
Oracle® Database
2 Day + Java Developer's Guide

12c Release 2 (12.2)
E85808-01
May 2017

Oracle Database 2 Day + Java Developer's Guide, 12c Release 2 (12.2)

E85808-01

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tanmay Choudhury

Contributing Authors: Tulika Das

Contributors: Kuassi Mensah, Nirmala Sundarappa

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Related Documents v

Conventions v

1 Aims and Objectives of This Book

1.1 Architecture of the Application 1-1

1.2 Part I 1-2

1.3 Part II 1-2

2 Using Java with Oracle Database

2.1 Java Database Connectivity Driver (JDBC) 2-1

2.2 Universal Connection Pool 2-2

2.3 Java in the Database (OJVM) 2-2

3 Overview of the HR Web Application

3.1 Functionalities of the HR Web Application 3-1

3.2 Components and Repositories 3-2

4 Getting Started with the Application

4.1 What You Need to Install 4-1

4.1.1 Oracle Database 12c Release 2 (12.2) 4-1

4.1.1.1 Unlocking the HR Schema for the JDBC Application 4-1

4.1.2 J2SE or JDK 4-2

4.1.3 Integrated Development Environment 4-3

4.1.4 Web Server 4-3

4.2 Oracle Database Cloud — Starting with Oracle Database as a Service 4-3

4.3 Verifying the Oracle Database 12c Release 2 (12.2) Installation 4-4

iii

5 Connecting to Oracle Database 12c Release 2 (12.2)

5.1 Creating an Employee Java Bean 5-1

5.2 Creating a Java Bean Interface for a JDBC Connection 5-2

5.3 Creating a Java Bean Implementation for a JDBC Connection 5-2

5.4 Creating a Servlet to Process the Request 5-3

5.5 Create an HTML Page to Display Results 5-4

5.6 Create a CSS File 5-5

6 Search by Employee ID

6.1 Employee Java Bean 6-1

6.2 Create a Method in Java Bean for Search by Employee ID 6-1

6.3 Implement a Method getEmployee() for Search by Employee ID 6-1

6.4 Create a New HTML for Search by Employee Id 6-2

7 Update an Employee Record

7.1 Create a Method in Java Bean for Search by Employee’s First Name 7-1

7.2 Implement a Method getEmployeebyFn() for Search by Employee name 7-1

8 Best Practices

Index

iv

Preface

This preface discusses the intended audience and conventions of the Oracle
Database 2 Day + Java Developer's Guide.. It also includes a list of related Oracle
documents that you can refer to for more information.

Audience
This guide is intended for application developers using Java to access and modify data
in Oracle Database. This guide illustrates how to perform these tasks using a simple
Java Database Connectivity (JDBC) application. This guide uses the Oracle
JDeveloper integrated development environment (IDE) to create the application. This
guide can be read by anyone with an interest in Java programming, but it assumes at
least some prior knowledge of the following:

• Java

• Oracle PL/SQL

• Oracle databases

Related Documents
For more information, see the following documents in the Oracle Database
documentation set:

• Oracle Database JDBC Developer’s Guide

• Oracle Database Java Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

1
Aims and Objectives of This Book

Java is a popular language among developers that is used to build various enterprise
solutions.

This guide will help you understand all Java products used to build a Java application.
You will learn about Oracle JDBC Thin driver, Universal Connection Pool (UCP), and
Java in the Database (OJVM). You will also learn about how to use these in the Web
application.

This application will show you how to store details of all employees in a sample
organization, add a new employee, delete an employee, and provide a salary
increment to all employee in the organization.

The Web application will have two distinct users — ‘HR Admin’ and ‘HR Staff’, with
each having different roles and privileges.

Over a period of two days, this guide aims to help you build a Web application using all
the latest tools and technologies, JDBC driver, UCP, Java in the Database, and Oracle
Database 12c Release 2 (12.2).

The guide will help you set up all prerequisites to create the Web application, including
installing Oracle Database 12c Release 2 (12.2).

What you will achieve in

• Part I

• Part II

1.1 Architecture of the Application
Architecture of the Web Application

The HR Web application uses the MVC (Model, View, Controller) architecture and the
latest tools and technologies.

For the View, or Presentation layer, you will use HTML that internally uses JavaScript,
JQuery and CSS to display the results.

The Servlet will act as a controller that connects to Oracle Database through Java
Beans. You will also use Maven to compile the entire Web application.

