"

• "Stopping a Propagation"

• Oracle Database Error Messages for more information about a specific
error message

32.3 Is Security Configured Properly for the ANYDATA
Queue?

ANYDATA queues are secure queues, and security must be configured properly for users
to be able to perform operations on them. If you use the SET_UP_QUEUE procedure in the
DBMS_STREAMS_ADM package to configure a secure ANYDATA queue, then an error is raised
if the agent that SET_UP_QUEUE tries to create already exists and is associated with a
user other than the user specified by queue_user in this procedure. In this case, rename
or remove the existing agent using the ALTER_AQ_AGENT or DROP_AQ_AGENT procedure,
respectively, in the DBMS_AQADM package. Next, retry SET_UP_QUEUE.

In addition, you might encounter one of the following errors if security is not configured
properly for an ANYDATA queue:

• ORA-24093 AQ Agent not granted privileges of database user

• ORA-25224 Sender name must be specified for enqueue into secure queues

See Also:

"Secure Queues"

32.3.1 ORA-24093 AQ Agent not granted privileges of database user
Secure queue access must be granted to an Oracle Database Advanced Queuing
(AQ) agent explicitly for both enqueue and dequeue operations. You grant the agent
these privileges using the ENABLE_DB_ACCESS procedure in the DBMS_AQADM package.

Chapter 32
Is Security Configured Properly for the ANYDATA Queue?

32-3

For example, to grant an agent named explicit_dq privileges of the database user oe,
run the following procedure:

BEGIN
 DBMS_AQADM.ENABLE_DB_ACCESS(
 agent_name => 'explicit_dq',
 db_username => 'oe');
END;
/

To check the privileges of the agents in a database, run the following query:

SELECT AGENT_NAME "Agent", DB_USERNAME "User" FROM DBA_AQ_AGENT_PRIVS;

Your output looks similar to the following:

Agent User
------------------------------ ------------------------------
EXPLICIT_ENQ OE
APPLY_OE OE
EXPLICIT_DQ OE

See Also:

"Enabling a User to Perform Operations on a Secure Queue" for a detailed
example that grants privileges to an agent

32.3.2 ORA-25224 Sender name must be specified for enqueue into
secure queues

To enqueue into a secure queue, the SENDER_ID must be set to an Oracle Database
Advanced Queuing (AQ) agent with secure queue privileges for the queue in the
message properties.

See Also:

Oracle Database Advanced Queuing User's Guide for an example that sets
the SENDER_ID for enqueue

Chapter 32
Is Security Configured Properly for the ANYDATA Queue?

32-4

33
Troubleshooting Apply

The following topics describe identifying and resolving common apply process
problems in an Oracle Streams environment:

• Is the Apply Process Enabled?

• Is the Apply Process Current?

• Does the Apply Process Apply Captured LCRs?

• Is the Apply Process's Queue Receiving the Messages to be Applied?

• Is a Custom Apply Handler Specified?

• Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?

• Does the Apply User Have the Required Privileges?

• Is the Apply Process Encountering Contention?

• Is the Apply Process Waiting for a Dependent Transaction?

• Is an Apply Server Performing Poorly for Certain Transactions?

• Are There Any Apply Errors in the Error Queue?

See Also:

• "Implicit Consumption with an Apply Process"

• Oracle Streams Replication Administrator's Guide for information about
configuring apply

• Managing Oracle Streams Information Consumption

• Monitoring Oracle Streams Apply Processes

33.1 Is the Apply Process Enabled?
An apply process applies changes only when it is enabled.

You can check whether an apply process is enabled, disabled, or aborted by querying
the DBA_APPLY data dictionary view. For example, to check whether an apply process
named apply is enabled, run the following query:

SELECT STATUS FROM DBA_APPLY WHERE APPLY_NAME = 'APPLY';

If the apply process is disabled, then your output looks similar to the following:

STATUS

DISABLED

33-1

If the apply process is disabled, then try restarting it. If the apply process is aborted,
then you might need to correct an error before you can restart it successfully. If the
apply process did not shut down cleanly, then it might not restart. In this case, it
returns the following error:

ORA-26666 cannot alter STREAMS process

If this happens then, then run the STOP_APPLY procedure in the DBMS_APPLY_ADM package
with the force parameter set to TRUE. Next, restart the apply process.

To determine why an apply process aborted, query the DBA_APPLY data dictionary view
or check the trace files for the apply process. The following query shows when the
apply process aborted and the error that caused it to abort:

COLUMN APPLY_NAME HEADING 'APPLY|Process|Name' FORMAT A10
COLUMN STATUS_CHANGE_TIME HEADING 'Abort Time'
COLUMN ERROR_NUMBER HEADING 'Error Number' FORMAT 99999999
COLUMN ERROR_MESSAGE HEADING 'Error Message' FORMAT A40

SELECT APPLY_NAME, STATUS_CHANGE_TIME, ERROR_NUMBER, ERROR_MESSAGE
 FROM DBA_APPLY WHERE STATUS='ABORTED';

See Also:

• "Starting an Apply Process"

• "Displaying Detailed Information About Apply Errors"

• "Checking the Trace Files and Alert Log for Problems"

• "Apply Processes and Oracle Real Application Clusters" for information
about restarting an apply process in an Oracle Real Application Clusters
(Oracle RAC) environment

33.2 Is the Apply Process Current?
If an apply process has not applied recent changes, then the problem might be that the
apply process has fallen behind. If apply process latency is high, then you might be
able to improve performance by adjusting the setting of the parallelism apply process
parameter.

You can check apply process latency by querying the V$STREAMS_APPLY_COORDINATOR
dynamic performance view.

Chapter 33
Is the Apply Process Current?

33-2

See Also:

• "Determining the Capture to Apply Latency for a Message for Each Apply
Process"

• "Apply Process Parameters"

• "Setting an Apply Process Parameter"

• The DBMS_APPLY_ADM.SET_PARAMETER procedure in the Oracle Database
PL/SQL Packages and Types Reference for detailed information about the
apply process parameters

33.3 Does the Apply Process Apply Captured LCRs?
An apply process can apply either captured LCRs from its buffered queue, or it can
apply messages from its persistent queue, but not both types of messages. Messages
in a persistent queue can be persistent LCRs and persistent user messages. An apply
process might not be applying messages of a one type because it was configured to
apply the other type of messages.

You can check the type of messages applied by an apply process by querying the
DBA_APPLY data dictionary view. For example, to check whether an apply process
named apply applies captured LCRs or not, run the following query:

COLUMN APPLY_CAPTURED HEADING 'Type of Messages Applied' FORMAT A25

SELECT DECODE(APPLY_CAPTURED,
 'YES', 'Captured',
 'NO', 'Messages from Persistent Queue') APPLY_CAPTURED
 FROM DBA_APPLY
 WHERE APPLY_NAME = 'APPLY';

If the apply process applies captured LCRs, then your output looks similar to the
following:

Type of Messages Applied

Captured

If an apply process is not applying the expected type of messages, then you might
need to create an apply process to apply these messages.

See Also:

• "Ways to Consume Information with Oracle Streams"

• Oracle Streams Replication Administrator's Guide for information about
configuring Oracle Streams replication

Chapter 33
Does the Apply Process Apply Captured LCRs?

33-3

33.4 Is the Apply Process's Queue Receiving the Messages
to be Applied?

An apply process must receive messages in its queue before it can apply these
messages. Therefore, if an apply process is applying messages captured by a capture
process or a synchronous capture, then the capture process or synchronous capture
that captures these messages must be configured properly. If it is a capture process,
then it must also be enabled. Similarly, if messages are propagated from one or more
databases before reaching the apply process, then each propagation must be enabled
and must be configured properly. If a capture process, a synchronous capture, or a
propagation on which the apply process depends is not enabled or is not configured
properly, then the messages might never reach the apply process's queue.

The rule sets used by all Oracle Streams clients, including capture processes,
synchronous captures, and propagations, determine the behavior of these Oracle
Streams clients. Therefore, ensure that the rule sets for any capture processes,
synchronous capture, or propagations on which an apply process depends contain the
correct rules. If the rules for these Oracle Streams clients are not configured properly,
then the apply process's queue might never receive the appropriate messages. Also, a
message traveling through a stream is the composition of all of the transformations
done along the path. For example, if a capture process uses subset rules and
performs row migration during capture of a message, and a propagation uses a rule-
based transformation on the message to change the table name, then, when the
message reaches an apply process, the apply process rules must account for these
transformations.

In an environment where a capture process or synchronous capture captures changes
that are propagated and applied at multiple databases, you can use the following
guidelines to determine whether a problem is caused by a capture process, a
synchronous capture, or a propagation on which an apply process depends or by the
apply process itself:

• If no other destination databases of a capture process or synchronous capture are
applying the changes, then the problem is most likely caused by the capture
process or synchronous capture, or by a propagation near the capture process. In
this case, first ensure that the capture process or synchronous capture is
configured properly, and then ensure that the propagations nearest the capture
process or synchronous capture are enabled and configured properly. For a
capture process, also ensure that the capture process is enabled.

• If other destination databases of a capture process or synchronous capture are
applying the changes, then the problem is most likely caused by the apply process
itself or a propagation near the apply process. In this case, first ensure that the
apply process is enabled and configured properly, and then ensure that the
propagations nearest the apply process are enabled and configured properly.

Chapter 33
Is the Apply Process's Queue Receiving the Messages to be Applied?

33-4

See Also:

• "Troubleshooting Capture Process Problems"

• Troubleshooting Propagation

• Troubleshooting Rules and Rule-Based Transformations

33.5 Is a Custom Apply Handler Specified?
You can use apply handlers to handle messages dequeued by an apply process in a
customized way. These handlers include statement DML handlers, procedure DML
handlers, DDL handlers, precommit handlers, and message handlers. If an apply
process is not behaving as expected, then check the handlers used by the apply
process, and correct any flaws. You might need to modify a SQL statement in a
statement DML handler to correct an apply problem. You also might need to modify a
PL/SQL procedure or remove it to correct an apply problem.

You can find the names of these procedures by querying the DBA_APPLY_DML_HANDLERS
and DBA_APPLY data dictionary views.

See Also:

• "Message Processing Options for an Apply Process"

• Managing Oracle Streams Information Consumption

• "Displaying Information About Apply Handlers"

33.6 Is the AQ_TM_PROCESSES Initialization Parameter
Set to Zero?

The AQ_TM_PROCESSES initialization parameter controls time monitoring on queue
messages and controls processing of messages with delay and expiration properties
specified. In Oracle Database 10g or later, the database automatically controls these
activities when the AQ_TM_PROCESSES initialization parameter is not set.

If an apply process is not applying messages, but there are messages that satisfy the
apply process rule sets in the apply process's queue, then ensure that the
AQ_TM_PROCESSES initialization parameter is not set to zero at the destination database. If
this parameter is set to zero, then unset this parameter or set it to a nonzero value and
monitor the apply process to see if it begins to apply messages.

To determine whether there are messages in a buffered queue, you can query the
V$BUFFERED_QUEUES and V$BUFFERED_SUBSCRIBERS dynamic performance views. To
determine whether there are messages in a persistent queue, you can query the
queue table for the queue.

Chapter 33
Is a Custom Apply Handler Specified?

33-5

See Also:

• "Viewing the Contents of Messages in a Persistent Queue"

• "Monitoring Buffered Queues"

• Oracle Database Advanced Queuing User's Guide for information about
the AQ_TM_PROCESSES initialization parameter

33.7 Does the Apply User Have the Required Privileges?
If the apply user does not have explicit EXECUTE privilege on an apply handler procedure
or custom rule-based transformation function, then an ORA-26808 error might result
when the apply user tries to run the procedure or function. Typically, this error is
causes the apply process to abort without adding errors to the DBA_APPLY_ERROR view.
However, the trace file for the apply coordinator reports the error. Specifically, an error
similar to the following appears in the trace file:

ORA-26808: Apply process AP01 died unexpectedly

Typically, error messages surround this message, and one or more of these messages
contain the name of the procedure or function. To correct the problem, grant the
required EXECUTE privilege to the apply user.

See Also:

• "Apply User"

• Managing Oracle Streams Information Consumption

• "Does an Apply Process Trace File Contain Messages About Apply
Problems?"

33.8 Is the Apply Process Encountering Contention?
An apply server is a component of an apply process. Apply servers apply DML and
DDL changes to database objects at a destination database. An apply process can
use one or more apply servers, and the parallelism apply process parameter specifies
the number of apply servers that can concurrently apply transactions. For example, if
parallelism is set to 5, then an apply process uses a total of five apply servers.

An apply server encounters contention when the apply server must wait for a resource
that is being used by another session. Contention can result from logical
dependencies. For example, when an apply server tries to apply a change to a row
that a user has locked, then the apply server must wait for the user. Contention can
also result from physical dependencies. For example, interested transaction list (ITL)
contention results when two transactions that are being applied, which might not be
logically dependent, are trying to lock the same block on disk. In this case, one apply
server locks rows in the block, and the other apply server must wait for access to the
block, even though the second apply server is trying to lock different rows. See "Is the

Chapter 33
Does the Apply User Have the Required Privileges?

33-6

Apply Process Waiting for a Dependent Transaction?" for detailed information about
ITL contention.

When an apply server encounters contention that does not involve another apply
server in the same apply process, it waits until the contention clears. When an apply
server encounters contention that involves another apply server in the same apply
process, one of the two apply servers is rolled back. An apply process that is using
multiple apply servers might be applying multiple transactions at the same time. The
apply process tracks the state of the apply server that is applying the transaction with
the lowest commit SCN. If there is a dependency between two transactions, then an
apply process always applies the transaction with the lowest commit SCN first. The
transaction with the higher commit SCN waits for the other transaction to commit.
Therefore, if the apply server with the lowest commit SCN transaction is encountering
contention, then the contention results from something other than a dependent
transaction. In this case, you can monitor the apply server with the lowest commit SCN
transaction to determine the cause of the contention.

The following four wait states are possible for an apply server:

• Not waiting: The apply server is not encountering contention and is not waiting.
No action is necessary in this case.

• Waiting for an event that is not related to another session: An example of an
event that is not related to another session is a log file sync event, where redo
data must be flushed because of a commit or rollback. In these cases, Oracle
Database writes nothing to the log initially because such waits are common and
are usually transient. If the apply server is waiting for the same event after a
certain interval of time, then the apply server writes a message to the alert log and
apply process trace file. For example, an apply server AS01 might write a message
similar to the following:

AS01: warning -- apply server 1, sid 26 waiting for event:
AS01: [log file sync] ...

Oracle Database writes this output to the alert log at intervals until the problem is
rectified.

• Waiting for an event that is related to a non apply server session: The apply
server writes a message to the alert log and apply process trace file immediately.
For example, an apply server AS01 might write a message similar to the following:

AS01: warning -- apply server 1, sid 10 waiting on user sid 36 for event:
AS01: [enq: TM - contention] name|mode=544d0003, object #=a078,
 table/partition=0

Oracle Database writes this output to the alert log at intervals until the problem is
rectified.

• Waiting for another apply server session: This state can be caused by
interested transaction list (ITL) contention, but it can also be caused by more
serious issues, such as an apply handler that obtains conflicting locks. In this
case, the apply server that is blocked by another apply server prints only once to
the alert log and the trace file for the apply process, and the blocked apply server
issues a rollback to the blocking apply server. When the blocking apply server rolls
back, another message indicating that the apply server has been rolled back is
printed to the log files, and the rolled back transaction is reassigned by the
coordinator process for the apply process.

Chapter 33
Is the Apply Process Encountering Contention?

33-7

For example, if apply server 1 of apply process AP01 is blocked by apply server 2 of
the same apply process (AP01), then the apply process writes the following
messages to the log files:

AP01: apply server 1 blocked on server 2
AP01: [enq: TX - row lock contention] name|mode=54580006, usn<<16 |
 slot=1000e, sequence=1853
AP01: apply server 2 rolled back

You can determine the total number of times an apply server was rolled back since
the apply process last started by querying the TOTAL_ROLLBACKS column in the
V$STREAMS_APPLY_COORDINATOR dynamic performance view.

See Also:

• Oracle Database Performance Tuning Guide for more information about
contention and about resolving different types of contention

• "Checking the Trace Files and Alert Log for Problems"

33.9 Is the Apply Process Waiting for a Dependent
Transaction?

If you set the parallelism parameter for an apply process to a value greater than 1,
and you set the commit_serialization parameter of the apply process to FULL, then the
apply process can detect interested transaction list (ITL) contention if there is a
transaction that is dependent on another transaction with a higher SCN. ITL contention
occurs if the session that created the transaction waited for an ITL slot in a block. This
happens when the session wants to lock a row in the block, but one or more other
sessions have rows locked in the same block, and there is no free ITL slot in the block.

ITL contention also is possible if the session is waiting due to a shared bitmap index
fragment. Bitmap indexes index key values and a range of rowids. Each entry in a
bitmap index can cover many rows in the actual table. If two sessions want to update
rows covered by the same bitmap index fragment, then the second session waits for
the first transaction to either COMMIT or ROLLBACK.

When an apply process detects such a dependency, it resolves the ITL contention
automatically and records information about it in the alert log and apply process trace
file for the database. ITL contention can negatively affect the performance of an apply
process because there might not be any progress while it is detecting the deadlock.

To avoid the problem in the future, perform one of the following actions:

• Increase the number of ITLs available. You can do so by changing the INITRANS
setting for the table using the ALTER TABLE statement.

• Set the commit_serialization parameter to DEPENDENT_TRANSACTIONS for the apply
process.

• Set the parallelism apply process parameter to 1 for the apply process.

Chapter 33
Is the Apply Process Waiting for a Dependent Transaction?

33-8

See Also:

• "Checking the Trace Files and Alert Log for Problems"

• Oracle Database PL/SQL Packages and Types Reference for information
about apply process parameters

• Oracle Database Administrator's Guide and Oracle Database SQL
Language Reference for more information about INITRANS

33.10 Is an Apply Server Performing Poorly for Certain
Transactions?

If an apply process is not performing well, then the reason might be that one or more
apply servers used by the apply process are taking an inordinate amount of time to
apply certain transactions. The following query displays information about the
transactions being applied by each apply server used by an apply process named
strm01_apply:

COLUMN SERVER_ID HEADING 'Apply Server ID' FORMAT 99999999
COLUMN STATE HEADING 'Apply Server State' FORMAT A20
COLUMN APPLIED_MESSAGE_NUMBER HEADING 'Applied Message|Number' FORMAT 99999999
COLUMN MESSAGE_SEQUENCE HEADING 'Message Sequence|Number' FORMAT 99999999

SELECT SERVER_ID, STATE, APPLIED_MESSAGE_NUMBER, MESSAGE_SEQUENCE
 FROM V$STREAMS_APPLY_SERVER
 WHERE APPLY_NAME = 'STRM01_APPLY'
 ORDER BY SERVER_ID;

If you run this query repeatedly, then over time the apply server state, applied
message number, and message sequence number should continue to change for
each apply server as it applies transactions. If these values do not change for one or
more apply servers, then the apply server might not be performing well. In this case,
you should ensure that, for each table to which the apply process applies changes,
every key column has an index.

If you have many such tables, then you might need to determine the specific table and
DML or DDL operation that is causing an apply server to perform poorly. To do so, run
the following query when an apply server is taking an inordinately long time to apply a
transaction. In this example, assume that the name of the apply process is
strm01_apply and that apply server number two is performing poorly:

COLUMN OPERATION HEADING 'Operation' FORMAT A20
COLUMN OPTIONS HEADING 'Options' FORMAT A20
COLUMN OBJECT_OWNER HEADING 'Object|Owner' FORMAT A10
COLUMN OBJECT_NAME HEADING 'Object|Name' FORMAT A10
COLUMN COST HEADING 'Cost' FORMAT 99999999

SELECT p.OPERATION, p.OPTIONS, p.OBJECT_OWNER, p.OBJECT_NAME, p.COST
 FROM V$SQL_PLAN p, V$SESSION s, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND p.HASH_VALUE = s.SQL_HASH_VALUE;

Chapter 33
Is an Apply Server Performing Poorly for Certain Transactions?

33-9

This query returns the operation being performed currently by the specified apply
server. The query also returns the owner and name of the table on which the operation
is being performed and the cost of the operation. Ensure that each key column in this
table has an index. If the results show FULL for the COST column, then the operation is
causing full table scans, and indexing the table's key columns might solve the problem.

In addition, you can run the following query to determine the specific DML or DDL SQL
statement that is causing an apply server to perform poorly, assuming that the name of
the apply process is strm01_apply and that apply server number two is performing
poorly:

SELECT t.SQL_TEXT
 FROM V$SESSION s, V$SQLTEXT t, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND s.SQL_ADDRESS = t.ADDRESS
 AND s.SQL_HASH_VALUE = t.HASH_VALUE
 ORDER BY PIECE;

This query returns the SQL statement being run currently by the specified apply
server. The statement includes the name of the table to which the transaction is being
applied. Ensure that each key column in this table has an index.

If the SQL statement returned by the previous query is less than one thousand
characters long, then you can run the following simplified query instead:

SELECT t.SQL_TEXT
 FROM V$SESSION s, V$SQLAREA t, V$STREAMS_APPLY_SERVER a
 WHERE a.APPLY_NAME = 'STRM01_APPLY' AND a.SERVER_ID = 2
 AND s.SID = a.SID
 AND s.SQL_ADDRESS = t.ADDRESS
 AND s.SQL_HASH_VALUE = t.HASH_VALUE;

See Also:

Oracle Database Performance Tuning Guide and Oracle Database Reference
for more information about the V$SQL_PLAN dynamic performance view

33.11 Are There Any Apply Errors in the Error Queue?
When an apply process cannot apply a message, it moves the message and all of the
other messages in the same transaction into the error queue. You should check for
apply errors periodically to see if there are any transactions that could not be applied.

See Also:

• "Checking for Apply Errors"

• "Displaying Detailed Information About Apply Errors"

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-10

33.11.1 Using a DML Handler to Correct Error Transactions
When an apply process moves a transaction to the error queue, you can examine the
transaction to analyze the feasibility reexecuting the transaction successfully. If an
abnormality is found in the transaction, then you might be able to configure a
statement DML handler or a procedure DML handler to correct the problem. In this
case, configure the DML handler to run when you reexecute the error transaction.

When a DML handler is used to correct a problem in an error transaction, the apply
process that uses the DML handler should be stopped to prevent the DML handler
from acting on LCRs that are not involved with the error transaction. After successful
reexecution, if the DML handler is no longer needed, then remove it. Also, correct the
problem that caused the transaction to moved to the error queue to prevent future
error transactions.

See Also:

"Managing a DML Handler"

33.11.2 Troubleshooting Specific Apply Errors
You might encounter the following types of apply process errors for LCRs:

• ORA-01031 Insufficient Privileges

• ORA-01403 No Data Found

• ORA-23605 Invalid Value for Oracle Streams Parameter*

• ORA-23607 Invalid Column*

• ORA-24031 Invalid Value, parameter_name Should Be Non-NULL*

• ORA-26687 Instantiation SCN Not Set

• ORA-26688 Missing Key in LCR

• ORA-26689 Column Type Mismatch*

• ORA-26786 A row with key exists but has conflicting column(s) in table

• ORA-26787 The row with key column_value does not exist in table table_name

The errors marked with an asterisk (*) in the previous list often result from a problem
with an apply handler or a rule-based transformation.

See Also:

• "Checking for Apply Errors"

• "Managing Apply Errors"

• "The Error Queue"

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-11

33.11.2.1 ORA-01031 Insufficient Privileges
An ORA-01031 error occurs when the user designated as the apply user does not have
the necessary privileges to perform SQL operations on the replicated objects. The
apply user privileges can be granted directly or through a role.

Specifically, the following privileges are required:

• For table level DML changes, the INSERT, UPDATE, DELETE, and SELECT privileges
must be granted.

• For table level DDL changes, the ALTER TABLE privilege must be granted.

• For schema level changes, the CREATE ANY TABLE, CREATE ANY INDEX, CREATE ANY
PROCEDURE, ALTER ANY TABLE, and ALTER ANY PROCEDURE privileges must be granted.

• For global level changes, ALL PRIVILEGES must be granted to the apply user.

To correct this error, complete the following steps:

1. Connect as the apply user on the destination database.

2. Query the SESSION_PRIVS data dictionary view to determine which required
privileges are not granted to the apply user.

3. Connect as an administrative user who can grant privileges.

4. Grant the necessary privileges to the apply user.

5. Reexecute the error transactions in the error queue for the apply process.

See Also:

• "Apply User"

• "Retrying Apply Error Transactions"

33.11.2.2 ORA-01403 No Data Found
Typically, an ORA-01403 error occurs when an apply process tries to update an existing
row and the OLD_VALUES in the row LCR do not match the current values at the
destination database.

Typically, one of the following conditions causes this error:

• Supplemental logging is not specified for columns that require supplemental
logging at the source database. In this case, LCRs from the source database
might not contain values for key columns. You can use a procedure DML handler
to modify the LCR so that it contains the necessary supplemental data. See "Using
a DML Handler to Correct Error Transactions". Also, specify the necessary
supplemental logging at the source database to prevent future errors.

• There is a problem with the primary key in the table for which an LCR is applying a
change. In this case, ensure that the primary key is enabled by querying the
DBA_CONSTRAINTS data dictionary view. If no primary key exists for the table, or if the
target table has a different primary key than the source table, then specify
substitute key columns using the SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-12

package. You also might encounter error ORA-23416 if a table being applied does
not have a primary key. After you make these changes, you can reexecute the
error transaction.

• The transaction being applied depends on another transaction which has not yet
executed. For example, if a transaction tries to update an employee with an
employee_id of 300, but the row for this employee has not yet been inserted into the
employees table, then the update fails. In this case, execute the transaction on
which the error transaction depends. Then, reexecute the error transaction.

See Also:

• "Supplemental Logging in an Oracle Streams Environment"

• "Considerations for Applying DML Changes to Tables" for information
about possible causes of apply errors

• "Displaying Detailed Information About Apply Errors"

• "Managing Apply Errors"

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams tags

33.11.2.3 ORA-23605 Invalid Value for Oracle Streams Parameter
When calling row LCR (SYS.LCR$_ROW_RECORD type) member subprograms, an ORA-23605
error might be raised if the values of the parameters passed by the member
subprogram do not match the row LCR. For example, an error results if a member
subprogram tries to add an old column value to an insert row LCR, or if a member
subprogram tries to set the value of a LOB column to a number.

Row LCRs should contain the following old and new values, depending on the
operation:

• A row LCR for an INSERT operation should contain new values but no old values.

• A row LCR for an UPDATE operation can contain both new values and old values.

• A row LCR for a DELETE operation should contain old values but no new values.

Verify that the correct parameter type (OLD, or NEW, or both) is specified for the row LCR
operation (INSERT, UPDATE, or DELETE). For example, if a procedure DML handler or
custom rule-based transformation changes an UPDATE row LCR into an INSERT row LCR,
then the handler or transformation should remove the old values in the row LCR.

If an apply handler caused the error, then correct the apply handler and reexecute the
error transaction. If a custom rule-based transformation caused the error, then you
might be able to create a DML handler to correct the problem. See "Using a DML
Handler to Correct Error Transactions". Also, correct the rule-based transformation to
avoid future errors.

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-13

See Also:

Rule-Based Transformations

33.11.2.4 ORA-23607 Invalid Column
An ORA-23607 error is raised by a row LCR (SYS.LCR$_ROW_RECORD type) member
subprogram, when the value of the column_name parameter in the member subprogram
does not match the name of any of the columns in the row LCR. Check the column
names in the row LCR.

If an apply handler caused the error, then correct the apply handler and reexecute the
error transaction. If a custom rule-based transformation caused the error, then you
might be able to create a DML handler to correct the problem. See "Using a DML
Handler to Correct Error Transactions". Also, correct the rule-based transformation to
avoid future errors.

An apply handler or custom rule-based transformation can cause this error by using
one of the following row LCR member procedures:

• DELETE_COLUMN, if this procedure tries to delete a column from a row LCR that does
not exist in the row LCR

• RENAME_COLUMN, if this procedure tries to rename a column that does not exist in the
row LCR

In this case, to avoid similar errors in the future, perform one of the following actions:

• Instead of using an apply handler or custom rule-based transformation to delete or
rename a column in row LCRs, use a declarative rule-based transformation. If a
declarative rule-based transformation tries to delete or rename a column that does
not exist, then the declarative rule-based transformation does not raise an error.
You can specify a declarative rule-based transformation that deletes a column
using the DBMS_STREAMS_ADM.DELETE_COLUMN procedure and a declarative rule-based
transformation that renames a column using the DBMS_STREAMS_ADM.RENAME_COLUMN
procedure. You can use a declarative rule-based transformation in combination
with apply handlers and custom rule-based transformations.

• If you want to continue to use an apply handler or custom rule-based
transformation to delete or rename a column in row LCRs, then modify the handler
or transformation to prevent future errors. For example, modify the handler or
transformation to verify that a column exists before trying to rename or delete the
column.

See Also:

• Rule-Based Transformations

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DELETE_COLUMN and RENAME_COLUMN member
procedures for row LCRs

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-14

33.11.2.5 ORA-24031 Invalid Value, parameter_name Should Be Non-NULL
An ORA-24031 error can occur when an apply handler or a custom rule-based
transformation passes a NULL value to an LCR member subprogram instead of an
ANYDATA value that contains a NULL.

For example, the following call to the ADD_COLUMN member procedure for row LCRs can
result in this error:

new_lcr.ADD_COLUMN('OLD','LANGUAGE',NULL);

The following example shows the correct way to call the ADD_COLUMN member procedure
for row LCRs:

new_lcr.ADD_COLUMN('OLD','LANGUAGE',ANYDATA.ConvertVarchar2(NULL));

If an apply handler caused the error, then correct the apply handler and reexecute the
error transaction. If a custom rule-based transformation caused the error, then you
might be able to create a DML handler to correct the problem. See "Using a DML
Handler to Correct Error Transactions". Also, correct the rule-based transformation to
avoid future errors.

See Also:

Rule-Based Transformations

33.11.2.6 ORA-26687 Instantiation SCN Not Set
Typically, an ORA-26687 error occurs because the instantiation SCN is not set on an
object for which an apply process is attempting to apply changes. You can query the
DBA_APPLY_INSTANTIATED_OBJECTS data dictionary view to list the objects that have an
instantiation SCN.

You can set an instantiation SCN for one or more objects by exporting the objects at
the source database, and then importing them at the destination database. You can
use Data Pump export/import. If you do not want to use export/import, then you can
run one or more of the following procedures in the DBMS_APPLY_ADM package:

• SET_TABLE_INSTANTIATION_SCN

• SET_SCHEMA_INSTANTIATION_SCN

• SET_GLOBAL_INSTANTIATION_SCN

Some of the common reasons why an instantiation SCN is not set for an object at a
destination database include the following:

• You used export/import for instantiation, and you exported the objects from the
source database before preparing the objects for instantiation. You can prepare
objects for instantiation either by creating Oracle Streams rules for the objects with
the DBMS_STREAMS_ADM package or by running a procedure or function in the
DBMS_CAPTURE_ADM package. If the objects were not prepared for instantiation before
the export, then the instantiation SCN information will not be available in the export
file, and the instantiation SCNs will not be set.

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-15

In this case, prepare the database objects for instantiation at the source database.
Next, set the instantiation SCN for the database objects at the destination
database.

• Instead of using export/import for instantiation, you set the instantiation SCN
explicitly with the appropriate procedure in the DBMS_APPLY_ADM package. When the
instantiation SCN is set explicitly by the database administrator, responsibility for
the correctness of the data is assumed by the administrator.

In this case, set the instantiation SCN for the database objects explicitly.
Alternatively, you can choose to perform a metadata-only export/import to set the
instantiation SCNs.

• You want to apply DDL changes, but you did not set the instantiation SCN at the
schema or global level.

In this case, set the instantiation SCN for the appropriate schemas by running the
SET_SCHEMA_INSTANTIATION_SCN procedure, or set the instantiation SCN for the
source database by running the SET_GLOBAL_INSTANTIATION_SCN procedure. Both of
these procedures are in the DBMS_APPLY_ADM package.

After you correct the condition that caused the error, whether you should reexecute the
error transaction or delete it depends on whether the changes included in the
transaction were executed at the destination database when you corrected the error
condition. Follow these guidelines when you decide whether you should reexecute the
transaction in the error queue or delete it:

• If you performed a new export/import, and the new export includes the transaction
in the error queue, then delete the transaction in the error queue.

• If you set instantiation SCNs explicitly or reimported an existing export dump file,
then reexecute the transaction in the error queue.

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about instantiation

• "Retrying Apply Error Transactions"

33.11.2.7 ORA-26688 Missing Key in LCR
Typically, an ORA-26688 error occurs because of one of the following conditions:

• At least one LCR in a transaction does not contain enough information for the
apply process to apply it. For dependency computation, an apply process always
needs values for the defined primary key column(s) at the destination database.
Also, if the parallelism of any apply process that will apply the changes is greater
than 1, then the apply process needs values for any indexed column at a
destination database, which includes unique or non unique index columns, foreign
key columns, and bitmap index columns.

If an apply process needs values for a column, and the column exists at the
source database, then this error results when supplemental logging is not
specified for one or more of these columns at the source database. In this case,

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-16

specify the necessary supplemental logging at the source database to prevent
apply errors.

However, the definition of the source database table might be different than the
definition of the corresponding destination database table. If an apply process
needs values for a column, and the column exists at the destination database but
does not exist at the source database, then you can configure a rule-based
transformation to add the required values to the LCRs from the source database to
prevent apply errors.

To correct a transaction placed in the error queue because of this error, you can
use a procedure DML handler to modify the LCRs so that they contain the
necessary supplemental data. See "Using a DML Handler to Correct Error
Transactions".

• There is a problem with the primary key in the table for which an LCR is applying a
change. In this case, ensure that the primary key is enabled by querying the
DBA_CONSTRAINTS data dictionary view. If no primary key exists for the table, or if the
destination table has a different primary key than the source table, then specify
substitute key columns using the SET_KEY_COLUMNS procedure in the DBMS_APPLY_ADM
package. You can also encounter error ORA-23416 if a table does not have a
primary key. After you make these changes, you can reexecute the error
transaction.

See Also:

• "Supplemental Logging in an Oracle Streams Environment"

• "Substitute Key Columns"

• Rule-Based Transformations

33.11.2.8 ORA-26689 Column Type Mismatch
Typically, an ORA-26689 error occurs because one or more columns at a table in the
source database do not match the corresponding columns at the destination database.
The LCRs from the source database might contain more columns than the table at the
destination database, or there might be a column name or column type mismatch for
one or more columns. If the columns differ at the databases, then you can use rule-
based transformations to avoid future errors.

If you use an apply handler or a custom rule-based transformation, then ensure that
any ANYDATA conversion functions match the data type in the LCR that is being
converted. For example, if the column is specified as VARCHAR2, then use
ANYDATA.CONVERTVARCHAR2 function to convert the data from type ANY to VARCHAR2.

Also, ensure that you use the correct character case in rule conditions, apply handlers,
and rule-based transformations. For example, if a column name has all uppercase
characters in the data dictionary, then you should specify the column name with all
uppercase characters in rule conditions, apply handlers, and rule-based
transformations

This error can also occur because supplemental logging is not specified where it is
required for nonkey columns at the source database. In this case, LCRs from the
source database might not contain needed values for these nonkey columns.

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-17

You might be able to configure a DML handler to apply the error transaction. See
"Using a DML Handler to Correct Error Transactions".

See Also:

• "Considerations for Applying DML Changes to Tables" for information
about possible causes of apply errors

• "Supplemental Logging in an Oracle Streams Environment"

• Rule-Based Transformations

33.11.2.9 ORA-26786 A row with key exists but has conflicting column(s) in
table

An ORA-26786 error occurs when the values of some columns in the destination table
row do not match the old values of the corresponding columns in the row LCR.

To avoid future apply errors, you can either configure a conflict handler, a DML
handler, or an error handler. The handler should resolve the mismatched column in a
way that is appropriate for your replication environment.

In addition, you might be able to configure a DML handler to apply existing error
transactions that resulted from this error. See "Using a DML Handler to Correct Error
Transactions".

Alternatively, you can update the current values in the row so that the row LCR can be
applied successfully. If changes to the row are captured by a capture process or
synchronous capture at the destination database, then you probably do not want to
replicate this manual change to other destination databases. In this case, complete the
following steps:

1. Set a tag in the session that corrects the row. Ensure that you set the tag to a
value that prevents the manual change from being replicated. For example, the tag
can prevent the change from being captured by a capture process or synchronous
capture.

EXEC DBMS_STREAMS.SET_TAG(tag => HEXTORAW('17'));

In some environments, you might need to set the tag to a different value.

2. Update the row in the table so that the data matches the old values in the LCR.

3. Reexecute the error or reexecute all errors. To reexecute an error, run the
EXECUTE_ERROR procedure in the DBMS_APPLY_ADM package, and specify the
transaction identifier for the transaction that caused the error. For example:

EXEC DBMS_APPLY_ADM.EXECUTE_ERROR(local_transaction_id => '5.4.312');

Or, execute all errors for the apply process by running the EXECUTE_ALL_ERRORS
procedure:

EXEC DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(apply_name => 'APPLY');

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-18

4. If you are going to make other changes in the current session that you want to
replicate destination databases, then reset the tag for the session to an
appropriate value, as in the following example:

EXEC DBMS_STREAMS.SET_TAG(tag => NULL);

In some environments, you might need to set the tag to a value other than NULL.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
conflict resolution

• "Managing a DML Handler"

33.11.2.10 ORA-26787 The row with key column_value does not exist in table
table_name

An ORA-26787 error occurs when the row that a row LCR is trying to update or delete
does not exist in the destination table.

To avoid future apply errors, you can either configure a conflict handler, a DML
handler, or an error handler. The handler should resolve row LCRs that do not have
corresponding table rows in a way that is appropriate for your replication environment.

In addition, you might be able to configure a DML handler to apply existing error
transactions that resulted from this error. See "Using a DML Handler to Correct Error
Transactions".

Alternatively, you can update the current values in the row so that the row LCR can be
applied successfully. See "ORA-26786 A row with key exists but has conflicting
column(s) in table" for more information.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
conflict resolution

• "Managing a DML Handler"

Chapter 33
Are There Any Apply Errors in the Error Queue?

33-19

34
Troubleshooting Rules and Rule-Based
Transformations

When a capture process, synchronous capture, propagation, apply process, or
messaging client is not behaving as expected, the problem might be that rule sets,
rules, or rule-based transformations for the Oracle Streams client are not configured
properly. Use the following sections to identify and resolve problems with rule sets,
rules, and rule-based transformations:

The following topics describe identifying and resolving common problems with rules
and rule-based transformations in an Oracle Streams environment:

• Are Rules Configured Properly for the Oracle Streams Client?

• Are Declarative Rule-Based Transformations Configured Properly?

• Are the Custom Rule-Based Transformations Configured Properly?

• Are Incorrectly Transformed LCRs in the Error Queue?

See Also:

• How Rules Are Used in Oracle Streams

• Advanced Rule Concepts

• Managing Rules

• Monitoring Rules

34.1 Are Rules Configured Properly for the Oracle Streams
Client?

If a capture process, synchronous capture, propagation, apply process, or messaging
client is behaving in an unexpected way, then the problem might be that the rules in
one or more of the rule sets for the Oracle Streams client are not configured properly.
For example, if you expect a capture process to capture changes made to a particular
table, but the capture process is not capturing these changes, then the cause might be
that the rules in the rule sets used by the capture process do not instruct the capture
process to capture changes to the table.

You can check the rules for a particular Oracle Streams client by querying the
DBA_STREAMS_RULES data dictionary view. If you use both positive rule sets and negative
rule sets in your Oracle Streams environment, then it is important to know whether a
rule returned by this view is in the positive or negative rule set for a particular Oracle
Streams client.

34-1

An Oracle Streams client performs an action, such as capture, propagation, apply, or
dequeue, for messages that satisfy its rule sets. In general, a message satisfies the
rule sets for an Oracle Streams client if no rules in the negative rule set evaluate to
TRUE for the message, and at least one rule in the positive rule set evaluates to TRUE for
the message.

"Rule Sets and Rule Evaluation of Messages" contains more detailed information
about how a message satisfies the rule sets for an Oracle Streams client, including
information about Oracle Streams client behavior when one or more rule sets are not
specified.

See Also:

• "Rule Sets and Rule Evaluation of Messages"

This section includes the following subsections:

• Checking Schema and Global Rules

• Checking Table Rules

• Checking Subset Rules

• Checking for Message Rules

• Resolving Problems with Rules

34.1.1 Checking Schema and Global Rules
Schema and global rules in the positive rule set for an Oracle Streams client instruct
the Oracle Streams client to perform its task for all of the messages relating to a
particular schema or database, respectively. Schema and global rules in the negative
rule set for an Oracle Streams client instruct the Oracle Streams client to discard all of
the messages relating to a particular schema or database, respectively. If an Oracle
Streams client is not behaving as expected, then it might be because schema or global
rules are not configured properly for the Oracle Streams client.

For example, suppose a database is running an apply process named strm01_apply,
and you want this apply process to apply LCRs containing changes to the hr schema.
If the apply process uses a negative rule set, then ensure that there are no schema
rules that evaluate to TRUE for this schema in the negative rule set. Such rules cause
the apply process to discard LCRs containing changes to the schema. "Displaying the
Rules in the Negative Rule Set for an Oracle Streams Client" contains an example of a
query that shows such rules.

If the query returns any such rules, then the rules returned might be causing the apply
process to discard changes to the schema. If this query returns no rows, then ensure
that there are schema rules in the positive rule set for the apply process that evaluate
to TRUE for the schema. "Displaying the Rules in the Positive Rule Set for an Oracle
Streams Client" contains an example of a query that shows such rules.

Chapter 34
Are Rules Configured Properly for the Oracle Streams Client?

34-2

34.1.2 Checking Table Rules
Table rules in the positive rule set for an Oracle Streams client instruct the Oracle
Streams client to perform its task for the messages relating to one or more particular
tables. Table rules in the negative rule set for an Oracle Streams client instruct the
Oracle Streams client to discard the messages relating to one or more particular
tables.

If an Oracle Streams client is not behaving as expected for a particular table, then it
might be for one of the following reasons:

• One or more global rules in the rule sets for the Oracle Streams client instruct the
Oracle Streams client to behave in a particular way for messages relating to the
table because the table is in a specific database. That is, a global rule in the
negative rule set for the Oracle Streams client might instruct the Oracle Streams
client to discard all messages from the source database that contains the table, or
a global rule in the positive rule set for the Oracle Streams client might instruct the
Oracle Streams client to perform its task for all messages from the source
database that contains the table.

• One or more schema rules in the rule sets for the Oracle Streams client instruct
the Oracle Streams client to behave in a particular way for messages relating to
the table because the table is in a specific schema. That is, a schema rule in the
negative rule set for the Oracle Streams client might instruct the Oracle Streams
client to discard all messages relating to database objects in the schema, or a
schema rule in the positive rule set for the Oracle Streams client might instruct the
Oracle Streams client to perform its task for all messages relating to database
objects in the schema.

• One or more table rules in the rule sets for the Oracle Streams client instruct the
Oracle Streams client to behave in a particular way for messages relating to the
table.

See Also:

"Checking Schema and Global Rules"

If you are sure that no global or schema rules are causing the unexpected behavior,
then you can check for table rules in the rule sets for an Oracle Streams client. For
example, if you expect a capture process to capture changes to a particular table, but
the capture process is not capturing these changes, then the cause might be that the
rules in the positive and negative rule sets for the capture process do not instruct it to
capture changes to the table.

Suppose a database is running a capture process named strm01_capture, and you
want this capture process to capture changes to the hr.departments table. If the
capture process uses a negative rule set, then ensure that there are no table rules that
evaluate to TRUE for this table in the negative rule set. Such rules cause the capture
process to discard changes to the table. "Displaying the Rules in the Negative Rule
Set for an Oracle Streams Client" contains an example of a query that shows rules in a
negative rule set.

Chapter 34
Are Rules Configured Properly for the Oracle Streams Client?

34-3

If that query returns any such rules, then the rules returned might be causing the
capture process to discard changes to the table. If that query returns no rules, then
ensure that there are one or more table rules in the positive rule set for the capture
process that evaluate to TRUE for the table. "Displaying the Rules in the Positive Rule
Set for an Oracle Streams Client" contains an example of a query that shows rules in a
positive rule set.

You can also determine which rules have a particular pattern in their rule condition.
"Listing Each Rule that Contains a Specified Pattern in Its Condition". For example,
you can find all of the rules with the string "departments" in their rule condition, and
you can ensure that these rules are in the correct rule sets.

See Also:

"Table Rules Example" for more information about specifying table rules

34.1.3 Checking Subset Rules
A subset rule can be in the rule set used by a capture process, synchronous capture,
propagation, apply process, or messaging client. A subset rule evaluates to TRUE only if
a DML operation contains a change to a particular subset of rows in the table. For
example, to check for table rules that evaluate to TRUE for an apply process named
strm01_apply when there are changes to the hr.departments table, run the following
query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A20
COLUMN RULE_TYPE HEADING 'Rule Type' FORMAT A20
COLUMN DML_CONDITION HEADING 'Subset Condition' FORMAT A30

SELECT RULE_NAME, RULE_TYPE, DML_CONDITION
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'STRM01_APPLY' AND
 STREAMS_TYPE = 'APPLY' AND
 SCHEMA_NAME = 'HR' AND
 OBJECT_NAME = 'DEPARTMENTS';

Rule Name Rule Type Subset Condition
-------------------- -------------------- ------------------------------
DEPARTMENTS5 DML location_id=1700
DEPARTMENTS6 DML location_id=1700
DEPARTMENTS7 DML location_id=1700

Notice that this query returns any subset condition for the table in the DML_CONDITION
column, which is labeled "Subset Condition" in the output. In this example, subset
rules are specified for the hr.departments table. These subset rules evaluate to TRUE
only if an LCR contains a change that involves a row where the location_id is 1700.
So, if you expected the apply process to apply all changes to the table, then these
subset rules cause the apply process to discard changes that involve rows where the
location_id is not 1700.

Chapter 34
Are Rules Configured Properly for the Oracle Streams Client?

34-4

Note:

Subset rules must reside only in positive rule sets.

See Also:

• "Table Rules Example" for more information about specifying subset rules

• "Row Migration and Subset Rules"

34.1.4 Checking for Message Rules
A message rule can be in the rule set used by a propagation, apply process, or
messaging client. Message rules pertain only to user messages of a specific message
type, not to captured LCRs. A message rule evaluates to TRUE if a user message in a
queue is of the type specified in the message rule and satisfies the rule condition of
the message rule.

If you expect a propagation, apply process, or messaging client to perform its task for
some user messages, but the Oracle Streams client is not performing its task for these
messages, then the cause might be that the rules in the positive and negative rule sets
for the Oracle Streams client do not instruct it to perform its task for these messages.
Similarly, if you expect a propagation, apply process, or messaging client to discard
some user messages, but the Oracle Streams client is not discarding these messages,
then the cause might be that the rules in the positive and negative rule sets for the
Oracle Streams client do not instruct it to discard these messages.

For example, suppose you want a messaging client named oe to dequeue messages
of type oe.user_msg that satisfy the following condition:

:"VAR$_2".OBJECT_OWNER = 'OE' AND :"VAR$_2".OBJECT_NAME = 'ORDERS'

If the messaging client uses a negative rule set, then ensure that there are no
message rules that evaluate to TRUE for this message type in the negative rule set.
Such rules cause the messaging client to discard these messages. For example, to
determine whether there are any such rules in the negative rule set for the messaging
client, run the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A30
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A30

SELECT RULE_NAME, RULE_CONDITION
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'OE' AND
 MESSAGE_TYPE_OWNER = 'OE' AND
 MESSAGE_TYPE_NAME = 'USER_MSG' AND
 RULE_SET_TYPE = 'NEGATIVE';

If this query returns any rules, then the rules returned might be causing the messaging
client to discard messages. Examine the rule condition of the returned rules to
determine whether these rules are causing the messaging client to discard the
messages that it should be dequeuing. If this query returns no rules, then ensure that

Chapter 34
Are Rules Configured Properly for the Oracle Streams Client?

34-5

there are message rules in the positive rule set for the messaging client that evaluate
to TRUE for this message type and condition.

For example, to determine whether any message rules evaluate to TRUE for this
message type in the positive rule set for the messaging client, run the following query:

COLUMN RULE_NAME HEADING 'Rule Name' FORMAT A35
COLUMN RULE_CONDITION HEADING 'Rule Condition' FORMAT A35

SELECT RULE_NAME, RULE_CONDITION
 FROM DBA_STREAMS_RULES
 WHERE STREAMS_NAME = 'OE' AND
 MESSAGE_TYPE_OWNER = 'OE' AND
 MESSAGE_TYPE_NAME = 'USER_MSG' AND
 RULE_SET_TYPE = 'POSITIVE';

If you have message rules that evaluate to TRUE for this message type in the positive
rule set for the messaging client, then these rules are returned. In this case, your
output looks similar to the following:

Rule Name Rule Condition
----------------------------------- -----------------------------------
RULE$_3 :"VAR$_2".OBJECT_OWNER = 'OE' AND
 :"VAR$_2".OBJECT_NAME = 'ORDERS'

Examine the rule condition for the rules returned to determine whether they instruct the
messaging client to dequeue the proper messages. Based on these results, the
messaging client named oe should dequeue messages of oe.user_msg type that satisfy
condition shown in the output. In other words, no rule in the negative messaging client
rule set discards these messages, and a rule exists in the positive messaging client
rule set that evaluates to TRUE when the messaging client finds a message in its queue
of the oe.user_msg type that satisfies the rule condition.

