Oracle® Database
SQL Tuning Guide

12c¢ Release 2 (12.2)
E85762-06
April 2021

ORACLE"

Oracle Database SQL Tuning Guide, 12c Release 2 (12.2)
E85762-06

Copyright © 2013, 2021, Oracle and/or its affiliates.

Primary Author: Lance Ashdown

Contributing Authors: Nigel Bayliss, Maria Colgan, Tom Kyte

Contributors: Hermann Baer, Ali Cakmak, Sunil Chakkappen, Immanuel Chan, Deba Chatterjee, Chris
Chiappa, Dinesh Das, Leonidas Galanis, William Endress, Marcus Fallen, Bruce Golbus, Katsumi Inoue,
Shantanu Joshi, Adam Kociubes, Keith Laker, Allison Lee, Sue Lee, David McDermid, Colin McGregor, Ajit
Mylavarapu, Ted Persky, Lei Sheng, Ekrem Soylemez, Hong Su, Murali Thiyagarajah, Randy Urbano, Sahil
Vazirani, Bharath Venkatakrishnan, Hailing Yu, John Zimmerman

Contributors: Frederick Kush

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and maodifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXIV
Documentation Accessibility XXiv
Related Documents XXiV
Conventions XXV

Changes in This Release for Oracle Database SQL Tuning Guide

Changes in Oracle Database 12c Release 2 (12.2.0.1) XXVI
Changes in Oracle Database 12c Release 1 (12.1.0.2) XXIX
Changes in Oracle Database 12c Release 1 (12.1.0.1) XXIX
Part | SQL Performance Fundamentals
1 Introduction to SQL Tuning
1.1 About SQL Tuning 1-1
1.2 Purpose of SQL Tuning 1-1
1.3 Prerequisites for SQL Tuning 1-2
1.4 Tasks and Tools for SQL Tuning 1-2
1.4.1 SQL Tuning Tasks 1-2
1.4.2 SQL Tuning Tools 1-4
1.4.2.1 Automated SQL Tuning Tools 1-5
1.4.2.2 Manual SQL Tuning Tools 1-7
1.4.3 User Interfaces to SQL Tuning Tools 1-10
2 SQL Performance Methodology
2.1 Guidelines for Designing Your Application 2-1
2.1.1 Guideline for Data Modeling 2-1
2.1.2 Guideline for Writing Efficient Applications 2-1
2.2 Guidelines for Deploying Your Application 2-3

ORACLE

2.2.1 Guideline for Deploying in a Test Environment 2-3
2.2.2 Guidelines for Application Rollout 2-4
Part Il Query Optimizer Fundamentals
3 SQL Processing
3.1 About SQL Processing 3-1
3.1.1 SQL Parsing 3-2
3.1.1.1 Syntax Check 3-2
3.1.1.2 Semantic Check 3-2
3.1.1.3 Shared Pool Check 3-3
3.1.2 SQL Optimization 3-5
3.1.3 SQL Row Source Generation 3-5
3.1.4 SQL Execution 3-7
3.2 How Oracle Database Processes DML 3-8
3.2.1 How Row Sets Are Fetched 3-8
3.2.2 Read Consistency 3-9
3.2.3 Data Changes 3-9
3.3 How Oracle Database Processes DDL 3-9
4 Query Optimizer Concepts
4.1 Introduction to the Query Optimizer 4-1
4.1.1 Purpose of the Query Optimizer 4-1
4.1.2 Cost-Based Optimization 4-1
4.1.3 Execution Plans 4-2
4.1.3.1 Query Blocks 4-3
4.1.3.2 Query Subplans 4-4
4.1.3.3 Analogy for the Optimizer 4-4
4.2 About Optimizer Components 4-4
4.2.1 Query Transformer 4-5
4.2.2 Estimator 4-6
4.2.2.1 Selectivity 4-8
4.2.2.2 Cardinality 4-9
4.2.2.3 Cost 4-9
4.2.3 Plan Generator 4-10
4.3 About Automatic Tuning Optimizer 4-12
4.4 About Adaptive Query Optimization 4-12
4.4.1 Adaptive Query Plans 4-13
44.1.1 About Adaptive Query Plans 4-13

ORACLE

4.4.1.2 Purpose of Adaptive Query Plans 4-14
4.4.1.3 How Adaptive Query Plans Work 4-14
4.4.1.4 When Adaptive Query Plans Are Enabled 4-21
4.4.2 Adaptive Statistics 4-22
4.4.2.1 Dynamic Statistics 4-22
4.4.2.2 Automatic Reoptimization 4-22
4.4.2.3 SQL Plan Directives 4-25
4.4.2.4 When Adaptive Statistics Are Enabled 4-26
4.5 About Approximate Query Processing 4-26
4.6 About SQL Plan Management 4-28
4.7 About the Expression Statistics Store (ESS) 4-29
5 Query Transformations
5.1 OR Expansion 5-1
5.2 View Merging 5-3
5.2.1 Query Blocks in View Merging 5-4
5.2.2 Simple View Merging 5-4
5.2.3 Complex View Merging 5-7
5.3 Predicate Pushing 5-10
5.4 Subquery Unnesting 5-11
5.5 Query Rewrite with Materialized Views 5-11
5.6 Star Transformation 5-12
5.6.1 About Star Schemas 5-12
5.6.2 Purpose of Star Transformations 5-13
5.6.3 How Star Transformation Works 5-13
5.6.4 Controls for Star Transformation 5-13
5.6.5 Star Transformation: Scenario 5-14
5.6.6 Temporary Table Transformation: Scenario 5-17
5.7 In-Memory Aggregation (VECTOR GROUP BY) 5-19
5.8 Cursor-Duration Temporary Tables 5-19
5.8.1 Purpose of Cursor-Duration Temporary Tables 5-20
5.8.2 How Cursor-Duration Temporary Tables Work 5-20
5.8.3 Cursor-Duration Temporary Tables: Example 5-21
5.9 Table Expansion 5-22
5.9.1 Purpose of Table Expansion 5-22
5.9.2 How Table Expansion Works 5-22
5.9.3 Table Expansion: Scenario 5-23
5.9.4 Table Expansion and Star Transformation: Scenario 5-27
5.10 Join Factorization 5-29
5.10.1 Purpose of Join Factorization 5-29
ORACLE v

5.10.2 How Join Factorization Works 5-29
5.10.3 Factorization and Join Orders: Scenario 5-30
5.10.4 Factorization of Outer Joins: Scenario 5-31
Part [ll Query Execution Plans
6 Generating and Displaying Execution Plans
6.1 Introduction to Execution Plans 6-1
6.2 About Plan Generation and Display 6-1
6.2.1 About the Plan Explanation 6-1
6.2.2 Why Execution Plans Change 6-2
6.2.2.1 Different Schemas 6-2
6.2.2.2 Different Costs 6-3
6.2.3 Guideline for Minimizing Throw-Away 6-3
6.2.4 Guidelines for Evaluating Execution Plans Using EXPLAIN PLAN 6-3
6.2.5 Guidelines for Evaluating Plans Using the V$SQL_PLAN Views 6-4
6.2.6 EXPLAIN PLAN Restrictions 6-4
6.2.7 Guidelines for Creating PLAN_TABLE 6-5
6.3 Generating Plan Output Using the EXPLAIN PLAN Statement 6-6
6.3.1 Explaining a SQL Statement: Basic Steps 6-6
6.3.2 Executing EXPLAIN PLAN Using a Statement ID 6-8
6.3.3 Directing EXPLAIN PLAN Output to a Nondefault Table 6-8
6.4 Displaying PLAN_TABLE Output 6-9
6.4.1 Displaying an Execution Plan: Example 6-10
6.4.2 Customizing PLAN_TABLE Output 6-11
7 Reading Execution Plans
7.1 Reading Execution Plans: Basic 7-1
7.2 Reading Execution Plans: Advanced 7-2
7.2.1 Reading Adaptive Query Plans 7-2
7.2.2 Viewing Parallel Execution with EXPLAIN PLAN 7-6
7.2.2.1 About EXPLAIN PLAN and Parallel Queries 7-6
7.2.2.2 Viewing Parallel Queries with EXPLAIN PLAN: Example 7-7
7.2.3 Viewing Bitmap Indexes with EXPLAIN PLAN 7-8
7.2.4 Viewing Result Cache with EXPLAIN PLAN 7-9
7.2.5 Viewing Partitioned Objects with EXPLAIN PLAN 7-10
7.2.5.1 Displaying Range and Hash Partitioning with EXPLAIN PLAN:
Examples 7-10

ORACLE

Vi

7.2.5.2 Pruning Information with Composite Partitioned Objects:

Examples 7-12

7.2.5.3 Examples of Partial Partition-Wise Joins 7-14

7.2.5.4 Example of Full Partition-Wise Join 7-16

7.2.55 Examples of INLIST ITERATOR and EXPLAIN PLAN 7-17

7.2.5.6 Example of Domain Indexes and EXPLAIN PLAN 7-19

7.2.6 PLAN_TABLE Columns 7-19

7.3 Execution Plan Reference 7-30

7.3.1 Execution Plan Views 7-30

7.3.2 PLAN_TABLE Columns 7-30

7.3.3 DBMS_XPLAN Display Functions 7-39
Part IV SQL Operators: Access Paths and Joins

8 Optimizer Access Paths

8.1 Introduction to Access Paths 8-1

8.2 Table Access Paths 8-2

8.2.1 About Heap-Organized Table Access 8-2

8.2.1.1 Row Storage in Data Blocks and Segments: A Primer 8-2

8.2.1.2 Importance of Rowids for Row Access 8-3

8.2.1.3 Direct Path Reads 8-4

8.2.2 Full Table Scans 8-5

8.2.2.1 When the Optimizer Considers a Full Table Scan 8-5

8.2.2.2 How a Full Table Scan Works 8-6

8.2.2.3 Full Table Scan: Example 8-7

8.2.3 Table Access by Rowid 8-8

8.2.3.1 When the Optimizer Chooses Table Access by Rowid 8-9

8.2.3.2 How Table Access by Rowid Works 8-9

8.2.3.3 Table Access by Rowid: Example 8-9

8.2.4 Sample Table Scans 8-10

8.2.4.1 When the Optimizer Chooses a Sample Table Scan 8-10

8.2.4.2 Sample Table Scans: Example 8-11

8.2.5 In-Memory Table Scans 8-11

8.2.5.1 When the Optimizer Chooses an In-Memory Table Scan 8-11

8.2.5.2 In-Memory Query Controls 8-11

8.2.5.3 In-Memory Table Scans: Example 8-12

8.3 B-Tree Index Access Paths 8-13

8.3.1 About B-Tree Index Access 8-13

8.3.1.1 B-Tree Index Structure 8-14

8.3.1.2 How Index Storage Affects Index Scans 8-14

ORACLE

Vii

8.3.1.3 Unique and Nonunique Indexes 8-15

8.3.1.4 B-Tree Indexes and Nulls 8-15
8.3.2 Index Unique Scans 8-18
8.3.2.1 When the Optimizer Considers Index Unique Scans 8-18
8.3.2.2 How Index Unique Scans Work 8-19
8.3.2.3 Index Unique Scans: Example 8-20
8.3.3 Index Range Scans 8-21
8.3.3.1 When the Optimizer Considers Index Range Scans 8-21
8.3.3.2 How Index Range Scans Work 8-22
8.3.3.3 Index Range Scan: Example 8-23
8.3.3.4 Index Range Scan Descending: Example 8-24
8.3.4 Index Full Scans 8-25
8.3.4.1 When the Optimizer Considers Index Full Scans 8-25
8.3.4.2 How Index Full Scans Work 8-25
8.3.4.3 Index Full Scans: Example 8-26
8.3.5 Index Fast Full Scans 8-27
8.3.5.1 When the Optimizer Considers Index Fast Full Scans 8-27
8.3.5.2 How Index Fast Full Scans Work 8-27
8.3.5.3 Index Fast Full Scans: Example 8-27
8.3.6 Index Skip Scans 8-28
8.3.6.1 When the Optimizer Considers Index Skips Scans 8-28
8.3.6.2 How Index Skip Scans Work 8-29
8.3.6.3 Index Skip Scans: Example 8-29
8.3.7 Index Join Scans 8-31
8.3.7.1 When the Optimizer Considers Index Join Scans 8-31
8.3.7.2 How Index Join Scans Work 8-31
8.3.7.3 Index Join Scans: Example 8-32

8.4 Bitmap Index Access Paths 8-33
8.4.1 About Bitmap Index Access 8-33
8.4.1.1 Differences Between Bitmap and B-Tree Indexes 8-33
8.4.1.2 Purpose of Bitmap Indexes 8-34
8.4.1.3 Bitmaps and Rowids 8-35
8.4.1.4 Bitmap Join Indexes 8-36
8.4.1.5 Bitmap Storage 8-38
8.4.2 Bitmap Conversion to Rowid 8-38
8.4.2.1 When the Optimizer Chooses Bitmap Conversion to Rowid 8-38
8.4.2.2 How Bitmap Conversion to Rowid Works 8-38
8.4.2.3 Bitmap Conversion to Rowid: Example 8-39
8.4.3 Bitmap Index Single Value 8-39
8.4.3.1 When the Optimizer Considers Bitmap Index Single Value 8-39
8.4.3.2 How Bitmap Index Single Value Works 8-40

ORACLE viii

8.4.3.3 Bitmap Index Single Value: Example 8-40
8.4.4 Bitmap Index Range Scans 8-41
8.4.4.1 When the Optimizer Considers Bitmap Index Range Scans 8-41
8.4.4.2 How Bitmap Index Range Scans Work 8-41
8.4.4.3 Bitmap Index Range Scans: Example 8-42
8.4.5 Bitmap Merge 8-42
8.4.5.1 When the Optimizer Considers Bitmap Merge 8-43
8.4.5.2 How Bitmap Merge Works 8-43
8.4.5.3 Bitmap Merge: Example 8-43
8.5 Table Cluster Access Paths 8-44
8.5.1 Cluster Scans 8-44
8.5.1.1 When the Optimizer Considers Cluster Scans 8-45
8.5.1.2 How a Cluster Scan Works 8-45
8.5.1.3 Cluster Scans: Example 8-45
8.5.2 Hash Scans 8-46
8.5.2.1 When the Optimizer Considers a Hash Scan 8-46
8.5.2.2 How a Hash Scan Works 8-46
8.5.2.3 Hash Scans: Example 8-47
O Joins

9.1 About Joins 9-1
9.1.1 Join Trees 9-1
9.1.2 How the Optimizer Executes Join Statements 9-3
9.1.3 How the Optimizer Chooses Execution Plans for Joins 9-4
9.2 Join Methods 9-5
9.2.1 Nested Loops Joins 9-6
9.2.1.1 When the Optimizer Considers Nested Loops Joins 9-6
9.2.1.2 How Nested Loops Joins Work 9-7
9.2.1.3 Nested Nested Loops 9-8
9.2.1.4 Current Implementation for Nested Loops Joins 9-10
9.2.1.5 Original Implementation for Nested Loops Joins 9-13
9.2.1.6 Nested Loops Controls 9-15
9.2.2 Hash Joins 9-17
9.2.2.1 When the Optimizer Considers Hash Joins 9-17
9.2.2.2 How Hash Joins Work 9-17

9.2.2.3 How Hash Joins Work When the Hash Table Does Not Fit in the
PGA 9-20
9.2.2.4 Hash Join Controls 9-20
9.2.3 Sort Merge Joins 9-20
9.2.3.1 When the Optimizer Considers Sort Merge Joins 9-21
9.2.3.2 How Sort Merge Joins Work 9-22

ORACLE

ORACLE

9.2.3.3 Sort Merge Join Controls 9-26

9.3 Join Types 9-26
9.3.1 Inner Joins 9-26
9.3.1.1 Equijoins 9-26

9.3.1.2 Nonequijoins 9-27

9.3.1.3 Band Joins 9-28

9.3.2 Outer Joins 9-31
9.3.2.1 Nested Loops Outer Joins 9-32

9.3.2.2 Hash Join Outer Joins 9-32

9.3.2.3 Sort Merge Outer Joins 9-35

9.3.2.4 Full Outer Joins 9-35

9.3.2.5 Multiple Tables on the Left of an Outer Join 9-36

9.3.3 Semijoins 9-37
9.3.3.1 When the Optimizer Considers Semijoins 9-37

9.3.3.2 How Semijoins Work 9-37

9.3.4 Antijoins 9-40
9.3.4.1 When the Optimizer Considers Antijoins 9-40

9.3.4.2 How Antijoins Work 9-41

9.3.4.3 How Antijoins Handle Nulls 9-42

9.3.5 Cartesian Joins 9-45
9.3.5.1 When the Optimizer Considers Cartesian Joins 9-46

9.3.5.2 How Cartesian Joins Work 9-46

9.3.5.3 Cartesian Join Controls 9-47

9.4 Join Optimizations 9-48
9.4.1 Bloom Filters 9-48
9.4.1.1 Purpose of Bloom Filters 9-48

9.4.1.2 How Bloom Filters Work 9-49

9.4.1.3 Bloom Filter Controls 9-50

9.4.1.4 Bloom Filter Metadata 9-50

9.4.1.5 Bloom Filters: Scenario 9-51

9.4.2 Partition-Wise Joins 9-53
9.4.2.1 Purpose of Partition-Wise Joins 9-53

9.4.2.2 How Partition-Wise Joins Work 9-53

9.4.3 In-Memory Join Groups 9-56

Part \V Optimizer Statistics
10 Optimizer Statistics Concepts

10.1 Introduction to Optimizer Statistics 10-1
10.2 About Optimizer Statistics Types 10-3

10.2.1 Table Statistics 10-3
10.2.2 Column Statistics 10-4
10.2.3 Index Statistics 10-4
10.2.3.1 Types of Index Statistics 10-4
10.2.3.2 Index Clustering Factor 10-5
10.2.3.3 Effect of Index Clustering Factor on Cost: Example 10-9
10.2.4 Session-Specific Statistics for Global Temporary Tables 10-10
10.2.4.1 Shared and Session-Specific Statistics for Global Temporary
Tables 10-10
10.2.4.2 Effect of DBMS_STATS on Transaction-Specific Temporary
Tables 10-11
10.2.5 System Statistics 10-12
10.2.6 User-Defined Optimizer Statistics 10-12
10.3 How the Database Gathers Optimizer Statistics 10-13
10.3.1 DBMS_STATS Package 10-13
10.3.2 Supplemental Dynamic Statistics 10-14
10.3.3 Online Statistics Gathering for Bulk Loads 10-15
10.3.3.1 Purpose of Online Statistics Gathering for Bulk Loads 10-15
10.3.3.2 Global Statistics During Inserts into Empty Partitioned Tables 10-15
10.3.3.3 Index Statistics and Histograms During Bulk Loads 10-16
10.3.3.4 Restrictions for Online Statistics Gathering for Bulk Loads 10-17
10.3.3.5 Hints for Online Statistics Gathering for Bulk Loads 10-18
10.4 When the Database Gathers Optimizer Statistics 10-18
10.4.1 Sources for Optimizer Statistics 10-18
10.4.2 SQL Plan Directives 10-19
10.4.2.1 When the Database Creates SQL Plan Directives 10-19
10.4.2.2 How the Database Uses SQL Plan Directives 10-20
10.4.2.3 SQL Plan Directive Maintenance 10-21
10.4.2.4 How the Optimizer Uses SQL Plan Directives: Example 10-21
10.4.2.5 How the Optimizer Uses Extensions and SQL Plan Directives:
Example 10-27
10.4.3 When the Database Samples Data 10-31
10.4.4 How the Database Samples Data 10-33
11 Histograms
11.1 Purpose of Histograms 11-1
11.2 When Oracle Database Creates Histograms 11-1
11.3 How Oracle Database Chooses the Histogram Type 11-3
11.4 Cardinality Algorithms When Using Histograms 11-4
11.4.1 Endpoint Numbers and Values 11-4
11.4.2 Popular and Nonpopular Values 11-4

ORACLE

Xi

11.4.3 Bucket Compression 11-5
11.5 Frequency Histograms 11-6
11.5.1 Criteria For Frequency Histograms 11-6
11.5.2 Generating a Frequency Histogram 11-7
11.6 Top Frequency Histograms 11-10
11.6.1 Criteria For Top Frequency Histograms 11-10
11.6.2 Generating a Top Frequency Histogram 11-11
11.7 Height-Balanced Histograms (Legacy) 11-14
11.7.1 Criteria for Height-Balanced Histograms 11-14
11.7.2 Generating a Height-Balanced Histogram 11-15
11.8 Hybrid Histograms 11-18
11.8.1 How Endpoint Repeat Counts Work 11-18
11.8.2 Criteria for Hybrid Histograms 11-20
11.8.3 Generating a Hybrid Histogram 11-21
12 Configuring Options for Optimizer Statistics Gathering
12.1 About Optimizer Statistics Collection 12-1
12.1.1 Purpose of Optimizer Statistics Collection 12-1
12.1.2 User Interfaces for Optimizer Statistics Management 12-1
12.1.2.1 Graphical Interface for Optimizer Statistics Management 12-1
12.1.2.2 Command-Line Interface for Optimizer Statistics Management 12-2
12.2 Setting Optimizer Statistics Preferences 12-3
12.2.1 About Optimizer Statistics Preferences 12-3
12.2.1.1 Purpose of Optimizer Statistics Preferences 12-3
12.2.1.2 DBMS_STATS Procedures for Setting Statistics Preferences 12-4
12.2.1.3 Statistics Preference Overrides 12-5
12.2.1.4 Setting Statistics Preferences: Example 12-8
12.2.2 Setting Global Optimizer Statistics Preferences Using Cloud Control 12-9
12.2.3 Setting Object-Level Optimizer Statistics Preferences Using Cloud
Control 12-9
12.2.4 Setting Optimizer Statistics Preferences from the Command Line 12-10
12.3 Configuring Options for Dynamic Statistics 12-12
12.3.1 About Dynamic Statistics Levels 12-12
12.3.2 Setting Dynamic Statistics Levels Manually 12-14
12.3.3 Disabling Dynamic Statistics 12-16
12.4 Managing SQL Plan Directives 12-17
13 Gathering Optimizer Statistics
13.1 Configuring Automatic Optimizer Statistics Collection 13-1
13.1.1 About Automatic Optimizer Statistics Collection 13-1
ORACLE Xil

13.1.2 Configuring Automatic Optimizer Statistics Collection Using Cloud

Control 13-2
13.1.3 Configuring Automatic Optimizer Statistics Collection from the
Command Line 13-4
13.2 Gathering Optimizer Statistics Manually 13-5
13.2.1 About Manual Statistics Collection with DBMS_STATS 13-6
13.2.2 Guidelines for Gathering Optimizer Statistics Manually 13-7
13.2.2.1 Guideline for Setting the Sample Size 13-7
13.2.2.2 Guideline for Gathering Statistics in Parallel 13-8
13.2.2.3 Guideline for Partitioned Objects 13-8
13.2.2.4 Guideline for Frequently Changing Objects 13-9
13.2.2.5 Guideline for External Tables 13-9
13.2.3 Determining When Optimizer Statistics Are Stale 13-9
13.2.4 Gathering Schema and Table Statistics 13-11
13.2.5 Gathering Statistics for Fixed Objects 13-11
13.2.6 Gathering Statistics for Volatile Tables Using Dynamic Statistics 13-12
13.2.7 Gathering Optimizer Statistics Concurrently 13-14
13.2.7.1 About Concurrent Statistics Gathering 13-14
13.2.7.2 Enabling Concurrent Statistics Gathering 13-16
13.2.7.3 Monitoring Statistics Gathering Operations 13-19
13.2.8 Gathering Incremental Statistics on Partitioned Objects 13-21
13.2.8.1 Purpose of Incremental Statistics 13-21
13.2.8.2 How DBMS_STATS Derives Global Statistics for Partitioned
tables 13-22
13.2.8.3 Gathering Statistics for a Partitioned Table: Basic Steps 13-26
13.2.8.4 Maintaining Incremental Statistics for Partition Maintenance
Operations 13-29
13.2.8.5 Maintaining Incremental Statistics for Tables with Stale or
Locked Partition Statistics 13-31
13.3 Gathering System Statistics Manually 13-33
13.3.1 About System Statistics 13-33
13.3.2 Guidelines for Gathering System Statistics 13-35
13.3.3 Gathering System Statistics with DBMS_STATS 13-35
13.3.3.1 About the GATHER_SYSTEM_STATS Procedure 13-35
13.3.3.2 Gathering Workload Statistics 13-37
13.3.3.3 Gathering Noworkload Statistics 13-41
13.3.4 Deleting System Statistics 13-43
13.4 Running Statistics Gathering Functions in Reporting Mode 13-43
14 Managing Extended Statistics
14.1 Managing Column Group Statistics 14-1
14.1.1 About Statistics on Column Groups 14-2

ORACLE

Xiii

14.1.1.1 Why Column Group Statistics Are Needed: Example 14-2
14.1.1.2 Automatic and Manual Column Group Statistics 14-4
14.1.1.3 User Interface for Column Group Statistics 14-5
14.1.2 Detecting Useful Column Groups for a Specific Workload 14-6
14.1.3 Creating Column Groups Detected During Workload Monitoring 14-9
14.1.4 Creating and Gathering Statistics on Column Groups Manually 14-11
14.1.5 Displaying Column Group Information 14-12
14.1.6 Dropping a Column Group 14-13
14.2 Managing Expression Statistics 14-14
14.2.1 About Expression Statistics 14-14
14.2.1.1 When Expression Statistics Are Useful: Example 14-15
14.2.2 Creating Expression Statistics 14-16
14.2.3 Displaying Expression Statistics 14-17
14.2.4 Dropping Expression Statistics 14-18
15 Controlling the Use of Optimizer Statistics
15.1 Locking and Unlocking Optimizer Statistics 15-1
15.1.1 Locking Statistics 15-1
15.1.2 Unlocking Statistics 15-2
15.2 Publishing Pending Optimizer Statistics 15-3
15.2.1 About Pending Optimizer Statistics 15-3
15.2.2 User Interfaces for Publishing Optimizer Statistics 15-5
15.2.3 Managing Published and Pending Statistics 15-6
15.3 Creating Artificial Optimizer Statistics for Testing 15-9
15.3.1 About Artificial Optimizer Statistics 15-9
15.3.2 Setting Artificial Optimizer Statistics for a Table 15-11
15.3.3 Setting Optimizer Statistics: Example 15-12
16 Managing Historical Optimizer Statistics
16.1 Restoring Optimizer Statistics 16-1
16.1.1 About Restore Operations for Optimizer Statistics 16-1
16.1.2 Guidelines for Restoring Optimizer Statistics 16-1
16.1.3 Restrictions for Restoring Optimizer Statistics 16-2
16.1.4 Restoring Optimizer Statistics Using DBMS_STATS 16-2
16.2 Managing Optimizer Statistics Retention 16-4
16.2.1 Obtaining Optimizer Statistics History 16-4
16.2.2 Changing the Optimizer Statistics Retention Period 16-5
16.2.3 Purging Optimizer Statistics 16-6
ORACLE Xiv

16.3 Reporting on Past Statistics Gathering Operations 16-7
17 Importing and Exporting Optimizer Statistics
17.1 About Transporting Optimizer Statistics 17-1
17.2 Transporting Optimizer Statistics to a Test Database: Tutorial 17-2
18 Analyzing Statistics Using Optimizer Statistics Advisor
18.1 About Optimizer Statistics Advisor 18-1
18.1.1 Purpose of Optimizer Statistics Advisor 18-2
18.1.1.1 Problems with a Traditional Script-Based Approach 18-3
18.1.1.2 Advantages of Optimizer Statistics Advisor 18-3
18.1.2 Optimizer Statistics Advisor Concepts 18-4
18.1.2.1 Components of Optimizer Statistics Advisor 18-4
18.1.2.2 Operational Modes for Optimizer Statistics Advisor 18-8
18.1.3 Command-Line Interface to Optimizer Statistics Advisor 18-9
18.2 Basic Tasks for Optimizer Statistics Advisor 18-10
18.2.1 Creating an Optimizer Statistics Advisor Task 18-13
18.2.2 Listing Optimizer Statistics Advisor Tasks 18-14
18.2.3 Creating Filters for an Optimizer Advisor Task 18-15
18.2.3.1 About Filters for Optimizer Statistics Advisor 18-15
18.2.3.2 Creating an Object Filter for an Optimizer Advisor Task 18-16
18.2.3.3 Creating a Rule Filter for an Optimizer Advisor Task 18-18
18.2.3.4 Creating an Operation Filter for an Optimizer Advisor Task 18-21
18.2.4 Executing an Optimizer Statistics Advisor Task 18-25
18.2.5 Generating a Report for an Optimizer Statistics Advisor Task 18-26
18.2.6 Implementing Optimizer Statistics Advisor Recommendations 18-30
18.2.6.1 Implementing Actions Recommended by Optimizer Statistics
Advisor 18-30
18.2.6.2 Generating a Script Using Optimizer Statistics Advisor 18-32
Part VI Optimizer Controls
19 Influencing the Optimizer
19.1 Techniques for Influencing the Optimizer 19-1
19.2 Influencing the Optimizer with Initialization Parameters 19-2
19.2.1 About Optimizer Initialization Parameters 19-3
19.2.2 Enabling Optimizer Features 19-7
19.2.3 Choosing an Optimizer Goal 19-8
ORACLE XV

19.2.4 Controlling Adaptive Optimization

19-9

19.3 Influencing the Optimizer with Hints 19-11
19.3.1 About Optimizer Hints 19-11
19.3.1.1 Types of Hints 19-12
19.3.1.2 Scope of Hints 19-13
19.3.1.3 Guidelines for Hints 19-14
19.3.2 Guidelines for Join Order Hints 19-15
20 Improving Real-World Performance Through Cursor Sharing
20.1 Overview of Cursor Sharing 20-1
20.1.1 About Cursors 20-1
20.1.1.1 Private and Shared SQL Areas 20-2
20.1.1.2 Parent and Child Cursors 20-4
20.1.2 About Cursors and Parsing 20-7
20.1.3 About Literals and Bind Variables 20-11
20.1.3.1 Literals and Cursors 20-11
20.1.3.2 Bind Variables and Cursors 20-12
20.1.3.3 Bind Variable Peeking 20-13
20.1.4 About the Life Cycle of Shared Cursors 20-16
20.1.4.1 Cursor Marked Invalid 20-16
20.1.4.2 Cursors Marked Rolling Invalid 20-18
20.2 CURSOR_SHARING and Bind Variable Substitution 20-20
20.2.1 CURSOR_SHARING Initialization Parameter 20-20
20.2.2 Parsing Behavior When CURSOR_SHARING = FORCE 20-21
20.3 Adaptive Cursor Sharing 20-23
20.3.1 Purpose of Adaptive Cursor Sharing 20-23
20.3.2 How Adaptive Cursor Sharing Works: Example 20-24
20.3.3 Bind-Sensitive Cursors 20-25
20.3.4 Bind-Aware Cursors 20-29
20.3.5 Cursor Merging 20-33
20.3.6 Adaptive Cursor Sharing Views 20-33
20.4 Real-World Performance Guidelines for Cursor Sharing 20-34
20.4.1 Develop Applications with Bind Variables for Security and Performance 20-34
20.4.2 Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix 20-35
20.4.3 Establish Coding Conventions to Increase Cursor Reuse 20-36
20.4.4 Minimize Session-Level Changes to the Optimizer Environment 20-38
Part VIl Monitoring and Tracing SQL
ORACLE XVi

21 Monitoring Database Operations

21.1 About Monitoring Database Operations 21-1
21.1.1 Purpose of Monitoring Database Operations 21-1
21.1.1.1 Simple Database Operation Use Cases 21-2
21.1.1.2 Composite Database Operation Use Cases 21-3
21.1.2 Database Operation Monitoring Concepts 21-3
21.1.2.1 About the Architecture of Real-Time SQL Monitoring 21-3
21.1.2.2 When the Database Monitors Operations 21-5
21.1.2.3 Attributes of composite Database Operations 21-6
21.1.3 User Interfaces for Database Operations Monitoring 21-7
21.1.3.1 Monitored SQL Executions Page in Cloud Control 21-7
21.1.3.2 DBMS_SQL_MONITOR Package 21-8
21.1.3.3 Views for Monitoring and Reporting on Database Operations 21-9
21.1.4 Basic Tasks in Database Operations Monitoring 21-11
21.2 Enabling and Disabling Monitoring of Database Operations 21-11
21.2.1 Enabling Monitoring of Database Operations at the System Level 21-11
21.2.2 Enabling and Disabling Monitoring of Database Operations at the
Statement Level 21-12
21.3 Defining a Composite Database Operation 21-13
21.4 Monitoring SQL Executions Using Cloud Control 21-16
27 Gathering Diagnostic Data with SQL Test Case Builder
22.1 Purpose of SQL Test Case Builder 22-1
22.2 Concepts for SQL Test Case Builder 22-1
22.2.1 SQL Incidents 22-1
22.2.2 What SQL Test Case Builder Captures 22-2
22.2.3 Output of SQL Test Case Builder 22-3
22.3 User Interfaces for SQL Test Case Builder 22-4
22.3.1 Graphical Interface for SQL Test Case Builder 22-4
22.3.1.1 Accessing the Incident Manager 22-4
22.3.1.2 Accessing the Support Workbench 22-5
22.3.2 Command-Line Interface for SQL Test Case Builder 22-6
22.4 Running SQL Test Case Builder 22-6
23 Performing Application Tracing
23.1 Overview of End-to-End Application Tracing 23-1
23.1.1 Purpose of End-to-End Application Tracing 23-1
23.1.2 End-to-End Application Tracing in a Multitenant Environment 23-2
23.1.3 Tools for End-to-End Application Tracing 23-3

ORACLE

XVii

23.13.1
23.1.3.2

Overview of the SQL Trace Facility
Overview of TKPROF

23.2 Enabling Statistics Gathering for End-to-End Tracing
23.2.1 Enabling Statistics Gathering for a Client ID
23.2.2 Enabling Statistics Gathering for Services, Modules, and Actions

23.3 Enabling End-to-End Application Tracing

23.3.1 Enabling Tracing for a Client Identifier

23.3.2 Enabling Tracing for a Service, Module, and Action

23.3.3 Enabling Tracing for a Session

23.3.4 Enabling Tracing for the Instance or Database
23.4 Generating Output Files Using SQL Trace and TKPROF
23.4.1 Step 1: Setting Initialization Parameters for Trace File Management
23.4.2 Step 2: Enabling the SQL Trace Facility
23.4.3 Step 3: Generating Output Files with TKPROF
23.4.4 Step 4: Storing SQL Trace Facility Statistics

23.4.4.1
23.4.4.2
23443

Generating the TKPROF Output SQL Script
Editing the TKPROF Output SQL Script
Querying the Output Table

23.5 Guidelines for Interpreting TKPROF Output
23.5.1 Guideline for Interpreting the Resolution of Statistics
23.5.2 Guideline for Recursive SQL Statements
23.5.3 Guideline for Deciding Which Statements to Tune
23.5.4 Guidelines for Avoiding Traps in TKPROF Interpretation

2354.1
23.54.2
23.54.3
23544

Guideline for Avoiding the Argument Trap
Guideline for Avoiding the Read Consistency Trap
Guideline for Avoiding the Schema Trap
Guideline for Avoiding the Time Trap

23.6.1 Application Tracing Utilities
23.6.1.1 TRCSESS

23.6.1.1.1
23.6.1.1.2
23.6.1.1.3
23.6.1.14
23.6.1.15

Purpose
Guidelines
Syntax
Options
Examples

23.6.1.2 TKPROF

23.6.1.2.1
23.6.1.2.2
23.6.1.2.3
23.6.1.2.4
23.6.1.2.5
23.6.1.2.6

ORACLE

Purpose
Guidelines
Syntax
Options
Output
Examples

23-3

23-4

23-4

23-4

23-5

23-6

23-6

23-7

23-8

23-9
23-10
23-11
23-12
23-13
23-15
23-15
23-15
23-15
23-17
23-17
23-17
23-18
23-19
23-19
23-19
23-20
23-21
23-21
23-21
23-22
23-22
23-22
23-22
23-23
23-23
23-24
23-24
23-24
23-24
23-26
23-29

XViii

23.7.1 Views for Application Tracing 23-34
23.7.1.1 Views Relevant for Trace Statistics 23-34
23.7.1.2 Views Related to Enabling Tracing 23-35

Part VIII Automatic SQL Tuning
24 Managing SQL Tuning Sets

24.1 About SQL Tuning Sets 24-1
24.1.1 Purpose of SQL Tuning Sets 24-1
24.1.2 Concepts for SQL Tuning Sets 24-2
24.1.3 User Interfaces for SQL Tuning Sets 24-3

24.1.3.1 Accessing the SQL Tuning Sets Page in Cloud Control 24-3
24.1.3.2 Command-Line Interface to SQL Tuning Sets 24-4
24.1.4 Basic Tasks for SQL Tuning Sets 24-4

24.2 Creating a SQL Tuning Set 24-6

24.3 Loading a SQL Tuning Set 24-7

24.4 Displaying the Contents of a SQL Tuning Set 24-8

24.5 Modifying a SQL Tuning Set 24-11

24.6 Transporting a SQL Tuning Set 24-12
24.6.1 About Transporting SQL Tuning Sets 24-12

24.6.1.1 Basic Steps for Transporting SQL Tuning Sets 24-13
24.6.1.2 Basic Steps for Transporting SQL Tuning Sets When the
CON_DBID Values Differ 24-13
24.6.2 Transporting SQL Tuning Sets with DBMS_SQLTUNE 24-14
24.7 Dropping a SQL Tuning Set 24-17
25 Analyzing SQL with SQL Tuning Advisor

25.1 About SQL Tuning Advisor 25-1
25.1.1 Purpose of SQL Tuning Advisor 25-1
25.1.2 SQL Tuning Advisor Architecture 25-2

25.1.2.1 Input to SQL Tuning Advisor 25-3
25.1.2.2 Output of SQL Tuning Advisor 25-4
25.1.2.3 Automatic Tuning Optimizer Analyses 25-5
25.1.3 SQL Tuning Advisor Operation 25-15
25.1.3.1 Automatic and On-Demand SQL Tuning 25-15
25.1.3.2 Local and Remote SQL Tuning 25-15

25.2 Managing the Automatic SQL Tuning Task 25-17

25.2.1 About the Automatic SQL Tuning Task 25-17
25.2.1.1 Purpose of Automatic SQL Tuning 25-18

ORACLE

XiX

25.2.1.2 Automatic SQL Tuning Concepts 25-18
25.2.1.3 Command-Line Interface to SQL Tuning Advisor 25-18
25.2.1.4 Basic Tasks for Automatic SQL Tuning 25-19
25.2.2 Enabling and Disabling the Automatic SQL Tuning Task 25-20
25.2.2.1 Enabling and Disabling the Automatic SQL Tuning Task Using
Cloud Control 25-20
25.2.2.2 Enabling and Disabling the Automatic SQL Tuning Task from the
Command Line 25-21
25.2.3 Configuring the Automatic SQL Tuning Task 25-23
25.2.3.1 Configuring the Automatic SQL Tuning Task Using Cloud Control 25-23
25.2.3.2 Configuring the Automatic SQL Tuning Task Using the
Command Line 25-24
25.2.4 Viewing Automatic SQL Tuning Reports 25-26
25.2.4.1 Viewing Automatic SQL Tuning Reports Using the Command
Line 25-26
25.3 Running SQL Tuning Advisor On Demand 25-29
25.3.1 About On-Demand SQL Tuning 25-30
25.3.1.1 Purpose of On-Demand SQL Tuning 25-30
25.3.1.2 User Interfaces for On-Demand SQL Tuning 25-30
25.3.1.3 Basic Tasks in On-Demand SQL Tuning 25-31
25.3.2 Creating a SQL Tuning Task 25-33
25.3.3 Configuring a SQL Tuning Task 25-35
25.3.4 Executing a SQL Tuning Task 25-37
25.3.5 Monitoring a SQL Tuning Task 25-38
25.3.6 Displaying the Results of a SQL Tuning Task 25-39
26 Optimizing Access Paths with SQL Access Advisor
26.1 About SQL Access Advisor 26-1
26.1.1 Purpose of SQL Access Advisor 26-1
26.1.2 SQL Access Advisor Architecture 26-2
26.1.2.1 Inputto SQL Access Advisor 26-3
26.1.2.2 Filter Options for SQL Access Advisor 26-3
26.1.2.3 SQL Access Advisor Recommendations 26-4
26.1.2.4 SQL Access Advisor Actions 26-5
26.1.2.5 SQL Access Advisor Repository 26-7
26.1.3 User Interfaces for SQL Access Advisor 26-7
26.1.3.1 Accessing the SQL Access Advisor: Initial Options Page Using
Cloud Control 26-7
26.1.3.2 Command-Line Interface to SQL Tuning Sets 26-8
26.2 Optimizing Access Paths with SQL Access Advisor: Basic Tasks 26-9
26.2.1 Creating a SQL Tuning Set as Input for SQL Access Advisor 26-10
26.2.2 Populating a SQL Tuning Set with a User-Defined Workload 26-11

ORACLE

XX

26.2.3 Creating and Configuring a SQL Access Advisor Task 26-14
26.2.4 Executing a SQL Access Advisor Task 26-16
26.2.5 Viewing SQL Access Advisor Task Results 26-17
26.2.6 Generating and Executing a Task Script 26-21
26.3 Performing a SQL Access Advisor Quick Tune 26-23
26.4 Using SQL Access Advisor: Advanced Tasks 26-24
26.4.1 Evaluating Existing Access Structures 26-24
26.4.2 Updating SQL Access Advisor Task Attributes 26-25
26.4.3 Creating and Using SQL Access Advisor Task Templates 26-25
26.4.4 Terminating SQL Access Advisor Task Execution 26-27
26.4.4.1 Interrupting SQL Access Advisor Tasks 26-28
26.4.4.2 Canceling SQL Access Advisor Tasks 26-28
26.4.5 Deleting SQL Access Advisor Tasks 26-30
26.4.6 Marking SQL Access Advisor Recommendations 26-31
26.4.7 Modifying SQL Access Advisor Recommendations 26-32
26.5 SQL Access Advisor Examples 26-33
26.6 SQL Access Advisor Reference 26-33
26.6.1 Action Attributes in the DBA_ADVISOR_ACTIONS View 26-33
26.6.2 Categories for SQL Access Advisor Task Parameters 26-35
26.6.3 SQL Access Advisor Constants 26-36
Part IX SQL Management Objects
27 Managing SQL Profiles
27.1 About SQL Profiles 27-1
27.1.1 Purpose of SQL Profiles 27-1
27.1.2 Concepts for SQL Profiles 27-2
27.1.2.1 SQL Profile Recommendations 27-3
27.1.2.2 SQL Profiles and SQL Plan Baselines 27-6
27.1.3 User Interfaces for SQL Profiles 27-6
27.1.4 Basic Tasks for SQL Profiles 27-6
27.2 Implementing a SQL Profile 27-7
27.2.1 About SQL Profile Implementation 27-8
27.2.2 Implementing a SQL Profile 27-9
27.3 Listing SQL Profiles 27-9
27.4 Altering a SQL Profile 27-10
27.5 Dropping a SQL Profile 27-12
27.6 Transporting a SQL Profile 27-12
ORACLE XXi

28 Overview of SQL Plan Management

28.1 Purpose of SQL Plan Management 28-1
28.1.1 Benefits of SQL Plan Management 28-2
28.1.2 Differences Between SQL Plan Baselines and SQL Profiles 28-2

28.2 Plan Capture 28-3
28.2.1 Automatic Initial Plan Capture 28-4

28.2.1.1 Eligibility for Automatic Initial Plan Capture 28-4
28.2.1.2 Plan Matching for Automatic Initial Plan Capture 28-5
28.2.2 Manual Plan Capture 28-5

28.3 Plan Selection 28-7

28.4 Plan Evolution 28-8
28.4.1 Purpose of Plan Evolution 28-9
28.4.2 PL/SQL Subprograms for Plan Evolution 28-9

28.5 Storage Architecture for SQL Plan Management 28-10
28.5.1 SQL Management Base 28-10
28.5.2 SQL Statement Log 28-11
28.5.3 SQL Plan History 28-13

28.5.3.1 Enabled Plans 28-13

28.5.3.2 Accepted Plans 28-13

28.5.3.3 Fixed Plans 28-14
29 Managing SQL Plan Baselines

29.1 About Managing SQL Plan Baselines 29-1

29.1.1 User Interfaces for SQL Plan Management 29-1
29.1.1.1 Accessing the SQL Plan Baseline Page in Cloud Control 29-1
29.1.1.2 DBMS_SPM Package 29-2

29.1.2 Basic Tasks in SQL Plan Management 29-3

29.2 Configuring SQL Plan Management 29-4
29.2.1 Configuring the Capture and Use of SQL Plan Baselines 29-4

29.2.1.1 Enabling Automatic Initial Plan Capture for SQL Plan

Management 29-5
29.2.1.2 Configuring Filters for Automatic Plan Capture 29-6
29.2.1.3 Disabling All SQL Plan Baselines 29-9

29.2.2 Managing the SPM Evolve Advisor Task 29-9
29.2.2.1 About the SPM Evolve Advisor Task 29-9
29.2.2.2 Enabling and Disabling the Automatic SPM Evolve Advisor Task 29-10
29.2.2.3 Configuring the Automatic SPM Evolve Advisor Task 29-11

29.3 Displaying Plans in a SQL Plan Baseline 29-13

29.4 Loading SQL Plan Baselines 29-15
29.4.1 About Loading SQL Plan Baselines 29-15

XXIi

ORACLE

29.4.2 Loading Plans from AWR 29-16

29.4.3 Loading Plans from the Shared SQL Area 29-19
29.4.4 Loading Plans from a SQL Tuning Set 29-21
29.4.5 Loading Plans from a Staging Table 29-23
29.5 Evolving SQL Plan Baselines Manually 29-26
29.5.1 About the DBMS_SPM Evolve Functions 29-26
29.5.2 Managing an Evolve Task 29-28
29.6 Dropping SQL Plan Baselines 29-37
29.7 Managing the SQL Management Base 29-39
29.7.1 About Managing the SMB 29-39
29.7.2 Changing the Disk Space Limit for the SMB 29-40
29.7.3 Changing the Plan Retention Policy in the SMB 29-42

30 Migrating Stored Outlines to SQL Plan Baselines

30.1 About Stored Outline Migration 30-1
30.1.1 Purpose of Stored Outline Migration 30-1
30.1.2 How Stored Outline Migration Works 30-2

30.1.2.1 Stages of Stored Outline Migration 30-2
30.1.2.2 Outline Categories and Baseline Modules 30-3
30.1.3 User Interface for Stored Outline Migration 30-5
30.1.4 Basic Steps in Stored Outline Migration 30-6

30.2 Preparing for Stored Outline Migration 30-7

30.3 Migrating Outlines to Utilize SQL Plan Management Features 30-8

30.4 Migrating Outlines to Preserve Stored Outline Behavior 30-9

30.5 Performing Follow-Up Tasks After Stored Outline Migration 30-10

Glossary

Index

ORACLE XXiii

Preface

Preface

Audience

This manual explains how to tune Oracle SQL.

This preface contains the following topics:

This document is intended for database administrators and application developers who
perform the following tasks:

* Generating and interpreting SQL execution plans

* Managing optimizer statistics

* Influencing the optimizer through initialization parameters or SQL hints
* Controlling cursor sharing for SQL statements

* Monitoring SQL execution

» Performing application tracing

* Managing SQL tuning sets

e Using SQL Tuning Advisor or SQL Access Advisor

* Managing SQL profiles

* Managing SQL baselines

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

This manual assumes that you are familiar with Oracle Database Concepts. The
following books are frequently referenced:

e Oracle Database Data Warehousing Guide

XXIV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Database VLDB and Partitioning Guide
e Oracle Database SQL Language Reference
* Oracle Database Reference

Many examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database. See Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE v

Changes in This Release for Oracle Database SQL Tuning Guide

Changes in This Release for Oracle
Database SQL Tuning Guide

This preface describes the most important changes in Oracle Database SQL Tuning
Guide.

This preface contains the following topics:

Changes in Oracle Database 12c Release 2 (12.2.0.1)

New Features

The following features are new in this release:

ORACLE

Oracle Database SQL Tuning Guide for Oracle Database 12¢ Release 2 (12.2.0.1) has
the following changes.

Advisor enhancements

Optimizer Statistics Advisor

Optimizer Statistics Advisor is built-in diagnostic software that analyzes

the quality of statistics and statistics-related tasks. The advisor task runs
automatically in the maintenance window, but you can also run it on demand.
You can then view the advisor report. If the advisor makes recommendations,
then in some cases you can run system-generated scripts to implement them.

See "Analyzing Statistics Using Optimizer Statistics Advisor".
Active Data Guard Support for SQL Tuning Advisor

Using database links, you can tune a standby database workload on a primary
database.

See "Local and Remote SQL Tuning".

DBMS_STATS enhancements

DBMS_STATS preference for automatic column group statistics

If the DBMS_STATS preference AUTO_STAT_EXTENSI ONS is set to ON (by default
it is OFF), then a SQL plan directive can automatically trigger the creation of
column group statistics based on usage of predicates in the workload.

See "Purpose of Optimizer Statistics Preferences".

DBMS_STATS support for external table scan rates and In-Memory column store
(IM column store) statistics

If the database uses an IM column store, then you can set the
i mincu_count parameter to the number of IMCUs in the table or partition,

XXVi

ORACLE

Changes in This Release for Oracle Database SQL Tuning Guide

and i m bl ock_count to the number of blocks. For an external table, scanr at e
specifies the rate at which data is scanned in MB/second.

See "Guideline for External Tables".
DBMS_STATS statistics preference PREFERENCE OVERRI DES PARAMETER

The PREFERENCE_OVERRI DES_PARAMETER statistics preference determines
whether, when gathering optimizer statistics, to override the input value of
a parameter with the statistics preference. In this way, you control when
the database honors a parameter value passed to the statistics gathering
procedures.

See "Statistics Preference Overrides".

Access to current statistics does not require
FLUSH_DATABASE_MONI TORI NG_| NFO

You no longer need to ensure that view metadata is up-to-date by

using DBMS_STATS. FLUSH_DATABASE_MONI TCRI NG_| NFOto save monitoring
information to disk. The statistics shown in DBA TAB_STATI STI CS and

DBA | ND_STATI STI CS come from the same source as DBA TAB_MODI FI CATI ONS,
which means these views show statistics obtained from disk and memory.

See "Determining When Optimizer Statistics Are Stale".

» Separate controls for adaptive plans and adaptive statistics

The OPTI M ZER_ADAPTI VE_PLANS initialization parameter enables (default) or
disables adaptive plans. The OPTI M ZER_ADAPTI VE_STATI STI CS initialization
parameter enables or disables (default) adaptive statistics.

See "When Adaptive Query Plans Are Enabled" and "When Adaptive Statistics Are
Enabled".

* Join enhancements

Join groups

A join group is a user-created object that lists two columns that can be
meaningfully joined. In certain queries, join groups enable the database to
eliminate the performance overhead of decompressing and hashing column
values. Join groups require an IM column store.

See "In-Memory Join Groups".
Band join enhancements

A band join is a special type of nonequijoin in which key values in one data
set must fall within the specified range (“band”) of the second data set. When
the database detects a band join, the database evaluates the costs of band
joins more efficiently, avoiding unnecessary scans of rows that fall outside the
defined bands. In most cases, optimized performance is comparable to an
equijoin.

See "Band Joins".

° Cursor management enhancements

Cursor-duration temporary tables

To materialize the intermediate results of a query, Oracle Database may create
a cursor-duration temporary table in memory during query compilation. For
complex operations such as W TH clause queries and star transformations,

this internal optimization, which enhances the materialization of intermediate

XXVii

Changes in This Release for Oracle Database SQL Tuning Guide

results from repetitively used subqueries, improves performance and
optimizes /0.

See "Cursor-Duration Temporary Tables".
— Fine-grained cursor invalidation

Starting in this release, you can specify deferred invalidation on DDL
statements. When shared SQL areas are marked rolling invalid, the database
assigns each one a randomly generated time period. A hard parse occurs
only if the query executes after the time period has expired. In this way, the
database can diffuse the performance overhead of hard parsing over time.

See "About the Life Cycle of Shared Cursors".
OR expansion enhancement

In previous releases, the optimizer used the CONCATENATI ON operator to perform
the OR expansion. Now the optimizer uses the UNI ON- ALL operator instead. This
enhancement provides several benefits, including enabling interaction among
various transformations, and avoiding the sharing of query structures.

See "OR Expansion”.
SQL plan management enhancements
— You can now capture plans from AWR. See "Manual Plan Capture”.

— In previous releases, automatic capture applied to all repeatable queries.
Starting in this release, you can create filters to capture only the plans for
statements that you choose. See "Eligibility for Automatic Initial Plan Capture”.

Real-Time database operation monitoring enhancements

A session can start or stop a database operation in a different session by
specifying its session ID and serial number.

See "Defining a Composite Database Operation".
Expression tracking

SQL statements commonly include expressions such as plus (+) or minus (-).
More complicated examples include PL/SQL functions or SQL functions such as
LTRI Mand TO_NUMBER. The Expression Statistics Store (ESS) maintains usage
information about expressions identified during compilation and captured during
execution.

See "About the Expression Statistics Store (ESS)".
Enhancements for application tracing in a multitenant environment

CDB administrators and PDB administrators can use new V$ views to access trace
data that is relevant for a specific PDB.

See "End-to-End Application Tracing in a Multitenant Environment".

Desupported Features

The following features are desupported in Oracle Database 12c¢ Release 2 (12.2.0.1).

ORACLE

The OPTI M ZER_ADAPTI VE_FEATURES initialization parameter

XXVIIi

Changes in This Release for Oracle Database SQL Tuning Guide

¢ See Also:

Other Changes

This topic describes additional changes in the release.

Oracle Database Upgrade Guide for a list of desupported features

New Real-World Performance content

In this release, the book incorporates information provided by the Real-World
Performance group, including the following:

"Improving Real-World Performance Through Cursor Sharing" explains how to
use bind variables and new features such as adaptive cursor sharing

Changes in Oracle Database 12c Release 1 (12.1.0.2)

Oracle Database SQL Tuning Guide for Oracle Database 12¢ Release 1 (12.1.0.2) has
the following changes.

New Features

The following features are new in this release.

In-Memory aggregation

This optimization minimizes the join and GROUP BY processing required for each
row when joining a single large table to multiple small tables, as in a star
schema. VECTOR GROUP BY aggregation uses the infrastructure related to parallel
guery (PQ) processing, and blends it with CPU-efficient algorithms to maximize
the performance and effectiveness of the initial aggregation performed before
redistributing fact data.

See "In-Memory Aggregation (VECTOR GROUP BY)".

SQL Monitor support for adaptive query plans

SQL Monitor supports adaptive query plans in the following ways:

Indicates whether a query plan is adaptive, and show its current status:
resolving or resolved.

Provides a list that enables you to select the current, full, or final query plans

See "Adaptive Query Plans" to learn more about adaptive query plans, and
"Monitoring SQL Executions Using Cloud Control" to learn more about SQL
Monitor.

Changes in Oracle Database 12c Release 1 (12.1.0.1)

Oracle Database SQL Tuning Guide for Oracle Database 12c Release 1 (12.1) has the
following changes.

ORACLE

XXiX

New Features

ORACLE

Changes in This Release for Oracle Database SQL Tuning Guide

The following features are new in this release.

Adaptive SQL Plan Management (SPM)

The SPM Evolve Advisor is a task infrastructure that enables you to schedule
an evolve task, rerun an evolve task, and generate persistent reports. The

new automatic evolve task, SYS AUTO SPM EVOLVE_TASK, runs in the default
maintenance window. This task ranks all unaccepted plans and runs the evolve
process for them. If the task finds a new plan that performs better than existing
plan, the task automatically accepts the plan. You can also run evolution tasks
manually using the DBMS_SPMpackage.

See "Managing the SPM Evolve Advisor Task".
Adaptive query optimization

Adaptive query optimization is a set of capabilities that enable the optimizer to
make run-time adjustments to execution plans and discover additional information
that can lead to better statistics. The set of capabilities include:

— Adaptive query plans

An adaptive query plan has built-in options that enable the final plan for a
statement to differ from the default plan. During the first execution, before a
specific subplan becomes active, the optimizer makes a final decision about
which option to use. The optimizer bases its choice on observations made
during the execution up to this point. The ability of the optimizer to adapt plans
can improve query performance.

See "Adaptive Query Plans".
— Automatic reoptimization

When using automatic reoptimization, the optimizer monitors the initial
execution of a query. If the actual execution statistics vary significantly from
the original plan statistics, then the optimizer records the execution statistics
and uses them to choose a better plan the next time the statement executes.
The database uses information obtained during automatic reoptimization to
generate SQL plan directives automatically.

See "Automatic Reoptimization".

— SQL plan directives

In releases earlier than Oracle Database 12c, the database stored compilation
and execution statistics in the shared SQL area, which is nonpersistent.
Starting in this release, the database can use a SQL plan directive, which is
additional information and instructions that the optimizer can use to generate a
more optimal plan. The database stores SQL plan directives persistently in the
SYSAUX tablespace. When generating an execution plan, the optimizer can use
SQL plan directives to obtain more information about the objects accessed in
the plan.

See "SQL Plan Directives".

— Dynamic statistics enhancements

In releases earlier than Oracle Database 12c¢, Oracle Database only used
dynamic statistics (previously called dynamic sampling) when one or more of

XXX

ORACLE

Changes in This Release for Oracle Database SQL Tuning Guide

the tables in a query did not have optimizer statistics. Starting in this release,
the optimizer automatically decides whether dynamic statistics are useful and
which dynamic statistics level to use for all SQL statements. Dynamic statistics
gathers are persistent and usable by other queries.

See "Supplemental Dynamic Statistics".
New types of histograms

This release introduces top frequency and hybrid histograms. If a column contains
more than 254 distinct values, and if the top 254 most frequent values occupy
more than 99% of the data, then the database creates a top frequency histogram
using the top 254 most frequent values. By ignoring the nonpopular values,

which are statistically insignificant, the database can produce a better quality
histogram for highly popular values. A hybrid histogram is an enhanced height-
based histogram that stores the exact frequency of each endpoint in the sample,
and ensures that a value is never stored in multiple buckets.

Also, regular frequency histograms have been enhanced. The optimizer computes
frequency histograms during NDV computation based on a full scan of the

data rather than a small sample (when AUTO_SAMPLI NGis used). The enhanced
frequency histograms ensure that even highly infrequent values are properly
represented with accurate bucket counts within a histogram.

See "Histograms ".
Monitoring database operations

Real-Time Database Operations Monitoring enables you to monitor long

running database tasks such as batch jobs, scheduler jobs, and Extraction,
Transformation, and Loading (ETL) jobs as a composite business operation. This
feature tracks the progress of SQL and PL/SQL queries associated with the
business operation being monitored. As a DBA or developer, you can define
business operations for monitoring by explicitly specifying the start and end of
the operation or implicitly with tags that identify the operation.

See "Monitoring Database Operations ".
Concurrent statistics gathering

You can concurrently gather optimizer statistics on multiple tables, table partitions,
or table subpartitions. By fully utilizing multiprocessor environments, the database
can reduce the overall time required to gather statistics. Oracle Scheduler and
Advanced Queuing create and manage jobs to gather statistics concurrently.

The scheduler decides how many jobs to execute concurrently, and how

many to queue based on available system resources and the value of the
JOB_QUEUE_PROCESSES initialization parameter.

See "Gathering Optimizer Statistics Concurrently".
Reporting mode for DBMS_STATS statistics gathering functions

You can run the DBM5_STATS functions in reporting mode. In this mode, the
optimizer does not actually gather statistics, but reports objects that would be
processed if you were to use a specified statistics gathering function.

See "Running Statistics Gathering Functions in Reporting Mode".
Reports on past statistics gathering operations

You can use DBMS_STATS functions to report on a specific statistics gathering
operation or on operations that occurred during a specified time.

XXXi

ORACLE

Changes in This Release for Oracle Database SQL Tuning Guide

See "Reporting on Past Statistics Gathering Operations".
Automatic column group creation

With column group statistics, the database gathers optimizer statistics on a group
of columns treated as a unit. Starting in Oracle Database 12c, the database
automatically determines which column groups are required in a specified
workload or SQL tuning set, and then creates the column groups. Thus, for any
specified workload, you no longer need to know which columns from each table
must be grouped.

See "Detecting Useful Column Groups for a Specific Workload".
Session-private statistics for global temporary tables

Starting in this release, global temporary tables have a different set of optimizer
statistics for each session. Session-specific statistics improve performance and
manageability of temporary tables because users no longer need to set statistics
for a global temporary table in each session or rely on dynamic statistics. The
possibility of errors in cardinality estimates for global temporary tables is lower,
ensuring that the optimizer has the necessary information to determine an optimal
execution plan.

See "Session-Specific Statistics for Global Temporary Tables".
SQL Test Case Builder enhancements

SQL Test Case Builder can capture and replay actions and events that enable
you to diagnose incidents that depend on certain dynamic and volatile factors.
This capability is especially useful for parallel query and automatic memory
management.

See Gathering Diagnostic Data with SQL Test Case Builder.
Online statistics gathering for bulk loads

A bulk load is a CREATE TABLE AS SELECT or | NSERT I NTO ... SELECT operation.
In releases earlier than Oracle Database 12c, you needed to manually gather
statistics after a bulk load to avoid the possibility of a suboptimal execution

plan caused by stale statistics. Starting in this release, Oracle Database

gathers optimizer statistics automatically, which improves both performance and
manageability.

See "Online Statistics Gathering for Bulk Loads".
Reuse of synopses after partition maintenance operations

ALTER TABLE EXCHANGE is a common partition maintenance operation. During a
partition exchange, the statistics of the partition and the table are also exchanged.
A synopsis is a set of auxiliary statistics gathered on a partitioned table when the

| NCREMENTAL value is set to tr ue. In releases earlier than Oracle Database 12c,
you could not gather table-level synopses on a table. Thus, you could not gather
table-level synopses on a table, exchange the table with a partition, and end up
with synopses on the partition. You had to explicitly gather optimizer statistics in
incremental mode to create the missing synopses. Starting in this release, you
can gather table-level synopses on a table. When you exchange this table with a
partition in an incremental mode table, the synopses are also exchanged.

See "Maintaining Incremental Statistics for Partition Maintenance Operations”.

Automatic updates of global statistics for tables with stale or locked partition
statistics

XXX

Changes in This Release for Oracle Database SQL Tuning Guide

Incremental statistics can automatically calculate global statistics for a partitioned
table even if the partition or subpartition statistics are stale and locked.

See "Maintaining Incremental Statistics for Tables with Stale or Locked Patrtition
Statistics".

e Cube query performance enhancements

These enhancements minimize CPU and memory consumption and reduce 1/O for
gueries against cubes.

See Table 7-7 to learn about the CUBE JO N operation.

Deprecated Features

The following features are deprecated in this release, and may be desupported in a
future release.

» Stored outlines

See "Managing SQL Plan Baselines" for information about alternatives.
e The SI M LAR value for the CURSOR_SHARI NG initialization parameter

This value is deprecated. Use FORCE instead.

See "Do Not Use CURSOR_SHARING = FORCE as a Permanent Fix".

Desupported Features

Some features previously described in this document are desupported in Oracle
Database 12c.

See Oracle Database Upgrade Guide for a list of desupported features.

Other Changes

The following are additional changes in the release.

* New tuning books

The Oracle Database 11g Oracle Database Performance Tuning Guide has been
divided into two books for Oracle Database 12c:

— Oracle Database Performance Tuning Guide, which contains only topics that
pertain to tuning the database

— Oracle Database SQL Tuning Guide, which contains only topics that pertain to
tuning SQL

SQL Performance Fundamentals

SQL tuning is improving SQL statement performance to meet specific, measurable,
and achievable goals.

This part contains the following chapters:

ORACLE

Introduction to SQL Tuning

SQL tuning is the attempt to diagnose and repair SQL statements that fail to meet a
performance standard.

This chapter contains the following topics:

1.1 About SQL Tuning

SQL tuning is the iterative process of improving SQL statement performance to meet
specific, measurable, and achievable goals.

SQL tuning implies fixing problems in deployed applications. In contrast, application
design sets the security and performance goals before deploying an application.

" See Also:

e SQL Performance Methodology

e "Guidelines for Designing Your Application" to learn how to design for
SQL performance

1.2 Purpose of SQL Tuning

A SQL statement becomes a problem when it fails to perform according to a
predetermined and measurable standard.

After you have identified the problem, a typical tuning session has one of the following
goals:

* Reduce user response time, which means decreasing the time between when a
user issues a statement and receives a response

e Improve throughput, which means using the least amount of resources necessary
to process all rows accessed by a statement

For a response time problem, consider an online book seller application that hangs
for three minutes after a customer updates the shopping cart. Contrast with a three-
minute parallel query in a data warehouse that consumes all of the database host
CPU, preventing other queries from running. In each case, the user response time is
three minutes, but the cause of the problem is different, and so is the tuning goal.

ORACLE 1-1

1.3 Prerequisites for SQL Tuning

SQL performance tuning requires a foundation of database knowledge.

Chapter 1
Prerequisites for SQL Tuning

If you are tuning SQL performance, then this manual assumes that you have the
knowledge and skills shown in the following table.

Table 1-1 Required Knowledge

Required Knowledge

Description

To Learn More

Database architecture

Database architecture is not
the domain of administrators
alone. As a developer, you want
to develop applications in the
least amount of time against

an Oracle database, which
requires exploiting the database
architecture and features. For
example, not understanding
Oracle Database concurrency
controls and multiversioning
read consistency may make an
application corrupt the integrity
of the data, run slowly, and
decrease scalability.

Oracle Database Concepts
explains the basic relational

data structures, transaction
management, storage structures,
and instance architecture of
Oracle Database.

SQL and PL/SQL

Because of the existence of
GUI-based tools, it is possible

to create applications and
administer a database without
knowing SQL. However, it is
impossible to tune applications or
a database without knowing SQL.

Oracle Database Concepts
includes an introduction to Oracle
SQL and PL/SQL. You must also
have a working knowledge of
Oracle Database SQL Language
Reference, Oracle Database
PL/SQL Packages and Types
Reference, and Oracle Database
PL/SQL Packages and Types
Reference.

SQL tuning tools

The database generates
performance statistics, and
provides SQL tuning tools that
interpret these statistics.

Oracle Database 2 Day +
Performance Tuning Guide
provides an introduction to the
principal SQL tuning tools.

1.4 Tasks and Tools for SQL Tuning

After you have identified the goal for a tuning session, for example, reducing user
response time from three minutes to less than a second, the problem becomes how to

accomplish this goal.

This section contains the following topics:

1.4.1 SQL Tuning Tasks

The specifics of a tuning session depend on many factors, including whether you tune
proactively or reactively.

ORACLE

1-2

ORACLE

Chapter 1
Tasks and Tools for SQL Tuning

In proactive SQL tuning, you regularly use SQL Tuning Advisor to determine whether
you can make SQL statements perform better. In reactive SQL tuning, you correct a
SQL-related problem that a user has experienced.

Whether you tune proactively or reactively, a typical SQL tuning session involves all or
most of the following tasks:

1.

Identifying high-load SQL statements

Review past execution history to find the statements responsible for a large share
of the application workload and system resources.

Gathering performance-related data

The optimizer statistics are crucial to SQL tuning. If these statistics do not exist or
are no longer accurate, then the optimizer cannot generate the best plan. Other
data relevant to SQL performance include the structure of tables and views that
the statement accessed, and definitions of any indexes available to the statement.

Determining the causes of the problem

Typically, causes of SQL performance problems include:

Inefficiently designed SQL statements

If a SQL statement is written so that it performs unnecessary work, then the
optimizer cannot do much to improve its performance. Examples of inefficient
design include

— Neglecting to add a join condition, which leads to a Cartesian join
— Using hints to specify a large table as the driving table in a join

— Specifying UNI ON instead of UNI ON ALL

— Making a subquery execute for every row in an outer query
Suboptimal execution plans

The query optimizer (also called the optimizer) is internal software that
determines which execution plan is most efficient. Sometimes the optimizer
chooses a plan with a suboptimal access path, which is the means by which
the database retrieves data from the database. For example, the plan for a
guery predicate with low selectivity may use a full table scan on a large table
instead of an index.

You can compare the execution plan of an optimally performing SQL
statement to the plan of the statement when it performs suboptimally. This
comparison, along with information such as changes in data volumes, can
help identify causes of performance degradation.

Missing SQL access structures

Absence of SQL access structures, such as indexes and materialized views,
is a typical reason for suboptimal SQL performance. The optimal set of access
structures can improve SQL performance by orders of magnitude.

Stale optimizer statistics

Statistics gathered by DBVS_STATS can become stale when the statistics
maintenance operations, either automatic or manual, cannot keep up with

the changes to the table data caused by DML. Because stale statistics on a
table do not accurately reflect the table data, the optimizer can make decisions
based on faulty information and generate suboptimal execution plans.

1-3

Chapter 1
Tasks and Tools for SQL Tuning

e Hardware problems

Suboptimal performance might be connected with memory, 1/0, and CPU
problems.

4. Defining the scope of the problem

The scope of the solution must match the scope of the problem. Consider a
problem at the database level and a problem at the statement level. For example,
the shared pool is too small, which causes cursors to age out quickly, which in turn
causes many hard parses. Using an initialization parameter to increase the shared
pool size fixes the problem at the database level and improves performance for

all sessions. However, if a single SQL statement is not using a helpful index,

then changing the optimizer initialization parameters for the entire database could
harm overall performance. If a single SQL statement has a problem, then an
appropriately scoped solution addresses just this problem with this statement.

5. Implementing corrective actions for suboptimally performing SQL statements

These actions vary depending on circumstances. For example, you might rewrite
a SQL statement to be more efficient, avoiding unnecessary hard parsing by
rewriting the statement to use bind variables. You might also use equijoins,
remove functions from WHERE clauses, and break a complex SQL statement into
multiple simple statements.

In some cases, you improve SQL performance not by rewriting the statement,

but by restructuring schema objects. For example, you might index a new access
path, or reorder columns in a concatenated index. You might also partition a table,
introduce derived values, or even change the database design.

6. Preventing SQL performance regressions

To ensure optimal SQL performance, verify that execution plans continue to
provide optimal performance, and choose better plans if they come available. You
can achieve these goals using optimizer statistics, SQL profiles, and SQL plan
baselines.

¢ See Also:

¢ "Shared Pool Check"

e Oracle Database Concepts to learn more about the shared pool

1.4.2 SQL Tuning Tools

ORACLE

SQL tuning tools are either automated or manual.

In this context, a tool is automated if the database itself can provide diagnosis, advice,
or corrective actions. A manual tool requires you to perform all of these operations.

All tuning tools depend on the basic tools of the dynamic performance views, statistics,
and metrics that the database instance collects. The database itself contains the data
and metadata required to tune SQL statements.

This section contains the following topics:

1-4

Chapter 1
Tasks and Tools for SQL Tuning

1.4.2.1 Automated SQL Tuning Tools

Oracle Database provides several advisors relevant for SQL tuning.

Additionally, SQL plan management is a mechanism that can prevent performance
regressions and also help you to improve SQL performance.

All of the automated SQL tuning tools can use SQL tuning sets as input. A SQL tuning
set (STS) is a database object that includes one or more SQL statements along with
their execution statistics and execution context.

This section contains the following topics:

See Also:

e "About SQL Tuning Sets"

e Oracle Database 2 Day + Performance Tuning Guide to learn more
about managing SQL tuning sets

1.4.2.1.1 Automatic Database Diagnostic Monitor (ADDM)

ADDM is self-diagnostic software built into Oracle Database.

ADDM can automatically locate the root causes of performance problems, provide
recommendations for correction, and quantify the expected benefits. ADDM also
identifies areas where no action is necessary.

ADDM and other advisors use Automatic Workload Repository (AWR), which is an
infrastructure that provides services to database components to collect, maintain, and
use statistics. ADDM examines and analyzes statistics in AWR to determine possible
performance problems, including high-load SQL.

For example, you can configure ADDM to run nightly. In the morning, you can examine
the latest ADDM report to see what might have caused a problem and if there is a
recommended fix. The report might show that a particular SELECT statement consumed
a huge amount of CPU, and recommend that you run SQL Tuning Advisor.

¢ See Also:

e Oracle Database 2 Day + Performance Tuning Guide

e Oracle Database Performance Tuning Guide

1.4.2.1.2 SQL Tuning Advisor

ORACLE

SQL Tuning Advisor is internal diagnostic software that identifies problematic SQL
statements and recommends how to improve statement performance.

When run during database maintenance windows as an automated maintenance task,
SQL Tuning Advisor is known as Automatic SQL Tuning Advisor.

1-5

Chapter 1
Tasks and Tools for SQL Tuning

SQL Tuning Advisor takes one or more SQL statements as an input and invokes the
Automatic Tuning Optimizer to perform SQL tuning on the statements. The advisor
performs the following types of analysis:

e Checks for missing or stale statistics
* Builds SQL profiles

A SQL profile is a set of auxiliary information specific to a SQL statement. A
SQL profile contains corrections for suboptimal optimizer estimates discovered
during Automatic SQL Tuning. This information can improve optimizer estimates
for cardinality, which is the number of rows that is estimated to be or actually is
returned by an operation in an execution plan, and selectivity. These improved
estimates lead the optimizer to select better plans.

» Explores whether a different access path can significantly improve performance
* Identifies SQL statements that lend themselves to suboptimal plans

The output is in the form of advice or recommendations, along with a rationale for each
recommendation and its expected benefit. The recommendation relates to a collection
of statistics on objects, creation of new indexes, restructuring of the SQL statement, or
creation of a SQL profile. You can choose to accept the recommendations to complete
the tuning of the SQL statements.

¢ See Also:

e "Analyzing SQL with SQL Tuning Advisor"

e Oracle Database 2 Day + Performance Tuning Guide

1.4.2.1.3 SQL Access Advisor

SQL Access Advisor is internal diagnostic software that recommends which
materialized views, indexes, and materialized view logs to create, drop, or retain.

SQL Access Advisor takes an actual workload as input, or the advisor can derive

a hypothetical workload from the schema. SQL Access Advisor considers the trade-
offs between space usage and query performance, and recommends the most cost-
effective configuration of new and existing materialized views and indexes. The
advisor also makes recommendations about partitioning.

¢ See Also:

e "About SQL Access Advisor"

e Oracle Database 2 Day + Performance Tuning Guide

1.4.2.1.4 SQL Plan Management

SQL plan management is a preventative mechanism that enables the optimizer to
automatically manage execution plans, ensuring that the database uses only known or
verified plans.

ORACLE 1-6

Chapter 1
Tasks and Tools for SQL Tuning

This mechanism can build a SQL plan baseline, which contains one or more accepted
plans for each SQL statement. By using baselines, SQL plan management can
prevent plan regressions from environmental changes, while permitting the optimizer
to discover and use better plans.

" See Also:

e "Overview of SQL Plan Management"
e Oracle Database PL/SQL Packages and Types Reference
to learn about the DBVMS_SPMpackage

1.4.2.1.5 SQL Performance Analyzer

SQL Performance Analyzer determines the effect of a change on a SQL workload by
identifying performance divergence for each SQL statement.

System changes such as upgrading a database or adding an index may cause
changes to execution plans, affecting SQL performance. By using SQL Performance
Analyzer, you can accurately forecast the effect of system changes on SQL
performance. Using this information, you can tune the database when SQL
performance regresses, or validate and measure the gain when SQL performance
improves.

" See Also:

Oracle Database Testing Guide

1.4.2.2 Manual SQL Tuning Tools

In some situations, you may want to run manual tools in addition to the automated
tools. Alternatively, you may not have access to the automated tools.

This section contains the following topics:

1.4.2.2.1 Execution Plans

ORACLE

Execution plans are the principal diagnostic tool in manual SQL tuning. For example,
you can view plans to determine whether the optimizer selects the plan you expect, or
identify the effect of creating an index on a table.

You can display execution plans in multiple ways. The following tools are the most
commonly used:

« DBVS_XPLAN

You can use the DBM5_XPLAN package methods to display the execution plan
generated by the EXPLAI N PLAN command and query of V$SQ._PLAN.

 EXPLAIN PLAN

1-7

Chapter 1
Tasks and Tools for SQL Tuning

This SQL statement enables you to view the execution plan that the optimizer
would use to execute a SQL statement without actually executing the statement.
See Oracle Database SQL Language Reference.

e V$SQ_PLAN and related views

These views contain information about executed SQL statements, and their
execution plans, that are still in the shared pool. See Oracle Database Reference.

* AUTOTRACE

The AUTOTRACE command in SQL*Plus generates the execution plan and statistics
about the performance of a query. This command provides statistics such as disk
reads and memory reads. See SQL*Plus User's Guide and Reference.

1.4.2.2.2 Real-Time SQL Monitoring and Real-Time Database Operations

The Real-Time SQL Monitoring feature of Oracle Database enables you to monitor the
performance of SQL statements while they are executing. By default, SQL monitoring
starts automatically when a statement runs in parallel, or when it has consumed at
least 5 seconds of CPU or I/O time in a single execution.

A database operation is a set of database tasks defined by end users or application
code, for example, a batch job or Extraction, Transformation, and Loading (ETL)
processing. You can define, monitor, and report on database operations. Real-
Time Database Operations provides the ability to monitor composite operations
automatically. The database automatically monitors parallel queries, DML, and DDL
statements as soon as execution begins.

Oracle Enterprise Manager Cloud Control (Cloud Control) provides easy-to-use SQL
monitoring pages. Alternatively, you can monitor SQL-related statistics using the
V$SQL_MONI TOR and V$SQL_PLAN_MONI TOR views. You can use these views with the
following views to get more information about executions that you are monitoring:

« V$ACTI VE_SESSI ON_H STCRY

* V$SESSI ON
e V$SESSI ON_LONGOPS
- VSQL
. V$SQL_PLAN
¢ See Also:

e "About Monitoring Database Operations"

e Oracle Database Reference to learn about the V$ views

1.4.2.2.3 Application Tracing

ORACLE

A SQL trace file provides performance information on individual SQL statements:
parse counts, physical and logical reads, misses on the library cache, and so on.

Trace files are sometimes useful for diagnosing SQL performance problems. You can
enable and disable SQL tracing for a specific session using the DBVMS_MONI TOR or

1-8

Chapter 1
Tasks and Tools for SQL Tuning

DBM5_SESSI ON packages. Oracle Database implements tracing by generating a trace
file for each server process when you enable the tracing mechanism.

Oracle Database provides the following command-line tools for analyzing trace files:

* TKPRCF

This utility accepts as input a trace file produced by the SQL Trace facility, and
then produces a formatted output file.

e trcsess

This utility consolidates trace output from multiple trace files based on criteria
such as session ID, client ID, and service ID. After t r csess merges the

trace information into a single output file, you can format the output file with
TKPROF. t r csess is useful for consolidating the tracing of a particular session for
performance or debugging purposes.

End-to-End Application Tracing simplifies the process of diagnosing performance
problems in multitier environments. In these environments, the middle tier routes a
request from an end client to different database sessions, making it difficult to track
a client across database sessions. End-to-End application tracing uses a client ID to
uniquely trace a specific end-client through all tiers to the database.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_MONI TOR and DBMS_SESS| ON

1.4.2.2.4 Optimizer Hints

A hint is an instruction passed to the optimizer through comments in a SQL statement.
Hints enable you to make decisions normally made automatically by the optimizer.

In a test or development environment, hints are useful for testing the performance

of a specific access path. For example, you may know that a specific index is more
selective for certain queries. In this case, you may use hints to instruct the optimizer to
use a better execution plan, as in the following example:

SELECT /*+ I NDEX (enpl oyees enp_departnment ix) */
enpl oyee_id, departnent_id

FROM enpl oyees

WHERE department _id > 50;

¢ See Also:

e "Influencing the Optimizer with Hints"

e Oracle Database SQL Language Reference to learn more about hints

ORACLE 1-9

Chapter 1
Tasks and Tools for SQL Tuning

1.4.3 User Interfaces to SQL Tuning Tools

ORACLE

Cloud Control is a system management tool that provides centralized management of
a database environment. Cloud Control provides access to most tuning tools.

By combining a graphical console, Oracle Management Servers, Oracle Intelligent
Agents, common services, and administrative tools, Cloud Control provides a
comprehensive system management platform.

You can access all SQL tuning tools using a command-line interface. For example, the
DBM5_SQLTUNE package is the command-line interface for SQL Tuning Advisor.

Oracle recommends Cloud Control as the best interface for database administration
and tuning. In cases where the command-line interface better illustrates a particular
concept or task, this manual uses command-line examples. However, in these cases
the tuning tasks include a reference to the principal Cloud Control page associated
with the task.

1-10

SQL Performance Methodology

This chapter describes the recommended methodology for SQL tuning.

" Note:

This book assumes that you have learned the Oracle Database performance
methodology described in Oracle Database 2 Day + Performance Tuning
Guide.

This chapter contains the following topics:

2.1 Guidelines for Designing Your Application

The key to obtaining good SQL performance is to design your application with
performance in mind.

This section contains the following topics:

2.1.1 Guideline for Data Modeling

Data modeling is important to successful application design.

You must perform data modeling in a way that represents the business practices.
Heated debates may occur about the correct data model. The important thing is to
apply greatest modeling efforts to those entities affected by the most frequent business
transactions.

In the modeling phase, there is a great temptation to spend too much time modeling
the non-core data elements, which results in increased development lead times. Use
of modeling tools can then rapidly generate schema definitions and can be useful
when a fast prototype is required.

2.1.2 Guideline for Writing Efficient Applications

During the design and architecture phase of system development, ensure that the
application developers understand SQL execution efficiency.

To achieve this goal, the development environment must support the following
characteristics:

* Good database connection management

Connecting to the database is an expensive operation that is not scalable.
Therefore, a best practice is to minimize the number of concurrent connections to
the database. A simple system, where a user connects at application initialization,
is ideal. However, in a web-based or multitiered application in which application

ORACLE 2-1

ORACLE

Chapter 2
Guidelines for Designing Your Application

servers multiplex database connections to users, this approach can be difficult.
With these types of applications, design them to pool database connections, and
not reestablish connections for each user request.

Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing activity
on the system. Parsing is the process of interpreting a SQL statement and creating
an execution plan for it. This process has many phases, including syntax checking,
security checking, execution plan generation, and loading shared structures into
the shared pool. There are two types of parse operations:

— Hard parsing

A SQL statement is submitted for the first time, and no match is found in
the shared pool. Hard parses are the most resource-intensive and unscalable,
because they perform all the operations involved in a parse.

— Soft parsing

A SQL statement is submitted for the first time, and a match is found in

the shared pool. The match can be the result of previous execution by
another user. The SQL statement is shared, which is optimal for performance.
However, soft parses are not ideal, because they still require syntax and
security checking, which consume system resources.

Because parsing should be minimized as much as possible, application
developers should design their applications to parse SQL statements once and
execute them many times. This is done through cursors. Experienced SQL
programmers should be familiar with the concept of opening and re-executing
Cursors.

Effective use of bind variables

Application developers must also ensure that SQL statements are shared within
the shared pool. To achieve this goal, use bind variables to represent the parts
of the query that change from execution to execution. If this is not done, then the
SQL statement is likely to be parsed once and never re-used by other users. To
ensure that SQL is shared, use bind variables and do not use string literals with
SQL statements. For example:

Statement with string literals:
SELECT *

FROM enpl oyees
WHERE | ast_name LIKE 'KING ;

Statement with bind variables:

SELECT *
FROM enpl oyees
WHERE | ast _name LIKE :1;

The following example shows the results of some tests on a simple OLTP
application:

Test #Users Supported
No Parsing all statements 270
Soft Parsing all statements 150

2-2

Chapter 2
Guidelines for Deploying Your Application

Hard Parsing all statements 60
Re- Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as
the number of CPUs on the system increase.

2.2 Guidelines for Deploying Your Application

To achieve optimal performance, deploy your application with the same care that you
put into designing it.

This section contains the following topics:

2.2.1 Guideline for Deploying in a Test Environment

ORACLE

The testing process mainly consists of functional and stability testing. At some point in
the process, you must perform performance testing.

The following list describes simple rules for performance testing an application. If
correctly documented, then this list provides important information for the production
application and the capacity planning process after the application has gone live.

* Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning Advisor
for design validation.

» Test with realistic data volumes and distributions.

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume
and cardinality between tables. All the production indexes should be built and the
schema statistics should be populated correctly.

» Use the correct optimizer mode.
Perform all testing with the optimizer mode that you plan to use in production.
» Test a single user performance.

Test a single user on an idle or lightly-used database for acceptable performance.
If a single user cannot achieve acceptable performance under ideal conditions,
then multiple users cannot achieve acceptable performance under real conditions.

e Obtain and document plans for all SQL statements.

Obtain an execution plan for each SQL statement. Use this process to verify that
the optimizer is obtaining an optimal execution plan, and that the relative cost of
the SQL statement is understood in terms of CPU time and physical 1/0s. This
process assists in identifying the heavy use transactions that require the most
tuning and performance work in the future.

e Attempt multiuser testing.

This process is difficult to perform accurately, because user workload and profiles
might not be fully quantified. However, transactions performing DML statements
should be tested to ensure that there are no locking conflicts or serialization
problems.

» Test with the correct hardware configuration.

2-3

Chapter 2
Guidelines for Deploying Your Application

Test with a configuration as close to the production system as possible. Using

a realistic system is particularly important for network latencies, I/O subsystem
bandwidth, and processor type and speed. Failing to use this approach may result
in an incorrect analysis of potential performance problems.

* Measure steady state performance.

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where

users are connected to the application and gradually start performing work on the
application. This process allows for frequently cached data to be initialized into the
cache and single execution operations—such as parsing—to be completed before
the steady state condition. Likewise, after a benchmark run, a ramp-down period is
useful so that the system frees resources, and users cease work and disconnect.

2.2.2 Guidelines for Application Rollout

ORACLE

When new applications are rolled out, two strategies are commonly adopted: the Big
Bang approach, in which all users migrate to the new system at once, and the trickle
approach, in which users slowly migrate from existing systems to the new one.

Both approaches have merits and disadvantages. The Big Bang approach relies

on reliable testing of the application at the required scale, but has the advantage

of minimal data conversion and synchronization with the old system, because it is
simply switched off. The Trickle approach allows debugging of scalability issues as the
workload increases, but might mean that data must be migrated to and from legacy
systems as the transition takes place.

It is difficult to recommend one approach over the other, because each technique

has associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced to
the new application, and allows the system to be reconfigured while only affecting the
migrated users. This approach affects the work of the early adopters, but limits the
load on support services. Thus, unscheduled outages only affect a small percentage of
the user population.

The decision on how to roll out a new application is specific to each business. Any
adopted approach has its own unique pressures and stresses. The more testing and
knowledge that you derive from the testing process, the more you realize what is best
for the rollout.

2-4

Query Optimizer Fundamentals

To tune Oracle SQL, you must understand the query optimizer. The optimizer is built-in
software that determines the most efficient method for a statement to access data.

This part contains the following chapters:

ORACLE

SQL Processing

This chapter explains how database processes DDL statements to create objects,

DML to modify data, and queries to retrieve data.

This chapter contains the following topics:

3.1 About SQL Processing

SQL processing is the parsing, optimization, row source generation, and execution of

ORACLE

a SQL statement.

The following figure depicts the general stages of SQL processing. Depending on the

statement, the database may omit some of these stages.

Figure 3-1 Stages of SQL Processing

Generation of

SQL Statement

Parsing

v

Syntax
Check

v

Semantic
Check

v

Shared Pool
Check

Soft Parse

Hard Parse

multiple
execution plans

Generation of

Optimization

v

query plan

Row Source
Generation

v

Execution

3-1

Chapter 3
About SQL Processing

This section contains the following topics:

3.1.1 SQL Parsing

The first stage of SQL processing is parsing.

The parsing stage involves separating the pieces of a SQL statement into a data
structure that other routines can process. The database parses a statement when
instructed by the application, which means that only the application, and not the
database itself, can reduce the number of parses.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a
cursor, which is a handle for the session-specific private SQL area that holds a parsed
SQL statement and other processing information. The cursor and private SQL area are
in the program global area (PGA).

During the parse call, the database performs checks that identify the errors that can
be found before statement execution. Some errors cannot be caught by parsing. For
example, the database can encounter deadlocks or errors in data conversion only
during statement execution.

This section contains the following topics:

¢ See Also:

Oracle Database Concepts to learn about deadlocks

3.1.1.1 Syntax Check

Oracle Database must check each SQL statement for syntactic validity.

A statement that breaks a rule for well-formed SQL syntax fails the check. For
example, the following statement fails because the keyword FROMis misspelled as
FORM

SQ.> SELECT * FORM enpl oyees;
SELECT * FORM enpl oyees

ERROR at line 1:
ORA- 00923: FROM keyword not found where expected

3.1.1.2 Semantic Check

The semantics of a statement are its meaning. A semantic check determines whether
a statement is meaningful, for example, whether the objects and columns in the
statement exist.

ORACLE 3-2

Chapter 3
About SQL Processing

A syntactically correct statement can fail a semantic check, as shown in the following
example of a query of a nonexistent table:

SQ.> SELECT * FROM nonexi stent tabl e;
SELECT * FROM nonexi stent table
*
ERROR at line 1:
ORA-00942: table or view does not exist

3.1.1.3 Shared Pool Check

ORACLE

During the parse, the database performs a shared pool check to determine whether it
can skip resource-intensive steps of statement processing.

To this end, the database uses a hashing algorithm to generate a hash value for every
SQL statement. The statement hash value is the SQL ID shown in V$SQL. SQL_| D.
This hash value is deterministic within a version of Oracle Database, so the same
statement in a single instance or in different instances has the same SQL ID.

When a user submits a SQL statement, the database searches the shared SQL area
to see if an existing parsed statement has the same hash value. The hash value of a
SQL statement is distinct from the following values:

* Memory address for the statement

Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In
this way, the database obtains possible memory addresses of the statement.

* Hash value of an execution plan for the statement

A SQL statement can have multiple plans in the shared pool. Typically, each plan
has a different hash value. If the same SQL ID has multiple plan hash values, then
the database knows that multiple plans exist for this SQL ID.

Parse operations fall into the following categories, depending on the type of statement
submitted and the result of the hash check:

e Hard parse

If Oracle Database cannot reuse existing code, then it must build a new
executable version of the application code. This operation is known as a hard
parse, or a library cache miss.

Note:

The database always performs a hard parse of DDL.

During the hard parse, the database accesses the library cache and data
dictionary cache numerous times to check the data dictionary. When the database
accesses these areas, it uses a serialization device called a latch on required
objects so that their definition does not change. Latch contention increases
statement execution time and decreases concurrency.

e Soft parse

3-3

Chapter 3
About SQL Processing

A soft parse is any parse that is not a hard parse. If the submitted statement is
the same as a reusable SQL statement in the shared pool, then Oracle Database
reuses the existing code. This reuse of code is also called a library cache hit.

Soft parses can vary in how much work they perform. For example, configuring the
session shared SQL area can sometimes reduce the amount of latching in the soft
parses, making them "softer."

In general, a soft parse is preferable to a hard parse because the database
skips the optimization and row source generation steps, proceeding straight to
execution.

The following graphic is a simplified representation of a shared pool check of an
UPDATE statement in a dedicated server architecture.

Figure 3-2 Shared Pool Check

Update ...

[
— Client Server
-l . I
ﬁ q T
\q l | Process Process [gocsion Memory ||39673I54608 <

User

ORACLE

System Global Area (SGA)

Shared Pool
Library Cache

Shared SQL Area Private

3667723989 SQL Area
3967354608
2190280494

Data Server | |Other Reserved
Dictionary | |Result Pool
Cache Cache

Comparison of hash values

. PGA
s@_ Work Areas

Private SQL Area

If a check determines that a statement in the shared pool has the same hash value,
then the database performs semantic and environment checks to determine whether
the statements have the same meaning. Identical syntax is not sufficient. For example,
suppose two different users log in to the database and issue the following SQL
statements:

CREATE TABLE ny_table (sone_col |NTEGER);
SELECT * FROM ny_tabl e;

The SELECT statements for the two users are syntactically identical, but two separate
schema objects are named ny_t abl e. This semantic difference means that the second
statement cannot reuse the code for the first statement.

Even if two statements are semantically identical, an environmental difference can
force a hard parse. In this context, the optimizer environment is the totality of session

3-4

Chapter 3
About SQL Processing

settings that can affect execution plan generation, such as the work area size or
optimizer settings (for example, the optimizer mode). Consider the following series of
SQL statements executed by a single user:

ALTER SESSI ON SET OPTI M ZER_MODE=ALL_ROW5;
ALTER SYSTEM FLUSH SHARED POCL; # optimzer environnent 1
SELECT * FROM sh. sal es;

ALTER SESSI ON SET OPTI M ZER MODE=FI RST_ROWS; # optinizer environnment 2
SELECT * FROM sh. sal es;

ALTER SESSI ON SET SQ._TRACE=t r ue; # optinizer environment 3
SELECT * FROM sh. sal es;

In the preceding example, the same SELECT statement is executed in three different
optimizer environments. Consequently, the database creates three separate shared
SQL areas for these statements and forces a hard parse of each statement.

