
Oracle® Database
2 Day + Security Guide

12c Release 2 (12.2)
E85658-01
May 2017

Oracle Database 2 Day + Security Guide, 12c Release 2 (12.2)

E85658-01

Copyright © 2006, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Patricia Huey

Contributors: Todd Bottger, Peter Knaggs, Rahil Mir, Gopal Mulagund, Paul Needham, Deborah Owens,
Dinesh Rajasekharan , Saikat Saha, Kamal Tbeileh, Peter Wahl, Alan Williams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents x

Conventions x

 Changes in This Release for Oracle Database 2 Day + Security
Guide

Changes in Oracle Database 12c Release 2 (12.2) xii

1 Introduction to Oracle Database Security

1.1 About This Guide 1-1

1.1.1 Before Using This Guide 1-1

1.1.2 What This Guide Is and Is Not 1-2

1.2 Common Database Security Tasks 1-2

1.3 Tools for Securing Your Database 1-3

1.4 Securing Your Database: A Roadmap 1-3

2 Securing the Database Installation and Configuration

2.1 About Securing the Database Installation and Configuration 2-1

2.2 Securing Access to the Oracle Database Installation 2-1

2.2.1 Default Security Settings 2-2

2.2.2 Security for the Oracle Data Dictionary 2-2

2.2.2.1 About the Oracle Data Dictionary 2-3

2.2.2.2 Enabling Data Dictionary Protection 2-4

2.2.3 Initialization Parameters Used for Installation and Configuration Security
2-5

2.2.4 Modifying the Value of an Initialization Parameter 2-5

2.3 Security for the Network 2-6

2.3.1 About Securing the Network 2-6

iii

2.3.2 Protecting Data on the Network by Using Network Encryption 2-6

2.3.2.1 About Network Encryption 2-7

2.3.2.2 Configuring Network Encryption 2-7

2.3.3 Initialization Parameters Used for Network Security 2-10

2.4 Securing User Accounts 2-11

2.4.1 About Securing Oracle Database User Accounts 2-11

2.4.2 Predefined User Accounts Provided by Oracle Database 2-12

2.4.2.1 Predefined Administrative Accounts 2-12

2.4.2.2 Predefined Non-Administrative User Accounts 2-15

2.4.2.3 Predefined Sample Schema User Accounts 2-16

2.4.3 Expiring and Locking Database Accounts 2-17

2.4.4 Requirements for Creating Passwords 2-17

2.4.5 Finding and Changing Default Passwords 2-18

2.4.5.1 About Finding and Changing Default Passwords 2-18

2.4.5.2 Finding and Changing Default Passwords from SQL*Plus 2-19

2.4.5.3 Finding and Changing Default Passwords from Enterprise
Manager 2-19

2.4.6 Parameters Used to Secure User Accounts 2-20

3 Managing User Privileges

3.1 About Privilege Management 3-1

3.2 When to Grant Privileges to Users 3-2

3.3 When to Grant Roles to Users 3-2

3.4 Controlling Access to Applications with Secure Application Roles 3-3

3.4.1 About Secure Application Roles 3-3

3.4.2 Tutorial: Creating a Secure Application Role 3-4

3.4.2.1 Step 1: Create User Accounts for This Tutorial 3-5

3.4.2.2 Step 2: Create a Security Administrator Account 3-6

3.4.2.3 Step 3: Create a Lookup View 3-7

3.4.2.4 Step 4: Create the PL/SQL Procedure to Set the Secure
Application Role 3-8

3.4.2.5 Step 5: Create the Secure Application Role 3-10

3.4.2.6 Step 6: Grant SELECT for the EMP_ROLE Role to the
OE.ORDERS Table 3-11

3.4.2.7 Step 7: Grant the EXECUTE Privilege for the Procedure to
Matthew and Winston 3-12

3.4.2.8 Step 8: Test the EMP_ROLE Secure Application Role 3-12

3.4.2.9 Step 9: Optionally, Remove the Components for This Tutorial 3-13

3.5 Initialization Parameters Used for Privilege Security 3-14

iv

4 Encrypting Data with Oracle Transparent Data Encryption

4.1 About Encrypting Sensitive Data 4-1

4.2 When Should You Encrypt Data? 4-2

4.3 How Transparent Data Encryption Works 4-2

4.4 Configuring Data to Use Transparent Data Encryption 4-4

4.4.1 Step 1: Configure the Keystore Location 4-4

4.4.2 Step 2: Check the COMPATIBLE Initialization Parameter Setting 4-5

4.4.3 Step 3: Create the Software Password-Based Keystore 4-6

4.4.4 Step 4: Open (or Close) the Keystore 4-7

4.4.4.1 Opening a Keystore 4-7

4.4.4.2 Closing a Keystore 4-7

4.4.5 Step 5: Create the Master Encryption Key 4-8

4.4.6 Step 6: Encrypt Data 4-8

4.4.6.1 Encrypting Individual Table Columns 4-8

4.4.6.2 Encrypting a Tablespace 4-11

4.5 Checking Existing Encrypted Data 4-12

4.5.1 Finding the Type of Keystore That Was Created 4-12

4.5.2 Finding the Keystore Location 4-13

4.5.3 Checking Whether a Keystore Is Open or Closed 4-13

4.5.4 Checking Encrypted Columns of an Individual Table 4-13

4.5.5 Checking All Encrypted Table Columns in the Current Database
Instance 4-14

4.5.6 Data Dictionary Views for Checking Encrypted Tablespaces 4-14

5 Controlling Access with Oracle Database Vault

5.1 About Oracle Database Vault 5-1

5.2 Tutorial: Controlling Administrator Access to a User Schema 5-2

5.2.1 Step 1: Enable Oracle Database Vault 5-3

5.2.2 Step 2: Grant SELECT on the OE.CUSTOMERS Table to User SCOTT 5-3

5.2.2.1 Enabling User SCOTT for Oracle Database Vault 5-4

5.2.2.2 Granting User SCOTT the SELECT Privilege on the
OE.CUSTOMERS Table 5-4

5.2.3 Step 3: Select from the OE.CUSTOMERS Table as Users SYS and
SCOTT 5-5

5.2.4 Step 4: Create a Realm to Protect the OE.CUSTOMERS Table 5-5

5.2.5 Step 5: Test the OE Protections Realm 5-7

5.2.6 Step 6: Optionally, Remove the Components for This Tutorial 5-8

5.2.6.1 Dropping the OE Protections Realm 5-8

5.2.6.2 Revoking the SELECT Privilege on OE.CUSTOMERS from User
SCOTT 5-8

v

5.2.6.3 Disabling Oracle Database Vault and Oracle Label Security 5-9

6 Restricting Access with Oracle Virtual Private Database

6.1 About Oracle Virtual Private Database 6-1

6.2 Tutorial: Limiting Access to Data Based on the Querying User 6-3

6.2.1 About Limiting Access to Data Based on the Querying User 6-3

6.2.2 Step 1: Create User Accounts for This Tutorial 6-4

6.2.3 Step 2: If Necessary, Create the Security Administrator Account 6-5

6.2.4 Step 3: Update the Security Administrator Account 6-5

6.2.5 Step 4: Create the F_POLICY_ORDERS Policy Function 6-6

6.2.6 Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private
Database Policy 6-8

6.2.7 Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private
Database Policy 6-9

6.2.8 Step 7: Optionally, Remove the Components for This Tutorial 6-10

6.2.8.1 Removing the Data Structures Created by sec_admin 6-10

6.2.8.2 Removing the User Accounts 6-11

6.2.8.3 Revoking Privileges on DBMS_RLS from User sec_admin 6-11

7 Limiting Access to Sensitive Data Using Oracle Data Redaction

7.1 About Oracle Data Redaction 7-1

7.2 Tutorial: Redacting Data for a Select Group of Users 7-2

7.2.1 About Redacting Data for a Select Group of Users 7-2

7.2.2 Step 1: Create User Accounts and Grant Them the Necessary
Privileges 7-3

7.2.3 Step 2: Create and Populate the SALES_OPPS Sales Opportunities
Table 7-5

7.2.4 Step 3: Create the SALES_OPPS_POL Oracle Data Redaction Policy 7-6

7.2.5 Step 4: Test the SALES_OPPS_POL Oracle Data Redaction Policy 7-7

7.2.6 Step 5: Optionally, Remove the Components for This Tutorial 7-9

8 Enforcing Row-Level Security with Oracle Label Security

8.1 About Oracle Label Security 8-1

8.2 Virtual Private Database, Oracle Label Security, and Data Redaction
Differences 8-2

8.3 Guidelines for Planning an Oracle Label Security Policy 8-4

8.4 Tutorial: Creating Levels of Access to Table Data Based on the User 8-5

8.4.1 About Creating Levels of Access to Table Data Based on the User 8-6

8.4.2 Step 1: Enable Oracle Label Security 8-6

8.4.3 Step 2: Enable the LBACSYS Account 8-7

vi

8.4.4 Step 3: Create a Role and Three Users for the Oracle Label Security
Tutorial 8-8

8.4.4.1 Creating a Role 8-8

8.4.4.2 Creating the Oracle Label Security Users 8-8

8.4.5 Step 4: Create the ACCESS_LOCATIONS Oracle Label Security Policy 8-9

8.4.6 Step 5: Define the ACCESS_LOCATIONS Policy-Level Components 8-11

8.4.7 Step 6: Create the ACCESS_LOCATIONS Policy Data Labels 8-11

8.4.8 Step 7: Create the ACCESS_LOCATIONS Policy User Authorizations 8-13

8.4.9 Step 8: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS
Table 8-15

8.4.10 Step 9: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS
Data 8-15

8.4.10.1 Granting HR FULL Policy Privilege for the HR.LOCATIONS
Table 8-16

8.4.10.2 Updating the OLS_COLUMN Table in HR.LOCATIONS 8-17

8.4.11 Step 10: Test the ACCESS_LOCATIONS Policy 8-18

8.4.12 Step 11: Optionally, Remove the Components for This Tutorial 8-20

9 Auditing Database Activity

9.1 About Auditing 9-1

9.2 Why Is Auditing Used? 9-2

9.3 Tutorial: Creating a Unified Audit Policy 9-3

9.3.1 Step 1: If Necessary, Enable Unified Auditing 9-4

9.3.2 Step 2: Grant the SEC_ADMIN User the AUDIT_ADMIN Role 9-5

9.3.3 Step 3: Create and Enable a Unified Audit Policy 9-6

9.3.4 Step 4: Test the Unified Audit Policy 9-7

9.3.5 Step 5: Optionally, Remove the Components for This Tutorial 9-9

9.3.6 Step 6: Optionally, Remove the SEC_ADMIN Security Administrator
Account 9-9

Index

vii

List of Tables

2-1 Default Security Settings for Initialization and Profile Parameters 2-2

2-2 Initialization Parameters Used for Installation and Configuration Security 2-5

2-3 Initialization Parameters Used for Network Security 2-10

2-4 Predefined Oracle Database Administrative User Accounts 2-12

2-5 Predefined Oracle Database Non-Administrative User Accounts 2-15

2-6 Default Sample Schema User Accounts 2-16

2-7 Initialization and Profile Parameters Used for User Account Security 2-20

3-1 Initialization Parameters Used for Privilege Security 3-14

4-1 Data Dictionary Views for Encrypted Tablespaces 4-15

8-1 Comparing Virtual Private Database, Label Security, and Data Redaction 8-3

8-2 Values for Oracle Label Security Levels 8-11

viii

Preface

Welcome to Oracle Database 2 Day + Security Guide. This guide is for anyone who
wants to perform common day-to-day security tasks with Oracle Database.

Topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle Database 2 Day + Security Guide provides an introduction to configuring
security in a default database. This guide expands on the security knowledge that you
learned in Oracle Database 2 Day DBA to manage security in Oracle Database. The
information in this guide applies to all platforms. For platform-specific information, see
the installation guide, configuration guide, and platform guide for your platform.

This guide is intended for the following users:

• Oracle database administrators who want to acquire database security
administrative skills

• Database administrators who have some security administrative knowledge but
are new to Oracle Database

This guide is not an exhaustive discussion about security. For detailed information
about security, see the Oracle Database Security documentation set. This guide does
not provide information about security for Oracle E-Business Suite applications. For
information about security in the Oracle E-Business Suite applications, see the
documentation for those products.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, you can refer to other security-related documentation in this
library, Oracle Technology Network (OTN), and My Oracle Support.

Oracle Database Documentation

For more security-related information, see the following documents in the Oracle
Database documentation set:

• Oracle Database 2 Day DBA

• Oracle Database Administrator’s Guide

• Oracle Database Security Guide

• Oracle Database Concepts

• Oracle Database Reference

• Oracle Database Vault Administrator’s Guide

Many of the examples in this guide use the sample schemas of the seed database,
which is installed by default when you install Oracle. See Oracle Database Sample
Schemasfor information about how these schemas were created and how you can use
them.

Oracle Technology Network (OTN)

You can download free release notes, installation documentation, updated versions of
this guide, white papers, or other collateral from the Oracle Technology Network
(OTN).

Visit:

http://www.oracle.com/technetwork/index.html

For security-specific information on OTN, visit

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

My Oracle Support (formerly OracleMetaLink)

You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support at

https://support.oracle.com

Conventions
This document uses the standard Oracle Database documentation style conventions.

Preface

x

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www.oracle.com/technetwork/documentation/index.html
https://support.oracle.com

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xi

Changes in This Release for
Oracle Database 2 Day + Security Guide

Oracle Database 2 Day + Security Guide has updates that affect Transparent Data
Encryption, Oracle Database Vault, Oracle Data Redaction, Oracle Label Security, and
auditing.

Topics:

• Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 12c Release 2 (12.2)
The following are changes in Oracle Database 2 Day + Security Guide for Oracle
Database 12c release 2 (12.2):

• New Features

• Desupported Features

New Features
The following new features affect Oracle Database 2 Day + Security Guide:

• New initialization parameter to secure user accounts

Starting with this release, you can use the INACTIVE_ACCOUNT_TIME parameter to
automatically lock the account of a database user who has not logged in to the
database instance in a specified number of days.

See Parameters Used to Secure User Accounts for more information.

• The following parameters have been changed to accommodate the Security
Technical Implementation Guide (STIG) requirements, which standardize
protocols that are used to enforce security:

– The default for SEC_PROTOCOL_ERROR_FURTHER_ACTION is now (DROP,3).

– The default for SEC_MAX_FAILED_LOGIN_ATTEMPTS is now 3.

– The default for SQL92_SECURITY PARAMETER is now TRUE.

See Oracle Database Reference for more information about initialization
parameters.

• Oracle Data Redaction enhancements

Oracle Data Redaction provides several new features for this release, including
the ability to redact column data by replacing it with null values, and the ability to
create a central library of regular expressions used in Data Redaction policies.

See About Oracle Data Redaction for more information.

Changes in This Release for Oracle Database 2 Day + Security Guide

xii

Desupported Features
The following feature has been desupported for this release:

• MAX_ENABLED_ROLES initialization parameter, because it has not been used since
Oracle Database Release 10g

Changes in This Release for Oracle Database 2 Day + Security Guide

xiii

1
Introduction to Oracle Database Security

In a default Oracle Database installation, you can manage security using tools such as
authentication, encryption, Oracle Data Redaction, and Oracle Database Vault.

Topics:

• About This Guide
Oracle Database 2 Day + Security Guide teaches you how to perform day-to-day
database security tasks.

• Common Database Security Tasks
Database administrators for Oracle Database are responsible for common
security-related tasks.

• Tools for Securing Your Database
To achieve the goals of securing your Oracle database, you must use a specific
set of products, tools, and utilities.

• Securing Your Database: A Roadmap
To learn the fundamentals of securing an Oracle database, you should follow a
roadmap of specific tasks.

1.1 About This Guide
Oracle Database 2 Day + Security Guide teaches you how to perform day-to-day
database security tasks.

• Before Using This Guide
Before using this guide, you should understand the basics of administering an
Oracle database.

• What This Guide Is and Is Not
The objective of Oracle Database 2 Day + Security Guide is to use a task-oriented
approach to describe how to perform default security tasks.

1.1.1 Before Using This Guide
Before using this guide, you should understand the basics of administering an Oracle
database.

The goal of this guide is to help you understand the concepts behind Oracle Database
security. You will learn how to perform common security tasks needed to secure your
database. The knowledge you gain from completing the tasks in Oracle Database 2
Day + Security Guide helps you to better secure your data and to meet common
regulatory compliance requirements, such as the Sarbanes-Oxley Act.

The primary administrative interface used in this guide is Oracle Enterprise Manager,
featuring all the self-management capabilities introduced in Oracle Database.

Complete Oracle Database 2 Day DBA, which provides a good foundation for Oracle
Database administration.

1-1

You should also obtain the necessary products and tools described in Tools for
Securing Your Database.

1.1.2 What This Guide Is and Is Not
The objective of Oracle Database 2 Day + Security Guide is to use a task-oriented
approach to describe how to perform default security tasks.

Where appropriate, this guide describes the concepts and steps necessary to
understand and complete a task. This guide is not an exhaustive discussion of all
Oracle Database concepts. For this type of information, see Oracle Database
Concepts.

Where appropriate, this guide describes the necessary Oracle Database
administrative steps to complete security tasks. This guide does not describe basic
Oracle Database administrative tasks. For this type of information, see Oracle
Database 2 Day DBA. Additionally, for a complete discussion of administrative tasks,
see Oracle Database Administrator’s Guide.

In addition, this guide is not an exhaustive discussion of all Oracle Database security
features and does not describe available APIs that provide equivalent command line
functionality to the tools used in this guide. For this type of information, see Oracle
Database Security Guide.

1.2 Common Database Security Tasks
Database administrators for Oracle Database are responsible for common security-
related tasks.

These tasks are as follows:

• Ensuring that the database installation and configuration is secure

• Managing the security aspects of user accounts: developing secure password
policies, creating and assigning roles, restricting data access to only the
appropriate users, and so on

• Ensuring that network connections are secure

• Encrypting sensitive data

• Ensuring the database has no security vulnerabilities and is protected against
intruders

• Deciding what database components to audit and how granular you want this
auditing to be

• Downloading and installing security patches

In a small to midsize database environment, you might perform these tasks as well
and all database administrator-related tasks, such as installing Oracle software,
creating databases, monitoring performance, and so on. In large, enterprise
environments, the job is often divided among several database administrators—each
with their own specialty—such as database security or database tuning.

Chapter 1
Common Database Security Tasks

1-2

1.3 Tools for Securing Your Database
To achieve the goals of securing your Oracle database, you must use a specific set of
products, tools, and utilities.

These tools are as follows:

• Oracle Database 12c Enterprise Edition

Oracle Database 12c Enterprise Edition provides enterprise-class performance,
scalability, and reliability on clustered and single-server configurations. It includes
many security features that are used in this guide.

• Oracle Enterprise Manager

Oracle Enterprise Manager is a Web application that you can use to perform
database administrative tasks for a single database instance or a clustered
database. It enables you to manage multiple Oracle databases from one location.
This guide explains how to use Enterprise Manager to perform database
administrative tasks.

• SQL*Plus

SQL*Plus is a development environment that you can use to create and run SQL
and PL/SQL code. It is part of the Oracle Database 12c release 1 (12.1)
installation.

• Database Configuration Assistant (DBCA)

Database Configuration Assistant enables you to perform general database tasks,
such as creating, configuring, or deleting databases. In this guide, you use DBCA
to enable default auditing.

• Oracle Net Manager

Oracle Net Manager enables you to perform network-related tasks for Oracle
Database. In this guide, you use Oracle Net Manager to configure network
encryption.

1.4 Securing Your Database: A Roadmap
To learn the fundamentals of securing an Oracle database, you should follow a
roadmap of specific tasks.

To use this guide:

1. Secure your Oracle Database installation and configuration.

Complete the tasks in Securing the Database Installation and Configuration to
secure access to an Oracle Database installation.

2. Understand how privileges work.

Complete the tasks in Managing User Privileges. You learn about the following:

• How privileges work

• Why you must be careful about granting privileges

• How database roles work

• How to create secure application roles

Chapter 1
Tools for Securing Your Database

1-3

3. Encrypt data as it travels across the network.

Complete the tasks in Encrypting Data with Oracle Transparent Data Encryption to
learn how to secure client connections and to configure network encryption.

4. Control system administrative access to sensitive data with Oracle Database
Vault.

Complete the tasks in Controlling Access with Oracle Database Vault.

5. Restrict the display of data with Oracle Virtual Private Database.

Complete the tasks in Restricting Access with Oracle Virtual Private Database.

6. Control the display of data in real time by using data redaction.

Complete the tasks in Limiting Access to Sensitive Data Using Oracle Data
Redaction.

7. Enforce row-level security with Oracle Label Security.

Enforcing Row-Level Security with Oracle Label Security.

8. Configure auditing so that you can monitor the database activities.

Complete the tasks in Auditing Database Activity to learn about standard auditing.

Chapter 1
Securing Your Database: A Roadmap

1-4

2
Securing the Database Installation
and Configuration

You should secure the Oracle Database installation, the network it users, and
database user accounts.

Topics:

• About Securing the Database Installation and Configuration
After you install Oracle Database, you should secure the database installation and
configuration.

• Securing Access to the Oracle Database Installation
Oracle Database provides default security settings and initialization parameters to
secure your installation.

• Security for the Network
Oracle Database provides ways that to protect client connections and encrypt data
that travels through the network between the client and the server.

• Securing User Accounts
You can secure user accounts by creating secure passwords, changing default
passwords, and using special parameters to further secure user accounts.

2.1 About Securing the Database Installation and
Configuration

After you install Oracle Database, you should secure the database installation and
configuration.

Oracle provides commonly used ways to do secure the database installation and
configuration, all of which involve restricting permissions to specific areas of the
database files.

Oracle Database is available on several operating systems. Consult the following
guides for detailed platform-specific information about Oracle Database:

• Oracle Database Platform Guide for Microsoft Windows

• Oracle Database Administrator's Reference for Linux and UNIX-Based Operating
Systems

• Oracle Database Installation Guide for your platform

2.2 Securing Access to the Oracle Database Installation
Oracle Database provides default security settings and initialization parameters to
secure your installation.

2-1

• Default Security Settings
When you create a new database, Oracle Database provides a set of default
security settings.

• Security for the Oracle Data Dictionary
The data dictionary is a set of database tables that provide information about the
database, such as schema definitions or default values.

• Initialization Parameters Used for Installation and Configuration Security
Oracle Database provides initialization parameters to control installation and
configuration security.

• Modifying the Value of an Initialization Parameter
You can use Enterprise Manager to modify the value of an initialization parameter.

2.2.1 Default Security Settings
When you create a new database, Oracle Database provides a set of default security
settings.

These default security settings are as follows:

• Enables default auditing settings. See Oracle Database Security Guide for
detailed information.

• Creates stronger enforcements for new or changed passwords.
Requirements for Creating Passwords describes the new password requirements.

• Removes the CREATE EXTERNAL JOB privilege from the PUBLIC role. For
greater security, grant the CREATE EXTERNAL JOB privilege only to SYS, database
administrators, and those trusted users who need it.

• Sets security-related initialization and profile parameter settings. Table 2-1
lists the default parameter settings.

Table 2-1 Default Security Settings for Initialization and Profile Parameters

Setting Default

O7_DICTIONARY_ACCESSIBILITY FALSE

PASSWORD_GRACE_TIME 7

PASSWORD_LOCK_TIME 1

FAILED_LOGIN_ATTEMPTS 10

PASSWORD_LIFE_TIME 180

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

REMOTE_OS_ROLES FALSE

2.2.2 Security for the Oracle Data Dictionary
The data dictionary is a set of database tables that provide information about the
database, such as schema definitions or default values.

Chapter 2
Securing Access to the Oracle Database Installation

2-2

• About the Oracle Data Dictionary
The Oracle data dictionary contains information such as the names and privileges
of Oracle Database users.

• Enabling Data Dictionary Protection
Setting the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE protects
the data dictionary.

2.2.2.1 About the Oracle Data Dictionary
The Oracle data dictionary contains information such as the names and privileges of
Oracle Database users.

The data dictionary has the following contents:

• The names of Oracle Database users

• Privileges and roles granted to each user

• The definitions of all schema objects in the database (tables, views, indexes,
clusters, synonyms, sequences, procedures, functions, packages, triggers, and so
on)

• The amount of space allocated for, and is currently used by, the schema objects

• Default values for columns

• Integrity constraint information

• Auditing information, such as who has accessed or updated various schema
objects

• Other general database information

The data dictionary tables and views for a given database are stored in the SYSTEM
tablespace for that database. All the data dictionary tables and views for a given
database are owned by the user SYS. Connecting to the database with the SYSDBA
administrative privilege gives full access to the data dictionary. Oracle strongly
recommends limiting access to the SYSDBA administrative privilege to only those
operations necessary such as patching and other administrative operations. The data
dictionary is central to every Oracle database.

You can view the contents of the data dictionary by querying data dictionary views,
which are described in Oracle Database Reference. Be aware that not all objects in
the data dictionary are exposed to users. A subset of data dictionary objects, such as
those beginning with USER_ are exposed as read only to all database users.

Example 2-1 shows how you can find a list of database views specific to the data
dictionary by querying the DICTIONARY view.

Example 2-1 Finding Views That Pertain to the Data Dictionary

sqlplus system
Enter password: password

SQL> SELECT TABLE_NAME FROM DICTIONARY;

Chapter 2
Securing Access to the Oracle Database Installation

2-3

2.2.2.2 Enabling Data Dictionary Protection
Setting the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE protects the
data dictionary.

The O7_DICTIONARY_ACCESSIBILITY parameter prevents users who have the ANY system
privilege from using those privileges on the data dictionary, that is, on objects in the
SYS schema.

Oracle Database provides highly granular privileges. One such privilege, commonly
referred to as the ANY privilege, should typically be granted to only application owners
and individual database administrators. For example, you could grant the DROP ANY
TABLE privilege to an application owner. You can protect the Oracle data dictionary from
accidental or malicious use of the ANY privilege by turning on or off the
O7_DICTIONARY_ACCESSIBILITY initialization parameter.

To enable data dictionary protection:

1. Access the Database home page.

See Oracle Database 2 Day DBA for more information.

2. From the Administration menu, select Initialization Parameters.

If the Database Login page appears, then log in as SYS with the SYSDBA role
selected.

3. In the Initialization Parameters page, from the list, search for
O7_DICTIONARY_ACCESSIBILITY.

In the Name field, enter O7_ (the letter O), and then click Go. You can enter the first
few characters of a parameter name. In this case, O7_ displays the
O7_DICTIONARY_ACCESSIBILTY parameter.

4. Set the value for O7_DICTIONARY_ACCESSIBILTY to FALSE.

5. Click Apply.

6. Restart the Oracle Database instance.

sqlplus sys as sysdba
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

Note:

• In a default installation, the O7_DICTIONARY_ACCESSIBILITY parameter is set
to FALSE.

• The SELECT ANY DICTIONARY privilege is not included in the GRANT ALL
PRIVILEGES statement, but you can grant it through a role. Roles are
described in When to Grant Roles to Users and Oracle Database Security
Guide.

Chapter 2
Securing Access to the Oracle Database Installation

2-4

2.2.3 Initialization Parameters Used for Installation and Configuration
Security

Oracle Database provides initialization parameters to control installation and
configuration security.

Table 2-2 lists these initialization parameters.

Table 2-2 Initialization Parameters Used for Installation and Configuration Security

Initialization Parameter Default Description

SEC_RETURN_SERVER_RELEASE_BANNER FALSE Controls the display of the product version
information, such as the release number, in a
client connection. An intruder could use the
database release number to find information
about security vulnerabilities that may be
present in the database software. You can
enable or disable the detailed product version
display by setting this parameter.

See Oracle Database Security Guide for more
information about this and similar parameters.
Oracle Database Reference describes this
parameter in detail.

O7_DICTIONARY_ACCESSIBILITY FALSE Controls restrictions on SYSTEM privileges. See
Enabling Data Dictionary Protection for more
information about this parameter. Oracle
Database Reference describes this parameter
in detail.