See Also:

• "Message Rule Example" for more information about specifying message
rules

• Oracle Database Advanced Queuing User's Guide for detailed information
about messaging

34.1.5 Resolving Problems with Rules
If you determine that an Oracle Streams capture process, synchronous capture,
propagation, apply process, or messaging client is not behaving as expected because
one or more rules must be added to the rule set for the Oracle Streams client, then
you can use one of the following procedures in the DBMS_STREAMS_ADM package to add
appropriate rules:

• ADD_GLOBAL_PROPAGATION_RULES

• ADD_GLOBAL_RULES

• ADD_SCHEMA_PROPAGATION_RULES

Chapter 34
Are Rules Configured Properly for the Oracle Streams Client?

34-6

• ADD_SCHEMA_RULES

• ADD_SUBSET_PROPAGATION_RULES

• ADD_SUBSET_RULES

• ADD_TABLE_PROPAGATION_RULES

• ADD_TABLE_RULES

• ADD_MESSAGE_PROPAGATION_RULE

• ADD_MESSAGE_RULE

You can use the DBMS_RULE_ADM package to add customized rules, if necessary.

It is also possible that the Oracle Streams capture process, synchronous capture,
propagation, apply process, or messaging client is not behaving as expected because
one or more rules should be altered or removed from a rule set.

If you have the correct rules, and the relevant messages are still filtered out by an
Oracle Streams capture process, propagation, or apply process, then check your trace
files and alert log for a warning about a missing "multi-version data dictionary", which
is an Oracle Streams data dictionary. The following information might be included in
such warning messages:

• gdbnm: Global name of the source database of the missing object

• scn: SCN for the transaction that has been missed

If you find such messages, and you are using custom capture process rules or reusing
existing capture process rules for a new destination database, then ensure that you
run the appropriate procedure to prepare for instantiation:

• PREPARE_TABLE_INSTANTIATION

• PREPARE_SCHEMA_INSTANTIATION

• PREPARE_GLOBAL_INSTANTIATION

Also, ensure that propagation is working from the source database to the destination
database. Oracle Streams data dictionary information is propagated to the destination
database and loaded into the dictionary at the destination database.

See Also:

• "Altering a Rule"

• "Removing a Rule from a Rule Set"

• Oracle Streams Replication Administrator's Guide for more information
about preparing database objects for instantiation

• "The Oracle Streams Data Dictionary" for more information about the
Oracle Streams data dictionary

Chapter 34
Are Rules Configured Properly for the Oracle Streams Client?

34-7

34.2 Are Declarative Rule-Based Transformations
Configured Properly?

A declarative rule-based transformation is a rule-based transformation that covers one
of a common set of transformation scenarios for row LCRs. Declarative rule-based
transformations are run internally without using PL/SQL. If an Oracle Streams capture
process, synchronous capture, propagation, apply process, or messaging client is not
behaving as expected, then check the declarative rule-based transformations specified
for the rules used by the Oracle Streams client and correct any mistakes.

The most common problems with declarative rule-based transformations are:

• The declarative rule-based transformation is specified for a table or involves
columns in a table, but the schema either was not specified or was incorrectly
specified when the transformation was created. If the schema is not correct in a
declarative rule-based transformation, then the transformation will not be run on
the appropriate LCRs. You should specify the owning schema for a table when
you create a declarative rule-based transformation. If the schema is not specified
when a declarative rule-based transformation is created, then the user who
creates the transformation is specified for the schema by default.

If the schema is not correct for a declarative rule-based transformation, then, to
correct the problem, remove the transformation and re-create it, specifying the
correct schema for each table.

• If more than one declarative rule-based transformation is specified for a particular
rule, then ensure that the ordering is correct for execution of these
transformations. Incorrect ordering of declarative rule-based transformations can
result in errors or inconsistent data.

If the ordering is not correct for the declarative rule-based transformation specified
on a single rule, then, to correct the problem, remove the transformations and re-
create them with the correct ordering.

See Also:

• "Displaying Declarative Rule-Based Transformations"

• "Managing Declarative Rule-Based Transformations"

• "Transformation Ordering"

34.3 Are the Custom Rule-Based Transformations
Configured Properly?

A custom rule-based transformation is any modification by a user-defined function to a
message when a rule evaluates to TRUE. A custom rule-based transformation is
specified in the action context of a rule, and these action contexts contain a name-
value pair with STREAMS$_TRANSFORM_FUNCTION for the name and a user-created function

Chapter 34
Are Declarative Rule-Based Transformations Configured Properly?

34-8

name for the value. This user-created function performs the transformation. If the user-
created function contains any flaws, then unexpected behavior can result.

If an Oracle Streams capture process, synchronous capture, propagation, apply
process, or messaging client is not behaving as expected, then check the custom rule-
based transformation functions specified for the rules used by the Oracle Streams
client and correct any flaws. You can find the names of these functions by querying the
DBA_STREAMS_TRANSFORM_FUNCTION data dictionary view. You might need to modify a
transformation function or remove a custom rule-based transformation to correct the
problem. Also, ensure that the name of the function is spelled correctly when you
specify the transformation for a rule.

An error caused by a custom rule-based transformation might cause a capture
process, synchronous capture, propagation, apply process, or messaging client to
abort. In this case, you might need to correct the transformation before the Oracle
Streams client can be restarted or invoked.

Rule evaluation is done before a custom rule-based transformation. For example, if
you have a transformation that changes the name of a table from emps to employees,
then ensure that each rule using the transformation specifies the table name emps,
rather than employees, in its rule condition.

See Also:

• " Rule-Based Transformations "

• "Managing Custom Rule-Based Transformations"

• "Displaying Custom Rule-Based Transformations"

34.4 Are Incorrectly Transformed LCRs in the Error Queue?
In some cases, incorrectly transformed LCRs might have been moved to the error
queue by an apply process. When this occurs, you should examine the transaction in
the error queue to analyze the feasibility of reexecuting the transaction successfully. If
an abnormality is found in the transaction, then you might be able to configure a
procedure DML handler to correct the problem. The DML handler will run when you
reexecute the error transaction. When a DML handler is used to correct a problem in
an error transaction, the apply process that uses the DML handler should be stopped
to prevent the DML handler from acting on LCRs that are not involved with the error
transaction. After successful reexecution, if the DML handler is no longer needed, then
remove it. Also, correct the rule-based transformation to avoid future errors.

See Also:

• "The Error Queue"

• "Checking for Apply Errors"

• "Displaying Detailed Information About Apply Errors"

Chapter 34
Are Incorrectly Transformed LCRs in the Error Queue?

34-9

Part VI
Oracle Streams Information Provisioning

This part describes information provisioning with Oracle Streams. This part contains
the following chapters:

• Information Provisioning Concepts

• Using Information Provisioning

• Monitoring File Group and Tablespace Repositories

35
Information Provisioning Concepts

Information provisioning makes information available when and where it is needed.
Information provisioning is part of Oracle grid computing, which pools large numbers of
servers, storage areas, and networks into a flexible, on-demand computing resource
for enterprise computing needs. Information provisioning uses many of the features
that also are used for information integration.

The following topics contain information about information provisioning:

• Overview of Information Provisioning

• Bulk Provisioning of Large Amounts of Information

• Incremental Information Provisioning with Oracle Streams

• On-Demand Information Access

See Also:

• Using Information Provisioning

• Oracle Database Concepts for more information about information
integration

35.1 Overview of Information Provisioning
Oracle grid computing enables resource provisioning with features such as Oracle
Real Application Clusters (Oracle RAC), Oracle Scheduler, and Database Resource
Manager. Oracle RAC enables you to provision hardware resources by running a
single Oracle database server on a cluster of physical servers. Oracle Scheduler
enables you to provision database workload over time for more efficient use of
resources. Database Resource Manager provisions resources to database users,
applications, or services within an Oracle database.

In addition to resource provisioning, Oracle grid computing also enables information
provisioning. Information provisioning delivers information when and where it is
needed, regardless of where the information currently resides on the grid. In a grid
environment with distributed systems, the grid must move or copy information
efficiently to make it available where it is needed.

Information provisioning can take the following forms:

• Bulk Provisioning of Large Amounts of Information: Data Pump export/import,
transportable tablespaces, the DBMS_STREAMS_TABLESPACE_ADM package, and the
DBMS_FILE_TRANSFER package all are ways to provide large amounts of information.
Data Pump export/import enables you to move or copy information at the
database, tablespace, schema, or table level. Transportable tablespaces enables
you to move or copy tablespaces from one database to another efficiently. The

35-1

procedures in the DBMS_STREAMS_TABLESPACE_ADM package enable you to clone,
detach, and attach tablespaces. In addition, some procedures in this package
enable you to store tablespaces in a tablespace repository that provides
versioning of tablespaces. When tablespaces are needed, they can be pulled from
the tablespace repository and plugged into a database. The procedures in the
DBMS_FILE_TRANSFER package enable you to copy a binary file within a database or
between databases.

• Incremental Information Provisioning with Oracle Streams: Some data must be
shared as it is created or changed, rather than occasionally shared in bulk. Oracle
Streams can stream data between databases, nodes, or blade farms in a grid and
can keep two or more copies synchronized as updates are made.

• On-Demand Information Access: You can make information available without
moving or copying it to a new location. Oracle Distributed SQL allows grid users to
access and integrate data stored in multiple Oracle databases and, through
gateways, non-Oracle databases.

These information provisioning capabilities can be used individually or in combination
to provide a full information provisioning solution in your environment. The remaining
sections in this chapter discuss the ways to provision information in more detail.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide for
more information about Oracle RAC

• Oracle Database Administrator's Guide for information about Oracle
Scheduler and Database Resource Manager

35.2 Bulk Provisioning of Large Amounts of Information
Oracle provides several ways to move or copy large amounts of information from
database to database efficiently. Data Pump can export and import at the database,
tablespace, schema, or table level. There are several ways to move or copy a
tablespace set from one Oracle database to another. Transportable tablespaces can
move or copy a subset of an Oracle database and "plug" it in to another Oracle
database. Transportable tablespace from backup with RMAN enables you to move or
copy a tablespace set while the tablespaces remain online. The procedures in the
DBMS_STREAMS_TABLESPACE_ADM package combine several steps that are required to move
or copy a tablespace set into one procedure call.

Each method for moving or copying a tablespace set requires that the tablespace set
is self-contained. A self-contained tablespace has no references from the tablespace
pointing outside of the tablespace. For example, if an index in the tablespace is for a
table in a different tablespace, then the tablespace is not self-contained. A self-
contained tablespace set has no references from inside the set of tablespaces pointing
outside of the set of tablespaces. For example, if a partitioned table is partially
contained in the set of tablespaces, then the set of tablespaces is not self-contained.
To determine whether a set of tablespaces is self-contained, use the
TRANSPORT_SET_CHECK procedure in the Oracle supplied package DBMS_TTS.

The following sections describe the options for moving or copying large amounts of
information and when to use each option:

Chapter 35
Bulk Provisioning of Large Amounts of Information

35-2

• Data Pump Export/Import

• Transportable Tablespace from Backup with RMAN

• DBMS_STREAMS_TABLESPACE_ADM Procedures

• Options for Bulk Information Provisioning

35.2.1 Data Pump Export/Import
Data Pump export/import can move or copy data efficiently between databases. Data
Pump can export/import a full database, tablespaces, schemas, or tables to provision
large or small amounts of data for a particular requirement. Data Pump exports and
imports can be performed using command line clients (expdp and impdp) or the
DBMS_DATAPUMP package.

A transportable tablespaces export/import is specified using the TRANSPORT_TABLESPACES
parameter. Transportable tablespaces enables you to unplug a set of tablespaces
from a database, move or copy them to another location, and then plug them into
another database. The transport is quick because the process transfers metadata and
files. It does not unload and load the data. In transportable tablespaces mode, only the
metadata for the tables (and their dependent objects) within a specified set of
tablespaces are unloaded at the source and loaded at the target. This allows the
tablespace data files to be copied to the target Oracle database and incorporated
efficiently.

The tablespaces being transported can be either dictionary managed or locally
managed. Moving or copying tablespaces using transportable tablespaces is faster
than performing either an export/import or unload/load of the same data. To use
transportable tablespaces, you must have the EXP_FULL_DATABASE and
IMP_FULL_DATABASE role. The tablespaces being transported must be read-only during
export, and the export cannot have a degree of parallelism greater than 1.

See Also:

• Oracle Database Utilities for more information about Data Pump

• Oracle Database Administrator's Guide for more information about using
Data Pump with the TRANSPORT_TABLESPACES option

35.2.2 Transportable Tablespace from Backup with RMAN
The Recovery Manager (RMAN) TRANSPORT TABLESPACE command copies tablespaces
without requiring that the tablespaces be in read-only mode during the transport
process. Appropriate database backups must be available to perform RMAN
transportable tablespace from backup.

Chapter 35
Bulk Provisioning of Large Amounts of Information

35-3

See Also:

• Oracle Database Backup and Recovery Reference

• Oracle Database Backup and Recovery User's Guide

35.2.3 DBMS_STREAMS_TABLESPACE_ADM Procedures
The following procedures in the DBMS_STREAMS_TABLESPACE_ADM package can move or
copy tablespaces:

• ATTACH_TABLESPACES: Uses Data Pump to import a self-contained tablespace set
previously exported using the DBMS_STREAMS_TABLESPACE_ADM package, Data Pump
export, or the RMAN TRANSPORT TABLESPACE command.

• CLONE_TABLESPACES: Uses Data Pump export to clone a set of self-contained
tablespaces. The tablespace set can be attached to a database after it is cloned.
The tablespace set remains in the database from which it was cloned.

• DETACH_TABLESPACES: Uses Data Pump export to detach a set of self-contained
tablespaces. The tablespace set can be attached to a database after it is
detached. The tablespace set is dropped from the database from which it was
detached.

• PULL_TABLESPACES: Uses Data Pump export/import to copy a set of self-contained
tablespaces from a remote database and attach the tablespace set to the current
database.

In addition, the DBMS_STREAMS_TABLESPACE_ADM package also contains the following
procedures: ATTACH_SIMPLE_TABLESPACE, CLONE_SIMPLE_TABLESPACE,
DETACH_SIMPLE_TABLESPACE, and PULL_SIMPLE_TABLESPACE. These procedures operate on a
single tablespace that uses only one data file instead of a tablespace set.

35.2.3.1 File Group Repository
In the context of a file group, a file is a reference to a file stored on hard disk. A file is
composed of a file name, a directory object, and a file type. The directory object
references the directory in which the file is stored on hard disk. A version is a
collection of related files, and a file group is a collection of versions.

A file group repository is a collection of all of the file groups in a database. A file
group repository can contain multiple file groups and multiple versions of a particular
file group.

For example, a file group named reports can store versions of sales reports. The
reports can be generated on a regular schedule, and each version can contain the
report files. The file group repository can version the file group under names such as
sales_reports_v1, sales_reports_v2, and so on.

File group repositories can contain all types of files. You can create and manage file
group repositories using the DBMS_FILE_GROUP package.

Chapter 35
Bulk Provisioning of Large Amounts of Information

35-4

See Also:

• "Using a File Group Repository"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FILE_GROUP package

35.2.3.2 Tablespace Repository
A tablespace repository is a collection of tablespace sets in a file group repository.
Tablespace repositories are built on file group repositories, but tablespace repositories
only contain the files required to move or copy tablespaces between databases. A file
group repository can store versioned sets of files, including, but not restricted to,
tablespace sets.

Different tablespace sets can be stored in a tablespace repository, and different
versions of a particular tablespace set can also be stored. A version of a tablespace
set in a tablespace repository consists of the following files:

• The Data Pump export dump file for the tablespace set

• The Data Pump log file for the export

• The data files that comprise the tablespace set

All of the files in a version can reside in a single directory, or they can reside in
different directories. The following procedures can move or copy tablespaces with or
without using a tablespace repository:

• ATTACH_TABLESPACES

• CLONE_TABLESPACES

• DETACH_TABLESPACES

If one of these procedures is run without using a tablespace repository, then a
tablespace set is moved or copied, but it is not placed in or copied from a tablespace
repository. If the CLONE_TABLESPACES or DETACH_TABLESPACES procedure is run using a
tablespace repository, then the procedure places a tablespace set in the repository as
a version of the tablespace set. If the ATTACH_TABLESPACES procedure is run using a
tablespace repository, then the procedure copies a particular version of a tablespace
set from the repository and attaches it to a database.

35.2.3.2.1 When to Use a Tablespace Repository
A tablespace repository is useful when you must store different versions of one or
more tablespace sets. For example, a tablespace repository can accomplish the
following goals:

• You want to run quarterly reports on a tablespace set. You can clone the
tablespace set quarterly for storage in a versioned tablespace repository, and a
specific version of the tablespace set can be requested from the repository and
attached to another database to run the reports.

• You want applications to be able to attach required tablespace sets on demand in
a grid environment. You can store multiple versions of several different tablespace
sets in the tablespace repository. Each tablespace set can be used for a different

Chapter 35
Bulk Provisioning of Large Amounts of Information

35-5

purpose by the application. When the application needs a particular version of a
particular tablespace set, the application can scan the tablespace repository and
attach the correct tablespace set to a database.

35.2.3.2.2 Differences Between the Tablespace Repository Procedures
The procedures that include the file_group_name parameter in the
DBMS_STREAMS_TABLESPACE_ADM package behave differently for the tablespace set, the
data files in the tablespace set, and the export dump file. Table 35-1 describes these
differences.

Table 35-1 Tablespace Repository Procedures

Procedure Tablespace Set Data Files Export Dump File

ATTACH_TABLESPACES The tablespace set
is added to the
local database.

If the datafiles_directory_object
parameter is non-NULL, then the data
files are copied from their current
location(s) for the version in the
tablespace repository to the directory
object specified in the
datafiles_directory_object
parameter. The attached tablespace
set uses the data files that were
copied.

If the datafiles_directory_object
parameter is NULL, then the data files
are not moved or copied. The data
files remain in the directory object(s)
for the version in the tablespace
repository, and the attached
tablespace set uses these data files.

If the
datafiles_directory_ob
ject parameter is non-
NULL, then the export
dump file is copied from
its directory object for the
version in the tablespace
repository to the directory
object specified in the
datafiles_directory_ob
ject parameter.

If the
datafiles_directory_ob
ject parameter is NULL,
then the export dump file
is not moved or copied.

CLONE_TABLESPACES The tablespace set
is retained in the
local database.

The data files are copied from their
current location(s) to the directory
object specified in the
tablespace_directory_object
parameter or in the default directory
for the version or file group. This
parameter specifies where the
version of the tablespace set is
stored in the tablespace repository.
The current location of the data files
can be determined by querying the
DBA_DATA_FILES data dictionary view.
A directory object must exist, and
must be accessible to the user who
runs the procedure, for each data file
location.

The export dump file is
placed in the directory
object specified in the
tablespace_directory_o
bject parameter or in the
default directory for the
version or file group.

DETACH_TABLESPACES The tablespace set
is dropped from the
local database.

The data files are not moved or
copied. The data files remain in their
current location(s). A directory object
must exist, and must be accessible to
the user who runs the procedure, for
each data file location. These data
files are included in the version of the
tablespace set stored in the
tablespace repository.

The export dump file is
placed in the directory
object specified in the
export_directory_objec
t parameter or in the
default directory for the
version or file group.

Chapter 35
Bulk Provisioning of Large Amounts of Information

35-6

35.2.3.2.3 Remote Access to a Tablespace Repository
A tablespace repository can reside in the database that uses the tablespaces, or it can
reside in a remote database. If it resides in a remote database, then a database link
must be specified in the repository_db_link parameter when you run one of the
procedures, and the database link must be accessible to the user who runs the
procedure.

35.2.3.2.4 Only One Tablespace Version Can Be Online in a Database
A version of a tablespace set in a tablespace repository can be either online or offline
in a database. A tablespace set version is online in a database when it is attached to
the database using the ATTACH_TABLESPACES procedure. Only a single version of a
tablespace set can be online in a database at a particular time. However, the same
version or different versions of a tablespace set can be online in different databases at
the same time. In this case, it might be necessary to ensure that only one database
can make changes to the tablespace set.

35.2.3.2.5 Tablespace Repository Procedures Use the DBMS_FILE_GROUP Package
Automatically

Although tablespace repositories are built on file group repositories, it is not necessary
to use the DBMS_FILE_GROUP package to create a file group repository before using one
of the procedures in the DBMS_STREAMS_TABLESPACE_ADM package. If you run the
CLONE_TABLESPACES or DETACH_TABLESPACES procedure and specify a file group that does
not exist, then the procedure creates the file group automatically.

35.2.3.2.6 A Tablespace Repository Provides Versioning but Not Source Control
A tablespace repository provides versioning of tablespace sets, but it does not provide
source control. If two or more versions of a tablespace set are changed at the same
time and placed in a tablespace repository, then these changes are not merged.

35.2.3.3 Read-Only Tablespaces Requirement During Export
The procedures in the DBMS_STREAMS_TABLESPACE_ADM package that perform a Data Pump
export make any read/write tablespace being exported read-only. After the export is
complete, if a procedure in the DBMS_STREAMS_TABLESPACE_ADM package made a
tablespace read-only, then the procedure makes the tablespace read/write.

35.2.3.4 Automatic Platform Conversion for Tablespaces
When one of the procedures in the DBMS_STREAMS_TABLESPACE_ADM package moves or
copies tablespaces to a database that is running on a different platform, the procedure
can convert the data files to the appropriate platform if the conversion is supported.
The V$TRANSPORTABLE_PLATFORM dynamic performance view lists all platforms that
support cross-platform transportable tablespaces.

When a tablespace repository is used, the platform conversion is automatic if it is
supported. When a tablespace repository is not used, you must specify the platform to
which or from which the tablespace is being converted.

Chapter 35
Bulk Provisioning of Large Amounts of Information

35-7

See Also:

• Using Information Provisioning for information about using the procedures
in the DBMS_STREAMS_TABLESPACE_ADM package, including usage scenarios

• Oracle Database PL/SQL Packages and Types Reference for reference
information about the DBMS_STREAMS_TABLESPACE_ADM package and the
DBMS_FILE_GROUP package

35.2.4 Options for Bulk Information Provisioning
Table 35-2 describes when to use each option for bulk information provisioning.

Table 35-2 Options for Moving or Copying Tablespaces

Option Use this Option Under these Conditions

Data Pump export/import • You want to move or copy data at the database, tablespace,
schema, or table level.

• You want to perform each step required to complete the
Data Pump export/import.

Data Pump export/import with the
TRANSPORT_TABLESPACES option

• The tablespaces being moved or copied can be read-only
during the operation.

• You want to perform each step required to complete the
Data Pump export/import.

Transportable tablespace from backup with the
RMAN TRANSPORT TABLESPACE command

The tablespaces being moved or copied must remain online
(writeable) during the operation.

DBMS_STREAMS_TABLESPACE_ADM procedures
without a tablespace repository

• The tablespaces being moved or copied can be read-only
during the operation.

• You want to combine multiple steps in the Data Pump
export/import into one procedure call.

• You do not want to use a tablespace repository for the
tablespaces being moved or copied.

DBMS_STREAMS_TABLESPACE_ADM procedures with
a tablespace repository

• The tablespaces being moved or copied can be read-only
during the operation.

• You want to combine multiple steps in the Data Pump
export/import into one procedure call.

• You want to use a tablespace repository for the tablespaces
being moved or copied.

• You want platform conversion to be automatic.

35.3 Incremental Information Provisioning with Oracle
Streams

Oracle Streams can share and maintain database objects in different databases at
each of the following levels:

• Database

• Schema

Chapter 35
Incremental Information Provisioning with Oracle Streams

35-8

• Table

• Table subset

Oracle Streams can keep shared database objects synchronized at two or more
databases. Specifically, an Oracle Streams capture process or synchronous capture
captures changes to a shared database object in a source database, one or more
propagations propagate the changes to another database, and an Oracle Streams
apply process applies the changes to the shared database object. If database objects
are not identical at different databases, then Oracle Streams can transform them at
any point in the process. That is, a change can be transformed during capture,
propagation, or apply. In addition, Oracle Streams provides custom processing of
changes during apply with apply handlers. Database objects can be shared between
Oracle databases, or they can be shared between Oracle and non-Oracle databases
with an Oracle Database Gateway. In addition to data replication, Oracle Streams
provides messaging, event management and notification, and data warehouse
loading.

A combination of Oracle Streams and bulk provisioning enables you to copy and
maintain a large amount of data by running a single procedure. The following
procedures in the DBMS_STREAMS_ADM package use Data Pump to copy data between
databases and configure Oracle Streams to maintain the copied data incrementally:

• MAINTAIN_GLOBAL configures an Oracle Streams environment that replicates
changes at the database level between two databases.

• MAINTAIN_SCHEMAS configures an Oracle Streams environment that replicates
changes to specified schemas between two databases.

• MAINTAIN_SIMPLE_TTS clones a simple tablespace from a source database to a
destination database and uses Oracle Streams to maintain this tablespace at both
databases.

• MAINTAIN_TABLES configures an Oracle Streams environment that replicates
changes to specified tables between two databases.

• MAINTAIN_TTS uses transportable tablespaces with Data Pump to clone a set of
tablespaces from a source database to a destination database and uses Oracle
Streams to maintain these tablespaces at both databases.

In addition, the PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures
configure an Oracle Streams environment that replicates changes either at the
database level or to specified tablespaces between two databases. These procedures
must be used together, and instantiation actions must be performed manually, to
complete the Oracle Streams replication configuration.

Using these procedures, you can export data from one database, ship it to another
database, reformat the data if the second database is on a different platform, import
the data into the second database, and start syncing the data with the changes
happening in the first database. If the second database is on a grid, then you have just
migrated your application to a grid with one command.

These procedures can configure Oracle Streams clients to maintain changes
originating at the source database in a single-source replication environment, or they
can configure Oracle Streams clients to maintain changes originating at both
databases in a bidirectional replication environment. By maintaining changes to the
data, it can be kept synchronized at both databases. These procedures can either
perform these actions directly, or they can generate one or more scripts that performs
these actions.

Chapter 35
Incremental Information Provisioning with Oracle Streams

35-9

See Also:

• Introduction to Oracle Streams

• Oracle Database PL/SQL Packages and Types Reference for reference
information about the DBMS_STREAMS_ADM package

• Oracle Streams Replication Administrator's Guide for information about
using the DBMS_STREAMS_ADM package

35.4 On-Demand Information Access
Users and applications can access information without moving or copying it to a new
location. Distributed SQL allows grid users to access and integrate data stored in
multiple Oracle and, through Oracle Database Gateway, non-Oracle databases.
Transparent remote data access with distributed SQL allows grid users to run their
applications against any other database without making any code change to the
applications. While integrating data and managing transactions across multiple data
stores, the Oracle database optimizes the execution plans to access data in the most
efficient manner.

See Also:

• Oracle Database Administrator's Guide for information about distributed
SQL

• Oracle Database Heterogeneous Connectivity User's Guide for more
information about Oracle Database Gateway

Chapter 35
On-Demand Information Access

35-10

36
Using Information Provisioning

This chapter describes how to use information provisioning. This chapter includes an
example that creates a tablespace repository, examples that transfer tablespaces
between databases, and an example that uses a file group repository to store different
versions of files.

The following topics describe using information provisioning:

• Using a Tablespace Repository

• Using a File Group Repository

See Also:

Information Provisioning Concepts

36.1 Using a Tablespace Repository
The following procedures in the DBMS_STREAMS_TABLESPACE_ADM package can create a
tablespace repository, add versioned tablespace sets to a tablespace repository, and
copy versioned tablespace sets from a tablespace repository:

• ATTACH_TABLESPACES: This procedure copies a version of a tablespace set from a
tablespace repository and attaches the tablespaces to a database.

• CLONE_TABLESPACES: This procedure adds a new version of a tablespace set to a
tablespace repository by copying the tablespace set from a database. The
tablespaces in the tablespace set remain part of the database from which they
were copied.

• DETACH_TABLESPACES: This procedure adds a new version of a tablespace set to a
tablespace repository by moving the tablespace set from a database to the
repository. The tablespaces in the tablespace set are dropped from the database
from which they were copied.

This section illustrates how to use a tablespace repository with an example scenario.
In the scenario, the goal is to run quarterly reports on the sales tablespaces
(sales_tbs1 and sales_tbs2). Sales are recorded in these tablespaces in the
inst1.example.com database. The example clones the tablespaces quarterly and stores
a new version of the tablespaces in the tablespace repository. The tablespace
repository also resides in the inst1.example.com database. When a specific version of
the tablespace set is required to run reports at a reporting database, it is copied from
the tablespace repository and attached to the reporting database.

In this example scenario, the following databases are the reporting databases:

• The reporting database inst2.example.com shares a file system with the
inst1.example.com database. Also, the reports that are run on inst2.example.com
might make changes to the tablespace. Therefore, the tablespaces are made

36-1

read/write at inst2.example.com, and, when the reports are complete, a new
version of the tablespace files is stored in a separate directory from the original
version of the tablespace files.

• The reporting system inst3.example.com does not share a file system with the
inst1.example.com database. The reports that are run on inst3.example.com do not
make any changes to the tablespace. Therefore, the tablespaces remain read-only
at inst3.example.com, and, when the reports are complete, the original version of
the tablespace files remains in a single directory.

The following sections describe how to create and populate the tablespace repository
and how to use the tablespace repository to run reports at the other databases:

• Creating and Populating a Tablespace Repository

• Using a Tablespace Repository for Remote Reporting with a Shared File System

• Using a Tablespace Repository for Remote Reporting without a Shared File
System

These examples must be run by an administrative user with the necessary privileges
to run the procedures listed previously.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about these procedures and the privileges required to run them

36.1.1 Creating and Populating a Tablespace Repository
This example creates a tablespaces repository and adds a new version of a
tablespace set to the repository after each quarter. The tablespace set consists of the
sales tablespaces for a business: sales_tbs1 and sales_tbs2.

Figure 36-1 provides an overview of the tablespace repository created in this example:

Chapter 36
Using a Tablespace Repository

36-2

Figure 36-1 Example Tablespace Repository

Computer File

System

Database inst1.example.com

Tablespace Repository

.

.

.

.

.

.

q1fy2005 Directory

Datafiles

Export dump file

Export log file

q2fy2005 Directory

Datafiles

Export dump file

Export log file

version v_q1fy2005

version v_q2fy2005

sales_tbs2�
Tablespace

sales_tbs1�
Tablespace

Clone�
Tablespace�

Set

The following table shows the tablespace set versions created in this example, their
directory objects, and the corresponding file system directory for each directory object.

Version Directory Object Corresponding File System Directory

v_q1fy2005 q1fy2005 /home/sales/q1fy2005

v_q2fy2005 q2fy2005 /home/sales/q2fy2005

This example makes the following assumptions:

• The inst1.example.com database exists.

• The sales_tbs1 and sales_tbs2 tablespaces exist in the inst1.example.com
database.

The following steps create and populate a tablespace repository:

1. Connect as an administrative user to the database where the sales tablespaces
are modified with new sales data. In this example, connect to the
inst1.example.com database.

The administrative user must have the necessary privileges to run the procedures
in the DBMS_STREAMS_TABLESPACE_ADM package and must have the necessary
privileges to create directory objects.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a directory object for the first quarter in fiscal year 2005 on
inst1.example.com:

CREATE OR REPLACE DIRECTORY q1fy2005 AS '/home/sales/q1fy2005';

Chapter 36
Using a Tablespace Repository

36-3

The specified file system directory must exist when you create the directory object.

3. Create a directory object that corresponds to the directory that contains the data
files for the tablespaces in the inst1.example.com database. For example, if the
data files for the tablespaces are in the /orc/inst1/dbs directory, then create a
directory object that corresponds to this directory:

CREATE OR REPLACE DIRECTORY dbfiles_inst1 AS '/orc/inst1/dbs';

4. Clone the tablespace set and add the first version of the tablespace set to the
tablespace repository:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 tablespace_names => tbs_set,
 tablespace_directory_object => 'q1fy2005',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005');
END;
/

The sales file group is created automatically if it does not exist.

5. When the second quarter in fiscal year 2005 is complete, create a directory object
for the second quarter in fiscal year 2005:

CREATE OR REPLACE DIRECTORY q2fy2005 AS '/home/sales/q2fy2005';

The specified file system directory must exist when you create the directory object.

6. Clone the tablespace set and add the next version of the tablespace set to the
tablespace repository at the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.CLONE_TABLESPACES(
 tablespace_names => tbs_set,
 tablespace_directory_object => 'q2fy2005',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005');
END;
/

Steps 5 and 6 can be repeated whenever a quarter ends to store a version of the
tablespace set for each quarter. Each time, create a directory object to store the
tablespace files for the quarter, and specify a unique version name for the quarter.

36.1.2 Using a Tablespace Repository for Remote Reporting with a
Shared File System

This example runs reports at inst2.example.com on specific versions of the sales
tablespaces stored in a tablespace repository at inst1.example.com. These two
databases share a file system, and the reports that are run on inst2.example.com might
make changes to the tablespace. Therefore, the tablespaces are made read/write at

Chapter 36
Using a Tablespace Repository

36-4

inst2.example.com. When the reports are complete, a new version of the tablespace
files is stored in a separate directory from the original version of the tablespace files.

Figure 36-2 provides an overview of how tablespaces in a tablespace repository are
attached to a different database in this example:

Figure 36-2 Attaching Tablespaces with a Shared File System

Shared Computer�
File System

Database inst1.example.com

sales_tbs1

sales_tbs2

Tablespace Repository

.

.

.

.

.

.
Database inst2.example.com

q1fy2005 Directory

Datafiles

Export dump file

Export log file

q2fy2005 Directory

Datafiles

Export dump file

Export log file

q1fy2005_r Directory

Datafiles

Export dump file

Export log file

version v_q1fy2005

version v_q2fy2005

Created�
During

Import

Copied �
During �
Attach

sales_tbs1�
Tablespace

sales_tbs2�
Tablespace

Attach�
Tablespace�

Set

Figure 36-3 provides an overview of how tablespaces are detached and placed in a
tablespace repository in this example:

Chapter 36
Using a Tablespace Repository

36-5

Figure 36-3 Detaching Tablespaces with a Shared File System

Shared Computer�
File System

Database�
inst1.example.com

sales_tbs1

sales_tbs2

Tablespace Repository

.

.

.

.

.

.Database�
inst2.example.com

sales_tbs2�
Tablespace

sales_tbs1�
Tablespace

Detach�
Tablespace�

Set

q1fy2005 Directory

Datafiles

Export dump file

Export log file

q2fy2005 Directory

Datafiles

Export dump file

Export log file

q1fy2005_r Directory

Datafiles

Export dump file

Export log file

version v_q1fy2005

version v_q2fy2005

version v_q1fy2005_r

The following table shows the tablespace set versions in the tablespace repository
when this example is complete. It shows the directory object for each version and the
corresponding file system directory for each directory object. The versions that are
new are created in this example. The versions that existed before this example were
created in "Creating and Populating a Tablespace Repository".

Version Directory Object Corresponding File System Directory New?

v_q1fy2005 q1fy2005 /home/sales/q1fy2005 No

v_q1fy2005_r q1fy2005_r /home/sales/q1fy2005_r Yes

v_q2fy2005 q2fy2005 /home/sales/q2fy2005 No

v_q2fy2005_r q2fy2005_r /home/sales/q2fy2005_r Yes

This example makes the following assumptions:

• The inst1.example.com and inst2.example.com databases exist.

• The inst1.example.com and inst2.example.com databases can access a shared file
system.

Chapter 36
Using a Tablespace Repository

36-6

• Networking is configured between the databases so that these databases can
communicate with each other.

• A tablespace repository that contains a version of the sales tablespaces
(sales_tbs1 and sales_tbs2) for various quarters exists in the inst1.example.com
database. This tablespace repository was created and populated in the example
"Creating and Populating a Tablespace Repository".

Complete the following steps:

1. In SQL*Plus, connect to inst1.example.com as an administrative user.

The administrative user must have the necessary privileges to create directory
objects.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a directory object that will store the tablespace files for the first quarter in
fiscal year 2005 on inst1.example.com after the inst2.example.com database has
completed reporting on this quarter:

CREATE OR REPLACE DIRECTORY q1fy2005_r AS '/home/sales/q1fy2005_r';

The specified file system directory must exist when you create the directory
objects.

3. Connect to the inst2.example.com database as an administrative user.

The administrative user must have the necessary privileges to run the procedures
in the DBMS_STREAMS_TABLESPACE_ADM package, create directory objects, and create
database links.

4. Create two directory objects for the first quarter in fiscal year 2005 on
inst2.example.com. These directory objects must have the same names and
correspond to the same directories on the shared file system as the directory
objects used by the tablespace repository in the inst1.example.com database for
the first quarter:

CREATE OR REPLACE DIRECTORY q1fy2005 AS '/home/sales/q1fy2005';

CREATE OR REPLACE DIRECTORY q1fy2005_r AS '/home/sales/q1fy2005_r';

5. Create a database link from inst2.example.com to the inst1.example.com database.
For example:

CREATE DATABASE LINK inst1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst1.example.com';

6. Attach the tablespace set to the inst2.example.com database from the
strmadmin.sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005',
 datafiles_directory_object => 'q1fy2005_r',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

Chapter 36
Using a Tablespace Repository

36-7

Notice that q1fy2005_r is specified for the datafiles_directory_object parameter.
Therefore, the data files for the tablespaces and the export dump file are copied
from the /home/sales/q1fy2005 location to the /home/sales/q1fy2005_r location by
the procedure. The attached tablespaces in the inst2.example.com database use
the data files in the /home/sales/q1fy2005_r location. The Data Pump import log file
also is placed in this directory.

The attached tablespaces use the data files in the /home/sales/q1fy2005_r location.
However, the v_q1fy2005 version of the tablespaces in the tablespace repository
consists of the files in the original /home/sales/q1fy2005 location.

7. Make the tablespaces read/write at inst2.example.com:

ALTER TABLESPACE sales_tbs1 READ WRITE;

ALTER TABLESPACE sales_tbs2 READ WRITE;

8. Run the reports on the data in the sales tablespaces at the inst2.example.com
database. The reports make changes to the tablespaces.

9. Detach the version of the tablespace set for the first quarter of 2005 from the
inst2.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 tablespace_names => tbs_set,
 export_directory_object => 'q1fy2005_r',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005_r',
 repository_db_link => 'inst1.example.com');
END;
/

Only one version of a tablespace set can be attached to a database at a time.
Therefore, the version of the sales tablespaces for the first quarter of 2005 must
be detached from inst2.example.com before the version of this tablespace set for
the second quarter of 2005 can be attached.

Also, notice that the specified export_directory_object is q1fy2005_r, and that the
version_name is v_q1fy2005_r. After the detach operation, there are two versions of
the tablespace files for the first quarter of 2005 stored in the tablespace repository
on inst1.example.com: one version of the tablespace before reporting and one
version after reporting. These two versions have different version names and are
stored in different directory objects.

10. Connect to the inst1.example.com database as an administrative user.

11. Create a directory object that will store the tablespace files for the second quarter
in fiscal year 2005 on inst1.example.com after the inst2.example.com database has
completed reporting on this quarter:

CREATE OR REPLACE DIRECTORY q2fy2005_r AS '/home/sales/q2fy2005_r';

The specified file system directory must exist when you create the directory object.

12. Connect to the inst2.example.com database as an administrative user.

Chapter 36
Using a Tablespace Repository

36-8

13. Create two directory objects for the second quarter in fiscal year 2005 at
inst2.example.com. These directory objects must have the same names and
correspond to the same directories on the shared file system as the directory
objects used by the tablespace repository in the inst1.example.com database for
the second quarter:

CREATE OR REPLACE DIRECTORY q2fy2005 AS '/home/sales/q2fy2005';

CREATE OR REPLACE DIRECTORY q2fy2005_r AS '/home/sales/q2fy2005_r';

14. Attach the tablespace set for the second quarter of 2005 to the inst2.example.com
database from the sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005',
 datafiles_directory_object => 'q2fy2005_r',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

15. Make the tablespaces read/write at inst2.example.com:

ALTER TABLESPACE sales_tbs1 READ WRITE;

ALTER TABLESPACE sales_tbs2 READ WRITE;

16. Run the reports on the data in the sales tablespaces at the inst2.example.com
database. The reports make changes to the tablespace.

17. Detach the version of the tablespace set for the second quarter of 2005 from
inst2.example.com:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 tbs_set(1) := 'sales_tbs1';
 tbs_set(2) := 'sales_tbs2';
 DBMS_STREAMS_TABLESPACE_ADM.DETACH_TABLESPACES(
 tablespace_names => tbs_set,
 export_directory_object => 'q2fy2005_r',
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005_r',
 repository_db_link => 'inst1.example.com');
END;
/

Steps 11-17 can be repeated whenever a quarter ends to run reports on each quarter.

36.1.3 Using a Tablespace Repository for Remote Reporting without a
Shared File System

This example runs reports at inst3.example.com on specific versions of the sales
tablespaces stored in a tablespace repository at inst1.example.com. These two
databases do not share a file system, and the reports that are run on
inst3.example.com do not make any changes to the tablespace. Therefore, the
tablespaces remain read-only at inst3.example.com, and, when the reports are

Chapter 36
Using a Tablespace Repository

36-9

complete, there is no need for a new version of the tablespace files in the tablespace
repository on inst1.example.com.

Figure 36-4 provides an overview of how tablespaces in a tablespace repository are
attached to a different database in this example:

Figure 36-4 Attaching Tablespaces without a Shared File System

Computer File�
System

Database�
inst1.example.com

sales_tbs1

sales_tbs2

Tablespace Repository

.

.

.

.

.

.

Database�
inst3.example.com

q1fy2005 Directory

Datafiles

Export dump file

Export log file

q2fy2005 Directory

Datafiles

Export dump file

Export log file

version v_q1fy2005

version v_q2fy2005

sales_tbs1�
Tablespace

sales_tbs2�
Tablespace

Computer File�
System

.

.

.

q1fy2005 Directory

Datafiles

Export dump file

Export log file Created�

During

Import

Files Copied �
With �
DBMS_FILE_TRANSFER

Attach�
Tablespace�

Set

The following table shows the directory objects used in this example. It shows the
existing directory objects that are associated with tablespace repository versions on
the inst1.example.com database, and it shows the new directory objects created on the
inst3.example.com database in this example. The directory objects that existed before
this example were created in "Creating and Populating a Tablespace Repository".

Directory Object Database Version Corresponding File System Directory New
?

q1fy2005 inst1.examp
le.com

v_q1fy2005 /home/sales/q1fy2005 No

q2fy2005 inst1.examp
le.com

v_q2fy2005 /home/sales/q2fy2005 No

Chapter 36
Using a Tablespace Repository

36-10

Directory Object Database Version Corresponding File System Directory New
?

q1fy2005 inst3.examp
le.com

Not associated with a
tablespace repository
version

/usr/sales_data/fy2005q1 Yes

q2fy2005 inst3.examp
le.com

Not associated with a
tablespace repository
version

/usr/sales_data/fy2005q2 Yes

This example makes the following assumptions:

• The inst1.example.com and inst3.example.com databases exist.

• The inst1.example.com and inst3.example.com databases do not share a file
system.

• Networking is configured between the databases so that they can communicate
with each other.

• The sales tablespaces (sales_tbs1 and sales_tbs2) exist in the inst1.example.com
database.

Complete the following steps:

1. In SQL*Plus, connect to the inst3.example.com database as an administrative user.

The administrative user must have the necessary privileges to run the procedures
in the DBMS_STREAMS_TABLESPACE_ADM package, create directory objects, and create
database links.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a database link from inst3.example.com to the inst1.example.com database.
For example:

CREATE DATABASE LINK inst1.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst1.example.com';

3. Create a directory object for the first quarter in fiscal year 2005 on
inst3.example.com. Although inst3.example.com is a remote database that does not
share a file system with inst1.example.com, the directory object must have the
same name as the directory object used by the tablespace repository in the
inst1.example.com database for the first quarter. However, the directory paths of
the directory objects on inst1.example.com and inst3.example.com do not need to
match.

CREATE OR REPLACE DIRECTORY q1fy2005 AS '/usr/sales_data/fy2005q1';

The specified file system directory must exist when you create the directory object.

4. Connect to the inst1.example.com database as an administrative user.

The administrative user must have the necessary privileges to run the procedures
in the DBMS_FILE_TRANSFER package and create database links. This example uses
the DBMS_FILE_TRANSFER package to copy the tablespace files from
inst1.example.com to inst3.example.com. If some other method is used to transfer
the files, then the privileges to run the procedures in the DBMS_FILE_TRANSFER
package are not required.

Chapter 36
Using a Tablespace Repository

36-11

5. Create a database link from inst1.example.com to the inst3.example.com database.
For example:

CREATE DATABASE LINK inst3.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst3.example.com';

This database link will be used to transfer files to the inst3.example.com database
in Step 6.

6. Copy the data file for each tablespace and the export dump file for the first quarter
to the inst3.example.com database:

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q1fy2005',
 source_file_name => 'sales_tbs1.dbf',
 destination_directory_object => 'q1fy2005',
 destination_file_name => 'sales_tbs1.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q1fy2005',
 source_file_name => 'sales_tbs2.dbf',
 destination_directory_object => 'q1fy2005',
 destination_file_name => 'sales_tbs2.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q1fy2005',
 source_file_name => 'expdat16.dmp',
 destination_directory_object => 'q1fy2005',
 destination_file_name => 'expdat16.dmp',
 destination_database => 'inst3.example.com');
END;
/

Before you run the PUT_FILE procedure for the export dump file, you can query the
DBA_FILE_GROUP_FILES data dictionary view to determine the name and directory
object of the export dump file. For example, run the following query to list this
information for the export dump file in the v_q1fy2005 version:

COLUMN FILE_NAME HEADING 'Export Dump|File Name' FORMAT A35
COLUMN FILE_DIRECTORY HEADING 'Directory Object' FORMAT A35

SELECT FILE_NAME, FILE_DIRECTORY FROM DBA_FILE_GROUP_FILES
 where FILE_GROUP_NAME = 'SALES' AND
 VERSION_NAME = 'V_Q1FY2005';

7. Connect to the inst3.example.com database as an administrative user.

8. Attach the tablespace set for the first quarter of 2005 to the inst3.example.com
database from the sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q1fy2005',
 datafiles_directory_object => 'q1fy2005',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);

Chapter 36
Using a Tablespace Repository

36-12

END;
/

The tablespaces are read-only when they are attached. Because the reports on
inst3.example.com do not change the tablespaces, the tablespaces can remain
read-only.

9. Run the reports on the data in the sales tablespaces at the inst3.example.com
database.

10. Drop the tablespaces and their contents at inst3.example.com:

DROP TABLESPACE sales_tbs1 INCLUDING CONTENTS;

DROP TABLESPACE sales_tbs2 INCLUDING CONTENTS;

The tablespaces are dropped from the inst3.example.com database, but the
tablespace files remain in the directory object.

11. Create a directory object for the second quarter in fiscal year 2005 on
inst3.example.com. The directory object must have the same name as the directory
object used by the tablespace repository in the inst1.example.com database for the
second quarter. However, the directory paths of the directory objects on
inst1.example.com and inst3.example.com do not need to match.

CREATE OR REPLACE DIRECTORY q2fy2005 AS '/usr/sales_data/fy2005q2';

The specified file system directory must exist when you create the directory object.

12. Connect to the inst1.example.com database as an administrative user.

13. Copy the data file and the export dump file for the second quarter to the
inst3.example.com database:

BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q2fy2005',
 source_file_name => 'sales_tbs1.dbf',
 destination_directory_object => 'q2fy2005',
 destination_file_name => 'sales_tbs1.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q2fy2005',
 source_file_name => 'sales_tbs2.dbf',
 destination_directory_object => 'q2fy2005',
 destination_file_name => 'sales_tbs2.dbf',
 destination_database => 'inst3.example.com');
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'q2fy2005',
 source_file_name => 'expdat18.dmp',
 destination_directory_object => 'q2fy2005',
 destination_file_name => 'expdat18.dmp',
 destination_database => 'inst3.example.com');
END;
/

Before you run the PUT_FILE procedure for the export dump file, you can query the
DBA_FILE_GROUP_FILES data dictionary view to determine the name and directory
object of the export dump file. For example, run the following query to list this
information for the export dump file in the v_q2fy2005 version:

Chapter 36
Using a Tablespace Repository

36-13

COLUMN FILE_NAME HEADING 'Export Dump|File Name' FORMAT A35
COLUMN FILE_DIRECTORY HEADING 'Directory Object' FORMAT A35

SELECT FILE_NAME, FILE_DIRECTORY FROM DBA_FILE_GROUP_FILES
 where FILE_GROUP_NAME = 'SALES' AND
 VERSION_NAME = 'V_Q2FY2005';

14. Connect to the inst3.example.com database as an administrative user.

15. Attach the tablespace set for the second quarter of 2005 to the inst3.example.com
database from the sales file group in the inst1.example.com database:

DECLARE
 tbs_set DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_TABLESPACE_ADM.ATTACH_TABLESPACES(
 file_group_name => 'strmadmin.sales',
 version_name => 'v_q2fy2005',
 datafiles_directory_object => 'q2fy2005',
 repository_db_link => 'inst1.example.com',
 tablespace_names => tbs_set);
END;
/

The tablespaces are read-only when they are attached. Because the reports on
inst3.example.com do not change the tablespace, the tablespaces can remain
read-only.

16. Run the reports on the data in the sales tablespaces at the inst3.example.com
database.

17. Drop the tablespaces and their contents:

DROP TABLESPACE sales_tbs1 INCLUDING CONTENTS;

DROP TABLESPACE sales_tbs2 INCLUDING CONTENTS;

The tablespaces are dropped from the inst3.example.com database, but the
tablespace files remain in the directory object.