See Also:

e Oracle Database Concepts to learn about private SQL areas and shared
SQL areas

e Oracle Database Performance Tuning Guide to learn how to configure
the shared pool

e Oracle Database Concepts to learn about latches

3.1.2 SQL Optimization

During optimization, Oracle Database must perform a hard parse at least once for
every unique DML statement and performs the optimization during this parse.

The database does not optimize DDL. The only exception is when the DDL includes a
DML component such as a subquery that requires optimization.

Related Topics

e Query Optimizer Concepts
This chapter describes the most important concepts relating to the query optimizer,
including its principal components.

3.1.3 SQL Row Source Generation

ORACLE

The row source generator is software that receives the optimal execution plan from
the optimizer and produces an iterative execution plan that is usable by the rest of the
database.

The iterative plan is a binary program that, when executed by the SQL engine,
produces the result set. The plan takes the form of a combination of steps. Each
step returns a row set. The next step either uses the rows in this set, or the last step
returns the rows to the application issuing the SQL statement.

3-5

ORACLE

Chapter 3
About SQL Processing

A row source is a row set returned by a step in the execution plan along with a control
structure that can iteratively process the rows. The row source can be a table, view, or
result of a join or grouping operation.

The row source generator produces a row source tree, which is a collection of row
sources. The row source tree shows the following information:

e An ordering of the tables referenced by the statement

* An access method for each table mentioned in the statement

e Ajoin method for tables affected by join operations in the statement
e Data operations such as filter, sort, or aggregation

Example 3-1 Execution Plan

This example shows the execution plan of a SELECT statement when AUTOTRACE is
enabled. The statement selects the last name, job title, and department name for
all employees whose last names begin with the letter A. The execution plan for this
statement is the output of the row source generator.

SELECT e.last_nane, j.job title, d.departnent_nane
FROM hr.enpl oyees e, hr.departments d, hr.jobs j
WHERE e. departnent id = d.department id

AND e.job_id =j.job_id

AND e.last_nane LIKE 'A% ;

Execution Pl an

| Id] Operation | Name | Rows| Byt es| Cost (%CPU) |
Ti ne|

| 0| SELECT STATEMENT | | 3189 |7(15)]

00: 00: 01 |

[*1] HASH JON | | 31189 |7(15)]

00: 00: 01 |

[*2] HASH JO N | | 31141 |5(20)]

00: 00: 01 |

| 3] TABLE ACCESS BY | NDEX ROND| EMPLOYEES | 3 | 60 |2 (0)|
00: 00: 01 |

| *4] | NDEX RANGE SCAN | EMP_NAME IX | 3| |1 (0)]
00: 00: 01 |
| 5] TABLE ACCESS FULL | JOBS |19 |513 |2 (0)]
00: 00: 01 |
| 6] TABLE ACCESS FULL | DEPARTMENTS |27 | 432 |2 (0)]
00: 00: 01 |

3-6

Chapter 3
About SQL Processing

1 - access("E"."DEPARTMENT_I D'="D". "DEPARTMENT_I D")

2 - access("E'."JOB_ID'="J"."J0B_ID")

4 - access("E"."LAST_NAME" LIKE 'A%)
filter("E"."LAST_NAME" LIKE 'A%)

3.1.4 SQL Execution

ORACLE

During execution, the SQL engine executes each row source in the tree produced by
the row source generator. This step is the only mandatory step in DML processing.

Figure 3-3 is an execution tree, also called a parse tree, that shows the flow of row
sources from one step to another in the plan in Example 3-1. In general, the order of
the steps in execution is the reverse of the order in the plan, so you read the plan from
the bottom up.

Each step in an execution plan has an ID number. The numbers in Figure 3-3
correspond to the I d column in the plan shown in Example 3-1. Initial spaces in the
Oper at i on column of the plan indicate hierarchical relationships. For example, if the
name of an operation is preceded by two spaces, then this operation is a child of an
operation preceded by one space. Operations preceded by one space are children of
the SELECT statement itself.

Figure 3-3 Row Source Tree

1

HASH JOIN

2 6

HASH JOIN TABLE ACCESS
FULL
departments

TABLE ACCESS TABLE ACCESS
BY INDEX ROWID FULL
employees jobs

INDEX RANGE
SCAN
emp_name_ix

3-7

Chapter 3
How Oracle Database Processes DML

In Figure 3-3, each node of the tree acts as a row source, which means that each
step of the execution plan in Example 3-1 either retrieves rows from the database or
accepts rows from one or more row sources as input. The SQL engine executes each
row source as follows:

e Steps indicated by the black boxes physically retrieve data from an object in the
database. These steps are the access paths, or techniques for retrieving data from
the database.

— Step 6 uses a full table scan to retrieve all rows from the depart nent s table.
— Step 5 uses a full table scan to retrieve all rows from the j obs table.

— Step 4 scans the enp_nane_i x index in order, looking for each key that begins
with the letter A and retrieving the corresponding rowid. For example, the rowid
corresponding to At ki nson is AAAPz RAAFAAAABSAAe.

— Step 3 retrieves from the enpl oyees table the rows whose rowids
were returned by Step 4. For example, the database uses rowid
AAAPz RAAFAAAABSAAe to retrieve the row for At ki nson.

» Steps indicated by the clear boxes operate on row sources.

— Step 2 performs a hash join, accepting row sources from Steps 3 and 5,
joining each row from the Step 5 row source to its corresponding row in Step
3, and returning the resulting rows to Step 1.

For example, the row for employee At ki nson is associated with the job name
Stock Cerk.

— Step 1 performs another hash join, accepting row sources from Steps 2 and
6, joining each row from the Step 6 source to its corresponding row in Step 2,
and returning the result to the client.

For example, the row for employee At ki nson is associated with the
department named Shi ppi ng.

In some execution plans the steps are iterative and in others sequential. The hash
join shown in Example 3-1 is sequential. The database completes the steps in their
entirety based on the join order. The database starts with the index range scan of
enp_nane_i x. Using the rowids that it retrieves from the index, the database reads the
matching rows in the enpl oyees table, and then scans the j obs table. After it retrieves
the rows from the j obs table, the database performs the hash join.

During execution, the database reads the data from disk into memory if the data is not
in memory. The database also takes out any locks and latches necessary to ensure
data integrity and logs any changes made during the SQL execution. The final stage of
processing a SQL statement is closing the cursor.

3.2 How Oracle Database Processes DML

Most DML statements have a query component. In a query, execution of a cursor
places the results of the query into a set of rows called the result set.

This section contains the following topics:

3.2.1 How Row Sets Are Fetched

Result set rows can be fetched either a row at a time or in groups.

ORACLE 3-8

Chapter 3
How Oracle Database Processes DDL

In the fetch stage, the database selects rows and, if requested by the query, orders the
rows. Each successive fetch retrieves another row of the result until the last row has
been fetched.

In general, the database cannot determine for certain the number of rows to be
retrieved by a query until the last row is fetched. Oracle Database retrieves the data
in response to fetch calls, so that the more rows the database reads, the more work it
performs. For some queries the database returns the first row as quickly as possible,
whereas for others it creates the entire result set before returning the first row.

3.2.2 Read Consistency

In general, a query retrieves data by using the Oracle Database read consistency
mechanism, which guarantees that all data blocks read by a query are consistent to a
single point in time.

Read consistency uses undo data to show past versions of data. For an example,
suppose a query must read 100 data blocks in a full table scan. The query processes
the first 10 blocks while DML in a different session modifies block 75. When the first
session reaches block 75, it realizes the change and uses undo data to retrieve the
old, unmodified version of the data and construct a noncurrent version of block 75 in
memory.

¢ See Also:

Oracle Database Concepts to learn about multiversion read consistency

3.2.3 Data Changes

DML statements that must change data use read consistency to retrieve only the data
that matched the search criteria when the modification began.

Afterward, these statements retrieve the data blocks as they exist in their current state
and make the required modifications. The database must perform other actions related
to the modification of the data such as generating redo and undo data.

3.3 How Oracle Database Processes DDL

ORACLE

Oracle Database processes DDL differently from DML.

For example, when you create a table, the database does not optimize the CREATE
TABLE statement. Instead, Oracle Database parses the DDL statement and carries out
the command.

The database processes DDL differently because it is a means of defining an object

in the data dictionary. Typically, Oracle Database must parse and execute many
recursive SQL statements to execute a DDL statement. Suppose you create a table as
follows:

CREATE TABLE nytabl e (mycol um | NTEGER);

3-9

ORACLE

Chapter 3
How Oracle Database Processes DDL

Typically, the database would run dozens of recursive statements to execute the
preceding statement. The recursive SQL would perform actions such as the following:

Issue a COW T before executing the CREATE TABLE statement

Verify that user privileges are sufficient to create the table

Determine which tablespace the table should reside in

Ensure that the tablespace quota has not been exceeded

Ensure that no object in the schema has the same name

Insert rows that define the table into the data dictionary

Issue a COW T if the DDL statement succeeded or a ROLLBACK if it did not

¢ See Also:

Oracle Database Development Guide to learn about processing DDL,
transaction control, and other types of statements

3-10

Query Optimizer Concepts

This chapter describes the most important concepts relating to the query optimizer,
including its principal components.

This chapter contains the following topics:

4.1 Introduction to the Query Optimizer

The query optimizer (called simply the optimizer) is built-in database software that
determines the most efficient method for a SQL statement to access requested data.

This section contains the following topics:

4.1.1 Purpose of the Query Optimizer

The optimizer attempts to generate the most optimal execution plan for a SQL
statement.

The optimizer choose the plan with the lowest cost among all considered candidate
plans. The optimizer uses available statistics to calculate cost. For a specific query in a
given environment, the cost computation accounts for factors of query execution such
as 1/0, CPU, and communication.

For example, a query might request information about employees who are managers.
If the optimizer statistics indicate that 80% of employees are managers, then the
optimizer may decide that a full table scan is most efficient. However, if statistics
indicate that very few employees are managers, then reading an index followed by a
table access by rowid may be more efficient than a full table scan.

Because the database has many internal statistics and tools at its disposal, the
optimizer is usually in a better position than the user to determine the optimal method
of statement execution. For this reason, all SQL statements use the optimizer.

4.1.2 Cost-Based Optimization

ORACLE

Query optimization is the process of choosing the most efficient means of executing
a SQL statement.

SQL is a nonprocedural language, so the optimizer is free to merge, reorganize, and
process in any order. The database optimizes each SQL statement based on statistics
collected about the accessed data. The optimizer determines the optimal plan for a
SQL statement by examining multiple access methods, such as full table scan or
index scans, different join methods such as nested loops and hash joins, different join
orders, and possible transformations.

For a given query and environment, the optimizer assigns a relative numerical cost
to each step of a possible plan, and then factors these values together to generate
an overall cost estimate for the plan. After calculating the costs of alternative plans,
the optimizer chooses the plan with the lowest cost estimate. For this reason, the

4-1

Chapter 4
Introduction to the Query Optimizer

optimizer is sometimes called the cost-based optimizer (CBO) to contrast it with the
legacy rule-based optimizer (RBO).

¢ Note:

The optimizer may not make the same decisions from one version of

Oracle Database to the next. In recent versions, the optimizer might make
different decision because better information is available and more optimizer
transformations are possible.

Related Topics

e Cost
The optimizer cost model accounts for the machine resources that a query is
predicted to use.

4.1.3 Execution Plans

ORACLE

An execution plan describes a recommended method of execution for a SQL
statement.

The plan shows the combination of the steps Oracle Database uses to execute a SQL
statement. Each step either retrieves rows of data physically from the database or
prepares them for the user issuing the statement.

An execution plan displays the cost of the entire plan, indicated on line 0, and each
separate operation. The cost is an internal unit that the execution plan only displays to
allow for plan comparisons. Thus, you cannot tune or change the cost value.

In the following graphic, the optimizer generates two possible execution plans for an
input SQL statement, uses statistics to estimate their costs, compares their costs, and
then chooses the plan with the lowest cost.

4-2

Chapter 4
Introduction to the Query Optimizer

Figure 4-1 Execution Plans

A A
(GB Plan |(GB Plan
A 1 2
NL HJ
U Ak T}
L |
Generates Multiple
Plans and
Compares Them
Parsed Representation Final Plan with
of SQL Statement Lowest Cost
A
l I | o GB PI
oog "‘L,‘ Optimizer ~ __ Output _ \(o
HJ =
O B

Statistics
101100100

This section contains the following topics:

4.1.3.1 Query Blocks

The input to the optimizer is a parsed representation of a SQL statement.

Each SELECT block in the original SQL statement is represented internally by a query
block. A query block can be a top-level statement, subquery, or unmerged view.

Example 4-1 Query Blocks

The following SQL statement consists of two query blocks. The subquery in
parentheses is the inner query block. The outer query block, which is the rest of
the SQL statement, retrieves names of employees in the departments whose IDs
were supplied by the subquery. The query form determines how query blocks are
interrelated.

SELECT first_name, |ast_nane

FROM hr.enpl oyees

WHERE departnent id

I'N (SELECT departnent id
FROM hr.departnents
WHERE | ocation_id = 1800);

¢ See Also:

e "View Merging"

e Oracle Database Concepts for an overview of SQL processing

ORACLE 4.3

Chapter 4
About Optimizer Components

4.1.3.2 Query Subplans

For each query block, the optimizer generates a query subplan.

The database optimizes query blocks separately from the bottom up. Thus, the
database optimizes the innermost query block first and generates a subplan for it,
and then generates the outer query block representing the entire query.

The number of possible plans for a query block is proportional to the number of objects
in the FROMclause. This number rises exponentially with the number of objects. For
example, the possible plans for a join of five tables are significantly higher than the
possible plans for a join of two tables.

4.1.3.3 Analogy for the Optimizer

One analogy for the optimizer is an online trip advisor.

A cyclist wants to know the most efficient bicycle route from point A to point B. A query
is like the directive "I need the most efficient route from point A to point B" or "I need
the most efficient route from point A to point B by way of point C." The trip advisor
uses an internal algorithm, which relies on factors such as speed and difficulty, to
determine the most efficient route. The cyclist can influence the trip advisor's decision
by using directives such as "I want to arrive as fast as possible" or "l want the easiest
ride possible.”

In this analogy, an execution plan is a possible route generated by the trip advisor.
Internally, the advisor may divide the overall route into several subroutes (subplans),
and calculate the efficiency for each subroute separately. For example, the trip
advisor may estimate one subroute at 15 minutes with medium difficulty, an alternative
subroute at 22 minutes with minimal difficulty, and so on.

The advisor picks the most efficient (lowest cost) overall route based on user-specified
goals and the available statistics about roads and traffic conditions. The more accurate
the statistics, the better the advice. For example, if the advisor is not frequently notified
of traffic jams, road closures, and poor road conditions, then the recommended route
may turn out to be inefficient (high cost).

4.2 About Optimizer Components

The optimizer contains three components: the transformer, estimator, and plan
generator.

The following graphic illustrates the components.

ORACLE 4-4

Chapter 4
About Optimizer Components

Figure 4-2 Optimizer Components

Parsed Query
(from Parser)

Query
Transformer
lTransformed query
isti Data
: EmEw Estimator Statistics Dictionary
: =,
H 4952
: w lOuery + estimates
[]
[]
[]
: Plan
mEmmm— Generator
Query Plan
(to Row Source Generator)

v

A set of query blocks represents a parsed query, which is the input to the optimizer.
The following table describes the optimizer operations.

Table 4-1 Optimizer Operations

. ___________________________ |
Phase | Operation Description To Learn More

1 Query Transformer | The optimizer determines whether it is helpful | "Query

to change the form of the query so that the Transformer"
optimizer can generate a better execution
plan.

2 Estimator The optimizer estimates the cost of each plan | "Estimator"”
based on statistics in the data dictionary.

3 Plan Generator The optimizer compares the costs of plans "Plan Generator"
and chooses the lowest-cost plan, known as
the execution plan, to pass to the row source
generator.

This section contains the following topics:

4.2.1 Query Transformer

ORACLE

For some statements, the query transformer determines whether it is advantageous to
rewrite the original SQL statement into a semantically equivalent SQL statement with a
lower cost.

When a viable alternative exists, the database calculates the cost of the alternatives
separately and chooses the lowest-cost alternative. The following graphic shows the
query transformer rewriting an input query that uses OR into an output query that uses
UNI ON ALL.

4-5

Chapter 4
About Optimizer Components

Figure 4-3 Query Transformer

SELECT *

FROM sales

WHERE promo_id=33
OR prod_id=136;

Query Transformer

SELECT *

FROM sales

WHERE prod_id=136

UNION ALL

SELECT *

FROM sales

WHERE promo_id=33

AND LNNVL (prod_id=136) ;

Related Topics

e Query Transformations
The optimizer employs many query transformation techniques. This chapter
describes some of the most important.

4.2.2 Estimator

The estimator is the component of the optimizer that determines the overall cost of a
given execution plan.

The estimator uses three different measures to determine cost:

* Selectivity

The percentage of rows in the row set that the query selects, with 0 meaning

no rows and 1 meaning all rows. Selectivity is tied to a query predicate, such

as WHERE | ast _name LIKE ' A%, or a combination of predicates. A predicate
becomes more selective as the selectivity value approaches 0 and less selective
(or more unselective) as the value approaches 1.

¢ Note:

Selectivity is an internal calculation that is not visible in the execution
plans.

e Cardinality

The cardinality is the number of rows returned by each operation in an execution
plan. This input, which is crucial to obtaining an optimal plan, is common to all cost
functions. The estimator can derive cardinality from the table statistics collected

ORACLE 4-6

ORACLE

Chapter 4
About Optimizer Components

by DBMS_STATS, or derive it after accounting for effects from predicates (filter, join,
and so on), DI STI NCT or GROUP BY operations, and so on. The Rows column in an
execution plan shows the estimated cardinality.

e Cost

This measure represents units of work or resource used. The query optimizer uses
disk 1/0, CPU usage, and memory usage as units of work.

As shown in the following graphic, if statistics are available, then the estimator uses
them to compute the measures. The statistics improve the degree of accuracy of the
measures.

Figure 4-4 Estimator

Cardinality
Selectivity Cost
*
(GB Plan 3
A — > ‘ Estimator — >
\H—J/‘\Q_y/ Total Cost
— Statistics

- o =+ —>

10
00
0 1

o = O
O)

For the query shown in Example 4-1, the estimator uses selectivity, estimated
cardinality (a total return of 10 rows), and cost measures to produce its total cost
estimate of 3:

| 1d] Operation | Name | Rows| Byt es| Cost %CPU|
Ti ne|

| 0] SELECT STATEMENT | | 10| 250| 3 (0) |
00: 00: 01|

| 1] NESTED LOOPS | |] |

| |

| 2] NESTED LQOOPS | | 10| 250| 3 (0) |
00: 00: 01|

| *3] TABLE ACCESS FULL | DEPARTMENTS | 1] 7]2 (0)]
00: 00: 01|

| *4] | NDEX RANGE SCAN | EMP_DEPARTMENT | X] 10| [0 (0)]
00: 00: 01|

| 5] TABLE ACCESS BY | NDEX ROW D| EMPLOYEES | 10| 180|1 (0)|
00: 00: 01|

This section contains the following topics:

4-7

Chapter 4
About Optimizer Components

4.2.2.1 Selectivity

ORACLE

The selectivity represents a fraction of rows from a row set.

The row set can be a base table, a view, or the result of a join. The selectivity is tied to
a query predicate, such as | ast_nane ="' Snith', or a combination of predicates, such
aslast_name = "Spith" AND job_id = 'SH CLERK .

Note:

Selectivity is an internal calculation that is not visible in execution plans.

A predicate filters a specific number of rows from a row set. Thus, the selectivity

of a predicate indicates how many rows pass the predicate test. Selectivity ranges
from 0.0 to 1.0. A selectivity of 0.0 means that no rows are selected from a row set,
whereas a selectivity of 1.0 means that all rows are selected. A predicate becomes
more selective as the value approaches 0.0 and less selective (or more unselective)
as the value approaches 1.0.

The optimizer estimates selectivity depending on whether statistics are available:

e Statistics not available

Depending on the value of the OPTI M ZER_DYNAM C_SAMPLI NG initialization
parameter, the optimizer either uses dynamic statistics or an internal default value.
The database uses different internal defaults depending on the predicate type.

For example, the internal default for an equality predicate (I ast_name = 'Smith')
is lower than for a range predicate (| ast_name > ' Snith') because an equality
predicate is expected to return a smaller fraction of rows.

e Statistics available

When statistics are available, the estimator uses them to estimate selectivity.
Assume there are 150 distinct employee last names. For an equality predicate
last_name = 'Smith', selectivity is the reciprocal of the number n of distinct
values of | ast _nane, which in this example is .006 because the query selects rows
that contain 1 out of 150 distinct values.

If a histogram exists on the | ast _nane column, then the estimator uses the
histogram instead of the number of distinct values. The histogram captures the
distribution of different values in a column, so it yields better selectivity estimates,
especially for columns that have data skew.

¢ See Also:

e "Histograms"

¢ Oracle Database Reference to learn more about
CPTI M ZER _DYNAM C_SAMPLI NG

4-8

Chapter 4
About Optimizer Components

4.2.2.2 Cardinality

4.2.2.3 Cost

ORACLE

The cardinality is the number of rows returned by each operation in an execution
plan.

For example, if the optimizer estimate for the number of rows returned by a full table
scan is 100, then the cardinality estimate for this operation is 100. The cardinality
estimate appears in the Rows column of the execution plan.

The optimizer determines the cardinality for each operation based on a complex set of
formulas that use both table and column level statistics, or dynamic statistics, as input.
The optimizer uses one of the simplest formulas when a single equality predicate
appears in a single-table query, with no histogram. In this case, the optimizer assumes
a uniform distribution and calculates the cardinality for the query by dividing the total
number of rows in the table by the number of distinct values in the column used in the
WHERE clause predicate.

For example, user hr queries the enpl oyees table as follows:

SELECT first_name, |ast_nane
FROM enpl oyees
WHERE sal ary='10200" ;

The enpl oyees table contains 107 rows. The current database statistics indicate that
the number of distinct values in the sal ary column is 58. Therefore, the optimizer
estimates the cardinality of the result set as 2, using the formula 107/ 58=1. 84.

Cardinality estimates must be as accurate as possible because they influence

all aspects of the execution plan. Cardinality is important when the optimizer
determines the cost of a join. For example, in a nested loops join of the enpl oyees
and depart nent s tables, the number of rows in enpl oyees determines how often
the database must probe the depart nent s table. Cardinality is also important for
determining the cost of sorts.

The optimizer cost model accounts for the machine resources that a query is
predicted to use.

The cost is an internal numeric measure that represents the estimated resource usage
for a plan. The cost is specific to a query in an optimizer environment. To estimate
cost, the optimizer considers factors such as the following:

e System resources, which includes estimated I/O, CPU, and memory
e Estimated number of rows returned (cardinality)

* Size of the initial data sets

» Distribution of the data

e Access structures

4-9

Chapter 4
About Optimizer Components

< Note:

The cost is an internal measure that the optimizer uses to compare different
plans for the same query. You cannot tune or change cost.

The execution time is a function of the cost, but cost does not equate directly to time.
For example, if the plan for query A has a lower cost than the plan for query B, then
the following outcomes are possible:

* A executes faster than B.
* A executes slower than B.
* A executes in the same amount of time as B.

Therefore, you cannot compare the costs of different queries with one another. Also,
you cannot compare the costs of semantically equivalent queries that use different
optimizer modes.

4.2.3 Plan Generator

ORACLE

The plan generator explores various plans for a query block by trying out different
access paths, join methods, and join orders.

Many plans are possible because of the various combinations that the database can
use to produce the same result. The optimizer picks the plan with the lowest cost.

The following graphic shows the optimizer testing different plans for an input query.

Figure 4-5 Plan Generator

SELECT e.last_name, d.department_name
FROM hr.employees e, hr.departments d
WHERE e.department_id = d.department_id;

¢ Optimizer

Transformer

Join Method Join Order

Hash, Nested —> departments 0 employees 1
Loop, Sort Merge employees 0 departments 1

Access Path

Index
Full Table Scan

l Lowest Cost Plan

Hash Join
departments 0, employees 1

4-10

ORACLE

Chapter 4
About Optimizer Components

The following snippet from an optimizer trace file shows some computations that the

optimizer performs:

CENERAL PLANS

IR RS E SRS SR ESEEREEEREEEEEREEEEEEEEEEEE]

Considering cardinality-based initial join order

Pernutations for Starting Table : 0
Join order[1]:

kkhkkkkkkkkkkkkhx*k

Now j oi ni ng: EMPLOYEES] E] #1
NL Join

Quter table: Card: 27.00 Cost:
Access path analysis for EMPLOYEES

2.01

Best NL cost: 13.17
SM Joi n
SM cost: 6.08

resc: 6.08 resc_io: 4.00 resc_cpu
resp: 6.08 resp_io: 4.00 resp_cpu

SM Join (with index on outer)
Access Path: index (FullScan)
HA Join
HA cost: 4.57
resc: 4.57 resc_io: 4.00 resc_cpu

resp: 4.57 resp_io: 4.00 resp_cpu
Best:: JoinMethod: Hash

DEPARTMENTS[D]#0 EMPLOYEES[E]#1

Resp: 2.01 Degree: 1 Bytes: 16

2501688
2501688

678154
678154

Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27

LR EEEEEEEREEEEEEEEEEEEEE]

Join order[2]:

kkhkkkkkkkkkkkkhx*k

Now j oi ni ng: DEPARTMENTS] D] #0

kkhkkkkkkkkkkkkhx*k

HA Join
HA cost: 4.58
resc: 4.58 resc_io: 4.00 resc_cpu
resp: 4.58 resp_io: 4.00 resp_cpu

EMPLOYEES[E]#1 DEPARTMENTS[D]#0

690054
690054

Join order aborted: cost > best plan cost

LR EEEEEEEREEEEEEEEEEEESES

The trace file shows the optimizer first trying the depart nent s table as the outer table
in the join. The optimizer calculates the cost for three different join methods: nested

4-11

Chapter 4
About Automatic Tuning Optimizer

loops join (NL), sort merge (SM), and hash join (HA). The optimizer picks the hash join
as the most efficient method:

Best:: JoinMethod: Hash
Cost: 4.57 Degree: 1 Resp: 4.57 Card: 106.00 Bytes: 27

The optimizer then tries a different join order, using enpl oyees as the outer table. This
join order costs more than the previous join order, so it is abandoned.

The optimizer uses an internal cutoff to reduce the number of plans it tries when
finding the lowest-cost plan. The cutoff is based on the cost of the current best plan.
If the current best cost is large, then the optimizer explores alternative plans to find a
lower cost plan. If the current best cost is small, then the optimizer ends the search
swiftly because further cost improvement is not significant.

4.3 About Automatic Tuning Optimizer

The optimizer performs different operations depending on how it is invoked.
The database provides the following types of optimization:

* Normal optimization

The optimizer compiles the SQL and generates an execution plan. The normal
mode generates a reasonable plan for most SQL statements. Under normal mode,
the optimizer operates with strict time constraints, usually a fraction of a second,
during which it must find an optimal plan.

e SQL Tuning Advisor optimization

When SQL Tuning Advisor invokes the optimizer, the optimizer is known as
Automatic Tuning Optimizer. In this case, the optimizer performs additional
analysis to further improve the plan produced in normal mode. The optimizer
output is not an execution plan, but a series of actions, along with their rationale
and expected benefit for producing a significantly better plan.

See Also:

e "Analyzing SQL with SQL Tuning Advisor"

e Oracle Database 2 Day + Performance Tuning Guide to learn more
about SQL Tuning Advisor

4.4 About Adaptive Query Optimization

ORACLE

In Oracle Database, adaptive query optimization enables the optimizer to make
run-time adjustments to execution plans and discover additional information that can
lead to better statistics.

Adaptive optimization is helpful when existing statistics are not sufficient to generate
an optimal plan. The following graphic shows the feature set for adaptive query
optimization.

4-12

Chapter 4
About Adaptive Query Optimization

Figure 4-6 Adaptive Query Optimization

Adaptive Query
Optimization
Adaptive Adaptive
Plans Statistics
' , ' ' ' !
Join Parallel Bitmap Dynamic Automatic SQL Plan
Methods D"\ﬁtert'ﬁggg” Index Pruning Statistics Reoptimization Directives

This section contains the following topics:

4.4.1 Adaptive Query Plans

An adaptive query plan enables the optimizer to make a plan decision for a
statement during execution.

Adaptive query plans enable the optimizer to fix some classes of problems at run time.
Adaptive plans are enabled by default.

This section contains the following topics:

Related Topics

* Introduction to Optimizer Statistics
The optimizer cost model relies on statistics collected about the objects involved
in a query, and the database and host where the query runs.

e About SQL Tuning Advisor

SQL Tuning Advisor is SQL diagnostic software in the Oracle Database Tuning
Pack.

* Overview of SQL Plan Management
SQL plan management is a preventative mechanism that enables the optimizer
to automatically manage execution plans, ensuring that the database uses only
known or verified plans.

4.4.1.1 About Adaptive Query Plans

ORACLE

An adaptive query plan contains multiple predetermined subplans, and an optimizer
statistics collector. Based on the statistics collected during execution, the dynamic plan
coordinator chooses the best plan at run time.

Dynamic Plans

To change plans at runtime, adaptive query plans use a dynamic plan, which is
represented as a set of subplan groups. A subplan group is a set of subplans. A

4-13

Chapter 4
About Adaptive Query Optimization

subplan is a portion of a plan that the optimizer can switch to as an alternative at run
time. For example, a nested loops join could switch to a hash join during execution.

The optimizer decides which subplan to use at run time. When notified of a new
statistic value relevant to a subplan group, the coordinator dispatches it to the handler
function for this subgroup.

Figure 4-7 Dynamic Plan Coordinator

Dynamic Plan
Subplan Group Subplan Group
gynamic Plan A A
oordinator)
@B @B
4 Subplan A Subplan
NL NL
WL QL
| 2 R A
y GB GB
. \r Subplan . Subplan
(HJ HJ
S B

Optimizer Statistics Collector

An optimizer statistics collector is a row source inserted into a plan at key points to
collect run-time statistics relating to cardinality and histograms. These statistics help
the optimizer make a final decision between multiple subplans. The collector also
supports optional buffering up to an internal threshold.

For parallel buffering statistics collectors, each parallel execution server collects the
statistics, which the parallel query coordinator aggregates and then sends to the
clients. In this context, a client is a consumer of the collected statistics, such as a
dynamic plan. Each client specifies a callback function to be executed on each parallel
server or on the query coordinator.

4.4.1.2 Purpose of Adaptive Query Plans

The ability of the optimizer to adapt a plan, based on statistics obtained during
execution, can greatly improve query performance.

Adaptive query plans are useful because the optimizer occasionally picks a suboptimal
default plan because of a cardinality misestimate. The ability of the optimizer to pick
the best plan at run time based on actual execution statistics results in a more

optimal final plan. After choosing the final plan, the optimizer uses it for subsequent
executions, thus ensuring that the suboptimal plan is not reused.

4.4.1.3 How Adaptive Query Plans Work

ORACLE

For the first execution of a statement, the optimizer uses the default plan, and
then stores an adaptive plan. The database uses the adaptive plan for subsequent
executions unless specific conditions are met.

During the first execution of a statement, the database performs the following steps:

4-14

Chapter 4
About Adaptive Query Optimization

1. The database begins executing the statement using the default plan.

2. The statistics collector gathers information about the in-progress execution, and
buffers some rows received by the subplan.

For parallel buffering statistics collectors, each slave process collects the statistics,
which the query coordinator aggregates before sending to the clients.

3. Based on the statistics gathered by the collector, the optimizer chooses a subplan.

The dynamic plan coordinator decides which subplan to use at runtime for all such
subplan groups. When notified of a new statistic value relevant to a subplan group,
the coordinator dispatches it to the handler function for this subgroup.

4. The collector stops collecting statistics and buffering rows, permitting rows to pass
through instead.

5. The database stores the adaptive plan in the child cursor, so that the next
execution of the statement can use it.

On subsequent executions of the child cursor, the optimizer continues to use the same
adaptive plan unless one of the following conditions is true, in which case it picks a
new plan for the current execution:

* The current plan ages out of the shared pool.

« Adifferent optimizer feature (for example, adaptive cursor sharing or statistics
feedback) invalidates the current plan.

This section contains the following topics:

Related Topics

* Reading Adaptive Query Plans
The adaptive optimizer is a feature of the optimizer that enables it to adapt plans
based on run-time statistics. All adaptive mechanisms can execute a final plan for
a statement that differs from the default plan.

e Controlling Adaptive Optimization
In Oracle Database, adaptive query optimization is the process by which the
optimizer adapts an execution plan based on statistics collected at run time.

4.4.1.3.1 Adaptive Query Plans: Join Method Example

This example shows how the optimizer can choose a different plan based on
information collected at runtime.

The following query shows a join of the or der _i t ens and prod_i nf o tables.

SELECT product _nane

FROM order_itenms o, prod_info p
WHERE o.unit_price = 15

AND quantity > 1

AND p. product _id = o.product _id

An adaptive query plan for this statement shows two possible plans, one with a nested
loops join and the other with a hash join:

SELECT * FROM TABLE(DBMS_XPLAN. di spl ay_cur sor (FORVAT => ' ADAPTI VE'));

SQL_ID 7hj 8dwwy6gni’p, child nunmber 0

ORACLE 4-15

Chapter 4
About Adaptive Query Optimization

SELECT product _name FROM order _itens o, prod_info p WHERE

o.unit_price =

15 AND quantity > 1 AND p. product _id = o.product _id

Pl an hash val ue: 1553478007

| 1d | Operation | Name | Rows| Byt es| Cost (%CPU) | Ti ne|
| 0| SELECT STATEMENT | |] | 7(100) | |
| * 1] HASHJAON | | 4] 128 | 7 (0)]00:00:01]
[- 2| NESTED LOOPS | | 4] 128 | 7 (0)]00:00:01]
[- 3 NESTED LOOPS | | 4] 128 | 7 (0)]00:00:01]
|- 4 STATI STI CS COLLECTOR | |] | | |
| * 5 TABLE ACCESS FULL | ORDER ITEMS |4 48 | 3 (0)]00:00: 01
|-* 6 [NDEX UNI QUE SCAN | PROD_INFO PK | 1] | 0 (0)] |
[- 7 TABLE ACCESS BY | NDEX ROA'D| PROD_|I NFO [1] 20 | 1 (0)|00:00:01]
| 8| TABLE ACCESS FULL | PRCD_I NFO [1] 20 | 1 (0)|00:00:01]

1 - access("P"."PRODUCT_ID'="0O". " PRODUCT_I D")
5 - filter(("O'."UNIT_PRICE"=15 AND " QUANTI TY">1))
6 - access("P"."PRODUCT_I D'="0O". " PRODUCT_I D")

- this is an adaptive plan (rows marked '-

ORACLE

are inactive)

A nested loops join is preferable if the database can avoid scanning a significant
portion of prod_i nf o because its rows are filtered by the join predicate. If few rows are
filtered, however, then scanning the right table in a hash join is preferable.

The following graphic shows the adaptive process. For the query in the preceding
example, the adaptive portion of the default plan contains two subplans, each of which
uses a different join method. The optimizer automatically determines when each join
method is optimal, depending on the cardinality of the left side of the join.

The statistics collector buffers enough rows coming from the or der _i t ens table to
determine which join method to use. If the row count is below the threshold determined
by the optimizer, then the optimizer chooses the nested loops join; otherwise, the
optimizer chooses the hash join. In this case, the row count coming from the

order _i t ens table is above the threshold, so the optimizer chooses a hash join for

the final plan, and disables buffering.

4-16

Chapter 4
About Adaptive Query Optimization

Figure 4-8 Adaptive Join Methods

Default plan is a nested loops join

Nested
Loops
Statistics
——— Collector
Table scan Index scan
order_items prod_info_pk

The optimizer buffers rows coming from the order_items table
up to a point. If the row count is less than the threshold,

then use a nested loops join. Otherwise,

switch to a hash join.

Threshold exceeded,
so subplan switches

The optimizer disables the statistics collector after making the decision,
and lets the rows pass through.

Final plan is a hash join
Hash
Join
<
Table scan Table scan
order_items prod_info

The Not e section of the execution plan indicates whether the plan is adaptive, and
which rows in the plan are inactive.

" See Also:

e "Controlling Adaptive Optimization"

* "Reading Execution Plans: Advanced" for an extended example showing
an adaptive query plan

ORACLE 4-17

Chapter 4
About Adaptive Query Optimization

4.4.1.3.2 Adaptive Query Plans: Parallel Distribution Methods

ORACLE

Typically, parallel execution requires data redistribution to perform operations such as
parallel sorts, aggregations, and joins.

Oracle Database can use many different data distributions methods. The database
chooses the method based on the number of rows to be distributed and the number of
parallel server processes in the operation.

For example, consider the following alternative cases:

e Many parallel server processes distribute few rows.

The database may choose the broadcast distribution method. In this case, each
parallel server process receives each row in the result set.

* Few parallel server processes distribute many rows.

If a data skew is encountered during the data redistribution, then it could adversely
affect the performance of the statement. The database is more likely to pick a
hash distribution to ensure that each parallel server process receives an equal
number of rows.

The hybrid hash distribution technique is an adaptive parallel data distribution that
does not decide the final data distribution method until execution time. The optimizer
inserts statistic collectors in front of the parallel server processes on the producer side
of the operation. If the number of rows is less than a threshold, defined as twice the
degree of parallelism (DOP), then the data distribution method switches from hash to
broadcast. Otherwise, the distribution method is a hash.

Broadcast Distribution

The following graphic depicts a hybrid hash join between the depart ment s and
enpl oyees tables, with a query coordinator directing 8 parallel server processes:
P5-P8 are producers, whereas P1-P4 are consumers. Each producer has its own
consumer.

4-18

Chapter 4
About Adaptive Query Optimization

Figure 4-9 Adaptive Query with DOP of 4

Query
Coordinator

s
v \

Statistics collector The number of rows
threshold is 2X >| returned is below
the DOP threshold, so optimizer
— chooses broadcast
method.
‘ P1 ‘ P2 ‘ P3 ‘ Pa
] | |
> <1 0L
S ~
departments P5 "o S employees
~ 2~
N > ~
T P6 > RN .
N 3 ~ -
P7 S 4\ R
~ /
P8

The database inserts a statistics collector in front of each producer process scanning
the depart ment s table. The query coordinator aggregates the collected statistics. The
distribution method is based on the run-time statistics. In Figure 4-9, the number of
rows is below the threshold (8), which is twice the DOP (4), so the optimizer chooses a
broadcast technique for the depart ment s table.

Hybrid Hash Distribution

Consider an example that returns a greater number of rows. In the following plan,

the threshold is 8, or twice the specified DOP of 4. However, because the statistics
collector (Step 10) discovers that the number of rows (27) is greater than the
threshold (8), the optimizer chooses a hybrid hash distribution rather than a broadcast
distribution. (The time column should show 00: 00: 01, but shows 0: 01 so the plan can
fit the page.)

¢ See Also:

Oracle Database VLDB and Partitioning Guide to learn more about parallel
data redistribution techniques

ORACLE 4-19

Chapter 4
About Adaptive Query Optimization

4.4.1.3.3 Adaptive Query Plans: Bitmap Index Pruning

ORACLE

Adaptive plans prune indexes that do not significantly reduce the number of matched
rows.

When the optimizer generates a star transformation plan, it must choose the right
combination of bitmap indexes to reduce the relevant set of rowids as efficiently

as possible. If many indexes exist, some indexes might not reduce the rowid set
substantially, but nevertheless introduce significant processing cost during query
execution. Adaptive plans can solve this problem by not using indexes that degrade
performance.

Example 4-2 Bitmap Index Pruning

In this example, you issue the following star query, which joins the car s fact table with
multiple dimension tables (sample output included):

SELECT /*+ star_transformation(r) */ |.color_name, k.nmake nane,
h.filter_col, count(*)
FROM cars r, colors |, makes k, nodels d, hcc_tab h

WHERE r.neke id = k. make_id

AND r.color _id =1.color_id

AND r.nodel id = d.nodel id

AND r.high_card_col = h.high_card_col
AND d. model _nane = ' RAV4'

AND k. make_nane = ' Toyota’

AND | . col or_name = ' Burgundy'

AND h.filter_col = 100

GROUP BY |.color_name, k.make name, h.filter_col;

COLOR_NA MAKE_N FILTER COL COUNT(*)

Bur gundy Toyot a 100 15000

The following sample execution plan shows that the query generated no rows for
the bitmap node in Step 12 and Step 17. The adaptive optimizer determined that
filtering rows by using the CAR_MODEL | DX and CAR_MAKE | DX indexes was inefficient.
The query did not use the steps in the plan that begin with a dash (-).

| Id | Operation | Name |
| SELECT STATEMENT |
| SORT GROUP BY NOSORT |
| HASH JO N |
| VI EW | VW ST _5497B905
| NESTED LOOPS |

| Bl TMAP CONVERSI ON TO RON DS |

| Bl TVAP AND |

| Bl TMAP NERGE |

| Bl TMAP KEY | TERATI ON |

| TABLE ACCESS FULL |

I I

I
I
I
I
I
I
I
I
I
I
BI TMAP | NDEX RANGE SCAN |

4-20

Chapter 4
About Adaptive Query Optimization

- 11 STATI STI CS COLLECTOR

- 12 Bl TMAP MERGE

- 13 Bl TMAP KEY | TERATI ON

- 14 TABLE ACCESS FULL MODELS

- 15 Bl TMAP | NDEX RANCE SCAN | CAR_MCDEL_| DX
- 16 STATI STI CS COLLECTOR

- 17 Bl TMAP MERGE

- 18 Bl TMAP KEY | TERATI ON

- 19 TABLE ACCESS FULL MAKES

- 20 Bl TMAP | NDEX RANCGE SCAN | CAR_MAKE_I DX

I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
| 21 | TABLE ACCESS BY USER ROND | CARS |
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I

22 MERGE JO N CARTESI AN

23 MERGE JO N CARTESI AN

24 MERGE JO N CARTESI| AN

25 TABLE ACCESS FULL MAKES

26 BUFFER SORT

27 TABLE ACCESS FULL MODELS

28 BUFFER SORT

29 TABLE ACCESS FULL COLORS

30 BUFFER SORT

31 TABLE ACCESS FULL HCC TAB
Not e

- dynamic statistics used: dynamic sanmpling (level =2)
- star transformation used for this statenent
- this is an adaptive plan (rows marked '-' are inactive)

4.4.1.4 When Adaptive Query Plans Are Enabled

Adaptive query plans are enabled by default.

Adaptive plans are enabled when the following initialization parameters are set:
e OPTI M ZER_ADAPTI VE_PLANS is TRUE (default)

° OPTIM ZER _FEATURES_ENABLE is 12. 1. 0. 1 or later

e OPTI M ZER_ADAPTI VE_REPORTI NG_ONLY is FALSE (default)

Adaptive plans control the following optimizations:

* Nested loops and hash join selection

e Star transformation bitmap pruning

* Adaptive parallel distribution method

See Also:

e "Controlling Adaptive Optimization"

e Oracle Database Reference to learn more about
OPTI M ZER_ADAPTI VE_PLANS

ORACLE 4-21

Chapter 4
About Adaptive Query Optimization

4.4.2 Adaptive Statistics

The optimizer can use adaptive statistics when query predicates are too complex
to rely on base table statistics alone. By default, adaptive statistics are disabled
(OPTI M ZER_ADAPTI VE_STATI STI CSis f al se).

The following topics describe types of adaptive statistics:

4.4.2.1 Dynamic Statistics

Dynamic statistics are an optimization technique in which the database executes
a recursive SQL statement to scan a small random sample of a table's blocks to
estimate predicate cardinalities.

During SQL compilation, the optimizer decides whether to use dynamic statistics by
considering whether available statistics are sufficient to generate an optimal plan. If
the available statistics are insufficient, then the optimizer uses dynamic statistics to
augment the statistics. To improve the quality of optimizer decisions, the optimizer can
use dynamic statistics for table scans, index access, joins, and GROUP BY operations.

Related Topics

* Supplemental Dynamic Statistics
By default, when optimizer statistics are missing, stale, or insufficient, the
database automatically gathers dynamic statistics during a parse. The database
uses recursive SQL to scan a small random sample of table blocks.

4.4.2.2 Automatic Reoptimization

In automatic reoptimization, the optimizer changes a plan on subsequent executions
after the initial execution.

Adaptive query plans are not feasible for all kinds of plan changes. For example,

a query with an inefficient join order might perform suboptimally, but adaptive query
plans do not support adapting the join order during execution. At the end of the

first execution of a SQL statement, the optimizer uses the information gathered
during execution to determine whether automatic reoptimization has a cost benefit. If
execution information differs significantly from optimizer estimates, then the optimizer
looks for a replacement plan on the next execution.

The optimizer uses the information gathered during the previous execution to help
determine an alternative plan. The optimizer can reoptimize a query several times,
each time gathering additional data and further improving the plan.

Automatic reoptimization takes the following forms:

Related Topics

* Controlling Adaptive Optimization
In Oracle Database, adaptive query optimization is the process by which the
optimizer adapts an execution plan based on statistics collected at run time.

ORACLE 4-22

Chapter 4
About Adaptive Query Optimization

4.4.2.2.1 Reoptimization: Statistics Feedback

A form of reoptimization known as statistics feedback (formerly known as cardinality
feedback) automatically improves plans for repeated queries that have cardinality
misestimates.

The optimizer can estimate cardinalities incorrectly for many reasons, such as
missing statistics, inaccurate statistics, or complex predicates. The basic process of
reoptimization using statistics feedback is as follows:

1. During the first execution of a SQL statement, the optimizer generates an
execution plan.

The optimizer may enable monitoring for statistics feedback for the shared SQL
area in the following cases:

* Tables with no statistics
e Multiple conjunctive or disjunctive filter predicates on a table

e Predicates containing complex operators for which the optimizer cannot
accurately compute selectivity estimates

2. Atthe end of the first execution, the optimizer compares its initial cardinality
estimates to the actual number of rows returned by each operation in the plan
during execution.

If estimates differ significantly from actual cardinalities, then the optimizer stores
the correct estimates for subsequent use. The optimizer also creates a SQL plan
directive so that other SQL statements can benefit from the information obtained
during this initial execution.

3. If the query executes again, then the optimizer uses the corrected cardinality
estimates instead of its usual estimates.

The OPTI M ZER _ADAPTI VE_STATI STI CS initialization parameter does not control all
features of automatic reoptimization. Specifically, this parameter controls statistics
feedback for join cardinality only in the context of automatic reoptimization.

For example, setting OPTI M ZER_ADAPTI VE_STATI STI CS to FALSE disables statistics
feedback for join cardinality misestimates, but it does not disable statistics feedback
for single-table cardinality misestimates.

Example 4-3 Statistics Feedback

ORACLE

This example shows how the database uses statistics feedback to adjust incorrect
estimates.

1. The user oe runs the following query of the or ders, order _i tens, and
product _i nf ormati on tables:

SELECT o.order_id, v.product_nane
FROM orders o,
(SELECT order_id, product_nane
FROM order_itens o, product_information p
WHERE p. product _id = o.product _id
AND list_price <50
AND mn_price <40) v
WHERE o.order_id = v.order_id

4-23

Chapter 4
About Adaptive Query Optimization

2. Querying the plan in the cursor shows that the estimated rows (E- Rows) is far
fewer than the actual rows (A- Rows).

| 1d | Operation | Name | Starts| E- Rows| A- Rows| A- Ti ne| Buf f er s| Ovenj 1Men]{ Q' 1/ M
| O] SELECT STATEMENT | 1] | 269 | 00:00:00. 14| 1338| |
| 1| NESTED LOOPS |

=

| 2| MERGE JOIN CARTESI AN 1| 4]9135 |00: 00: 00. 05 33|

| |

1] 269 |00:00:00.14/1338] | | |

| |

|*3| TABLE ACCESS FULL |PRODUCT_INFORMATION| 1| 1| 87 00:00:00.01] 32| | | |
|

|

|

| 4 BUFFER SORT | | 87] 105 | 9135 |00:00:00.02| 1| 4096] 4096| 1/ 0/ 0
| 5 INDEX FULL SCAN | ORDER PK | 1] 105 | 105 |00:00:00.01] 1] | |
|*6] INDEX UNIQUE SCAN | ORDER | TEMS_UK |9135| 1 | 269 |00:00:00.041305] | |

3 - filter(("MN_PRI CE'<40 AND "LIST PRI CE'<50))
6 - access("O'."ORDER | D'="CRDER | D' AND "P"."PRODUCT | D'="0'. " PRODUCT | D')

3. The user oe reruns the query in Step 1.

4. Querying the plan in the cursor shows that the optimizer used statistics feedback
(shown in the Not e) for the second execution, and also chose a different plan.

|1d | Operation | Name | Starts | E-Rows| A-Rows| A-Ti me| Buf f er s| Reads| Ovenj 1Men]{ Q' 1/ M
| O] SELECT STATEMENT 1] | 269 | 00:00: 00. 05| 60| 1| | | |

| |
1	NESTED LOOPS		1269 269	00: 00: 00. 05	60	1					
*2	HASH JOIN		1]313	269	00: 00: 00. 05	39	1	1398K	1398K	1/ 0/ 0	
*3	TABLE ACCESS FULL	PRODUCT I NFORMATION	1	87	87	00:00: 00.01	15	0			
4 INDEX FAST FULL SCAN ORDER	TEMS_UK	1665 665	00:00: 00. 01 24	1							
*5	INDEX UNIQUE SCAN	ORDER PK	269] 1	269	00: 00: 00. 01	21	0				

2 - access("P"."PRODUCT | D'="O'. " PRODUCT_| D)
3 - filter(("MN_PR CE"<40 AND "LI ST_PRI CE"<50))
5 - access("O'."ORDER | D'=" ORDER | D)

- statistics feedback used for this statenent

In the preceding output, the estimated number of rows (269) in Step 1 matches the
actual number of rows.

4.4.2.2.2 Reoptimization: Performance Feedback

Another form of reoptimization is performance feedback. This reoptimization helps
improve the degree of parallelism automatically chosen for repeated SQL statements
when PARALLEL DEGREE PCLI CY is set to ADAPTI VE.

The basic process of reoptimization using performance feedback is as follows:

1. During the first execution of a SQL statement, when PARALLEL DEGREE PQLI CY is
set to ADAPTI VE, the optimizer determines whether to execute the statement in
parallel, and if so, which degree of parallelism to use.

ORACLE 4-24

Chapter 4
About Adaptive Query Optimization

The optimizer chooses the degree of parallelism based on the estimated
performance of the statement. Additional performance monitoring is enabled for
all statements.

2. Atthe end of the initial execution, the optimizer compares the following:
e The degree of parallelism chosen by the optimizer

* The degree of parallelism computed based on the performance statistics (for
example, the CPU time) gathered during the actual execution of the statement

If the two values vary significantly, then the database marks the statement for
reparsing, and stores the initial execution statistics as feedback. This feedback
helps better compute the degree of parallelism for subsequent executions.

3. If the query executes again, then the optimizer uses the performance statistics
gathered during the initial execution to better determine a degree of parallelism for
the statement.

¢ Note:

Even if PARALLEL_DEGREE_POLI CY is not set to ADAPTI VE, statistics feedback
may influence the degree of parallelism chosen for a statement.

4.4.2.3 SQL Plan Directives

A SQL plan directive is additional information that the optimizer uses to generate a
more optimal plan.

The directive is a “note to self” by the optimizer that it is misestimating cardinalities
of certain types of predicates, and also a reminder to DBM5S_STATS to gather statistics
needed to correct the misestimates in the future.

For example, during query optimization, when deciding whether the table is a
candidate for dynamic statistics, the database queries the statistics repository for
directives on a table. If the query joins two tables that have a data skew in their join
columns, then a SQL plan directive can direct the optimizer to use dynamic statistics to
obtain an accurate cardinality estimate.

The optimizer collects SQL plan directives on query expressions rather than at the
statement level so that it can apply directives to multiple SQL statements. The
optimizer not only corrects itself, but also records information about the mistake, so
that the database can continue to correct its estimates even after a query—and any
similar query—is flushed from the shared pool.

The database automatically creates directives, and stores them in the SYSAUX
tablespace. You can alter, save to disk, and transport directives using the PL/SQL
package DBMS_SPD.

ORACLE 4-25

Chapter 4
About Approximate Query Processing

¢ See Also:

e "SQL Plan Directives"
e "Managing SQL Plan Directives"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_SPD package

4.4.2.4 When Adaptive Statistics Are Enabled

Adaptive statistics are disabled by default.

Adaptive statistics are enabled when the following initialization parameters are set:
e COPTI M ZER_ADAPTI VE_STATI STI CS is TRUE (the default is FALSE)

e OPTIM ZER _FEATURES_ENABLE is 12. 1. 0. 1 or later

Setting OPTI M ZER_ADAPTI VE_STATI STI CS to TRUE enables the following features:

* SQL plan directives

e Statistics feedback for join cardinality

* Performance feedback

* Adaptive dynamic sampling

Note:

Setting OPTI M ZER_ADAPTI VE_STATI STI CS to FALSE preserves statistics
feedback for single-table cardinality misestimates.

¢ See Also:

e "Controlling Adaptive Optimization"

e Oracle Database Reference to learn more about
CPTI M ZER_ADAPTI VE_STATI STI CS

4.5 About Approximate Query Processing

ORACLE

Approximate query processing is a set of optimization techniques that speed
analytic queries by calculating results within an acceptable range of error.

Business intelligence (Bl) queries heavily rely on aggregate functions (SUM RANK,

MEDI AN, and so on) that require sorting. For example, an application generates reports
showing how many distinct customers are logged on, or which products were most
popular last week. It is not uncommon for Bl applications to have the following
requirements:

4-26

Chapter 4
About Approximate Query Processing

* Queries must be able to process data sets that are orders of magnitude larger
than in traditional data warehouses.

For example, the daily volumes of web logs of a popular website can reach tens or
hundreds of terabytes a day.

* Queries must provide near real-time response.

For example, a company requires quick detection and response to credit card
fraud.

» Explorative queries of large data sets must be fast.

For example, a user might want to find out a list of departments whose sales have
approximately reached a specific threshold. A user would form targeted queries
on these departments to find more detailed information, such as the exact sales
number, the locations of these departments, and so on.

For large data sets, exact aggregation queries consume extensive memory, often
spilling to temp space, and can be unacceptably slow. Applications are often more
interested in a general pattern than exact results, so customers are willing to sacrifice
exactitude for speed. For example, if the goal is to show a bar chart depicting the most
popular products, then whether a product sold 1 million units or .999 million units is
statistically insignificant.

Oracle Database implements its solution through approximate query processing.
Typically, the accuracy of the approximate aggregation is over 97% (with 95%
confidence), but the processing time is orders of magnitude faster. The database uses
less CPU, and avoids writing to temp files.

You can implement approximate query processing without changing existing code by
using the APPROX_FOR * initialization parameters. You can set these parameters at the
database or session level. The following table describes initialization parameters and
SQL functions relevant to approximation techniques.

Table 4-2 Approximate Query User Interface

User Interface Description See Also
APPROX_FOR_AGGREGATI ONinitialization Enables approximate query Oracle Database
parameter processing. Reference

Setting this parameter to

f al se disables all automatic

conversion from exact aggregate

to approximate aggregate,

regardless of the settings of the

APPROX_FOR_CCQUNT_DI STI NCT

and APPROX_FOR_PERCENTI LE

parameters.

APPROX_FOR_COUNT_DI STI NCT initialization Converts COUNT(DI STI NCT) to Oracle Database

parameter APPROX_CQOUNT_DI STI NCT. Reference

APPROX_FOR_PERCENTI LE initialization parameter | Converts eligible exact Oracle Database
percentile functions to Reference
their APPROX_PERCENTI LE_*
counterparts.

APPROX_COUNT_DI STI NCT function Returns the approximate number | Oracle Database SQL
of rows that contain distinct values | Language Reference
of an expression.

ORACLE 4-27

Table 4-2 (Cont.) Approximate Query User Interface

Chapter 4
About SQL Plan Management

User Interface

Description

See Also

APPROX_COUNT DI STI NCT_AGG function

Aggregates the precomputed
approximate count distinct
synopses to a higher level.

Oracle Database SQL
Language Reference

APPROX_COUNT_DI STI NCT_DETAI L function

Returns the synopses of
the APPROX_COUNT _DI STI NCT
function as a BLOB.

The database can persist the
returned result to disk for further
aggregation.

Oracle Database SQL
Language Reference

APPROX_PERCENTI LE function

Accepts a percentile value and

a sort specification, and returns
an approximate interpolated value
that falls into that percentile

value with respect to the sort
specification.

This function provides
an alternative to the
PERCENTI LE_CONT function.

Oracle Database SQL
Language Reference

APPROX_MEDI AN function

Accepts a humeric or date-time
value, and returns an approximate
middle or approximate interpolated
value that would be the middle
value when the values are sorted.

This function provides an
alternative to the MEDI AN function.

Oracle Database SQL
Language Reference

¢ See Also:

"NDV Algorithms: Adaptive Sampling and HyperLogLog"

4.6 About SQL Plan Management

SQL plan management enables the optimizer to automatically manage execution
plans, ensuring that the database uses only known or verified plans.

SQL plan management can build a SQL plan baseline, which contains one or more
accepted plans for each SQL statement. The optimizer can access and manage the
plan history and SQL plan baselines of SQL statements. The main objectives are as

follows:

* Identify repeatable SQL statements

e Maintain plan history, and possibly SQL plan baselines, for a set of SQL

statements

» Detect plans that are not in the plan history

» Detect potentially better plans that are not in the SQL plan baseline

ORACLE

4-28

Chapter 4
About the Expression Statistics Store (ESS)

The optimizer uses the normal cost-based search method.

" See Also:

e "Managing SQL Plan Baselines"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_SPMpackage

4.7 About the Expression Statistics Store (ESS)

The Expression Statistics Store (ESS) is a repository maintained by the optimizer to
store statistics about expression evaluation.

When an IM column store is enabled, the database leverages the ESS for its In-
Memory Expressions (IM expressions) feature. However, the ESS is independent of
the IM column store. The ESS is a permanent component of the database and cannot
be disabled.

The database uses the ESS to determine whether an expression is “hot” (frequently
accessed), and thus a candidate for an IM expression. During a hard parse of a query,
the ESS looks for active expressions in the SELECT list, WHERE clause, GROUP BY clause,
and so on.

For each segment, the ESS maintains expression statistics such as the following:

* Frequency of execution
* Cost of evaluation
e Timestamp evaluation

The optimizer assigns each expression a weighted score based on cost and the
number of times it was evaluated. The values are approximate rather than exact. More
active expressions have higher scores. The ESS maintains an internal list of the most
frequently accessed expressions.

The ESS resides in the SGA and also persists on disk. The database

saves the statistics to disk every 15 minutes, or immediately using the
DBMS_STATS. FLUSH DATABASE MONI TORI NG _| NFO procedure. The ESS statistics are
visible in the DBA_EXPRESSI ON_STATI STI CS view.

See Also:

e Oracle Database In-Memory Guide to learn more about the ESS

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS. FLUSH DATABASE MONI TORI NG_| NFO

ORACLE 4-29

Query Transformations

The optimizer employs many query transformation techniques. This chapter describes
some of the most important.

This chapter contains the following topics:

Related Topics

e Query Transformer
For some statements, the query transformer determines whether it is
advantageous to rewrite the original SQL statement into a semantically equivalent
SQL statement with a lower cost.

5.1 OR Expansion

In OR expansion, the optimizer transforms a query block containing top-level
disjunctions into the form of a UNI ON ALL query that contains two or more branches.
The optimizer achieves this goal by splitting the disjunction into its components, and
then associating each component with a branch of a UNI ON ALL query.

The optimizer can choose CR expansion for various reasons. For example, it may
enable more efficient access paths or alternative join methods that avoid Cartesian
products. As always, the optimizer performs the expansion only if the cost of the
transformed statement is lower than the cost of the original statement.

In previous releases, the optimizer used the CONCATENATI ON operator to perform the OR
expansion. Starting in Oracle Database 12c¢ Release 2 (12.2), the optimizer uses the
UNI ON- ALL operator instead. The framework provides the following enhancements:

» Enables interaction among various transformations
* Avoids sharing query structures

* Enables the exploration of various search strategies
* Provides the reuse of cost annotation

e Supports the standard SQL syntax

Example 5-1 Transformed Query: UNION ALL Condition

ORACLE

To prepare for this example, log in to the database as an administrator,
execute the following statements to add a unique constraint to the

hr. depart nent s. depart nent _nanme column, and then add 100,000 rows to the
hr. enpl oyees table:

ALTER TABLE hr. departments ADD CONSTRAI NT department _name_uk UN QUE
(depart nent _nane);

DELETE FROM hr. enpl oyees WHERE enpl oyee i d > 999;

DECLARE

v_counter NUMBER(7) := 1000;

BEG N

5-1

Chapter 5
OR Expansion

FOR i IN 1..100000 LOCP
I NSERT | NTO hr. enpl oyees

VALUES (v_counter,null,'Doe',"' Doe' || v_counter ||
" @xanpl e.com ,null,"07-JUN-02'," AC_ ACCOUNT" , nul I, nul I, nul I, 50);
v_counter := v_counter + 1;
END LOCP;
END;
/
COWM T;
EXEC DBMS_STATS. GATHER TABLE_STATS (ownnanme => 'hr', tabname =>
"enpl oyees');

You then connect as the user hr, and execute the following query, which joins the
enpl oyees and depart nent s tables:

SELECT *

FROM enpl oyees e, departnents d

WHERE (e.enmil="SSTILES OR d.departnent_nane=' Treasury')
AND e.department _id = d. departnent _id;

Without OR expansion, the optimizer treats e. emai | =" SSTI LES' OR

d. department _name=' Treasury' as a single unit. Consequently, the optimizer cannot
use the index on either the e. emai | or d. depart ment _nane column, and so performs a
full table scan of enpl oyees and depart nent s.

With OR expansion, the optimizer breaks the disjunctive predicate into two independent
predicates, as shown in the following example:

SELECT *

FROM enpl oyees e, departnents d

WHERE e.emmi| = 'SSTILES

AND e.department _id = d.departnent _id
UNI ON ALL

SELECT *

FROM enpl oyees e, departnents d

WHERE d. departnent _name = ' Treasury’
AND e.department _id = d. departnent _id;

This transformation enables the e. emai | and d. depart nent _name columns to serve as
index keys. Performance improves because the database filters data using two unique
indexes instead of two full table scans, as shown in the following execution plan:

Pl an hash val ue: 2512933241

| 1d] Operation | Name | Rows| Byt es|
Cost (YCPU) | Time |

SELECT STATEMENT | | | 122

VI EW | VW ORE_19FF4E3E | 9102| 1679K| 122 (5) |

ORACLE 5-2

Chapter 5

View Merging
00: 00: 01|
| 2| UNI ON- ALL | | | |
I I
| 3| NESTED LOOPS | | 1] 78] 4 (0) |
00: 00: 01|
| 4 | TABLE ACCESS BY | NDEX RON D | EMPLOYEES | 1] 57| 3 (0) |
00: 00: 01|
[*5 | | NDEX UNI QUE SCAN | EMP_EMAIL_UK | 1] | 2 (0) |
00: 00: 01|
| 6 | TABLE ACCESS BY | NDEX RON D | DEPARTMENTS | 1] 21] 1 (0) |
00: 00: 01|
[*7 | | NDEX UNI QUE SCAN | DEPT_ID PK | 1] | 0 (0)
I I
| 8 | NESTED LOOPS | | 9101 693K| 118 (5) |
00: 00: 01|
| 9 | TABLE ACCESS BY | NDEX RON D | DEPARTMENTS | 1] 21] 1 (0) |
00: 00: 01|
| *10| | NDEX UNI QUE SCAN | DEPARTMENT _NAME UK| 1 | | 0 (0)
I I
[*11] TABLE ACCESS BY | NDEX ROAN D BATCHED| EMPLOYEES | 9101 506K| 117 (5) |
00: 00: 01|
| *12] | NDEX RANGE SCAN | EMP_DEPARTMENT | X | 9101] | 35 (6) |
00: 00: 01|

5 - access("E"."EMAIL"="SSTI LES")
7 - access("E"."DEPARTMENT_| D'="D'". " DEPARTMENT_I| D")

10 - access

"D'. " DEPARTMENT_NAME'=' Treasury')

11 - filter (LNNVL("E"."EMAIL"="SSTILES))
12 - access("E"."DEPARTMVENT_I D'="D". " DEPARTMENT_| D")

35 rows sel ect ed.

5.2 View Merging

ORACLE

In view merging, the optimizer merges the query block representing a view into the
guery block that contains it.

View merging can improve plans by enabling the optimizer to consider additional join
orders, access methods, and other transformations. For example, after a view has
been merged and several tables reside in one query block, a table inside a view may
permit the optimizer to use join elimination to remove a table outside the view.

For certain simple views in which merging always leads to a better plan, the optimizer
automatically merges the view without considering cost. Otherwise, the optimizer uses
cost to make the determination. The optimizer may choose not to merge a view for
many reasons, including cost or validity restrictions.

If OPTI M ZER_SECURE_VI EW MERG NGis t r ue (default), then Oracle Database performs
checks to ensure that view merging and predicate pushing do not violate the security
intentions of the view creator. To disable these additional security checks for a specific

5-3

Chapter 5
View Merging

view, you can grant the MERGE VI EWprivilege to a user for this view. To disable
additional security checks for all views for a specific user, you can grant the MERGE
ANY VI EWprivilege to that user.

¢ Note:

You can use hints to override view merging rejected because of cost or
heuristics, but not validity.

This section contains the following topics:

" See Also:
e Oracle Database SQL Language Reference for more information about
the MERGE ANY VI EWand MERGE VI EWprivileges

¢ Oracle Database Reference for more information about the
OPTI M ZER_SECURE_VI EW MERG NG initialization parameter

5.2.1 Query Blocks in View Merging

The optimizer represents each nested subquery or unmerged view by a separate
query block.

The database optimizes query blocks separately from the bottom up. Thus, the
database optimizes the innermost query block first, generates the part of the plan
for it, and then generates the plan for the outer query block, representing the entire
query.

The parser expands each view referenced in a query into a separate query block.

The block essentially represents the view definition, and thus the result of a view. One
option for the optimizer is to analyze the view query block separately, generate a view
subplan, and then process the rest of the query by using the view subplan to generate
an overall execution plan. However, this technique may lead to a suboptimal execution
plan because the view is optimized separately.

View merging can sometimes improve performance. As shown in "Example 5-2", view
merging merges the tables from the view into the outer query block, removing the
inner query block. Thus, separate optimization of the view is not necessary.

5.2.2 Simple View Merging

ORACLE

In simple view merging, the optimizer merges select-project-join views.

For example, a query of the enpl oyees table contains a subquery that joins the
departnent s and | ocat i ons tables.

Simple view merging frequently results in a more optimal plan because of the
additional join orders and access paths available after the merge. A view may not
be valid for simple view merging because:

5-4

Chapter 5
View Merging

* The view contains constructs not included in select-project-join views, including:
— CGROUP BY
— DI STINCT
— Outer join
— MODEL
— CONNECT BY
— Set operators
— Aggregation
* The view appears on the right side of a semijoin or antijoin.
e The view contains subqueries in the SELECT list.
* The outer query block contains PL/SQL functions.

* The view participates in an outer join, and does not meet one of the several
additional validity requirements that determine whether the view can be merged.

Example 5-2 Simple View Merging

The following query joins the hr. enpl oyees table with the dept _| ocs_v view, which
returns the street address for each department. dept _| ocs_v is a join of the
depart nents and | ocat i ons tables.

SELECT e.first_nane, e.last_name, dept locs_v.street address,
dept | ocs_v. postal code
FROM enpl oyees e,
(SELECT d. departnent _id, d.departnent_nane,
|.street_address, |.postal _code

FROM departments d, |ocations |

WHERE d.location_id =1.location_id) dept_locs v
WHERE dept | ocs_v.departnent _id = e.departnent id
AND e.last_name = 'Smth';

The database can execute the preceding query by joining depart ment s and | ocati ons
to generate the rows of the view, and then joining this result to enpl oyees. Because
the query contains the view dept | ocs_v, and this view contains two tables, the
optimizer must use one of the following join orders:

» enpl oyees, dept | ocs_v (departnents, | ocations)
» enpl oyees, dept _I ocs_v (I ocati ons, depart nents)
e dept_locs_v (departnents,|ocations), enpl oyees
e dept_locs_v (I ocations, depart nents), enpl oyees

Join methods are also constrained. The index-based nested loops join is not feasible
for join orders that begin with enpl oyees because no index exists on the column from
this view. Without view merging, the optimizer generates the following execution plan:

| 0| SELECT STATEMENT | | 7 (15)]

ORACLE 5-5

ORACLE

| HASH JOIN |
| TABLE ACCESS BY | NDEX ROW D|
| I NDEX RANGE SCAN |
| VIEW |
| HASH JON |
| TABLE ACCESS FULL |
| TABLE ACCESS FULL |

EMPLOYEES
EMP_NAME | X

LOCATI ONS
DEPARTMENTS

Chapter 5

View Merging

1 - access("DEPT_LOCS_V'."DEPARTMENT_I D'="FE". " DEPARTMENT_| D")

3 - access("E"."LAST_NAME'="Smith")
5 - access("D'."LOCATI ON_ID'="L"."LOCATION_I D")

View merging merges the tables from the view into the outer query block, removing the
inner query block. After view merging, the query is as follows:

SELECT e.first_name, e.last _name, |.street _address, |.postal code

FROM enpl oyees e, departnents d, |ocations |
WHERE d.location_id = 1.location_id

AND d.departrment _id = e.departnent _id

AND e.last_name = 'Smth';

Because all three tables appear in one query block, the optimizer can choose from the
following six join orders:

enpl oyees, depart nents, | ocations
enpl oyees, | ocati ons, depart ments
depart nment s, enpl oyees, | ocati ons
departnents, | ocati ons, enpl oyees
| ocati ons, enpl oyees, depart ments

| ocations, depart nents, enpl oyees

The joins to enpl oyees and depart nent s can now be index-based. After view merging,
the optimizer chooses the following more efficient plan, which uses nested loops:

* *

SELECT STATEMENT
NESTED LOCPS
NESTED LOOPS

NESTED LOOPS

[NDEX UNI QUE SCAN
[NDEX UNI QUE SCAN

I
I
I
I
I
| | NDEX RANGE SCAN
I
I
I
| TABLE ACCESS BY | NDEX ROW D

TABLE ACCESS BY | NDEX ROW D

TABLE ACCESS BY | NDEX ROW D

EMPLOYEES
EMP_NAME_ | X
DEPARTMVENTS
DEPT | D_PK

5-6

Chapter 5
View Merging

Predicate Information (identified by operation id):
5 - access("E"."LAST_NAME"='Snith')
7 - access("E"."DEPARTMENT_| D'="D". " DEPARTMENT_| D")
8 - access("D'."LOCATION_ID'="L"."LOCATION I D")

¢ See Also:

The Oracle Optimizer blog at htt ps: // bl ogs. oracl e. com opti m zer/ to
learn about outer join view merging, which is a special case of simple view
merging

5.2.3 Complex View Merging

ORACLE

In view merging, the optimizer merges views containing GROUP BY and DI STI NCT
views. Like simple view merging, complex merging enables the optimizer to consider
additional join orders and access paths.

The optimizer can delay evaluation of GROUP BY or DI STI NCT operations until

after it has evaluated the joins. Delaying these operations can improve or worsen
performance depending on the data characteristics. If the joins use filters, then
delaying the operation until after joins can reduce the data set on which the operation
is to be performed. Evaluating the operation early can reduce the amount of data to
be processed by subsequent joins, or the joins could increase the amount of data to
be processed by the operation. The optimizer uses cost to evaluate view merging and
merges the view only when it is the lower cost option.

Aside from cost, the optimizer may be unable to perform complex view merging for the
following reasons:

* The outer query tables do not have a rowid or unique column.
* The view appears in a CONNECT BY query block.

* The view contains GROUPI NG SETS, ROLLUP, or PI VOT clauses.
e The view or outer query block contains the MODEL clause.
Example 5-3 Complex View Joins with GROUP BY

The following view uses a GROUP BY clause:

CREATE VI EWcust _prod_totals_v AS

SELECT SUMs. quantity sold) total, s.cust_id, s.prod_id
FROM sales s

GROUP BY s.cust_id, s.prod_id,;

The following query finds all of the customers from the United States who have bought
at least 100 fur-trimmed sweaters:

SELECT c.cust _id, c.cust first _nane, c.cust |ast name, c.cust_emil
FROM customers c, products p, cust prod totals v

WHERE c.country id = 52790

AND c.cust _id = cust_prod totals_ v.cust _id

5-7

Chapter 5
View Merging

AND cust_prod_totals_v.total > 100
AND cust_prod_totals_v.prod_id = p.prod_id
AND p.prod_nanme = 'T3 Faux Fur-Trimed Sweater';

The cust _prod_total s_v view is eligible for complex view merging. After merging, the
query is as follows:

SELECT c.cust_id, cust_first_nane, cust_|ast _nane, cust_enail
FROM customers c, products p, sales s
WHERE c.country_id = 52790
AND c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
AND p.prod_nane = 'T3 Faux Fur-Trimed Sweater'
GROUP BY s.cust_id, s.prod_id, p.rowid, c.rowid, c.cust_email,
c.cust_|ast_nane,
c.cust_first_name, c.cust _id
HAVI NG SUM s. quantity_sol d) > 100;

The transformed query is cheaper than the untransformed query, so the optimizer
chooses to merge the view. In the untransformed query, the GROUP BY operator applies
to the entire sal es table in the view. In the transformed query, the joins to pr oduct s
and cust oner s filter out a large portion of the rows from the sal es table, so the GROUP
BY operation is lower cost. The join is more expensive because the sal es table has
not been reduced, but it is not much more expensive because the GROUP BY operation
does not reduce the size of the row set very much in the original query. If any of the
preceding characteristics were to change, merging the view might no longer be lower
cost. The final plan, which does not include a view, is as follows:

| Id | Operation | Name | Cost (%CPY)|
| 0| SELECT STATEMENT | | 2101 (18)]
[* 1] FILTER | | |
| 2] HASH GROUP BY | | 2101 (18)]
[* 3] HASH JO N | | 2099 (18)]
[* 4] HASH JO N | | 1801 (19)]
[* 5] TABLE ACCESS FULL| PRODUCTS | 96 (9)]
| 6] TABLE ACCESS FULL| SALES | 1620 (15)]
[* 7] TABLE ACCESS FULL | CUSTOMERS | 296 (11)]

1 - filter(SUM"QUANTITY_SOLD")>100)

3 - access("C'."CUST_ID'="CUST_I D")

4 - access("PROD_ID'="P"."PROD_ID")

5- filter("P"."PROD_NAME"='T3 Faux Fur-Trinmed Sweater')
7 - filter("C'."COUNTRY_ID'="US")

ORACLE 5-8

ORACLE

Chapter 5
View Merging

Example 5-4 Complex View Joins with DISTINCT

The following query of the cust _prod_v view uses a DI STI NCT operator:

SELECT c.cust _id, c.cust_first_nane, c.cust_|ast _name, c.cust_emil
FROM customers c, products p,

(SELECT DI STINCT s.cust _id, s.prod_id

FROM sales s) cust_prod_v

WHERE c.country id = 52790
AND c.cust _id = cust_prod_v.cust_id
AND cust_prod_v.prod_id = p.prod_id
AND p.prod_nanme = 'T3 Faux Fur-Trimed Sweater';

After determining that view merging produces a lower-cost plan, the optimizer rewrites
the query into this equivalent query:

SELECT nww. cust _id, nww. cust_first_name, nww. cust | ast_nane,
nww. cust _enai |
FROM (SELECT DI STINCT(c.rowid), p.rowid, s.prod_ id, s.cust_id,
c.cust _first _name, c.cust_|last_nane, c.cust_enail
FROM custoners ¢, products p, sales s
WHERE c.country id = 52790
AND c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
AND p.prod _nane = 'T3 Faux Fur-Trimmed Sweater') nww;

The plan for the preceding query is as follows:

1d	Operation	Nane
0	SELECT STATEMENT	
1	VIEW	VM NWW1
2	HASH UNI QUE	
[* 3] HASH JO N		
[* 4] HASH JO N		
[* 5] TABLE ACCESS FULL	PRODUCTS	
6	TABLE ACCESS FULL	SALES
[* 7] TABLE ACCESS FULL | CUSTOMERS |

("C'."CUST_ID'="S"."CUST_I D")
("S"."PROD_ID'="P"."PROD_I D")

- filter("P"."PROD_NAME"='T3 Faux Fur-Trinmed Sweater')
("C'."COUNTRY_ID'="US")

'
—
—
@D
—

The preceding plan contains a view named vm nww_1, known as a projection view,
even after view merging has occurred. Projection views appear in queries in which

a DI STI NCT view has been merged, or a GROUP BY view is merged into an outer

query block that also contains GROUP BY, HAVI NG, or aggregates. In the latter case, the

5-9

Chapter 5
Predicate Pushing

projection view contains the GROUP BY, HAVI NG, and aggregates from the original outer
query block.

In the preceding example of a projection view, when the optimizer merges the view,

it moves the DI STI NCT operator to the outer query block, and then adds several
additional columns to maintain semantic equivalence with the original query. Afterward,
the query can select only the desired columns in the SELECT list of the outer query
block. The optimization retains all of the benefits of view merging: all tables are in one
guery block, the optimizer can permute them as needed in the final join order, and the
DI STI NCT operation has been delayed until after all of the joins complete.

5.3 Predicate Pushing

ORACLE

In predicate pushing, the optimizer "pushes" the relevant predicates from the
containing query block into the view query block.

For views that are not merged, this technique improves the subplan of the unmerged
view. The database can use the pushed-in predicates to access indexes or to use as
filters.

For example, suppose you create a table hr. contract _workers as follows:

DROP TABLE contract _workers;
CREATE TABLE contract_workers AS (SELECT * FROM enpl oyees where 1=2);

I NSERT | NTO contract_workers VALUES (306, 'Bill', "Jones', 'BJONES ,
' 555. 555.2000", '07-JUN-02', 'AC ACCOUNT', 8300, 0,205, 110);

I NSERT I NTO contract _workers VALUES (406, 'Jill', "Ashworth',

" JASHWORTH

' 555.999. 8181', '09-JUN-05', 'AC ACCOUNT', 8300, 0,205, 50);
I NSERT | NTO contract_workers VALUES (506, 'Marcie', 'Lunsford',
" MLUNSFORD' , '555.888.2233", '22-JUL-01', 'AC ACCOUNT', 8300,
0, 205, 110);
COWM T,
CREATE | NDEX contract_workers_index ON contract_workers(department id);

You create a view that references enpl oyees and contract _workers. The view is
defined with a query that uses the UNI ON set operator, as follows:

CREATE VIEW al | _enpl oyees_vw AS
(SELECT enpl oyee_id, last_name, job_id, conm ssion pct, department id
FROM enpl oyees)
UNI ON
(SELECT enpl oyee_id, last_name, job_id, conmssion pct, department id
FROM contract_workers);

You then query the view as follows:
SELECT | ast_nane

FROM all _enpl oyees_vw
WHERE department_id = 50;

Because the view is a UNI ON set query, the optimizer cannot merge the view's query
into the accessing query block. Instead, the optimizer can transform the accessing

5-10

Chapter 5
Subquery Unnesting

statement by pushing its predicate, the WHERE clause condition depart ment _i d=50, into
the view's UNI ON set query. The equivalent transformed query is as follows:

SELECT | ast _nane
FROM (SELECT enployee_id, |ast _name, job_id, conmi ssion pct,
departrment _id

FROVM enpl oyees

WHERE department_id=50

UNI ON

SELECT enpl oyee_id, |ast_name, job_id, conmi ssion pct,
departrent _id

FROM contract_workers

WHERE department_id=50);

The transformed query can now consider index access in each of the query blocks.

5.4 Subquery Unnesting

In subquery unnesting, the optimizer transforms a nested query into an equivalent
join statement, and then optimizes the join.

This transformation enables the optimizer to consider the subquery tables during
access path, join method, and join order selection. The optimizer can perform this
transformation only if the resulting join statement is guaranteed to return the same
rows as the original statement, and if subqueries do not contain aggregate functions
such as AVG.

For example, suppose you connect as user sh and execute the following query:

SELECT *

FROM sal es

WHERE cust id IN (SELECT cust _id
FROM customers);

Because the cust oners. cust _i d column is a primary key, the optimizer can transform
the complex query into the following join statement that is guaranteed to return the
same data:

SELECT sal es. *
FROM sales, customers
WHERE sal es.cust _id = custoners.cust _id;

If the optimizer cannot transform a complex statement into a join statement, it selects
execution plans for the parent statement and the subquery as though they were
separate statements. The optimizer then executes the subquery and uses the rows
returned to execute the parent query. To improve execution speed of the overall
execution plan, the optimizer orders the subplans efficiently.

5.5 Query Rewrite with Materialized Views

A materialized view is a query result stored in a table.

ORACLE 5-11

Chapter 5
Star Transformation

When the optimizer finds a user query compatible with the query associated with a
materialized view, the database can rewrite the query in terms of the materialized view.
This technique improves query execution because the database has precomputed
most of the query result.

The optimizer looks for materialized views that are compatible with the user query, and
then uses a cost-based algorithm to select materialized views to rewrite the query. The
optimizer does not rewrite the query when the plan generated unless the materialized
views has a lower cost than the plan generated with the materialized views.

This section contains the following topics:

¢ See Also:

Oracle Database Data Warehousing Guide to learn more about query rewrite

5.6 Star Transformation

Star transformation is an optimizer transformation that avoids full table scans of fact
tables in a star schema.

This section contains the following topics:

5.6.1 About Star Schemas

ORACLE

A star schema divides data into facts and dimensions.

Facts are the measurements of an event such as a sale and are typically numbers.
Dimensions are the categories that identify facts, such as date, location, and product.

A fact table has a composite key made up of the primary keys of the dimension tables
of the schema. Dimension tables act as lookup or reference tables that enable you to
choose values that constrain your queries.

Diagrams typically show a central fact table with lines joining it to the dimension tables,
giving the appearance of a star. The following graphic shows sal es as the fact table
and product s, ti nes, cust oners, and channel s as the dimension tables.

Figure 5-1 Star Schema

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

5-12

Chapter 5
Star Transformation

A snowflake schema is a star schema in which the dimension tables reference other
tables. A snowstorm schema is a combination of snowflake schemas.

See Also:

Oracle Database Data Warehousing Guide to learn more about star
schemas

5.6.2 Purpose of Star Transformations

In joins of fact and dimension tables, a star transformation can avoid a full scan of a
fact table.

The star transformation improves performance by fetching only relevant fact rows that
join to the constraint dimension rows. In some cases, queries have restrictive filters
on other columns of the dimension tables. The combination of filters can dramatically
reduce the data set that the database processes from the fact table.

5.6.3 How Star Transformation Works

Star transformation adds subquery predicates, called bitmap semijoin predicates,
corresponding to the constraint dimensions.

The optimizer performs the transformation when indexes exist on the fact join
columns. By driving bitmap AND and OR operations of key values supplied by the
subqueries, the database only needs to retrieve relevant rows from the fact table. If the
predicates on the dimension tables filter out significant data, then the transformation
can be more efficient than a full scan on the fact table.

After the database has retrieved the relevant rows from the fact table, the database
may need to join these rows back to the dimension tables using the original
predicates. The database can eliminate the join back of the dimension table when
the following conditions are met:

» All the predicates on dimension tables are part of the semijoin subquery predicate.
* The columns selected from the subquery are unique.

The dimension columns are not in the SELECT list, GROUP BY clause, and so on.

5.6.4 Controls for Star Transformation

ORACLE

The STAR_TRANSFORMATI ON_ENABLED initialization parameter controls star
transformations.

This parameter takes the following values:
e true

The optimizer performs the star transformation by identifying the fact and
constraint dimension tables automatically. The optimizer performs the star
transformation only if the cost of the transformed plan is lower than

the alternatives. Also, the optimizer attempts temporary table transformation

5-13

Chapter 5
Star Transformation

automatically whenever materialization improves performance (see "Temporary
Table Transformation: Scenario").

« fal se (default)
The optimizer does not perform star transformations.
e TEMP_DI SABLE

This value is identical to t r ue except that the optimizer does not attempt
temporary table transformation.

See Also:

Oracle Database Reference to learn about the
STAR_TRANSFORMATI ON_ENABLED initialization parameter

5.6.5 Star Transformation: Scenario

ORACLE

This scenario demonstrates a star transformation of a star query.
Example 5-5 Star Query

The following query finds the total Internet sales amount in all cities in California for
guarters Q1 and Q2 of year 1999:

SELECT c.cust _city,
t.cal endar_quarter _desc,
SUM s. anbunt _sol d) sal es_anount

FROM sales s,
times t,
customers c,
channel s ch

WHERE s.tine_id =t.tine.id

AND s.cust _id = c.cust _id

AND s. channel _id = ch.channel _id

AND c.cust_state province = 'CA

AND ch. channel _desc = 'Internet’

AND t.cal endar _quarter_desc IN ('1999-01','1999-02")
GROUP BY c.cust _city, t.calendar_quarter_desc;

Sample output is as follows:

CUST A TY CALENDA SALES AMOUNT
Mont ar a 1999- 02 1618. 01
Pal a 1999-01 3263. 93
Cl overdal e 1999- 01 52. 64
Cl overdal e 1999- 02 266. 28

In this example, sal es is the fact table, and the other tables are dimension tables.
The sal es table contains one row for every sale of a product, so it could conceivably

5-14

Chapter 5
Star Transformation

contain billions of sales records. However, only a few products are sold to customers
in California through the Internet for the specified quarters.

Example 5-6 Star Transformation

This example shows a star transformation of the query in Example 5-5. The
transformation avoids a full table scan of sal es.

SELECT c.cust _city, t.calendar_quarter_desc, SUMs.anmount_sol d)
sal es_anount
FROM sales s, tines t, customers c
WHERE s.tine_id =t.tine_.id
AND s.cust_id = c.cust _id
AND c.cust_state province = 'CA
AND t.cal endar_quarter_desc IN ('1999-01','1999-02")
AND s.time_id IN(SELECT time_id
FROM tinmes
WHERE cal endar _quarter _desc
IN("1999-01','1999-02"))
AND s.cust _id IN (SELECT cust _id
FROM custormers
WHERE cust _state province='CA')
AND s. channel _id IN (SELECT channel _id
FROM channel s
WHERE channel _desc = 'Internet')
GROUP BY c.cust _city, t.calendar_quarter_desc;

Example 5-7 Partial Execution Plan for Star Transformation

This example shows an edited version of the execution plan for the star transformation
in Example 5-6.

Line 26 shows that the sal es table has an index access path instead of a full table
scan. For each key value that results from the subqueries of channel s (line 14), ti mes
(line 19), and cust oner s (line 24), the database retrieves a bitmap from the indexes on
the sal es fact table (lines 15, 20, 25).

Each bit in the bitmap corresponds to a row in the fact table. The bit is set when

the key value from the subquery is same as the value in the row of the fact table.
For example, in the bitmap 101000. .. (the ellipses indicates that the values for the
remaining rows are 0), rows 1 and 3 of the fact table have matching key values from
the subquery.

The operations in lines 12, 17, and 22 iterate over the keys from the subqueries and
retrieve the corresponding bitmaps. In Example 5-6, the cust oner s subquery seeks
the IDs of customers whose state or province is CA. Assume that the bitmap 101000. . .
corresponds to the customer ID key value 103515 from the cust oner s table subquery.
Also assume that the cust oner s subquery produces the key value 103516 with the
bitmap 010000. . ., which means that only row 2 in sal es has a matching key value
from the subquery.

ORACLE 5-15

ORACLE

Chapter 5
Star Transformation

The database merges (using the OR operator) the bitmaps for each subquery (lines 11,
16, 21). In our cust oner s example, the database produces a single bitmap 111000. . .
for the cust orrer s subquery after merging the two bitmaps:

101000. .. # bitmap corresponding to key 103515
010000. . . # bitmap corresponding to key 103516
111000. .. # result of OR operation

In line 10, the database applies the AND operator to the merged bitmaps. Assume that
after the database has performed all OR operations, the resulting bitmap for channel s

is 100000. . . If the database performs an AND operation on this bitmap and the bitmap
from cust omer s subquery, then the result is as follows:

100000. . . # channels bitmap after all OR operations performed
111000. .. # customers bitmap after all OR operations perforned
100000. .. # bitmap result of AND operation for channels and custoners

In line 9, the database generates the corresponding rowids of the final bitmap. The
database retrieves rows from the sal es fact table using the rowids (line 26). In our

example, the database generate only one rowid, which corresponds to the first row,
and thus fetches only a single row instead of scanning the entire sal es table.

| Id | Operation | Name

| 0| SELECT STATEMENT |

| 1] HASH GROUP BY |

[* 2] HASH JO N |

[* 3] TABLE ACCESS FULL | CUSTOMERS

[* 4] HASH JO N |

[* 5| TABLE ACCESS FULL | TIMES

| 6] VI EW | VW ST B1772830
| 7 NESTED LOOPS |

| 8| PARTI TI ON RANGE SUBQUERY |

| 9] Bl TMAP CONVERSI ON TO ROW DS|

| 10 | Bl TMAP AND |

| 11 | Bl TMAP MERGE |

| 12 | Bl TMAP KEY | TERATION |

| 13| BUFFER SORT |

| * 14 | TABLE ACCESS FULL | CHANNELS

| * 15 | Bl TMAP | NDEX RANGE SCAN| SALES CHANNEL BI X
| 16 | Bl TMAP MERGE |

| 17 | Bl TMAP KEY | TERATION |

| 18 | BUFFER SORT |

[* 19 | TABLE ACCESS FULL | TIMES

| * 20 | Bl TMAP | NDEX RANGE SCAN] SALES TI ME BI X
| 21| Bl TMAP MERGE |

| 22| Bl TMAP KEY | TERATION |

| 23| BUFFER SORT |

5-16

Chapter 5
Star Transformation

[* 24 | TABLE ACCESS FULL | CUSTOMERS
[* 25 | Bl TMAP | NDEX RANGE SCAN SALES_CUST_BI X
| 26 | TABLE ACCESS BY USER ROND | SALES

2 - access("ITEM 1"="C'."CUST_ID")
3 - filter("C'."CUST_STATE_PROVI NCE"=' CA")
4 - access("ITEM 2"="T"."TIME_ID")
5 - filter(("T"." CALENDAR_QUARTER DESC'='1999-01'
CR "T"."CALENDAR_QUARTER_DESC'='1999-02'))
14 - filter("CH'."CHANNEL_DESC'='Internet')
15 - access("S"."CHANNEL_I D'="CH'. "CHANNEL_I D")
19 - filter(("T"." CALENDAR_QUARTER DESC'='1999-01'
CR "T"."CALENDAR_QUARTER_DESC'='1999-02'))
20 - access("S"."TIME_ID'="T"."TIME_I D")
24 - filter("C'."CUST_STATE_PROVI NCE"='CA')
25 - access("S"."CUST_ID'="C"."CUST_I D")

- star transformation used for this statenent

5.6.6 Temporary Table Transformation: Scenario

ORACLE

In the preceding scenario, the optimizer does not join back the table channel s to the
sal es table because it is not referenced outside and the channel _i d is unique.

If the optimizer cannot eliminate the join back, however, then the database stores

the subquery results in a temporary table to avoid rescanning the dimension table

for bitmap key generation and join back. Also, if the query runs in parallel, then the
database materializes the results so that each parallel execution server can select the
results from the temporary table instead of executing the subquery again.