Following is a link to the Web application:
You will use HR schema and the Employees to understand the flows in the Web
application.

1-1

Figure 1-1

Related Topics:

• https://github.com/oracle/oracle-db-examples/tree/master/java

1.2 Part I
Part I of this covers all tasks that you will cover in Day 1:

1 Understand JDBC, UCP and Java in the Database: You will familiarize yourself
with the products, associated binaries and packages.

2 Overview of the HR Web Application: This chapter will discuss the HR Web
application in depth and familiarize you with the flows of the Web application,
packages and files that you will use in the Application.

3 Getting Started with the Application: You will understand the pre-requisites for
building the application and how to get the environment ready. Some of the tools
required to run the Application are Oracle Database 12c Release 2 (12.2), JDeveloper,
Maven, and a Java EE to deploy and run the Application.

4 List All Employees: This chapter will help you how to put all components together
and build an initial functionality to connect to the Oracle Database, and retrieve
employee details from the database.

1.3 Part II
Part II covers all tasks you will complete in Day 2. You will learn how to use Universal
Connection Pool (UCP) and Java in the Database (OJVM). You will also learn how to:

1 Search By Employee ID: This chapter provides details on how to implement the
‘Search by Employee ID’ functionality.

2 Update an Employee Record: In this chapter, you will learn how to update employee
records.

Chapter 1
Part I

1-2

https://github.com/oracle/oracle-db-examples/tree/master/java

3 Delete an Employee Record: Here, you will learn a series of steps to delete an
employee record.

4 Increase Salary to All Employees: You will understand how to provide increment
to the salary of the employees listed in the table.

5 Summary: This chapter will summarize all that you have learnt over the two days. It
will also provide appropriate references and links for enhancing your use of the
Application.

Chapter 1
Part II

1-3

2
Using Java with Oracle Database

The Java Database Connectivity (JDBC) standard is used by Java applications to
access and manipulate data in relational databases.

JDBC is an industry-standard application programming interface (API) that lets you
access a RDBMS using SQL from Java. JDBC complies with the Entry Level of the
JDBC escape standard. Each vendor implements the JDBC Specification with its own
extensions.

Universal Connection Pool (UCP) is a connection pool used to cache the database
connection objects to reuse the connections, thus improving the performance.

Java in the Database (OJVM) helps group SQL operations with Java data logic and
load them into the database for in-place processing.

See Also:

http://www.oracle.com/technetwork/java/overview-141217.html

This chapter introduces you to the JDBC driver, Universal Connection Pool (UCP) and
Java in the Database (OJVM) with Oracle Database 12c Release 2 (12.2)

• Java Database Connectivity Driver (JDBC)

• Universal Connection Pool (UCP)

• Java in the Database (OJVM)

2.1 Java Database Connectivity Driver (JDBC)
JDBC is a database access protocol that enables you to connect to a database and
run SQL statement and queries on the database. JDBC drivers implement and comply
with the latest JDBC specifications. Java application need to have ojdbc8.jar
compatible with JDK8 in their classpath.

The core Java class libraries provide the JDBC APIs, java.sql and javax.sql

The following sections describe Oracle support for the JDBC standard:

• Oracle JDBC Thin Driver

• Oracle JDBC Packages

Oracle JDBC Thin Driver

Oracle recommends using the JDBC Thin Driver for most requirements. The JDBC
Thin Driver will work on any system with a suitable Java Virtual Machine. (JVM). Some
other client drivers that Oracle provides are JDBC thin driver, Oracle Call Interface
(OCI) driver, Server side thin driver, and server side internal driver.

2-1

http://www.oracle.com/technetwork/java/overview-141217.html

The JDBC Thin Driver is a pure Java, Type IV driver. The JDBC driver
version)ojdbc8.jar) inludes support for JDK 8.

JDBC Thin Driver communicates with the server using SQL*Net to access the
database.

See Also:

Oracle Database JDBC Developer’s Guide

2.2 Universal Connection Pool
Connection pools help improve performance by reusing connection objects and
reducing the number of times that connection objects are created.

Oracle Universal Connection Pool (UCP) is a feature rich Java connection pool that
provides connection pool functionalities, along with high availability, scalability and
load balancing with the help of tighter integration with Oracle Database configurations.

A Java application or container must have ucp.jar in their classpath, along with the
ojdbc8.jar (JDK8), to be able to use UCP.