Steps 11-17 can be repeated whenever a quarter ends to run reports on each quarter.

36.2 Using a File Group Repository
The DBMS_FILE_GROUP package can create a file group repository, add versioned file
groups to the repository, and copy versioned file groups from the repository. This
section illustrates how to use a file group repository with a scenario that stores reports
in the repository.

In this scenario, a business sells books and music over the internet. The business runs
weekly reports on the sales data in the inst1.example.com database and stores these
reports in two HTML files on a computer file system. The book_sales.htm file contains
the report for book sales, and the music_sales.htm file contains the report for music
sales. The business wants to store these weekly reports in a file group repository at
the inst2.example.com remote database. Every week, the two reports are generated on
the inst1.example.com database, transferred to the computer system running the
inst2.example.com database, and added to the repository as a file group version. The
file group repository stores all of the file group versions that contain the reports for
each week.

Chapter 36
Using a File Group Repository

36-14

Figure 36-5 provides an overview of the file group repository created in this example:

Figure 36-5 Example File Group Repository

Computer File�
System

Database�
inst2.example.com

File Group Repository

.

.

.

.

.

.

Database�
inst1.example.com

sales_reports1 �
Directory

book_sales.htm

music_sales.htm

sales_reports2 �
Directory

book_sales.htm

music_sales.htm

version sales_reports_v1

version sales_reports_v2

Computer File�
System

sales_reports �
Directory

book_sales.htm

music_sales.htm

Run�
Reports

Copy�
Files

The benefits of the file group repository are that it stores metadata about each file
group version in the data dictionary and provides a standard interface for managing
the file group versions. For example, when the business must view a specific sales
report, it can query the data dictionary in the inst2.example.com database to determine
the location of the report on the computer file system.

The following table shows the directory objects created in this example. It shows the
directory object created on the inst1.example.com database to store new reports, and it
shows the directory objects that are associated with file group repository versions on
the inst2.example.com database.

Directory Object Database Version Corresponding File System Directory

sales_reports inst1.example.
com

Not associated with a file
group repository version

/home/sales_reports

sales_reports1 inst2.example.
com

sales_reports_v1 /home/sales_reports/fg1

Chapter 36
Using a File Group Repository

36-15

Directory Object Database Version Corresponding File System Directory

sales_reports2 inst2.example.
com

sales_reports_v1 /home/sales_reports/fg2

This example makes the following assumptions:

• The inst1.example.com and inst2.example.com databases exist.

• The inst1.example.com and inst2.example.com databases do not share a file
system.

• Networking is configured between the databases so that they can communicate
with each other.

• The inst1.example.com database runs reports on the books and music sales data
in the database and stores the reports as HTML files on the computer file system.

The following steps configure and populate a file group repository at a remote
database:

1. Connect as an administrative user to the remote database that will contain the file
group repository. In this example, connect to the inst2.example.com database.

The administrative user must have the necessary privileges to create directory
objects and run the procedures in the DBMS_FILE_GROUP package.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a directory object to hold the first version of the file group:

CREATE OR REPLACE DIRECTORY sales_reports1 AS '/home/sales_reports/fg1';

The specified file system directory must exist when you create the directory object.

3. Connect as an administrative user to the database that runs the reports. In this
example, connect to the inst1.example.com database.

The administrative user must have the necessary privileges to create directory
objects.

4. Create a directory object to hold the latest reports:

CREATE OR REPLACE DIRECTORY sales_reports AS '/home/sales_reports';

The specified file system directory must exist when you create the directory object.

5. Create a database link to the inst2.example.com database:

CREATE DATABASE LINK inst2.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'inst2.example.com';

6. Run the reports on the inst1.example.com database. Running the reports should
place the book_sales.htm and music_sales.htm files in the directory specified in
Step 4.

7. Transfer the report files from the computer system running the inst1.example.com
database to the computer system running the inst2.example.com database using
file transfer protocol (FTP) or some other method. Ensure that the files are copied
to the directory that corresponds to the directory object created in Step 2.

Chapter 36
Using a File Group Repository

36-16

8. Connect as an administrative user to the remote database that will contain the file
group repository. In this example, connect to the inst2.example.com database.

9. Create the file group repository that will contain the reports:

BEGIN
 DBMS_FILE_GROUP.CREATE_FILE_GROUP(
 file_group_name => 'strmadmin.reports');
END;
/

The reports file group repository is created with the following default properties:

• The minimum number of versions in the repository is 2. When the file group is
purged, the number of versions cannot drop below 2.

• The maximum number of versions is infinite. A file group version is not purged
because of the number of versions in the file group in the repository.

• The retention days is infinite. A file group version is not purged because of the
amount of time it has been in the repository.

10. Create the first version of the file group:

BEGIN
 DBMS_FILE_GROUP.CREATE_VERSION(
 file_group_name => 'strmadmin.reports',
 version_name => 'sales_reports_v1',
 comments => 'Sales reports for week of 06-FEB-2005');
END;
/

11. Add the report files to the file group version:

BEGIN
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'book_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports1',
 version_name => 'sales_reports_v1');
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'music_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports1',
 version_name => 'sales_reports_v1');
END;
/

12. Create a directory object on inst2.example.com to hold the next version of the file
group:

CREATE OR REPLACE DIRECTORY sales_reports2 AS '/home/sales_reports/fg2';

The specified file system directory must exist when you create the directory object.

13. At the end of the next week, run the reports on the inst1.example.com database.
Running the reports should place new book_sales.htm and music_sales.htm files in
the directory specified in Step 4. If necessary, remove the old files from this
directory before running the reports.

14. Transfer the report files from the computer system running the inst1.example.com
database to the computer system running the inst2.example.com database using

Chapter 36
Using a File Group Repository

36-17

file transfer protocol (FTP) or some other method. Ensure that the files are copied
to the directory that corresponds to the directory object created in Step 12.

15. In SQL*Plus, connect to the inst2.example.com database as an administrative user.

16. Create the next version of the file group:

BEGIN
 DBMS_FILE_GROUP.CREATE_VERSION(
 file_group_name => 'strmadmin.reports',
 version_name => 'sales_reports_v2',
 comments => 'Sales reports for week of 13-FEB-2005');
END;
/

17. Add the report files to the file group version:

BEGIN
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'book_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports2',
 version_name => 'sales_reports_v2');
 DBMS_FILE_GROUP.ADD_FILE(
 file_group_name => 'strmadmin.reports',
 file_name => 'music_sales.htm',
 file_type => 'HTML',
 file_directory => 'sales_reports2',
 version_name => 'sales_reports_v2');
END;
/

The file group repository now contains two versions of the file group that contains the
sales report files. Repeat steps 12-17 to add new versions of the file group to the
repository.

See Also:

• "File Group Repository"

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FILE_GROUP package

Chapter 36
Using a File Group Repository

36-18

37
Monitoring File Group and Tablespace
Repositories

A file group repository can contain multiple file groups and multiple versions of a
particular file group. A tablespace repository is a collection of tablespace sets in a file
group repository. Tablespace repositories are built on file group repositories, but
tablespace repositories only contain the files required to move or copy tablespaces
between databases. This chapter provides sample queries that you can use to monitor
file group repositories and tablespace repositories.

The following topics describe monitoring file group and tablespace repositories:

• Monitoring a File Group Repository

• Monitoring a Tablespace Repository

Note:

The Oracle Streams tool in Oracle Enterprise Manager Cloud Control is also
an excellent way to monitor an Oracle Streams environment. See the online
Help for the Oracle Streams tool for more information.

See Also:

• Information Provisioning Concepts

• Using Information Provisioning

• Oracle Database Reference for information about the data dictionary
views described in this chapter

37.1 Monitoring a File Group Repository
The queries in the following sections provide examples for monitoring a file group
repository:

• Displaying General Information About the File Groups in a Database

• Displaying Information About File Group Versions

• Displaying Information About File Group Files

37-1

See Also:

• "File Group Repository"

• "Using a File Group Repository"

37.1.1 Displaying General Information About the File Groups in a
Database

The query in this section displays the following information for each file group in the
local database:

• The file group owner

• The file group name

• Whether the files in a version of the file group are kept on disk if the version is
purged

• The minimum number of versions of the file group allowed

• The maximum number of versions of the file group allowed

• The number of days to retain a file group version after it is created

Run the following query to display this information for the local database:

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN KEEP_FILES HEADING 'Keep|Files?' FORMAT A10
COLUMN MIN_VERSIONS HEADING 'Minimum|Number|of Versions' FORMAT 9999
COLUMN MAX_VERSIONS HEADING 'Maximum|Number|of Versions' FORMAT 9999999999
COLUMN RETENTION_DAYS HEADING 'Days to|Retain|a Version' FORMAT 9999999999.99

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 KEEP_FILES,
 MIN_VERSIONS,
 MAX_VERSIONS,
 RETENTION_DAYS
 FROM DBA_FILE_GROUPS;

Your output looks similar to the following:

 Minimum Maximum Days to
File Group File Group Keep Number Number Retain
Owner Name Files? of Versions of Versions a Version
---------- ---------- ---------- ----------- ----------- --------------
STRMADMIN REPORTS Y 2 4294967295 4294967295.00

This output shows that the database has one file group with the following
characteristics:

• The file group owner is strmadmin.

• The file group name is reports.

• The files in a version are kept on disk if a version is purged because the "Keep
Files?" is "Y" for the file group.

Chapter 37
Monitoring a File Group Repository

37-2

• The minimum number of versions allowed is 2. If the file group automatically
purges versions, then it will not purge a version if the purge would cause the total
number of versions to drop below 2.

• The file group allows an infinite number of versions. The number 4294967295
means an infinite number of versions.

• The file group retains a version of an infinite number of days. The number
4294967295 means an infinite number of days.

37.1.2 Displaying Information About File Group Versions
The query in this section displays the following information for each file group version
in the local database:

• The owner of the file group that contains the version

• The name of the file group that contains the version

• The version name

• The version number

• The name of the user who created the version

• Comments for the version

Run the following query to display this information for the local database:

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A20
COLUMN VERSION HEADING 'Version|Number' FORMAT 99999999
COLUMN CREATOR HEADING 'Creator' FORMAT A10
COLUMN COMMENTS HEADING 'Comments' FORMAT A14

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 VERSION,
 CREATOR,
 COMMENTS
 FROM DBA_FILE_GROUP_VERSIONS;

Your output looks similar to the following:

File Group File Group Version
Owner Name Version Name Number Creator Comments
---------- ---------- -------------------- --------- ---------- --------------
STRMADMIN REPORTS SALES_REPORTS_V1 1 STRMADMIN Sales reports
 for week of 06
 -FEB-2005

STRMADMIN REPORTS SALES_REPORTS_V2 2 STRMADMIN Sales reports
 for week of 13
 -FEB-2005

37.1.3 Displaying Information About File Group Files
The query in this section displays the following information about each file in a file
group version in the local database:

Chapter 37
Monitoring a File Group Repository

37-3

• The owner of the file group that contains the file

• The name of the file group that contains the file

• The name of the version in the file group that contains the file

• The file name

• The directory object that contains the file

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A20
COLUMN FILE_NAME HEADING 'File Name' FORMAT A15
COLUMN FILE_DIRECTORY HEADING 'File Directory|Object' FORMAT A15

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 FILE_NAME,
 FILE_DIRECTORY
 FROM DBA_FILE_GROUP_FILES;

Your output looks similar to the following:

File Group File Group File Directory
Owner Name Version Name File Name Object
---------- ---------- -------------------- --------------- ---------------
STRMADMIN REPORTS SALES_REPORTS_V1 book_sales.htm SALES_REPORTS1
STRMADMIN REPORTS SALES_REPORTS_V1 music_sales.htm SALES_REPORTS1
STRMADMIN REPORTS SALES_REPORTS_V2 book_sales.htm SALES_REPORTS2
STRMADMIN REPORTS SALES_REPORTS_V2 music_sales.htm SALES_REPORTS2

Query the DBA_DIRECTORIES data dictionary view to determine the corresponding file
system directory for a directory object.

37.2 Monitoring a Tablespace Repository
The queries in the following sections provide examples for monitoring a tablespace
repository:

• Displaying Information About the Tablespaces in a Tablespace Repository

• Displaying Information About the Tables in a Tablespace Repository

• Displaying Export Information About Versions in a Tablespace Repository

See Also:

• "Tablespace Repository"

• "Using a Tablespace Repository"

Chapter 37
Monitoring a Tablespace Repository

37-4

37.2.1 Displaying Information About the Tablespaces in a Tablespace
Repository

The query in this section displays the following information about each tablespace in
the tablespace repository in the local database:

• The owner of the file group that contains the tablespace in the tablespace
repository

• The name of the file group that contains the tablespace in the tablespace
repository

• The name of the version that contains the tablespace

• The tablespace name

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A15
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A15
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A15
COLUMN VERSION HEADING 'Version|Number' FORMAT 99999999
COLUMN TABLESPACE_NAME HEADING 'Tablespace Name' FORMAT A15

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 VERSION,
 TABLESPACE_NAME
 FROM DBA_FILE_GROUP_TABLESPACES;

Your output looks similar to the following:

File Group File Group Version
Owner Name Version Name Number Tablespace Name
--------------- --------------- --------------- --------- ---------------
STRMADMIN SALES V_Q1FY2005 1 SALES_TBS1
STRMADMIN SALES V_Q1FY2005 1 SALES_TBS2
STRMADMIN SALES V_Q2FY2005 3 SALES_TBS1
STRMADMIN SALES V_Q2FY2005 3 SALES_TBS2
STRMADMIN SALES V_Q1FY2005_R 4 SALES_TBS1
STRMADMIN SALES V_Q1FY2005_R 4 SALES_TBS2
STRMADMIN SALES V_Q2FY2005_R 5 SALES_TBS1
STRMADMIN SALES V_Q2FY2005_R 5 SALES_TBS2

37.2.2 Displaying Information About the Tables in a Tablespace
Repository

The query in this section displays the following information about each table in the
tablespace repository in the local database:

• The owner of the file group that contains the table in the tablespace repository

• The name of the file group that contains the table in the tablespace repository

• The name of the version that contains the table

• The table owner

• The table name

Chapter 37
Monitoring a Tablespace Repository

37-5

• The tablespace that contains the table

COLUMN FILE_GROUP_OWNER HEADING 'File Group|Owner' FORMAT A10
COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A15
COLUMN OWNER HEADING 'Table|Owner' FORMAT A10
COLUMN TABLE_NAME HEADING 'Table Name' FORMAT A15
COLUMN TABLESPACE_NAME HEADING 'Tablespace Name' FORMAT A15

SELECT FILE_GROUP_OWNER,
 FILE_GROUP_NAME,
 VERSION_NAME,
 OWNER,
 TABLE_NAME,
 TABLESPACE_NAME
 FROM DBA_FILE_GROUP_TABLES;

Your output looks similar to the following:

File Group File Group Table
Owner Name Version Name Owner Table Name Tablespace Name
---------- ---------- --------------- ---------- --------------- ---------------
STRMADMIN SALES V_Q1FY2005 SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q1FY2005 SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q1FY2005 SL CUSTOMERS SALES_TBS2
STRMADMIN SALES V_Q2FY2005 SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q2FY2005 SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q2FY2005 SL CUSTOMERS SALES_TBS2
STRMADMIN SALES V_Q1FY2005_R SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q1FY2005_R SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q1FY2005_R SL CUSTOMERS SALES_TBS2
STRMADMIN SALES V_Q2FY2005_R SL ORDERS SALES_TBS1
STRMADMIN SALES V_Q2FY2005_R SL ORDER_ITEMS SALES_TBS1
STRMADMIN SALES V_Q2FY2005_R SL CUSTOMERS SALES_TBS2

37.2.3 Displaying Export Information About Versions in a Tablespace
Repository

To display export information about the versions in the tablespace repository in the
local database, query the DBA_FILE_GROUP_EXPORT_INFO data dictionary view. This view
only displays information for versions that contain a valid Data Pump export dump file.
The query in this section displays the following export information about each version
in the local database:

• The name of the file group that contains the version

• The name of the version

• The export version of the export dump file. The export version corresponds to the
version of Data Pump that performed the export.

• The platform on which the export was performed

• The date and time of the export

• The global name of the exporting database

COLUMN FILE_GROUP_NAME HEADING 'File Group|Name' FORMAT A10
COLUMN VERSION_NAME HEADING 'Version Name' FORMAT A13
COLUMN EXPORT_VERSION HEADING 'Export|Version' FORMAT A7
COLUMN PLATFORM_NAME HEADING 'Export Platform' FORMAT A17

Chapter 37
Monitoring a Tablespace Repository

37-6

COLUMN EXPORT_TIME HEADING 'Export Time' FORMAT A17
COLUMN SOURCE_GLOBAL_NAME HEADING 'Export|Database' FORMAT A10

SELECT FILE_GROUP_NAME,
 VERSION_NAME,
 EXPORT_VERSION,
 PLATFORM_NAME,
 TO_CHAR(EXPORT_TIME, 'HH24:MI:SS MM/DD/YY') EXPORT_TIME,
 SOURCE_GLOBAL_NAME
 FROM DBA_FILE_GROUP_EXPORT_INFO;

Your output looks similar to the following:

File Group Export Export
Name Version Name Version Export Platform Export Time Database
---------- ------------- ------- ----------------- ----------------- ----------
SALES V_Q1FY2005 10.2.0 Linux IA (32-bit) 12:23:52 03/08/05 INST1.EXAM
 PLE.COM
SALES V_Q2FY2005 10.2.0 Linux IA (32-bit) 12:27:37 03/08/05 INST1.EXAM
 PLE.COM
SALES V_Q1FY2005_R 10.2.0 Linux IA (32-bit) 12:39:50 03/08/05 INST2.EXAM
 PLE.COM
SALES V_Q2FY2005_R 10.2.0 Linux IA (32-bit) 12:46:04 03/08/05 INST2.EXAM
 PLE.COM

Chapter 37
Monitoring a Tablespace Repository

37-7

Part VII
Appendixes

This part includes the following appendixes:

• How Oracle Streams Works with Other Database Components

• Oracle Streams Restrictions

• XML Schema for LCRs

• Online Database Upgrade and Maintenance with Oracle Streams

• Online Upgrade of an Earlier Database with Oracle Streams

A
How Oracle Streams Works with Other
Database Components

This appendix describes how Oracle Streams works with other Oracle Database
components.

This appendix includes these topics:

• Oracle Streams and Oracle Real Application Clusters

• Oracle Streams and Transparent Data Encryption

• Oracle Streams and Flashback Data Archive

• Oracle Streams and Recovery Manager (RMAN)

• Oracle Streams and Distributed Transactions

• Oracle Streams and Oracle Database Vault

A.1 Oracle Streams and Oracle Real Application Clusters
The following topics describe how Oracle Streams works with Oracle Real Application
Clusters (Oracle RAC):

• Capture Processes and Oracle Real Application Clusters

• Synchronous Capture and Oracle Real Application Clusters

• Combined Capture and Apply and Oracle Real Application Clusters

• Queues and Oracle Real Application Clusters

• Propagations and Oracle Real Application Clusters

• Apply Processes and Oracle Real Application Clusters

See Also:

Oracle Streams Replication Administrator's Guide for information about best
practices for Oracle Streams in an Oracle RAC environment

A.1.1 Capture Processes and Oracle Real Application Clusters
A capture process can capture changes in an Oracle Real Application Clusters (Oracle
RAC) environment. If you use one or more capture processes and Oracle RAC in the
same environment, then all archived logs that contain changes to be captured by a
capture process must be available for all instances in the Oracle RAC environment. In
an Oracle RAC environment, a capture process reads changes made by all instances.
Any processes used by a single capture process run on a single instance in an Oracle
RAC environment.

A-1

Each capture process is started and stopped on the owner instance for its ANYDATA
queue, even if the start or stop procedure is run on a different instance. Also, a capture
process follows its queue to a different instance if the current owner instance becomes
unavailable. The queue itself follows the rules for primary instance and secondary
instance ownership.

If the owner instance for a queue table containing a queue used by a capture process
becomes unavailable, then queue ownership is transferred automatically to another
instance in the cluster. In addition, if the capture process was enabled when the owner
instance became unavailable, then the capture process is restarted automatically on
the new owner instance. If the capture process was disabled when the owner instance
became unavailable, then the capture process remains disabled on the new owner
instance.

LogMiner supports the LOG_ARCHIVE_DEST_n initialization parameter, and Oracle Streams
capture processes use LogMiner to capture changes from the redo log. If an archived
log file is inaccessible from one destination, then a local capture process can read it
from another accessible destination. On an Oracle RAC database, this ability also
enables you to use cross instance archival (CIA) such that each instance archives its
files to all other instances. This solution cannot detect or resolve gaps caused by
missing archived log files. Hence, it can be used only to complement an existing
solution to have the archived files shared between all instances.

In a downstream capture process environment, the source database can be a single
instance database or a multi-instance Oracle RAC database. The downstream
database can be a single instance database or a multi-instance Oracle RAC database,
regardless of whether the source database is single instance or multi-instance.

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• Oracle Database Reference for more information about the
DBA_QUEUE_TABLES data dictionary view

• Oracle Real Application Clusters Administration and Deployment Guide for
more information about configuring archived logs to be shared between
instances

A.1.2 Synchronous Capture and Oracle Real Application Clusters
A synchronous capture can capture changes in an Oracle Real Application Clusters
(Oracle RAC) environment. In an Oracle RAC environment, synchronous capture
reads changes made by all instances.

For the best performance with synchronous capture in an Oracle RAC environment,
changes to independent sets of tables should be captured by separate synchronous
captures. For example, if different applications use different sets of database objects in
the database, then configure a separate synchronous capture to capture changes to
the database objects for each application. In this case, each synchronous capture
should use a different queue and queue table.

Appendix A
Oracle Streams and Oracle Real Application Clusters

A-2

See Also:

"Implicit Capture with Synchronous Capture"

A.1.3 Combined Capture and Apply and Oracle Real Application
Clusters

Combined capture and apply can be used in an Oracle Real Application Clusters
(Oracle RAC) environment. In an Oracle RAC environment, the capture process and
apply process can be on the same instance, on different instances in a single Oracle
RAC database, or on different databases. When the capture process and apply
process are on different instances in the same database or on different databases, you
must configure a propagation between the capture process's queue and the apply
process's queue for combined capture and apply to be used.

See Also:

Combined Capture and Apply Optimization

A.1.4 Queues and Oracle Real Application Clusters
You can configure a queue to stage LCRs and user messages in an Oracle Real
Application Clusters (Oracle RAC) environment. In an Oracle RAC environment, only
the owner instance can have a buffer for a queue, but different instances can have
buffers for different queues. A buffered queue is System Global Area (SGA) memory
associated with a queue.

Oracle Streams processes and jobs support primary instance and secondary instance
specifications for queue tables. If you use these specifications, then the secondary
instance assumes ownership of a queue table when the primary instance becomes
unavailable, and ownership is transferred back to the primary instance when it
becomes available again.

You can set primary and secondary instance specifications using the
ALTER_QUEUE_TABLE procedure in the DBMS_AQADM package. The DBA_QUEUE_TABLES data
dictionary view contains information about the owner instance for a queue table. A
queue table can contain multiple queues. In this case, each queue in a queue table
has the same owner instance as the queue table.

Appendix A
Oracle Streams and Oracle Real Application Clusters

A-3

See Also:

• "Queues"

• Oracle Database Reference for more information about the
DBA_QUEUE_TABLES data dictionary view

• Oracle Database Advanced Queuing User's Guide for more information
about queues and Oracle RAC

• Oracle Database PL/SQL Packages and Types Reference for more
information about the ALTER_QUEUE_TABLE procedure

A.1.5 Propagations and Oracle Real Application Clusters
A propagation can propagate messages from one queue to another in an Oracle Real
Application Clusters (Oracle RAC) environment. A propagation job running on an
instance propagates logical change records (LCRs) from any queue owned by that
instance to destination queues.

Any propagation to an Oracle RAC database is made over database links. The
database links must be configured to connect to the destination instance that owns the
queue that will receive the messages.

If the owner instance for a queue table containing a destination queue for a
propagation becomes unavailable, then queue ownership is transferred automatically
to another instance in the cluster. If both the primary and secondary instance for a
queue table containing a destination queue become unavailable, then queue
ownership is transferred automatically to another instance in the cluster. In this case, if
the primary or secondary instance becomes available again, then ownership is
transferred back to one of them accordingly.

A queue-to-queue propagation to a buffered destination queue uses a service to
provide transparent failover in an Oracle RAC environment. That is, a propagation job
for a queue-to-queue propagation automatically connects to the instance that owns the
destination queue. The service used by a queue-to-queue propagation always runs on
the owner instance of the destination queue. This service is created only for buffered
queues in an Oracle RAC database. If you plan to use buffered messaging with an
Oracle RAC database, then messages can be enqueued into a buffered queue on any
instance. If messages are enqueued on an instance that does not own the queue, then
the messages are sent to the correct instance, but it is more efficient to enqueue
messages on the instance that owns the queue. You can use the service to connect to
the owner instance of the queue before enqueuing messages into a buffered queue.

Because the queue service always runs on the owner instance of the queue,
transparent failover can occur when Oracle RAC instances fail. When multiple queue-
to-queue propagations use a single database link, the connect description for each
queue-to-queue propagation changes automatically to propagate messages to the
correct destination queue.

In contrast, queue-to-dblink propagations do not use services. Queue-to-dblink
propagations require you to repoint your database links if the owner instance in an
Oracle RAC database that contains the destination queue for the propagation fails. To
make the propagation job connect to the correct instance on the destination database,
manually reconfigure the database link from the source database to connect to the

Appendix A
Oracle Streams and Oracle Real Application Clusters

A-4

instance that owns the destination queue. You do not need to modify a propagation
that uses a re-created database link.

The NAME column in the DBA_SERVICES data dictionary view contains the service name for
a queue. The NETWORK_NAME column in the DBA_QUEUES data dictionary view contains the
network name for a queue. Do not manage the services for queue-to-queue
propagations in any way. Oracle manages them automatically. For queue-to-dblink
propagations, use the network name as the service name in the connect string of the
database link to connect to the correct instance.

Note:

If a queue contains or will contain captured LCRs in an Oracle RAC
environment, then use queue-to-queue propagations to propagate messages
to an Oracle RAC destination database. If a queue-to-dblink propagation
propagates captured LCRs to an Oracle RAC destination database, then this
propagation must use an instance-specific database link that refers to the
owner instance of the destination queue. If such a propagation connects to
any other instance, then the propagation raises an error.

See Also:

"Message Propagation Between Queues"

A.1.6 Apply Processes and Oracle Real Application Clusters
You can configure an Oracle Streams apply process to apply changes in an Oracle
Real Application Clusters (Oracle RAC) environment. Each apply process is started
and stopped on the owner instance for its ANYDATA queue, even if the start or stop
procedure is run on a different instance. An apply coordinator process, its
corresponding apply reader server, and all of its apply servers run on a single
instance.

If the owner instance for a queue table containing a queue used by an apply process
becomes unavailable, then queue ownership is transferred automatically to another
instance in the cluster. Also, an apply process will follow its queue to a different
instance if the current owner instance becomes unavailable. The queue itself follows
the rules for primary instance and secondary instance ownership. In addition, if the
apply process was enabled when the owner instance became unavailable, then the
apply process is restarted automatically on the new owner instance. If the apply
process was disabled when the owner instance became unavailable, then the apply
process remains disabled on the new owner instance.

Appendix A
Oracle Streams and Oracle Real Application Clusters

A-5

See Also:

• "Implicit Consumption with an Apply Process"

• Oracle Database Reference for more information about the
DBA_QUEUE_TABLES data dictionary view

A.2 Oracle Streams and Transparent Data Encryption
The following topics describe how Oracle Streams works with Transparent Data
Encryption:

• Capture Processes and Transparent Data Encryption

• Synchronous Capture and Transparent Data Encryption

• Explicit Capture and Transparent Data Encryption

• Queues and Transparent Data Encryption

• Propagations and Transparent Data Encryption

• Apply Processes and Transparent Data Encryption

• Messaging Clients and Transparent Data Encryption

• Manual Dequeue and Transparent Data Encryption

See Also:

Oracle Database Advanced Security Guide for information about Transparent
Data Encryption

A.2.1 Capture Processes and Transparent Data Encryption
A local capture process can capture changes to columns that have been encrypted
using Transparent Data Encryption. A downstream capture process can capture
changes to columns that have been encrypted only if the downstream database
shares a keystore with the source database. A keystore can be shared through a
network file system (NFS), or it can be copied from one computer system to another
manually. When a keystore is shared with a downstream database, ensure that the
ENCRYPTION_WALLET_LOCATION parameter in the sqlnet.ora file at the downstream
database specifies the keystore location.

If you copy a keystore to a downstream database, then ensure that you copy the
keystore from the source database to the downstream database whenever the
keystore at the source database changes. Do not perform any operations on the
keystore at the downstream database, such as changing the encryption key for a
replicated table.

Encrypted columns in row logical change records (row LCRs) captured by a local or
downstream capture process are decrypted when the row LCRs are staged in a
buffered queue. If row LCRs spill to disk in a database with Transparent Data

Appendix A
Oracle Streams and Transparent Data Encryption

A-6

Encryption enabled, then Oracle Streams transparently encrypts any encrypted
columns while the row LCRs are stored on disk.

Note:

A capture process only supports encrypted columns if the redo logs used by
the capture process were generated by a database with a compatibility level of
11.0.0 or higher. The compatibility level is controlled by the COMPATIBLE
initialization parameter.

See Also:

• "Implicit Capture with an Oracle Streams Capture Process"

• "Persistent Queues and Buffered Queues"

A.2.2 Synchronous Capture and Transparent Data Encryption
A synchronous capture can capture changes to columns that have been encrypted
using Transparent Data Encryption. Encrypted columns in row logical change records
(row LCRs) captured by a synchronous capture remain encrypted when the row LCRs
are staged in a persistent queue.

See Also:

"Implicit Capture with Synchronous Capture"

A.2.3 Explicit Capture and Transparent Data Encryption
You can use explicit capture to construct and enqueue row logical change records
(row LCRs) for columns that are encrypted in database tables. However, you cannot
specify that columns are encrypted when you construct the row LCRs. Therefore,
when explicitly captured row LCRs are staged in a queue, all of the columns in the row
LCRs are decrypted.

See Also:

"Explicit Capture by Applications"

A.2.4 Queues and Transparent Data Encryption
A persistent queue can store row logical change records (row LCRs) captured by a
synchronous capture, and these row LCRs can contain changes to columns that were

Appendix A
Oracle Streams and Transparent Data Encryption

A-7

encrypted using Transparent Data Encryption. The row LCRs remain encrypted while
they are stored in the persistent queue. Explicitly captured row LCRs cannot contain
encrypted columns.

A buffered queue can store row LCRs that contain changes captured by a capture
process, and these row LCRs can contain changes to columns that were encrypted
using Transparent Data Encryption. When row LCRs with encrypted columns are
stored in buffered queues, the columns are decrypted. When row LCRs spill to disk,
Oracle Streams transparently encrypts any encrypted columns while the row LCRs are
stored on disk.

Note:

For Oracle Streams to encrypt columns transparently, the encryption master
key must be stored in the keystore on the local database, and the keystore
must be open. The following statements set the master key and open the
keystore:

ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY key-password;

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY key-password;

See Also:

• "Queues"

• "Ways to Capture Information with Oracle Streams"

A.2.5 Propagations and Transparent Data Encryption
A propagation can propagate row logical change records (row LCRs) that contain
changes to columns that were encrypted using Transparent Data Encryption. When a
propagation propagates row LCRs with encrypted columns, the encrypted columns are
decrypted while the row LCRs are transferred over the network. You can use the
features of Oracle Advanced Security to encrypt data transfers over the network if
necessary.

See Also:

• Oracle Database Security Guide for information about configuring network
data encryption

• "Message Propagation Between Queues"

Appendix A
Oracle Streams and Transparent Data Encryption

A-8

A.2.6 Apply Processes and Transparent Data Encryption
An apply process can dequeue and process implicitly captured row logical change
records (row LCRs) that contain columns encrypted using Transparent Data
Encryption. When row LCRs with encrypted columns are dequeued by an apply
process, the encrypted columns are decrypted. These row LCRs with decrypted
columns can be sent to an apply handler for custom processing, or they can be
applied directly. When row LCRs are applied, and the modified table contains
encrypted columns, any changes to encrypted columns are encrypted when they are
applied.

When row LCRs contain encrypted columns, but the corresponding columns at the
destination database are not encrypted, then the preserve_encryption apply process
parameter controls apply process behavior:

• If the preserve_encryption parameter is set to Y, then the apply process raises an
error when row LCRs contain encrypted columns, but the corresponding columns
at the destination database are not encrypted. When an error is raised, the row
LCR is not applied, and all of the row LCRs in the transaction are moved to the
error queue.

• If the preserve_encryption parameter is set to N, then the apply process applies the
row changes when row LCRs contain encrypted columns, but the corresponding
columns at the destination database are not encrypted.

When an apply process moves implicitly captured row LCRs with encrypted columns
to the error queue, the encrypted columns are encrypted when the row LCRs are in
the error queue. Row LCRs are implicitly captured using capture processes and
synchronous captures.

See Also:

"Implicit Consumption with an Apply Process"

A.2.7 Messaging Clients and Transparent Data Encryption
A messaging client can dequeue implicitly captured row LCRs that contain columns
encrypted using Transparent Data Encryption. When row LCRs with encrypted
columns are dequeued by a messaging client, the encrypted columns are decrypted.

See Also:

"Explicit Consumption with a Messaging Client"

A.2.8 Manual Dequeue and Transparent Data Encryption
A user or application can dequeue implicitly captured row LCRs that contain columns
encrypted using Transparent Data Encryption. When row LCRs with encrypted
columns are dequeued, the encrypted columns are decrypted.

Appendix A
Oracle Streams and Transparent Data Encryption

A-9

See Also:

"Explicit Consumption with Manual Dequeue"

A.3 Oracle Streams and Flashback Data Archive
Oracle Streams supports tables in a flashback data archive. Capture processes can
capture data manipulation language (DML) and data definition language (DDL)
changes made to these tables. Synchronous captures can capture DML changes
made to these tables. Apply processes can apply changes encapsulated in logical
change records (LCRs) to these tables.

Oracle Streams capture processes and apply processes also support the following
DDL statements:

• CREATE FLASHBACK ARCHIVE

• ALTER FLASHBACK ARCHIVE

• DROP FLASHBACK ARCHIVE

• CREATE TABLE with a FLASHBACK ARCHIVE clause

• ALTER TABLE with a FLASHBACK ARCHIVE clause

Note:

Oracle Streams does not capture or apply changes made to internal tables
used by a flashback data archive.

See Also:

• Oracle Database Development Guide for information about flashback data
archive

• Implicit Capture with an Oracle Streams Capture Process

• Implicit Capture with Synchronous Capture

• Implicit Consumption with an Apply Process

A.4 Oracle Streams and Recovery Manager (RMAN)
The following topics describe how Oracle Streams works with Recovery Manager
(RMAN):

• RMAN and Instantiation

• RMAN and Archived Redo Log Files Required by a Capture Process

• The Recovery Catalog and Oracle Streams

Appendix A
Oracle Streams and Flashback Data Archive

A-10

See Also:

Oracle Database Backup and Recovery User's Guide

A.4.1 RMAN and Instantiation
You can use RMAN to instantiate database objects during the configuration of an
Oracle Streams replication environment. The RMAN DUPLICATE and CONVERT DATABASE
commands can instantiate an entire database, and the RMAN TRANSPORT TABLESPACE
command can instantiate a tablespace or set of tablespaces.

See Also:

Oracle Streams Replication Administrator's Guide for information about using
RMAN for instantiation

A.4.2 RMAN and Archived Redo Log Files Required by a Capture
Process

Some Recovery Manager (RMAN) deletion policies and commands delete archived
redo log files. If one of these RMAN policies or commands is used on a database that
generates redo log files for one or more capture processes, then ensure that the
RMAN commands do not delete archived redo log files that are required by a capture
process.

The following sections describe the behavior of RMAN deletion policies and
commands for local capture processes and downstream capture processes

• RMAN and Local Capture Processes

• RMAN and Downstream Capture Processes

See Also:

• "ARCHIVELOG Mode and a Capture Process"

• "Are Required Redo Log Files Missing?" for information about determining
whether a capture process is missing required archived redo log files and
for information correcting this problem. This section also contains
information about fast recovery area and local capture processes.

• "Checking the Trace Files and Alert Log for Problems"

• Oracle Database Backup and Recovery User's Guide and Oracle
Database Backup and Recovery Reference for more information about
RMAN

Appendix A
Oracle Streams and Recovery Manager (RMAN)

A-11

A.4.2.1 RMAN and Local Capture Processes
When a local capture process is configured, RMAN does not delete archived redo log
files that are required by the local capture process unless there is space pressure in
the fast recovery area. Specifically, RMAN does not delete archived redo log files that
contain changes with system change number (SCN) values that are equal to or greater
than the required checkpoint SCN for the local capture process. This is the default
RMAN behavior for all RMAN deletion policies and DELETE commands, including DELETE
ARCHIVELOG and DELETE OBSOLETE.

When there is not enough space in the fast recovery area to write a new log file,
RMAN automatically deletes one or more archived redo log files. Oracle Database
writes warnings to the alert log when RMAN automatically deletes an archived redo log
file that is required by a local capture process.

When backups of the archived redo log files are taken on the local capture process
database, Oracle recommends the following RMAN deletion policy:

CONFIGURE ARCHIVELOG DELETION POLICY TO BACKED UP integer TIMES
 TO DEVICE TYPE deviceSpecifier;

This deletion policy requires that a log file be backed up integer times before it is
considered for deletion.

When no backups of the archived redo log files are taken on the local capture process
database, no specific deletion policy is recommended. By default, RMAN does not
delete archived redo log files that are required by a local capture process.

A.4.2.2 RMAN and Downstream Capture Processes
When a downstream capture process captures database changes made at a source
database, ensure that no RMAN deletion policy or command deletes an archived redo
log file until after it is transferred from the source database to the downstream capture
process database.

The following are considerations for specific RMAN deletion policies and commands
that delete archived redo log files:

• The RMAN command CONFIGURE ARCHIVELOG DELETION POLICY sets a deletion policy
that determines when archived redo log files in the fast recovery area are eligible
for deletion. The deletion policy also applies to all RMAN DELETE commands,
including DELETE ARCHIVELOG and DELETE OBSOLETE.

The following settings determine the behavior at the source database:

– A deletion policy set TO SHIPPED TO STANDBY does not delete a log file until after it
is transferred to a downstream capture process database that requires the file.
These log files might or might not have been processed by the downstream
capture process. Automatic deletion occurs when there is not enough space in
the fast recovery area to write a new log file.

– A deletion policy set TO APPLIED ON STANDBY does not delete a log file until after it
is transferred to a downstream capture process database that requires the file
and the source database marks the log file as applied. The source database
marks a log file as applied when the minimum required checkpoint SCN of all
of the downstream capture processes for the source database is greater than
the highest SCN in the log file.

Appendix A
Oracle Streams and Recovery Manager (RMAN)

A-12

– A deletion policy set to BACKED UP integer TIMES TO DEVICE TYPE requires that a
log file be backed up integer times before it is considered for deletion. A log
file can be deleted even if the log file has not been processed by a
downstream capture process that requires it.

– A deletion policy set TO NONE means that a log file can be deleted when there is
space pressure on the fast recovery area, even if the log file has not been
processed by a downstream capture process that requires it.

• The RMAN command DELETE ARCHIVELOG deletes archived redo log files that meet
all of the following conditions:

– The log files satisfy the condition specified in the DELETE ARCHIVELOG command.

– The log files can be deleted according to the CONFIGURE ARCHIVELOG DELETION
POLICY. For example, if the policy is set TO SHIPPED TO STANDBY, then this
command does not delete a log file until after it is transferred to any
downstream capture process database that requires it.

This behavior applies when the database is mounted or open.

If archived redo log files are not deleted because they contain changes required by
a downstream capture process, then RMAN displays a warning message about
skipping the delete operation for these files.

• The RMAN command DELETE OBSOLETE permanently purges the archived redo log
files that meet all of the following conditions:

– The log files are obsolete according to the retention policy.

– The log files can be deleted according to the CONFIGURE ARCHIVELOG DELETION
POLICY. For example, if the policy is set TO SHIPPED TO STANDBY, then this
command does not delete a log file until after it is transferred to any
downstream capture process database that requires it.

This behavior applies when the database is mounted or open.

• The RMAN command BACKUP ARCHIVELOG ALL DELETE INPUT copies the archived redo
log files and deletes the original files after completing the backup. This command
does not delete the log file until after it is transferred to a downstream capture
process database when the following conditions are met:

– The database is mounted or open.

– The log file is required by a downstream capture process.

– The deletion policy is set TO SHIPPED TO STANDBY.

If archived redo log files are not deleted because they contain changes required by
a downstream capture process, then RMAN displays a warning message about
skipping the delete operation for these files.

Oracle recommends one of the following RMAN deletion policies at the source
database for a downstream capture process:

• When backups of the archived redo log files are taken on the source database, set
the deletion policy to the following:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO STANDBY
 BACKED UP integer TIMES TO DEVICE TYPE deviceSpecifier;

• When no backups of the archived redo log files are taken on the source database,
set the deletion policy to the following:

CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO STANDBY;

Appendix A
Oracle Streams and Recovery Manager (RMAN)

A-13

Note:

At a downstream capture process database, archived redo log files transferred
from a source database are not managed by RMAN.

A.4.3 The Recovery Catalog and Oracle Streams
Oracle Streams supports replicating a recovery catalog in a one-way replication
environment. Bi-directional replication of a recovery catalog is not supported.

See Also:

• Oracle Streams Replication Administrator's Guide for information about
one-way and bi-directional replication

• Oracle Database Backup and Recovery User's Guide for information
about the recovery catalog

A.5 Oracle Streams and Distributed Transactions
You can perform distributed transactions using either of the following methods:

• Modify tables in multiple databases in a coordinated manner using database links.

• Use the XA interface, as exposed by the DBMS_XA supplied PL/SQL package or by
the OCI or JDBC libraries. The XA interface implements X/Open Distributed
Transaction Processing (DTP) architecture.

Oracle Streams replicates changes made to the source database during a distributed
transaction using either of these two methods to the destination database. An apply
process at the destination database applies the changes in a transaction after the
transaction has committed.

However, the distributed transaction state is not replicated or sent. The destination
database or client application does not inherit the in-doubt or prepared state of such a
transaction. Also, Oracle Streams does not replicate or send the changes using the
same global transaction identifier used at the source database for XA transactions.

XA transactions can be performed in two ways:

• Tightly coupled, where different XA branches share locks

• Loosely coupled, where different XA branches do not share locks

Oracle Streams supports replication of changes made by loosely coupled XA branches
regardless of the COMPATIBLE initialization parameter value. Oracle Streams supports
replication of changes made by tightly coupled branches on an Oracle RAC source
database only if the COMPATIBLE initialization parameter set to 11.2.0 or higher.

Appendix A
Oracle Streams and Distributed Transactions

A-14

See Also:

• Oracle Database Administrator's Guide for more information about
distributed transactions

• Oracle Database Development Guide for more information about Oracle
XA

A.6 Oracle Streams and Oracle Database Vault
Oracle Database Vault restricts access to specific areas in an Oracle database from
any user, including users who have administrative access. If you are using Oracle
Streams in an Oracle Data Vault environment, then the following privileges and roles
are required:

• The Streams administrator must be granted the DV_STREAMS_ADMIN role to perform
the following tasks: create a capture process, create an apply process, and modify
the capture user for a capture process. When the Streams administrator is not
performing these tasks, you can revoke the DV_STREAMS_ADMIN role from the
Streams administrator.

• The apply user for an apply process must be authorized to apply changes to
realms that include replicated database objects. The replicated database objects
are the objects to which the apply process applies changes.

To authorize an apply user for a realm, run the DBMS_MACADM.ADD_AUTH_TO_REALM
procedure and specify the realm and the apply user. For example, to authorize apply
user strmadmin for the sales realm, run the following procedure:

 BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'sales',
 grantee => 'strmadmin');
 END;
 /

In addition, the user who performs the following actions must be granted the BECOME
USER system privilege:

• Creates or alters a capture process

• Creates or alters an outbound server

• Creates or alters an inbound server

Granting the BECOME USER system privilege to the user who performs these actions is
not required if Oracle Database Vault is not installed. You can revoke the BECOME USER
system privilege from the user after the completing one of these actions, if necessary.

See Also:

Oracle Database Vault Administrator's Guide

Appendix A
Oracle Streams and Oracle Database Vault

A-15

B
Oracle Streams Restrictions

This appendix describes Oracle Streams restrictions.

This appendix includes these topics:

• Capture Process Restrictions

• Synchronous Capture Restrictions

• Queue Restrictions

• Propagation Restrictions

• Apply Process Restrictions

• Messaging Client Restrictions

• Rule Restrictions

• Rule-Based Transformation Restrictions

• Oracle Multitenant Option Restrictions for Oracle Streams

B.1 Capture Process Restrictions
This section describes restrictions for capture processes.

This section contains these topics:

• Unsupported Data Types for Capture Processes

• Unsupported Changes for Capture Processes

• Supplemental Logging Data Type Restrictions

• Operational Requirements for Downstream Capture

• Capture Processes Do Not Support Oracle Label Security

• Capture Process Interoperability with Oracle Streams Apply Processes

B.1.1 Unsupported Data Types for Capture Processes
A capture process does not capture the results of DML changes to columns of the
following data types:

• BFILE

• ROWID

• User-defined types (including object types, REFs, varrays, and nested tables)

• XMLType stored object relationally or as binary XML

• The following Oracle-supplied types: Any types, URI types, spatial types, and
media types

B-1

• The extended data types for VARCHAR2 and NVARCHAR2 that are longer than 4000
bytes.

• The extended data types for RAW that are longer than 2000 bytes.

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

Capture processes can capture changes to SecureFiles LOB columns only if the
source database compatibility level is set to 11.2.0.0 or higher. Also, capture
processes do not support capturing changes to SecureFiles LOB columns stored using
Advanced LOB deduplication, capturing changes resulting from fragment-based
operations on SecureFiles LOB columns, and capturing changes resulting from
SecureFiles archive manager operations.

A capture process raises an error if it tries to create a row LCR for a DML change to a
column of an unsupported data type. When a capture process raises an error, it writes
the LCR that caused the error into its trace file, raises an ORA-26744 error, and
becomes disabled. In this case, modify the rules used by the capture process to avoid
the error, and restart the capture process.

It is possible to configure Oracle Streams to support additional data types. For
instructions, go to the My Oracle Support (formerly OracleMetaLink) Web site using a
Web browser:

http://support.oracle.com/

Database bulletin 556742.1 describes additional data type support for Oracle Streams.

Note:

You can add rules to a negative rule set for a capture process that instruct the
capture process to discard changes to tables with columns of unsupported
data types. However, if these rules are not simple rules, then a capture
process might create a row LCR for the change and continue to process it. In
this case, a change that includes an unsupported data type can cause the
capture process to raise an error, even if the change does not satisfy the rule
sets used by the capture process. The DBMS_STREAMS_ADM package creates only
simple rules.

Appendix B
Capture Process Restrictions

B-2

http://support.oracle.com/

See Also:

• "Data Types Captured by Capture Processes"

• "Listing the Database Objects That Are Not Compatible with Capture
Processes"

• "Simple Rule Conditions" for information about simple rules

• "System-Created Rules and Negative Rule Sets"

• "Capture Process Rule Evaluation"

• Oracle Database SQL Language Reference for more information about
data types

• Oracle Database Utilities for more information about LogMiner restrictions
for SecureFiles LOB columns

• Oracle Database Upgrade Guide for information about database
compatibility

B.1.2 Unsupported Changes for Capture Processes
This section describes changes that are not supported by capture processes.

This section contains these topics:

• Unsupported Schemas for Capture Processes

• Unsupported Table Types for Capture Processes

• Unsupported DDL Changes for Capture Processes

• Changes Ignored by a Capture Process

• NOLOGGING and UNRECOVERABLE Keywords for SQL Operations

• UNRECOVERABLE Clause for Direct Path Loads

B.1.2.1 Unsupported Schemas for Capture Processes
A capture process never captures changes made to the following schemas:

• CTXSYS

• DBSNMP

• DMSYS

• DVSYS

• EXFSYS

• LBACSYS

• MDDATA

• MDSYS

• OLAPSYS

• ORDDATA

Appendix B
Capture Process Restrictions

B-3

• ORDPLUGINS

• ORDSYS

• OUTLN

• SI_INFORMTN_SCHEMA

• SYS

• SYSMAN

• SYSTEM

• WMSYS

• XDB

B.1.2.2 Unsupported Table Types for Capture Processes
A capture process cannot capture DML changes made to temporary tables or object
tables.

Note:

• A capture process can capture changes to tables compressed with basic
table compression and Advanced Row Compression only if the
compatibility level at both the source database and the capture database
is set to 11.2.0.0.0 or higher.

• Starting with Oracle Database 11g Release 2 (11.2.0.2), a capture
process can capture changes to tables compressed with hybrid columnar
compression if all of the following conditions are met: both the source
database and the capture database must be running at least Oracle
Database 11g Release 2 (11.2.0.2), and the compatibility level at both the
source database and the capture database is set to 11.2.0.0.0 or higher.