2.2.4 Modifying the Value of an Initialization Parameter
You can use Enterprise Manager to modify the value of an initialization parameter.

To modify the value of an initialization parameter:

1. Access the Database home page.

See Oracle Database 2 Day DBA for more information.

2. From the Administration menu, select Initialization Parameters.

If the Database Login page appears, then log in as SYS with the SYSDBA role
selected.

3. In the Initialization Parameters page, in the Name field, enter the name of the
parameter to change, and then click Go.

You can enter the first few letters of the parameter, for example, SEC_RETURN if you
are searching for the SEC_RETURN_SERVER_RELEASE_NUMBER parameter. Alternatively,
you can scroll down the list of parameters to find the parameter you want to
change. The text is not case sensitive.

4. In the Value field, either enter the new value or if a list is presented, select from
the list.

5. Click Apply.

Chapter 2
Securing Access to the Oracle Database Installation

2-5

6. If the parameter is static, then restart the Oracle Database instance.

sqlplus sys as sysdba
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

To find out if an initialization parameter is static, check its description in Oracle
Database Reference. If the Modifiable setting in its summary table shows No, then
you must restart the database instance.

2.3 Security for the Network
Oracle Database provides ways that to protect client connections and encrypt data
that travels through the network between the client and the server.

• About Securing the Network
When you encrypt data as it travels through the network, you should follow
guidelines to secure the network connections for Oracle Database.

• Protecting Data on the Network by Using Network Encryption
In addition to protecting information by encrypting it at the database level, you
must protect it as it travels across the network.

• Initialization Parameters Used for Network Security
Oracle Database provides initialization parameters to configure network security.

2.3.1 About Securing the Network
When you encrypt data as it travels through the network, you should follow guidelines
to secure the network connections for Oracle Database.

You can configure the client connection to your Oracle Database installation by
following the procedures to configure the network environment in Oracle Database 2
Day DBA and the Oracle Database Installation Guide for your platform.

Related Topics:

• Protecting Data on the Network by Using Network Encryption
In addition to protecting information by encrypting it at the database level, you
must protect it as it travels across the network.

• Securing User Accounts
You can secure user accounts by creating secure passwords, changing default
passwords, and using special parameters to further secure user accounts.

2.3.2 Protecting Data on the Network by Using Network Encryption
In addition to protecting information by encrypting it at the database level, you must
protect it as it travels across the network.

• About Network Encryption
Network encryption refers to encrypting data as it travels across the network
between the client and server.

Chapter 2
Security for the Network

2-6

• Configuring Network Encryption
You can configure network encryption by using either Oracle Net Manager or by
editing the sqlnet.ora file.

2.3.2.1 About Network Encryption
Network encryption refers to encrypting data as it travels across the network between
the client and server.

The reason that you should encrypt data at the network level, and not just the
database level, is because data can be exposed on the network level. For example, an
intruder can use a network packet sniffer to capture information as it travels on the
network, and then spool it to a file for malicious use. Encrypting data on the network
prevents this sort of activity.

To encrypt data on the network, you must have the following components:

• An encryption seed. The encryption seed is a random string of up to 256
characters. It generates the cryptographic keys that encrypts data as it travels
across the network.

• An encryption algorithm. You can specify any of the supported algorithm types:
AES, RC4, DES, or 3DES.

• Whether the settings apply to a client or server. You must configure the server
and each client to which it connects.

• How the client or server should processes the encrypted data. The settings
you select (you have four options) must complement both server and client.

• A mechanism for configuring the encryption. You can use Oracle Net Manager
to configure the encryption. Alternatively, you can edit the sqlnet.ora configuration
file. Both Oracle Net Manager and the sqlnet.ora file are available in a default
Oracle Database installation.

2.3.2.2 Configuring Network Encryption
You can configure network encryption by using either Oracle Net Manager or by
editing the sqlnet.ora file.

To configure network encryption:

1. On the server computer, start Oracle Net Manager.

• UNIX: From $ORACLE_HOME/bin, enter the following at the command line:

netmgr

• Windows: From the Start menu, click All Programs. Then, click Oracle -
HOME_NAME, Configuration and Migration Tools, and then Net Manager

2. From the Oracle Net Configuration navigation tree, expand Local, and then select
Profile.

Chapter 2
Security for the Network

2-7

3. From the list, select Network Security.

4. Under Network Security, select the Encryption tab.

The Encryption settings pane appears.

Chapter 2
Security for the Network

2-8

5. Enter the following settings:

• Encryption: From the list, select SERVER to configure the network encryption
for the server. (For the client computer, you select CLIENT.)

• Encryption Type: Select from the following values to specify the actions of
the server (or client) when negotiating encryption and integrity:

– accepted: Service will be active if the other side of the connection
specifies either required or requested, and there is a compatible algorithm
available on the receiving database; it will otherwise be inactive.

– rejected: Service must not be active, and the connection will fail if the
other side requires any of the methods in this list.

– requested: Service will be active if the other side of the connection
specifies either accepted, required, or requested, and there is a
compatible algorithm available on the other side. Otherwise, the service is
inactive.

– required: Service must be active, and the connection will fail if the other
side specifies rejected, or if there is no compatible algorithm on the other
side.

• Encryption Seed: Enter a random string of up to 256 characters. Oracle
Database uses the encryption seed to generate cryptographic keys. This is
required when either encryption or integrity is enabled.

If you choose to use special characters such as a comma [,] or a right
parenthesis [)] as a part of the Encryption Seed parameter, enclose the value
within single quotation marks.

• Available Methods: Select one or more of the following algorithms, and use
the move button (>) to move them to the Selected Methods list. The order in
which they appear in the Selected Methods list determines the preferred order
for negotiation. That is, the first algorithm listed is selected first, and so on.

– AES256: Advanced Encryption Standard (AES). AES was approved by
the National Institute of Standards and Technology (NIST) to replace Data
Encryption Standard (DES). AES256 enables you to encrypt a block size
of 256 bits.

– RC4_256: Rivest Cipher 4 (RC4), which is the most commonly used
stream cipher that protects protocols such as Secure Sockets Layer
(SSL). RC4_256 enables you to encrypt up to 256 bits of data.

– AES192: Enables you to use AES to encrypt a block size of 192 bits.

– 3DES168: Triple Data Encryption Standard (TDES) with a three-key
option. 3DES168 enables you to encrypt up to 168 bits of data.

– AES128: Enables you to use AES to encrypt a block size of 128 bits.

– RC4_128: Enables you to use RC4 to encrypt up to 128 bits of data.

– 3DES112: Enables you to use Triple DES with a two-key (112 bit) option.

– DES: Data Encryption Standard (DES) 56-bit key. Note that National
Institute of Standards and Technology (NIST) no longer recommends
DES.

– RC4_40: Enables you to use RC4 to encrypt up to 40 bits of data. (Not
recommended.)

Chapter 2
Security for the Network

2-9

– DES40: Enables you to use DES to encrypt up to 40 bits of data. (Not
recommended.)

6. From the File menu, select Save Network Configuration, and then select Exit to
exit Oracle Net Manager.

7. Repeat these steps for each client computer that connects to the server.

See Also:

• Oracle Database Net Services Reference for information about editing the
sqlnet.ora file parameters to configure network encryption

2.3.3 Initialization Parameters Used for Network Security
Oracle Database provides initialization parameters to configure network security.

Table 2-3 lists initialization parameters that you can set to better secure user accounts.

Table 2-3 Initialization Parameters Used for Network Security

Initialization Parameter Default Description

OS_AUTHENT_PREFIX OPS$ Specifies a prefix that Oracle Database uses to identify
users attempting to connect to the database. Oracle
Database concatenates the value of this parameter to
the beginning of the user operating system account
name and password. When a user attempts a
connection request, Oracle Database compares the
prefixed username with user names in the database.

REMOTE_LISTENER No default
setting

Specifies a network name that resolves to an address
or address list of Oracle Net remote listeners (that is,
listeners that are not running on the same computer as
this instance). The address or address list is specified
in the tnsnames.ora file or other address repository as
configured for your system.

REMOTE_OS_AUTHENT FALSE Specifies whether remote clients will be authenticated
with the value of the OS_AUTHENT_PREFIX parameter.

REMOTE_OS_ROLES FALSE Specifies whether operating system roles are allowed
for remote clients. The default value, FALSE, causes
Oracle Database to identify and manage roles for
remote clients.

SEC_PROTOCOL_ERROR_TRACE_ACTION TRACE Specifies the action that the database should take
when bad packets are received from a possibly
malicious client.

SEC_PROTOCOL_ERROR_FURTHER_ACTION DROP,3 Specifies the action that the database should take
when bad packets are received from a possibly
malicious client.

To modify an initialization parameter, see Modifying the Value of an Initialization
Parameter. For detailed information about initialization parameters, see Oracle
Database Reference.

Chapter 2
Security for the Network

2-10

2.4 Securing User Accounts
You can secure user accounts by creating secure passwords, changing default
passwords, and using special parameters to further secure user accounts.

• About Securing Oracle Database User Accounts
You can use many methods to secure both common and local database user
accounts.

• Predefined User Accounts Provided by Oracle Database
The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

• Expiring and Locking Database Accounts
When you expire the password of a user, that password no longer exists.

• Requirements for Creating Passwords
Oracle provides password-creation requirements that help you create more secure
passwords.

• Finding and Changing Default Passwords
You can find and change default passwords that may have come from earlier
releases of Oracle Database.

• Parameters Used to Secure User Accounts
Oracle Database provides parameters to secure user accounts, such as setting
the maximum failed login attempts.

2.4.1 About Securing Oracle Database User Accounts
You can use many methods to secure both common and local database user
accounts.

For example, Oracle Database has a set of built-in protections for passwords. You can
safeguard default database accounts and passwords, and use various ways to
manage database accounts.

Oracle Database 2 Day DBA describes the fundamentals of creating and administering
user accounts, including how to manage user roles, what the administrative accounts
are, and how to use profiles to establish a password policy.

After you create user accounts, you can use the procedures in this section to further
secure these accounts by following these methods:

• Safeguarding predefined database accounts. When you install Oracle
Database, it creates a set of predefined accounts. You should secure these
accounts as soon as possible by changing their passwords. You can use the same
method to change all passwords, whether they are with regular user accounts,
administrative accounts, or predefined accounts. This guide also provides
guidelines on how to create the most secure passwords.

• Managing database accounts. You can expire and lock database accounts.

• Managing passwords. You can manage and protect passwords by setting
initialization parameters. Oracle Database Reference describes the initialization
parameters in detail.

Chapter 2
Securing User Accounts

2-11

2.4.2 Predefined User Accounts Provided by Oracle Database
The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

• Predefined Administrative Accounts
A default Oracle Database installation provides predefined administrative accounts
to manage commonly used features, such as auditing.

• Predefined Non-Administrative User Accounts
A default Oracle Database installation provides non-administrative user accounts
to manage features such as Oracle Spatial.

• Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample
schemas.

2.4.2.1 Predefined Administrative Accounts
A default Oracle Database installation provides predefined administrative accounts to
manage commonly used features, such as auditing.

These are accounts that have special privileges required to administer areas of the
database, such as the CREATE ANY TABLE or ALTER SESSION privilege, or EXECUTE
privileges on packages owned by the SYS schema. The default tablespace for
administrative accounts is either SYSTEM or SYSAUX. In a multitenant environment, the
predefined administrative accounts reside in the root database.

To protect these accounts from unauthorized access, the installation process expires
and locks most of these accounts, except where noted in Table 2-4. As the database
administrator, you are responsible for unlocking and resetting these accounts, as
described in Expiring and Locking Database Accounts.

Table 2-4 lists the predefined administrative user accounts, which Oracle Database
automatically creates when you run standard scripts (such as the various cat*.sql
scripts). You can find user accounts that are created and maintained by Oracle by
querying the USERNAME and ORACLE_MAINTAINED columns of the ALL_USERS data dictionary
view. If the output for ORACLE_MAINTAINED is Y, then you must not modify the user
account except by running the script that was used to create it.

Table 2-4 Predefined Oracle Database Administrative User Accounts

User Account Description Status After Installation

ANONYMOUS An account that allows HTTP access to Oracle
XML DB. It is used in place of the
APEX_PUBLIC_USER account when the Embedded
PL/SQL Gateway (EPG) is installed in the
database.

EPG is a Web server that can be used with Oracle
Database. It provides the necessary infrastructure
to create dynamic applications.

Expired and locked

AUDSYS The internal account used by the unified audit
feature to store unified audit trail records.

See Oracle Database Security Guide.

Expired and locked

Chapter 2
Securing User Accounts

2-12

Table 2-4 (Cont.) Predefined Oracle Database Administrative User Accounts

User Account Description Status After Installation

CTXSYS The account used to administer Oracle Text.
Oracle Text enables you to build text query
applications and document classification
applications. It provides indexing, word and theme
searching, and viewing capabilities for text.

See Oracle Text Application Developer's Guide.

Expired and locked

DBSNMP The account used by the Management Agent
component of Oracle Enterprise Manager to
monitor and manage the database.

See Enterprise Manager Cloud Control
Administrator's Guide.

Open

Password is created at
installation or database
creation time.

LBACSYS The account used to administer Oracle Label
Security (OLS). It is created only when you install
the Label Security custom option.

See Enforcing Row-Level Security with
Oracle Label Security, and Oracle Label Security
Administrator’s Guide.

Expired and locked

MDSYS The Oracle Spatial and Oracle Multimedia Locator
administrator account.

See Oracle Spatial and Graph Developer's Guide.

Expired and locked

OLAPSYS The account that owns the OLAP Catalog
(CWMLite). This account has been deprecated,
but is retained for backward compatibility.

Expired and locked

ORDDATA This account contains the Oracle Multimedia
DICOM data model. See Oracle Multimedia
DICOM Developer's Guide for more information.

Expired and locked

ORDPLUGINS The Oracle Multimedia user. Plug-ins supplied by
Oracle and third-party, format plug-ins are installed
in this schema.

Oracle Multimedia enables Oracle Database to
store, manage, and retrieve images, audio, video,
DICOM format medical images and other objects,
or other heterogeneous media data integrated with
other enterprise information.

See Oracle Multimedia User's Guide.

Expired and locked

ORDSYS The Oracle Multimedia administrator account.

See Oracle Multimedia User's Guide.

Expired and locked

SI_INFORMTN_SCHEMA The account that stores the information views for
the SQL/MM Still Image Standard.

See Oracle Multimedia User's Guide.

Note: The SI_INFORMTN_SCHEMA account is
deprecated in Oracle Database 12c release 2
(12.2).

Expired and locked

SYS An account used to perform database
administration tasks.

See Oracle Database 2 Day DBA.

Open

Password is created at
installation or database
creation time.

Chapter 2
Securing User Accounts

2-13

Table 2-4 (Cont.) Predefined Oracle Database Administrative User Accounts

User Account Description Status After Installation

SYSBACKUP The account used to perform Oracle Recovery
Manager recovery and backup operations.

See Oracle Database Backup and Recovery
User’s Guide.

Expired and locked

SYSDG The account used to perform Oracle Data Guard
operations.

See Oracle Data Guard Concepts and
Administration.

Expired and locked

SYSKM The account used to manage Transparent Data
Encryption.

See Oracle Database Advanced Security Guide.

Expired and locked

SYSRAC The account used to manage Oracle Real
Application Clusters.

See Oracle Real Application Clusters
Administration and Deployment Guide.

Expired and locked

SYSTEM A default generic database administrator account
for Oracle databases.

For production systems, Oracle recommends
creating individual database administrator
accounts and not using the generic SYSTEM
account for database administration operations.

See Oracle Database 2 Day DBA.

Open

Password is created at
installation or database
creation time.

WMSYS The account used to store the metadata
information for Oracle Workspace Manager.

See Oracle Database Workspace Manager
Developer's Guide.

Expired and locked

XDB The account used for storing Oracle XML DB data
and metadata. For better security, never unlock
the XDB user account.

Oracle XML DB provides high-performance XML
storage and retrieval for Oracle Database data.

See Oracle XML DB Developer’s Guide.

Expired and locked

Note:

If you create an Oracle Automatic Storage Management (Oracle ASM)
instance, then the ASMSNMP account is created. Oracle Enterprise Manager uses
this account to monitor ASM instances to retrieve data from ASM-related data
dictionary views. The ASMSNMP account status is set to OPEN upon creation, and it
is granted the SYSDBA administrative privilege. For more information, see Oracle
Automatic Storage Management Administrator's Guide.

Chapter 2
Securing User Accounts

2-14

2.4.2.2 Predefined Non-Administrative User Accounts
A default Oracle Database installation provides non-administrative user accounts to
manage features such as Oracle Spatial.

Table 2-5 lists the predefined non-administrative user accounts that Oracle Database
automatically creates when you run standard scripts (such as the various cat*.sql
scripts). You can find user accounts that are created and maintained by Oracle by
querying the USERNAME and ORACLE_MAINTAINED columns of the ALL_USERS data dictionary
view. If the output for ORACLE_MAINTAINED is Y, then you must not modify the user
account except by running the script that was used to create it.

Non-administrative user accounts only have the minimum privileges needed to perform
their jobs. Their default tablespace is USERS. In a multitenant environment, the
predefined non-administrative accounts reside in the root database

To protect these accounts from unauthorized access, the installation process locks
and expires these accounts immediately after installation, except where noted in
Table 2-5. As the database administrator, you are responsible for unlocking and
resetting these accounts, as described in Expiring and Locking Database Accounts.

Table 2-5 Predefined Oracle Database Non-Administrative User Accounts

User Account Description Status After Installation

DIP The Oracle Directory Integration and Provisioning (DIP)
account that is installed with Oracle Label Security. This
profile is created automatically as part of the installation
process for Oracle Internet Directory-enabled Oracle
Label Security.

See Oracle Label Security Administrator’s Guide.

Expired and locked

MDDATA The schema used by Oracle Spatial for storing
Geocoder and router data.

Oracle Spatial provides a SQL schema and functions
that enable you to store, retrieve, update, and query
collections of spatial features in an Oracle database.

See Oracle Spatial and Graph Developer's Guide.

Expired and locked

ORACLE_OCM The account used with Oracle Configuration Manager.
This feature enables you to associate the configuration
information for the current Oracle Database instance
with My Oracle Support. Then when you log a service
request, it is associated with the database instance
configuration information.

See Oracle Database Installation Guide for your
platform.

Expired and locked

SPATIAL_CSW_ADMIN_USR The Catalog Services for the Web (CSW) account. It is
used by Oracle Spatial CSW Cache Manager to load all
record-type metadata and record instances from the
database into the main memory for the record types
that are cached.

See Oracle Spatial and Graph Developer's Guide.

Expired and locked

Chapter 2
Securing User Accounts

2-15

Table 2-5 (Cont.) Predefined Oracle Database Non-Administrative User Accounts

User Account Description Status After Installation

SPATIAL_WFS_ADMIN_USR The Web Feature Service (WFS) account. It is used by
Oracle Spatial WFS Cache Manager to load all feature
type metadata and feature instances from the database
into main memory for the feature types that are cached.

See Oracle Spatial and Graph Developer's Guide.

Expired and locked

XS$NULL An internal account that represents the absence of
database user in a session and the actual session user
is an application user supported by Oracle Real
Application Security. XS$NULL has no privileges and
does not own any database object. No one can
authenticate as XS$NULL, nor can authentication
credentials ever be assigned to XS$NULL.

Expired and locked

2.4.2.3 Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample
schemas.

The sample schema user accounts are all non-administrative accounts, and their
tablespace is USERS.

To protect these accounts from unauthorized access, the installation process locks
and expires these accounts immediately after installation. As the database
administrator, you are responsible for unlocking and resetting these accounts, as
described in Expiring and Locking Database Accounts. For more information about the
sample schema accounts, see Oracle Database Sample Schemas.

Table 2-6 lists the sample schema user accounts, which represent different divisions
of a fictional company that manufactures various products. You can find the status of
these accounts by querying the DBA_USERS data dictionary view. Because the
ORACLE_MAINTAINED column output for these accounts is N, you can modify these
accounts without re-running the scripts that were used to create them.

Table 2-6 Default Sample Schema User Accounts

User Account Description Status After Installation

HR The account used to manage the HR (Human Resources) schema.
This schema stores information about the employees and the
facilities of the company.

Expired and locked

OE The account used to manage the OE (Order Entry) schema. This
schema stores product inventories and sales of the company's
products through various channels.

Expired and locked

PM The account used to manage the PM (Product Media) schema. This
schema contains descriptions and detailed information about each
product sold by the company.

Expired and locked

IX The account used to manage the IX (Information Exchange) schema.
This schema manages shipping through business-to-business (B2B)
applications.

Expired and locked

Chapter 2
Securing User Accounts

2-16

Table 2-6 (Cont.) Default Sample Schema User Accounts

User Account Description Status After Installation

SH The account used to manage the SH (Sales) schema. This schema
stores business statistics to facilitate business decisions.

Expired and locked

In addition to the sample schema accounts, Oracle Database provides another sample
schema account, SCOTT. The SCOTT schema contains the tables EMP, DEPT, SALGRADE, and
BONUS. The SCOTT account is used in examples throughout the Oracle Database
documentation set. When you install Oracle Database, the SCOTT account is locked and
expired.

2.4.3 Expiring and Locking Database Accounts
When you expire the password of a user, that password no longer exists.

Locking an account preserves the user password and other account information, but
makes the account unavailable to anyone who tries to log in to the database using that
account. Unlocking it makes the account available again.

Oracle Database 2 Day DBA explains how you can use Enterprise Manager to unlock
database accounts. You also can use Enterprise Manager to expire or lock database
accounts.

To expire and lock a database account:

1. Access the Database home page.

See Oracle Database 2 Day DBA for more information.

2. From the Administration menu, select Security, then Users.

If the Database Login page appears, then log in as an administrative user, such as
SYSTEM.

The Users page lists the user accounts created for the current database instance.
The Account Status column indicates whether an account is expired, locked, or
open.

3. In the Select column, select the account you want to expire, and then click Edit.

4. In the Edit User page, do one of the following:

• To expire a password, click Expire Password now.

To unexpire the password, enter a new password in the Enter Password and
Confirm Password fields. See Requirements for Creating Passwords for
password requirements.

• To lock the account, select Locked.

5. Click Apply.

2.4.4 Requirements for Creating Passwords
Oracle provides password-creation requirements that help you create more secure
passwords.

Chapter 2
Securing User Accounts

2-17

When you create a user account, Oracle Database assigns a default password policy
for that user. The password policy defines rules for how the password should be
created, such as a minimum number of characters, when it expires, and so on. You
can strengthen passwords by using password policies.

For greater security, follow these guidelines when you create passwords:

• Make the password between 12 and 30 characters and numbers.

• Use mixed case letters and special characters in the password. (See Oracle
Database Security Guide for more information.)

• Use the database character set for the password characters, which can include
the underscore (_), dollar ($), and number sign (#) characters.

• Do not use an actual word for the entire password.

Oracle Database Security Guide describes more ways that you can further secure
passwords.

2.4.5 Finding and Changing Default Passwords
You can find and change default passwords that may have come from earlier releases
of Oracle Database.

• About Finding and Changing Default Passwords
After installation, the default database user accounts, including administrative
accounts, are created without default passwords.

• Finding and Changing Default Passwords from SQL*Plus
You can use SQL*Plus to find and change default passwords.

• Finding and Changing Default Passwords from Enterprise Manager
You can use Enterprise Manager to change a user account passwords if you have
administrative privileges.

2.4.5.1 About Finding and Changing Default Passwords
After installation, the default database user accounts, including administrative
accounts, are created without default passwords.

Except for the administrative accounts whose passwords you create during installation
(such as user SYS), the default user accounts arrive locked with their passwords
expired. If you have upgraded from a previous release of Oracle Database, you may
have database accounts that still have default passwords. These are default accounts
that are created when you create a database, such as the HR, OE, and SCOTT accounts.

Security is most easily compromised when a default database user account still has a
default password after installation. This is particularly true for the user account SCOTT,
which is a well known account that may be vulnerable to intruders. Find accounts that
use default passwords and then change their passwords.

Chapter 2
Securing User Accounts

2-18

See Also:

• Oracle Database Security Guide for additional methods of configuring
password protection

• Predefined User Accounts Provided by Oracle Database

2.4.5.2 Finding and Changing Default Passwords from SQL*Plus
You can use SQL*Plus to find and change default passwords.

To find and change default passwords:

1. Log into the database instance with administrative privileges.

sqlplus system
Enter password: password

2. Select from the DBA_USERS_WITH_DEFPWD data dictionary view.

SELECT * FROM DBA_USERS_WITH_DEFPWD;

The DBA_USERS_WITH_DEFPWD lists the accounts that still have user default
passwords. For example:

USERNAME

SCOTT

3. Change the password for the accounts the DBA_USERS_WITH_DEFPWD data dictionary
view lists.

For example, to change the password for user SCOTT, enter the following:

PASSWORD SCOTT
Changing password for SCOTT
New password: password
Retype new password: password
Password changed

Replace password with a password that is secure, according to the guidelines listed
in Requirements for Creating Passwords. For greater security, do not reuse the
same password that was used in previous releases of Oracle Database.

Alternatively, you can use the ALTER USER SQL statement to change the password:

ALTER USER SCOTT IDENTIFIED BY password;

2.4.5.3 Finding and Changing Default Passwords from Enterprise Manager
You can use Enterprise Manager to change a user account passwords if you have
administrative privileges.

Individual users can also use Enterprise Manager to change their own passwords.

To use Enterprise Manager to change the password of a database account:

1. Access the Database home page.

Chapter 2
Securing User Accounts

2-19

See Oracle Database 2 Day DBA for more information.

2. From the Administration menu, select Security, then Users.

If the Database Login page appears, then log in as an administrative user, such as
SYS. User SYS must log in with the SYSDBA role selected.

The Users page lists the user accounts created for the current database instance.
The Account Status column indicates whether an account is expired, locked, or
open.

3. In the Select column, select the account you want to change, and then click Edit.

4. In the Edit User page, enter a new password in the Enter Password and Confirm
Password fields.

5. Click Apply.

2.4.6 Parameters Used to Secure User Accounts
Oracle Database provides parameters to secure user accounts, such as setting the
maximum failed login attempts.

Table 2-7 lists initialization and profile parameters that you can set to better secure
user accounts.

Table 2-7 Initialization and Profile Parameters Used for User Account Security

Parameter Default Description

SEC_CASE_SENSITIVE_LOGON TRUE Controls case sensitivity in passwords. TRUE
enables case sensitivity; FALSE disables it.

SEC_MAX_FAILED_LOGIN_ATTEMPTS 3 Sets the maximum number of times user
authentication is allowed before an Oracle Call
Interface (OCI) connection is closed.

FAILED_LOGIN_ATTEMPTS 10 Sets the maximum times a user login is allowed
to fail before locking the account.

Note: You also can set limits on the number of
times an unauthorized user (possibly an
intruder) attempts to log in to Oracle Call
Interface applications by using the
SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization
parameter.

INACTIVE_ACCOUNT_TIME 35 Locks the account of a database user who has
not logged in to the database instance in a
specified number of days.

PASSWORD_GRACE_TIME No default setting Sets the number of days that a user has to
change his or her password before it expires.

PASSWORD_LIFE_TIME No default setting Sets the number of days the user can use his or
her current password.

PASSWORD_LOCK_TIME No default setting Sets the number of days an account will be
locked after the specified number of consecutive
failed login attempts.

PASSWORD_REUSE_MAX No default setting Specifies the number of password changes
required before the current password can be
reused.

Chapter 2
Securing User Accounts

2-20

Table 2-7 (Cont.) Initialization and Profile Parameters Used for User Account Security

Parameter Default Description

PASSWORD_REUSE_TIME No default setting Specifies the number of days before which a
password cannot be reused.

Note:

You can use most of these parameters to create a user profile. See Oracle
Database Security Guide for more information about user profile settings.