See Also:

Oracle Universal Connection Pool Developer’s Guide

2.3 Java in the Database (OJVM)
Oracle Database has a Java Virtual Machine (JVM) that resides in the server. It helps
Java applications running in the Oracle JVM on the server to access data present on
the same system and same process.

Java in the Database is recommended for applications that are data-intensive. JVM
has the ability to use the underlying Oracle RDBMS libraries directly, without the use
of a network connection between the Java code and SQL data. This helps improve
performance and execution. For data access, Oracle Database uses server-side
internal driver when Java code runs on the server.

Chapter 2
Universal Connection Pool

2-2

3
Overview of the HR Web Application

The HR Web Application is intended to give you access to information related to all
employees of AnyCo Corporation.

The two types of users that will be able to access this application are:

• HRStaff

• HRAdmin

The HRStaff and HRAdmin accounts have different privileges.

HRStaff has read only access to the application and does not have privileges to
update/delete an employee record. HRStaff can only List the employees and Search
by Employee ID.

The HRAdmin, has complete control on the application and has read and write
privileges. HRAdmin is the only user who has access to all functionalities of the
application such as update/delete an employee record, or provide salary increment for
all employees.

This Chapter has the following sections:

• Functionalities of he HR Web Application

• Packages

3.1 Functionalities of the HR Web Application
Following is a list of functionalities to access information related to AnyCo Corporation:

• List All Employees

Use the List All Employees option to retrieve employee information. This function
lists information such as Employee_ID, First_Name, Last_Name, Email, Phone_Number,
Job_Id, and Salary.

• Search By Employee ID

Use theprimary key (which is the Employee ID) to search for a particular
employee.

• Update Employee Record

You can update employee records, using the Update Employee Record function.
First, search for employees, based on the name of the employee. You can then
update employee details in the record, such as first_name, last_name, email,
phone_number, job_id and salary using the UPDATE function.

Use the DELETE function to the delete the entire employee record from the
database.

• Increment Salary

3-1

Through the increment salary tab, you can alter (increase or decrease) the
percentage of salary for hike.

• About

This page provides an overview of the HR Application and explains the various
functionalities it offers.

3.2 Components and Repositories
The following table lists and describes all the components required for the application.

See Also:

You can download the web application from the following github link:
https://github.com/oracle/oracle-db-examples/tree/master/java/HRWebApp

Package Name Desciption

src Contains source files

target Contains class files

src/main/java/com/oracle/jdbc/

samples

-

/bean/JdbcBean.java Defines the employee details as attributes

/bean/JdbcBeanImpl.java Implementation class of the EmployeeBean

src/main/java/com/oracle/jdbc/

samples

-

entity/Employee.java Consists of all employee attributes and their
defined datatypes

/web/WebController.java Servlet that controls the application flow

/web/GetRole.java Creates HRStaff and HRAdmin roles for the
application

src/main/resources
-

SalaryHikeSP.java Java class to be invoked from Java in the
database to process an increment in salary

SalaryHikeSP.sql SQL file with a procedure to increase the salary of
the employees based on their salary range

src/main/webapp -

about.html Contains the details about the HR Web
application

Chapter 3
Components and Repositories

3-2

login.html Contains the login page for the HR Web
application

login-failed.html Page to show when the login is unsuccessful

index.html Landing page of the HR Web application

listAll.html HTML page to display all employee records

listByName.html HTML page to display the result when employees
are searched by name

listById.html HTML page to display the result when employees
are searched by employee id

incrementSalary.html HTML page to display the result after an
increment is made to the salary

src/main/webapp -

css/app.cs Contains all style and font details used in the HR
Web application

src/main/webapp -

WEB-INF/web.xml Controller for the HR Web application

Chapter 3
Components and Repositories

3-3

4
Getting Started with the Application

To develop a Java application that connects to Oracle Database 12c Release 2 (12.2),
you must ensure that certain components are installed as required. This chapter
covers the following topics:

• What You Need to Install

• Verifying the Oracle Database 12c Release 2 (12.2) Installation

• Installing Oracle JDeveloper or any Java IDE (Eclipse, NetBeans, Intellij)

4.1 What You Need to Install
To be able to develop the sample application, you need to install the following
products and components:

• Oracle Database 12c Release 2 (12.2)

• J2SE or JDK

• Integrated Development Environment

• Web Server

The following subsections describe these requirements in detail.