See Also:

• "Types of DML Changes Captured by Capture Processes"

• "Considerations for Applying DML Changes to Tables"

• Oracle Database Administrator's Guide for information about compressed
tables

B.1.2.3 Unsupported DDL Changes for Capture Processes
A capture process captures the DDL changes that satisfy its rule sets, except for the
following types of DDL changes:

• ALTER DATABASE

• CREATE CONTROLFILE

Appendix B
Capture Process Restrictions

B-4

• CREATE DATABASE

• CREATE PFILE

• CREATE SPFILE

A capture process can capture DDL statements, but not the results of DDL statements,
unless the DDL statement is a CREATE TABLE AS SELECT statement. For example, when a
capture process captures an ANALYZE statement, it does not capture the statistics
generated by the ANALYZE statement. However, when a capture process captures a
CREATE TABLE AS SELECT statement, it captures the statement itself and all of the rows
selected (as INSERT row LCRs).

Some types of DDL changes that are captured by a capture process cannot be applied
by an apply process. If an apply process receives a DDL LCR that specifies an
operation that cannot be applied, then the apply process ignores the DDL LCR and
records information about it in the trace file for the apply process.

When a capture process captures a DDL change that specifies time stamps or system
change number (SCN) values in its syntax, configure a DDL handler for any apply
processes that will dequeue the change. The DDL handler must process time stamp or
SCN values properly. For example, a capture process captures FLASHBACK TABLE
statements when its rule sets instruct it to capture DDL changes to the specified table.
FLASHBACK TABLE statements include time stamps or SCN values in its syntax.

See Also:

• "Considerations for Applying DDL Changes" for information about applying
DDL changes with an apply process

• How Rules Are Used in Oracle Streams for more information about rule
sets for Oracle Streams clients and for information about how messages
satisfy rule sets

B.1.2.4 Changes Ignored by a Capture Process
A capture process ignores the following types of changes:

• The session control statements ALTER SESSION and SET ROLE.

• The system control statement ALTER SYSTEM.

• CALL, EXPLAIN PLAN, and LOCK TABLE statements.

• GRANT statements on views.

• Changes made to a table or schema by online redefinition using the
DBMS_REDEFINITION package. Online table redefinition is supported on a table for
which a capture process captures changes, but the logical structure of the table
before online redefinition must be the same as the logical structure after online
redefinition.

• Changes to sequence values. For example, if a user references a NEXTVAL or sets
the sequence, then a capture process does not capture changes resulting from
these operations. Also, if you share a sequence at multiple databases, then
sequence values used for individual rows at these databases might vary.

Appendix B
Capture Process Restrictions

B-5

• Invocations of PL/SQL procedures, which means that a call to a PL/SQL
procedure is not captured. However, if a call to a PL/SQL procedure causes
changes to database objects, then these changes can be captured by a capture
process if the changes satisfy the capture process rule sets.

Note:

• If an Oracle-supplied package related to XML makes changes to database
objects, then these changes are not captured by capture processes. See
Oracle Database PL/SQL Packages and Types Reference for information
about packages related to XML.

• If an Oracle-supplied package related to Oracle Text makes changes to
database objects, then these changes are not captured by capture
processes. See Oracle Text Reference for information about packages
related to Oracle Text.

See Also:

Oracle Streams Replication Administrator's Guide for information about
strategies to avoid having the same sequence-generated value for two
different rows at different databases

B.1.2.5 NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
If you use the NOLOGGING or UNRECOVERABLE keyword for a SQL operation, then the
changes resulting from the SQL operation cannot be captured by a capture process.
Therefore, do not use these keywords to capture the changes that result from a SQL
operation.

If the object for which you are specifying the logging attributes resides in a database or
tablespace in FORCE LOGGING mode, then Oracle Database ignores any NOLOGGING or
UNRECOVERABLE setting until the database or tablespace is taken out of FORCE LOGGING
mode. You can determine the current logging mode for a database by querying the
FORCE_LOGGING column in the V$DATABASE dynamic performance view. You can determine
the current logging mode for a tablespace by querying the FORCE_LOGGING column in the
DBA_TABLESPACES static data dictionary view.

Note:

The UNRECOVERABLE keyword is deprecated and has been replaced with the
NOLOGGING keyword in the logging_clause. Although UNRECOVERABLE is supported
for backward compatibility, Oracle strongly recommends that you use the
NOLOGGING keyword, when appropriate.

Appendix B
Capture Process Restrictions

B-6

See Also:

Oracle Database SQL Language Reference for more information about the
NOLOGGING and UNRECOVERABLE keywords, FORCE LOGGING mode, and the
logging_clause

B.1.2.6 UNRECOVERABLE Clause for Direct Path Loads
If you use the UNRECOVERABLE clause in the SQL*Loader control file for a direct path
load, then a capture process cannot capture the changes resulting from the direct path
load. Therefore, if the changes resulting from a direct path load should be captured by
a capture process, then do not use the UNRECOVERABLE clause.

If you perform a direct path load without logging changes at a source database, but
you do not perform a similar direct path load at the destination databases of the source
database, then apply errors can result at these destination databases when changes
are made to the loaded objects at the source database. In this case, a capture process
at the source database can capture changes to these objects, and one or more
propagations can propagate the changes to the destination databases. When an apply
process tries to apply these changes, errors result unless both the changed object and
the changed rows in the object exist on the destination database.

Therefore, if you use the UNRECOVERABLE clause for a direct path load and a capture
process is configured to capture changes to the loaded objects, then ensure that any
destination databases contain the loaded objects and the loaded data to avoid apply
errors. One way to ensure that these objects exist at the destination databases is to
perform a direct path load at each of these destination databases that is similar to the
direct path load performed at the source database.

If you load objects into a database or tablespace that is in FORCE LOGGING mode, then
Oracle Database ignores any UNRECOVERABLE clause during a direct path load, and the
loaded changes are logged. You can determine the current logging mode for a
database by querying the FORCE_LOGGING column in the V$DATABASE dynamic
performance view. You can determine the current logging mode for a tablespace by
querying the FORCE_LOGGING column in the DBA_TABLESPACES static data dictionary view.

See Also:

Oracle Database Utilities for information about direct path loads and
SQL*Loader

B.1.3 Supplemental Logging Data Type Restrictions
Columns of the following data types cannot be part of a supplemental log group: LOB,
LONG, LONG RAW, user-defined types (including object types, REFs, varrays, nested tables),
and Oracle-supplied types (including Any types, XML types, spatial types, and media
types).

Appendix B
Capture Process Restrictions

B-7

See Also:

• Oracle Streams Replication Administrator's Guide

• Oracle Database SQL Language Reference for information about data
types

B.1.4 Operational Requirements for Downstream Capture
The following are operational requirements for using downstream capture:

• The source database must be running at least Oracle Database 10g and the
downstream capture database must be running the same release of Oracle
Database as the source database or later.

• The downstream database must be running Oracle Database 10g Release 2 or
later to configure real-time downstream capture. In this case, the source database
must be running Oracle Database 10g Release 1 or later.

• The operating system on the source and downstream capture sites must be the
same, but the operating system release does not need to be the same. In addition,
the downstream sites can use a different directory structure than the source site.

• The hardware architecture on the source and downstream capture sites must be
the same. For example, a downstream capture configuration with a source
database on a 32-bit Sun system must have a downstream database that is
configured on a 32-bit Sun system. Other hardware elements, such as the number
of CPUs, memory size, and storage configuration, can be different between the
source and downstream sites.

See Also:

"Local Capture and Downstream Capture"

B.1.5 Capture Processes Do Not Support Oracle Label Security
Capture processes do not support database objects that use Oracle Label Security
(OLS).

See Also:

Oracle Label Security Administrator's Guide

Appendix B
Capture Process Restrictions

B-8

B.1.6 Capture Process Interoperability with Oracle Streams Apply
Processes

A capture process must be Oracle9i Release 2 (9.2.0.6) or later for the changes it
captures to be processed by an Oracle Database 11g Release 2 (11.2) or later apply
process. The data type restrictions for the release of the capture process are enforced
at the source database for the capture process.

See Also:

The Oracle Streams documentation for an earlier Oracle Database release for
information about capture process data type restrictions and apply process
data type restrictions for that release.

B.2 Synchronous Capture Restrictions
This section describes restrictions for synchronous captures.

This section contains these topics:

• Synchronous Captures Only Use Table Rules

• Unsupported Data Types for Synchronous Captures

• Unsupported Changes for Synchronous Captures

• Synchronous Capture Rules and the DBMS_STREAMS_ADM Package

• Synchronous Captures Do Not Support Oracle Label Security

B.2.1 Synchronous Captures Only Use Table Rules
Synchronous captures only use table rules that were created by a procedure in the
DBMS_STREAMS_ADM package. Synchronous captures ignore schema rules, global rules,
and rules created by a procedure in the DBMS_RULE_ADM package.

See Also:

"Synchronous Capture Rules"

B.2.2 Unsupported Data Types for Synchronous Captures
Synchronous capture does not capture the results of DML changes to columns of the
following data types:

• LONG

• LONG RAW

• CLOB

Appendix B
Synchronous Capture Restrictions

B-9

• NCLOB

• BLOB

• BFILE

• ROWID

• User-defined types (including object types, REFs, varrays, and nested tables

• Oracle-supplied types (including Any types, XML types, spatial types, and media
types)

• The extended data types for VARCHAR2 and NVARCHAR2 that are longer than 4000
bytes.

• The extended data types for RAW that are longer than 2000 bytes.

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

Synchronous capture raises an error if it tries to create a row LCR for a DML change
to a table containing a column of an unsupported data type. Synchronous capture
returns an ORA-25341 error to the user, and the DML change is not made. In this
case, modify the rules used by synchronous capture to avoid the error.

Note:

• The rules in the positive rule set determine the types of changes captured
by synchronous capture. To avoid errors, ensure that these rules do not
instruct synchronous capture to capture changes to tables with
unsupported data types.

• It might be possible to configure a synchronous capture to capture
changes to tables with unsupported columns. To do so, specify
DELETE_COLUMN declarative rule-based transformations on the relevant
synchronous capture rules to remove the unsupported columns.

See Also:

• "Data Types Captured by Synchronous Capture"

• "Listing Database Objects and Columns Not Compatible with Synchronous
Captures"

• How Rules Are Used in Oracle Streams for more information about rule
sets for Oracle Streams clients and for information about how messages
satisfy rule sets

• "Declarative Rule-Based Transformations"

• Oracle Database SQL Language Reference for more information about
data types

Appendix B
Synchronous Capture Restrictions

B-10

B.2.3 Unsupported Changes for Synchronous Captures
This section describes changes that are not supported by synchronous captures.

This section contains these topics:

• Unsupported Schemas for Synchronous Captures

• Unsupported Table Types for Synchronous Captures

• Changes Ignored by Synchronous Capture

B.2.3.1 Unsupported Schemas for Synchronous Captures
A synchronous capture never captures changes made to the following schemas:

• CTXSYS

• DBSNMP

• DMSYS

• DVSYS

• EXFSYS

• LBACSYS

• MDDATA

• MDSYS

• OLAPSYS

• ORDDATA

• ORDPLUGINS

• ORDSYS

• OUTLN

• SI_INFORMTN_SCHEMA

• SYS

• SYSMAN

• SYSTEM

• WMSYS

• XDB

B.2.3.2 Unsupported Table Types for Synchronous Captures
A synchronous capture cannot capture DML changes made to temporary tables,
object tables, or tables compressed with hybrid columnar compression.

Appendix B
Synchronous Capture Restrictions

B-11

Note:

A synchronous capture can capture changes to tables compressed with basic
table compression or Advanced Row Compression if the compatibility level of
the database is set to 11.2.0.0.0 or higher.

See Also:

• "Types of DML Changes Captured by Synchronous Capture"

• "Considerations for Applying DML Changes to Tables"

B.2.3.3 Changes Ignored by Synchronous Capture
The following types of changes are ignored by synchronous capture:

• DDL changes.

• The session control statements ALTER SESSION and SET ROLE.

• The system control statement ALTER SYSTEM.

• Synchronous capture ignores CALL, EXPLAIN PLAN, or LOCK TABLE statements.

• Changes made by direct path loads.

• Changes made to a table or schema by online redefinition using the
DBMS_REDEFINITION package. Online table redefinition is supported on a table for
which synchronous capture captures changes, but the logical structure of the table
before online redefinition must be the same as the logical structure after online
redefinition.

• Changes to actual sequence values. For example, if a user references a NEXTVAL
or sets the sequence, then synchronous capture does not capture changes
resulting from these operations. Also, if you share a sequence at multiple
databases, then sequence values used for individual rows at these databases
might vary.

• Invocations of PL/SQL procedures, which means that a call to a PL/SQL
procedure is not captured. However, if a call to a PL/SQL procedure causes
changes to database objects, then these changes can be captured by
synchronous capture if the changes satisfy the synchronous capture rule set.

Appendix B
Synchronous Capture Restrictions

B-12

Note:

• If an Oracle-supplied package related to XML makes changes to database
objects, then these changes are not captured by synchronous captures.
See Oracle Database PL/SQL Packages and Types Reference for
information about packages related to XML.

• If an Oracle-supplied package related to Oracle Text makes changes to
database objects, then these changes are not captured by synchronous
captures. See Oracle Text Reference for information about packages
related to Oracle Text.

See Also:

Oracle Streams Replication Administrator's Guide for information about
strategies to avoid having the same sequence-generated value for two
different rows at different databases

B.2.4 Synchronous Capture Rules and the DBMS_STREAMS_ADM
Package

Although you can create a rule set for a synchronous capture using the DBMS_RULE_ADM
package, only rules created using the DBMS_STREAMS_ADM package determine the
behavior of a synchronous capture. A synchronous capture ignores rules created by
the DBMS_RULE_ADM package.

B.2.5 Synchronous Captures Do Not Support Oracle Label Security
Synchronous captures do not support database objects that use Oracle Label Security
(OLS).

See Also:

Oracle Label Security Administrator's Guide

B.3 Queue Restrictions
This section describes restrictions for queues.

This section contains these topics:

• Explicit Enqueue Restrictions for ANYDATA Queues

• Restrictions for Buffered Messaging

• Triggers and Queue Tables

Appendix B
Queue Restrictions

B-13

See Also:

"Queues"

B.3.1 Explicit Enqueue Restrictions for ANYDATA Queues
You cannot explicitly enqueue ANYDATA payloads that contain payloads of the following
types into an ANYDATA queue:

• CLOB

• NCLOB

• BLOB

• Object types with LOB attributes

• Object types that use type evolution or type inheritance

Note:

Payloads of ROWID data type cannot be wrapped in an ANYDATA wrapper. This
restriction does not apply to payloads of UROWID data type.

See Also:

• "ANYDATA Queues and Typed Queues"

• Oracle Database Advanced Queuing User's Guide for more information
relating to ANYDATA queues, such as wrapping payloads in an ANYDATA
wrapper, programmatic environments for enqueuing messages into and
dequeuing messages from an ANYDATA queue, propagation, and user-
defined types

• Oracle Database PL/SQL Packages and Types Reference for more
information about the ANYDATA type

• Oracle Database SQL Language Reference for more information about
data types

B.3.2 Restrictions for Buffered Messaging
To use buffered messaging, the compatibility level of the Oracle database must be
10.2.0 or higher.

The DBMS_STREAMS_MESSAGING package cannot be used to enqueue messages into or
dequeue messages from a buffered queue. However, the DBMS_AQ package supports
enqueue and dequeue of buffered messages.

Appendix B
Queue Restrictions

B-14

See Also:

• "Persistent Queues and Buffered Queues"

• Oracle Database Advanced Queuing User's Guide for information about
the DBMS_AQ package

B.3.3 Triggers and Queue Tables
Using triggers on queue tables is not recommended because it can have a negative
impact on performance. Also, triggers are not supported on index-organized queue
tables.

B.4 Propagation Restrictions
This section describes restrictions for propagations.

This section contains these topics:

• Connection Qualifiers and Propagations

• Character Set Restrictions for Propagations

• Compatibility Requirements for Queue-To-Queue Propagations

See Also:

"Message Propagation Between Queues"

B.4.1 Connection Qualifiers and Propagations
Connection qualifiers cannot be specified in the database links that are used by Oracle
Streams propagations.

B.4.2 Character Set Restrictions for Propagations
Propagations can propagate ANYDATA messages that encapsulate payloads of object
types, varrays, or nested tables between databases only if the databases use the
same character set.

Propagations can propagate logical change records (LCRs) between databases of the
same character set or different character sets.

B.4.3 Compatibility Requirements for Queue-To-Queue Propagations
To use queue-to-queue propagation, the compatibility level must be 10.2.0 or higher
for each database that contains a queue involved in the propagation.

Appendix B
Propagation Restrictions

B-15

See Also:

"Queue-to-Queue Propagations"

B.5 Apply Process Restrictions
This section describes restrictions for apply processes.

This section contains these topics:

• Unsupported Data Types for Apply Processes

• Unsupported Data Types for Apply Handlers

• Types of DDL Changes Ignored by an Apply Process

• Database Structures in an Oracle Streams Environment

• Current Schema User Must Exist at Destination Database

• Apply Processes Do Not Support Oracle Label Security

• Apply Process Interoperability with Oracle Streams Capture Components

B.5.1 Unsupported Data Types for Apply Processes
An apply process does not apply row LCRs containing the results of DML changes in
columns of the following data types:

• BFILE

• ROWID

• User-defined types (including object types, REFs, varrays, and nested tables)

• XMLType stored object relationally or as binary XML

• The following Oracle-supplied types: Any types, URI types, spatial types, and
media types

• The extended data types for VARCHAR2 and NVARCHAR2 that are longer than 4000
bytes.

• The extended data types for RAW that are longer than 2000 bytes.

An apply process raises an error if it attempts to apply a row LCR that contains
information about a column of an unsupported data type. In addition, an apply process
cannot apply DML changes to temporary tables or object tables. An apply process
raises an error if it attempts to apply such changes. When an apply process raises an
error for an LCR, it moves the transaction that includes the LCR into the error queue.

These data type restrictions pertain to both ordinary (heap-organized) tables and
index-organized tables.

It is possible to configure Oracle Streams to support additional data types. For
instructions, go to the My Oracle Support (formerly OracleMetaLink) Web site using a
Web browser:

http://support.oracle.com/

Appendix B
Apply Process Restrictions

B-16

http://support.oracle.com/

Database bulletin 556742.1 describes additional data type support for Oracle Streams.

See Also:

"Data Types Applied"

B.5.2 Unsupported Data Types for Apply Handlers
Statement DML handlers cannot process LONG, LONG RAW, or nonassembled LOB column
data in row LCRs. However, statement DML handlers can process LOB column data in
row LCRs that have been constructed by LOB assembly. LOB assembly is enabled by
default for statement DML handlers.

Procedure DML handlers and error handlers cannot process LONG or LONG RAW column
data in row LCRs. However, procedure DML handlers and error handlers can process
both nonassembled and assembled LOB column data in row LCRs, but these handlers
cannot modify nonassembled LOB column data.

See Also:

• "Message Processing Options for an Apply Process"

• Oracle Streams Replication Administrator's Guide for information about
LOB assembly

• Oracle Database SQL Language Reference for more information about
data types

B.5.3 Types of DDL Changes Ignored by an Apply Process
The following types of DDL changes are not supported by an apply process. These
types of DDL changes are not applied:

• ALTER MATERIALIZED VIEW

• ALTER MATERIALIZED VIEW LOG

• CREATE DATABASE LINK

• CREATE SCHEMA AUTHORIZATION

• CREATE MATERIALIZED VIEW

• CREATE MATERIALIZED VIEW LOG

• DROP DATABASE LINK

• DROP MATERIALIZED VIEW

• DROP MATERIALIZED VIEW LOG

• FLASHBACK DATABASE

• RENAME

Appendix B
Apply Process Restrictions

B-17

If an apply process receives a DDL LCR that specifies an operation that cannot be
applied, then the apply process ignores the DDL LCR and records the following
message in the apply process trace file, followed by the DDL text that was ignored:

Apply process ignored the following DDL:

An apply process applies all other types of DDL changes if the DDL LCRs containing
the changes should be applied according to the apply process rule sets.

Note:

• An apply process applies ALTER object_type object_name RENAME changes,
such as ALTER TABLE jobs RENAME. Therefore, if you want DDL changes that
rename objects to be applied, then use ALTER object_type object_name
RENAME statements instead of RENAME statements. After changing the name
of a database object, new rules that specify the new database object
name might be needed to replicate changes to the database object.

• The name "materialized view" is synonymous with the name "snapshot".
Snapshot equivalents of the statements on materialized views are ignored
by an apply process.

See Also:

How Rules Are Used in Oracle Streams

B.5.4 Database Structures in an Oracle Streams Environment
For captured DDL changes to be applied properly at a destination database, either the
destination database must have the same database structures as the source
database, or the nonidentical database structural information must not be specified in
the DDL statement. Database structures include data files, tablespaces, rollback
segments, and other physical and logical structures that support database objects.

For example, for captured DDL changes to tables to be applied properly at a
destination database, the following conditions must be met:

• The same storage parameters must be specified in the CREATE TABLE statement at
the source database and destination database.

• If a DDL statement refers to specific tablespaces or rollback segments, then the
tablespaces or rollback segments must have the same names and compatible
specifications at the source database and destination database.

However, if the tablespaces and rollback segments are not specified in the DDL
statement, then the default tablespaces and rollback segments are used. In this
case, the tablespaces and rollback segments can differ at the source database
and destination database.

• The same partitioning specifications must be used at the source database and
destination database.

Appendix B
Apply Process Restrictions

B-18

B.5.5 Current Schema User Must Exist at Destination Database
For a DDL LCR to be applied at a destination database successfully, the user
specified as the current_schema in the DDL LCR must exist at the destination database.
The current schema is the schema that is used if no schema is specified for an object
in the DDL text.

See Also:

• Oracle Database Concepts for more information about database
structures

• Oracle Database PL/SQL Packages and Types Reference for more
information about the current_schema attribute in DDL LCRs

B.5.6 Apply Processes Do Not Support Oracle Label Security
Apply processes do not support database objects that use Oracle Label Security
(OLS).

See Also:

Oracle Label Security Administrator's Guide

B.5.7 Apply Process Interoperability with Oracle Streams Capture
Components

An apply process must be Oracle9i Release 2 (9.2.0.6) or later to process changes
captured by an Oracle Database 11g Release 2 (11.2) or later capture process. The
data type restrictions for the release of the apply process are enforced at the apply
process database.

An apply process must be Oracle Database 11g Release 1 (11.1) or later to process
changes captured by an Oracle Database 11g Release 2 (11.2) or later synchronous
capture. The data type restrictions for the release of the apply process are enforced at
the apply process database.

See Also:

The Oracle Streams documentation for an earlier Oracle Database release for
information about apply process data type restrictions for that release.

Appendix B
Apply Process Restrictions

B-19

B.6 Messaging Client Restrictions
This section describes restrictions for messaging clients.

This section contains these topics:

• Messaging Clients and Buffered Messages

See Also:

"Explicit Consumption with a Messaging Client"

B.6.1 Messaging Clients and Buffered Messages
Messaging clients cannot dequeue buffered messages. However, the DBMS_AQ package
supports enqueue and dequeue of buffered messages.

See Also:

Oracle Database Advanced Queuing User's Guide for information about the
DBMS_AQ package

B.7 Rule Restrictions
This section describes restrictions for rules.

This section contains these topics:

• Restrictions for Subset Rules

• Restrictions for Action Contexts

• Restrictions on Data Type

B.7.1 Restrictions for Subset Rules
The following restrictions apply to subset rules:

• A table with the table name referenced in the subset rule must exist in the same
database as the subset rule, and this table must be in the same schema
referenced for the table in the subset rule.

• If the subset rule is in the positive rule set for a capture process or a synchronous
capture, then the table must contain the columns specified in the subset condition,
and the data type of each of these columns must match the data type of the
corresponding column at the source database.

• If the subset rule is in the positive rule set for a propagation or apply process, then
the table must contain the columns specified in the subset condition, and the data

Appendix B
Messaging Client Restrictions

B-20

type of each column must match the data type of the corresponding column in row
LCRs that evaluate to TRUE for the subset rule.

• Creating subset rules for tables that have one or more columns of the following
data types is not supported: LOB, LONG, LONG RAW, user-defined types (including
object types, REFs, varrays, nested tables), and Oracle-supplied types (including
Any types, XML types, spatial types, and media types).

See Also:

• "Subset Rules"

• Oracle Database SQL Language Reference for more information about
data types

B.7.2 Restrictions for Action Contexts
An action context cannot contain information of the following data types:

• CLOB

• NCLOB

• BLOB

• LONG

• LONG RAW

• The extended data types for VARCHAR2 and NVARCHAR2 that are longer than 4000
bytes.

• The extended data types for RAW that are longer than 2000 bytes.

In addition, an action context cannot contain object types with attributes of these data
types, or object types that use type evolution or type inheritance.

See Also:

"Oracle Streams and Action Contexts"

B.7.3 Restrictions on Data Type
The following data type restrictions apply:

• Columns of extended data type VARCHAR2(32K) cannot be referenced in rules.

B.8 Rule-Based Transformation Restrictions
This section describes restrictions for rule-based transformations.

This section contains these topics:

Appendix B
Rule-Based Transformation Restrictions

B-21

• Unsupported Data Types for Declarative Rule-Based Transformations

• Unsupported Data Types for Custom Rule-Based Transformations

See Also:

Rule-Based Transformations

B.8.1 Unsupported Data Types for Declarative Rule-Based
Transformations

Except for add column transformations, declarative rule-based transformations that
operate on columns support the same data types that are supported by Oracle
Streams capture processes.

Add column transformations cannot add columns of the following data types: BLOB,
CLOB, NCLOB, BFILE, LONG, LONG RAW, ROWID, user-defined types (including object types,
REFs, varrays, nested tables), Oracle-supplied types (including Any types, XML types,
spatial types, and media types) and extended data types for VARCHAR2, NVARCHAR2, or
RAW.

See Also:

• "Data Types Captured by Capture Processes"

• "Unsupported Data Types for Capture Processes"

B.8.2 Unsupported Data Types for Custom Rule-Based
Transformations

Do not modify LONG, LONG RAW, nonassembled LOB column data, or XMLType data in a
custom rule-based transformation function.

See Also:

"Custom Rule-Based Transformations"

B.9 Oracle Multitenant Option Restrictions for Oracle
Streams

Oracle Streams cannot be used with multitenant container databases (CDBs) or
pluggable databases (PDBs).

Appendix B
Oracle Multitenant Option Restrictions for Oracle Streams

B-22

See Also:

Oracle Database Administrator's Guide

Appendix B
Oracle Multitenant Option Restrictions for Oracle Streams

B-23

C
XML Schema for LCRs

The XML schema described in this appendix defines the format of a logical change
record (LCR). The Oracle XML DB must be installed to use the XML schema for LCRs.

The namespace for this schema is the following:

http://xmlns.oracle.com/streams/schemas/lcr

The schema is the following:

http://xmlns.oracle.com/streams/schemas/lcr/streamslcr.xsd

C.1 Definition of the XML Schema for LCRs
The following is the XML schema definition for LCRs:

'<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/streams/schemas/lcr"
 xmlns:lcr="http://xmlns.oracle.com/streams/schemas/lcr"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0"
 elementFormDefault="qualified">

 <simpleType name = "short_name">
 <restriction base = "string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>

 <simpleType name = "long_name">
 <restriction base = "string">
 <maxLength value="4000"/>
 </restriction>
 </simpleType>

 <simpleType name = "db_name">
 <restriction base = "string">
 <maxLength value="128"/>
 </restriction>
 </simpleType>

 <!-- Default session parameter is used if format is not specified -->
 <complexType name="datetime_format">
 <sequence>
 <element name = "value" type = "string" nillable="true"/>
 <element name = "format" type = "string" minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>

 <complexType name="anydata">
 <choice>
 <element name="varchar2" type = "string" xdb:SQLType="CLOB"
 nillable="true"/>

C-1

 <!-- Represent char as varchar2. xdb:CHAR blank pads upto 2000 bytes! -->
 <element name="char" type = "string" xdb:SQLType="CLOB"
 nillable="true"/>
 <element name="nchar" type = "string" xdb:SQLType="NCLOB"
 nillable="true"/>

 <element name="nvarchar2" type = "string" xdb:SQLType="NCLOB"
 nillable="true"/>
 <element name="number" type = "double" xdb:SQLType="NUMBER"
 nillable="true"/>
 <element name="raw" type = "hexBinary" xdb:SQLType="BLOB"
 nillable="true"/>
 <element name="date" type = "lcr:datetime_format"/>
 <element name="timestamp" type = "lcr:datetime_format"/>
 <element name="timestamp_tz" type = "lcr:datetime_format"/>
 <element name="timestamp_ltz" type = "lcr:datetime_format"/>

 <!-- Interval YM should be as per format allowed by SQL -->
 <element name="interval_ym" type = "string" nillable="true"/>

 <!-- Interval DS should be as per format allowed by SQL -->
 <element name="interval_ds" type = "string" nillable="true"/>

 <element name="urowid" type = "string" xdb:SQLType="VARCHAR2"
 nillable="true"/>
 </choice>
 </complexType>

 <complexType name="column_value">
 <sequence>
 <element name = "column_name" type = "lcr:long_name" nillable="false"/>
 <element name = "data" type = "lcr:anydata" nillable="false"/>
 <element name = "lob_information" type = "string" minOccurs="0"
 nillable="true"/>
 <element name = "lob_offset" type = "nonNegativeInteger" minOccurs="0"
 nillable="true"/>
 <element name = "lob_operation_size" type = "nonNegativeInteger"
 minOccurs="0" nillable="true"/>
 <element name = "long_information" type = "string" minOccurs="0"
 nillable="true"/>
 </sequence>
 </complexType>

 <complexType name="extra_attribute">
 <sequence>
 <element name = "attribute_name" type = "lcr:short_name"/>
 <element name = "attribute_value" type = "lcr:anydata"/>
 </sequence>
 </complexType>

 <element name = "ROW_LCR" xdb:defaultTable="">
 <complexType>
 <sequence>
 <element name = "source_database_name" type = "lcr:db_name"
 nillable="false"/>
 <element name = "command_type" type = "string" nillable="false"/>
 <element name = "object_owner" type = "lcr:short_name"
 nillable="false"/>
 <element name = "object_name" type = "lcr:short_name"
 nillable="false"/>

Appendix C
Definition of the XML Schema for LCRs

C-2

 <element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
 minOccurs="0" nillable="true"/>
 <element name = "transaction_id" type = "string" minOccurs="0"
 nillable="true"/>
 <element name = "scn" type = "double" xdb:SQLType="NUMBER"
 minOccurs="0" nillable="true"/>
 <element name = "old_values" minOccurs = "0">
 <complexType>
 <sequence>
 <element name = "old_value" type="lcr:column_value"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name = "new_values" minOccurs = "0">
 <complexType>
 <sequence>
 <element name = "new_value" type="lcr:column_value"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name = "extra_attribute_values" minOccurs = "0">
 <complexType>
 <sequence>
 <element name = "extra_attribute_value"
 type="lcr:extra_attribute"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>

 <element name = "DDL_LCR" xdb:defaultTable="">
 <complexType>
 <sequence>
 <element name = "source_database_name" type = "lcr:db_name"
 nillable="false"/>
 <element name = "command_type" type = "string" nillable="false"/>
 <element name = "current_schema" type = "lcr:short_name"
 nillable="false"/>
 <element name = "ddl_text" type = "string" xdb:SQLType="CLOB"
 nillable="false"/>
 <element name = "object_type" type = "string"
 minOccurs = "0" nillable="true"/>
 <element name = "object_owner" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "object_name" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "logon_user" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "base_table_owner" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "base_table_name" type = "lcr:short_name"
 minOccurs = "0" nillable="true"/>
 <element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
 minOccurs = "0" nillable="true"/>
 <element name = "transaction_id" type = "string"
 minOccurs = "0" nillable="true"/>

Appendix C
Definition of the XML Schema for LCRs

C-3

 <element name = "scn" type = "double" xdb:SQLType="NUMBER"
 minOccurs = "0" nillable="true"/>
 <element name = "extra_attribute_values" minOccurs = "0">
 <complexType>
 <sequence>
 <element name = "extra_attribute_value"
 type="lcr:extra_attribute"
 maxOccurs = "unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>';

Appendix C
Definition of the XML Schema for LCRs

C-4

D
Online Database Upgrade and
Maintenance with Oracle Streams

This appendix describes how to use Oracle Streams to perform a database upgrade to
the current release of Oracle Database from one of the following releases:

• Oracle Database 10g Release 2 (10.2)

• Oracle Database 11g Release 1 (11.1)

This appendix also describes how to perform some maintenance operations with
Oracle Streams on an Oracle Database 11g Release 2 (11.2) or later database. These
maintenance operations include migrating an Oracle database to a different platform
or character set, upgrading user-created applications, and applying Oracle Database
patches or patch sets.

The upgrade and maintenance operations described in this appendix use the features
of Oracle Streams to achieve little or no database down time.

The following topics describe performing online database maintenance with Oracle
Streams:

• Overview of Using Oracle Streams for Upgrade and Maintenance Operations

• Preparing for a Database Upgrade or Maintenance Operation

• Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

See Also:

Online Upgrade of an Earlier Database with Oracle Streams for instructions on
performing an upgrade of a release before Oracle Database 10g Release 2
(10.2)

D.1 Overview of Using Oracle Streams for Upgrade and
Maintenance Operations

Database upgrades can require substantial database down time. The following
maintenance operations also typically require substantial database down time:

• Migrating a database to a different platform

• Migrating a database to a different character set

• Modifying database schema objects to support upgrades to user-created
applications

• Applying an Oracle Database software patch or patch set

D-1

You can achieve these upgrade and maintenance operations with little or no down
time by using the features of Oracle Streams. To do so, you use Oracle Streams to
configure a replication environment with the following databases:

• Source Database: The original database that is being maintained.

• Capture Database: The database where a capture process captures changes
made to the source database during the maintenance operation.

• Destination Database: The copy of the source database where an apply process
applies changes made to the source database during the maintenance operation.

Specifically, you can use the following general steps to perform the upgrade or
maintenance operation while the database is online:

1. Create an empty destination database.

2. Configure an Oracle Streams replication environment where the original database
is the source database and a copy of the database is the destination database.
The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the
DBMS_STREAMS_ADM package configure the Oracle Streams replication environment.

3. Perform the upgrade or maintenance operation on the destination database.
During this time the original source database is available online, and changes to
the original source database are being captured by a capture process.

4. Use Oracle Streams to apply the changes made to the source database at the
destination database.

5. When the destination database has caught up with the changes made at the
source database, take the source database offline and make the destination
database available for applications and users.

Figure D-1 provides an overview of this process.

Appendix D
Overview of Using Oracle Streams for Upgrade and Maintenance Operations

D-2

Figure D-1 Online Database Upgrade and Maintenance with Oracle Streams

Capture Database*Source Database

Record�
Changes

Shipped for �
Downstream �
Capture

Capture�
Changes�
(Local)

Propagate�
LCRs

Database Objects

Redo

Log

Capture�
Changes�
(Downstream)

Enqueue�
LCRs

Capture Process

Destination Database

Dequeue�
LCRs

Apply�
Changes

Database Objects

Apply Process

Queue

Redo

Log

Queue

Capture database may be source
database, destination database, �
or a third database.

*

D.1.1 The Capture Database During the Upgrade or Maintenance
Operation

During the upgrade or maintenance operation, the capture database is the database
where the capture process is created. A local capture process can be created at the
source database during the maintenance operation, or a downstream capture process
can be created at the destination database or at a third database. If the destination
database is the capture database, then a propagation from the capture database to
the destination database is not needed. A downstream capture process reduces the
resources required at the source database during the maintenance operation.

Appendix D
Overview of Using Oracle Streams for Upgrade and Maintenance Operations

D-3

Note:

• Before you begin the database upgrade or maintenance operation with
Oracle Streams, decide which database will be the capture database.

• If the RMAN DUPLICATE or CONVERT DATABASE command is used for database
instantiation, then the destination database cannot be the capture
database.

See Also:

• "Local Capture and Downstream Capture"

• "Deciding Which Utility to Use for Instantiation"

D.1.2 Assumptions for the Database Being Upgraded or Maintained
The instructions in this appendix assume that all of the following statements are true
for the database being upgraded or maintained:

• The database is not part of an existing Oracle Streams environment.

• The database is not part of an existing logical standby environment.

• No tables at the database are master tables for materialized views in other
databases.

• No messages are enqueued into user-created queues during the upgrade or
maintenance operation.

D.1.3 Considerations for Job Slaves and PL/SQL Package
Subprograms

If possible, ensure that no job slaves are created, modified, or deleted during the
upgrade or maintenance operation, and that no Oracle-supplied PL/SQL package
subprograms are invoked during the operation that modify both user data and data
dictionary metadata at the same time. The following packages contain subprograms
that modify both user data and data dictionary metadata at the same time: DBMS_RLS,
DBMS_STATS, and DBMS_JOB.

It might be possible to perform such actions on the database if you ensure that the
same actions are performed on the source database and destination database in
Steps 19 and 20 in "Performing a Database Upgrade or Maintenance Operation Using
Oracle Streams". For example, if a PL/SQL procedure gathers statistics on the source
database during the maintenance operation, then the same PL/SQL procedure should
be invoked at the destination database in Step 20.

Appendix D
Overview of Using Oracle Streams for Upgrade and Maintenance Operations

D-4

D.1.4 Unsupported Database Objects Are Excluded
The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the
DBMS_STREAMS_ADM package include the following parameters:

• exclude_schemas

• exclude_flags

These parameters specify which database objects to exclude from the Oracle Streams
configuration. The examples in this appendix set these parameters to the following
values:

exclude_schemas => '*',
exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);

These values exclude any database objects that are not supported by Oracle Streams.
The asterisk (*) specified for exclude_schemas indicates that some database objects in
every schema in the database might be excluded from the replication environment.
The value specified for the exclude_flags parameter indicates that DML and DDL
changes for all unsupported database objects are excluded from the replication
environment. Rules are placed in the negative rule sets for the capture processes to
exclude these database objects.

To list unsupported database objects, query the DBA_STREAMS_UNSUPPORTED data
dictionary view at the source database. If you use these parameter settings, then
changes to the database objects listed in this view are not maintained by Oracle
Streams during the maintenance operation. Therefore, Step 7 in "Task 1: Beginning
the Operation" instructs you to ensure that no changes are made to these database
objects during the database upgrade or maintenance operation.

Note:

"Preparing for Upgrade or Maintenance of a Database with User-Defined
Types" discusses a method for retaining changes to tables that contain user-
defined types during the maintenance operation. If you are using this method,
then tables that contain user-defined types can remain open during the
maintenance operation.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the exclude_schemas and exclude_flags parameters

Appendix D
Overview of Using Oracle Streams for Upgrade and Maintenance Operations

D-5

D.2 Preparing for a Database Upgrade or Maintenance
Operation

The following sections describe tasks to complete before starting the database
upgrade or maintenance operation with Oracle Streams:

• Preparing for Downstream Capture

• Preparing for Upgrade or Maintenance of a Database with User-Defined Types

• Preparing for Upgrades to User-Created Applications

• Deciding Whether to Configure Oracle Streams Directly or Generate a Script

• Deciding Which Utility to Use for Instantiation

D.2.1 Preparing for Downstream Capture
If you decided that the destination database or a third database will be the capture
database, then you must prepare for downstream capture by configuring log file
copying from the source database to the capture database. If you decided that the
source database will be the capture database, then log file copying is not required.
See "The Capture Database During the Upgrade or Maintenance Operation" for
information about the decision.

Complete the following steps to prepare the source database to copy its redo log files
to the capture database, and to prepare the capture database to accept these redo log
files:

1. Configure Oracle Net so that the source database can communicate with the
capture database.

See Also:

Oracle Database Net Services Administrator's Guide

2. Configure authentication at both databases to support the transfer of redo data.

Redo transport sessions are authenticated using either the Secure Sockets Layer
(SSL) protocol or a remote login password file. If the source database has a
remote login password file, then copy it to the appropriate directory on the
downstream capture database system. The password file must be the same at the
source database and the downstream capture database.

See Also:

Oracle Data Guard Concepts and Administration for detailed information about
authentication requirements for redo transport

3. At the source database, set the following initialization parameters to configure redo
transport services to transmit redo data from the source database to the
downstream database:

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-6

• LOG_ARCHIVE_DEST_n - Configure at least one LOG_ARCHIVE_DEST_n initialization
parameter to transmit redo data to the downstream database. To do this, set
the following attributes of this parameter:

– SERVICE - Specify the network service name of the downstream database.

– ASYNC or SYNC - Specify a redo transport mode.

The advantage of specifying ASYNC is that it results in little or no effect on
the performance of the source database. ASYNC is recommended to avoid
affecting source database performance if the downstream database or
network is performing poorly.

The advantage of specifying SYNC is that redo data is sent to the
downstream database faster then when ASYNC is specified. Also, specifying
SYNC AFFIRM results in behavior that is similar to MAXIMUM AVAILABILITY
standby protection mode. Note that specifying an ALTER DATABASE STANDBY
DATABASE TO MAXIMIZE AVAILABILITY SQL statement has no effect on an
Oracle Streams capture process.

– NOREGISTER - Specify this attribute so that the location of the archived redo
log files is not recorded in the downstream database control file.

– VALID_FOR - Specify either (ONLINE_LOGFILE,PRIMARY_ROLE) or
(ONLINE_LOGFILE,ALL_ROLES).

– TEMPLATE - Specify a directory and format template for archived redo logs
at the downstream database. The TEMPLATE attribute overrides the
LOG_ARCHIVE_FORMAT initialization parameter settings at the downstream
database. The TEMPLATE attribute is valid only with remote destinations.
Ensure that the format uses all of the following variables at each source
database: %t, %s, and %r.

– DB_UNIQUE_NAME - The unique name of the downstream database. Use the
name specified for the DB_UNIQUE_NAME initialization parameter at the
downstream database.

The following example is a LOG_ARCHIVE_DEST_n setting that specifies a capture
database (DBS2.EXAMPLE.COM):

LOG_ARCHIVE_DEST_2='SERVICE=DBS2.EXAMPLE.COM ASYNC NOREGISTER
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 TEMPLATE=/usr/oracle/log_for_dbs1/dbs1_arch_%t_%s_%r.log
 DB_UNIQUE_NAME=dbs2'

Tip:

Specify a value for the TEMPLATE attribute that keeps log files from a remote
source database separate from local database log files. In addition, if the
downstream database contains log files from multiple source databases, then
the log files from each source database should be kept separate from each
other.

• LOG_ARCHIVE_DEST_STATE_n - Set this initialization parameter that corresponds
with the LOG_ARCHIVE_DEST_n parameter for the downstream database to ENABLE.

For example, if the LOG_ARCHIVE_DEST_2 initialization parameter is set for the
downstream database, then set the LOG_ARCHIVE_DEST_STATE_2 parameter in the
following way:

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-7

LOG_ARCHIVE_DEST_STATE_2=ENABLE

• LOG_ARCHIVE_CONFIG - Set the DB_CONFIG attribute in this initialization parameter
to include the DB_UNIQUE_NAME of the source database and the downstream
database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the
DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send
and receive redo.

See Also:

Oracle Database Reference and Oracle Data Guard Concepts and
Administration for more information about these initialization parameters

4. At the downstream database, set the DB_CONFIG attribute in the LOG_ARCHIVE_CONFIG
initialization parameter to include the DB_UNIQUE_NAME of the source database and
the downstream database.

For example, if the DB_UNIQUE_NAME of the source database is dbs1, and the
DB_UNIQUE_NAME of the downstream database is dbs2, then specify the following
parameter:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(dbs1,dbs2)'

By default, the LOG_ARCHIVE_CONFIG parameter enables a database to both send
and receive redo.

5. If you reset any initialization parameters while the instance is running at a
database in Step 3 or Step 4, then you might want to reset them in the initialization
parameter file as well, so that the new values are retained when the database is
restarted.

If you did not reset the initialization parameters while the instance was running, but
instead reset them in the initialization parameter file in Step 3 or Step 4, then
restart the database. The source database must be open when it sends redo log
files to the capture database because the global name of the source database is
sent to the capture database only if the source database is open.

See Also:

"Overview of Using Oracle Streams for Upgrade and Maintenance Operations"
for more information about the capture database

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-8

D.2.2 Preparing for Upgrade or Maintenance of a Database with User-
Defined Types

User-defined types include object types, REF values, varrays, and nested tables.
Currently, Oracle Streams capture processes and apply processes do not support
user-defined types. This section discusses using Oracle Streams to perform an
upgrade or maintenance operation on a database that has user-defined types.

One option is to ensure that no data manipulation language (DML) or data definition
language (DDL) changes are made to the tables that contain user-defined types during
the operation. In this case, these tables are instantiated at the destination database,
and no changes are made to these tables during the entire operation. After the
operation is complete, make the tables that contain user-defined types read/write at
the destination database.

However, if tables that contain user-defined types must remain open during the
operation, then use the following general steps to retain changes to these types during
the operation:

1. At the source database, create one or more logging tables to store row changes to
tables that include user-defined types. Each column in the logging table must use
a data type that is supported by Oracle Streams.

2. At the source database, create a DML trigger that fires on the tables that contain
the user-defined data types. The trigger converts each row change into relational
equivalents and logs the modified row in a logging table created in Step 1.

3. Ensure that the capture process and propagation are configured to capture and, if
necessary, propagate changes made to the logging table to the destination
database. Changes to tables that contain user-defined types should not be
captured or propagated. Therefore, ensure that the PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures include the logging tables and exclude the
tables that contain user-defined types.

4. At the destination database, configure the apply process to use a DML handler
that processes the changes to the logging tables. The DML handler reconstructs
the user-defined types from the relational equivalents and applies the modified
changes to the tables that contain user-defined types.

For instructions, go to the My Oracle Support (formerly OracleMetaLink) Web site
using a Web browser:

http://support.oracle.com/

Database bulletin 556742.1 describes additional data type support for Oracle Streams.

See Also:

• Oracle Database PL/SQL Language Reference for more information about
creating triggers

• "Managing a DML Handler"

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-9

http://support.oracle.com/

D.2.3 Preparing for Upgrades to User-Created Applications
This section is relevant only if the operation entails upgrading user-created
applications. During an upgrade of user-created applications, schema objects can be
modified, and there might be logical dependencies that cannot be detected by the
database alone. The following sections describe handling these issues during an
application upgrade:

• Handling Modifications to Schema Objects

• Handling Logical Dependencies

D.2.3.1 Handling Modifications to Schema Objects
If you are upgrading user-created applications, then, typically, schema objects in the
database change to support the upgraded applications. In Oracle Streams, row logical
change records (LCRs) contain information about row changes that result from DML
statements. A declarative rule-based transformation or DML handler can modify row
LCRs captured from the source database redo log so that the row LCRs can be
applied to the altered tables at the destination database.

A rule-based transformation is any modification to a message that results when a rule
in a positive rule set evaluates to TRUE. Declarative rule-based transformations cover a
common set of transformation scenarios for row LCRs. Declarative rule-based
transformations are run internally without using PL/SQL. You specify such a
transformation using a procedure in the DBMS_STREAMS_ADM package. A declarative rule-
based transformation can modify row LCRs during capture, propagation, or apply.

A DML handler is either a collection of SQL statements or a user procedure that
processes row LCRs resulting from DML statements at a source database. An Oracle
Streams apply process at a destination database can pass row LCRs to a DML
handler, and the DML handler can modify the row LCRs.

The process for upgrading user-created applications using Oracle Streams can involve
modifying and creating the schema objects at the destination database after
instantiation. You can use one or more declarative rule-based transformations and
DML handlers at the destination database to process changes from the source
database so that they apply to the modified schema objects correctly. Declarative rule-
based transformations and DML handlers can be used during application upgrade to
account for differences between the source database and destination database.

In general, declarative rule-based transformations are easier to use than DML
handlers. Therefore, when modifications to row LCRs are required, try to configure a
declarative rule-based transformation first. If a declarative rule-based transformation is
not sufficient, then use a DML handler. If row LCRs for tables that contain one or more
LOB columns must be modified, then you should use a procedure DML handler and
LOB assembly.

Before you begin the database upgrade or maintenance operation, you should
complete the following tasks to prepare your declarative rule-based transformations or
DML handlers:

• Learn about declarative rule-based transformations. See "Declarative Rule-Based
Transformations".

• Learn about DML handlers. See "Message Processing Options for an Apply
Process".

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-10

• Determine the declarative rule-based transformations and DML handlers you will
need at your destination database. Your determination depends on the
modifications to the schema objects required by your upgraded applications.

• Create the SQL statements or the PL/SQL procedures that you will use for any
DML handlers during the database maintenance operation. See "Managing a DML
Handler" for information about creating the PL/SQL procedures.

• If row LCRs for tables that contain one or more LOB columns must be modified,
then learn about using LOB assembly. See Oracle Streams Replication
Administrator's Guide.

Note:

Custom rule-based transformation can also be used to modify row LCRs
during application upgrade. However, these modifications can be
accomplished using DML handlers, and DML handlers are more efficient than
custom rule-based transformations.

D.2.3.2 Handling Logical Dependencies
In some cases, an apply process requires additional information to detect
dependencies in row LCRs that are being applied in parallel. During application
upgrades, an apply process might require additional information to detect
dependencies in the following situations:

• The application, rather than the database, enforces logical dependencies.

• Schema objects have been modified to support the application upgrade, and a
DML handler will modify row LCRs to account for differences between the source
database and destination database.

A virtual dependency definition is a description of a dependency that is used by an
apply process to detect dependencies between transactions at a destination database.
A virtual dependency definition is not described as a constraint in the destination
database data dictionary. Instead, it is specified using procedures in the
DBMS_APPLY_ADM package. Virtual dependency definitions enable an apply process to
detect dependencies that it would not be able to detect by using only the constraint
information in the data dictionary. After dependencies are detected, an apply process
schedules LCRs and transactions in the correct order for apply.