To modify an initialization parameter, see Modifying the Value of an Initialization
Parameter. For detailed information about initialization parameters, see Oracle
Database Reference.

Chapter 2
Securing User Accounts

2-21

3
Managing User Privileges

A user privilege enables users to perform certain actions, such as creating other user
accounts or modifying database tables.

Topics:

• About Privilege Management
You can control user privileges in a variety of ways, such as granting and revoking
privileges or creating roles.

• When to Grant Privileges to Users
You should only grant users the minimum privileges necessary to perform their
jobs.

• When to Grant Roles to Users
A role is a named group of related privileges that you grant, as a group, to users or
other roles.

• Controlling Access to Applications with Secure Application Roles
A secure application role is a role that can be enabled only by an authorized
PL/SQL package.

• Initialization Parameters Used for Privilege Security
Oracle Database provides initialization parameters to configure privilege security,
such as the restriction of SYSTEM privileges.

3.1 About Privilege Management
You can control user privileges in a variety of ways, such as granting and revoking
privileges or creating roles.

• Granting and revoking individual privileges. You can grant individual privileges,
for example, the privilege to perform the UPDATE SQL statement, to individual users
or to groups of users.

• Creating a role and assigning privileges to it. A role is a named group of
related privileges that you grant, as a group, to users or other roles.

• Creating a secure application role. A secure application role enables you to
define conditions that control when a database role can be enabled. For example,
a secure application role can check the IP address associated with a user session
before allowing the session to enable a database role.

See Also:

Oracle Database Security Guide for detailed information about privilege
management

3-1

3.2 When to Grant Privileges to Users
You should only grant users the minimum privileges necessary to perform their jobs.

For an introduction to managing user privileges and roles, see Oracle Database 2 Day
DBA. Oracle Database 2 Day DBA also provides an example of how to grant a
privilege.

In other words, the principle of least privilege is that users be given only those
privileges that are actually required to efficiently perform their jobs. To implement this
principle, restrict the following as much as possible:

• The number of system and object privileges granted to database users

• The number of people who are allowed to make SYS-privileged connections to the
database

For example, generally the CREATE ANY TABLE privilege is not granted to a user who
does not have database administrator privileges.

You can find excessive system and object privilege grants, even with large numbers of
user accounts in complex Oracle Database installations, by creating a privilege
analysis policy. A privilege analysis policy finds privilege usage according to a
specified condition and then stores the results in data dictionary views.Oracle
Database Vault Administrator’s Guide describes how to create a privilege analysis
policy.

3.3 When to Grant Roles to Users
A role is a named group of related privileges that you grant, as a group, to users or
other roles.

To learn the fundamentals of managing roles, see Oracle Database 2 Day DBA. In
addition, see Oracle Database 2 Day DBA for an example of creating a role.

Roles are useful for quickly and easily granting permissions to users. Although you
can use Oracle Database-defined roles, you have more control and continuity if you
create your own roles that contain only the privileges pertaining to your requirements.
Oracle may change or remove the privileges in an Oracle Database-defined role, as it
has with the CONNECT role, which now has only the CREATE SESSION privilege. Formerly,
this role had eight other privileges.

Ensure that the roles you define contain only the privileges required for the
responsibility of a particular job. If your application users do not need all the privileges
encompassed by an existing role, then apply a different set of roles that supply just the
correct privileges. Alternatively, create and assign a more restrictive role.

Do not grant powerful privileges, such as the CREATE DATABASE LINK privilege, to regular
users such as user SCOTT. (Particularly do not grant any powerful privileges to SCOTT,
because this is a well known default user account that may be vulnerable to intruders.)
Instead, grant the privilege to a database role, and then grant this role to the users
who must use the privilege. And remember to only grant the minimum privileges the
user needs.

Chapter 3
When to Grant Privileges to Users

3-2

3.4 Controlling Access to Applications with Secure
Application Roles

A secure application role is a role that can be enabled only by an authorized PL/SQL
package.

• About Secure Application Roles
A secure application role requires a PL/SQL package and a way to execute this
package when the user logs in.

• Tutorial: Creating a Secure Application Role
This tutorial shows how two employees, Matthew Weiss and Winston Taylor, try to
gain information from the OE.ORDERS table.

3.4.1 About Secure Application Roles
A secure application role requires a PL/SQL package and a way to execute this
package when the user logs in.

This package defines one or more security policies that control access to the
application. Both the role and the package are typically created in the schema of the
person who creates them, which is typically a security administrator. A security
administrator is a database administrator who is responsible for maintaining the
security of the database.

The advantage of using a secure application role is you can create additional layers of
security for application access, in addition to the privileges that were granted to the
role itself. Secure application roles strengthen security because passwords are not
embedded in application source code or stored in a table. This way, the decisions the
database makes are based on the implementation of your security policies. Because
these definitions are stored in one place, the database, rather than in your
applications, you modify this policy once instead of modifying the policy in each
application. No matter how many users connect to the database, the result is always
the same, because the policy is bound to the role.

A secure application role has the following components:

• The secure application role itself. You create the role using the CREATE ROLE
statement with the IDENTIFIED USING clause to associate it with the PL/SQL
package. Then, you grant the role the privileges you typically grant a role.

• A PL/SQL package, procedure, or function associated with the secure
application role. The PL/SQL package sets a condition that either grants the role
or denies the role to the person trying to log in to the database. You must create
the PL/SQL package, procedure, or function using invoker's rights, not definer's
rights. An invoker's right procedure executes with the privileges of the current user,
that is, the user who invokes the procedure. This user must be granted the EXECUTE
privilege for the underlying objects that the PL/SQL package accesses. Invoker's
rights procedures are not bound to a particular schema. They can be run by a
variety of users and enable multiple users to manage their own data by using
centralized application logic. To create the invoker's rights package, use the AUTHID
CURRENT_USER clause in the declaration section of the procedure code.

The PL/SQL package also must contain a SET ROLE statement or
DBMS_SESSION.SET_ROLE call to enable (or disable) the role for the user.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-3

After you create the PL/SQL package, you must grant the appropriate users the
EXECUTE privilege on the package.

• A way to execute the PL/SQL package when the user logs on. To execute the
PL/SQL package, you must call it directly from the application before the user tries
to use the privileges the role grants. You cannot use a logon trigger to execute the
PL/SQL package automatically when the user logs on.

When a user logs in to the application, the policies in the package perform the checks
as needed. If the user passes the checks, then the role is granted, which enables
access to the application. If the user fails the checks, then the user is prevented from
accessing the application.

3.4.2 Tutorial: Creating a Secure Application Role
This tutorial shows how two employees, Matthew Weiss and Winston Taylor, try to
gain information from the OE.ORDERS table.

Access rights to the OE.ORDERS table are defined in the emp_role secure application role.
Matthew is Winston's manager, so Matthew, as opposed to Winston, will be able to
access the information in OE.ORDERS.

• Step 1: Create User Accounts for This Tutorial
Your first step is to create user accounts for Matthew and Winston.

• Step 2: Create a Security Administrator Account
For greater security, you should apply separation of duty concepts when you
assign responsibilities to the system administrators on your staff.

• Step 3: Create a Lookup View
A lookup view contains a view of information from a larger table. The lookup view
only contains the information that you need.

• Step 4: Create the PL/SQL Procedure to Set the Secure Application Role
After you create the administrative account and the lookup view, you can create
the secure application role procedure.

• Step 5: Create the Secure Application Role
After you create the PL/SQL procedure to set the secure application role, you can
create the emp_role secure application role.

• Step 6: Grant SELECT for the EMP_ROLE Role to the OE.ORDERS Table
User OE, who owns the OE.ORDERS table, must grant the SELECT privilege for the
ORDERS table to the emp_role role.

• Step 7: Grant the EXECUTE Privilege for the Procedure to Matthew and Winston
At this stage, Matthew and Winston can try to access the OE.ORDERS table, but they
are denied access.

• Step 8: Test the EMP_ROLE Secure Application Role
To test the emp_role secure application role, you must log on as Matthew and
Winston and trying to access the OE.ORDERS table.

• Step 9: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-4

3.4.2.1 Step 1: Create User Accounts for This Tutorial
Your first step is to create user accounts for Matthew and Winston.

Matthew and Winston both are sample employees in the HR.EMPLOYEES table. This table
provides columns for the manager ID and email address of the employees, among
other information. You must create user accounts for these two employees so that
they can later test the secure application role.

To create the user accounts:

1. In Enterprise Manager, access the Database home page.

See Oracle Database 2 Day DBA for more information.

2. Access your target database and then log in as user SYSTEM.

3. From the Schema menu, select Users.

4. In the Users page, click Create.

5. In the Create User page, enter the following information:

• Name: mweiss (to create the user account for Matthew Weiss)

• Profile: DEFAULT

• Authentication: Password

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Default Tablespace: USERS

• Temporary Tablespace: TEMP

• Status: Unlocked

6. Click System Privileges.

7. Click Edit List.

8. In the Modify System Privileges, from the Available System Privileges lists, select
the CREATE SESSION privilege, and then click Move to move it to the Selected
System Privileges list.

9. Click OK.

The Create User page appears, with CREATE SESSION listed as the system privilege
for user mweiss.

10. Ensure that the Admin Option for CREATE SESSION is not selected, and then click
OK.

11. In the Users page, select the selection button for user MWEISS from the list of
users, and then from the Actions list, select Create Like. Then, click Go.

12. In the Create User page, enter the following information to create the user account
for Winston, which will be almost identical to the user account for Matthew:

• Name: wtaylor

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-5

You do not need to specify the default and temporary tablespaces, or the CREATE
SESSION system privilege, for user wtaylor because they are already specified.

13. Click OK.

Now both Matthew Weiss and Winston Taylor have user accounts that have identical
privileges.

3.4.2.2 Step 2: Create a Security Administrator Account
For greater security, you should apply separation of duty concepts when you assign
responsibilities to the system administrators on your staff.

For the tutorials used in this guide, you will create and use a security administrator
account called sec_admin.

To create the sec_admin security administrator account:

1. From the Schema menu, select Users.

If the Database Login page appears, then log in as an administrative user, such as
SYS. User SYS must log in with the SYSDBA role selected.

2. In the Users page, click Create.

3. In the Create User page, enter the following information:

• Name: sec_admin

• Profile: Default

• Authentication: Password

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Default Tablespace: USERS

• Temporary Tablespace: TEMP

• Status: UNLOCKED

4. Click System Privileges.

5. Click Edit List.

The Modify System Privileges page appears.

6. In the Available System Privileges list, select the following privileges and then click
Move to move each one to the Selected System Privileges list. (Hold down the
Control key to select multiple privileges.)

• CREATE PROCEDURE

• CREATE ROLE

• CREATE SESSION

• INHERIT ANY PRIVILEGES

• SELECT ANY DICTIONARY

7. Click OK.

The Create User page appears. Under Admin Option, do not select the boxes.

8. Click OK.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-6

The Users page appears. User sec_admin is listed in the User Name list.

3.4.2.3 Step 3: Create a Lookup View
A lookup view contains a view of information from a larger table. The lookup view only
contains the information that you need.

The grant_emp_role procedure, which you will create later in this tutorial, grants the
emp_role only to managers who report to Steven King, whose employee ID is 100. This
information is located in the HR.EMPLOYEES table. However, you should not use that table
in this procedure, because it contains sensitive data such as salary information, and
for it to be used, everyone will need access to it. In most real world cases, you create
a lookup view that contains only the information that you need. (You could create a
lookup table, but a view will reflect the most recent data.) For this tutorial, you create
your own lookup view that only contains the employee names, employee IDs, and their
manager IDs.

To create the HR.HR_VERIFY lookup view:

1. In SQL*Plus, connect as user HR.

CONNECT HR
Enter password: password

If you receive an error message saying that HR is locked, then you can unlock the
account and reset its password by entering the following statements. For greater
security, do not reuse the same password that was used in previous releases of
Oracle Database. Enter any password that is secure, according to the password
guidelines described in Requirements for Creating Passwords.

CONNECT SYSTEM
Enter password: password

PASSWORD HR
Changing password for HR
New password: password
Retype new password: password
Password changed.

ALTER USER HR ACCOUNT UNLOCK;

CONNECT HR
Enter password: password

2. Enter the following CREATE VIEW SQL statement to create the lookup view:

CREATE VIEW hr_verify AS
SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, MANAGER_ID
FROM EMPLOYEES;

3. Grant the EXECUTE privilege for this view to mweiss, wtaylor, and sec_admin by
entering the following SQL statements:

GRANT SELECT ON hr_verify TO mweiss;
GRANT SELECT ON hr_verify TO wtaylor;
GRANT SELECT ON hr_verify TO sec_admin;

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-7

3.4.2.4 Step 4: Create the PL/SQL Procedure to Set the Secure Application
Role

After you create the administrative account and the lookup view, you can create the
secure application role procedure.

In most cases, you create a package to hold the procedure, but because this is a
simple tutorial that requires only one secure application role test (as defined in the
procedure), you will create a procedure by itself. If you want to have a series of
procedures to test for the role, then you would create them in a package. At this stage,
the role does not exist, but it does not need to. You will create it in the next step.

A PL/SQL package defines a simple, clear interface to a set of related procedures and
types that can be accessed by SQL statements. Packages also make code more
reusable and easier to maintain. The advantage here for secure application roles is
that you can create a group of security policies that used together present a solid
security strategy designed to protect your applications. For users (or potential
intruders) who fail the security policies, you can add auditing checks to the package to
record the failure.

To create the secure application role procedure:

1. In Enterprise Manager, click Log Out to log out of the database.

2. In the Confirmation dialog box, select Logout of (Database Instance) and then
select the Display login page after logout check box. Then click Logout.

3. Log in as user sec_admin using the NORMAL role.

4. From the Schema menu, select Programs, then Procedures.

5. In the Procedures page, click Create.

6. In the Create Procedure page, enter the following information:

• Name: GRANT_EMP_ROLE

• Schema: SEC_ADMIN

• Source: Delete the empty procedure code that has been provided and then
enter following text to create the secure application role procedure.

AUTHID CURRENT_USER
 AS
v_user varchar2(50);
v_manager_id number :=1;
 BEGIN
 v_user := lower((sys_context ('userenv','session_user')));
 SELECT manager_id
 INTO v_manager_id FROM hr.hr_verify WHERE lower(email)=v_user;
 IF v_manager_id = 100
 THEN
 EXECUTE IMMEDIATE 'SET ROLE emp_role';
 ELSE NULL;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN v_manager_id:=0;
 DBMS_OUTPUT.PUT_LINE(v_manager_id);
END;

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-8

In this specification:

– AUTHID CURRENT USER: Appends the AUTHID CURRENT_USER clause to the
CREATE PROCEDURE statement. The AUTHID CURRENT_USER clause enables the
invoking user to run the procedure using his or her privileges.

You must create the procedure to use invoker's rights for the procedure to
work. Invoker's rights allow the user to have EXECUTE privileges on all
objects that the procedure accesses.

Roles that are enabled inside an invoker's right procedure remain in effect
even after the procedure exits, but after the user exits the session, he or
she no longer has the privileges associated with the secure application
role. In this case, you can have a dedicated procedure that enables the
role for the rest of the session.

Because users cannot change the security domain inside definer's rights
procedures, secure application roles can only be enabled inside invoker's
rights procedures.

See About Secure Application Roles for information about the importance
of creating the procedure using invoker's rights.

– v_user varchar2(50): Declares the v_user variable, which will store the
user session information.

– v_manager_id number :=1: Declares the v_manager_id variable, which will
store the manager's ID of the v_user user.

– v_user := lower...: Retrieves the user session information for the user
logging on, in this case, Matthew or Winston. To retrieve user session
information, use the SYS_CONTEXT SQL function with the USERENV namespace
attributes ('userenv', session_attribute), and writes this information to the
v_user variable.

The information returned by this function indicates the way in which the
user was authenticated, the IP address of the client, and whether the user
connected through a proxy. See Oracle Database SQL Language
Reference for more information about SYS_CONTEXT.

– SELECT manager_id ... INTO...: Get the manager's ID of the current user.
The SELECT statement copies the manager ID into the v_manager_id
variable, and then checking the HR.HR_VERIFY view for the manager ID of
the current user. This example uses the employees' email addresses
because they are the same as their user names.

– IF ... THEN ... END IF: Use an IF condition to test whether the user
should be granted the grant_emp_role role. In this case, the test condition
is whether the user reports to Matthew's manager, Steven King, whose
employee number is 100. If the user reports to King, as Matthew does,
then the secure application role is granted to the user. Otherwise, the role
is not granted.

The result is that the secure application role will grant Matthew Weiss the
role because he is a direct report of Steven King, but will deny the role to
Winston, because he is not a direct report of Steven King.

– THEN ... ELSE NULL: Within the IF condition, the THEN condition grants the
role by executing immediately the SET ROLE statement. Otherwise, the ELSE
condition denies the grant.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-9

– EXCEPTION: Use an EXCEPTION statement to set v_manager_id to 0 if no data is
found.

– DBMS_OUTPUT.PUT_LINE: Copies the manager's ID, which is now 0, into a
buffer so that it is readily available.

7. Click OK.

Tip:

If you have problems creating or running PL/SQL code, check the Oracle
Database trace files. The USER_DUMP_DEST initialization parameter specifies the
current location of the trace files. You can find the value of this parameter by
issuing SHOW PARAMETER USER_DUMP_DEST in SQL*Plus. See Oracle Database
Administrator’s Guide for more information about trace files.

3.4.2.5 Step 5: Create the Secure Application Role
After you create the PL/SQL procedure to set the secure application role, you can
create the emp_role secure application role.

To create the secure application role:

1. Ensure that you are still logged in as user sec_admin.

2. From the Administration menu, select Security, then Roles.

3. In the Roles page, click Create.

4. In the Create Role page, enter the following information:

• Name: emp_role

• Authentication: Select Application.

The page expands to show the additional prompts necessary to create the
secure application role.

5. Select the Procedure option.

6. In the Procedure Name field, enter SEC_ADMIN.GRANT_EMP_ROLE.

7. Click OK.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-10

3.4.2.6 Step 6: Grant SELECT for the EMP_ROLE Role to the OE.ORDERS
Table

User OE, who owns the OE.ORDERS table, must grant the SELECT privilege for the ORDERS
table to the emp_role role.

This gives anyone who has been authorized to use the emp_role role the ability to
select from the OE.ORDERS table.

To grant the SELECT privilege for the EMP_ROLE role to the OE.ORDERS table:

1. Connect as user OE.

CONNECT OE
Enter password: password

If you receive an error message saying that OE is locked, then you can unlock the
OE account and reset its password by entering the following statements. For
greater security, do not reuse the same password that was used in previous
releases of Oracle Database. Enter any password that is secure, according to the
password guidelines described in Requirements for Creating Passwords.

CONNECT SYSTEM
Enter password: sys_password

PASSWORD OE -- First, change the OE account password.
Changing password for OE
New password: password
Retype new password: password
Password changed.

ALTER USER OE ACCOUNT UNLOCK; -- Next, unlock the OE account.

Another way to unlock a user account and create a new password is to use the
following syntax:

ALTER USER account_name ACCOUNT UNLOCK IDENTIFIED BY new_password:

Now you can connect as user OE.

CONNECT OE
Enter password: password

2. Enter the following statement to grant the emp_role role SELECT privileges on the
OE.ORDERS table.

GRANT SELECT ON ORDERS TO emp_role;

Do not grant the role directly to the users. The PL/SQL package will do that for
you, assuming the users pass its security policies.

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-11

3.4.2.7 Step 7: Grant the EXECUTE Privilege for the Procedure to Matthew and
Winston

At this stage, Matthew and Winston can try to access the OE.ORDERS table, but they are
denied access.

The next step is to grant them the EXECUTE privilege on the grant_emp_role procedure,
so that the grant_emp_role procedure can execute, and then grant or deny access,
when they try to select from the OE.ORDERS table.

To grant EXECUTE privileges for the grant_emp_role procedure:

1. In SQL*Plus, log in as user sec_admin.

connect sec_admin
Enter password: password

2. Run the following GRANT SQL statements for users mweiss and wtaylor:

GRANT EXECUTE ON grant_emp_role TO mweiss;
GRANT EXECUTE ON grant_emp_role TO wtaylor;

3.4.2.8 Step 8: Test the EMP_ROLE Secure Application Role
To test the emp_role secure application role, you must log on as Matthew and Winston
and trying to access the OE.ORDERS table.

When Matthew and Winston log on, and before they issue a SELECT statement on the
OE.ORDERS table, the grant_emp_role procedure must be executed for the role
verification to take place.

• Testing the emp_role Secure Application Role as User MWEISS
You can connect to the database as user mweiss using SQL*Plus.

• Testing the emp_role Secure Application Role as User WTAYLOR
Next, Winston tries to access the secure application.

3.4.2.8.1 Testing the emp_role Secure Application Role as User MWEISS
You can connect to the database as user mweiss using SQL*Plus.

To test the emp_role secure application role as user MWEISS:

1. In SQL*Plus, connect as user mweiss.

CONNECT mweiss
Enter password: password

2. Enter the following SQL statement to run the grant_emp_role procedure:

EXEC sec_admin.grant_emp_role;

This statement executes the grant_emp_role procedure for the current session. (In
a real world scenario, this statement would be automatically run when the user
logs in to the application.)

3. Perform the following SELECT statement on the OE.ORDERS table:

SELECT COUNT(*) FROM OE.ORDERS;

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-12

Matthew has access to the OE.ORDERS table:

 COUNT(*)

 105

3.4.2.8.2 Testing the emp_role Secure Application Role as User WTAYLOR
Next, Winston tries to access the secure application.

To test the emp_role secure application role as user WTAYLOR:

1. In SQL*Plus, connect as user wtaylor.

CONNECT wtaylor
Enter password: password

2. Enter the following SQL statement to run the grant_emp_role procedure:

EXEC sec_admin.grant_emp_role;

This statement executes the grant_emp_role procedure for the current session.

3. Perform the following SELECT statement on the OE.ORDERS table:

SELECT COUNT(*) FROM OE.ORDERS;

ERROR at line 1:
ORA-00942: table or view does not exist

Because Winston does not report directly to Steven King, he does not have
access to the OE.ORDERS table. He will never learn the true number of orders in the
ORDERS table, at least not by performing a SELECT statement on it.

3.4.2.9 Step 9: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

To remove the components:

1. In SQL*Plus, connect as user SYSTEM.

CONNECT SYSTEM
Enter password: password

2. Enter the following DROP statements:

DROP USER mweiss;
DROP USER wtaylor;

Do not drop user sec_admin. You will need this user account for other tutorials in
this guide.

3. In SQL*Plus, connect as user sec_admin.

CONNECT sec_admin
Enter password: password

4. Enter the following DROP SQL statements:

DROP ROLE emp_role;
DROP PROCEDURE grant_emp_role;

Chapter 3
Controlling Access to Applications with Secure Application Roles

3-13

5. Connect as user HR, and then drop the HR_VERIFY view.

CONNECT HR
Enter password: password
DROP VIEW hr_verify;

6. Exit SQL*Plus.

EXIT

3.5 Initialization Parameters Used for Privilege Security
Oracle Database provides initialization parameters to configure privilege security, such
as the restriction of SYSTEM privileges.

Table 3-1 lists initialization parameters that you can use to secure user privileges.

Table 3-1 Initialization Parameters Used for Privilege Security

Initialization Parameter Default Description

O7_DICTIONARY_ACCESSIBILITY FALSE Controls restrictions on SYSTEM privileges. See
Enabling Data Dictionary Protection for more
information about this parameter.

OS_ROLES FALSE Determines whether the operating system
identifies and manages the roles of each user.

REMOTE_OS_ROLES FALSE Specifies whether operating system roles are
allowed for remote clients. The default value,
FALSE, causes Oracle to identify and manage
roles for remote clients.

SQL92_SECURITY TRUE Specifies whether users must be granted the
SELECT object privilege to execute UPDATE or
DELETE statements.

To modify an initialization parameter, see Modifying the Value of an Initialization
Parameter. For detailed information about initialization parameters, see Oracle
Database Reference.

Chapter 3
Initialization Parameters Used for Privilege Security

3-14

4
Encrypting Data with
Oracle Transparent Data Encryption

Transparent Data Encryption enables you to disguise data in table columns and in an
entire tablespace.

Topics:

• About Encrypting Sensitive Data
Encrypted data is data that has been disguised so that only an authorized recipient
can read it.

• When Should You Encrypt Data?
In most cases, you must encrypt sensitive data on your site to meet a regulatory
compliance.

• How Transparent Data Encryption Works
Transparent Data Encryption enables you to encrypt individual table columns or an
entire tablespace.

• Configuring Data to Use Transparent Data Encryption
To start using Transparent Data Encryption, you must create a keystore and set a
master key.

• Checking Existing Encrypted Data
You can query the database for the data that you have encrypted.

4.1 About Encrypting Sensitive Data
Encrypted data is data that has been disguised so that only an authorized recipient
can read it.

You use encryption (Transparent Data Encryption, or TDE) to protect data in a
potentially unprotected environment, such as data you have placed on backup media
that is sent to an offsite storage location.

Encrypting data includes the following components:

• An algorithm to encrypt the data. Oracle Databases use the encryption
algorithm to encrypt and decrypt data. Oracle Database supports several industry-
standard encryption and hashing algorithms, including the Advanced Encryption
Standard (AES) encryption algorithm, which has been approved by the National
Institute of Standards and Technology (NIST).

• A key to encrypt and decrypt data. When you encrypt data, Oracle Database
uses the key and plain text data as input into the encryption algorithm. Conversely,
when you decrypt data, the key is used as input into the algorithm to reverse the
process and retrieve the clear text data. Oracle Database uses a symmetric
encryption key to perform this task, in which the same key is used to both encrypt
and decrypt the data. The encryption key is stored in the data dictionary, but
encrypted with another master key.

4-1

You can encrypt individual table columns or an entire tablespace. Be careful that you
do not mix the two. For example, suppose you encrypt a table column and then
encrypt its surrounding tablespace. This double encryption can cause performance
problems. In addition, column encryption has limitations in data type support, and only
supports B-tree indexes for equality searches. To check the current encrypted
settings, you can query the V$ENCRYPTED_TABLESPACES data dictionary view for
tablespaces and the DBA_ENCRYPTED_COLUMNS view for encrypted columns.

See Also:

Oracle Database Advanced Security Guide for detailed information about TDE

4.2 When Should You Encrypt Data?
In most cases, you must encrypt sensitive data on your site to meet a regulatory
compliance.

For example, sensitive data such as credit card numbers, Social Security numbers, or
patient health information must be encrypted.

Historically, users have wanted to encrypt data to restrict data access from their
database administrators. However, this problem is more of an access control problem,
not an encryption problem. You can address this problem by using Oracle Database
Vault to control the access to your application data from database administrators.

In most cases, you encrypt sensitive data, such as credit cards and Social Security
numbers, to prevent access when backup tapes or disk drives are lost or stolen. In
recent years, industry regulations such as the Payment Card Industry (PCI) Data
Security Standard and the Healthcare Insurance Portability and Accountability Act
(HIPAA) have become a driving factor behind increased usage of encryption for
protecting credit card and health care information, respectively.

4.3 How Transparent Data Encryption Works
Transparent Data Encryption enables you to encrypt individual table columns or an
entire tablespace.

When a user inserts data into an encrypted column, Transparent Data Encryption
automatically encrypts the data. When authorized users select the column, then the
data is automatically decrypted.

To encrypt data by using Transparent Data Encryption, you create the following
components:

• A keystore to store the master encryption key. The keystore is an operating
system file that is located outside the database. The database uses the keystore
to store the master encryption key. To create the keystore, you can use the
ADMINISTER KEY MANAGEMENT SQL statement. The keystore is encrypted using a
password as the encryption key. You create the password when you create the
keystore. Access to the contents (or master key) of the keystore is then restricted
to only those who know the password. After the keystore is created, you must
open the keystore using the password so that the database can access the master
encryption key.

Chapter 4
When Should You Encrypt Data?