4.1.1 Oracle Database 12c Release 2 (12.2)
To develop the Java application, you need a working installation of Oracle Database
12c Release 2 (12.2) Server with the HR schema, which comes with the database. The
installation creates an instance of Oracle Database 12c Release 2 (12.2) and provides
additional tools for managing this database. For more information, refer to the
following Oracle Database 12c Release 2 (12.2) installation guides and release notes:

• Oracle Database Installation Guide for Linux

• Oracle Database Installation Guide for Microsoft Windows

4.1.1.1 Unlocking the HR Schema for the JDBC Application
The HR user account, which owns the sample HR schema used for the Java application
in this guide, is initially locked. You must log in as a user with administrative privileges
(SYS) and unlock the account before you can log in as HR.

If the database is locally installed, use the Run SQL Command Line to unlock the
account as follows:

1. To access the Run SQL Command Line, from the Start menu, select Programs
(or All Programs), then Oracle Database 12c Release 2 (12.2), and then click
Run SQL Command Line. Log in as a user with DBA privileges, for example:

> CONNECT SYS AS SYSDBA;
Enter password: password

4-1

2. Run the following command:

> ALTER USER HR ACCOUNT UNLOCK;

or,

> ALTER USER HR IDENTIFIED BY HR;

3. Test the connection as follows:

> CONNECT HR
Enter password: password

You should see a message indicating that you have connected to the database.

Note:

For information about creating and using secure passwords with Oracle
Database 12c Release 2 (12.2), refer to Oracle Database Security Guide.

In addition, some of the constraints and triggers present in the HR schema are not in
line with the scope of the Java application created in this guide. You must remove
these constraints and triggers as follows using the following SQL statements:

DROP TRIGGER HR.UPDATE_JOB_HISTORY;
DROP TRIGGER HR.SECURE_EMPLOYEES;
DELETE FROM JOB_HISTORY;

4.1.2 J2SE or JDK
To create and compile Java applications, you need the full Java 2 Platform, Standard
Edition, Software Development Kit (J2SE SDK), formerly known as the Java
Development Kit (JDK).

Note:

Oracle Database 12c Release 2 (12.2) supports JDK 8.

See Also:

• http://www.oracle.com/technetwork/java/javase/downloads/index.html for
information about installing Java

• http://www.oracle.com/technetwork/java/overview-141217.html for
information about the JDBC API

Chapter 4
What You Need to Install

4-2

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/overview-141217.html

4.1.3 Integrated Development Environment
For ease in developing the application, you can choose to develop your application in
an integrated development environment (IDE). This guide uses Oracle JDeveloper to
create the files for this application.

4.1.4 Web Server
The sample application developed in this guide uses JavaServer Pages (JSP)
technology to display information and accept input from users. To deploy these pages,
you need a Web server with a servlet and JSP container, such as the Apache Tomcat
application server.

This guide uses the embedded server called the Oracle WebLogic Server in
JDeveloper for deploying the JSP pages. If you choose not to install Oracle
JDeveloper, then any Web server that enables you to deploy JSP pages should
suffice.

JDeveloper supports direct deployment to the following production application servers:

• Oracle WebLogic Server

• Oracle Application Server

• Apache Tomcat

• IBM WebSphere

• JBoss

For more information about these servers, please refer to vendor-specific
documentation.

4.2 Oracle Database Cloud — Starting with Oracle
Database as a Service

Prerequisites for Using Oracle Database Cloud Service

Before getting started with Oracle Database Cloud Service, you should be familiar with
the following concepts:

• Oracle Cloud

• Oracle Compute Cloud Service

• Oracle Storage Cloud Service Controllers

Database Cloud Service uses Oracle Database Backup Cloud service to back up
data on cloud storage.

Database Backup Cloud Service, on the other hand, uses Oracle Storage Cloud
Service containers as repositories for backups to the cloud. Hence, before you can
create a container, you must have a subscription to Oracle Storage Cloud Service.

What You Need to Create a Database Cloud Service Instance

• A Database Cloud Service Subscription

Chapter 4
Oracle Database Cloud — Starting with Oracle Database as a Service

4-3

• A Secure Shell (SSH) public/private key pair to enable secure access to compute
nodes supporting the database (optional)

• A container in Oracle Storage Cloud Service to store backups on cloud service

Getting Started with Database Cloud Service Subscriptions

Use the following steps to get started with Oracle Database Cloud Service (trial and
paid) subscriptions:

1 Request a trial license, or purchase a license to Oracle Database Public Cloud
Services.

2 Set up your Oracle Database Public Cloud Services account.

Note:

Refer the following link to download Oracle Database Cloud Service https://
cloud.oracle.com/database

3 Verify if your Database Cloud Service is ready to use.

4 Know more about Oracle Database Cloud Service users and roles.

5 Create accounts for users with required privileges

For more information on how to get started with Oracle Database Cloud Service, refer:

https://docs.oracle.com/en/cloud/paas/database-dbaas-cloud/csdbi/get-started-this-
service.html

4.3 Verifying the Oracle Database 12c Release 2 (12.2)
Installation

Oracle Database 12c Release 2 (12.2) installation is platform-specific. You must verify
that the installation was successful before you proceed to create the sample
application. This section describes the steps for verifying an Oracle Database 12c
Release 2 (12.2) installation.

Verifying a installation involves the following tasks:

Chapter 4
Verifying the Oracle Database 12c Release 2 (12.2) Installation

4-4

https://docs.oracle.com/en/cloud/paas/database-dbaas-cloud/csdbi/get-started-this-service.html
https://docs.oracle.com/en/cloud/paas/database-dbaas-cloud/csdbi/get-started-this-service.html

5
Connecting to Oracle Database 12c
Release 2 (12.2)

This chapter is the first in a series of five chapters, each of which describes how to
create parts of a Java application that accesses Oracle Database 12c Release 2
(12.2) and displays, modifies, deletes, and updates data on it. To be able to access
the database from a Java application, you must connect to the database using a
java.sql.Connection object.

5.1 Creating an Employee Java Bean
The Employee Java bean creates getter and setter methods for columns to be
displayed.

package com.oracle.jdbc.samples.entity;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Timestamp;

public class Employee {

private int Employee_Id;
private String First_Name;
private String Last_Name;
private String Email;
private String Phone_Number;
private String Job_Id;
private int Salary;

public Employee (ResultSet resultSet) throws SQL Exception{
this.Employee_Id = resultSet.getInt(1);
this.First_Name = resultSet.getString(2);
this.Last_Name = resultSet.getString(3);
this.Email = resultSet.getString(4);
this.Phone_Number = resultSet.getString(5);
his.Job_Id = resultSet.getString(6);
this.Salary = resultSet.getInt(7);
}

public int getEmployee_Id(){
return Employee_Id;
}

public void setEmployee_Id(int Employee_Id){
this.Employee_Id = Employee_Id;
}

public String getFirst_Name(){
return First_Name;
}

5-1

public void setFirst_Name(String First_Name){
this.First_Name = First_Name;
}

public String getLast_Name(){
return Last_Name;
}

public void setLast_Name(String Last_Name){
this.Last_Name = Last_Name;
}

public String getPhone_Number(){
return Phone_Number;
}

public String getJob_Id(){
return Job_Id;
}

public void setJob_Id(String Job_Id){
this.Job_Id = Job_Id;
}

public int getSalary(){
return Salary;
}

public void setSalary(int Salary){
this.Salary = Salary;
}

}

5.2 Creating a Java Bean Interface for a JDBC Connection
package com.oracle.jdbc.samples.bean;
import com.oracle.jdbc.samples.entity.Employee;

public interface JdbcBean {
public List <name of employee> getEmployees();
}

5.3 Creating a Java Bean Implementation for a JDBC
Connection

The following code helps to create Java Bean implementation for a JDBC Connection:

package com.oracle.jdbc.samples.bean;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import com.oracle.jdbc.samples.entity.Employee;
import java.sql.PreparedStatement;
importoracle.jdbc.OracleStatement;

Chapter 5
Creating a Java Bean Interface for a JDBC Connection

5-2

import oracle.jdbc.OracleConnection;
import oracle.jdbc.driver.OracleDriver;
public class JdbcBeanImpl implements JdbcBean {
public static Connection getConnection() throws SQLException {
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());
Connection connection =
DriverManager.getConnection(“jdbc:oracle:thin:@//slc07qwu.us.oracle.com:5521/
jvma.regress.rdbms.dev.us.oracle.com”, “hr”, “hr”);
return connection;

}
@Override
public List<Employee>getEmployees(){
List<Employee>returnValue = new ArrayList<>();
try (Connection connection = getConnection()) {
try (Statement statement = connection.createStatement()) {
try (ResultSet resultSet = statement.executeQuery(“SELECT Employee_Id, First_Name,
Last_Name, Email, Phone_Number, Job_Id, Salary from employees”)){
while(resultSet.next()){
returnValue.add(new Employee(resultSet));
}
}
}
}catch (SQLException ex){
logger.log(Level.SEVERE, null, ex);
ex.printStackTrace();
}
return returnValue;
}