If virtual dependency definitions are required for your application upgrade, then learn
about virtual dependency definitions and plan to configure them during the application
upgrade.

See Also:

"Apply Processes and Dependencies" for more information about virtual
dependency definitions

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-11

D.2.4 Deciding Whether to Configure Oracle Streams Directly or
Generate a Script

The PRE_INSTANTIATION_SETUP and POST_INSTANTIATION_SETUP procedures in the
DBMS_STREAMS_ADM package configure the Oracle Streams replication environment
during the upgrade or maintenance operation. These procedures can configure the
Oracle Streams replication environment directly, or they can generate a script that
configures the environment.

Using a procedure to configure replication directly is simpler than running a script, and
the environment is configured immediately. However, you might choose to generate a
script for the following reasons:

• You want to review the actions performed by the procedure before configuring the
environment.

• You want to modify the script to customize the configuration.

To configure Oracle Streams directly when you run one of these procedures, set the
perform_actions parameter to TRUE. The examples in this appendix assume that the
procedures will configure Oracle Streams directly.

To generate a configuration script when you run one of these procedures, complete
the following steps when you are instructed to run a procedure in this appendix:

1. In SQL*Plus, connect as the Oracle Streams administrator to database where you
will run the procedure.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a directory object to store the script that will be generated by the
procedure. For example:

CREATE DIRECTORY scripts_dir AS '/usr/scripts';

3. Run the procedure. Ensure that the following parameters are set to generate a
script:

• Set the perform_actions parameter to FALSE.

• Set the script_name parameter to the name of the script you want to generate.

• Set the script_directory_object parameter to the directory object into which
you want to place the script. This directory object was created in Step 2.

4. Review or modify the script, if necessary.

5. In SQL*Plus, connect as the Oracle Streams administrator to database where you
will run the procedure.

6. Run the generated script. For example:

@/usr/scripts/pre_instantiation.sql;

D.2.5 Deciding Which Utility to Use for Instantiation
Before you begin the database upgrade or maintenance operation, decide whether
you want to use Export/Import utilities (Data Pump or original) or the Recovery

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-12

Manager (RMAN) utility to instantiate the destination database during the operation.
Consider the following factors when you make this decision:

• If you are migrating the database to a different platform, then you can use either
Export/Import or the RMAN CONVERT DATABASE command. The RMAN DUPLICATE
command does not support migrating a database to a different platform.

• If you are migrating the database to a different character set, then you must use
Export/Import, and the new character set must be a superset of the old character
set. The RMAN DUPLICATE and CONVERT DATABASE commands do not support
migrating a database to a different character set.

• If you are upgrading from a prior release of Oracle Database to Oracle Database
11g Release 2 (11.2) or later, then consider these additional factors:

• If RMAN is supported for the operation, then using RMAN for the instantiation
might be faster than using Export/Import, especially if the database is large.

• Oracle recommends that you do not use RMAN for instantiation in an environment
where distributed transactions are possible. Doing so might cause in-doubt
transactions that must be corrected manually.

• If the RMAN DUPLICATE or CONVERT DATABASE command is used for database
instantiation, then the destination database cannot be the capture database.

• If you are upgrading from a prior release of Oracle Database to Oracle Database
11g Release 2 (11.2) or later, then consider these additional factors:

– If you use Export/Import, then you can make the destination database an
Oracle Database 11g Release 2 (11.2) or later database at the beginning of
the operation. Therefore, you do not need to upgrade the destination database
after the instantiation.

– If you use the RMAN DUPLICATE, then the database release of the destination
database must be the same as the source database.

– If you use the RMAN CONVERT DATABASE, then the database release of the
destination database must be the equal to or later than the source database.

Table D-1 describes when each instantiation method is supported based on whether
the platform at the source and destination databases are the same or different, and
whether the character set at the source and destination databases are the same or
different.

Table D-1 Instantiation Methods for Database Maintenance with Oracle Streams

Instantiation Method Same Platform
Supported?

Different Platforms
Supported?

Same Character
Set Supported?

Different Character
Sets Supported?

Data Pump Export/Import Yes Yes Yes Yes

RMAN DUPLICATE Yes No Yes No

RMAN CONVERT DATABASE No Maybe Yes No

Only some platform combinations are supported by the RMAN CONVERT DATABASE
command. You can use the DBMS_TDB package to determine whether a platform
combination is supported.

Appendix D
Preparing for a Database Upgrade or Maintenance Operation

D-13

See Also:

• Oracle Streams Replication Administrator's Guide for more information
about Oracle Streams instantiations

• Oracle Database Backup and Recovery User's Guide for instructions on
using the RMAN DUPLICATE and CONVERT DATABASE commands

• Oracle Database Backup and Recovery Reference for more information
about the RMAN DUPLICATE and CONVERT DATABASE commands

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_TDB package

• Oracle Database Globalization Support Guide for more information about
character set conversion and Export/Import

D.3 Performing a Database Upgrade or Maintenance
Operation Using Oracle Streams

This section describes performing one of the following operations on an Oracle
database:

• Upgrading to the current release of Oracle Database from Oracle Database 10g
Release 2 (10.2) or Oracle Database 11g Release 1 (11.1)

• Migrating the database to a different platform

• Migrating the database to a different character set

• Modifying database schema objects to support upgrades to user-created
applications

• Applying an Oracle Database software patch or patch set

You can use Oracle Streams to achieve little or no downtime during these operations.
During the operation, the source database is the existing database on which you are
performing the database operation. The capture database is the database on which
the Oracle Streams capture process runs. The destination database is the database
that will replace the source database at the end of the operation.

Complete the following tasks to perform a database maintenance operation using
Oracle Streams:

• Task 1: Beginning the Operation

• Task 2: Setting Up Oracle Streams Before Instantiation

• Task 3: Instantiating the Database

• Task 4: Setting Up Oracle Streams After Instantiation

• Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle
Streams

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-14

D.3.1 Task 1: Beginning the Operation
Complete the following steps to begin the upgrade or maintenance operation using
Oracle Streams:

1. Create an empty destination database. If you are migrating the database to a
different platform, then create the database on a computer system that uses the
new platform. If you are migrating the database to a different character set, then
create a database that uses the new character set.

Ensure that the destination database has a different global name than the source
database. This example assumes that the global name of the source database is
orcl.example.com and the global name of the destination database during the
database maintenance operation is stms.example.com. The global name of the
destination database is changed when the destination database replaces the
source database at the end of the maintenance operation.

If you are not upgrading from a prior release of Oracle Database, then create an
Oracle Database 11g Release 2 (11.2) or later database. See the Oracle
installation guide for your operating system if you must install Oracle, and see the
Oracle Database Administrator's Guide for information about creating a database.

If you are upgrading from a prior release of Oracle Database, then the release of
the empty database you create depends on the instantiation method you decided
to use in "Deciding Which Utility to Use for Instantiation":

• If you decided to use export/import for instantiation, then create an empty
Oracle Database 11g Release 2 or later database. This database will be the
destination database during the upgrade process.

See the Oracle Database installation guide for your operating system if you
must install Oracle Database, and see the Oracle Database Administrator's
Guide for information about creating a database.

• If you decided to use RMAN DUPLICATE for instantiation, then create an empty
Oracle database that is the same release as the database you are upgrading.

Specifically, if you are upgrading an Oracle Database 10g Release 2 (10.2)
database, then create an Oracle Database 10g Release 2 database.
Alternatively, if you are upgrading an Oracle Database 11g Release 1 (11.1)
database, then create an Oracle Database 11g Release 1 database.

This database will be the destination database during the upgrade process.
Both the source database that is being upgraded and the destination database
must be the same release of Oracle when you start the upgrade process.

See the Oracle installation guide for your operating system if you must install
Oracle, and see the Oracle Database Administrator's Guide for the release for
information about creating a database.

• If you decided to use RMAN CONVERT DATABASE for instantiation, then create an
empty Oracle database that is a release equal to or later than the database
you are upgrading.

Specifically, if you are upgrading an Oracle Database 10g Release 2 (10.2)
database, then create an Oracle Database 10g Release 2 database, an
Oracle Database 11g Release 1 database, or an Oracle Database 11g
Release 2 or later database. Alternatively, if you are upgrading an Oracle
Database 11g Release 1 (11.1) database, then create an Oracle Database

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-15

11g Release 1 database or an Oracle Database 11g Release 2 or later
database.

This database will be the destination database during the upgrade process.

See the Oracle installation guide for your operating system if you must install
Oracle, and see the Oracle Database Administrator's Guide for the release for
information about creating a database.

2. Ensure that the source database is running in ARCHIVELOG mode. See Oracle
Database Administrator's Guide for information about running a database in
ARCHIVELOG mode.

3. Create an undo tablespace at the capture database if one does not exist. For
example, run the following statement while logged into the capture database as an
administrative user:

CREATE UNDO TABLESPACE undotbs_02
 DATAFILE '/u01/oracle/rbdb1/undo0201.dbf' SIZE 2M REUSE AUTOEXTEND ON;

The capture process at the capture database uses the undo tablespace.

See "The Capture Database During the Upgrade or Maintenance Operation" for
more information about the capture database.

See Oracle Database Administrator's Guide for more information about creating an
undo tablespace.

4. Ensure that the initialization parameters are set properly at both databases to
support an Oracle Streams environment.

For Oracle Database 11g Release 2 (11.2) or later databases, see Oracle Streams
Replication Administrator's Guide for information about setting initialization
parameters that are relevant to Oracle Streams.

If you are upgrading from a prior release of Oracle Database, then for the source
database, see the Oracle Streams documentation for the source database
release.

5. Configure an Oracle Streams administrator at each database, including the source
database, destination database, and capture database (if the capture database is
a third database). This example assumes that the name of the Oracle Streams
administrator is strmadmin at each database.

For Oracle Database 11g Release 2 (11.2) or later databases, see Oracle Streams
Replication Administrator's Guide for more information.

If you are upgrading from a prior release of Oracle Database, then for the source
database, see the Oracle Streams documentation for the source database
release.

6. If you are upgrading user-created applications, then supplementally log any
columns at the source database that will be involved in a rule-based
transformation, procedure DML handler, or value dependency. These columns
must be unconditionally logged at the source database. See Oracle Streams
Replication Administrator's Guide for information about specifying unconditional
supplemental log groups for these columns.

7. At the source database, ensure that no changes are made to the database objects
that are not supported by Oracle Streams during the upgrade or maintenance
operation. To list unsupported database objects, query the
DBA_STREAMS_UNSUPPORTED data dictionary view.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-16

"Preparing for Upgrade or Maintenance of a Database with User-Defined Types"
discusses a method for retaining changes to tables that contain user-defined types
during the maintenance operation. If you are using this method, then tables that
contain user-defined types can remain open during the operation.

Tip:

In Oracle Database 11g Release 1 (11.1) and later databases, you can use
the ALTER TABLE statement with the READ ONLY clause to make a table read-only.

D.3.2 Task 2: Setting Up Oracle Streams Before Instantiation
The specific instructions for setting up Oracle Streams before instantiation depend on
which database is the capture database. The PRE_INSTANTIATION_SETUP procedure
always configures the capture process on the database where it is run. Therefore, this
procedure must be run at the capture database.

When you run this procedure, you can specify that the procedure performs the
configuration directly, or that the procedure generates a script that contains the
configuration actions. See "Deciding Whether to Configure Oracle Streams Directly or
Generate a Script". The examples in this section specify that the procedure performs
the configuration directly.

Follow the instructions in the appropriate section:

• The Source Database Is the Capture Database

• The Destination Database Is the Capture Database

• A Third Database Is the Capture Database

Note:

When the PRE_INSTANTIATION_SETUP procedure is running with the
perform_actions parameter set to TRUE, metadata about its configuration
actions is recorded in the following data dictionary views:
DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS,
DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the
procedure stops because it encounters an error, then you can use the
RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to complete the
configuration after you correct the conditions that caused the error. These
views are not populated if a script is used to configure the replication
environment.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-17

See Also:

• "Overview of Using Oracle Streams for Upgrade and Maintenance
Operations" for information about the capture database

• Oracle Database PL/SQL Packages and Types Reference for more
information about the RECOVER_OPERATION procedure

D.3.2.1 The Source Database Is the Capture Database
Complete the following steps to set up Oracle Streams before instantiation when the
source database is the capture database:

1. Configure your network and Oracle Net so that the source database can
communicate with the destination database. See Oracle Database Net Services
Administrator's Guide for more information.

2. In SQL*Plus, connect to the source database as the Oracle Streams administrator.
In this example, the source database is orcl.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Create a database link to the destination database. For example:

CREATE DATABASE LINK stms.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'stms.example.com';

4. Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-18

5. Proceed to "Task 3: Instantiating the Database".

D.3.2.2 The Destination Database Is the Capture Database
Complete the following steps to set up Oracle Streams before instantiation when the
destination database is the capture database:

1. Configure your network and Oracle Net so that the source database and
destination database can communicate with each other. See Oracle Database Net
Services Administrator's Guide for more information.

2. Ensure that log file shipping from the source database to the destination database
is configured. See "Preparing for Downstream Capture" for more information.

3. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator. In this example, the destination database is stms.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

4. Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

5. Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.streams_q_table',
 capture_queue_name => 'strmadmin.streams_q',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.streams_q',
 apply_queue_name => 'strmadmin.streams_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Notice that the propagation_name parameter is omitted because a propagation is
not necessary when the destination database is the capture database and the
downstream capture process and apply process use the same queue at the
destination database.

Also, notice that the capture process and apply process will share a queue named
streams_q at the destination database.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-19

6. Proceed to "Task 3: Instantiating the Database".

D.3.2.3 A Third Database Is the Capture Database
This example assumes that the global name of the third database is thrd.example.com.
Complete the following steps to set up Oracle Streams before instantiation when a
third database is the capture database:

1. Configure your network and Oracle Net so that the source database, destination
database, and third database can communicate with each other. See Oracle
Database Net Services Administrator's Guide for more information.

2. Ensure that log file shipping from the source database to the third database is
configured. See "Preparing for Downstream Capture" for more information.

3. In SQL*Plus, connect to the third database as the Oracle Streams administrator. In
this example, the third database is thrd.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

4. Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

5. Create a database link to the destination database. For example:

CREATE DATABASE LINK stms.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'stms.example.com';

6. Run the PRE_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.PRE_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-20

7. Proceed to "Task 3: Instantiating the Database".

D.3.3 Task 3: Instantiating the Database
"Deciding Which Utility to Use for Instantiation" discusses different options for
instantiating an entire database. Complete the steps in the appropriate section based
on the instantiation option you are using:

• Instantiating the Database Using Export/Import

• Instantiating the Database Using the RMAN DUPLICATE Command

• Instantiating the Database Using the RMAN CONVERT DATABASE Command

See Also:

Oracle Streams Replication Administrator's Guide for more information about
performing instantiations

D.3.3.1 Instantiating the Database Using Export/Import
Complete the following steps to instantiate an entire database with Data Pump:

1. In SQL*Plus, connect to the source database as the Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create a directory object to hold the export dump file and export log file. For
example:

CREATE DIRECTORY dpump_dir AS '/usr/dpump_dir';

3. While connected to the source database as the Oracle Streams administrator,
determine the current system change number (SCN) of the source database:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 current_scn NUMBER;
BEGIN
 current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

The returned SCN value is specified for the FLASHBACK_SCN Data Pump export
parameter in Step 4. Specifying the FLASHBACK_SCN export parameter, or a similar
export parameter, ensures that the export is consistent to a single SCN. In this
example, assume that the query returned 876606.

After you perform this query, ensure that no DDL changes are made to the objects
being exported until after the export is complete.

4. On a command line, use Data Pump to export the source database.

Perform the export by connecting as an administrative user who is granted
EXP_FULL_DATABASE role. This user also must have READ and WRITE privilege on the

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-21

directory object created in Step 2. This example connects as the Oracle Streams
administrator strmadmin.

The following example is a Data Pump export command:

expdp strmadmin FULL DIRECTORY=DPUMP_DIR DUMPFILE=orc1.dmp FLASHBACK_SCN=876606

See Also:

Oracle Database Utilities for information about performing a Data Pump export

5. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator.

6. Create a directory object to hold the import dump file and import log file. For
example:

CREATE DIRECTORY dpump_dir AS '/usr/dpump_dir';

7. Transfer the Data Pump export dump file orc1.dmp to the destination database.
You can use the DBMS_FILE_TRANSFER package, binary FTP, or some other method
to transfer the file to the destination database. After the file transfer, the export
dump file should reside in the directory that corresponds to the directory object
created in Step 6.

8. On a command line at the destination database, use Data Pump to import the
export dump file orc1.dmp. Ensure that no changes are made to the database
tables until the import is complete. Performing the import automatically sets the
instantiation SCN for the destination database and all of its objects.

Perform the import by connecting as an administrative user who is granted
IMP_FULL_DATABASE role. This user also must have READ and WRITE privilege on the
directory object created in Step 6. This example connects as the Oracle Streams
administrator strmadmin.

Ensure that you set the STREAMS_CONFIGURATION import parameter to n.

The following example is an import command:

impdp strmadmin FULL DIRECTORY=DPUMP_DIR DUMPFILE=orc1.dmp
STREAMS_CONFIGURATION=n

See Also:

Oracle Database Utilities for information about performing a Data Pump import

D.3.3.2 Instantiating the Database Using the RMAN DUPLICATE Command
If you use the RMAN DUPLICATE command for instantiation on the same platform, then
complete the following steps:

1. Create a backup of the source database if one does not exist. RMAN requires a
valid backup for duplication. In this example, create a backup of orcl.example.com
if one does not exist.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-22

Note:

A backup of the source database is not necessary if you use the FROM ACTIVE
DATABASE option when you run the RMAN DUPLICATE command. For large
databases, the FROM ACTIVE DATABASE option requires significant network
resources. This example does not use this option.

2. In SQL*Plus, connect as an administrative user to the source database. In this
example, the source database is orcl.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Determine the until SCN for the RMAN DUPLICATE command. For example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN value. This example assumes that the until SCN
value is 748045. You will set the UNTIL SCN option to this value when you use RMAN
to duplicate the database in Step 7 and as the instantiation SCN in "Task 4:
Setting Up Oracle Streams After Instantiation".

4. Archive the current online redo log. For example:

ALTER SYSTEM ARCHIVE LOG CURRENT;

5. Prepare your environment for database duplication, which includes preparing the
destination database as an auxiliary instance for duplication. See the Oracle
Database Backup and Recovery User's Guide for more information.

6. Start the RMAN client, and connect to the database orcl.example.com as TARGET
and to the stms.example.com database as AUXILIARY. Connect to each database as
an administrative user.

See Oracle Database Backup and Recovery Reference for more information about
the RMAN CONNECT command.

7. Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to instantiate
the source database at the destination database. The OPEN RESTRICTED option is
required. This option enables a restricted session in the duplicate database by
issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION.
RMAN issues this statement immediately before the duplicate database is opened.

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use the
until SCN determined in Step 3 for this clause. Archived redo logs must be
available for the until SCN specified and for higher SCN values. Therefore, Step 4
archived the redo log containing the until SCN.

Ensure that you use TO database_name in the DUPLICATE command to specify the
database name of the duplicate database. In this example, the database name of
the duplicate database is stms. Therefore, the DUPLICATE command for this example
includes TO stms.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-23

The following example is an RMAN DUPLICATE command:

RMAN> RUN
 {
 SET UNTIL SCN 748045;
 ALLOCATE AUXILIARY CHANNEL stms DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO stms
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

8. In SQL*Plus, connect to the destination database as a system administrator. In
this example, the destination database is stms.example.com.

9. Rename the global name. After an RMAN database instantiation, the destination
database has the same global name as the source database, but the destination
database must have its original name until the end of the operation. Rename the
global name of the destination database back to its original name with the
following statement:

ALTER DATABASE RENAME GLOBAL_NAME TO stms.example.com;

10. If you are upgrading the database from a prior release to Oracle Database 11g
Release 2 or later, then upgrade the destination database. See the Oracle
Database Upgrade Guide for more information. If you are not upgrading the
database, then skip this step and proceed to the next step.

11. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator.

12. Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

This database link is required because the POST_INSTANTIATION_SETUP procedure
runs the SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package at
the destination database, and the SET_GLOBAL_INSTANTIATION_SCN procedure
requires the database link.

13. If the source database and the capture database are the same database, then
while still connected as the Oracle Streams administrator in SQL*Plus to the
destination database, drop the database link from the source database to the
destination database that was cloned from the source database:

DROP DATABASE LINK stms.example.com;

See Also:

Oracle Database Backup and Recovery Reference for more information about
the RMAN DUPLICATE command

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-24

D.3.3.3 Instantiating the Database Using the RMAN CONVERT DATABASE
Command

If you use the RMAN CONVERT DATABASE command for instantiation to migrate the
database to a different platform, then complete the following steps:

1. Create a backup of the source database if one does not exist. RMAN requires a
valid backup. In this example, create a backup of orcl.example.com if one does not
exist.

2. In SQL*Plus, connect to the source database as an administrative user.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Archive the current online redo log. For example:

ALTER SYSTEM ARCHIVE LOG CURRENT;

4. Prepare your environment for database conversion, which includes opening the
source database in read-only mode. Complete the following steps:

a. If the source database is open, then shut it down and start it in read-only
mode.

b. Run the CHECK_DB and CHECK_EXTERNAL functions in the DBMS_TDB package. Check
the results to ensure that the conversion is supported by the RMAN CONVERT
DATABASE command.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
about these steps

5. Determine the current SCN of the source database:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 current_scn NUMBER;
BEGIN
 current_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Current SCN: ' || current_scn);
END;
/

Make a note of the SCN value returned. You will use this number for the
instantiation SCN in "Task 4: Setting Up Oracle Streams After Instantiation". For
this example, assume that the returned value is 748044.

6. Start the RMAN client, and connect to the source database orcl.example.com as
TARGET as an administrative user.

See Oracle Database Backup and Recovery Reference for more information about
the RMAN CONNECT command.

7. Run the CONVERT DATABASE command.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-25

Ensure that you use NEW DATABASE database_name in the CONVERT DATABASE command
to specify the database name of the destination database. In this example, the
database name of the destination database is stms. Therefore, the CONVERT
DATABASE command for this example includes NEW DATABASE stms.

The following example is an RMAN CONVERT DATABASE command for a destination
database that is running on the Linux IA (64-bit) platform:

CONVERT DATABASE NEW DATABASE 'stms'
 TRANSPORT SCRIPT '/tmp/convertdb/transportscript.sql'
 TO PLATFORM 'Linux IA (64-bit)'
 DB_FILE_NAME_CONVERT = ('/home/oracle/dbs','/tmp/convertdb');

8. Transfer the data files, PFILE, and SQL script produced by the RMAN CONVERT
DATABASE command to the computer system that is running the destination
database.

9. On the computer system that is running the destination database, modify the SQL
script so that the destination database always opens with restricted session
enabled.

An example script follows with the necessary modifications in bold font:

-- The following commands will create a control file and use it
-- to open the database.
-- Data used by Recovery Manager will be lost.
-- The contents of online logs will be lost and all backups will
-- be invalidated. Use this only if online logs are damaged.

-- After mounting the created controlfile, the following SQL
-- statement will place the database in the appropriate
-- protection mode:
-- ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE

STARTUP NOMOUNT PFILE='init_00gd2lak_1_0.ora'
CREATE CONTROLFILE REUSE SET DATABASE "STMS" RESETLOGS NOARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 226
LOGFILE
 GROUP 1 '/tmp/convertdb/archlog1' SIZE 25M,
 GROUP 2 '/tmp/convertdb/archlog2' SIZE 25M
DATAFILE
 '/tmp/convertdb/systemdf',
 '/tmp/convertdb/sysauxdf',
 '/tmp/convertdb/datafile1',
 '/tmp/convertdb/datafile2',
 '/tmp/convertdb/datafile3'
CHARACTER SET WE8DEC
;

-- NOTE: This ALTER SYSTEM statement is added to enable restricted session.

ALTER SYSTEM ENABLE RESTRICTED SESSION;

-- Database can now be opened zeroing the online logs.
ALTER DATABASE OPEN RESETLOGS;

-- No tempfile entries found to add.
--

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-26

set echo off
prompt ~~~
prompt * Your database has been created successfully!
prompt * There are many things to think about for the new database. Here
prompt * is a checklist to help you stay on track:
prompt * 1. You may want to redefine the location of the directory objects.
prompt * 2. You may want to change the internal database identifier (DBID)
prompt * or the global database name for this database. Use the
prompt * NEWDBID Utility (nid).
prompt ~~~

SHUTDOWN IMMEDIATE
-- NOTE: This startup has the UPGRADE parameter.
-- The startup already has restricted session enabled, so no change is needed.
STARTUP UPGRADE PFILE='init_00gd2lak_1_0.ora'
@@ ?/rdbms/admin/utlirp.sql
SHUTDOWN IMMEDIATE
-- NOTE: The startup below is generated without the RESTRICT clause.
-- Add the RESTRICT clause.
STARTUP RESTRICT PFILE='init_00gd2lak_1_0.ora'
-- The following step will recompile all PL/SQL modules.
-- It may take serveral hours to complete.
@@ ?/rdbms/admin/utlrp.sql
set feedback 6;

Other changes to the script might be necessary. For example, the data file
locations and PFILE location might need to be changed to point to the correct
locations on the destination database computer system.

10. In SQL*Plus, connect to the destination database as a system administrator.

11. Rename the global name. After an RMAN database instantiation, the destination
database has the same global name as the source database, but the destination
database must have its original name until the end of the maintenance operation.
Rename the global name of the destination database back to its original name with
the following statement:

ALTER DATABASE RENAME GLOBAL_NAME TO stms.example.com;

12. If you are upgrading the database from a prior release to Oracle Database 11g
Release 2 or later, then upgrade the destination database. See the Oracle
Database Upgrade Guide for more information. If you are not upgrading the
database, then skip this step and proceed to the next step.

13. Connect to the destination database as the Oracle Streams administrator using
the new global name.

14. Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

This database link is required because the POST_INSTANTIATION_SETUP procedure
runs the SET_GLOBAL_INSTANTIATION_SCN procedure in the DBMS_APPLY_ADM package at
the destination database, and the SET_GLOBAL_INSTANTIATION_SCN procedure
requires the database link.

15. If the source database and the capture database are the same database, then
while still connected as the Oracle Streams administrator in SQL*Plus to the

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-27

destination database, drop the database link from the source database to the
destination database that was cloned from the source database:

DROP DATABASE LINK stms.example.com;

D.3.4 Task 4: Setting Up Oracle Streams After Instantiation
To set up Oracle Streams after instantiation, run the POST_INSTANTIATION_SETUP
procedure. The POST_INSTANTIATION_SETUP procedure must be run at the database
where the PRE_INSTANTIATION_SETUP procedure was run in "Task 2: Setting Up Oracle
Streams Before Instantiation".

When you run the POST_INSTANTIATION_SETUP procedure, you can specify that the
procedure performs the configuration directly, or that the procedure generates a script
that contains the configuration actions. See "Deciding Whether to Configure Oracle
Streams Directly or Generate a Script". The examples in this section specify that the
procedure performs the configuration directly.

The parameter values specified in the PRE_INSTANTIATION_SETUP and
POST_INSTANTIATION_SETUP procedures must match, except for the values of the
following parameters: perform_actions, script_name, script_directory_object, and
start_processes. In this example, all of the parameter values match in the two
procedures.

It is important to set the instantiation_scn parameter in the POST_INSTANTIATION_SETUP
procedure correctly. Follow these instructions when you set this parameter:

• If RMAN was used for instantiation, then set the instantiation_scn parameter to
the value determined during instantiation. This value was determined when you
completed the instantiation in "Instantiating the Database Using the RMAN
DUPLICATE Command" or "Instantiating the Database Using the RMAN
CONVERT DATABASE Command".

The source database and third database examples in this section set the
instantiation_scn parameter to 748044 for the following reasons:

– If the RMAN DUPLICATE command was used for instantiation, then the
command duplicates the database up to one less than the SCN value
specified in the UNTIL SCN clause. Therefore, you should subtract one from the
until SCN value that you specified when you ran the DUPLICATE command in
Step 7 in "Instantiating the Database Using the RMAN DUPLICATE
Command". In this example, the until SCN was set to 748045. Therefore, the
instantiation_scn parameter should be set to 748045 - 1, or 748044.

– If the RMAN CONVERT DATABASE command was used for instantiation, then the
instantiation_scn parameter should be set to the SCN value determined
immediately before running the CONVERT DATABASE command. This value was
determined in Step 5 in "Instantiating the Database Using the RMAN
CONVERT DATABASE Command".

• If Export/Import was used for instantiation, then the instantiation SCN was set
during import, and the instantiation_scn parameter must be set to NULL. The
destination database example in this section sets the instantiation_scn to NULL
because RMAN cannot be used for database instantiation when the destination
database is the capture database.

The specific instructions for setting up Oracle Streams after instantiation depend on
which database is the capture database. Follow the instructions in the appropriate
section:

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-28

• The Source Database Is the Capture Database

• The Destination Database Is the Capture Database

• A Third Database Is the Capture Database

Note:

When the POST_INSTANTIATION_SETUP procedure is running with the
perform_actions parameter set to TRUE, metadata about its configuration
actions is recorded in the following data dictionary views:
DBA_RECOVERABLE_SCRIPT, DBA_RECOVERABLE_SCRIPT_PARAMS,
DBA_RECOVERABLE_SCRIPT_BLOCKS, and DBA_RECOVERABLE_SCRIPT_ERRORS. If the
procedure stops because it encounters an error, then you can use the
RECOVER_OPERATION procedure in the DBMS_STREAMS_ADM package to complete the
configuration after you correct the conditions that caused the error. These
views are not populated if a script is used to configure the replication
environment.

See Also:

• "Overview of Using Oracle Streams for Upgrade and Maintenance
Operations" for information about the capture database

• Oracle Database PL/SQL Packages and Types Reference for more
information about the RECOVER_OPERATION procedure

D.3.4.1 The Source Database Is the Capture Database
Complete the following steps to set up Oracle Streams after instantiation when the
source database is the capture database:

1. In SQL*Plus, connect to the source database as the Oracle Streams administrator.
In this example, the source database is orcl.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-29

 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 instantiation_scn => 748044, -- NULL if Export/Import instantiation
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Ensure that the instantiation_scn parameter is set to NULL if export/import was
used for instantiation instead of RMAN.

3. Proceed to "Task 5: Finishing the Upgrade or Maintenance Operation and
Removing Oracle Streams".

D.3.4.2 The Destination Database Is the Capture Database
Complete the following steps to set up Oracle Streams after instantiation when the
destination database is the capture database:

1. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator. In this example, the destination database is stms.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.streams_q_table',
 capture_queue_name => 'strmadmin.streams_q',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.streams_q',
 apply_queue_name => 'strmadmin.streams_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 instantiation_scn => NULL,
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-30

Notice that the propagation_name parameter is omitted because a propagation is
not necessary when the destination database is the capture database.

3. Proceed to "Task 5: Finishing the Upgrade or Maintenance Operation and
Removing Oracle Streams".

D.3.4.3 A Third Database Is the Capture Database
This example assumes that the global name of the third database is thrd.example.com.
Complete the following steps to set up Oracle Streams after instantiation when a third
database is the capture database:

1. In SQL*Plus, connect to the third database as the Oracle Streams administrator. In
this example, the third database is thrd.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Run the POST_INSTANTIATION_SETUP procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.POST_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',
 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 include_ddl => TRUE,
 start_processes => FALSE,
 instantiation_scn => 748044, -- NULL if Export/Import instantiation
 exclude_schemas => '*',
 exclude_flags => DBMS_STREAMS_ADM.EXCLUDE_FLAGS_UNSUPPORTED +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DML +
 DBMS_STREAMS_ADM.EXCLUDE_FLAGS_DDL);
END;
/

Ensure that the instantiation_scn parameter is set to NULL if export/import was
used for instantiation instead of RMAN.

3. Proceed to "Task 5: Finishing the Upgrade or Maintenance Operation and
Removing Oracle Streams".

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-31

D.3.5 Task 5: Finishing the Upgrade or Maintenance Operation and
Removing Oracle Streams

Complete the following steps to finish the upgrade or maintenance operation and
remove Oracle Streams components:

1. At the destination database, disable any imported jobs that modify data that will be
replicated from the source database. Query the DBA_JOBS data dictionary view to list
the jobs.

2. If you are applying a patch or patch set, then apply the patch or patch set to the
destination database. Follow the instructions included with the patch or patch set.
If you are not applying a patch or patch set, then skip this step and proceed to the
next step.

3. If you are upgrading user-created applications, then, at the destination database,
you might need to complete the following steps:

a. Modify the schema objects in the database to support the upgraded user-
created applications.

b. Configure one or more declarative rule-based transformations and procedure
DML handlers that modify row LCRs from the source database so that the
apply process applies these row LCRs to the modified schema objects
correctly. For example, if a column name was changed to support the
upgraded user-created applications, then a declarative rule-based
transformation should rename the column in a row LCR that involves the
column.

See "Handling Modifications to Schema Objects".

c. Configure one or more virtual dependency definitions if row LCRs might
contain logical dependencies that cannot be detected by the apply process
alone.

See "Handling Logical Dependencies".

4. In SQL*Plus, connect to the destination database as an administrative user.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

5. Use the ALTER SYSTEM statement to disable the RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

6. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator.

7. Start the apply process. For example:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_maint');
END;
/

8. In SQL*Plus, connect to the capture database as the Oracle Streams
administrator.

9. Start the capture process. For example:

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-32

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_maint');
END;
/

This step begins the process of replicating changes that were made to the source
database during instantiation of the destination database.

10. Monitor the Oracle Streams environment until the apply process at the destination
database has applied most of the changes from the source database.

To determine whether the apply process at the destination database has applied
most of the changes from the source database, complete the following steps:

a. Query the enqueue message number of the capture process and the message
with the oldest system change number (SCN) for the apply process to see if
they are nearly equal.

For example, if the name of the capture process is capture_maint, and the
name of the apply process is apply_maint, then run the following query at the
capture database:

COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Captured SCN' FORMAT 99999999999
COLUMN OLDEST_SCN_NUM HEADING 'Oldest Applied SCN' FORMAT 99999999999

SELECT c.ENQUEUE_MESSAGE_NUMBER, a.OLDEST_SCN_NUM
 FROM V$STREAMS_CAPTURE c, V$STREAMS_APPLY_READER@stms.example.com a
 WHERE c.CAPTURE_NAME = 'CAPTURE_MAINT'
 AND a.APPLY_NAME = 'APPLY_MAINT';

When the two values returned by this query are nearly equal, most of the
changes from the source database have been applied at the destination
database, and you can proceed to the next step. At this point in the process,
the values returned by this query might never be equal because the source
database still allows changes.

If this query returns no results, then ensure that the Oracle Streams clients in
the environment are enabled by querying the STATUS column in the DBA_CAPTURE
view at the capture database and the DBA_APPLY view at the destination
database. If a propagation is used, you can check the status of the
propagation by running the query in "Displaying Information About the
Schedules for Propagation Jobs".

If an Oracle Streams client is disabled, then try restarting it. If an Oracle
Streams client will not restart, then troubleshoot the environment using the
information in Identifying Problems in an Oracle Streams Environment.

b. Query the state of the apply process apply servers at the destination database
to determine whether they have finished applying changes.

For example, if the name of the apply process is apply_maint, then run the
following query at the source database:

COLUMN STATE HEADING 'Apply Server State' FORMAT A20

SELECT STATE
 FROM V$STREAMS_APPLY_SERVER@stms.example.com
 WHERE APPLY_NAME = 'APPLY_MAINT';

When the state for all apply servers is IDLE, you can proceed to the next step.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-33

11. Connect to the destination database as the Oracle Streams administrator.

12. Ensure that there are no apply errors by running the following query:

SELECT COUNT(*) FROM DBA_APPLY_ERROR;

If this query returns zero, then move on to the next step. If this query shows errors
in the error queue, then resolve these errors before continuing. See "Managing
Apply Errors" for more information.

13. Disconnect all applications and users from the source database.

14. Connect to the source database as an administrative user.

15. Restrict access to the database. For example:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

16. While connected as an administrative user in SQL*Plus to the source database,
repeat the query you ran in Step 1010.a. When the two values returned by the
query are equal, all of the changes from the source database have been applied at
the destination database, and you can move on to the next step.

17. Connect to the destination database as the Oracle Streams administrator.

18. Repeat the query you ran in Step 12. If this query returns zero, then move on to
the next step. If this query shows errors in the error queue, then resolve these
errors before continuing. See "Managing Apply Errors" for more information.

19. If you performed any actions that created, modified, or deleted job slaves at the
source database during the upgrade or maintenance operation, then perform the
same actions at the destination database. See "Considerations for Job Slaves and
PL/SQL Package Subprograms" for more information.

20. If you invoked any Oracle-supplied PL/SQL package subprograms at the source
database during the upgrade or maintenance operation that modified both user
data and dictionary metadata at the same time, then invoke the same
subprograms at the destination database. See "Considerations for Job Slaves and
PL/SQL Package Subprograms" for more information.

21. Remove the Oracle Streams components that are no longer needed from both
databases, including the ANYDATA queues, supplemental logging specifications, the
capture process, the propagation if one exists, and the apply process. Connect as
the Oracle Streams administrator in SQL*Plus to the capture database, and run
the CLEANUP_INSTANTIATION_SETUP procedure to remove the Oracle Streams
components at both databases.

If the capture database is the source database or a third database, then run the
following procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.CLEANUP_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.capture_q_table',

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-34

 capture_queue_name => 'strmadmin.capture_q',
 propagation_name => 'prop_maint',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.apply_q',
 apply_queue_name => 'strmadmin.apply_q_table',
 bi_directional => FALSE,
 change_global_name => TRUE);
END;
/

If the capture database is the destination database, then run the following
procedure:

DECLARE
 empty_tbs DBMS_STREAMS_TABLESPACE_ADM.TABLESPACE_SET;
BEGIN
 DBMS_STREAMS_ADM.CLEANUP_INSTANTIATION_SETUP(
 maintain_mode => 'GLOBAL',
 tablespace_names => empty_tbs,
 source_database => 'orcl.example.com',
 destination_database => 'stms.example.com',
 perform_actions => TRUE,
 script_name => NULL,
 script_directory_object => NULL,
 capture_name => 'capture_maint',
 capture_queue_table => 'strmadmin.streams_q_table',
 capture_queue_name => 'strmadmin.streams_q',
 apply_name => 'apply_maint',
 apply_queue_table => 'strmadmin.streams_q',
 apply_queue_name => 'strmadmin.streams_q_table',
 bi_directional => FALSE,
 change_global_name => TRUE);
END;
/

Notice that the propagation_name parameter is omitted because a propagation is
not necessary when the destination database is the capture database.

Both sample procedures in this step rename the global name of the destination
database to orc1.example.com because the change_global_name parameter is set to
TRUE.

22. Shut down the source database. This database should not be opened again.

23. At the destination database, enable any jobs that you disabled earlier.

24. Make the destination database available for applications and users. Redirect any
applications and users that were connecting to the source database to the
destination database. If necessary, reconfigure your network and Oracle Net so
that systems that communicated with the source database now communicate with
the destination database. See Oracle Database Net Services Administrator's
Guide for more information.

25. If you no longer need the Oracle Streams administrator at the destination
database, then connect as an administrative user in SQL*Plus to the destination
database, and run the following statement:

DROP USER strmadmin CASCADE;

The upgrade or maintenance operation is complete.

Appendix D
Performing a Database Upgrade or Maintenance Operation Using Oracle Streams

D-35

E
Online Upgrade of an Earlier Database
with Oracle Streams

This appendix describes how to perform a database upgrade from one of the following
Oracle Database releases with Oracle Streams:

• Oracle Database 10g Release 1 (10.1)

• Oracle9i Release 2 (9.2)

The database upgrade operation described in this appendix uses the features of
Oracle Streams to achieve little or no database down time.

The following topics describe performing an online database upgrade with Oracle
Streams:

• Overview of Using Oracle Streams in the Database Upgrade Process

• Preparing for a Database Upgrade Using Oracle Streams

• Performing a Database Upgrade Using Oracle Streams

See Also:

Online Database Upgrade and Maintenance with Oracle Streams for
information about upgrading from Oracle Database 10g Release 2 (10.2) or
later and for information about performing other database maintenance
operations with Oracle Streams

E.1 Overview of Using Oracle Streams in the Database
Upgrade Process

An Oracle database upgrade is the process of transforming an existing, prior release
of an Oracle database into the current release. A database upgrade typically requires
substantial database down time, but you can perform a database upgrade with little or
no down time by using the features of Oracle Streams. To do so, you use Oracle
Streams to configure a replication environment with the following databases:

• Source Database: The original database that is being upgraded.

• Capture Database: The database where a capture process captures changes
made to the source database during the upgrade.

• Destination Database: The copy of the source database where an apply process
applies changes made to the source database during the upgrade process.

Specifically, you can use the following general steps to perform a database upgrade
while the database is online:

E-1

1. Create an empty destination database.

2. Configure an Oracle Streams replication environment where the original database
is the source database and a copy of the database is the destination database for
the changes made at the source.

3. Perform the database upgrade on the destination database. During this time the
original source database is available online.

4. Use Oracle Streams to apply the changes made at the source database to the
destination database.

5. When the destination database has caught up with the changes made at the
source database, take the source database offline and make the destination
database available for applications and users.

Figure E-1 provides an overview of this process.

Figure E-1 Online Database Upgrade with Oracle Streams

Capture Database*Source Database

Record�
Changes

Shipped for �
Downstream �
Capture

Capture�
Changes�
(Local)

Propagate�
LCRs

Database Objects

Redo

Log

Capture�
Changes�
(Downstream)

Enqueue�
LCRs

Capture Process

Destination Database

Dequeue�
LCRs

Apply�
Changes

Database Objects

Apply Process

Queue

Redo

Log

Queue

Capture database may be source
database, destination database, �
or a third database.

*

Appendix E
Overview of Using Oracle Streams in the Database Upgrade Process

E-2

E.1.1 The Capture Database During the Upgrade Process
During the upgrade process, the capture database is the database where the capture
process is created. Downstream capture was introduced in Oracle Database 10g
Release 1 (10.1). If you are upgrading a database from Oracle Database 10g Release
1, then you have the following options:

• A local capture process can be created at the source database during the upgrade
process.

• A downstream capture process can be created at the destination database. If the
destination database is the capture database, then a propagation from the capture
database to the destination database is not needed.

• A third database can be the capture database. In this case, the third database can
be an Oracle Database 10g Release 1 or later database.

However, if you are upgrading a database from Oracle9i Release 2 (9.2) to Oracle
Database 11g Release 2 or later, then downstream capture is not supported, and a
local capture process must be created at the source database.

A downstream capture process reduces the resources required at the source database
during the upgrade process, but a local capture process is easier to configure.
Table E-1 describes which database can be the capture database during the upgrade
process.

Table E-1 Supported Capture Database During Upgrade

Existing Database
Release

Capture Database
Can Be Source
Database?

Capture Database
Can Be Destination
Database?

Capture Database
Can Be Third
Database?

9.2 Yes No No

10.1 Yes Yes Yes

Note:

If you are upgrading from Oracle Database 10g Release 1 (10.1), then, before
you begin the upgrade, decide which database will be the capture database.

See Also:

"Local Capture and Downstream Capture"

E.1.2 Assumptions for the Database Being Upgraded
The instructions in this appendix assume that all of the following statements are true
for the database being upgraded:

• The database is not part of an existing Oracle Streams environment.

Appendix E
Overview of Using Oracle Streams in the Database Upgrade Process

E-3

• The database is not part of an existing logical standby environment.

• No tables at the database are master tables for materialized views in other
databases.

• No messages are enqueued into user-created queues during the upgrade
process.

E.1.3 Considerations for Job Queue Processes and PL/SQL Package
Subprograms

If possible, ensure that no job queue processes are created, modified, or deleted
during the upgrade process, and that no Oracle-supplied PL/SQL package
subprograms are invoked during the upgrade process that modify both user data and
dictionary metadata at the same time. The following packages contain subprograms
that modify both user data and dictionary metadata at the same time: DBMS_RLS,
DBMS_STATS, and DBMS_JOB.

It might be possible to perform such actions on the database if you ensure that the
same actions are performed on the source database and destination database in
Steps 13 and 14 in "Task 5: Finishing the Upgrade and Removing Oracle Streams".
For example, if a PL/SQL procedure gathers statistics on the source database during
the upgrade process, then the same PL/SQL procedure should be invoked at the
destination database in Step 14.

E.2 Preparing for a Database Upgrade Using Oracle
Streams

The following sections describe tasks to complete before starting the database
upgrade with Oracle Streams:

• Preparing to Upgrade a Database with User-Defined Types

• Deciding Which Utility to Use for Instantiation

E.2.1 Preparing to Upgrade a Database with User-Defined Types
User-defined types include object types, REF values, varrays, and nested tables.
Currently, Oracle Streams capture processes and apply processes do not support
user-defined types. This section discusses using Oracle Streams to perform a
database upgrade on a database that has user-defined types.

One option is to ensure that no data manipulation language (DML) or data definition
language (DDL) changes are made to the tables that contain user-defined types during
the database upgrade. In this case, these tables are instantiated at the destination
database, and no changes are made to these tables during the entire operation. After
the upgrade is complete, make the tables that contain user-defined types read/write at
the destination database.

If tables that contain user-defined types must remain open during the upgrade, then
use the following general steps to retain changes to these tables during the upgrade:

1. Before you begin the upgrade process described in "Performing a Database
Upgrade Using Oracle Streams", create one or more logging tables to store row
changes to tables at the source database that include user-defined types. Each

Appendix E
Preparing for a Database Upgrade Using Oracle Streams

E-4

column in the logging table must use a data type that is supported by Oracle
Streams in the source database release.

2. Before you begin the upgrade process described in "Performing a Database
Upgrade Using Oracle Streams", create a DML trigger at the source database that
fires on the tables that contain the user-defined data types. The trigger converts
each row change into relational equivalents and logs the modified row in a logging
table created in Step 1.

3. When the instructions in "Performing a Database Upgrade Using Oracle Streams"
say to configure a capture process and propagation, configure the capture process
and propagation to capture changes to the logging table and propagate these
changes to the destination database. Changes to tables that contain user-defined
types must not be captured or propagated.

4. When the instructions in "Performing a Database Upgrade Using Oracle Streams"
say to configure a an apply process on the destination database, configure the
apply process to use a procedure DML handler that processes the changes to the
logging tables. The procedure DML handler reconstructs the user-defined types
from the relational equivalents and applies the modified changes to the tables that
contain user-defined types.

For instructions, go to the My Oracle Support (formerly OracleMetaLink) Web site
using a Web browser:

http://support.oracle.com/

Database bulletin 556742.1 describes additional data type support for Oracle Streams.

See Also:

• Oracle Database PL/SQL Language Reference for more information about
creating triggers

• "Managing a DML Handler"

E.2.2 Deciding Which Utility to Use for Instantiation
Before you begin the database upgrade, decide whether you want to use the Export/
Import utilities (Data Pump or original) or the Recovery Manager (RMAN) utility to
instantiate the destination database during the operation. The destination database will
replace the existing database that is being upgraded.

Consider the following factors when you make this decision:

• If you use original Export/Import or Data Pump Export/Import, then you can make
the destination database an Oracle Database 11g Release 2 (11.2) or later
database at the beginning of the operation. Therefore, you do not need to upgrade
the destination database after the instantiation.

If you use Export/Import for instantiation, and Data Pump is supported, then
Oracle recommends using Data Pump. Data Pump can perform the instantiation
faster than original Export/Import.

• If you use the RMAN DUPLICATE command, then the instantiation might be faster
than with Export/Import, especially if the database is large, but the database

Appendix E
Preparing for a Database Upgrade Using Oracle Streams

E-5

http://support.oracle.com/

release must be the same for RMAN instantiation. Therefore, the following
conditions must be met:

– If the database is an Oracle9i Release 2 (9.2) database, then the destination
database is an Oracle9i Database Release 2 database when it is instantiated.

– If the database is an Oracle Database 10g Release 1 (10.1) database, then
the destination database is an Oracle Database 10g Release 1 database
when it is instantiated.

After the instantiation, you must upgrade the destination database.

Also, Oracle recommends that you do not use RMAN for instantiation in an
environment where distributed transactions are possible. Doing so might cause in-
doubt transactions that must be corrected manually.

Table E-2 describes whether each instantiation method is supported based on the
release being upgraded, whether the platform at the source and destination databases
are different, and whether the character set at the source and destination databases
are different. Each instantiation method is supported when the platform and character
set are the same at the source and destination databases.

Table E-2 Instantiation Methods for Database Upgrade with Oracle Streams

Instantiation Method Supported When
Upgrading From

Different
Platforms
Supported?

Different
Character Sets
Supported?

Original Export/Import 9.2 or 10.1 Yes Yes

Data Pump Export/Import 10.1 Yes Yes

RMAN DUPLICATE 9.2 or 10.1 No No

E.3 Performing a Database Upgrade Using Oracle Streams
This section contains instructions for performing a database upgrade using Oracle
Streams. These instructions describe using Oracle Streams to upgrade one of the
following Oracle Database releases: Oracle9i Release 2 (9.2) or Oracle Database 10g
Release 1 (10.1).

Complete the following tasks to upgrade a database using Oracle Streams:

• Task 1: Beginning the Upgrade

• Task 2: Setting Up Oracle Streams Before Instantiation

• Task 3: Instantiating the Database

• Task 4: Setting Up Oracle Streams After Instantiation

• Task 5: Finishing the Upgrade and Removing Oracle Streams

E.3.1 Task 1: Beginning the Upgrade
Complete the following steps to begin the upgrade using Oracle Streams:

1. Create an empty destination database. Ensure that this database has a different
global name than the source database. This example assumes that the global
name of the source database is orcl.example.com and the global name of the
destination database during the upgrade is updb.example.com. The global name of

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-6

the destination database is changed when the destination database replaces the
source database at the end of the upgrade process.