Example 5-8 Star Transformation Using Temporary Table

In this example, the database materializes the results of the subquery on cust oner s
into a temporary table:

SELECT t1.cl cust _city, t.calendar_quarter_desc cal endar_quarter_desc,
SUM s. anount _sol d) sal es_anount

FROM sales s, sh.tines t, sys tenp 0fd9d6621 e7e24 t1
WHERE s.time_id=t.tine_id
AND s.cust _id=tl.c0
AND (t.calendar_quarter_desc='1999-gq1' OR
t.cal endar_quarter_desc="1999-q2")
AND s.cust_id IN (SELECT t1.c0

FROM sys_tenp_ 0f d9d6621 e7e24 t1)
AND s.channel _id IN (SELECT ch. channel _id

FROM channel s ch

WHERE ch. channel _desc="internet')
AND s.time_id IN (SELECT t.tine_id

5-17

ORACLE

Chapter 5
Star Transformation

FROM times t

WHERE t. cal endar_quarter_desc='1999-ql'

R t.cal endar _quarter_desc="1999-q2"')
GROUP BY t1.cl, t.calendar_quarter_desc

The optimizer replaces cust oner s with the temporary table

sys_tenp_0f d9d6621 e7e24, and replaces references to columns cust i d and

cust _ci ty with the corresponding columns of the temporary table. The database
creates the temporary table with two columns: (¢c0 NUMBER, c¢l1 VARCHAR2(30)). These
columns correspond to cust _i d and cust _ci ty of the cust orer s table. The database
populates the temporary table by executing the following query at the beginning of the
execution of the previous query:

SELECT c.cust _id, c.cust_city FROM custoners WHERE
c.cust_state province = 'CA

Example 5-9 Partial Execution Plan for Star Transformation Using Temporary
Table

The following example shows an edited version of the execution plan for the query in
Example 5-8:

| 1d | Operation | Nane

| 0 | SELECT STATEMENT |

| 1| TEWMP TABLE TRANSFORVATI ON |

| 2| LOAD AS SELECT |

[* 3] TABLE ACCESS FULL | CUSTOMERS

| 4| HASH GROUP BY |

[* 5] HASH JO N |

| 6 | TABLE ACCESS FULL | SYS_TEMP_OFDID6613_C716F
[* 7] HASH JO N |

[* 8] TABLE ACCESS FULL | TIMES

| 9 | VI EW | VW ST_A3F94988
| 10 | NESTED LOOPS |

| 11| PARTI TI ON RANGE SUBQUERY |

| 12 | Bl TMAP CONVERSI ON TO ROW DS

| 13| Bl TMAP AND |

| 14 | Bl TMAP MERGE |

| 15| Bl TMAP KEY | TERATI ON |

| 16 | BUFFER SORT |

[* 17 | TABLE ACCESS FULL | CHANNELS

[* 18 | Bl TMAP | NDEX RANGE SCAN| SALES_CHANNEL_BI X
| 19 | Bl TMAP MERGE |

| 20 | Bl TMAP KEY | TERATI ON |

| 21| BUFFER SORT |

| * 22 | TABLE ACCESS FULL | TIMES

| * 23 | Bl TMAP | NDEX RANGE SCAN| SALES_TI ME_BI X
| 24| Bl TMAP MERGE |

| 25| Bl TMAP KEY | TERATI ON |

| 26 | BUFFER SORT |

5-18

Chapter 5
In-Memory Aggregation (VECTOR GROUP BY)

| 27 | TABLE ACCESS FULL | SYS_TEMP_OFD9D6613_C716F
[* 28 | Bl TMAP | NDEX RANGE SCAN| SALES CUST_BI X
| 29 | TABLE ACCESS BY USER ROND | SALES

- filter("C'."CUST_STATE_PROVI NCE"'=' CA")

- access("I TEM 1"="C0")

- access("ITEM2"="T"."TIME_I D")

- filter(("T"." CALENDAR_QUARTER DESC'='1999-01' OR
"T". " CALENDAR_QUARTER_DESC'='1999-02"))

17 - filter("CH'."CHANNEL_DESC'='Internet")

18 - access("S"."CHANNEL_| D'="CH'. " CHANNEL_I D")

22 - filter(("T"."CALENDAR QUARTER DESC'='1999-01' OR

"T"." CALENDAR_QUARTER_DESC'='1999-02"))
23 - access("S"."TIME_ID'="T"."TIME_I D")
28 - access("S"."CUST_ID'="C0")

Lines 1, 2, and 3 of the plan materialize the cust oner s subquery into the temporary
table. In line 6, the database scans the temporary table (instead of the subquery) to
build the bitmap from the fact table. Line 27 scans the temporary table for joining back
instead of scanning cust omer s. The database does not need to apply the filter on

cust oner s on the temporary table because the filter is applied while materializing the
temporary table.

5.7 In-Memory Aggregation (VECTOR GROUP BY)

The key optimization of in-memory aggregation is to aggregate while scanning.

To optimize query blocks involving aggregation and joins from a single large table
to multiple small tables, such as in a typical star query, the transformation uses KEY
VECTOR and VECTOR GROUP BY operations. These operations use efficient in-memory
arrays for joins and aggregation, and are especially effective when the underlying
tables are in-memory columnar tables.

¢ See Also:

Oracle Database In-Memory Guide to learn more about in-memory
aggregation

5.8 Cursor-Duration Temporary Tables

To materialize the intermediate results of a query, Oracle Database may implicitly
create a cursor-duration temporary table in memory during query compilation.

This section contains the following topics:

ORACLE 5-19

Chapter 5
Cursor-Duration Temporary Tables

5.8.1 Purpose of Cursor-Duration Temporary Tables

Complex queries sometimes process the same query block multiple times, which
creates unnecessary performance overhead.

To avoid this scenario, Oracle Database can automatically create temporary tables for
the query results and store them in memory for the duration of the cursor. For complex
operations such as W TH clause queries, star transformations, and grouping sets, this
optimization enhances the materialization of intermediate results from repetitively used
subqueries. In this way, cursor-duration temporary tables improve performance and
optimize 1/0.

5.8.2 How Cursor-Duration Temporary Tables Work

ORACLE

The definition of the cursor-definition temporary table resides in memory. The table
definition is associated with the cursor, and is only visible to the session executing the
Ccursor.

When using cursor-duration temporary tables, the database performs the following
steps:

1. Chooses a plan that uses a cursor-duration temporary table
2. Creates the temporary table using a unique name

3. Rewrites the query to refer to the temporary table
4

Loads data into memory until no memory remains, in which case it creates
temporary segments on disk

a

Executes the query, returning data from the temporary table

6. Truncates the table, releasing memory and any on-disk temporary segments

Note:

The metadata for the cursor-duration temporary table stays in memory as
long as the cursor is in memory. The metadata is not stored in the data
dictionary, which means it is not visible through data dictionary views. You
cannot drop the metadata explicitly.

The preceding scenario depends on the availability of memory. For serial queries, the
temporary tables use PGA memory.

The implementation of cursor-duration temporary tables is similar to sorts. If no more
memory is available, then the database writes data to temporary segments. For
cursor-duration temporary tables, the differences are as follows:

* The database releases memory and temporary segments at the end of the query
rather than when the row source is no longer active.

o Data in memory stays in memory, unlike in sorts where data can move between
memory and temporary segments.

When the database uses cursor-duration temporary tables, the keyword CURSOR
DURATI ON MEMORY appears in the execution plan.

5-20

Chapter 5
Cursor-Duration Temporary Tables

5.8.3 Cursor-Duration Temporary Tables: Example

A W TH query that repeats the same subquery can sometimes benefit from a cursor-
duration temporary table.

The following query uses a W TH clause to create three subquery blocks:

WTH
gl AS (SELECT department _id, SUMsal ary) sumsal FROM hr.enpl oyees
GROUP BY department _id),
g2 AS (SELECT * FROM ql),
g3 AS (SELECT department _id, sumsal FROM ql)
SELECT * FROM gl
UNION ALL
SELECT * FROM g2
UNION ALL
SELECT * FROM @3;

The following sample plan shows the transformation:

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(FORMAT=>' BASI C +ROWSs +COST')) ;

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Cost
(%CPY) |

| 0| SELECT STATEMENT | | | 6
(100) |

| 1| TEWMP TABLE TRANSFORMATI ON | |

| |

| 2| LOAD AS SELECT (CURSOR DURATION MEMORY) | SYS_TEMP_OFDID6606_1AE004 |

| |

| 3] HASH GROUP BY | | 11] 3
(34)

| 4| TABLE ACCESS FULL | EMPLOYEES | 107 | 2
(0) |

| 5] UNI ON- ALL | |

| |

| 6| VI EW | | 11] 2
(0) |

| 7 TABLE ACCESS FULL | SYS_TEMP_OFDOD6606_1AEQ04 | 11 | 2
(0) |

| 8| VI EW | | 11] 2
(0) |

| 9| TABLE ACCESS FULL | SYS_TEMP_OFDOD6606_1AEQ04 | 11 | 2
(0) |

| 10 | VI EW | | 11] 2
(0) |

| 11 | TABLE ACCESS FULL | SYS_TEMP_OFDOD6606_1AEQ04 | 11 | 2
(0) |

ORACLE 5-21

Chapter 5
Table Expansion

In the preceding plan, TEMP TABLE TRANSFORMATI ONin Step 1 indicates that the
database used cursor-duration temporary tables to execute the query. The CURSOR
DURATI ON MEMORY keyword in Step 2 indicates that the database used memory,

if available, to store the results of SYS_ TEMP_OFDID6606_1AE004. If memory was
unavailable, then the database wrote the temporary data to disk.

5.9 Table Expansion

In table expansion, the optimizer generates a plan that uses indexes on the read-
mostly portion of a partitioned table, but not on the active portion of the table.

This section contains the following topics:

5.9.1 Purpose of Table Expansion

Index-based plans can improve performance, but index maintenance creates
overhead. In many databases, DML affects only a small portion of the data.

Table expansion uses index-based plans for high-update tables. You can create an
index only on the read-mostly data, eliminating index overhead on the active data. In
this way, table expansion improves performance while avoiding index maintenance.

5.9.2 How Table Expansion Works

ORACLE

Table partitioning makes table expansion possible.

If a local index exists on a partitioned table, then the optimizer can mark the index as
unusable for specific partitions. In effect, some partitions are not indexed.

In table expansion, the optimizer transforms the query into a UNI ON ALL statement,
with some subqueries accessing indexed partitions and other subqueries accessing
unindexed partitions. The optimizer can choose the most efficient access method
available for a partition, regardless of whether it exists for all of the partitions accessed
in the query.

The optimizer does not always choose table expansion:

* Table expansion is cost-based.

While the database accesses each partition of the expanded table only once
across all branches of the UNI ON ALL, any tables that the database joins to it are
accessed in each branch.

e Semantic issues may render expansion invalid.

For example, a table appearing on the right side of an outer join is not valid for
table expansion.

You can control table expansion with the hint EXPAND_TABLE hint. The hint overrides the
cost-based decision, but not the semantic checks.

5-22

Chapter 5
Table Expansion

¢ See Also:

e "Influencing the Optimizer with Hints"

e Oracle Database SQL Language Reference to learn more about SQL
hints

5.9.3 Table Expansion: Scenario

The optimizer keeps track of which partitions must be accessed from each table,
based on predicates that appear in the query. Partition pruning enables the optimizer
to use table expansion to generate more optimal plans.

Assumptions
This scenario assumes the following:

* You want to run a star query against the sh. sal es table, which is range-partitioned
onthe tine_id column.

* You want to disable indexes on specific partitions to see the benefits of table
expansion.

To use table expansion:

1. Log in to the database as the sh user.

2. Run the following query:

SELECT *

FROM sal es

WHERE tinme_id >= TO DATE(' 2000-01-01 00:00:00', ' SYYYY- M\ DD
HH24: M : SS')

AND prod_id = 38;

3. Explain the plan by querying DBMS_XPLAN:

SET LI NESI ZE 150

SET PAGESI ZE 0

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(f or mat =>
"BASIC, PARTITION));

As shown in the Pst art and Pst op columns in the following plan, the optimizer
determines from the filter that only 16 of the 28 patrtitions in the table must be
accessed:

Pl an hash val ue: 3087065703

| 1d] Operation | Nane | Pstart|
Pst op|

ORACLE 5-23

ORACLE

Chapter 5
Table Expansion

| 0| SELECT STATEMENT | |
I 1] lPARTI TI ON RANGE | TERATOR | | 13|
| 2| TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED| SALES | 13|
| 3 BITMAP CONVERSI ON TO RO DS | |

| *4| Bl TMAP | NDEX SI NGLE VALUE | SALES_PRCD BI X| 13|

4 - access("PROD | D'=38)

After the optimizer has determined the partitions to be accessed, it considers any
index that is usable on all of those patrtitions. In the preceding plan, the optimizer
chose to use the sal es_prod_bi x bitmap index.

Disable the index on the SALES 1995 partition of the sal es table:

The preceding DDL disables the index on partition 1, which contains all sales from
before 1996.

Note:

You can obtain the partition information by querying the
USER | ND_PARTI TI ONS view.

Execute the query of sales again, and then query DBMS_XPLAN to obtain the plan.

The output shows that the plan did not change:

Pl an hash val ue: 3087065703

| 1d] Operation | Name | Pstart|
Pst op

| 0| SELECT STATEMENT | |
[

| 1| PARTITI ON RANGE | TERATOR | | 13|
28 |

| 2| TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED| SALES | 13|
28 |

5-24

ORACLE

Chapter 5
Table Expansion

| 3 BITMAP CONVERSI ON TO ROW DS | |

(.
| *4| Bl TMAP | NDEX SI NGLE VALUE | SALES_PROD Bl X| 13|

28 |

4 - access("PROD | D'=38)

The plan is the same because the disabled index partition is not relevant to the
query. If all partitions that the query accesses are indexed, then the database can
answer the query using the index. Because the query only accesses partitions 16
through 28, disabling the index on partition 1 does not affect the plan.

Disable the indexes for partition 28 (SALES_Q4_2003), which is a partition that the
query needs to access:

ALTER | NDEX sal es_prod_bi x MODI FY PARTI TI ON sal es_g4_2003 UNUSABLE;
ALTER | NDEX sal es_time_bi x MODI FY PARTI TI ON sal es_g4_2003 UNUSABLE;

By disabling the indexes on a partition that the query does need to access, the
guery can no longer use this index (without table expansion).

Query the plan using DBMS_XPLAN.

As shown in the following plan, the optimizer does not use the index:

Pl an hash val ue: 3087065703

| 1d] Operation | Name | Pstart|
Pst op

| 0| SELECT STATEMENT | |
| |

| 1| PARTITION RANGE | TERATCR | |13 |
28 |
|*2 | TABLE ACCESS FULL | SALES |13 |
28 |

2 - access("PROD_I D'=38)

In the preceding example, the query accesses 16 partitions. On 15 of these
partitions, an index is available, but no index is available for the final partition.
Because the optimizer has to choose one access path or the other, the optimizer
cannot use the index on any of the partitions.

5-25

Chapter 5
Table Expansion

8. With table expansion, the optimizer rewrites the original query as follows:

SELECT *

FROM sal es

WHERE time_id >= TO DATE(' 2000-01-01 00:00:00', ' SYYYY- M\t DD
HH24: M : SS')

AND time_id < TO DATE(' 2003-10-01 00:00: 00", ' SYYYY- MW DD
HH24: M : SS')

AND prod_id = 38

UNI ON ALL

SELECT *

FROM sal es

WHERE time_id >= TO DATE(' 2003-10-01 00: 00: 00', ' SYYYY- M\t DD
HH24: M : SS')

AND time_id < TO DATE(' 2004-01-01 00: 00: 00", ' SYYYY- M\t DD
HH24: M : SS')

AND prod_id = 38;

In the preceding query, the first query block in the UNI ON ALL accesses the
partitions that are indexed, while the second query block accesses the partition
that is not. The two subqueries enable the optimizer to choose to use the index
in the first query block, if it is more optimal than using a table scan of all of the
partitions that are accessed.

9. Query the plan using DBM5_XPLAN.

The plan appears as follows:

Pl an hash val ue: 2120767686

|1d| Operation | Name | Pstart|
Pst op|

0| SELECT STATENENT | |
|

1] VIEW | VW TE_2 |
|

2| UNION-ALL | |

|
3| PARTI TI ON RANGE | TERATCR | |

13| 27|

| 4 TABLE ACCESS BY LOCAL | NDEX ROW D BATCHED| SALES |
13| 27|

| 5] BI TMAP CONVERSI ON TO ROW DS | |
(I

| *6] BI TMAP | NDEX SI NGLE VALUE | SALES_PROD BI X|
13| 27|

| 7] PARTITION RANGE S| NGLE | |
28| 28]

|*8] TABLE ACCESS FULL | SALES |
28| 28]

ORACLE 5-26

Chapter 5
Table Expansion

Predicate Information (identified by operation id):

6 - access("PROD_| D'=38)
8 - filter("PROD_|D'=38)

As shown in the preceding plan, the optimizer uses a UNI ON ALL for two query
blocks (Step 2). The optimizer chooses an index to access partitions 13 to 27 in
the first query block (Step 6). Because no index is available for partition 28, the
optimizer chooses a full table scan in the second query block (Step 8).

5.9.4 Table Expansion and Star Transformation: Scenario

ORACLE

Star transformation enables specific types of queries to avoid accessing large portions
of big fact tables.

Star transformation requires defining several indexes, which in an actively updated
table can have overhead. With table expansion, you can define indexes on only the
inactive partitions so that the optimizer can consider star transformation on only the
indexed portions of the table.

Assumptions
This scenario assumes the following:

* You query the same schema used in "Star Transformation: Scenario".

* The last partition of sal es is actively being updated, as is often the case with
time-partitioned tables.

* You want the optimizer to take advantage of table expansion.

To take advantage of table expansion in a star query:

1. Disable the indexes on the last partition as follows:

ALTER | NDEX sal es_channel _bi x MODI FY PARTI TI ON sal es_g4_2003
UNUSABLE;
ALTER | NDEX sal es_cust _bi x MODI FY PARTI TI ON sal es_g4_2003 UNUSABLE;

2. Execute the following star query:

SELECT t.cal endar _quarter_desc, SUMs. amount sol d) sal es_anount
FROM sales s, tinmes t, customers c, channels ch

WHERE s.tine_id =t.tine.id

AND s.cust _id = c.cust _id

AND s. channel _id = ch.channel _id

AND c.cust _state province = 'CA

AND ch. channel _desc = 'Internet’

AND t.cal endar _quarter_desc IN ('1999-01','1999-02")

GROUP BY t.cal endar _quarter _desc;

5-27

3. Query the cursor using DBM5S_XPLAN, which shows the following plan:

Chapter 5
Table Expansion

NN
o ©

Pstop |

The preceding plan uses table expansion. The UNI ON ALL branch that is accessing

|1d| Operation | Nane

| 0] SELECT STATEMENT |

| 1] HASH GROUP BY |

| 2] VI EW | VWTE_14

| 3] UNI ON- ALL |

| 4] HASH JO N |

| 5] TABLE ACCESS FULL | TI MES

| 6] VI EW | VW ST_1319B6D8

| 7] NESTED LOOPS |

| 8| PARTI TI ON RANGE SUBQUERY |

| 9] Bl TMAP CONVERSI ON TO ROW DS

| 10] Bl TVAP AND |

| 11] Bl TVAP MERGE |

| 12] Bl TMAP KEY | TERATI ON |

| 13] BUFFER SORT |

| 14] TABLE ACCESS FULL | CHANNELS

| 15] Bl TMAP | NDEX RANGE SCAN| SALES CHANNEL_BI X| KEY(SQ | KEY(SQ

| 16] Bl TVAP MERGE |

| 17] Bl TMAP KEY | TERATI ON |

| 18] BUFFER SORT |

| 19] TABLE ACCESS FULL | TI MES

| 20] Bl TMAP | NDEX RANGE SCAN| SALES TI ME_BI X

| 21] Bl TVAP MERGE |

| 22] Bl TMAP KEY | TERATI ON |

| 23] BUFFER SORT |

| 24| TABLE ACCESS FULL | CUSTOVERS

| 25] Bl TMAP | NDEX RANGE SCAN| SALES _CUST_BI X

| 26] TABLE ACCESS BY USER RON D | SALES

| 27] NESTED LOOPS |

| 28] NESTED LOOPS |

| 29] NESTED LOOPS |

| 30] NESTED LOOPS |

| 31] PARTI TI ON RANGE SI NGLE |

| 32 TABLE ACCESS FULL | SALES

| 33] TABLE ACCESS BY | NDEX RO D| CHANNELS

| 34 | NDEX UNI QUE SCAN | CHANNELS _PK

| 35] TABLE ACCESS BY | NDEX ROA D | CUSTOMVERS

| 36] I NDEX UNI QUE SCAN | CUSTOVERS_PK

| 37] I NDEX UNI QUE SCAN | TI MES_PK

| 38| TABLE ACCESS BY | NDEX ROND | TI MES
every partition except the last partition uses star transformation. Because the
indexes on partition 28 are disabled, the database accesses the final partition
using a full table scan.

ORACLE

5-28

Chapter 5
Join Factorization

Related Topics

e Star Transformation
Star transformation is an optimizer transformation that avoids full table scans of
fact tables in a star schema.

5.10 Join Factorization

In the cost-based transformation known as join factorization, the optimizer can
factorize common computations from branches of a UNION ALL query.

This section contains the following topics:

5.10.1 Purpose of Join Factorization

UNI ON ALL queries are common in database applications, especially in data integration
applications.

Often, branches in a UNI ON ALL query refer to the same base tables. Without join
factorization, the optimizer evaluates each branch of a UNI ON ALL query independently,
which leads to repetitive processing, including data access and joins. Join factorization
transformation can share common computations across the UNI ON ALL branches.
Avoiding an extra scan of a large base table can lead to a huge performance
improvement.

5.10.2 How Join Factorization Works

ORACLE

Join factorization can factorize multiple tables and from more than two UNI ON ALL
branches.

Join factorization is best explained through examples.
Example 5-10 UNION ALL Query

The following query shows a query of four tables (t 1,t 2, t 3, and t 4) and two UNI ON
ALL branches:

SELECT tl.cl, t2.c2
FROM t1, t2, t3
WHERE tl.cl = t2.cl
AND tl.cl > 1
AND t2.c2 =2
AND t2.c2 =t3.c2
UNI ON ALL

SELECT tl.cl, t2.c2
FROM t1, t2, t4
WHERE tl.cl = t2.cl
AND tl.cl > 1
AND t2.¢3 =t4.c3

In the preceding query, table t 1 appears in both UNI ON ALL branches, as does

the filter predicate t 1. c1 > 1 and the join predicate t 1. c1 = t 2. c1. Without any
transformation, the database must perform the scan and the filtering on table t 1 twice,
one time for each branch.

5-29

Chapter 5
Join Factorization

Example 5-11 Factorized Query
Example 5-10

SELECT t1.cl, VWJF 1l.item?2
FROM t1, (SELECT t2.cl iteml1, t2.c2 item?2
FROM t2, t3
WHERE t2.c2 =1t3.c2
AND t2.c2 =2
UNI ON ALL
SELECT t2.cl iteml, t2.c2 item2
FROM t2, t4
WHERE t2.¢3 = t4.¢3) WJF 1
WHERE tl.cl = VW_JF 1.item 1
AND tl.cl > 1

In this case, because table t 1 is factorized, the database performs the table scan and
the filtering on t 1 only one time. If t 1 is large, then this factorization avoids the huge
performance cost of scanning and filtering t 1 twice.

Note:

If the branches in a UNI ON ALL query have clauses that use the DI STI NCT
function, then join factorization is not valid.

5.10.3 Factorization and Join Orders: Scenario

ORACLE

Join factorization can create more possibilities for join orders
Example 5-12 Query Involving Five Tables

In the following query, view V is same as the query as in Example 5-10:

SELECT *

FROM t5, (SELECT tl.cl1, t2.c2
FROM t1, t2, t3
WHERE tl.cl =t2.cl

AND tl.cl>1
AND t2.c2 =2
AND t2.c2 =t3.c2
UNI ON ALL

SELECT tl.cl1, t2.c2
FROM t1, t2, t4

WHERE tl.cl =t2.cl
AND tl.cl>1
AND t2.¢3 =t4.¢c3) V

WHERE t5.cl = V.cl

t1t2t3t5

5-30

Chapter 5
Join Factorization

Example 5-13 Factorization of t1 from View V

If join factorization factorizes t 1 from view V, as shown in the following query, then the
database can joint 1 with t 5.

SELECT *
FROM t5, (SELECT tl.cl, VWJF 1l.item?2
FROM tl1, (SELECT t2.cl iteml1, t2.c2 item2
FROM t2, t3
WHERE t2.c2 = t3.c2
AND t2.c2 =2
UNI ON ALL
SELECT t2.cl iteml, t2.c2 item2
FROM t2, t4
WHERE t2.c¢3 = t4.¢c3) WJF 1
WHERE tl.cl = WWJF l.iteml1
AND tl.cl>1)
WHERE t5.cl = V.cl

The preceding query transformation opens up new join orders. However, join
factorization imposes specific join orders. For example, in the preceding query, tables
t2 and t 3 appear in the first branch of the UNI ON ALL query in view VW JF 1. The
database must join t 2 with t 3 before it can join with t 1, which is not defined within
the VW JF_1 view. The imposed join order may not necessarily be the best join

order. For this reason, the optimizer performs join factorization using the cost-based
transformation framework. The optimizer calculates the cost of the plans with and
without join factorization, and then chooses the cheapest plan.

Example 5-14 Factorization of t1 from View V with View Definition Removed

The following query is the same query in Example 5-13, but with the view definition
removed so that the factorization is easier to see:

SELECT *

FROM t5, (SELECT t1.cl, WWJF 1.item?2
FROM t1, VWJF 1
WHERE t1.cl = WWJF l.item1
AND tl.cl > 1)

WHERE t5.c1 = V.cl

5.10.4 Factorization of Quter Joins; Scenario

ORACLE

The database supports join factorization of outer joins, antijoins, and semijoins, but
only for the right tables in such joins.

For example, join factorization can transform the following UNI ON ALL query by
factorizing t 2:

SELECT tl1.c2, t2.c2
FROM t1, t2

WHERE t1.cl =t2.cl(+)
AND tl.cl =1

UNI ON ALL

SELECT tl1.c2, t2.c2

5-31

ORACLE

Chapter 5
Join Factorization

FROM t1, t2
WHERE t1.cl = t2.cl(+)
AND tl.cl =2

The following example shows the transformation. Table t 2 now no longer appears in
the UNI ON ALL branches of the subquery.

SELECT VWJF 1.item2, t2.c2
FROM t2, (SELECT tl.cl iteml1, tl.c2 item?2

FROM t1

WHERE tl.cl =1

UNION ALL

SELECT tl.cl iteml, tl.c2 item2
FROM t1

WHERE t1.cl = 2) WJF 1
WHERE VWJF l.item1 = t2.cl(+)

5-32

Query Execution Plans

If a query has suboptimal performance, the execution plan is the key tool for
understanding the problem and supplying a solution.

This part contains the following chapters:

ORACLE

Generating and Displaying Execution Plans

A thorough understanding of execution plans is essential to SQL tuning.

This chapter contains the following topics:

6.1 Introduction to Execution Plans

The combination of the steps that Oracle Database uses to execute a statement is an
execution plan.

Each step either retrieves rows of data physically from the database or prepares them
for the user issuing the statement. An execution plan includes an access path for each
table that the statement accesses and an ordering of the tables (the join order) with
the appropriate join method.

Related Topics

« Joins
Oracle Database provides several optimizations for joining row sets.

6.2 About Plan Generation and Display

The EXPLAI N PLAN statement displays execution plans that the optimizer chooses for
SELECT, UPDATE, | NSERT, and DELETE statements.

This section contains the following topics:

6.2.1 About the Plan Explanation

A statement execution plan is the sequence of operations that the database performs
to run the statement.

The row source tree is the core of the execution plan. The tree shows the following
information:

* An ordering of the tables referenced by the statement

* An access method for each table mentioned in the statement

« Ajoin method for tables affected by join operations in the statement
- Data operations like filter, sort, or aggregation

In addition to the row source tree, the plan table contains information about the
following:

e Optimization, such as the cost and cardinality of each operation
e Partitioning, such as the set of accessed partitions

e Parallel execution, such as the distribution method of join inputs

ORACLE 6-1

Chapter 6
About Plan Generation and Display

You can use the EXPLAI N PLAN results to determine whether the optimizer chose a
particular execution plan, such as a nested loops join. The results also help you to
understand the optimizer decisions, such as why the optimizer chose a nested loops
join instead of a hash join.

¢ See Also:

e "SQL Row Source Generation"

e Oracle Database SQL Language Reference to learn about the EXPLAI N
PLAN statement

6.2.2 Why Execution Plans Change

Execution plans can and do change as the underlying optimizer inputs change.

EXPLAI N PLAN output shows how the database would run the SQL statement when the
statement was explained. This plan can differ from the actual execution plan a SQL
statement uses because of differences in the execution environment and explain plan
environment.

< Note:

To avoid possible SQL performance regression that may result from
execution plan changes, consider using SQL plan management.

This section contains the following topics:

" See Also:

e "Overview of SQL Plan Management"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_SPMpackage

6.2.2.1 Different Schemas

ORACLE

Schemas can differ for various reasons.
Principal reasons include the following:

* The execution and explain plan occur on different databases.

* The user explaining the statement is different from the user running the statement.
Two users might be pointing to different objects in the same database, resulting in
different execution plans.

* Schema changes (often changes in indexes) between the two operations.

6-2

Chapter 6
About Plan Generation and Display

6.2.2.2 Different Costs

Even if the schemas are the same, the optimizer can choose different execution plans
when the costs are different.

Some factors that affect the costs include the following:

e Data volume and statistics
e Bind variable types and values

e Initialization parameters set globally or at session level

6.2.3 Guideline for Minimizing Throw-Away

Examining an explain plan enables you to look for rows that are thrown-away.
The database often throws away rows in the following situations:

* Full scans

» Unselective range scans
* Late predicate filters

* Wrong join order

» Late filter operations

In the plan shown in Example 6-1, the last step is a very unselective range scan that
is executed 76,563 times, accesses 11,432,983 rows, throws away 99% of them, and
retains 76,563 rows. Why access 11,432,983 rows to realize that only 76,563 rows are
needed?

Example 6-1 Looking for Thrown-Away Rows in an Explain Plan

Rows Execution Pl an
12 SORT AGGREGATE

2 SORT GROUP BY

76563 NESTED LOOPS
76575 NESTED LOOPS

19 TABLE ACCESS FULL CN_PAYRUNS_ALL
76570 TABLE ACCESS BY | NDEX RON D CN_POSTI NG_DETAI LS _ALL
76570 | NDEX RANGE SCAN (object id 178321)
76563 TABLE ACCESS BY | NDEX ROA' D CN_PAYMENT_WORKSHEETS_ALL
11432983 | NDEX RANGE SCAN (object id 186024)

6.2.4 Guidelines for Evaluating Execution Plans Using EXPLAIN PLAN

ORACLE

The execution plan operation alone cannot differentiate between well-tuned
statements and those that perform suboptimally.

For example, an EXPLAI N PLAN output that shows that a statement uses an index
does not necessarily mean that the statement runs efficiently. Sometimes indexes are
extremely inefficient. In this case, a good practice is to examine the following:

e The columns of the index being used

6-3

Chapter 6
About Plan Generation and Display

» Their selectivity (fraction of table being accessed)

It is best to use EXPLAI N PLAN to determine an access plan, and then later prove that
it is the optimal plan through testing. When evaluating a plan, examine the statement's
actual resource consumption.

This section contains the following topics:

6.2.5 Guidelines for Evaluating Plans Using the VESQL_PLAN Views

As an alternative to running the EXPLAI N PLAN command and displaying the plan, you
can display the plan by querying the V$SQL_PLAN view.

V$SQ._PLAN contains the execution plan for every statement stored in the shared SQL
area. Its definition is similar to PLAN _TABLE.

The advantage of V8SQL_PLAN over EXPLAI N PLAN is that you do not need to know the
compilation environment that was used to execute a particular statement. For EXPLAI N
PLAN, you would need to set up an identical environment to get the same plan when
executing the statement.

The V$SQL_PLAN_STATI STI CS view provides the actual execution statistics for every
operation in the plan, such as the number of output rows and elapsed time. All
statistics, except the number of output rows, are cumulative. For example, the
statistics for a join operation also includes the statistics for its two inputs. The statistics
in V$SQL_PLAN_STATI STI CS are available for cursors that have been compiled with the
STATI STI CS_LEVEL initialization parameter set to ALL.

The V$SQL_PLAN_STATI STI CS_ALL view enables side by side comparisons of the
estimates that the optimizer provides for the number of rows and elapsed time. This
view combines both V$SQL_PLAN and V$SQ._PLAN_STATI STI CS information for every
Ccursor.

¢ See Also:

* "PLAN_TABLE Columns"

e "Monitoring Database Operations " for information about the
VESQL_PLAN_MONI TOR view

* Oracle Database Reference for more information about V$SQ._PLAN
views

e Oracle Database Reference for information about the STATI STI CS_LEVEL
initialization parameter

6.2.6 EXPLAIN PLAN Restrictions

ORACLE

Oracle Database does not support EXPLAI N PLAN for statements performing implicit
type conversion of date bind variables.

With bind variables in general, the EXPLAI N PLAN output might not represent the real
execution plan.

6-4

Chapter 6
About Plan Generation and Display

From the text of a SQL statement, TKPROF cannot determine the types of the bind
variables. It assumes that the type is VARCHAR, and gives an error message otherwise.
You can avoid this limitation by putting appropriate type conversions in the SQL
statement.

¢ See Also:

e "Performing Application Tracing "
e "Guideline for Avoiding the Argument Trap"

e Oracle Database SQL Language Reference to learn more about SQL
data types

6.2.7 Guidelines for Creating PLAN_TABLE

The PLAN TABLE is automatically created as a public synonym to a global temporary
table.

This temporary table holds the output of EXPLAI N PLAN statements for all users.
PLAN TABLE is the default sample output table into which the EXPLAI N PLAN statement
inserts rows describing execution plans.

While a PLAN_TABLE table is automatically set up for each user, you can use the SQL
script cat pl an. sql to manually create the global temporary table and the PLAN _TABLE
synonym. The name and location of this script depends on your operating system. On
UNIX and Linux, the script is located in the $ORACLE_HOVE/ r dbrs/ admi n directory.

For example, start a SQL*Plus session, connect with SYSDBA privileges, and run the
script as follows:

@ORACLE_HOVE/ r dbns/ admi n/ cat pl an. sql

Oracle recommends that you drop and rebuild your local PLAN_TABLE table after
upgrading the version of the database because the columns might change. This can
cause scripts to fail or cause TKPROF to fail, if you are specifying the table.

If you do not want to use the name PLAN_TABLE, create a new synonym after running
the cat pl an. sql script. For example:

CREATE OR REPLACE PUBLI C SYNONYM ny _pl an_table for plan_table$

¢ See Also:

e "PLAN_TABLE Columns" for a description of the columns in the table

e Oracle Database SQL Language Reference to learn about CREATE
SYNONYM

ORACLE 6-5

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

6.3 Generating Plan Output Using the EXPLAIN PLAN
Statement

The EXPLAI N PLAN statement enables you to examine the execution plan that the
optimizer chose for a SQL statement.

This section contains the following topics:

6.3.1 Explaining a SQL Statement: Basic Steps

Use EXPLAI N PLAN to store the plan for a SQL statement in PLAN_TABLE.

ORACLE

Prerequisites

This task assumes that a sample output table named PLAN_TABLE exists in your
schema. If this table does not exist, then run the SQL script cat pl an. sql .

To execute EXPLAI N PLAN, you must have the following privileges:

You must have the privileges necessary to insert rows into an existing output table
that you specify to hold the execution plan

You must also have the privileges necessary to execute the SQL statement for
which you are determining the execution plan. If the SQL statement accesses a
view, then you must have privileges to access any tables and views on which the
view is based. If the view is based on another view that is based on a table, then
you must have privileges to access both the other view and its underlying table.

To examine the execution plan produced by an EXPLAI N PLAN statement, you must
have the privileges necessary to query the output table.

To explain a statement:

1.

Start SQL*Plus or SQL Developer, and log in to the database as a user with the
requisite permissions.

Include the EXPLAI N PLAN FOR clause immediately before the SQL statement.

The following example explains the plan for a query of the enpl oyees table:

EXPLAI N PLAN FOR
SELECT e.last_nane, d.departnent_name, e.salary
FROM enpl oyees e, departnents d
WHERE sal ary < 3000
AND e.department _id = d.departnent _id
ORDER BY sal ary DESC,

After issuing the EXPLAI N PLAN statement, use a script or package provided by
Oracle Database to display the most recent plan table output.

The following example uses the DBMS_XPLAN. DI SPLAY function:

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY(format => 'ALL'));

Review the plan output.

6-6

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

For example, the following plan shows a hash join:

SQ.> SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY(format => "ALL'));
Pl an hash val ue: 3556827125

| 1d | Operation | Nane | Rows | Bytes | Cost
(%9CPY)| Tine |

| 0] SELECT STATEMENT | | 4 124 | 5
(20)| 00:00:01 |

| 1] SORT ORDER BY | | 4 124 | 5
(20)| 00:00:01 |

[* 2] HASH JO N | | 4 | 124 | 4
(0)] 00:00:01 |

[* 3] TABLE ACCESS FULL| EMPLOYEES | 4 | 60 | 2
(0)] 00:00:01 |

| 4 TABLE ACCESS FULL| DEPARTMENTS | 27 | 432 | 2
(0)] 00:00:01 |

1 - SEL$1
3 - SEL$1 / E@BEL$1
4 - SEL$1 / D@BEL$1

Predicate Information (identified by operation id):

2 - access("E"."DEPARTMENT | D'="D". " DEPARTMENT | D")
3 - filter("SALARY"<3000)

Col utm Projection Information (identified by operation id):

1 - (#keys=1) | NTERNAL_FUNCTI ON("E"." SALARY")[22],
"E"."LAST_NAME"[VARCHARZ, 25] ,
"D'. " DEPARTVENT _NAVE" [VARCHAR?, 30]
2 - (#keys=1) "E"."LAST_NAME'[VARCHAR?, 25], "SALARY"[NUVBER 22],
"D'. " DEPARTVENT _NAVE" [VARCHAR?, 30] ,
"D " DEPARTVENT _NAME" [VARCHAR?, 30]
3 - "E'."LAST_NAVE'[VARCHAR?, 25], "SALARY"[NUVBER, 22] ,
"E". " DEPARTNENT | D' [NUMBER, 22]
4 - "D'."DEPARTMENT | D'[NUVBER, 22] ,
"D'. " DEPARTVENT _NAVE" [VARCHAR?, 30]

- this is an adaptive plan

ORACLE 6-7

Chapter 6
Generating Plan Output Using the EXPLAIN PLAN Statement

The execution order in EXPLAI N PLAN output begins with the line that is the furthest
indented to the right. The next step is the parent of that line. If two lines are
indented equally, then the top line is normally executed first.

Note:

The steps in the EXPLAI N PLAN output in this chapter may be different
on your database. The optimizer may choose different execution plans,
depending on database configurations.

¢ See Also:

e "Guidelines for Creating PLAN_TABLE"
e "Displaying PLAN_TABLE Output"

e Oracle Database SQL Language Reference for the syntax and
semantics of EXPLAI N PLAN

6.3.2 Executing EXPLAIN PLAN Using a Statement ID

With multiple statements, you can specify a statement identifier and use that to identify
your specific execution plan.

Before using SET STATEMENT | D, remove any existing rows for that statement ID. In the
following example, st 1 is specified as the statement identifier.

Example 6-2 Using EXPLAIN PLAN with the STATEMENT ID Clause

EXPLAI'N PLAN
SET STATEMENT ID = "st1' FOR
SELECT | ast_nane FROM enpl oyees;

6.3.3 Directing EXPLAIN PLAN Output to a Nondefault Table

You can specify the | NTO clause to specify a different table.

The following statement directs output to ny_pl an_t abl e:
EXPLAI'N PLAN

I NTO ny_pl an_tabl e FOR
SELECT | ast_nane FROM enpl oyees;

You can specify a statement ID when using the | NTO clause, as in the following
statement:

EXPLAI N PLAN
SET STATEMENT_ID = 'st1'

ORACLE 6-8

Chapter 6
Displaying PLAN_TABLE Output

INTO my_plan_table FOR
SELECT | ast _nanme FROM enpl oyees;

See Also:

Oracle Database SQL Language Reference for a complete description of
EXPLAI' N PLAN syntax.

6.4 Displaying PLAN_TABLE Output

You can use scripts or a package to display the plan output.

After you have explained the plan, use the following SQL scripts or PL/SQL package
provided by Oracle Database to display the most recent plan table output:

e utlxpls.sql

This script displays the plan table output for serial processing. Example 6-4 is an
example of the plan table output when using the ut| xpl s. sgl script.

e utlxplp.sql
This script displays the plan table output including parallel execution columns.
e DBMS_XPLAN. DI SPLAY table function
This function accepts options for displaying the plan table output. You can specify:
— A plan table name if you are using a table different than PLAN_TABLE
— A statement ID if you have set a statement ID with the EXPLAI N PLAN

— A format option that determines the level of detail: BASI C, SERI AL, TYPI CAL,
and ALL

Examples of using DBVS_XPLAN to display PLAN TABLE output are:

SELECT PLAN TABLE QUTPUT FROM TABLE(DBMS_XPLAN. DI SPLAY()) ;

SELECT PLAN _TABLE_QUTPUT
FROM TABLE(DBMS_XPLAN. DI SPLAY(' MY_PLAN TABLE' , 'st1','TYPICAL'));

This section contains the following topics:

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBVS_XPLAN package

ORACLE 6-9

Chapter 6
Displaying PLAN_TABLE Output

6.4.1 Displaying an Execution Plan: Example

This example uses EXPLAI N PLAN to examine a SQL statement that selects the
enpl oyee id,job title,salary, and depart nent _name for the employees whose IDs
are less than 103.

Example 6-3 Using EXPLAIN PLAN

EXPLAIN PLAN FOR
SELECT e.enployee_id, j.job title, e.salary, d.departnent_nane
FROM enpl oyees e, jobs j, departments d
WHERE e. enpl oyee_id < 103
AND e.job_id =j.job_id
AND e.departnment _id = d.department _id;

Example 6-4 EXPLAIN PLAN Output

The following output table shows the execution plan that the optimizer chose to
execute the SQL statement in Example 6-3:

| 1d | Operation | Nare | Rows | Bytes | Cost (%CPU)|
| 0 | SELECT STATEMENT | | 3] 189 | 10 (10)]
| 1| NESTED LOOPS | | 3] 189 | 10 (10)]
| 2| NESTED LOOPS | | 3] 141 | 7 (15)]
[* 3] TABLE ACCESS FULL | EMPLOYEES | 3] 60 | 4 (25)]
| 4| TABLE ACCESS BY | NDEX ROW D| JOBS | 19 | 513 | 2 (50)]
[* 5] [NDEX UNI QUE SCAN | JOB_ID PK | 1| | |
| 6 | TABLE ACCESS BY | NDEX RON'D | DEPARTMENTS | 27 | 432 | 2 (50)]
[* 7] | NDEX UNI QUE SCAN | DEPT_ID PK | 1| | |
Predicate Information (identified by operation id):

3 - filter("E"."EMPLOYEE_| D'<103)

5 - access("E"'."JOB_ID'="J"."JOB_ID")

7 - access("E"."DEPARTMENT_| D'="D". " DEPARTMENT | D'
| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU)|
Ti me |
| 0| SELECT STATEMENT | | 3| 189 | 8 (13)]
00: 00: 01 |
| 1| NESTED LOOPS | | | |
| |
| 2| NESTED LOOPS | | 3| 189 | 8 (13)]
00: 00: 01 |
| 3| MERGE JO N | | 3| 141 | 5 (20)]
00: 00: 01 |

ORACLE 6-10

Chapter 6
Displaying PLAN_TABLE Output

| 4| TABLE ACCESS BY | NDEX ROND | JOBS | 19| 513 | 2 (0)]
00: 00: 01 |
| 5| | NDEX FULL SCAN | JOB_ID_PK | 19| | 1 (0)]
00: 00: 01 |
|* 6 | SORT JOIN | | 3] 60 | 3 (34)]
00: 00: 01 |
| 7 TABLE ACCESS BY | NDEX ROWD| EMPLOYEES | 3] 60 | 2 (0)]
00: 00: 01 |
|* 8 | | NDEX RANGE SCAN | EMP_EMP_ID_PK | 3| | 1 (0)]
00: 00: 01 |
|* 9| INDEX UNIQUE SCAN | DEPT_ID PK | 1 | 0 (0)]
00: 00: 01 |
| 10 | TABLE ACCESS BY |NDEX ROND | DEPARTMENTS | 1] 16 | 1 (0)]
00: 00: 01 |

6 - access(

filter(
8 - access(
9 - access(

=
"E'.
"E'.
=

."JoB_ID'="J"."J0B_ID")

"JoB_ID'="J"."J0B_ID")
"EMPLOYEE_| D' <103)

. " DEPARTMENT_| D'="D". " DEPARTMENT_| D")

6.4.2 Customizing PLAN_TABLE Output

If you have specified a statement identifier, then you can write your own script to query
the PLAN_TABLE.

ORACLE

For example:

Start with ID = 0 and given STATEMENT | D.

Use the CONNECT BY clause to walk the tree from parent to child, the join keys
being STATEMENT_| D = PRI OR STATMENT_| Dand PARENT_ID = PRIOR I D.

Use the pseudo-column LEVEL (associated with CONNECT BY) to indent the children.

SELECT cardinality "Rows", |pad(' ',level-1) || operation
[1" "|]options||" '||object_name "Plan"
FROM PLAN TABLE
CONNECT BY prior id = parent_id
AND prior statenment _id = statenent_id
START WTHid = 0
AND statenent id = "stl'
ORDER BY i d;

SELECT STATEMENT
TABLE ACCESS FULL EMPLOYEES

6-11

ORACLE

Chapter 6
Displaying PLAN_TABLE Output

The NULL in the Rows column indicates that the optimizer does not have any
statistics on the table. Analyzing the table shows the following:

16957 SELECT STATEMENT
16957 TABLE ACCESS FULL EMPLOYEES

You can also select the COST. This is useful for comparing execution plans or for
understanding why the optimizer chooses one execution plan over another.

Note:

These simplified examples are not valid for recursive SQL.

6-12

Reading Execution Plans

Execution plans are represented as a tree of operations.

This chapter contains the following topics:

7.1 Reading Execution Plans: Basic

ORACLE

This section uses EXPLAI N PLAN examples to illustrate execution plans.

The following query displays the execution plans:

SELECT PLAN TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN. DI SPLAY(NULL, 'statenent_id', ' BASIC));

Examples of the output from this statement are shown in Example 7-4 and
Example 7-1.

Example 7-1 EXPLAIN PLAN for Statement ID ex_planl

The following plan shows execution of a SELECT statement. The table enpl oyees is
accessed using a full table scan. Every row in the table enpl oyees is accessed, and
the WHERE clause criteria is evaluated for every row.

EXPLAIN PLAN
SET statenment _id = "ex_planl' FOR
SELECT phone_number
FROV enpl oyees
WHERE phone_nunber LIKE ' 650% ;

| 0| SELECT STATEMENT | |
1| TABLE ACCESS FULL| EMPLOYEES |

Example 7-2 EXPLAIN PLAN for Statement ID ex_plan2

This following plan shows the execution of a SELECT statement. In this example, the
database range scans the EMP_NAME | X index to evaluate the WHERE clause criteria.

EXPLAI N PLAN
SET statenent_id = "ex_plan2' FOR
SELECT | ast _nane
FROM enpl oyees
WHERE | ast _name LIKE ' Pe% ;

SELECT PLAN _TABLE_QUTPUT

7-1

Chapter 7
Reading Execution Plans: Advanced

FROM TABLE(DBMS_XPLAN. DI SPLAY(NULL, 'ex_plan2','BASIC));

| 0| SELECT STATEMENT | |
1| INDEX RANGE SCAN| EMP_NAME | X |

/.2 Reading Execution Plans: Advanced

In some cases, execution plans can be complicated and challenging to read.

This section contains the following topics:

7.2.1 Reading Adaptive Query Plans

The adaptive optimizer is a feature of the optimizer that enables it to adapt plans
based on run-time statistics. All adaptive mechanisms can execute a final plan for a
statement that differs from the default plan.

An adaptive query plan chooses among subplans during the current statement
execution. In contrast, automatic reoptimization changes a plan only on executions
that occur after the current statement execution.

You can determine whether the database used adaptive query optimization for a
SQL statement based on the comments in the Not es section of plan. The comments
indicate whether row sources are dynamic, or whether automatic reoptimization
adapted a plan.

Assumptions
This tutorial assumes the following:

e The STATI STI CS_LEVEL initialization parameter is set to ALL.
* The database uses the default settings for adaptive execution.
* As user oe, you want to issue the following separate queries:

SELECT o.order_id, v.product_nane
FROM orders o,
(SELECT order_id, product_name
FROM order_items o, product_information p
WHERE p.product _id = o.product _id
AND list_price < 50
AND mn_price <40) v
WHERE o.order_id = v.order_id

SELECT product _name

FROM order_items o, product_information p
WHERE o.unit_price = 15

AND quantity > 1

AND p. product _id = o.product _id

- Before executing each query, you want to query DBMS_XPLAN. DI SPLAY_PLANto
see the default plan, that is, the plan that the optimizer chose before applying its
adaptive mechanism.

ORACLE 7-2

Chapter 7
Reading Execution Plans: Advanced

* After executing each query, you want to query DBMS_XPLAN. DI SPLAY_CURSCR to see
the final plan and adaptive query plan.

e SYS has granted oe the following privileges:
— GRANT SELECT ON V_$SESSI ON TO oe
— GRANT SELECT ON V_$SQL TO oe
— GRANT SELECT ON V_$SQL_PLAN TO oe
— GRANT SELECT ON V_$SQL_PLAN STATI STICS ALL TO oe

To see the results of adaptive optimization:

1. Start SQL*Plus, and then connect to the database as user oe.
2. Query orders.
For example, use the following statement:

SELECT o.order_id, v.product_nane
FROM orders o,
(SELECT order_id, product_name
FROM order_itenms o, product_information p
WHERE p. product_id = o.product_id
AND list_price <50
AND mn_price <40) v
WHERE o.order_id = v.order_id;

3. View the plan in the cursor.
For example, run the following commands:

SET LI NESI ZE 165
SET PAGESI ZE 0
SELECT * FROM TABLE(DBMVS_XPLAN. DI SPLAY_CURSOR(FORMAT=>' +ALLSTATS')) ;

The following sample output has been reformatted to fit on the page. In this
plan, the optimizer chooses a nested loops join. The original optimizer estimates
are shown in the E- Rows column, whereas the actual statistics gathered during
execution are shown in the A- Rows column. In the MERGE JO N operation, the
difference between the estimated and actual number of rows is significant.

1		269]00:00:00.09	1338					
1	NESTED LOOPS	1	1] 269]00:00:00.09	1338				
2	MERGE JO N CARTESI AN 1	4]/9135/00:00:00.03	33					
*3] TABLE ACCESS FULL	PRODUCT	NFORVAT	1	1	87/00:00:00.01] 32			
I
I
I

| 4 BUFFER SORT | | 87 105| 9135| 00: 00: 00. 01| 1| 4096| 4096| 1/ 0/ 0
| 5 INDEX FULL SCAN | ORDER PK | 1]105] 105/00:00:00.01 1| | |
|*6] INDEX UNIQUE SCAN | ORDER ITEMS_UK | 9135 1| 269|00:00:00.03| 1305 | |

3 - filter(("MN_PRICE"<40 AND "LI ST_PRI CE"<50))
6 - access("O'."ORDER ID'="ORDER | D' AND "P"."PRODUCT_I D'="0O". "PRCDUCT_| D")

4. Run the same query of or der s that you ran in Step 2.

ORACLE 7-3

Chapter 7
Reading Execution Plans: Advanced

5. View the execution plan in the cursor by using the same SELECT statement that you
ran in Step 3.

The following example shows that the optimizer has chosen a different plan, using
a hash join. The Note section shows that the optimizer used statistics feedback

to adjust its cost estimates for the second execution of the query, thus illustrating
automatic reoptimization.

|1d] Operation | Nane | Start| E- Rows| A- Rows| A- Ti ne| Buf f | Reads| Ovenj 1Men O 1/ M
| O] SELECT STATEMENT | | 1] | 269| 00: 00: 00. 02| 60] 1| | | |
| 1] NESTED LOOPS | | 1]269]269]00:00: 00. 02| 60| 1] | | |
[*2] HASH JOIN | | 1 |313]269]00:00: 00. 02| 39| 1| 1000K| 1000K]| 1/ 0/ 0|
*3] TABLE ACCESS FULL	PRODUCT_I NFORMA	1	87	87	00:00: 00.01] 15	O]		
4 I NDEX FAST FULL SCAN ORDER_I TEMS_UK	1	665]	665	00: 00: 00. 01	24	1]		
*5] I NDEX UNI QUE SCAN	ORDER_PK	269] 1] 269] 00: 00: 00. 01	21	O]				

2 - access("P"."PRODUCT | D'="0'. " PRODUCT | D)
3 - filter(("M N_PRICE'<40 AND "LIST_PRI CE"<50))
5 - access("0O'. " ORDER | D'="ORDER | D')

- statistics feedback used for this statement
6. Query V$SQ to verify the performance improvement.

The following query shows the performance of the two statements (sample output
included).

SELECT CH LD_NUMBER, CPU_TIME, ELAPSED TIME, BUFFER CGETS
FROM V$SQL
WHERE SQ._ID = 'gn2npz344xqn8';

CH LD_NUMBER CPU_TI ME ELAPSED_TI ME BUFFER CETS

0 92006 131485 1831
1 12000 24156 60

The second statement executed, which is child number 1, used statistics feedback.
CPU time, elapsed time, and buffer gets are all significantly lower.

7. Explain the plan for the query of order _i t ens.
For example, use the following statement:

EXPLAIN PLAN FOR
SELECT product _nane
FROM order_items o, product_information p
WHERE o.unit_price = 15
AND quantity > 1
AND p. product _id = o.product_id

8. View the plan in the plan table.
For example, run the following statement:

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY) ;

ORACLE 7-4

| 0| SELECT STATEMENT

| 1] NESTED LOOPS

| 2| NESTED LOOPS

|*3] TABLE ACCESS FULL
| *4| | NDEX UNI QUE SCAN
| 5| TABLE ACCESS BY | NDEX ROW D| PRODUCT | NFORVATI ON

| Nane | Rows| Byt es| Cost (%CPU) | Ti me|
| | 4] 128] 7 (0)] 00: 00: 01|
I [I I
| | 4] 128] 7 (0)] 00: 00: 01|
| ORDER_| TEMS | 4148 |3 (0)|00: 00: 01]

Chapter 7

Reading Execution Plans: Advanced

Sample output appears below:

| PRODUCT | NFORVATI ON_PK| 1| | 0 (0)] 00: 00: 01]

[1]20 |1 (0)]00: 00: 01

3 - filter("O'."UNIT_PRI CE'=15 AND " QUANTI TY" >1)
4 - access("P"."PRODUCT | D'="0'. " PRODUCT | D)

[1d | Operation

*1| HASH JON
- 2 NESTED LOOPS
- 3 NESTED LOOPS

| Name | Rows| Byt es| Cost (%CPU) | Ti me |
0] SELECT STATEMENT | | 4] 128] 7(0) | 00: 00: 01]
| | 4] 128] 7(0) | 00: 00: 01]
I [I |
| | |128]7(0)]|00:00:01]
STATISTICS COLLECTOR | || | | |
TABLE ACCESS FULL | ORDER_I TEMS | 4] 48] 3(0)]|00:00: 01]
I
|
I

10.

I NDEX UNI QUE SCAN
-7 TABLE ACCESS BY | NDEX ROW D
8| TABLE ACCESS FULL

In this plan, the optimizer chooses a nested loops join.
Run the query that you previously explained.
For example, use the following statement:

SELECT product _nane

FROM order_itenms o, product_information p
WHERE o.unit_price = 15

AND quantity > 1

AND p. product _id = o.product _id

View the plan in the cursor.
For example, run the following commands:

SET LINESI ZE 165
SET PAGESI ZE 0
SELECT * FROM TABLE(DBVS_XPLAN. DI SPLAY(FORMAT=>' +ADAPTI VE')) ;

Sample output appears below. Based on statistics collected at run time (Step 4),
the optimizer chose a hash join rather than the nested loops join. The dashes (-)
indicate the steps in the nested loops plan that the optimizer considered but do not

ultimately choose. The switch illustrates the adaptive query plan feature.

PRODUCT | NFORVATI_PK| 1] | 0(0)| 00: 00: 01]
PRODUCT | NFORVATI ON | 1] 20| 1(0) | 00: 00: 01]
PRODUCT | NFORVATI ON | 1] 20| 1(0) | 00: 00: 01]

1 - access("P"."PRODUCT_|I D'="0"."PRODUCT_I D")
5- filter("
6 - access("P"."PRODUCT_ID'="0O". "PRODUCT_I D")

ORACLE

"."UNI T_PRI CE"=15 AND " QUANTI TY">1)

7-5

Chapter 7
Reading Execution Plans: Advanced

- this is an adaptive plan (rows marked "-" are inactive)

¢ See Also:

e "Adaptive Query Plans"
e "Table 7-8"
e "Controlling Adaptive Optimization"

e Oracle Database Reference to learn about the STATI STI CS_LEVEL
initialization parameter

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_XPLAN

7.2.2 Viewing Parallel Execution with EXPLAIN PLAN

Plans for parallel queries differ in important ways from plans for serial queries.

This section contains the following topics:

7.2.2.1 About EXPLAIN PLAN and Parallel Queries

ORACLE

Tuning a parallel query begins much like a non-parallel query tuning exercise by
choosing the driving table. However, the rules governing the choice are different.

In the serial case, the best driving table produces the fewest numbers of rows after
applying limiting conditions. The database joins a small number of rows to larger
tables using non-unique indexes.

For example, consider a table hierarchy consisting of cust oner, account , and
transaction.

Figure 7-1 A Table Hierarchy

TRANSACTION

ACCOUNT

CUSTOMER

A\
A\

In this example, cust oner is the smallest table, whereas t r ansact i on is the largest

table. A typical OLTP query retrieves transaction information about a specific customer
account. The query drives from the cust oner table. The goal is to minimize logical 1/O,
which typically minimizes other critical resources including physical I/0O and CPU time.

For parallel queries, the driving table is usually the largest table. It would not be
efficient to use parallel query in this case because only a few rows from each table

7-6

Chapter 7
Reading Execution Plans: Advanced

are accessed. However, what if it were necessary to identify all customers who had
transactions of a certain type last month? It would be more efficient to drive from the
transacti on table because no limiting conditions exist on the cust oner table. The
database would join rows from the transacti on table to the account table, and then
finally join the result set to the cust oner table. In this case, the used on the account
and cust oner table are probably highly selective primary key or unique indexes rather
than the non-unique indexes used in the first query. Because the transacti on table
is large and the column is not selective, it would be beneficial to use parallel query
driving from the transact i on table.

Parallel operations include the following:

* PARALLEL_TO PARALLEL
* PARALLEL_TO SERI AL

A PARALLEL _TO SERI AL operation is always the step that occurs when the query
coordinator consumes rows from a parallel operation. Another type of operation
that does not occur in this query is a SERI AL operation. If these types of operations
occur, then consider making them parallel operations to improve performance
because they too are potential bottlenecks.

PARALLEL_FROM SERI AL
« PARALLEL_TO PARALLEL

If the workloads in each step are relatively equivalent, then the
PARALLEL_TO PARALLEL operations generally produce the best performance.

« PARALLEL_COMBI NED W TH_CHI LD
PARALLEL_COVBI NED W TH_PARENT

A PARALLEL_COWBI NED_W TH_PARENT operation occurs when the database performs
the step simultaneously with the parent step.

If a parallel step produces many rows, then the QC may not be able to consume the
rows as fast as they are produced. Little can be done to improve this situation.

¢ See Also:

The OTHER _TAG column in "PLAN_TABLE Columns"

7.2.2.2 Viewing Parallel Queries with EXPLAIN PLAN: Example

ORACLE

When using EXPLAI N PLAN with parallel queries, the database compiles and executes
one parallel plan. This plan is derived from the serial plan by allocating row sources
specific to the parallel support in the QC plan.

The table queue row sources (PX Send and PX Recei ve), the granule iterator, and buffer
sorts, required by the two parallel execution server set PQ model, are directly inserted
into the parallel plan. This plan is the same plan for all parallel execution servers when
executed in parallel or for the QC when executed serially.

7-7

Chapter 7
Reading Execution Plans: Advanced

Example 7-3 Parallel Query Explain Plan

The following simple example illustrates an EXPLAI N PLAN for a parallel query:

CREATE TABLE enp2 AS SELECT * FROM enpl oyees;
ALTER TABLE enp2 PARALLEL 2;
EXPLAI N PLAN FOR

SELECT SUM sal ary)

FROM enp2

GROUP BY departnent id;

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN. Di SPLAY()):

1d	Operation	Name	Rows	Bytes	Cost %CPU TQ	I N-QUT	PQ Distrib
0] SELECT STATEMENT		107] 2782	3 (34)				
1] PX COORDI NATGR	(.						
2	PX SEND QC (RANDOM)	: TQLOOO1	107] 2782	3 (34)	QL,01	P->S	QC (RAND)
3	HASH GROUP BY		107] 2782	3 (34)	Q1,01	PCW	
4 PX RECEI VE		107] 2782	3 (34)	Q1,01	PCW		
5 PX SEND HASH	: TQLOO0O	107] 2782	3 (34)	QL,00	P->P	HASH	
6 HASH GROUP BY		107] 2782	3 (34)	QL,00	PCWP		
7] PX BLOCK	TERATOR	[107] 2782	2 (0)	QL,00	PCWP		
8 TABLE ACCESS FULL	EMP2	107] 2782	2 (0)	Q1,00	PCWP		

One set of parallel execution servers scans EMP2 in parallel, while the second set
performs the aggregation for the GROUP BY operation. The PX BLOCK | TERATOR row
source represents the splitting up of the table EMP2 into pieces to divide the scan
workload between the parallel execution servers. The PX SEND and PX RECEI VE row
sources represent the pipe that connects the two sets of parallel execution servers
as rows flow up from the parallel scan, get repartitioned through the HASH table
gueue, and then read by and aggregated on the top set. The PX SEND QC row source
represents the aggregated values being sent to the QC in random (RAND) order. The
PX COORDI NATOR row source represents the QC or Query Coordinator which controls
and schedules the parallel plan appearing below it in the plan tree.

7.2.3 Viewing Bitmap Indexes with EXPLAIN PLAN

Index row sources using bitmap indexes appear in the EXPLAI N PLAN output with the
word Bl TMAP indicating the type of the index.

Note:

Queries using bitmap join index indicate the bitmap join index access path.
The operation for bitmap join index is the same as bitmap index.

ORACLE 7-8

Chapter 7
Reading Execution Plans: Advanced

Example 7-4 EXPLAIN PLAN with Bitmap Indexes

In this example, the predicate c1=2 yields a bitmap from which a subtraction can take
place. From this bitmap, the bits in the bitmap for c2=6 are subtracted. Also, the bits

in the bitmap for c2 | S NULL are subtracted, explaining why there are two M NUS row
sources in the plan. The NULL subtraction is necessary for semantic correctness unless
the column has a NOT NULL constraint. The TO ROW DS option generates the rowids
necessary for the table access.

EXPLAIN PLAN FOR SELECT *
FROM t
WHERE cl1 = 2
AND c2 <>6
R c3 BETWEEN 10 AND 20;

SELECT STATENMENT
TABLE ACCESS T BY | NDEX RON D
Bl TMAP CONVERSI ON TO ROA D
Bl TMAP CR
BI TMAP M NUS
Bl TMAP M NUS
Bl TMAP | NDEX C1_I ND SINGLE VALUE
Bl TMAP | NDEX C2_I ND SI NGLE VALUE
Bl TMAP | NDEX C2_I ND SI NGLE VALUE
Bl TMAP MERGE
Bl TMAP | NDEX C3_I ND RANGE SCAN

7.2.4 Viewing Result Cache with EXPLAIN PLAN

ORACLE

When your query contains the resul t _cache hint, the Resul t Cache operator is inserted
into the execution plan.

For example, consider the following query:
SELECT /*+ result_cache */ deptno, avg(sal)

FROM enp
GROUP BY dept no;

To view the EXPLAI N PLAN for this query, use the following command:

EXPLAIN PLAN FOR
SELECT /*+ result_cache */ deptno, avg(sal)
FROM enp
GROUP BY dept no;

SELECT PLAN_TABLE_QUTPUT FROM TABLE (DBMS_XPLAN. DI SPLAY());

The EXPLAI N PLAN output for this query should look similar to the following:

|1d| Operation | Nane | Rows| Byt es|
Cost (%CPU) | Ti me |

7-9

Chapter 7
Reading Execution Plans: Advanced

| 0] SELECT STATEMENT | | 11| 77 | 4 (25)]
00: 00: 01|

| 1] RESULT CACHE | bO6ppf z9pxzst bt t pbaygnf bny| | |

I I

| 2| HASH GROUP BY | | 11| 77 | 4 (25)]
00: 00: 01|

| 3| TABLE ACCESS FULL| EMP | 107 | 749] 3 (0) |
00: 00: 01|

In this EXPLAI N PLAN, the Resul t Cache operator is identified by its Cachel d,
which is b06ppf z9pxzst bt t pbqyqgnf bny. You can now run a query on the
V$RESULT_CACHE_OBJECTS view by using this Cachel d.

7.2.5 Viewing Partitioned Objects with EXPLAIN PLAN

Use EXPLAI N PLAN to determine how Oracle Database accesses partitioned objects for
specific queries.

Partitions accessed after pruning are shown in the PARTI TI ON START and PARTI TI ON
STOP columns. The row source name for the range partition is PARTI TI ON RANGE. For
hash partitions, the row source name is PARTI TI ON HASH.

A join is implemented using partial partition-wise join if the DI STRI BUTI ON column of the
plan table of one of the joined tables contains PARTI TI ON(KEY) . Partial partition-wise
join is possible if one of the joined tables is partitioned on its join column and the table
is parallelized.

A join is implemented using full partition-wise join if the partition row source appears
before the join row source in the EXPLAI N PLAN output. Full partition-wise joins are
possible only if both joined tables are equipartitioned on their respective join columns.
Examples of execution plans for several types of partitioning follow.

This section contains the following topics:

7.2.5.1 Displaying Range and Hash Partitioning with EXPLAIN PLAN:

Examples

ORACLE

This example illustrates pruning by using the enp_r ange table, which partitioned by
range on hire_date.

Assume that the tables enpl oyees and depart nent s from the Oracle Database sample
schema exist.

CREATE TABLE enp_range
PARTI TI ON BY RANCE(hire_dat e)
(

PARTI TI ON enp_pl VALUES LESS THAN (TO _DATE(' 1- JAN-1992',' DD- MON-
YYYY')),

PARTI TI ON enp_p2 VALUES LESS THAN (TO _DATE(' 1- JAN-1994' ,' DD- MON-
YYYY')),

7-10

ORACLE

Chapter 7
Reading Execution Plans: Advanced

PARTI TI ON enp_p3 VALUES LESS THAN (TO DATE(' 1- JAN-1996', ' DD- MON-
W;YAREI'? lI'I ON enp_p4 VALUES LESS THAN (TO DATE(' 1- JAN-1998',' DD- MON-
W;YAREI'? lI'I ON enp_p5 VALUES LESS THAN (TO DATE(' 1- JAN-2001',"' DD- MON-
YYYY'))

,)AS SELECT * FROM enpl oyees;

For the first example, consider the following statement:

EXPLAIN PLAN FOR
SELECT * FROM enp_range;

Oracle Database displays something similar to the following:

[1d] Operation | Name | Rows| Bytes| Cost|Pstart| Pstop|
O] SELECT STATEMENT		105	13965	2		
1] PARTITI ON RANGE ALL		105	13965	2	1	5
2	TABLE ACCESS FULL	EMP_RANGE	105] 13965	2	1	5

The database creates a partition row source on top of the table access row source. It
iterates over the set of partitions to be accessed. In this example, the partition iterator
covers all partitions (option ALL), because a predicate was not used for pruning. The
PARTI TI ON_START and PARTI TI ON_STOP columns of the PLAN_TABLE show access to all
partitions from 1 to 5.

For the next example, consider the following statement:

EXPLAIN PLAN FOR
SELECT *
FROM enp_range
VWHERE hire_date >= TO DATE(' 1- JAN-1996', ' DD- MON- YYYY') ;

| 1d | Operation | Nane | Rows| Bytes| Cost| Pstart| Pstop|
| 0| SELECT STATEMENT | | 3] 399 | 2 | | |
| 1| PARTITION RANGE | TERATOR| | 3] 399 | 2 | 4| 5
| *2 | TABLE ACCESS FULL | EMP_RANGE] 3 | 399 | 2 | 4| 5

In the previous example, the partition row source iterates from partition 4 to 5 because
the database prunes the other partitions using a predicate on hire_date.

Finally, consider the following statement:
EXPLAIN PLAN FCR

SELECT *
FROM enp_range

7-11

Chapter 7
Reading Execution Plans: Advanced

VWHERE hire_date < TO DATE(' 1- JAN-1992' ,' DD- MON- YYYY') ;

1d	Operation	Name	Rows	Byt es	Cost	Pst art	Pst op
0	SELECT STATEMENT		1] 133	2			
1	PARTITION RANGE SI NGLE		1] 133 2] 1] 1				
[* 2] TABLE ACCESS FULL | EMP_RANGE | 1] 133 2] 1] 1|

In the previous example, only partition 1 is accessed and known at compile time; thus,
there is no need for a partition row source.

Note:

Oracle Database displays the same information for hash partitioned objects,
except the partition row source name is PARTI TI ON HASH instead of

PARTI TI ON RANGE. Also, with hash partitioning, pruning is only possible using
equality or | N-list predicates.

7.2.5.2 Pruning Information with Composite Partitioned Objects: Examples

ORACLE

To illustrate how Oracle Database displays pruning information for composite
partitioned objects, consider the table enp_conp. It is range-partitioned on hi r edat e
and subpartitioned by hash on dept no.

CREATE TABLE enp_conp PARTI TI ON BY RANGE(hire_date)
SUBPARTI TI ON BY HASH(departnent _i d) SUBPARTI TIONS 3
(

PARTI TI ON enp_p1l VALUES LESS THAN (TO DATE(' 1- JAN-1992',' DD- MON- YYYY'))
PARTI TI ON enp_p2 VALUES LESS THAN (TO DATE(' 1- JAN-1994' ' DD- MON- YYYY'))
PARTI TI ON enp_p3 VALUES LESS THAN (TO DATE(' 1- JAN-1996',' DD- MON- YYYY')),
PARTI TI ON enp_p4 VALUES LESS THAN (TO DATE(' 1- JAN-1998',' DD- MON- YYYY'))
PARTI TI ON enp_p5 VALUES LESS THAN (TO DATE(' 1- JAN-2001',' DD- MON- YYYY'))

)
AS SELECT * FROM enpl oyees;

For the first example, consider the following statement:

EXPLAIN PLAN FOR
SELECT * FROM enp_conp;

|1d| Operation | Nane | Rows | Bytes | Cost|Pstart|Pstop|
| O] SELECT STATEMENT | | 10120 | 1314K 78 | | |
| 1] PARTITI ON RANGE ALL| | 10120 | 1314K 78 | 1| 5
| 2] PARTI TI ON HASH ALL| | 10120 | 1314K 78 | 1| 3]
| 3] TABLE ACCESS FULL| EMP_COWP | 10120 | 1314K 78 | 1 | 15 |

7-12

ORACLE

Chapter 7
Reading Execution Plans: Advanced

This example shows the plan when Oracle Database accesses all subpartitions of all
partitions of a composite object. The database uses two partition row sources for this
purpose: a range partition row source to iterate over the partitions, and a hash partition
row source to iterate over the subpartitions of each accessed partition.

In the following example, the range partition row source iterates from partition 1 to 5,
because the database performs no pruning. Within each partition, the hash partition
row source iterates over subpartitions 1 to 3 of the current partition. As a result, the
table access row source accesses subpartitions 1 to 15. In other words, the database
accesses all subpartitions of the composite object.

EXPLAI N PLAN FOR
SELECT *
FROM enp_conp
VWHERE hire_date = TO DATE(' 15- FEB-1998', ' DD- MON- YYYY');

I'd	Operation	Name	Rows	Byt es	Cost	Pstart	Pstop
0	SELECT STATEMENT		20	2660	17		
1] PARTITION RANGE SI NGLE		2 2660	17	5] 5			
2] PARTI TI ON HASH ALL		20	2660	17	1] 3]		
[* 3| TABLE ACCESS FULL | EMP_COWP | 2 2660 | 17 | 13| 15 |

In the previous example, only the last partition, partition 5, is accessed. This partition is
known at compile time, so the database does not need to show it in the plan. The hash
partition row source shows accessing of all subpartitions within that partition; that is,
subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the enp_conp table.

Now consider the following statement:

EXPLAIN PLAN FOR
SELECT *
FROM enp_conp
WHERE departnent _id = 20;

1d	Operation	Namre	Rows	Bytes	Cost	Pstart	Pstop	
0	SELECT STATEMENT		101	13433	78			
1	PARTITION RANGE ALL		101	13433	78	1	5	
2	PARTI TI ON HASH S	NGLE		101	13433	78	3	3
[* 3| TABLE ACCESS FULL | EMP_COWP | 101 | 13433 | 78 | | |

In the previous example, the predicate dept no=20 enables pruning on the hash
dimension within each partition. Therefore, Oracle Database only needs to access

a single subpartition. The number of this subpartition is known at compile time, so the
hash partition row source is not needed.

7-13

Chapter 7
Reading Execution Plans: Advanced

Finally, consider the following statement:

VARI ABLE dno NUMBER,
EXPLAIN PLAN FOR
SELECT *
FROM enp_conp
WHERE departnent _id = :dno;

1d] Operation	Name	Rows	Bytes	Cost	Pstart	Pstop
0	SELECT STATEMENT		101] 13433	78		
1	PARTITION RANGE ALL		101] 13433	78	1	5
2	PARTITION HASH SI NGLE		101] 13433	78	KEY	KEY
[*3 | TABLE ACCESS FULL | EMP_COWP | 101] 13433 | 78 | | |

The last two examples are the same, except that depart ment i d = :dno replaces

dept no=20. In this last case, the subpartition number is unknown at compile time, and
a hash patrtition row source is allocated. The option is SI NGLE for this row source
because Oracle Database accesses only one subpartition within each partition. In Step
2, both PARTI TI ON_START and PARTI TI ON_STCP are set to KEY. This value means that
Oracle Database determines the number of subpartitions at run time.

7.2.5.3 Examples of Partial Partition-Wise Joins

In these examples, the PQ DI STRI BUTE hint explicitly forces a partial partition-wise join
because the query optimizer could have chosen a different plan based on cost in this

query.
Example 7-5 Partial Partition-Wise Join with Range Partition

In the following example, the database joins enp_range_di d on the partitioning column
depart nent _i d and parallelizes it. The database can use a partial partition-wise join
because the dept 2 table is not partitioned. Oracle Database dynamically partitions the
dept 2 table before the join.

CREATE TABLE dept2 AS SELECT * FROM departnments;
ALTER TABLE dept 2 PARALLEL 2;

CREATE TABLE enp_range_di d PARTI TI ON BY RANGE(departnent id)
(PARTI TI ON enp_pl VALUES LESS THAN (150),
PARTI TI ON enp_p5 VALUES LESS THAN (MAXVALUE))
AS SELECT * FROM enpl oyees;

ALTER TABLE enp_range_di d PARALLEL 2;
EXPLAIN PLAN FOR
SELECT /*+ PQ_DI STRI BUTE(d NONE PARTI TI ON) ORDERED */ e.last_nane,
d. depart ment _nane

FROM enp_range did e, dept2 d
WHERE e.departnent _id = d.department _id;

ORACLE 7-14

Chapter 7
Reading Execution Plans: Advanced

|1d] Operation | Name | Rowj Byt e| Cost | Pstart | Pstop| TQ | N- QUT| PQ
Di strib|
0| SELECT STATEMENT | | 284 | 16188| 6] | | |

I
1] PX COORDI NATCR | | N |

I
I
I
I I

| 2| PX SEND QC (RANDOM) | : TQLO001 | 284 | 16188/ 6] | | Q1,01 |P->S|QC
(

RAND) |

| 3] HASH JO' N | | 284 | 16188/ 6] | | Q1,01 |

POWP| |

| 4| PX PARTI TI ON RANGE ALL | | 284 | 7668 2|1 |2| Q1,01 |

POWC] |

| 5| TABLE ACCESS FULL | EMP_RANGE DI D| 284 | 7668 |21 |2 QL,01 |

POWP| |

| 6| BUFFER SORT | | | || | | Q,o01 |

POWC] |

| 7] PX RECEI VE | | 21| 630 |2 | | Q01|

POWP| |

| 8 PX SEND PARTI TI ON (KEY) | : TQLO00O | 21 630 2] | | | S >P| PART
9| TABLE ACCESS FULL | DEPT2 | 21| 630 |2 | | |

The execution plan shows that the table dept 2 is scanned serially and all rows with the
same partitioning column value of enp_range_di d (department i d) are sent through
a PART (KEY), or partition key, table queue to the same parallel execution server doing
the partial partition-wise join.

Example 7-6 Partial Partition-Wise Join with Composite Partition

In the following example, enp_conp is joined on the partitioning column and is
parallelized, enabling use of a partial partition-wise join because dept 2 is not
partitioned. The database dynamically partitions dept 2 before the join.

ALTER TABLE enp_conp PARALLEL 2;

EXPLAIN PLAN FOR
SELECT /*+ PQ_DI STRI BUTE(d NONE PARTI TI ON) ORDERED */ e.last_nane,
d. depart ment _nane
FROM enp_conp e, dept2 d
WHERE e. departnent id = d.department _id;

SELECT PLAN TABLE_OUTPUT FROM TABLE(DBMS_XPLAN. DI SPLAY());

| 1d] Operation | Name |Rows |Bytes | Cost|Pstart|Pstop|TQ | I N QUT| PQ
Di strib|

ORACLE 7-15

Chapter 7
Reading Execution Plans: Advanced

0 | SELECT STATEMENT | | 445 |17800| 5| | |

I
1| PX COORDI NATOR | | | [N |

2| PX SEND QC (RANDOW) | : TQLOOO1| 445 |17800] 5| | | Q01 |P->5 QC
RAND) |

*3 | HASH JOI N | | 445117800 5| | | Q,01

CWP| |

| 4| PX PARTI TI ON RANGE ALL | | 107 | 1070] 3 |1] 5| Q,01

POV |

| 5| PX PARTI TI ON HASH ALL | | 107 | 1070] 3 |1] 3| Q,01

POV |

| 6 | TABLE ACCESS FULL | EMP_COVP| 107 | 1070| 3 |1 | 15| Q1,01

POWP|

| 7] PX RECEI VE | | 21| 630 1] | | Q,o01

POWP|

| 8| PX SEND PARTI TION (KEY)|:TQL0000|] 21 | 630 1| | | Q1,00 |P->P| PART
(KEY) |

| 9| PX BLOCK | TERATCR | | 21| 630 1] | | Q,00

POV |

|10 | TABLE ACCESS FULL |DEPT2 | 21| 630 1| | | Q00

POWP|

The plan shows that the optimizer selects partial partition-wise join from one of two
columns. The PX SEND node type is PARTI TI ON (KEY) and the PQ Di stri b column
contains the text PART (KEY), or partition key. This implies that the table dept 2 is
re-partitioned based on the join column depart ment _i d to be sent to the parallel
execution servers executing the scan of EMP_COVP and the join.

7.2.5.4 Example of Full Partition-Wise Join

In this example, enp_conp and dept _hash are joined on their hash partitioning
columns, enabling use of a full partition-wise join.

The PARTI TI ON HASH row source appears on top of the join row source in the plan
table output.

CREATE TABLE dept _hash
PARTI TI ON BY HASH(department _i d)
PARTI TI ONS 3
PARALLEL 2
AS SELECT * FROM departments;

EXPLAI N PLAN FOR
SELECT /*+ PQ DI STRI BUTE(e NONE NONE) ORDERED */ e.last_nane,
d. depart ment _nane
FROM enp_conp e, dept_hash d
WHERE e. departnent _id = d.department _id,

| 1d] Operation | Nane | Rows| Bytes| Cost|Pstart|Pstop| TQ | | N QUT| PQ

ORACLE 7-16

Di strib|

Chapter 7
Reading Execution Plans: Advanced

1] PX COORDI NATOR | | | [1] | |

|

|

|

|

| 2] PX SEND QC (RANDOM) | TQLO000 | 106 | 2544 |8] | | Q00| P->S|QC
(RAND) |

| 3] PX PARTITION HASH ALL | | 106 | 2544 |8/1 | 3| Q00| POWC
| |

| *4| HASH JO N | | 106 | 2544 |8] | | Q00| POW
| |

| 5] PX PARTI TI ON RANGE ALL| | 107 | 1070 |3|1 | 5| Q00 | POWC
| |

| 6| TABLE ACCESS FULL |EMP_COVMP | 107 | 1070 [3|1 |15 | QL,00 | PCWP
| |

| 7] TABLE ACCESS FULL |DEPT HASH | 27 | 378 |4/1] 3| Q,00 | PCW
|

The PX PARTI TI ON HASH row source appears on top of the join row source in the

plan table output while the PX PARTI TI ON RANGE row source appears over the scan of
enp_conp. Each parallel execution server performs the join of an entire hash partition
of enp_conp with an entire partition of dept _hash.

7.2.5.5 Examples of INLIST ITERATOR and EXPLAIN PLAN

ORACLE

An | NLI ST | TERATOR operation appears in the EXPLAI N PLAN output if an index
implements an | N-ist predicate.

Consider the following statement:

SELECT * FROM enp WHERE enpno IN (7876, 7900, 7902);

The EXPLAI N PLAN output appears as follows:

COPERATI ON CPTI ONS CBJECT_NAME

SELECT STATENMENT

I NLI ST | TERATOR

TABLE ACCESS BY ROW D EMP

I NDEX RANGE SCAN EMP_EMPNO

The | NLI ST | TERATOR operation iterates over the next operation in the plan for each
value in the | N-list predicate. The following sections describe the three possible types
of | N-list columns for partitioned tables and indexes.

This section contains the following topics:

7-17

Chapter 7
Reading Execution Plans: Advanced

7.2.5.5.1 When the IN-List Column is an Index Column: Example

If the | N-list column enpno is an index column but not a partition column, then the
| N-list operator appears before the table operation but after the partition operation in

the plan.
OPERATI ON OPTI ONS OBJECT_NAME PARTI T_START PARTI TI _STOP
SELECT STATEMENT
PARTI TI ON RANGE ALL KEY(I NLI ST) KEY(I NLI ST)
I NLI ST | TERATOR
TABLE ACCESS BY LOCAL | NDEX RON D EMP KEY(INLI ST) KEY(I NLI ST)
| NDEX RANGE SCAN EMP_EMPNO KEY(INLI ST) KEY(I NLI ST)

The KEY(| NLI ST) designation for the partition start and stop keys specifies that an
| N-list predicate appears on the index start and stop keys.

7.2.5.5.2 When the IN-List Column is an Index and a Partition Column: Example

If enpno is an indexed and a partition column, then the plan contains an | NLI ST
| TERATOR operation before the partition operation.

OPERATI ON OPTI ONS OBJECT_NAME PARTI TI ON_START PARTI TI ON_STOP

SELECT STATEMENT
I NLI ST | TERATOR

PART| TI ON RANGE | TERATCR KEY(| NLI ST) KEY(| NLI ST)
TABLE ACCESS BY LOCAL | NDEX RON'D ENP KEY(| NLI ST) KEY(| NLI ST)
| NDEX RANGE SCAN EMP_EMPNO KEY(I NLI ST) KEY(| NLI ST)

7.2.5.5.3 When the IN-List Column is a Partition Column: Example

If enpno is a partition column and no indexes exist, then no | NLI ST | TERATOR operation

is allocated.
OPERATI ON OPTI ONS OBJECT_NAME PARTITION_START PARTI TI ON_STCP
SELECT STATEMENT
PARTI TI ON RANGE I NLI ST KEY(I NLI ST) KEY(I NLI ST)
TABLE ACCESS FULL EVP KEY(I NLI ST) KEY(I NLI ST)

If enp_enpno is a bitmap index, then the plan is as follows:

OPERATI ON OPTI ONS CBJECT_NAME

SELECT STATEMENT
I NLI ST | TERATOR

TABLE ACCESS BY | NDEX ROW D EMP
Bl TMAP CONVERSI ON TO ROW DS
Bl TMAP | NDEX SINGLE VALUE EMP_EMPNO

ORACLE 7-18

Chapter 7
Reading Execution Plans: Advanced

7.2.5.6 Example of Domain Indexes and EXPLAIN PLAN

You can use EXPLAI N PLAN to derive user-defined CPU and I/O costs for domain
indexes.

EXPLAI N PLAN displays domain index statistics in the OTHER column of PLAN TABLE. For
example, assume table enp has user-defined operator CONTAI NS with a domain index
enp_r esune on the resune column, and the index type of enp_r esume supports the
operator CONTAI NS. You explain the plan for the following query:

SELECT * FROM enp WHERE CONTAINS(resume, 'Oracle') =1

The database could display the following plan:

OPERATI ON OPTI ONS OBJECT_NANME OTHER

SELECT STATEMENT
TABLE ACCESS BY RON D EMP
DOMAI' N | NDEX EMP_RESUMVE CPU. 300, I/C 4

7.2.6 PLAN_TABLE Columns

The PLAN TABLE used by the EXPLAI N PLAN statement contains the columns listed in
this topic.

Table 7-1 PLAN_TABLE Columns

Column Type Description

STATEMENT _I D VARCHAR2(30) Value of the optional STATEVMENT | D
parameter specified in the EXPLAI N PLAN
statement.

PLAN_I D NUMBER Unique identifier of a plan in the database.

TI MESTAMP DATE Date and time when the EXPLAI N PLAN
statement was generated.

REMARKS VARCHAR2(80) Any comment (of up to 80 bytes) you want

to associate with each step of the explained
plan. This column indicates whether the
database used an outline or SQL profile for
the query.

If you need to add or change a remark on
any row of the PLAN_TABLE, then use the
UPDATE statement to modify the rows of the
PLAN_TABLE.

ORACLE 7-19

ORACLE

Table 7-1 (Cont.) PLAN_TABLE Columns

Chapter 7
Reading Execution Plans: Advanced

Column

Type

Description

COPERATI ON

OPTI ONS

OBJECT_NCDE

OBJECT_OMER

OBJECT_NAME
OBJECT_ALI AS

OBJECT_| NSTANCE

OBJECT_TYPE

OPTI M ZER

SEARCH_COLUWNS

ID

PARENT | D

DEPTH

VARCHAR2(30)

VARCHARY (225)

VARCHAR2(128)

VARCHARZ(30)
VARCHARZ(30)

VARCHAR2(65)

NUMERI C

VARCHAR2(30)

VARCHAR2(255)
NUVBERI C
NUVERI C

NUMERI C

NUMERI C

Name of the internal operation performed in
this step. In the first row generated for a
statement, the column contains one of the
following values:

o DELETE STATEMENT
e | NSERT STATEMENT
» SELECT STATEMENT
» UPDATE STATEMENT

See Table 7-3 for more information about
values for this column.

A variation on the operation described in the
OPERATI ON column.

See Table 7-3 for more information about
values for this column.

Name of the database link used to reference
the object (a table name or view name).

For local queries using parallel execution,
this column describes the order in which the
database consumes output from operations.

Name of the user who owns the schema
containing the table or index.

Name of the table or index.

Unique alias of a table or view in a SQL
statement. For indexes, it is the object alias
of the underlying table.

Number corresponding to the ordinal position
of the object as it appears in the original
statement. The numbering proceeds from
left to right, outer to inner for the original
statement text. View expansion results in
unpredictable numbers.

Modifier that provides descriptive information
about the object; for example, NON-UNI QUE
for indexes.

Current mode of the optimizer.
Not currently used.

A number assigned to each step in the
execution plan.

The ID of the next execution step that
operates on the output of the | D step.

Depth of the operation in the row source
tree that the plan represents. You can use
the value to indent the rows in a plan table
report.

7-20

Chapter 7
Reading Execution Plans: Advanced

Table 7-1 (Cont.) PLAN_TABLE Columns

___|
Column Type Description

PCSI TI ON NUMERI C For the first row of output, this indicates the
optimizer's estimated cost of executing the
statement. For the other rows, it indicates the
position relative to the other children of the
same parent.

cosT NUVERI C Cost of the operation as estimated by
the optimizer's query approach. Cost is
not determined for table access operations.
The value of this column does not have
any particular unit of measurement; it is a
weighted value used to compare costs of
execution plans. The value of this column
is a function of the CPU_COST and | O_COST
columns.

CARDI NALI TY NUMERI C Estimate by the query optimization approach
of the number of rows that the operation
accessed.

BYTES NUVERI C Estimate by the query optimization approach
of the number of bytes that the operation
accessed.

OTHER _TAG VARCHAR2(255) Describes the contents of the OTHER column.
Values are:

+ SERI AL (blank): Serial execution.
Currently, SQL is not loaded in the
OTHER column for this case.

« SERIAL_FROM REMOTE (S -> R):
Serial execution at a remote site.

e PARALLEL FROM SERIAL (S -> P):
Serial execution. Output of step is
partitioned or broadcast to parallel
execution servers.

e PARALLEL TO SERIAL (P -> 9):
Parallel execution. Output of step is
returned to serial QC process.

e PARALLEL TO PARALLEL (P -> P):
Parallel execution. Output of step is
repartitioned to second set of parallel
execution servers.

e PARALLEL_COVBI NED W TH_PARENT
(PWP) : Parallel execution; Output of
step goes to next step in same
parallel process. No interprocess
communication to parent.

e PARALLEL_COVBI NED W TH _CHI LD
(PWC) : Parallel execution. Input of
step comes from prior step in
same parallel process. No interprocess
communication from child.

ORACLE 7-21

Chapter 7
Reading Execution Plans: Advanced

Table 7-1 (Cont.) PLAN_TABLE Columns
|

Column Type Description

PARTI TI ON_START VARCHAR2(255) Start partition of a range of accessed
partitions. It can take one of the following
values:

n indicates that the start partition has been
identified by the SQL compiler, and its
partition number is given by n.

KEY indicates that the start partition is
identified at run time from partitioning key
values.

ROW REMOVE_LOCATI ONindicates that the
database computes the start partition (same
as the stop partition) at run time from the
location of each retrieved record. The record
location is obtained by a user or from a
global index.

I NVALI Dindicates that the range of
accessed partitions is empty.

PARTI TI ON_STOP VARCHAR2(255) Stop partition of a range of accessed
partitions. It can take one of the following
values:

n indicates that the stop partition has been
identified by the SQL compiler, and its
partition number is given by n.

KEY indicates that the stop partition is
identified at run time from partitioning key
values.

ROW REMOVE_LOCATI ONindicates that the
database computes the stop partition (same
as the start partition) at run time from the
location of each retrieved record. The record
location is obtained by a user or from a
global index.

I NVALI Dindicates that the range of
accessed partitions is empty.

PARTI TION_I D NUMERI C Step that has computed the pair of
values of the PARTI TI ON_START and
PARTI TI ON_STOP columns.

OTHER LONG Other information that is specific to the
execution step that a user might find useful.
See the OTHER_TAG column.

DI STRI BUTI ON VARCHAR2(30) Method used to distribute rows from
producer query servers to consumer query
servers.

See Table 7-2 for more information about the
possible values for this column. For more
information about consumer and producer
query servers, see Oracle Database VLDB
and Partitioning Guide.

ORACLE 7-22

Chapter 7
Reading Execution Plans: Advanced

Table 7-1 (Cont.) PLAN_TABLE Columns

___|
Column Type Description

CPU_COST NUMERI C CPU cost of the operation as estimated by
the query optimizer's approach. The value of
this column is proportional to the number of
machine cycles required for the operation.
For statements that use the rule-based
approach, this column is null.

| O_COSsT NUVERI C 1/0 cost of the operation as estimated by the
query optimizer's approach. The value of this
column is proportional to the number of data
blocks read by the operation. For statements
that use the rule-based approach, this
column is null.

TEMP_SPACE NUVERI C Temporary space, in bytes, that the operation
uses as estimated by the query optimizer's
approach. For statements that use the rule-
based approach, or for operations that do not
use any temporary space, this column is null.

ACCESS PREDI CATES VARCHAR2(4000) Predicates used to locate rows in an
access structure. For example, start or stop
predicates for an index range scan.

FI LTER PREDI CATES = VARCHAR2(4000) Predicates used to filter rows before
producing them.

PRQJECTI ON VARCHAR2(4000) Expressions produced by the operation.

TI ME NUMBER(20, 2) Elapsed time in seconds of the operation
as estimated by query optimization.
For statements that use the rule-based
approach, this column is null. The
DBVS_XPLAN. DI SPLAY_PLAN out, the time is
in the HH: MM SS format.

QBLOCK_NAME VARCHAR2(30) Name of the query block, either system-
generated or defined by the user with the
(B_NAME hint.

Table 7-2 describes the values that can appear in the DI STRI BUTI ON column:

Table 7-2 Values of DISTRIBUTION Column of the PLAN_TABLE

I
DISTRIBUTION Text Interpretation

PARTI TI ON Maps rows to query servers based on the partitioning of a table or index using the rowid of
(ROW D) the row to UPDATE or DELETE.

PARTI TI ON (KEY) Maps rows to query servers based on the partitioning of a table or index using a set
of columns. Used for partial partition-wise join, PARALLEL | NSERT, CREATE TABLE AS
SELECT of a partitioned table, and CREATE PARTI TI ONED GLOBAL | NDEX.

HASH Maps rows to query servers using a hash function on the join key. Used for PARALLEL
JO Nor PARALLEL GROUP BY.
RANGE Maps rows to query servers using ranges of the sort key. Used when the statement

contains an ORDER BY clause.

ORACLE 7-23

Chapter 7
Reading Execution Plans: Advanced

Table 7-2 (Cont.) Values of DISTRIBUTION Column of the PLAN_TABLE
]

DISTRIBUTION Text

Interpretation

ROUND- ROBI N Randomly maps rows to query servers.
BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel join when
one table is very small compared to the other.
QC (ORDER) The QC consumes the input in order, from the first to the last query server. Used when the
statement contains an ORDER BY clause.
QC (RANDOW The QC consumes the input randomly. Used when the statement does not have an ORDER
BY clause.
Table 7-3 lists each combination of OPERATI ON and OPTI ONS produced by the EXPLAI N
PLAN statement and its meaning within an execution plan.
Table 7-3 OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
|

Operation Option Description

AND- EQUAL Operation accepting multiple sets of rowids, returning
the intersection of the sets, eliminating duplicates.
Used for the single-column indexes access path.