4-2

You can use either software keystores or hardware keystores. A software keystore
is defined in a file that you create in a directory location. The software keystore
can be one of the following types:

– Password-based keystores: Password-based keystores are protected by
using a password that you create. You must open the keystore before the keys
can be retrieved or used.

– Auto-login keystores: Auto-login keystores are protected by a system-
generated password, and do not need to be explicitly opened by a security
administrator. Auto-login keystores are automatically opened when accessed.
Auto-login keystores can be used across different systems. If your
environment does not require the extra security provided by a keystore that
must be explicitly opened for use, then you can use an auto-login keystore.

– Auto-login local keystores: Auto-login local keystores are auto-login
keystores that are local to the system on which they are created. Auto-login
local keystores cannot be opened on any computer other than the one on
which they are created.

A hardware keystore is used with a hardware security module, which is a physical
device that is designed to provide secure storage for encryption keys. This guide
explains how to configure software keystores only. For detailed information about
hardware keystores, see Oracle Database Advanced Security Guide.

• A location for the keystore. You must specify the keystore location in the
sqlnet.ora file.

Afterward, when a user enters data, Oracle Database performs the following steps:

1. Retrieves the master key from the keystore.

2. Decrypts the encryption key using the master key.

3. Uses the encryption key to encrypt the data the user entered.

4. Stores the data in encrypted format in the database.

If the user is selecting data, the process is similar: Oracle Database decrypts the data
and then displays it in plain text format.

Transparent Data Encryption has the following benefits:

• As a security administrator, you can be sure that sensitive data is safe if the
storage media or data file is stolen or lost.

• Implementing Transparent Data Encryption helps you address security-related
regulatory compliance issues.

• Data from tables is transparently decrypted for the database user. You do not
need to create triggers or views to decrypt data.

• Database users do not need to be aware that the data they are accessing is stored
in encrypted form. Data is transparently decrypted for the database users and
does not require any action on their part.

• Applications need not be modified to handle encrypted data. Data encryption and
decryption is managed by the database.

Transparent Data Encryption has a minimal impact on performance. Transparent Data
Encryption column encryption affects performance only when data is retrieved from or
inserted into an encrypted column. There is no impact on performance for operations
involving unencrypted columns, even if these columns are in a table containing

Chapter 4
How Transparent Data Encryption Works

4-3

encrypted columns. However, be aware that encrypted data must have more storage
space than plain text data. On average, encrypting a single column requires between
32 and 48 bytes of additional storage for each row. Transparent tablespace encryption
provides even better performance because Oracle Database performs the encryption
and decryption at the I/O block layer. Once blocks are decrypted, they are cached in
Oracle Database memory for optimal performance.

See Also:

Oracle Database Advanced Security Guide for detailed information about
using Transparent Data Encryption

4.4 Configuring Data to Use Transparent Data Encryption
To start using Transparent Data Encryption, you must create a keystore and set a
master key.

The keystore should be a separate keystore specifically used by Transparent Data
Encryption. This keystore will be used for all data that is being encrypted through
Transparent Data Encryption.

• Step 1: Configure the Keystore Location
When you create a software password-based keystore, you must designate the
directory location for the keystore in the sqlnet.ora file.

• Step 2: Check the COMPATIBLE Initialization Parameter Setting
To configure the full set of tablespace encryption features, you must set the
COMPATIBLE initialization parameter for the database to 11.2.0.0 or later.

• Step 3: Create the Software Password-Based Keystore
To create the keystore, use the ADMINISTER KEY MANAGEMENT SQL statement.

• Step 4: Open (or Close) the Keystore
You can manually open and close keystores. Auto-login keystores open
automatically when they are accessed.

• Step 5: Create the Master Encryption Key
The master encryption key, which stored in a keystore, protects the table keys and
tablespace encryption keys.

• Step 6: Encrypt Data
Next, you are ready to encrypt either individual table columns or an entire
tablespace.

4.4.1 Step 1: Configure the Keystore Location
When you create a software password-based keystore, you must designate the
directory location for the keystore in the sqlnet.ora file.

You perform this step only once.

To configure the keystore location:

1. Create a directory in the $ORACLE_HOME directory to store the keystore.

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-4

For example, on Microsoft Windows, you could create a directory called
ORA_KEYSTORES in the C:\oracle\product\12.2.0\db_1 directory.

2. Create a backup copy of the sqlnet.ora file, which by default is located in
the $ORACLE_HOME/network/admin directory.

3. At the end of the sqlnet.ora file, add code similar to the following, where
ORA_KEYSTORES is the name of the directory where you plan to store the keystore:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=C:\oracle\product\12.2.0\db_1\ORA_KEYSTORES)))

4. Save and close the sqlnet.ora file.

4.4.2 Step 2: Check the COMPATIBLE Initialization Parameter Setting
To configure the full set of tablespace encryption features, you must set the COMPATIBLE
initialization parameter for the database to 11.2.0.0 or later.

Otherwise, ensure that it is at least 11.0.0.0. Be aware that once you set this
parameter, you cannot change it. Ideally, you should set COMPATIBLE to accommodate
the most current release of Oracle Database.

To set the COMPATIBLE initialization parameter:

1. Log into the database instance.

For example:

sqlplus sec_admin
Enter password: password
Connected.

2. Check the current setting of the COMPATIBLE parameter.

For example:

SHOW PARAMETER COMPATIBLE

NAME TYPE VALUE
------------------------------------ ----------- -------------
compatible string 11.0.0.0

3. If you must change the COMPATIBLE parameter, then complete the remaining steps
in this procedure.

The value should be 11.2.0.0 or higher.

4. Locate the initialization parameter file for the database instance.

• UNIX systems: This file is in the ORACLE_HOME/dbs directory and is named
initORACLE_SID.ora (for example, initmydb.ora).

• Windows systems: This file is in the ORACLE_HOME\database directory and is
named initORACLE_SID.ora (for example, initmydb.ora).

5. Edit the initialization parameter file to use the correct COMPATIBLE setting.

For example:

COMPATIBLE = 12.2.0.0

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-5

6. In SQL*Plus, log in as a user who has the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

7. Restart the Oracle Database instance.

For example:

SHUTDOWN IMMEDIATE
STARTUP

8. Do not log out of SQL*Plus.

4.4.3 Step 3: Create the Software Password-Based Keystore
To create the keystore, use the ADMINISTER KEY MANAGEMENT SQL statement.

By default, the Oracle keystore stores a history of retired master keys, which enables
you to change them and still be able to decrypt data that was encrypted under an old
master key. A case-sensitive keystore password unknown to the database
administrator provides separation of duty: a database administrator can restart the
database, but the keystore is closed and must be manually opened by a security
administrator before the database can encrypt or decrypt the data.

To create the keystore:

1. In SQL*Plus, connect as a user who has been granted the SYSKM administrative
privilege.

For example:

CONNECT psmith / AS SYSKM
Enter password: password

2. Run the following ADMINISTER KEY MANAGEMENT SQL statement:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'keystore_location' IDENTIFIED BY
software_keystore_password;

In this specification:

• keystore_location is the path to the keystore location that you defined in the
sqlnet.ora file (for example, oracle\product\12.2.0\db_1\ORA_KEYSTORES).
Enclose the keystore_location setting in single quotation marks. To find this
location, query the WRL_PARAMETER column of the V$ENCRYPTION_WALLET view.

• software_keystore_password is a new password that you, the security
administrator, creates.

For example, to create the keystore in the c:\oracle\product
\12.2.0\db_1\ORA_KEYSTORES directory:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'c:\oracle\product
\12.2.0\db_1\ORA_KEYSTORES' IDENTIFIED BY password;

keystore altered.

After you run this statement, the ewallet.p12 file, which contains the keystore,
appears in the keystore location.

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-6

4.4.4 Step 4: Open (or Close) the Keystore
You can manually open and close keystores. Auto-login keystores open automatically
when they are accessed.

• Opening a Keystore
After you create a software password-based keystore, you must manually open it
before you can use Transparent Data Encryption.

• Closing a Keystore
You can close a keystore to disable access to the master key and prevent access
to the encrypted columns.

4.4.4.1 Opening a Keystore
After you create a software password-based keystore, you must manually open it
before you can use Transparent Data Encryption.

You do not need to open the auto-login or hardware keystores because they open
automatically. You can check the status of whether a keystore is open or closed by
querying the STATUS column of the V$ENCRYPTION_WALLET view.

To open a keystore:

1. Ensure that you are logged into SQL*Plus as a user who has been granted the
SYSKM system privilege.

2. Enter the following ADMINISTER KEY MANAGEMENT SQL statement:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
software_keystore_password;

keystore altered.

Replace software_keystore_password with the password that you created in Step 3:
Create the Software Password-Based Keystore.

4.4.4.2 Closing a Keystore
You can close a keystore to disable access to the master key and prevent access to
the encrypted columns.

In most cases, leave the keystore open unless you have a reason for closing it. The
keystore must be open for Transparent Data Encryption to work. To reopen the
keystore, use the ADMINISTER KEY MANAGEMENT statement.

To close a keystore:

1. Ensure that you are logged into SQL*Plus as a user who has been granted the
SYSKM system privilege.

2. Enter the following SQL statement:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE IDENTIFIED BY
software_keystore_password;

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-7

4.4.5 Step 5: Create the Master Encryption Key
The master encryption key, which stored in a keystore, protects the table keys and
tablespace encryption keys.

By default, the master encryption key is a random key generated by Transparent Data
Encryption (TDE).

To create the master encryption key:

1. Ensure that you are logged into SQL*Plus as a user who has been granted the
SYSKM system privilege.

2. Run the following ADMINISTER KEY MANAGEMENT SQL statement:

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY software_keystore_password [WITH
BACKUP [USING 'backup_identifier']];

keystore altered.

In this specification:

• software_keystore_password is the password that you created in Step 3: Create
the Software Password-Based Keystore.

• WITH BACKUP creates a backup of the keystore. You must use this option for
password-based keystores. You do not need to use it for auto-login or auto-
login local keystores. Optionally, you can use the USING clause to add a brief
description of the backup. Enclose this description in double quotation marks.
This identifier is appended to the named keystore file (for example,
ewallet_timestamp_emp_key_backup.p12).

For example:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY
software_keystore_password WITH BACKUP USING 'password key backup';

4.4.6 Step 6: Encrypt Data
Next, you are ready to encrypt either individual table columns or an entire tablespace.

• Encrypting Individual Table Columns
Oracle provides guidelines that you should follow before you encrypt columns,
such as checking the column data types.

• Encrypting a Tablespace
You can encrypt a new tablespace while you are creating it, but you cannot
encrypt an existing tablespace.

4.4.6.1 Encrypting Individual Table Columns
Oracle provides guidelines that you should follow before you encrypt columns, such as
checking the column data types.

The decisions that you make when you identify columns to encrypt are determined by
governmental security regulations, such as California Senate Bill 1386, or by industry
standards such as the Payment Card Industry (PCI) Data Security Standard. Credit
card numbers, Social Security numbers, and other personally identifiable information

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-8

(PII) fall under this category. Your own internal security policies — trade secrets,
research results, or employee salaries and bonuses — determine your needs for
encryption. See When Should You Encrypt Data? for guidelines about when and when
not to encrypt data.

Follow these guidelines when you select columns to encrypt:

• Check the data types of the columns you plan to encrypt. Transparent Data
Encryption supports the following data types:

Data Types B-L Data Types N-V

BINARY_FLOAT NUMBER

BINARY_DOUBLE NVARCHAR2

CHAR RAW

DATE TIMESTAMP

NCHAR VARCHAR2

Large object types (LOBs) such as BLOB and
CLOB1

-

1 You cannot encrypt external LOBs (BFILE).

• Ensure that the columns you select are not part of a foreign key. With
Transparent Data Encryption, each table has its own encryption key, which is
stored in the database data dictionary and encrypted with the external master key.
Encrypted columns cannot be used as foreign keys.

To encrypt a column in a table:

1. Ensure that you have created and opened the keystore and created a master
encryption key.

See the following sections, if necessary:

• Step 3: Create the Software Password-Based Keystore to learn how to create
a keystore key

• Step 4: Open (or Close) the Keystore to learn how to open or a keystore

• Step 5: Create the Master Encryption Key to create the master encryption key

2. In Enterprise Manager, access the Database home page.

See Oracle Database 2 Day DBA for more information.

3. From the Schema menu, select Database Objects, then Tables.

If the Database Login page appears, then log in as SYS with the SYSDBA
administrative privilege.

4. In the Tables page, do one of the following:

• To create a new table, click Create, and then answer the questions in the
subsequent page to start creating the table.

• To modify an existing table, search for the table name by entering its schema
name into the Schema field and the table name in the Object Name field.
(You can use the percent sign (%) wildcard character to search for a group of
tables, for example O% to find all tables beginning with the letter O.) When the
table is listed in the Tables page, select the table, and then click Edit.

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-9

In the Create Table or Edit Table page, you can set the encryption options.

For example, to encrypt columns in the OE.ORDERS table, the Edit Table page
appears as follows:

5. In the Create Table (or Edit Table) page, do the following:

a. Select the column that you want to encrypt.

Do not select columns that are part of a foreign key constraint (primary or
unique key columns). You cannot encrypt these columns. These columns are
indicated with a key or check mark icon to the left of their names.

b. Click Encryption Options to display the Encryption Options for the Table
page.

c. From the Encryption Algorithm list, select from the following options:

• AES192: Sets the key length to 192 bits. AES is the abbreviation for
Advanced Encryption Standard.

• 3DES168: Sets the key length to 168 bits. 3DES is the abbreviation for
Triple Data Encryption Standard.

• AES128: Sets the key length to 128 bits. This option is the default.

• AES256: Sets the key length to 256 bits.

d. Under Key Generation, select either Generate Key Randomly or Specify
Key. If you select Specify Key, enter characters for the seed values in the
Enter Key and Confirm Key fields.

The Generate Key Randomly setting enables salt. Salt is a way to strengthen
the security of encrypted data. It is a random string added to the data before it
is encrypted, causing the same text to appear different when encrypted. Salt
removes one method attackers use to steal data, namely, matching patterns of
encrypted text.

e. Click Continue to return to the Create Table (or Edit Table) page.

f. Enable encryption for the column by selecting its box under Encrypted.

6. Click Apply, and then click Return.

The Tables page appears.

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-10

While a table is being updated, read access is still possible. Afterward, existing and
future data in the column is encrypted when it is written to the database file, and it is
decrypted when an authorized user selects it. If data manipulation language (DML)
statements are needed, you can use online redefinition statements.

4.4.6.2 Encrypting a Tablespace
You can encrypt a new tablespace while you are creating it, but you cannot encrypt an
existing tablespace.

As a workaround, you can use the CREATE TABLE AS SELECT, ALTER TABLE MOVE, or use
Oracle Data Pump import to get data from an existing tablespace into an encrypted
tablespace. For details about creating a tablespace, see Oracle Database 2 Day DBA.

To encrypt a tablespace:

1. Ensure that you have created and opened the keystore, as described in the
preceding steps of this section.

2. In Enterprise Manager, access the Database home page.

See Oracle Database 2 Day DBA for more information.

3. From the Administration menu, select Storage, then Tablespaces.

If the Database Login page appears, then log in as an administrative user, such as
SYS. User SYS must log in with the SYSDBA role selected.

The Tablespaces page appears.

4. Click Create, and then answer the questions in the subsequent page to start
creating the tablespace and its required data file.

5. In the Create Tablespace page, do the following:

a. Under Type, in the Permanent list, select the Encryption box.

b. Under Datafiles, select Add to add a data file. (Linux and Windows systems
only)

c. Select Encryption options to display the Encryption Options page.

d. From the Encryption Algorithm list, select from the following options:

• AES192: Sets the key length to 192 bits. AES is the abbreviation for
Advanced Encryption Standard.

• 3DES168: Sets the key length to 168 bits. 3DES is the abbreviation for
Triple Data Encryption Standard.

• AES128: Sets the key length to 128 bits. This option is the default.

• AES256: Sets the key length to 256 bits.

See "Available Methods" under Step 5 in Configuring Network Encryption for
more information about these encryption algorithms.

e. Click Continue.

6. In the Create Tablespace page, click OK.

The new tablespace appears in the list of existing tablespaces. Remember that
you cannot encrypt an existing tablespace.

Chapter 4
Configuring Data to Use Transparent Data Encryption

4-11

See Also:

• Data Dictionary Views for Checking Encrypted Tablespaces to query the
database for existing encrypted tablespaces

• Oracle Database Advanced Security Guide for detailed information about
tablespace encryption

• Oracle Database Reference for more information about the CREATE
TABLESPACE statement

4.5 Checking Existing Encrypted Data
You can query the database for the data that you have encrypted.

You can check for individually encrypted columns, all tables in the current database
instance that have encrypted columns, or all tablespaces that are encrypted.

• Finding the Type of Keystore That Was Created
The V$ENCRYPTION_KEYS dynamic view lists the type of keystore that was created.

• Finding the Keystore Location
The V$ENCRYPTION_WALLET dynamic view lists the location of a keystore.

• Checking Whether a Keystore Is Open or Closed
The V$ENCRYPTION_WALLET dynamic view indicates if a keystore is open or closed.

• Checking Encrypted Columns of an Individual Table
The DESC (for DESCRIBE) statement in SQL*Plus checks the encrypted columns in a
database table.

• Checking All Encrypted Table Columns in the Current Database Instance
The DBA_ENCRYPTED_COLUMNS data dictionary view lists all encrypted table columns in
the current instance.

• Data Dictionary Views for Checking Encrypted Tablespaces
Oracle Database provides data dictionary views that describe encrypted
tablespaces.

4.5.1 Finding the Type of Keystore That Was Created
The V$ENCRYPTION_KEYS dynamic view lists the type of keystore that was created.

To find the type of keystore that was created:

• In SQL*Plus, query the V$ENCRYPTION_KEYS view as follows:

SELECT KEYSTORE_TYPE FROM V$ENCRYPTION_KEYS;

The keystore location appears, similar to the following:

KEYSTORE_TYPE

SOFTWARE KEYSTORE

Chapter 4
Checking Existing Encrypted Data

4-12

4.5.2 Finding the Keystore Location
The V$ENCRYPTION_WALLET dynamic view lists the location of a keystore.

To find the keystore location:

• In SQL*Plus, query the V$ENCRYPTION_WALLET view as follows:

SELECT WRL_PARAMETER FROM V$ENCRYPTION_WALLET;

The keystore location appears, similar to the following:

WRL_PARAMETER

C:\oracle\product\12.2.0\db_1

4.5.3 Checking Whether a Keystore Is Open or Closed
The V$ENCRYPTION_WALLET dynamic view indicates if a keystore is open or closed.

To check whether a keystore is open or closed:

• In SQL*Plus, query the V$ENCRYPTION_WALLET view as follows:

SELECT STATUS FROM V$ENCRYPTION_WALLET;

The keystore status appears, similar to the following:

STATUS

OPEN

4.5.4 Checking Encrypted Columns of an Individual Table
The DESC (for DESCRIBE) statement in SQL*Plus checks the encrypted columns in a
database table.

To check the encrypted columns of an individual table:

• In SQL*Plus, run the DESC statement using the following syntax.

DESC tablename;

For example:

DESC OE.ORDER_ITEMS;

A description of the table schema appears. The following output shows that the
QUANTITY column is encrypted:

Name Null? Type
-- -------- --------------------------
ORDER_ID NOT NULL NUMBER(12)
LINE_ITEM_ID NOT NULL NUMBER(3)
PRODUCT_ID NOT NULL NUMBER(6)
UNIT_PRICE NUMBER(8,2)
QUANTITY NUMBER(8) ENCRYPT

Chapter 4
Checking Existing Encrypted Data

4-13

4.5.5 Checking All Encrypted Table Columns in the Current Database
Instance

The DBA_ENCRYPTED_COLUMNS data dictionary view lists all encrypted table columns in the
current instance.

To check all encrypted table columns in the current database instance:

• In SQL*Plus, select from the DBA_ENCRYPTED_COLUMNS view:

For example:

SELECT * FROM DBA_ENCRYPTED_COLUMNS;

This SELECT statement lists all tables and column in the database that contain
columns encrypted using Oracle Transparent Data Encryption. For example:

OWNER TABLE_NAME COLUMN_NAME ENCRYPTION_ALG SALT INTEGRITY_ALG
------- ---------- ----------- ---------------- ---- -------------
OE CUSTOMERS INCOME_LEVEL AES 128 bits key YES SHA-1
OE UNIT_PRICE ORADER_ITEMS AES 128 bits key YES SHA-1
HR EMPLOYEES SALARY AES 192 bits key YES SHA-1

See Also:

Oracle Database Reference for more information about the
DBA_ENCRYPTED_COLUMNS view

4.5.6 Data Dictionary Views for Checking Encrypted Tablespaces
Oracle Database provides data dictionary views that describe encrypted tablespaces.

Table 4-1 lists data dictionary views that you can use to check encrypted tablespaces.

Chapter 4
Checking Existing Encrypted Data

4-14

Table 4-1 Data Dictionary Views for Encrypted Tablespaces

Data Dictionary View Description

DBA_TABLESPACES Describes all tablespaces in the database. For example, to
determine if the tablespace has been encrypted, enter the
following:

SELECT TABLESPACE_NAME, ENCRYPTED FROM
DBA_TABLESPACES;

TABLESPACE_NAME ENC
---------------------------- ----
SYSTEM NO
SYSAUX NO
UNCOTBS1 NO
TEMP NO
USERS NO
EXAMPLE NO
SECURESPACE YES

USER_TABLESPACES Describes the tablespaces accessible to the current user. It
has the same columns as DBA_TABLESPACES, except for the
PLUGGED_IN column.

V$ENCRYPTED_TABLESPACES Displays information about the tablespaces that are
encrypted. For example:

SELECT * FROM V$ENCRYPTED_TABLESPACES;

 TS# ENCRYPTIONALG ENCRYPTEDTS
----------- ------------- -----------
 6 AES128 YES

The list includes the tablespace number, its encryption
algorithm, and whether its encryption is enabled or disabled.

If you want to find the name of the tablespace, use the
following join operation:

SELECT NAME, ENCRYPTIONALG ENCRYPTEDTS
FROM V$ENCRYPTED_TABLESPACES, V$TABLESPACE
WHERE V$ENCRYPTED_TABLESPACES.TS# = V$TABLESPACE.TS#;

See Also:

Oracle Database Reference for more information about data dictionary views

Chapter 4
Checking Existing Encrypted Data

4-15

5
Controlling Access with
Oracle Database Vault

Oracle Database Vault enables you to restrict administrative access to an Oracle
database.

Topics:

• About Oracle Database Vault
You can use Oracle Database Vault to restrict administrative access to an Oracle
database using a fine-grained approach.

• Tutorial: Controlling Administrator Access to a User Schema
In this tutorial, you create a realm around the OE schema to protect it from
administrator access but allow SCOTT to access OE.CUSTOMERS.

5.1 About Oracle Database Vault
You can use Oracle Database Vault to restrict administrative access to an Oracle
database using a fine-grained approach.

This helps you address the most difficult security problems remaining today: protecting
against insider threats, meeting regulatory compliance requirements, and enforcing
separation of duty. In addition to restricting administrator access to your databases,
Database Vault enables you to enforce separation of duty, and control who, when,
where and how applications, databases, and data are accessed.

Typically, the main job of an Oracle database administrator is to perform tasks such
database tuning, installing upgrades, monitoring the state of the database, and then
remedying any problems that he or she finds. In a default Oracle Database installation,
database administrators also have the ability to create users and access user data.
For greater security, you should restrict these activities only to those users who must
perform them. This is called separation of duty, and it frees the database
administrator to focus on tasks ideally suited to his or her expertise, such as
performance tuning.

By restricting administrator access to your Oracle databases, Oracle Database Vault
helps you to follow common regulatory compliance requirements, such as the
Payment Card Industry (PCI) Data Security Standard (DSS) requirements, Sarbanes-
Oxley (SOX) Act, European Union (EU) Privacy Directive, and Healthcare Insurance
Portability and Accountability Act (HIPAA). These regulations require strong internal
controls on access, disclosure or modification of sensitive information that could lead
to fraud, identity theft, financial irregularities and financial penalties.

Oracle Database Vault provides the following ways for you to restrict administrator
access to an Oracle database:

• Group database schemas, objects, and roles that you want to secure. This
grouping is called a realm, and all the components of the realm are protected.
After you, the Database Vault administrator, create a realm, you designate a user

5-1

to manage access to the realm. For example, you can create a realm around one
table within a schema, or around the entire schema itself.

• Create PL/SQL expressions to customize your database restrictions. You
create an expression in a rule, and for multiple rules within one category, you can
group the rules into a rule set. To enforce the rules within the rule set, you then
associate the rule set with a realm or command rule. For example, if you wanted to
prevent access to a database during a maintenance period (for example, from 10
to 12 p.m.), you can create a rule to restrict access only during those hours.

• Designate specific PL/SQL statements that are accessible or not accessible
to users. These are called command rules. A command rule contains a
command to be protected and a rule set that determines whether the execution of
the command is permitted. You can create a command rule to protect SELECT,
ALTER SYSTEM, database definition language (DDL), and data manipulation
language (DML) statements that affect one or more database objects. You can
associate a rule set to further customize the command rule.

• Define attributes to record data such as session users or IP addresses that
Oracle Database Vault can recognize and secure. These attributes are called
factors. You can use factors for activities such as authorizing database accounts
to connect to the database or creating filtering logic to restrict the visibility and
manageability of data. To further customize the factor, you can associate a rule set
with it.

• Design secure application roles that are enabled only by Oracle Database
Vault rules. After you create the secure application role in Oracle Database Vault,
you associate a rule set with it. The rule set defines when and how the secure
application role is enabled or disabled.

You can create policies using these components by using either Oracle Database
Vault Administrator, or by using its PL/SQL packages. In a multitenant environment,
each policy applies only to the current pluggable database (PDB). Step 1: Enable
Oracle Database Vault

See Also:

Oracle Database Vault Administrator’s Guide for detailed information about
Oracle Database Vault

5.2 Tutorial: Controlling Administrator Access to a User
Schema

In this tutorial, you create a realm around the OE schema to protect it from administrator
access but allow SCOTT to access OE.CUSTOMERS.

The OE schema has several tables that contain confidential data, such as the credit
limits allowed for customers and other information. Order Entry tables typically contain
sensitive information, such as credit card or Social Security numbers. This type of
information must be restricted only to individuals whose job requires access to this
information, according to Payment Card Industry (PCI) Data Security Standards
(DSS).

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-2

• Step 1: Enable Oracle Database Vault
After you install Oracle Database, you must register Oracle Database Vault and
enable the Oracle Database Vault Account Manager user account.

• Step 2: Grant SELECT on the OE.CUSTOMERS Table to User SCOTT
To test the tutorial later on, user SCOTT must select from the OE.CUSTOMERS table.

• Step 3: Select from the OE.CUSTOMERS Table as Users SYS and SCOTT
At this stage, both users SYS and SCOTT can select from the OE.CUSTOMERS table.

• Step 4: Create a Realm to Protect the OE.CUSTOMERS Table
To restrict the OE.CUSTOMER table from administrative access, you must create a
realm around the OE schema.

• Step 5: Test the OE Protections Realm
Now that you have created a realm to protect the OE schema, you are ready to test
it.

• Step 6: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

5.2.1 Step 1: Enable Oracle Database Vault
After you install Oracle Database, you must register Oracle Database Vault and
enable the Oracle Database Vault Account Manager user account.

Oracle Database Vault is installed when you perform a default installation of Oracle
Database.

If Oracle Label Security is not enabled, then the registration process enables it as well
as Database Vault.

To register Oracle Database Vault:

1. Log into the database instance as user SYS with the SYSDBA administrative privilege.

For example:

sqlplus sys as sysdba
Enter password: password

2. Check if Oracle Database Vault has already been enabled. The PARAMETER column
is case sensitive, so use the case shown here.