5.4 Creating a Servlet to Process the Request
The following code describes the steps required to create a Servlet to process a
request.

package com.oracle.jdbc.samples.web;
import com.google.gson.Gson;
import com.google.gson.reflect.TypeToken;
import com.oracle.jdbc.samples.bean.Jdbcbean;
import com.oracle.jdbc.samples.bean.jdbcBeanImpl;
import com.oracle.jdbc.samples.entity.Employee;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;
import javax.servlet.http.*;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
@WebServlet(name=”WebController”,urlPatterns={”/WebController”})
public class WebController extends HttpServlet {
JdbcBean jdbcBean = new JdbcBeanImpl();
private void reportError(HttpServletResponse response, String message)
throws ServletException, IOException {
response.setContentType(“text/html;charset=UTF-8”);
try (PrintWriter out = response.getWriter() {
out.println(“<!DOCTYPE html>”);
out.println(“<html>”);
out.println(“<head>”);
out.println(“<title>Servlet WebController</title>”);

Chapter 5
Creating a Servlet to Process the Request

5-3

out.println(“</head>”);
out.println(“<body>)”;out.println(“<h1>”+message+”</h1>”);
out.println(“<h1>”+message+”</h1>”);
out.println(:</html>”);
}
}
protected void processRequest(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
Gson gson = new Gson();
String value = null;
List<Employee> employeeList = null;
employeeList = jdbcBean.getEmployees();
if(employeeList != null) {
response.setContentType("application/json");
gson.toJson(employeeList,
new TypeToken<ArrayList<Employee>>() { }.getType(), response.getWriter());
} else {
response.setStatus(HttpServletResponse.SC_NOT_FOUND);
}
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
processRequest(request, response);
}
}

5.5 Create an HTML Page to Display Results
Class Name:

src/main/webapp/listAll.html

The following code describes how to create a method processResponse() inside the
Java script that processes the JSON to show it on the HTML.

Sample Code

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>List all Employees</title>
<link rel="stylesheet" type="text/css" href="css/app.css" >
</head>
<body>
<div id="id-emp"></div>
<script>
var xmlhttp = new XMLHttpRequest();
var url = "WebController";
xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {
processResponse(xmlhttp.responseText);
}
}
xmlhttp.open("GET", url, true);
xmlhttp.send();
function processResponse(response) {
var arr = JSON.parse(response);
var i;
var out = "<table>";

Chapter 5
Create an HTML Page to Display Results

5-4

keys = Object.keys(arr[0]);
// Print headers
out += "<tr>"
for(i = 0; i < keys.length; ++i) {
out += "<th>"+keys[i]+"</th>"
}
out += "</tr>";
// Print values
 for(j = 0; j < arr.length; j++) {
out += "<tr>"
for(i = 0; i < keys.length; ++i) {
out += "<td>"+arr[j][keys[i]]+"</td>"
}
out += "</tr>"
}
out += "</table>";
document.getElementById("id-emp").innerHTML = out;
}
</script>
</body>
</html>

5.6 Create a CSS File
The following code creates a method processResponse() inside the Java script that
processes the JSON to show it on the HTML.

Sample Code:

table {
border-collapse:collapse;
width:100%;
}
th, td{
text-align:left;
padding:8px;
}
tr:nth-child(even){background-color: #f2f2f2}
th {
background-color: #4CAF50;
color: white;
}h {
background-color: #4CAF50;
color: white;
}
body {
font-family: "Lato", sans-serif;
}
.sidenav {
height: 100%;
width: 0;
position: fixed;
z-index: 1;
top: 0;
left: 0;
background-color: #FF0000;
overflow-x: hidden;
transition: 0.5s;
padding-top: 60px;

Chapter 5
Create a CSS File

5-5

}
.sidenav a {
padding: 8px 8px 8px 32px;
text-decoration: none;
font-size: 25px;
color: black;
display: block;
transition: 0.3s
}
.sidenav a:hover, .offcanvas a:focus{
color: #f1f1f1;
}
.closebtn {
position: absolute;
top: 0;
right: 25px;
font-size: 36px !important;
margin-left: 50px;
}
#main {
transition: margin-left .5s;
padding: 16px;
}

Chapter 5
Create a CSS File

5-6

6
Search by Employee ID

The following section illustrates the steps to search using Employee ID:

6.1 Employee Java Bean
Class Name:.

/main/java/com/oracle/jdbc/samples/entity/Employee.java

Use Employee.java that you created earlier in this illustration.