The release of the empty database you create depends on the instantiation
method you decided to use in "Deciding Which Utility to Use for Instantiation":

• If you decided to use export/import for instantiation, then create an empty
Oracle Database 11g Release 2 or later database. This database will be the
destination database during the upgrade process.

See the Oracle Database installation guide for your operating system if you
must install Oracle Database, and see the Oracle Database Administrator's
Guide for information about creating a database.

• If you decided to use RMAN for instantiation, then create an empty Oracle
database that is the same release as the database you are upgrading.

Specifically, if you are upgrading an Oracle9i Release 2 (9.2) database, then
create an Oracle9i Release 2 database. Alternatively, if you are upgrading an
Oracle Database 10g Release 1 (10.1) database, then create an Oracle
Database 10g Release 1 database.

This database will be the destination database during the upgrade process.
Both the source database that is being upgraded and the destination database
must be the same release of Oracle when you start the upgrade process.

See the Oracle installation guide for your operating system if you must install
Oracle, and see the Oracle Database Administrator's Guide for the release for
information about creating a database.

2. Ensure that the source database is running in ARCHIVELOG mode. See the Oracle
Database Administrator's Guide for the source database release for information
about running a database in ARCHIVELOG mode.

3. Ensure that the initialization parameters are set properly at each database to
support an Oracle Streams environment. For the source database, see the Oracle
Streams documentation for the source database release. For the destination
database, see Oracle Streams Replication Administrator's Guide for information
about setting initialization parameters that are relevant to Oracle Streams. If the
capture database is a third database, then see the Oracle Streams documentation
for the capture database release.

4. At the source database, ensure that no changes are made during the upgrade
process to any database objects that were not supported by Oracle Streams in the
release you are upgrading:

• If you are upgrading an Oracle9i Release 2 (9.2) database, then tables with
columns of the following data types are not supported: NCLOB, LONG, LONG RAW,
BFILE, ROWID, and UROWID, and user-defined types (including object types, REFs,
varrays, and nested tables). In addition, the following types of tables are not
supported: temporary tables, index-organized tables, and object tables. See
Oracle9i Streams for complete information about unsupported database
objects.

• If you are upgrading an Oracle Database 10g Release 1 (10.1) database, then
query the DBA_STREAMS_UNSUPPORTED data dictionary view to list the database
objects that are not supported by Oracle Streams. Ensure that no changes are
made to these database objects during the upgrade process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a method
for retaining changes to tables that contain user-defined types during the upgrade.

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-7

If you are using this method, then tables that contain user-defined types can
remain open during the upgrade.

5. At the source database, configure an Oracle Streams administrator:

• If you are upgrading an Oracle9i Release 2 (9.2) database, then see Oracle9i
Streams for more information.

• If you are upgrading an Oracle Database 10g Release 1 database, then see
Oracle Streams Concepts and Administration for that release for more
information.

These instructions assume that the name of the Oracle Streams administrator at
the source database is strmadmin. This Oracle Streams administrator will be copied
automatically to the destination database during instantiation.

6. In SQL*Plus, connect to the source database orcl.example.com as an
administrative user.

See the Oracle Database Administrator's Guide for the source database release
for information about connecting to a database in SQL*Plus.

7. Specify database supplemental logging of primary keys, unique keys, and foreign
keys for all updates. For example:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

E.3.2 Task 2: Setting Up Oracle Streams Before Instantiation
The specific instructions for setting up Oracle Streams before instantiation depend on
which database is the capture database. Follow the instructions in the appropriate
section:

• The Source Database Is the Capture Database

• The Destination Database Is the Capture Database

• A Third Database Is the Capture Database

See Also:

"Overview of Using Oracle Streams in the Database Upgrade Process" for
information about the capture database

E.3.2.1 The Source Database Is the Capture Database
Complete the following steps to set up Oracle Streams before instantiation when the
source database is the capture database:

1. Configure your network and Oracle Net so that the source database can
communicate with the destination database. See Oracle Database Net Services
Administrator's Guide for more information.

2. In SQL*Plus, connect to the source database orcl.example.com as the Oracle
Streams administrator.

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-8

Seethe Oracle Database Administrator's Guide for the source database release for
information about connecting to a database in SQL*Plus.

3. Create an ANYDATA queue that will stage changes made to the source database
during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.capture_queue_table',
 queue_name => 'strmadmin.capture_queue');
END;
/

4. Configure a capture process that will capture all supported changes made to the
source database and stage these changes in the queue created in Step 3. Do not
start the capture process. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'capture',
 streams_name => 'capture_upgrade',
 queue_name => 'strmadmin.capture_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => FALSE,
 source_database => 'orcl.example.com',
 inclusion_rule => TRUE);
END;
/

"Preparing to Upgrade a Database with User-Defined Types" discusses a method
for retaining changes to tables that contain user-defined types during the
maintenance operation. If you are using this method, then ensure that the capture
process does not attempt to capture changes to tables with user-defined types.
See the Oracle Streams documentation for the source database release for
information about excluding database objects from an Oracle Streams
configuration with rules.

5. Proceed to "Task 3: Instantiating the Database".

E.3.2.2 The Destination Database Is the Capture Database
The database being upgraded must be an Oracle Database 10g Release 1 (10.1)
database to use this option. Complete the following steps to set up Oracle Streams
before instantiation when the destination database is the capture database:

1. Configure your network and Oracle Net so that the source database and
destination database can communicate with each other. See Oracle Database Net
Services Administrator's Guide for more information.

2. Follow the instructions in the appropriate section based on the method you are
using for instantiation:

• Export/Import

• RMAN

Export/Import

Complete the following steps if you are using export/import for instantiation:

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-9

a. In SQL*Plus, connect to the destination database updb.example.com as the
Oracle Streams administrator.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Create an ANYDATA queue that will stage changes made to the source database
during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

c. Configure a downstream capture process that will capture all supported
changes made to the source database and stage these changes in the queue
created in Step 2.b. Ensure that the capture process uses a database link to
the source database. The capture process can be a real-time downstream
capture process or an archived-log downstream capture process. See Oracle
Streams Replication Administrator's Guide for more information. Do not start
the capture process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a
method for retaining changes to tables that contain user-defined types during
the maintenance operation. If you are using this method, then ensure that the
capture process does not attempt to capture changes to tables with user-
defined types. See the Oracle Streams documentation for the source database
for information about excluding database objects from an Oracle Streams
configuration with rules.

RMAN

Complete the following steps if you are using RMAN for instantiation:

a. In SQL*Plus, connect to the source database orcl.example.com as the Oracle
Streams administrator.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Perform a build of the data dictionary in the redo log:

SET SERVEROUTPUT ON
DECLARE
 scn NUMBER;
BEGIN
 DBMS_CAPTURE_ADM.BUILD(
 first_scn => scn);
 DBMS_OUTPUT.PUT_LINE('First SCN Value = ' || scn);
END;
/
First SCN Value = 1122610

This procedure displays the valid first SCN value for the capture process that
will be created at the destination database. Make a note of the SCN value
returned because you will use it when you create the capture process at the
destination database.

c. Prepare the source database for instantiation:

exec DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION();

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-10

3. Proceed to "Task 3: Instantiating the Database".

E.3.2.3 A Third Database Is the Capture Database
To use this option, meet the following requirements:

• The database being upgraded must be an Oracle Database 10g Release 1 (10.1)
database.

• The third database must be an Oracle Database 10g Release 1 or later database.

This example assumes that the global name of the third database is thrd.example.com.
Complete the following steps to set up Oracle Streams before instantiation when a
third database is the capture database:

1. Configure your network and Oracle Net so that the source database, destination
database, and third database can communicate with each other. See Oracle
Database Net Services Administrator's Guide for more information.

2. In SQL*Plus, connect to the third database thrd.example.com as an administrative
user.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

3. Create an Oracle Streams administrator:

• If the third database is an Oracle Database 10g database or an Oracle
Database 11g Release 1 database, then see the Oracle Streams Concepts
and Administration book for that release for more information.

• If the third database is an Oracle Database 11g Release 2 or later database,
then see Oracle Streams Replication Administrator's Guide for more
information.

These instructions assume that the name of the Oracle Streams administrator at
the third database is strmadmin.

4. While still connected to the third database as the Oracle Streams administrator,
create an ANYDATA queue that will stage changes made to the source database
during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.capture_queue_table',
 queue_name => 'strmadmin.capture_queue');
END;
/

5. Configure a downstream capture process that will capture all supported changes
made to the source database and stage these changes in the queue created in
Step 4. Ensure that the capture process uses a database link to the source
database. Do not start the capture process.

See the following documentation for more information:

• If the capture database is an Oracle Database 10g database or an Oracle
Database 11g Release 1 database, then see the Oracle Streams Concepts
and Administration book for that release for more information.

• If the capture database is an Oracle Database 11g Release 2 or later
database, then see Oracle Streams Replication Administrator's Guide.

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-11

The capture process can be a real-time downstream capture process or an
archived-log downstream capture process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a method
for retaining changes to tables that contain user-defined types during the upgrade
operation. If you are using this method, then ensure that the capture process does
not attempt to capture changes to tables with user-defined types. See the Oracle
Streams documentation for the source database for information about excluding
database objects from an Oracle Streams configuration with rules.

6. Proceed to "Task 3: Instantiating the Database".

E.3.3 Task 3: Instantiating the Database
"Deciding Which Utility to Use for Instantiation" discusses different options for
instantiating an entire database. Complete the steps in the appropriate section based
on the instantiation option you are using:

• Instantiating the Database Using Export/Import

• Instantiating the Database Using RMAN

E.3.3.1 Instantiating the Database Using Export/Import
Complete the following steps to instantiate the destination database using export/
import:

1. Instantiate the destination database using Export/Import. See Oracle Streams
Replication Administrator's Guide for more information about performing
instantiations, and see Oracle Database Utilities for information about performing
an export/import using the Export and Import utilities.

If you use Oracle Data Pump or original Export/Import to instantiate the destination
database, then ensure that the following parameters are set to the appropriate
values:

• Set the STREAMS_CONFIGURATION import parameter to n.

• If you use original Export/Import, then set the CONSISTENT export parameter to
y. This parameter does not apply to Data Pump exports.

• If you use original Export/Import, then set the STREAMS_INSTANTIATION import
parameter to y. This parameter does not apply to Data Pump imports.

If you are upgrading an Oracle9i Release 2 (9.2) database, then you must use
original Export/Import.

2. At the destination database, disable any imported jobs that modify data that will be
replicated from the source database. Query the DBA_JOBS data dictionary view to list
the jobs.

3. Proceed to "Task 4: Setting Up Oracle Streams After Instantiation".

E.3.3.2 Instantiating the Database Using RMAN
Complete the following steps to instantiate the destination database using the RMAN
DUPLICATE command:

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-12

Note:

These steps provide a general outline for using RMAN to duplicate a
database. If you are upgrading an Oracle9i Release 2 database, then see the
Oracle9i Recovery Manager User's Guide for detailed information about using
RMAN in that release. If you upgrading an Oracle Database 10g Release 1
(10.1) database, then see the Oracle Database Backup and Recovery
Advanced User's Guide for that release.

1. Create a backup of the source database if one does not exist. RMAN requires a
valid backup for duplication. In this example, create a backup of orcl.example.com
if one does not exist.

2. In SQL*Plus, connect to the source database orcl.example.com as an
administrative user.

Seethe Oracle Database Administrator's Guide for the source database release for
information about connecting to a database in SQL*Plus.

3. Determine the until SCN for the RMAN DUPLICATE command. For example:

SET SERVEROUTPUT ON SIZE 1000000
DECLARE
 until_scn NUMBER;
BEGIN
 until_scn:= DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;
 DBMS_OUTPUT.PUT_LINE('Until SCN: ' || until_scn);
END;
/

Make a note of the until SCN value. This example assumes that the until SCN
value is 439882. You will set the UNTIL SCN option to this value when you use RMAN
to duplicate the database in Step 7.

4. While still connected as an administrative user in SQL*Plus to the source
database, archive the current online redo log. For example:

ALTER SYSTEM ARCHIVE LOG CURRENT;

5. Prepare your environment for database duplication, which includes preparing the
destination database as an auxiliary instance for duplication. See the
documentation for the release from which you are upgrading for more information.
Specifically, see the "Duplicating a Database with Recovery Manager" chapter in
the Oracle9i Recovery Manager User's Guide or Oracle Database Backup and
Recovery Advanced User's Guide (10g) for more information.

6. Start the RMAN client, and connect to the database orcl.example.com as TARGET
and to the updb.example.com database as AUXILIARY. Connect to each database as
an administrative user.

See the RMAN documentation for your Oracle Database release for more
information about the RMAN CONNECT command.

7. Use the RMAN DUPLICATE command with the OPEN RESTRICTED option to instantiate
the source database at the destination database. The OPEN RESTRICTED option is
required. This option enables a restricted session in the duplicate database by
issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION.
RMAN issues this statement immediately before the duplicate database is opened.

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-13

You can use the UNTIL SCN clause to specify an SCN for the duplication. Use the
until SCN determined in Step 3 for this clause. Archived redo logs must be
available for the until SCN specified and for higher SCN values. Therefore, Step 4
archived the redo log containing the until SCN.

Ensure that you use TO database_name in the DUPLICATE command to specify the
database name of the duplicate database. In this example, the database name of
the duplicate database is updb. Therefore, the DUPLICATE command for this example
includes TO updb.

The following is an example of an RMAN DUPLICATE command:

RMAN> RUN
 {
 SET UNTIL SCN 439882;
 ALLOCATE AUXILIARY CHANNEL updb DEVICE TYPE sbt;
 DUPLICATE TARGET DATABASE TO updb
 NOFILENAMECHECK
 OPEN RESTRICTED;
 }

8. In SQL*Plus, connect to the destination database as an administrative user.

9. Use the ALTER SYSTEM statement to disable the RESTRICTED SESSION:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

10. While still connected as an administrative user in SQL*Plus to the destination
database, rename the database global name. After the RMAN DUPLICATE
command, the destination database has the same global name as the source
database, but the destination database must have its original name until the end of
the upgrade. For example:

ALTER DATABASE RENAME GLOBAL_NAME TO updb.example.com;

11. At the destination database, disable any jobs that modify data that will be
replicated from the source database. Query the DBA_JOBS data dictionary view to list
the jobs.

12. Upgrade the destination database to Oracle Database 11g Release 2 or later. See
the Oracle Database Upgrade Guide for more information.

13. If you have not done so already, configure your network and Oracle Net so that the
source database and destination database can communicate with each other. See
Oracle Database Net Services Administrator's Guide for more information.

14. Connect to the destination database as the Oracle Streams administrator in
SQL*Plus. In this example, the destination database is updb.example.com.

15. Create a database link to the source database. For example:

CREATE DATABASE LINK orcl.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'orcl.example.com';

16. Set the instantiation SCN for the entire database and all of the database objects.
The RMAN DUPLICATE command duplicates the database up to one less than the
SCN value specified in the UNTIL SCN clause. Therefore, you should subtract one
from the until SCN value that you specified when you ran the DUPLICATE command
in Step 7. In this example, the until SCN was set to 439882. Therefore, the
instantiation SCN should be set to 439882 - 1, or 439881.

BEGIN
 DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-14

 source_database_name => 'orcl.example.com',
 instantiation_scn => 439881,
 recursive => TRUE);
END;
/

17. Proceed to "Task 4: Setting Up Oracle Streams After Instantiation".

E.3.4 Task 4: Setting Up Oracle Streams After Instantiation
The specific instructions for setting up Oracle Streams after instantiation depend on
which database is the capture database. Follow the instructions in the appropriate
section:

• The Source Database Is the Capture Database

• The Destination Database Is the Capture Database

• A Third Database Is the Capture Database

See Also:

"Overview of Using Oracle Streams in the Database Upgrade Process" for
information about the capture database

E.3.4.1 The Source Database Is the Capture Database
Complete the following steps to set up Oracle Streams after instantiation when the
source database is the capture database:

1. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Remove the Oracle Streams components that were cloned from the source
database during instantiation:

• If export/import was used for instantiation, then remove the ANYDATA queue that
was cloned from the source database.

• If RMAN was used for instantiation, then remove the ANYDATA queue and the
capture process that were cloned from the source database.

To remove the queue that was cloned from the source database, run the
REMOVE_QUEUE procedure in the DBMS_STREAMS_ADM package. For example:

BEGIN
 DBMS_STREAMS_ADM.REMOVE_QUEUE(
 queue_name => 'strmadmin.capture_queue',
 cascade => FALSE,
 drop_unused_queue_table => TRUE);
END;
/

To remove the capture process that was cloned from the source database, run the
DROP_CAPTURE procedure in the DBMS_CAPTURE_ADM package. For example:

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-15

BEGIN
 DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name => 'capture_upgrade',
 drop_unused_rule_sets => TRUE);
END;
/

3. Create an ANYDATA queue. This queue will stage changes propagated from the
source database. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

4. Connect to the source database as the Oracle Streams administrator. In this
example, the source database is orcl.example.com.

5. Create a database link to the destination database. For example:

CREATE DATABASE LINK updb.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'updb.example.com';

6. Create a propagation that propagates all changes from the source queue to the
destination database created in Step 3. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'to_updb',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.destination_queue@updb.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

7. Connect to the destination database as the Oracle Streams administrator.

8. Create an apply process that applies all changes in the queue created in Step 3.
For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'apply',
 streams_name => 'apply_upgrade',
 queue_name => 'strmadmin.destination_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

9. Proceed to "Task 5: Finishing the Upgrade and Removing Oracle Streams".

E.3.4.2 The Destination Database Is the Capture Database
Complete the following steps to set up Oracle Streams after instantiation when the
destination database is the capture database:

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-16

1. Complete the following steps if you used RMAN for instantiation. If you used
export/import for instantiation, then proceed to Step 2.

a. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting
to a database in SQL*Plus.

b. Create an ANYDATA queue that will stage changes made to the source database
during the upgrade process. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

c. Configure a downstream capture process that will capture all supported
changes made to the source database and stage these changes in the queue
created in Step 1.b.

Ensure that you set the first_scn parameter in the CREATE_CAPTURE procedure
to the value obtained for the data dictionary build in Step 22.b in "The
Destination Database Is the Capture Database". In this example, the first_scn
parameter should be set to 1122610.

The capture process can be a real-time downstream capture process or an
archived-log downstream capture process. See Oracle Streams Replication
Administrator's Guide for more information. Do not start the capture process.

"Preparing to Upgrade a Database with User-Defined Types" discusses a
method for retaining changes to tables that contain user-defined types during
the maintenance operation. If you are using this method, then ensure that the
capture process does not attempt to capture changes to tables with user-
defined types. See the Oracle Streams documentation for the source database
for information about excluding database objects from an Oracle Streams
configuration with rules.

2. Create an apply process that applies all changes in the queue used by the
downstream capture process. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'apply',
 streams_name => 'apply_upgrade',
 queue_name => 'strmadmin.destination_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

3. Proceed to "Task 5: Finishing the Upgrade and Removing Oracle Streams".

E.3.4.3 A Third Database Is the Capture Database
This example assumes that the global name of the third database is thrd.example.com.
Complete the following steps to set up Oracle Streams after instantiation when a third
database is the capture database:

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-17

1. In SQL*Plus, connect to the destination database as the Oracle Streams
administrator. In this example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Create an ANYDATA queue. This queue will stage changes propagated from the
capture database. For example:

BEGIN
 DBMS_STREAMS_ADM.SET_UP_QUEUE(
 queue_table => 'strmadmin.destination_queue_table',
 queue_name => 'strmadmin.destination_queue');
END;
/

3. Connect to the capture database as the Oracle Streams administrator. In this
example, the capture database is thrd.example.com.

4. Create a database link to the destination database. For example:

CREATE DATABASE LINK updb.example.com CONNECT TO strmadmin
 IDENTIFIED BY password
 USING 'updb.example.com';

5. Create a propagation that propagates all changes from the source queue at the
capture database to the destination queue created in Step 2. For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_PROPAGATION_RULES(
 streams_name => 'to_updb',
 source_queue_name => 'strmadmin.capture_queue',
 destination_queue_name => 'strmadmin.destination_queue@updb.example.com',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

6. Connect to the destination database as the Oracle Streams administrator. In this
example, the destination database is updb.example.com.

7. Create an apply process that applies all changes in the queue created in Step 2.
For example:

BEGIN
 DBMS_STREAMS_ADM.ADD_GLOBAL_RULES(
 streams_type => 'apply',
 streams_name => 'apply_upgrade',
 queue_name => 'strmadmin.destination_queue',
 include_dml => TRUE,
 include_ddl => TRUE,
 include_tagged_lcr => TRUE,
 source_database => 'orcl.example.com');
END;
/

8. Complete the steps in "Task 5: Finishing the Upgrade and Removing Oracle
Streams".

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-18

E.3.5 Task 5: Finishing the Upgrade and Removing Oracle Streams
Complete the following steps to finish the upgrade operation using Oracle Streams
and remove Oracle Streams components:

1. Connect to the destination database as the Oracle Streams administrator. In this
example, the destination database is updb.example.com.

See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

2. Start the apply process. For example:

BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_upgrade');
END;
/

3. Connect to the capture database as the Oracle Streams administrator.

4. Start the capture process. For example:

BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_upgrade');
END;
/

This step begins the process of replicating changes that were made to the source
database during instantiation of the destination database.

5. While still connected as the Oracle Streams administrator in SQL*Plus to the
capture database, monitor the Oracle Streams environment until the apply process
at the destination database has applied most of the changes from the source
database.

To determine whether the apply process at the destination database has applied
most of the changes from the source database, complete the following steps:

a. Query the enqueue message number of the capture process and the message
number with the oldest system change number (SCN) for the apply process to
see if they are nearly equal.

For example, if the name of the capture process is capture_upgrade, and the
name of the apply process is apply_upgrade, then run the following query at the
capture database:

COLUMN ENQUEUE_MESSAGE_NUMBER HEADING 'Captured SCN' FORMAT 99999999999
COLUMN OLDEST_SCN_NUM HEADING 'Oldest Applied SCN' FORMAT 99999999999

SELECT c.ENQUEUE_MESSAGE_NUMBER, a.OLDEST_SCN_NUM
 FROM V$STREAMS_CAPTURE c, V$STREAMS_APPLY_READER@updb.example.com a
 WHERE c.CAPTURE_NAME = 'CAPTURE_UPGRADE'
 AND a.APPLY_NAME = 'APPLY_UPGRADE';

When the two values returned by this query are nearly equal, most of the
changes from the source database have been applied at the destination
database, and you can proceed to the next step. At this point in the process,
the values returned by this query might never be equal because the source
database still allows changes.

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-19

If this query returns no results, then ensure that the Oracle Streams clients in
the environment are enabled by querying the STATUS column in the DBA_CAPTURE
view at the capture database and the DBA_APPLY view at the destination
database. If a propagation is used, you can check the status of the
propagation by running the query in "Displaying Information About the
Schedules for Propagation Jobs".

If an Oracle Streams client is disabled, then try restarting it. If an Oracle
Streams client will not restart, then troubleshoot the environment using the
information in Identifying Problems in an Oracle Streams Environment.

b. Query the state of the apply process apply servers at the destination database
to determine whether they have finished applying changes.

For example, if the name of the apply process is apply_upgrade, then run the
following query at the capture database:

COLUMN STATE HEADING 'Apply Server State' FORMAT A20

SELECT STATE
 FROM V$STREAMS_APPLY_SERVER@updb.example.com
 WHERE APPLY_NAME = 'APPLY_UPGRADE';

When the state for all apply servers is IDLE, you can proceed to the next step.

6. Connect to the destination database as the Oracle Streams administrator. In this
example, the destination database is updb.example.com.

7. Ensure that there are no apply errors by running the following query:

SELECT COUNT(*) FROM DBA_APPLY_ERROR;

If this query returns zero, then proceed to the next step. If this query shows errors
in the error queue, then resolve these errors before continuing. See "Managing
Apply Errors" for more information.

8. Disconnect all applications and users from the source database.

9. Connect as an administrative user to the source database. In this example, the
source database is orcl.example.com.

10. Restrict access to the database. For example:

ALTER SYSTEM ENABLE RESTRICTED SESSION;

11. Connect as an administrative user in SQL*Plus to the capture database, and
repeat the query you ran in Step 55.a. When the two values returned by the query
are equal, all of the changes from the source database have been applied at the
destination database, and you can proceed to the next step.

12. Connect as the Oracle Streams administrator in SQL*Plus to the destination
database, and repeat the query you ran in Step 7. If this query returns zero, then
move on to the next step. If this query shows errors in the error queue, then
resolve these errors before continuing. See "Managing Apply Errors" for more
information.

13. If you performed any actions that created, modified, or deleted job queue
processes at the source database during the upgrade process, then perform the
same actions at the destination database. See "Considerations for Job Queue
Processes and PL/SQL Package Subprograms" for more information.

14. If you invoked any Oracle-supplied PL/SQL package subprograms at the source
database during the upgrade process that modified both user data and dictionary

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-20

metadata at the same time, then invoke the same subprograms at the destination
database. See "Considerations for Job Queue Processes and PL/SQL Package
Subprograms" for more information.

15. Shut down the source database. This database should not be opened again.

16. Connect to the destination database as an administrative user.

17. Change the global name of the database to match the source database. For
example:

ALTER DATABASE RENAME GLOBAL_NAME TO orcl.example.com;

18. At the destination database, enable any jobs that you disabled earlier.

19. Make the destination database available for applications and users. Redirect any
applications and users that were connecting to the source database to the
destination database. If necessary, reconfigure your network and Oracle Net so
that systems that communicated with the source database now communicate with
the destination database. See Oracle Database Net Services Administrator's
Guide for more information.

20. At the destination database, remove the Oracle Streams components that are no
longer needed. Connect as an administrative user to the destination database, and
run the following procedure:

Note:

Running this procedure is dangerous. It removes the local Oracle Streams
configuration. Ensure that you are ready to remove the Oracle Streams
configuration at the destination database before running this procedure.

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

If you no longer need database supplemental logging at the destination database,
then run the following statement to drop it:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If you no longer need the Oracle Streams administrator at the destination
database, then run the following statement:

DROP USER strmadmin CASCADE;

21. If the capture database was a third database, then, at the third database, remove
the Oracle Streams components that are no longer needed. Connect as an
administrative user to the third database, and run the following procedure:

Note:

Running this procedure is dangerous. It removes the local Oracle Streams
configuration. Ensure that you are ready to remove the Oracle Streams
configuration at the third database before running this procedure.

EXEC DBMS_STREAMS_ADM.REMOVE_STREAMS_CONFIGURATION();

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-21

If you no longer need database supplemental logging at the third database, then
run the following statement to drop it:

ALTER DATABASE DROP SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE, FOREIGN KEY) COLUMNS;

If you no longer need the Oracle Streams administrator at the destination
database, then run the following statement:

DROP USER strmadmin CASCADE;

The database upgrade is complete.

Appendix E
Performing a Database Upgrade Using Oracle Streams

E-22

Glossary

action context
Optional information associated with a rule that is interpreted by the client of the rules
engine when the rule is evaluated for a message.

ANYDATA queue
A queue of type ANYDATA. These queues can stage messages of different types
wrapped in an ANYDATA wrapper.

See Also: typed queue

applied SCN
A system change number (SCN) relating to a capture process that corresponds to the
most recent message dequeued by an apply process that applies changes captured
by the capture process.

apply forwarding
A directed network in which messages being forwarded at an intermediate database
are first processed by an apply process. These messages are then recaptured by a
capture process at the intermediate database and forwarded.

See Also: queue forwarding

apply handler
A collection of SQL statements or a user-defined procedure used by an apply process
for customized processing of messages. Apply handlers include statement DML
handlers, message handlers, procedure DML handlers, DDL handlers, precommit
handlers, and error handlers.

apply process
An optional Oracle background process that dequeues messages from a specific
queue and either applies each message directly, discards it, passes it as a parameter
to an apply handler, or re-enqueues it. An apply process is an Oracle Streams client.

See Also: logical change record (LCR)

apply servers
A component of an apply process that includes one or more processes that apply
LCRs to database objects as DML or DDL statements or pass the LCRs to their
appropriate apply handlers. For user messages, the apply servers pass the messages
to the message handler. Apply servers can also enqueue logical change record (LCR)

Glossary-1

and non-LCR messages specified by the DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION
procedure. If an apply server encounters an error, then it tries to resolve the error with
a user-specified error handler. If an apply server cannot resolve an error, then it places
the entire transaction, including all of its LCRs, in the error queue.

See Also: logical change record (LCR)

apply user
The user in whose security domain an apply process dequeues messages that satisfy
its rule sets, applies messages directly to database objects, runs custom rule-based
transformations configured for apply process rules, and runs apply handlers configured
for the apply process.

approximate commit system change number (approximate CSCN)
An SCN value based on the current SCN of the database when a transaction that has
enqueued messages into a commit-time queue is committed.

archived-log downstream capture process
A downstream capture process that captures changes in archived redo log files copied
from the source database to the downstream database.

barrier transaction
A DDL transaction or a transaction that includes a row logical change record (row
LCR) for which an apply process cannot identify the table rows or the database object
by using the destination database data dictionary and virtual dependency definitions.

buffered LCR
A logical change record (LCR) that is constructed explicitly by an application and
enqueued into the buffered queue portion of an ANYDATA queue.

buffered queue
The portion of a queue that uses the Oracle Streams pool to store messages in
memory and a queue table to store messages that have spilled from memory.

buffered user message
A non-LCR message of a user-defined type that is created explicitly by an application
and enqueued into a buffered queue. A buffered user message can be enqueued into
the buffered queue portion of an ANYDATA queue or a typed queue.

builder server
A component of a capture process that is a process that merges redo records from the
preparer server. These redo records either evaluated to TRUE during partial evaluation
or partial evaluation was inconclusive for them. The builder server preserves the
system change number (SCN) order of these redo records and passes the merged
redo records to the capture process.

Glossary

Glossary-2

capture database
The database running the capture process that captures changes made to the source
database. The capture database and the source database are the same database
when the capture process is a local capture process. The capture database and the
source database are different when the capture process is a downstream capture
process.

capture process
An optional Oracle background process that scans the database redo log to capture
DML and DDL changes made to database objects. A capture process is an Oracle
Streams client.

capture user
Either the user in whose security domain a capture process captures changes that
satisfy its rule sets and runs custom rule-based transformations configured for capture
process rules, or the user in whose security domain a synchronous capture captures
changes that satisfy its rule set and runs custom rule-based transformations
configured for synchronous capture rules.

captured LCR
A logical change record (LCR) that was captured implicitly by a capture process and
enqueued into the buffered queue portion of an ANYDATA queue.

See Also: user message

captured SCN
The system change number (SCN) that corresponds to the most recent change
scanned in the redo log by a capture process.

change cycling
Sending a change back to the database where it originated. Typically, change cycling
should be avoided in an information sharing environment by using tags and by using
the LCR member function GET_SOURCE_DATABASE_NAME in rule conditions.

See Also: logical change record (LCR)

change handler
A special type of statement DML handler that tracks table changes and was created by
either the DBMS_STREAMS_ADM.MAINTAIN_CHANGE_TABLE procedure or the
DBMS_APPLY_ADM.SET_CHANGE_HANDLER procedure.

checkpoint
Information about the current state of a capture process that is stored persistently in
the data dictionary of the database running the capture process.

checkpoint interval
A regular interval at which a capture process attempts to record a checkpoint.

Glossary

Glossary-3

checkpoint retention time
The amount of time that a capture process retains checkpoints before purging them
automatically.

column list
A list of columns for which an update conflict handler is called when an update conflict
occurs for one or more of the columns in the list.

See Also: conflict resolution

commit-time queue
A queue in which messages are ordered by their approximate commit system change
number (approximate CSCN) values.

conditional log group
A supplemental log group that logs the before images of all specified columns only if at
least one of the columns in the supplemental log group is modified.

See Also: unconditional log group

conflict
A mismatch between the old values in an LCR and the expected data in a table.
Conflicts are detected by an apply process when it attempts to apply an LCR. Conflicts
typically result when two different databases that are sharing data in a table modify the
same row in the table at nearly the same time.

See Also: logical change record (LCR)

conflict resolution
Handling a conflict to avoid an apply error. Either prebuilt update conflict handlers or
custom conflict handlers can resolve conflicts.

consumption
The process of dequeuing an message from a queue.

coordinator process
A component of an apply process that is an Oracle background process that gets
transactions from the reader server and passes them to apply servers.

custom apply
An apply process passes an LCR as a parameter to a user procedure for processing.
The user procedure can process the LCR in a customized way.

See Also: logical change record (LCR)

custom rule-based transformation
A rule-based transformation that requires a user-defined PL/SQL function to perform
the transformation.

Glossary

Glossary-4

See Also: declarative rule-based transformation

database supplemental logging
The type of supplemental logging that can apply to the primary key, foreign key, and
unique key columns in an entire database.

DDL handler
An apply handler that uses a PL/SQL procedure to process DDL LCRs.

See Also: DDL logical change record (DDL LCR)

DDL logical change record (DDL LCR)
A logical change record (LCR) that describes a data definition language (DDL)
change.

declarative rule-based transformation
A rule-based transformation that covers one of a common set of transformation
scenarios for row LCRs. Declarative rule-based transformations are run internally
without using PL/SQL.

See Also: row logical change record (row LCR) and custom rule-based transformation

dequeue
To retrieve a message from a queue.

destination database
A database where messages are consumed. Messages can be consumed when they
are dequeued implicitly from a queue by a propagation or apply process, or messages
can be consumed when they are dequeued explicitly by an application, a messaging
client, or a user.

See Also: consumption

destination queue
The queue that receives the messages propagated by a propagation from a source
queue.

direct apply
An apply process applies an LCR without running a user procedure.

See Also: logical change record (LCR)

directed network
A network in which propagated messages pass through one or more intermediate
databases before arriving at a destination database.

DML handler
An apply handler that processes row LCRs.

Glossary

Glossary-5

See Also: row logical change record (row LCR)

downstream capture process
A capture process that runs on a database other than its source database.

downstream database
The database on which a downstream capture process runs.

enqueue
To place a message in a queue.

error handler
An apply handler that uses a PL/SQL procedure to try to resolve apply errors. An error
handler is invoked only when a row logical change record (row LCR) raises an apply
process error. Such an error might result from a conflict if no conflict handler is
specified or if the update conflict handler cannot resolve the conflict.

evaluation context
A database object that defines external data that can be referenced in rule conditions.
The external data can exist as variables, table data, or both.

exception queue
Messages are transferred to an exception queue if they cannot be retrieved and
processed for some reason.

explicit capture
The messages are enqueued into a queue by an application or a user.

explicit consumption
The messages in a queue are dequeued either by a messaging client when it is
invoked by a user or application or by an application or user directly.

expression
A combination of one or more values and operators that evaluate to a value.

file
In the context of a file group, a reference to a file stored on hard disk. A file is
composed of a file name, a directory object, and a file type. The directory object
references the directory in which the file is stored on hard disk.

file group
A collection of versions.

file group repository
A collection of all of the file groups in a database.

Glossary

Glossary-6

first SCN
The lowest system change number (SCN) in the redo log from which a capture
process can capture changes.

global rule
A rule that is relevant either to an entire database or an entire queue.

heterogeneous information sharing
Sharing information between Oracle and non-Oracle databases.

high-watermark
The system change number (SCN) beyond which no messages have been applied by
an apply process.

See Also: low-watermark

ignore SCN
The system change number (SCN) specified for a table below which changes cannot
be applied by an apply process.

implicit capture
The messages are captured automatically by a capture process or by synchronous
capture and enqueued into a queue.

implicit consumption
The messages in a queue are dequeued automatically by an apply process.

instantiation
The process of preparing database objects for instantiation at a source database,
optionally copying the database objects from a source database to a destination
database, and setting the instantiation SCN for each instantiated database object.

instantiation SCN
The system change number (SCN) for a table which specifies that only changes that
were committed after the SCN at the source database are applied by an apply
process.

LCR
See logical change record (LCR).

LOB assembly
An option for DML handlers and error handlers that assembles multiple row LCRs
resulting from a change to a single row with LOB columns into a single row LCR. LOB
assembly simplifies processing of row LCRs with LOB columns in DML handlers and
error handlers.

Glossary

Glossary-7

local capture process
A capture process that runs on its source database.

logical change record (LCR)
A message with a specific format that describes a database change.

See Also: row logical change record (row LCR) and DDL logical change record (DDL
LCR)

LogMiner data dictionary
A separate data dictionary used by a capture process to determine the details of a
change that it is capturing. The LogMiner data dictionary is necessary because the
primary data dictionary of the source database might not be synchronized with the
redo data being scanned by a capture process.

low-watermark
The system change number (SCN) up to which all messages have been applied by an
apply process.

See Also: high-watermark

maximum checkpoint SCN
The system change number (SCN) that corresponds to the last checkpoint interval
recorded by a capture process.

message
A unit of shared information in an Oracle Streams environment.

message handler
An apply handler that uses a PL/SQL procedure to process persistent user messages.

See Also: logical change record (LCR)

message rule
A rule that is relevant only for a user message of a specific message type.

messaging client
An optional Oracle Streams client that dequeues persistent LCRs or persistent user
messages when it is invoked by an application or a user.

negative rule set
A rule set for an Oracle Streams client that results in the Oracle Streams client
discarding a message when a rule in the rule set evaluates to TRUE for the message.
The negative rule set for an Oracle Streams client always is evaluated before the
positive rule set.

nonpersistent queue
Nonpersistent queues store messages in memory. They are generally used to provide
an asynchronous mechanism to send notifications to all users that are currently

Glossary

Glossary-8

connected. Nonpersistent queues were deprecated in Oracle Database 10g Release
2. Oracle recommends that you use buffered messaging instead.

nontransactional queue
A queue in which each message is its own transaction.

See Also: transactional queue

object dependency
A virtual dependency definition that defines a parent-child relationship between two
objects at a destination database.

oldest SCN
For a running apply process, the earliest system change number (SCN) of the
transactions currently being dequeued and applied. For a stopped apply process, the
oldest SCN is the earliest SCN of the transactions that were being applied when the
apply process was stopped.

Oracle Streams client
A mechanism that performs work in an Oracle Streams environment and is a client of
the rules engine (when the mechanism is associated with one or more rule sets). The
following are Oracle Streams clients: capture process, propagation, apply process,
and messaging client.

Oracle Streams data dictionary
A separate data dictionary used by propagations and apply processes to keep track of
the database objects from a particular source database.

Oracle Streams pool
A portion of memory in the System Global Area (SGA) that is used by Oracle Streams.
The Oracle Streams pool stores buffered queue messages in memory, and it provides
memory for capture processes and apply processes.

Oracle Streams topology
A representation of the databases in an Oracle Streams environment, the Oracle
Streams components configured in these databases, and the flow of messages
between these components.

persistent LCR
A logical change record (LCR) that is enqueued into the persistent queue portion of an
ANYDATA queue. A persistent LCR can be enqueued in one of the following ways:

• Captured implicitly by a synchronous capture and enqueued

• Constructed explicitly by an application and enqueued

• Dequeued by an apply process and enqueued by the same apply process using
the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package

Glossary

Glossary-9

persistent queue
The portion of a queue that only stores messages on hard disk in a queue table, not in
memory.

persistent user message
A non-LCR message of a user-defined type that is enqueued into a persistent queue.
A persistent user message can be enqueued in one of the following ways:

• Created explicitly by an application and enqueued

• Dequeued by an apply process and enqueued by the same apply process using
the SET_ENQUEUE_DESTINATION procedure in the DBMS_APPLY_ADM package

A persistent user message can be enqueued into the persistent queue portion of an
ANYDATA queue or a typed queue.

positive rule set
A rule set for an Oracle Streams client that results in the Oracle Streams client
performing its task for a message when a rule in the rule set evaluates to TRUE for the
message. The negative rule set for an Oracle Streams client always is evaluated
before the positive rule set.

precommit handler
An apply handler that can receive the commit information for a transaction and use a
PL/SQL procedure to process the commit information in any customized way.

prepared table
A table that has been prepared for instantiation.

preparer server
A component of a capture process that scans a region defined by the reader server
and performs prefiltering of changes found in the redo log. A reader server is a
process, and multiple reader servers can run in parallel. Prefiltering entails sending
partial information about changes, such as schema and object name for a change, to
the rules engine for evaluation, and receiving the results of the evaluation.

procedure DML handler
An apply handler that uses a PL/SQL procedure to process row LCRs.

See Also: row logical change record (row LCR)

propagation
An optional Oracle Streams client that uses an Oracle Scheduler job to send
messages from a source queue to a destination queue.

propagation job
An Oracle Scheduler job used by a propagation to propagate messages.

Glossary

Glossary-10

propagation schedule
A schedule that specifies how often a propagation job propagates messages.

queue
The abstract storage unit used by a messaging system to store messages.

queue forwarding
A directed network in which the messages being forwarded at an intermediate
database are the messages received by the intermediate database, so that the source
database for a message is the database where the message originated.

See Also: apply forwarding

queue table
A database table where queues are stored. Each queue table contains a default
exception queue.

reader server

1. A component of a capture process that is a process that reads the redo log and
divides the redo log into regions.

2. A component of an apply process that dequeues messages. The reader server is
a process that computes dependencies between LCRs and assembles messages
into transactions. The reader server then returns the assembled transactions to
the coordinator process, which assigns them to idle apply servers.

See Also: logical change record (LCR)

real-time downstream capture process
A downstream capture process that can capture changes made at the source
database before the changes are archived in an archived redo log file.

required checkpoint SCN
The system change number (SCN) that corresponds to the lowest checkpoint interval
for which a capture process requires redo data.

replication
The process of sharing database objects and data at multiple databases.

resolution column
The column used to identify a prebuilt update conflict handler.

See Also: conflict resolution

row logical change record (row LCR)
A logical change record (LCR) that describes a change to the data in a single row or a
change to a single LONG, LONG RAW, or LOB column in a row that results from a data

Glossary

Glossary-11

manipulation language (DML) statement or a piecewise operation. One DML
statement can result in multiple row LCRs.

row migration
An automatic conversion performed by an internal rule-based transformation when a
subset rule evaluates to TRUE in which an UPDATE operation might be converted into an
INSERT or DELETE operation.

rule
A database object that enables a client to perform an action when an event occurs and
a condition is satisfied.

rule-based transformation
Any modification to a message when a rule in a positive rule set evaluates to TRUE.

rule condition
A component of a rule which combines one or more expressions and conditions and
returns a Boolean value, which is a value of TRUE, FALSE, or NULL (unknown).

rule set
A group of rules.

rules engine
A built-in part of Oracle that evaluates rule sets.

schema rule
A rule that is relevant only to a particular schema.

secure queue
A queue for which Oracle Database Advanced Queuing (AQ) agents must be
associated explicitly with one or more database users who can perform queue
operations, such as enqueue and dequeue.

source database
The database where changes captured by a capture process are generated in a redo
log, or the database where a synchronous capture that generated LCRs is configured.

source queue
The queue from which a propagation propagates messages to a destination queue.

start SCN
The system change number (SCN) from which a capture process begins to capture
changes.

statement DML handler
An apply handler that uses one or more SQL statements to process row LCRs.

Glossary

Glossary-12

See Also: row logical change record (row LCR)

subset rule
A rule that is relevant only to a subset of the rows in a particular table.

supplemental log group
A group of columns in a table that is supplementally logged.

See Also: supplemental logging

supplemental logging
Additional column data placed in a redo log whenever an operation is performed. A
capture process captures this additional information and places it in LCRs, and the
additional information might be needed for an apply process to apply LCRs properly at
a destination database.

See Also: logical change record (LCR)

synchronous capture
An optional Oracle Streams client that uses an internal mechanism to capture DML
changes made to tables immediately after the changes are made.

system-created rule
A rule with a system-generated name that was created using the DBMS_STREAMS_ADM
package.

table rule
A rule that is relevant only to a particular table.

table supplemental logging
The type of supplemental logging that applies to columns in a particular table.

tablespace repository
A collection of the tablespace sets in a file group.

tag
Data of RAW data type that appears in each redo entry and LCR. You can use tags to
modify the behavior of Oracle Streams clients and to track LCRs. Tags can also be
used to prevent change cycling.

See Also: logical change record (LCR)

topology
See Oracle Streams topology.

transaction control directive
A special type of row LCR captured by a capture process or synchronous capture that
contains transaction control statements, such as COMMIT and ROLLBACK.

Glossary

Glossary-13

See Also: row logical change record (row LCR)

transactional queue
A queue in which messages can be grouped into a set that are applied as one
transaction.

See Also: nontransactional queue

typed queue
A queue that can stage messages of one specific type only.

See Also: ANYDATA queue

unconditional log group
A supplemental log group that logs the before images of specified columns when the
table is changed, regardless of whether the change affected any of the specified
columns.

See Also: conditional log group

user message
A non-LCR message of a user-defined type. A user message can be a buffered user
message or a persistent user message.

See Also: logical change record (LCR)

value dependency
A virtual dependency definition that defines a table constraint, such as a unique key, or
a relationship between the columns of two or more tables.

version
A collection of related files.

virtual dependency definition
A description of a dependency that is used by an apply process to detect
dependencies between transactions being applied at a destination database.