Bl TMAP CONVERSI ON TO ROW DS converts bitmap representations to actual
rowids that you can use to access the table.

FROM ROW DS converts the rowids to a bitmap
representation.

COUNT returns the number of rowids if the actual values
are not needed.

Bl TMAP | NDEX SI NGLE VALUE looks up the bitmap for a single key
value in the index.

RANGE SCAN retrieves bitmaps for a key value range.
FULL SCAN performs a full scan of a bitmap index if
there is no start or stop key.

Bl TMAP MERCGE Merges several bitmaps resulting from a range scan
into one bitmap.

Bl TMAP M NUS Subtracts bits of one bitmap from another. Row source
is used for negated predicates. Use this option only
if there are nonnegated predicates yielding a bitmap
from which the subtraction can take place. An example
appears in "Viewing Bitmap Indexes with EXPLAIN
PLAN".

Bl TMAP R Computes the bitwise OR of two bitmaps.

Bl TMAP AND Computes the bitwise AND of two bitmaps.

Bl TMAP KEY | TERATI ON Takes each row from a table row source and finds the
corresponding bitmap from a bitmap index. This set of
bitmaps are then merged into one bitmap in a following
Bl TMAP MERGE operation.

CONNECT BY Retrieves rows in hierarchical order for a query
containing a CONNECT BY clause.

CONCATENATI ON Operation accepting multiple sets of rows returning the
union-all of the sets.

ORACLE 7-24

ORACLE

Chapter 7
Reading Execution Plans: Advanced

Table 7-3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN

PLAN
]

Operation Option Description

COUNT Operation counting the number of rows selected from a
table.

COUNT STOPKEY Count operation where the number of rows returned is
limited by the ROWNUMexpression in the WHERE clause.

CUBE SCAN Uses inner joins for all cube access.

CUBE SCAN PARTI AL QUTER Uses an outer join for at least one dimension, and inner
joins for the other dimensions.

CUBE SCAN QUTER Uses outer joins for all cube access.

DOVAI N | NDEX Retrieval of one or more rowids from a domain index.
The options column contain information supplied by a
user-defined domain index cost function, if any.

FI LTER Operation accepting a set of rows, eliminates some of
them, and returns the rest.

FI RST ROW Retrieval of only the first row selected by a query.

FOR UPDATE Operation retrieving and locking the rows selected by a
query containing a FOR UPDATE clause.

HASH GROUP BY Operation hashing a set of rows into groups for a query
with a GROUP BY clause.

HASH GROUP BY Operation hashing a set of rows into groups for a query

Pl VOT with a GROUP BY clause. The Pl VOT option indicates
a pivot-specific optimization for the HASH GROUP BY
operator.

HASH JO N Operation joining two sets of rows and returning the

(These are join result. This join method is usefu_l for joinip_g Ia_rge data

operations.) se'Fs_of data (DSS, Bat_ch). The join condition is an

efficient way of accessing the second table.
Query optimizer uses the smaller of the two tables/data
sources to build a hash table on the join key in memory.
Then it scans the larger table, probing the hash table to
find the joined rows.

HASH JO N ANTI Hash (left) antijoin

HASH JO N SEM Hash (left) semijoin

HASH JO N Rl GHT ANTI Hash right antijoin

HASH JO N Rl GHT SEM Hash right semijoin

HASH JO N QUTER Hash (left) outer join

HASH JO N RI GHT OUTER Hash right outer join

| NDEX UNI QUE SCAN Retrieval of a single rowid from an index.

(These are access

methods.)

| NDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed
values are scanned in ascending order.

| NDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed

DESCENDI NG values are scanned in descending order.

7-25

Chapter 7
Reading Execution Plans: Advanced

Table 7-3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN

ORACLE

PLAN
|

Operation Option Description

| NDEX FULL SCAN Retrieval of all rowids from an index when there is
no start or stop key. Indexed values are scanned in
ascending order.

| NDEX FULL SCAN Retrieval of all rowids from an index when there is

DESCENDI NG no start or stop key. Indexed values are scanned in
descending order.

| NDEX FAST FULL Retrieval of all rowids (and column values) using

SCAN multiblock reads. No sorting order can be defined.
Compares to a full table scan on only the indexed
columns. Only available with the cost based optimizer.

| NDEX SKI P SCAN Retrieval of rowids from a concatenated index without
using the leading column(s) in the index. Only available
with the cost based optimizer.

[NLI ST Iterates over the next operation in the plan for each

| TERATOR value in the | N-list predicate.

| NTERSECTI ON Operation accepting two sets of rows and returning the
intersection of the sets, eliminating duplicates.

MERGE JON Operation accepting two sets of rows, each sorted by

(These are join a value, combining each row from one set with the

operations.) matching rows from the other, and returning the result.

MERGE JO N QUTER Merge join operation to perform an outer join
statement.

MERGE JO N ANTI Merge antijoin.

MERGE JO N SEM Merge semijoin.

MERGE JO N CARTESI AN Can result from 1 or more of the tables not having any
join conditions to any other tables in the statement. Can
occur even with a join and it may not be flagged as
CARTESI ANin the plan.

CONNECT BY Retrieval of rows in hierarchical order for a query
containing a CONNECT BY clause.

MAT_VI EW FULL Retrieval of all rows from a materialized view.

REW TE ACCESS

(These are access

methods.)

MAT_VI EW SAMPLE Retrieval of sampled rows from a materialized view.

REW TE ACCESS

MAT VI EW CLUSTER Retrieval of rows from a materialized view based on a

REW TE ACCESS value of an indexed cluster key.

MAT_VI EW HASH Retrieval of rows from materialized view based on hash

REW TE ACCESS cluster key value.

MAT_VI EW BY RON D Retrieval of rows from a materialized view based on a

REW TE ACCESS RANCE rowid range.

MAT_VI EW SAMPLE BY Retrieval of sampled rows from a materialized view

REW TE ACCESS RON D RANGE based on a rowid range.

7-26

ORACLE

Chapter 7
Reading Execution Plans: Advanced

Table 7-3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN

PLAN

Operation

Option

Description

MAT VI EW
REW TE ACCESS

MAT_VI EW
REW TE ACCESS

MAT VI EW
REW TE ACCESS

MAT VI EW
REW TE ACCESS

M NUS

NESTED LOOPS

(These are join
operations.)

NESTED LOOPS

PARTI TI ON

PARTI TI ON

BY USER RON D

BY | NDEX
RON D

BY GLOBAL
[NDEX RON D

BY LOCAL
| NDEX RON D

QUTER

SINGLE

If the materialized view rows are located using user-
supplied rowids.

If the materialized view is nonpartitioned and rows are
located using index(es).

If the materialized view is partitioned and rows are
located using only global indexes.

If the materialized view is partitioned and rows are
located using one or more local indexes and possibly
some global indexes.

Partition Boundaries:

The partition boundaries might have been computed
by:

A previous PARTI Tl ON step, in which case the
PARTI TI ON_START and PARTI TI ON_STCP column
values replicate the values present in the

PARTI Tl ON step, and the PARTI TI ON_I D contains
the 1D of the PARTI Tl ON step. Possible values

for PARTI TI ON_START and PARTI TI ON_STOR are
NUMBER(n), KEY, | NVALI D.

The MAT_VI EW REWRI TE ACCESS or | NDEX step itself,
in which case the PARTI TI ON_| D contains the | D

of the step. Possible values for PARTI TI ON_START
and PARTI TI ON_STOP are NUMBER(n), KEY, ROV
REMOVE_LOCATI ON (MAT_VI EW REWRI TE ACCESS
only), and | NVALI D.

Operation accepting two sets of rows and returning
rows appearing in the first set but not in the second,
eliminating duplicates.

Operation accepting two sets of rows, an outer set and
an inner set. Oracle Database compares each row of
the outer set with each row of the inner set, returning
rows that satisfy a condition. This join method is useful
for joining small subsets of data (OLTP). The join
condition is an efficient way of accessing the second
table.

Nested loops operation to perform an outer join
statement.

Iterates over the next operation in the plan for each
partition in the range given by the PARTI TI ON_START
and PARTI TI ON_STOP columns. PARTI Tl ON describes
partition boundaries applicable to a single partitioned
object (table or index) or to a set of equipartitioned
objects (a partitioned table and its local indexes).

The partition boundaries are provided by the values

of PARTI TI ON_START and PARTI TI ON_STOP of the
PARTI Tl ON. Refer to Table 7-1 for valid values of
partition start and stop.

Access one partition.

7-27

Chapter 7
Reading Execution Plans: Advanced

Table 7-3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN

PLAN

|

Operation Option Description

PARTI TI ON | TERATOR Access many partitions (a subset).

PARTI TI ON ALL Access all partitions.

PARTI TI ON I NLI ST Similar to iterator, but based on an | N-list predicate.

PARTI TI ON | NVALI D Indicates that the partition set to be accessed is empty.

PX | TERATOR BLOCK, CHUNK Implements the division of an object into block or chunk
ranges among a set of parallel execution servers.

PX COORDI NATOR Implements the query coordinator that controls,

schedules, and executes the parallel plan below it
using parallel execution servers. It also represents a
serialization point, as the end of the part of the plan
executed in parallel and always has a PX SEND QC
operation below it.

PX PARTI TI ON Same semantics as the regular PARTI Tl ON operation
except that it appears in a parallel plan.

PX RECEI VE Shows the consumer/receiver parallel execution node
reading repartitioned data from a send/producer (QC
or parallel execution server) executing on a PX SEND
node. This information was formerly displayed into the
DI STRI BUTI ON column. See Table 7-2.

PX SEND QC (RANDOV) , Implements the distribution method taking place
HASH, RANGE between two parallel execution servers. Shows
the boundary between two sets and how data
is repartitioned on the send/producer side. This
information was formerly displayed into the
DI STRI BUTI ON column. See Table 7-2.

REMOTE Retrieval of data from a remote database.

SEQUENCE Operation involving accessing values of a sequence.

SORT AGGREGATE Retrieval of a single row that is the result of applying a
group function to a group of selected rows.

SORT UNI QUE Operation sorting a set of rows to eliminate duplicates.

SORT GROUP BY Operation sorting a set of rows into groups for a query
with a GROUP BY clause.

SORT GROUP BY Operation sorting a set of rows into groups for a query

Pl VOT with a GROUP BY clause. The Pl VOT option indicates

a pivot-specific optimization for the SORT GROUP BY
operator.

SORT JON Operation sorting a set of rows before a merge-join.

SORT ORDER BY Operation sorting a set of rows for a query with an
ORDER BY clause.

TABLE ACCESS FULL Retrieval of all rows from a table.

(These are access

methods.)

TABLE ACCESS SAMPLE Retrieval of sampled rows from a table.

ORACLE 7-28

ORACLE

Chapter 7
Reading Execution Plans: Advanced

Table 7-3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN

PLAN

Operation

Option

Description

TABLE ACCESS

TABLE ACCESS

TABLE ACCESS

TABLE ACCESS

TABLE ACCESS
TABLE ACCESS

TABLE ACCESS

TABLE ACCESS

TRANSPOSE

UNI ON

UNPI VOT
VI EW

CLUSTER

HASH

BY RON D
RANGE

SAVPLE BY
RON D RANGE

BY USER ROW D

BY | NDEX
ROW D

BY GLOBAL
| NDEX RON D

BY LOCAL
| NDEX RON D

Retrieval of rows from a table based on a value of an
indexed cluster key.

Retrieval of rows from table based on hash cluster key
value.

Retrieval of rows from a table based on a rowid range.

Retrieval of sampled rows from a table based on a
rowid range.

If the table rows are located using user-supplied rowids.

If the table is nonpartitioned and rows are located using
indexes.

If the table is partitioned and rows are located using
only global indexes.

If the table is partitioned and rows are located using
one or more local indexes and possibly some global
indexes.

Partition Boundaries:

The partition boundaries might have been computed
by:

A previous PARTI Tl ON step, in which case the
PARTI TI ON_START and PARTI TI ON_STCP column
values replicate the values present in the

PARTI Tl ON step, and the PARTI TI ON_I D contains
the 1D of the PARTI Tl ON step. Possible values

for PARTI TI ON_START and PARTI TI ON_STOR are
NUMBER(n), KEY, | NVALI D.

The TABLE ACCESS or | NDEX step itself, in

which case the PARTI TI ON_I D contains the | D

of the step. Possible values for PARTI TI ON_START
and PARTI TI ON_STOP are NUMBER(n), KEY, ROV
REMOVE_LOCATI ON(TABLE ACCESS only), and

[NVALI D.

Operation evaluating a Pl VOT operation by transposing
the results of GROUP BY to produce the final pivoted
data.

Operation accepting two sets of rows and returns the
union of the sets, eliminating duplicates.

Operation that rotates data from columns into rows.

Operation performing a view's query and then returning
the resulting rows to another operation.

7-29

Chapter 7
Execution Plan Reference

¢ See Also:

Oracle Database Reference for more information about PLAN TABLE

7.3 Execution Plan Reference

This section describes V$ views and PLAN_COLUWN columns.

This section contains the following topics:

7.3.1 Execution Plan Views

The following dynamic performance and data dictionary views provide information on
execution plans.

Table 7-4 Execution Plan Views

]
View Description
V$SQL_SHARED CURSOR Explains why a particular child cursor is not shared with

existing child cursors. Each column identifies a specific
reason why the cursor cannot be shared.

The USE_FEEDBACK_STATS column shows whether a
child cursor fails to match because of reoptimization.

VESQL_PLAN Includes a superset of all rows appearing in all final
plans. PLAN_LI NE_I Dis consecutively numbered, but
for a single final plan, the IDs may not be consecutive.

V$SQL_PLAN STATI STI CS_ALL Contains memory usage statistics for row sources
that use SQL memory (sort or hash join). This
view concatenates information in V3SQL_PLAN with
execution statistics from V$SQL_PLAN_STATI STI CS
and V$SQL_WORKAREA.

7.3.2 PLAN_TABLE Columns

The PLAN TABLE is used by the EXPLAI N PLAN statement.

PLAN TABLE contains the columns listed in Table 7-5.

Table 7-5 PLAN_TABLE Columns

Column Type Description

STATEMENT | D VARCHAR2(30) Value of the optional STATEMENT _| D parameter specified
in the EXPLAI N PLAN statement.

PLAN_I D NUMBER Unique identifier of a plan in the database.

TI MESTAVP DATE Date and time when the EXPLAI N PLAN statement was
generated.

ORACLE 7-30

Table 7-5 (Cont.) PLAN_TABLE Columns

Chapter 7
Execution Plan Reference

Column

Type

Description

REMARKS

VARCHAR2(80)

Any comment (of up to 80 bytes) you want to associate
with each step of the explained plan. This column
indicates whether the database used an outline or SQL
profile for the query.

If you need to add or change a remark on any row of the
PLAN_TABLE, then use the UPDATE statement to modify
the rows of the PLAN_TABLE.

OPERATI ON

VARCHAR2(30)

Name of the internal operation performed in this step.
In the first row generated for a statement, the column
contains one of the following values:

» DELETE STATEMENT
e | NSERT STATEMENT
o SELECT STATEMENT
« UPDATE STATEMENT

See Table 7-6 for more information about values for this
column.

COPTI ONS

VARCHARY(225)

A variation on the operation that the OPERATI ON column
describes.

See Table 7-6 for more information about values for this
column.

CBJECT_NCDE

VARCHARY(128)

Name of the database link used to reference the object
(a table name or view name). For local queries using
parallel execution, this column describes the order in
which the database consumes output from operations.

OBJECT_OWNER

VARCHAR?(30)

Name of the user who owns the schema containing the
table or index.

OBJECT_NAME

VARCHAR?(30)

Name of the table or index.

OBJECT ALI AS

VARCHAR2(65)

Unique alias of a table or view in a SQL statement. For
indexes, it is the object alias of the underlying table.

OBJECT_I NSTANCE

NUMERI C

Number corresponding to the ordinal position of the
object as it appears in the original statement. The
numbering proceeds from left to right, outer to inner for
the original statement text. View expansion results in
unpredictable numbers.

OBJECT_TYPE

VARCHAR?(30)

Modifier that provides descriptive information about the
object; for example, NONUNI QUE for indexes.

OPTIM ZER

VARCHAR2(255)

Current mode of the optimizer.

SEARCH_COLUWNS

NUMBERI C

Not currently used.

ID

NUMERI C

A number assigned to each step in the execution plan.

PARENT | D

NUMERI C

The ID of the next execution step that operates on the
output of the | D step.

DEPTH

NUMERI C

Depth of the operation in the row source tree that the
plan represents. You can use this value to indent the
rows in a plan table report.

ORACLE

7-31

Chapter 7
Execution Plan Reference

Table 7-5 (Cont.) PLAN_TABLE Columns

. __|]
Column Type Description

POSI TI ON NUMERI C For the first row of output, this indicates the optimizer's
estimated cost of executing the statement. For the other
rows, it indicates the position relative to the other children
of the same parent.

cosT NUVERI C Cost of the operation as estimated by the optimizer's
query approach. Cost is not determined for table access
operations. The value of this column does not have any
particular unit of measurement; it is a weighted value
used to compare costs of execution plans. The value of
this column is a function of the CPU_COST and | O_COST

columns.

CARDI NALI TY NUMERI C Estimate by the query optimization approach of the
number of rows that the operation accessed.

BYTES NUMERI C Estimate by the query optimization approach of the
number of bytes that the operation accessed.

OTHER_TAG VARCHAR2(255) Describes the contents of the OTHER column. Values are:

« SERI AL (blank): Serial execution. Currently, SQL is
not loaded in the OTHER column for this case.

¢ SERIAL_FROM REMOTE (S -> R): Serial execution
at a remote site.

e PARALLEL FROM SERIAL (S -> P): Serial
execution. Output of step is partitioned or broadcast
to parallel execution servers.

e PARALLEL TO SERIAL (P -> S): Parallel
execution. Output of step is returned to serial QC
process.

e PARALLEL TO PARALLEL (P -> P): Parallel
execution. Output of step is repartitioned to second
set of parallel execution servers.

e PARALLEL_COVBI NED W TH_PARENT (PWP):
Parallel execution; Output of step goes to next
step in same parallel process. No interprocess
communication to parent.

e PARALLEL COVBI NED W TH CHI LD (PWC) : Parallel
execution. Input of step comes from prior
step in same parallel process. No interprocess
communication from child.

PARTI TI ON_START VARCHAR2(255) Start partition of a range of accessed partitions. It can
take one of the following values:

n indicates that the start partition has been identified by
the SQL compiler, and its partition number is given by n.
KEY indicates that the start partition is identified at run
time from partitioning key values.

ROW LOCATI ONindicates that the database computes
the start partition (same as the stop partition) at run time
from the location of each retrieved record. The record
location is obtained by a user-specified ROWID or from a
global index.

I NVALI Dindicates that the range of accessed partitions
is empty.

ORACLE 7-32

Table 7-5 (Cont.) PLAN_TABLE Columns

Chapter 7
Execution Plan Reference

Column

Type

Description

PARTI TI ON_STCP

VARCHARY(255)

Stop partition of a range of accessed partitions. It can
take one of the following values:

n indicates that the stop partition has been identified by
the SQL compiler, and its partition number is given by n.
KEY indicates that the stop partition is identified at run
time from partitioning key values.

ROW LOCATI ONindicates that the database computes
the stop partition (same as the start partition) at run time
from the location of each retrieved record. The record
location is obtained by a user or from a global index.

I NVALI Dindicates that the range of accessed partitions
is empty.

PARTI TION_I D

NUMERI C

Step that has computed the pair of values of the
PARTI TI ON_START and PARTI TI ON_STCP columns.

OTHER

LONG

Other information that is specific to the execution step
that a user might find useful. See the OTHER_TAG
column.

DI STRI BUTI ON

VARCHAR2(30)

Method used to distribute rows from producer query
servers to consumer query servers.

See "Table 7-6" for more information about the possible
values for this column. For more information about
consumer and producer query servers, see Oracle
Database VLDB and Partitioning Guide.

CPU_COST

NUMERI C

CPU cost of the operation as estimated by the query
optimizer's approach. The value of this column is
proportional to the number of machine cycles required
for the operation. For statements that use the rule-based
approach, this column is null.

| O_CCsT

NUMERI C

I/O cost of the operation as estimated by the query
optimizer's approach. The value of this column is
proportional to the number of data blocks read by
the operation. For statements that use the rule-based
approach, this column is null.

TEMP_SPACE

NUMERI C

Temporary space, in bytes, used by the operation

as estimated by the query optimizer's approach. For
statements that use the rule-based approach, or for

operations that do not use any temporary space, this
column is null.

ACCESS_PREDI CATES

VARCHAR?(4000)

Predicates used to locate rows in an access structure.
For example, start or stop predicates for an index range
scan.

FI LTER_PREDI CATES

VARCHAR?(4000)

Predicates used to filter rows before producing them.

PROQIECTI ON

VARCHAR2(4000)

Expressions produced by the operation.

TI ME

NUVBER(20, 2)

Elapsed time in seconds of the operation as estimated
by query optimization. For statements that use the rule-
based approach, this column is null.

QBLOCK_NAME

VARCHARZ(30)

Name of the query block, either system-generated or
defined by the user with the QB_NAME hint.

ORACLE

7-33

Chapter 7
Execution Plan Reference

Table 7-6 Values of DISTRIBUTION Column of the PLAN_TABLE
]

DISTRIBUTION Text

Interpretation

PARTI TI ON (ROW D)

Maps rows to query servers based on the partitioning of a table or index using
the rowid of the row to UPDATE/DELETE.

PARTI TI ON (KEY)

Maps rows to query servers based on the partitioning of a table or index using a
set of columns. Used for partial partition-wise join, PARALLEL | NSERT, CREATE
TABLE AS SELECT of a partitioned table, and CREATE PARTI TI ONED GLOBAL

| NDEX.

HASH Maps rows to query servers using a hash function on the join key. Used for
PARALLEL JO Nor PARALLEL GROUP BY.

RANGE Maps rows to query servers using ranges of the sort key. Used when the
statement contains an ORDER BY clause.

ROUND- ROBI N Randomly maps rows to query servers.

BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel
join when one table is very small compared to the other.

QC (ORDER) The QC consumes the input in order, from the first to the last query server.
Used when the statement contains an ORDER BY clause.

QC (RANDOW) The QC consumes the input randomly. Used when the statement does not have

an ORDER BY clause.

Table 7-7 lists each combination of OPERATI ON and OPTI ONS produced by the EXPLAI N
PLAN statement and its meaning within an execution plan.

Table 7-7 OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
|

Operation Option Description

AND- EQUAL Operation accepting multiple sets of rowids, returning the
intersection of the sets, eliminating duplicates. Used for the single-
column indexes access path.

Bl TMAP CONVERSI ON TO ROW DS converts bitmap representations to actual rowids that
you can use to access the table.
FROM ROW DS converts the rowids to a bitmap representation.
CQUNT returns the number of rowids if the actual values are not
needed.

Bl TMAP | NDEX SI NGLE VALUE looks up the bitmap for a single key value in the
index.
RANGE SCAN retrieves bitmaps for a key value range.
FULL SCAN performs a full scan of a bitmap index if there is no start
or stop key.

Bl TMAP MERGE Merges several bitmaps resulting from a range scan into one bitmap.

Bl TMAP M NUS Subtracts bits of one bitmap from another. Row source is used
for negated predicates. This option is usable only if there are non-
negated predicates yielding a bitmap from which the subtraction can
take place.

Bl TMAP R Computes the bitwise OR of two bitmaps.

Bl TMAP AND Computes the bitwise AND of two bitmaps.

ORACLE

7-34

Chapter 7
Execution Plan Reference

Table 7-7 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

___|]
Operation Option Description

Bl TMAP KEY | TERATI ON Takes each row from a table row source and finds the corresponding
bitmap from a bitmap index. This set of bitmaps are then merged
into one bitmap in a following Bl TMAP MERGE operation.

CONNECT BY Retrieves rows in hierarchical order for a query containing a
CONNECT BY clause.

CONCATENATI ON Operation accepting multiple sets of rows returning the union-all of
the sets.

COUNT Operation counting the number of rows selected from a table.

COUNT STOPKEY Count operation where the number of rows returned is limited by the
ROMWNUM expression in the WHERE clause.

CUBE JO N Joins a table or view on the left and a cube on the right.

See Oracle Database SQL Language Reference to learn about the
NO_USE_CUBE and USE_CUBE hints.

CUBE JON ANTI Uses an antijoin for a table or view on the left and a cube on the
right.

CUBE JON ANTI SNA Uses an antijoin (single-sided null aware) for a table or view on the
left and a cube on the right. The join column on the right (cube side)
is NOT NULL.

CUBE JON QUTER Uses an outer join for a table or view on the left and a cube on the
right.

CUBE JON Rl GHT SEM Uses a right semijoin for a table or view on the left and a cube on the
right.

CUBE SCAN Uses inner joins for all cube access.

CUBE SCAN PARTI AL QUTER Uses an outer join for at least one dimension, and inner joins for the
other dimensions.

CUBE SCAN QUTER Uses outer joins for all cube access.

DOVAI N | NDEX Retrieval of one or more rowids from a domain index. The options

column contain information supplied by a user-defined domain index
cost function, if any.

FI LTER Operation accepting a set of rows, eliminates some of them, and
returns the rest.

FI RST ROW Retrieval of only the first row selected by a query.

FOR UPDATE Operation retrieving and locking the rows selected by a query
containing a FOR UPDATE clause.

HASH GROUP BY Operation hashing a set of rows into groups for a query with a
GROUP BY clause.

HASH GROUP BY PI VOT Operation hashing a set of rows into groups for a query with

a GROUP BY clause. The PI VOT option indicates a pivot-specific
optimization for the HASH GROUP BY operator.

HASH JO N Operation joining two sets of rows and returning the result. This join
method is useful for joining large data sets of data (DSS, Batch).
The join condition is an efficient way of accessing the second table.

Query optimizer uses the smaller of the two tables/data sources to
build a hash table on the join key in memory. Then it scans the larger
table, probing the hash table to find the joined rows.

(These are join
operations.)

ORACLE 7-35

Chapter 7
Execution Plan Reference

Table 7-7 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
]

Operation Option Description

HASH JO N ANTI Hash (left) antijoin

HASH JO N SEM Hash (left) semijoin

HASH JO N RI GHT ANTI Hash right antijoin

HASH JO N RI GHT SEM Hash right semijoin

HASH JO N QUTER Hash (left) outer join

HASH JO N Rl GHT QUTER Hash right outer join

| NDEX UNI QUE SCAN Retrieval of a single rowid from an index.

(These are access

methods.)

| NDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are
scanned in ascending order.

| NDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are

DESCENDI NG scanned in descending order.

| NDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop
key. Indexed values are scanned in ascending order.

| NDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop

DESCENDI NG key. Indexed values are scanned in descending order.

| NDEX FAST FULL SCAN Retrieval of all rowids (and column values) using multiblock reads.
No sorting order can be defined. Compares to a full table scan
on only the indexed columns. Only available with the cost based
optimizer.

| NDEX SKI P SCAN Retrieval of rowids from a concatenated index without using the
leading column(s) in the index. Only available with the cost based
optimizer.

I NLI ST | TERATOR Iterates over the next operation in the plan for each value in the
| N-list predicate.

| NTERSECTI ON Operation accepting two sets of rows and returning the intersection
of the sets, eliminating duplicates.

MERGE JON Operation accepting two sets of rows, each sorted by a value,

(These are join combining each row from one set with the matching rows from the

operations.) other, and returning the result.

MERGE JO N QUTER Merge join operation to perform an outer join statement.

MERGE JO N ANTI Merge antijoin.

MERGE JON SEM Merge semijoin.

MERGE JO N CARTESI AN Can result from 1 or more of the tables not having any join
conditions to any other tables in the statement. Can occur even with
a join and it may not be flagged as CARTES| AN in the plan.

CONNECT BY Retrieval of rows in hierarchical order for a query containing a
CONNECT BY clause.

MAT_ VIEWREW TE FULL Retrieval of all rows from a materialized view.

ACCESS

(These are access
methods.)

ORACLE

7-36

Chapter 7
Execution Plan Reference

Table 7-7 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
]

Operation Option Description

MAT_VIEWREWTE SAMPLE Retrieval of sampled rows from a materialized view.

ACCESS

MAT _VIEWREW TE CLUSTER Retrieval of rows from a materialized view based on a value of an
ACCESS indexed cluster key.

MAT_VIEWREWTE HASH Retrieval of rows from materialized view based on hash cluster key
ACCESS value.

MAT VIEWREW TE BY RON D RANGE Retrieval of rows from a materialized view based on a rowid range.

ACCESS

MAT_VI EW REW TE
ACCESS

MAT_VI EW REW TE
ACCESS

MAT_VI EW REW TE
ACCESS

MAT_VI EW REW TE
ACCESS

MAT_VI EW REW TE
ACCESS

M NUS

NESTED LOCPS

(These are join
operations.)

NESTED LOOPS
PARTI TI ON

PARTI TI ON

ORACLE

SAVPLE BY RON'D
RANGE

BY USER RON D
BY | NDEX ROWN D
BY GLOBAL | NDEX

ROW D

BY LOCAL | NDEX
RON D

QUTER

SINGLE

Retrieval of sampled rows from a materialized view based on a rowid
range.

If the materialized view rows are located using user-supplied rowids.

If the materialized view is nonpartitioned and rows are located using
indexes.

If the materialized view is partitioned and rows are located using
only global indexes.

If the materialized view is partitioned and rows are located using one
or more local indexes and possibly some global indexes.

Partition Boundaries:
The partition boundaries might have been computed by:

A previous PARTI TI ON step, in which case the PARTI TI ON_START
and PARTI TI ON_STOP column values replicate the values present
in the PARTI Tl ON step, and the PARTI TI ON_I D contains the ID of
the PARTI Tl ON step. Possible values for PARTI TI ON_START and
PARTI TI ON_STOP are NUMBER(n), KEY, and | NVALI D.

The MAT_VI EW REWRI TE ACCESS or | NDEX step itself, in which
case the PARTI TI ON_I D contains the | D of the step. Possible values
for PARTI TI ON_START and PARTI TI ON_STOP are NUVBER(n), KEY,
ROV LOCATI ON (MAT_VI EW REWRI TE ACCESS only), and | NVALI D.

Operation accepting two sets of rows and returning rows appearing
in the first set but not in the second, eliminating duplicates.

Operation accepting two sets of rows, an outer set and an inner
set. Oracle Database compares each row of the outer set with each
row of the inner set, returning rows that satisfy a condition. This join
method is useful for joining small subsets of data (OLTP). The join
condition is an efficient way of accessing the second table.

Nested loops operation to perform an outer join statement.

Iterates over the next operation in the plan for each partition in

the range given by the PARTI TI ON_START and PARTI TI ON_STOP
columns. PARTI Tl ON describes partition boundaries applicable to a
single partitioned object (table or index) or to a set of equipartitioned
objects (a partitioned table and its local indexes). The partition
boundaries are provided by the values of PARTI TI ON_START and
PARTI TI ON_STOPR of the PARTI TI ON. Refer to Table 7-4 for valid
values of partition start and stop.

Access one partition.

7-37

Chapter 7
Execution Plan Reference

Table 7-7 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
]

Operation Option Description

PARTI TI ON | TERATOR Access many partitions (a subset).

PARTI TI ON ALL Access all partitions.

PARTI TI ON I NLI ST Similar to iterator, but based on an | N-list predicate.

PARTI TI ON | NVALI D Indicates that the partition set to be accessed is empty.

PX | TERATOR BLOCK, CHUNK Implements the division of an object into block or chunk ranges
among a set of parallel execution servers.

PX COORDI NATOR Implements the Query Coordinator which controls, schedules, and

executes the parallel plan below it using parallel execution servers.
It also represents a serialization point, as the end of the part of the
plan executed in parallel and always has a PX SEND QC operation
below it.

PX PARTI TI ON Same semantics as the regular PARTI Tl ON operation except that it
appears in a parallel plan.

PX RECEI VE Shows the consumer/receiver parallel execution node reading
repartitioned data from a send/producer (QC or parallel execution
server) executing on a PX SEND node. This information was
formerly displayed into the DI STRI BUTI ON column. See Table 7-5.

PX SEND QC(RANDOM), HASH, Implements the distribution method taking place between two sets
RANGE of parallel execution servers. Shows the boundary between two sets
and how data is repartitioned on the send/producer side (QC or side.
This information was formerly displayed into the DI STRI BUTI ON
column. See Table 7-5.

REMOTE Retrieval of data from a remote database.

SEQUENCE Operation involving accessing values of a sequence.

SORT AGGREGATE Retrieval of a single row that is the result of applying a group
function to a group of selected rows.

SORT UNI QUE Operation sorting a set of rows to eliminate duplicates.

SORT GROUP BY Operation sorting a set of rows into groups for a query with a GROUP
BY clause.

SORT GROUP BY PI'VOT Operation sorting a set of rows into groups for a query with a GROUP

BY clause. The Pl VOT option indicates a pivot-specific optimization
for the SORT GROUP BY operator.

SORT JON Operation sorting a set of rows before a merge-join.

SORT ORDER BY Operation sorting a set of rows for a query with an ORDER BY clause.

TABLE ACCESS FULL Retrieval of all rows from a table.

(These are access

methods.)

TABLE ACCESS SAMPLE Retrieval of sampled rows from a table.

TABLE ACCESS CLUSTER Retrieval of rows from a table based on a value of an indexed cluster
key.

TABLE ACCESS HASH Retrieval of rows from table based on hash cluster key value.

TABLE ACCESS BY ROWN D RANCE Retrieval of rows from a table based on a rowid range.

ORACLE 7-38

Chapter 7
Execution Plan Reference

Table 7-7 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN
]

Operation Option Description

TABLE ACCESS SAMPLE BY RON D Retrieval of sampled rows from a table based on a rowid range.
RANGE

TABLE ACCESS BY USER RON D If the table rows are located using user-supplied rowids.

TABLE ACCESS BY | NDEX RON D If the table is nonpartitioned and rows are located using index(es).

TABLE ACCESS BY GLOBAL I NDEX If the table is partitioned and rows are located using only global
ROWN D indexes.

TABLE ACCESS BY LOCAL | NDEX If the table is partitioned and rows are located using one or more
RON D local indexes and possibly some global indexes.

Partition Boundaries:
The partition boundaries might have been computed by:

A previous PARTI TI ON step, in which case the PARTI TI ON_START
and PARTI TI ON_STOP column values replicate the values present
in the PARTI Tl ON step, and the PARTI TI ON_I D contains the ID of
the PARTI Tl ON step. Possible values for PARTI TI ON_START and
PARTI TI ON_STOP are NUMBER(n), KEY, and | NVALI D.

The TABLE ACCESS or | NDEX step itself, in which case the

PARTI TI ON_I D contains the | D of the step. Possible values for
PARTI TI ON_START and PARTI TI ON_STOP are NUMBER(n), KEY, ROW
LOCATI ON (TABLE ACCESS only), and | NVALI D.

TRANSPOSE Operation evaluating a Pl VOT operation by transposing the results of
GROUP BY to produce the final pivoted data.

UNI ON Operation accepting two sets of rows and returns the union of the
sets, eliminating duplicates.

UNPI VOT Operation that rotates data from columns into rows.

VI EW Operation performing a view's query and then returning the resulting

rows to another operation.

¢ See Also:

Oracle Database Reference for more information about PLAN TABLE

7.3.3 DBMS_XPLAN Display Functions

You can use the DBM5S_XPLAN display functions to show plans.

The display functions accept options for displaying the plan table output. You can
specify:

* A plan table name if you are using a table different from PLAN TABLE
» Astatement ID if you have set a statement ID with the EXPLAI N PLAN

* A format option that determines the level of detail: BASI C, SERI AL, TYPI CAL, ALL,
and in some cases ADAPTI VE

ORACLE 7-39

Chapter 7
Execution Plan Reference

Table 7-8 DBMS_XPLAN Display Functions

___|
Display Functions Notes

DI SPLAY This table function displays the contents of the plan table.

In addition, you can use this table function to display any plan (with
or without statistics) stored in a table as long as the columns of

this table are named the same as columns of the plan table (or
V$SQL_PLAN_STATI STI CS_ALL if statistics are included). You can
apply a predicate on the specified table to select rows of the plan to
display.

The f or mat parameter controls the level of the plan. It accepts the
values BASI C, TYPI CAL, SERI AL, and ALL.

DI SPLAY_AVR This table function displays the contents of an execution plan stored in
AWR.

The f or mat parameter controls the level of the plan. It accepts the
values BASI C, TYPI CAL, SERI AL, and ALL.

DI SPLAY_CURSOR This table function displays the explain plan of any cursor loaded in
the cursor cache. In addition to the explain plan, various plan statistics
(such as. I1/0, memory and timing) can be reported (based on the
V$SQL_PLAN STATI STICS_ALL VI EVS).

The f or mat parameter controls the level of the plan. It accepts the
values BASI C, TYPI CAL, SERI AL, ALL, and ADAPTI VE. When you
specify ADAPTI VE, the output includes:

« The final plan. If the execution has not completed, then the output
shows the current plan. This section also includes notes about
run-time optimizations that affect the plan.

« Recommended plan. In reporting mode, the output includes the
plan that would be chosen based on execution statistics.

e Dynamic plan. The output summarizes the portions of the plan
that differ from the default plan chosen by the optimizer.

* Reoptimization. The output displays the plan that would be chosen
on a subsequent execution because of reoptimization.

DI SPLAY_PLAN This table function displays the contents of the plan table in a variety of
formats with CLOB output type.
The f or mat parameter controls the level of the plan. It accepts the
values BASI C, TYPI CAL, SERI AL, ALL, and ADAPTI VE. When you
specify ADAPTI VE, the output includes the default plan. For each
dynamic subplan, the plan shows a list of the row sources from the
original that may be replaced, and the row sources that would replace
them.

If the f or mat argument specifies the outline display, then the function
displays the hints for each option in the dynamic subplan. If the plan is
not an adaptive query plan, then the function displays the default plan.
When you do not specify ADAPTI VE, the plan is shown as-is, but with
additional comments in the Note section that show any row sources
that are dynamic.

ORACLE 7-40

ORACLE

Chapter 7
Execution Plan Reference

Table 7-8 (Cont.) DBMS_XPLAN Display Functions
|

Display Functions

Notes

DI SPLAY_SQL_PLAN_
BASELI NE

DI SPLAY_SQLSET

This table function displays one or more execution plans for the
specified SQL handle of a SQL plan baseline.

This function uses plan information stored in the plan baseline to
explain and display the plans. The pl an_i d stored in the SQL
management base may not match the pl an_i d of the generated plan.
A mismatch between the stored pl an_i d and generated pl an_i d
means that it is a non-reproducible plan. Such a plan is deemed invalid
and is bypassed by the optimizer during SQL compilation.

This table function displays the execution plan of a given statement
stored in a SQL tuning set.

The f or mat parameter controls the level of the plan. It accepts the
values BASI C, TYPI CAL, SERI AL, and ALL.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_XPLAN display functions

7-41

SQL Operators: Access Paths and Joins

A row source is a set of rows returned by a step in the execution plan. A SQL
operator acts on a row source.

A unary operator acts on one input, as with access paths. A binary operator acts on
two outputs, as with joins.

This part contains the following chapters:

ORACLE

Optimizer Access Paths

An access path is a technique used by a query to retrieve rows from a row source.

This chapter contains the following topics:

8.1 Introduction to Access Paths

A row source is a set of rows returned by a step in an execution plan. A row source
can be a table, view, or result of a join or grouping operation.

A unary operation such as an access path, which is a technique used by a query to
retrieve rows from a row source, accepts a single row source as input. For example,
a full table scan is the retrieval of rows of a single row source. In contrast, a join
operation is binary and receives inputs from two row sources

The database uses different access paths for different relational data structures. The
following table summarizes common access paths for the major data structures.

Table 8-1 Data Structures and Access Paths

Access Path

Heap-Organized B-Tree Indexes Bitmap Indexes Table Clusters
Tables and I0Ts

Full Table Scans

X

Table Access by Rowid X

Sample Table Scans X

Index Unique Scans
Index Range Scans

Index Full Scans

Index Fast Full Scans
Index Skip Scans

Index Join Scans

Bitmap Index Single Value

Bitmap Index Range Scans

Bitmap Merge

Bitmap Index Range Scans

Cluster Scans

X X X X X X

X X X X

Hash Scans X
The optimizer considers different possible execution plans, and then assigns each plan
a cost. The optimizer chooses the plan with the lowest cost. In general, index access
paths are more efficient for statements that retrieve a small subset of table rows,
whereas full table scans are more efficient when accessing a large portion of a table.
ORACLE 8-1

Chapter 8
Table Access Paths

¢ See Also:

e "Joins"
e "Cost-Based Optimization"

e Oracle Database Concepts for an overview of these structures

8.2 Table Access Paths

A table is the basic unit of data organization in an Oracle database.

Relational tables are the most common table type. Relational tables have with the
following organizational characteristics:

* A heap-organized table does not store rows in any particular order.
* Anindex-organized table orders rows according to the primary key values.

* An external table is a read-only table whose metadata is stored in the database
but whose data is stored outside the database.

This section explains optimizer access paths for heap-organized tables, and contains
the following topics:

¢ See Also:

e Oracle Database Concepts for an overview of tables

e Oracle Database Administrator’s Guide to learn how to manage tables

8.2.1 About Heap-Organized Table Access

By default, a table is organized as a heap, which means that the database places rows
where they fit best rather than in a user-specified order.

As users add rows, the database places the rows in the first available free space in the
data segment. Rows are not guaranteed to be retrieved in the order in which they were
inserted.

This section contains the following topics:

8.2.1.1 Row Storage in Data Blocks and Segments: A Primer

ORACLE

The database stores rows in data blocks. In tables, the database can write a row
anywhere in the bottom part of the block. Oracle Database uses the block overhead,
which contains the row directory and table directory, to manage the block itself.

An extent is made up of logically contiguous data blocks. The blocks may not be
physically contiguous on disk. A segment is a set of extents that contains all the data
for a logical storage structure within a tablespace. For example, Oracle Database

8-2

Chapter 8
Table Access Paths

allocates one or more extents to form the data segment for a table. The database also
allocates one or more extents to form the index segment for a table.

By default, the database uses automatic segment space management (ASSM) for
permanent, locally managed tablespaces. When a session first inserts data into a
table, the database formats a bitmap block. The bitmap tracks the blocks in the
segment. The database uses the bitmap to find free blocks and then formats each
block before writing to it. ASSM spread out inserts among blocks to avoid concurrency
issues.

The high water mark (HWM) is the point in a segment beyond which data blocks are
unformatted and have never been used. Below the HWM, a block may be formatted
and written to, formatted and empty, or unformatted. The low high water mark (low
HWM) marks the point below which all blocks are known to be formatted because they
either contain data or formerly contained data.

During a full table scan, the database reads all blocks up to the low HWM, which are
known to be formatted, and then reads the segment bitmap to determine which blocks
between the HWM and low HWM are formatted and safe to read. The database knows
not to read past the HWM because these blocks are unformatted.

See Also:

Oracle Database Concepts to learn about data block storage

8.2.1.2 Importance of Rowids for Row Access

ORACLE

Every row in a heap-organized table has a rowid unique to this table that corresponds
to the physical address of a row piece. A rowid is a 10-byte physical address of a row.

The rowid points to a specific file, block, and row number. For example, in the rowid
AAAPec AAFAAAABSAAA, the final AAA represents the row number. The row number is
an index into a row directory entry. The row directory entry contains a pointer to the
location of the row on the block.

The database can sometimes move a row in the bottom part of the block. For
example, if row movement is enabled, then the row can move because of partition
key updates, Flashback Table operations, shrink table operations, and so on. If the
database moves a row within a block, then the database updates the row directory
entry to modify the pointer. The rowid stays constant.

Oracle Database uses rowids internally for the construction of indexes. For example,
each key in a B-tree index is associated with a rowid that points to the address of

the associated row. Physical rowids provide the fastest possible access to a table row,
enabling the database to retrieve a row in as little as a single /0.

" See Also:

Oracle Database Concepts to learn about rowids

8-3

Chapter 8
Table Access Paths

8.2.1.3 Direct Path Reads

Figure 8-1 Dire

In a direct path read, the database reads buffers from disk directly into the PGA,
bypassing the SGA entirely.

The following figure shows the difference between scattered and sequential reads,
which store buffers in the SGA, and direct path reads.

ct Path Reads

Database Buffer
Cache

SGA Buffer Cache

Database Buffer
Cache

SGA Buffer Cache

Process PGA

Sort Area Hash Area Bitmap Merge
Area

Session Persistent| Runtime
U —

Area Area
A

DB File

Direct path
read

Y Ca

DB File Direct Path

Sequential Read Scattered Read Read

Situations in which Oracle Database may perform direct path reads include:

ORACLE

Execution of a CREATE TABLE AS SELECT statement
Execution of an ALTER REBUI LD or ALTER MOVE statement
Reads from a temporary tablespace

Parallel queries

Reads from a LOB segment

¢ See Also:

Oracle Database Performance Tuning Guide to learn about wait events for
direct path reads

8-4

8.2.2 Full Table Scans

ORACLE

A full table scan reads all rows from a table, and then filters out those rows that do

not meet the selection criteria.

This section contains the following topics:

8.2.2.1 When the Optimizer Considers a Full Table Scan

In general, the optimizer chooses a full table scan when it cannot use a different
access path, or another usable access path is higher cost.

Chapter 8
Table Access Paths

The following table shows typical reasons for choosing a full table scan.

Table 8-2 Typical Reasons for a Full Table Scan

Reason

Explanation

To Learn More

No index exists.

If no index exists, then the optimizer
uses a full table scan.

Oracle Database
Concepts

The query predicate
applies a function to the
indexed column.

Unless the index is a function-based
index, the database indexes the
values of the column, not the values
of the column with the function
applied. A typical application-level
mistake is to index a character
column, such as char _col , and
then query the column using

syntax such as WHERE char _col =1.
The database implicitly applies a
TO_NUMBER function to the constant
number 1, which prevents use of the
index.

"#unique_318"

A SELECT COUNT(*)
query is issued, and

an index exists, but the
indexed column contains
nulls.

The optimizer cannot use the index
to count the number of table rows
because the index cannot contain null
entries.

"B-Tree Indexes and
Nulls"

The query predicate does
not use the leading edge of
a B-tree index.

For example, an index might exist on
enpl oyees(first_nane, | ast_nam
e) . If a user issues a query with the
predicate WHERE

| ast _nane=' KI NG , then the
optimizer may not choose an index
because column fi r st _nane is not
in the predicate. However, in this
situation the optimizer may choose to
use an index skip scan.

"Index Skip Scans"

8-5

Table 8-2 (Cont.) Typical Reasons for a Full Table Scan

Chapter 8
Table Access Paths

Reason

Explanation

To Learn More

The query is unselective.

If the optimizer determines that the
query requires most of the blocks

in the table, then it uses a full

table scan, even though indexes are
available. Full table scans can use
larger 1/O calls. Making fewer large
I/O calls is cheaper than making
many smaller calls.

"Selectivity"

The table statistics are
stale.

For example, a table was small, but
now has grown large. If the table
statistics are stale and do not reflect
the current size of the table, then the
optimizer does not know that an index
is now most efficient than a full table
scan.

"Introduction to Optimizer
Statistics"

The table is small.

If a table contains fewer than n

blocks under the high water mark,
where n equals the setting for the
DB_FI LE_MULTI BLOCK_READ COUNT
initialization parameter, then a full
table scan may be cheaper than an
index range scan. The scan may

be less expensive regardless of the
fraction of tables being accessed or
indexes present.

Oracle Database
Reference

The table has a high
degree of parallelism.

A high degree of parallelism for a
table skews the optimizer toward full
table scans over range scans. Query
the value in the ALL_TABLES. DEGREE
column to determine the degree of
parallelism.

Oracle Database
Reference

The query uses a full table
scan hint.

The hint FULL(t abl e al i as)
instructs the optimizer to use a full
table scan.

Oracle Database SQL
Language Reference

8.2.2.2 How a Full Table Scan Works

In a full table scan, the database sequentially reads every formatted block under the
high water mark. The database reads each block only once.

ORACLE

The following graphic depicts a scan of a table segment, showing how the scan skips
unformatted blocks below the high water mark.

8-6

Chapter 8
Table Access Paths

Figure 8-2 High Water Mark

Sequential Low HWM HWM

Fead
Wv‘“‘

Used 7771 Never Used,
: Unformatted

Because the blocks are adjacent, the database can speed up the scan by making
I/O calls larger than a single block, known as a multiblock read. The size of

a read call ranges from one block to the number of blocks specified by the

DB FI LE MULTI BLOCK READ COUNT initialization parameter. For example, setting this
parameter to 4 instructs the database to read up to 4 blocks in a single call.

The algorithms for caching blocks during full table scans are complex. For example,
the database caches blocks differently depending on whether tables are small or large.

" See Also:

e '"Table 19-2"
e Oracle Database Concepts for an overview of the default caching mode

e QOracle Database Reference to learn about the
DB_FI LE_MULTI BLOCK_READ_CQUNT initialization parameter

8.2.2.3 Full Table Scan: Example
This example scans the hr. enpl oyees table.

The following statement queries monthly salaries over $4000:

SELECT sal ary
FROM hr.enpl oyees
WHERE sal ary > 4000;

ORACLE 8.7

Chapter 8
Table Access Paths

Example 8-1 Full Table Scan

The following plan was retrieved using the DBMS_XPLAN. DI SPLAY_CURSOR function.
Because no index exists on the sal ary column, the optimizer cannot use an index
range scan, and so uses a full table scan.

SQL_ID 54c20f3udf nws, child number 0

select salary fromhr.enpl oyees where salary > 4000

Pl an hash val ue: 3476115102

| 1d] Operation | Nane | Rows | Bytes | Cost (%CPU) |
Ti me |

| 0] SELECT STATEMENT | | | | 3

(100) | |

|* 1] TABLE ACCESS FULL| EMPLOYEES | 98 | 6762 | 3 (0)]
00: 00: 01 |

1 - filter("SALARY" >4000)

8.2.3 Table Access by Rowid

ORACLE

A rowid is an internal representation of the storage location of data.

The rowid of a row specifies the data file and data block containing the row and the
location of the row in that block. Locating a row by specifying its rowid is the fastest
way to retrieve a single row because it specifies the exact location of the row in the
database.

Note:

Rowids can change between versions. Accessing data based on position is
not recommended because rows can move.

This section contains the following topics:

¢ See Also:

Oracle Database Development Guide to learn more about rowids

8-8

Chapter 8

Table Access Paths

8.2.3.1 When the Optimizer Chooses Table Access by Rowid

In most cases, the database accesses a table by rowid after a scan of one or more

indexes.

However, table access by rowid need not follow every index scan. If the index contains

all needed columns, then access by rowid might not occur.

Related Topics

¢ Index Fast Full Scans

An index fast full scan reads the index blocks in unsorted order, as they exist
on disk. This scan does not use the index to probe the table, but reads the index

instead of the table, essentially using the index itself as a table.

8.2.3.2 How Table Access by Rowid Works

To access a table by rowid, the database performs multiple steps.

The database does the following:

1. Obtains the rowids of the selected rows, either from the statement WHERE clause or

through an index scan of one or more indexes

Table access may be needed for columns in the statement not present in the

index.

2. Locates each selected row in the table based on its rowid
8.2.3.3 Table Access by Rowid: Example
This example demonstrates rowid access of the hr. enpl oyees table.

Assume that you run the following query:

SELECT *
FROM enpl oyees
WHERE enpl oyee_id > 190;

Step 2 of the following plan shows a range scan of the enp_enp_i d_pk index on the
hr. enpl oyees table. The database uses the rowids obtained from the index to find the
corresponding rows from the enpl oyees table, and then retrieve them. The BATCHED
access shown in Step 1 means that the database retrieves a few rowids from the
index, and then attempts to access rows in block order to improve the clustering and

reduce the number of times that the database must access a block.

[1d] Operation | Name | Rows| Byt es| Cost (%CPU) | Ti ne|
| O] SELECT STATEMENT | |] | 2(100) | |
| 1] TABLE ACCESS BY INDEX ROWID BATCHED| EMPLOYEES | 16/ 11042 (0)| 00: 00: 01|
|*2| | NDEX RANGE SCAN | EMP_EMP_I D _PK| 16] [1 (0)]00:00: 01

Predicate Information (identified by operation id):

ORACLE

8-9

Chapter 8
Table Access Paths

2 - access("EMPLOYEE_I D'>190)

8.2.4 Sample Table Scans

A sample table scan retrieves a random sample of data from a simple table or a
complex SELECT statement, such as a statement involving joins and views.

This section contains the following topics:

8.2.4.1 When the Optimizer Chooses a Sample Table Scan

The database uses a sample table scan when a statement FROMclause includes the
SAMPLE keyword.

The SAMPLE clause has the following forms:

e SAMPLE (sanpl e_percent)

The database reads a specified percentage of rows in the table to perform a
sample table scan.

e SAMPLE BLOCK (sanpl e_percent)

The database reads a specified percentage of table blocks to perform a sample
table scan.

The sample_percent specifies the percentage of the total row or block count to include
in the sample. The value must be in the range . 000001 up to, but not including, 100.
This percentage indicates the probability of each row, or each cluster of rows in block
sampling, being selected for the sample. It does not mean that the database retrieves
exactly sample_percent of the rows.

" Note:

Block sampling is possible only during full table scans or index fast full
scans. If a more efficient execution path exists, then the database does not
sample blocks. To guarantee block sampling for a specific table or index, use
the FULL or | NDEX_FFS hint.

¢ See Also:

e "Influencing the Optimizer with Hints"

e Oracle Database SQL Language Reference to learn about the SAMPLE
clause

ORACLE 8-10

Chapter 8
Table Access Paths

8.2.4.2 Sample Table Scans: Example

This example uses a sample table scan to access 1% of the enpl oyees table,
sampling by blocks instead of rows.

Example 8-2 Sample Table Scan

SELECT * FROM hr. enpl oyees SAMPLE BLOCK (1);

The EXPLAI N PLAN output for this statement might look as follows:

| 1d | Operation | Name | Rows | Bytes | Cost

(%CPY) |

| 0| SELECT STATEMENT | | 1] 68 | 3
(34)]

| 1| TABLE ACCESS SAVPLE | EMPLOYEES | 1] 68 | 3
(34)]

8.2.5 In-Memory Table Scans

An In-Memory scan retrieves rows from the In-Memory Column Store (IM column
store).

The IM column store is an optional SGA area that stores copies of tables and
partitions in a special columnar format optimized for rapid scans.

This section contains the following topics:

¢ See Also:

Oracle Database In-Memory Guide for an introduction to the IM column store

8.2.5.1 When the Optimizer Chooses an In-Memory Table Scan

The optimizer cost model is aware of the content of the IM column store.

When a user executes a query that references a table in the IM column store, the
optimizer calculates the cost of all possible access methods—including the In-Memory
table scan—and selects the access method with the lowest cost.

8.2.5.2 In-Memory Query Controls

You can control In-Memory queries using initialization parameters.

ORACLE 8-11

Chapter 8
Table Access Paths

The following database initialization parameters affect the In-Memory features:
* | NMEMORY_QUERY

This parameter enables or disables In-Memory queries for the database at the
session or system level. This parameter is helpful when you want to test workloads
with and without the use of the IM column store.

e COPTI'M ZER_| NVEMORY_AWARE

This parameter enables (TRUE) or disables (FALSE) all of the In-Memory
enhancements made to the optimizer cost model, table expansion, bloom filters,
and so on. Setting the parameter to FALSE causes the optimizer to ignore the
In-Memory property of tables during the optimization of SQL statements.

e COPTIM ZER_FEATURES_ENABLE

When set to values lower than 12. 1. 0. 2, this parameter has the same effect as
setting OPTI M ZER_| NVEMORY_AWARE to FALSE.

To enable or disable In-Memory queries, you can specify the | NVEMORY or NO_| NVEMORY
hints, which are the per-query equivalent of the | NVEMORY_QUERY initialization
parameter. If a SQL statement uses the | NVEMORY hint, but the object it references

is not already loaded in the IM column store, then the database does not wait for

the object to be populated in the IM column store before executing the statement.
However, initial access of the object triggers the object population in the IM column
store.

¢ See Also:

e Oracle Database Reference to learn more about the | NVEMORY_QUERY,
OPTI M ZER_| NVEMORY_AWARE, and OPTI M ZER_FEATURES ENABLE
initialization parameters

e Oracle Database SQL Language Reference to learn more about the
[NMVEMORY hints

8.2.5.3 In-Memory Table Scans: Example

Example 8-3

ORACLE

This example shows an execution plan that includes the TABLE ACCESS | NVEMORY
operation.

The following example shows a query of the oe. product _i nf or mat i on table, which
has been altered with the | NVEMORY HI GH option.

In-Memory Table Scan
SELECT *
FROM oe. product i nfornation

WHERE |ist _price > 10
ORDER BY product _id

8-12

Chapter 8
B-Tree Index Access Paths

The plan for this statement might look as follows, with the | NVEMORY keyword in Step 2
indicating that some or all of the object was accessed from the IM column store:

SQL> SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSCR) ;

SQ_ID 2nb4h57x8pabw, child nunber 0

select * from oe.product _information where list_price > 10 order byproduct_id

Pl an hash val ue: 2256295385

|1d| Operation | Nane | Rows| Byt es| TenpSpc| Cost (%CPU) |
Ti ne|

| O] SELECT STATEMENT | | | | | 21

(100) | I

| 1] SORT ORDER BY | | 285] 62415| 82000/ 21 (5)]

00: 00: 01|

| *2] TABLE ACCESS INMEMORY FULL| PRODUCT_| NFORMATI ON | 285 62415] | 5 (0)]

00: 00: 01|

2 - inmenory("LI ST_PRI CE">10)
filter("Ll ST_PRI CE'>10)

8.3 B-Tree Index Access Paths

An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access.

By creating an index on one or more columns of a table, you gain the ability in some
cases to retrieve a small set of randomly distributed rows from the table. Indexes are
one of many means of reducing disk /0.

This section contains the following topics:

See Also:

e Oracle Database Concepts for an overview of indexes

e Oracle Database Administrator’s Guide to learn more about automatic
and manual index creation

8.3.1 About B-Tree Index Access

B-trees, short for balanced trees, are the most common type of database index.

ORACLE 8-13

Chapter 8
B-Tree Index Access Paths

A B-tree index is an ordered list of values divided into ranges. By associating a key
with a row or range of rows, B-trees provide excellent retrieval performance for a wide
range of queries, including exact match and range searches.

This section contains the following topics:

8.3.1.1 B-Tree Index Structure

A B-tree index has two types of blocks: branch blocks for searching and leaf blocks
that store values.

The following graphic illustrates the logical structure of a B-tree index. Branch blocks
store the minimum key prefix needed to make a branching decision between two keys.
The leaf blocks contain every indexed data value and a corresponding rowid used to
locate the actual row. Each index entry is sorted by (key, rowid). The leaf blocks are
doubly linked.

Figure 8-3 B-Tree Index Structure

Branch Blocks

0..40
41..80
81..120
200..250
v
=1 0..10 41..48 200..209
11..19 — 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
\ 4 v
0,rowid 11,rowid 221, rowid 246,rowid
0,rowid 11,rowid 222,rowid 248,rowid
12,rowid 223,rowid 248,rowid
10,rowid
19,rowid . 228,rowid . 250,rowid

S AU U AU

8.3.1.2 How Index Storage Affects Index Scans

ORACLE

Bitmap index blocks can appear anywhere in the index segment.

Figure 8-3 shows the leaf blocks as adjacent to each other. For example, the 1- 10
block is next to and before the 11- 19 block. This sequencing illustrates the linked lists
that connect the index entries. However, index blocks need not be stored in order
within an index segment. For example, the 246- 250 block could appear anywhere

8-14

Chapter 8
B-Tree Index Access Paths

in the segment, including directly before the 1- 10 block. For this reason, ordered
index scans must perform single-block 1/0. The database must read an index block to
determine which index block it must read next.

The index block body stores the index entries in a heap, just like table rows. For
example, if the value 10 is inserted first into a table, then the index entry with key 10
might be inserted at the bottom of the index block. If 0 is inserted next into the table,
then the index entry for key 0 might be inserted on top of the entry for 10. Thus, the
index entries in the block body are not stored in key order. However, within the index
block, the row header stores records in key order. For example, the first record in the
header points to the index entry with key 0, and so on sequentially up to the record
that points to the index entry with key 10. Thus, index scans can read the row header
to determine where to begin and end range scans, avoiding the necessity of reading
every entry in the block.

" See Also:

Oracle Database Concepts to learn about index blocks

8.3.1.3 Unique and Nonunique Indexes

In a nonunique index, the database stores the rowid by appending it to the key as an
extra column. The entry adds a length byte to make the key unique.

For example, the first index key in the nonunique index shown in Figure 8-3 is the pair
0, rowi d and not simply 0. The database sorts the data by index key values and then
by rowid ascending. For example, the entries are sorted as follows:

0, AAAPv CAAFAAAAFaAAa
0, AAAPv CAAFAAAAFaAAg
0, AAAPv CAAFAAAAFaAAL
2, AAAPv CAAFAAAAFaAAM

In a unique index, the index key does not include the rowid. The database sorts the
data only by the index key values, such as 0, 1, 2, and so on.

" See Also:

Oracle Database Concepts for an overview of unigue and nonunique indexes

8.3.1.4 B-Tree Indexes and Nulls

B-tree indexes never store completely null keys, which is important for how the
optimizer chooses access paths. A consequence of this rule is that single-column
B-tree indexes never store nulls.

ORACLE 8-15

ORACLE

Chapter 8
B-Tree Index Access Paths

An example helps illustrate. The hr. enpl oyees table has a primary key index on
enpl oyee_i d, and a unique index on depart nent i d. The departnment i d column can
contain nulls, making it a nullable column, but the enpl oyee_i d column cannot.

SQ.> SELECT COUNT(*) FROM enpl oyees WHERE departnent _id IS NULL;

The following example shows that the optimizer chooses a full table scan for a

query of all department IDs in hr. enpl oyees. The optimizer cannot use the index on
enpl oyees. depart nent _i d because the index is not guaranteed to include entries for
every row in the table.

SQ.> EXPLAIN PLAN FOR SELECT department id FROM enpl oyees;
Expl ai ned.
SQL> SELECT PLAN TABLE_OUTPUT FROM TABLE(DBMS_XPLAN. DI SPLAY());

PLAN_TABLE_OUTPUT

Pl an hash val ue: 3476115102

|1d | Operation | Nane | Rows| Bytes | Cost (%CPU) |
Ti me |
| 0] SELECT STATEMENT | | 107 | 321 | 2 (0)]
00: 00: 01 |
| 1] TABLE ACCESS FULL| EMPLOYEES | 107 | 321 | 2 (0)]
00: 00: 01 |

The following example shows the optimizer can use the index on departnent i d fora
query of a specific department ID because all non-null rows are indexed.

SQ.> EXPLAIN PLAN FOR SELECT department _id FROM enpl oyees WHERE
department _i d=10;

Expl ai ned.

8-16

ORACLE

Chapter 8
B-Tree Index Access Paths

SQ.> SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN. DI SPLAY());

PLAN_TABLE_QOUTPUT

Pl an hash val ue: 67425611

| 1d| Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| O] SELECT STATEMENT | | 1] 3] 1 (0)] 00:0
0: 01|

|*1] | NDEX RANGE SCAN| EMP DEPARTMENT IX| 1] 3| 1 (0)] 00:0
0: 01|

Predicate Information (identified by operation id):
1 - access("DEPARTMENT | D'=10)

The following example shows that the optimizer chooses an index scan when the
predicate excludes null values:

SQ.> EXPLAIN PLAN FOR SELECT department id FROM enpl oyees
WHERE department _id IS NOT NULL;

Expl ai ned.
SQL> SELECT PLAN TABLE QUTPUT FROM TABLE(DBVB_XPLAN. DI SPLAY());

PLAN TABLE_OUTPUT

Pl an hash val ue: 1590637672

| 1d] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| O] SELECT STATEMENT | | 106] 318 | 1 (0)] 00:0
0: 01]

[*1] INDEX FULL SCAN | EMP_DEPARTMENT |X |106] 318 | 1 (0)| 00:0
0: 01]

Predicate Information (identified by operation id):
1 - filter("DEPARTMENT ID' |'S NOT NULL)

8-17

Chapter 8
B-Tree Index Access Paths

8.3.2 Index Unique Scans

An index unique scan returns at most 1 rowid.

This section contains the following topics:

8.3.2.1 When the Optimizer Considers Index Unique Scans

ORACLE

An index unique scan requires an equality predicate.

Specifically, the database performs a unique scan only when a query predicate
references all columns in a unique index key using an equality operator, such as WHERE
prod_i d=10.

A unique or primary key constraint is insufficient by itself to produce an index unique
scan because a non-unique index on the column may already exist. Consider the
following example, which creates the t _t abl e table and then creates a non-unique
index on nuncol :

SQL> CREATE TABLE t _tabl e(nuntol |NT);

SQ.> CREATE INDEX t _table idx ONt_table(nuntol);

SQL> SELECT UNI QUENESS FROM USER_| NDEXES WHERE | NDEX_NAME =
"T_TABLE_I DX ;

UNI QUENES

NONUNI QUE

The following code creates a primary key constraint on a column with a non-unique
index, resulting in an index range scan rather than an index unigue scan:

SQ.> ALTER TABLE t_table ADD CONSTRAINT t_tabl e_pk PRI MARY KEY(nuntol);
SQL> SET AUTOTRACE TRACEONLY EXPLAIN
SQ.> SELECT * FROMt tabl e WHERE nuntol = 1;

Execution Pl an

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU)|
Ti me |
| 0| SELECT STATEMENT | | 1| 13 | 1 (0)]
00: 00: 01 |
[* 1| [INDEX RANGE SCAN| T_TABLE_IDX | 1| 13 | 1 (0)]
00: 00: 01 |

Predicate Information (identified by operation id):

8-18

Chapter 8
B-Tree Index Access Paths

1 - access("NUMCOL"=1)

You can use the | NDEX(al i as i ndex_name) hint to specify the index to use, but not a
specific type of index access path.

¢ See Also:

e Oracle Database Concepts for more details on index structures and for
detailed information on how a B-tree is searched

e Oracle Database SQL Language Reference to learn more about the
| NDEX hint

8.3.2.2 How Index Unique Scans Work

ORACLE

The scan searches the index in order for the specified key. An index unique scan
stops processing as soon as it finds the first record because no second record is
possible. The database obtains the rowid from the index entry, and then retrieves the
row specified by the rowid.

The following figure illustrates an index unique scan. The statement requests the
record for product ID 19 in the prod_i d column, which has a primary key index.

8-19

Chapter 8
B-Tree Index Access Paths

Figure 8-4 Index Unique Scan

Branch Blocks

0..40
41..80
81..120
200..250
Vv
=1 0..10 41..48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
v v
0,rowid ?>1 1,rowid 221, rowid 246,rowid
1,rowid é =12, rowid 222, rowid 247 ,rowid
—>13,rowid 223,rowid 248, rowid
10,rowid g>
- [19,rowid | e 228,rowid ; 250,rowid

S AU U AU

8.3.2.3 Index Unique Scans: Example

ORACLE

This example uses a unique scan to retrieve a row from the product s table.

The following statement queries the record for product 19 in the sh. product s table:

SELECT *
FROM sh. products
WHERE prod_id = 19;

Because a primary key index exists on the product s. prod_i d column, and the WHERE
clause references all of the columns using an equality operator, the optimizer chooses
a unigue scan:

SQ_ID 3ptg5tsdsvb3d, child number 0

sel ect * fromsh. products where prod_id = 19

Pl an hash val ue: 4047888317

| 1d] Operation | Nane | Rows| Bytes| Cost (%CPU) |

8-20

Chapter 8
B-Tree Index Access Paths

| 0] SELECT STATEMENT | | |1

(100) | I

| 1] TABLE ACCESS BY INDEX ROND| PRODUCTS |1 | 173 |1 (0)]
00: 00: 01

|* 2| INDEX UNIQUE SCAN | PRODUCTS PK |1 | |0

(0)] |

2 - access("PROD_ID'=19)

8.3.3 Index Range Scans

An index range scan is an ordered scan of values.

The range in the scan can be bounded on both sides, or unbounded on one or both
sides. The optimizer typically chooses a range scan for queries with high selectivity.

By default, the database stores indexes in ascending order, and scans them in the
same order. For example, a query with the predicate departnment _id >= 20 uses a
range scan to return rows sorted by index keys 20, 30, 40, and so on. If multiple index
entries have identical keys, then the database returns them in ascending order by
rowid, so that 0, AAAPv CAAFAAAAFaAAa is followed by 0, AAAPv CAAFAAAAFaAAg, and so
on.

An index range scan descending is identical to an index range scan except that the
database returns rows in descending order. Usually, the database uses a descending
scan when ordering data in a descending order, or when seeking a value less than a
specified value.

This section contains the following topics:

8.3.3.1 When the Optimizer Considers Index Range Scans

ORACLE

For an index range scan, multiple values must be possible for the index key.
Specifically, the optimizer considers index range scans in the following circumstances:

* One or more leading columns of an index are specified in conditions.

A condition specifies a combination of one or more expressions and logical
(Boolean) operators and returns a value of TRUE, FALSE, or UNKNO/N. Examples
of conditions include:

— departnent _id =:id
— departnent_id < :id
— departnent _id > :id

— AND combination of the preceding conditions for leading columns in the index,
such as department _id > :1ow AND departnment _id < :hi.

8-21

Chapter 8
B-Tree Index Access Paths

< Note:

For the optimizer to consider a range scan, wild-card searches of the
formcol 1 LIKE ' %ASD must not be in a leading position.

e 0,1, or more values are possible for an index key.

Tip:

If you require sorted data, then use the ORDER BY clause, and do not rely on
an index. If an index can satisfy an ORDER BY clause, then the optimizer uses
this option and thereby avoids a sort.

The optimizer considers an index range scan descending when an index can satisfy
an ORDER BY DESCENDI NG clause.

If the optimizer chooses a full table scan or another index, then a hint may be required
to force this access path. The | NDEX(t bl _al i as i x_name) and | NDEX_DESC(t bl _ali as
i x_nane) hints instruct the optimizer to use a specific index.

¢ See Also:

Oracle Database SQL Language Reference to learn more about the | NDEX
and | NDEX_DESC hints

8.3.3.2 How Index Range Scans Work

During an index range scan, Oracle Database proceeds from root to branch.
In general, the scan algorithm is as follows:
1. Read the root block.
2. Read the branch block.
3. Alternate the following steps until all data is retrieved:
a. Read a leaf block to obtain a rowid.

b. Read a table block to retrieve a row.

Note:

In some cases, an index scan reads a set of index blocks, sorts the
rowids, and then reads a set of table blocks.

Thus, to scan the index, the database moves backward or forward through the leaf
blocks. For example, a scan for IDs between 20 and 40 locates the first leaf block that

ORACLE 8-22

Chapter 8
B-Tree Index Access Paths

has the lowest key value that is 20 or greater. The scan proceeds horizontally through
the linked list of leaf nodes until it finds a value greater than 40, and then stops.

The following figure illustrates an index range scan using ascending order. A
statement requests the enpl oyees records with the value 20 in the depart nent _id
column, which has a nonunique index. In this example, 2 index entries for department
20 exist.

Figure 8-5 Index Range Scan

Branch Blocks

0..40
41..80
81..120
200..250
Vv
= 0..10 41..48 200..209
11..2 = 49..53 210..220
54..65 221..228
32..40 78..80 246..250
Leaf Blocks
v \ 4 v
0,rowid 11,rowid 221,rowid 246,rowid
0,rowid 11,rowid 222, rowid 248,rowid
12,rowid 223,rowid 248,rowid
10,rowid
20,rowid . 228, rowid . 250,rowid
20, rowid

A U U U

8.3.3.3 Index Range Scan: Example

ORACLE

This example retrieves a set of values from the enpl oyees table using an index range
scan.

The following statement queries the records for employees in department 20 with
salaries greater than 1000:

SELECT *

FROM enpl oyees

WHERE departnent _id = 20
AND salary > 1000;

The preceding query has low cardinality (returns few rows), so the query uses the
index on the depart ment _i d column. The database scans the index, fetches the

8-23

Chapter 8
B-Tree Index Access Paths

records from the employees table, and then applies the sal ary > 1000 filter to these
fetched records to generate the result.

SQ _ID brt5abvbxwdtq, child nunber 0

SELECT * FROM

enmpl oyees WHERE department _id = 20 AND salary > 1000

Pl an hash val ue: 2799965532

|1d | Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| 0| SELECT STATEMENT | | | | 2

(100) | I

[*1 | TABLE ACCESS BY | NDEX RON D BATCHED| EMPLOYEES | 2] 138 | 2 (0)]
00: 00: 01|

[*2] INDEX RANGE SCAN | EMP_DEPARTMENT_I X| 2 | | 1 (0)]
00: 00: 01|

1 - filter("SALARY">1000)
2 - access(" DEPARTMENT | D' =20)

8.3.3.4 Index Range Scan Descending: Example

ORACLE

This example uses an index to retrieve rows from the enpl oyees table in sorted order.

The following statement queries the records for employees in department 20 in
descending order:

SELECT *

FROM enpl oyees

WHERE departnent _id < 20
ORDER BY department _id DESC,

This preceding query has low cardinality, so the query uses the index on the
depart nment _i d column.

SQ _ID 8182ndfj1ttj6, child nunber 0

SELECT * FROM enpl oyees WHERE department _i d<20 CRDER BY department _id
DESC

Pl an hash val ue: 1681890450

8-24

Chapter 8
B-Tree Index Access Paths

|1d] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| 0| SELECT STATEMENT | Il
2(100) | |

| 1] TABLE ACCESS BY | NDEX ROW D | EMPLOYEES |21 1382 (0)]
00: 00: 01

|*2] INDEX RANGE SCAN DESCENDING| EMP_DEPARTMENT IX|2| |1 (0)]
00: 00: 01

2 - access(" DEPARTMENT | D'<20)

The database locates the first index leaf block that contains the highest key value that
is 20 or less. The scan then proceeds horizontally to the left through the linked list of
leaf nodes. The database obtains the rowid from each index entry, and then retrieves
the row specified by the rowid.

8.3.4 Index Full Scans

An index full scan reads the entire index in order. An index full scan can eliminate a
separate sorting operation because the data in the index is ordered by index key.

This section contains the following topics:

8.3.4.1 When the Optimizer Considers Index Full Scans

The optimizer considers an index full scan in a variety of situations.
The situations include the following:

e A predicate references a column in the index. This column need not be the leading
column.

* No predicate is specified, but all of the following conditions are met:
— All columns in the table and in the query are in the index.
— Atleast one indexed column is not null.

e A query includes an ORDER BY on indexed non-nullable columns.

8.3.4.2 How Index Full Scans Work

ORACLE

The database reads the root block, and then navigates down the left hand side of the
index (or right if doing a descending full scan) until it reaches a leaf block.

Then the database reaches a leaf block, the scan proceeds across the bottom of the
index, one block at a time, in sorted order. The database uses single-block 1/O rather
than multiblock I/O.

8-25

Chapter 8
B-Tree Index Access Paths

The following graphic illustrates an index full scan. A statement requests the
depart ment s records ordered by depart ment _i d.

Figure 8-6 Index Full Scan

Branch Blocks

0..40
41..80
81..120
200..250
Ad
— 0..10 41..48 200..209
11..19 e 49..53 210..220
20..25 54..65 221..228
32..40 78.80 246..250
Leaf Blocks
A4 A4
e 0,rowid 11,rowid 221,rowid 246,rowid
é > 1,rowid 12,rowid 222, rowid 247 rowid
b 13,rowid 223,rowid 248,rowid
> 10,rowid
19,rowid . 228,rowid . 250,rowid
8.3.4.3 Index Full Scans: Example
This example uses an index full scan to satisfy a query with an ORDER BY clause.
The following statement queries the ID and name for departments in order of
department ID:
SELECT departnent id, department_name
FROM departnents
ORDER BY departnent id;
The following plan shows that the optimizer chose an index full scan:
SQ._ID 94t4a20h8what, child number 0
sel ect department_id, department_name from departnents order by
department _id
Pl an hash val ue: 4179022242
ORACLE 8-26

Chapter 8
B-Tree Index Access Paths

1d	Operation	Nane	Rows	Byt es	Cost (%CPU)	Ti ne
0] SELECT STATEMENT				2 (100)		
1] TABLE ACCESS BY	NDEX ROW D	DEPARTMENTS	27	432	2 (0)	00:00: 01
2	INDEX FULL SCAN	DEPT_I D PK	27		1 (0)	00:00:01

The database locates the first index leaf block, and then proceeds horizontally to

the right through the linked list of leaf nodes. For each index entry, the database
obtains the rowid from the entry, and then retrieves the table row specified by the
rowid. Because the index is sorted on depart nment _i d, the database avoids a separate
operation to sort the retrieved rows.

8.3.5 Index Fast Full Scans

An index fast full scan reads the index blocks in unsorted order, as they exist on disk.
This scan does not use the index to probe the table, but reads the index instead of the
table, essentially using the index itself as a table.

This section contains the following topics:

8.3.5.1 When the Optimizer Considers Index Fast Full Scans

The optimizer considers this scan when a query only accesses attributes in the index.

Note:

Unlike a full scan, a fast full scan cannot eliminate a sort operation because it
does not read the index in order.

The | NDEX_FFS(t abl e_nane i ndex_nane) hint forces a fast full index scan.

¢ See Also:

Oracle Database SQL Language Reference to learn more about the | NDEX
hint

8.3.5.2 How Index Fast Full Scans Work

The database uses multiblock I/O to read the root block and all of the leaf and branch
blocks. The databases ignores the branch and root blocks and reads the index entries
on the leaf blocks.

8.3.5.3 Index Fast Full Scans: Example

This examples uses a fast full index scan as a result of an optimizer hint.

ORACLE 8-27

Chapter 8
B-Tree Index Access Paths

The following statement queries the ID and name for departments in order of
department ID:

SELECT /*+ | NDEX FFS(departments dept id _pk) */ COUNT(*)
FROVM departnents;

The following plan shows that the optimizer chose a fast full index scan:

SQ_ID fuOkb5nvx7sftm child nunber 0

select /*+ index ffs(departnents dept _id pk) */ count(*) from
departments

Pl an hash val ue: 3940160378

| I'd | Operation | Nane | Rows |Cost (%CPU) |
Ti me |

| 0| SELECT STATEMENT | | | 2

(100) | |

| 1] SORT AGGREGATE | | 1]

| |

| 2] INDEX FAST FULL SCAN| DEPT_ID PK | 27 | 2 (0)]
00: 00: 01 |

8.3.6 Index Skip Scans

An index skip scan occurs when the initial column of a composite index is "skipped"
or not specified in the query.

This section contains the following topics:

¢ See Also:

Oracle Database Concepts

8.3.6.1 When the Optimizer Considers Index Skips Scans

ORACLE

Often, skip scanning index blocks is faster than scanning table blocks, and faster than
performing full index scans.

The optimizer considers a skip scan when the following criteria are met:

* The leading column of a composite index is not specified in the query predicate.

For example, the query predicate does not reference the cust _gender column,
and the composite index key is (cust _gender, cust _email).

8-28

Chapter 8
B-Tree Index Access Paths

* Few distinct values exist in the leading column of the composite index, but many
distinct values exist in the nonleading key of the index.

For example, if the composite index key is (cust _gender, cust _emai |), then the
cust _gender column has only two distinct values, but cust _enai | has thousands.

8.3.6.2 How Index Skip Scans Work

An index skip scan logically splits a composite index into smaller subindexes.

The number of distinct values in the leading columns of the index determines the
number of logical subindexes. The lower the number, the fewer logical subindexes the
optimizer must create, and the more efficient the scan becomes. The scan reads each
logical index separately, and "skips" index blocks that do not meet the filter condition
on the non-leading column.

8.3.6.3 Index Skip Scans: Example

ORACLE

This example uses an index skip scan to satisfy a query of the sh. cust oner s table.

The cust oner s table contains a column cust _gender whose values are either Mor
F. While logged in to the database as user sh, you create a composite index on the
columns (cust _gender, cust_enail) as follows:

CREATE | NDEX cust gender _enail _ix
ON sh. customers (cust_gender, cust_enail);

Conceptually, a portion of the index might look as follows, with the gender value of F or
Mas the leading edge of the index.

F, Wl f @onpany. exanpl e. com rowi d

F, Wl sey@onpany. exanpl e. com rowi d

F, Wod@onpany. exanpl e. com rowi d

F, Wodman@onpany. exanpl e. com row d
F, Yang@onpany. exanpl e. com rowi d

F, Zi mrer man@onpany. exanpl e. com r ow d
M Abbassi @onpany. exanpl e. com row d
M Abbey@onpany. exanpl e. com r owi d

You run the following query for a customer in the sh. cust oner s table:

SELECT *
FROM sh. customers
WHERE cust_enmail = ' Abbey@onpany. exanpl e. con ;

The database can use a skip scan of the cust omers_gender _emai | index even though
cust _gender is not specified in the WHERE clause. In the sample index, the leading
column cust _gender has two possible values: F and M The database logically splits
the index into two. One subindex has the key F, with entries in the following form:

F, W! f @onpany. exanpl e. com row d

F, W| sey@onpany. exanpl e. com row d
F, Wood@onpany. exanpl e. com row d

8-29

Chapter 8
B-Tree Index Access Paths

F, Wodnan@onpany. exanpl e. com rowi d
F, Yang@onpany. exanpl e. com row d
F, Zi mrer man@onpany. exanpl e. com row d

The second subindex has the key M with entries in the following form:

M Abbassi @onpany. exanpl e. com rowi d
M Abbey@onpany. exanpl e. com rowi d

When searching for the record for the customer whose email is

Abbey @onpany. exanpl e. com the database searches the subindex with the leading
value F first, and then searches the subindex with the leading value M Conceptually,
the database processes the query as follows:

(SELECT *

FROM sh. custoners

WHERE cust _gender = 'F

AND cust_emil = 'Abbey@onpany. exanpl e.con)
UNI ON ALL
(SELECT *

FROM sh. customers

WHERE cust _gender = 'M

AND cust _emil = 'Abbey@onpany. exanpl e.con)

The plan for the query is as follows:

SQ_ID d7a6xurcnx2dj, child nunber 0

SELECT * FROM sh.custoners WHERE cust_email = ' Abbey@onpany. exanpl e. coni

Pl an hash val ue: 797907791

| 1d] Operation | Name | Rows| Byt es| Cost (%UCPU) |
Ti ne|

| 0| SELECT STATEMENT | I

10(100) | |

| 1| TABLE ACCESS BY | NDEX ROW D BATCHED| CUSTOVERS |33]6237] 10(0)|
00: 00: 01

|*2] INDEX SKIP SCAN | CUST GENDER EMAIL_IX [33] | 4(0)]
00: 00: 01

2 - access("CUST_EMAI L"=" Abbey@onpany. exanpl e. com)
filter("CUST_EMAIL"=" Abbey@onpany. exanpl e. con)

ORACLE 8-30

Chapter 8
B-Tree Index Access Paths

¢ See Also:

Oracle Database Concepts to learn more about skip scans

8.3.7 Index Join Scans

An index join scan is a hash join of multiple indexes that together return all columns
requested by a query. The database does not need to access the table because all
data is retrieved from the indexes.

This section contains the following topics:

8.3.7.1 When the Optimizer Considers Index Join Scans

In some cases, avoiding table access is the most cost efficient option.
The optimizer considers an index join in the following circumstances:

* A hash join of multiple indexes retrieves all data requested by the query, without
requiring table access.

* The cost of retrieving rows from the table is higher than reading the indexes
without retrieving rows from the table. An index join is often expensive. For
example, when scanning two indexes and joining them, it is often less costly to
choose the most selective index, and then probe the table.

You can specify an index join with the | NDEX_JO N(t abl e_nane) hint.

¢ See Also:

Oracle Database SQL Language Reference

8.3.7.2 How Index Join Scans Work

An index join involves scanning multiple indexes, and then using a hash join on the
rowids obtained from these scans to return the rows.

In an index join scan, table access is always avoided. For example, the process for
joining two indexes on a single table is as follows:

1. Scan the first index to retrieve rowids.
2. Scan the second index to retrieve rowids.

3. Perform a hash join by rowid to obtain the rows.

ORACLE 8-31

Chapter 8
B-Tree Index Access Paths

8.3.7.3 Index Join Scans: Example

This example queries the last name and email for employees whose last name begins
with A, specifying an index join.

SELECT /*+ INDEX_JO N(enpl oyees) */ last_nane, enail
FROM enpl oyees
WHERE |ast _name like 'A% ;

Separate indexes exist on the (| ast _nane, first _name) and emai | columns. Part of
the enp_nare_i x index might look as follows:

Banda, Anmi t, AAAVgdAALAAAABSABD

Bat es, El i zabet h, AAAVgdAALAAAABSABI
Bel |, Sar ah, AAAVgdAALAAAABSABC

Ber nst ei n, Davi d, AAAVgdAALAAAABSAAZ
Bi ssot, Laur a, AAAVgdAALAAAABSAAd

Bl oom Harri son, AAAVgdAALAAAABSABF
Bul |, Al exi s, AAAVgdAALAAAABSABY

The first part of the enp_emai | _uk index might look as follows:

ABANDA, AAAVgdAALAAAABSABD
ABULL, AAAVgdAALAAAABSABYV
ACABR!I O, AAAVgdAALAAAABSABX
AERRAZUR, AAAVgdAALAAAABSAAY
AFRI PP, AAAVgdAALAAAABSAAV
AHUNOLD, AAAVgdAALAAAABSAAD
AHUTTON, AAAVgdAALAAAABSABL

The following example retrieves the plan using the DBMS_XPLAN. DI SPLAY_CURSOR
function. The database retrieves all rowids in the enp_emai | _uk index, and then
retrieves rowids in enp_nane_i x for last names that begin with A. The database
uses a hash join to search both sets of rowids for matches. For example, rowid
AAAVgdAALAAAABSABD occurs in both sets of rowids, so the database probes the
enpl oyees table for the record corresponding to this rowid.

Example 8-4 Index Join Scan

SQ_ID d2djchyc9hnrz, child nunber 0

SELECT /*+ INDEX_JO N(enpl oyees) */ last_nane, email FROM enpl oyees

WHERE |ast_name |ike 'A%

Pl an hash val ue: 3719800892

| 0 | SELECT STATENMENT

ORACLE

Narre | Rows | Bytes | Cost (%CPU)|

8-32

Chapter 8
Bitmap Index Access Paths

(100) | |

|* 1] VIEW | index$_j oi n$_001 | 3| 48 3 (34)]
00: 00: 01 |

|* 2] HASH JOIN | | | |

| |

|* 3| INDEX RANGE SCAN | EMP_NAME I X | 3| 48 1 (0)]
00: 00: 01 |

| 4 INDEX FAST FULL SCAN| EMP_EMAIL_UK | 3| 48 1 (0)]
00: 00: 01 |

1 - filter("LAST_NAME' LIKE 'A%)
2 - access(RON D=ROW D)
3 - access("LAST_NAME" LIKE 'A%)

8.4 Bitmap Index Access Paths

Bitmap indexes combine the indexed data with a rowid range.

This section explains how bitmap indexes, and describes some of the more common
bitmap index access paths:

8.4.1 About Bitmap Index Access

In a conventional B-tree index, one index entry points to a single row. In a bitmap
index, the key is the combination of the indexed data and the rowid range.

The database stores at least one bitmap for each index key. Each value in the bitmap,
which is a series of 1 and 0 values, points to a row within a rowid range. Thus, in a
bitmap index, one index entry points to a set of rows rather than a single row.

This section contains the following topics:

8.4.1.1 Differences Between Bitmap and B-Tree Indexes

A bitmap index uses a different key from a B-tree index, but is stored in a B-tree
structure.

The following table shows the differences among types of index entries.

Table 8-3 Index Entries for B-Trees and Bitmaps

__|]
Index Entry Key Data Example

Unique B-tree Indexed data only Rowid In an entry of the index on the enpl oyees. enpl oyee_i d
column, employee ID 101 is the key, and the rowid
AAAPy CAAFAAAAFaAAa s the data:

101, AAAPv CAAFAAAAFaAAa

ORACLE 8-33

Chapter 8
Bitmap Index Access Paths

Table 8-3 (Cont.) Index Entries for B-Trees and Bitmaps

Index Entry Key Data Example
Nonunique B-tree Indexed data None In an entry of the index on the enpl oyees. | ast _nane
combined with rowid column, the name and rowid combination
Smi t h, AAAPv CAAFAAAAFaAAa is the key, and there is no
data:

Bitmap

Sni t h, AAAPv CAAFAAAAFaAAa

Indexed data Bitmap In an entry of the index on the cust omer s. cust _gender
combined with rowid column, the M | owr owi d, hi gh-r owi d part is the key,
range and the series of 1 and 0 values is the data:

M I owrowi d, hi gh-row d, 1000101010101010

The database stores a bitmap index in a B-tree structure. The database can search
the B-tree quickly on the first part of the key, which is the set of attributes on which the
index is defined, and then obtain the corresponding rowid range and bitmap.

See Also:

e "Bitmap Storage"
e Oracle Database Concepts for an overview of bitmap indexes

e Oracle Database Data Warehousing Guide for more information about
bitmap indexes

8.4.1.2 Purpose of Bitmap Indexes

ORACLE

Bitmap indexes are typically suitable for infrequently modified data with a low or
medium number of distinct values (NDV).

In general, B-tree indexes are suitable for columns with high NDV and frequent DML
activity. For example, the optimizer might choose a B-tree index for a query of a

sal es. amount column that returns few rows. In contrast, the cust oner s. st at e and
cust omer s. county columns are candidates for bitmap indexes because they have few
distinct values, are infrequently updated, and can benefit from efficient AND and OR
operations.

Bitmap indexes are a useful way to speed ad hoc queries in a data warehouse. They
are fundamental to star transformations. Specifically, bitmap indexes are useful in
gueries that contain the following:

e Multiple conditions in the WHERE clause

Before the table itself is accessed, the database filters out rows that satisfy some,
but not all, conditions.

e AND, OR, and NOT operations on columns with low or medium NDV

8-34

Chapter 8
Bitmap Index Access Paths

Combining bitmap indexes makes these operations more efficient. The database
can merge bitmaps from bitmap indexes very quickly. For example, if bitmap
indexes exist on the cust oners. st at e and cust oners. county columns, then these
indexes can enormously improve the performance of the following query:

SELECT *

FROM custoners

WHERE state = 'CA

AND county = 'San Mateo'

The database can convert 1 values in the merged bitmap into rowids efficiently.
e The COUNT function

The database can scan the bitmap index without needing to scan the table.
* Predicates that select for null values

Unlike B-tree indexes, bitmap indexes can contain nulls. Queries that count the
number of nulls in a column can use the bitmap index without scanning the table.

e Columns that do not experience heavy DML

The reason is that one index key points to many rows. If a session modifies the
indexed data, then the database cannot lock a single bit in the bitmap: rather, the
database locks the entire index entry, which in practice locks the rows pointed

to by the bitmap. For example, if the county of residence for a specific customer
changes from San Mat eo to Al ameda, then the database must get exclusive access
to the San Mat eo index entry and Al aneda index entry in the bitmap. Rows
containing these two values cannot be modified until COWM T.

" See Also:

e "Star Transformation"

e Oracle Database SQL Language Reference to learn about the COUNT
function

8.4.1.3 Bitmaps and Rowids

For a particular value in a bitmap, the value is 1 if the row values match the bitmap
condition, and 0 if it does not. Based on these values, the database uses an internal
algorithm to map bitmaps onto rowids.

The bitmap entry contains the indexed value, the rowid range (start and end rowids),
and a bitmap. Each 0 or 1 value in the bitmap is an offset into the rowid range, and
maps to a potential row in the table, even if the row does not exist. Because the
number of possible rows in a block is predetermined, the database can use the range
endpoints to determine the rowid of an arbitrary row in the range.

ORACLE 8-35

Chapter 8
Bitmap Index Access Paths

< Note:

The Hakan factor is an optimization used by the bitmap index algorithms to
limit the number of rows that Oracle Database assumes can be stored in a
single block. By artificially limiting the number of rows, the database reduces
the size of the bitmaps.

Table 8-4 shows part of a sample bitmap for the sh. cust oners. cust_marital _status
column, which is nullable. The actual index has 12 distinct values. Only 3 are shown in
the sample: null, mar ri ed, and si ngl e.

Table 8-4 Bitmap Index Entries

Column Start End 1st 2nd 3rd 4th 5th 6th
Value for Rowidin Rowidin Rowin Rowin Rowin Rowin Rowin Rowin
cust_marital Range Range Range Range Range Range Range Range
_status

(null) AAA ... Cccc ... 0 0 0 0 0 1
married AAA . CccC ... 1 0 1 1 1 0
single AAA . ccc... o 1 0 0 0 0
single DOD ... EEE ... 1 0 1 0 1 1

As shown in Table 8-4, bitmap indexes can include keys that consist entirely of null
values, unlike B-tree indexes. In Table 8-4, the null has a value of 1 for the 6th row in
the range, which means that the cust _marital _st at us value is null for the 6th row in
the range. Indexing nulls can be useful for some SQL statements, such as queries with
the aggregate function COUNT.