6.2 Create a Method in Java Bean for Search by Employee
ID

Class Name:

src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

Use the getEmployee(int empID) method to retrieve an employee record by ID.

/**
* Get List of employee based on empId. This will always return one row
* but returning a List to make signatures consistent.
* @param empId
* @return
* /
public List<Employee>getEmployee(int empId);

6.3 Implement a Method getEmployee() for Search by
Employee ID

Class Name:

src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

Use the getConnection() you created in the first step to connect to the same database.

Create a method getEmployee() to retrieve the employee based on the employee ID.

SELECT Employee_Id, First_Name, Last_Name, Email, Phone_Number, Job_Id, Salary FROM
EMPLOYEES WHERE
Employee_Id = ?

Following is a sample code:

6-1

public List<Employee>getEmployee(int empId) {
List<Employee>returnValue = new ArrayList<>();
try (Connection connection = getConnection()){
try (PreparedStatement preparedStatement = connection.prepareStatement(
“SELECT Employee_Id, First_Name, Last_Name, Email, Phone_Number, Job_Id, Salary FROM
EMPLOYEES WHERE Employee_Id = ?”)){
preparedStatement.setInt(1,empId);
try (ResultSet resultSet = preparedStatement.executeQuery()){
if(resultSet.next()){
returnValue.add(newEmployee(resultSet));
}
}
}
} catch (SQLException ex){
logger.log(Level.SEVERE, null, ex);
ex.printStackTrace();
}
return returnValue;
}

6.4 Create a New HTML for Search by Employee Id
Class Name:

src/main/webapp/listById.html

This HTML shows a text box to get the employee ID. Then, it generates and submits a
request to search by employee ID.

Following is the code sample:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>List Employee by Id</title>
<link rel="stylesheet" type="text/css" href="css/app.css" >
<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css">
</head>
<body>
<div><label>Employee Id: </label>
 <input id="empId" type="textfield"
onkeypress="return waitForEnter(event)"\></div>

<div id="id-emp"></div>
<script>
function waitForEnter(e) {
if (e.keyCode == 13) {
var tb = document.getElementById("empId");
fetchElementById(tb.value)
return false;
}
}
function fetchElementById(empId) {
var xmlhttp = new XMLHttpRequest();
var url = "WebController?id=" +empId;
xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

Chapter 6
Create a New HTML for Search by Employee Id

6-2

processResponse(xmlhttp.responseText);

}
}
xmlhttp.open("GET", url, true);
xmlhttp.send();
}
function processResponse(response) { var arr = JSON.parse(response); var out =
""; if (arr == null) { out = '<div class="alert alert-warning">Alert!</
strong>'
+' No records found for the given id</div>' }
else {
var i; out = "<table>";
keys = Object.keys(arr);
out += "<tr><th>Trash</th><th>Edit</th>"
for(i = 0; i < keys.length; ++i) {
out += "<th>"+keys[i]+"</th>"
}
out += "</tr>"
out += '<tr><td>'
+''
+'</td>'
+'<td>'
+''
+'</td>'
for(i = 0; i < keys.length; ++i) {
out += "<td id='" +keys[i]+"'>"+arr[keys[i]]+"</td>"
}
out += "</tr>"
}
document.getElementById("id-emp").innerHTML = out;
}
</script>
</body>
</html>

Chapter 6
Create a New HTML for Search by Employee Id

6-3

7
Update an Employee Record

Create an Employee Java Bean:

Class Name:

src/main/java/com/oracle/jdbc/samples/entity/Employee.java

Use the Employee.java file that you created, earlier in the example.

7.1 Create a Method in Java Bean for Search by
Employee’s First Name

Use the Employee.java that you created in the earlier exercise.

Class Name:

src/main/java/com/oracle/jdbc/samples/bean/JdbcBean.java

Create a new method getEmployeeByFn(String fn); in the bean

Following is the code to create a method for search by employee’s first name:

/**
* Get List of employees by First Name pattern
* @param fn
* @return List of employees with given beginning pattern
*/
public List<Employee> get EmployeeByFn(String fn);

7.2 Implement a Method getEmployeebyFn() for Search by Employee
name

Class Name:

src/main/java/com/oracle/jdbc/samples/bean/JdbcBeanImpl.java

Use the getConnection() method that you created in the first step, to connect to the
same database.