Glossary

Glossary-14

Index

A
action contexts, 11-9

name-value pairs
adding, 18-9, 19-10, 19-12
altering, 18-8
removing, 18-10, 19-12

querying, 19-9
system-created rules, 11-21

ADD_COLUMN procedure, 6-1, 19-2
ADD_GLOBAL_RULES procedure, 5-11
ADD_PAIR member procedure, 18-8, 18-9,

19-10, 19-12
ADD_RULE procedure, 11-7, 18-3
ADD_SCHEMA_PROPAGATION_RULES

procedure, 5-15
ADD_SUBSCRIBER procedure, 16-1
ADD_SUBSET_PROPAGATION_RULES

procedure
row migration, 5-24

ADD_SUBSET_RULES procedure, 5-10, 5-20
row migration, 5-24

ADD_TABLE_RULES procedure, 5-17
alert log

Oracle Streams entries, 30-4
alerts, 30-1
ALTER_APPLY procedure

removing a rule set, 17-6
removing the DDL handler, 17-25
setting an apply user, 17-7
setting the DDL handler, 17-24
setting the message handler, 17-25
setting the precommit handler, 17-27
specifying a rule set, 17-3
unsetting the message handler, 17-26
unsetting the precommit handler, 17-28

ALTER_CAPTURE procedure
removing a rule set, 15-6
setting a capture user, 15-8
setting the first SCN, 15-10, 15-11
specifying a rule set, 15-3, 15-14
specifying database link use, 15-12

ALTER_PROPAGATION procedure
removing the rule set, 16-11
specifying the rule set, 16-7

ALTER_PROPAGATION_SCHEDULE
procedure, 16-6

ALTER_RULE procedure, 18-7
ALTER_SYNC_CAPTURE procedure

setting a capture user, 15-16
ANALYZE_CURRENT_PERFORMANCE

procedure, 23-9
ANALYZE_CURRENT_STATISTICS procedure,

23-2
ANYDATA data type, 3-2

queues, 3-2
monitoring, 25-1
removing, 16-4

wrapper for messages, 3-2
applications

upgrading
using Streams, D-14

applied SCN, 2-24, 10-22, 24-13
apply forwarding, 3-10
apply process, 4-1, 10-1

applied SCN, 10-22
apply forwarding, 3-10
apply handlers, 4-8, 10-12

Java stored procedures, 4-17
apply servers, 4-30

states, 4-32
troubleshooting, 33-9

apply user, 4-6
privileges, 33-6
secure queues, 8-2
setting, 17-7

architecture, 4-30
combined capture and apply, 12-1

query to determine, 26-24
conflict handlers, 10-12
conflict resolution, 10-12
constraints, 10-8
contention, 33-6, 33-8
coordinator process, 4-30

states, 4-32
creating, 10-1
data type conversion, 4-21
data types, B-16
data types applied, 4-20

automatic conversion, 4-21

Index-1

apply process (continued)
DDL changes, 10-17

containing DML changes, 10-19
CREATE TABLE AS SELECT, 10-18
current schema, B-19
data structures, B-18
derived values in DML, 10-19
DML triggers, 10-19
ignored, B-17
system-generated names, 10-18

DDL handlers, 4-8, 4-14
managing, 17-23
monitoring, 26-10

dependencies, 10-2
barrier transactions, 10-7
troubleshooting, 33-8
virtual dependency definitions, 10-5,

17-43, 26-26
DML changes, 10-8
DML handlers, 4-8, 4-9, 26-5

change handlers, 20-1
dropping, 17-48
enqueuing messages, 17-28

monitoring, 26-23
error handlers

managing, 17-32
monitoring, 26-11

error queue, 4-34
monitoring, 26-27, 26-28

high-watermark, 10-22
ignore SCN, 10-20
index-organized tables, B-16
instantiation SCN, 10-20
interoperation with capture processes, B-9,

B-19
key columns, 10-8
low-watermark, 10-22
managing, 17-1
message handlers, 4-8, 4-14

managing, 17-25
monitoring, 26-11

messages
captured LCRs, 4-7
persistent LCRs, 4-7
user messages, 4-7

monitoring, 26-1
apply handlers, 26-5
compatible columns, 29-13
latency, 26-16, 26-19
transactions, 26-18

non-LCR messages, 4-14
oldest SCN, 10-21
options, 4-8
Oracle Label Security (OLS), B-19
Oracle Real Application Clusters, A-5

apply process (continued)
parallelism, 26-22
parameters, 4-34

commit_serialization, 33-8
parallelism, 33-8
preserve_encryption, A-9
setting, 17-6
txn_lcr_spill_threshold, 26-15

performance, 33-9
persistent status, 4-34
precommit handlers, 4-15

managing, 17-26
monitoring, 26-12

reader server, 4-30
states, 4-31

RESTRICTED SESSION, 4-30
row subsetting, 5-10
rule sets

removing, 17-6
specifying, 17-3

rules, 4-6, 5-1
adding, 17-4
removing, 17-5

session information, 26-13
specifying execution, 17-30

monitoring, 26-23
spilled messages, 26-15
SQL generation, 4-23
starting, 17-2
stopping, 17-2
substitute key columns, 10-9

removing, 17-43
setting, 17-42

tables, 10-8
apply handlers, 10-12
column discrepancies, 10-10

trace files, 30-6
transformations

rule-based, 6-13
Transparent Data Encryption, A-9
triggers

firing property, 10-22
ON SCHEMA clause, 10-24

troubleshooting, 33-1
checking apply handlers, 33-5
checking message type, 33-3
checking status, 33-1
error queue, 33-10

approximate CSCN, 8-7
AQ_TM_PROCESSES initialization parameter

Streams apply process, 33-5
ARCHIVELOG mode

capture process, 7-6
Recovery Manager, A-11

ATTACH_TABLESPACES procedure, 36-1

Index

Index-2

B
buffered messaging, 3-4
buffered queues, 3-3

monitoring, 25-6
apply processes, 25-13
capture processes, 25-7
propagations, 25-9–25-11, 25-13

Transparent Data Encryption, A-7
BUILD procedure, 2-25, 7-8

troubleshooting, 31-1

C
capture

explicit, 2-36
capture process, 2-1, 2-12, 2-31, 7-1

applied SCN, 2-24, 24-13
architecture, 2-27
ARCHIVELOG mode, 7-6
automatically filtered changes, 29-8
builder server, 2-27
capture user, 2-28

secure queues, 8-2
setting, 15-8

captured LCRs, 4-1
captured SCN, 2-24
changes captured

DDL changes, B-4
DML changes, 2-16
NOLOGGING keyword, B-6
UNRECOVERABLE clause for

SQL*Loader, B-7
UNRECOVERABLE SQL keyword, B-6

checkpoints, 7-2
managing retention time, 15-8
maximum checkpoint SCN, 7-3
required checkpoint SCN, 7-2, 7-6
retention time, 7-3

combined capture and apply, 12-1
query to determine, 24-16

creating, 7-7
data type restrictions, B-3
data types captured, 2-14
downstream capture, 2-17

advantages, 2-23
database link, 2-23, 15-12
monitoring, 24-6
monitoring remote access, 29-3
operational requirements, 2-24

dropping, 15-13
fast recovery area, A-11
first SCN, 2-25

setting, 15-10, 15-11
index-organized tables, B-3, B-4

capture process (continued)
interoperation with apply processes, B-9,

B-19
latency

capture to apply, 26-19
redo log scanning, 24-14

local capture, 2-17
advantages, 2-18

LogMiner, 7-1
data dictionary, 7-8
multiple sessions, 7-1

managing, 15-1
maximum checkpoint SCN, 7-3, 7-11
monitoring, 24-1

applied SCN, 24-13
compatible tables, 29-8
downstream capture, 24-6
elapsed time, 24-5
last redo entry, 24-11
latency, 24-14, 26-19
message creation time, 24-5
old log files, 24-10
registered log files, 24-8, 24-10
required log files, 24-9
rule evaluations, 24-15
state change time, 24-5

online redefinition, B-5
Oracle Label Security (OLS), B-8
Oracle Real Application Clusters, A-1
parameters, 2-30

parallelism, 2-30
set_autofiltered_table_ddl, 29-9
setting, 15-7
time_limit, 2-30

PAUSED FOR FLOW CONTROL state, 2-29
persistent status, 2-30
preparer servers, 2-27
reader server, 2-27
Recovery Manager, A-11

fast recovery area, 31-5
redo logs, 2-12

adding manually, 15-9
missing files, 31-5

redo transport services, 2-17
required checkpoint SCN, 7-2
RESTRICTED SESSION, 2-27
rule evaluation, 7-14
rule sets

removing, 15-6
specifying, 15-3

rules, 2-14, 5-1
adding, 15-4
removing, 15-5

session information, 24-3
SGA_MAX_SIZE initialization parameter, 7-1

Index

3

capture process (continued)
start SCN, 2-25, 2-26
starting, 15-2
states, 2-29
stopping, 15-2
supplemental logging, 2-16
switching to, 15-25
SYS schema, 2-14
SYSTEM schema, 2-14
table type restrictions, B-4
trace files, 30-5
transformations

rule-based, 6-6
Transparent Data Encryption, A-6
troubleshooting, 31-1

checking progress, 31-4
checking status, 31-2
creation, 31-1

capture user
capture process, 2-28
synchronous capture, 2-35

captured LCRs, 4-3
captured SCN, 2-24
change handlers, 4-11, 20-1

about, 20-1
change tables, 20-1

maintaining, 20-33
monitoring, 20-35

configuration options, 20-3
configuring, 20-12
KEEP_COLUMNS transformations, 20-6
managing, 20-29
monitoring, 20-35
preparing for, 20-2
prerequisites, 20-9
replication, 20-8
setting, 20-29
unsetting, 20-29
using existing components, 20-30

character sets
migrating

using Streams, D-14
checkpoints, 7-2

retention time, 7-3
managing, 15-8

CLONE_TABLESPACES procedure, 36-1
combined capture and apply, 12-1

apply process
query to determine, 26-24

capture process
query to determine, 24-16

propagation
query to determine, 25-19, 25-20

stream paths, 23-5
topology, 23-5

COMPATIBLE_10_1 function, 11-27
COMPATIBLE_10_2 function, 11-27
COMPATIBLE_11_1 function, 11-27
COMPATIBLE_11_2 function, 11-27
COMPATIBLE_9_2 function, 11-27
conditions

rules, 11-2
configuration report script

Oracle Streams, 30-3
conflict resolution

conflict handlers
interaction with apply handlers, 10-12

CONTROL_FILE_RECORD_KEEP_TIME
parameter, 31-5

CREATE TABLE statement
AS SELECT

apply process, 10-18
CREATE_APPLY procedure, 10-1
CREATE_CAPTURE procedure, 7-7
CREATE_RULE procedure, 18-5
CREATE_RULE_SET procedure, 18-2

D
data types

applied, 4-20
automatic conversion, 4-21

database maintenance
using Streams, D-1

assumptions, D-4
capture database, D-3
instantiation, D-12
job slaves, D-4
logical dependencies, D-11
PL/SQL package subprograms, D-4
user-created applications, D-10
user-defined types, D-9

DBA_APPLY view, 26-2, 26-3, 26-10, 26-11,
26-14, 26-21, 33-1, 33-3

DBA_APPLY_CHANGE_HANDLERS view,
20-29, 20-36

DBA_APPLY_DML_HANDLERS view, 26-5,
26-11

DBA_APPLY_ENQUEUE view, 26-23
DBA_APPLY_ERROR view, 26-27, 26-28
DBA_APPLY_EXECUTE view, 26-23
DBA_APPLY_KEY_COLUMNS view, 26-25
DBA_APPLY_PARAMETERS view, 26-3
DBA_APPLY_PROGRESS view, 26-19
DBA_APPLY_SPILL_TXN view, 26-15
DBA_CAPTURE view, 24-2, 24-6, 24-8–24-10,

24-13, 31-2
DBA_CAPTURE_EXTRA_ATTRIBUTES view,

24-31
DBA_CAPTURE_PARAMETERS view, 24-12

Index

Index-4

DBA_EVALUATION_CONTEXT_TABLES view,
27-9

DBA_EVALUATION_CONTEXT_VARS view,
27-9

DBA_FILE_GROUP_EXPORT_INFO view, 37-6
DBA_FILE_GROUP_FILES view, 37-3
DBA_FILE_GROUP_TABLES view, 37-5
DBA_FILE_GROUP_TABLESPACES view, 37-5
DBA_FILE_GROUP_VERSOINS view, 37-3
DBA_FILE_GROUPS view, 37-2
DBA_LOG_GROUPS view, 24-24
DBA_LOGMNR_PURGED_LOG view, 2-26, 7-6
DBA_PROPAGATION view, 25-9–25-11,

25-15–25-18, 32-1, 32-2
DBA_QUEUE_SCHEDULES view, 25-17, 25-18
DBA_QUEUE_TABLES view, 25-2
DBA_QUEUES view, 25-2
DBA_REGISTERED_ARCHIVED_LOG view,

24-8–24-10
DBA_RULE_SET_RULES view, 27-10
DBA_RULE_SETS view, 27-8
DBA_RULES view, 27-10, 27-11
DBA_STREAMS_ADD_COLUMN view, 28-4
DBA_STREAMS_COLUMNS view, 29-11, 29-13
DBA_STREAMS_NEWLY_SUPPORTED view,

29-10
DBA_STREAMS_RENAME_TABLE view, 28-5
DBA_STREAMS_RULES view, 27-6, 34-1
DBA_STREAMS_TABLE_RULES view, 24-30
DBA_STREAMS_TP_COMPONENT view, 23-2,

23-14
DBA_STREAMS_TP_COMPONENT_LINK view,

23-2, 23-16
DBA_STREAMS_TP_COMPONENT_STAT

view, 23-2, 23-21
DBA_STREAMS_TP_DATABASE view, 23-2,

23-13
DBA_STREAMS_TP_PATH_BOTTLENECK

view, 23-2, 23-19
DBA_STREAMS_TP_PATH_STAT view, 23-2,

23-32
DBA_STREAMS_TRANSFORM_FUNCTION

view, 28-5
DBA_STREAMS_TRANSFORMATIONS view,

28-1, 28-2
DBA_STREAMS_UNSUPPORTED view, 29-8
DBA_SYNC_CAPTURE view, 24-29
DBA_SYNC_CAPTURE_TABLES view, 24-30
DBMS_APPLY_ADM package, 14-1, 17-1
DBMS_CAPTURE_ADM package, 14-2, 15-1
DBMS_COMPARISON package, 14-2
DBMS_PROPAGATION_ADM package, 14-2,

16-1
starting a propagation, 16-5
stopping a propagation, 16-6

DBMS_RULE package, 11-11, 14-2
DBMS_RULE_ADM package, 14-2, 18-1, 18-2
DBMS_STREAMS package, 14-2
DBMS_STREAMS_ADM package, 5-5, 14-2,

15-1, 16-1, 17-1
creating a capture process, 7-7
creating an apply process, 10-1

DBMS_STREAMS_ADVISOR_ADM package,
14-3, 23-2

gathering information, 23-9
DBMS_STREAMS_AUTH package, 14-3
DBMS_STREAMS_HANDLER_ADM package,

14-3
DBMS_STREAMS_MESSAGING package, 14-3
DBMS_STREAMS_TABLESPACE_ADM

package, 14-3, 36-1
information provisioning, 35-4

platform conversion, 35-7
DDL handlers, 4-8, 4-14

creating, 17-23
managing, 17-23
monitoring, 26-10
removing, 17-25
setting, 17-24

DELETE_ALL_ERRORS procedure, 17-41
DELETE_COLUMN procedure, 6-1
DELETE_ERROR procedure, 4-34, 17-41
dependencies

apply processes, 10-2
queues, 8-5

dequeue high-watermark, 8-7
destination queue, 3-1
DETACH_TABLESPACES procedure, 36-1
direct path load

capture processes, B-7
directed networks, 3-9

apply forwarding, 3-10
queue forwarding, 3-10

DISABLE_DB_ACCESS procedure, 16-3
DML handlers, 4-8, 4-9, 10-12

change handlers, 4-11, 20-1
managing, 17-8
monitoring, 26-5
procedure DML handlers, 4-12

managing, 17-19
monitoring, 26-9

statement DML handlers, 4-10
managing, 17-8
monitoring, 26-6

unsetting, 17-23
documentation

Oracle Streams, 1-16
DROP_APPLY procedure, 17-48
DROP_CAPTURE procedure, 15-13, 15-17
DROP_PROPAGATION procedure, 16-11

Index

5

DROP_RULE procedure, 18-12
DROP_RULE_SET procedure, 18-4

E
ENABLE_DB_ACCESS procedure, 16-1
error handlers, 10-12

creating, 17-32
managing, 17-32
monitoring, 26-11
setting, 17-36
unsetting, 17-37

error queue, 4-34
apply process, 33-10
deleting errors, 17-41
executing errors, 17-38
monitoring, 26-27, 26-28
Transparent Data Encryption, A-9

EVALUATE procedure, 11-11
evaluation contexts, 11-5

association with rule sets, 11-7
association with rules, 11-7
evaluation function, 11-8
object privileges

granting, 18-13
revoking, 18-14

system privileges
granting, 18-13
revoking, 18-14

user-created, 11-25, 11-33
variables, 11-6

event contexts
system-created rules, 11-21

EXECUTE member procedure, 17-24, 17-34
EXECUTE_ALL_ERRORS procedure, 17-41
EXECUTE_ERROR procedure, 4-34, 17-38
explicit capture, 1-2, 2-36

features, 2-38
message types, 2-36
Transparent Data Encryption, A-7

explicit consumption
dequeue, 4-37

Export
database maintenance, D-12
database upgrade, E-5
Oracle Streams, 21-1

F
fast recovery area

capture processes, A-11
archived redo log files, 31-5

file group repositories, 35-4
monitoring, 37-1
using, 36-14

first SCN, 2-25
flashback data archive

Oracle Streams, A-10
flow control, 2-29

G
GET_BASE_TABLE_NAME member function,

17-24
GET_COMMA, 26-28
GET_COMMAND_TY, 17-24
GET_COMMAND_TYPE member function,

17-34, 17-39
GET_COMPATIBLE member function, 11-27
GET_DDL_TEXT member function, 26-28
GET_ERROR_MESSAGE function, 26-28
GET_INFORMATION function, 17-34
GET_NEXT_HIT function, 11-11
GET_OBJECT_NAME member function, 17-34,

17-39, 19-7, 26-28
GET_OBJECT_OWNER member function,

17-39, 19-7, 26-28
GET_SCN member function, 17-24
GET_SOURCE_DATABASE_NAME member

function, 17-24, 26-28
GET_STREAMS_NAME function, 17-34
GET_TAG member function, 17-24
GET_TRANSACTION_ID member function,

17-24
GET_VALUE member function, 17-39

LCRs, 19-7
GET_VALUES member function, 17-34, 26-28
GLOBAL_NAME view, 24-6, 32-1
GRANT_OBJECT_PRIVILEGE procedure, 11-14
GRANT_SYSTEM_PRIVILEGE procedure, 11-14
grids

information provisioning, 35-1

H
health check script

Oracle Streams, 30-3
high availability

Streams, 13-1
advantages, 13-2
apply, 13-8
best practices, 13-5
capture, 13-7
database links, 13-7
propagation, 13-8

high-watermark, 10-22

I
ignore SCN, 10-20

Index

Index-6

implicit capture, 1-2
managing, 15-1
switching mechanisms, 15-19, 15-25

Import
database maintenance, D-12
database upgrade, E-5
Oracle Streams, 21-1

in-flight transactions, 31-1
INCLUDE_EXTRA_ATTRIBUTE procedure, 2-8,

15-17
index-organized tables

apply process, B-16
capture process, B-3, B-4
synchronous capture, 2-35, B-11

information provisioning, 35-1
bulk provisioning, 35-2

Data Pump, 35-3
DBMS_STREAMS_TABLESPACE_ADM

package, 35-4
file group repositories, 35-4
incremental provisioning, 35-8
on-demand information access, 35-10
RMAN

transportable tablespace from backup,
35-3

tablespace repositories, 35-5
using, 36-1

initialization parameters
AQ_TM_PROCESSES

Streams apply process, 33-5
instantiation

example
RMAN CONVERT DATABASE, D-25
RMAN DUPLICATE, D-22, E-12

export/import, D-12, E-5
in Streams, 2-11
RMAN CONVERT DATABASE, D-12
RMAN DUPLICATE, D-12, E-5

instantiation SCN, 10-20
interoperability

compatibility, 29-8
Streams, 29-10

IS_NULL_TAG member function, 26-28
IS_TRIGGER_FIRE_ONCE function, 10-22

K
KEEP_COLUMNS procedure, 6-1
keystores

Oracle Streams, A-8

L
LCRs

See logical change records

logical change records (LCRs), 2-3, 17-34
DDL LCRs, 2-7

current_schema, B-19
rules, 5-19, 5-36

extra attributes, 2-8
managing, 15-17
monitoring, 24-31

getting information about, 17-24, 19-7, 26-28
compatibility, 11-27

row LCRs, 2-4
rules, 5-12

XML schema, C-1
LogMiner

capture process, 7-1
multiple sessions, 7-1

low-watermark, 10-22

M
MAINTAIN_CHANGE_TABLE procedure

examples, 20-12
preparing for, 20-2
prerequisites, 20-9

MAX_COMPATIBLE function, 11-27
maximum checkpoint SCN, 7-11
merge streams, 30-4
MERGE_STREAMS_JOB procedure, 30-4
message handlers, 4-8, 4-14

managing, 17-25
monitoring, 26-11
setting, 17-25
unsetting, 17-26

messages
captured, 4-3
captured LCRs, 4-1
dequeue, 4-1
enqueue, 2-36
persistent LCRs, 4-1, 4-3
persistent user messages, 4-4
propagation, 3-6
user messages, 4-1, 4-4

messaging, 3-2
buffered messaging, 3-4
dequeue, 4-37

Transparent Data Encryption, A-9
enqueue, 2-36

messaging client, 4-36
messaging client user

secure queues, 8-2
transformations

rule-based, 6-15
messaging clients

transparent data encryption, A-9
Transparent Data Encryption, A-9

migrating

Index

7

migrating (continued)
to different character set

using Streams, D-14
to different operating system

using Streams, D-14
monitoring

ANYDATA data type queues, 25-1
message consumers, 25-4
viewing event contents, 25-4

apply process, 26-1
apply handlers, 26-5
compatible columns, 29-13
DDL handlers, 26-10
error handlers, 26-11
error queue, 26-27, 26-28
message handlers, 26-11

capture process, 24-1
applied SCN, 24-13
compatible tables, 29-8
elapsed time, 24-5
latency, 24-14, 26-19
message creation time, 24-5
rule evaluations, 24-15
state change time, 24-5

compatibility, 29-8
DML handlers, 26-5
file group repositories, 37-1
Oracle Streams, 22-1

performance, 23-2, 29-16
propagation jobs, 25-14
propagations, 25-1, 25-14
queues, 25-1
rule-based transformations, 28-1
rules, 27-1
supplemental logging, 24-24
synchronous capture, 24-29

compatible columns, 29-11
latency, 26-19

tablespace repositories, 37-1
multi-version data dictionary

missing, 34-6
multitenant container databases (CDBs), B-22

N
NOLOGGING mode

capture process, B-6

O
oldest SCN, 10-21
ON SCHEMA clause

of CREATE TRIGGER
apply process, 10-24

online redefinition

online redefinition (continued)
capture process, B-5
synchronous capture, B-12

operating systems
migrating

using Streams, D-14
ORA-01291 error, 31-5
ORA-01403 error, 33-12
ORA-06550 error, 33-6
ORA-23605 error, 33-13
ORA-23607 error, 33-14
ORA-24031 error, 33-15
ORA-24093 error, 32-3
ORA-25224 error, 32-4
ORA-26666 error, 33-1
ORA-26678 error, 31-8
ORA-26687 error, 33-15
ORA-26688 error, 33-16
ORA-26689 error, 33-17
Oracle Data Pump

information provisioning, 35-3
Oracle Database Vault

Oracle Streams, A-15
Oracle Enterprise Manager Cloud Control

Streams tool, 14-4
Oracle Label Security (OLS)

apply processes, B-19
capture processes, B-8
synchronous captures, B-13

Oracle Real Application Clusters
interoperation with Oracle Streams, A-1–A-3,

A-5
queues, A-3

Oracle Scheduler
propagation jobs, 9-1

Oracle Streams, 1-1
administrator

monitoring, 29-2
alert log, 30-4
alerts, 30-1
apply process, 4-1, 10-1
capture process, 2-1, 2-12, 2-31, 7-1
compatibility, 11-27, 29-8
data dictionary, 9-3, 10-24, 22-1
database maintenance, D-1
directed networks, 3-9
documentation roadmap, 1-16
Export utility, 21-1
flashback data archive, A-10
health check script, 30-3
high availability, 13-1
Import utility, 21-1
information provisioning, 35-8
instantiation, 2-11
interoperability, 29-10

Index

Index-8

Oracle Streams (continued)
interoperation with Oracle Real Application

Clusters, A-1
interoperation with Transparent Data

Encryption, A-6
logical change records (LCRs), 2-3

XML schema, C-1
LogMiner data dictionary, 7-8
messaging, 3-2
messaging clients, 4-36
monitoring, 22-1
Oracle Database Vault, A-15
overview, 1-1
packages, 14-1
propagation, 3-1, 9-1

Oracle Real Application Clusters, A-3
queues, 8-1

Oracle Real Application Clusters, A-3
restrictions, B-1
rules, 5-1

action context, 11-21
evaluation context, 5-9, 11-17
event context, 11-21
subset rules, 5-10, 5-20
system-created, 5-5

staging, 3-1
Oracle Real Application Clusters, A-3

Streams data dictionary, 7-13
Streams pool

monitoring, 29-3
Streams tool, 14-4
supplemental logging, 2-16
synchronous capture, 2-31
tags, 1-5
topology, 23-1
trace files, 30-4
transformations

rule-based, 6-1
Transparent Data Encryption, A-8
troubleshooting, 30-1, 31-1, 32-1, 33-1, 34-1
upgrading online, D-1, E-1
user messages, 3-1

Oracle Streams Performance Advisor, 23-2
gathering information, 23-9
Streams components, 23-3
viewing statistics, 23-19

bottleneck components, 23-19
component-level, 23-21
latency, 23-21
rates, 23-21
session-level, 23-27
stream paths, 23-32

P
patches

applying
using Streams, D-14

performance
Oracle Streams Performance Advisor, 23-2

gathering information, 23-9
Streams components, 23-3
viewing statistics, 23-19

persistent LCRs, 4-3
persistent user messages, 4-4
pluggable databases (PDBs), B-22
POST_INSTANTIATION_SETUP procedure,

35-9
PRE_INSTANTIATION_SETUP procedure, 35-9
precommit handlers, 4-15

creating, 17-26
managing, 17-26
monitoring, 26-12
setting, 17-27
unsetting, 17-28

prepare SCN, 2-26
privileges

Oracle Streams administrator
monitoring, 29-2

rules, 11-14
procedure DML handlers, 4-12

creating, 17-19
managing, 17-19
monitoring, 26-9
setting, 17-21
SQL generation, 17-19
unsetting, 17-23

propagation
combined capture and apply, 12-1

query to determine, 25-19, 25-20
propagation receivers, 25-20
propagation senders, 25-19

propagation jobs, 9-1
altering, 16-6
managing, 16-5
monitoring, 25-14
Oracle Scheduler, 9-1
RESTRICTED SESSION, 9-3
scheduling, 9-2
trace files, 30-5
troubleshooting, 32-1

propagations, 3-1, 3-6, 9-1
binary files, 9-4
buffered queues, 3-3
destination queue, 3-1
directed networks, 3-9
dropping, 16-11
ensured delivery, 3-8

Index

9

propagations (continued)
managing, 16-5
monitoring, 25-1, 25-14
queue-to-queue, 3-8, 25-15

Oracle Real Application Clusters, A-3
propagation job, 9-1
schedule, 16-6

rule sets
removing, 16-11
specifying, 16-7

rules, 3-7, 5-1
adding, 16-8
removing, 16-10

session information, 25-21
source queue, 3-1
starting, 16-5
stopping, 16-6
transformations

rule-based, 6-11
Transparent Data Encryption, A-8
troubleshooting, 32-1

checking queues, 32-1
checking status, 32-2
security, 32-3

Q
queue forwarding, 3-10
queue-to-queue propagations, 3-8, 25-15

schedule, 16-6
queues

ANYDATA, 3-2
removing, 16-4

browsing, 8-6
buffered, 3-3
commit-time, 8-4
dependencies, 8-5
dequeue high-watermark, 8-7
monitoring, 25-1
nontransactional, 8-3
Oracle Real Application Clusters, A-3
queue tables, 3-3

triggers, 3-4
secure, 8-1

disabling user access, 16-3
enabling user access, 16-1
users, 8-2

synchronous capture, 2-32
transactional, 8-3
typed, 3-2

R
RE$NV_LIST type, 11-11

RE$NV_LIST type (continued)
ADD_PAIR member procedure, 18-8, 18-9,

19-10, 19-12
REMOVE_PAIR member procedure, 18-8,

18-10, 19-12
Recovery Manager, 35-3

capture processes
archived redo log files, A-11
fast recovery area, 31-5

CONVERT DATABASE command
Streams instantiation, D-12, D-25

DUPLICATE command
Streams instantiation, D-12, D-22, E-5,

E-12
information provisioning, 35-3

redo logs
capture process, 2-12

REMOVE_PAIR member procedure, 18-8, 18-10,
19-12

REMOVE_QUEUE procedure, 16-4
REMOVE_RULE procedure, 15-5, 16-10, 17-5,

18-4
RENAME_COLUMN procedure, 6-1, 19-3
RENAME_SCHEMA procedure, 6-1
RENAME_TABLE procedure, 6-1, 19-2, 19-4
replication

split and merge, 30-4
required checkpoint SCN, 7-6
RESTRICTED SESSION system privilege

apply processes, 4-30
capture processes, 2-27
propagation jobs, 9-3

REVOKE_OBJECT_PRIVILEGE procedure,
11-14

REVOKE_SYSTEM_PRIVILEGE procedure,
11-14

RMAN
See Recovery Manager

row migration, 5-24
rule sets, 11-1

adding rules to, 18-3
creating, 18-2
dropping, 18-4
evaluation, 11-11

partial, 11-13
negative, 5-3
object privileges

granting, 18-13
revoking, 18-14

positive, 5-3
removing rules from, 18-4
system privileges

granting, 18-13
revoking, 18-14

rule-based transformations, 6-1

Index

Index-10

rule-based transformations (continued)
custom, 6-2

action contexts, 6-4
altering, 19-11
creating, 19-6
managing, 19-5
monitoring, 28-5
privileges, 6-5
removing, 19-12

declarative, 6-1
adding, 19-1
managing, 19-1
monitoring, 28-2
removing, 19-4
step number, 6-16
troubleshooting, 34-8

managing, 19-1
monitoring, 28-1
ordering, 6-16

rules, 11-1
action contexts, 11-9

adding name-value pairs, 18-8, 18-9,
19-10, 19-12

altering, 18-8
removing name-value pairs, 18-10, 19-12
transformations, 6-4

ADD_RULE procedure, 11-7
altering, 18-7
apply process, 4-6, 5-1
capture process, 2-14, 5-1
components, 11-1
creating, 18-5
DBMS_RULE package, 11-11
DBMS_RULE_ADM package, 18-1
dropping, 18-12
EVALUATE procedure, 11-11
evaluation, 11-11

capture process, 7-14
iterators, 11-11
partial, 11-13

evaluation contexts, 11-5
evaluation function, 11-8
user-created, 11-33
variables, 11-6

event context, 11-11
explicit variables, 11-6
implicit variables, 11-6
iterative results, 11-11
managing, 18-2
MAYBE rules, 11-11
monitoring, 27-1
object privileges

granting, 18-13
revoking, 18-14

partial evaluation, 11-13

rules (continued)
privileges, 11-14

managing, 18-12
propagations, 3-7, 5-1
rule conditions, 5-17, 5-20, 11-2

complex, 11-29
explicit variables, 11-6
finding patterns in, 27-11
implicit variables, 11-6
Streams compatibility, 11-27
types of operations, 11-26
undefined variables, 11-31
using NOT, 11-29
variables, 5-12

rule_hits, 11-11
simple rules, 11-3
subset, 5-20

querying for action context of, 19-9
querying for names of, 19-9

synchronous capture, 2-33
system privileges

granting, 18-13
revoking, 18-14

system-created, 5-1, 5-5
action context, 11-21
and_condition parameter, 5-37
DDL rules, 5-19, 5-36
DML rules, 5-12
evaluation context, 5-9, 11-17
event context, 11-21
global, 5-11
modifying, 18-11
row migration, 5-24
schema, 5-15
STREAMS$EVALUATION_CONTEXT,

5-9, 11-17
subset, 5-10, 5-20
table, 5-17

troubleshooting, 34-1
TRUE rules, 11-11
user-created, 11-25
variables, 11-6

S
scripts

Oracle Streams, 30-3
secure queues, 8-1

disabling user access, 16-3
enabling user access, 16-1
propagation, 32-3
Streams clients

users, 8-2
SET_CHANGE_HANDLER procedure, 20-29
SET_DML_HANDLER procedure, 4-11, 4-12

Index

11

SET_DML_HANDLER procedure (continued)
setting a DML handler, 17-21
setting an error handler, 17-36
unsetting a DML handler, 17-23
unsetting an error handler, 17-37

SET_ENQUEUE_DESTINATION procedure,
17-28

SET_EXECUTE procedure, 17-30
SET_KEY_COLUMNS procedure, 10-9

removing substitute key columns, 17-43
setting substitute key columns, 17-42

SET_PARAMETER procedure
apply process, 17-6, 33-8
capture process, 15-7

SET_RULE_TRANSFORM_FUNCTION
procedure, 19-5

SET_TRIGGER_FIRING_PROPERTY
procedure, 10-22

SET_VALUE member procedure, 17-39, 19-7
SET_VALUES member procedure, 17-34
SGA_MAX_SIZE initialization parameter, 7-1
source queue, 3-1
split streams, 30-4
SPLIT_STREAMS procedure, 30-4
SQL generation, 4-23

character sets, 4-27
data types supported, 4-25
examples, 4-27, 17-19
formats, 4-24
interfaces, 4-24
procedure DML handlers, 17-19

SQL*Loader
capture processes, B-7

staging, 3-1
approximate CSCN, 8-7
buffered queues, 3-3

monitoring, 25-6
management, 16-1
messages, 4-1
secure queues, 8-1

disabling user access, 16-3
enabling user access, 16-1

start SCN, 2-25
START_APPLY procedure, 17-2
START_CAPTURE procedure, 15-2
START_PROPAGATION procedure, 16-5
statement DML handlers, 4-10

adding statements to, 17-14
creating, 17-9
dropping, 17-18
managing, 17-8
modifying, 17-16
monitoring, 26-6
removing from apply process, 17-18
removing statements from, 17-17

Statspack
Oracle Streams, 29-16

STOP_APPLY procedure, 17-2
STOP_CAPTURE procedure, 15-2
STOP_PROPAGATION procedure, 16-6
stream paths, 23-4

combined capture and apply, 23-5
Streams

See Oracle Streams
Streams data dictionary, 7-13, 9-3, 10-24
streams paths

statistics, 23-32
Streams pool

monitoring, 29-3
Streams tool, 14-4
Streams topology

DBMS_STREAMS_ADVISOR_ADM
package

gathering information, 23-9
STREAMS$_EVALUATION_CONTEXT, 5-9,

11-17
STREAMS$_TRANSFORM_FUNCTION, 6-4
supplemental logging, 2-16

conditional log groups, 2-16
DBA_LOG_GROUPS view, 24-24
monitoring, 24-24
unconditional log groups, 2-16

synchronous capture, 2-31
capture user, 2-35

setting, 15-16
changes captured

DML changes, 2-35
data type restrictions, B-11
data types captured, 2-34
dropping, 15-17
index-organized tables, 2-35, B-11
latency

capture to apply, 26-19
managing, 15-13
monitoring, 24-29

compatible columns, 29-11
online redefinition, B-12
Oracle Label Security (OLS), B-13
Oracle Real Application Clusters, A-2
queues, 2-32
rule sets

specifying, 15-14
rules, 2-33

adding, 15-15
modifying, 2-34, 18-8

switching to, 15-19
SYS schema, 2-34
SYSTEM schema, 2-34
table type restrictions, B-11
transformations

Index

Index-12

synchronous capture (continued)
transformations (continued)
rule-based, 6-8

Transparent Data Encryption, A-7
SYS.AnyData

See ANYDATA data type
system change numbers (SCN)

applied SCN for a capture process, 2-24,
24-13

applied SCN for an apply process, 10-22
captured SCN for a capture process, 2-24
first SCN for a capture process, 2-25
maximum checkpoint SCN for a capture

process, 7-3
oldest SCN for an apply process, 10-21
required checkpoint SCN for a capture

process, 7-2
start SCN for a capture process, 2-25

system-generated names
apply process, 10-18

T
tables

index-organized
capture process, B-4

tablespace repositories, 35-5
creating, 36-2
monitoring, 37-1, 37-4
using, 36-1

with shared file system, 36-4
without shared file system, 36-9

tags, 1-5
topology

component IDs, 23-4
DBMS_STREAMS_ADVISOR_ADM

package
gathering information, 23-9

gathering information, 23-9
Oracle Streams, 23-1
stream paths, 23-4

combined capture and apply, 23-5
statistics, 23-32
viewing, 23-16

viewing, 23-13
trace files

Oracle Streams, 30-4
transformations

custom rule-based, 6-2
action context, 6-4
altering, 19-11
creating, 19-6
monitoring, 28-5
removing, 19-12

transformations (continued)
custom rule-based (continued)
STREAMS$_TRANSFORM_FUNCTION,

6-4
troubleshooting, 34-8

declarative rule-based, 6-1
monitoring, 28-2
troubleshooting, 34-8

Oracle Streams, 6-1
rule-based, 6-1

apply process, 6-13
capture process, 6-6
errors during apply, 6-14
errors during capture, 6-8
errors during dequeue, 6-16
errors during propagation, 6-13
managing, 19-1
messaging client, 6-15
monitoring, 28-1
multiple, 6-16
propagations, 6-11
synchronous capture, 6-8

transparent data encryption
messaging clients, A-9

Transparent Data Encryption
apply processes, A-9
buffered queues, A-7
capture processes, A-6
dequeue, A-9
error queue, A-9
explicit capture, A-7
interoperation with Oracle Streams, A-6
messaging clients, A-9
propagations, A-8
synchronous capture, A-7

triggers
firing property, 10-22
queue tables, 3-4
system triggers

on SCHEMA, 10-24
troubleshooting

alerts, 30-1
apply process, 33-1

checking apply handlers, 33-5
checking message type, 33-3
checking status, 33-1
error queue, 33-10
performance, 33-9

capture process, 31-1
checking progress, 31-4
checking status, 31-2
creation, 31-1

custom rule-based transformations, 34-8
missing multi-version data dictionary, 34-6
Oracle Streams, 30-1, 31-1, 32-1, 33-1, 34-1

Index

13

troubleshooting (continued)
propagation jobs, 32-1
propagations, 32-1

checking queues, 32-1
checking status, 32-2
security, 32-3

rules, 34-1

U
UNRECOVERABLE clause

SQL*Loader
capture process, B-7

UNRECOVERABLE SQL keyword
capture process, B-6

upgrading
online using Streams, D-1, E-1

assumptions, E-3
capture database, E-3
instantiation, E-5
job queue processes, E-4
PL/SQL package subprograms, E-4
user-defined types, E-4

user messages, 3-1, 4-4
UTL_SPADV package, 14-3

V
V$ARCHIVE_DEST view, 24-7
V$ARCHIVED_LOG view, 2-25
V$BUFFERED_PUBLISHERS view, 25-7
V$BUFFERED_QUEUES view, 25-6, 25-11,

25-13
V$BUFFERED_SUBSCRIBERS view, 25-11,

25-13

V$DATABASE view
supplemental logging, 24-25

V$PROPAGATION_RECEIVER view, 25-13,
25-20

V$PROPAGATION_SENDER view, 25-9, 25-10,
25-19

V$RULE view, 27-15
V$RULE_SET view, 27-13, 27-14
V$RULE_SET_AGGREGATE_STATS view,

27-12
V$SESSION view, 24-3, 24-4, 25-21, 26-13,

26-14, 26-16, 26-17, 26-21
V$STREAMS_APPLY_COORDINATOR view,

4-32, 26-17–26-19
V$STREAMS_APPLY_READER view, 4-31,

26-14–26-16, 26-24
V$STREAMS_APPLY_SERVER view, 4-32,

26-21, 26-22, 33-9
V$STREAMS_CAPTURE view, 2-29, 24-4, 24-5,

24-11, 24-14–24-16, 31-4
V$STREAMS_POOL_ADVICE view, 29-3
virtual dependency definitions, 10-5

object dependencies, 10-7
managing, 17-46
monitoring, 26-27

value dependencies, 10-6
managing, 17-44
monitoring, 26-26

X
XML Schema

for LCRs, C-1

Index

Index-14

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Streams Concepts and Administration
	Changes in Oracle Database 12c Release 1 (12.1)
	Deprecated Features

	Part I Essential Oracle Streams Concepts
	1 Introduction to Oracle Streams
	1.1 Overview of Oracle Streams
	1.2 What Can Oracle Streams Do?
	1.2.1 Capture Messages at a Database
	1.2.2 Stage Messages in a Queue
	1.2.3 Propagate Messages from One Queue to Another
	1.2.4 Consume Messages
	1.2.5 Detect and Resolve Conflicts
	1.2.6 Transform Messages
	1.2.7 Track Messages with Oracle Streams Tags
	1.2.8 Share Information with Non-Oracle Databases

	1.3 What Are the Uses of Oracle Streams?
	1.3.1 Data Replication
	1.3.2 Data Warehouse Loading
	1.3.3 Database Availability During Upgrade and Maintenance Operations
	1.3.4 Message Queuing
	1.3.5 Event Management and Notification
	1.3.6 Data Protection

	1.4 Sample Oracle Streams Configurations
	1.4.1 Sample Hub-and-Spoke Replication Configuration
	1.4.2 Sample Replication Configuration with Downstream Capture
	1.4.3 Sample Replication Configuration That Uses Synchronous Captures
	1.4.4 Sample N-Way Replication Configuration
	1.4.5 Sample Configuration That Performs Capture and Apply in a Single Database
	1.4.6 Sample Messaging Configuration

	1.5 Oracle Streams Documentation Roadmap
	1.5.1 Documentation for Learning About Oracle Streams
	1.5.2 Documentation About Setting Up or Extending an Oracle Streams Environment
	1.5.3 Documentation About Managing an Oracle Streams Environment
	1.5.4 Documentation About Monitoring an Oracle Streams Environment
	1.5.5 Documentation About Using Oracle Streams for Upgrade and Maintenance

	2 Oracle Streams Information Capture
	2.1 Ways to Capture Information with Oracle Streams
	2.1.1 Implicit Capture
	2.1.1.1 Capture Processes
	2.1.1.2 Synchronous Captures

	2.1.2 Explicit Capture

	2.2 Types of Information Captured with Oracle Streams
	2.2.1 Logical Change Records (LCRs)
	2.2.1.1 Row LCRs
	2.2.1.2 DDL LCRs
	2.2.1.3 Extra Information in LCRs

	2.2.2 User Messages

	2.3 Summary of Information Capture Options with Oracle Streams
	2.4 Instantiation in an Oracle Streams Environment
	2.5 Implicit Capture with an Oracle Streams Capture Process
	2.5.1 Introduction to Capture Processes
	2.5.2 Capture Process Rules
	2.5.3 Data Types Captured by Capture Processes
	2.5.4 Types of DML Changes Captured by Capture Processes
	2.5.5 Supplemental Logging in an Oracle Streams Environment
	2.5.6 Local Capture and Downstream Capture
	2.5.6.1 Local Capture
	2.5.6.1.1 The Source Database Performs All Change Capture Actions
	2.5.6.1.2 Advantages of Local Capture

	2.5.6.2 Downstream Capture
	2.5.6.2.1 Real-Time Downstream Capture
	2.5.6.2.2 Archived-Log Downstream Capture
	2.5.6.2.3 The Downstream Database Performs Most Change Capture Actions
	2.5.6.2.4 Advantages of Downstream Capture
	2.5.6.2.5 Optional Database Link From the Downstream Database to the Source Database
	2.5.6.2.6 Operational Requirements for Downstream Capture

	2.5.7 SCN Values Related to a Capture Process
	2.5.7.1 Captured SCN and Applied SCN
	2.5.7.2 First SCN and Start SCN
	2.5.7.2.1 First SCN
	2.5.7.2.2 Start SCN
	2.5.7.2.3 Start SCN Must Be Greater Than or Equal to First SCN
	2.5.7.2.4 A Start SCN Setting That Is Before Preparation for Instantiation

	2.5.8 Oracle Streams Capture Processes and RESTRICTED SESSION
	2.5.9 Capture Process Subcomponents
	2.5.10 Capture User
	2.5.11 Capture Process States
	2.5.12 Capture Process Parameters
	2.5.13 Persistent Capture Process Status Upon Database Restart

	2.6 Implicit Capture with Synchronous Capture
	2.6.1 Introduction to Synchronous Capture
	2.6.2 Synchronous Capture and Queues
	2.6.3 Synchronous Capture Rules
	2.6.4 Data Types Captured by Synchronous Capture
	2.6.5 Types of DML Changes Captured by Synchronous Capture
	2.6.6 Capture User for Synchronous Capture
	2.6.7 Multiple Synchronous Captures in a Single Database

	2.7 Explicit Capture by Applications
	2.7.1 Types of Messages That Can Be Enqueued Explicitly
	2.7.1.1 User Messages
	2.7.1.2 Logical Change Records (LCRs) and Messaging

	2.7.2 Enqueue Features

	3 Oracle Streams Staging and Propagation
	3.1 Introduction to Message Staging and Propagation
	3.2 Queues
	3.2.1 ANYDATA Queues and Typed Queues
	3.2.2 Persistent Queues and Buffered Queues
	3.2.2.1 Queues and Oracle Streams Clients
	3.2.2.1.1 Queues and Capture Processes
	3.2.2.1.2 Queues and Synchronous Capture
	3.2.2.1.3 Queues and Propagations
	3.2.2.1.4 Queues and Apply Processes
	3.2.2.1.5 Queues and Messaging Clients

	3.3 Message Propagation Between Queues
	3.3.1 Propagation Rules
	3.3.2 Queue-to-Queue Propagations
	3.3.3 Ensured Message Delivery
	3.3.4 Directed Networks
	3.3.4.1 Queue Forwarding and Apply Forwarding
	3.3.4.1.1 Advantages of Queue Forwarding
	3.3.4.1.2 Advantages of Apply Forwarding

	4 Oracle Streams Information Consumption
	4.1 Overview of Information Consumption with Oracle Streams
	4.1.1 Ways to Consume Information with Oracle Streams
	4.1.1.1 Implicit Consumption
	4.1.1.2 Explicit Consumption

	4.1.2 Types of Information Consumed with Oracle Streams
	4.1.2.1 Captured LCRs
	4.1.2.2 Persistent LCRs
	4.1.2.3 Buffered LCRs
	4.1.2.4 Persistent User Messages
	4.1.2.5 Buffered User Messages

	4.1.3 Summary of Information Consumption Options

	4.2 Implicit Consumption with an Apply Process
	4.2.1 Introduction to the Apply Process
	4.2.2 Apply Process Rules
	4.2.3 Types of Messages That Can Be Processed with an Apply Process
	4.2.4 Message Processing Options for an Apply Process
	4.2.4.1 DML Handlers
	4.2.4.1.1 Statement DML Handlers
	4.2.4.1.2 Procedure DML Handlers

	4.2.4.2 Error Handlers
	4.2.4.3 DDL Handlers
	4.2.4.4 Message Handlers
	4.2.4.5 Precommit Handlers
	4.2.4.6 Considerations for Apply Handlers
	4.2.4.7 Summary of Message Processing Options

	4.2.5 The Source of Messages Applied by an Apply Process
	4.2.6 Data Types Applied
	4.2.7 Automatic Data Type Conversion During Apply
	4.2.7.1 Automatic Trimming of Character Data Types During Apply
	4.2.7.2 Automatic Conversion and LOB Data Types

	4.2.8 SQL Generation
	4.2.8.1 Interfaces for Performing SQL Generation
	4.2.8.2 SQL Generation Formats
	4.2.8.3 SQL Generation and Data Types
	4.2.8.3.1 SQL Generation and Automatic Data Type Conversion
	4.2.8.3.2 SQL Generation and LOB, LONG, LONG RAW, and XMLType Data Types

	4.2.8.4 SQL Generation and Character Sets
	4.2.8.5 Sample Generated SQL Statements
	4.2.8.5.1 Sample Generated SQL Statements for the hr.employees Table
	4.2.8.5.2 Sample Generated SQL Statements for a Table With LOB Columns

	4.2.9 Oracle Streams Apply Processes and RESTRICTED SESSION
	4.2.10 Apply Process Subcomponents
	4.2.10.1 Reader Server States
	4.2.10.2 Coordinator Process States
	4.2.10.3 Apply Server States

	4.2.11 Apply User
	4.2.12 Apply Process Parameters
	4.2.13 Persistent Apply Process Status Upon Database Restart
	4.2.14 The Error Queue

	4.3 Explicit Consumption with a Messaging Client
	4.4 Explicit Consumption with Manual Dequeue

	5 How Rules Are Used in Oracle Streams
	5.1 Overview of How Rules Are Used in Oracle Streams
	5.2 Rule Sets and Rule Evaluation of Messages
	5.2.1 Oracle Streams Client with No Rule Set
	5.2.2 Oracle Streams Client with a Positive Rule Set Only
	5.2.3 Oracle Streams Client with a Negative Rule Set Only
	5.2.4 Oracle Streams Client with Both a Positive and a Negative Rule Set
	5.2.5 Oracle Streams Client with One or More Empty Rule Sets
	5.2.6 Summary of Rule Sets and Oracle Streams Client Behavior

	5.3 System-Created Rules
	5.3.1 Global Rules
	5.3.1.1 Global Rules Example
	5.3.1.2 System-Created Global Rules Avoid Empty Rule Conditions Automatically

	5.3.2 Schema Rules
	5.3.2.1 Schema Rule Example

	5.3.3 Table Rules
	5.3.3.1 Table Rules Example
	5.3.3.1.1 Apply All Row LCRs Related to the hr.locations Table
	5.3.3.1.2 Apply All DDL LCRs Related to the hr.countries Table
	5.3.3.1.3 Summary of Rules

	5.3.4 Subset Rules
	5.3.4.1 Subset Rules Example
	5.3.4.2 Row Migration and Subset Rules
	5.3.4.2.1 Row Migration During Capture
	5.3.4.2.2 Row Migration During Propagation
	5.3.4.2.3 Row Migration During Apply
	5.3.4.2.4 Row Migration During Dequeue by a Messaging Client

	5.3.4.3 Subset Rules and Supplemental Logging
	5.3.4.4 Guidelines for Using Subset Rules
	5.3.4.4.1 Use Capture Subset Rules When All Destinations Need Only a Subset of Changes
	5.3.4.4.2 Use Propagation or Apply Subset Rules When Some Destinations Need Subsets
	5.3.4.4.3 Ensure That the Table Where Subset Row LCRs Are Applied Is a Subset Table

	5.3.5 Message Rules
	5.3.5.1 Message Rule Example
	5.3.5.1.1 Dequeue User Messages If region Is EUROPE and priority Is 1
	5.3.5.1.2 Send User Messages to a Message Handler If region Is AMERICAS and priority Is 2
	5.3.5.1.3 Summary of Rules

	5.3.6 System-Created Rules and Negative Rule Sets
	5.3.6.1 Negative Rule Set Example
	5.3.6.1.1 Apply All DML Changes to the Tables in the hr Schema
	5.3.6.1.2 Discard Row LCRs Containing DML Changes to the hr.job_history Table
	5.3.6.1.3 Summary of Rules

	5.3.7 System-Created Rules with Added User-Defined Conditions

	6 Rule-Based Transformations
	6.1 Declarative Rule-Based Transformations
	6.2 Custom Rule-Based Transformations
	6.2.1 Custom Rule-Based Transformations and Action Contexts
	6.2.2 Required Privileges for Custom Rule-Based Transformations

	6.3 Rule-Based Transformations and Oracle Streams Clients
	6.3.1 Rule-Based Transformations and Capture Processes
	6.3.1.1 Rule-Based Transformation Errors During Capture by a Capture Process

	6.3.2 Rule-Based Transformations and Synchronous Captures
	6.3.2.1 Rule-Based Transformations and Errors During Capture by a Synchronous Capture

	6.3.3 Rule-Based Transformations and Propagations
	6.3.3.1 Rule-Based Transformation Errors During Propagation

	6.3.4 Rule-Based Transformations and an Apply Process
	6.3.4.1 Rule-Based Transformation Errors During Apply Process Dequeue
	6.3.4.2 Apply Errors on Transformed Messages

	6.3.5 Rule-Based Transformations and a Messaging Client
	6.3.5.1 Rule-Based Transformation Errors During Messaging Client Dequeue

	6.3.6 Multiple Rule-Based Transformations

	6.4 Transformation Ordering
	6.4.1 Declarative Rule-Based Transformation Ordering
	6.4.1.1 Default Declarative Transformation Ordering
	6.4.1.2 User-Specified Declarative Transformation Ordering

	6.5 Considerations for Rule-Based Transformations

	Part II Advanced Oracle Streams Concepts
	7 Advanced Capture Process Concepts
	7.1 Multiple Capture Processes in a Single Database
	7.2 Capture Process Checkpoints
	7.2.1 Required Checkpoint SCN
	7.2.2 Maximum Checkpoint SCN
	7.2.3 Checkpoint Retention Time