¢ See Also:

Oracle Database Concepts to learn about rowid formats

8.4.1.4 Bitmap Join Indexes

ORACLE

A bitmap join index is a bitmap index for the join of two or more tables.

The optimizer can use a bitmap join index to reduce or eliminate the volume of data
that must be joined during plan execution. Bitmap join indexes can be much more
efficient in storage than materialized join views.

The following example creates a bitmap index on the sh. sal es and sh. cust oners
tables:

CREATE BI TMAP | NDEX cust _sal es_bji ON sal es(c.cust_city)
FROMV sal es s, customers c
WHERE c.cust _id = s.cust _id LOCAL;

8-36

Chapter 8
Bitmap Index Access Paths

The FROMand WHERE clause in the preceding CREATE statement represent the join
condition between the tables. The cust oners. cust _ci ty column is the index key.

Each key value in the index represents a possible city in the cust oner s table.
Conceptually, key values for the index might look as follows, with one bitmap
associated with each key value:

San Francisco 000101000100000
San Mat eo 010000001000001
Smithville 100010010010100

Each bit in a bitmap corresponds to one row in the sal es table. In the Sni t hvi | | e key,
the value 1 means that the first row in the sal es table corresponds to a product sold to
a Smithville customer, whereas the value 0 means that the second row corresponds to
a product not sold to a Smithville customer.

Consider the following query of the number of separate sales to Smithville customers:

SELECT COUNT (*)

FROM sales s, custonmers ¢

WHERE <c.cust _id = s.cust_id

AND c.cust_city = "Smthville';

The following plan shows that the database reads the Sni t hvi | | e bitmap to derive
the number of Smithville sales (Step 4), thereby avoiding a join of the cust oners and
sal es tables.

SQ_ID 57s100mh142wy, child nunber O

SELECT COUNT (*) FROM sales s, custonmers ¢ WHERE c.cust_id = s.cust_id
AND c.cust_city = "Smthville'

Pl an hash val ue: 3663491772

| 0| SELECT STATEMENT | | |29 (100)]
| 1| SORT AGGREGATE | 1] 5 |
| 2| PARTITION RANGE ALL | 708| 8540/ 29 (0) |
| |
| |

=

00: 00: 01| 1| 28]
3] BITMAP CONVERSI ON COUNT | 708| 8540/ 29 (0)|00:00: 01| | |
*4) BITMAP INDEX SINGLE VALUE| CUST_SALES BJI | | 1] 28|

4 - access("S"."SYS_NC00008$"="Smithville")

ORACLE 8-37

Chapter 8
Bitmap Index Access Paths

¢ See Also:

Oracle Database Concepts to learn about the CREATE | NDEX statement

8.4.1.5 Bitmap Storage

A bitmap index resides in a B-tree structure, using branch blocks and leaf blocks just
as in a B-tree.

For example, if the cust oners. cust _marital _status column has 12 distinct
values, then one branch block might point to the keys narri ed, r owi d- range and
singl e, row d-range, another branch block might point to the wi dowed, r owi d-r ange
key, and so on. Alternatively, a single branch block could point to a leaf block
containing all 12 distinct keys.

Each indexed column value may have one or more bitmap pieces, each with its own
rowid range occupying a contiguous set of rows in one or more extents. The database
can use a bitmap piece to break up an index entry that is large relative to the size of
a block. For example, the database could break a single index entry into three pieces,
with the first two pieces in separate blocks in the same extent, and the last piece in a
separate block in a different extent.

To conserve space, Oracle Database can compression consecutive ranges of 0
values.

8.4.2 Bitmap Conversion to Rowid

A bitmap conversion translates between an entry in the bitmap and a row in a table.
The conversion can go from entry to row (TO ROA D), or from row to entry (FROM
ROW D).

This section contains the following topics:

8.4.2.1 When the Optimizer Chooses Bitmap Conversion to Rowid

The optimizer uses a conversion whenever it retrieves a row from a table using a
bitmap index entry.

8.4.2.2 How Bitmap Conversion to Rowid Works

ORACLE

Conceptually, a bitmap can be represented as table.

For example, Table 8-4 represents the bitmap as a table with cust omer s row numbers
as columns and cust _marital _status values as rows. Each field in Table 8-4 has

the value 1 or 0, and represents a column value in a row. Conceptually, the bitmap
conversion uses an internal algorithm that says, "Field F in the bitmap corresponds to
the Nth row of the Mth block of the table," or "The Nth row of the Mth block in the table
corresponds to field F in the bitmap."

8-38

Chapter 8
Bitmap Index Access Paths

8.4.2.3 Bitmap Conversion to Rowid: Example

In this example, the optimizer chooses a bitmap conversion operation to satisfy a
query using a range predicate.

A query of the sh. cust oner s table selects the names of all customers born before
1918:

SELECT cust | ast_nane, cust_first_nane
FROM customers
WHERE cust _year _of _birth < 1918;

The following plan shows that the database uses a range scan to find all key values
less than 1918 (Step 3), converts the 1 values in the bitmap to rowids (Step 2), and
then uses the rowids to obtain the rows from the cust oner s table (Step 1):

| 1d|] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |
0| SELECT STATEMENT | | | | 421
100) | |
1| TABLE ACCESS BY | NDEX ROWN D BATCHED| CUSTOMERS | 3604| 68476| 421 (1)]
0: 00: 01]

2| BITMAP CONVERSION TO ROWIDS | | |

|
*3] BITMAP | NDEX RANGE SCAN | CUSTOMERS YOB BIX| | |

—_—_— o — —~—

3 - access(" CUST_YEAR OF BI RTH'<1918)
filter("CUST_YEAR OF Bl RTH'<1918)

8.4.3 Bitmap Index Single Value

This type of access path uses a bitmap index to look up a single key value.

This section contains the following topics:

8.4.3.1 When the Optimizer Considers Bitmap Index Single Value

The optimizer considers this access path when the predicate contains an equality
operator.

ORACLE 8-39

Chapter 8
Bitmap Index Access Paths

8.4.3.2 How Bitmap Index Single Value Works

The query scans a single bitmap for positions containing a 1 value. The database
converts the 1 values into rowids, and then uses the rowids to find the rows.

The database only needs to process a single bitmap. For example, the following

table represents the bitmap index (in two bitmap pieces) for the value wi dowed in the
sh. cust oners. cust _mari tal _status column. To satisfy a query of customers with the
status wi dowed, the database can search for each 1 value in the wi dowed bitmap and
find the rowid of the corresponding row.

Table 8-5 Bitmap Index Entries

Column Start End 1st 2nd 3rd 4th 5th 6th

Value Rowid in Rowidin Rowin Rowin Rowin Rowin Rowin Rowin
Range Range Range Range Range Range Range Range

w dowed AAA ... CcC ... 0 1 0 0 0 0

wi dowed DDD... EEE ... 1 0 1 0 1 1

8.4.3.3 Bitmap Index Single Value: Example

In this example, the optimizer chooses a bitmap index single value operation to satisfy
a query that uses an equality predicate.

A query of the sh. cust oner s table selects all widowed customers:

SELECT *
FROM custoners
WHERE cust narital status = 'Wdowed';

The following plan shows that the database reads the entry with the W dowed key in the
cust onmer s bitmap index (Step 3), converts the 1 values in the bitmap to rowids (Step
2), and then uses the rowids to obtain the rows from the cust oner s table (Step 1):

SQ_ID ffban2xsn086h, child nunber 0

SELECT * FROM cust oners WHERE cust _marital _status = ' Wdowed'

Pl an hash val ue: 2579015045

Ti ne|

| O] SELECT STATEMENT | [| |

412(100) | |

| 1] TABLE ACCESS BY | NDEX ROW D BATCHED| CUSTOMVERS | 3461] 638K| 412 (2) |
00: 00: 01|

| 2] BITMAP CONVERSI ON TO ROW DS | [| |

| |
|*3] BITMAP INDEX SINGLE VALUE | CUSTOVERS MARI TAL BIX| | |

ORACLE 8-40

Chapter 8
Bitmap Index Access Paths

3 - access("CUST_MARI TAL_STATUS" =" W dowed')

8.4.4 Bitmap Index Range Scans

This type of access path uses a bitmap index to look up a range of values.

This section contains the following topics:

8.4.4.1 When the Optimizer Considers Bitmap Index Range Scans

The optimizer considers this access path when the predicate selects a range of
values.

The range in the scan can be bounded on both sides, or unbounded on one or both
sides. The optimizer typically chooses a range scan for selective queries.

See Also:

"Index Range Scans"

8.4.4.2 How Bitmap Index Range Scans Work

This scan works similarly to a B-tree range scan.

For example, the following table represents three values in the bitmap index for the
sh. custoners. cust _year _of birth column. If a query requests all customers born
before 1917, then the database can scan this index for values lower than 1917, and
then obtain the rowids for rows that have a 1.

Table 8-6 Bitmap Index Entries

Column Start End 1st 2nd 3rd 4th 5th 6th

Value Rowid in Rowidin Rowin Rowin Rowin Rowin Rowin Rowin
Range Range Range Range Range Range Range Range

1913 AAA ... CCcC ... 0 0 0 0 0 1

1917 AAA ... CCC ... 1 0 1 1 1 0

1918 AAA ... CCC ... 0 1 0 0 0 0

1918 DDD ... EEE ... 1 0 1 0 1 1

ORACLE 8-41

Chapter 8
Bitmap Index Access Paths

¢ See Also:

"Index Range Scans"

8.4.4.3 Bitmap Index Range Scans: Example

This example uses a range scan to select customers born before a single year.

A query of the sh. cust oner s table selects the names of customers born before 1918:

SELECT cust | ast_nane, cust_first_nane
FROM custoners
WHERE cust _year of birth < 1918

The following plan shows that the database obtains all bitmaps for
cust _year _of birth keys lower than 1918 (Step 3), converts the bitmaps to rowids
(Step 2), and then fetches the rows (Step 1):

SQ_ID 672z2h9rawyjg, child nunber O

SELECT cust | ast _name, cust first name FROM custoners WHERE
cust _year_of _birth < 1918

Pl an hash val ue: 4198466611

| 1d] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| O] SELECT STATEMENT | | | | 421

(100) | I

| 1] TABLE ACCESS BY | NDEX ROW D BATCHED| CUSTOVERS | 3604] 68476| 421 (1)]
00: 00: 01|

| 2] Bl TMAP CONVERSI ON TO ROA DS | | | |

| |
|*3] BITMAP INDEX RANGE SCAN | CUSTOVERS_YOB BI X | | |

3 - access("CUST_YEAR OF BI RTH'<1918)
filter("CUST_YEAR OF BI RTH'<1918)

8.4.5 Bitmap Merge

This access path merges multiple bitmaps, and returns a single bitmap as a result.

A bitmap merge is indicated by the Bl TMAP MERGE operation in an execution plan.

ORACLE 8-42

Chapter 8
Bitmap Index Access Paths

This section contains the following topics:

8.4.5.1 When the Optimizer Considers Bitmap Merge

The optimizer typically uses a bitmap merge to combine bitmaps generated from a
bitmap index range scan.

8.4.5.2 How Bitmap Merge Works

A merge uses a Boolean OR operation between two bitmaps. The resulting bitmap
selects all rows from the first bitmap, plus all rows from every subsequent bitmap.

A query might select all customers born before 1918. The following example shows
sample bitmaps for three cust omer s. cust _year _of _birth keys: 1917, 1916, and 1915.
If any position in any bitmap has a 1, then the merged bitmap has a 1 in the same
position. Otherwise, the merged bitmap has a 0.

1917 10100000000001
1916 0100000000000O00O
1915 000000O00100O00O00O

merged: 11100000100001

The 1 values in resulting bitmap correspond to rows that contain the values 1915, 1916,
or 1917.

8.4.5.3 Bitmap Merge: Example

This example shows how the database merges bitmaps to optimize a query using a
range predicate.

A query of the sh. cust onmer s table selects the names of female customers born before
1918:

SELECT cust | ast_nane, cust_first_nane
FROM customers

WHERE cust _gender = 'F

AND cust_year of birth < 1918

The following plan shows that the database obtains all bitmaps for

cust _year_of birth keys lower than 1918 (Step 6), and then merges these bitmaps
using R logic to create a single bitmap (Step 5). The database obtains a single bitmap
for the cust _gender key of F (Step 4), and then performs an AND operation on these
two bitmaps. The result is a single bitmap that contains 1 values for the requested
rows (Step 3).

SQL_ID 1xf59h179zdg2, child nunber 0

sel ect cust_last _nanme, cust first_nanme from customers where cust_gender
= 'F and cust_year _of birth < 1918

Pl an hash val ue: 49820847

ORACLE 8-43

Chapter 8
Table Cluster Access Paths

|1d] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| O] SELECT STATEMENT | | | |
288(1100) | |

| 1] TABLE ACCESS BY | NDEX ROW D BATCHED| CUSTOMERS | 1802| 37842| 288 (1)
00: 00: 01|

| 2] BITMAP CONVERSI ON TO ROW DS | | | |

I I

| 3] Bl TMAP AND | | | |

I I

| *4] Bl TMAP | NDEX SI NGLE VALUE | CUSTOVERS_GENDER Bl X| | |

I I

| 5] BITMAP MERGE | | | |

I I

| *6] Bl TMAP | NDEX RANGE SCAN | CUSTOVERS _YOB BI X | | |

I

4 - access("CUST_GENDER'='F')
6 - access("CUST_YEAR OF BI RTH'<1918)
filter("CUST_YEAR OF BI RTH'<1918)

8.5 Table Cluster Access Paths

A table cluster is a group of tables that share common columns and store related
data in the same blocks. When tables are clustered, a single data block can contain
rows from multiple tables.

This section contains the following topics:

See Also:

Oracle Database Concepts for an overview of table clusters

8.5.1 Cluster Scans

ORACLE

An index cluster is a table cluster that uses an index to locate data.

The cluster index is a B-tree index on the cluster key. A cluster scan retrieves all rows
that have the same cluster key value from a table stored in an indexed cluster.

This section contains the following topics:

8-44

Chapter 8
Table Cluster Access Paths

8.5.1.1 When the Optimizer Considers Cluster Scans

The database considers a cluster scan when a query accesses a table in an indexed
cluster.

8.5.1.2 How a Cluster Scan Works

In an indexed cluster, the database stores all rows with the same cluster key value in
the same data block.

For example, if the hr. enpl oyees2 and hr. depart nent s2 tables are clustered in
enp_dept _cl uster, and if the cluster key is depart nent _i d, then the database stores
all employees in department 10 in the same block, all employees in department 20 in
the same block, and so on.

The B-tree cluster index associates the cluster key value with the database block
address (DBA) of the block containing the data. For example, the index entry for key
30 shows the address of the block that contains rows for employees in department 30:

30, AADAAAA9d

When a user requests rows in the cluster, the database scans the index to obtain the
DBAs of the blocks containing the rows. Oracle Database then locates the rows based
on these DBAs.

8.5.1.3 Cluster Scans: Example

ORACLE

This example clusters the enpl oyees and depart ment s tables on the departnent _id
column, and then queries the cluster for a single department.

As user hr, you create a table cluster, cluster index, and tables in the cluster as
follows:

CREATE CLUSTER enpl oyees_departnents_cl uster
(department _id NUMBER(4)) SIZE 512;

CREATE | NDEX i dx_enp_dept cl uster
ON CLUSTER enpl oyees_departnents_cl uster;

CREATE TABLE enpl oyees?2
CLUSTER enpl oyees_departnents_cluster (department _id)
AS SELECT * FROM enpl oyees;

CREATE TABLE depart ment s2
CLUSTER enpl oyees_departnents_cluster (department _id)
AS SELECT * FROM departments;

You query the employees in department 30 as follows:
SELECT *

FROM enpl oyees?
WHERE department _id = 30;

8-45

Chapter 8
Table Cluster Access Paths

To perform the scan, Oracle Database first obtains the rowid of the row describing
department 30 by scanning the cluster index (Step 2). Oracle Database then locates
the rows in enpl oyees2 using this rowid (Step 1).

SQ _ID b7xkljzuwdc6t, child nunber 0

SELECT * FROM enpl oyees2 WHERE department _id = 30

Pl an hash val ue: 49826199

|1d| Operation | Nane | Rows| Byt es| Cost (%CPU) |
Ti ne|

| O] SELECT STATEMENT | | | | 2

(100) | I

| 1] TABLE ACCESS CLUSTER| EMPLOYEES2 | 61798 | 2 (0)]
00: 00: 01|

| *2] | NDEX UNI QUE SCAN || DX EMP_DEPT_CLUSTER 1 | | 1 (0)]

00: 00: 01|

2 - access("DEPARTMENT_| D'=30)

" See Also:

Oracle Database Concepts to learn about indexed clusters

8.5.2 Hash Scans

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists.

In a hash cluster, the data is the index. The database uses a hash scan to locate rows
in a hash cluster based on a hash value.

This section contains the following topics:

8.5.2.1 When the Optimizer Considers a Hash Scan

The database considers a hash scan when a query accesses a table in a hash cluster.

8.5.2.2 How a Hash Scan Works

ORACLE

In a hash cluster, all rows with the same hash value are stored in the same data block.

8-46

Chapter 8
Table Cluster Access Paths

To perform a hash scan of the cluster, Oracle Database first obtains the hash value
by applying a hash function to a cluster key value specified by the statement. Oracle
Database then scans the data blocks containing rows with this hash value.

8.5.2.3 Hash Scans: Example

This example hashes the enpl oyees and depar t ment s tables on the departnent _i d
column, and then queries the cluster for a single department.

You create a hash cluster and tables in the cluster as follows:

CREATE CLUSTER enpl oyees_departnents_cl uster
(department _id NUMBER(4)) Sl ZE 8192 HASHKEYS 100;

CREATE TABLE enpl oyees?2
CLUSTER enpl oyees_departnents_cluster (department _id)
AS SELECT * FROM enpl oyees;

CREATE TABLE depart ment s2
CLUSTER enpl oyees_departnents_cluster (department _id)
AS SELECT * FROM departments;

You query the employees in department 30 as follows:

SELECT *
FROM enpl oyees?
WHERE departnent _id = 30

To perform a hash scan, Oracle Database first obtains the hash value by applying a
hash function to the key value 30, and then uses this hash value to scan the data
blocks and retrieve the rows (Step 1).

SQ_ID 919x7hyyxr6p4, child nunber O

SELECT * FROM enpl oyees2 WHERE departnent _id = 30

Pl an hash val ue: 2399378016

1d	Operation	Nane	Rows	Bytes	Cost
0	SELECT STATEMENT				1
* 1	TABLE ACCESS HASH	EMPLOYEES2	10	1330	

1 - access(" DEPARTMENT_| D'=30)

ORACLE 8-47

Chapter 8
Table Cluster Access Paths

¢ See Also:

Oracle Database Concepts to learn about hash clusters

ORACLE" 8-48

Joins

Oracle Database provides several optimizations for joining row sets.

This chapter contains the following topics:

9.1 About Joins

A join combines the output from exactly two row sources, such as tables or views, and
returns one row source. The returned row source is the data set.

A join is characterized by multiple tables in the WHERE (non-ANSI) or FROM ... JON
(ANSI) clause of a SQL statement. Whenever multiple tables exist in the FROMclause,
Oracle Database performs a join.

A join condition compares two row sources using an expression. The join condition
defines the relationship between the tables. If the statement does not specify a join
condition, then the database performs a Cartesian join, matching every row in one
table with every row in the other table.

This section contains the following topics:

¢ See Also:

e "Cartesian Joins"

e Oracle Database SQL Language Reference for a concise discussion of
joins in Oracle SQL

9.1.1 Join Trees

Typically, a join tree is represented as an upside-down tree structure.

As shown in the following graphic, t abl el is the left table, and t abl e2 is the right table.
The optimizer processes the join from left to right. For example, if this graphic depicted
a nested loops join, then t abl el is the outer loop, and t abl e2 is the inner loop.

Figure 9-1 Join Tree

result set

tablel table2

ORACLE 9-1

ORACLE

Chapter 9
About Joins

The input of a join can be the result set from a previous join. If the right child of every
internal node of a join tree is a table, then the tree is a left deep join tree, as shown in
the following example. Most join trees are left deep joins.

Figure 9-2 Left Deep Join Tree

result set

table4

table3

tablel table2

If the left child of every internal node of a join tree is a table, then the tree is called a
right deep join tree, as shown in the following diagram.

Figure 9-3 Right Deep Join Tree

result set

tablel

table2

table3 table4

If the left or the right child of an internal node of a join tree can be a join node, then the
tree is called a bushy join tree. In the following example, t abl e4 is a right child of a join
node, t abl el is the left child of a join node, and t abl e2 is the left child of a join node.

9-2

Figure 9-4 Bushy Join Tree

result set

tablel

table2

In yet another variation, both inputs of a join are the results of a previous join.

table4

table3

9.1.2 How the Optimizer Executes Join Statements

The database joins pairs of row sources. When multiple tables exist in the FROMclause,
the optimizer must determine which join operation is most efficient for each pair.

Chapter 9
About Joins

The optimizer must make the interrelated decisions shown in the following table.

Table 9-1 Join Operations

Operation

Explanation

To Learn More

Access paths

As for simple statements, the optimizer
must choose an access path to retrieve
data from each table in the join statement.
For example, the optimizer might choose
between a full table scan or an index scan..

"Optimizer Access Paths"

Join methods

To join each pair of row sources, Oracle
Database must decide how to do it. The
"how" is the join method. The possible join
methods are nested loop, sort merge, and
hash joins. A Cartesian join requires one
of the preceding join methods. Each join
method has specific situations in which it is
more suitable than the others.

"Join Methods"

Join types

The join condition determines the join type.
For example, an inner join retrieves only
rows that match the join condition. An outer
join retrieves rows that do not match the join
condition.

"Join Types"

ORACLE

9-3

Chapter 9
About Joins

Table 9-1 (Cont.) Join Operations

- __|
Operation Explanation To Learn More

Join order To execute a statement that joins more N/A
than two tables, Oracle Database joins

two tables and then joins the resulting

row source to the next table. This process
continues until all tables are joined into the
result. For example, the database joins two
tables, and then joins the result to a third
table, and then joins this result to a fourth
table, and so on.

9.1.3 How the Optimizer Chooses Execution Plans for Joins

When determining the join order and method, the optimizer goal is to reduce the
number of rows early so it performs less work throughout the execution of the SQL
statement.

The optimizer generates a set of execution plans, according to possible join orders,
join methods, and available access paths. The optimizer then estimates the cost of
each plan and chooses the one with the lowest cost. When choosing an execution
plan, the optimizer considers the following factors:

e The optimizer first determines whether joining two or more tables results in a row
source containing at most one row.

The optimizer recognizes such situations based on UNI QUE and PRI MARY KEY
constraints on the tables. If such a situation exists, then the optimizer places these
tables first in the join order. The optimizer then optimizes the join of the remaining
set of tables.

* For join statements with outer join conditions, the table with the outer join operator
typically comes after the other table in the condition in the join order.

In general, the optimizer does not consider join orders that violate this guideline,
although the optimizer overrides this ordering condition in certain circumstances.
Similarly, when a subquery has been converted into an antijoin or semijoin, the
tables from the subquery must come after those tables in the outer query block to
which they were connected or correlated. However, hash antijoins and semijoins
are able to override this ordering condition in certain circumstances.

The optimizer estimates the cost of a query plan by computing the estimated 1/Os
and CPU. These I/Os have specific costs associated with them: one cost for a
single block I/O, and another cost for multiblock 1/0s. Also, different functions and
expressions have CPU costs associated with them. The optimizer determines the
total cost of a query plan using these metrics. These metrics may be influenced
by many initialization parameter and session settings at compile time, such as the
DB_FI LE_MULTI _BLOCK_READ COUNT setting, system statistics, and so on.

For example, the optimizer estimates costs in the following ways:

» The cost of a nested loops join depends on the cost of reading each selected row
of the outer table and each of its matching rows of the inner table into memory.
The optimizer estimates these costs using statistics in the data dictionary.

ORACLE 9-4

Chapter 9
Join Methods

* The cost of a sort merge join depends largely on the cost of reading all the
sources into memory and sorting them.

* The cost of a hash join largely depends on the cost of building a hash table on one
of the input sides to the join and using the rows from the other side of the join to
probe it.

Example 9-1 Estimating Costs for Join Order and Method

Conceptually, the optimizer constructs a matrix of join orders and methods and the
cost associated with each. For example, the optimizer must determine how best to join
the dat e_di mand | i neor der tables in a query. The following table shows the possible
variations of methods and orders, and the cost for each. In this example, a nested
loops join in the order dat e_di m | i neor der has the lowest cost.

Table 9-2 Sample Costs for Join of date_dim and lineorder Tables

Join Method Cost of date_dim, lineorder | Cost of lineorder, date_dim
Nested Loops 39,480 6,187,540
Hash Join 187,528 194,909
Sort Merge 217,129 217,129
See Also:

e "Introduction to Optimizer Statistics"
e "Influencing the Optimizer " for more information about optimizer hints

* Oracle Database Reference to learn about
DB _FI LE_ MULTI BLOCK_READ COUNT

9.2 Join Methods

ORACLE

A join method is the mechanism for joining two row sources.

Depending on the statistics, the optimizer chooses the method with the lowest
estimated cost. As shown in Figure 9-5, each join method has two children: the driving
(also called outer) row source and the driven-to (also called inner) row source.

Figure 9-5 Join Method

Join Method
(Nested Loops, Hash
Join, or Sort Merge)

Driving Row Source, Driven-To Row Source,
— e
Outer row Source Inner Row Source

9-5

Chapter 9
Join Methods

This section contains the following topics:

9.2.1 Nested Loops Joins

Nested loops join an outer data set to an inner data set.

For each row in the outer data set that matches the single-table predicates, the
database retrieves all rows in the inner data set that satisfy the join predicate. If an
index is available, then the database can use it to access the inner data set by rowid.

This section contains the following topics:

9.2.1.1 When the Optimizer Considers Nested Loops Joins

Nested loops joins are useful when the database joins small subsets of data, the
database joins large sets of data with the optimizer mode set to FI RST_ROWS, or the join
condition is an efficient method of accessing the inner table.

" Note:

The number of rows expected from the join is what drives the optimizer
decision, not the size of the underlying tables. For example, a query might
join two tables of a billion rows each, but because of the filters the optimizer
expects data sets of 5 rows each.

In general, nested loops joins work best on small tables with indexes on the join
conditions. If a row source has only one row, as with an equality lookup on a primary
key value (for example, WHERE enpl oyee_i d=101), then the join is a simple lookup. The
optimizer always tries to put the smallest row source first, making it the driving table.

Various factors enter into the optimizer decision to use nested loops. For example, the
database may read several rows from the outer row source in a batch. Based on the
number of rows retrieved, the optimizer may choose either a nested loop or a hash
join to the inner row source. For example, if a query joins depart ment s to driving table
enpl oyees, and if the predicate specifies a value in enpl oyees. | ast _nane, then the
database might read enough entries in the index on | ast _nane to determine whether
an internal threshold is passed. If the threshold is not passed, then the optimizer picks
a nested loop join to depart nent s, and if the threshold is passed, then the database
performs a hash join, which means reading the rest of enpl oyees, hashing it into
memory, and then joining to depart ment s.

If the access path for the inner loop is not dependent on the outer loop, then the
result can be a Cartesian product: for every iteration of the outer loop, the inner loop
produces the same set of rows. To avoid this problem, use other join methods to join
two independent row sources.

ORACLE 9-6

Chapter 9
Join Methods

¢ See Also:

* "Table 19-2"
e "Adaptive Query Plans"

9.2.1.2 How Nested Loops Joins Work

ORACLE

Conceptually, nested loops are equivalent to two nested f or loops.

For example, if a query joins enpl oyees and depart nent s, then a nested loop in
pseudocode might be:

FOR erow IN (select * from enpl oyees where X=Y) LOOP
FOR drow I N (select * fromdepartnents where erow is matched) LOOP
out put val ues fromerow and drow
END LOOP
END LOOP

The inner loop is executed for every row of the outer loop. The enpl oyees table is the
"outer" data set because it is in the exterior f or loop. The outer table is sometimes
called a driving table. The depart nent s table is the "inner" data set because it is in the
interior f or loop.

A nested loops join involves the following basic steps:

1. The optimizer determines the driving row source and designates it as the outer
loop.

The outer loop produces a set of rows for driving the join condition. The row
source can be a table accessed using an index scan, a full table scan, or any other
operation that generates rows.

The number of iterations of the inner loop depends on the number of rows
retrieved in the outer loop. For example, if 10 rows are retrieved from the
outer table, then the database must perform 10 lookups in the inner table. If
10,000,000 rows are retrieved from the outer table, then the database must
perform 10,000,000 lookups in the inner table.

2. The optimizer designates the other row source as the inner loop.

The outer loop appears before the inner loop in the execution plan, as follows:

NESTED LOOPS
outer_| oop
i nner _| oop

3. For every fetch request from the client, the basic process is as follows:
a. Fetch a row from the outer row source
b. Probe the inner row source to find rows that match the predicate criteria

c. Repeat the preceding steps until all rows are obtained by the fetch request

9-7

Chapter 9
Join Methods

Sometimes the database sorts rowids to obtain a more efficient buffer access
pattern.

9.2.1.3 Nested Nested Loops

The outer loop of a nested loop can itself be a row source generated by a different
nested loop.

The database can nest two or more outer loops to join as many tables as needed.
Each loop is a data access method. The following template shows how the database
iterates through three nested loops:

SELECT STATEMENT
NESTED LOOPS 3
NESTED LOCPS 2 - Row source becones OUTER LOCP
NESTED LOCPS 1 - Row source becones OUTER LOCP
QUTER LOCP 1.1
I NNER LOOP 1.2
I NNER LOOP 2.2
I NNER LOOP 3.2

3.1
2.1

The database orders the loops as follows:
1. The database iterates through NESTED LOCPS 1:
NESTED LOOPS 1

QUTER LOCP 1.1
I NNER LOOP 1.2

The output of NESTED LOOP 1 is a row source.
2. The database iterates through NESTED LOOPS 2, using the row source generated
by NESTED LOOPS 1 as its outer loop:

NESTED LOOPS 2
QUTER LOCP 2.1 - Row source generated by NESTED LOOPS 1
| NNER LOOP 2.2

The output of NESTED LOOPS 2 is another row source.

3. The database iterates through NESTED LOOPS 3, using the row source generated
by NESTED LOOPS 2 as its outer loop:

NESTED LOOPS 3
QUTER LOCP 3.1 - Row source generated by NESTED LOOPS 2
I NNER LOOP 3.2

Example 9-2 Nested Nested Loops Join

Suppose you join the enpl oyees and depart nent s tables as follows:
SELECT /*+ ORDERED USE_NL(d) */ e.last_nane, e.first_naneg,

d. depart ment _nane
FROM enpl oyees e, departnents d

ORACLE 9-8

Chapter 9
Join Methods

WHERE e. departnent _id=d.department _id
AND e.last_name like 'A% ;

The plan reveals that the optimizer chose two nested loops (Step 1 and Step 2) to
access the data:

SQ_I D ahuavfcv4tnz4, child nunber O

SELECT /*+ ORDERED USE NL(d) */ e.last_name, d.departnment_nane FROM
enpl oyees e, departnents d WHERE e.department id=d. departnent _id AND
e.last_name like 'A%

Pl an hash val ue: 1667998133

0] SELECT STATENENT
1] NESTED LOOPS |

|
|
| 3/102|5
|

| |

| |
2| NESTED LOOPS | (0) | 00: 00: 01|
3] TABLE ACCESS BY | NDEX ROW D BATCHED| EMPLOYEES 3] 54/2 (0)]00:00: 01]
| *4| | NDEX RANGE SCAN | EMP.NAME IX | 3] |1 (0)]00:00: 01|
| *5 | NDEX UNI QUE SCAN | DEFTIDPK | 1] |0 (0)] |
| 6| TABLE ACCESS BY | NDEX ROW D | DEPARTMENTS | 1] 16]1 (0)]00: 00: 01

4 - access("E"."LAST_NAME" LIKE 'A%)
filter("E"."LAST_NAME" LIKE 'A%)
5 - access("E"."DEPARTMENT | D'="D". " DEPARTMENT | D")

In this example, the basic process is as follows:

1. The database begins iterating through the inner nested loop (Step 2) as follows:

a. The database searches the enp_nane_i x for the rowids for all last names that
begins with A (Step 4).

For example:

Abel , enpl oyees_row d
Ande, enpl oyees_row d

At ki nson, enpl oyees_rowi d
Austin, enpl oyees_rowi d

b. Using the rowids from the previous step, the database retrieves a batch of
rows from the enpl oyees table (Step 3). For example:

Abel , El | en, 80
Abel , John, 50

These rows become the outer row source for the innermost nested loop.

ORACLE 9-9

Chapter 9
Join Methods

The batch step is typically part of adaptive execution plans. To determine
whether a nested loop is better than a hash join, the optimizer needs to
determine many rows come back from the row source. If too many rows are
returned, then the optimizer switches to a different join method.

For each row in the outer row source, the database scans the dept _i d_pk
index to obtain the rowid in depart nent s of the matching department ID (Step
5), and joins it to the enpl oyees rows. For example:

Abel , El | en, 80, departnents_row d
Ande, Sundar, 80, departments_rowi d

At ki nson, Mbzhe, 50, depart ments_rowi d
Aust i n, Davi d, 60, departments_row d

These rows become the outer row source for the outer nested loop (Step 1).

2. The database iterates through the outer nested loop as follows:

a.

The database reads the first row in outer row source.

For example:
Abel , El | en, 80, departments_row d

The database uses the depart nent s rowid to retrieve the corresponding row
from depart nment s (Step 6), and then joins the result to obtain the requested
values (Step 1).

For example:

Abel , El | en, 80, Sal es

The database reads the next row in the outer row source, uses the
depart ment s rowid to retrieve the corresponding row from depart ment s (Step
6), and iterates through the loop until all rows are retrieved.

The result set has the following form:

Abel , El | en, 80, Sal es

Ande, Sundar, 80, Sal es

At ki nson, Mbzhe, 50, Shi ppi ng
Austin, David, 60, 1T

9.2.1.4 Current Implementation for Nested Loops Joins

ORACLE

Oracle Database 11g introduced a new implementation for nested loops that reduces
overall latency for physical 1/O.

When an index or a table block is not in the buffer cache and is needed to process the
join, a physical I/O is required. The database can batch multiple physical I/O requests
and process them using a vector I/O (array) instead of one at a time. The database
sends an array of rowids to the operating system, which performs the read.

As part of the new implementation, two NESTED LOOPS join row sources might appear
in the execution plan where only one would have appeared in prior releases. In such
cases, Oracle Database allocates one NESTED LOOPS join row source to join the values
from the table on the outer side of the join with the index on the inner side. A second

9-10

Chapter 9
Join Methods

row source is allocated to join the result of the first join, which includes the rowids
stored in the index, with the table on the inner side of the join.

Consider the query in "Original Implementation for Nested Loops Joins". In the current
implementation, the execution plan for this query might be as follows:

| I'd | Operation | Name | Rows| Byt es| Cost %CPU| Time |
| 0| SELECT STATEMENT | | 19 | 722 | 3 (0)]00:00:01]
| 1] NESTED LOOPS | | | | | |
| 2] NESTED LOOPS | | 19 | 722 | 3 (0)]00:00:01]
[* 3| TABLE ACCESS FULL | DEPARTMENTS | 2] 32| 2 (0)]00:00:01]
|* 4| | NDEX RANGE SCAN | EMP_DEPARTMENT_I X | 10 | | 0 (0)]|00:00: 01|
| 5] TABLE ACCESS BY | NDEX RON D EMPLOYEES | 10 | 220 | 1 (0)]00:00:01]

3 - filter("D'."DEPARTMENT_NAME'=' Marketing' OR "D'." DEPARTMENT_NAME'=' Sal es')
4 - access("E"."DEPARTMENT_|I D'="D". " DEPARTMENT_| D")

ORACLE

In this case, rows from the hr. depart ment s table form the outer row source (Step 3) of
the inner nested loop (Step 2). The index enp_depart ment _i x is the inner row source
(Step 4) of the inner nested loop. The results of the inner nested loop form the outer
row source (Row 2) of the outer nested loop (Row 1). The hr. enpl oyees table is the
outer row source (Row 5) of the outer nested loop.

For each fetch request, the basic process is as follows:

1. The database iterates through the inner nested loop (Step 2) to obtain the rows
requested in the fetch:

a.

The database reads the first row of depart ment s to obtain the department IDs
for departments named Mar ket i ng or Sal es (Step 3). For example:

Mar ket i ng, 20

This row set is the outer loop. The database caches the data in the PGA.

The database scans enp_depart ment _i x, which is an index on the enpl oyees
table, to find enpl oyees rowids that correspond to this department ID (Step 4),
and then joins the result (Step 2).

The result set has the following form:
Mar ket i ng, 20, enpl oyees_rowi d

Mar ket i ng, 20, enpl oyees_rowi d
Mar ket i ng, 20, enpl oyees_rowi d

The database reads the next row of depart ment s, scans enp_depart ment _i x

to find enpl oyees rowids that correspond to this department ID, and then
iterates through the loop until the client request is satisfied.

9-11

Chapter 9
Join Methods

In this example, the database only iterates through the outer loop twice
because only two rows from depart nent s satisfy the predicate filter.
Conceptually, the result set has the following form:

Mar ket i ng, 20, enpl oyees_rowi d
Mar ket i ng, 20, enpl oyees_rowi d
Mar ket i ng, 20, enpl oyees_rowi d

Sal es, 80, enpl oyees_rowi d
Sal es, 80, enpl oyees_rowi d
Sal es, 80, enpl oyees_rowi d

These rows become the outer row source for the outer nested loop (Step 1).
This row set is cached in the PGA.

2. The database organizes the rowids obtained in the previous step so that it can
more efficiently access them in the cache.

3. The database begins iterating through the outer nested loop as follows:

a. The database retrieves the first row from the row set obtained in the previous
step, as in the following example:

Mar ket i ng, 20, enpl oyees_rowi d

b. Using the rowid, the database retrieves a row from enpl oyees to obtain the
requested values (Step 1), as in the following example:

M chael , Hart st ei n, 13000, Mar ket i ng

c. The database retrieves the next row from the row set, uses the rowid to probe
enpl oyees for the matching row, and iterates through the loop until all rows are
retrieved.

The result set has the following form:

M chael , Hart st ei n, 13000, Mar ket i ng
Pat , Fay, 6000, Mar ket i ng

John, Russel |, 14000, Sal es

Kar en, Part ners, 13500, Sal es

Al berto, Errazuriz, 12000, Sal es

In some cases, a second join row source is not allocated, and the execution plan
looks the same as it did before Oracle Database 11g. The following list describes such
cases:

ORACLE 9-12

Chapter 9
Join Methods

» All of the columns needed from the inner side of the join are present in the index,
and there is no table access required. In this case, Oracle Database allocates only
one join row source.

* The order of the rows returned might be different from the order returned in
releases earlier than Oracle Database 12c. Thus, when Oracle Database tries to
preserve a specific ordering of the rows, for example to eliminate the need for an
ORDER BY sort, Oracle Database might use the original implementation for nested
loops joins.

e The OPTI M ZER _FEATURES ENABLE initialization parameter is set to a release
before Oracle Database 11g. In this case, Oracle Database uses the original
implementation for nested loops joins.

9.2.1.5 Original Implementation for Nested Loops Joins

In the current release, both the new and original implementation of nested loops are
possible.

For an example of the original implementation, consider the following join of the
hr. enpl oyees and hr. depart nent s tables:

SELECT e.first_nane, e.last_name, e.salary, d.departnent_name
FROM hr.enpl oyees e, hr.departnents d

WHERE d. departnent_name IN (' Marketing', 'Sales')

AND e.department _id = d. departnent _id;

In releases before Oracle Database 11g, the execution plan for this query might
appear as follows:

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU) |
Time |

| 0 | SELECT STATEMENT | | 19 | 722 | 3 (0)]
00: 00: 01 |

| 1| TABLE ACCESS BY | NDEX ROW D| EMPLOYEES | 10 | 220 | 1 (0)|
00: 00: 01 |

| 2| NESTED LOOPS | | 19 | 722 | 3 (0)]
00: 00: 01 |

[* 3] TABLE ACCESS FULL | DEPARTMENTS | 2 | 321 2 (0)]
00: 00: 01 |

[* 4] | NDEX RANGE SCAN | EMP_DEPARTMENT_I X | 10 | | 0 (0)]
00: 00: 01 |

3 - filter("D'."DEPARTMENT_NAME"=' Marketing' OR "D'." DEPARTMENT_NAME"=' Sal es')
4 - access("E"."DEPARTVENT_I D'="D". " DEPARTMENT_I| D")

For each fetch request, the basic process is as follows:

ORACLE 9-13

ORACLE

Chapter 9
Join Methods

The database iterates through the loop to obtain the rows requested in the fetch:

a. The database reads the first row of depart ment s to obtain the department IDs
for departments named Mar ket i ng or Sal es (Step 3). For example:

Mar ket i ng, 20

This row set is the outer loop. The database caches the row in the PGA.

b. The database scans enp_depart nment _i x, which is an index on the
enpl oyees. departnent _i d column, to find enpl oyees rowids that correspond
to this department ID (Step 4), and then joins the result (Step 2).

Conceptually, the result set has the following form:

Mar ket i ng, 20, enpl oyees_rowi d
Mar ket i ng, 20, enpl oyees_rowi d
Mar ket i ng, 20, enpl oyees_rowi d

c. The database reads the next row of depart ment s, scans enp_depart ment _i x
to find enpl oyees rowids that correspond to this department ID, and iterates
through the loop until the client request is satisfied.

In this example, the database only iterates through the outer loop twice
because only two rows from depart nent s satisfy the predicate filter.
Conceptually, the result set has the following form:

Mar ket i ng, 20, enpl oyees_row d
Mar ket i ng, 20, enpl oyees_row d
Mar ket i ng, 20, enpl oyees_row d

Sal es, 80, enpl oyees_row d
Sal es, 80, enpl oyees_row d
Sal es, 80, enpl oyees_row d

Depending on the circumstances, the database may organize the cached rowids
obtained in the previous step so that it can more efficiently access them.

For each enpl oyees rowid in the result set generated by the nested loop, the
database retrieves a row from enpl oyees to obtain the requested values (Step 1).

Thus, the basic process is to read a rowid and retrieve the matching enpl oyees
row, read the next rowid and retrieve the matching enpl oyees row, and so on.
Conceptually, the result set has the following form:

M chael , Hart st ei n, 13000, Mar ket i ng
Pat , Fay, 6000, Mar ket i ng

John, Russel |, 14000, Sal es

Kar en, Partners, 13500, Sal es

Al berto, Errazuriz, 12000, Sal es

9-14

Chapter 9
Join Methods

9.2.1.6 Nested Loops Controls

ORACLE

You can add the USE_NL hint to instruct the optimizer to join each specified table to
another row source with a nested loops join, using the specified table as the inner
table.

The related hint USE_NL_W TH_| NDEX(t abl e i ndex) hint instructs the optimizer to join
the specified table to another row source with a nested loops join using the specified

table as the inner table. The index is optional. If no index is specified, then the nested
loops join uses an index with at least one join predicate as the index key.

Example 9-3 Nested Loops Hint

Assume that the optimizer chooses a hash join for the following query:

SELECT e.last_nane, d.departnent_name
FROM enpl oyees e, departnents d
WHERE e. departnent i d=d. department id;

The plan looks as follows:

|1d | Operation | Nane | Rows| Bytes | Cost(%CPU) |
Ti me |

| 0| SELECT STATEMENT | | | | 5

(100) | |

[*1] HASH JON | | 106 | 2862 | 5 (20)]
00: 00: 01 |

| 2] TABLE ACCESS FULL| DEPARTMENTS | 27 | 432 | 2 (0)]
00: 00: 01 |

| 3| TABLE ACCESS FULL| EMPLOYEES | 107 | 1177 | 2 (0)]
00: 00: 01 |

To force a nested loops join using depar t nent s as the inner table, add the USE_NL hint
as in the following query:

SELECT /*+ ORDERED USE _NL(d) */ e.last_nane, d.departnent_nane
FROM enpl oyees e, departnents d
WHERE e. departnent i d=d. departnent id;

The plan looks as follows:

| 1d | Operation | Nane | Rows |Bytes | Cost (%CPU)|

9-15

Chapter 9
Join Methods

Time |

| 0| SELECT STATEMENT | | | | 34

(100) | I

| 1] NESTED LOOPS | | 106 | 2862 | 34 (3)]
00: 00: 01 |

| 2| TABLE ACCESS FULL| EMPLOYEES | 107 | 1177 | 2 (0)|
00: 00: 01 |

|* 3| TABLE ACCESS FULL| DEPARTMENTS | 1| 16| O

(0)] I

3 - filter("E"."DEPARTMENT_| D'="D". " DEPARTMENT_| D")

The database obtains the result set as follows:

1. Inthe nested loop, the database reads enpl oyees to obtain the last name and
department ID for an employee (Step 2). For example:

De Haan, 90

2. For the row obtained in the previous step, the database scans depart nent s to find
the department name that matches the enpl oyees department ID (Step 3), and
joins the result (Step 1). For example:

De Haan, Executive
3. The database retrieves the next row in enpl oyees, retrieves the matching row from
depart nent s, and then repeats this process until all rows are retrieved.
The result set has the following form:
De Haan, Executive
Kochnar, Executi ve

Baer, Public Rel ations
Ki ng, Executive

¢ See Also:

e "Guidelines for Join Order Hints" to learn more about the USE_NL hint

e Oracle Database SQL Language Reference to learn about the USE_NL
hint

ORACLE 9-16

Chapter 9
Join Methods

9.2.2 Hash Joins

The database uses a hash join to join larger data sets.

The optimizer uses the smaller of two data sets to build a hash table on the join key

in memory, using a deterministic hash function to specify the location in the hash table
in which to store each row. The database then scans the larger data set, probing the
hash table to find the rows that meet the join condition.

This section contains the following topics:

9.2.2.1 When the Optimizer Considers Hash Joins

In general, the optimizer considers a hash join when a relatively large amount of data
must be joined (or a large percentage of a small table must be joined), and the join is
an equijoin.

A hash join is most cost effective when the smaller data set fits in memory. In this
case, the cost is limited to a single read pass over the two data sets.

Because the hash table is in the PGA, Oracle Database can access rows without
latching them. This technique reduces logical I/0 by avoiding the necessity of
repeatedly latching and reading blocks in the database buffer cache.

If the data sets do not fit in memory, then the database partitions the row sources,
and the join proceeds partition by partition. This can use a lot of sort area memory,
and /0O to the temporary tablespace. This method can still be the most cost effective,
especially when the database uses parallel query servers.

9.2.2.2 How Hash Joins Work

A hashing algorithm takes a set of inputs and applies a deterministic hash function to
generate a hash value between 1 and n, where n is the size of the hash table.

In a hash join, the input values are the join keys. The output values are indexes (slots)
in an array, which is the hash table.

This section contains the following topics:

9.2.2.2.1 Hash Tables

To illustrate a hash table, assume that the database hashes hr. depart nent s in a join
of depart ment s and enpl oyees. The join key column is depart nent _i d.

The first 5 rows of depart nent s are as follows:

SQ.> select * fromdepartments where rownum < 6;

DEPARTMENT _| D DEPARTMENT _NANVE MANAGER | D LOCATION I D
10 Administration 200 1700
20 Marketing 201 1800
30 Purchasing 114 1700
40 Human Resources 203 2400
50 Shi ppi ng 121 1500

ORACLE 9-17

Chapter 9
Join Methods

The database applies the hash function to each depart ment _i d in the table,
generating a hash value for each. For this illustration, the hash table has 5 slots (it
could have more or less). Because n is 5, the possible hash values range from 1 to 5.
The hash functions might generate the following values for the department IDs:

f(10
£(20
£(30
f(40
f(50

oo
oo n
anNn b EFE D

Note that the hash function happens to generate the same hash value of 4 for
departments 10 and 30. This is known as a hash collision. In this case, the database
puts the records for departments 10 and 30 in the same slot, using a linked list.
Conceptually, the hash table looks as follows:

20, Mar ket i ng, 201, 1800
40, Human Resour ces, 203, 2400

10, Admi ni stration, 200, 1700 -> 30, Purchasi ng, 114, 1700
50, Shi ppi ng, 121, 1500

g~ wnN -

9.2.2.2.2 Hash Join: Basic Steps

ORACLE

The optimizer uses the smaller data source to build a hash table on the join key in
memory, and then scans the larger table to find the joined rows.

The basic steps are as follows:

1. The database performs a full scan of the smaller data set, called the build table,
and then applies a hash function to the join key in each row to build a hash table in
the PGA.

In pseudocode, the algorithm might look as follows:

FOR smal | _table_row IN (SELECT * FROM smal | _tabl e)

LooP
sl ot _nunber := HASH(smal | _table_row. join_key);
| NSERT_HASH TABLE(sl ot _nunber, smal | _table_row);
END LOCP;

2. The database probes the second data set, called the probe table, using
whichever access mechanism has the lowest cost.

Typically, the database performs a full scan of both the smaller and larger data set.
The algorithm in pseudocode might look as follows:

FOR large_table_row IN (SELECT * FROM | arge_t abl e)
LooP
sl ot _nunber := HASH(I arge_t abl e_row. j oi n_key);
smal | _table row =
LOOKUP_HASH TABLE(sl ot _nunber, | arge_tabl e_row. j oi n_key);
IF smal | _table_row FOUND
THEN
output small _table row + large_table_ row

9-18

ORACLE

END | F,
END LOCP,

Chapter 9
Join Methods

For each row retrieved from the larger data set, the database does the following:

a. Applies the same hash function to the join column or columns to calculate the
number of the relevant slot in the hash table.

For example, to probe the hash table for department ID 30, the database
applies the hash function to 30, which generates the hash value 4.

b. Probes the hash table to determine whether rows exists in the slot.

If no rows exist, then the database processes the next row in the larger data
set. If rows exist, then the database proceeds to the next step.

c. Checks the join column or columns for a match. If a match occurs, then the
database either reports the rows or passes them to the next step in the plan,

and then processes the next row in the larger data set.

If multiple rows exist in the hash table slot, the database walks through the
linked list of rows, checking each one. For example, if department 30 hashes
to slot 4, then the database checks each row until it finds 30.

Example 9-4 Hash Joins

An application queries the oe. or ders and oe. or der _i t ens tables, joining on the

order _i d column.

SELECT o.custoner_id, |.unit_price * |.quantity
FROM orders o, order _itens |
WHERE |.order_id = o.order_id,;

The execution plan is as follows:

Rows |

|

(29)]

|* 1] HASHJON

(29)]

| 2| TABLE ACCESS FULL
(29)]

| 3] TABLE ACCESS FULL
(29)]

| ORDERS

| ORDER | TEMS

665 |
665 |
105 |

665 |

Bytes | Cost
13300 | 8
13300 | 8
840 | 4
7980 | 4

1 - access("L"."ORDER | D'="0'. "ORDER | D')

9-19

Chapter 9
Join Methods

Because the or der s table is small relative to the or der _i t ens table, which is 6 times
larger, the database hashes or der s. In a hash join, the data set for the build table
always appears first in the list of operations (Step 2). In Step 3, the database performs
a full scan of the larger or der _i t ens later, probing the hash table for each row.

9.2.2.3 How Hash Joins Work When the Hash Table Does Not Fit in the PGA

The database must use a different technique when the hash table does not fit entirely
in the PGA. In this case, the database uses a temporary space to hold portions (called
partitions) of the hash table, and sometimes portions of the larger table that probes the
hash table.

The basic process is as follows:

1. The database performs a full scan of the smaller data set, and then builds an array
of hash buckets in both the PGA and on disk.

When the PGA hash area fills up, the database finds the largest partition within the
hash table and writes it to temporary space on disk. The database stores any new
row that belongs to this on-disk partition on disk, and all other rows in the PGA.
Thus, part of the hash table is in memory and part of it on disk.

2. The database takes a first pass at reading the other data set.
For each row, the database does the following:

a. Applies the same hash function to the join column or columns to calculate the
number of the relevant hash bucket.

b. Probes the hash table to determine whether rows exist in the bucket in
memory.

If the hashed value points to a row in memory, then the database completes
the join and returns the row. If the value points to a hash partition on disk,
however, then the database stores this row in the temporary tablespace, using
the same patrtitioning scheme used for the original data set.

3. The database reads each on-disk temporary partition one by one

4. The database joins each partition row to the row in the corresponding on-disk
temporary partition.

9.2.2.4 Hash Join Controls

The USE_HASH hint instructs the optimizer to use a hash join when joining two tables
together.

¢ See Also:

e "Guidelines for Join Order Hints"

e Oracle Database SQL Language Reference to learn about USE_HASH

9.2.3 Sort Merge Joins

A sort merge join is a variation on a nested loops join.

ORACLE 9-20

Chapter 9
Join Methods

If the two data sets in the join are not already sorted, then the database sorts them.
These are the SORT JA N operations. For each row in the first data set, the database
probes the second data set for matching rows and joins them, basing its start position
on the match made in the previous iteration. This is the MERGE JO N operation.

Figure 9-6 Sort Merge Join

MERGE JOIN

SORT JOIN SORT JOIN
First Row Second Row
Source Source

This section contains the following topics:

9.2.3.1 When the Optimizer Considers Sort Merge Joins

ORACLE

A hash join requires one hash table and one probe of this table, whereas a sort merge
join requires two sorts.

The optimizer may choose a sort merge join over a hash join for joining large amounts
of data when any of the following conditions is true:

e The join condition between two tables is not an equijoin, that is, uses an inequality
condition such as <, <=, >, or >=.

In contrast to sort merges, hash joins require an equality condition.

» Because of sorts required by other operations, the optimizer finds it cheaper to use
a sort merge.

If an index exists, then the database can avoid sorting the first data set. However,
the database always sorts the second data set, regardless of indexes.

A sort merge has the same advantage over a nested loops join as the hash join:

the database accesses rows in the PGA rather than the SGA, reducing logical I/O by
avoiding the necessity of repeatedly latching and reading blocks in the database buffer
cache. In general, hash joins perform better than sort merge joins because sorting is
expensive. However, sort merge joins offer the following advantages over a hash join:

« After the initial sort, the merge phase is optimized, resulting in faster generation of
output rows.

e A sort merge can be more cost-effective than a hash join when the hash table
does not fit completely in memory.

9-21

Chapter 9
Join Methods

A hash join with insufficient memory requires both the hash table and the other
data set to be copied to disk. In this case, the database may have to read from
disk multiple times. In a sort merge, if memory cannot hold the two data sets, then
the database writes them both to disk, but reads each data set no more than once.

9.2.3.2 How Sort Merge Joins Work

As in a nested loops join, a sort merge join reads two data sets, but sorts them when
they are not already sorted.

For each row in the first data set, the database finds a starting row in the second
data set, and then reads the second data set until it finds a nonmatching row. In
pseudocode, the high-level algorithm for sort merge might look as follows:

READ data_set 1 SORT BY JO N KEY TO tenp_dsl
READ data_set 2 SORT BY JO N KEY TO tenp_ds2

READ dsl1 row FROM tenp_ds1
READ ds2_row FROM tenp_ds2

VWH LE NOT eof ON tenp_dsl,tenp_ds2

LOooP
IF (tenp_dsl.key = tenp_ds2.key) OUTPUT JO N ds1 row, ds2_row
ELSIF (tenp_dsl.key <= tenp_ds2.key) READ dsl row FROM tenp_dsl
ELSIF (tenp_dsl.key => tenp_ds2.key) READ ds2_row FROM tenp_ds2

END LOOP

For example, the following table shows sorted values in two data sets: t enp_ds1 and
tenp_ds2.

Table 9-3 Sorted Data Sets

temp_dsl temp_ds2
10 20
20 20
30 40
40 40
50 40
60 40
70 40
60
70
70

As shown in the following table, the database begins by reading 10 int enp_ds1, and
then reads the first value in t enp_ds2. Because 20 in t enp_ds2 is higher than 10 in
tenp_dsl, the database stops reading t enp_ds2.

ORACLE 9-22

ORACLE

Table 9-4 Start at 10 in temp_ds1

Chapter 9
Join Methods

temp_dsl

temp_ds2

Action

10 [start here]

20
30
40
50
60
70

20 [start here] [stop
here]

20
40
40
40
40
40
60
70
70

20 in temp_ds2 is higher than 10 in temp_ds1. Stop.
Start again with next row in temp_ds1.

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

The database proceeds to the next value in t enp_ds1, which is 20. The database
proceeds through t enp_ds2 as shown in the following table.

Table 9-5 Start at 20 in temp_ds1

temp_dsl

temp_ds2

Action

10
20 [start here]
30

40
50
60
70

20 [start here]
20
40 [stop here]

40
40
40
40
60
70
70

Match. Proceed to next value in temp_ds2.
Match. Proceed to next value in temp_ds2.

40 in temp_ds2 is higher than 20 in temp_ds1. Stop.
Start again with next row in temp_ds1.

N/A
N/A
N/A
N/A
N/A
N/A
N/A

The database proceeds to the next row in t enp_ds1, which is 30. The database starts
at the number of its last match, which was 20, and then proceeds through t enp_ds2
looking for a match, as shown in the following table.

Table 9-6 Start at 30 in temp_ds1

temp_dsl temp_ds2 Action
10 20 N/A
20 20 [start at last match] 20 in temp_ds2 is lower than 30 in temp_ds1.

30 [start here]

40
50
60

40 [stop here]

40
40
40

Proceed to next value in temp_ds2.

40 in temp_ds?2 is higher than 30 in temp_ds1. Stop.
Start again with next row in temp_ds1.

N/A
N/A
N/A

9-23

ORACLE

Chapter 9
Join Methods

Table 9-6 (Cont.) Start at 30 in temp_ds1

temp_dsl temp_ds2 Action
70 40 N/A

60 N/A

70 N/A

70 N/A

The database proceeds to the next row in t enp_ds1, which is 40. As shown in the
following table, the database starts at the number of its last match in t enp_ds2, which
was 20, and then proceeds through t enp_ds2 looking for a match.

Table 9-7 Start at 40 in temp_ds1
|

temp_dsl temp_ds2 Action
10 20 N/A
20 20 [start at last 20 in temp_ds?2 is lower than 40 in temp_ds1.
match] Proceed to next value in temp_ds2.
30 40 Match. Proceed to next value in temp_ds2.
40 [start here] 40 Match. Proceed to next value in temp_ds2.
50 40 Match. Proceed to next value in temp_ds2.
60 40 Match. Proceed to next value in temp_ds2.
70 40 Match. Proceed to next value in temp_ds2.
60 [stop here] 60 in temp_ds2 is higher than 40 in temp_ds1. Stop.
Start again with next row in temp_ds1.
70 N/A
70 N/A

The database continues in this way until it has matched the final 70 in t enp_ds2. This
scenario demonstrates that the database, as it reads through t enp_ds1, does not need
to read every row in t enp_ds2. This is an advantage over a nested loops join.

Example 9-5 Sort Merge Join Using Index

The following query joins the enpl oyees and depart nent s tables on the
depart ment _i d column, ordering the rows on departnment i d as follows:

SELECT e.enployee_id, e.last_nane, e.first_nane, e.departnent_id,
d. depart ment _name

FROM enpl oyees e, departnents d

WHERE e. departnent _id = d.department _id

ORDER BY departnent _id;

A query of DBM5S_XPLAN. DI SPLAY_CURSOR shows that the plan uses a sort merge join:

| 1d] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Ti nme|

9-24

ORACLE

Chapter 9
Join Methods

| 0| SELECT STATEMENT | | |

5(100) | |

| 1] MERGE JON | | 106 | 4028 |5 (20)]
00: 00: 01

| 2| TABLE ACCESS BY | NDEX ROW Dj DEPARTMENTS | 27 | 432 |2 (0)]
00: 00: 01

| 3 INDEX FULL SCAN |DEPT_ID PK | 27 | |1 (0)]
00: 00: 01

|*4] SORT JON | | 107 | 2354 |3 (34)]
00: 00: 01

| 5| TABLE ACCESS FULL | ENPLOYEES | 107 | 2354 |2 (0)|
00: 00: 01

4 - access("E"."DEPARTMVENT_| D'="D". " DEPARTMENT_| D")
filter("E". "DEPARTVENT_I D'="D". " DEPARTMENT_| D")

The two data sets are the depart nent s table and the enpl oyees table. Because an
index orders the depar t ment s table by depart ment _i d, the database can read this
index and avoid a sort (Step 3). The database only needs to sort the enpl oyees table
(Step 4), which is the most CPU-intensive operation.

Example 9-6 Sort Merge Join Without an Index

You join the enpl oyees and depart nent s tables on the department i d column,
ordering the rows on depart ment _i d as follows. In this example, you specify NO_| NDEX
and USE_MERCE to force the optimizer to choose a sort merge:

SELECT /*+ USE MERGE(d e) NO_INDEX(d) */ e.enployee id, e.last_nane,
e.first_nane,
e.departrment _id, d.departnment _name
FROM enpl oyees e, departnents d
WHERE e. departnent id = d.department _id
ORDER BY departnent id;

A query of DBMS_XPLAN. DI SPLAY_CURSOR shows that the plan uses a sort merge join:

| I'd] Operation | Name | Rows| Bytes|Cost (%CPU)|
Ti me |

| 0| SELECT STATEMENT | | | | 6

(100) | |

| 1| MERGE JON | | 106 | 9540 | 6 (34)]
00: 00: 01|

| 2| SORT JON | | 27| 567 | 3 (34)]
00: 00: 01|

9-25

Chapter 9
Join Types

| 3| TABLE ACCESS FULL| DEPARTMENTS | 27 | 567 | 2 (0)]
00: 00: 01
|*4 | SORT JON | | 107 | 7383 | 3 (34)]
00: 00: 01
| 5| TABLE ACCESS FULL| EMPLOYEES | 107 | 7383 | 2 (0)]
00: 00: 01

4 - access("E"."DEPARTMVENT_I D'="D". " DEPARTMENT_| D")
filter("E". "DEPARTVENT_I D'="D". " DEPARTMENT_| D")

Because the depart ments. depart ment _i d index is ignored, the optimizer performs a
sort, which increases the combined cost of Step 2 and Step 3 by 67% (from 3 to 5).

9.2.3.3 Sort Merge Join Controls

The USE_MERGE hint instructs the optimizer to use a sort merge join.

In some situations it may make sense to override the optimizer with the USE_MERGE
hint. For example, the optimizer can choose a full scan on a table and avoid a sort
operation in a query. However, there is an increased cost because a large table

is accessed through an index and single block reads, as opposed to faster access
through a full table scan.

¢ See Also:

Oracle Database SQL Language Reference to learn about the USE_MERGE
hint

9.3 Join Types

A join type is determined by the type of join condition.

This section contains the following topics:

9.3.1 Inner Joins

An inner join (sometimes called a simple join) is a join that returns only rows that
satisfy the join condition. Inner joins are either equijoins or nonequijoins.

This section contains the following topics:

9.3.1.1 Equijoins

An equijoin is an inner join whose join condition contains an equality operator.

ORACLE 9-26

Chapter 9
Join Types

The following example is an equijoin because the join condition contains only an
equality operator:

SELECT e. enpl oyee id, e.last_nane, d.departnent_nane
FROM enpl oyees e, departnents d
WHERE e. departnent i d=d. department id;

In the preceding query, the join condition is e. depart ment _i d=d. departnment _id. Ifa
row in the enpl oyees table has a department ID that matches the value in a row

in the depart ment s table, then the database returns the joined result; otherwise, the
database does not return a result.

9.3.1.2 Nonequijoins

ORACLE

A nonequijoin is an inner join whose join condition contains an operator that is not an
equality operator.

The following query lists all employees whose hire date occurred when employee 176
(who is listed in j ob_hi st ory because he changed jobs in 2007) was working at the
company:

SELECT e. enployee_id, e.first_name, e.last_nanme, e. hire_date
FROM enpl oyees e, job _history h

WHERE h. enployee_id = 176

AND e.hire_date BETWEEN h.start _date AND h. end_date;

In the preceding example, the condition joining enpl oyees and j ob_hi st ory does not
contain an equality operator, so it is a nonequijoin. Nonequijoins are relatively rare.

Note that a hash join requires at least a partial equijoin. The following SQL
script contains an equality join condition (el. enpno = e2. enpno) and a nonequality
condition:

SET AUTOTRACE TRACEONLY EXPLAI N

SELECT *

FROM scott.enmp el JON scott.enmp e2

ON (el.enmpno = e2.enpno

AND el. hiredate BETWEEN e2. hiredate-1 AND e2. hiredate+l)

The optimizer chooses a hash join for the preceding query, as shown in the following
plan:

Execution Pl an

| 1d | Operation | Nanme | Rows | Bytes | Cost (%CPU)|
Ti me |

| 0| SELECT STATEMENT | 1] 174 | 5 (20)]

9-27

Chapter 9
Join Types

00: 00: 01 |

|* 1] HASHJON | | 1
00: 00: 01 |
| 2
00: 00: 01 |
| 3]
00: 00: 01 |

TABLE ACCESS FULL| EMP | 14 |

TABLE ACCESS FULL| EMP | 14 |

1 - access("El"."EMPNO'="E2"."EMPNO")
filter("EL"."H REDATE">=I NTERNAL_FUNCTI ON("E2"."H REDATE")-1 AND
"E1". "H REDATE" <=| NTERNAL_FUNCTI ON(" E2". " H REDATE") +1)

9.3.1.3 Band Joins

ORACLE

A band join is a special type of nonequijoin in which key values in one data set must
fall within the specified range (“band”) of the second data set. The same table can
serve as both the first and second data sets.

Starting in Oracle Database 12c¢ Release 2 (12.2), the database evaluates band joins
more efficiently. The optimization avoids the unnecessary scanning of rows that fall
outside the defined bands.

The optimizer uses a cost estimate to choose the join method (hash, nested loops,
or sort merge) and the parallel data distribution method. In most cases, optimized
performance is comparable to an equijoin.

This following examples query employees whose salaries are between $100 less

and $100 more than the salary of each employee. Thus, the band has a width of $200.
The examples assume that it is permissible to compare the salary of every employee
with itself. The following query includes partial sample output:

SELECT el.last_nane ||
" has salary between 100 |ess and 100 nore than ' ||
e2.last_nane AS " SALARY COVPARI SON'

FROV empl oyees el,
enmpl oyees €2
WHERE el.salary

BETWEEN e2. sal ary - 100
AND e2.salary + 100;

SALARY COMPARI SON

King has salary between 100 | ess and 100 nore than King

Kochhar has sal ary between 100 | ess and 100 nore than Kochhar
Kochhar has sal ary between 100 | ess and 100 nore than De Haan
De Haan has sal ary between 100 | ess and 100 nore than Kochhar
De Haan has sal ary between 100 | ess and 100 nore than De Haan
Russel | has salary between 100 | ess and 100 nore than Russel
Partners has sal ary between 100 | ess and 100 nore than Partners

9-28

ORACLE

Chapter 9
Join Types

Example 9-7 Query Without Band Join Optimization

Without the band join optimization, the database uses the following query plan:

0 | SELECT STATEMENT |
1| MERGE JON |
2| SORT JON |
3| TABLE ACCESS FULL | EMPLOYEES
4| FILTER |
5| SORT JON |
6| TABLE ACCESS FULL| EMPLOYEES

4 - filter("EL"."SAL"<="E2"." SAL"+100)
5 - access(| NTERNAL_FUNCTI ON("E1". " SAL") >="E2". " SAL" - 100)
filter(I NTERNAL_FUNCTI ON("EL". " SAL") >="E2". " SAL" - 100)

In this plan, Step 2 sorts the el row source, and Step 5 sorts the €2 row source. The
sorted row sources are illustrated in the following table.

Table 9-8 Sorted row Sources

el Sorted (Step 2 of Plan)

e2 Sorted (Step 5 of Plan)

24000 (King)

24000 (King)

17000 (Kochhar)

17000 (Kochhar)

17000 (De Haan)

17000 (De Haan)

14000 (Russell)

14000 (Russell)

13500 (Partners)

13500 (Partners)

The join begins by iterating through the sorted input (el), which is the left branch of the
join, corresponding to Step 2 of the plan. The original query contains two predicates:

e el.sal >= e2.sal -100, which is the Step 5 filter

* el.sal >= e2.sal +100, which is the Step 4 filter

For each iteration of the sorted row source el, the database iterates through row
source €2, checking every row against Step 5 filter el. sal >= e2. sal -100. If the

row passes the Step 5 filter, then the database sends it to the Step 4 filter, and then
proceeds to test the next row in e2 against the Step 5 filter. However, if a row fails the
Step 5 filter, then the scan of e2 stops, and the database proceeds through the next

iteration of el.

The following table shows the first iteration of e1, which begins with 24000 (Ki ng) in
data set el. The database determines that the first row in €2, which is 24000 (Ki ng),
passes the Step 5 filter. The database then sends the row to the Step 4 filter, el. sal

9-29

Chapter 9
Join Types

<= w2. sal +100, which also passes. The database sends this row to the MERGE row
source. Next, the database checks 17000 (Kochhar) against the Step 5 filter, which
also passes. However, the row fails the Step 4 filter, and is discarded. The database
proceeds to test 17000 (De Haan) against the Step 5 filter.

Table 9-9 First Iteration of el: Separate SORT JOIN and FILTER

Scan e2 Step 5 Filter (el.sal >= e2.sal-100) | Step 4 Filter (el.sal <= e2.sal+100)
24000 (King) Pass because 24000 >= 23900. Pass because 24000 <= 24100.
Send to Step 4 filter. Return row for merging.
17000 Pass because 24000 >= 16900. Fail because 24000 <=17100 is false.
(Kochhar) Send to Step 4 filter. Discard row. Scan next row in e2.
17000 (De Pass because 24000 >= 16900. Fail because 24000 <=17100 is false.
Haan) Send to Step 4 filter. Discard row. Scan next row in e2.
14000 (Russell) | Pass because 24000 >= 13900. Fail because 24000 <=14100 is false.
Send to Step 4 filter. Discard row. Scan next row in e2.
13500 Pass because 24000 >= 13400. Fail because 24000 <=13600 is false.
(Partners) Send to Step 4 filter. Discard row. Scan next row in e2.

As shown in the preceding table, every e2 row necessarily passes the Step 5 filter
because the e2 salaries are sorted in descending order. Thus, the Step 5 filter always
sends the row to the Step 4 filter. Because the e2 salaries are sorted in descending
order, the Step 4 filter necessarily fails every row starting with 17000 (Kochhar). The
inefficiency occurs because the database tests every subsequent row in e2 against
the Step 5 filter, which necessarily passes, and then against the Step 4 filter, which
necessarily fails.

Example 9-8 Query With Band Join Optimization

Starting in Oracle Database 12c¢ Release 2 (12.2), the database optimizes the band
join by using the following plan, which does not have a separate FI LTER operation:

| SELECT STATEMENT |

| MERGE JON |

| SORT JON |

| TABLE ACCESS FULL | EMPLOYEES |
I

I

SORT JON | |
TABLE ACCESS FULL | EMPLOYEES |

4 - access(| NTERNAL_FUNCTI ON("E1". " SALARY") >="E2". " SALARY" - 100)
filter(("ELl"."SALARY"<="E2"."SALARY"+100 AND
| NTERNAL_FUNCTI ON(" E1". " SALARY") >="E2". " SALARY" - 100))

ORACLE 9-30

Chapter 9
Join Types

The difference is that Step 4 uses Boolean AND logic for the two predicates to create
a single filter. Instead of checking a row against one filter, and then sending it to a
different row source for checking against a second filter, the database performs one
check against one filter. If the check fails, then processing stops.

In this example, the query begins the first iteration of e1, which begins with 24000
(Ki ng) . The following figure represents the range. e2 values below 23900 and above
24100 fall outside the range.

Figure 9-7 Band Join
Salary = 24000

| |
10000 20000 23300 24100 30000

The following table shows that the database tests the first row of €2, which is 24000
(Ki ng), against the Step 4 filter. The row passes the test, so the database sends the
row to be merged. The next row in €2 is 17000 (Kochhar). This row falls outside of
the range (band) and thus does not satisfy the filter predicate, so the database stops
testing e2 rows in this iteration. The database stops testing because the descending
sort of e2 ensures that all subsequent rows in e2 fail the filter test. Thus, the database
can proceed to the second iteration of el.

Table 9-10 First Iteration of el: Single SORT JOIN

Scan e2 Filter 4 (el.sal >= e2.sal — 100) AND (el.sal <= e2.sal + 100)
24000 (King) Passes test because it is true that (24000 >= 23900) AND (24000
<= 24100).

Send row to MERCGE. Test next row.

17000 (Kochhar) Fails test because it is false that (24000 >= 16900) AND (24000 <=
17100) .

Stop scanning €2. Begin next iteration of el.

17000 (De Haan) n/a
14000 (Russell) n/a
13500 (Partners) n/a

In this way, the band join optimization eliminates unnecessary processing. Instead of
scanning every row in €2 as in the unoptimized case, the database scans only the
minimum two rows.

9.3.2 Outer Joins

ORACLE

An outer join returns all rows that satisfy the join condition and also rows from one
table for which no rows from the other table satisfy the condition. Thus, the result set
of an outer join is the superset of an inner join.

In ANSI syntax, the QUTER JO N clause specifies an outer join. In the FROMclause, the
left table appears to the left of the QUTER JO N keywords, and the right table appears

9-31

Chapter 9
Join Types

to the right of these keywords. The left table is also called the outer table, and the
right table is also called the inner table. For example, in the following statement the
enpl oyees table is the left or outer table:

SELECT enpl oyee_id, |ast_name, first_name
FROM enpl oyees LEFT QUTER JO N depart ment s
ON (enpl oyees. depart nent _i d=depart nents. departnents_id);

Outer joins require the outer-joined table to be the driving table. In the preceding
example, enpl oyees is the driving table, and depart ment s is the driven-to table.

This section contains the following topics:

9.3.2.1 Nested Loops Outer Joins

The database uses this operation to loop through an outer join between two tables.
The outer join returns the outer (preserved) table rows, even when no corresponding
rows are in the inner (optional) table.

In a standard nested loop, the optimizer chooses the order of tables—which is the
driving table and which the driven table—based on the cost. However, in a nested loop
outer join, the join condition determines the order of tables. The database uses the
outer, row-preserved table to drive to the inner table.

The optimizer uses nested loops joins to process an outer join in the following
circumstances:

e ltis possible to drive from the outer table to the inner table.
« Data volume is low enough to make the nested loop method efficient.

For an example of a nested loop outer join, you can add the USE_NL hint to
Example 9-9 to instruct the optimizer to use a nested loop. For example:

SELECT /*+ USE NL(c o) */ cust_|ast_nane,
SUM NVL2(0. custoner _id, 0,1)) "Count"

FROM custoners c, orders o

WHERE c.credit linit > 1000

AND c.custoner_id = o.customer_id(+)

GROUP BY cust | ast_nane;

9.3.2.2 Hash Join Quter Joins

ORACLE

The optimizer uses hash joins for processing an outer join when either the data
volume is large enough to make a hash join efficient, or it is impossible to drive from
the outer table to the inner table.

The cost determines the order of tables. The outer table, including preserved rows,
may be used to build the hash table, or it may be used to probe the hash table.

Example 9-9 Hash Join Outer Joins

This example shows a typical hash join outer join query, and its execution plan. In this
example, all the customers with credit limits greater than 1000 are queried. An outer
join is needed so that the query captures customers who have no orders.

e The outer table is cust oners.

9-32

ORACLE

Chapter 9
Join Types

e The inner table is or der s.

e The join preserves the cust orer s rows, including those rows without a
corresponding row in or ders.

You could use a NOT EXI STS subquery to return the rows. However, because you are
guerying all the rows in the table, the hash join performs better (unless the NOT EXI STS
subquery is not nested).

SELECT cust _| ast_nane, SUM NVL2(o.custorer _id,0,1)) "Count"
FROM customers c, orders o

WHERE c.credit _linit > 1000

AND c.custoner_id = o.customer_id(+)

GROUP BY cust _| ast_nane;

| Id | Operation | Name | Rows | Bytes| Cost (%CPU) |
Ti me |

| 0| SELECT STATEMENT | | | | 7

(100) | |

| 1| HASH GROUP BY | | 168 | 3192 | 7 (29)]
00: 00: 01 |

|* 2| HASH JOIN OUTER | | 318 | 6042 | 6 (17)]
00: 00: 01 |

[* 3| TABLE ACCESS FULL| CUSTOMERS | 260 | 3900 | 3 (0)]
00: 00: 01 |

[* 4| TABLE ACCESS FULL| ORDERS | 105 | 420 | 2 (0)]
00: 00: 01 |

2 - access("C'."CUSTOMER_| D'="Q'. " CUSTOMER_| D")

PLAN TABLE_OUTPUT

3 - filter("C'."CREDI T_LIM T">1000)
4 - filter("0O'"."CUSTOVER | D' >0)

The query looks for customers which satisfy various conditions. An outer join returns
NULL for the inner table columns along with the outer (preserved) table rows when it
does not find any corresponding rows in the inner table. This operation finds all the
cust omer s rows that do not have any or der s rows.

In this case, the outer join condition is the following:

custonmers. customer _id = orders. custoner _id(+)

The components of this condition represent the following:

9-33

ORACLE

Chapter 9
Join Types

Example 9-10 Outer Join to a Multitable View

In this example, the outer join is to a multitable view. The optimizer cannot drive into
the view like in a normal join or push the predicates, so it builds the entire row set of
the view.

SELECT c.cust _|ast_nane, sum(revenue)
FROM customers c, v_orders o

WHERE c.credit linit > 2000

AND o.custoner _id(+) = c.custoner_id
GROUP BY c.cust _|ast_nane;

| Id | Operation | Nane | Rows | Bytes | Cost
(%CPY) |

| 0] SELECT STATEMENT | | 144 | 4608 | 16
(32)]

| 1| HASH GROUP BY | | 144 | 4608 | 16
(32)]

[* 2] HASH JO N QUTER | | 663 | 21216 | 15
(27|

[* 3] TABLE ACCESS FULL | CUSTOMERS | 195 | 2925 | 6
(17)]

| 4] VI EW | V_ORDERS | 665 | 11305

| |

| 5] HASH GROUP BY | | 665 | 15960 | 9
(34)

[* 6| HASH JO N | | 665 | 15960 | 8
(29|

[* 7] TABLE ACCESS FULL| ORDERS | 105 | 840 | 4
(29)]

| 8] TABLE ACCESS FULL| ORDER ITEMS | 665 | 10640 | 4
(29)]

2 - access("O'."CUSTOMER | D' (+) ="C'. " CUSTOMER | D")
3 - filter("C'."CREDI T_LIM T">2000)

6 - access("O'."ORDER |D'="L"."CORDER | D")

7 - filter("O'."CUSTOMER | D' >0)

The view definition is as follows:

CREATE OR REPLACE view v_orders AS

SELECT I.product _id, SUMI.quantity*unit_price) revenue,
o.order _id, o.customer_id

FROM orders o, order_itens |

WHERE o.order id = I|.order _id

GROUP BY | .product _id, o.order_id, o.customer_id,;

9-34

Chapter 9
Join Types

9.3.2.3 Sort Merge Outer Joins

When an outer join cannot drive from the outer (preserved) table to the inner (optional)
table, it cannot use a hash join or nested loops joins.

In this case, it uses the sort merge outer join.
The optimizer uses sort merge for an outer join in the following cases:

* A nested loops join is inefficient. A nested loops join can be inefficient because of
data volumes.

* The optimizer finds it is cheaper to use a sort merge over a hash join because of
sorts required by other operations.

9.3.2.4 Full Outer Joins

ORACLE

A full outer join is a combination of the left and right outer joins.

In addition to the inner join, rows from both tables that have not been returned in

the result of the inner join are preserved and extended with nulls. In other words, full
outer joins join tables together, yet show rows with no corresponding rows in the joined
tables.

Example 9-11 Full Outer Join

The following query retrieves all departments and all employees in each department,
but also includes:

* Any employees without departments

* Any departments without employees

SELECT d. departnent _id, e.enployee_ id

FROM enpl oyees e FULL QUTER JO N departnents d

ON e.departrment _id = d.departnent _id
ORDER BY d. departnent i d;

The statement produces the following output:

DEPARTMENT_I D EMPLOYEE_I D

10 200
20 201
20 202
30 114
30 115
30 116
270
280
178
207

125 rows sel ect ed.

9-35

Chapter 9
Join Types

Example 9-12 Execution Plan for a Full Outer Join

Starting with Oracle Database 11g, Oracle Database automatically uses a native
execution method based on a hash join for executing full outer joins whenever
possible. When the database uses the new method to execute a full outer join,
the execution plan for the query contains HASH JO N FULL OUTER. The query in
Example 9-11 uses the following execution plan:

| 1d] Operation | Nane | Rows| Byt es | Cost (%CPU) |
Time |

|0 | SELECT STATEMENT | |122 | 4758 | 6 (34)]|00:0
|0' (1)1I SORT ORDER BY | |122 | 4758 | 6 (34)]00:0
|0' gll VI EW | WFQI 0 |122 | 4758 | 5 (20)]00:0
?;gll HASH JOIN FULL OUTER | |122 | 1342 | 5 (20)]00:0
|0' gll | NDEX FAST FULL SCAN| DEPT IDPK | 27 | 108 | 2 (0)]|00:0
|0' gli TABLE ACCESS FULL | EMPLOYEES [107 | 749 | 2 (0)|00:0
0:01

3 - access("E"."DEPARTMENT_| D'="D". " DEPARTMENT_I D")

HASH JO N FULL QUTERis included in the preceding plan (Step 3), indicating that the
guery uses the hash full outer join execution method. Typically, when the full outer join
condition between two tables is an equijoin, the hash full outer join execution method
is possible, and Oracle Database uses it automatically.

To instruct the optimizer to consider using the hash full outer join execution method,
apply the NATI VE_FULL_CUTER_JQ N hint. To instruct the optimizer not to consider using
the hash full outer join execution method, apply the NO NATI VE_FULL_QUTER JO N hint.
The NO_NATI VE_FULL_QUTER_JO N hint instructs the optimizer to exclude the native
execution method when joining each specified table. Instead, the full outer join is
executed as a union of left outer join and an antijoin.

9.3.2.5 Multiple Tables on the Left of an Outer Join

In Oracle Database 12c, multiple tables may exist on the left of an outer-joined table.
This enhancement enables Oracle Database to merge a view that contains multiple
tables and appears on the left of outer join.

ORACLE 9-36

Chapter 9
Join Types

In releases before Oracle Database 12c¢, a query such as the following was invalid,
and would trigger an ORA- 01417 error message:

SELECT t1.d, t3.c
FROM t1, t2, t3

WHERE tl.z =t2.z
AND tl.x =t3.x (+)
AND t2.y = t3.y (+);

Starting in Oracle Database 12c, the preceding query is valid.

9.3.3 Semijoins

A semijoin is a join between two data sets that returns a row from the first set when a
matching row exists in the subquery data set.

The database stops processing the second data set at the first match. Thus,
optimization does not duplicate rows from the first data set when multiple rows in
the second data set satisfy the subquery criteria.

" Note:

Semijoins and antijoins are considered join types even though the SQL
constructs that cause them are subqueries. They are internal algorithms
that the optimizer uses to flatten subquery constructs so that they can be
resolved in a join-like way.

This section contains the following topics:

9.3.3.1 When the Optimizer Considers Semijoins

A semijoin avoids returning a huge number of rows when a query only needs to
determine whether a match exists.

With large data sets, this optimization can result in significant time savings over a
nested loops join that must loop through every record returned by the inner query
for every row in the outer query. The optimizer can apply the semijoin optimization to
nested loops joins, hash joins, and sort merge joins.

The optimizer may choose a semijoin in the following circumstances:

* The statement uses either an | N or EXI STS clause.
* The statement contains a subquery in the I N or EXI STS clause.

e« The | Nor EXI STS clause is not contained inside an OR branch.

9.3.3.2 How Semijoins Work

The semijoin optimization is implemented differently depending on what type of join is
used.

ORACLE 9-37

ORACLE

Chapter 9
Join Types

The following pseudocode shows a semijoin for a nested loops join:

FOR ds1 row I N dsl1 LOOP
mat ch : = fal se;
FOR ds2_row I N ds2_subquery LOOP
I F (dsl _row mat ches ds2_row) THEN
match : = true;
EXIT -- stop processing second data set when a match is found
END | F
END LOCP
IF (match = true) THEN
RETURN ds1_row
END I F
END LOCOP

In the preceding pseudocode, ds1 is the first data set, and ds2_subquery is the
subquery data set. The code obtains the first row from the first data set, and then
loops through the subquery data set looking for a match. The code exits the inner loop
as soon as it finds a match, and then begins processing the next row in the first data
set.

Example 9-13 Semijoin Using WHERE EXISTS

The following query uses a WHERE EXI STS clause to list only the departments that
contain employees:

SELECT department id, department _name
FROM departnents
WHERE EXI STS (SELECT 1
FROM enpl oyees
VWHERE enpl oyees. departrent _id =
department s. depart ment _i d)

The execution plan reveals a NESTED LOOPS SEM operation in Step 1:

| I'd] Operation | Name | Rows| Byt es| Cost (%CPU) |
Tinme |
| 0| SELECT STATEMENT | | | 2
(100) | |
| 1| NESTED LOOPS SEMI | |11 | 209 | 2 (0)]
00: 00: 01 |
| 2| TABLE ACCESS FULL| DEPARTMENTS |27 | 432 2 (0]
00: 00: 01 |
[*3 | I NDEX RANGE SCAN | EMP_DEPARTMENT IX |44 | 132 | 0
(0)| |
9-38

ORACLE

Chapter 9
Join Types

For each row in depar t ment s, which forms the outer loop, the database obtains the
department ID, and then probes the enpl oyees. depart ment _i d index for matching
entries. Conceptually, the index looks as follows:

10, row d
10, row d
10, row d
10, row d
30, rowid
30, rowid
30, rowid

If the first entry in the depart ment s table is department 30, then the database performs
a range scan of the index until it finds the first 30 entry, at which point it stops reading
the index and returns the matching row from depart nent s. If the next row in the

outer loop is department 20, then the database scans the index for a 20 entry, and

not finding any matches, performs the next iteration of the outer loop. The database
proceeds in this way until all matching rows are returned.

Example 9-14 Semijoin Using IN

The following query uses a | N clause to list only the departments that contain
employees:

SELECT department id, department _name
FROM departnents
WHERE department _id IN

(SELECT departnent id

FROM enpl oyees);

The execution plan reveals a NESTED LOOPS SEM operation in Step 1:

| 1d] Operation | Nane | Rows| Byt es| Cost (%CPU) |
Tinme |

| 0| SELECT STATEMENT | | | | 2

(100) | |

| 1| NESTED LOOPS SEMI | |11] 209 | 2 (0)]

00: 00: 01 |

| 2| TABLE ACCESS FULL| DEPARTMENTS |27 | 432 2 (0]
00: 00: 01 |

|[*3 | | NDEX RANGE SCAN | EMP_DEPARTMENT IX |44 | 132 | 0

The plan is identical to the plan in Example 9-13.

9-39

Chapter 9
Join Types

9.3.4 Antijoins

An antijoin is a join between two data sets that returns a row from the first set when a
matching row does not exist in the subquery data set.

Like a semijoin, an antijoin stops processing the subquery data set when the first
match is found. Unlike a semijoin, the antijoin only returns a row when no match is
found.

This section contains the following topics:

9.3.4.1 When the Optimizer Considers Antijoins

ORACLE

An antijoin avoids unnecessary processing when a query only needs to return a row
when a match does not exist.

With large data sets, this optimization can result in significant time savings over a
nested loops join. The latter join must loop through every record returned by the
inner query for every row in the outer query. The optimizer can apply the antijoin
optimization to nested loops joins, hash joins, and sort merge joins.

The optimizer may choose an antijoin in the following circumstances:

* The statement uses either the NOT | Nor NOT EXI STS clause.

* The statement has a subquery in the NOT | Nor NOT EXI STS clause.

* The NOT I Nor NOT EXI STS clause is not contained inside an OR branch.

* The statement performs an outer join and applies an | S NULL condition to a join

column, as in the following example:

SET AUTOTRACE TRACEONLY EXPLAI N
SELECT enp. *

FROM enp, dept

WHERE enp. deptno = dept. dept no(+)
AND dept . deptno I'S NULL

Execution Pl an

Pl an hash val ue: 1543991079

| Id | Operation | Name | Rows | Bytes |Cost (%CPU) |
Ti me |

| 0] SELECT STATEMENT | | 14 | 1400 | 5 (20)]
00: 00: 01 |

|[* 1] HASH JON ANTI | | 14 | 1400 | 5 (20)]
00: 00: 01 |

| 2| TABLE ACCESS FULL| EMP | 14| 1218 | 2 (0)]
00: 00: 01 |

| 3] TABLE ACCESS FULL| DEPT | 4 | 521 2 (0)]
00: 00: 01 |

9-40

Chapter 9
Join Types

- dynamic statistics used: dynanmic sanmpling (level =2)

9.3.4.2 How Antijoins Work

ORACLE

The antijoin optimization is implemented differently depending on what type of join is
used.

The following pseudocode shows an antijoin for a nested loops join:

FOR ds1 row I N dsl1 LOOP
mat ch : = true;
FOR ds2 row I N ds2 LOCP
I F (dsl_row matches ds2 row) THEN
mat ch : = fal se;
EXIT -- stop processing second data set when a nmatch is found
END | F
END LOOP
IF (match = true) THEN
RETURN ds1 row
END | F
END LOOP

In the preceding pseudocode, ds1 is the first data set, and ds2 is the second data

set. The code obtains the first row from the first data set, and then loops through the
second data set looking for a match. The code exits the inner loop as soon as it finds a
match, and begins processing the next row in the first data set.

Example 9-15 Semijoin Using WHERE EXISTS

The following query uses a WHERE EXI STS clause to list only the departments that
contain employees:

SELECT departnent _id, department_name
FROM departnents
WHERE EXI STS (SELECT 1
FROM empl oyees
WHERE enpl oyees. department _id =
departments. departnent _id)

The execution plan reveals a NESTED LOOPS SEM operation in Step 1:

| Id] Operation | Name | Rows| Byt es | Cost (%CPU) |

9-41

Chapter 9
Join Types

Time |

| 0| SELECT STATEMENT | | | 2

(100) | I

| 1| NESTED LOOPS SEMI | [11 | 209 | 2 (0)]
00: 00: 01 |

| 2| TABLE ACCESS FULL| DEPARTMENTS |27 | 432 | 2 (0)]
00: 00: 01 |

[*3 | I NDEX RANGE SCAN | EMP_DEPARTMENT | X |44 | 132 | O

(0)] I

For each row in depar t ment s, which forms the outer loop, the database obtains the
department ID, and then probes the enpl oyees. depart ment _i d index for matching
entries. Conceptually, the index looks as follows:

10, row d
10, row d
10, row d
10, row d
30, rowid
30, rowid
30, rowid

If the first record in the depart nent s table is department 30, then the database
performs a range scan of the index until it finds the first 30 entry, at which point it
stops reading the index and returns the matching row from depart nent s. If the next
row in the outer loop is department 20, then the database scans the index for a 20
entry, and not finding any matches, performs the next iteration of the outer loop. The
database proceeds in this way until all matching rows are returned.

9.3.4.3 How Antijoins Handle Nulls

ORACLE

For semijoins, | Nand EXI STS are functionally equivalent. However, NOT | N and NOT
EXI STS are not functionally equivalent because of nulls.

If a null value is returned to a NOT | N operator, then the statement returns no records.
To see why, consider the following WHERE clause:

WHERE department _id NOT IN (null, 10, 20)

The database tests the preceding expression as follows:
WHERE (department _id !'= null)

AND (department_id !'= 10)
AND (department_id != 20)

For the entire expression to be t r ue, each individual condition must be t r ue. However,
a null value cannot be compared to another value, so the department _id !=nul |

9-42

ORACLE

Chapter 9
Join Types

condition cannot be t r ue, and thus the whole expression is always f al se. The
following techniques enable a statement to return records even when nulls are
returned to the NOT | N operator;

e Apply an NVL function to the columns returned by the subquery.
* Addan|S NOT NULL predicate to the subquery.
e Implement NOT NULL constraints.

In contrast to NOT | N, the NOT EXI STS clause only considers predicates that return

the existence of a match, and ignores any row that does not match or could not be
determined because of nulls. If at least one row in the subquery matches the row from
the outer query, then NOT EXI STS returns f al se. If no tuples match, then NOT EXI STS
returns t r ue. The presence of nulls in the subquery does not affect the search for
matching records.

In releases earlier than Oracle Database 11g, the optimizer could not use an antijoin
optimization when nulls could be returned by a subquery. However, starting in Oracle
Database 11g, the ANTI NA (and ANTI SNA) optimizations described in the following
sections enable the optimizer to use an antijoin even when nulls are possible.