SELECT * FROM DBA_DV_STATUS;

If it returns TRUE for both the DV_CONFIGURE_STATUS and the DV_ENABLE_STATUS, then
Oracle Database Vault is registered. Go to Step 2: Grant SELECT on the
OE.CUSTOMERS Table to User SCOTT. If it returns FALSE, then register
Database Vault with your database, as described in Oracle Database Vault
Administrator’s Guide.

5.2.2 Step 2: Grant SELECT on the OE.CUSTOMERS Table to User
SCOTT

To test the tutorial later on, user SCOTT must select from the OE.CUSTOMERS table.

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-3

• Enabling User SCOTT for Oracle Database Vault
You can use Enterprise Manager to enable user SCOTT.

• Granting User SCOTT the SELECT Privilege on the OE.CUSTOMERS Table
After you enable user SCOTT, you can grant him the appropriate privileges.

5.2.2.1 Enabling User SCOTT for Oracle Database Vault
You can use Enterprise Manager to enable user SCOTT.

To enable user SCOTT:

1. In Enterprise Manager, ensure that you are logged in as the Database Vault
Account Manager (a user who has been granted the role DV_ACCTMGR) with the
NORMAL role selected.

After you enable Oracle Database Vault, you no longer can use the administrative
accounts (such as SYS and SYSTEM) to create or enable user accounts. This is
because right out of the box, Oracle Database Vault provides separation-of-duty
principles to administrative accounts. From now on, to manage user accounts, you
must use the Oracle Database Vault Account Manager account.

Administrative users still have the privileges they do need. For example, user SYS,
who owns system privileges and many PL/SQL packages, can still grant privileges
on these to other users. However, user SYS can no longer create, modify, or drop
user accounts. Instead, you must log in as the Database Vault Account Manager.

2. From the Administration menu, select Security, then Users.

3. In the Users page, select the user SCOTT, and in the View User page, click Edit.

The Edit User page appears.

4. Enter the following settings:

• Enter Password and Confirm Password: If the SCOTT account password
status is expired, then enter a new password. Enter any password that is
secure, according to the password guidelines described in Requirements for
Creating Passwords.

• Status: Click Unlocked.

5. Click Apply.

6. Do not exit Enterprise Manager.

5.2.2.2 Granting User SCOTT the SELECT Privilege on the OE.CUSTOMERS
Table

After you enable user SCOTT, you can grant him the appropriate privileges.

To grant user SCOTT the SELECT privilege on the OE.CUSTOMERS table:

1. Log in to SQL*Plus as user OE.

sqlplus oe
Enter password: password
Connected.

2. Grant user SCOTT the SELECT privilege on the OE.CUSTOMERS table.

GRANT SELECT ON CUSTOMERS TO SCOTT;

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-4

5.2.3 Step 3: Select from the OE.CUSTOMERS Table as Users SYS
and SCOTT

At this stage, both users SYS and SCOTT can select from the OE.CUSTOMERS table.

This is because SYS has administrative privileges and SCOTT has an explicit SELECT
privilege granted by user OE.

To select from OE.CUSTOMERS as users SYS and SCOTT:

1. In SQL*Plus, connect as user SYS using the SYSDBA administrative privilege

sqlplus sys as sysdba
Enter password: password

2. Select from the OE.CUSTOMERS table as follows:

SELECT COUNT(*) FROM OE.CUSTOMERS;

The following output should appear

COUNT(*)

 319

3. Connect as user SCOTT, and then perform the same SELECT statement.

CONNECT SCOTT
Enter password: password
Connected.

SELECT COUNT(*) FROM OE.CUSTOMERS;

The following output should appear:

COUNT(*)

 319

5.2.4 Step 4: Create a Realm to Protect the OE.CUSTOMERS Table
To restrict the OE.CUSTOMER table from administrative access, you must create a realm
around the OE schema.

To create a realm around the OE schema:

1. In Enterprise Manager, click Log Out to log out of the database.

2. In the Confirmation dialog box, select Logout of (Database Instance) and then
select the Display login page after logout check box. Then click Logout.

3. Log in as a user who has been granted the DV_OWNER or DV_ADMIN account (for
example, dbv_owner). Connect using the Normal Role role.

4. From the Security menu, select Database Vault.

5. In the Database Vault page, select the Administration tab.

6. Under Database Vault Components, select Realms.

The Realms page appears.

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-5

7. Click Create.

8. In the Create Realm page, enter the following information:

• Name: OE Protections

• Description: Realm to protect the OE schema

• Status: Click Enabled.

• Audit Options: Select Audit on Failure.

9. Click Next.

The Realm Secured Objects page appears.

10. Click Add.

11. In the Add Secured Objects window, add the following information:

• Owner: OE

• Object Type: TABLE

• Object Name: %

12. Click OK.

The OE table is now listed as a realm-secured object.

13. Click Next.

14. In the Realm Authorizations page, click Add.

The Add Authorizations window appears.

15. Enter the following information:

• Realm Authorization Grantee: Select OE.

• Realm Authorization Type: Select Owner.

• Realm Authorization Rule Set: Select Disabled.

16. Click OK, and then click Next.

The Review page appears, so that you can check your settings.

17. Click Finish.

The Realms page now shows the OE Protections realm.

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-6

18. Do not exit Enterprise Manager.

5.2.5 Step 5: Test the OE Protections Realm
Now that you have created a realm to protect the OE schema, you are ready to test it.

You do not need to restart the database session, because any protections you define
in Oracle Database Vault take effect right away.

To test the OE Protections realm:

1. Connect to SQL*Plus as user SYS using the SYSDBA administrative privilege.

CONNECT SYS AS SYSDBA
Enter password: password
Connected.

If you were connected as SYS before, then you do not need to reconnect. The
changes that you just made take effect immediately.

2. Try selecting from the OE.CUSTOMERS table.

SELECT COUNT(*) FROM OE.CUSTOMERS;

The following output should appear:

ERROR at line 1:
ORA-01031: insufficient privileges

The OE Protections realm prevents the administrative user from accessing the
OE.CUSTOMERS table. Because you defined the OE Protections realm to protect the
entire schema, the administrative user does not have access to any of the other
tables in OE, either.

3. Connect as user SCOTT.

CONNECT SCOTT
Enter password: password
Connected.

4. Try selecting from the OE.CUSTOMERS table.

SELECT COUNT(*) FROM OE.CUSTOMERS;

The following output should appear:

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-7

 COUNT(*)

 319

The OE Protections realm does not apply to user SCOTT because user OE has
explicitly granted this user the SELECT privilege on the OE.CUSTOMERS table. Oracle
Database Vault sets up the protections that you need, but does not override the
explicit privileges you have defined. SCOTT still can query this table.

5.2.6 Step 6: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

• Dropping the OE Protections Realm
You can use Enterprise Manager to drop the OE protections realm.

• Revoking the SELECT Privilege on OE.CUSTOMERS from User SCOTT
You can use SQL*Plus to revoke the SELECT privilege on OE.CUSTOMERS from user
SCOTT.

• Disabling Oracle Database Vault and Oracle Label Security
You can use SQL*Plus to disable Oracle Database Vault and Oracle Label
Security.

5.2.6.1 Dropping the OE Protections Realm
You can use Enterprise Manager to drop the OE protections realm.

To drop the OE Protections realm:

1. In Enterprise Manager, if you have logged out of the Database Vault Administrator
pages, then log back in as the Database Vault Owner account that you created
when you installed Oracle Database Vault (for example, dbv_owner).

2. From the Security menu, select Database Vault.

3. In the Oracle Database Vault page, select the Administration tab.

4. Under Database Vault Feature Administration, click Realms.

The Realms page appears.

5. Select OE Protections from the list of realms, and then click Delete. Then click
Yes in the Confirmation page.

6. Log out of Oracle Database Vault Administrator.

5.2.6.2 Revoking the SELECT Privilege on OE.CUSTOMERS from User
SCOTT

You can use SQL*Plus to revoke the SELECT privilege on OE.CUSTOMERS from user SCOTT.

To revoke the SELECT privilege on OE.CUSTOMERS from user SCOTT:

1. In SQL*Plus, connect as user OE.

CONNECT OE
Enter password: password
Connected.

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-8

2. Revoke the SELECT privilege from user SCOTT.

REVOKE SELECT ON CUSTOMERS FROM SCOTT;

5.2.6.3 Disabling Oracle Database Vault and Oracle Label Security
You can use SQL*Plus to disable Oracle Database Vault and Oracle Label Security.

To disable Oracle Database Vault and if necessary, Oracle Label Security:

1. Connect as a user who has been granted the DV_OWNER role.

For example:

CONNECT dbv_owner
Enter password: password

2. Run the following procedure to disable Oracle Database Vault:

EXEC DVSYS.DBMS_MACADM.DISABLE_DV;

3. Connect as user SYS with the SYSDBA administrative privilege

CONNECT SYS AS SYSDBA
Enter password: password

4. Run the following procedure to disable Oracle Label Security:

EXEC LBACSYS.OLS_ENFORCEMENT.DISABLE_OLS;

When you register and enable Oracle Database Vault, Oracle Label Security is
also enabled. If you choose to not disable Oracle Database Vault, then do not
disable Oracle Label Security, because Database Vault uses Oracle Label
Security. (This guide assumes that you are disabling Database Vault.) However,
you can have Oracle Label Security enabled and Database Vault disabled.

5. Restart the database.

SHUTDOWN IMMEDIATE
STARTUP

Chapter 5
Tutorial: Controlling Administrator Access to a User Schema

5-9

6
Restricting Access with
Oracle Virtual Private Database

Oracle Virtual Private Database restricts access to data based on a dynamic WHERE
clause that is added to the SQL statements that users enter.

Topics:

• About Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) enables you to dynamically add a WHERE
clause in any SQL statement that a user executes.

• Tutorial: Limiting Access to Data Based on the Querying User
In this tutorial, you create two users whose individual data access will be based on
their roles.

6.1 About Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) enables you to dynamically add a WHERE clause
in any SQL statement that a user executes.

The WHERE clause filters the data the user is allowed to access, based on the identity of
a user.

This feature restricts row and column level data access by creating a policy that
enforces a WHERE clause for all SQL statements that query the database. The WHERE
clause allows only users whose identity passes the security policy, and hence, have
access to the data that you want to protect. You create and manage the VPD policy at
the database table or view level, which means that you do not modify the applications
that access the database.

In a multitenant environment, each Virtual Private Database policy applies only to the
current pluggable database (PDB).

An Oracle Virtual Private Database policy has the following components, which are
typically created in the schema of the security administrator:

• A PL/SQL function to append the dynamic WHERE clause to SQL statements
that affect the Virtual Private Database tables. For example, a PL/SQL function
translates the following SELECT statement:

SELECT * FROM ORDERS;

to the following:

SELECT * FROM ORDERS
 WHERE SALES_REP_ID = 159;

In this example, the user can only view orders by Sales Representative 159. The
PL/SQL function used to generate this WHERE clause is as follows:

CREATE OR REPLACE FUNCTION auth_orders(
 schema_var IN VARCHAR2,

6-1

 table_var IN VARCHAR2
)
RETURN VARCHAR2
IS
 return_val VARCHAR2 (400);
BEGIN
 return_val := 'SALES_REP_ID = 159';
 RETURN return_val;
END auth_orders;
/

In this example:

– schema_var and table_var: Create parameters to store the schema name, OE,
and table name, ORDERS. (The second parameter, table_var, for the table, can
also be used for views and synonyms.) Always create these two parameters in
this order: create the parameter for the schema first, followed by the
parameter for the table, view, or synonym object. Note that the function itself
does not specify the OE schema or its ORDERS table. The Virtual Private
Database policy you create uses these parameters to specify the OE.ORDERS
table.

– RETURN VARCHAR2: Returns the string that will be used for the WHERE predicate
clause.

– IS ... RETURN return_val: Encompasses the creation of the WHERE
SALES_REP_ID = 159 predicate.

You can design the WHERE clause to filter the user information based on the session
information of that user, such as the user ID. To do so, you create an application
context. Application contexts can be used to authenticate both database and
nondatabase users. An application context is a name-value pair. For example:

SELECT * FROM oe.orders
 WHERE sales_rep_id = SYS_CONTEXT('userenv','session_user');

In this example, the WHERE clause uses the SYS_CONTEXT PL/SQL function to retrieve
the user session ID (session_user) designated by the userenv context. See Oracle
Database Security Guide for detailed information about application contexts.

• A way to attach the policy the package. Use the DBMS_RLS.ADD_POLICY function to
attach the policy to the package. Before you can use the DBMS_RLS PL/SQL
package, you must be granted EXECUTE privileges on it. User SYS owns the DBMS_RLS
package.

The advantages of enforcing row-level security at the database level rather than at the
application program level are enormous. Because the security policy is implemented in
the database itself, where the data to be protected is, this data is less likely to be
vulnerable to attacks by different data access methods. This layer of security is
present and enforced no matter how users (or intruders) try to access the data it
protects. The maintenance overhead is low because you maintain the policy in one
place, the database, rather than having to maintain it in the applications that connect
to this database. The policies that you create provide a great deal of flexibility because
you can write them for specific DML operations.

Chapter 6
About Oracle Virtual Private Database

6-2

See Also:

• Oracle Database Security Guide for detailed information about Oracle
Virtual Private Database

6.2 Tutorial: Limiting Access to Data Based on the Querying
User

In this tutorial, you create two users whose individual data access will be based on
their roles.

• About Limiting Access to Data Based on the Querying User
To limit a user’s data access, you must create an Oracle Virtual Private Database
(VPD) policy to define the necessary restrictions.

• Step 1: Create User Accounts for This Tutorial
The first step is to create accounts for the employees who must access the
OE.ORDERS table.

• Step 2: If Necessary, Create the Security Administrator Account
The sec_admin security administrator account enables you to perform the tasks a
security administrator can perform.

• Step 3: Update the Security Administrator Account
The sec_admin account user must have privileges to use the DBMS_RLS packages.

• Step 4: Create the F_POLICY_ORDERS Policy Function
The f_policy_orders policy is a PL/SQL function that defines the policy used to
filter users who query the ORDERS table.

• Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy
Next, you can create the Virtual Private Database policy, accesscontrol_orders,
and then attach it to the ORDERS table.

• Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private Database Policy
At this stage, you can test the policy by logging on as each user and attempting to
select data from the ORDERS table.

• Step 7: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

6.2.1 About Limiting Access to Data Based on the Querying User
To limit a user’s data access, you must create an Oracle Virtual Private Database
(VPD) policy to define the necessary restrictions.

In this tutorial, you will use the ORDERS table in the Order Entry database, OE.

This table contains the following information:

Name Null? Type
---------------- -------- ---------------------------------
ORDER_ID NOTNULL NUMBER(12)
ORDER_DATE NOTNULL TIMESTAMP(6) WITH LOCAL TIME ZONE

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-3

ORDER_MODE VARCHAR2(8)
CUSTOMER_ID NOTNULL NUMBER(6)
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)
SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6)

The Virtual Private Database policy that you will create is associated with a PL/SQL
function. Because VPD policies are controlled by PL/SQL functions or procedures, you
can design the policy to restrict access in many different ways. For this tutorial, the
function you create will restrict access by the employees based on to whom they
report. The function will restrict the customer access based on the customer's ID.

You may want to store VPD policies in a database account separate from the
database administrator and from application accounts. In this tutorial, you will use the
sec_admin account, which was created in Tutorial: Creating a Secure Application Role,
to create the VPD policy. This provides better security by separating the VPD policy
from the applications tables.

To restrict access based on the sensitivity of row data, you can use Oracle Label
Security (OLS). OLS lets you categorize data into different levels of security, with each
level determining who can access the data in that row. This way, the data access
restriction is focused on the data itself, rather than on user privileges. See Enforcing
Row-Level Security with Oracle Label Security for more information.

6.2.2 Step 1: Create User Accounts for This Tutorial
The first step is to create accounts for the employees who must access the OE.ORDERS
table.

To create the employee user accounts:

1. In Enterprise Manager, access the Database home page for your target database
as user SYS with the SYSDBA administrative privilege.

See Oracle Database 2 Day DBA for more information.

2. From the Administration menu, select Security, then Users.

3. In the Users Page, click Create.

4. In the Create User page, enter the following information:

• Name: LDORAN (to create the user account Louise Doran)

• Profile: DEFAULT

• Authentication: Password

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Default Tablespace: USERS

• Temporary Tablespace: TEMP

• Status: Unlocked

5. Select the Object Privileges tab.

6. From the Select Object Type list, select Table, and then click Add.

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-4

7. In the Add Table Object Privileges page, in the Select Table Objects field, enter
the following text:

OE.ORDERS

Do not include spaces in this text.

8. In the Available Privileges list, select SELECT, and then click Move to move it to
the Selected Privileges list. Click OK.

The Create User page appears, with SELECT privileges for OE.ORDERS listed.

9. Click OK.

The Users page appears, with user ldoran is listed in the User Name column.

10. Select the selection button for user LDORAN, and from the Actions list, select
Create Like. Then, click Go.

11. In the Create User page, enter the following information:

• Name: LPOPP (to create the user account for Finance Manager Luis Popp.)

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

12. Click OK.

Both employee accounts have been created, and they have identical privileges. If you
check the privileges for user LPOPP, you will see that they are identical to those of user
LDORAN's. At this stage, if either of these users performs a SELECT statement on the
OE.ORDERS table, he or she will be able to see all of its data.

6.2.3 Step 2: If Necessary, Create the Security Administrator Account
The sec_admin security administrator account enables you to perform the tasks a
security administrator can perform.

In Tutorial: Creating a Secure Application Role, you created the sec_admin for that
tutorial. You can use that account for this tutorial.

If you have not yet created this account, then follow the steps in Step 2: Create a
Security Administrator Account to create sec_admin.

6.2.4 Step 3: Update the Security Administrator Account
The sec_admin account user must have privileges to use the DBMS_RLS packages.

User SYS owns this package, so you must log on as SYS to grant these package
privileges to sec_admin. The user sec_admin also must have SELECT privileges on the
CUSTOMERS table in the OE schema and the EMPLOYEES table in the HR schema.

To grant sec_admin privileges to use the DBMS_RLS package:

1. In Enterprise Manager, access the Database home page and ensure that you are
logged in as user SYS with the SYSDBA role selected.

See Oracle Database 2 Day DBA for more information.

2. From the Schema menu, then Users.

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-5

3. In the Users Page, select the SEC_ADMIN user, and in the View User page, click
Edit.

4. In the Edit User page, click Object Privileges.

5. From the Select Object Type list, select Package, and then click Add.

6. In the Add Package Object Privileges page, under Select Package Objects, enter
SYS.DBMS_RLS so that sec_admin will have access to the DBMS_RLS package.

7. Under Available Privileges, select EXECUTE, and then click Move to move it to
the Selected Privileges list.

8. Click OK.

9. In the Edit User page, from the Select Object Type list, select Table, and then
click Add.

10. In the Add Table Object Privileges page, in the Select Table Objects field, enter
HR.EMPLOYEES so that sec_admin will have access to the HR.EMPLOYEES table.

11. Under Available Privileges, select SELECT, and then click Move to move it to the
Selected Privileges list.

12. Click OK.

The Edit User page appears. It shows that user sec_admin has object privileges for
the HR.EMPLOYEES table and DBMS_RLS PL/SQL package. Ensure that you do not
select the grant option for either of these objects.

13. Click Apply.

All the changes you have made, in this case, the addition of the two object
privileges, are applied to the sec_admin user account.

6.2.5 Step 4: Create the F_POLICY_ORDERS Policy Function
The f_policy_orders policy is a PL/SQL function that defines the policy used to filter
users who query the ORDERS table.

To filter the users, the policy function uses the SYS_CONTEXT PL/SQL function to retrieve
session information about users who are logging in to the database.

To create the application context and its package:

1. Select Logout to log out of the database instance.

2. In the Confirmation dialog box, select Logout of (Database Instance) and then
select the Display login page after logout check box. Then click Logout.

3. Log in as user sec_admin using the NORMAL role.

4. From the Schema menu, select Programs, then Functions.

5. In the Database Login page, log in as user sec_admin with the NORMAL role
selected.

6. From the Schema menu, select Programs, and then Functions.

7. In the Functions page, ensure that the Object Type menu is set to Function, and
then click Create.

8. In the Create Function page, enter the following information:

• Name: F_POLICY_ORDERS

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-6

• Schema: SEC_ADMIN

• Source: Delete the empty function code that has been provided, and then
enter the following code (but not the line numbers on the left side of the code)
to create a function that checks whether the user who has logged on is a sales
representative.

The f_policy_orders function uses the SYS_CONTEXT PL/SQL function to get the
session information of the user. It then compares this information with the job
ID of that user in the HR.EMPLOYEES table, for which sec_admin has SELECT
privileges.

(schema in varchar2,
tab in varchar2)
return varchar2
as
 v_job_id varchar2(20);
 v_user varchar2(100);
 predicate varchar2(400);

begin
 v_job_id := null;
 v_user := null;
 predicate := '1=2';

v_user := lower(sys_context('userenv','session_user'));

 select lower(job_id) into v_job_id from hr.employees
 where lower(email) = v_user;

 if v_job_id='sa_rep' then
 predicate := '1=1';
 else
 null;
 end if;

 return predicate;

 exception
 when no_data_found then
 null;
end;

In this specification:

– (schema in varchar2, tab in varchar2): Defines parameters for the
schema (schema) and table (tab) that must be protected. Notice that the
function does not mention the OE.ORDERS table. The ACCESSCONTROL_ORDERS
policy that you create in Step 5: Create the
ACCESSCONTROL_ORDERS Virtual Private Database Policy uses these
parameters to specify the OE schema and ORDERS table. Ensure that you
create the schema parameter first, followed by the tab parameter.

– return varchar2: Returns the string that will be used for the WHERE predicate
clause. Always use VARCHAR2 as the data type for this return value.

– as ... predicate: Defines variables to store the job ID, user name of the
user who has logged on, and predicate values.

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-7

– begin ... return predicate: Encompasses the creation of the WHERE
predicate, starting the with the BEGIN clause for the v_job_id and v_user
settings.

– v_job_id varchar2(20) and v_user varchar2(100): Sets the v_job_id and
v_user variables to null, and the predicate variable to 1=2, that is, to a
false value. At this stage, no WHERE predicate can be generated until these
variables pass the tests starting with select lower(job_id) into v_job_id.

– v_user := lower(sys_context...: Uses the SYS_CONTEXT function to retrieve
the session information of the user and write it to the v_user variable.

– select lower(job_id) into v_job_id...end if: Checks if the user is a sales
representative by comparing the job ID with the user who has logged on. If
the job ID of the user who has logged on is sa_rep (sales representative),
then the predicate variable is set to 1=1. In other words, the user, by being
a sales representative, has passed the test.

– return predicate: Returns the WHERE predicate, which translates to WHERE
role_of_user_logging_on IS "sa_rep". Oracle Database appends this WHERE
predicate onto any SELECT statement that users LDORAN and LPOPP issue on
the OE.ORDERS table.

– exception ... null: Provide an EXCEPTION clause for cases where a user
without the correct privileges has logged on.

9. Click OK.

6.2.6 Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private
Database Policy

Next, you can create the Virtual Private Database policy, accesscontrol_orders, and
then attach it to the ORDERS table.

To increase performance, add the CONTEXT_SENSITIVE parameter to the policy, so that
Oracle Database only executes the f_policy_orders function when the content of the
application context changes, in this case, when a new user logs on. Oracle Database
only activates the policy when a user performs a SQL SELECT statement on the ORDERS
table. Hence, the user cannot run the INSERT, UPDATE, and DELETE statements, because
the policy does not allow him or her to do so.

To create the ACCESSCONTROL_ORDERS Virtual Private Database policy:

1. From the Security menu, select Virtual Private Database Policies.

2. In the Virtual Private Database Policies page, click Create.

3. In the Create Policy page, under General, enter the following:

• Policy Name: ACCESSCONTROL_ORDERS

• Object Name: OE.ORDERS

• Policy Type: Select CONTEXT_SENSITIVE.

This type reevaluates the policy function at statement run-time if it detects
context changes since the last use of the cursor. For session pooling, where
multiple clients share a database session, the middle tier must reset the
context during client switches. Note that Oracle Database does not cache the
value that the function returns for this policy type; it always runs the policy

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-8

function during statement parsing. The CONTEXT_SENSITIVE policy type applies to
only one object.

To enable the Policy Type, select the Enabled box.

4. Under Policy Function, enter the following:

• Policy Function: Enter the name of the function that generates a predicate for
the policy, in this case, SEC_ADMIN.F_POLICY_ORDERS.

• Long Predicate: Do not select this box.

Typically, you select this box to return a predicate with a length of up to 32K
bytes. By not selecting this box, Oracle Database limits the predicate to 4000
bytes.

5. Under Enforcement, select the SELECT option and deselect the remaining options
that already may be selected.

6. Do not select any options under Security Relevant Columns.

7. Click OK.

The Virtual Private Database Policies page appears, with the ACCESSCONTROL_ORDERS
policy listed in the list of policies.

8. Do not log out of Enterprise Manager.

6.2.7 Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private
Database Policy

At this stage, you can test the policy by logging on as each user and attempting to
select data from the ORDERS table.

To test the ACCESSCONTROL_ORDERS policy:

1. Start SQL*Plus.

From a command prompt, enter the following command to start SQL*Plus, and log
in as Sales Representative Louise Doran, whose user name is ldoran:

sqlplus ldoran
Enter password: password

SQL*Plus starts, connects to the default database, and then displays a prompt.

For detailed information about starting SQL*Plus, see Oracle Database 2 Day
DBA.

2. Enter the following SELECT statement:

SELECT COUNT(*) FROM OE.ORDERS;

The following results should appear for Louise. As you can see, Louise is able to
access all the orders in the OE.ORDERS table.

COUNT(*)

 105

3. Connect as Finance Manager Luis Popp.

CONNECT lpopp
Enter password: password

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-9

4. Enter the following SELECT statement:

SELECT COUNT(*) FROM OE.ORDERS;

The following result should appear, because Mr. Popp, who is not a sales
representative, does not have access to the data in the OE.ORDERS table. Because
Mr. Popp does not have access, Oracle Database only allows him access to 0
rows.

COUNT(*)

 0

5. Exit SQL*Plus:

EXIT

6.2.8 Step 7: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

• Removing the Data Structures Created by sec_admin
You can use Enterprise Manager to remove the data structures that user sec_admin
created.

• Removing the User Accounts
You can use Enterprise Manager to remove the user accounts.

• Revoking Privileges on DBMS_RLS from User sec_admin
You can use Enterprise Manager to revoke the EXECUTE privilege on the DBMS_RLS
package from user sec_admin.

6.2.8.1 Removing the Data Structures Created by sec_admin
You can use Enterprise Manager to remove the data structures that user sec_admin
created.

To remove the data structures created by sec_admin:

1. In Enterprise Manager, ensure that you are logged in as user sec_admin.

2. From the Security menu, select Virtual Private Database Policies.

3. In the Virtual Private Database Policies page, under Search, enter the following
information, and then click Go:

• Schema Name: OE

• Object Name: ORDERS

• Policy Name: %

The policy you created, ACCESSCONTROL_ORDERS, is listed.

4. Select ACCESSCONTROL_ORDERS, and then click Delete.

5. In the Confirmation page, click Yes.

6. From the Schema menu, select Programs, then Functions.

7. If the F_POLICY_ORDERS function is not listed, then use the Search field to search for
it.

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-10

8. Select the selection button for the F_POLICY_ORDERS function and then click Delete.

9. In the Confirmation window, click OK.

6.2.8.2 Removing the User Accounts
You can use Enterprise Manager to remove the user accounts.

To remove the user accounts:

1. From Enterprise Manager, select Logout to log out of the database instance.

2. Log in as user SYSTEM with the NORMAL role selected.

3. In the Database home page, from the Schema menu, select Users.

4. In the Users page, select each of the following users, and then click Delete to
remove them:

• LDORAN

• LPOPP

Do not remove sec_admin because you will need this account for later tutorials in
this guide.