Then, create a method getEmployeeByFn() employee data based on employee’s first
name.

SELECT Employee_Id, First_Name, Last Name, Email, Phone_Number, Job_Id, Salary FROM
EMPLOYEES
WHERE First_Name LIKE ?
public List<Employee> getEmployeeByFn(String fn) {
List<Employee> returnValue = new ArrayList<>();
public List<Employee> getEmployeeByFn(String fn) {
List<Employee> returnValue = new ArrayList<>();

7-1

try (Connection connection = getConnection()) {
try (PreparedStatement preparedStatement = connection.prepareStatement(
"SELECT Employee_Id, First_Name, Last_Name, Email, Phone_Number, Job_Id, Salary FROM
EMPLOYEES WHERE First_Name LIKE ?")) {
preparedStatement.setString(1, fn + '%');
try (ResultSet resultSet = preparedStatement.executeQuery()) {
while(resultSet.next()) {
returnValue.add(new Employee(resultSet));
}
}
}
} catch (SQLException ex) {
logger.log(Level.SEVERE, null, ex);
ex.printStackTrace();
}
return returnValue;
}

Chapter 7
Implement a Method getEmployeebyFn() for Search by Employee name

7-2

8
Best Practices

This is the start of your topic.

8-1

Index

A
Apache Tomcat, 4-3

E
Entry Level of the SQL-92, 2-1

H
HR account

testing, 4-2
HR user account

sample application, 4-1
unlocking, 4-1

I
IBM WebSphere, 4-3
IDE, 4-3

Oracle JDeveloper, 4-3
installation

verifying on the database, 4-4
integrated development environment, 4-3

J
J2SE, 4-2

installing, 4-2
Java Database Connectivity, 2-1
JavaServer Pages, 4-3
JBoss, 4-3
JDBC, 2-1
JDeveloper

JDeveloper (continued)
Apache Tomcat, support for, 4-3
IBM WebSphere, support for, 4-3
JBoss, support for, 4-3
Oracle Application Server, support for, 4-3
Oracle WebLogic Server, support for, 4-3
server support, 4-3

JSP, 4-3
JSP pages

deploying, 4-3

O
Oracle Application Server, 4-3
Oracle Database 12c Release 2, 4-1

installation, 4-4
installation guides, 4-1
release notes, 4-1
verifying, 4-4
verifying installation, 4-4

Oracle Database 12c Release 2 installation
platform-specific, 4-4

Oracle WebLogic Server, 4-3

S
sample application

HR user account, 4-1

W
Web server, 4-3

Apache Tomcat, 4-3
servlet container, 4-3

Index-1

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	1 Aims and Objectives of This Book
	1.1 Architecture of the Application
	1.2 Part I
	1.3 Part II

	2 Using Java with Oracle Database
	2.1 Java Database Connectivity Driver (JDBC)
	2.2 Universal Connection Pool
	2.3 Java in the Database (OJVM)

	3 Overview of the HR Web Application
	3.1 Functionalities of the HR Web Application
	3.2 Components and Repositories

	4 Getting Started with the Application
	4.1 What You Need to Install
	4.1.1 Oracle Database 12c Release 2 (12.2)
	4.1.1.1 Unlocking the HR Schema for the JDBC Application

	4.1.2 J2SE or JDK
	4.1.3 Integrated Development Environment
	4.1.4 Web Server

	4.2 Oracle Database Cloud — Starting with Oracle Database as a Service
	4.3 Verifying the Oracle Database 12c Release 2 (12.2) Installation

	5 Connecting to Oracle Database 12c Release 2 (12.2)
	5.1 Creating an Employee Java Bean
	5.2 Creating a Java Bean Interface for a JDBC Connection
	5.3 Creating a Java Bean Implementation for a JDBC Connection
	5.4 Creating a Servlet to Process the Request
	5.5 Create an HTML Page to Display Results
	5.6 Create a CSS File

	6 Search by Employee ID
	6.1 Employee Java Bean
	6.2 Create a Method in Java Bean for Search by Employee ID
	6.3 Implement a Method getEmployee() for Search by Employee ID
	6.4 Create a New HTML for Search by Employee Id

	7 Update an Employee Record
	7.1 Create a Method in Java Bean for Search by Employee’s First Name
	7.2 Implement a Method getEmployeebyFn() for Search by Employee name

	8 Best Practices
	Index