Example 9-16 Antijoin Using NOT IN

Suppose that a user issues the following query with a NOT | N clause to list the
departments that contain no employees:

SELECT department id, department _name
FROM departnents
WHERE department _id NOT IN

(SELECT departnent id

FROM enpl oyees);

The preceding query returns no rows even though several departments contain no
employees. This result, which was not intended by the user, occurs because the
enpl oyees. depart nent _i d column is nullable.

The execution plan reveals a NESTED LOOPS ANTI SNA operation in Step 2:

| 1d] Operation | Name | Rows| Byt es| Cost
(ACPYU)| Time |

| 0| SELECT STATEMENT | | |

4(100) | |

[*1] FILTER | | | |

| |

| 2| NESTED LOOPS ANTI SNA| | 17 | 323 | 4 (50)|
00: 00: 01 |

| 3| TABLE ACCESS FULL | DEPARTMENTS | 27| 432 | 2 (0)|
00: 00: 01 |

[*4 | | NDEX RANGE SCAN | EMP_DEPARTMENT IX | 41| 123] O

(0)| I

[*5 | TABLE ACCESS FULL | EMPLOYEES | 1] 31 2 (0)]
00: 00: 01 |

9-43

ORACLE

Chapter 9
Join Types

1- filter(1S NULL)
4 - access("DEPARTMENT | D' =" DEPARTVENT | D')
5 - filter("DEPARTMENT ID' IS NULL)

The ANTI SNA stands for "single null-aware antijoin." ANTI NA stands for "null-

aware antijoin." The null-aware operation enables the optimizer to use the semijoin
optimization even on a nullable column. In releases earlier than Oracle Database 11g,
the database could not perform antijoins on NOT | N queries when nulls were possible.

Suppose that the user rewrites the query by applying an | S NOT NULL condition to the
subquery:

SELECT department id, departmnent _name
FROM departnents
WHERE department _id NOT IN

(SELECT departnent id

FROM enpl oyees

WHERE departnent id IS NOT NULL);

The preceding query returns 16 rows, which is the expected result. Step 1 in the plan
shows a standard NESTED LOOPS ANTI join instead of an ANTI NA or ANTI SNA join
because the subquery cannot returns nulls:

| 1d] Operation | Nane | Rows| Bytes | Cost
(%CPY)| Tine |

| O] SELECT STATEMENT | | | | 2

(100) | |

| 1| NESTED LOOPS ANTI | | 17] 323 2 (0]
00: 00: 01 |

| 2 TABLE ACCESS FULL| DEPARTMENTS | 27| 432 2 (0]
00: 00: 01 |

|*3| | NDEX RANGE SCAN | EMP_DEPARTMENT IX | 41| 123 | O
(0)] I

9-44

Chapter 9
Join Types

3 - access("DEPARTMVENT_| D' =" DEPARTMENT_| D)
filter("DEPARTMENT_ID' IS NOT NULL)

Example 9-17 Antijoin Using NOT EXISTS

Suppose that a user issues the following query with a NOT EXI STS clause to list the
departments that contain no employees:

SELECT department id, department _name
FROM departnents d
WHERE NOT EXI STS
(SELECT nul |
FROVM enpl oyees e
WHERE e. departnent _id = d.department _id)

The preceding query avoids the null problem for NOT | N clauses. Thus, even though
enpl oyees. depart nent _i d column is nullable, the statement returns the desired result.

Step 1 of the execution plan reveals a NESTED LOOPS ANTI operation, not the ANTI NA
variant, which was necessary for NOT | Nwhen nulls were possible:

| I'd] Operation | Name | Rows | Bytes | Cost
(%CPY) | Ti ne|

| 0| SELECT STATEMENT | | | | 2

(100) | I

| 1] NESTED LOOPS ANTI | | 17] 323] 2 (0)]
00: 00: 01|

| 2] TABLE ACCESS FULL| DEPARTMENTS | 27 432] 2 (0)]
00: 00: 01|

[*3] | NDEX RANGE SCAN | EMP_DEPARTMENT_I X | 41 | 123] 0

(0)| |

3 - access("E"."DEPARTMENT_| D'="D". " DEPARTMENT_I D")

9.3.5 Cartesian Joins

ORACLE

The database uses a Cartesian join when one or more of the tables does not have
any join conditions to any other tables in the statement.

The optimizer joins every row from one data source with every row from the other data
source, creating the Cartesian product of the two sets. Therefore, the total number of

9-45

Chapter 9
Join Types

rows resulting from the join is calculated using the following formula, where r sl is the
number of rows in first row set and r s2 is the number of rows in the second row set:

rsl Xrs2 =total rows in result set

This section contains the following topics:

9.3.5.1 When the Optimizer Considers Cartesian Joins

The optimizer uses a Cartesian join for two row sources only in specific circumstances.
Typically, the situation is one of the following:

* No join condition exists.

In some cases, the optimizer could pick up a common filter condition between the
two tables as a possible join condition.

Note:

If a Cartesian join appears in a query plan, it could be caused by an
inadvertently omitted join condition. In general, if a query joins n tables,
then n-1 join conditions are required to avoid a Cartesian join.

e A Cartesian join is an efficient method.

For example, the optimizer may decide to generate a Cartesian product of two
very small tables that are both joined to the same large table.

e The ORDERED hint specifies a table before its join table is specified.

9.3.5.2 How Cartesian Joins Work

A Cartesian join uses nested FOR loops.

At a high level, the algorithm for a Cartesian join looks as follows, where ds1 is
typically the smaller data set, and ds2 is the larger data set:

FOR ds1 row I N dsl1 LOOP
FOR ds2 row I N ds2 LOCP
output dsl row and ds2 row
END LOOP
END LOOP

Example 9-18 Cartesian Join

In this example, a user intends to perform an inner join of the enpl oyees and
depart nent s tables, but accidentally leaves off the join condition:

SELECT e.last_nane, d.departnent _name
FROM enpl oyees e, departnents d

ORACLE 9-46

Chapter 9

Join Types
The execution plan is as follows:
| 1d] Operation | Nane | Rows | Bytes | Cost (%CPU) |
Ti ne|
| 0| SELECT STATEMENT | | | |11
(100) | I
| 1] MERGE JO N CARTESI AN | | 2889 |57780 |11 (0)|
00: 00: 01|
| 2] TABLE ACCESS FULL | DEPARTMENTS | 27 | 324 | 2 (0)]
00: 00: 01|
| 3] BUFFER SORT | | 107 | 85 | 9 (0)]
00: 00: 01|
| 4 | NDEX FAST FULL SCAN] EMP_NAME IX | 107 | 856 | O
(0)| |

In Step 1 of the preceding plan, the CARTESI AN keyword indicates the presence of a
Cartesian join. The number of rows (2889) is the product of 27 and 107.

In Step 3, the BUFFER SORT operation indicates that the database is copying the data
blocks obtained by the scan of enp_name_i x from the SGA to the PGA. This strategy
avoids multiple scans of the same blocks in the database buffer cache, which would
generate many logical reads and permit resource contention.

9.3.5.3 Cartesian Join Controls

ORACLE

The ORDERED hint instructs the optimizer to join tables in the order in which they appear
in the FROMclause. By forcing a join between two row sources that have no direct
connection, the optimizer must perform a Cartesian join.

Example 9-19 ORDERED Hint

In the following example, the ORDERED hint instructs the optimizer to join enpl oyees and
| ocati ons, but no join condition connects these two row sources:

SELECT /*+ORDERED*/ e.last_name, d.departnent_nane, |.country_id,
| .state_province

FROM enpl oyees e, locations |, departnments d

WHERE e.departnent _id = d.departrent _id

AND d.location_id =1.location_id

The following execution plan shows a Cartesian product (Step 3) between | ocat i ons
(Step 6) and enpl oyees (Step 4), which is then joined to the depart nment s table (Step
2):

| 1d] Operation | Nane | Rows | Bytes | Cost (%CPU)|
Tinme |

9-47

Chapter 9
Join Optimizations

| 0| SELECT STATEMENT | | | | 37

(100) | |
|*1 | HASH JON | | 106 | 4664 |37 (6)]
00: 00: 01 |
| 2| TABLE ACCESS FULL | DEPARTMENTS | 27| 513 | 2 (0)]
00: 00: 01 |
| 3| MERGE JOIN CARTESIAN| | 2461 61525 |34 (3)]
00: 00: 01 |
| 4| TABLE ACCESS FULL | EMPLOYEES | 107 | 1177 | 2 (0)]
00: 00: 01 |
| 5| BUFFER SORT | | 23] 322132 (4)]
00: 00: 01 |
| 6 | TABLE ACCESS FULL | LOCATIONS | 23| 322 | 0
(0)| |

¢ See Also:

Oracle Database SQL Language Reference to learn about the ORDERED hint

9.4 Join Optimizations

Join optimizations enable joins to be more efficient.

This section describes common join optimizations:

9.4.1 Bloom Filters

A Bloom filter, named after its creator Burton Bloom, is a low-memory data structure
that tests membership in a set.

A Bloom filter correctly indicates when an element is not in a set, but can incorrectly
indicate when an element is in a set. Thus, false negatives are impossible but false
positives are possible.

This section contains the following topics:

9.4.1.1 Purpose of Bloom Filters

A Bloom filter tests one set of values to determine whether they are members another
set.

For example, one set is (10,20,30,40) and the second set is (10,30,60,70). A Bloom
filter can determine that 60 and 70 are guaranteed to be excluded from the first set,
and that 10 and 30 are probably members. Bloom filters are especially useful when the
amount of memory needed to store the filter is small relative to the amount of data in
the data set, and when most data is expected to fail the membership test.

Oracle Database uses Bloom filters to various specific goals, including the following:

ORACLE 9-48

Chapter 9
Join Optimizations

* Reduce the amount of data transferred to slave processes in a parallel query,
especially when the database discards most rows because they do not fulfill a join
condition

» Eliminate unneeded partitions when building a partition access list in a join, known
as partition pruning

» Test whether data exists in the server result cache, thereby avoiding a disk read

» Filter members in Exadata cells, especially when joining a large fact table and
small dimension tables in a star schema

Bloom filters can occur in both parallel and serial processing.

9.4.1.2 How Bloom Filters Work

ORACLE

A Bloom filter uses an array of bits to indicate inclusion in a set.

For example, 8 elements (an arbitrary number used for this example) in an array are
initially set to 0:

This array represents a set. To represent an input value i in this array, three separate
hash functions (three is arbitrary) are applied to i, each generating a hash value
between 1 and 8:

f1(i) = hl
f2(i) = h2
£3(i) = h3

For example, to store the value 17 in this array, the hash functions set i to 17, and then
return the following hash values:

f1(17) = 5
£2(17) = 3
£3(17) = 5

In the preceding example, two of the hash functions happened to return the same
value of 5, known as a hash collision. Because the distinct hash values are 5 and 3,
the 5th and 3rd elements in the array are set to 1:

Testing the membership of 17 in the set reverses the process. To test whether the set
excludes the value 17, element 3 or element 5 must contain a 0. If a 0 is present in
either element, then the set cannot contain 17. No false negatives are possible.

To test whether the set includes 17, both element 3 and element 5 must contain 1
values. However, if the test indicates a 1 for both elements, then it is still possible for

9-49

Chapter 9
Join Optimizations

the set not to include 17. False positives are possible. For example, the following array
might represent the value 22, which also has a 1 for both element 3 and element 5:

9.4.1.3 Bloom Filter Controls

The optimizer automatically determines whether to use Bloom filters.

To override optimizer decisions, use the hints PX JO N_FI LTER and
NO PX _JO N_FI LTER.

¢ See Also:

Oracle Database SQL Language Reference to learn more about the bloom
filter hints

9.4.1.4 Bloom Filter Metadata

ORACLE

V$ views contain metadata about Bloom filters.
You can query the following views:
° V$SQ_JO N FILTER

This view shows the number of rows filtered out (FI LTERED column) and tested
(PROBED column) by an active Bloom filter.

* VBPQ TQSTAT

This view displays the number of rows processed through each parallel execution
server at each stage of the execution tree. You can use it to monitor how much
Bloom filters have reduced data transfer among parallel processes.

In an execution plan, a Bloom filter is indicated by keywords JO N FI LTER in the
Oper at i on column, and the prefix : BF in the Nane column, as in the 9th step of the
following plan snippet:

| Id | Operation | Nane | TQ |INOQUT| PQ
Distrib |

| 9| JOIN FILTER CREATE | :BFO000 | Ql,03 | POWP
| |

In the Predi cate | nfornmation section of the plan, filters that contain functions
beginning with the string SYS_OP_BLOOM FI LTER indicate use of a Bloom filter.

9-50

Chapter 9
Join Optimizations

9.4.1.5 Bloom Filters: Scenario

ORACLE

In this example, a parallel query joins the sal es fact table to the products and ti nes
dimension tables, and filters on fiscal week 18.

SELECT /*+ parallel (s) */ p.prod_name, s.quantity sold
FROM sh.sales s, sh.products p, sh.times t

WHERE s.prod id = p.prod_id

AND s.time_id =t.time_id

AND t.fiscal week number = 18;

Querying DBMS_XPLAN. DI SPLAY_CURSOR provides the following output:

SELECT * FROM
TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(f or mat =>
' BAS| C, +PARALLEL, +PREDI CATE')) ;

EXPLAI NED SQL STATENENT:

SELECT /*+ parallel(s) */ p.prod_name, s.quantity sold FROM sh.sal es s,
sh.products p, sh.tines t WHERE s.prod_id = p.prod_id AND s.tinme_id =
t.time_id AND t.fiscal week number = 18

Pl an hash val ue: 1183628457

| Id | Operation | Name | TQ |INQUT| PQ
Distrib |

0 | SELECT STATEMENT | | |

|
1] PX COORDI NATOR | | |

|

|

|

|

| 2] PX SEND QC (RANDOV) | :TQLO003 | QL, 03| P->S| QC
(RAND) |

|* 3| HASH JO N BUFFERED | | QL 03| POWP
| |

| 4 PX RECEI VE | | QL 03| POWP
| |

| 5| PX SEND BROADCAST | :TQLO001 | Q1,01 | S>P |
BROADCAST |

| 6| PX SELECTCR | | Q01| SouC
| |

| 7 TABLE ACCESS FULL | PRODUCTS | Q1,01 | SCWP
| |

|* 8 | HASH JOI N | | QL 03| POWP
| |

| 9| JON FILTER CREATE | :BF0000 | Q1,03 | PCW
| |

| 10 | BUFFER SORT | | Q1,03 | PONC
|

9-51

Chapter 9
Join Optimizations

| 11 | PX RECEI VE | | Q03| POWP

| |

| 12 | PX SEND HYBRI D HASH : TQLOOOO | | S>P | HYBRID
HASH

| %13 | TABLE ACCESS FULL | TIMES | |

| |

| 14 | PX RECEI VE | | Q03| POWP

| |

| 15 | PX SEND HYBRID HASH | :TQL0002 | Q1,02 | P->P | HYBRID
HASH

| 16 | JON FILTER USE | :BFO000 | Q1,02 | PCWP

| |

| 17 | PX BLOCK | TERATOR | | Q02| POVC

| |

| %18 | TABLE ACCESS FULL | SALES | Q1,02 | POWP

|

3 - access("S"."PROD_ID'="P"."PROD I D")
8 - access("S"."TIME_ID'="T"."TIME_ID")
13 - filter("T"."Fl SCAL_WEEK_NUMBER'=18)
18 - access(:2Z>=:Z AND : Z<=:; Z)
filter(SYS_OP_BLOOM FI LTER(: BFO000,"S"."TIME_ID"))

A single server process scans the ti nes table (Step 13), and then uses a hybrid hash
distribution method to send the rows to the parallel execution servers (Step 12). The
processes in set QL, 03 create a bloom filter (Step 9). The processes in set QL, 02 scan
sal es in parallel (Step 18), and then use the Bloom filter to discard rows from sal es
(Step 16) before sending them on to set QL, 03 using hybrid hash distribution (Step
15). The processes in set QL, 03 hash join the ti mes rows to the filtered sal es rows
(Step 8). The processes in set QL, 01 scan product s (Step 7), and then send the rows
to Q1, 03 (Step 5). Finally, the processes in QL, 03 join the product s rows to the rows
generated by the previous hash join (Step 3).

The following figure illustrates the basic process.

Figure 9-8 Bloom Filter

Q1,03
Create
Bloom filter
:BF0000
Qf1, 01 Q1 02

ORACLE 9-52

Chapter 9
Join Optimizations

9.4.2 Partition-Wise Joins

A partition-wise join is an optimization that divides a large join of two tables, one of
which must be partitioned on the join key, into several smaller joins.

Partition-wise joins are either of the following:
e Full partition-wise join

Both tables must be equipartitioned on their join keys, or use reference partitioning
(that is, be related by referential constraints). The database divides a large join
into smaller joins between two partitions from the two joined tables.

e Partial partition-wise joins

Only one table is partitioned on the join key. The other table may or may not be
partitioned.

This section contains the following topics:

¢ See Also:

Oracle Database VLDB and Partitioning Guide explains partition-wise joins in
detail

9.4.2.1 Purpose of Partition-Wise Joins

Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel.

This technique significantly reduces response time and improves the use of CPU and
memory. In Oracle Real Application Clusters (Oracle RAC) environments, partition-
wise joins also avoid or at least limit the data traffic over the interconnect, which is the
key to achieving good scalability for massive join operations.

9.4.2.2 How Partition-Wise Joins Work

When the database serially joins two partitioned tables without using a partition-wise
join, a single server process performs the join.

In the following illustration, the join is not partition-wise because the server process
joins every partition of table t 1 to every patrtition of table t 2.

ORACLE 9-53

9.4.2.2.1 How a Full Partition-Wise Join Works

The database performs a full partition-wise join either serially or in parallel.

ORACLE

Figure 9-9

\/.

’ -

z
/
’\,[
]

This section contains the following topics:

The following graphic shows a full partition-wise join performed in parallel. In this

Server
Process

Join That Is Not Partition-Wise

t2

o

Chapter 9
Join Optimizations

case, the granule of parallelism is a partition. Each parallel execution server joins the
partitions in pairs. For example, the first parallel execution server joins the first partition
of t 1 to the first partition of t 2. The parallel execution coordinator then assembles the

result.

9-54

Figure 9-10 Full Partition-Wise Join in Parallel

PE Coordinator

A

PE Server ——>

PE Server ——>

PE Server —>

PE Server ——>

,,,,,,,,,,,,,,,,

Chapter 9
Join Optimizations

A full partition-wise join can also join partitions to subpartitions, which is useful when
the tables use different partitioning methods. For example, cust orer s is partitioned
by hash, but sal es is partitioned by range. If you subpatrtition sal es by hash, then
the database can perform a full partition-wise join between the hash partitions of the
cust oner s and the hash subpartitions of sal es.

In the execution plan, the presence of a partition operation before the join signals the

presence of a full partition-wise join, as in the following snippet:

| *

8 | PX PARTI TI ON HASH ALL|
9| HASH JOI N |

See Also:

Oracle Database VLDB and Partitioning Guide explains full partition-wise

joins in detail, and includes several examples

9.4.2.2.2 How a Partial Partition-Wise Join Works

Partial partition-wise joins, unlike their full partition-wise counterpart, must execute in
parallel.

ORACLE

The following graphic shows a partial partition-wise join between t 1, which is
partitioned, and t 2, which is not partitioned.

9-55

Figure 9-11 Partial Partition-Wise Join

PE Server

PE Server

PE Server

PE Server

PE Coordinator

[
IZ1Z
S22
g
]

L I
[
[

Dynamically created
partitions

PE Server

t2

PE Server

PE Server

PE Server

Chapter 9
Join Optimizations

AL T TR AT AR ORI NN

O D R R

Because t 2 is not partitioned, a set of parallel execution servers must generate
partitions from t 2 as needed. A different set of parallel execution servers then joins the
t 1 partitions to the dynamically generated partitions. The parallel execution coordinator

assembles the result.

In the execution plan, the operation PX SEND PARTI TI ON (KEY) signals a patrtial
partition-wise join, as in the following snippet:

|11]

See Also:

9.4.3 In-Memory Join Groups

A join group is a user-created object that lists two or more columns that can be

ORACLE

meaningfully joined.

PX SEND PARTI TI ON (KEY)

Oracle Database VLDB and Partitioning Guide explains full partition-wise
joins in detail, and includes several examples

In certain queries, join groups eliminate the performance overhead of decompressing
and hashing column values. Join groups require an In-Memory Column Store (IM

column store).

9-56

Chapter 9
Join Optimizations

¢ See Also:

Oracle Database In-Memory Guide to learn how to optimize In-Memory
queries with join groups

ORACLE 9-57

Optimizer Statistics

The accuracy of an execution plan depends on the quality of the optimizer statistics.

This part contains the following chapters:

ORACLE

Optimizer Statistics Concepts

Oracle Database optimizer statistics describe details about the database and its
objects.

This chapter includes the following topics:

Related Topics

Query Optimizer Concepts
This chapter describes the most important concepts relating to the query optimizer,
including its principal components.

Histograms

A histogram is a special type of column statistic that provides more detailed
information about the data distribution in a table column. A histogram sorts values
into "buckets," as you might sort coins into buckets.

Gathering Optimizer Statistics
This chapter explains how to use the DBMS_STATS. GATHER * _STATS program units.

Managing Historical Optimizer Statistics
This chapter how to retain, report on, and restore non-current statistics.

10.1 Introduction to Optimizer Statistics

The optimizer cost model relies on statistics collected about the objects involved in a
guery, and the database and host where the query runs.

ORACLE

The optimizer uses statistics to get an estimate of the number of rows (and number of
bytes) retrieved from a table, partition, or index. The optimizer estimates the cost for
the access, determines the cost for possible plans, and then picks the execution plan
with the lowest cost.

Optimizer statistics include the following:

Table statistics

— Number of rows

— Number of blocks

— Average row length

Column statistics

— Number of distinct values (NDV) in a column
— Number of nulls in a column

— Data distribution (histogram)

— Extended statistics

Index statistics

— Number of leaf blocks

10-1

Chapter 10

Introduction to Optimizer Statistics

— Number of levels
— Index clustering factor

e System statistics

— /O performance and utilization

— CPU performance and utilization

As shown in Figure 10-1, the database stores optimizer statistics for tables, columns,
indexes, and the system in the data dictionary. You can access these statistics using

data dictionary views.

Note:

through V$ views.

Figure 10-1 Optimizer Statistics

The optimizer statistics are different from the performance statistics visible

Database

Data Dictionary

Optimizer Statistics

Index Table Column

System

PERSON
Table

—ID | Name
100 | Kumar

Execution

S

CPU and I/O

ORACLE"

10-2

Chapter 10
About Optimizer Statistics Types

10.2 About Optimizer Statistics Types

The optimizer collects statistics on different types of database objects and
characteristics of the database environment.

ORACLE

This section contains the following topics:

10.2.1 Table Statistics

In Oracle Database, table statistics include information about rows and blocks.

The optimizer uses these statistics to determine the cost of table scans and table joins.
DBMS_STATS can gather statistics for both permanent and temporary tables.

The database tracks all relevant statistics about permanent tables.
DBMS_STATS. GATHER TABLE STATS commits before gathering statistics on permanent
tables. For example, table statistics stored in DBA_TAB_STATI STI CS track the following:

Number of rows and average row length

The database uses the row count stored in DBA_TAB_STATI STI CS when
determining cardinality.

Number of data blocks

The optimizer uses the number of data blocks with the
DB_FI LE MULTI BLOCK_READ COUNT initialization parameter to determine the base
table access cost.

Example 10-1 Table Statistics

This example queries some table statistics for the sh. cust oner s table.

sys@ROD> SELECT NUM ROAS, AVG ROWLEN, BLOCKS, LAST ANALYZED

2 FROM DBA_TAB_STATI STI CS
3 WHERE OWKER=' SH
4 AND TABLE_NAME=' CUSTOMERS ;

NUM_ROWS AVG ROW LEN BLOCKS LAST ANAL

55500 181 1486 14-JUN-10

¢ See Also:

e "About Optimizer Initialization Parameters"
e "Gathering Schema and Table Statistics"

e Oracle Database Reference for a description of the DBA_TAB_STATI STI CS
view and the DB_FI LE_MJULTI BLOCK_READ COUNT initialization parameter

10-3

Chapter 10
About Optimizer Statistics Types

10.2.2 Column Statistics

Column statistics track information about column values and data distribution.

The optimizer uses column statistics to generate accurate cardinality estimates and
make better decisions about index usage, join orders, join methods, and so on. For
example, statistics in DBA_TAB_CCOL_STATI STI CS track the following:

* Number of distinct values

* Number of nulls

e High and low values

» Histogram-related information

The optimizer can use extended statistics, which are a special type of column
statistics. These statistics are useful for informing the optimizer of logical relationships
among columns.

¢ See Also:

e "Histograms "
e "About Statistics on Column Groups"

e Oracle Database Reference for a description of the
DBA_TAB_COL_STATI STI CS view

10.2.3 Index Statistics

The index statistics include information about the number of index levels, the number
of index blocks, and the relationship between the index and the data blocks. The
optimizer uses these statistics to determine the cost of index scans.

This section contains the following topics:

10.2.3.1 Types of Index Statistics

ORACLE

The DBA_| ND_STATI STI CS view tracks index statistics.
Statistics include the following:

e Levels

The BLEVEL column shows the number of blocks required to go from the root block
to a leaf block. A B-tree index has two types of blocks: branch blocks for searching
and leaf blocks that store values. See Oracle Database Concepts for a conceptual
overview of B-tree indexes.

» Distinct keys

This columns tracks the number of distinct indexed values. If a unique constraint
is defined, and if no NOT NULL constraint is defined, then this value equals the
number of non-null values.

10-4

Chapter 10
About Optimizer Statistics Types

* Average number of leaf blocks for each distinct indexed key

* Average number of data blocks pointed to by each distinct indexed key

" See Also:

Oracle Database Reference for a description of the DBA_| ND_STATI STI CS
view

Example 10-2 Index Statistics

This example queries some index statistics for the cust _| nane_i x and cust omer s_pk
indexes on the sh. cust oner s table (sample output included):

SELECT | NDEX_NAME, BLEVEL, LEAF_BLOCKS AS "LEAFBLK", Di STINCT_KEYS AS
"Dl ST_KEY",
AVG_LEAF_BLOCKS PER KEY AS "LEAFBLK_PER KEY",
AVG_DATA BLOCKS PER KEY AS "DATABLK_PER KEY"
FROM DBA_I ND_STATI STI CS
WHERE OWKER = ' SH
AND | NDEX_NAME I N (' CUST_LNAME_| X' ,' CUSTOVERS PK'):

| NDEX_NAVE BLEVEL LEAFBLK DI ST_KEY LEAFBLK_PER KEY DATABLK_PER KEY
CUSTOMERS_PK 1 115 55500 1 1
CUST_LNAME_I X 1 141 908 1 10

10.2.3.2 Index Clustering Factor

For a B-tree index, the index clustering factor measures the physical grouping of
rows in relation to an index value, such as last name.

The index clustering factor helps the optimizer decide whether an index scan or full
table scan is more efficient for certain queries). A low clustering factor indicates an
efficient index scan.

A clustering factor that is close to the number of blocks in a table indicates that the
rows are physically ordered in the table blocks by the index key. If the database
performs a full table scan, then the database tends to retrieve the rows as they are
stored on disk sorted by the index key. A clustering factor that is close to the number
of rows indicates that the rows are scattered randomly across the database blocks in
relation to the index key. If the database performs a full table scan, then the database
would not retrieve rows in any sorted order by this index key.

The clustering factor is a property of a specific index, not a table. If multiple indexes
exist on a table, then the clustering factor for one index might be small while the factor
for another index is large. An attempt to reorganize the table to improve the clustering
factor for one index may degrade the clustering factor of the other index.

Example 10-3 Index Clustering Factor

This example shows how the optimizer uses the index clustering factor to determine
whether using an index is more effective than a full table scan.

ORACLE 10-5

ORACLE

Chapter 10
About Optimizer Statistics Types

Start SQL*Plus and connect to a database as sh, and then query the number of
rows and blocks in the sh. cust orrer s table (sample output included):

SELECT table_nane, numrows, blocks
FROV user_tabl es
WHERE tabl e_name=' CUSTOMERS' ;

TABLE_NAME NUM_RONS BLOCKS

CUSTOMERS 55500 1486

Create an index on the cust oner s. cust _| ast _nane column.

For example, execute the following statement:
CREATE | NDEX CUSTOMVERS_LAST_NAME_| DX ON cust omer s(cust _| ast _nane) ;

Query the index clustering factor of the newly created index.

The following query shows that the cust oners_| ast _nane_i dx index has a high
clustering factor because the clustering factor is significantly more than the
number of blocks in the table:

SELECT i ndex_nare, blevel, |eaf blocks, clustering factor
FROM user _indexes

WHERE tabl e _nane=' CUSTOVERS

AND i ndex_name= ' CUSTOVERS_LAST_NAME_| DX ;

| NDEX_NAME BLEVEL LEAF_BLOCKS
CLUSTERI NG_FACTCR

CUSTOMERS_LAST_NAME | DX 1 141
9859
Create a new copy of the cust oner s table, with rows ordered by cust | ast _nane.
For example, execute the following statements:
DROP TABLE cust oners3 PURGE;
CREATE TABLE customers3 AS
SELECT *
FROM customers
ORDER BY cust | ast_nane;
Gather statistics on the cust oner s3 table.
For example, execute the GATHER _TABLE_STATS procedure as follows:
EXEC DBMS_STATS. GATHER TABLE_STATS(nul |, ' CUSTOVERS3') ;
Query the number of rows and blocks in the cust oner s3 table .
For example, enter the following query (sample output included):

SELECT TABLE_NAME, NUM ROWS, BLOCKS
FROM USER TABLES

10-6

Chapter 10
About Optimizer Statistics Types

WHERE TABLE_NAME=' CUSTOMERS3' ;

TABLE_NAME NUM_ROWS BLOCKS

CUSTOMERS3 55500 1485

7. Create an index on the cust | ast _name column of cust oner s3.

For example, execute the following statement:

CREATE | NDEX CUSTOMERS3_LAST NAME_| DX ON cust omers3(cust | ast_nane):

8. Query the index clustering factor of the cust omer s3_| ast _name_i dx index.

The following query shows that the cust oners3_| ast _name_i dx index has a lower
clustering factor:

SELECT | NDEX_NAME, BLEVEL, LEAF_BLOCKS, CLUSTERI NG FACTOR
FROM USER | NDEXES

WHERE TABLE_NAME = ' CUSTOMERS3'

AND | NDEX_NAME = ' CUSTOVERS3_LAST NANE_ | DX ;

| NDEX_NAME BLEVEL LEAF_BLOCKS
CLUSTERI NG_FACTOR

CUSTOVERS3_LAST_NAME_| DX 1 141
1455

The table cust oner s3 has the same data as the original cust oner s table, but the
index on cust oner s3 has a much lower clustering factor because the data in the
table is ordered by the cust | ast _nane. The clustering factor is now about 10
times the number of blocks instead of 70 times.

9. Query the cust oners table.
For example, execute the following query (sample output included):
SELECT cust _first_name, cust_|ast_nane

FROM custoners
WHERE cust | ast _nane BETWEEN ' Pul eo' AND ' Quinn';

CUST_FI RST_NAME CUST_LAST_ NAME
Vi da Pul eo

Harriett Quinlan

Madel ei ne Quinn

Caresse Pul eo

10. Display the cursor for the query.

For example, execute the following query (partial sample output included):

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR());

ORACLE 10-7

Chapter 10
About Optimizer Statistics Types

| 1d | Operation | Nane | Rows |Bytes|Cost (%CPU)| Time |

| 0| SELECT STATEMENT | | | | 405 (100) | |
|* 1| TABLE ACCESS STORAGE FULL| CUSTOMERS | 2335|35025| 405 (1) 00: 00: 01

The preceding plan shows that the optimizer did not use the index on the original
cust oner s tables.

11. Query the cust oner s3 table.
For example, execute the following query (sample output included):
SELECT cust _first _name, cust_|ast_nane

FROM customers3
WHERE cust | ast _name BETWEEN ' Pul eo' AND ' Quinn';

CUST_FI RST_NAME CUST_LAST_NAME
Vi da Pul eo

Harriett Quinlan

Madel ei ne Quinn

Car esse Pul eo

12. Display the cursor for the query.

For example, execute the following query (partial sample output included):

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSCR()) ;

|1d| Operation | Nane | Rows| Byt es| Cost (%CPU) |
Ti ne|

| 0| SELECT STATEMENT | | |

69(100) | |

| 1] TABLE ACCESS BY | NDEX ROW D| CUSTOVERS3 | 2335 35025| 69(0) |
00: 00: 01

|*2] 1 NDEX RANGE SCAN | CUSTOVERS3_LAST NAME_| DX| 2335] 17(0) |
00: 00: 01

The result set is the same, but the optimizer chooses the index. The plan cost is
much less than the cost of the plan used on the original cust oner s table.

13. Query cust oner s with a hint that forces the optimizer to use the index.
For example, execute the following query (partial sample output included):
SELECT /*+ index (Customers CUSTOVERS_LAST_NAME | DX) */
cust _first_name,

cust _|ast_nane
FROM custoners

ORACLE 10-8

Chapter 10
About Optimizer Statistics Types

WHERE cust | ast_nane BETWEEN ' Pul eo' and ' Quinn';

CUST_FI RST_NAME CUST_LAST_NAME
Vi da Pul eo

Caresse Pul eo

Harriett Quinlan

Madel ei ne Qi nn

14. Display the cursor for the query.

For example, execute the following query (partial sample output included):

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR());

| 1d | Operation | Nane | Rows| Byt es| Cost (%CPU) |
Time |

| 0] SELECT STATEMENT | | |

422(100) | |

| 1] TABLE ACCESS BY | NDEX ROW D CUSTOMERS | 335 | 35025| 422(0) |
00: 00: 01|

| *2] | NDEX RANGE SCAN | CUSTOVERS_LAST_NAME_| DX] 2335| | 7(0) |
00: 00: 01|

The preceding plan shows that the cost of using the index on cust oner s is higher
than the cost of a full table scan. Thus, using an index does not necessarily
improve performance. The index clustering factor is a measure of whether an
index scan is more effective than a full table scan.

10.2.3.3 Effect of Index Clustering Factor on Cost: Example

This example illustrates how the index clustering factor can influence the cost of table
access.

Consider the following scenario:

* Atable contains 9 rows that are stored in 3 data blocks.
e The col 1 column currently stores the values A, B, and C.
* A nonunique index named col 1_i dx exists on col 1 for this table.

Example 10-4 Collocated Data

Assume that the rows are stored in the data blocks as follows:

Bl ock 1 Bl ock 2 Bl ock 3

ORACLE 10-9

Chapter 10
About Optimizer Statistics Types

In this example, the index clustering factor for col 1_i dx is low. The rows that have the
same indexed column values for col 1 are in the same data blocks in the table. Thus,
the cost of using an index range scan to return all rows with value A is low because
only one block in the table must be read.

Example 10-5 Scattered Data

Assume that the same rows are scattered across the data blocks as follows:

In this example, the index clustering factor for col 1_i dx is higher. The database must
read all three blocks in the table to retrieve all rows with the value Ain col 1.

See Also:

Oracle Database Reference for a description of the DBA_| NDEXES view

10.2.4 Session-Specific Statistics for Global Temporary Tables

A global temporary table is a special table that stores intermediate session-private
data for a specific duration.

The ON COW T clause of CREATE GLOBAL TEMPORARY TABLE indicates whether the
table is transaction-specific (DELETE ROWS) or session-specific (PRESERVE ROAB). Thus,
a temporary table holds intermediate result sets for the duration of either a transaction
or a session.

When you create a global temporary table, you create a definition that is visible to
all sessions. No physical storage is allocated. When a session first puts data into the
table, the database allocates storage space. The data in the temporary table is only
visible to the current session.

This section contains the following topics:

10.2.4.1 Shared and Session-Specific Statistics for Global Temporary Tables

ORACLE

Starting in Oracle Database 12c, you can set the table-level preference
GLOBAL_TEMP_TABLE_STATS to make statistics on a global temporary table shared
(SHARED) or session-specific (SESSI ON).

When set to session-specific, you can gather statistics for a global temporary table

in one session, and then use the statistics for this session only. Meanwhile, users
can continue to maintain a shared version of the statistics. During optimization, the
optimizer first checks whether a global temporary table has session-specific statistics.
If yes, the optimizer uses them. Otherwise, the optimizer uses shared statistics if they
exist.

Session-specific statistics have the following characteristics:

10-10

Chapter 10
About Optimizer Statistics Types

» Dictionary views that track statistics show both the shared statistics and the
session-specific statistics in the current session.

The views are DBA_TAB_STATI STI CS, DBA_| ND_STATI STI CS, DBA TAB_HI STOGRANB,
and DBA TAB COL_STATI STI CS (each view has a corresponding USER_and ALL _
version). The SCOPE column shows whether statistics are session-specific or
shared.

* Other sessions do not share the cursor using the session-specific statistics.

Different sessions can share the cursor using shared statistics, as in releases
earlier than Oracle Database 12c. The same session can share the cursor using
session-specific statistics.

* Pending statistics are not supported for session-specific statistics.

* When the GLOBAL_TEMP_TABLE_STATS preference is set to SESSI ON, by default
GATHER TABLE STATS immediately invalidates previous cursors compiled in the
same session. However, this procedure does not invalidate cursors compiled in
other sessions.

10.2.4.2 Effect of DBMS_STATS on Transaction-Specific Temporary Tables

ORACLE

DBMS_STATS commits changes to session-specific global temporary tables, but not to
transaction-specific global temporary tables.

Before Oracle Database 12c, running DBMS_STATS. GATHER TABLE_STATS on a
transaction-specific temporary table (ON COWM T DELETE ROWS) would delete all rows,
making the statistics show the table as empty. Starting in Oracle Database 12c, the
following procedures do not commit for transaction-specific temporary tables, so that
rows in these tables are not deleted:

« GATHER TABLE_STATS
- DELETE_TABLE STATS
- DELETE_COLUWN_STATS
- DELETE_| NDEX_STATS
. SET_TABLE_STATS

. SET_COLUWN_STATS

. SET_I NDEX_STATS

- GET_TABLE_STATS

. GET_COLUWN_STATS

. GET_I NDEX_STATS

The preceding program units observe the G.OBAL_TEMP_TABLE STATS preference. For
example, if the table preference is set to SESSI ON, then SET_TABLE_STATS sets the
session statistics, and GATHER _TABLE_STATS preserves all rows in a transaction-specific
temporary table. If the table preference is set to SHARED, then SET_TABLE_STATS sets
the shared statistics, and GATHER _TABLE_STATS deletes all rows from a transaction-
specific temporary table.

10-11

Chapter 10
About Optimizer Statistics Types

¢ See Also:

e "Gathering Schema and Table Statistics"
* Oracle Database Concepts to learn about global temporary tables

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS. GATHER TABLE_STATS procedure

10.2.5 System Statistics

The system statistics describe hardware characteristics such as 1/0 and CPU
performance and utilization.

System statistics enable the query optimizer to more accurately estimate /O and CPU
costs when choosing execution plans. The database does not invalidate previously
parsed SQL statements when updating system statistics. The database parses all new
SQL statements using new statistics.

¢ See Also:

e "Gathering System Statistics Manually"

e Oracle Database Reference

10.2.6 User-Defined Optimizer Statistics

The extensible optimizer enables authors of user-defined functions and indexes to
create statistics collection, selectivity, and cost functions. The optimizer cost model is
extended to integrate information supplied by the user to assess CPU and the I/O cost.

Statistics types act as interfaces for user-defined functions that influence the choice of
execution plan. However, to use a statistics type, the optimizer requires a mechanism
to bind the type to a database object such as a column, standalone function, object
type, index, indextype, or package. The SQL statement ASSOCI ATE STATI STI CS allows
this binding to occur.

Functions for user-defined statistics are relevant for columns that use both standard
SQL data types and object types, and for domain indexes. When you associate
a statistics type with a column or domain index, the database calls the statistics
collection method in the statistics type whenever DBMS_STATS gathers statistics.

¢ See Also:

e "Gathering Schema and Table Statistics"

e Oracle Database Data Cartridge Developer's Guide to learn about the
extensible optimizer and user-defined statistics

ORACLE 10-12

Chapter 10
How the Database Gathers Optimizer Statistics

10.3 How the Database Gathers Optimizer Statistics

Oracle Database provides several mechanisms to gather statistics.
This section contains the following topics:

Related Topics

e Configuring Automatic Optimizer Statistics Collection
Oracle Database can gather optimizer statistics automatically.

e Gathering Optimizer Statistics Manually
As an alternative or supplement to automatic statistics gathering, you can use the
DBM5_STATS package to gather optimizer statistics manually.

» Locking and Unlocking Optimizer Statistics
You can lock statistics to prevent them from changing.

10.3.1 DBMS_STATS Package

The DBM5_STATS PL/SQL package collects and manages optimizer statistics.

This package enables you to control what and how statistics are collected, including
the degree of parallelism for statistics collection, sampling methods, granularity of
statistics collection in partitioned tables, and so on.

" Note:

Do not use the COWUTE and ESTI MATE clauses of the ANALYZE statement to
collect optimizer statistics. These clauses have been deprecated. Instead,
use DBVMS_STATS.

Statistics gathered with the DBMS_STATS package are required for the creation of
accurate execution plans. For example, table statistics gathered by DBMS_STATS
include the number of rows, number of blocks, and average row length.

By default, Oracle Database uses automatic optimizer statistics collection. In this
case, the database automatically runs DBM5_STATS to collect optimizer statistics for

all schema objects for which statistics are missing or stale. The process eliminates
many manual tasks associated with managing the optimizer, and significantly reduces
the risks of generating suboptimal execution plans because of missing or stale
statistics. You can also update and manage optimizer statistics by manually executing
DBMS_STATS.

ORACLE 10-13

Chapter 10
How the Database Gathers Optimizer Statistics

¢ See Also:

e "Configuring Automatic Optimizer Statistics Collection"
e "Gathering Optimizer Statistics Manually"

* Oracle Database Administrator’s Guide to learn more about automated
maintenance tasks

e Oracle Database PL/SQL Packages and Types Reference to learn about
DBVB_STATS

10.3.2 Supplemental Dynamic Statistics

ORACLE

By default, when optimizer statistics are missing, stale, or insufficient, the database
automatically gathers dynamic statistics during a parse. The database uses
recursive SQL to scan a small random sample of table blocks.

Note:

Dynamic statistics augment statistics rather than providing an alternative to
them.

Dynamic statistics supplement optimizer statistics such as table and index block
counts, table and join cardinalities (estimated number of rows), join column statistics,
and GROUP BY statistics. This information helps the optimizer improve plans by making
better estimates for predicate cardinality.

Dynamic statistics are beneficial in the following situations:

* An execution plan is suboptimal because of complex predicates.
* The sampling time is a small fraction of total execution time for the query.

* The query executes many times so that the sampling time is amortized.

Related Topics

* When the Database Samples Data
Starting in Oracle Database 12c¢, the optimizer automatically decides whether
dynamic statistics are useful and which sample size to use for all SQL statements.
In earlier releases, dynamic statistics were called dynamic sampling.

* Guideline for Setting the Sample Size
In the context of optimizer statistics, sampling is the gathering of statistics from a
random subset of table rows. By enabling the database to avoid full table scans
and sorts of entire tables, sampling minimizes the resources necessary to gather
statistics.

* Configuring Options for Dynamic Statistics
Dynamic statistics are an optimization technique in which the database uses
recursive SQL to scan a small random sample of the blocks in a table.

10-14

Chapter 10
How the Database Gathers Optimizer Statistics

10.3.3 Online Statistics Gathering for Bulk Loads

Starting in Oracle Database 12c, the database can gather table statistics automatically
during the following types of bulk loads: | NSERT | NTO ... SELECT into an empty table
using a direct path insert, and CREATE TABLE AS SELECT .

" Note:

By default, a parallel insert uses a direct path insert. You can force a direct
path insert by using the / * +APPEND*/ hint.

This section contains the following topics:

See Also:

Oracle Database Data Warehousing Guide to learn more about bulk loads

10.3.3.1 Purpose of Online Statistics Gathering for Bulk Loads

Data warehouses typically load large amounts of data into the database. For example,
a sales data warehouse might load sales data nightly.

In releases earlier than Oracle Database 12c, to avoid the possibility of a suboptimal
plan caused by stale statistics, you needed to gather statistics manually after a bulk
load. The ability to gather statistics automatically during bulk loads has the following
benefits:

* Improved performance

Gathering statistics during the load avoids an additional table scan to gather table
statistics.

* Improved manageability

No user intervention is required to gather statistics after a bulk load.

10.3.3.2 Global Statistics During Inserts into Empty Partitioned Tables

ORACLE

When inserting rows into an empty partitioned table, the database gathers global
statistics during the insert.

For example, if sal es is an empty partitioned table, and if you run | NSERT | NTO sal es
SELECT, then the database gathers global statistics for sal es. However, the database
does not gather partition-level statistics.

Assume a different case in which you use extended syntax to insert rows into a
particular partition or subpartition, which is empty. The database gathers statistics on
the empty partition during the insert. However, the database does not gather global
statistics.

10-15

Chapter 10
How the Database Gathers Optimizer Statistics

Assume that you run | NSERT | NTO sal es PARTI TI ON (sal es_q4_2000) SELECT.

If partition sal es_qg4_2000 is empty before the insert (other partitions need not

be empty), then the database gathers statistics during the insert. Moreover, if the

| NCREMENTAL preference is enabled for sal es, then the database also gathers a
synopsis for sal es_g4_2000. Statistics are immediately available after the | NSERT
statement. However, if you roll back the transaction, then the database automatically
deletes statistics gathered during the bulk load.

¢ See Also:

e "Considerations for Incremental Statistics Maintenance"

e Oracle Database SQL Language Reference for | NSERT syntax and
semantics

10.3.3.3 Index Statistics and Histograms During Bulk Loads

While gathering online statistics, the database does not gather index statistics or
create histograms. If these statistics are required, then Oracle recommends running
DBMS_STATS. GATHER TABLE_STATS with the opt i ons parameter set to GATHER AUTO after
the bulk load.

For example, the following command gathers statistics for the bulk-loaded sh_ct as
table:

EXEC DBMS_STATS. GATHER TABLE_STATS(user, 'SH CTAS , options => ' GATHER
AUTO);

The preceding example only gathers missing or stale statistics. The database does not
gather table and basic column statistics collected during the bulk load.

¢ Note:

You can set the table preference opti ons to GATHER AUTO on the tables that
you plan to bulk load. In this way, you need not explicitly set the opti ons
parameter when running GATHER _TABLE_STATS.

¢ See Also:

e "Gathering Schema and Table Statistics"

e Oracle Database Data Warehousing Guide to learn more about bulk
loading

ORACLE 10-16

Chapter 10
How the Database Gathers Optimizer Statistics

10.3.3.4 Restrictions for Online Statistics Gathering for Bulk Loads

ORACLE

In some situations, optimizer statistics gathering does not occur automatically for bulk
loads.

Specifically, bulk loads do not gather statistics automatically when any of the following
conditions applies to the target table, partition, or subpartition:

It is not empty, and you perform an | NSERT | NTO ... SELECT.

In this case, an OPTI M ZER STATI STI CS GATHERI NGrow source appears in the
plan, but this row source is only a pass-through. The database does not actually
gather optimizer statistics.

¢ Note:

The DBA TAB COL_STATI STI CS. NOTES column is set to STATS _ON_LOAD by
a bulk load into an empty table. However, subsequent bulk loads into
the non-empty table do not reset the NOTES column. One technique for
determining whether the database gathered statistics is to query the
USER_TAB_MODI FI CATI ONS. | NSERTS column. If the query returns a row
indicating the number of rows loaded, then the most recent bulk load did
not gather statistics automatically.

It is loaded using an | NSERT | NTO ... SELECT, and neither of the following
conditions is true: all columns of the target table are specified, or a subset of
the target columns are specified and the unspecified columns have default values.

Put differently, the database only gathers statistics automatically for bulk loads
when either all columns of the target table are specified, or a subset of the
target columns are specified and the unspecified columns have default values.
For example, the sal es table has only columns c1, c2, ¢3, and c4. The column
¢4 does not have a default value. You load sal es_copy by executing | NSERT /*+
APPEND */ I NTO sal es_copy SELECT c1, c2, c¢3 FROM sal es. In this case, the
database does not gather online statistics for sal es_copy. The database would
gather statistics if c4 had a default value or if it were included in the SELECT list.

It is in an Oracle-owned schema such as SYS.

It is one of the following types of tables: nested table, index-organized table (10T),
external table, or global temporary table defined as ON COW T DELETE ROWS.

It has a PUBLI SH preference set to FALSE.
Its statistics are locked.

It is partitioned, | NCREMENTAL is set to t r ue, and partition-extended syntax is not
used.

For example, assume that you execute DBM5S_STATS. SET_TABLE_PREFS(nul | ,
"sales', incremental', 'true').Inthis case, the database does not gather
statistics for | NSERT | NTO sal es SELECT, even when sal es is empty. However, the
database does gather statistics automatically for | NSERT | NTO sal es PARTI TI ON
(sal es_g4 2000) SELECT.

It is loaded using a multitable | NSERT statement.

10-17

Chapter 10
When the Database Gathers Optimizer Statistics

¢ See Also:

e "Gathering Schema and Table Statistics"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS. SET_TABLE PREFS

10.3.3.5 Hints for Online Statistics Gathering for Bulk Loads

By default, the database gathers statistics during bulk loads. You can disable

the feature at the statement level by using the NO_GATHER_OPTI M ZER_STATI STI CS
hint, and enable the feature at the statement level by using the

GATHER_OPTI M ZER_STATI STI CS hint.

For example, the following statement disables online statistics gathering for bulk loads:

CREATE TABLE enpl oyees2 AS
SELECT /*+NO_GATHER OPTI M ZER_STATI STI CS*/ * FROM enpl oyees

¢ See Also:

Oracle Database SQL Language Reference to learn about the
GATHER_OPTI M ZER_STATI STI CS and NO_GATHER_OPTI M ZER_STATI STI CS hints

10.4 When the Database Gathers Optimizer Statistics

The database collects optimizer statistics at various times and from various sources.

This section contains the following topics:

10.4.1 Sources for Optimizer Statistics

ORACLE

The optimizer uses several different sources for optimizer statistics.
The sources are as follows:
e DBMS_STATS execution, automatic or manual
This PL/SQL package is the primary means of gathering optimizer statistics.
* SQL compilation

During SQL compilation, the database can augment the statistics previously
gathered by DBMS_STATS. In this stage, the database runs additional queries to
obtain more accurate information on how many rows in the tables satisfy the WHERE
clause predicates in the SQL statement.

* SQL execution

During execution, the database can further augment previously gathered statistics.
In this stage, Oracle Database collects the number of rows produced by every
row source during the execution of a SQL statement. At the end of execution, the

10-18

Chapter 10
When the Database Gathers Optimizer Statistics

optimizer determines whether the estimated number of rows is inaccurate enough
to warrant reparsing at the next statement execution. If the cursor is marked for
reparsing, then the optimizer uses actual row counts from the previous execution
instead of estimates.

e SQL profiles

A SQL profile is a collection of auxiliary statistics on a query. The profile stores
these supplemental statistics in the data dictionary. The optimizer uses SQL
profiles during optimization to determine the most optimal plan.

The database stores optimizer statistics in the data dictionary and updates or replaces
them as needed. You can query statistics in data dictionary views.

See Also:

e "When the Database Samples Data"
* "About SQL Profiles"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBVS_STATS. GATHER TABLE_STATS procedure

10.4.2 SQL Plan Directives

A SQL plan directive is additional information and instructions that the optimizer can
use to generate a more optimal plan.

The directive is a “note to self” by the optimizer that it is misestimating cardinalities

of certain types of predicates, and also a reminder to DBVMS_STATS to gather statistics
needed to correct the misestimates in the future. For example, when joining two tables
that have a data skew in their join columns, a SQL plan directive can direct the
optimizer to use dynamic statistics to obtain a more accurate join cardinality estimate.

This section contains the following topics:

10.4.2.1 When the Database Creates SQL Plan Directives

ORACLE

The database creates SQL plan directives automatically based on information learned
during automatic reoptimization. If a cardinality misestimate occurs during SQL
execution, then the database creates SQL plan directives.

For each new directive, the DBA_SQL_PLAN DI RECTI VES. STATE column shows the value
USABLE. This value indicates that the database can use the directive to correct
misestimates.

The optimizer defines a SQL plan directive on a query expression, for example, filter
predicates on two columns being used together. A directive is not tied to a specific
SQL statement or SQL ID. For this reason, the optimizer can use directives for
statements that are not identical. For example, directives can help the optimizer with
gueries that use similar patterns, such as queries that are identical except for a select
list item.

10-19

Chapter 10
When the Database Gathers Optimizer Statistics

The Notes section of the execution plan indicates the number of SQL plan directives
used for a statement. Obtain more information about the directives by querying the
DBA_SQ._PLAN DI RECTI VES and DBA SQL_PLAN DI R_OBJECTS views.

¢ See Also:

Oracle Database Reference to learn more about DBA SQL_PLAN DI RECTI VES

10.4.2.2 How the Database Uses SQL Plan Directives

When compiling a SQL statement, if the optimizer sees a directive, then it obeys the
directive by gathering additional information.

The optimizer uses directives in the following ways:

* Dynamic statistics

The optimizer uses dynamic statistics whenever it does not have sufficient
statistics corresponding to the directive. For example, the cardinality estimates for
a query whose predicate contains a specific pair of columns may be significantly
wrong. A SQL plan directive indicates that the whenever a query that contains
these columns is parsed, the optimizer needs to use dynamic sampling to avoid a
serious cardinality misestimate.

Dynamic statistics have some performance overhead. Every time the optimizer
hard parses a query to which a dynamic statistics directive applies, the database
must perform the extra sampling.

Starting in Oracle Database 12c Release 2 (12.2), the database writes statistics
from adaptive dynamic sampling to the SQL plan directives store, making them
available to other queries.

e Column groups

The optimizer examines the query corresponding to the directive. If there is a
missing column group, and if the DBMS_STATS preference AUTO_STAT_EXTENSI ONS is
set to ON (the default is OFF) for the affected table, then the optimizer automatically
creates this column group the next time DBVMS_STATS gathers statistics on the table.
Otherwise, the optimizer does not automatically create the column group.

If a column group exists, then the next time this statement executes, the optimizer
uses the column group statistics in place of the SQL plan directive when

possible (equality predicates, GROUP BY, and so on). In subsequent executions,
the optimizer may create additional SQL plan directives to address other problems
in the plan, such as join or GROUP BY cardinality misestimates.

Note:

Currently, the optimizer monitors only column groups. The optimizer
does not create an extension on expressions.

When the problem that occasioned a directive is solved, either

because a better directive exists or because a histogram or extension
exists, the DBA SQL_PLAN_DI RECTI VES. STATE value changes from USABLE to

ORACLE 10-20

Chapter 10
When the Database Gathers Optimizer Statistics

SUPERSEDED. More information about the directive state is exposed in the
DBA_SQ._PLAN_DI RECTI VES. NOTES column.

¢ See Also:

e "Managing Extended Statistics"
e "About Statistics on Column Groups"

e Oracle Database PL/SQL Packages and Types Reference to
learn more about the AUTO_STAT_EXTENSI ONS preference for
DBMS_STATS. SET_TABLE STATS

10.4.2.3 SQL Plan Directive Maintenance

The database automatically creates SQL plan directives. You cannot create them
manually.

The database initially creates directives in the shared pool. The database periodically
writes the directives to the SYSAUX tablespace. The database automatically purges
any SQL plan directive that is not used after the specified number of weeks
(SPD_RETENTI ON_WEEKS), which is 53 by default.

You can manage directives by using the DBM5_SPD package. For example, you can:
* Enable and disable SQL plan directives (ALTER_SQ._PLAN DI RECTI VE)

e Change the retention period for SQL plan directives (SET_PREFS)

» Export a directive to a staging table (PACK_STGTAB_ DI RECTI VE)

* Drop a directive (DROP_SQL_PLAN DI RECTI VE)

* Force the database to write directives to disk (FLUSH _SQ._PLAN_DI RECTI VE)

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_SPD package

10.4.2.4 How the Optimizer Uses SQL Plan Directives: Example

ORACLE

This example shows how the database automatically creates and uses SQL plan
directives for SQL statements.

Assumptions

You plan to run queries against the sh schema, and you have privileges on this
schema and on data dictionary and V$ views.

10-21

Chapter 10
When the Database Gathers Optimizer Statistics

To see how the database uses a SQL plan directive:

1. Query the sh. cust oner s table.

SELECT /*+gat her _pl an_statistics*/ *
FROM custoners

WHERE cust _state_province='CA

AND country_id="US ;

The gat her _pl an_stati sti cs hint shows the actual number of rows returned from
each operation in the plan. Thus, you can compare the optimizer estimates with
the actual number of rows returned.

2. Query the plan for the preceding query.

The following example shows the execution plan (sample output included):

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(FORMAT=>' ALLSTATS LAST"));

PLAN_TABLE_QUTPUT

sel ect /*+gather_plan_statistics*/ * fromcustomers where
CUST_STATE_PROVI NCE=' CA' and country_i d="US

Pl an hash val ue: 1683234692

| 1d] Operation | Nane | Starts| E- Rows| A- Rows| Tine | Buffers|
Reads |

| 0| SELECT STATEMENT | | 1] | 29 | 00: 00: 00. 01 | 17 |
14 |

[*1 | TABLE ACCESS FULL| CUSTOMERS | 1 | 8 | 29 |00: 00: 00. 01 | 17 |
14 |

1 - filter(("CUST_STATE_PROVINCE'="CA'" AND "COUNTRY_ID'='US'"))

The actual number of rows (A- Rows) returned by each operation in the plan varies
greatly from the estimates (E- Rows). This statement is a candidate for automatic
reoptimization.

3. Check whether the cust oner s query can be reoptimized.

ORACLE 10-22

Chapter 10
When the Database Gathers Optimizer Statistics

The following statement queries the V$SQL. | S_REOPTI M ZABLE value (sample
output included):

SELECT SQL_I D, CH LD NUMBER SQL_TEXT, IS RECPTI M ZABLE
FROM V$SQL
WHERE SQL_TEXT LIKE ' SELECT /*+gat her pl an_statistics*/%:

SQL ID CH LD NUMBER SQL_TEXT |

b74nwr22w vy3 0 select /*+g Y
ather_plan_
statistics*
[* fromcu
stomers whe
re CUST_STA
TE_PROVI NCE
='CA and c
ountry_id='
Us

The | S_REOPTI M ZABLE column is marked Y, so the database will perform a hard
parse of the cust oner s query on the next execution. The optimizer uses the
execution statistics from this initial execution to determine the plan. The database
persists the information learned from reoptimization as a SQL plan directive.

4. Display the directives for the sh schema.

The following example uses DBMS_SPD to write the SQL plan directives to disk, and
then shows the directives for the sh schema only:

EXEC DBMS_SPD. FLUSH_SQL_PLAN_DI RECTI VE;

SELECT TO CHAR(d. DIRECTIVE ID) dir_id, o.OANER AS "OW', o.OBJECT NAME AS
" OBJECT",

0. SUBOBJECT NAME col _name, o. OBJECT TYPE, d.TYPE, d.STATE, d. REASON
FROM DBA SQL_PLAN DI RECTI VES d, DBA SQL_PLAN DI R OBJECTS o
WHERE d. DI RECTI VE_| D=o. DI RECTI VE_| D
AND 0.OMER IN (' SH)
ORDER BY 1,2, 3,4,5;

1484026771529551585 SH CUSTOMERS COUNTRY_I D COLUMN DYNAM C_SAMPL USABLE SI NGLE
TABLE
CARDI NALI TY
M SESTI MATE
1484026771529551585 SH CUSTOMERS CUST_STATE COLUMN DYNAM C_SAMPL USABLE SI NGLE
TABLE

_PROVI NCE CARDI NALI TY
M SESTI MATE
1484026771529551585 SH CUSTOMERS TABLE DYNAM C_SAMPL USABLE SI NGLE
TABLE

ORACLE 10-23

ORACLE

Chapter 10
When the Database Gathers Optimizer Statistics

CARDI NALI TY
M SESTI MATE

Initially, the database stores SQL plan directives in memory, and then

writes them to disk every 15 minutes. Thus, the preceding example calls
DBMS_SPD. FLUSH SQL_PLAN DI RECTI VE to force the database to write the directives
to the SYSAUX tablespace.

Monitor directives using the views DBA_SQL_PLAN_DI RECTI VES and

DBA SQ._PLAN DI R_OBJECTS. Three entries appear in the views, one for the
cust oner s table itself, and one for each of the correlated columns. Because
the cust oner s query has the | S_RECOPTI M ZABLE value of Y, if you reexecute the
statement, then the database will hard parse it again, and then generate a plan
based on the previous execution statistics.

Query the cust oner s table again.

For example, enter the following statement:

SELECT /*+gat her _pl an_statistics*/ *
FROM custoners

WHERE cust state province='CA

AND country id="US ;

Query the plan in the cursor.

The following example shows the execution plan (sample output included):

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(FORMAT=>' ALLSTATS
LAST'));

PLAN_TABLE_QUTPUT

SQ_ID b74nwr22wj vy3, child number 1

sel ect /*+gather_plan_statistics*/ * fromcustomers where
CUST_STATE_PROVI NCE=' CA' and country_id="US

Pl an hash val ue: 1683234692

|1d| Operation | Namre | Start| E- Rows| A-Rows| A-Time |
Buf f er s|

| O] SELECT STATEMENT | | 1] | 29|

00: 00: 00. 01| 17|

|*1] TABLE ACCESS FULL| CUSTOMERS| 1| 29| 29|

00: 00: 00. 01| 17|

1 - filter(("CUST_STATE_PROVINCE'=' CA'" AND "COUNTRY_ID'='US'))

10-24

ORACLE

9.

Chapter 10
When the Database Gathers Optimizer Statistics

- cardinality feedback used for this statement

The Not e section indicates that the database used reoptimization for this
statement. The estimated number of rows (E- Rows) is now correct. The SQL plan
directive has not been used yet.

Query the cursors for the cust omer s query.
For example, run the following query (sample output included):
SELECT SQ._I D, CHI LD NUMBER, SQL_TEXT,

FROM V$SQL
WHERE SQL_TEXT LIKE ' SELECT /*+gat her _plan_statistics*/%;

|'S_REOPTI M ZABLE

CH LD NUMBER SQL_TEXT I
b74nw722w vy3
ather_plan_
statistics*
[/ * fromcu
stoners whe
re CUST_STA
TE_PROVI NCE
='CA" and c
ountry_id='
Us

b74nw722w vy3 1 select /*+g N

ather_plan_
statistics*
[/ * fromcu
stonmers whe
re CUST_STA
TE_PROVI NCE
='CA" and c
ountry_id='
Us

A new plan exists for the cust omer s query, and also a new child cursor.
Confirm that a SQL plan directive exists and is usable for other statements.
For example, run the following query, which is similar but not identical to the

original cust omer s query (the state is MA instead of CA):

SELECT /*+gat her _pl an_statistics*/ CUST_EMAIL
FROM CUSTOMERS

WHERE CUST_STATE_PROVI NCE=' MA

AND COUNTRY_I D=" US' ;

Query the plan in the cursor.

10-25

ORACLE

Chapter 10
When the Database Gathers Optimizer Statistics

The following statement queries the cursor (sample output included).:

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(FORMAT=>' ALLSTATS
LAST')):

PLAN TABLE_OUTPUT

Sel ect /*+gather plan_statistics*/ cust_email From customers Were
cust _state province=" MA' And country id="US

Pl an hash val ue: 1683234692

|1d | Operation | Nane | Starts|E-Rows| A- Rows| A-Ti ng|
Buf f er s|

| 0| SELECT STATEMENT | | 1] | 2]00:00:00.01]
16 |

|*1 | TABLE ACCESS FULL| CUSTOVERS | 1| 2| 2 |00:00: 00. 01]
16 |

- dynanmic sanpling used for this statenment (level=2)
- 1 Sgl Plan Directive used for this statement

The Not e section of the plan shows that the optimizer used the SQL directive for
this statement, and also used dynamic statistics.

See Also:

e "Automatic Reoptimization"
e "Managing SQL Plan Directives"

e Oracle Database Reference to learn about DBA_SQL_PLAN DI RECTI VES,
V$SQ., and other database views

e Oracle Database Reference to learn about DBVMS_SPD

10-26

Chapter 10
When the Database Gathers Optimizer Statistics

10.4.2.5 How the Optimizer Uses Extensions and SQL Plan Directives:

Example

ORACLE

The example shows how the database uses a SQL plan directive until the optimizer
verifies that an extension exists and the statistics are applicable.

At this point, the directive changes its status to SUPERSEDED. Subsequent compilations
use the statistics instead of the directive.

Assumptions

This example assumes you have already followed the steps in "How the Optimizer
Uses SQL Plan Directives: Example".

To see how the optimizer uses an extension and SQL plan directive:

1. Gather statistics for the sh. cust oner s table.

For example, execute the following PL/SQL program:

BEG N

DBVS_STATS. GATHER _TABLE_STATS(' SH , ' CUSTOMERS') ;
END;
/

2. Check whether an extension exists on the cust oner s table.

For example, execute the following query (sample output included):

SELECT TABLE_NAME, EXTENSI ON_NAME, EXTENSI ON
FROM DBA_STAT_EXTENSI ONS

WHERE OWNER=" SH

AND TABLE_NAME=' CUSTOMERS' ;

TABLE_NAM EXTENSI ON_NAME EXTENSI ON

CUSTOMERS SYS_STU#SH#WF25Z#QAHI HEAMOFFMM_ (" CUST_STATE_PROVI NCE",
"COUNTRY_I D")

The preceding output indicates that a column group extension exists on the
cust_state_province and country_i d columns.

3. Query the state of the SQL plan directive.
Example 10-6 queries the data dictionary for information about the directive.

Although column group statistics exist, the directive has a state of USABLE because
the database has not yet recompiled the statement. During the next compilation,
the optimizer verifies that the statistics are applicable. If they are applicable, then
the status of the directive changes to SUPERSEDED. Subsequent compilations use
the statistics instead of the directive.

4. Query the sh. cust oners table.

SELECT /*+gat her _pl an_statistics*/ *
FROM customers

10-27

Chapter 10
When the Database Gathers Optimizer Statistics

WHERE cust _state_province='CA
AND country_id="US ;
5. Query the plan in the cursor.
Example 10-7 shows the execution plan (sample output included).

The Not e section shows that the optimizer used the directive and not the extended
statistics. During the compilation, the database verified the extended statistics.

6. Query the state of the SQL plan directive.
Example 10-8 queries the data dictionary for information about the directive.

The state of the directive, which has changed to SUPERSEDED, indicates that the
corresponding column or groups have an extension or histogram, or that another
SQL plan directive exists that can be used for the directive.

7. Query the sh. cust oner s table again, using a slightly different form of the
statement.

For example, run the following query:
SELECT /*+gat her _pl an_statistics*/ /* force reparse */ *
FROM custoners

WHERE cust _state province='CA
AND country_id="US';

If the cursor is in the shared SQL area, then the database typically shares the
cursor. To force a reparse, this step changes the SQL text slightly by adding a
comment.

8. Query the plan in the cursor.
Example 10-9 shows the execution plan (sample output included).

The absence of a Not e shows that the optimizer used the extended statistics
instead of the SQL plan directive. If the directive is not used for 53 weeks, then the
database automatically purges it.

¢ See Also:

e "Managing SQL Plan Directives"

e Oracle Database Reference to learn about DBA SQ._PLAN DI RECTI VES,
V$SQ., and other database views

e Oracle Database Reference to learn about DBMS_SPD

Example 10-6 Display Directives for sh Schema

EXEC DBMS_SPD. FLUSH_SQL_PLAN DI RECTI VE;

SELECT TO CHAR(d. DIRECTIVE_ID) dir_id, o.OAER 0. COBJECT NAME,

0. SUBOBJECT_NAME col _name, 0. OBJECT_TYPE, d.TYPE, d.STATE, d. REASON
FROM DBA_SQL_PLAN DI RECTI VES d, DBA_SQL_PLAN DI R OBJECTS o
WHERE d. DI RECTI VE_| D=0. DI RECTI VE_I D

ORACLE 10-28

Chapter 10
When the Database Gathers Optimizer Statistics

AND 0. OMRER IN (' SH)
ORDER BY 1,2, 3, 4, 5;

DRID OMNN OBJECT_NA COL_NAME OBJECT TYPE STATE REASON

1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUMN DYNAM C_SAMPLI NG USABLE SI NGLE
TABLE

CARDI NALI TY

M SESTI MATE

1484026771529551585 SH CUSTOMERS CUST_STATE_ COLUMN DYNAM C_SAMPLI NG USABLE SI NGLE
TABLE

PROVI NCE

CARDI NALI TY

M SESTI MATE

1484026771529551585 SH CUSTOMERS TABLE DYNAM C_SAMPLI NG USABLE SI NGLE
TABLE

CARDI NALI TY

M SESTI MATE

Example 10-7 Execution Plan

SQL> SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY CURSOR(FORMAT=>' ALLSTATS LAST'));

PLAN TABLE_OUTPUT

select /*+gather plan_statistics*/ * fromcustomers where
CUST_STATE_PROVINCE=' CA' and country_id="US

Pl an hash val ue: 1683234692

| 1d | Operation | Nane | Starts | E-Rows | A-Rows | A-Time |
Buffers |

| 0 | SELECT STATEMENT | | 1| | 29 | 00: 00: 00.01 |
16 |

|* 1| TABLE ACCESS FULL| CUSTQMERS | 1] 29 | 29 | 00: 00: 00.01 |
16 |

ORACLE 10-29

Chapter 10
When the Database Gathers Optimizer Statistics

1 - filter(("CUST_STATE_PROVINCE'="CA'" AND "COUNTRY_ID'='US'"))

- dynami c sanpling used for this statenment (Ilevel=2)
- 1 Sqgl Plan Directive used for this statement

Example 10-8 Display Directives for sh Schema

EXEC DBMS_SPD. FLUSH_SQL_PLAN DI RECTI VE;

SELECT TO CHAR(d.DIRECTIVE ID) dir_id, o.OMER o0.OBJECT NAME,
0. SUBOBJECT_NAME col name, o.OBJECT TYPE, d.TYPE, d.STATE, d. REASON
FROM DBA SQ. PLAN DI RECTIVES d, DBA SQ. PLAN DI R OBJECTS o
WHERE d. DI RECTI VE_| D=0. DI RECTI VE_I D
AND 0.OMNER IN (" SH)
ORDER BY 1,2, 3,4,5;

DIRID OM OBJECT NA COL_NAME OBJECT TYPE STATE REASON
1484026771529551585 SH CUSTOMERS COUNTRY_ID COLUWN DYNAM C_ SUPERSEDED SI NGLE
TABLE
SAMPLI NG CARDI NALI TY
M SESTI MATE
1484026771529551585 SH CUSTOMERS CUST STATE_ COLUMN DYNAM C_ SUPERSEDED SI NGLE
TABLE

PROVI NCE SAMPLI NG CARDI NALI TY
M SESTI MATE
1484026771529551585 SH CUSTOMERS TABLE DYNAM C_ SUPERSEDED S| NGLE TABLE
SAMPLI NG CARDI NALI TY
M SESTI MATE

Example 10-9 Execution Plan

SQL> SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSOR(FORVAT=>' ALLSTATS LAST'));

PLAN_TABLE_QUTPUT

sel ect /*+gather plan_statistics*/ * fromcustomers where
CUST_STATE_PROVI NCE=' CA' and country_i d="US

Pl an hash val ue: 1683234692

| Id | Operation | Name | Starts | E-Rows | A-Rows | ATime |
Buffers |

| 0| SELECT STATEMENT | 1 29 | 00: 00: 00. 01 |

ORACLE 10-30

Chapter 10
When the Database Gathers Optimizer Statistics

|* 1| TABLE ACCESS FULL| CUSTOMERS | 1 29 | 29 | 00: 00: 00. 01 |

1 - filter(("CUST_STATE_PROVINCE'="CA'" AND "COUNTRY_ID'='US"))

19 rows sel ect ed.

10.4.3 When the Database Samples Data

Starting in Oracle Database 12c, the optimizer automatically decides whether dynamic
statistics are useful and which sample size to use for all SQL statements. In earlier
releases, dynamic statistics were called dynamic sampling.

The primary factor in the decision to use dynamic statistics is whether available
statistics are sufficient to generate an optimal plan. If statistics are insufficient, then
the optimizer uses dynamic statistics.

Automatic dynamic statistics are enabled when the OPTI M ZER_DYNAM C_SAMPLI NG
initialization parameter is not set to 0. By default, the dynamic statistics level is set
to 2.

In general, the optimizer uses default statistics rather than dynamic statistics to
compute statistics heeded during optimizations on tables, indexes, and columns.
The optimizer decides whether to use dynamic statistics based on several factors,
including the following:

* The SQL statement uses parallel execution.

* A SQL plan directive exists.

The following diagram illustrates the process of gathering dynamic statistics.

ORACLE 10-31

Chapter 10
When the Database Gathers Optimizer Statistics

Figure 10-2 Dynamic Statistics

) Optimizer A
V (GB Execution
A Plan

HJ
S

Statistics missing?

Statistics insufficient? No
SQL directive exists?

Parallel execution?

Yes
CLIENT
SQL
Determine sampling Pass results to Rl - - -
size optimizer for FROM sales
use in ?lan WHERE ...
l generat:l.on
SELECT ... gg:l:_urswe T
WHERE ...
Sales

As shown in Figure 10-2, the optimizer automatically gathers dynamic statistics in the
following cases:

e Missing statistics

When tables in a query have no statistics, the optimizer gathers basic statistics on
these tables before optimization. Statistics can be missing because the application
creates new objects without a follow-up call to DBMS_STATS to gather statistics, or
because statistics were locked on an object before statistics were gathered.

In this case, the statistics are not as high-quality or as complete as the statistics
gathered using the DBMS_STATS package. This trade-off is made to limit the impact
on the compile time of the statement.

* Insufficient statistics

Statistics can be insufficient whenever the optimizer estimates the selectivity of
predicates (filter or join) or the GROUP BY clause without taking into account
correlation between columns, skew in the column data distribution, statistics on
expressions, and so on.

Extended statistics help the optimizer obtain accurate quality cardinality estimates
for complex predicate expressions. The optimizer can use dynamic statistics to
compensate for the lack of extended statistics or when it cannot use extended
statistics, for example, for non-equality predicates.

ORACLE 10-32

Chapter 10
When the Database Gathers Optimizer Statistics

< Note:

The database does not use dynamic statistics for queries that contain the AS
OF clause.

¢ See Also:

e "Configuring Options for Dynamic Statistics"
e "About Statistics on Column Groups"

e Oracle Database Reference to learn about the
OPTI M ZER_DYNAM C_SAMPLI NG initialization parameter

10.4.4 How the Database Samples Data

At the beginning of optimization, when deciding whether a table is a candidate for
dynamic statistics, the optimizer checks for the existence of persistent SQL plan
directives on the table.

For each directive, the optimizer registers a statistics expression that the optimizer
computes when determining the cardinality of a predicate involving the table. In
Figure 10-2, the database issues a recursive SQL statement to scan a small random
sample of the table blocks. The database applies the relevant single-table predicates
and joins to estimate predicate cardinalities.

The database persists the results of dynamic statistics as sharable statistics. The
database can share the results during the SQL compilation of one query with
recompilations of the same query. The database can also reuse the results for queries
that have the same patterns.

" See Also:

e "Configuring Options for Dynamic Statistics" to learn how to set the
dynamic statistics level

e Oracle Database Reference for details about the
OPTI M ZER_DYNAM C_SAMPLI NGiinitialization parameter

ORACLE 10-33

Histograms

A histogram is a special type of column statistic that provides more detailed
information about the data distribution in a table column. A histogram sorts values
into "buckets," as you might sort coins into buckets.

Based on the NDV and the distribution of the data, the database chooses the type

of histogram to create. (In some cases, when creating a histogram, the database
samples an internally predetermined number of rows.) The types of histograms are as
follows:

* Frequency histograms and top frequency histograms
» Height-Balanced histograms (legacy)
e Hybrid histograms

This chapter contains the following topics:

11.1 Purpose of Histograms

By default the optimizer assumes a uniform distribution of rows across the distinct
values in a column.

For columns that contain data skew (a nonuniform distribution of data within the
column), a histogram enables the optimizer to generate accurate cardinality estimates
for filter and join predicates that involve these columns.

For example, a California-based book store ships 95% of the books to California, 4%
to Oregon, and 1% to Nevada. The book orders table has 300,000 rows. A table
column stores the state to which orders are shipped. A user queries the number

of books shipped to Oregon. Without a histogram, the optimizer assumes an even
distribution of 300000/3 (the NDV is 3), estimating cardinality at 100,000 rows. With
this estimate, the optimizer chooses a full table scan. With a histogram, the optimizer
calculates that 4% of the books are shipped to Oregon, and chooses an index scan.

Related Topics

* Introduction to Access Paths
A row source is a set of rows returned by a step in an execution plan. A row
source can be a table, view, or result of a join or grouping operation.

11.2 When Oracle Database Creates Histograms

ORACLE

If DBMS_STATS gathers statistics for a table, and if queries have referenced the columns
in this table, then Oracle Database creates histograms automatically as needed
according to the previous query workload.

The basic process is as follows:

1. You run DBMS_STATS for a table with the METHOD_OPT parameter set to the default
SI ZE AUTO.

11-1

ORACLE

Chapter 11
When Oracle Database Creates Histograms

2. A user queries the table.

3. The database notes the predicates in the preceding query and updates the data
dictionary table SYS. COL_USAGES.

4. You run DBMS_STATS again, causing DBMS_STATS to query SYS. COL_USAGE$ to
determine which columns require histograms based on the previous query
workload.

Consequences of the AUTO feature include the following:

* As queries change over time, DBM5_STATS may change which statistics it gathers.
For example, even if the data in a table does not change, queries and DBVS_STATS
operations can cause the plans for queries that reference these tables to change.

» If you gather statistics for a table and do not query the table, then the database
does not create histograms for columns in this table. For the database to create
the histograms automatically, you must run one or more queries to populate the
column usage information in SYS. COL_USAGE$.

Example 11-1 Automatic Histogram Creation

Assume that sh. sh_ext is an external table that contains the same rows as the

sh. sal es table. You create new table sal es2 and perform a bulk load using sh_ext

as a source, which automatically creates statistics for sal es2. You also create indexes
as follows:

SQL> CREATE TABLE sal es2 AS SELECT * FROM sh_ext;
SQL> CREATE I NDEX sh_12c_i dx1 ON sal es2(prod_id);
SQ.> CREATE | NDEX sh_12c_idx2 ON sal es2(cust _id,tine_id);

You query the data dictionary to determine whether histograms exist for the sal es2
columns. Because sal es2 has not yet been queried, the database has not yet created
histograms:

SQ.> SELECT COLUWN_NAME, NOTES, H STOGRAM
2 FROM USER TAB_COL_STATI STI CS
3 WHERE TABLE_NAME = ' SALES?';

COLUMN_NAME ~ NOTES H STOGRAM

AMOUNT_SOLD ~ STATS_ON_LOAD NONE
QUANTI TY_SOLD STATS_ON_LOAD NONE

PROVD | D STATS_ON_LOAD NONE
CHANNEL I D STATS_ON LOAD NONE
TIME_I D STATS_ON_LOAD NONE
CUST_I D STATS_ON_LOAD NONE
PROD | D STATS_ON_LOAD NONE

You query sal es2 for the number of rows for product 42, and then gather table
statistics using the GATHER AUTO option:

SQL> SELECT COUNT(*) FROM sal es2 WHERE prod_id = 42;

11-2

Chapter 11
How Oracle Database Chooses the Histogram Type

12116

SQL> EXEC DBMB_STATS. GATHER TABLE_STATS(USER ' SALES2', OPTI ONS=>' GATHER
AUTO) ;

A query of the data dictionary now shows that the database created a histogram on
the prod_i d column based on the information gather during the preceding query:

SQ.> SELECT COLUWN_NAME, NOTES, H STOGRAM
2 FROM USER TAB_COL_STATI STI CS
3 WHERE TABLE_NAME = ' SALES?';

COLUMN_NAME ~ NOTES H STOGRAM

AMOUNT_SOLD ~ STATS_ON_LOAD NONE
QUANTI TY_SOLD STATS_ON_LOAD NONE

PROVD | D STATS_ON_LOAD NONE
CHANNEL I D STATS_ON LOAD NONE
TIME_I D STATS_ON_LOAD NONE
CUST_I D STATS_ON_LOAD NONE
PROD_ID HISTOGRAM_ONLY FREQUENCY

Related Topics

* Online Statistics Gathering for Bulk Loads
Starting in Oracle Database 12c, the database can gather table statistics
automatically during the following types of bulk loads: | NSERT I NTO ... SELECT
into an empty table using a direct path insert, and CREATE TABLE AS SELECT .

11.3 How Oracle Database Chooses the Histogram Type

ORACLE

Oracle Database uses several criteria to determine which histogram to create:
frequency, top frequency, height-balanced, or hybrid.

The histogram formula uses the following variables:

« NDV

This represents the number of distinct values in a column. For example, if a
column only contains the values 100, 200, and 300, then the NDV for this column is
3.

e n
This variable represents the number of histogram buckets. The default is 254.
° P

This variable represents an internal percentage threshold that is equal to (1-(1/n))
*100. For example, if n = 254, then p is 99.6.

An additional criterion is whether the est i mat e_per cent parameter in the DBMS_STATS
statistics gathering procedure is set to AUTO SAMPLE_SI ZE (default).

The following diagram shows the decision tree for histogram creation.

11-3

Figure 11-1 Decision Tree for Histogram Creation

NDV>n

Q—»

No

Frequency
Histogram

Yes

Chapter 11

Cardinality Algorithms When Using Histograms

ESTIMATE_PERCENT=

AUTO_SAMPLE_SIZE

No

Height-Balanced
Histogram

Yes Percentage Yes [Topn
SRR of rows for top n —>| Frequency
frequent values >=p_~~ Histogram

No

Hybrid
Histogram

NDV = Number of distinct values
n = Number of histogram buckets (default is 254)
p=(1-(1/n))*100

11.4 Cardinality Algorithms When Using Histograms

For histograms, the algorithm for cardinality depends on factors such as the endpoint
numbers and values, and whether column values are popular or nonpopular.

11.4.1 Endpoint Numbers and Values

This section contains the following topics:

An endpoint humber is a number that uniquely identifies a bucket. In frequency
and hybrid histograms, the endpoint number is the cumulative frequency of all values
included in the current and previous buckets.

For example, a bucket with endpoint number 100 means the total frequency of values
in the current and all previous buckets is 100. In height-balanced histograms, the
optimizer numbers buckets sequentially, starting at 0 or 1. In all cases, the endpoint

number is the bucket number.

An endpoint value is the highest value in the range of values in a bucket. For example,
if a bucket contains only the values 52794 and 52795, then the endpoint value is 52795.

11.4.2 Popular and Nonpopular Values

The popularity of a value in a histogram affects the cardinality estimate algorithm.

ORACLE

Specifically, the cardinality estimate is affected as follows:

* Popular values

A popular value occurs as an endpoint value of multiple buckets. The optimizer
determines whether a value is popular by first checking whether it is the endpoint
value for a bucket. If so, then for frequency histograms, the optimizer subtracts
the endpoint number of the previous bucket from the endpoint number of the
current bucket. Hybrid histograms already store this information for each endpoint
individually. If this value is greater than 1, then the value is popular.

11-4

Chapter 11
Cardinality Algorithms When Using Histograms

The optimizer calculates its cardinality estimate for popular values using the
following formula:

cardinality of popular value =
(numof rows in table) *
(num of endpoints spanned by this value / total num of endpoints)

* Nonpopular values

Any value that is not popular is a nonpopular value. The optimizer calculates the
cardinality estimates for nonpopular values using the following formula:

cardinality of nonpopul ar value =
(numof rows in table) * density

The optimizer calculates density using an internal algorithm based on factors such
as the number of buckets and the NDV. Density is expressed as a decimal number
between 0 and 1. Values close to 1 indicate that the optimizer expects many rows
to be returned by a query referencing this column in its predicate list. Values close
to 0 indicate that the optimizer expects few rows to be returned.

See Also:

Oracle Database Reference to learn about the
DBA_TAB_COL_STATI STI CS. DENSI TY column

11.4.3 Bucket Compression

ORACLE

In some cases, to reduce the total number of buckets, the optimizer compresses
multiple buckets into a single bucket.

For example, the following frequency histogram indicates that the first bucket number
is 1 and the last bucket number is 23:

ENDPO NT_NUMBER ENDPO NT_VALUE

1 52792
6 52793
8 52794
9 52795
10 52796
12 52797
14 52798
23 52799

Several buckets are "missing." Originally, buckets 2 through 6 each contained a single
instance of value 52793. The optimizer compressed all of these buckets into the bucket
with the highest endpoint number (bucket 6), which now contains 5 instances of value
52793. This value is popular because the difference between the endpoint number of
the current bucket (6) and the previous bucket (1) is 5. Thus, before compression the
value 52793 was the endpoint for 5 buckets.

11-5

Chapter 11
Frequency Histograms

The following annotations show which buckets are compressed, and which values are
popular:

ENDPQO NT_NUVMBER ENDPOI NT_VALUE

1 52792 -> nonpopul ar

6 52793 -> buckets 2-6 conpressed into 6; popular
8 52794 -> buckets 7-8 conpressed into 8; popul ar
9 52795 -> nonpopul ar
0
2

1 52796 -> nonpopul ar

1 52797 -> buckets 11-12 conpressed into 12;
popul ar

14 52798 -> buckets 13-14 conpressed into 14;
popul ar

23 52799 -> buckets 15-23 conpressed into 23;
popul ar

11.5 Frequency Histograms

In a frequency histogram, each distinct column value corresponds to a single bucket
of the histogram. Because each value has its own dedicated bucket, some buckets
may have many values, whereas others have few.

An analogy to a frequency histogram is sorting coins so that each individual coin
initially gets its own bucket. For example, the first penny is in bucket 1, the second
penny is in bucket 2, the first nickel is in bucket 3, and so on. You then consolidate all
the pennies into a single penny bucket, all the nickels into a single nickel bucket, and
so on with the remainder of the coins.

This section contains the following topics:

11.5.1 Criteria For Frequency Histograms

ORACLE

Frequency histograms depend on the number of requested histogram buckets.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram
Type", the database creates a frequency histogram when the following criteria are met:

* NDV is less than or equal to n, where n is the number of histogram buckets
(default 254).

For example, the sh. countri es. country_subregi on_i d column has 8 distinct
values, ranging sequentially from 52792 to 52799. If n is the default of 254, then the
optimizer creates a frequency histogram because 8 <= 254.

 Theestimte_percent parameter in the DBVMS_STATS statistics gathering procedure
is set to either a user-specified value or to AUTO SAMPLE_SI ZE.

Starting in Oracle Database 12c, if the sampling size is the default of

AUTO _SAMPLE_SI ZE, then the database creates frequency histograms from a full table
scan. For all other sampling percentage specifications, the database derives frequency
histograms from a sample. In releases earlier than Oracle Database 12c, the database
gathered histograms based on a small sample, which meant that low-frequency values
often did not appear in the sample. Using density in this case sometimes led the
optimizer to overestimate selectivity.

11-6

Chapter 11
Frequency Histograms

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about
AUTO_SAMPLE S| ZE

11.5.2 Generating a Frequency Histogram

ORACLE

This scenario shows how to generate a frequency histogram using the sample
schemas.

Assumptions

This scenario assumes that you want to generate a frequency histogram on the
sh. countries. country_subregi on_i d column. This table has 23 rows.

The following query shows that the count ry_subr egi on_i d column contains 8 distinct
values (sample output included) that are unevenly distributed:

SELECT country_subregion_id, count(*)
FROM sh.countries

GROUP BY country subregion_id

ORDER BY 1;

COUNTRY_SUBREG ON_I D~ COUNT(*)

ol
)
~
©
>
OMNNRF P NOU R

To generate a frequency histogram:

1. Gather statistics for sh. count ri es and the country_subregi on_i d column, letting
the number of buckets default to 254.

For example, execute the following PL/SQL anonymous block:

BEG N
DBMS_STATS. GATHER TABLE STATS (
ownnane => 'SH

, t abname => ' COUNTRI ES'

, method_opt =>'FOR COLUWNS COUNTRY_ SUBREG ON | D
);

END;

2. Query the histogram information for the country_subregi on_i d column.

11-7

ORACLE

Chapter 11
Frequency Histograms

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM DI STINCT, H STOGRAM
FROM USER TAB COL_STATI STI CS

WHERE TABLE_NAME=' COUNTRI ES'

AND COLUMN NANE=' COUNTRY_SUBREG ON | D ;

TABLE_NAME COLUWMN_NAME NUM_DI STI NCT H STOGRAM

COUNTRIES COUNTRY_SUBREG ON_I D 8 FREQUENCY

The optimizer chooses a frequency histogram because n or fewer distinct values
exist in the column, where n defaults to 254.

Query the endpoint number and endpoint value for the country_subregi on_id
column.

For example, use the following query (sample output included):

SELECT ENDPO NT_NUMBER, ENDPQO NT_VALUE
FROM USER_H STOGRANMS

WHERE TABLE_NAME=" COUNTRI ES'

AND COLUWN_NAME=" COUNTRY_SUBREG ON_I D' ;

ENDPO NT_NUMBER ENDPO NT_VALUE

1 52792
6 52793
8 52794
9 52795
10 52796
12 52797
14 52798
23 52799

Figure 11-2 is a graphical illustration of the 8 buckets in the histogram. Each value
is represented as a coin that is dropped into a bucket.

11-8

Chapter 11
Frequency Histograms

Figure 11-2 Frequency Histogram

52793 (62793
2792 2793 §2793 62793 52794 (52794

s

52799 (52799
52799 (52799 (52799
2798 (52798 52799 (52799 (62799

As shown in Figure 11-2, each distinct value has its own bucket. Because this

is a frequency histogram, the endpoint number is the cumulative frequency of
endpoints. For 52793, the endpoint number 6 indicates that the value appears 5
times (6 - 1). For 52794, the endpoint number 8 indicates that the value appears 2
times (8 - 6).

Every bucket whose endpoint is at least 2 greater than the previous endpoint
contains a popular value. Thus, buckets 6, 8, 12, 14, and 23 contain popular

ORACLE" 11-9

Chapter 11
Top Frequency Histograms

values. The optimizer calculates their cardinality based on endpoint numbers.
For example, the optimizer calculates the cardinality (C) of value 52799 using the
following formula, where the number of rows in the table is 23:

C=23*(9/ 23)

Buckets 1, 9, and 10 contain nonpopular values. The optimizer estimates their
cardinality based on density.

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS. GATHER TABLE_STATS procedure

e Oracle Database Reference to learn about the
USER TAB COL_STATI STI CS view

e Oracle Database Reference to learn about the USER_H STOGRAMS view

11.6 Top Frequency Histograms

A top frequency histogram is a variation on a frequency histogram that ignores
nonpopular values that are statistically insignificant.

For example, if a pile of 1000 coins contains only a single penny, then you can ignore
the penny when sorting the coins into buckets. A top frequency histogram can produce
a better histogram for highly popular values.

This section contains the following topics:

11.6.1 Criteria For Top Frequency Histograms

ORACLE

If a small number of values occupies most of the rows, then creating a frequency
histogram on this small set of values is useful even when the NDV is greater than
the number of requested histogram buckets. To create a better quality histogram

for popular values, the optimizer ignores the nonpopular values and creates a top
frequency histogram.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram
Type", the database creates a top frequency histogram when the following criteria are
met:

 NDV is greater than n, where n is the number of histogram buckets (default 254).

* The percentage of rows occupied by the top n frequent values is equal to or
greater than threshold p, where p is (1-(1/n))*100.

e Theestimte_percent parameter in the DBMS_STATS statistics gathering procedure
is set to AUTO_SAMPLE_SI| ZE.

11-10

Chapter 11

Top Frequency Histograms

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about

AUTO_SAMPLE_SI ZE

11.6.2 Generating a Top Frequency Histogram

This scenario shows how to generate a top frequency histogram using the sample
schemas.

ORACLE

Assumptions

This scenario assumes that you want to generate a top frequency histogram on the
sh. countries. country_subregi on_i d column. This table has 23 rows.

The following query shows that the count ry_subr egi on_i d column contains 8 distinct
values (sample output included) that are unevenly distributed:

SELECT country_subregion_id, count(*)
FROM sh.countries

GROUP BY country subregion_id

ORDER BY 1;

COUNTRY_SUBREG ON_I D~ COUNT(*)

ol
)
~
©
>
OMNNRF P NOU R

To generate a top frequency histogram:

1.

2.

Gather statistics for sh. countri es and the country_subregi on_i d column,

specifying fewer buckets than distinct values.

For example, enter the following command to specify 7 buckets:

BEG N
DBMS_STATS. GATHER TABLE STATS (
ownnane => 'SH

, t abname => ' COUNTRI ES'

, met hod_opt => ' FOR COLUWNS COUNTRY_SUBREG ON ID SIZE 7'
);

END;

Query the histogram information for the count ry_subr egi on_i d column.