6.2.8.3 Revoking Privileges on DBMS_RLS from User sec_admin
You can use Enterprise Manager to revoke the EXECUTE privilege on the DBMS_RLS
package from user sec_admin.

To revoke the EXECUTE privilege on the DBMS_RLS package from user
sec_admin:

1. From Enterprise Manager, select Logout to log out of the database instance.

2. Log in as the SYS administrative user with the SYSDBA role selected.

3. From the Schema menu, select Users.

4. In the Users page, select user SEC_ADMIN and then click Edit.

5. Select the Object Privileges tab.

6. From the list of object privileges, select the listing for the SELECT privilege for the
HR.EMPLOYEES table.

7. Click Delete.

8. From the list of object privileges, select the listing for the EXECUTE privilege for the
DBMS_RLS package.

9. Click Delete.

10. Click Apply.

11. Exit Enterprise Manager.

Chapter 6
Tutorial: Limiting Access to Data Based on the Querying User

6-11

7
Limiting Access to Sensitive Data
Using Oracle Data Redaction

Oracle Data Redaction limits access to sensitive data by redacting this data in real
time.

Topics:

• About Oracle Data Redaction
Oracle Data Redaction enables you to redact (mask) column data.

• Tutorial: Redacting Data for a Select Group of Users
In this tutorial, you create an Oracle Data Redaction policy that redacts data based
on the user who has logged in.

7.1 About Oracle Data Redaction
Oracle Data Redaction enables you to redact (mask) column data.

You can redact data using one of the following methods:

• Full redaction. You redact all the contents of the column data. The redacted value
returned to the querying user depends on the data type of the column. For
example, columns of the NUMBER data type are redacted with a zero (0) and
character data types are redacted with a blank space.

• Partial redaction. You redact a portion of the column data. For example, you can
redact most of a credit card number with asterisks (*), except for the last four
digits.

• Regular expressions. You can use regular expressions in both full and partial
redaction. This enables you to redact data based on a search pattern for the data.
For example, you can use regular expressions to redact specific phone numbers
or email addresses in your data.

• Redaction using NULL values. This feature enables you to use the
DBMS_REDACT.NULLIFY function hide all of the sensitive data in a table or view column
and replace it with null values. You can set this function by using the function_type
parameter of the DBMS_REDACT.ADD_POLICY or DBMS_REDACT.ALTER_POLICY procedure.

• Random redaction. The redacted data presented to the querying user appears as
randomly-generated values each time it is displayed.

• No redaction. This option enables you to test the internal operation of your
redaction policies, with no effect on the results of queries against tables with
policies defined on them. You can use this option to test the redaction policy
definitions before applying them to a production environment.

• Central management of named Data Redaction expressions. This feature
enables you to create a library of named policy expressions that can be used in
the columns of multiple tables and views. By having named policy expressions,
you can centrally manage all of the policy expressions within a database.

7-1

Data Redaction performs the redaction at run time, that is, the moment that the user
tries to view the data. This functionality is ideally suited for dynamic production
systems in which data constantly changes. While the data is being redacted, Oracle
Database can process all data normally and preserve the back-end referential integrity
constraints. Data redaction can help you to comply with industry regulations such as
Payment Card Industry Data Security Standard (PCI DSS) and the Sarbanes-Oxley
Act.

See Also:

Oracle Database Advanced Security Guide for detailed information about
Oracle Data Redaction

7.2 Tutorial: Redacting Data for a Select Group of Users
In this tutorial, you create an Oracle Data Redaction policy that redacts data based on
the user who has logged in.

• About Redacting Data for a Select Group of Users
The scenario for this tutorial is a sales office in which a sales manager must see
all data in a table.

• Step 1: Create User Accounts and Grant Them the Necessary Privileges
First, you must create and grant privileges to the necessary users and roles.

• Step 2: Create and Populate the SALES_OPPS Sales Opportunities Table
The sales_opps table contains information for small businesses that are sales
opportunities.

• Step 3: Create the SALES_OPPS_POL Oracle Data Redaction Policy
As user sec_admin, create the sales_opps_pol Oracle Data Redaction policy.

• Step 4: Test the SALES_OPPS_POL Oracle Data Redaction Policy
Next, you are ready to test the policy.

• Step 5: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

7.2.1 About Redacting Data for a Select Group of Users
The scenario for this tutorial is a sales office in which a sales manager must see all
data in a table.

The sales manager, user ezlotkey, must have access to sales_opps table, which
describes various sales opportunities. However, the sale representatives under this
sales manager, users ahutton and eabel, must have limited access to the sales_opps
table columns that describe account names and closing dates.

To solve this problem, you will create an Oracle Data Redaction policy that
accomplishes these needs by performing the following actions:

• The policy redacts data in two columns, each using a different redaction style.

• The effect of the policy is the display of the query result with either the actual data
or the redacted data based on the enabled roles of the querying user.

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-2

For this tutorial, you will interact directly with the database by using database user
accounts. This is for simplicity. The intended use scenarios for Oracle Data Redaction
are twofold: redact database applications and redact direct database access. Oracle
Data Redaction on its own is a good solution for redacting sensitive data from
packaged and custom applications. After completing the tutorial, you will have the
knowledge necessary to apply what you have learned (using the database user
accounts) for scenarios that involve actual application users. When direct database
access is the target scenario, you should couple Oracle Data Redaction with
preventive and detective controls that provide security for privileged database users
(for example, Oracle Database Vault, Oracle Label Security, Oracle Audit Vault, and
Oracle Database Firewall).

7.2.2 Step 1: Create User Accounts and Grant Them the Necessary
Privileges

First, you must create and grant privileges to the necessary users and roles.

The user sec_admin must have the EXECUTE privilege on the DBMS_REDACT PL/SQL
package, which is required to create Oracle Data Redaction policies.

To create user accounts for this tutorial:

1. In Enterprise Manager, access the Database home page for your target database
as user SYS with the SYSDBA administrative privilege.

See Oracle Database 2 Day DBA for more information.

2. From the Security menu, select Roles.

3. In the Roles page, select Create.

4. In the Create Role page Name field, enter SUPERVISOR and then click OK.

5. From the Schema menu, select Users.

6. In the Users Page, click Create.

7. In the Create User page, enter the following information:

• Name: EZLOTKEY (to create the user account for Eleni Zlotkey)

• Profile: DEFAULT

• Authentication: Password

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Default Tablespace: USERS

• Temporary Tablespace: TEMP

• Status: Unlocked

8. Select the System Privileges tab.

9. Select the Edit List button.

10. In the Modify System Privileges list, select the following privileges and then
move them to the Selected System Privileges list.

• CREATE SESSION

• CREATE TABLE

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-3

• UNLIMITED TABLESPACE

11. Click OK.

12. In the Create User page, select the Roles tab, and then select the Edit List
button.

13. In the Modify Roles page, double-click the SUPERVISOR role in the Available
Roles list to move it to the Selected Roles list.

14. Click OK, and then click OK again to return to the Users page.

15. Select the Create button.

16. In the Create User page, enter the following information:

• Name: EABEL (to create the user account for Ellen Abel)

• Profile: DEFAULT

• Authentication: Password

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Default Tablespace: USERS

• Temporary Tablespace: TEMP

• Status: Unlocked

17. Select the System Privileges tab.

18. Select the Edit List button.

19. In the Modify System Privileges list, double-click the CREATE SESSION system
privilege to move it to Selected System Privileges list.

20. Click OK.

21. In the Users page, select the EABEL user.

22. From the Actions list, select the Create Like button and then click Go.

23. In the Create User page, enter the following information:

• Name: Enter AHUTTON (for user Alyssa Hutton).

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

Note that user ezlotkey has been granted a role, supervisor, but the users eabel
and ahutton are not granted any roles.

24. Click OK.

25. In the Users page, select the SEC_ADMIN user and then click the Edit button.

If user SEC_ADMIN does not exist, then you can quickly create this user in SQL*Plus
by entering the following statement:

GRANT CREATE PROCEDURE, CREATE ROLE, CREATE SESSION, INHERIT ANY PRIVILEGES,
SELECT ANY DICTIONARY TO sec_admin IDENTIFIED BY password;

See also Step 2: Create a Security Administrator Account to create this account.

26. Select the Object Privileges tab.

27. In the Object Privileges tab, from the Select Object Type list, select Package,
and then click Add.

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-4

28. In the Select Package Objects field, enter SYS.DBMS_REDACT, and then in the
Available Privileges list, move the EXECUTE privilege to the Selected Privileges
list.

29. Click OK, and then click Apply.

7.2.3 Step 2: Create and Populate the SALES_OPPS Sales
Opportunities Table

The sales_opps table contains information for small businesses that are sales
opportunities.

This table contains two columns that you must later on and on which you must create
an Oracle Data Redaction policy.

To create and populate the sales_opps sales opportunities table:

1. Log into the database instance as user ezlotkey.

sqlplus ezlotkey
Enter password: password

2. Create the sales_opps table.

CREATE TABLE sales_opps (
 account varchar2(30),
 region varchar2(20),
 product varchar2(20),
 sales_rep varchar2(15),
 close_date date,
 price number,
 quantity number);

3. Populate the sales_opps table with some data.

INSERT INTO sales_opps VALUES ('Rising Dough Bakery', 'north-east', 'AA1
AccountPro', 'ahutton', '07-JUL-12', 400.00, 4);
INSERT INTO sales_opps VALUES ('Shear Madness Hair Salon', 'south-west', 'AA1
AccountPro', 'eabel', '20-APR-12', 400.00, 1);
INSERT INTO sales_opps VALUES ('Doublecheck Accounting', 'north-east', 'AA1
AccountPro', 'ahutton', '14-MAR-12', 400.00, 12);
INSERT INTO sales_opps VALUES ('State of Art Framing', 'south-west', 'AA1
TaxPro', 'eabel', '21-MAY-12', 300.00, 2);
INSERT INTO sales_opps VALUES ('Shady Trees Arborists', 'north-east', 'AA1
AccountPro', 'ahutton', '17-JUN-12', 400.00, 16);

4. Query the account and close_date columns of the sales_opps table, to see the data
that must be redacted.

SELECT account, close_date, product, quantity FROM sales_opps;

ACCOUNT CLOSE_DAT PRODUCT QUANTITY
------------------------------ --------- -------------------- ----------
Rising Dough Bakery 07-JUL-12 AA1 AccountPro 4
Shear Madness Hair Salon 20-APR-12 AA1 AccountPro 1
Doublecheck Accounting 14-MAR-12 AA1 AccountPro 12
State of Art Framing 21-MAY-12 AA1 TaxPro 2
Shady Trees Arborists 17-JUN-12 AA1 AccountPro 16

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-5

7.2.4 Step 3: Create the SALES_OPPS_POL Oracle Data Redaction
Policy

As user sec_admin, create the sales_opps_pol Oracle Data Redaction policy.

To create the sales_opps_pol Data Redaction policy:

1. In Enterprise Manager, log out, and then log back in again as user sec_admin.

See Oracle Database 2 Day DBA for more information.

2. From the Security menu, select Oracle Data Redaction.

3. In the Data Redaction page, select the Policies tab.

4. Select the Create button.

5. In the Create Data Redaction Policy page, enter the following information to
design the basics of the policy:

• Schema: Enter EZLOTKEY (in capital letters).

• Table/View: Enter SALES_OPPS (in capital letters).

• Policy Name: Enter SALES_OPPS_POL.

• Policy Expression: Enter the following expression:

SYS_CONTEXT('SYS_SESSION_ROLES', 'SUPERVISOR') = 'FALSE'

The expression translates to "Redact the data in the account column for any
user who does not have the supervisor role enabled." In other words, only the
supervisor, ezlotkey, will be able to see the data in the account column.

6. Still in the Data Redaction page, apply the sales_opps_policy policy to a column,
as follows:

a. Select the Add button.

b. In the Add window, from the Column list, select ACCOUNT.

The Column Datatype field displays the data type of ACCOUNT, which is
VARCHAR2.

c. From the Redaction Template list, select Custom (which should be the
default selection.)

d. From the Redaction Function list, select FULL.

FULL means all the characters in the account column will be redacted.
Because the data type of the account column is VARCHAR2, the data will appear
as a blank space.

e. Click OK.

7. Apply the sales_opps_pol policy to a second column, as follows:

a. Select the Add button.

b. In the Add window, from the Column list, select CLOSE_DATE.

The Column Datatype field determines that the data type for CLOSE_DATE is
DATE.

c. From the Redaction Function list, select PARTIAL.

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-6

In a moment, the Add window expands to show the Function Attributes area.

d. In the Date Redaction Format field, enter the following attribute:

m06d7YHMS

This setting redacts the month and day of each date, setting them to appear
as 07-JUNE-12.

e. Click OK.

The Create Data Redaction Policy page should appear as follows:

8. In the Create Data Redaction Policy page, click OK.

The policy appears in the Data Redaction Policies list.

Do not exit Enterprise Manager.

7.2.5 Step 4: Test the SALES_OPPS_POL Oracle Data Redaction
Policy

Next, you are ready to test the policy.

To test the sales_opps_pol Oracle Data Redaction policy, log in as the users you
created earlier and query the redacted columns in the sales_opps table.

To test the sales_opps_pol policy:

1. Connect to SQL*Plus as user ezlotkey.

connect ezlotkey
Enter password: password

2. Grant the sales representatives the SELECT privilege for the sales_opps table.

GRANT SELECT ON sales_opps TO eabel;
GRANT SELECT ON sales_opps TO ahutton;

3. Connect as user eabel.

connect eabel
Enter password: password

4. Query the sales_opps tables as follows:

SELECT account, close_date, product, quantity FROM ezlotkey.sales_opps;

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-7

Output similar to the following should appear:

ACCOUNT CLOSE_DAT PRODUCT QUANTITY
------------------------------ --------- -------------------- ----------
 07-JUN-12 AA1 AccountPro 4
 07-JUN-12 AA1 AccountPro 1
 07-JUN-12 AA1 AccountPro 12
 07-JUN-12 AA1 TaxPro 2
 07-JUN-12 AA1 AccountPro 16

No data appears in the account column because it has been redacted to display a
blank space for each row. The close_date column shows dates, but they are all
partial date values. The product and quantity columns show their data, as
expected, because the Data Redaction policy does not apply to them.

5. Connect as user ahutton and perform the same query.

connect ahutton
Enter password: password

SELECT account, close_date, product, quantity FROM ezlotkey.sales_opps;

ACCOUNT CLOSE_DAT PRODUCT QUANTITY
------------------------------ --------- -------------------- ----------
 07-JUN-12 AA1 AccountPro 4
 07-JUN-12 AA1 AccountPro 1
 07-JUN-12 AA1 AccountPro 12
 07-JUN-12 AA1 TaxPro 2
 07-JUN-12 AA1 AccountPro 16

The data is redacted for user ahutton as well.

6. Connect as user ezlotkey and perform the same query.

connect ezlotkey
Enter password: password

SELECT account, close_date, product, quantity FROM sales_opps;

ACCOUNT CLOSE_DAT PRODUCT QUANTITY
------------------------------ --------- -------------------- ----------
Rising Dough Bakery 07-JUL-12 AA1 AccountPro 4
Shear Madness Hair Salon 20-APR-12 AA1 AccountPro 1
Doublecheck Accounting 14-MAR-12 AA1 AccountPro 12
State of Art Framing 21-MAY-12 AA1 TaxPro 2
Shady Trees Arborists 17-JUN-12 AA1 AccountPro 16

The sales_opps_pol Data Redaction policy shows the actual data for user ezlotkey
because she has the supervisor role enabled. However, if this role is disabled for
ezlotkey, then when she queries this table, the account and close_date columns
will be redacted, even though she created and owns the sales_opps table.

7. Log out of SQL*Plus.

EXIT

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-8

7.2.6 Step 5: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

To remove the components for this tutorial:

1. In Enterprise Manager, ensure that you are logged in as user sec_admin.

2. In the Data Redaction Policies page, select the SALES_OPPS_POL policy.

3. Click the Delete button.

4. In the Confirmation page, click Yes.

5. Log out of Enterprise Manager and then log back in again as user SYS with the
SYSDBA administrative privilege

6. From the Database home page, select Schema, then Users.

7. Select user AHUTTON, click Delete, and then in the Confirmation window, select
Yes.

8. Select user EABEL, click Delete, and then in the Confirmation window, select
Yes.

9. Select user EZLOTKEY, click Delete, and then in the Confirmation window, select
Yes.

10. From the Security menu, select Roles.

11. Select the role SUPERVISOR, click Delete, and in the Confirmation window, select
Yes.

12. In the Users page, select the SEC_ADMIN user and then click Edit.

13. In the Edit User: SEC_ADMIN page, select the Object Privileges tab.

14. Select the EXECUTE privilege for the DBMS_REDACT package, and then click
Delete.

15. Click the Apply button.

16. Exit Enterprise Manager by clicking the Log Out button.

Chapter 7
Tutorial: Redacting Data for a Select Group of Users

7-9

8
Enforcing Row-Level Security with
Oracle Label Security

Oracle Label Security enables you to enforce row-level security.

Topics:

• About Oracle Label Security
Oracle Label Security (OLS) provides row-level security for your database tables.

• Virtual Private Database, Oracle Label Security, and Data Redaction Differences
Oracle Virtual Private Database, Oracle Label Security, and Oracle Data
Redaction restrict the data that different users can see in database tables.

• Guidelines for Planning an Oracle Label Security Policy
Before you create an Oracle Label Security policy, determine how to apply the
labels to the application schema.

• Tutorial: Creating Levels of Access to Table Data Based on the User
You can create different levels of Oracle Label Security access to table data based
on who the user is.

8.1 About Oracle Label Security
Oracle Label Security (OLS) provides row-level security for your database tables.

You can accomplish this by assigning one or more security labels that define the level
of security you want for the data rows of the table.

This feature secures your database tables at the row level, and assigns these rows
different levels of security based on security labels. You then create a security
authorization for users based on the OLS labels.

For example, rows that contain highly sensitive data can be assigned a label entitled
HIGHLY SENSITIVE; rows that are less sensitive can be labeled as SENSITIVE, and so on.
Rows that all users can have access to can be labeled PUBLIC. You can create as
many labels as you need, to fit your site's security requirements. In a multitenant
environment, the labels apply to the local pluggable database (PDB) and the session
labels apply to local users.

After you create and assign the labels, you can use Oracle Label Security to assign
specific users authorization for specific rows, based on these labels. Afterward, Oracle
Label Security automatically compares the label of the data row with the security
clearance of the user to determine whether the user is allowed access to the data in
the row.

An Oracle Label Security policy has the following components:

• Labels. Labels for data and users, along with authorizations for users and
program units, govern access to specified protected objects. Labels are composed
of the following:

8-1

– Levels. Levels indicate the type of sensitivity that you want to assign to the
row, for example, SENSITIVE or HIGHLY SENSITIVE.

– Compartments. (Optional) Data can have the same level (Public, Confidential
and Secret), but can belong to different projects inside a company, for
example ACME Merger and IT Security. Compartments represent the projects
in this example, that help define more precise access controls. They are most
often used in government environments.

– Groups. (Optional) Groups identify organizations owning or accessing the
data, for example, UK, US, Asia, Europe. Groups are used both in commercial
and government environments, and frequently used in place of compartments
due to their flexibility.

• Policy. A policy is a name associated with these labels, rules, and authorizations.

You can create Oracle Label Security labels and policies in Enterprise Manager, or
you can create them using the SA_SYSDBA, SA_COMPONENTS, and SA_LABEL_ADMIN PL/SQL
packages. This guide explains how to create Oracle Label Security labels and policies
by using Enterprise Manager.

For example, assume that a user has the SELECT privilege on an application table. As
illustrated in the following figure, when the user runs a SELECT statement, Oracle Label
Security evaluates each row selected to determine whether the user can access it.
The decision is based on the privileges and access labels assigned to the user by the
security administrator. You can also configure Oracle Label Security to perform
security checks on UPDATE, DELETE, and INSERT statements.

GRADE 600

600

400

RATE

Manager

Senior

Director

600

450

UNCLASSIFIED

UNCLASSIFIED

SENSITIVE

SENSITIVE

Principal

Senior

ROW LABEL

750 HIGHLY_SENSITIVEUser session label
is UNCLASSIFIED

See Also:

Oracle Label Security Administrator’s Guide for detailed information about
Oracle Label Security

8.2 Virtual Private Database, Oracle Label Security, and
Data Redaction Differences

Oracle Virtual Private Database, Oracle Label Security, and Oracle Data Redaction
restrict the data that different users can see in database tables.

But which of the features should you use? Virtual Private Database is effective when
there is existing data you can use to determine the access requirements. For example,
you can configure a sales representative to see only the rows and columns in a
customer order entry table for orders he or she handles. Oracle Label Security is
useful if you have no natural data (such as user accounts or employee IDs) that can

Chapter 8
Virtual Private Database, Oracle Label Security, and Data Redaction Differences

8-2

be used to indicate a table's access requirements. To determine this type of user
access, you assign different levels of sensitivity to the table rows. Oracle Data
Redaction enables you to select from three differing (redaction) styles, and it applies
the redaction when the user accesses the data, not directly in the database table.

In some cases, Oracle Virtual Private Database and Oracle Label Security can
complement each other. The following Oracle Technology Network hands-on tutorial
demonstrates how a Virtual Private Database policy can compare an Oracle Label
Security user clearance with a minimum clearance. When the user clearance
dominates the threshold, the salary column is not hidden.

http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html

Table 8-1 compares the features of Oracle Virtual Private Database, Oracle Label
Security, and Oracle Data Redaction.

Table 8-1 Comparing Virtual Private Database, Label Security, and Data
Redaction

Feature VPD OLS Data Redaction

Provides full masking, partial masking, and random
masking

No No Yes

Redacts data in real-time, as the user is accessing it No No Yes

Provides row-level security Yes Yes No

Provides column-level security (column masking) Yes No Yes

Binds a user-defined PL/SQL package to a table, view, or
synonym

Yes No1 No

Modifies SQL by dynamically adding a WHERE clause
returned from the PL/SQL procedures

Yes No No

Restricts database operations by privileged users2 No No No

Controls access to a set of rows based on the sensitivity
label of the row and the security level of the user

No Yes No

Adds a column (optionally hidden) designed to store
sensitivity labels for rows in the protected table3

No Yes No

Provides a user account to manage its administration No4 Yes5 No

Provides pre-defined PL/SQL packages for row-level
security

No Yes No

Is provided in the default installation of Oracle Database Yes Yes Yes

Is provided as an additional option to Oracle Database
and must be licensed

No No Yes

1 Oracle Label Security uses predefined PL/SQL packages, not user-created packages, to attach security
policies to tables.

2 If you want to restrict privileged user access, consider using Oracle Database Vault.
3 Usually, this column is hidden to achieve transparency and not break applications that are not designed

to show an additional column.
4 Oracle Virtual Private Database does not provide a user account, but you can create a user account that

is solely responsible for managing Virtual Private Database policies.
5 The LBACSYS account manages Oracle Label Security policies. This provides an additional layer of

security in that one specific user account is responsible for these policies, which reduces the risk of
another user tampering with the policies.

Chapter 8
Virtual Private Database, Oracle Label Security, and Data Redaction Differences

8-3

http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html

See Also:

• Controlling Access with Oracle Database Vault

• Restricting Access with Oracle Virtual Private Database

• Limiting Access to Sensitive Data Using Oracle Data Redaction

8.3 Guidelines for Planning an Oracle Label Security Policy
Before you create an Oracle Label Security policy, determine how to apply the labels
to the application schema.

To determine where and how to apply Oracle Label Security policies for
application data, follow these guidelines:

1. Analyze the application schema. Identify the tables that require an Oracle Label
Security policy. In most cases, only a small number of the application tables will
require an Oracle Label Security policy. For example, tables that store lookup
values or constants usually do not need to be protected with a security policy.
However, tables that contain sensitive data, such as patient medical histories or
employee salaries, do.

2. Analyze the use of data levels. After you identify the candidate tables, evaluate
the data in the tables to determine the level of security for the table. Someone who
has broad familiarity with business operations can provide valuable assistance
with this stage of the analysis.

Data levels refer to the sensitivity of the data. PUBLIC, SENSITIVE, and HIGHLY
SENSITIVE are examples of data levels. You should also consider future
sensitivities. Doing so creates a robust set of label definitions.

Remember that if a data record is assigned a sensitivity label whose level
component is lower than the clearance of the user, then a user attempting to read
the record is granted access to that row.

3. Analyze the use of data compartments. Data compartments are used primarily
in government environments. If your application is a commercial application, in
most cases, you will not create data compartments.

4. Analyze the data groups. Data groups and data compartments are typically used
to control access to data by organization, region, or data ownership. For example,
if the application is a sales application, access to the sales data can be controlled
by country or region.

When a data record is assigned a sensitivity label with compartments and groups,
a user attempting to read the record must have a user clearance that contains a
level that is equal to or greater than the level of the data label, all of its
compartments, and at least one of the groups in the sensitivity label. Because
groups are hierarchical, a user could have the parent of one of the groups in the
sensitivity label assigned to the data label and still be able to access that record.

5. Analyze the user population. Separate the users into one or more designated
user types. For example, a user might be designated as a typical user, privileged
user, or administrative user. After you create these categories of users, compare
the categories with the data levels you created in Step 2. They must correspond

Chapter 8
Guidelines for Planning an Oracle Label Security Policy

8-4

correctly for each table identified during the schema analysis you performed in
Step 1. Then, compare the organizational structure of the user population with the
data groups that you identified in Step 4.

6. Examine the highly privileged and administrative users to determine which
Oracle Label Security authorizations should be assigned to the user. Oracle
Label Security has several special authorizations that can be assigned to users. In
general, typical users do not require any special authorizations. See Oracle Label
Security Administrator’s Guide for a complete list of these authorizations.

7. Review and document the data you gathered. This step is crucial for continuity
across the enterprise, and the resulting document should become part of the
enterprise security policy. For example, this document should contain a list of
protected application tables and corresponding justifications.

8.4 Tutorial: Creating Levels of Access to Table Data Based
on the User

You can create different levels of Oracle Label Security access to table data based on
who the user is.

• About Creating Levels of Access to Table Data Based on the User
This tutorial demonstrates the general concepts of using Oracle Label Security.

• Step 1: Enable Oracle Label Security
In a default Oracle Database installation, Oracle Label Security is installed but you
must manually enable it.

• Step 2: Enable the LBACSYS Account
After you have enabled Oracle Label Security, you must enable the default Oracle
Label Security account, which is called LBACSYS.

• Step 3: Create a Role and Three Users for the Oracle Label Security Tutorial
You are ready to create a role and three users, and then grant these users the
role.

• Step 4: Create the ACCESS_LOCATIONS Oracle Label Security Policy
After you create the user accounts, you are ready to create the ACCESS_LOCATIONS
policy.

• Step 5: Define the ACCESS_LOCATIONS Policy-Level Components
Next, you are ready to create label components for the policy.

• Step 6: Create the ACCESS_LOCATIONS Policy Data Labels
In this step, you create data labels for the ACCESS_LOCATION policy.

• Step 7: Create the ACCESS_LOCATIONS Policy User Authorizations
Next, you are ready to create user authorizations for the policy.

• Step 8: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS Table
Next, you are ready to apply the policy to the HR.LOCATIONS table.

• Step 9: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS Data
You must apply the labels of the policy to the OLS_COLUMN in LOCATIONS of the
HR.LOCATIONS table.

• Step 10: Test the ACCESS_LOCATIONS Policy
You can test the ACCESS_LOCATIONS policy by having the three users and perform a
SELECT on the HR.LOCATIONS table.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-5

• Step 11: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

8.4.1 About Creating Levels of Access to Table Data Based on the
User

This tutorial demonstrates the general concepts of using Oracle Label Security.

In this tutorial, you will apply security labels to the HR.LOCATIONS table. Three users,
sking, kpartner, and ldoran will have access to specific rows within this table, based on
the cities listed in the LOCATIONS table.