	7.3 A New First SCN Value and Purged LogMiner Data Dictionary Information
	7.4 ARCHIVELOG Mode and a Capture Process
	7.5 Capture Process Creation
	7.5.1 The LogMiner Data Dictionary for a Capture Process
	7.5.1.1 Scenario Illustrating Why a Capture Process Needs a LogMiner Data Dictionary
	7.5.1.2 Multiple Capture Processes for the Same Source Database

	7.6 The Oracle Streams Data Dictionary
	7.7 Capture Process Rule Evaluation

	8 Advanced Queue Concepts
	8.1 Secure Queues
	8.1.1 Secure Queues and the SET_UP_QUEUE Procedure
	8.1.2 Secure Queues and Oracle Streams Clients

	8.2 Transactional and Nontransactional Queues
	8.3 Commit-Time Queues
	8.3.1 When to Use Commit-Time Queues
	8.3.1.1 Transactional Dependency Ordering During Dequeue
	8.3.1.2 Consistent Browse of Messages in a Queue

	8.3.2 How Commit-Time Queues Work

	9 Advanced Propagation Concepts
	9.1 Propagation Jobs
	9.1.1 Propagation Scheduling and Oracle Streams Propagations
	9.1.2 Propagation Jobs and RESTRICTED SESSION

	9.2 Oracle Streams Data Dictionary for Propagations
	9.3 Binary File Propagation

	10 Advanced Apply Process Concepts
	10.1 Apply Process Creation
	10.2 Apply Processes and Dependencies
	10.2.1 How Dependent Transactions Are Applied
	10.2.2 Row LCR Ordering During Apply
	10.2.3 Dependencies and Constraints
	10.2.4 Dependency Detection, Rule-Based Transformations, and Apply Handlers
	10.2.5 Virtual Dependency Definitions
	10.2.5.1 Value Dependency
	10.2.5.2 Object Dependency

	10.2.6 Barrier Transactions

	10.3 Considerations for Applying DML Changes to Tables
	10.3.1 Constraints and Applying DML Changes to Tables
	10.3.2 Substitute Key Columns
	10.3.3 Apply Process Behavior for Column Discrepancies
	10.3.3.1 Missing Columns at the Destination Database
	10.3.3.2 Extra Columns at the Destination Database
	10.3.3.3 Column Data Type Mismatch

	10.3.4 Conflict Resolution and an Apply Process
	10.3.5 Handlers and Row LCR Processing
	10.3.5.1 No Relevant Handlers
	10.3.5.2 Relevant Update Conflict Handler
	10.3.5.3 DML Handler But No Relevant Update Conflict Handler
	10.3.5.3.1 Statement DML Handler Failure
	10.3.5.3.1.1 Procedure DML Handler Failure

	10.3.5.4 DML Handler And a Relevant Update Conflict Handler
	10.3.5.5 Statement DML Handler and Procedure DML Handler
	10.3.5.6 Error Handler But No Relevant Update Conflict Handler
	10.3.5.7 Error Handler And a Relevant Update Conflict Handler
	10.3.5.8 Statement DML Handler and Relevant Error Handler
	10.3.5.9 Statement DML Handler, Error Handler, and Relevant Update Conflict Handler

	10.4 Considerations for Applying DDL Changes
	10.4.1 System-Generated Names
	10.4.2 CREATE TABLE AS SELECT Statements
	10.4.3 DML Statements within DDL Statements
	10.4.3.1 The DDL Statement Contains Derived Values
	10.4.3.2 The DDL Statement Fires DML Triggers

	10.5 Instantiation SCN and Ignore SCN for an Apply Process
	10.6 The Oldest SCN for an Apply Process
	10.7 Low-Watermark and High-Watermark for an Apply Process
	10.8 Apply Processes and Triggers
	10.8.1 Trigger Firing Property
	10.8.2 Apply Processes and Triggers Created with the ON SCHEMA Clause

	10.9 Oracle Streams Data Dictionary for an Apply Process
	10.10 Multiple Apply Processes in a Single Database

	11 Advanced Rule Concepts
	11.1 The Components of a Rule
	11.1.1 Rule Condition
	11.1.1.1 Variables in Rule Conditions
	11.1.1.2 Simple Rule Conditions
	11.1.1.2.1 Simple Rule Expressions
	11.1.1.2.2 Conditions
	11.1.1.2.3 Constants
	11.1.1.2.4 Examples of Simple Rule Conditions
	11.1.1.2.5 Benefits of Simple Rules

	11.1.2 Rule Evaluation Context
	11.1.2.1 Explicit and Implicit Variables
	11.1.2.2 Evaluation Context Association with Rule Sets and Rules
	11.1.2.3 Evaluation Function

	11.1.3 Rule Action Context

	11.2 Rule Set Evaluation
	11.2.1 Rule Set Evaluation Process
	11.2.2 Partial Evaluation

	11.3 Database Objects and Privileges Related to Rules
	11.3.1 Privileges for Creating Database Objects Related to Rules
	11.3.2 Privileges for Altering Database Objects Related to Rules
	11.3.3 Privileges for Dropping Database Objects Related to Rules
	11.3.4 Privileges for Placing Rules in a Rule Set
	11.3.5 Privileges for Evaluating a Rule Set
	11.3.6 Privileges for Using an Evaluation Context

	11.4 Evaluation Contexts Used in Oracle Streams
	11.4.1 Evaluation Context for Global, Schema, Table, and Subset Rules
	11.4.2 Evaluation Contexts for Message Rules

	11.5 Oracle Streams and Event Contexts
	11.6 Oracle Streams and Action Contexts
	11.6.1 Purposes of Action Contexts in Oracle Streams
	11.6.1.1 Internal LCR Transformations in Subset Rules
	11.6.1.2 Information About Declarative Rule-Based Transformations
	11.6.1.3 Custom Rule-Based Transformations
	11.6.1.4 Execution Directives for Messages During Apply
	11.6.1.5 Enqueue Destinations for Messages During Apply

	11.6.2 Ensure That Only One Rule Can Evaluate to TRUE for a Particular Rule Condition
	11.6.3 Action Context Considerations for Schema and Global Rules

	11.7 User-Created Rules, Rule Sets, and Evaluation Contexts
	11.7.1 User-Created Rules and Rule Sets
	11.7.1.1 Rule Conditions for Specific Types of Operations
	11.7.1.2 Rule Conditions that Instruct Oracle Streams Clients to Discard Unsupported LCRs
	11.7.1.3 Complex Rule Conditions
	11.7.1.3.1 Rule Conditions Using the NOT Logical Condition to Exclude Objects
	11.7.1.3.2 Rule Conditions Using the LIKE Condition

	11.7.1.4 Rule Conditions with Undefined Variables that Evaluate to NULL
	11.7.1.4.1 Examples of Undefined Variables that Result in TRUE Rules for Oracle Streams Clients
	11.7.1.4.2 Examples of Undefined Variables that Result in FALSE Rules for Oracle Streams Clients

	11.7.1.5 Variables as Function Parameters in Rule Conditions

	11.7.2 User-Created Evaluation Contexts

	12 Combined Capture and Apply Optimization
	12.1 About Combined Capture and Apply Optimization
	12.2 Combined Capture and Apply Requirements
	12.3 How to Use Combined Capture and Apply
	12.4 How to Determine Whether Combined Capture and Apply Is Being Used
	12.5 Combined Capture and Apply and Point-in-Time Recovery

	13 Oracle Streams High Availability Environments
	13.1 Overview of Oracle Streams High Availability Environments
	13.2 Protection from Failures
	13.2.1 Oracle Streams Replica Database
	13.2.1.1 Updates at the Replica Database
	13.2.1.2 Heterogeneous Platform Support
	13.2.1.3 Multiple Character Sets
	13.2.1.4 Mining the Online Redo Logs to Minimize Latency
	13.2.1.5 Fast Failover
	13.2.1.6 Single Capture for Multiple Destinations

	13.2.2 When Not to Use Oracle Streams
	13.2.3 Application-Maintained Copies

	13.3 Best Practices for Oracle Streams High Availability Environments
	13.3.1 Configuring Oracle Streams for High Availability
	13.3.1.1 Directly Connecting Every Database to Every Other Database
	13.3.1.2 Creating Hub-and-Spoke Configurations
	13.3.1.3 Local or Downstream Capture with Oracle Streams Capture Processes

	13.3.2 Recovering from Failures
	13.3.2.1 Automatic Capture Process Restart After a Failover
	13.3.2.2 Database Links Reestablishment After a Failover
	13.3.2.3 Propagation Job Restart After a Failover
	13.3.2.4 Automatic Apply Process Restart After a Failover

	Part III Oracle Streams Administration
	14 Introduction to Oracle Streams Administration
	14.1 Oracle-Supplied PL/SQL Packages
	14.1.1 DBMS_APPLY_ADM Package
	14.1.2 DBMS_CAPTURE_ADM Package
	14.1.3 DBMS_COMPARISON Package
	14.1.4 DBMS_PROPAGATION_ADM Package
	14.1.5 DBMS_RULE Package
	14.1.6 DBMS_RULE_ADM Package
	14.1.7 DBMS_STREAMS Package
	14.1.8 DBMS_STREAMS_ADM Package
	14.1.9 DBMS_STREAMS_ADVISOR_ADM Package
	14.1.10 DBMS_STREAMS_AUTH Package
	14.1.11 DBMS_STREAMS_HANDLER_ADM Package
	14.1.12 DBMS_STREAMS_MESSAGING Package
	14.1.13 DBMS_STREAMS_TABLESPACE_ADM Package
	14.1.14 UTL_SPADV Package

	14.2 Oracle Streams Data Dictionary Views
	14.3 Oracle Streams Tool in Oracle Enterprise Manager Cloud Control

	15 Managing Oracle Streams Implicit Capture
	15.1 Managing a Capture Process
	15.1.1 Starting a Capture Process
	15.1.2 Stopping a Capture Process
	15.1.3 Managing the Rule Set for a Capture Process
	15.1.3.1 Specifying a Rule Set for a Capture Process
	15.1.3.1.1 Specifying a Positive Rule Set for a Capture Process
	15.1.3.1.2 Specifying a Negative Rule Set for a Capture Process

	15.1.3.2 Adding Rules to a Rule Set for a Capture Process
	15.1.3.2.1 Adding Rules to the Positive Rule Set for a Capture Process
	15.1.3.2.2 Adding Rules to the Negative Rule Set for a Capture Process

	15.1.3.3 Removing a Rule from a Rule Set for a Capture Process
	15.1.3.4 Removing a Rule Set for a Capture Process

	15.1.4 Setting a Capture Process Parameter
	15.1.5 Setting the Capture User for a Capture Process
	15.1.6 Managing the Checkpoint Retention Time for a Capture Process
	15.1.6.1 Setting the Checkpoint Retention Time for a Capture Process to a New Value
	15.1.6.2 Setting the Checkpoint Retention Time for a Capture Process to Infinite

	15.1.7 Adding an Archived Redo Log File to a Capture Process Explicitly
	15.1.8 Setting the First SCN for an Existing Capture Process
	15.1.9 Setting the Start SCN for an Existing Capture Process
	15.1.10 Specifying Whether Downstream Capture Uses a Database Link
	15.1.11 Dropping a Capture Process

	15.2 Managing a Synchronous Capture
	15.2.1 Managing the Rule Set for a Synchronous Capture
	15.2.1.1 Specifying a Rule Set for a Synchronous Capture
	15.2.1.2 Adding Rules to a Rule Set for a Synchronous Capture
	15.2.1.3 Removing a Rule from a Rule Set for a Synchronous Capture

	15.2.2 Setting the Capture User for a Synchronous Capture
	15.2.3 Dropping a Synchronous Capture

	15.3 Managing Extra Attributes in Captured LCRs
	15.3.1 Including Extra Attributes in Implicitly Captured LCRs
	15.3.2 Excluding Extra Attributes from Implicitly Captured LCRs

	15.4 Switching From a Capture Process to a Synchronous Capture
	15.5 Switching from a Synchronous Capture to a Capture Process

	16 Managing Staging and Propagation
	16.1 Managing Queues
	16.1.1 Enabling a User to Perform Operations on a Secure Queue
	16.1.2 Disabling a User from Performing Operations on a Secure Queue
	16.1.3 Removing a Queue

	16.2 Managing Oracle Streams Propagations and Propagation Jobs
	16.2.1 Starting a Propagation
	16.2.2 Stopping a Propagation
	16.2.3 Altering the Schedule of a Propagation Job
	16.2.3.1 Altering the Schedule of a Propagation Job for a Queue-to-Queue Propagation
	16.2.3.2 Altering the Schedule of a Propagation Job for a Queue-to-Dblink Propagation

	16.2.4 Specifying the Rule Set for a Propagation
	16.2.4.1 Specifying a Positive Rule Set for a Propagation
	16.2.4.2 Specifying a Negative Rule Set for a Propagation

	16.2.5 Adding Rules to the Rule Set for a Propagation
	16.2.5.1 Adding Rules to the Positive Rule Set for a Propagation
	16.2.5.2 Adding Rules to the Negative Rule Set for a Propagation

	16.2.6 Removing a Rule from the Rule Set for a Propagation
	16.2.7 Removing a Rule Set for a Propagation
	16.2.8 Dropping a Propagation

	17 Managing Oracle Streams Information Consumption
	17.1 Starting an Apply Process
	17.2 Stopping an Apply Process
	17.3 Managing the Rule Set for an Apply Process
	17.3.1 Specifying the Rule Set for an Apply Process
	17.3.1.1 Specifying a Positive Rule Set for an Apply Process
	17.3.1.2 Specifying a Negative Rule Set for an Apply Process

	17.3.2 Adding Rules to the Rule Set for an Apply Process
	17.3.2.1 Adding Rules to the Positive Rule Set for an Apply Process
	17.3.2.2 Adding Rules to the Negative Rule Set for an Apply Process

	17.3.3 Removing a Rule from the Rule Set for an Apply Process
	17.3.4 Removing a Rule Set for an Apply Process

	17.4 Setting an Apply Process Parameter
	17.5 Setting the Apply User for an Apply Process
	17.6 Managing a DML Handler
	17.6.1 Managing a Statement DML Handler
	17.6.1.1 Creating a Statement DML Handler and Adding It to an Apply Process
	17.6.1.1.1 Creating a Statement DML Handler With One Statement
	17.6.1.1.2 Creating a Statement DML Handler With More Than One Statement

	17.6.1.2 Adding Statements to a Statement DML Handler
	17.6.1.3 Modifying a Statement in a Statement DML Handler
	17.6.1.4 Removing Statements from a Statement DML Handler
	17.6.1.5 Removing a Statement DML Handler from an Apply Process
	17.6.1.6 Dropping a Statement DML Handler

	17.6.2 Managing a Procedure DML Handler
	17.6.2.1 Creating a Procedure DML Handler
	17.6.2.2 Setting a Procedure DML Handler
	17.6.2.3 Unsetting a Procedure DML Handler

	17.7 Managing a DDL Handler
	17.7.1 Creating a DDL Handler for an Apply Process
	17.7.2 Setting the DDL Handler for an Apply Process
	17.7.3 Removing the DDL Handler for an Apply Process

	17.8 Managing the Message Handler for an Apply Process
	17.8.1 Setting the Message Handler for an Apply Process
	17.8.2 Unsetting the Message Handler for an Apply Process

	17.9 Managing the Precommit Handler for an Apply Process
	17.9.1 Creating a Precommit Handler for an Apply Process
	17.9.2 Setting the Precommit Handler for an Apply Process
	17.9.3 Unsetting the Precommit Handler for an Apply Process

	17.10 Specifying That Apply Processes Enqueue Messages
	17.10.1 Setting the Destination Queue for Messages that Satisfy a Rule
	17.10.2 Removing the Destination Queue Setting for a Rule

	17.11 Specifying Execute Directives for Apply Processes
	17.11.1 Specifying that Messages that Satisfy a Rule Are Not Executed
	17.11.2 Specifying that Messages that Satisfy a Rule Are Executed

	17.12 Managing an Error Handler
	17.12.1 Creating an Error Handler
	17.12.2 Setting an Error Handler
	17.12.3 Unsetting an Error Handler

	17.13 Managing Apply Errors
	17.13.1 Retrying Apply Error Transactions
	17.13.1.1 Retrying a Specific Apply Error Transaction
	17.13.1.1.1 Retrying a Specific Apply Error Transaction Without a User Procedure
	17.13.1.1.2 Retrying a Specific Apply Error Transaction with a User Procedure

	17.13.1.2 Retrying All Error Transactions for an Apply Process

	17.13.2 Deleting Apply Error Transactions
	17.13.2.1 Deleting a Specific Apply Error Transaction
	17.13.2.2 Deleting All Error Transactions for an Apply Process

	17.14 Managing the Substitute Key Columns for a Table
	17.14.1 Setting Substitute Key Columns for a Table
	17.14.2 Removing the Substitute Key Columns for a Table

	17.15 Using Virtual Dependency Definitions
	17.15.1 Setting and Unsetting Value Dependencies
	17.15.1.1 Schema Differences and Value Dependencies
	17.15.1.2 Undefined Constraints at the Destination Database and Value Dependencies

	17.15.2 Creating and Dropping Object Dependencies
	17.15.2.1 Creating an Object Dependency
	17.15.2.2 Dropping an Object Dependency

	17.16 Dropping an Apply Process

	18 Managing Rules
	18.1 Managing Rule Sets
	18.1.1 Creating a Rule Set
	18.1.2 Adding a Rule to a Rule Set
	18.1.3 Removing a Rule from a Rule Set
	18.1.4 Dropping a Rule Set

	18.2 Managing Rules
	18.2.1 Creating a Rule
	18.2.1.1 Creating a Rule without an Action Context
	18.2.1.2 Creating a Rule with an Action Context

	18.2.2 Altering a Rule
	18.2.2.1 Changing a Rule Condition
	18.2.2.2 Modifying a Name-Value Pair in a Rule Action Context
	18.2.2.3 Adding a Name-Value Pair to a Rule Action Context
	18.2.2.4 Removing a Name-Value Pair from a Rule Action Context

	18.2.3 Modifying System-Created Rules
	18.2.4 Dropping a Rule

	18.3 Managing Privileges on Evaluation Contexts, Rule Sets, and Rules
	18.3.1 Granting System Privileges on Evaluation Contexts, Rule Sets, and Rules
	18.3.2 Granting Object Privileges on an Evaluation Context, Rule Set, or Rule
	18.3.3 Revoking System Privileges on Evaluation Contexts, Rule Sets, and Rules
	18.3.4 Revoking Object Privileges on an Evaluation Context, Rule Set, or Rule

	19 Managing Rule-Based Transformations
	19.1 Managing Declarative Rule-Based Transformations
	19.1.1 Adding Declarative Rule-Based Transformations
	19.1.1.1 Adding a Declarative Rule-Based Transformation that Renames a Table
	19.1.1.2 Adding a Declarative Rule-Based Transformation that Adds a Column

	19.1.2 Overwriting an Existing Declarative Rule-Based Transformation
	19.1.3 Removing Declarative Rule-Based Transformations

	19.2 Managing Custom Rule-Based Transformations
	19.2.1 Creating a Custom Rule-Based Transformation
	19.2.2 Altering a Custom Rule-Based Transformation
	19.2.3 Unsetting a Custom Rule-Based Transformation

	20 Using Oracle Streams to Record Table Changes
	20.1 About Using Oracle Streams to Record Changes to Tables
	20.2 Preparing for an Oracle Streams Environment That Records Table Changes
	20.2.1 Decisions to Make Before Running the MAINTAIN_CHANGE_TABLE Procedure
	20.2.1.1 Decide Which Type of Environment to Configure
	20.2.1.2 Decide Which Columns to Track
	20.2.1.3 Decide Which Metadata to Record
	20.2.1.4 Decide Which Values to Track for Update Operations
	20.2.1.5 Decide Whether to Configure a KEEP_COLUMNS Transformation
	20.2.1.6 Decide Whether to Specify CREATE TABLE Options for the Change Table
	20.2.1.7 Decide Whether to Perform the Configuration Actions Directly or with a Script
	20.2.1.8 Decide Whether to Replicate the Source Table

	20.2.2 Prerequisites for the MAINTAIN_CHANGE _TABLE Procedure
	20.2.2.1 Configure an Oracle Streams Administrator on All Databases
	20.2.2.2 Configure Network Connectivity and Database Links
	20.2.2.3 Ensure That the Source Database Is in ARCHIVELOG Mode
	20.2.2.4 Set Initialization Parameters That Are Relevant to Oracle Streams
	20.2.2.5 Configure the Oracle Streams Pool
	20.2.2.6 Configure Log File Transfer to a Downstream Capture Database
	20.2.2.7 Configure Standby Redo Logs for Real-Time Downstream Capture
	20.2.2.8 Configure the Required Directory Object If You Are Using a Script
	20.2.2.9 Instantiate the Source Table at the Destination Database

	20.3 Configuring an Oracle Streams Environment That Records Table Changes
	20.3.1 Recording Table Changes Using Local Capture and Apply on One Database
	20.3.2 Recording Table Changes Using Local Capture and Remote Apply with Replication
	20.3.3 Recording Table Changes Using Downstream Capture and Local Apply
	20.3.4 Recording Table Changes Using Downstream Capture and Remote Apply

	20.4 Managing an Oracle Streams Environment That Records Table Changes
	20.4.1 Unsetting and Setting a Change Handler
	20.4.2 Recording Changes to a Table Using Existing Oracle Streams Components
	20.4.3 Maintaining Change Tables
	20.4.4 Managing the Oracle Streams Environment

	20.5 Monitoring an Oracle Streams Environment That Records Table Changes
	20.5.1 Monitoring a Change Table
	20.5.2 Monitoring Change Handlers
	20.5.2.1 Displaying General Information About Change Handlers
	20.5.2.2 Displaying the Change Table and Source Table for Change Handlers

	20.5.3 Monitoring the Oracle Streams Environment

	21 Other Oracle Streams Management Tasks
	21.1 Performing Full Database Export/Import in an Oracle Streams Environment
	21.2 Removing an Oracle Streams Configuration

	Part IV Monitoring Oracle Streams
	22 Monitoring an Oracle Streams Environment
	22.1 Summary of Oracle Streams Static Data Dictionary Views
	22.2 Summary of Oracle Streams Dynamic Performance Views

	23 Monitoring the Oracle Streams Topology and Performance
	23.1 About the Oracle Streams Topology
	23.2 About the Oracle Streams Performance Advisor
	23.2.1 Oracle Streams Performance Advisor Data Dictionary Views
	23.2.2 Oracle Streams Components and Statistics

	23.3 About Stream Paths in an Oracle Streams Topology
	23.3.1 Separate Stream Paths in an Oracle Streams Environment
	23.3.2 Shared Stream Paths in an Oracle Streams Replication Environment

	23.4 About the Information Gathered by the Oracle Streams Performance Advisor
	23.5 Gathering Information About the Oracle Streams Topology and Performance
	23.6 Viewing the Oracle Streams Topology and Analyzing Oracle Streams Performance
	23.6.1 Viewing the Oracle Streams Topology
	23.6.1.1 Viewing the Databases in the Oracle Streams Environment
	23.6.1.2 Viewing the Oracle Streams Components at Each Database
	23.6.1.3 Viewing Each Stream Path in an Oracle Streams Topology

	23.6.2 Viewing Performance Statistics for Oracle Streams Components
	23.6.2.1 Checking for Bottleneck Components in the Oracle Streams Topology
	23.6.2.2 Viewing Component-Level Statistics
	23.6.2.3 Viewing Session-Level Statistics
	23.6.2.4 Viewing Statistics for the Stream Paths in an Oracle Streams Environment

	23.7 Using the UTL_SPADV Package
	23.7.1 Collecting Oracle Streams Statistics Using the UTL_SPADV Package
	23.7.2 Checking Whether an Oracle Streams Monitoring Job Is Currently Running
	23.7.3 Altering an Oracle Streams Monitoring Job
	23.7.4 Stopping an Oracle Streams Monitoring Job
	23.7.5 Showing Oracle Streams Statistics Using the UTL_SPADV Package

	24 Monitoring Oracle Streams Implicit Capture
	24.1 Monitoring a Capture Process
	24.1.1 Displaying the Queue, Rule Sets, and Status of Each Capture Process
	24.1.2 Displaying Session Information About Each Capture Process
	24.1.3 Displaying Change Capture Information About Each Capture Process
	24.1.4 Displaying State Change and Message Creation Time for Each Capture Process
	24.1.5 Displaying Elapsed Time Performing Capture Operations for Each Capture Process
	24.1.6 Displaying Information About Each Downstream Capture Process
	24.1.7 Displaying the Registered Redo Log Files for Each Capture Process
	24.1.8 Displaying the Redo Log Files That Are Required by Each Capture Process
	24.1.9 Displaying SCN Values for Each Redo Log File Used by Each Capture Process
	24.1.10 Displaying the Last Archived Redo Entry Available to Each Capture Process
	24.1.11 Listing the Parameter Settings for Each Capture Process
	24.1.12 Determining the Applied SCN for All Capture Processes in a Database
	24.1.13 Determining Redo Log Scanning Latency for Each Capture Process
	24.1.14 Determining Message Enqueuing Latency for Each Capture Process
	24.1.15 Displaying Information About Rule Evaluations for Each Capture Process
	24.1.16 Determining Which Capture Processes Use Combined Capture and Apply
	24.1.17 Displaying Information About Split and Merge Operations
	24.1.17.1 Displaying the Names of the Original and Cloned Oracle Streams Components
	24.1.17.2 Displaying the Actions and Thresholds for Split and Merge Operations
	24.1.17.3 Displaying the Lag Time of the Cloned Capture Process
	24.1.17.4 Displaying Information About the Split and Merge Jobs
	24.1.17.5 Displaying Information About Past Split and Merge Operations

	24.1.18 Monitoring Supplemental Logging
	24.1.18.1 Displaying Supplemental Log Groups at a Source Database
	24.1.18.2 Displaying Database Supplemental Logging Specifications
	24.1.18.3 Displaying Supplemental Logging Specified During Preparation for Instantiation
	24.1.18.3.1 Displaying Supplemental Logging Enabled by PREPARE_TABLE_INSTANTIATION
	24.1.18.3.2 Displaying Supplemental Logging Enabled by PREPARE_SCHEMA_INSTANTIATION
	24.1.18.3.3 Displaying Supplemental Logging Enabled by PREPARE_GLOBAL_INSTANTIATION

	24.2 Monitoring a Synchronous Capture
	24.2.1 Displaying the Queue and Rule Set of Each Synchronous Capture
	24.2.2 Displaying the Tables For Which Synchronous Capture Captures Changes

	24.3 Viewing the Extra Attributes Captured by Implicit Capture

	25 Monitoring Oracle Streams Queues and Propagations
	25.1 Monitoring Queues and Messaging
	25.1.1 Displaying the ANYDATA Queues in a Database
	25.1.2 Viewing the Messaging Clients in a Database
	25.1.3 Viewing Message Notifications
	25.1.4 Determining the Consumer of Each Message in a Persistent Queue
	25.1.5 Viewing the Contents of Messages in a Persistent Queue

	25.2 Monitoring Buffered Queues
	25.2.1 Determining the Number of Messages in Each Buffered Queue
	25.2.2 Viewing the Capture Processes for the LCRs in Each Buffered Queue
	25.2.3 Displaying Information About Propagations that Send Buffered Messages
	25.2.4 Displaying the Number of Messages and Bytes Sent By Propagations
	25.2.5 Displaying Performance Statistics for Propagations that Send Buffered Messages
	25.2.6 Viewing the Propagations Dequeuing Messages from Each Buffered Queue
	25.2.7 Displaying Performance Statistics for Propagations That Receive Buffered Messages
	25.2.8 Viewing the Apply Processes Dequeuing Messages from Each Buffered Queue

	25.3 Monitoring Oracle Streams Propagations and Propagation Jobs
	25.3.1 Displaying the Queues and Database Link for Each Propagation
	25.3.2 Determining the Source Queue and Destination Queue for Each Propagation
	25.3.3 Determining the Rule Sets for Each Propagation
	25.3.4 Displaying Information About the Schedules for Propagation Jobs
	25.3.5 Determining the Total Number of Messages and Bytes Propagated
	25.3.6 Displaying Information About Propagation Senders
	25.3.7 Displaying Information About Propagation Receivers
	25.3.8 Displaying Session Information About Each Propagation

	26 Monitoring Oracle Streams Apply Processes
	26.1 Determining the Queue, Rule Sets, and Status for Each Apply Process
	26.2 Displaying General Information About Each Apply Process
	26.3 Listing the Parameter Settings for Each Apply Process
	26.4 Displaying Information About Apply Handlers
	26.4.1 Displaying Information About DML Handlers
	26.4.1.1 Displaying Information About All DML Handlers
	26.4.1.2 Displaying Information About Statement DML Handlers
	26.4.1.2.1 Displaying the Statement DML Handlers in a Database
	26.4.1.2.2 Displaying the Statement DML Handlers Used by Each Apply Process
	26.4.1.2.3 Displaying All of the Statements in Statement DML Handlers

	26.4.1.3 Displaying Information About Procedure DML Handlers

	26.4.2 Displaying the DDL Handler for Each Apply Process
	26.4.3 Displaying All of the Error Handlers for Local Apply Processes
	26.4.4 Displaying the Message Handler for Each Apply Process
	26.4.5 Displaying the Precommit Handler for Each Apply Process

	26.5 Displaying Session Information About Each Apply Process
	26.6 Displaying Information About the Reader Server for Each Apply Process
	26.7 Monitoring Transactions and Messages Spilled by Each Apply Process
	26.8 Determining Capture to Dequeue Latency for a Message
	26.9 Displaying General Information About Each Coordinator Process
	26.10 Displaying Information About Transactions Received and Applied
	26.11 Determining the Capture to Apply Latency for a Message for Each Apply Process
	26.11.1 Example V⁠$STREAMS_APPLY_COORDINATOR Query for Latency
	26.11.2 Example DBA_APPLY_PROGRESS Query for Latency

	26.12 Displaying Information About the Apply Servers for Each Apply Process
	26.13 Displaying Effective Apply Parallelism for an Apply Process
	26.14 Viewing Rules that Specify a Destination Queue on Apply
	26.15 Viewing Rules that Specify No Execution on Apply
	26.16 Determining Which Apply Processes Use Combined Capture and Apply
	26.17 Displaying the Substitute Key Columns Specified at a Destination Database
	26.18 Monitoring Virtual Dependency Definitions
	26.18.1 Displaying Value Dependencies
	26.18.2 Displaying Object Dependencies

	26.19 Checking for Apply Errors
	26.20 Displaying Detailed Information About Apply Errors

	27 Monitoring Rules
	27.1 Displaying All Rules Used by All Oracle Streams Clients
	27.2 Displaying the Oracle Streams Rules Used by a Specific Oracle Streams Client
	27.2.1 Displaying the Rules in the Positive Rule Set for an Oracle Streams Client
	27.2.2 Displaying the Rules in the Negative Rule Set for an Oracle Streams Client

	27.3 Displaying the Current Condition for a Rule
	27.4 Displaying Modified Rule Conditions for Oracle Streams Rules
	27.5 Displaying the Evaluation Context for Each Rule Set
	27.6 Displaying Information About the Tables Used by an Evaluation Context
	27.7 Displaying Information About the Variables Used in an Evaluation Context
	27.8 Displaying All of the Rules in a Rule Set
	27.9 Displaying the Condition for Each Rule in a Rule Set
	27.10 Listing Each Rule that Contains a Specified Pattern in Its Condition
	27.11 Displaying Aggregate Statistics for All Rule Set Evaluations
	27.12 Displaying Information About Evaluations for Each Rule Set
	27.13 Determining the Resources Used by Evaluation of Each Rule Set
	27.14 Displaying Evaluation Statistics for a Rule

	28 Monitoring Rule-Based Transformations
	28.1 Displaying Information About All Rule-Based Transformations
	28.2 Displaying Declarative Rule-Based Transformations
	28.2.1 Displaying Information About ADD COLUMN Transformations
	28.2.2 Displaying Information About RENAME TABLE Transformations

	28.3 Displaying Custom Rule-Based Transformations

	29 Monitoring Other Oracle Streams Components
	29.1 Monitoring Oracle Streams Administrators and Other Oracle Streams Users
	29.1.1 Listing Local Oracle Streams Administrators
	29.1.2 Listing Users Who Allow Access to Remote Oracle Streams Administrators

	29.2 Monitoring the Oracle Streams Pool
	29.2.1 Query Result that Advises Increasing the Oracle Streams Pool Size
	29.2.2 Query Result that Advises Retaining the Current Oracle Streams Pool Size
	29.2.3 Query Result that Advises Decreasing the Oracle Streams Pool Size

	29.3 Monitoring Compatibility in an Oracle Streams Environment
	29.3.1 Monitoring Compatibility for Capture Processes
	29.3.1.1 Listing the Database Objects That Are Not Compatible with Capture Processes
	29.3.1.2 Listing the Database Objects Recently Compatible with Capture Processes

	29.3.2 Listing Database Objects and Columns Not Compatible with Synchronous Captures
	29.3.3 Monitoring Compatibility for Apply Processes
	29.3.3.1 Listing Database Objects and Columns Not Compatible with Apply Processes
	29.3.3.2 Listing Columns That Have Become Compatible with Apply Processes Recently

	29.4 Monitoring Oracle Streams Performance Using AWR and Statspack

	Part V Troubleshooting an Oracle Streams Environment
	30 Identifying Problems in an Oracle Streams Environment
	30.1 Viewing Oracle Streams Alerts
	30.2 Using the Streams Configuration Report and Health Check Script
	30.3 Handling Performance Problems Because of an Unavailable Destination
	30.4 Checking the Trace Files and Alert Log for Problems
	30.4.1 Does a Capture Process Trace File Contain Messages About Capture Problems?
	30.4.2 Do the Trace Files Related to Propagation Jobs Contain Messages About Problems?
	30.4.3 Does an Apply Process Trace File Contain Messages About Apply Problems?

	31 Troubleshooting Implicit Capture
	31.1 Troubleshooting Capture Process Problems
	31.1.1 Is Capture Process Creation or Data Dictionary Build Taking a Long Time?
	31.1.2 Is the Capture Process Enabled?
	31.1.3 Is the Capture Process Waiting for Redo?
	31.1.4 Is the Capture Process Paused for Flow Control?
	31.1.5 Is the Capture Process Current?
	31.1.6 Are Required Redo Log Files Missing?
	31.1.7 Is a Downstream Capture Process Waiting for Redo Data?
	31.1.8 Are You Trying to Configure Downstream Capture Incorrectly?
	31.1.9 Are You Trying to Configure Downstream Capture without Proper Authentication?
	31.1.10 Are More Actions Required for Downstream Capture without a Database Link?

	31.2 Troubleshooting Synchronous Capture Problems
	31.2.1 Is a Synchronous Capture Failing to Capture Changes to Tables?

	32 Troubleshooting Propagation
	32.1 Does the Propagation Use the Correct Source and Destination Queue?
	32.2 Is the Propagation Enabled?
	32.3 Is Security Configured Properly for the ANYDATA Queue?
	32.3.1 ORA-24093 AQ Agent not granted privileges of database user
	32.3.2 ORA-25224 Sender name must be specified for enqueue into secure queues

	33 Troubleshooting Apply
	33.1 Is the Apply Process Enabled?
	33.2 Is the Apply Process Current?
	33.3 Does the Apply Process Apply Captured LCRs?
	33.4 Is the Apply Process's Queue Receiving the Messages to be Applied?
	33.5 Is a Custom Apply Handler Specified?
	33.6 Is the AQ_TM_PROCESSES Initialization Parameter Set to Zero?
	33.7 Does the Apply User Have the Required Privileges?
	33.8 Is the Apply Process Encountering Contention?
	33.9 Is the Apply Process Waiting for a Dependent Transaction?
	33.10 Is an Apply Server Performing Poorly for Certain Transactions?
	33.11 Are There Any Apply Errors in the Error Queue?
	33.11.1 Using a DML Handler to Correct Error Transactions
	33.11.2 Troubleshooting Specific Apply Errors
	33.11.2.1 ORA-01031 Insufficient Privileges
	33.11.2.2 ORA-01403 No Data Found
	33.11.2.3 ORA-23605 Invalid Value for Oracle Streams Parameter
	33.11.2.4 ORA-23607 Invalid Column
	33.11.2.5 ORA-24031 Invalid Value, parameter_name Should Be Non-NULL
	33.11.2.6 ORA-26687 Instantiation SCN Not Set
	33.11.2.7 ORA-26688 Missing Key in LCR
	33.11.2.8 ORA-26689 Column Type Mismatch
	33.11.2.9 ORA-26786 A row with key exists but has conflicting column(s) in table
	33.11.2.10 ORA-26787 The row with key column_value does not exist in table table_name

	34 Troubleshooting Rules and Rule-Based Transformations
	34.1 Are Rules Configured Properly for the Oracle Streams Client?
	34.1.1 Checking Schema and Global Rules
	34.1.2 Checking Table Rules
	34.1.3 Checking Subset Rules
	34.1.4 Checking for Message Rules
	34.1.5 Resolving Problems with Rules

	34.2 Are Declarative Rule-Based Transformations Configured Properly?
	34.3 Are the Custom Rule-Based Transformations Configured Properly?
	34.4 Are Incorrectly Transformed LCRs in the Error Queue?

	Part VI Oracle Streams Information Provisioning
	35 Information Provisioning Concepts
	35.1 Overview of Information Provisioning
	35.2 Bulk Provisioning of Large Amounts of Information
	35.2.1 Data Pump Export/Import
	35.2.2 Transportable Tablespace from Backup with RMAN
	35.2.3 DBMS_STREAMS_TABLESPACE_ADM Procedures
	35.2.3.1 File Group Repository
	35.2.3.2 Tablespace Repository
	35.2.3.2.1 When to Use a Tablespace Repository
	35.2.3.2.2 Differences Between the Tablespace Repository Procedures
	35.2.3.2.3 Remote Access to a Tablespace Repository
	35.2.3.2.4 Only One Tablespace Version Can Be Online in a Database
	35.2.3.2.5 Tablespace Repository Procedures Use the DBMS_FILE_GROUP Package Automatically
	35.2.3.2.6 A Tablespace Repository Provides Versioning but Not Source Control

	35.2.3.3 Read-Only Tablespaces Requirement During Export
	35.2.3.4 Automatic Platform Conversion for Tablespaces

	35.2.4 Options for Bulk Information Provisioning

	35.3 Incremental Information Provisioning with Oracle Streams
	35.4 On-Demand Information Access

	36 Using Information Provisioning
	36.1 Using a Tablespace Repository
	36.1.1 Creating and Populating a Tablespace Repository
	36.1.2 Using a Tablespace Repository for Remote Reporting with a Shared File System
	36.1.3 Using a Tablespace Repository for Remote Reporting without a Shared File System

	36.2 Using a File Group Repository

	37 Monitoring File Group and Tablespace Repositories
	37.1 Monitoring a File Group Repository
	37.1.1 Displaying General Information About the File Groups in a Database
	37.1.2 Displaying Information About File Group Versions
	37.1.3 Displaying Information About File Group Files

	37.2 Monitoring a Tablespace Repository
	37.2.1 Displaying Information About the Tablespaces in a Tablespace Repository
	37.2.2 Displaying Information About the Tables in a Tablespace Repository
	37.2.3 Displaying Export Information About Versions in a Tablespace Repository

	Part VII Appendixes
	A How Oracle Streams Works with Other Database Components
	A.1 Oracle Streams and Oracle Real Application Clusters
	A.1.1 Capture Processes and Oracle Real Application Clusters
	A.1.2 Synchronous Capture and Oracle Real Application Clusters
	A.1.3 Combined Capture and Apply and Oracle Real Application Clusters
	A.1.4 Queues and Oracle Real Application Clusters
	A.1.5 Propagations and Oracle Real Application Clusters
	A.1.6 Apply Processes and Oracle Real Application Clusters

	A.2 Oracle Streams and Transparent Data Encryption
	A.2.1 Capture Processes and Transparent Data Encryption
	A.2.2 Synchronous Capture and Transparent Data Encryption
	A.2.3 Explicit Capture and Transparent Data Encryption
	A.2.4 Queues and Transparent Data Encryption
	A.2.5 Propagations and Transparent Data Encryption
	A.2.6 Apply Processes and Transparent Data Encryption
	A.2.7 Messaging Clients and Transparent Data Encryption
	A.2.8 Manual Dequeue and Transparent Data Encryption

	A.3 Oracle Streams and Flashback Data Archive
	A.4 Oracle Streams and Recovery Manager (RMAN)
	A.4.1 RMAN and Instantiation
	A.4.2 RMAN and Archived Redo Log Files Required by a Capture Process
	A.4.2.1 RMAN and Local Capture Processes
	A.4.2.2 RMAN and Downstream Capture Processes

	A.4.3 The Recovery Catalog and Oracle Streams

	A.5 Oracle Streams and Distributed Transactions
	A.6 Oracle Streams and Oracle Database Vault

	B Oracle Streams Restrictions
	B.1 Capture Process Restrictions
	B.1.1 Unsupported Data Types for Capture Processes
	B.1.2 Unsupported Changes for Capture Processes
	B.1.2.1 Unsupported Schemas for Capture Processes
	B.1.2.2 Unsupported Table Types for Capture Processes
	B.1.2.3 Unsupported DDL Changes for Capture Processes
	B.1.2.4 Changes Ignored by a Capture Process
	B.1.2.5 NOLOGGING and UNRECOVERABLE Keywords for SQL Operations
	B.1.2.6 UNRECOVERABLE Clause for Direct Path Loads

	B.1.3 Supplemental Logging Data Type Restrictions
	B.1.4 Operational Requirements for Downstream Capture
	B.1.5 Capture Processes Do Not Support Oracle Label Security
	B.1.6 Capture Process Interoperability with Oracle Streams Apply Processes

	B.2 Synchronous Capture Restrictions
	B.2.1 Synchronous Captures Only Use Table Rules
	B.2.2 Unsupported Data Types for Synchronous Captures
	B.2.3 Unsupported Changes for Synchronous Captures
	B.2.3.1 Unsupported Schemas for Synchronous Captures
	B.2.3.2 Unsupported Table Types for Synchronous Captures
	B.2.3.3 Changes Ignored by Synchronous Capture

	B.2.4 Synchronous Capture Rules and the DBMS_STREAMS_ADM Package
	B.2.5 Synchronous Captures Do Not Support Oracle Label Security

	B.3 Queue Restrictions
	B.3.1 Explicit Enqueue Restrictions for ANYDATA Queues
	B.3.2 Restrictions for Buffered Messaging
	B.3.3 Triggers and Queue Tables

	B.4 Propagation Restrictions
	B.4.1 Connection Qualifiers and Propagations
	B.4.2 Character Set Restrictions for Propagations
	B.4.3 Compatibility Requirements for Queue-To-Queue Propagations

	B.5 Apply Process Restrictions
	B.5.1 Unsupported Data Types for Apply Processes
	B.5.2 Unsupported Data Types for Apply Handlers
	B.5.3 Types of DDL Changes Ignored by an Apply Process
	B.5.4 Database Structures in an Oracle Streams Environment
	B.5.5 Current Schema User Must Exist at Destination Database
	B.5.6 Apply Processes Do Not Support Oracle Label Security
	B.5.7 Apply Process Interoperability with Oracle Streams Capture Components

	B.6 Messaging Client Restrictions
	B.6.1 Messaging Clients and Buffered Messages

	B.7 Rule Restrictions
	B.7.1 Restrictions for Subset Rules
	B.7.2 Restrictions for Action Contexts
	B.7.3 Restrictions on Data Type

	B.8 Rule-Based Transformation Restrictions
	B.8.1 Unsupported Data Types for Declarative Rule-Based Transformations
	B.8.2 Unsupported Data Types for Custom Rule-Based Transformations

	B.9 Oracle Multitenant Option Restrictions for Oracle Streams

	C XML Schema for LCRs
	C.1 Definition of the XML Schema for LCRs

	D Online Database Upgrade and Maintenance with Oracle Streams
	D.1 Overview of Using Oracle Streams for Upgrade and Maintenance Operations
	D.1.1 The Capture Database During the Upgrade or Maintenance Operation
	D.1.2 Assumptions for the Database Being Upgraded or Maintained
	D.1.3 Considerations for Job Slaves and PL/SQL Package Subprograms
	D.1.4 Unsupported Database Objects Are Excluded

	D.2 Preparing for a Database Upgrade or Maintenance Operation
	D.2.1 Preparing for Downstream Capture
	D.2.2 Preparing for Upgrade or Maintenance of a Database with User-Defined Types
	D.2.3 Preparing for Upgrades to User-Created Applications
	D.2.3.1 Handling Modifications to Schema Objects
	D.2.3.2 Handling Logical Dependencies

	D.2.4 Deciding Whether to Configure Oracle Streams Directly or Generate a Script
	D.2.5 Deciding Which Utility to Use for Instantiation

	D.3 Performing a Database Upgrade or Maintenance Operation Using Oracle Streams
	D.3.1 Task 1: Beginning the Operation
	D.3.2 Task 2: Setting Up Oracle Streams Before Instantiation
	D.3.2.1 The Source Database Is the Capture Database
	D.3.2.2 The Destination Database Is the Capture Database
	D.3.2.3 A Third Database Is the Capture Database

	D.3.3 Task 3: Instantiating the Database
	D.3.3.1 Instantiating the Database Using Export/Import
	D.3.3.2 Instantiating the Database Using the RMAN DUPLICATE Command
	D.3.3.3 Instantiating the Database Using the RMAN CONVERT DATABASE Command

	D.3.4 Task 4: Setting Up Oracle Streams After Instantiation
	D.3.4.1 The Source Database Is the Capture Database
	D.3.4.2 The Destination Database Is the Capture Database
	D.3.4.3 A Third Database Is the Capture Database

	D.3.5 Task 5: Finishing the Upgrade or Maintenance Operation and Removing Oracle Streams

	E Online Upgrade of an Earlier Database with Oracle Streams
	E.1 Overview of Using Oracle Streams in the Database Upgrade Process
	E.1.1 The Capture Database During the Upgrade Process
	E.1.2 Assumptions for the Database Being Upgraded
	E.1.3 Considerations for Job Queue Processes and PL/SQL Package Subprograms

	E.2 Preparing for a Database Upgrade Using Oracle Streams
	E.2.1 Preparing to Upgrade a Database with User-Defined Types
	E.2.2 Deciding Which Utility to Use for Instantiation

	E.3 Performing a Database Upgrade Using Oracle Streams
	E.3.1 Task 1: Beginning the Upgrade
	E.3.2 Task 2: Setting Up Oracle Streams Before Instantiation
	E.3.2.1 The Source Database Is the Capture Database
	E.3.2.2 The Destination Database Is the Capture Database
	E.3.2.3 A Third Database Is the Capture Database

	E.3.3 Task 3: Instantiating the Database
	E.3.3.1 Instantiating the Database Using Export/Import
	E.3.3.2 Instantiating the Database Using RMAN

	E.3.4 Task 4: Setting Up Oracle Streams After Instantiation
	E.3.4.1 The Source Database Is the Capture Database
	E.3.4.2 The Destination Database Is the Capture Database
	E.3.4.3 A Third Database Is the Capture Database

	E.3.5 Task 5: Finishing the Upgrade and Removing Oracle Streams

	Glossary
	action context
	ANYDATA queue
	applied SCN
	apply forwarding
	apply handler
	apply process
	apply servers
	apply user
	approximate commit system change number (approximate CSCN)
	archived-log downstream capture process
	barrier transaction
	buffered LCR
	buffered queue
	buffered user message
	builder server
	capture database
	capture process
	capture user
	captured LCR
	captured SCN
	change cycling
	change handler
	checkpoint
	checkpoint interval
	checkpoint retention time
	column list
	commit-time queue
	conditional log group
	conflict
	conflict resolution
	consumption
	coordinator process
	custom apply
	custom rule-based transformation
	database supplemental logging
	DDL handler
	DDL logical change record (DDL LCR)
	declarative rule-based transformation
	dequeue
	destination database
	destination queue
	direct apply
	directed network
	DML handler
	downstream capture process
	downstream database
	enqueue
	error handler
	evaluation context
	exception queue
	explicit capture
	explicit consumption
	expression
	file
	file group
	file group repository
	first SCN
	global rule
	heterogeneous information sharing
	high-watermark
	ignore SCN
	implicit capture
	implicit consumption
	instantiation
	instantiation SCN
	LCR
	LOB assembly
	local capture process
	logical change record (LCR)
	LogMiner data dictionary
	low-watermark
	maximum checkpoint SCN
	message
	message handler
	message rule
	messaging client
	negative rule set
	nonpersistent queue
	nontransactional queue
	object dependency
	oldest SCN
	Oracle Streams client
	Oracle Streams data dictionary
	Oracle Streams pool
	Oracle Streams topology
	persistent LCR
	persistent queue
	persistent user message
	positive rule set
	precommit handler
	prepared table
	preparer server
	procedure DML handler
	propagation
	propagation job
	propagation schedule
	queue
	queue forwarding
	queue table
	reader server
	real-time downstream capture process
	required checkpoint SCN
	replication
	resolution column
	row logical change record (row LCR)
	row migration
	rule
	rule-based transformation
	rule condition
	rule set
	rules engine
	schema rule
	secure queue
	source database
	source queue
	start SCN
	statement DML handler
	subset rule
	supplemental log group
	supplemental logging
	synchronous capture
	system-created rule
	table rule
	table supplemental logging
	tablespace repository
	tag
	topology
	transaction control directive
	transactional queue
	typed queue
	unconditional log group
	user message
	value dependency
	version
	virtual dependency definition

	Index