11-11

ORACLE

Chapter 11
Top Frequency Histograms

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM DI STINCT, H STOGRAM
FROM USER TAB COL_STATI STI CS

WHERE TABLE_NAME=' COUNTRI ES'

AND COLUMN NANE=' COUNTRY_SUBREG ON | D ;

TABLE_NAME COLUWMN_NAME NUM_DI STI NCT H STOGRAM

COUNTRIES COUNTRY_SUBREG ON_I D 7 TOP- FREQUENCY

The sh. countries. country_subregi on_i d column contains 8 distinct values, but

the histogram only contains 7 buckets, making n=7. In this case, the database

can only create a top frequency or hybrid histogram. In the country_subregi on_i d
column, the top 7 most frequent values occupy 95.6% of the rows, which exceeds
the threshold of 85.7%, generating a top frequency histogram.

Query the endpoint number and endpoint value for the column.
For example, use the following query (sample output included):
SELECT ENDPOI NT_NUMBER, ENDPOI NT_VALUE

FROM USER_H STOGRAMS

WHERE TABLE_NAME=' COUNTRI ES'
AND COLUMN NANE=' COUNTRY SUBREG ON | D ;

ENDPO NT_NUMBER ENDPO NT_VALUE

1 52792
6 52793
8 52794
9 52796
11 52797
13 52798
22 52799

Figure 11-3 is a graphical illustration of the 7 buckets in the top frequency
histogram. The values are represented in the diagram as coins.

11-12

Chapter 11
Top Frequency Histograms

Figure 11-3 Top Frequency Histogram

52793 (62793

2793 (62793 (52793 52794 (52794

s

52799 (62799

50799 (52799 (62799

2798 (52798 52799 (62799 (52799

As shown in Figure 11-3, each distinct value has its own bucket except for
52795, which is excluded from the histogram because it is nonpopular and
statistically insignificant. As in a standard frequency histogram, the endpoint
number represents the cumulative frequency of values.

ORACLE"

11-13

Chapter 11
Height-Balanced Histograms (Legacy)

¢ See Also:

e "Criteria For Frequency Histograms"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS. GATHER TABLE_STATS procedure

* Oracle Database Reference to learn about the
USER TAB COL_STATI STI CS view

e Oracle Database Reference to learn about the USER_HI STOGRANS view

11.7 Height-Balanced Histograms (Legacy)

In a legacy height-balanced histogram, column values are divided into buckets so that
each bucket contains approximately the same number of rows.

For example, if you have 99 coins to distribute among 4 buckets, each bucket contains
about 25 coins. The histogram shows where the endpoints fall in the range of values.

This section contains the following topics:

11.7.1 Criteria for Height-Balanced Histograms

ORACLE

Before Oracle Database 12c, the database created a height-balanced histogram when
the NDV was greater than n. This type of histogram was useful for range predicates,
and equality predicates on values that appear as endpoints in at least two buckets.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram
Type", the database creates a height-balanced histogram when the following criteria
are met:

e NDV is greater than n, where n is the number of histogram buckets (default 254).

 Theestimte percent parameter in the DBMS_STATS statistics gathering procedure
is not set to AUTO_SAMPLE S| ZE.

It follows that if Oracle Database 12c creates new histograms, and if the sampling
percentage is AUTO SAMPLE_SI ZE, then the histograms are either top frequency or
hybrid, but not height-balanced.

If you upgrade Oracle Database 11g to Oracle Database 12c, then any height-based
histograms created before the upgrade remain in use. However, if you refresh
statistics on the table on which the histogram was created, then the database replaces
existing height-balanced histograms on this table. The type of replacement histogram
depends on both the NDV and the following criteria:

e If the sampling percentage is AUTO SAMPLE_SI ZE, then the database creates either
hybrid or frequency histograms.

» If the sampling percentage is not AUTO_SAMPLE_SI ZE, then the database creates
either height-balanced or frequency histograms.

11-14

Chapter 11
Height-Balanced Histograms (Legacy)

11.7.2 Generating a Height-Balanced Histogram

ORACLE

This scenario shows how to generate a height-balanced histogram using the sample
schemas.

Assumptions

This scenario assumes that you want to generate a height-balanced histogram on the
sh. countries. country_subregi on_i d column. This table has 23 rows.

The following query shows that the count ry_subr egi on_i d column contains 8 distinct
values (sample output included) that are unevenly distributed:

SELECT country_subregion_id, count(*)
FROM sh.countries

GROUP BY country_subregion_id

ORDER BY 1,

U1
N
~
©
a1
ONN R RPN O

To generate a height-balanced histogram:

1. Gather statistics for sh. count ri es and the count ry_subregi on_i d column,
specifying fewer buckets than distinct values.

Note:

To simulate Oracle Database 11g behavior, which is necessary to create
a height-based histogram, set esti mat e_per cent to a nondefault value.
If you specify a nondefault percentage, then the database creates
frequency or height-balanced histograms.

For example, enter the following command:

BEG N DBMS_STATS. GATHER TABLE_STATS (

ownnane => 'SH
, t abname => ' COUNTRI ES'
, met hod_opt => ' FOR COLUWNS COUNTRY_SUBREG ON_I D SI ZE 7'

, estinmate_percent => 100
);
END;
2. Query the histogram information for the count ry_subregi on_i d column.
For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUVWN_NAME, NUM DI STI NCT, H STOGRAM
FROM USER TAB_COL_STATI STI CS

11-15

Chapter 11
Height-Balanced Histograms (Legacy)

WHERE TABLE_NAME=' COUNTRI ES'
AND COLUMN NAME=' COUNTRY_SUBREGI ON I D ;

TABLE_NAME COLUMN_NANME NUM DI STINCT HI STOGRAM

COUNTRI ES COUNTRY_SUBREG ON_I D 8 HElI GHT BALANCED

The optimizer chooses a height-balanced histogram because the number
of distinct values (8) is greater than the number of buckets (7), and the
estimate_percent value is nondefault.

3. Query the number of rows occupied by each distinct value.
For example, use the following query (sample output included):

SELECT COUNT(country_subregion_id) AS NUM OF ROAS, country_subregion_id
FROM countries

GROUP BY country_subregion_id

ORDER BY 2;

NUM_OF_ROWS COUNTRY_SUBREG ON | D

OO N R R NOR
w1
N
~
©
a1

4. Query the endpoint number and endpoint value for the country_subregi on_i d
column.

For example, use the following query (sample output included):

SELECT ENDPO NT_NUMBER, ENDPO NT_VALUE
FROM USER H STOGRAMG

WHERE TABLE_NAME=' COUNTRI ES'

AND COLUMN NANE=' COUNTRY_SUBREG ON I D ;

ENDPOI NT_NUMBER ENDPOI NT_VALUE

0 52792
2 52793
3 52795
4 52798
7 52799

Figure 11-4 is a graphical illustration of the height-balanced histogram. The values
are represented in the diagram as coins.

ORACLE 11-16

ORACLE

Chapter 11
Height-Balanced Histograms (Legacy)

Figure 11-4 Height-Balanced Histogram

52793 (52793 52794
52792 52793 (62793 (62793 52794 (52795

62799
52797 62797 €279 §2799 §2799
g2rse G2rse g27ss g2rsn 2T

The bucket number is identical to the endpoint number. The optimizer records
the value of the last row in each bucket as the endpoint value, and then checks
to ensure that the minimum value is the endpoint value of the first bucket, and
the maximum value is the endpoint value of the last bucket. In this example, the
optimizer adds bucket 0 so that the minimum value 52792 is the endpoint of a
bucket.

The optimizer must evenly distribute 23 rows into the 7 specified histogram
buckets, so each bucket contains approximately 3 rows. However, the optimizer
compresses buckets with the same endpoint. So, instead of bucket 1 containing

2 instances of value 52793, and bucket 2 containing 3 instances of value 52793,
the optimizer puts all 5 instances of value 52793 into bucket 2. Similarly, instead of
having buckets 5, 6, and 7 contain 3 values each, with the endpoint of each bucket
as 52799, the optimizer puts all 9 instances of value 52799 into bucket 7.

In this example, buckets 3 and 4 contain honpopular values because the difference
between the current endpoint number and previous endpoint number is 1. The
optimizer calculates cardinality for these values based on density. The remaining
buckets contain popular values. The optimizer calculates cardinality for these
values based on endpoint numbers.

11-17

Chapter 11
Hybrid Histograms

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBVB_STATS. GATHER TABLE_STATS procedure

e Oracle Database Reference to learn about the
USER TAB COL_STATI STI CS view

e Oracle Database Reference to learn about the USER_H STOGRAMS view

11.8 Hybrid Histograms

A hybrid histogram combines characteristics of both height-based histograms and
frequency histograms. This "best of both worlds" approach enables the optimizer to
obtain better selectivity estimates in some situations.

The height-based histogram sometimes produces inaccurate estimates for values that
are almost popular. For example, a value that occurs as an endpoint value of only one
bucket but almost occupies two buckets is not considered popular.

To solve this problem, a hybrid histogram distributes values so that no value occupies
more than one bucket, and then stores the endpoint repeat count value, which is the
number of times the endpoint value is repeated, for each endpoint (bucket) in the
histogram. By using the repeat count, the optimizer can obtain accurate estimates for
almost popular values.

This section contains the following topics:

11.8.1 How Endpoint Repeat Counts Work

The analogy of coins distributed among buckets illustrate show endpoint repeat counts
work.

The following figure illustrates a coi ns column that sorts values from low to high.

Figure 11-5 Coins

Geteeerreeee@o®

You gather statistics for this table, setting the met hod_opt argument of

DBMS_STATS. GATHER TABLE_STATSto FOR ALL COLUMNS SI ZE 3. In this case, the
optimizer initially groups the values in the coi ns column into three buckets, as shown
in the following figure.

ORACLE 11-18

Chapter 11
Hybrid Histograms

Figure 11-6 Initial Distribution of Values

006@ N & @
& @ 0 o

Bucket 1 Bucket 2 Bucket 3

If a bucket border splits a value so that some occurrences of the value are in one
bucket and some in another, then the optimizer shifts the bucket border (and all other
following bucket borders) forward to include all occurrences of the value. For example,
the optimizer shifts value 5 so that it is now wholly in the first bucket, and the value 25
is now wholly in the second bucket.

Figure 11-7 Redistribution of Values
0@ o (o &

e oy 0 o
g & @

Bucket 1 Bucket 2 Bucket 3

The endpoint repeat count measures the number of times that the corresponding
bucket endpoint, which is the value at the right bucket border, repeats itself. For
example, in the first bucket, the value 5 is repeated 3 times, so the endpoint repeat
count is 3.

ORACLE" 11-19

Chapter 11
Hybrid Histograms

Figure 11-8 Endpoint Repeat Count

00¢ @ @ ®
s & 0 0

® @

Bucket 1 Bucket 2 Bucket 3

Height-balanced histograms do not store as much information as hybrid histograms.
By using repeat counts, the optimizer can determine exactly how many occurrences
of an endpoint value exist. For example, the optimizer knows that the value 5 appears
3 times, the value 25 appears 4 times, and the value 100 appears 2 times. This
frequency information helps the optimizer to generate better cardinality estimates.

11.8.2 Criteria for Hybrid Histograms

The only differentiating criterion for hybrid histograms as compared to top frequency
histograms is that the top n frequent values is less than internal threshold p.

As shown in the logic diagram in "How Oracle Database Chooses the Histogram
Type", the database creates a hybrid histogram when the following criteria are met:

* NDV is greater than n, where n is the number of histogram buckets (default is
254).

* The criteria for top frequency histograms do not apply.

This is another way to stating that the percentage of rows occupied by the top n
frequent values is less than threshold p, where p is (1- (1/n)) *100.

e Theestimte_percent parameter in the DBMS_STATS statistics gathering procedure
is set to AUTO_SAMPLE_SI| ZE.

If users specify their own percentage, then the database creates frequency or
height-balanced histograms.

ORACLE 11-20

Chapter 11
Hybrid Histograms

¢ See Also:

e "Criteria For Top Frequency Histograms."
* "Height-Balanced Histograms (Legacy)"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about the esti mat e_per cent parameter

11.8.3 Generating a Hybrid Histogram

ORACLE

This scenario shows how to generate a hybrid histogram using the sample schemas.

Assumptions

This scenario assumes that you want to generate a hybrid histogram on
the sh. product s. prod_subcat egory_i d column. This table has 72 rows. The
prod_subcat egory_i d column contains 22 distinct values.

To generate a hybrid histogram:

1. Gather statistics for sh. product s and the prod_subcat egory_i d column,
specifying 10 buckets.

For example, enter the following command:

BEG N DBMS_STATS. GATHER TABLE STATS (

ownnamne => 'SH
, t abnane => ' PRODUCTS'
, met hod_opt =>'FOR COLUMNS PROD _SUBCATEGORY_ I D SIZE 10'
)s
END,

2. Query the number of rows occupied by each distinct value.

For example, use the following query (sample output included):

SELECT COUNT(prod_subcategory_id) AS NUM OF ROW,
prod_subcategory_id

FROM products

GROUP BY prod_subcategory_id

ORDER BY 1 DESC

NUM_OF_ROWS PROD_SUBCATEGCRY_| D

S~ 0101 o1 01O o) N
N
o
(é]
(o]

11-21

Chapter 11
Hybrid Histograms

2043
2033
2034
2013
2012
2053
2035
2022
2041
2044
2011
2021
2052

P RPRFRPEFRPFEPEPNNMNNMNDNNDNDNDW

22 rows sel ected.

The column contains 22 distinct values. Because the number of buckets (10) is
less than 22, the optimizer cannot create a frequency histogram. The optimizer
considers both hybrid and top frequency histograms. To qualify for a top frequency
histogram, the percentage of rows occupied by the top 10 most frequent values
must be equal to or greater than threshold p, where p is (1-(1/10))*100, or 90%.
However, in this case the top 10 most frequent values occupy 54 rows out of 72,
which is only 75% of the total. Therefore, the optimizer chooses a hybrid histogram
because the criteria for a top frequency histogram do not apply.

3. Query the histogram information for the count ry_subregi on_i d column.

For example, use the following query (sample output included):

SELECT TABLE_NAME, COLUMN_NAME, NUM DI STI NCT, HI STOGRAM
FROM USER _TAB_COL_STATI STI CS

WHERE TABLE_NAME=" PRCDUCTS

AND COLUMN_NAME=" PRCD_SUBCATEGORY_I D' ;

TABLE_NAME COLUMN_NAME NUM_DI STI NCT HI STOGRAM

PRODUCTS PROD_SUBCATEGCRY_I D 22 HYBRI D

4. Query the endpoint number, endpoint value, and endpoint repeat count for the
country_subregi on_i d column.

For example, use the following query (sample output included):

SELECT ENDPO NT_NUMBER, ENDPO NT_VALUE, ENDPQO NT_REPEAT_COUNT
FROM USER_H STOGRANS

WHERE TABLE_NAME=" PRCDUCTS

AND COLUWN_NAME=" PRCD_SUBCATEGORY_I D

CRDER BY 1,

ENDPO NT_NUMBER ENDPO NT_VALUE ENDPO NT_REPEAT_COUNT

1 2011 1
13 2014 8
26 2032 6
36 2036 4
45 2043 3

ORACLE 11-22

ORACLE

Chapter 11
Hybrid Histograms

51 2051 5
52 2052 1
54 2053 2
60 2054 6
72 2056 5

10 rows sel ect ed.

In a height-based histogram, the optimizer would evenly distribute 72 rows into

the 10 specified histogram buckets, so that each bucket contains approximately 7
rows. Because this is a hybrid histogram, the optimizer distributes the values so
that no value occupies more than one bucket. For example, the optimizer does not
put some instances of value 2036 into one bucket and some instances of this value
into another bucket: all instances are in bucket 36.

The endpoint repeat count shows the number of times the highest value in the
bucket is repeated. By using the endpoint number and repeat count for these
values, the optimizer can estimate cardinality. For example, bucket 36 contains
instances of values 2033, 2034, 2035, and 2036. The endpoint value 2036 has an
endpoint repeat count of 4, so the optimizer knows that 4 instances of this value
exist. For values such as 2033, which are not endpoints, the optimizer estimates
cardinality using density.

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS. GATHER TABLE_STATS procedure

e Oracle Database Reference to learn about the
USER TAB COL_STATI STI CS view

e Oracle Database Reference to learn about the USER_H STOGRAMS view

11-23

Configuring Options for Optimizer Statistics
Gathering

This chapter explains what optimizer statistics collection is and how to set statistics
preferences.

This chapter contains the following topics:

12.1 About Optimizer Statistics Collection

In Oracle Database, optimizer statistics collection is the gathering of optimizer
statistics for database objects, including fixed objects.

The database can collect optimizer statistics automatically. You can also collect them
manually using the DBM5S_STATS package.

This section contains the following topics:

Related Topics

e Gathering Optimizer Statistics Manually
As an alternative or supplement to automatic statistics gathering, you can use the
DBMS_STATS package to gather optimizer statistics manually.

12.1.1 Purpose of Optimizer Statistics Collection

The contents of tables and associated indexes change frequently, which can lead
the optimizer to choose suboptimal execution plan for queries. To avoid potential
performance issues, statistics must be kept current.

To minimize DBA involvement, Oracle Database automatically gathers optimizer
statistics at various times. Some automatic options are configurable, such enabling
AutoTask to run DBMS_STATS.

12.1.2 User Interfaces for Optimizer Statistics Management

You can manage optimizer statistics either through Oracle Enterprise Manager Cloud
Control (Cloud Control) or using PL/SQL on the command line.

This section contains the following topics:

12.1.2.1 Graphical Interface for Optimizer Statistics Management

The Manage Optimizer Statistics page in Cloud Control is a GUI that enables you to
manage optimizer statistics.

This section contains the following topics:

ORACLE 12-1

Chapter 12
About Optimizer Statistics Collection

12.1.2.1.1 Accessing the Database Home Page in Cloud Control

Oracle Enterprise Manager Cloud Control enables you to manage multiple databases
within a single GUI-based framework.

To access a database home page using Cloud Control:

1. Log in to Cloud Control with the appropriate credentials.
2. Under the Targets menu, select Databases.

3. Inthe list of database targets, select the target for the Oracle Database instance
that you want to administer.

4. If prompted for database credentials, then enter the minimum credentials
necessary for the tasks you intend to perform.

¢ See Also:

Cloud Control online help

12.1.2.1.2 Accessing the Optimizer Statistics Console

You can perform most necessary tasks relating to optimizer statistics through pages
linked to by the Optimizer Statistics Console page.

To manage optimizer statistics using Cloud Control:

1. In Cloud Control, access the Database Home page.
2. From the Performance menu, select SQL, then Optimizer Statistics.

The Optimizer Statistics Console appears.

¢ See Also:

Online Help for Oracle Enterprise Manager Cloud Control

12.1.2.2 Command-Line Interface for Optimizer Statistics Management

The DBM5S_STATS package performs most optimizer statistics tasks.

To enable and disable automatic statistics gathering, use the DBM5S_AUTO TASK ADM N
PL/SQL package.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn how to
use DBMS_STATS and DBMS_AUTO _TASK_ADM N

ORACLE 12-2

Chapter 12
Setting Optimizer Statistics Preferences

12.2 Setting Optimizer Statistics Preferences

This topic explains how to set optimizer statistics defaults using
DBMS_STATS. SET_* _PREFS procedures.

This section contains the following topics:

12.2.1 About Optimizer Statistics Preferences

The optimizer statistics preferences set the default values of the parameters used
by automatic statistics collection and the DBM5_STATS statistics gathering procedures.

You can set optimizer statistics preferences at the table, schema, database (all tables),
and global level. A global preference refers to tables with no preferences and any
tables created in the future. The procedure names follow the form SET_* PREFS.

This section contains the following topics:

12.2.1.1 Purpose of Optimizer Statistics Preferences

ORACLE

Preferences enable you to maintain optimizer statistics automatically when some
objects require settings that differ from the default. In this way, you have more control
over how Oracle Database gathers statistics.

Preferences that you can set include, but are not limited to, the following:
e ESTI MATE_PERCENT

This preference determines the percentage of rows to estimate.
* CONCURRENT

This preference determines whether the database gathers statistics concurrently
on multiple objects, or serially, one object at a time.

* STALE_PERCENT

This preference determines the percentage of rows in a table that must change
before the database deems the statistics stale and in need of regathering.

e AUTO _STAT_EXTENSI ONS

When set to the non-default value of ON, this preference enables a SQL plan
directive to trigger the creation of column group statistics based on usage of
columns in the predicates in the workload.

e | NCREMENTAL

This preference determines whether the database maintains the global statistics of
a partitioned table without performing a full table scan. Possible values are TRUE
and FALSE.

For example, by the default setting for | NCREMENTAL is FALSE. You can set

| NCREMENTAL to TRUE for a range-patrtitioned table when the last few partitions

are updated. Also, when performing a partition exchange operation on a
nonpartitioned table, Oracle recommends that you set | NCREMENTAL to TRUE and

| NCREMENTAL_LEVEL to TABLE. With these settings, DBMS_STATS gathers table-level
synopses on this table.

12-3

Chapter 12
Setting Optimizer Statistics Preferences

* | NCREMENTAL_LEVEL

This preference controls what synopses to collect when | NCREMENTAL preference is
set to TRUE. It takes two values: TABLE or PARTI Tl ON.

e APPROXI MATE_NDV_ALGORI THM

This preference controls which algorithm to use when calculating the number of
distinct values for partitioned tables using incremental statistics.

12.2.1.2 DBMS_STATS Procedures for Setting Statistics Preferences

The DBMS_STATS. SET_* PREFS procedures change the defaults of parameters used by
the DBMS_STATS. GATHER _* _STATS procedures. To query the current preferences, use
the DBMS_STATS. GET_PREFS function.

When setting statistics preferences, the order of precedence is:

1. Table preference (set for a specific table, all tables in a schema, or all tables in the
database)

2. Global preference
3. Default preference

The following table summarizes the relevant DBM5S_STATS procedures.

Table 12-1 DBMS_STATS Procedures for Setting Optimizer Statistics

Preferences
]
Procedure Scope

SET_TABLE_PREFS Specified table only.

SET_SCHEMA PREFS All existing tables in the specified schema.

This procedure calls SET_TABLE_PREFS for each table in the
specified schema. Calling SET_SCHEMA PREFS does not affect
any new tables created after it has been run. New tables use the
GLOBAL_PREF values for all parameters.

SET_DATABASE_PREFS All user-defined schemas in the database. You can include
system-owned schemas such as SYS and SYSTEMby setting the
ADD_SYS parameter to t r ue.

This procedure calls SET_TABLE PREFS for each table in the
specified schema. Calling SET_DATABASE PREFS does not
affect any new objects created after it has been run. New
objects use the GLOBAL_PREF values for all parameters.

ORACLE 12-4

Chapter 12
Setting Optimizer Statistics Preferences

Table 12-1 (Cont.) DBMS_STATS Procedures for Setting Optimizer Statistics
Preferences

___|
Procedure Scope

SET_GLOBAL_PREFS Any table that does not have an existing table preference.

All parameters default to the global setting unless a table
preference is set or the parameter is explicitly set in the
DBMS_STATS. GATHER * _STATS statement. Changes made by
SET_GLOBAL_PREFS affect any new objects created after it
runs. New objects use the SET_GLOBAL_PREFS values for all
parameters.

With SET_GLOBAL_PREFS, you can set a default value for

the parameter AUTOSTATS_TARCET. This additional parameter
controls which objects the automatic statistic gathering job
running in the nightly maintenance window affects. Possible
values for AUTOSTATS_TARGET are ALL, ORACLE, and AUTO
(default).

You can only set the CONCURRENT preference at the global

level. You cannot set the preference | NCREMENTAL_LEVEL using
SET_GLOBAL_PREFS.

" See Also:

e "About Concurrent Statistics Gathering"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS procedures for setting optimizer statistics

12.2.1.3 Statistics Preference Overrides

ORACLE

The preference_overrides_paranet er statistics preference determines whether,
when gathering optimizer statistics, to override the input value of a parameter with the
statistics preference. In this way, you control when the database honors a parameter
value passed to the statistics gathering procedures.

When pref erence_overri des_paranet er is set to FALSE (default), the input values for
statistics gathering procedures are honored. When set to TRUE, the input values are
ignored.

Set the preference_overri des_paramet er preference using the SET_TABLE_PREFS,
SET_SCHEMA PREFS, or SET_GLOBAL_PREFS procedures in DBMS_STATS. Regardless of
whether pref erence_overri des_paranet er is set, the database uses the same order
of precedence for setting statistics:

1. Table preference (set for a specific table, all tables in a schema, or all tables in the
database)

2. Global preference

3. Default preference

12-5

Chapter 12
Setting Optimizer Statistics Preferences

Example 12-1 Overriding Statistics Preferences at the Table Level

In this example, legacy scripts set esti mat e_per cent explicitly rather than using the
recommended AUTO_SAMPLE_SI ZE. Your goal is to prevent users from using these
scripts to set preferences on the sh. cost s table.

Table 12-2 Overriding Statistics Preferences at the Table Level

Action

Description

SQL> SELECT DBMS_STATS. GET_PREFS
("estimte_percent', 'sh','costs')
AS "STAT_PREFS' FROM DUAL;

STAT_PREFS

DBMS_STATS. AUTO _SAMPLE_SI ZE

SQ.> EXEC DBMS_STATS. SET_TABLE_PREFS
('sh', "costs',
"preference_overrides_paraneter', "true');

PL/ SQL procedure successfully conpleted.

SQL> EXEC DBMS_STATS. GATHER TABLE_STATS
("sh', '"costs', estimte_percent=>100);

PL/ SQL procedure successfully conpl eted.

No preference for est i mat e_per cent is set for
sh. cost s or at the global level, so the preference
defaults to AUTO_SAMPLE_SI ZE.

By default, Oracle Database accepts preferences that
are passed to the GATHER _* STATS procedures. To
override these parameters, you use SET_TABLE_PREFS
to set the pref erence_overri des_par anet er
preference to t r ue for the cost s table only.

You attempt to set est i mat e_per cent to 100

when gathering statistics for sh. cost s. However,
because pref erence_overrides_paraneter is

t r ue for this table, Oracle Database does not honor
the est i mat e_per cent =>100setting. Instead, the
database gathers statistics using AUTO_SAMPLE_SI ZE,
which is the default.

Example 12-2 Overriding Statistics Preferences at the Global Level

In this example, you set esti mat e_per cent to 5 at the global level, which means that
this preference applies to every table in the database that does not have a table
preference set. You then set an override on the sh. sal es table, which does not have
a table-level preference set, to prevent users from overriding the global setting in their

scripts.

ORACLE

12-6

Chapter 12
Setting Optimizer Statistics Preferences

Table 12-3 Overriding Statistics Preferences at the Global Level

Action

Description

SQL> SELECT DBMS_STATS. GET_PREFS
("estimte_percent', 'sh','sales')
AS " STAT_PREFS' FROM DUAL;

STAT_PREFS

DBVB_STATS. AUTO_SAMPLE_SI ZE

SQL> EXEC DBMS_STATS. SET_GLOBAL_PREFS
('estimate _percent', '5');

PL/ SQL procedure successfully conpleted.

SQL> SELECT DBMS_STATS. GET_PREFS
("estimte_percent', 'sh','sales")
AS " STAT_PREFS" FROM DUAL;

STAT_PREFS

SQL> EXEC DBMB_STATS. SET_TABLE_PREFS
("sh', 'sales',
"preference_overrides_paraneter', "true');

PL/ SQL procedure successfully conpl eted.

SQL> EXEC DBMS_STATS. GATHER TABLE_STATS
("sh', "sales', estimate_percent=>10);

PL/ SQL procedure successfully conpleted.

No preference for est i mat e_per cent is set for
sh. sal es or at the global level, so the preference
defaults to AUTO_SAMPLE_SI ZE.

You use the SET_GLOBAL_PREFS procedure to set the
estimat e_percent preference to 5 for every table in
the database that does not have a table preference set.

Because sh. sal es does not have a preference set,
the global setting applies to this table. A query of
the preferences for sh. sal es now shows that the
estimat e_per cent setting is 5, which is the global
setting.

You use SET_TABLE PREFS to set the
pref erence_overrides_paranet er preference to
t rue for the sh. sal es table only.

You attempt to set est i mat e_per cent to 10 when
gathering statistics for sh. sal es. However, because
preference_overrides_paraneter istrue for the
sal es table, and because a global preference is
defined, Oracle Database actually gathers statistics
using the global setting of 5.

" See Also:

ORACLE

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS procedures for setting optimizer statistics

12-7

Chapter 12
Setting Optimizer Statistics Preferences

12.2.1.4 Setting Statistics Preferences: Example

This example illustrates the relationship between SET_TABLE_PREFS,
SET_SCHEMA_STATS, and SET_DATABASE_PREFS.

Table 12-4 Changing Preferences for Statistics Gathering Procedures

Action

Description

SQL> SELECT DBMS_STATS. GET_PREFS
("incremental', 'sh','costs')
AS " STAT_PREFS" FROM DUAL;

STAT_PREFS

You query the | NCREMENTAL preference for cost s and
determine that it is settot r ue.

SQL> EXEC DBMS_STATS. SET_TABLE_PREFS
("sh', 'costs', "increnental', 'false');

PL/ SQL procedure successfully conpl et ed.

You use SET_TABLE_PREFS to set the | NCREMENTAL
preference to f al se for the cost s table only.

SQL> SELECT DBMS_STATS. GET_PREFS
("incremental', 'sh', 'costs')
AS " STAT_PREFS' FROM DUAL;

STAT_PREFS

You query the | NCREMENTAL preference for cost s and
confirm that it is set to f al se.

SQL> EXEC DBMS_STATS. SET_SCHEMA_PREFS
("sh', "incremental', 'true');

PL/ SQL procedure successfully conpl et ed.

You use SET_SCHEMA PREFS to set the | NCREMENTAL
preference to t r ue for every table in the sh schema,
including cost s.

SQL> SELECT DBMS_STATS. GET_PREFS
("incremental', 'sh', 'costs')
AS " STAT_PREFS"' FROM DUAL;

STAT_PREFS

You query the | NCREMENTAL preference for cost s and
confirm that it is set to t r ue.

SQL> EXEC DBMS_STATS. SET_DATABASE PREFS
("incremental', 'false');

PL/ SQL procedure successful |y conpl eted.

You use SET_DATABASE_PREFS to set the
| NCREMENTAL preference for all tables in all user-
defined schemas to f al se.

ORACLE

12-8

Chapter 12
Setting Optimizer Statistics Preferences

Table 12-4 (Cont.) Changing Preferences for Statistics Gathering Procedures
]

Action

Description

SQL> SELECT DBMS_STATS. GET_PREFS
("incremental', 'sh', 'costs')
AS " STAT_PREFS' FROM DUAL;

STAT_PREFS

You query the | NCREMENTAL preference for cost s and
confirm that it is set to f al se.

12.2.2 Setting Global Optimizer Statistics Preferences Using Cloud

Control

A global preference applies to any object in the database that does not have an
existing table preference. You can set optimizer statistics preferences at the global

level using Cloud Control.

To set global optimizer statistics preferences using Cloud Control:

1. In Cloud Control, access the Database Home page.

2. From the Performance menu, select SQL, then Optimizer Statistics.

The Optimizer Statistics Console appears.

3. Click Global Statistics Gathering Options.

The Global Statistics Gathering Options page appears.

4. Make your desired changes, and click Apply.

¢ See Also:

Online Help for Oracle Enterprise Manager Cloud Control

12.2.3 Setting Object-Level Optimizer Statistics Preferences Using

Cloud Control

You can set optimizer statistics preferences at the database, schema, and table level

using Cloud Control.

To set object-level optimizer statistics preferences using Cloud Control:

1. In Cloud Control, access the Database Home page.

2. From the Performance menu, select SQL, then Optimizer Statistics.

The Optimizer Statistics Console appears.

3. Click Object Level Statistics Gathering Preferences.

ORACLE

12-9

Chapter 12
Setting Optimizer Statistics Preferences

The Object Level Statistics Gathering Preferences page appears.

To modify table preferences for a table that has preferences set at the table level,
do the following (otherwise, skip to the next step):

a. Enter values in Schema and Table Name. Leave Table Name blank to see all
tables in the schema.

The page refreshes with the table names.
b. Select the desired tables and click Edit Preferences.

The General subpage of the Edit Preferences page appears.
c. Change preferences as needed and click Apply.

To set preferences for a table that does not have preferences set at the table level,
do the following (otherwise, skip to the next step):

a. Click Add Table Preferences.
The General subpage of the Add Table Preferences page appears.
b. In Table Name, enter the schema and table name.
c. Change preferences as needed and click OK.
To set preferences for a schema, do the following:
a. Click Set Schema Tables Preferences.
The General subpage of the Edit Schema Preferences page appears.
b. In Schema, enter the schema name.

c. Change preferences as needed and click OK.

¢ See Also:

Online Help for Oracle Enterprise Manager Cloud Control

12.2.4 Setting Optimizer Statistics Preferences from the Command

Line

ORACLE

If you do not use Cloud Control to set optimizer statistics preferences, then you can
invoke the DBMS_STATS procedures from the command line.

Prerequisites

This task has the following prerequisites:

To set the global or database preferences, you must have SYSDBA privileges, or
both ANALYZE ANY DI CTlI ONARY and ANALYZE ANY system privileges.

To set schema preferences, you must connect as owner, or have SYSDBA
privileges, or have the ANALYZE ANY system privilege.

To set table preferences, you must connect as owner of the table or have the
ANALYZE ANY system privilege.

12-10

Chapter 12
Setting Optimizer Statistics Preferences

To set optimizer statistics preferences from the command line:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the
necessary privileges.

2. Optionally, call the DBMS_STATS. GET_PREFS procedure to see preferences set at the
object level, or at the global level if a specific table is not set.

For example, obtain the STALE_PERCENT parameter setting for the sh. sal es table
as follows:

SELECT DBMS_STATS. GET_PREFS(' STALE_PERCENT', 'SH, 'SALES')
FROM DUAL;

3. Execute the appropriate procedure from Table 12-1, specifying the following
parameters:
e ownnane - Set schema name (SET_TAB_PREFS and SET_SCHEMA PREFS only)
e tabname - Set table name (SET_TAB_PREFS only)
e pnane - Set parameter name
e pval ue - Set parameter value
e add_sys - Include system tables (optional, SET_DATABASE_PREFS only)
The following example specifies that 13% of rows in sh. sal es must change before
the statistics on that table are considered stale:
EXEC DBMS_STATS. SET TABLE PREFS(' SH , ' SALES', ' STALE PERCENT',
113');
4. Optionally, query the *_TAB_STAT_PREFS view to confirm the change.
For example, query DBA TAB_STAT PREFS as follows:
COL OMNER FORMAT a5
COL TABLE_NAME FORMAT al5
COL PREFERENCE_NAME FORMAT a20

COL PREFERENCE_VALUE FORVAT a30
SELECT * FROM DBA_TAB_STAT_PREFS;

Sample output appears as follows:

OMNER TABLE_NAME PREFERENCE_NAME PREFERENCE_VALUE
CE CUSTOMERS NO_| NVAL| DATE

DBVS_STATS. AUTO | NVALI DATE

SH SALES STALE_PERCENT 13

ORACLE 12-11

Chapter 12
Configuring Options for Dynamic Statistics

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
the parameter names and values for program units

12.3 Configuring Options for Dynamic Statistics

Dynamic statistics are an optimization technique in which the database uses
recursive SQL to scan a small random sample of the blocks in a table.

The sample scan estimate predicate selectivities. Using these estimates, the
database determines better default statistics for unanalyzed segments, and verifies
its estimates. By default, when optimizer statistics are missing, stale, or insufficient,
dynamic statistics automatically run recursive SQL during parsing to scan a small
random sample of table blocks.

This section contains the following topics:

Related Topics

e Supplemental Dynamic Statistics
By default, when optimizer statistics are missing, stale, or insufficient, the
database automatically gathers dynamic statistics during a parse. The database
uses recursive SQL to scan a small random sample of table blocks.

12.3.1 About Dynamic Statistics Levels

ORACLE

The dynamic statistics level controls both when the database gathers dynamic
statistics, and the size of the sample that the optimizer uses to gather the statistics.

Set the dynamic statistics level using either the OPTI M ZER_DYNAM C_SAMPLI NG
initialization parameter or a statement hint.

¢ Note:

Dynamic statistics were called dynamic sampling in releases earlier than
Oracle Database 12c Release 1 (12.1).

The following table describes the levels for dynamic statistics. Note the following:

« If dynamic statistics are enabled, then the database may choose to use dynamic
statistics when a SQL statement uses parallel execution.

o If OPTI M ZER_ADAPTI VE_STATI STI CS is TRUE, then the optimizer uses dynamic
statistics when relevant SQL plan directives exist. The database maintains the
resulting statistics in the SQL plan directives store, making them available to other
gueries.

12-12

Chapter 12

Configuring Options for Dynamic Statistics

Table 12-5 Dynamic Statistics Levels

Level

When the Optimizer Uses Dynamic Statistics

Sample Size (Blocks)

0

Do not use dynamic statistics.

n/a

1

Use dynamic statistics for all tables that do not have statistics, but
only if the following criteria are met:

« At least one nonpartitioned table in the query does not have
statistics.

e This table has no indexes.

e This table has more blocks than the number of blocks that
would be used for dynamic statistics of this table.

32

Use dynamic statistics if at least one table in the statement has no
statistics. This is the default value.

64

Use dynamic statistics if any of the following conditions is true:
e Atleast one table in the statement has no statistics.

e The statement has one or more expressions used
in the WHERE clause predicates, for example, WHERE
SUBSTR(CUSTLASTNAME, 1, 3) .

64

Use dynamic statistics if any of the following conditions is true:

e At least one table in the statement has no statistics.

e The statement has one or more expressions used
in the WHERE clause predicates, for example, WHERE
SUBSTR(CUSTLASTNAME, 1, 3) .

« The statement uses complex predicates (an OR or AND
operator between multiple predicates on the same table).

64

The criteria are identical to level 4, but the database uses a
different sample size.

128

The criteria are identical to level 4, but the database uses a
different sample size.

256

The criteria are identical to level 4, but the database uses a
different sample size.

512

The criteria are identical to level 4, but the database uses a
different sample size.

1024

The criteria are identical to level 4, but the database uses a
different sample size.

4086

10

The criteria are identical to level 4, but the database uses a
different sample size.

All blocks

11

The database uses adaptive dynamic sampling automatically when
the optimizer deems it necessary.

Automatically determined

See Also:

e "When the Database Samples Data"

ORACLE

e QOracle Database Reference to learn about the
OPTI M ZER_DYNAM C_SAMPLI NGinitialization parameter

12-13

12.3.2 Setting

Chapter 12
Configuring Options for Dynamic Statistics

Dynamic Statistics Levels Manually

Determining a database-level setting that would be beneficial to all SQL statements
can be difficult.

When setting the level for dynamic statistics, Oracle recommends setting the
OPTI M ZER_DYNAM C_SAMPLI NGinitialization parameter at the session level.

Assumptions

This tutorial assumes the following:

You want correct selectivity estimates for the following query, which has WHERE
clause predicates on two correlated columns:

SELECT *
FROM sh. customers
WHERE cust _city='Los Angel es'
AND cust _state province="CA';
The preceding query uses serial processing.
The sh. cust oner s table contains 932 rows that meet the conditions in the query.
You have gathered statistics on the sh. cust ormer s table.
You created an index on the cust _city and cust _state_provi nce columns.

The OPTI M ZER_DYNAM C_SAMPLI NG initialization parameter is set to the default
level of 2.

To set the dynamic statistics level manually:

1.

2.

ORACLE

In SQL*Plus or SQL Developer, log in to the database as a user with the
necessary privileges.

Explain the execution plan as follows:

EXPLAI N PLAN FOR
SELECT *
FROM sh. customers
WHERE cust _city='Los Angel es'
AND cust _state province="CA';

Query the plan as follows:
SET LI NESI ZE 130
SET PAGESI ZE 0

SELECT *
FROM TABLE(DBMS_XPLAN. DI SPLAY) ;

The output appears below (the example has been reformatted to fit on the page):

12-14

Chapter 12
Configuring Options for Dynamic Statistics

| 0| SELECT STATEMENT | | 53] 9593| 53(0)| 00: 00: 01]
| 1| TABLE ACCESS BY | NDEX ROW D| CUSTOVERS | 53] 9593|53(0)]| 00: 00: 01]
|*2] | NDEX RANGE SCAN | CUST_CI TY_STATE_IND| 53| 9593| 3(0)|00: 00: 01|

2 - access("CUST_CITY"="Los Angeles' AND "CUST_STATE_PROVI NCE"=' CA')

ORACLE

The columns in the WHERE clause have a real-world correlation, but the optimizer is
not aware that Los Angeles is in California and assumes both predicates reduce
the number of rows returned. Thus, the table contains 932 rows that meet the
conditions, but the optimizer estimates 53, as shown in bold.

If the database had used dynamic statistics for this plan, then the Not e section of
the plan output would have indicated this fact. The optimizer did not use dynamic
statistics because the statement executed serially, standard statistics exist, and
the parameter OPTI M ZER DYNAM C _SAMPLI NGis set to the default of 2.

Set the dynamic statistics level to 4 in the session using the following statement:

ALTER SESSI ON SET OPTI M ZER_DYNAM C_SAMPLI NG=4;
Explain the plan again:

EXPLAI N PLAN FOR
SELECT *
FROM sh. customers
WHERE cust _city='Los Angel es'
AND cust _state_province="CA';

The new plan shows a more accurate estimate of the number of rows, as shown
by the value 932 in bold:

PLAN TABLE_OUTPUT

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU) |
Time |

| 0 | SELECT STATEMENT | | 932 | 271K| 406 (1)]
00: 00: 05 |

|* 1| TABLE ACCESS FULL| CUSTOMERS | 932 | 271K| 406 (1)]
00: 00: 05 |

Predicate Information (identified by operation id):

12-15

Chapter 12
Configuring Options for Dynamic Statistics

1 - filter("CUST_CITY"="Los Angeles' AND
" CUST_STATE_PROVI NCE"=' CA")

- dynamic statistics used for this statement (level=4)

The note at the bottom of the plan indicates that the sampling level is 4.

The additional dynamic statistics made the optimizer aware of the real-world
relationship between the cust _city and cust _state_provi nce columns, thereby
enabling it to produce a more accurate estimate for the number of rows: 932 rather
than 53.

¢ See Also:
e Oracle Database SQL Language Reference to learn about setting
sampling levels with the DYNAM C_SAMPLI NG hint

e QOracle Database Reference to learn about the
OPTI M ZER_DYNAM C_SAMPLI NGinitialization parameter

12.3.3 Disabling Dynamic Statistics

In general, the best practice is not to incur the cost of dynamic statistics for queries
whose compile times must be as fast as possible, for example, unrepeated OLTP
queries.

To disable dynamic statistics at the session level:

1.
2.

ORACLE

Connect SQL*Plus to the database with the appropriate privileges.
Set the dynamic statistics level to 0.

For example, run the following statement:

ALTER SESSI ON SET OPTI M ZER_DYNAM C_SAMPLI NG=0;

¢ See Also:

Oracle Database Reference to learn about the
OPTI M ZER_DYNAM C_SAMPLI NG initialization parameter

12-16

Chapter 12
Managing SQL Plan Directives

12.4 Managing SQL Plan Directives

ORACLE

A SQL plan directive is additional information and instructions that the optimizer can
use to generate a more optimal plan.

A directive informs the database that the optimizer is misestimate cardinalities of
certain types of predicates, and alerts DBM5_STATS to gather additional statistics in the
future. Thus, directives have an effect on statistics gathering.

The database automatically creates and manages SQL plan directives in the SGA,
and then periodically writes them to the data dictionary. If the directives are not used
within 53 weeks, then the database automatically purges them.

You can use DBMS_SPD procedures and functions to alter, save, drop, and transport
directives manually. The following table lists some of the more commonly used
procedures and functions.

Table 12-6 DBMS_SPD Procedures
]

Procedure Description

FLUSH SQL_PLAN_DI RECTI VE Forces the database to write directives from memory to
persistent storage in the SYSAUX tablespace.

DROP_SQL._PLAN_DI RECTI VE Drops a SQL plan directive. If a directive that triggers

dynamic sampling is creating unacceptable performance

overhead, then you may want to remove it manually.

If a SQL plan directive is dropped manually

or automatically, then the database can re-create

it. To prevent its re-creation, you can use

DBMS_SPM ALTER_SQ._PLAN_ DI RECTI VE to do the

following:

« Disable the directive by setting ENABLED to NO

* Prevent the directive from being dropped by setting
AUTO_DROP to NO

To disable SQL plan directives, set
OPTI M ZER_ADAPTI VE_STATI STI CS to FALSE.

Prerequisites

You must have the Administer SQL Management Object privilege to execute the
DBMVS_SPD APs.

Assumptions
This tutorial assumes that you want to do the following:

» Write all directives for the sh schema to persistent storage.

e Delete all directives for the sh schema.

To write and then delete all sh schema plan directives:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the
necessary privileges.

2. Force the database to write the SQL plan directives to disk.

12-17

Chapter 12
Managing SQL Plan Directives

For example, execute the following DBMS_SPD program:

BEG N
DBMS_SPD. FLUSH_SQL_PLAN_Di RECTI VE;

END;

/

3. Query the data dictionary for information about existing directives in the sh
schema.

Example 12-3 queries the data dictionary for information about the directive.
4. Delete the existing SQL plan directive for the sh schema.

The following PL/SQL program unit deletes the SQL plan directive with the ID
1484026771529551585:

BEG N
DBMS_SPD. DROP_SQL_PLAN DI RECTIVE (directive id =>

1484026771529551585) :

END;

/

Example 12-3 Display Directives for sh Schema

This example shows SQL plan directives, and the results of SQL plan directive
dynamic sampling queries.

SELECT TO CHAR(d.DIRECTIVE ID) dir_id, o. ONNER, 0. OBJECT_NAME,
0. SUBOBJECT _NAME col _name, o. OBJECT TYPE object, d. TYPE,
d. STATE, d. REASON

FROM DBA SQ._PLAN DI RECTI VES d, DBA SQ._PLAN DI R_OBJECTS o

WHERE d. DI RECTI VE_I D=o0. DI RECTI VE_I D

AND 0.OMNER IN (' SH)

ORDER BY 1,2, 3,4,5;

DRID OM OBJECT_NA COL_NAME OBJECT TYPE STATE REASON

1484026771529551585 SH CUSTOVERS COUNTRY_ID COLUWN DYNAM C_ SUPERSEDED SI NGLE
TABLE

SAMPLI NG CARDI NALI TY
M SESTI MATE
1484026771529551585 SH CUSTOVERS CUST_STATE_ COLUWN DYNAM C_ SUPERSEDED SI NGLE TABLE
PROVI NCE SAMPLI NG CARDI NALI TY
M SESTI MATE
1484026771529551585 SH CUSTOMVERS TABLE DYNAM C_ SUPERSEDED SI NGLE TABLE
SAMPLI NG CARDI NALI TY
M SESTI MATE
9781501826140511330 SH dyg4msnst5 SQ. STA DYNAM C_ USABLE VERI FY
TEMENT SAMPLI NG CARDI NALI TY
_RESULT ESTI MATE
9872337207064898539 SH TI MES TABLE DYNAM C_ USABLE VERI FY
SAMPLI NG CARDI NALI TY
_RESULT ESTI MATE
9781501826140511330 SH 2nk1vO0f dx0 SQ. STA DYNAM C_ USABLE VERI FY

ORACLE 12-18

ORACLE

Chapter 12
Managing SQL Plan Directives

TEMENT SAMPLI NG CARDI NALI TY
_RESULT ESTI MATE

¢ See Also:

e "SQL Plan Directives"

e Oracle Database PL/SQL Packages and Types Reference for complete
syntax and semantics for the DBM5S_SPD package.

e Oracle Database Reference to learn about DBA SQL_PLAN DI RECTI VES

12-19

Gathering Optimizer Statistics

This chapter explains how to use the DBMS_STATS. GATHER * _STATS program units.

This chapter contains the following topics:

¢ See Also:

e "Optimizer Statistics Concepts"
e "Query Optimizer Concepts "

e Oracle Database PL/SQL Packages and Types Reference to learn about
DBVS_STATS. GATHER_TABLE_STATS

13.1 Configuring Automatic Optimizer Statistics Collection

Oracle Database can gather optimizer statistics automatically.

This section contains the following topics:

13.1.1 About Automatic Optimizer Statistics Collection

The automated maintenance tasks infrastructure (known as AutoTask) schedules
tasks to run automatically in Oracle Scheduler windows known as maintenance
windows.

By default, one window is scheduled for each day of the week. Automatic optimizer
statistics collection runs as part of AutoTask. By default, the collection runs in all
predefined maintenance windows.

" Note:

Data visibility and privilege requirements may differ when using automatic
optimizer statistics collection with pluggable databases.

To collect the optimizer statistics, the database calls an internal procedure that
operates similarly to the GATHER DATABASE_STATS procedure with the GATHER AUTO
option. Automatic statistics collection honors all preferences set in the database.

The principal difference between manual and automatic collection is that the latter
prioritizes database objects that need statistics. Before the maintenance window
closes, automatic collection assesses all objects and prioritizes objects that have no
statistics or very old statistics.

ORACLE 13-1

Chapter 13
Configuring Automatic Optimizer Statistics Collection

< Note:

When gathering statistics manually, you can reproduce the object
prioritization of automatic collection by using the DBMS_AUTO TASK_| MVEDI ATE
package. This package runs the same statistics gathering job that is
executed during the automatic nightly statistics gathering job.

¢ See Also:

Oracle Database Administrator’s Guide for a table that summarizes how
manageability features work in a container database (CDB)

13.1.2 Configuring Automatic Optimizer Statistics Collection Using
Cloud Control

You can enable and disable all automatic maintenance tasks, including automatic
optimizer statistics collection, using Cloud Control.

The default window timing works well for most situations. However, you may have
operations such as bulk loads that occur during the window. In such cases, to avoid
potential conflicts that result from operations occurring at the same time as automatic
statistics collection, Oracle recommends that you change the window accordingly.

Prerequisites

Access the Database Home page, as described in "Accessing the Database Home
Page in Cloud Control."

To control automatic optimizer statistics collection using Cloud Control:

1. From the Administration menu, select Oracle Scheduler, then Automated
Maintenance Tasks.

The Automated Maintenance Tasks page appears.

This page shows the predefined tasks. To retrieve information about each task,
click the corresponding link for the task.

2. Click Configure.
The Automated Maintenance Tasks Configuration page appears.

By default, automatic optimizer statistics collection executes in all predefined
maintenance windows in MAI NTENANCE W NDOW GROUP.

3. Perform the following steps:

a. Inthe Task Settings section for Optimizer Statistics Gathering, select either
Enabled or Disabled to enable or disable an automated task.

ORACLE 13-2

Chapter 13
Configuring Automatic Optimizer Statistics Collection

< Note:

Oracle strongly recommends that you not disable automatic statistics
gathering because it is critical for the optimizer to generate optimal
plans for queries against dictionary and user objects. If you disable
automatic collection, ensure that you have a good manual statistics
collection strategy for dictionary and user schemas.

b. To disable statistics gathering for specific days in the week, check the
appropriate box next to the window name.

c. To change the characteristics of a window group, click Edit Window Group.

d. To change the times for a window, click the name of the window (for example,
MONDAY_WINDOW), and then in the Schedule section, click Edit.

The Edit Window page appears.

Edit Window: MONDAY_WINDOW

Execute On Multiple Databases | Show SQL | Revert | Apply |

MName MONDAY_WINDOW

Resource Plan | DEFAULT_MAINTENANCE_PLAN j iew Resource Plan Create Resource Plan |

Enabled (¥ Yes (" MNo

Priority (& Low " High

Description {Monday window for maintenance tasks

Schedule

Time Zone |GMT-8:00 Q

Repeating

Repeat I By Weeks v l
Interval (Weeks) |1
Days of Week ¥ Monday [Tuesday i Wednesday | Thursday i Friday O Saturday O Sunday

Time IIU VIIDD 'l 00 x| CAM {FPM

Available to Start Duration

{* Immediately
 Later

Duration |4 Hours |0 Minutes

Date |Dec 3, 2012 B
{eample: Dec 3, 2012)

In this page, you can change the parameters such as duration and start time
for window execution.

e. Click Apply.

¢ See Also:

Online Help for Oracle Enterprise Manager Cloud Control

ORACLE 13-3

Chapter 13
Configuring Automatic Optimizer Statistics Collection

13.1.3 Configuring Automatic Optimizer Statistics Collection from the
Command Line

If you do not use Cloud Control to configure automatic optimizer statistics collection,
then you must use the command line.

You have the following options:

Run the ENABLE or DI SABLE procedure in the DBMS_AUTO TASK _ADM N PL/SQL
package.

This package is the recommended command-line technique. For both the ENABLE
and DI SABLE procedures, you can specify a particular maintenance window with
the wi ndow_name parameter.

Set the STATI STI CS_LEVEL initialization level to BASI C to disable collection of all
advisories and statistics, including Automatic SQL Tuning Advisor.

Note:

Because monitoring and many automatic features are disabled, Oracle
strongly recommends that you do not set STATI STI CS_LEVEL to BASI C.

To control automatic statistics collection using DBMS_AUTO_TASK_ADMIN:

1.

3.

ORACLE

In SQL*Plus or SQL Developer, log in to the database as a user with
administrative privileges.

Do one of the following:
e To enable the automated task, execute the following PL/SQL block:

BEG N

DBMVS_AUTO TASK_ADM N. ENABLE (
client_name => '"auto optinmzer stats collection'
operation => NULL

, wi ndow name => NULL

* To disable the automated task, execute the following PL/SQL block:

BEG N

DBVB_AUTO TASK_ADM N. DI SABLE (
client_nane => "auto optinmzer stats collection'
operation => NULL

, wi ndow_name => NULL

Query the data dictionary to confirm the change.

13-4

Chapter 13
Gathering Optimizer Statistics Manually

For example, query DBA_AUTOTASK CLI ENT as follows:

COL CLI ENT_NAME FORMAT a3l

SELECT CLI ENT_NAME, STATUS
FROM DBA AUTOTASK_CLI ENT
WHERE CLIENT_NAME = 'auto optim zer stats collection';

Sample output appears as follows:

CLI ENT_NAME STATUS

auto optimzer stats collection ENABLED

To change the window attributes for automatic statistics collection:

1. Connect SQL*Plus to the database with administrator privileges.
2. Change the attributes of the maintenance window as needed.

For example, to change the Monday maintenance window so that it starts at 5
a.m., execute the following PL/SQL program:

BEG N

DBVS_SCHEDULER. SET_ATTRI BUTE (

" MONDAY_W NDOW

, "repeat _interval'
, " freg=dai | y; byday=MON; byhour =05; byni nut e=0; bysecond=0'
);
END;
/

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_AUTO TASK_ADM N package

e Oracle Database Reference to learn about the STATI STI CS_LEVEL
initialization parameter

13.2 Gathering Optimizer Statistics Manually

As an alternative or supplement to automatic statistics gathering, you can use the
DBMS_STATS package to gather optimizer statistics manually.

This section contains the following topics:

ORACLE 13-5

Chapter 13
Gathering Optimizer Statistics Manually

¢ See Also:

e "Configuring Automatic Optimizer Statistics Collection"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS package

13.2.1 About Manual Statistics Collection with DBMS_STATS

Use the DBMS_STATS package to manipulate optimizer statistics. You can gather
statistics on objects and columns at various levels of granularity: object, schema, and
database. You can also gather statistics for the physical system.

The following table summarizes the DBMS_STATS procedures for gathering optimizer
statistics. This package does not gather statistics for table clusters. However, you can
gather statistics on individual tables in a table cluster.

Table 13-1 DBMS_STATS Procedures for Gathering Optimizer Statistics
|

Procedure Purpose

GATHER_| NDEX_STATS Collects index statistics

GATHER _TABLE_STATS Collects table, column, and index statistics
GATHER_SCHEMA STATS Collects statistics for all objects in a schema
GATHER_DI CTI ONARY_STATS Collects statistics for all system schemas, including

SYS and SYSTEM and other optional schemas, such as
CTXSYS and DRSYS

GATHER _DATABASE_STATS Collects statistics for all objects in a database

When the OPTI ONS parameter is set to GATHER STALE or GATHER AUTO, the

GATHER SCHENMA STATS and GATHER DATABASE STATS procedures gather statistics for
any table that has stale statistics and any table that is missing statistics. If a monitored
table has been modified more than 10%, then the database considers these statistics
stale and gathers them again.

" Note:

As explained in "Configuring Automatic Optimizer Statistics Collection”, you
can configure a nightly job to gather statistics automatically.

See Also:

e "Gathering System Statistics Manually"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about the DBMS_STATS package

ORACLE 13-6

Chapter 13
Gathering Optimizer Statistics Manually

13.2.2 Guidelines for Gathering Optimizer Statistics Manually

In most cases, automatic statistics collection is sufficient for database objects modified
at a moderate speed.

Automatic collection may sometimes be inadequate or unavailable, as shown in the
following table.

Table 13-2 Reasons for Gathering Statistics Manually

o
Issue To Learn More

You perform certain types of bulk load and "Online Statistics Gathering for Bulk Loads"
cannot wait for the maintenance window to
collect statistics because queries must be
executed immediately.

During a nonrepresentative workload, "Gathering Statistics for Fixed Objects"
automatic statistics collection gathers statistics
for fixed tables.

Automatic statistics collection does not gather | "Gathering System Statistics Manually"
system statistics.

Volatile tables are being deleted or truncated, | "Gathering Statistics for Volatile Tables Using

and then rebuilt during the day. Dynamic Statistics"”

This section offers guidelines for typical situations in which you may choose to gather
statistically manually:

13.2.2.1 Guideline for Setting the Sample Size

ORACLE

In the context of optimizer statistics, sampling is the gathering of statistics from a
random subset of table rows. By enabling the database to avoid full table scans and
sorts of entire tables, sampling minimizes the resources necessary to gather statistics.

The database gathers the most accurate statistics when it processes all rows in
the table, which is a 100% sample. However, larger sample sizes increase the time
of statistics gathering operations. The challenge is determining a sample size that
provides accurate statistics in a reasonable time.

DBMS_STATS uses sampling when a user specifies the parameter ESTI MATE_PERCENT,
which controls the percentage of the rows in the table to sample. To

maximize performance gains while achieving necessary statistical accuracy, Oracle
recommends that the ESTI MATE_PERCENT parameter use the default setting of
DBMS_STATS. AUTO_SAMPLE_SI ZE. In this case, Oracle Database chooses the sample
size automatically. This setting enables the use of the following:

* A hash-based algorithm that is much faster than sampling

This algorithm reads all rows and produces statistics that are nearly as accurate
as statistics from a 100% sample. The statistics computed using this technique are
deterministic.

* Incremental statistics
» Concurrent statistics

* New histogram types

13-7

Chapter 13
Gathering Optimizer Statistics Manually

The DBA TABLES. SAMPLE_SI ZE column indicates the actual sample size used to gather
statistics.

¢ See Also:
e "Hybrid Histograms"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS. AUTO_SAMPLE S| ZE

13.2.2.2 Guideline for Gathering Statistics in Parallel

By default, the database gathers statistics with the parallelism degree specified at the
table or index level.

You can override this setting with the degr ee argument to the DBMS_STATS gathering
procedures. Oracle recommends setting degr ee to DBMS_STATS. AUTO_DEGREE. This
setting enables the database to choose an appropriate degree of parallelism based
on the object size and the settings for the parallelism-related initialization parameters.

The database can gather most statistics serially or in parallel. However, the database
does not gather some index statistics in parallel, including cluster indexes, domain
indexes, and bitmap join indexes. The database can use sampling when gathering
parallel statistics.

¢ Note:

Do not confuse gathering statistics in parallel with gathering statistics
concurrently.

" See Also:

e "About Concurrent Statistics Gathering"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS. AUTO DEGREE

13.2.2.3 Guideline for Partitioned Objects

ORACLE

For partitioned tables and indexes, DBM5S_STATS can gather separate statistics for each
partition and global statistics for the entire table or index.

Similarly, for composite partitioning, DBMS_STATS can gather separate statistics for
subpartitions, partitions, and the entire table or index.

To determine the type of partitioning statistics to be gathered, specify the granul arity
argument to the DBMS_STATS procedures. Oracle recommends setting granul arity to

13-8

Chapter 13
Gathering Optimizer Statistics Manually

the default value of AUTOto gather subpartition, partition, or global statistics, depending
on partition type. The ALL setting gathers statistics for all types.

¢ See Also:

"Gathering Incremental Statistics on Partitioned Objects"

13.2.2.4 Guideline for Frequently Changing Objects

When tables are frequently modified, gather statistics often enough so that they do not
go stale, but not so often that collection overhead degrades performance.

You may only need to gather new statistics every week or month. The best practice is
to use a script or job scheduler to regularly run the DBVMS_STATS. GATHER_SCHENVA_STATS
and DBMS_STATS. GATHER_DATABASE_STATS procedures.

13.2.2.5 Guideline for External Tables

Because the database does not permit data manipulation against external tables,

the database never marks statistics on external tables as stale. If new statistics are
required for an external table, for example, because the underlying data files change,
then regather the statistics.

For external tables, use the same DBVS_STATS procedures that you use for internal
tables. Note that the scanr at e parameter of DBMS_STATS. SET_TABLE_STATS and
DBVMS_STATS. GET_TABLE_STATS specifies the rate (in MB/s) at which Oracle Database
scans data in tables, and is relevant only for external tables. The SCAN_RATE column
appears in the DBA_TAB_STATI STI CS and DBA TAB_PENDI NG_STATS data dictionary
views.

¢ See Also:

e "Creating Atrtificial Optimizer Statistics for Testing"

e Oracle Database PL/SQL Packages and Types Reference to learn about
SET_TABLE_STATS and GET_TABLE_STATS

e Oracle Database Reference to learn about the DBA_TAB_STATI STI CS view

13.2.3 Determining When Optimizer Statistics Are Stale

ORACLE

Stale statistics on a table do not accurately reflect its data. To help you determine
when a database object needs new statistics, the database provides a table
monitoring facility.

Monitoring tracks the approximate number of DML operations on a table

and whether the table has been truncated since the most recent statistics

collection. To check whether statistics are stale, query the STALE_STATS column in
DBA_TAB_STATI STI CS and DBA_| ND_STATI STI CS. This column is based on data in the
DBA TAB_MODI FI CATI ONS view and the STALE_PERCENT preference for DBMS_STATS.

13-9

ORACLE

Chapter 13
Gathering Optimizer Statistics Manually

< Note:

Starting in Oracle Database 12c¢ Release 2 (12.2), you no longer need

to use DBMS_STATS. FLUSH DATABASE MONI TORI NG_I NFOto ensure that view
metadata is current. The statistics shown in the DBA_ TAB_STATI STI CS,

DBA_| ND_STATI STI CS, and DBA_TAB_MODI FI CATI ONS views are obtained from
both disk and memory.

The STALE_STATS column has the following possible values:
e YES

The statistics are stale.
« NO

The statistics are not stale.
 null

The statistics are not collected.

Executing GATHER_SCHEMA_STATS or GATHER_DATABASE_STATS with the GATHER AUTO
option collects statistics only for objects with no statistics or stale statistics.

To determine stale statistics:

1. Start SQL*Plus, and then log in to the database as a user with the necessary
privileges.

2. Query the data dictionary for stale statistics.

The following example queries stale statistics for the sh. sal es table (partial output
included):

COL PARTI TI ON_NAME FORMAT al5

SELECT PARTI TI ON_NAME, STALE_STATS
FROM DBA_TAB_STATI STI CS

WHERE TABLE_NAME = ' SALES'

AND OMER = 'SH

ORDER BY PARTI Tl ON_NAME;

PARTI TI ON_NAME STA
SALES 1995

SALES 1996

SALES H1_ 1997
SALES H2_1997
SALES QL 1998
SALES QL 1999

13-10

Chapter 13
Gathering Optimizer Statistics Manually

¢ See Also:
Oracle Database Reference to learn about the DBA TAB_MODI FI CATI ONS view

13.2.4 Gathering Schema and Table Statistics

Use GATHER TABLE STATS to collect table statistics, and GATHER_SCHEMA STATS to
collect statistics for all objects in a schema.

To gather schema statistics using DBMS_STATS:

1. Start SQL*Plus, and connect to the database with the appropriate privileges for the
procedure that you intend to run.

2. Run the GATHER TABLE_STATS or GATHER_SCHEMA_STATS procedure, specifying the
desired parameters.

Typical parameters include:

e Owner - ownnane

* Object name -t abnane, i ndnane, part nane
* Degree of parallelism - degr ee

Example 13-1 Gathering Statistics for a Table

This example uses the DBM5_STATS package to gather statistics on the sh. cust onmer s
table with a parallelism setting of 2.

BEG N
DBVB_STATS. GATHER TABLE_STATS (
ownname => 'sh'
, tabnane => 'custoners'
, degree => 2

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
GATHER TABLE_STATS procedure

13.2.5 Gathering Statistics for Fixed Objects

ORACLE

Fixed objects are dynamic performance tables and their indexes. These objects record
current database activity.

Unlike other database tables, the database does not automatically use dynamic
statistics for SQL statement referencing X$ tables when optimizer statistics are
missing. Instead, the optimizer uses predefined default values. These defaults may

13-11

Chapter 13
Gathering Optimizer Statistics Manually

not be representative and could potentially lead to a suboptimal execution plan. Thus,
it is important to keep fixed object statistics current.

Oracle Database automatically gathers fixed object statistics as part of automated
statistics gathering if they have not been previously collected. You can also manually
collect statistics on fixed objects by calling DBMS_STATS. GATHER FI XED OBJECTS STATS.
Oracle recommends that you gather statistics when the database has representative
activity.

Prerequisites
You must have the SYSDBA or ANALYZE ANY DI CTI ONARY system privilege to execute

this procedure.

To gather schema statistics using GATHER_FIXED_OBJECTS_STATS:

1. In SQL*Plus or SQL Developer, log in to the database as a user with the
necessary privileges.

2. Run the DBM5_STATS. GATHER FI XED OBJECTS_STATS procedure, specifying the
desired parameters.

Typical parameters include:

» Table identifier describing where to save the current statistics - statt ab

« |dentifier to associate with these statistics within st att ab (optional) - stati d

* Schema containing st at t ab (if different from current schema) - st at own
Example 13-2 Gathering Statistics for a Table
This example uses the DBM5_STATS package to gather fixed object statistics.
BEG N

DBMS_STATS. GATHER FI XED OBJECTS_STATS;

END;
/

¢ See Also:

e "Configuring Automatic Optimizer Statistics Collection"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the GATHER TABLE_STATS procedure

13.2.6 Gathering Statistics for Volatile Tables Using Dynamic Statistics

ORACLE

Statistics for volatile tables, which are tables modified significantly during the day, go
stale quickly. For example, a table may be deleted or truncated, and then rebuilt.

When you set the statistics of a volatile object to null, Oracle Database dynamically
gathers the necessary statistics during optimization using dynamic statistics. The
OPTI M ZER_DYNAM C_SAMPLI NGinitialization parameter controls this feature.

13-12

Chapter 13
Gathering Optimizer Statistics Manually

Assumptions
This tutorial assumes the following:

e The oe. order s table is extremely volatile.

* You want to delete and then lock the statistics on the or der s table to prevent
the database from gathering statistics on the table. In this way, the database can
dynamically gather necessary statistics as part of query optimization.

e The oe user has the necessary privileges to query DBVS_XPLAN. DI SPLAY_CURSCR.
To delete and the lock optimizer statistics:

1. Connect to the database as user oe, and then delete the statistics for the oe table.

For example, execute the following procedure:

BEG N

DBVS_STATS. DELETE_TABLE_STATS(' OFE' , ' ORDERS') ;
END;
/

2. Lock the statistics for the oe table.

For example, execute the following procedure:

BEG N

DBVS_STATS. LOCK_TABLE_STATS(' CE', ' ORDERS') ;
END;
/

3. You query the or ders table.

For example, use the following statement:

SELECT COUNT(order _id) FROM orders;

4. You query the plan in the cursor.

You run the following commands (partial output included):

SET LI NESI ZE 150
SET PAGESI ZE 0

SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY _CURSOR) ;
SQ_ID aut9632fr3358, child nunber 0

SELECT COLNT(order i d) FRO orders

Plan hash val ue: 425895392

| 1d | Operation | Name | Rows | Cost (%CPU)| Tinme

ORACLE 13-13

Chapter 13
Gathering Optimizer Statistics Manually

| 0 | SELECT STATEMENT | | | 2 (100)]

|

| 1| SORT AGGREGATE | | 1] |

|

| 2 | TABLE ACCESS FULL| ORDERS | 105 | 2 (0)] 00:00:01
|

Not e

- dynamic statistics used for this statement (level=2)

The Note in the preceding execution plan shows that the database used dynamic
statistics for the SELECT statement.

¢ See Also:

e "Configuring Options for Dynamic Statistics"

e "Locking and Unlocking Optimizer Statistics" to learn how to gather
representative statistics and then lock them, which is an alternative
technique for preventing statistics for volatile tables from going stale

13.2.7 Gathering Optimizer Statistics Concurrently

Oracle Database can gather statistics on multiple tables or partitions concurrently.

This section contains the following topics:

13.2.7.1 About Concurrent Statistics Gathering

By default, each partition of a partition table is gathered sequentially.

When concurrent statistics gathering mode is enabled, the database can
simultaneously gather optimizer statistics for multiple tables in a schema, or multiple
partitions or subpartitions in a table. Concurrency can reduce the overall time required
to gather statistics by enabling the database to fully use multiple processors.

" Note:

Concurrent statistics gathering mode does not rely on parallel query
processing, but is usable with it.

This section contains the following topics:

ORACLE 13-14

Chapter 13
Gathering Optimizer Statistics Manually

13.2.7.1.1 How DBMS_STATS Gathers Statistics Concurrently

ORACLE

Oracle Database employs multiple tools and technologies to create and manage
multiple statistics gathering jobs concurrently.

The database uses the following:

* Oracle Scheduler
e Oracle Database Advanced Queuing (AQ)
e Oracle Database Resource Manager (the Resource Manager)

Enable concurrent statistics gathering by setting the CONCURRENT preference with
DBMS_STATS. SET_GLOBAL_PREF.

The database runs as many concurrent jobs as possible. The Job Scheduler decides
how many jobs to execute concurrently and how many to queue. As running jobs
complete, the scheduler dequeues and runs more jobs until the database has
gathered statistics on all tables, partitions, and subpartitions. The maximum number
of jobs is bounded by the JOB_QUEUE_PROCESSES initialization parameter and available
system resources.

In most cases, the DBMS_STATS procedures create a separate job for each table
partition or subpartition. However, if the partition or subpartition is empty or very small,
then the database may automatically batch the object with other small objects into a
single job to reduce the overhead of job maintenance.

The following figure illustrates the creation of jobs at different levels, where Table 3 is
a partitioned table, and the other tables are nonpartitioned. Job 3 acts as a coordinator
job for Table 3, and creates a job for each partition in that table, and a separate job

for the global statistics of Table 3. This example assumes that incremental statistics
gathering is disabled; if enabled, then the database derives global statistics from
partition-level statistics after jobs for partitions complete.

Figure 13-1 Concurrent Statistics Gathering Jobs

Gather Database/Schema/Dictionary Statistics

l l ‘ l l Level 1
Job 1 Job 2 Job 3 Job 4
Table 1 Table 2 Table 3 Table 4
Global Global Coordinator Gilobal
Statistics Statistics Job Statistics
l l Level 2
Job 3.1 Job 3.2 Job 3.3
Table 3 Table 3 Table 3
Partition 1 Partition 2 Gilobal
Statistics

13-15

Chapter 13
Gathering Optimizer Statistics Manually

¢ See Also:

e "Enabling Concurrent Statistics Gathering"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS package

e Oracle Database Reference to learn about the JOB_QUEUE PROCESSES
initialization parameter

13.2.7.1.2 Concurrent Statistics Gathering and Resource Management

The DBM5_STATS package does not explicitly manage resources used by concurrent
statistics gathering jobs that are part of a user-initiated statistics gathering call.

Thus, the database may use system resources fully during concurrent statistics
gathering. To address this situation, use the Resource Manager to cap resources
consumed by concurrent statistics gathering jobs. The Resource Manager must be
enabled to gather statistics concurrently.

The system-supplied consumer group ORASAUTOTASK registers all statistics gathering
jobs. You can create a resource plan with proper resource allocations for
ORASAUTOTASK to prevent concurrent statistics gathering from consuming all available
resources. If you lack your own resource plan, and if choose not to create one, then
consider activating the Resource Manager with the system-supplied DEFAULT_PLAN.

¢ Note:

The ORASAUTOTASK consumer group is shared with the maintenance tasks
that automatically run during the maintenance windows. Thus, when
concurrency is activated for automatic statistics gathering, the database
automatically manages resources, with no extra steps required.

¢ See Also:

Oracle Database Administrator’s Guide to learn about the Resource
Manager

13.2.7.2 Enabling Concurrent Statistics Gathering

ORACLE

To enable concurrent statistics gathering, use the DBMS_STATS. SET_GLOBAL_PREFS
procedure to set the CONCURRENT preference.

Possible values are as follows:
MANUAL

Concurrency is enabled only for manual statistics gathering.
o AUTOWATIC

13-16

ORACLE

Chapter 13
Gathering Optimizer Statistics Manually

Concurrency is enabled only for automatic statistics gathering.
e ALL

Concurrency is enabled for both manual and automatic statistics gathering.
o OFF

Concurrency is disabled for both manual and automatic statistics gathering. This is
the default value.

This tutorial in this section explains how to enable concurrent statistics gathering.

Prerequisites
This tutorial has the following prerequisites:

» In addition to the standard privileges for gathering statistics, you must have the
following privileges:

— CREATE JOB
— MANAGE SCHEDULER
— MANAGE ANY QUEUE

e The SYSAUX tablespace must be online because the scheduler stores its internal
tables and views in this tablespace.

e The JOB_QUEUE_PROCESSES initialization parameter must be set to at least 4.
e The Resource Manager must be enabled.

By default, the Resource Manager is disabled. If you do not have a resource
plan, then consider enabling the Resource Manager with the system-supplied
DEFAULT_PLAN.

Assumptions
This tutorial assumes that you want to do the following:

» Enable concurrent statistics gathering
* Gather statistics for the sh schema

* Monitor the gathering of the sh statistics

To enable concurrent statistics gathering:

1. Connect SQL*Plus to the database with the appropriate privileges, and then
enable the Resource Manager.

The following example uses the default plan for the Resource Manager:

ALTER SYSTEM SET RESOURCE_MANAGER PLAN = ' DEFAULT_PLAN ;

2. Setthe JOB_QUEUE_PRCCESSES initialization parameter to at least twice the number
of CPU cores.

In Oracle Real Application Clusters, the JOB_QUEUE_PROCESSES setting applies to
each node.

13-17

ORACLE

Chapter 13
Gathering Optimizer Statistics Manually

Assume that the system has 4 CPU cores. The following example sets the
parameter to 8 (twice the number of cores):

ALTER SYSTEM SET JOB_QUEUE_PROCESSES=8;

Confirm that the parameter change took effect.

For example, enter the following command in SQL*Plus (sample output included):

SHOW PARAMETER PROCESSES;

NANVE TYPE VALUE
_high_priority_processes string VKTM
ag_tm processes i nteger 1
db_writer_processes i nteger 1
gCS_Server _processes i nt eger 0

gl obal _txn_processes i nteger 1

j ob_queue_processes i nteger 8

| og_archi ve_max_processes i nteger 4
processes i nteger 100

Enable concurrent statistics.

For example, execute the following PL/SQL anonymous block:

BEG N

DBVS_STATS. SET_GLOBAL_PREFS(' CONCURRENT' , ' ALL') :
END;
/

Confirm that the statistics were enabled.

For example, execute the following query (sample output included):

SELECT DBMS_STATS. GET_PREFS(' CONCURRENT') FROM DUAL;
DBVS_STATS. GET_PREFS(' CONCURRENT")

Gather the statistics for the SH schema.

For example, execute the following procedure:

EXEC DBMS_STATS. GATHER _SCHEMA_STATS(' SH);

In a separate session, monitor the job progress by querying
DBA_OPTSTAT_OPERATI ON_TASKS.

For example, execute the following query (sample output included):

SET LI NESI ZE 1000

COLUWN TARGET FCRMAT a8
COLUWN TARGET_TYPE FORMAT a25

13-18

Chapter 13
Gathering Optimizer Statistics Manually

COLUWN JOB_NAME FORVAT al4d
COLUWN START_TI ME FORVAT a40

SELECT TARGET, TARGET_TYPE, JOB_NAME,
TO CHAR(START_TI ME, ' dd-nmon-yyyy hh24:mi:ss')
FROM DBA OPTSTAT_OPERATI ON_TASKS
WHERE STATUS = ' I N PROGRESS
AND OPI D = (SELECT MAX(ID)
FROM DBA OPTSTAT_OPERATI ONS
WHERE OPERATI ON = 'gat her _schema_stats');

TARCET TARCGET_TYPE JOB_NAME
TO_CHAR(START_TI ME, '

SH. SALES TABLE (GLOBAL STATS ONLY) ST$T292_1 B29 30-nov-2012
14: 22: 47

SH. SALES TABLE (COORDI NATOR JOB) ST$SD290_1_B10 30- nov-2012
14:22: 08

In the original session, disable concurrent statistics gathering.

For example, execute the following query:

EXEC DBMS_STATS. SET_GLOBAL_PREFS(' CONCURRENT' , ' OFF') ;

¢ See Also:

e "Monitoring Statistics Gathering Operations"
e Oracle Database Administrator’s Guide

e Oracle Database PL/SQL Packages and Types Reference to learn how
to use the DBMS_STATS. SET_GLOBAL_PREFS procedure

13.2.7.3 Monitoring Statistics Gathering Operations

ORACLE

You can monitor statistics gathering jobs using data dictionary views.

The following views are relevant:

DBA_OPTSTAT OPERATI ON_TASKS

This view contains the history of tasks that are performed or currently in progress
as part of statistics gathering operations (recorded in DBA_OPTSTAT_OPERATI ONS).

Each task represents a target object to be processed in the corresponding parent
operation.

DBA_OPTSTAT_OPERATI ONS

This view contains a history of statistics operations performed or currently in
progress at the table, schema, and database level using the DBMS_STATS package.

13-19

Chapter 13
Gathering Optimizer Statistics Manually

The TARGET column in the preceding views shows the target object for that statistics
gathering job in the following form:

OANER. TABLE_NAME. PARTI TI ON_OR_SUBPARTI TI ON_NAVE

All statistics gathering job names start with the string ST$.

To display currently running statistics tasks and jobs:

» To list statistics gathering currently running tasks from all user sessions, use the
following SQL statement (sample output included):

SELECT OPI D, TARGET, JOB_NAME,

(SYSTI MESTAMP - START_TI ME) AS el apsed_tine
FROM DBA_OPTSTAT_OPERATI ON_TASKS
WHERE STATUS = ' I N PROGRESS';

CPI D TARGET JOB_NAME ELAPSED _TI ME

981 SH. SALES. SALES_(4_1998 ST$T82_1 B29 +000000000
00: 00: 00. 596321

981 SH. SALES ST$SD80_1_B10 +000000000
00: 00: 27. 972033

To display completed statistics tasks and jobs:

* To list only completed tasks and jobs from a particular operation, first
identify the operation ID from the DBA_OPTSTAT_OPERATI ONS view based on the
statistics gathering operation name, target, and start time. After you identify the
operation ID, you can query the DBA OPTSTAT _OPERATI ON_TASKS view to find the
corresponding tasks in that operation

For example, to list operations with the ID 981, use the following commands in
SQL*Plus (sample output included):

VARI ABLE i d NUVBER
EXEC :id := 981

SELECT TARGET, JOB NAME, (END TIME - START_TIME) AS ELAPSED TI ME
FROV DBA OPTSTAT_ OPERATI ON_TASKS

WHERE STATUS <> ' | N PROGRESS'

AND OPID = :id;

TARGET JOB_NAME ELAPSED TI VE
SH. SALES_TRANSACTI ONS_EXT +000000000 00: 00: 45. 479233
SH CAL_MONTH SALES W/ ST$SD8S_1_B10 +000000000 00: 00: 45. 382764
SH. CHANNELS ST$SD8S_1_B10 +000000000 00: 00: 45. 307397

ORACLE 13-20

Chapter 13
Gathering Optimizer Statistics Manually

To display statistics gathering tasks and jobs that have failed:

* Use the following SQL statement (partial sample output included):

SET LONG 10000

SELECT TARGET, JOB NAME AS NM

(END_TIME - START_TIME) AS ELAPSED TIME, NOTES
FROM DBA OPTSTAT OPERATI ON TASKS
WHERE STATUS = ' FAILED ;

TARCET NM ELAPSED_TI ME NOTES

SYS. OPATCH XM._I NV +000000007 02: 36:31.130314 <error>0RA-20011:
Appr oxi mat e NDV
failed: ORA-29913:
error in

¢ See Also:
Oracle Database Reference to learn about the DBA SCHEDULER JOBS view

13.2.8 Gathering Incremental Statistics on Partitioned Objects

Incremental statistics scan only changed partitions. When gathering statistics on large
partitioned table by deriving global statistics from partition-level statistics, incremental
statistics maintenance improves performance.

This section contains the following topics:

13.2.8.1 Purpose of Incremental Statistics

ORACLE

In a typical case, an application loads data into a new patrtition of a range-partitioned
table. As applications add new partitions and load data, the database must gather
statistics on the new partition and keep global statistics up to date.

Typically, data warehouse applications access large partitioned tables. Often these
tables are partitioned on date columns, with only the recent partitions subject to
frequent DML changes. Without incremental statistics, statistics collection typically
uses a two-pass approach:

1. The database scans the table to gather the global statistics.

The full scan of the table for global statistics collection can be very expensive,
depending on the size of the table. As the table adds partitions, the longer the
execution time for GATHER TABLE_STATS because of the full table scan required for
the global statistics. The database must perform the scan of the entire table even if
only a small subset of partitions change.

2. The database scans the changed partitions to gather their partition-level statistics.

Incremental maintenance provides a huge performance benefit for data warehouse
applications because of the following:

13-21

Chapter 13
Gathering Optimizer Statistics Manually

* The database must scan the table only once to gather partition statistics and
to derive the global statistics by aggregating partition-level statistics. Thus, the
database avoids the two full scans that are required when not using incremental
statistics: one scan for the partition-level statistics, and one scan for the global-
level statistics.

* In subsequent statistics gathering, the database only needs to scan the stale
partitions and update their statistics (including synopses). The database can
derive global statistics from the fresh partition statistics, which saves a full table
scan.

When using incremental statistics, the database must still gather statistics on any
partition that will change the global or table-level statistics. Incremental statistics
maintenance yields the same statistics as gathering table statistics from scratch, but
performs better.

13.2.8.2 How DBMS_STATS Derives Global Statistics for Partitioned tables

When incremental statistics maintenance is enabled, DBM5S_STATS gathers statistics and
creates synopses for changed partitions only. The database also automatically merges
partition-level synopses into a global synopsis, and derives global statistics from the
partition-level statistics and global synopses.

The database avoids a full table scan when computing global statistics by deriving
some global statistics from the partition-level statistics. For example, the number of
rows at the global level is the sum of number of rows of partitions. Even global
histograms can be derived from partition histograms.

However, the database cannot derive all statistics from partition-level statistics,
including the NDV of a column. The following example shows the NDV for two
partitions in a table:

Table 13-3 NDV for Two Partitions

Object Column Values NDV
Partition 1 1,3,3,4,5 4
Partition 2 2,3,4,5,6 5

Calculating the NDV in the table by adding the NDV of the individual partitions
produces an NDV of 9, which is incorrect. Thus, a more accurate technique is
required: synopses.

This section contains the following topics:

13.2.8.2.1 Partition-Level Synopses

ORACLE

A synopsis is special type of statistic that tracks the number of distinct values
(NDV) for each column in a partition. You can consider a synopsis as an internal
management structure that samples distinct values.

The database can accurately derive the global-level NDV for each column by merging
partition-level synopses. In the example shown in Table 13-3, the database can use
synopses to calculate the NDV for the column as 6.

Each partition maintains a synopsis in incremental mode. When a new partition is
added to the table you only need to gather statistics for the new partition. The

13-22

Chapter 13
Gathering Optimizer Statistics Manually

database automatically updates the global statistics by aggregating the new partition
synopsis with the synopses for existing partitions. Subsequent statistics gathering
operations are faster than when synopses are not used.

The database stores synopses in data dictionary tables

VRl $ OPTSTAT _SYNOPSI S _HEAD$ and WRI $ OPTSTAT_SYNOPSI S$ in the SYSAUX
tablespace. The DBA PART_COL_STATI STI CS dictionary view contains information of the
column statistics in partitions. If the NOTES column contains the keyword | NCREMENTAL,
then this column has synopses.

¢ See Also:
Oracle Database Reference to learn more about DBA PART COL_STATI STI CS

13.2.8.2.2 NDV Algorithms: Adaptive Sampling and HyperLogLog

ORACLE

Starting in Oracle Database 12c¢ Release 2 (12.2), the HyperLogLog algorithm can
improve NDV (number of distinct values) calculation performance, and also reduce the
storage space required for synopses.

The legacy algorithm for calculating NDV uses adaptive sampling. A synopsis is a
sample of the distinct values. When calculating the NDV, the database initially stores
every distinct value in a hash table. Each distinct value occupies a distinct hash
bucket, so a column with 5000 distinct values has 5000 hash buckets. The database
then halves the number of hash buckets, and then continues to halve the result until
a small number of buckets remain. The algorithm is “adaptive” because the sampling
rate changes based on the number of hash table splits.

To calculate the NDV for the column, the database uses the following formula, where B
is the number of hash buckets remaining after all the splits have been performed, and
S is the number of splits:

NDV = B * 2°S

Adaptive sampling produces accurate NDV statistics, but has the following
conseguences:

* Synopses occupy significant disk space, especially when tables have many
columns and partitions, and the NDV in each column is high.

For example, a 60-column table might have 300,000 partitions, with an average
per-column NDV of 5,000. In this example, each partition has 300,000 entries (60
x 5000). In total, the synopses tables have 90 billion entries (300,000 squared),
which occupies at least 720 GB of storage space.

» Bulk processing of synopses can negatively affect performance.

Before the database regathers statistics on the stale partitions, it must delete the
associated synopses. Bulk deletion can be slow because it generates significant
amounts of undo and redo data.

In contrast to dynamic sampling, the HyperLogLog algorithm uses a randomization
technique. Although the algorithm is complex, the foundational insight is that in a
stream of random values, n distinct values will be spaced on average 1/n apart.
Therefore, if you know the smallest value in the stream, then you can roughly estimate

13-23

Chapter 13
Gathering Optimizer Statistics Manually

the number of distinct values. For example, if the values range from 0 to 1, and if
the smallest value you observe is .2, then the numbers will on average be evenly
spaced .2 apart, so the NDV estimate is 5.

The HyperLogLog algorithm expands on and corrects the original estimate. The
database applies a hash function to every column value, resulting in a set of hash
values with the same cardinality as the column. For the base estimate, the NDV
equals 2", where n is the maximum number of trailing zeroes observed in the binary
representation of the hash values. The database refines its NDV estimate by using
part of the output to split values into different hash buckets.

The advantages of the HyperLogLog algorithm over adaptive sampling are:

* The accuracy of the new algorithm is similar to the original algorithm.

* The memory required is significantly lower, which typically leads to huge
reductions in synopsis size.

Synopses can become large when many partitions exist, and they have many
columns with high NDV. Synopses that use the HyperLogLog algorithm are more
compact. Creating and deleting synopses affects batch run times. Any operational
procedures that manage partitions reduce run time.

The DBM5_STATS preference APPROXI MATE_NDV_ALGORI THMdetermines which algorithm
the database uses for NDV calculation.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
APPROXI MATE_NDV_ALGORI THM preference

13.2.8.2.3 Aggregation of Global Statistics Using Synopses: Example

ORACLE

In this example, the database gathers statistics for the initial six partitions of the sal es
table, and then creates synopses for each partition (S1, S2, and so on). The database
creates global statistics by aggregating the partition-level statistics and synopses.

13-24

Chapter 13
Gathering Optimizer Statistics Manually

Figure 13-2 Aggregating Statistics

1) The database gathers partition-level
Sales Table statistics, and creates synopses

May 18 2012 ———> s1
@ The database generates
global statistics by
May 192012 ———> s2 aggregating partition-level
| —— statistics and synopses

May 20 2012 ———> s3
L | ,| Global
Statistics
May 21 2012 ——> s4

May 22 2012 ——> S5

May 232012 ——>| s6

_ Sysaux

LTabIespace
__________ > I

The following graphic shows a new partition, containing data for May 24, being added
to the sal es table. The database gathers statistics for the newly added partition,
retrieves synopses for the other partitions, and then aggregates the synopses to
create global statistics.

Figure 13-3 Aggregating Statistics after Adding a Partition

Sales Table
May 18 2012 ——> s1
(8) The database generates
" global statistics by
May 192012 ———> S2 aggregating partition-level
Synopses.
May 20 2012 ———> S3
| | Global
Statistics
May 21 2012 ——> s4
May 22 2012 ——> s5 (5) The database retrieves
statistics and synopses
for other partitions.
May 23 2012 ——> S6
May 24 2012 ———> s7

&) The table adds a

4)The database gathers statistics
new partition.

~ and synopses for the new partition.

‘ Sysaux

LTabIespace
__________ > I

ORACLE 13-25

Chapter 13
Gathering Optimizer Statistics Manually

13.2.8.3 Gathering Statistics for a Partitioned Table: Basic Steps

This section explains how to gather optimizer statistics for a partitioned table.

This section contains the following topics:

13.2.8.3.1 Considerations for Incremental Statistics Maintenance

Enabling incremental statistics maintenance has several consequences.
Specifically, note the following:

» If a table uses composite partitioning, then the database only gathers statistics for
modified subpartitions. The database does not gather statistics at the subpartition
level for unmodified subpartitions. In this way, the database reduces work by
skipping unmodified partitions.

» If a table uses incremental statistics, and if this table has a locally partitioned
index, then the database gathers index statistics at the global level and for
modified (not unmodified) index partitions. The database does not generate
global index statistics from the partition-level index statistics. Rather, the database
gathers global index statistics by performing a full index scan.

* The SYSAUX tablespace consumes additional space to maintain global statistics for
partitioned tables.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS

13.2.8.3.2 Enabling Incremental Statistics Using SET_TABLE PREFS

ORACLE

To enable incremental statistics maintenance for a partitioned table, use

DBMS_STATS. SET_TABLE PREFS to set the | NCREMENTAL value to t r ue. When

| NCREMENTAL is set to f al se, which is the default, the database uses a full table scan to
maintain global statistics.

For the database to update global statistics incrementally by scanning only the
partitions that have changed, the following conditions must be met:

e The PUBLI SH value for the partitioned table is t r ue.
e The | NCREMENTAL value for the partitioned table is t r ue.

* The statistics gathering procedure must specify AUTO SAMPLE_SI ZE for
ESTI MATE_PERCENT and AUTO for GRANULARI TY.

Example 13-3 Enabling Incremental Statistics

Assume that the PUBLI SH value for the partitioned table sh. sal es is true. The
following program enables incremental statistics for this table:

EXEC DBMS_STATS. SET_TABLE_PREFS(' sh', 'sales', 'INCREMENTAL', 'TRUE);

13-26

Chapter 13
Gathering Optimizer Statistics Manually

13.2.8.3.3 About the APPROXIMATE_NDV_ALGORITHM Settings

The DBM5_STATS. APPROXI MATE_NDV_ALGORI THM preference specifies the synopsis
generation algorithm, either HyperLogLog or adaptive sampling. The

| NCREMENTAL _STALENESS preference controls when the database reformats synopses
that use the adaptive sampling format.

The APPROXI MATE_NDV_ALGORI THM preference has the following possible values:
e REPEAT OR HYPERLOGLOG

This is the default. If | NCREMENTAL is enabled on the table, then the database
preserves the format of any existing synopses that use the adaptive sampling
algorithm. However, the database creates any new synopses in HyperLogLog
format. This approach is attractive when existing performance is acceptable, and
you do not want to incur the performance cost of reformatting legacy content.

» ADAPTI VE SAMPLI NG

The database uses the adaptive sampling algorithm for all synopses. This is the
most conservative option.

e HYPERLOGLOG
The database uses the HyperLogLog algorithm for all new and stale synopses.

The | NCREMENTAL_STALENESS preference controls when a synopsis is considered stale.
When the APPROXI MATE_NDV_ALGORI THM preference is set to HYPERLOGLOG, then the
following | NCREMENTAL _STALENESS settings apply:

« ALLOWM XED_FORVAT

This is the default. If this value is specified, and if the following conditions are
met, then the database does not consider existing adaptive sampling synopses as
stale:

— The synopses are fresh.
— You gather statistics manually.