With Oracle Label Security, you restrict user access to data by focusing on row data,
and designing different levels of access based on the sensitivity of your data. If you
must restrict user access by focusing on user privileges, or some other method such
as the job title that the user in your organization has, you can create a PL/SQL
function or procedure to use with a Virtual Private Database policy. See Restricting
Access with Oracle Virtual Private Database, for more information.

The schema for HR.LOCATIONS is as follows:

Name Null? Type
--- -------- -------------
LOCATION_ID NOT NULL NUMBER(4)
STREET_ADDRESS VARCHAR2(40)
POSTAL_CODE VARCHAR2(12)
CITY NOT NULL VARCHAR2(30)
STATE_PROVINCE VARCHAR2(25)
COUNTRY_ID CHAR(2)

You will apply the following labels:

Label Privileges

CONFIDENTIAL Read access to the cities Munich, Oxford, and Roma

SENSITIVE Read access to the cities Beijing, Tokyo, and Singapore

PUBLIC Read access to all other cities listed in HR.LOCATIONS

8.4.2 Step 1: Enable Oracle Label Security
In a default Oracle Database installation, Oracle Label Security is installed but you
must manually enable it.

To enable Oracle Label Security:

1. Log into the database instance as user SYS with the SYSDBA administrative privilege.

For example:

sqlplus sys as sysdba
Enter password: password

2. Check if Oracle Label Security has been registered with the database.

SELECT STATUS FROM DBA_OLS_STATUS WHERE NAME = 'OLS_CONFIGURE_STATUS';

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-6

If it returns TRUE, then Oracle Label Security has been registered with the
database. If the output is FALSE, then run the following procedure:

EXEC LBACSYS.CONFIGURE_OLS;

3. Check if Oracle Label Security is enabled. The PARAMETER column is case sensitive,
so use the case shown here.

SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Oracle Label Security';

If it returns TRUE, then Oracle Label Security is enabled. Go to Step 2: Enable the
LBACSYS Account. If it returns FALSE, then run the following procedure to enable
it:

EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS;

4. If you needed to register and enable Oracle Label Security, then connect as user
SYS with the SYSOPER privilege.

CONNECT sys as sysoper
Enter password: password

5. Restart the database.

SHUTDOWN IMMEDIATE
STARTUP

8.4.3 Step 2: Enable the LBACSYS Account
After you have enabled Oracle Label Security, you must enable the default Oracle
Label Security account, which is called LBACSYS.

To enable the Oracle Label Security LBACSYS user account:

1. Access the Database home page for your target database as user SYS with the
SYSDBA administrative privilege.

See Oracle Database 2 Day DBA for more information.

2. From the Schema menu, select Users.

3. Select the LBACSYS account and click Edit.

If the account is active (the status will say OPEN), then go to Step 3: Create a Role
and Three Users for the Oracle Label Security Tutorial.

4. In the Edit User: LBACSYS page, enter the following settings:

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Status: Set the status to Unlocked.

5. Click Apply.

6. Select the System Privileges tab.

7. In the System Privileges page, select the Edit List button.

8. In the Modify System Privileges page, select SELECT ANY DICTIONARY from
the Available System Privileges list, and then move it to the Selected System
Privileges list. Click OK.

9. In the Edit User page, click Apply.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-7

8.4.4 Step 3: Create a Role and Three Users for the Oracle Label
Security Tutorial

You are ready to create a role and three users, and then grant these users the role.

• Creating a Role
The emp_role role provides the necessary privileges for the three users you will
create.

• Creating the Oracle Label Security Users
The three users that you must create will have different levels of access to the
HR.LOCATIONS table, depending on their position.

8.4.4.1 Creating a Role
The emp_role role provides the necessary privileges for the three users you will create.

To create the role emp_role:

1. Access the Database home page.

See Oracle Database 2 Day DBA for more information. Log in as user SYSTEM with
the NORMAL privilege.

2. From the Security menu, select Roles.

3. In the Roles page, click Create.

4. In the Create Role page, in the Name field, enter EMP_ROLE and leave
Authentication set to None.

5. Select the Object Privileges subpage.

6. From the Select Object Type list, select Table, and then click Add.

The Add Table Object Privileges page appears.

7. Under Select Table Objects, enter HR.LOCATIONS to select the LOCATIONS table in the
HR schema, and then under Available Privileges, move SELECT to the Selected
Privileges list.

8. Click OK to return to the Create Role page, and then click OK to return to the
Roles page.

8.4.4.2 Creating the Oracle Label Security Users
The three users that you must create will have different levels of access to the
HR.LOCATIONS table, depending on their position.

Steven King (sking) is the advertising president, so he has full read access to the
HR.LOCATIONS table. Karen Partners (kpartner) is a sales manager who has less access,
and Louise Doran (ldoran) is a sales representative who has the least access.

To create the users:

1. From the Schema menu, select Users.

The Users page appears.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-8

2. Click Create.

3. In the Create User page, enter the following information:

• Name: SKING

• Profile: DEFAULT

• Authentication: Password

• Enter Password and Confirm Password: Enter a password that meets the
requirements in Requirements for Creating Passwords.

• Default Tablespace: USERS

• Temporary Tablespace: TEMP

• Status: Set to Unlocked.

• Roles: Select the Roles subpage, and then grant the emp_role role to sking by
selecting Edit List. From the Available Roles list, select emp_role, and then
click Move to move it to the Selected Roles list. Click OK. In the Create User
page, ensure that the Default box is selected for both the CONNECT and
emp_role roles.

• System Privileges: Select the System Privileges subpage and then click
Edit List to grant the CREATE SESSION privilege. Do not grant sking the ADMIN
OPTION option.

4. Click OK to return to the Create User page, and then from there, click OK to return
to the Users page.

5. In the Users page, select SKING, set Actions to Create Like, and then click Go.

6. In the Create User page, create accounts for kpartner and ldoran.

Create their names and passwords. (See Requirements for Creating Passwords.)
You do not need to grant roles or system privileges to them. Their roles and
system privileges, defined in the sking account, are automatically created.

At this stage, you have created three users who have identical privileges. All of these
users have the SELECT privilege on the HR.LOCATIONS table, through the EMP_ROLE role.

8.4.5 Step 4: Create the ACCESS_LOCATIONS Oracle Label Security
Policy

After you create the user accounts, you are ready to create the ACCESS_LOCATIONS
policy.

To create the ACCESS_LOCATIONS policy:

1. Log in to the Enterprise Manager target database as user as user LBACSYS with the
NORMAL role selected.

2. From the Security menu, select Label Security.

3. In the Label Security Policies page, click Create.

4. In the Create Label Security Policy page, enter the following information:

• Name: ACCESS_LOCATIONS

• Label Column: OLS_COLUMN

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-9

Later on, when you apply the policy to a table, the label column is added to
that table. By default, the data type of the policy label column is NUMBER(10).

• Hide Label Column: Deselect this box so that the label column will not be
hidden. (It should be deselected by default.)

Usually, the label column is hidden, but during the development phase, you
may want to have it visible so that you can check it. After the policy is created
and working, hide this column so that it is transparent to applications. Many
applications are designed not to show an another column, so hiding the
column prevents the application from breaking.

• Enabled: Select this box to enable the policy. (It should be enabled by
default.)

• Inverse user's read and write groups (INVERSE_GROUP): Do not select
this option.

• Default Policy Enforcement Options: Select Apply Policy Enforcement,
and then select the following options:

For all queries (READ_CONTROL)

To use session's default label for label column update
(LABEL_DEFAULT)

5. Click OK.

The ACCESS_LOCATIONS policy appears in the Label Security Policies page.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-10

8.4.6 Step 5: Define the ACCESS_LOCATIONS Policy-Level
Components

Next, you are ready to create label components for the policy.

At a minimum, you must create one or more levels, such as PUBLIC or SENSITIVE; and
define a long name, a short name, and a number indicating the sensitivity level.
Compartments and groups are optional.

The level numbers indicate the level of sensitivity needed for their corresponding
labels. Select a numeric range that can be expanded later on, in case your security
policy needs more levels. For example, to create the additional levels LOW_SENSITIVITY
and HIGH_SENSITIVITY, you can assign them numbers 7300 (for LOW_SENSITIVITY) and
7600 (for HIGH_SENSITIVITY), so that they fit in the scale of security your policy creates.
Generally, the higher the number, the more sensitive the data.

Compartments identify areas that describe the sensitivity of the labeled data, providing
a finer level of granularity within a level. Compartments are optional.

Groups identify organizations owning or accessing the data. Groups are useful for the
controlled dissemination of data and for timely reaction to organizational change.
Groups are optional.

In this step, you define the level components, which reflect the names and
relationships of the SENSITIVE, CONFIDENTIAL, and PUBLIC labels that you must create for
the ACCESS_LOCATIONS policy.

To define the label components for the ACCESS_LOCATIONS policy:

1. In the Label Security policies page, select the ACCESS_LOCATIONS policy, and
then select Edit.

2. In the Edit Label Security Policy page, select the Label Components subpage.

3. Under Levels, click Add 5 Rows, and then enter a long name, short name, and a
numeric tag as follows. (To move from one field to the next, press the Tab key.)

Table 8-2 Values for Oracle Label Security Levels

Long Name Short Name Numeric Tag

SENSITIVE SENS 3000

CONFIDENTIAL CONF 2000

PUBLIC PUB 1000

4. Click Apply.

8.4.7 Step 6: Create the ACCESS_LOCATIONS Policy Data Labels
In this step, you create data labels for the ACCESS_LOCATION policy.

To create the data label, you must assign a numeric tag to each level. Later on, the tag
number will be stored in the security column when you apply the policy to a table. It
has nothing to do with the sensitivity of the label; it is only used to identify the labels for
the policy.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-11

To create the data labels:

1. Return to the Label Security policies page by selecting the Label Security
Policies link.

2. Select the selection button for the ACCESS_LOCATIONS policy.

3. In the Actions list, select Data Labels, and then click Go.

4. In the Data Labels page, click Add.

5. In the Create Data Label page, enter the following information:

• Numeric Tag: Enter 1000.

• Level: Enter PUB.

6. Click OK.

The data label appears in the Data Labels page.

7. Click Add again, and then create a data label for the CONF label as follows:

• Numeric Tag: Enter 2000.

• Level: Select CONF from the list.

8. Click OK.

9. Click Add again, and then create a data label for the SENS label as follows:

• Numeric Tag: Enter 3000.

• Level: Select SENS from the list.

10. Click OK.

The CONF, PUB, and SENS labels appear in the Data Labels page.

Later, the tag number will be stored in the security column when you apply the
policy to the HR.LOCATIONS table. It has nothing to do with the sensitivity of the label;
it is only used to identify the labels for the policy.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-12

8.4.8 Step 7: Create the ACCESS_LOCATIONS Policy User
Authorizations

Next, you are ready to create user authorizations for the policy.

To create user authorizations for the policy:

1. Return to the Label Security policies page by selecting the Label Security
Policies link.

2. Select the selection button for the ACCESS_LOCATIONS policy.

3. In the Actions list, select Authorization, and then click Go.

4. In the Authorization page, click Add Users.

5. In the Add User: Users page, under Database Users, click Add.

The Search and Select: Userpage appears. Enter SKING, and then click Go.

Typically, a database user account already has been created in the database, for
example, by using the CREATE USER SQL statement.

The other option is Non Database Users. Most application users are considered
nondatabase users. A nondatabase user does not exist in the database. This can
be any user name that meets the Oracle Label Security naming standards and can
fit into the VARCHAR2(30) length field. However, be aware that Oracle Database
does not automatically configure the associated security information for the
nondatabase user when the application connects to the database. In this case, the
application must call an Oracle Label Security function to assume the label
authorizations of the specified user who is not a database user.

6. Select the check box for user SKING, and then click Select.

The Create User page lists user SKING.

7. Select the check box for user SKING and then click Next.

(You may need to refresh the page to display user SKING's check box.)

8. In the Privileges page, select Next to move to the Audit page.

Oracle Label Security enforces the policy through the label authorizations. The
Privileges page enables the user to override the policy label authorization, so do
not select any of its options.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-13

9. In the Labels, Compartments and Groups page, enter the following settings:

• Maximum Level: SENS (for SENSITIVE)

• Minimum Level: CONF (for CONFIDENTIAL)

• Default Level: SENS

• Row Level: SENS

10. Click Next to go to the Audit page.

11. In the Audit pane of the Add Users: Audit page, ensure that all of the audit
operations are set to None, and then click Next.

The Review page appears.

12. Ensure that the settings are correct, and then click Finish.

The Review page lists all the authorization settings you have selected.

13. Repeat Step 4 through Step 12 to create the following authorizations for user
KPARTNER, so that she can read confidential and public data in HR.LOCATIONS.

• Privileges: Select no privileges.

• Labels, Compartments And Groups: Set the four levels to the following:

– Maximum Level: CONF (for CONFIDENTIAL)

– Minimum Level: PUB (for PUBLIC)

– Default Level: CONF

– Row Level: CONF

• Audit: Set all to None.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-14

14. Create the following authorizations for user LDORAN, who is only allowed to read
public data from HR.LOCATIONS:

• Privileges: Select no privileges.

• Labels, Compartments And Groups: Set all four levels to PUB.

• Audit: Set all to None.

8.4.9 Step 8: Apply the ACCESS_LOCATIONS Policy to the
HR.LOCATIONS Table

Next, you are ready to apply the policy to the HR.LOCATIONS table.

To apply the ACCESS_LOCATIONS policy to the HR.LOCATIONS table:

1. Return to the Label Security policies page by selecting the Label Security
Policies link.

2. Select the selection button for the ACCESS_LOCATIONS policy.

3. In the Actions list, select Apply, and then click Go.

4. In the Apply page, click Create.

The Add Table page appears.

5. In the Table field, enter HR.LOCATIONS.

6. Ensure that the Hide Policy Column box is not selected.

7. Ensure that the Enabled box is selected.

8. Under Policy Enforcement Options, select Use Default Policy Enforcement.

By choosing Use Default Policy Enforcement, you are automatically choosing
these options:

• For all queries (READ_CONTROL)

• Use session's default label for label column update (LABEL_DEFAULT)

9. Click OK.

The ACCESS_LOCATIONS policy is applied to the HR.LOCATIONS table.

8.4.10 Step 9: Add the ACCESS_LOCATIONS Labels to the
HR.LOCATIONS Data

You must apply the labels of the policy to the OLS_COLUMN in LOCATIONS of the
HR.LOCATIONS table.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-15

• Granting HR FULL Policy Privilege for the HR.LOCATIONS Table
The label security administrative user, LBACSYS, can grant HR the necessary
privilege.

• Updating the OLS_COLUMN Table in HR.LOCATIONS
The user HR now can update the OLS_COLUMN column in the HR.LOCATIONS table to
include data labels that will be assigned to specific rows in the table, based on the
cities listed in the CITY column.

8.4.10.1 Granting HR FULL Policy Privilege for the HR.LOCATIONS Table
The label security administrative user, LBACSYS, can grant HR the necessary privilege.

To grant HR FULL access to the ACCESS_LOCATIONS policy:

1. Return to the Label Security policies page by selecting the Label Security
Policies link.

2. Select the selection button for the ACCESS_LOCATIONS policy.

3. Select Authorization from the Actions list, and then click Go.

4. In the Authorization page, click Add Users.

5. In the Add Users page, under Database Users, click Add.

6. In the Search and Select window, select the box for user HR, and then click Select.

The Add User page lists user HR.

7. Click Next to display the Privileges page.

8. Select the Bypass all Label Security checks (FULL) privilege, and then click
Next.

9. Click Next to display the Levels, Compartments and Groups page.

10. Click Next.

11. In the Audit page, click Next to display the Review page.

12. Click Finish.

At this stage, HR is listed in the Authorization page with the other users.

13. Do not exit Enterprise Manager.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-16

8.4.10.2 Updating the OLS_COLUMN Table in HR.LOCATIONS
The user HR now can update the OLS_COLUMN column in the HR.LOCATIONS table to include
data labels that will be assigned to specific rows in the table, based on the cities listed
in the CITY column.

To update the OLS_COLUMN table in HR.LOCATIONS:

1. In SQL*Plus, connect as user HR.

CONNECT HR
Enter password: password

If you cannot log in as HR because this account locked and expired, log in as
SYSTEM and then enter the following statement. Replace password with an
appropriate password for the HR account. For greater security, do not reuse the
same password that was used in previous releases of Oracle Database. See
Requirements for Creating Passwords.

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password

After you complete this ALTER USER statement, try logging in as user HR again.

2. Enter the following UPDATE statement to apply the SENS label to the cities Beijing,
Tokyo, and Singapore:

UPDATE LOCATIONS
SET ols_column = CHAR_TO_LABEL('ACCESS_LOCATIONS','SENS')
WHERE UPPER(city) IN ('BEIJING', 'TOKYO', 'SINGAPORE');

3. Enter the following UPDATE statement to apply the CONF label to the cities Munich,
Oxford, and Roma:

UPDATE LOCATIONS
SET ols_column = CHAR_TO_LABEL('ACCESS_LOCATIONS','CONF')
WHERE UPPER(city) IN ('MUNICH', 'OXFORD', 'ROMA');

4. Enter the following UPDATE statement to apply the PUB label to the remaining cities:

UPDATE LOCATIONS
SET ols_column = CHAR_TO_LABEL('ACCESS_LOCATIONS','PUB')
WHERE ols_column IS NULL;

5. To check that the columns were updated, enter the following statement:

SELECT LABEL_TO_CHAR (OLS_COLUMN) FROM LOCATIONS;

The following output should appear:

LABEL_TO_CHAR(OLS_COLUMN)

CONF
PUB
SENS
PUB
PUB
PUB
PUB
PUB
PUB
PUB
SENS

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-17

PUB
PUB
SENS
PUB
CONF
PUB
CONF
PUB
PUB
PUB
PUB
PUB

23 rows selected.

Note:

Using the label column name (OLS_COLUMN) explicitly in the preceding query
enables you to see the label column, even if it was hidden.

If the label column is hidden, and you do not specify the label column name
explicitly, then the label column is not displayed in the query results. For
example, using the SELECT * FROM LOCATIONS query does not show the label
column if it is hidden. This feature enables the label column to remain
transparent to applications. An application that was designed before the label
column was added does not know about the label column and will never see it.

8.4.11 Step 10: Test the ACCESS_LOCATIONS Policy
You can test the ACCESS_LOCATIONS policy by having the three users and perform a
SELECT on the HR.LOCATIONS table.

To test the ACCESS_LOCATIONS policy:

1. In SQL*Plus, connect as user sking.

CONNECT sking
Enter password: password

2. Enter the following:

The following commands format the width of the table columns so that you can
read them easier. You only need to perform this step once for the entire session
(including when kpartner and ldoran log in.)

COL city HEADING City FORMAT a25
COL country_id HEADING Country FORMAT a11
COL Label format a10

Now enter the SELECT statement as follows:

SELECT CITY, COUNTRY_ID, LABEL_TO_CHAR (OLS_COLUMN)
AS LABEL FROM HR.LOCATIONS ORDER BY OLS_COLUMN;

User sking is able to access all 23 rows of the HR.LOCATIONS table. Even though he
is only authorized to access rows that are labeled CONF and SENS, he can still read
(but not write to) rows labeled PUB.

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-18

City Country LABEL
------------------------- ----------- ----------
Venice IT PUB
Utrecht NL PUB
Bern CH PUB
Geneva CH PUB
Sao Paulo BR PUB
Stretford UK PUB
Mexico City MX PUB
Hiroshima JP PUB
Southlake US PUB
South San Francisco US PUB
South Brunswick US PUB
Seattle US PUB
Toronto CA PUB
Whitehorse CA PUB
Bombay IN PUB
Sydney AU PUB
London UK PUB
Oxford UK CONF
Munich DE CONF
Roma IT CONF
Singapore SG SENS
Tokyo JP SENS
Beijing CN SENS

23 rows selected.

3. Repeat Steps 1 and 2 for users kpartner and ldoran.

User KPARTNER can access the rows labeled CONF and PUB:

City Country LABEL
------------------------- ----------- ----------
Venice IT PUB
Utrecht NL PUB
Bern CH PUB
Mexico City MX PUB
Hiroshima JP PUB
Southlake US PUB
South San Francisco US PUB
South Brunswick US PUB
Seattle US PUB
Toronto CA PUB
Whitehorse CA PUB
Bombay IN PUB
Sydney AU PUB
London UK PUB
Stretford UK PUB
Sao Paulo BR PUB
Geneva CH PUB
Oxford UK CONF
Munich DE CONF
Roma IT CONF
20 rows selected.

User LDORAN can access the rows labeled PUB:

City Country LABEL
------------------------- ----------- ----------
Venice IT PUB
Hiroshima JP PUB

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-19

Southlake US PUB
South San Francisco US PUB
South Brunswick US PUB
Seattle US PUB
Toronto CA PUB
Whitehorse CA PUB
Bombay IN PUB
Sydney AU PUB
London UK PUB
Stretford UK PUB
Sao Paulo BR PUB
Geneva CH PUB
Bern CH PUB
Utrecht NL PUB
Mexico City MX PUB

17 rows selected.

4. Exit SQL*Plus.

8.4.12 Step 11: Optionally, Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

To remove the components for this tutorial:

1. Return to the Label Security policies page by selecting the Label Security
Policies link.

2. Select the ACCESS_LOCATIONS policy and then click Delete. In the Confirmation page,
select the Drop column check box and then click Yes.

Deleting the ACCESS_LOCATIONS policy also drops the OLS_COLUMN column from the
HR.LOCATIONS table.

3. Log out of Enterprise Manager and then log back in as user SYSTEM.

4. From the Schema menu, select Users.

5. Select user KPARTNER, and then click Delete.

6. In the Confirmation page, click Yes.

7. Repeat Step 5 and Step 6 to remove users ldoran and sking.

8. Click the Database Instance link to return to the Database home page.

9. From the Security menu, select Roles.

10. Select the role emp_role, and then click Delete.

11. In the Confirmation dialog box, click Yes.

12. Log out of Enterprise Manager.

13. If necessary, disable Oracle Label Security.

a. Log into the database instance as either SYS with the SYSDBA administrative
privilege, or as a user who has been granted the LBAC_DBA role.

For example:

sqlplus lbacsys
Enter password: password

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-20

b. Run the following procedure:

EXEC LBACSYS.OLS_ENFORCEMENT.DISABLE_OLS

c. Restart the database:

CONNECT SYS AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

Chapter 8
Tutorial: Creating Levels of Access to Table Data Based on the User

8-21

9
Auditing Database Activity

Unified auditing enables you to create policies that audit user behavior in the database
in a variety of ways.

Topics:

• About Auditing
Auditing is the monitoring and recording of selected user database actions.

• Why Is Auditing Used?
Auditing enables activities such as enabling user accountability, deterring
inappropriate user actions, and investigating suspicious activity.

• Tutorial: Creating a Unified Audit Policy
In this tutorial, you create unified audit policy that monitors SELECT statements on
the OE.CUSTOMERS table.

9.1 About Auditing
Auditing is the monitoring and recording of selected user database actions.

To perform auditing, you must be granted the appropriate system privileges. To better
facilitate separation of duty, the following two default roles are provided:

• AUDIT_ADMIN role, which enables you to configure auditing and administer both
unified audit policies and fine-grained audit policies. It also enables you to view
and analyze audit data. Typically, security administrators are granted this role.

• AUDIT_VIEWER role, which enables you to view and analyze audit data only.
Typically, external auditors are granted this role.

This section provides an introduction to unified auditing, which captures audit records
from the following locations:

• Audit records (including SYS audit records) from unified audit policies and AUDIT
settings

• Fine-grained audit records from the DBMS_FGA PL/SQL package

• Oracle Real Application Security audit records

• Oracle Recovery Manager audit records

• Oracle Database Vault audit records

• Oracle Label Security audit records

Oracle Database consolidates these records in one location, in one format, viewable
from the UNIFIED_AUDIT_TRAIL view for single database instances and
GV$UNIFIED_AUDIT_TRAIL for Oracle Real Application Clusters environments.

When you upgrade your database to the current release, you must manually migrate
to unified auditing if you want to use it. After you complete the migration, in an
upgraded database, the audit records from the previous release are still available. You

9-1

then can archive and purge these older audit trails. Afterwards, the new audit records
will be written to the unified audit trail.

For a newly created database, Oracle Database provides mixed mode-enabled
auditing, which enables both the old and new audit facilities to run simultaneously.

When you create and enable a unified audit policy, the policy begins to collect audit
records right away. You do not need to set initialization parameters to enable overall
auditing, as was necessary in previous releases. The policy can be as simple as
auditing the activities of a single user or you can create complex audit policies that use
conditions. You can have more than one audit policy in effect at a time in a database.
An audit policy can contain both system-wide and object-specific audit options. Most of
the auditing that you will do for general activities (including standard auditing) requires
the use of audit policies

Another type of auditing is fine-grained auditing. Fine-grained auditing provides most
of the auditing capabilities as unified auditing, plus the following functionality:

• Auditing specific columns. You can audit specific relevant columns that hold
sensitive information, such as salaries or Social Security numbers.

• Using event handlers. For example, you can write a function that sends an email
alert to a security administrator when an audited column that should not be
changed at midnight is updated.

Oracle provides three predefined audit policies that cover commonly used security
relevant audit settings. These policies are designed to provide an effective method of
enforcing strong internal controls so that your site meets its regulatory compliance
requirements.

See Also:

• Oracle Database Upgrade Guide for information about migrating to unified
auditing and about mixed mode auditing

• Oracle Database Security Guide for information about archiving and
purging the audit trail

• Oracle Database Security Guide for information about fine-grained
auditing

• Oracle Database Security Guide for more information about the
predefined audit policies

9.2 Why Is Auditing Used?
Auditing enables activities such as enabling user accountability, deterring
inappropriate user actions, and investigating suspicious activity.

Auditing is used for the following reasons:

• Enable accountability for actions. These include actions taken in a particular
schema, table, or row, or affecting specific content.

• Deter users from inappropriate actions based on that accountability.

Chapter 9
Why Is Auditing Used?

9-2

• Investigate suspicious activity. For example, if a user is deleting data from
tables, then a security administrator might decide to audit all connections to the
database and all successful and unsuccessful deletions of rows from all tables in
the database.

• Notify an auditor of actions by an unauthorized user. For example, an
unauthorized user could change or delete data, or a user has more privileges than
expected, which can lead to reassessing user authorizations.

• Detect problems with an authorization or access control implementation. For
example, you can create audit policies that you expect will never generate an audit
record because the data is protected in other ways. However, if these policies do
generate audit records, then you will know the other security controls are not
properly implemented.

• Address auditing requirements for compliance. Regulations such as the
following have common auditing-related requirements:

– Sarbanes-Oxley Act

– Health Insurance Portability and Accountability Act (HIPAA)

– International Convergence of Capital Measurement and Capital Standards: a
Revised Framework (Basel II)

– Japan Privacy Law

– European Union Directive on Privacy and Electronic Communications

• Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being updated,
how many logical I/O operations are performed, or how many concurrent users
connect at peak times.

9.3 Tutorial: Creating a Unified Audit Policy
In this tutorial, you create unified audit policy that monitors SELECT statements on the
OE.CUSTOMERS table.

• Step 1: If Necessary, Enable Unified Auditing
In this procedure, you check if unified auditing has been enabled, and if it has not,
you enable it.

• Step 2: Grant the SEC_ADMIN User the AUDIT_ADMIN Role
Next, you are ready to grant the sec_admin user the AUDIT_ADMIN role, which
enables SEC_ADMIN to create audit policies.

• Step 3: Create and Enable a Unified Audit Policy
In Enterprise Manager as user sec_admin, you can create a unified auditing policy
for SELECT statements on the OE.CUSTOMERS table.

• Step 4: Test the Unified Audit Policy
With auditing enabled, you are ready to test the audit settings.

• Step 5: Optionally, Remove the Components for This Tutorial
You can remove the components of this tutorial if you no longer need them.

• Step 6: Optionally, Remove the SEC_ADMIN Security Administrator Account
If you no longer need the sec_admin administrator account, then you should remove
it.

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-3

9.3.1 Step 1: If Necessary, Enable Unified Auditing
In this procedure, you check if unified auditing has been enabled, and if it has not, you
enable it.

To enable unified auditing:

1. Log in to SQL*Plus as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. Run the following query to find out if your database has been migrated to use
unified auditing. Enter Unified Auditing in the case shown here.

SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

If the output for the VALUE column is FALSE, then complete the remaining steps in
this section to migrate to unified auditing. If the output is TRUE, then unified auditing
is enabled and you can go to Step 2: Grant the SEC_ADMIN User the
AUDIT_ADMIN Role.

3. Stop the database.

For single-instance installations, enter the following commands from SQL*Plus:

SHUTDOWN IMMEDIATE
EXIT

For Windows systems, stop the Oracle service:

net stop OracleService%ORACLE_SID%

For Oracle Real Application Clusters (Oracle RAC) installations, shut down each
database instance as follows:

srvctl stop database -db db_name

4. Stop the listener. (Stopping the listener is not necessary for Oracle RAC and Grid
Infrastructure listeners.)

lsnrctl stop listener_name

You can find the name of the listener by running the lsnrctl status command.
The name is indicated by the Alias setting.

5. Go to the $ORACLE_HOME/rdbms/lib directory.

6. Enable the unified auditing executable.

• UNIX: Run the following command:

make -f ins_rdbms.mk uniaud_on ioracle ORACLE_HOME=$ORACLE_HOME

• Windows: Rename the %ORACLE_HOME%/bin/orauniaud12.dll.option file to
%ORACLE_HOME%/bin/orauniaud12.dll.

7. Restart the listener.

lsnrctl start listener_name

8. Restart the database. Log in to SQL*Plus and then enter the STARTUP command as
follows:

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-4

sqlplus sys as sysoper
Enter password: password

SQL> STARTUP

For Windows systems, start the Oracle service again.

net start OracleService%ORACLE_SID%

For Oracle RAC installations, from a command line, restart the database as
follows:

srvctl setenv database -db orcl

9.3.2 Step 2: Grant the SEC_ADMIN User the AUDIT_ADMIN Role
Next, you are ready to grant the sec_admin user the AUDIT_ADMIN role, which enables
SEC_ADMIN to create audit policies.

To grant the SEC_ADMIN user the AUDIT_ADMIN role:

1. Access the Database home page for your target database as user SYS with the
SYSDBA administrative privilege.

See Oracle Database 2 Day DBA for more information.

2. From the Schema menu, select Users.

3. Select the SEC_ADMIN account and click Edit.

If the sec_admin user account does not exist, see Step 2: Create a Security
Administrator Account for instructions on how to create the sec_admin security
administrator account.

4. In the Edit User: SEC_ADMIN page, select the Roles tab.

5. Select the Edit List button.

6. In the Modify Roles page, select AUDIT_ADMIN from the Available Roles list, and
then move it to the Selected Roles list. Click OK.

7. In the Edit User: SEC_ADMIN page, select the Object Privileges tab.

8. In the Edit User page: SEC_ADMIN page, from the Object Type list, select
Package, and then click Add.

9. In the Add Package Object Privileges page, do the following:

a. In the Select Package Objects field, enter SYS.DBMS_AUDIT_MGMT.

b. Under Available Packages, select EXECUTE and then click Move to send it to
the Selected Privileges list.

c. Click OK.

10. In the Edit User page: SEC_ADMIN page, click Apply.

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-5

9.3.3 Step 3: Create and Enable a Unified Audit Policy
In Enterprise Manager as user sec_admin, you can create a unified auditing policy for
SELECT statements on the OE.CUSTOMERS table.

To create the unified audit policy:

1. In Enterprise Manager, log out and then log back in again as user sec_admin.

2. From the Security menu, select Audit Settings.

3. In the Audit Settings page, click Create.

4. In the Create Audit Policy : Privileges and Roles page, enter the following settings:

• Name: Enter select_cust_pol for the policy name.

• Comments: Enter Audit policy for SELECT statements on OE.CUSTOMERS.

5. Click the Next button.

6. In the Create Audit Policy : Component Actions page, click Next.

7. In the Create Audit Policy : Object Actions page, click Add Object.

8. In the Add Object dialog box, enter the following settings:

• Schema: OE

• Type: TABLE

• Object: CUSTOMERS

• Action: SELECT

9. Click OK.

The Create Audit Policy : Object Actions page should appear as follows:

10. In the Create Audit Policy : Object Actions window click Next.

11. In the Create Audit Policy : Conditions window, click Next. In the Create Audit
Policy : Review page, click Submit.

The Audit Settings page appears, with SELECT_CUST_POL in the list of policies.

12. Select SELECT_CUST_POL and then click the Enable button.

13. In the Enable Audit Policy dialog box, select the Few Users check box.

The Enable Audit Policy dialog expands so that you can add specific users.

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-6

14. Click the Add User button.

15. In the Add User dialog box, search for and enter OE (select the Show Oracle
Supplied check box) and ensure that the Audit on Success and Audit on Failure
check boxes are selected.

16. Click OK.

17. Repeat these steps to add user HR to the list.

18. Do not exit Enterprise Manager.

9.3.4 Step 4: Test the Unified Audit Policy
With auditing enabled, you are ready to test the audit settings.

Any SELECT statements that are performed on the OE.CUSTOMERS table will be written to
the unified audit trail. To find the audit records, you must query the
UNIFIED_AUDIT_TRAIL dynamic view.

A unified auditing policy takes effect in the next user session for the users who are
being audited. So, before their audit records can be captured, the users must connect
to the database after the policy has been created.

To test the audit settings:

1. In SQL*Plus, connect as user OE and query the OE.CUSTOMERS table so that you can
generate a record for the audit trail.

connect OE
Enter password: password

SELECT COUNT(*) FROM CUSTOMERS;

COUNT(*)

 319

2. Connect as user HR and try to run this query.

connect HR
Enter password: password

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-7

SELECT COUNT(*) FROM OE.CUSTOMERS;

ERROR at line 1:
ORA-00942: table or view does not exist

At this point, the audit trail contains two records, one for a successful query by
user OE and another for a failed query attempt by user HR.

3. Connect as user SH and try to run the same query.

connect SH
Enter password: password

SELECT COUNT(*) FROM OE.CUSTOMERS;

ERROR at line 1:
ORA-00942: table or view does not exist

Because this user is not being audited, there should be no audit record for this
action.

4. Connect as user sec_admin.

connect sec_admin
Enter password: password

5. Run then the following procedure.

EXEC SYS.DBMS_AUDIT_MGMT.FLUSH_UNIFIED_AUDIT_TRAIL;

If the audit trail mode is QUEUED, then audit records are not written to disk until the
in-memory queues are full. This command explicitly flushes the queues to disk, so
that you can see the audit trail records in the UNIFIED_AUDIT_TRAIL view.

6. Enter the following statement to query the UNIFIED_AUDIT_TRAIL view:

col dbusername format a12
col sql_text format a30
col event_timestamp format a38

SELECT DBUSERNAME, SQL_TEXT, EVENT_TIMESTAMP
FROM UNIFIED_AUDIT_TRAIL
WHERE SQL_TEXT LIKE 'SELECT %';

For this SELECT statement, enter the text for the SQL_TEXT column ('SELECT %') using
the same case that you used when you entered the SELECT statement for users OE,
HR, and SH. In other words, if you entered that SELECT statement in lowercase
letters, then enter 'select %' when you query the DBA_AUDIT_TRAIL view, not
'SELECT %'.

Output similar to the following appears:

DBUSERNAME SQL_TEXT EVENT_TIMESTAMP
---------- --------------------------------- --------------------------------
OE SELECT COUNT(*) FROM CUSTOMERS 04-JAN-13 03.39.02.468963 PM
HR SELECT COUNT(*) FROM OE.CUSTOMERS 04-JAN-13 03.38.05.974127 PM

Because the audit policy only applied to users OE and HR, there is no record for
user SH's actions.

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-8

9.3.5 Step 5: Optionally, Remove the Components for This Tutorial
You can remove the components of this tutorial if you no longer need them.

To remove the audit settings for this tutorial:

1. In Enterprise Manager, ensure that you are logged in as user sec_admin.

2. Select Administration, then Security, and then Audit Settings to display the Audit
Settings page.

3. Select the SELECT_CUST_POL policy, click Disable, and then select Yes in the
Confirmation dialog box.

4. Select the SELECT_CUST_POL policy again, click Delete, and then select Yes in
the Confirmation dialog box. Then click Yes again.

5. Log out of Enterprise Manager and then log back in again as user SYS with the
SYSDBA administrative privilege.

6. From the Schema menu, select Users.

7. Select the SEC_ADMIN user and then click Edit.

8. In the Edit User : SEC_ADMIN page, select Roles.

9. Select the Edit List button.

10. In the Modify Roles page, move the AUDIT_ADMIN role to the Available Roles list
and then click OK.

11. In the Edit User : SEC_ADMIN page, select the Object Privileges tab.

12. Select the EXECUTE privilege for the DBMS_AUDIT_MGMT package, and then
click Delete.

13. Click Apply.

9.3.6 Step 6: Optionally, Remove the SEC_ADMIN Security
Administrator Account

If you no longer need the sec_admin administrator account, then you should remove it.

To remove the sec_admin security administrator account:

1. Log in to the database as user SYSTEM.

2. From the Database home page, select Schema, then Users.

3. Select the user sec_admin.

4. Click Delete.

5. In the Confirmation page, select Yes.

6. Exit Enterprise Manager.

Chapter 9
Tutorial: Creating a Unified Audit Policy

9-9

Index

A
access control

data encryption, 4-2
Oracle Label Security, 8-1

administrative accounts
about, 2-12
predefined, listed, 2-12

administrators
restricting access of, 5-1
separation of duty, 5-1

ANONYMOUS user account, 2-12
application contexts

Oracle Virtual Private Database, used with,
6-1

ASMSNMP user account, 2-12
auditing, 9-1

about, 9-1
fine-grained auditing, 9-1
monitoring user actions, 9-1
reasons to audit, 9-2

AUDSYS user account, 2-12
AUTHID CURRENT USER invoker’s rights

clause, 3-8

C
CONNECT role, privilege available to, 3-2
CREATE DATABASE LINK statement, 3-2
CREATE EXTERNAL JOB privilege

default security setting, modified by, 2-2
CREATE SESSION statement, 3-2
CTXSYS user account, 2-12

D
data dictionary

about, 2-3
securing, 2-4

data dictionary views, 2-3
DBA_USERS_WITH_DEFPWD, 2-19

database
checking compatibility, 4-5

database accounts
See user accounts

DBA_USERS_WITH_DEFPWD data dictionary
view, 2-19

DBSNMP user account
about, 2-12

default passwords
importance of changing, 2-18

default security settings
about, 2-2

DIP user account, 2-15

E
encryption

about, 4-1
algorithms, described, 2-7
components, 4-1
network, 2-6
reasons not to encrypt, 4-2
reasons to encrypt, 4-2

errors
checking trace files, 3-8
WHEN NO_DATA_FOUND exception

example, 3-8
examples, 3-4

See also tutorials
exceptions

WHEN NO_DATA_FOUND example, 3-8

F
fine-grained auditing, 9-1

G
GRANT ALL PRIVILEGES privilege, 2-4
guidelines for security

auditing
predefined unified audit policies, 9-1

Oracle Label Security policies, planning, 8-4
passwords

creating, 2-17
privileges, granting, 3-2
roles, granting to users, 3-2

Index-1

H
HR user account, 2-16

I
initialization parameters

configuration related, 2-5
default security, modified by, 2-2
FAILED_LOGIN_ATTEMPTS, 2-20
INACTIVE_ACCOUNT_TIME, 2-20
installation related, 2-5
modifying, 2-5
O7_DICTIONARY_ACCESSIBILITY

about, 2-5
data dictionary, protecting, 2-4
default setting, 2-4

OS_AUTHENT_PREFIX, 2-10
OS_ROLES, 3-14
PASSWORD_GRACE_TIME, 2-20
PASSWORD_LIFE_TIME, 2-20
PASSWORD_LOCK_TIME, 2-20
PASSWORD_REUSE_MAX, 2-20
PASSWORD_REUSE_TIME, 2-20
REMOTE_LISTENER, 2-10
REMOTE_OS_AUTHENT, 2-10
REMOTE_OS_ROLES, 2-10, 3-14
SEC_CASE_SENSITIVE_LOGIN, 2-20
SEC_MAX_FAILED_LOGIN_ATTEMPTS, 2-20
SEC_RETURN_SERVER_RELEASE_BANNER,

2-5
SQL92_SECURITY, 3-14

invoker’s rights, 3-8
IX user account, 2-16

K
keystores

closing, 4-7
creating, 4-4
creating master encryption key, 4-8
creating software password keystore, 4-6
opening, 4-7

L
LBACSYS user account, 2-12
least privilege principle, 3-2

M
master encryption key

creating, 4-8
MDDATA user account, 2-15

MDSYS user account, 2-12
monitoring

See auditing
multitenant container databases

See CDBs
My Oracle Support,

about, x
user account for logging service requests,

2-15

N
network encryption

about, 2-7
components, 2-7
configuring, 2-7

nondatabase users, 6-1

O
object privileges, 3-2
OE user account, 2-16
OLAPSYS user account, 2-12
Oracle Data Redaction

about, 7-1
compared with VPD and OLS, 8-2
industry compliance, 7-1
redaction performed in real time, 7-1
tutorial, 7-2
types of redaction, 7-1

Oracle Database Vault
about, 5-1
components, 5-1
registering with database, 5-3
regulatory compliances, how meets, 5-1
tutorial, 5-2

Oracle Enterprise Manage
about, 1-3

Oracle Label Security (OLS)
compared with VPD and Data Redaction, 8-2
components, 8-1
guidelines in planning, 8-4
how it works, 8-1
tutorial, 8-6
used with Oracle Virtual Private Database,

8-2
Oracle MetaLink

See My Oracle Support
Oracle Net

encrypting network traffic, 2-7
Oracle Virtual Private Database (VPD)

about, 6-1
advantages, 6-1
application contexts, 6-1
compared with OLS and Data Redaction, 8-2

Index

Index-2

Oracle Virtual Private Database (VPD) (continued)
components, 6-1
tutorial, 6-3
used with Oracle Label Security, 8-2

ORACLE_OCM user account, 2-15
ORDDATA user account, 2-12
ORDPLUGINS user account, 2-12
ORDSYS user account, 2-12

P
passwords

changing, 2-19
default security setting, modified by, 2-2
default user account, 2-18

passwords for security
requirements, 2-17

pluggable databases
See PDBs

PM user account, 2-16
principle of least privilege, 3-2
privileges

about, 3-1
CREATE DATABASE LINK statement, 3-2
SYSTEM and OBJECT, 3-2

R
roles

CONNECT, 3-2
create your own, 3-2
job responsibility privileges only, 3-2

S
SCOTT user

about, 2-16
restricting privileges of, 3-2

sec_admin example security administrator
removing, 9-9

secure application roles
about, 3-3
advantages, 3-3
components, 3-3
invoker’s rights, 3-8
tutorial, 3-4

security administrator
removing sec_admin, 9-9

security tasks, common, 1-2
SELECT ANY DICTIONARY privilege

GRANT ALL PRIVILEGES privilege, not
included in, 2-4

sensitive data
Oracle Virtual Private Database, 6-1
secure application roles, 3-3

separation of duty concepts, 3-6
separation-of-duty principles

about, 5-1
Oracle Database Vault, 5-4

session information, retrieving, 6-1
SH user account, 2-16
SI_INFORMTN_SCHEMA user account, 2-12
SPATIAL_CSW_ADMIN_USR user account,

2-15
SPATIAL_WFS_ADMIN_USR user account, 2-15
standard auditing

tutorial, 9-3
SYS user account

about, 2-12
SYSBACKUP user account

about, 2-12
SYSDG user account

about, 2-12
SYSKM user account

about, 2-12
system administrator

See administrative accounts, security administrator
system privileges, 3-2
SYSTEM user account

about, 2-12

T
tablespaces

encrypting, 4-11
TDE

See Transparent Data Encryption (TDE)
trace files

checking for errors, 3-8
Transparent Data Encryption (TDE), 4-2

about, 4-2
advantages, 4-2
closing keystore, 4-7
components, 4-2
configuring, 4-4
creating master encryption key, 4-8
creating software password keystores, 4-6
finding if keystore is open or closed, 4-13
finding keystore location, 4-13
finding keystore type, 4-12
how it works, 4-2
opening keystore, 4-7
performance effects, 4-2
storage space, 4-2
table columns

checking in database instances, 4-14
encrypting, 4-8

tablespaces
checking, 4-14

tablespaces, encrypting, 4-11

Index

3

troubleshooting
checking trace files, 3-8

tutorials, 3-4
Oracle Database Vault, 5-2
Oracle Label Security, 8-6
Oracle Virtual Private Database, 6-3
secure application roles, 3-4
standard auditing, 9-3

U
user accounts, 2-11

about, 2-11
default, changing password, 2-18
expiring, 2-17
locking, 2-17
password requirements, 2-17
predefined

administrative, 2-12
non-administrative, 2-15
sample schema, 2-16

unlocking, 2-17
user accounts, predefined

ANONYMOUS, 2-12
ASMSNMP, 2-12
AUDSYS, 2-12
CTXSYS, 2-12
DBSNMP, 2-12
DIP, 2-15
HR, 2-16
IX, 2-16
LBACSYS, 2-12
MDDATA, 2-15
MDSYS, 2-12
OE, 2-16
OLAPSYS, 2-12
ORACLE_OCM, 2-15

user accounts, predefined (continued)
ORDDATA, 2-12
ORDPLUGINS, 2-12
ORDSYS, 2-12
PM, 2-16
SCOTT, 2-16, 3-2
SH, 2-16
SI_INFORMTN_SCHEMA, 2-12
SPATIAL_CSW_ADMIN_USR, 2-15
SPATIAL_WFS_ADMIN_USR, 2-15
SYS, 2-12
SYSBACKUP, 2-12
SYSDG, 2-12
SYSKM, 2-12
SYSTEM, 2-12
WMSYS, 2-12
XDB, 2-12
XS$NULL, 2-15

user session information, retrieving, 6-1

V
views

See data dictionary views
Virtual Private Database

See Oracle Virtual Private Database
VPD

See Oracle Virtual Private Database

W
WMSYS user account, 2-12

X
XDB user account, 2-12
XS$NULL user account, 2-15

Index

Index-4

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database 2 Day + Security Guide
	Changes in Oracle Database 12c Release 2 (12.2)
	New Features
	Desupported Features

	1 Introduction to Oracle Database Security
	1.1 About This Guide
	1.1.1 Before Using This Guide
	1.1.2 What This Guide Is and Is Not

	1.2 Common Database Security Tasks
	1.3 Tools for Securing Your Database
	1.4 Securing Your Database: A Roadmap

	2 Securing the Database Installation and Configuration
	2.1 About Securing the Database Installation and Configuration
	2.2 Securing Access to the Oracle Database Installation
	2.2.1 Default Security Settings
	2.2.2 Security for the Oracle Data Dictionary
	2.2.2.1 About the Oracle Data Dictionary
	2.2.2.2 Enabling Data Dictionary Protection

	2.2.3 Initialization Parameters Used for Installation and Configuration Security
	2.2.4 Modifying the Value of an Initialization Parameter

	2.3 Security for the Network
	2.3.1 About Securing the Network
	2.3.2 Protecting Data on the Network by Using Network Encryption
	2.3.2.1 About Network Encryption
	2.3.2.2 Configuring Network Encryption

	2.3.3 Initialization Parameters Used for Network Security

	2.4 Securing User Accounts
	2.4.1 About Securing Oracle Database User Accounts
	2.4.2 Predefined User Accounts Provided by Oracle Database
	2.4.2.1 Predefined Administrative Accounts
	2.4.2.2 Predefined Non-Administrative User Accounts
	2.4.2.3 Predefined Sample Schema User Accounts

	2.4.3 Expiring and Locking Database Accounts
	2.4.4 Requirements for Creating Passwords
	2.4.5 Finding and Changing Default Passwords
	2.4.5.1 About Finding and Changing Default Passwords
	2.4.5.2 Finding and Changing Default Passwords from SQL*Plus
	2.4.5.3 Finding and Changing Default Passwords from Enterprise Manager

	2.4.6 Parameters Used to Secure User Accounts

	3 Managing User Privileges
	3.1 About Privilege Management
	3.2 When to Grant Privileges to Users
	3.3 When to Grant Roles to Users
	3.4 Controlling Access to Applications with Secure Application Roles
	3.4.1 About Secure Application Roles
	3.4.2 Tutorial: Creating a Secure Application Role
	3.4.2.1 Step 1: Create User Accounts for This Tutorial
	3.4.2.2 Step 2: Create a Security Administrator Account
	3.4.2.3 Step 3: Create a Lookup View
	3.4.2.4 Step 4: Create the PL/SQL Procedure to Set the Secure Application Role
	3.4.2.5 Step 5: Create the Secure Application Role
	3.4.2.6 Step 6: Grant SELECT for the EMP_ROLE Role to the OE.ORDERS Table
	3.4.2.7 Step 7: Grant the EXECUTE Privilege for the Procedure to Matthew and Winston
	3.4.2.8 Step 8: Test the EMP_ROLE Secure Application Role
	3.4.2.8.1 Testing the emp_role Secure Application Role as User MWEISS
	3.4.2.8.2 Testing the emp_role Secure Application Role as User WTAYLOR

	3.4.2.9 Step 9: Optionally, Remove the Components for This Tutorial

	3.5 Initialization Parameters Used for Privilege Security

	4 Encrypting Data with Oracle Transparent Data Encryption
	4.1 About Encrypting Sensitive Data
	4.2 When Should You Encrypt Data?
	4.3 How Transparent Data Encryption Works
	4.4 Configuring Data to Use Transparent Data Encryption
	4.4.1 Step 1: Configure the Keystore Location
	4.4.2 Step 2: Check the COMPATIBLE Initialization Parameter Setting
	4.4.3 Step 3: Create the Software Password-Based Keystore
	4.4.4 Step 4: Open (or Close) the Keystore
	4.4.4.1 Opening a Keystore
	4.4.4.2 Closing a Keystore

	4.4.5 Step 5: Create the Master Encryption Key
	4.4.6 Step 6: Encrypt Data
	4.4.6.1 Encrypting Individual Table Columns
	4.4.6.2 Encrypting a Tablespace

	4.5 Checking Existing Encrypted Data
	4.5.1 Finding the Type of Keystore That Was Created
	4.5.2 Finding the Keystore Location
	4.5.3 Checking Whether a Keystore Is Open or Closed
	4.5.4 Checking Encrypted Columns of an Individual Table
	4.5.5 Checking All Encrypted Table Columns in the Current Database Instance
	4.5.6 Data Dictionary Views for Checking Encrypted Tablespaces

	5 Controlling Access with Oracle Database Vault
	5.1 About Oracle Database Vault
	5.2 Tutorial: Controlling Administrator Access to a User Schema
	5.2.1 Step 1: Enable Oracle Database Vault
	5.2.2 Step 2: Grant SELECT on the OE.CUSTOMERS Table to User SCOTT
	5.2.2.1 Enabling User SCOTT for Oracle Database Vault
	5.2.2.2 Granting User SCOTT the SELECT Privilege on the OE.CUSTOMERS Table

	5.2.3 Step 3: Select from the OE.CUSTOMERS Table as Users SYS and SCOTT
	5.2.4 Step 4: Create a Realm to Protect the OE.CUSTOMERS Table
	5.2.5 Step 5: Test the OE Protections Realm
	5.2.6 Step 6: Optionally, Remove the Components for This Tutorial
	5.2.6.1 Dropping the OE Protections Realm
	5.2.6.2 Revoking the SELECT Privilege on OE.CUSTOMERS from User SCOTT
	5.2.6.3 Disabling Oracle Database Vault and Oracle Label Security

	6 Restricting Access with Oracle Virtual Private Database
	6.1 About Oracle Virtual Private Database
	6.2 Tutorial: Limiting Access to Data Based on the Querying User
	6.2.1 About Limiting Access to Data Based on the Querying User
	6.2.2 Step 1: Create User Accounts for This Tutorial
	6.2.3 Step 2: If Necessary, Create the Security Administrator Account
	6.2.4 Step 3: Update the Security Administrator Account
	6.2.5 Step 4: Create the F_POLICY_ORDERS Policy Function
	6.2.6 Step 5: Create the ACCESSCONTROL_ORDERS Virtual Private Database Policy
	6.2.7 Step 6: Test the ACCESSCONTROL_ORDERS Virtual Private Database Policy
	6.2.8 Step 7: Optionally, Remove the Components for This Tutorial
	6.2.8.1 Removing the Data Structures Created by sec_admin
	6.2.8.2 Removing the User Accounts
	6.2.8.3 Revoking Privileges on DBMS_RLS from User sec_admin

	7 Limiting Access to Sensitive Data Using Oracle Data Redaction
	7.1 About Oracle Data Redaction
	7.2 Tutorial: Redacting Data for a Select Group of Users
	7.2.1 About Redacting Data for a Select Group of Users
	7.2.2 Step 1: Create User Accounts and Grant Them the Necessary Privileges
	7.2.3 Step 2: Create and Populate the SALES_OPPS Sales Opportunities Table
	7.2.4 Step 3: Create the SALES_OPPS_POL Oracle Data Redaction Policy
	7.2.5 Step 4: Test the SALES_OPPS_POL Oracle Data Redaction Policy
	7.2.6 Step 5: Optionally, Remove the Components for This Tutorial

	8 Enforcing Row-Level Security with Oracle Label Security
	8.1 About Oracle Label Security
	8.2 Virtual Private Database, Oracle Label Security, and Data Redaction Differences
	8.3 Guidelines for Planning an Oracle Label Security Policy
	8.4 Tutorial: Creating Levels of Access to Table Data Based on the User
	8.4.1 About Creating Levels of Access to Table Data Based on the User
	8.4.2 Step 1: Enable Oracle Label Security
	8.4.3 Step 2: Enable the LBACSYS Account
	8.4.4 Step 3: Create a Role and Three Users for the Oracle Label Security Tutorial
	8.4.4.1 Creating a Role
	8.4.4.2 Creating the Oracle Label Security Users

	8.4.5 Step 4: Create the ACCESS_LOCATIONS Oracle Label Security Policy
	8.4.6 Step 5: Define the ACCESS_LOCATIONS Policy-Level Components
	8.4.7 Step 6: Create the ACCESS_LOCATIONS Policy Data Labels
	8.4.8 Step 7: Create the ACCESS_LOCATIONS Policy User Authorizations
	8.4.9 Step 8: Apply the ACCESS_LOCATIONS Policy to the HR.LOCATIONS Table
	8.4.10 Step 9: Add the ACCESS_LOCATIONS Labels to the HR.LOCATIONS Data
	8.4.10.1 Granting HR FULL Policy Privilege for the HR.LOCATIONS Table
	8.4.10.2 Updating the OLS_COLUMN Table in HR.LOCATIONS

	8.4.11 Step 10: Test the ACCESS_LOCATIONS Policy
	8.4.12 Step 11: Optionally, Remove the Components for This Tutorial

	9 Auditing Database Activity
	9.1 About Auditing
	9.2 Why Is Auditing Used?
	9.3 Tutorial: Creating a Unified Audit Policy
	9.3.1 Step 1: If Necessary, Enable Unified Auditing
	9.3.2 Step 2: Grant the SEC_ADMIN User the AUDIT_ADMIN Role
	9.3.3 Step 3: Create and Enable a Unified Audit Policy
	9.3.4 Step 4: Test the Unified Audit Policy
	9.3.5 Step 5: Optionally, Remove the Components for This Tutorial
	9.3.6 Step 6: Optionally, Remove the SEC_ADMIN Security Administrator Account

	Index