Thus, synopses in both the legacy and HyperLogLog formats can co-exist.
However, over time the automatic statistics gathering job regathers statistics
on synopses that use the old format, and replaces them with synopses in
HyperLogLog format. In this way, the automatic statistics gather job gradually
phases out the old format. Manual statistics gathering jobs do not reformat
synopses that use the adaptive sampling format.

e Null

Any partitions with the synopses in the legacy format are considered stale, which
immediately triggers the database to regather statistics for stale synopses. The
advantage is that the performance cost occurs only once. The disadvantage is that
regathering all statistics on large tables can be resource-intensive.

13.2.8.3.4 Configuring Synopsis Generation: Examples

These examples show different approaches, both conservative and aggressive, to
switching synopses to the new HyperLogLog format.

ORACLE 13-27

Chapter 13
Gathering Optimizer Statistics Manually

Example 13-4 Taking a Conservative Approach to Reformatting Synopses

In this example, you allow synopses in mixed formats to coexist for the sh. sal es table.
Mixed formats yield less accurate statistics. However, you do not need to regather
statistics for all partitions of the table.

To ensure that all new and stale synopses use the HyperLogLog algorithm, set

the APPROXI MATE_NDV_ALGORI THMpreference to HYPERLOGLOG. To ensure that the
automatic statistics gathering job reformats stale synopses gradually over time, set
the | NCREMENTAL_STALENESS preference to ALLON M XED_FORVAT.

BEG N
DBVS_STATS. SET_TABLE_PREFS
(ownnane => 'sh'
, tabname => 'sal es'
: pname => 'approxi nate_ndv_al gorithni
: pval ue => 'hyperloglog);

DBVS_STATS. SET_TABLE_PREFS
(ownname =>'sh'
, tabnane => 'sales'
, pnane => 'increnental stal eness'
, pvalue =>"allowmxed format');
END;

Example 13-5 Taking an Aggressive Approach to Reformatting Synopses

In this example, you force all synopses to use the HyperLogLog algorithm for the
sh. sal es table. In this case, the database must regather statistics for all partitions of
the table.

To ensure that all new and stale synopses use the HyperLogLog algorithm, set the
APPROXI MATE_NDV_ALGORI THM preference to HYPERLOG.OG. To force the database to
immediately regather statistics for all partitions in the table and store them in the new
format, set the | NCREMENTAL _STALENESS preference to null.

BEG N
DBMS_STATS. SET_TABLE_PREFS
(ownnane => 'sh'
, tabname => 'sales’
, pnane => 'approxi mate_ndv_al gorithn
, pvalue => "hyperloglog);

DBMS_STATS. SET_TABLE_PREFS
(ownname =>"'sh'
, tabnanme => 'sales'
, pnane => 'increnental stal eness'
, pvalue =>"'null"');
END;

ORACLE 13-28

Chapter 13
Gathering Optimizer Statistics Manually

13.2.8.4 Maintaining Incremental Statistics for Partition Maintenance

Operations

ORACLE

A partition maintenance operation is a partition-related operation such as adding,
exchanging, merging, or splitting table partitions.

Oracle Database provides the following support for incremental statistics maintenance:

e If a partition maintenance operation triggers statistics gathering, then the database
can reuse synopses that would previously have been dropped with the old
segments.

e DBMS_STATS can create a synopsis on a nonpartitioned table. The synopsis
enables the database to maintain incremental statistics as part of a partition
exchange operation without having to explicitly gather statistics on the partition
after the exchange.

When the DBVMS_STATS preference | NCREMENTAL is set to t rue on a table, the
| NCREMENTAL_LEVEL preference controls which synopses are collected and when. This
preference takes the following values:

 TABLE

DBMS_STATS gathers table-level synopses on this table. You can only set
| NCREMENTAL _LEVEL to TABLE at the table level, not at the schema, database, or
global level.

e PARTI Tl ON (default)
DBMS_STATS only gathers synopsis at the partition level of partitioned tables.

When performing a partition exchange, to have synopses after the exchange for the
partition being exchanged, set | NCREMENTAL to t r ue and | NCREMENTAL_LEVEL to TABLE
on the table to be exchanged with the partition.

Assumptions
This tutorial assumes the following:

* You want to load empty partition p_sal es_01 2010 in a sal es table.
* You create a staging table t _sal es_01_2010, and then populate the table.

* You want the database to maintain incremental statistics as part of the partition
exchange operation without having to explicitly gather statistics on the partition
after the exchange.

To maintain incremental statistics as part of a partition exchange operation:

1. Setincremental statistics preferences for staging table t _sal es_01_2010.

For example, run the following statement:

BEG N
DBVS_STATS. SET_TABLE_PREFS (
ownnane => 'sh'
, tabnane => 't _sales 01 2010
, pnane => ' | NCREMENTAL'
, pvalue => ‘'true'

13-29

ORACLE

Chapter 13
Gathering Optimizer Statistics Manually

);
DBMS_STATS. SET_TABLE_PREFS (
ownnane => 'sh'

, tabname => 't sales 01 2010

, pname => ' | NCREMENTAL_LEVEL'
, pvalue => 'table'

);
END;

Gather statistics on staging tablet _sal es_01_2010.

For example, run the following PL/SQL code:

BEG N
DBMS_STATS. GATHER _TABLE_STATS (
ownnane =>'SH
, tabname =>'T SALES 01 2010

DBMS_STATS gathers table-level synopses ont _sal es_01_2010.
Ensure that the | NCREMENTAL preference is t r ue on the sh. sal es table.

For example, run the following PL/SQL code:

BEG N
DBVS_STATS. SET_TABLE_PREFS (
ownnamre => 'sh'
, tabnane => 'sales'
, pnamne => ' | NCREMENTAL'
, pvalue => 'true'

If you have never gathered statistics on sh. sal es before with | NCREMENTAL set to
t rue, then gather statistics on the partition to be exchanged.

For example, run the following PL/SQL code:

BEG N
DBVS_STATS. GATHER _TABLE_STATS (
ownnane => 'sh'
, tabnane => 'sales'
, pname => 'p_sales_01_ 2010
, pvalue => granularity=>"partition'

Perform the partition exchange.

13-30

Chapter 13
Gathering Optimizer Statistics Manually

For example, use the following SQL statement:

ALTER TABLE sal es EXCHANGE PARTI TI ON p_sal es_01 2010 W TH TABLE
t sales_01 2010;

After the exchange, the partitioned table has both statistics and a synopsis for
partition p_sal es_01 2010.

In releases before Oracle Database 12c¢, the preceding statement swapped

the segment data and statistics of p_sal es_01_2010 witht _sal es_01_2010.

The database did not maintain synopses for nonpartitioned tables such as

t sales_01 2010. To gather global statistics on the partitioned table, you needed
to rescan the p_sal es_01_2010 partition to obtain its synopses.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS. SET_TABLE PREFS

13.2.8.5 Maintaining Incremental Statistics for Tables with Stale or Locked
Partition Statistics

ORACLE

Starting in Oracle Database 12c, incremental statistics can automatically calculate
global statistics for a partitioned table even if the partition or subpartition statistics are
stale and locked.

When incremental statistics are enabled in releases before Oracle Database 12c, if
any DML occurs on a partition, then the optimizer considers statistics on this partition
to be stale. Thus, DBM5_STATS must gather the statistics again to accurately aggregate
the global statistics. Furthermore, if DML occurs on a partition whose statistics are
locked, then DBMS_STATS cannot regather the statistics on the partition, so a full table
scan is the only means of gathering global statistics. Regathering statistics creates
performance overhead.

In Oracle Database 12c, the statistics preference | NCREMENTAL STALENESS controls
how the database determines whether the statistics on a partition or subpartition are
stale. This preference takes the following values:

. USE_STALE_PERCENT

A partition or subpatrtition is not considered stale if DML changes are less

than the STALE PERCENT preference specified for the table. The default value of
STALE PERCENT is 10, which means that if DML causes more than 10% of row
changes, then the table is considered stale.

« USE_LOCKED STATS

Locked partition or subpartition statistics are not considered stale, regardless of
DML changes.

e NULL (default)

A partition or subpartition is considered stale if it has any DML changes. This
behavior is identical to the Oracle Database 11g behavior. When the default

13-31

ORACLE

Chapter 13
Gathering Optimizer Statistics Manually

value is used, statistics gathered in incremental mode are guaranteed to be the
same as statistics gathered in nonincremental mode. When a nondefault value is
used, statistics gathered in incremental mode might be less accurate than those
gathered in nonincremental mode.

You can specify USE_STALE_PERCENT and USE_LOCKED STATS together. For example,
you can write the following anonymous block:

BEG N

DBVS_STATS. SET_TABLE_PREFS (

ownnane => nul |

, table_nane =>'"t'
, pname => 'increnental _stal eness’
, pval ue => 'use_stal e_percent, use_|l ocked_stats'
);
END;

Assumptions
This tutorial assumes the following:

e The STALE_PERCENT for a partitioned table is set to 10.
e The | NCREMENTAL value is setto t rue.
e The table has had statistics gathered in | NCREVENTAL mode before.

* You want to discover how statistics gathering changes depending on the setting for
| NCREMENTAL _STALENESS, whether the statistics are locked, and the percentage of
DML changes.

To test for tables with stale or locked partition statistics:

1. Set| NCREMENTAL_STALENESS to NULL.
Afterward, 5% of the rows in one partition change because of DML activity.
2. Use DBMS_STATS to gather statistics on the table.

DBMS_STATS regathers statistics for the partition that had the 5% DML activity, and
incrementally maintains the global statistics.

3. Set | NCREMENTAL_STALENESS to USE_STALE_PERCENT.
Afterward, 5% of the rows in one partition change because of DML activity.
4. Use DBMS_STATS to gather statistics on the table.

DBMS_STATS does not regather statistics for the partition that had DML activity
(because the changes are under the staleness threshold of 10%), and
incrementally maintains the global statistics.

5. Lock the partition statistics.
Afterward, 20% of the rows in one partition change because of DML activity.
6. Use DBMS_STATS to gather statistics on the table.

DBMS_STATS does not regather statistics for the partition because the statistics are
locked. The database gathers the global statistics with a full table scan.

Afterward, 5% of the rows in one partition change because of DML activity.

13-32

Chapter 13
Gathering System Statistics Manually

7. Use DBMS_STATS to gather statistics on the table.

When you gather statistics on this table, DBMS_STATS does not regather statistics
for the partition because they are not considered stale. The database maintains
global statistics incrementally using the existing statistics for this partition.

8. Set| NCREMENTAL_ STALENESS to USE_LOCKED STATS and USE_STALE PERCENT.
Afterward, 20% of the rows in one partition change because of DML activity.
9. Use DBM5S_STATS to gather statistics on the table.

Because USE_LOCKED STATS is set, DBMS_STATS ignores the fact that the statistics
are stale and uses the locked statistics. The database maintains global statistics
incrementally using the existing statistics for this partition.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBVS_STATS. SET_TABLE_PREFS

13.3 Gathering System Statistics Manually

System statistics describe hardware characteristics, such as I/O and CPU
performance and utilization, to the optimizer.

This section contains the following topics:

13.3.1 About System Statistics

System statistics measure the performance of CPU and storage so that the optimizer
can use these inputs when evaluating plans.

When a query executes, it consumes CPU. In many cases, a query also consumes
storage subsystem resources. Each plan in a typical query may consume a different
proportion of CPU and I/O. Using the cost metric, the optimizer chooses the plan that
it estimates will execute most quickly. If the optimizer knows the speed of CPU and
storage, then it can make finer judgments about the cost of each alternative plan.

The following figure shows a query that has three possible plans. Each plan uses
different amounts of CPU and I/O. For the sake of this example, the optimizer has
assigned Plan 1 the lowest cost.

ORACLE 13-33

Chapter 13
Gathering System Statistics Manually

A
High Cost
g
11
L 1
%'f
SQL
Plan 2
<1 3%
; 4 kil
1 saL
4 Plan 3
SQL
Plan 1
Low Cost
L
/
2|l - > ‘
More CPU More 1/O J

The database automatically gathers essential system statistics, called noworkload
statistics, at the first instance startup. Typically, these characteristics only change
when some aspect of the hardware configuration is upgraded.

The following figure shows the same database after adding high-performance storage.
Gathering system statistics enables the optimizer to take the storage performance into
account. In this example, the high-performance storage lowers the relative cost of Plan
2 and Plan 3 significantly. Plan 1 shows only marginal improvement because it uses
less I/0O. Plan 3 has now been assigned the lowest cost.

A
High Cost
%
11
=z
%'f
SQL
Plan 2
. |
=%
z=
= =
Low Cost saL ;;9,
> Plan 1 SQL
Plan 3
p
2 [- > ‘
More CPU More 1/O __J/

ORACLE" 13-34

Chapter 13
Gathering System Statistics Manually

On systems with fast I/O infrastructure, system statistics increase the probability that
gueries choose table scans over index access methods.

13.3.2 Guidelines for Gathering System Statistics

Unless there is a good reason to gather manually, Oracle recommends using the
defaults for system statistics.

System statistics are important for performance because they affect every SQL
statement executed in the database. Changing system statistics may change SQL
execution plans, perhaps in unexpected or unwanted ways. For this reason, Oracle
recommends considering the options carefully before changing system statistics.

When to Consider Gathering System Statistics Manually

If you are using Oracle Exadata, and if the database is running a pure data warehouse
load, then gathering system statistics using the EXADATA option can help performance
in some cases because table scans are more strongly favored. However, even on
Exadata, the defaults are best for most workloads.

If you are not using Oracle Exadata, and if you choose to gather system statistics
manually, then Oracle recommends the following:

e Gather system statistics when a physical change occurs in your environment, for
example, the server gets faster CPUs, more memory, or different disk storage.
Oracle recommends that you gather noworkload statistics after you create new
tablespaces on storage that is not used by any other tablespace.

e Capture statistics when the system has the most common workload. Gathering
workload statistics does not generate additional overhead.

When to Consider Using Default Statistics

Oracle recommends using the defaults for system statistics in most cases. To reset
system statistics to their default values, execute DBMS_STATS. DELETE_SYSTEM STATS,
and then shut down and reopen the database. To ensure that appropriate defaults are
used, this step is also recommended on a newly created database.

13.3.3 Gathering System Statistics with DBMS_STATS

To gather system statistics manually, use the DBMS_STATS. GATHER _SYSTEM STATS
procedure.

This section contains the following topics:

13.3.3.1 About the GATHER_SYSTEM_STATS Procedure

ORACLE

The DBM5_STATS. GATHER _SYSTEM STATS procedure analyzes activity in a specified time
period (workload statistics) or simulates a workload (noworkload statistics).

The input arguments to DBVS_STATS. GATHER_SYSTEM STATS are:
* NOAORKLQAD

The optimizer gathers statistics based on system characteristics only, without
regard to the workload.

* | NTERVAL

13-35

Chapter 13

Gathering System Statistics Manually

After the specified number of minutes has passed, the optimizer updates system
statistics either in the data dictionary, or in an alternative table (specified by
st att ab). Statistics are based on system activity during the specified interval.

START and STOP

START initiates gathering statistics. STOP calculates statistics for the elapsed period
(since START) and refreshes the data dictionary or an alternative table (specified by
st att ab). The optimizer ignores | NTERVAL.

EXADATA

The system statistics consider the unique capabilities provided by using Exadata,
such as large 1/0O size and high I/O throughput. The optimizer sets the multiblock
read count and /O throughput statistics along with CPU speed.

Table 13-4 Optimizer System Statistics in the DBMS_STATS Package
]

The following table lists the optimizer system statistics gathered by DBVS_STATS and
the options for gathering or manually setting specific system statistics.

Parameter Name Description Initialization Options for Unit
Gathering or
Setting Statistics
cpuspeedNW Represents At system startup Set millions/s
noworkload CPU gat heri ng_node =
speed. CPU speed is NOWORKLQAD or set
the average number statistics manually.
of CPU cycles in
each second.
i oseektim Represents the time | At system startup Set ms
it takes to position 10 (default) gat hering_node =
the disk head to NOWORKLQOAD or set
read data. 1/0O seek statistics manually.
time equals seek
time + latency time
+ operating system
overhead time.
i otfrspeed Represents the rate | At system startup Set bytes/ms
at which an Oracle [4096 (default) gat hering_node =
database can read NOWORKLQOAD or set
data in the single statistics manually.
read request.
cpuspeed Represents workload | None Set millions/s
CPU speed. CPU gat heri ng_node
speed is the average = NONORKLQAD,
number of CPU | NTERVAL, or
cycles in each START| STCP, or set
second. statistics manually.
maxt hr Maximum I/O None Set bytes/s
throughput is the gat heri ng_node
maximum throughput = NOWORKLQAD,
that the I/O | NTERVAL, or
subsystem can START| STCP, or set
deliver. statistics manually.
ORACLE 13-36

Table 13-4 (Cont.) Optimizer System Statistics in the DBMS_STATS Package

Chapter 13

Gathering System Statistics Manually

Parameter Name Description Initialization Options for Unit
Gathering or
Setting Statistics
sl avet hr Slave I/0 throughput | None Set bytes/s
is the average gat heri ng_node =
parallel execution | NTERVAL or START]|
server 1/O STOP, or set statistics
throughput. manually.
sreadtim Single-block read None Set ms
time is the average gat heri ng_node =
time to read a single | NTERVAL or START]|
block randomly. STOP, or set statistics
manually.
nreadtim Multiblock read is None Set ms
the average time to gat heri ng_node =
read a multiblock | NTERVAL or START|
sequentially. STCP, or set statistics
manually.
mbr ¢ Multiblock count None Set blocks
is the average gat heri ng_node =
multiblock read count | NTERVAL or START]|
sequentially. STOP, or set statistics
manually.
¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information on the procedures in the DBMS_STATS package for gathering and
deleting system statistics

13.3.3.2 Gathering Workload Statistics

Oracle recommends that you use DBVMS_STATS. GATHER SYSTEM STATS to capture
statistics when the database has the most typical workload.

For example, database applications can process OLTP transactions during the day
and generate OLAP reports at night.

This section contains the following topics:

13.3.3.2.1 About Workload Statistics

ORACLE

Workload statistics analyze activity in a specified time period.
Workload statistics include the following statistics listed in Table 13-4:

* Single block (sreadti m) and multiblock (nr eadt i m) read times

e Multiblock count (nbr c)

13-37

ORACLE

Chapter 13
Gathering System Statistics Manually

e CPU speed (cpuspeed)
e Maximum system throughput (maxt hr)
» Average parallel execution throughput (sl avet hr)

The database computes sreadti m nreadti m and mbr ¢ by comparing the number of
physical sequential and random reads between two points in time from the beginning
to the end of a workload. The database implements these values through counters that
change when the buffer cache completes synchronous read requests.

Because the counters are in the buffer cache, they include not only I/O delays, but also
waits related to latch contention and task switching. Thus, workload statistics depend
on system activity during the workload window. If system is 1/0 bound (both latch
contention and 1/O throughput), then the statistics promote a less I/O-intensive plan
after the database uses the statistics.

As shown in Figure 13-4, if you gather workload statistics, then the optimizer uses the
nbr ¢ value gathered for workload statistics to estimate the cost of a full table scan.

Figure 13-4 Workload Statistics Counters

Database Buffer Cache Optimizer
a5
Counters for Workload > L H ; : Estimate
Statistics N costs of
i full table
mreadtim scans
May not be
< available if
sreadtim no full table May use if mbrc and mreadtim
cpuspeed scans occur are not available
maxthr
slavethr
DB_FILE_MULTIBLOCK_READ_COUNT

When gathering workload statistics, the database may not gather the nbr ¢ and

nr eadt i mvalues if no table scans occur during serial workloads, as is typical of OLTP
systems. However, full table scans occur frequently on DSS systems. These scans
may run parallel and bypass the buffer cache. In such cases, the database still gathers
the sreadt i mbecause index lookups use the buffer cache.

If the database cannot gather or validate gathered nbr ¢ or nr eadt i mvalues, but
has gathered sr eadt i mand cpuspeed, then the database uses only sreadti mand
cpuspeed for costing. In this case, the optimizer uses the value of the initialization
parameter DB_FI LE_MJLTI BLOCK_READ_COUNT to cost a full table scan. However, if
DB_FI LE MULTI BLOCK_READ COUNT is 0 or is not set, then the optimizer uses a value
of 8 for calculating cost.

Use the DBMS_STATS. GATHER _SYSTEM STATS procedure to gather workload statistics.
The GATHER SYSTEM STATS procedure refreshes the data dictionary or a staging table
with statistics for the elapsed period. To set the duration of the collection, use either of
the following techniques:

e Specify START the beginning of the workload window, and then STOP at the end of
the workload window.

13-38

Chapter 13
Gathering System Statistics Manually

» Specify | NTERVAL and the number of minutes before statistics gathering
automatically stops. If needed, you can use GATHER SYSTEM STATS
(gat hering_node=>' STOP') to end gathering earlier than scheduled.

" See Also:

Oracle Database Reference to learn about the
DB_FI LE_MULTI BLOCK_READ_CQUNT initialization parameter

13.3.3.2.2 Starting and Stopping System Statistics Gathering

This tutorial explains how to set the workload interval with the START and STOP
parameters of GATHER_SYSTEM STATS.

Assumptions
This tutorial assumes the following:

e The hour between 10 a.m. and 11 a.m. is representative of the daily workload.

* You intend to collect system statistics directly in the data dictionary.

To gather workload statistics using START and STOP:
1. Start SQL*Plus and connect to the database with administrator privileges.
2. Start statistics collection.

For example, at 10 a.m., execute the following procedure to start collection:

EXECUTE DBMB_STATS. GATHER SYSTEM STATS(gat hering_node => ' START');

3. Generate the workload.
4. End statistics collection.

For example, at 11 a.m., execute the following procedure to end collection:

EXECUTE DBMS_STATS. GATHER_SYSTEM STATS(gat hering_node => ' STOP');

The optimizer can now use the workload statistics to generate execution plans that
are effective during the normal daily workload.

5. Optionally, query the system statistics.
For example, run the following query:
COL PNAME FORMAT alb
SELECT PNAME, PVAL1

FROM SYS. AUX_STATS$
WHERE SNAME = ' SYSSTATS_MAIN ;

ORACLE 13-39

Chapter 13
Gathering System Statistics Manually

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. GATHER SYSTEM STATS procedure

13.3.3.2.3 Gathering System Statistics During a Specified Interval

ORACLE

This tutorial explains how to set the workload interval with the | NTERVAL parameter of
GATHER _SYSTEM STATS.

Assumptions

This tutorial assumes the following:

The database application processes OLTP transactions during the day and runs
OLAP reports at night. To gather representative statistics, you collect them during
the day for two hours and then at night for two hours.

You want to store statistics in a table named wor kl oad_st at s.

You intend to switch between the statistics gathered.

To gather workload statistics using INTERVAL.:

1.
2.

Start SQL*Plus and connect to the production database as administrator dbal.
Create a table to hold the production statistics.

For example, execute the following PL/SQL program to create user statistics table
wor kl oad_stats:

BEG N
DBVB_STATS. CREATE_STAT_TABLE (
ownnane => 'dbal
, stattab => 'workload stats'

Ensure that JOB_QUEUE_PROCESSES is not 0 so that DBMS_JOB jobs and Oracle
Scheduler jobs run.

ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 1,

Gather statistics during the day.

For example, gather statistics for two hours with the following program:

BEG N
DBVS_STATS. GATHER_SYSTEM STATS (
interval => 120
, stattab => "workl oad_stats'
, statid = 'QOLTP

13-40

Chapter 13
Gathering System Statistics Manually

END;
/

5. Gather statistics during the evening.

For example, gather statistics for two hours with the following program:

BEG N
DBVB_STATS. GATHER_SYSTEM STATS (
interval => 120
, stattab => "workload _stats'
, statid => ' OLAP

6. Inthe day or evening, import the appropriate statistics into the data dictionary.

For example, during the day you can import the OLTP statistics from the staging
table into the dictionary with the following program:

BEG N
DBVS_STATS. | MPORT_SYSTEM STATS (
stattab => ‘'workload stats'
, statid = 'O.TF

For example, during the night you can import the OLAP statistics from the staging
table into the dictionary with the following program:

BEG N
DBVS_STATS. | MPORT_SYSTEM STATS (
stattab => 'workload stats'
, statid => 'OLAP

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. GATHER _SYSTEM STATS procedure

13.3.3.3 Gathering Noworkload Statistics

Noworkload statistics capture characteristics of the 1/0O system.

By default, Oracle Database uses noworkload statistics and the CPU cost model.
The values of noworkload statistics are initialized to defaults at the first instance

ORACLE 13-41

ORACLE

Chapter 13
Gathering System Statistics Manually

startup. You can also use the DBMS_STATS. GATHER_SYSTEM STATS procedure to gather
noworkload statistics manually.

Noworkload statistics include the following system statistics listed in Table 13-4:

* 1/O transfer speed (i ot f r speed)
e 1/O seek time (i oseektim
e CPU speed (cpuspeednw)

The major difference between workload statistics and noworkload statistics is in the
gathering method. Noworkload statistics gather data by submitting random reads
against all data files, whereas workload statistics uses counters updated when
database activity occurs. If you gather workload statistics, then Oracle Database uses
them instead of noworkload statistics.

To gather noworkload statistics, run DBMS_STATS. GATHER _SYSTEM STATS with no
arguments or with the gathering mode set to nowor kl oad. There is an overhead on
the 1/0 system during the gathering process of howorkload statistics. The gathering
process may take from a few seconds to several minutes, depending on 1/O
performance and database size.

When you gather noworkload statistics, the database analyzes the information
and verifies it for consistency. In some cases, the values of noworkload statistics
may retain their default values. You can either gather the statistics again, or use
SET_SYSTEM STATS to set the values manually to the I/O system specifications.

Assumptions

This tutorial assumes that you want to gather noworkload statistics manually.

To gather noworkload statistics manually:

1. Start SQL*Plus and connect to the database with administrator privileges.
2. Gather the noworkload statistics.

For example, run the following statement:

BEG N

DBVS_STATS. GATHER_SYSTEM STATS (
gat hering_node => ' NONORKLOAD

);
END;

3. Optionally, query the system statistics.

For example, run the following query:

COL PNAME FORMAT alb
SELECT PNAME, PVAL1

FROM SYS. AUX_STATS$
WHERE SNAME = ' SYSSTATS_MAIN ;

13-42

Chapter 13
Running Statistics Gathering Functions in Reporting Mode

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. GATHER SYSTEM STATS procedure

13.3.4 Deleting System Statistics

The DBMS_STATS. DELETE_SYSTEM STATS procedure deletes system statistics.

This procedure deletes workload statistics collected using the | NTERVAL or START and
STOP options, and then resets the default to noworkload statistics. However, if the

st att ab parameter specifies a table for storing statistics, then the subprogram deletes
all system statistics with the associated st ati d from the statistics table.

If the database is newly created, then Oracle recommends deleting system statistics,
shutting down the database, and then reopening the database. This sequence of steps
ensures that the database establishes appropriate defaults for system statistics.

Assumptions
This tutorial assumes the following:

* You gathered statistics for a specific intensive workload, but no longer want the
optimizer to use these statistics.

* You stored workload statistics in the default location, not in a user-specified table.
To delete system statistics:

1. In SQL*Plus, log in to the database as a user with administrative privileges.
2. Delete the system statistics.

For example, run the following statement:

EXEC DBMS_STATS. DELETE_SYSTEM STATS,

" See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. DELETE_SYSTEM STATS procedure

13.4 Running Statistics Gathering Functions in Reporting

Mode

ORACLE

You can run the DBMS_STATS statistics gathering procedures in reporting mode.

When you use the REPORT _* procedures, the optimizer does not actually gather
statistics. Rather, the package reports objects that would be processed if you were
to use a specified statistics gathering function.

13-43

ORACLE

Chapter 13

Running Statistics Gathering Functions in Reporting Mode

The following table lists the DBMS_STATS. REPORT_GATHER * _STATS functions. For
all functions, the input parameters are the same as for the corresponding
GATHER * _STATS procedure, with the following additional parameters: detai | _| evel
and f or mat . Supported formats are XM, HTM_, and TEXT.

Table 13-5 DBMS_STATS Reporting Mode Functions
|

Function

Description

REPORT_GATHER _TABLE_STATS

REPORT_GATHER SCHEMA STATS

REPORT_GATHER DI CTI ONARY_STATS

REPORT_GATHER _DATABASE_STATS

REPORT_GATHER FI XED_OBJ_STATS

REPORT_GATHER_AUTO STATS

Runs GATHER_TABLE_STATS in reporting mode.
The procedure does not collect statistics, but

reports all objects that would be affected by
invoking GATHER _TABLE_STATS.

Runs GATHER _SCHEMA STATS in reporting mode.
The procedure does not actually collect statistics,
but reports all objects that would be affected by
invoking GATHER_SCHEMA_STATS.

Runs GATHER DI CTI ONARY_STATS in reporting
mode. The procedure does not actually

collect statistics, but reports all objects

that would be affected by invoking

GATHER DI CTI ONARY_STATS.

Runs GATHER_DATABASE_STATS in reporting
mode. The procedure does not actually collect
statistics, but reports all objects that would be
affected by invoking GATHER_DATABASE_STATS.

Runs GATHER FI XED _OBJ_STATS in reporting
mode. The procedure does not actually collect
statistics, but reports all objects that would be
affected by invoking GATHER_FI XED_OBJ_STATS.

Runs the automatic statistics gather job in
reporting mode. The procedure does not actually
collect statistics, but reports all objects that would
be affected by running the job.

Assumptions

This tutorial assumes that you want to generate an HTML report of the objects that
would be affected by running GATHER_SCHEMA_STATS on the oe schema.

To report on objects affected by running GATHER_SCHEMA_STATS:

1. Start SQL*Plus and connect to the database with administrator privileges.
2. Run the DBM5_STATS. REPORT_GATHER SCHEMA STATS function.

For example, run the following commands in SQL*Plus:

SET LINES 200 PAGES 0
SET LONG 100000
COLUWN REPORT FORMAT A200

VARl ABLE my_report CLOB;
BEG N

:ny_report : =DBMS_STATS. REPORT_GATHER SCHEMA_STATS(

ownnane = 'CE

13-44

Chapter 13
Running Statistics Gathering Functions in Reporting Mode

detail _|evel
f or mat

END;
/

=> "TYPI CAL'
=>

MM),

The following graphic shows a partial example report:

Operation _ _ _ Total Successful Failed Active
Id Operation Target Start Time End Time Status Tasks Tasks Tasks Tasks
844 gather_schema_stats |OE 04-1AN-13 04-1AN-13 COMPLETED|37 37 0 0
(reporting mode) 07.53.22.139066 |07.53.32.193332
AM -08:00 AM -08:00
TASKS
Target Type Start Time End Time Status
CE.CATEGORIES_TAB TAEBLE |04-JAN-13 07.53.28.404543 |04-]JAN-13 07.53.31.676793 |(COMPLETED
AM -08:00 AM -08:00
CE.5Y5_C005568 INDEX|04-JAN-13 07.53.31.567054 |04-JAN-13 07.53.31.648979 |COMPLETED
AM -08:00 AM -08:00
OE.SYS_C005569 INDEX|04-JAN-13 07.53.31.664588 |04-1AN-13 07.53.31.666127 |COMPLETED
AM -08:00 AM -08:00
CE.SYS_C005570 INDEX|04-JAN-13 07.53.31.668909 |04-]AN-13 07.53.31.669885 |COMPLETED
AM -08:00 AM -08:00
CE.SY5_C005571 INDEX|04-JAN-13 07.53.31.673296 |04-]AN-13 07.53.31.674499 |COMPLETED
AM -08:00 AM -08:00
CE.CUSTOMERS TABLE |04-JAN-13 07.53.31.678634 |04-JAN-13 07.53.31.792792 |(COMPLETED
AM -08:00 AM -08:00
CE.CUST_ACCOUNT_MANAGER_IX INDEX|04-JAN-13 07.53.31.770330 |04-]AN-13 07.53.31.771665 |COMPLETED
AM -08:00 AM -08:00
CE.CUST_LNAME_IX INDEX|04-JAN-13 07.53.31.774563 |04-JAN-13 07.53.31.775638 |COMPLETED
AM -08:00 AM -08:00
CE.CUST_EMAIL_IX INDEX|04-JAN-13 07.53.31.778754 |04-JAN-13 07.53.31.779921 |COMPLETED
AM -08:00 AM -08:00
CE.CUST_UPPER_NAME_IX INDEX|04-JAN-13 07.53.31.736955 |04-]AN-13 07.53.31.788167 |COMPLETED
AM -08:00 AM -08:00
CE.CUSTOMERS_PK INDEX|04-JAN-13 07.53.31.791278 |04-JAN-13 07.53.31.792336 |COMPLETED
AM -08:00 AM -08:00
CE.INVENTORIES TABLE|04-JAN-13 07.53.31.826126 |04-JAN-13 07.53.31.895%944 |(COMPLETED
AM -08:00 AM -08:00

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBM5_STATS

ORACLE"

13-45

Managing Extended Statistics

DBMS_STATS enables you to collect extended statistics, which are statistics that can
improve cardinality estimates when multiple predicates exist on different columns of a
table, or when predicates use expressions.

An extension is either a column group or an expression. Column group statistics

can improve cardinality estimates when multiple columns from the same table occur
together in a SQL statement. Expression statistics improves optimizer estimates when
predicates use expressions, for example, built-in or user-defined functions.

" Note:

You cannot create extended statistics on virtual columns.
This chapter contains the following topics:

See Also:

Oracle Database SQL Language Reference for a list of restrictions on virtual
columns

14.1 Managing Column Group Statistics

A column group is a set of columns that is treated as a unit.

Essentially, a column group is a virtual column. By gathering statistics on a column
group, the optimizer can more accurately determine the cardinality estimate when a
query groups these columns together.

The following sections provide an overview of column group statistics, and explain how
to manage them manually:

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS package

ORACLE 14-1

Chapter 14
Managing Column Group Statistics

14.1.1 About Statistics on Column Groups

Individual column statistics are useful for determining the selectivity of a single
predicate in a WHERE clause.

When the WHERE clause includes multiple predicates on different columns from the
same table, individual column statistics do not show the relationship between the
columns. This is the problem solved by a column group.

The optimizer calculates the selectivity of the predicates independently, and then
combines them. However, if a correlation between the individual columns exists, then
the optimizer cannot take it into account when determining a cardinality estimate,
which it creates by multiplying the selectivity of each table predicate by the number of
rows.

The following graphic contrasts two ways of gathering statistics on the
cust_state_province and country_i d columns of the sh. cust oner s table. The
diagram shows DBMS_STATS collecting statistics on each column individually and on
the group. The column group has a system-generated name.

Figure 14-1 Column Group Statistics

CUST_ID | CUST_STATE_PROVINCE | COUNTRY_ID |
101095 ca 52790
103105 Sao Paulo 52775

ﬁ//

‘ SYS_STU#S#WF25Z#QAHIHE#MOFFMM__

l

Statistics for
Column Group

4 \
Statistics for Statistics for
CUST_STATE_PROVINCE COUNTRY_ID

L g |

" Note:

The optimizer uses column group statistics for equality predicates, inlist
predicates, and for estimating the GROUP BY cardinality.

This section contains the following topics:

14.1.1.1 Why Column Group Statistics Are Needed: Example

This example demonstrates how column group statistics enable the optimizer to give a
more accurate cardinality estimate.

ORACLE 14-2

ORACLE

Chapter 14
Managing Column Group Statistics

The following query of the DBA TAB_COL_STATI STI CS table shows information about
statistics that have been gathered on the columns cust _state_provi nce and
country_i d from the sh. cust oner s table:

COL COLUWN_NAME FORMAT a20
COL NDV FORMAT 999

SELECT COLUMN_NAME, NUM DI STINCT AS "NDV', H STOGRAM

FROM DBA TAB_COL_STATI STI CS

WHERE OWKER = ' SH

AND TABLE_NAME = ' CUSTOVERS

AND COLUMN_ NAME | N (' CUST_STATE PROVINCE , ' COUNTRY_ID);

Sample output is as follows:

COLUVN_NANE NDV H STOGRAM
CUST_STATE_PROVI NCE 145 FREQUENCY
COUNTRY_I D 19 FREQUENCY

As shown in the following query, 3341 customers reside in California:

SELECT COUNT(*)
FROM sh. custoners
WHERE cust _state province = 'CA';

Consider an explain plan for a query of customers in the state CA and in the country
with ID 52790 (USA):

EXPLAIN PLAN FOR
SELECT *
FROM sh. customers
WHERE cust _state province = 'CA
AND country_i d=52790;

Expl ai ned.
Sys@ROD> SELECT * FROM TABLE(DBVS_XPLAN. DI SPLAY) ;

PLAN TABLE_OUTPUT

Pl an hash val ue: 1683234692

| 1d | Operation | Nane | Rows | Bytes | Cost (%CPU) |

14-3

Chapter 14
Managing Column Group Statistics

SELECT STATEMENT | | 128 | 24192 | 442 (7)]

|
TABLE ACCESS FULL| CUSTOMERS | 128 | 24192 | 442 (7)]
|

1 - filter("CUST_STATE _PROVINCE'=' CA' AND "COUNTRY_| D'=52790)

13 rows sel ect ed.

Based on the single-column statistics for the country_i d and cust _state_provi nce
columns, the optimizer estimates that the query of California customers in the USA
will return 128 rows. In fact, 3341 customers reside in California, but the optimizer
does not know that the state of California is in the country of the USA, and so greatly
underestimates cardinality by assuming that both predicates reduce the number of
returned rows.

You can make the optimizer aware of the real-world relationship between values in
country_idand cust_state_provi nce by gathering column group statistics. These
statistics enable the optimizer to give a more accurate cardinality estimate.

¢ See Also:

e "Detecting Useful Column Groups for a Specific Workload"
e "Creating Column Groups Detected During Workload Monitoring"

e "Creating and Gathering Statistics on Column Groups Manually"

14.1.1.2 Automatic and Manual Column Group Statistics

ORACLE

Oracle Database can create column group statistics either automatically or manually.

The optimizer can use SQL plan directives to generate a more optimal plan. If the
DBMS_STATS preference AUTO _STAT_EXTENSI ONS is set to ON (by default it is OFF), then
a SQL plan directive can automatically trigger the creation of column group statistics
based on usage of predicates in the workload. You can set AUTO_STAT_EXTENSI ONS
with the SET_TABLE_PREFS, SET_GLOBAL_PREFS, or SET_SCHEMA PREFS procedures.

When you want to manage column group statistics manually, then use DBM5_STATS as
follows:

* Detect column groups

* Create previously detected column groups

14-4

Chapter 14
Managing Column Group Statistics

* Create column groups manually and gather column group statistics

¢ See Also:

e "Detecting Useful Column Groups for a Specific Workload"
e "Creating Column Groups Detected During Workload Monitoring"
e "Creating and Gathering Statistics on Column Groups Manually"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS procedures for setting optimizer statistics

14.1.1.3 User Interface for Column Group Statistics

Several DBMS_STATS program units have preferences that are relevant for column

groups.

Table 14-1 DBMS_STATS APIs Relevant for Column Groups
|

Program Unit or Preference

Description

SEED COL_USAGE Procedure

REPORT_COL_USAGE Function

CREATE_EXTENDED_STATS
Function

AUTO_STAT_EXTENSI ONS
Preference

Iterates over the SQL statements in the specified workload,
compiles them, and then seeds column usage information for
the columns that appear in these statements.

To determine the appropriate column groups, the database
must observe a representative workload. You do not need

to run the queries themselves during the monitoring period.
Instead, you can run EXPLAI N PLAN for some longer-running
queries in your workload to ensure that the database is
recording column group information for these queries.

Generates a report that lists the columns that were seen in
filter predicates, join predicates, and GROUP BY clauses in the
workload.

You can use this function to review column usage information
recorded for a specific table.

Creates extensions, which are either column groups or
expressions. The database gathers statistics for the extension
when either a user-generated or automatic statistics
gathering job gathers statistics for the table.

Controls the automatic creation of extensions,

including column groups, when optimizer statistics are
gathered. Set this preference using SET_TABLE PREFS,
SET_SCHEMA PREFS, or SET_GLOBAL_PREFS.

When AUTO_STAT_EXTENSI ONS is set to OFF (default),

the database does not create column group statistics
automatically. To create extensions, you must execute

the CREATE_EXTENDED_STATS function or specify extended
statistics explicitly in the METHOD_OPT parameter in the
DBMS_STATS API.

When set to ON, a SQL plan directive can trigger the creation
of column group statistics automatically based on usage of
columns in the predicates in the workload.

ORACLE

14-5

Chapter 14
Managing Column Group Statistics

¢ See Also:

e "Setting Artificial Optimizer Statistics for a Table"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS package

14.1.2 Detecting Useful Column Groups for a Specific Workload

ORACLE

You can use DBMS_STATS. SEED COL_USAGE and REPORT_COL_USACE to determine which
column groups are required for a table based on a specified workload.

This technique is useful when you do not know which extended statistics to create.
This technique does not work for expression statistics.

Assumptions
This tutorial assumes the following:

e Cardinality estimates have been incorrect for queries of the sh. cust oners_t est
table (created from the cust omer s table) that use predicates referencing the
columns country_idand cust_state_province.

* You want the database to monitor your workload for 5 minutes (300 seconds).
* You want the database to determine which column groups are needed
automatically.

To detect column groups:

1. Start SQL*Plus or SQL Developer, and log in to the database as user sh.

2. Create the cust oners_t est table and gather statistics for it:

DROP TABLE custoners_test;
CREATE TABLE custoners_test AS SELECT * FROM cust oner;
EXEC DBMS_STATS. GATHER TABLE STATS(user, 'custoners_test');

3. Enable workload monitoring.

In a different SQL*Plus session, connect as SYS and run the following PL/SQL
program to enable monitoring for 300 seconds:

BEG N
DBMS_STATS. SEED_COL_USAGE(nul |, nul | , 300) ;

END;

/

4. As user sh, run explain plans for two queries in the workload.

The following examples show the explain plans for two queries on the
customers_test table:

EXPLAIN PLAN FOR
SELECT *

14-6

ORACLE

5.

Chapter 14
Managing Column Group Statistics

FROM custoners_test

WHERE cust _city = 'Los Angel es’
AND cust _state_province = 'CA
AND country_id = 52790;

SELECT PLAN_TABLE_QUTPUT
FROM TABLE(DBM5_XPLAN. DI SPLAY(' pl an_table', null,'basic rows'));

EXPLAI N PLAN FOR
SELECT country_id, cust_state province, count(cust_city)
FROM customers_test
GROUP BY country_id, cust_state province;

SELECT PLAN_TABLE_QUTPUT
FROM TABLE(DBM5_XPLAN. DI SPLAY(' pl an_table', null,'basic rows'));

Sample output appears below:

PLAN TABLE_OUTPUT

Pl an hash val ue: 4115398853

| 0| SELECT STATEMENT | | 1]
1| TABLE ACCESS FULL| CUSTOVERS TEST | 1

8 rows sel ected.

PLAN TABLE_OUTPUT

Pl an hash val ue: 3050654408

1d	Operation	Nane	Rows
0] SELECT STATEMENT		1949	
1	HASH GROUP BY		1949
2	TABLE ACCESS FULL	CUSTOVERS TEST	55500

9 rows selected.
The first plan shows a cardinality of 1 row for a query that returns 932 rows. The

second plan shows a cardinality of 1949 rows for a query that returns 145 rows.

Optionally, review the column usage information recorded for the table.

14-7

ORACLE

Chapter 14
Managing Column Group Statistics

Call the DBMS_STATS. REPORT_COL_USAGE function to generate a report:

SET LONG 100000
SET LI NES 120

SET PAGES 0

SELECT DBMS_STATS. REPORT_COL_USAGE(user, 'customers_test')
FROM DUAL;

The report appears below:

LEGEND:

EQ . Used in single table EQuality predicate
RANGE : Used in single tabl e RANGE predicate

LI KE : Used in single table LIKE predicate

NULL : Used in single table is (not) NULL predicate
EQ JON . Used in EQuality JON predicate

NONEQ JON : Used in NON EQuality JO N predicate

FILTER : Used in single table FILTER predicate

JON : Used in JON predicate

GROUP_BY : Used in GROUP BY expression

HHBHHHHHH R R R R R R R R
HitHH

COLUWN USAGE REPORT FOR SH. CUSTOMERS_TEST

1. COUNTRY_ID © EQ
2. CUST_CITY © EQ
3. CUST_STATE_PROVI NCE © EQ
4. (CUST_CITY, CUST STATE_PROVI NCE,
COUNTRY_| D) © FILTER
5. (CUST_STATE_PROVINCE, COUNTRY_ID) : GROUP_BY

HHBHHHHH AR R R R R R R R R
HitH#

In the preceding report, the first three columns were used in equality predicates in
the first monitored query:

WHERE cust _city = 'Los Angel es'
AND cust _state_province = 'CA
AND country id = 52790;

All three columns appeared in the same WHERE clause, so the report shows them
as a group filter. In the second query, two columns appeared in the GROUP BY
clause, so the report labels them as GROUP_BY. The sets of columns in the FI LTER
and GROUP_BY report are candidates for column groups.

14-8

Chapter 14
Managing Column Group Statistics

¢ See Also:

e "Managing SQL Tuning Sets"

e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS package

14.1.3 Creating Column Groups Detected During Workload Monitoring

ORACLE

You can use the DBMS_STATS. CREATE _EXTENDED STATS function to create column
groups that were detected previously by executing DBMS_STATS. SEED COL_USAGE.
Assumptions

This tutorial assumes that you have performed the steps in "Detecting Useful Column

Groups for a Specific Workload".

To create column groups:

1. Create column groups for the cust oners_t est table based on the usage
information captured during the monitoring window.

For example, run the following query:

SELECT DBMS_STATS. CREATE_EXTENDED STATS(user, 'customers_test')
FROM DUAL;

Sample output appears below:

R R R T R R R R T
I
EXTENSI ONS FOR SH. CUSTOMERS_TEST

1. (CUST_CITY, CUST_STATE_PROVI NCE,

COUNTRY_I D) : SYS_STUMZ$C3AI HLPBRO #SKA58H N
created
2. (CUST_STATE_PROVI NCE, COUNTRY_I D): SYS_STU#S#WF25Z#QAH HEAMOFFMVL.
created

R R R T R R R R T
I

The database created two column groups for cust omrer s_t est : one column group
for the filter predicate and one group for the GROUP BY operation.

2. Regather table statistics.

Run GATHER TABLE_ STATS to regather the statistics for cust omers_t est :

EXEC DBMS_STATS. GATHER TABLE_STATS(user, ' custoners_test');

3. As user sh, run explain plans for two queries in the workload.

14-9

ORACLE

Chapter 14
Managing Column Group Statistics

Check the USER TAB CCOL_STATI STI CS view to determine which additional statistics
were created by the database:

SELECT COLUWMN_NAME, NUM DI STI NCT, H STOGRAM
FROM USER _TAB_COL_STATI STI CS

WHERE TABLE_NAME = ' CUSTOMERS_TEST'

CRDER BY 1,

Partial sample output appears below:

CUST_CI TY 620 HEI GHT BALANCED
SYS_STU#SHWF257#QAH HE#MOFFMVL 145 NONE
SYS_STUMZ$C3AI HLPBRO #SKA58H N 620 HEI GHT BALANCED

This example shows the two column group names returned from the
DBMS_STATS. CREATE_EXTENDED_STATS function. The column group created on
CUST_CI TY, CUST_STATE_PROVI NCE, and COUNTRY_I D has a height-balanced
histogram.

Explain the plans again.

The following examples show the explain plans for two queries on the
customers_test table:

EXPLAIN PLAN FOR
SELECT *
FROM custoners_test
WHERE cust city = 'Los Angel es'
AND cust _state province = 'CA
AND country id = 52790;

SELECT PLAN_TABLE_QUTPUT
FROM TABLE(DBMS_XPLAN. DI SPLAY(' pl an_table', null,'basic rows'));

EXPLAIN PLAN FOR
SELECT country id, cust_state province, count(cust _city)
FROM customers_test
GROUP BY country id, cust_state province;

SELECT PLAN_TABLE_QUTPUT
FROM TABLE(DBMS_XPLAN. DI SPLAY(' pl an_table', null,'basic rows'));

The new plans show more accurate cardinality estimates:

Id	Operation	Name	Rows
0	SELECT STATEMENT		1093
1	TABLE ACCESS FULL	CUSTOMERS TEST	1093

8 rows sel ected.

14-10

Chapter 14

Managing Column Group Statistics

Pl an hash val ue: 3050654408

0 | SELECT STATEMENT | |
| 1] HASH GROUP BY | | 145 |
2| TABLE ACCESS FULL| CUSTOMERS TEST |

9 rows sel ected.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the

DBMS_STATS package

14.1.4 Creating and Gathering Statistics on Column Groups Manually

In some cases, you may know the column group that you want to create.

The METHOD_OPT argument of the DBMS_STATS. GATHER TABLE_STATS function can

create and gather statistics on a column group automatically. You can create a new

column group by specifying the group of columns using FOR COLUWNS.

Assumptions

This tutorial assumes the following:

You want to create a column group for the cust _state_provi nce and country_id

columns in the cust oner s table in sh schema.

You want to gather statistics (including histograms) on the entire table and the new

column group.

To create a column group and gather statistics for this group:

1.
2.

BEG N

In SQL*Plus, log in to the database as the sh user.
Create the column group and gather statistics.

For example, execute the following PL/SQL program:

DBVS_STATS. GATHER _TABLE_STATS('sh','custoners',
VMETHOD_OPT => ' FOR ALL COLUWNS SI ZE SKEWONLY ' ||

END;
/

ORACLE

' FOR COLUWNS Sl ZE SKEWONLY (cust_state province,country_id)");

14-11

Chapter 14

Managing Column Group Statistics

¢ See Also:

14.1.5 Displaying Column Group Information

To obtain the name of a column group, use the

ORACLE

DBMS_STATS. SHON EXTENDED STATS NAME function or a database view.

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. GATHER TABLE STATS procedure

You can also use views to obtain information such as the number of distinct values,
and whether the column group has a histogram.

Assumptions

This tutorial assumes the following:

* You created a column group for the cust _state_province and country_id
columns in the cust orer s table in sh schema.

* You want to determine the column group name, the number of distinct values, and

whether a histogram has been created for a column group.

To monitor a column group:

1. Start SQL*Plus and connect to the database as the sh user.

2. To determine the column group name, do one of the following.

Execute the SHOW EXTENDED STATS NAME function.

For example, run the following PL/SQL program:

SELECT SYS. DBMS_STATS. SHOW EXTENDED_STATS NAME('sh','customers',

"(cust _state province,country id)') col _group_name

FROM DUAL;

The output is similar to the following:
SYS_STU#SHWF25Z#QAHI HE#MOFFMM_

Query the USER_STAT_EXTENSI ONS view.

For example, run the following query:

SELECT EXTENSI ON_NAME, EXTENSI ON
FROM USER_STAT_EXTENSI ONS
WHERE TABLE_NAME=" CUSTOMERS' ;

EXTENSI ON_NAME EXTENSI ON

14-12

Chapter 14
Managing Column Group Statistics

SYS_STU#SHWF25Z#QAHI HEAMOFFMVL
(" CUST_STATE_PROVI NCE", " COUNTRY_I D")

3. Query the number of distinct values and find whether a histogram has been
created for a column group.

For example, run the following query:

SELECT e. EXTENSI ON col _group, t.NUM DI STINCT, t.H STOGRAM
FROM USER _STAT_EXTENSI ONS e, USER TAB_COL_STATI STI CS t
WHERE e. EXTENSI ON_NAME=t . COLUMN_NAME

AND e. TABLE_NAME=t . TABLE_NAVE

AND t . TABLE_NAME=" CUSTOVERS' ;

COL_GROUP NUM DI STI NCT HI STOGRAM
("COUNTRY_| D', " CUST_STATE_PROVI NCE") 145 FREQUENCY
¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. SHON EXTENDED STATS_NAME function

14.1.6 Dropping a Column Group

ORACLE

Use the DBMS_STATS. DROP_EXTENDED STATS function to delete a column group from a
table.

Assumptions

This tutorial assumes the following:

* You created a column group for the cust _state_province and country_id
columns in the cust oner s table in sh schema.

* You want to drop the column group.

To drop a column group:

1. Start SQL*Plus and connect to the database as the sh user.
2. Drop the column group.

For example, the following PL/SQL program deletes a column group from the
cust oner s table:

BEG N
DBMS_STATS. DROP_EXTENDED STATS(‘sh', 'custoners',
"(cust_state_province,
country_id)');
END;
/

14-13

Chapter 14
Managing Expression Statistics

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. DROP_EXTENDED STATS function

14.2 Managing Expression Statistics

The type of extended statistics known as expression statistics improve optimizer
estimates when a WHERE clause has predicates that use expressions.

This section contains the following topics:

14.2.1 About Expression Statistics

ORACLE

For an expression in the form (function(col) =const ant) applied to a WHERE clause
column, the optimizer does not know how this function affects predicate cardinality
unless a function-based index exists. However, you can gather expression statistics on
the expression(function(col) itself.

The following graphic shows the optimizer using statistics to generate a plan for a
guery that uses a function. The top shows the optimizer checking statistics for the
column. The bottom shows the optimizer checking statistics corresponding to the
expression used in the query. The expression statistics yield more accurate estimates.

Figure 14-2 Expression Statistics

SELECT * FROM sh.customers
WHERE LOWER (cust_state_province) = ‘ca’

Optimizer

Do

Use Yes “expression - No Use Default
Expression ot —— | Column
e statistics .
Statistics exist? Statistics
LOWER (cust_state_province) cust_state_province
Expression Statistics Column Statistics

Optimal Suboptimal
Estimate Estimate

As shown in Figure 14-2, when expression statistics are not available, the optimizer
can produce suboptimal plans.

14-14

Chapter 14
Managing Expression Statistics

This section contains the following topics:

" See Also:

Oracle Database SQL Language Reference to learn about SQL functions

14.2.1.1 When Expression Statistics Are Useful: Example

The following query of the sh. cust oner s table shows that 3341 customers are in the
state of California:

Sys@ROD> SELECT COUNT(*) FROM sh. custoners WHERE
cust _state province='CA';

Consider the plan for the same query with the LOAER() function applied:

sys@ROD> EXPLAIN PLAN FOR

2 SELECT * FROM sh. customers WHERE LOWER(cust _state province)='ca';
Expl ai ned.
Sys@ROD> sel ect * fromtabl e(dbns_xpl an. di spl ay);

PLAN_TABLE_OUTPUT

|1d | Operation | Nane | Rows | Bytes | Cost (%CPU)|

Ti me |
| 0| SELECT STATEMENT | | 555 | 108K | 406 (1)]
00: 00: 05 |
|*1 | TABLE ACCESS FULL| CUSTOMERS | 555 | 108K | 406 (1)]
00: 00: 05 |

1 - filter(LOAER(" CUST_STATE PROVINCE")='ca')

ORACLE 14-15

Chapter 14
Managing Expression Statistics

Because no expression statistics exist for LOAER(cust _st at e_provi nce)='ca', the
optimizer estimate is significantly off. You can use DBM5_STATS procedures to correct
these estimates.

14.2.2 Creating Expression Statistics

You can use DBMS_STATS to create statistics for a user-specified expression.

You can use either of the following program units:

e CGATHER TABLE STATS procedure

» CREATE_EXTENDED_STATI STI CS function followed by the GATHER _TABLE_STATS

procedure

Assumptions
This tutorial assumes the following:

» Selectivity estimates are inaccurate for queries of sh. cust onmer s that use the
UPPER(cust _state_province) function.

* You want to gather statistics on the UPPER(cust _st at e_provi nce) expression.

To create expression statistics:

1. Start SQL*Plus and connect to the database as the sh user.
2. Gather table statistics.

For example, run the following command, specifying the function in the
met hod_opt argument:

BEG N
DBVB_STATS. GATHER TABLE_STATS(
Csh
, ' cust oners'
, method_opt => 'FOR ALL COLUWNS SI ZE SKEWONLY ' ||
' FOR COLUWNS (LOWNER(cust state province)) SIZE
SKEWONLY'
);
END;

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBVS_STATS. GATHER_TABLE_STATS procedure

ORACLE 14-16

Chapter 14
Managing Expression Statistics

14.2.3 Displaying Expression Statistics

ORACLE

To obtain information about expression statistics, use the database view
DBA_STAT_EXTENSI ONS and the DBMS_STATS. SHOW EXTENDED_STATS_NAME function.

You can also use views to obtain information such as the number of distinct values,
and whether the column group has a histogram.

Assumptions
This tutorial assumes the following:

* You created extended statistics for the LOAER(cust _st at e_provi nce) expression.
* You want to determine the column group name, the number of distinct values, and
whether a histogram has been created for a column group.

To monitor expression statistics:

1. Start SQL*Plus and connect to the database as the sh user.
2. Query the name and definition of the statistics extension.

For example, run the following query:

COL EXTENSI ON_NAME FORMAT a30
COL EXTENSI ON FORMAT a35

SELECT EXTENSI ON_NAME, EXTENSI ON
FROM USER_STAT_EXTENSI ONS
WHERE TABLE_NAME=" CUSTOMERS' ;

Sample output appears as follows:

EXTENSI ON_NAME EXTENSI ON

SYS_STUBPHISBRKO K902 YV3VBHOUE (LOWER(" CUST STATE_PROVI NCE"))

3. Query the number of distinct values and find whether a histogram has been
created for the expression.

For example, run the following query:

SELECT e. EXTENSI ON expression, t.NUM DI STINCT, t.H STOGRAM
FROM USER STAT_EXTENSI ONS e, USER TAB_COL_STATI STI CS t
WHERE e. EXTENSI ON_NAME=t . COLUVMN_NAME

AND e. TABLE_NAME=t . TABLE_NAME

AND t. TABLE_NAME=' CUSTOMERS' ;

EXPRESSI ON NUM_DI STI NCT H STOGRAM

(LOVER(" CUST_STATE_PROVI NCE")) 145 FREQUENCY

14-17

Chapter 14
Managing Expression Statistics

¢ See Also:
e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS. SHOW EXTENDED STATS_ NAME procedure

e Oracle Database Reference to learn about the DBA STAT EXTENSI ONS
view

14.2.4 Dropping Expression Statistics

To delete a column group from a table, use the DBMS_STATS. DROP_EXTENDED STATS
function.

Assumptions
This tutorial assumes the following:

* You created extended statistics for the LOAER(cust _St at e_pr ovi nce) expression.

* You want to drop the expression statistics.

To drop expression statistics:

1. Start SQL*Plus and connect to the database as the sh user.
2. Drop the column group.

For example, the following PL/SQL program deletes a column group from the
cust oner s table:

BEG N
DBMVS_STATS. DROP_EXTENDED _STATS(
Cshy
, ' cust oner s'
, " (LOAER(cust _state_province))'

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. DROP_EXTENDED_STATS procedure

ORACLE 14-18

Controlling the Use of Optimizer Statistics

Using DBMS_STATS, you can specify when and how the optimizer uses statistics.

This section contains the following topics:

15.1 Locking and Unlocking Optimizer Statistics

You can lock statistics to prevent them from changing.

After statistics are locked, you cannot make modifications to the statistics until the
statistics have been unlocked. Locking procedures are useful in a static environment
when you want to guarantee that the statistics and resulting plan never change. For
example, you may want to prevent new statistics from being gathered on a table or
schema by the DBMS_STATS JOB process, such as highly volatile tables.

When you lock statistics on a table, all dependent statistics are locked. The locked
statistics include table statistics, column statistics, histograms, and dependent index
statistics. To overwrite statistics even when they are locked, you can set the value of
the FORCE argument in various DBMS_STATS procedures, for example, DELETE_* _STATS
and RESTORE * STATS, totrue.

This section contains the following topics:

15.1.1 Locking Statistics

ORACLE

The DBM5_STATS package provides two procedures for locking statistics:
LOCK_SCHEMA_STATS and LOCK_TABLE_STATS.

Assumptions
This tutorial assumes the following:

* You gathered statistics on the oe. or der s table and on the hr schema.
* You want to prevent the oe. or der s table statistics and hr schema statistics from
changing.
To lock statistics:
1. Start SQL*Plus and connect to the database as the oe user.
2. Lock the statistics on oe. or ders.
For example, execute the following PL/SQL program:
BEG N
DBVS_STATS. LOCK_TABLE_STATS(' CE', ' ORDERS') ;

END;
/

3. Connect to the database as the hr user.

15-1

Chapter 15
Locking and Unlocking Optimizer Statistics

4. Lock the statistics in the hr schema.
For example, execute the following PL/SQL program:
BEG N
DBVS_STATS. LOCK_SCHEMA _STATS(' HR') ;

END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. LOCK_TABLE_STATS procedure

15.1.2 Unlocking Statistics

ORACLE

The DBM5S_STATS package provides two procedures for unlocking statistics:
UNLOCK_SCHEMA_STATS and UNLOCK_TABLE_STATS.

Assumptions

This tutorial assumes the following:

* You locked statistics on the oe. or der s table and on the hr schema.

¢ You want to unlock these statistics.

To unlock statistics:

1. Start SQL*Plus and connect to the database as the oe user.
2. Unlock the statistics on oe. or ders.
For example, execute the following PL/SQL program:
BEG N
DBVS_STATS. UNLOCK_TABLE_STATS(' CE', ' ORDERS') ;
END;
/
3. Connect to the database as the hr user.
4. Unlock the statistics in the hr schema.
For example, execute the following PL/SQL program:
BEG N
DBVS_STATS. UNLOCK_SCHEMA_STATS(' HR') ;

END;
/

15-2

Chapter 15
Publishing Pending Optimizer Statistics

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. UNLOCK _TABLE_STATS procedure

15.2 Publishing Pending Optimizer Statistics

By default, the database automatically publishes statistics when the statistics
collection ends.

Alternatively, you can use pending statistics to save the statistics and not publish
them immediately after the collection. This technique is useful for testing queries in a
session with pending statistics. When the test results are satisfactory, you can publish
the statistics to make them available for the entire database.

This section contains the following topics:

15.2.1 About Pending Optimizer Statistics

ORACLE

The database stores pending statistics in the data dictionary just as for published
statistics.

By default, the optimizer uses published statistics. You can change the default
behavior by setting the OPTI M ZER_USE_PENDI NG_STATI STI CS initialization parameter
to true (the default is f al se).

The top part of the following graphic shows the optimizer gathering statistics for the
sh. cust oner s table and storing them in the data dictionary with pending status. The
bottom part of the diagram shows the optimizer using only published statistics to
process a query of sh. cust oners.

15-3

ORACLE

Chapter 15
Publishing Pending Optimizer Statistics

Figure 15-1 Published and Pending Statistics

Data Dictionary
‘ GATHER_TABLE_STATS Optimizer Statistics
Published
100111 Statistics
Optimizer 01000
w2 — Pending
001000 b
110010 Statistics
Publishing
preferences
set to false
Customers
Table
Data Dictionary
Optimizer Statistics
Optimizer i
ERUECT . . . P 100111 g?ati!lsst?cesd
FROM — < >0 1 0 0 0 1
customers
— Pending
001000 b
110010 Statistics

OPTIMIZER_USE_PENDING_STATISTICS=false

In some cases, the optimizer can use a combination of published and pending
statistics. For example, the database stores both published and pending statistics

for the cust orrer s table. For the or der s table, the database stores only

published statistics. If OPTI M ZER_USE_PENDI NG_STATS = true, then the optimizer
uses pending statistics for cust oner s and published statistics for or der s. If

OPTI M ZER_USE _PENDI NG_STATS = f al se, then the optimizer uses published statistics
for cust onmer s and or ders.

See Also:

Oracle Database Reference to learn about the
OPTI M ZER_USE_PENDI NG_STATI STI CS initialization parameter

15-4

Chapter 15
Publishing Pending Optimizer Statistics

15.2.2 User Interfaces for Publishing Optimizer Statistics

ORACLE

You can use the DBMS_STATS package to perform operations relating to publishing
statistics.

The following table lists the relevant program units.

Table 15-1 DBMS_STATS Program Units Relevant for Publishing Optimizer
Statistics

__|
Program Unit Description

GET_PREFS Check whether the statistics are automatically published
as soon as DBMS_STATS gathers them. For the parameter
PUBLI SH, t r ue indicates that the statistics must be
published when the database gathers them, whereas
f al se indicates that the database must keep the
statistics pending.

SET _TABLE PREFS Set the PUBLI SHsetting to t r ue or f al se at the table
level.

SET_SCHEMA_PREFS Set the PUBLI SH setting to t r ue or f al se at the schema
level.

PUBLI SH_PENDI NG_STATS Publish valid pending statistics for all objects or only
specified objects.

DELETE_PENDI NG_STATS Delete pending statistics.

EXPORT_PENDI NG_STATS Export pending statistics.

The initialization parameter OPTI M ZER_USE_PENDI NG_STATI STI CS determines whether
the database uses pending statistics when they are available. The default value is

f al se, which means that the optimizer uses only published statistics. Setto t r ue

to specify that the optimizer uses any existing pending statistics instead. The best
practice is to set this parameter at the session level rather than at the database level.

You can use access information about published statistics from data dictionary views.
Table 15-2 lists relevant views.

Table 15-2 Views Relevant for Publishing Optimizer Statistics

View Description

USER_TAB_STATI STI CS Displays optimizer statistics for the tables accessible
to the current user.

USER _TAB_COL_STATI STI CS Displays column statistics and histogram information
extracted from ALL_TAB_COLUMN\S.

USER PART_COL_STATI STI CS Displays column statistics and histogram information

for the table partitions owned by the current user.

USER_SUBPART_COL_STATI STI CS Describes column statistics and histogram
information for subpartitions of partitioned objects
owned by the current user.

USER | ND_STATI STI CS Displays optimizer statistics for the indexes
accessible to the current user.

15-5

Chapter 15
Publishing Pending Optimizer Statistics

Table 15-2 (Cont.) Views Relevant for Publishing Optimizer Statistics

__|
View Description

USER _TAB PENDI NG _STATS Describes pending statistics for tables, partitions, and

subpartitions accessible to the current user.

USER_COL_PENDI NG_STATS Describes the pending statistics of the columns

accessible to the current user.

USER_| ND_PENDI NG_STATS Describes the pending statistics for tables, partitions,

and subpartitions accessible to the current user
collected using the DBMS_STATS package.

See Also:
e Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_STATS package

e Oracle Database Reference to learn about USER_ TAB PENDI NG_STATS
and related views

15.2.3 Managing Published and Pending Statistics

This section explains how to use DBMS_STATS program units to change the publishing
behavior of optimizer statistics, and also to export and delete these statistics.

ORACLE

Assumptions

This tutorial assumes the following:

You want to change the preferences for the sh. cust oners and sh. sal es tables so
that newly collected statistics have pending status.

You want the current session to use pending statistics.
You want to gather and publish pending statistics on the sh. cust oner s table.

You gather the pending statistics on the sh. sal es table, but decide to delete them
without publishing them.

You want to change the preferences for the sh. cust oners and sh. sal es tables so
that newly collected statistics are published.

To manage published and pending statistics:

1.
2.

Start SQL*Plus and connect to the database as user sh.
Query the global optimizer statistics publishing setting.

Run the following query (sample output included):

sh@ROD> SELECT DBMS_STATS. GET_PREFS(' PUBLI SH) PUBLI SH FROM DUAL;

PUBLI SH

15-6

ORACLE

Chapter 15
Publishing Pending Optimizer Statistics

The value t r ue indicates that the database publishes statistics as it gathers them.
Every table uses this value unless a specific table preference has been set.

When using GET_PREFS, you can also specify a schema and table name. The
function returns a table preference if it is set. Otherwise, the function returns the
global preference.

Query the pending statistics.

For example, run the following query (sample output included):

sh@ROD> SELECT * FROM USER_TAB_PENDI NG_STATS,;

no rows sel ected

This example shows that the database currently stores no pending statistics for
the sh schema.

Change the publishing preferences for the sh. cust omer s table.
For example, execute the following procedure so that statistics are marked as
pending:

BEG N

DBMS_STATS. SET_TABLE PREFS('sh', 'customers', 'publish', 'false');
END;
/

Subsequently, when you gather statistics on the cust onrer s table, the database
does not automatically publish statistics when the gather job completes. Instead,
the database stores the newly gathered statistics in the USER TAB_PENDI NG_STATS
table.

Gather statistics for sh. cust oners.
For example, run the following program:
BEG N
DBVS_STATS. GATHER TABLE _STATS(' sh', ' customers');
END;
/
Query the pending statistics.

For example, run the following query (sample output included):

Sh@ROD> SELECT TABLE_NAVE, NUM ROWS FROM USER TAB_PENDI NG STATS:
TABLE_NANE NUM_ROVS

CUSTOMERS 55500

15-7

ORACLE

10.

11.

12.

Chapter 15
Publishing Pending Optimizer Statistics

This example shows that the database now stores pending statistics for the
sh. cust oner s table.

Instruct the optimizer to use the pending statistics in this session.

Set the initialization parameter OPTI M ZER_USE_PENDI NG_STATI STICSto true as
shown:

ALTER SESSI ON SET OPTI M ZER_USE_PENDI NG_STATI STICS = true;

Run a workload.

The following example changes the email addresses of all customers named
Bruce Chalmers:

UPDATE sh. custoners
SET cust _emai | = Chal mer sB@onpany. exanpl e. i com
WHERE cust _first_nane = 'Bruce'
AND cust _last_nane = 'Chal nmers';

COW T;

The optimizer uses the pending statistics instead of the published statistics when
compiling all SQL statements in this session.

Publish the pending statistics for sh. cust oners.
For example, execute the following program:
BEG N
DBMS_STATS. PUBLI SH_PENDI NG_STATS(' SH , ' CUSTOMERS') ;
END;
/
Change the publishing preferences for the sh. sal es table.
For example, execute the following program:
BEG N
DBMS_STATS. SET_TABLE_PREFS(' sh', 'sales', 'publish', 'false');

END;
/

Subsequently, when you gather statistics on the sh. sal es table, the database
does not automatically publish statistics when the gather job completes. Instead,
the database stores the statistics in the USER_TAB_PENDI NG_STATS table.

Gather statistics for sh. sal es.
For example, run the following program:
BEG N
DBVS_STATS. GATHER _TABLE_STATS(' sh','sal es');

END;
/

Delete the pending statistics for sh. sal es.

15-8

13.

Chapter 15
Creating Artificial Optimizer Statistics for Testing

Assume you change your mind and now want to delete pending statistics for
sh. sal es. Run the following program:

BEG N

DBVS_STATS. DELETE_PENDI NG_STATS(' sh', " sal es');
END;
/

Change the publishing preferences for the sh. cust oner s and sh. sal es tables
back to their default setting.

For example, execute the following program:

BEG N
DBVS_STATS. SET_TABLE_PREFS(' sh', 'customers', 'publish', null);
DBVS_STATS. SET_TABLE_PREFS(' sh', 'sales', 'publish', null);
END;
/

15.3 Creating Artificial Optimizer Statistics for Testing

To provide the optimizer with user-created statistics for testing purposes, you can
use the DBMS_STATS. SET_* _STATS procedures. These procedures provide the optimizer
with artificial values for the specified statistics.

ORACLE

This section contains the following topics:

15.3.1 About Artificial Optimizer Statistics

For testing purposes, you can manually create artificial statistics for a table, index, or
the system using the DBMS_STATS. SET_* _STATS procedures.

When st at t ab is null, the DBMS_STATS. SET_* _STATS procedures insert the artificial
statistics into the data dictionary directly. Alternatively, you can specify a user-created
table.

Caution:

The DBVMS_STATS. SET_* _STATS procedures are intended for development
testing only. Do not use them in a production database. If you set statistics in
the data dictionary, then Oracle Database considers the set statistics as the
“real” statistics, which means that statistics gathering jobs may not re-gather
artificial statistics when they do not meet the criteria for staleness.

Typical use cases for the DBMS_STATS. SET * STATS procedures are:

Showing how execution plans change as the numbers of rows or blocks in a table
change

For example, SET_TABLE STATS can set number of rows and blocks in a small

or empty table to a large number. When you execute a query using the

altered statistics, the optimizer may change the execution plan. For example, the
increased row count may lead the optimizer to choose an index scan rather than

15-9

Chapter 15
Creating Avrtificial Optimizer Statistics for Testing

a full table scan. By experimenting with different values, you can see how the
optimizer will change its execution plan over time.

» Creating realistic statistics for temporary tables

You may want to see what the optimizer does when a large temporary table

is referenced in multiple SQL statements. You can create a regular table, load
representative data, and then use GET_TABLE_STATS to retrieve the statistics. After
you create the temporary table, you can “deceive” the optimizer into using these
statistics by invoking SET_TABLE_STATS.

Optionally, you can specify a unique ID for statistics in a user-created table. The
SET_* STATS procedures have corresponding GET_* _STATS procedures.

Table 15-3 DBMS_STATS Procedures for Setting Optimizer Statistics

|
DBMS_STATS Procedure Description

SET_TABLE_STATS Sets table or partition statistics using parameters such as
nunr ows, nunbl ks, and avgr | en.
If the database uses the In-Memory Column store, you can
seti mincu_count to the number of IMCUs in the table or
partition, and i m bl ock_count to the number of blocks in the
table or partition. For an external table, scanr at e specifies the
rate at which data is scanned in MB/second.

The optimizer uses the cached data to estimate the number of
cached blocks for index or statistics table access. The total cost
is the 1/0O cost of reading data blocks from disk, the CPU cost of
reading cached blocks from the buffer cache, and the CPU cost
of processing the data.

SET_COLUMN_STATS Sets column statistics using parameters such as di st cnt,
density, nul | cnt, and so on.
In the version of this procedure that deals with user-defined
statistics, use st at t ypnane to specify the type of statistics to
store in the data dictionary.

SET_SYSTEM STATS Sets system statistics using parameters such as i ot f r speed,
sreadtim and cpuspeed.
SET | NDEX_STATS Sets index statistics using parameters such as nunt ows,

num bl ks, avgl bl k, cl stfct, andi ndl evel .

In the version of this procedure that deals with user-defined
statistics, use st at t ypnane to specify the type of statistics to
store in the data dictionary.

See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS. SET_TABLE_STATS and the other procedures for setting
optimizer statistics

ORACLE 15-10

Chapter 15
Creating Artificial Optimizer Statistics for Testing

15.3.2 Setting Artificial Optimizer Statistics for a Table

This topic explains how to set artificial statistics for a table using
DBMS_STATS. SET_TABLE_STATS. The basic steps are the same for SET_| NDEX_STATS
and SET_SYSTEM STATS.

Note the following task prerequisites:

e For an object not owned by SYS, you must be the owner of the object, or have the
ANALYZE ANY privilege.

e For an object owned by SYS, you must have the ANALYZE ANY DI CTI ONARY privilege
or the SYSDBA privilege.

* When invoking GET_*_STATS for a table, column, or index, the referenced object
must exist.

This task assumes the following:

* You have the required privileges to use DBM5_STATS. SET_TABLE_STATS for the
specified table.

* You intend to store the statistics in the data dictionary.
1. In SQL*Plus, log in to the database as a user with the required privileges.

2. Run the DBMS_STATS. SET_TABLE_STATS procedure, specifying the appropriate
parameters for the statistics.

Typical parameters include the following:
e ownnamne (not null)

This parameter specifies the name of the schema containing the table.
e tabnane (not null)

This parameter specifies the name of the table whose statistics you intend to
set.

e partname
This parameter specifies the name of a partition of the table.
° nunTows
This parameter specifies the number of rows in the table.
e nunbl ks
This parameter specifies the number of blocks in the table.
3. Query the table.

4. Optionally, to determine how the statistics affected the optimizer, query the
execution plan.

5. Optionally, to perform further testing, return to Step 2 and reset the optimizer
statistics.

ORACLE 15-11

Chapter 15
Creating Avrtificial Optimizer Statistics for Testing

15.3.3 Setting Optimizer Statistics: Example

This example shows how to gather optimizer statistics for a table, set artificial
statistics, and then compare the plans that the optimizer chooses based on the
differing statistics.

ORACLE

This example assumes:

1.

You are logged in to the database as a user with DBA privileges.
You want to test when the optimizer chooses an index scan.
Create a table called contract or s, and index the sal ary column.
CREATE TABLE contractors (

con_id NUMBER,

| ast _nanme VARCHAR2(50),

sal ary NUMBER,

CONSTRAI NT cond_i d_pk PRI MARY KEY(con_id));
CREATE | NDEX salary_ix ON contractors(sal ary);

Insert a single row into this table.

I NSERT | NTO contractors VALUES (8, 'JONES', 1000);
COWM T,

Gather statistics for the table.

EXECUTE DBMS_STATS. GATHER_TABLE_STATS(user, tabnane =>
" CONTRACTCRS');

Query the number of rows for the table and index (sample output included):

SQ> SELECT NUM ROAS FROM USER_TABLES WHERE TABLE_NAME =
" CONTRACTCRS' ;

SQ> SELECT NUM ROAS FROM USER_| NDEXES WHERE | NDEX_NAME =
" SALARY_I X' ;

Query contractors whose salary is 1000, using the dynami ¢_sanpl i ng hint to
disable dynamic sampling:

SELECT /*+ dynami c_sanpling(contractors 0) */ *
FROM contractors
WHERE salary = 1000;

15-12

ORACLE

Chapter 15
Creating Artificial Optimizer Statistics for Testing

Query the execution plan chosen by the optimizer (sample output included):

SQL> SELECT * FROM TABLE(DBVS_XPLAN. DI SPLAY_CURSOR) ;

SQ_ID cyOwzyt ¢16g9n, child nunber 0

SELECT /*+ dynani c_sanpling(contractors 0) */ * FROM contractors
WHERE
salary = 1000

Pl an hash val ue: 5038823

| Id | Operation | Name | Rows| Byt es| Cost (%CPU) |
Ti ne|

| 0| SELECT STATEMENT | | | 2

(100) | |

|* 1] TABLE ACCESS FULL| CONTRACTORS | 1| 12| 2 (0)]

00: 00: 01 |

1 - filter("SALARY"=1000)

19 rows sel ect ed.

Because only 1 row exists in the table, the optimizer chooses a full table scan over
an index range scan.

Use SET_TABLE STATS and SET | NDEX_STATS to simulate statistics for a table with
2000 rows stored in 10 data blocks:

BEG N
DBVB_STATS. SET_TABLE_STATS(
ownnanme => user
, tabname => ' CONTRACTORS
, hunrows => 2000
, numbl ks => 10);
END;
/

BEG N
DBVB_STATS. SET_| NDEX_STATS(
ownname => user
, indname => ' SALARY_ | X
, hunrows => 2000);
END;
/

15-13

Chapter 15
Creating Avrtificial Optimizer Statistics for Testing

8. Query the number of rows for the table and index (sample output included):

SQL> SELECT NUM ROAS FROM USER TABLES WHERE TABLE NAME =
" CONTRACTCRS' ;

SQ> SELECT NUM ROAS FROM USER_| NDEXES WHERE | NDEX_NAME =
" SALARY_I X' ;

Now the optimizer believes that the table contains 2000 rows in 10 blocks, even
though only 1 row actually exists in one block.

9. Flush the shared pool to eliminate possibility of plan reuse, and then execute the
same query of contractors:

ALTER SYSTEM FLUSH SHARED POOL;

SELECT /*+ dynami c_sanpling(contractors 0) */ *
FROM contractors

WHERE salary = 1000;

10. Query the execution plan chosen by the optimizer based on the artificial statistics
(sample output included):

SQL> SELECT * FROM TABLE(DBMS_XPLAN. DI SPLAY_CURSCR) ;
SQ ID cyOwzyt ¢16g9n, child nunmber 0

SELECT /*+ dynam c_sanpling(contractors 0) */ * FROM contractors WHERE
salary = 1000

Pl an hash val ue: 996794789

|1d| Operation | Nane | Rows| Byt es| Cost (%UCPU) | Ti ne|
| O] SELECT STATEMENT | | | | 3(100) | |
| 1] TABLE ACCESS BY | NDEX RON D BATCHED| CONTRACTORS| 2000| 24000] 3 (34)] 00: 00: 01]
| *2] | NDEX RANGE SCAN | SALARY_| X | 2000| [1 (0)]00:00:01]

2 - access(" SALARY"=1000)

20 rows sel ected.

ORACLE 15-14

Chapter 15
Creating Artificial Optimizer Statistics for Testing

Based on the artificially generated statistics for the number of rows and block
distribution, the optimizer considers an index range scan more cost-effective.

ORACLE 15-15

Managing Historical Optimizer Statistics

This chapter how to retain, report on, and restore non-current statistics.

This chapter contains the following topics:

16.1 Restoring Optimizer Statistics

You can use DBMS_STATS to restore old versions of statistics that are stored in the data
dictionary.

This topic contains the following topics:

16.1.1 About Restore Operations for Optimizer Statistics

Whenever statistics in the data dictionary are modified, the database automatically
saves old versions of statistics. If newly collected statistics lead to suboptimal
execution plans, then you may want to revert to the previous statistics.

Restoring optimizer statistics can aid in troubleshooting suboptimal plans. The
following graphic illustrates a timeline for restoring statistics. In the graphic, statistics
collection occurs on August 10 and August 20. On August 24, the DBA determines
that the current statistics may be causing the optimizer to generate suboptimal plans.
On August 25, the administrator restores the statistics collected on August 10.

Figure 16-1 Restoring Optimizer Statistics

8/10 8/20 8/24 8/25
| | | | >
I I I I
AAAAA BBBBEB BBBBB AAAAA
Statistics Statistics Recent Statistics 8/10 Statistics
Gathered Gathered May Be Causing Restored

Suboptimal Plans

16.1.2 Guidelines for Restoring Optimizer Statistics

Restoring statistics is similar to importing and exporting statistics.
In general, restore statistics instead of exporting them in the following situations:

e You want to recover older versions of the statistics. For example, you want to
restore the optimizer behavior to an earlier date.

* You want the database to manage the retention and purging of statistics histories.

Export statistics rather than restoring them in the following situations:

ORACLE 16-1

Chapter 16
Restoring Optimizer Statistics

You want to experiment with multiple sets of statistics and change the values back
and forth.

You want to move the statistics from one database to another database. For
example, moving statistics from a production system to a test system.

You want to preserve a known set of statistics for a longer period than the desired
retention date for restoring statistics.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for an overview of
the procedures for restoring and importing statistics

16.1.3 Restrictions for Restoring Optimizer Statistics

When restoring previous versions of statistics, various limitations apply.

Limitations include the following:

DBVMS_STATS. RESTORE_* _STATS procedures cannot restore user-defined statistics.

Old versions of statistics are not stored when the ANALYZE command has been
used for collecting statistics.

When you drop a table, workload information used by the auto-histogram
gathering feature and saved statistics history used by the RESTORE_*_STATS
procedures is lost. Without this data, these features do not function properly. To
remove all rows from a table, and to restore these statistics with DBMS_STATS, use
TRUNCATE instead of dropping and re-creating the same table.

16.1.4 Restoring Optimizer Statistics Using DBMS_STATS

You can restore statistics using the DBMS_STATS. RESTORE_* _STATS procedures.

ORACLE

The procedures listed in the following table accept a timestamp as an argument and
restore statistics as of the specified time (as_of _ti mest anp).

Table 16-1 DBMS_STATS Restore Procedures
]

Procedure Description

RESTORE_DI CTI ONARY_STATS Restores statistics of all dictionary tables (tables of

SYS, SYSTEM and RDBMS component schemas) as of
a specified timestamp.

RESTORE_FI XED_OBJECTS_STATS Restores statistics of all fixed tables as of a specified

timestamp.

RESTORE_SCHEMA STATS Restores statistics of all tables of a schema as of a
specified timestamp.

RESTORE_SYSTEM STATS Restores system statistics as of a specified
timestamp.

16-2

ORACLE

Chapter 16
Restoring Optimizer Statistics

Table 16-1 (Cont.) DBMS_STATS Restore Procedures

__|
Procedure Description

RESTORE_TABLE_STATS Restores statistics of a table as of a specified
timestamp. The procedure also restores statistics of
associated indexes and columns. If the table statistics
were locked at the specified timestamp, then the
procedure locks the statistics.

Dictionary views display the time of statistics modifications. You can use the following
views to determine the time stamp to be use for the restore operation:

e The DBA_OPTSTAT_OPERATI ONS view contain history of statistics operations
performed at schema and database level using DBVMS_STATS.

 The DBA TAB_STATS H STORY views contains a history of table statistics
modifications.

Assumptions
This tutorial assumes the following:

* After the most recent statistics collection for the oe. or der s table, the optimizer
began choosing suboptimal plans for queries of this table.

e You want to restore the statistics from before the most recent statistics collection to
see if the plans improve.

To restore optimizer statistics:

1. Start SQL*Plus and connect to the database with administrator privileges.
2. Query the statistics history for oe. or ders.

For example, run the following query:

COL TABLE_NAME FORMAT al10
SELECT TABLE_NAME,
TO_CHAR(STATS_UPDATE_TI ME, ' YYYY- M\t DD: HH24: M : SS') AS
STATS_MOD_TI ME
FROM DBA_TAB_STATS_H STORY
WHERE TABLE_NAME=' ORDERS'
AND OWER=' OF
ORDER BY STATS_UPDATE TI ME DESC;

Sample output is as follows:
TABLE_NAME STATS _MOD_TI ME

CORDERS 2012-08-20: 11: 36: 38
CORDERS 2012-08-10: 11: 06: 20

3. Restore the optimizer statistics to the previous modification time.

16-3

Chapter 16
Managing Optimizer Statistics Retention

For example, restore the oe. or der s table statistics to August 10, 2012:

BEG N
DBMS_STATS. RESTORE_TABLE _STATS(' CE', ' ORDERS',
TO TI MESTAMP(' 2012- 08- 10: 11: 06: 20", ' YYYY- MM
DD: HH24: M :SS'));
END;
/

You can specify any date between 8/10 and 8/20 because DBMS_STATS restores
statistics as of the specified time.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn more
about the DBMS_STATS. RESTORE_TABLE_STATS procedure

16.2 Managing Optimizer Statistics Retention

By default, the database retains optimizer statistics for 31 days, after which time the
statistics are scheduled for purging.

You can use the DBMS_STATS package to determine the retention period, change the
period, and manually purge old statistics.

This section contains the following topics:

16.2.1 Obtaining Optimizer Statistics History

ORACLE

You can use DBMS_STATS procedures to obtain historical information for optimizer
statistics.

Historical information is useful when you want to determine how long the database
retains optimizer statistics, and how far back these statistics can be restored. You can
use the following procedure to obtain information about the optimizer statistics history:

e CGET_STATS_H STORY_RETENTI ON
This function can retrieve the current statistics history retention value.
e CET_STATS_H STORY_AVAI LABI LI TY

This function retrieves the oldest time stamp when statistics history is available.
Users cannot restore statistics to a time stamp older than the oldest time stamp.

To obtain optimizer statistics history information:

1. Start SQL*Plus and connect to the database with the necessary privileges.

2. Execute the following PL/SQL program:

DECLARE
v_stats_retn NUMBER
v_stats_date DATE;

16-4

Chapter 16
Managing Optimizer Statistics Retention

BEG N
v_stats_retn := DBMS_STATS. GET_STATS H STORY_RETENTI ON,
DBMS_QUTPUT. PUT_LI NE(' The retention setting is ' ||
v_stats_retn || '.");
v_stats_date := DBMS_STATS. GET_STATS H STORY_AVAI LABI LI TY;
DBMS_QUTPUT. PUT_LINE(' Earliest restore date is ' ||
v_stats_date || '.");
END;
/

" See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. GET_STATS_HI STORY_RETENTI ON procedure

16.2.2 Changing the Optimizer Statistics Retention Period

ORACLE

You can configure the retention period using the
DBMS_STATS. ALTER STATS_HI STORY_RETENTI ON procedure. The default is 31 days.

Prerequisites

To run this procedure, you must have either the SYSDBA privilege, or both the ANALYZE
ANY DI CTI ONARY and ANALYZE ANY system privileges.

Assumptions
This tutorial assumes the following:

e The current retention period for optimizer statistics is 31 days.

* You run queries annually as part of an annual report. To keep the statistics history
for more than 365 days so that you have access to last year's plan (in case a
suboptimal plan occurs now), you set the retention period to 366 days.

* You want to create a PL/SQL procedure set _opt _stats_retention that you can
use to change the optimizer statistics retention period.

To change the optimizer statistics retention period:

1. Start SQL*Plus and connect to the database with the necessary privileges.
2. Create a procedure that changes the retention period.

For example, create the following procedure:

CREATE OR REPLACE PROCEDURE set _opt_stats_retention
(p_stats_retn | N NUMBER)
IS
v_stats_retn NUMBER
BEG N
v_stats_retn := DBMS_STATS. GET_STATS_H STORY_RETENTI ON;
DBVS_CQUTPUT. PUT_LINE(' O d retention setting is ' |]
v_stats_retn || ".");

16-5

Chapter 16
Managing Optimizer Statistics Retention

DBMS_STATS. ALTER_STATS_H STORY_RETENTI ON(p_stats_retn);
v_stats_retn := DBMS_STATS. GET_STATS H STORY_RETENTI ON,
DBMS_QUTPUT. PUT_LI NE(' New retention setting is ' ||
v_stats_retn || '.");
END;
/

3. Change the retention period to 366 days.

For example, execute the procedure that you created in the previous step (sample
output included):

SQ.> EXECUTE set _opt _stats_retention(366)

The old retention setting is 31.
The new retention setting is 366.

PL/ SQL procedure successfully conpl et ed.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBVS_STATS. ALTER _STATS_H STORY_RETENTI ON procedure

16.2.3 Purging Optimizer Statistics

ORACLE

Automatic purging is enabled when the STATI STI CS_LEVEL initialization parameter is
set to TYPI CAL or ALL.

The database purges all history older than the older of (current time - the
ALTER STATS H STORY_RETENTI ON setting) and (time of the most recent statistics
gathering - 1).

You can purge old statistics manually using the PURGE_STATS procedure. If you do not
specify an argument, then this procedure uses the automatic purging policy. If you
specify the bef ore_t i mest anp parameter, then the database purges statistics saved
before the specified timestamp.

Prerequisites

To run this procedure, you must have either the SYSDBA privilege, or both the ANALYZE
ANY DI CTI ONARY and ANALYZE ANY system privileges.

Assumptions

This tutorial assumes that you want to purge statistics more than one week old.

To purge optimizer statistics:

1. In SQL*Plus, log in to the database with the necessary privileges.
2. Execute the DBMS_STATS. PURGE_STATS procedure.

16-6

Chapter 16
Reporting on Past Statistics Gathering Operations
For example, execute the procedure as follows:

EXEC DBMS_STATS. PURGE_STATS(SYSDATE-7);

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about the
DBMS_STATS. PURGE_STATS procedure

16.3 Reporting on Past Statistics Gathering Operations

ORACLE

You can use DBMS_STATS functions to report on a specific statistics gathering operation
or on operations that occurred during a specified time.

Table 16-2 lists the functions.

Table 16-2 DBMS_STATS Reporting Functions

Function Description

REPORT_STATS_OPERATI ONS Generates a report of all statistics operations that
occurred between two points in time. You can narrow
the scope of the report to include only automatic
statistics gathering runs. You can also provide a
set of pluggable database (PDB) IDs so that the
database reports only statistics operations from the
specified PDBs.

REPORT_SI NGLE_STATS_COPERATI ON Generates a report of the specified operation.
Optionally, you can specify a particular PDB ID in
a container database (CDB).

Assumptions
This tutorial assumes that you want to generate HTML reports of the following:

» All statistics gathering operations within the last day

* The most recent statistics gathering operation

To report on all operations in the past day:
1. Start SQL*Plus and connect to the database with administrator privileges.
2. Run the DBMS_STATS. REPORT_STATS_COPERATI ONS function.

For example, run the following commands:

SET LINES 200 PAGES 0

SET LONG 100000
COLUWN REPORT FORMAT A200

VARl ABLE my_report CLOB;

BEG N
:ny_report : = DBMS_STATS. REPORT_STATS_ OPERATI ONS (

16-7

ORACLE

since => SYSDATE- 1
, until => SYSDATE
, detail |evel =>"'TYPI CAL'
, f or mat => 'HTM'
);
END,
/

Chapter 16

Reporting on Past Statistics Gathering Operations

The following graphic shows a sample report:

Operation - _ . Total Successful Failed Active
1d Operation Target Start Time End Time Status - e T
543 gather_table_stats|SH.CUSTOMERS [04-JAN-13 04-JAN-13 COMPLETED|S 5 0] 0]
08.15.59.104722(08.15.59.865519
AM -08:00 AM -08:00
547 gather_table_stats|OE.INVENTCRIES|04-1AN-13 04-JAN-13 COMPLETED 4 4 0] 0]
08.15.58.503383(08.15.59.060279
AM -08:00 AM -08:00
8465 gather_table_stats|OE.ORDERS 04-JAN-13 04-1AN-13 COMPLETED |4 4 0 0
08.15.54.892390(08.15.53.485436
AM -08:00 AM -08:00

3. Run the DBM5_STATS. REPORT_SI NGLE_STATS OPERATI ON function for an individual
operation.

For example, run the following program to generate a report of operation 848:

BEG N
:my_report :=DBMS_STATS. REPCRT_SI NGLE_STATS_OPERATI ON (
CPID => 848
, FORMAT => "HTM'

)
END;

The following graphic shows a sample report:

Operation

Total Successful Failed Active

Id Operation Target Start Time End Time Status e e
348 gather_table_stats|SH.CUSTOMERS|04-JAN-13 04-JAN-13 COMPLETED|S 5 0 0
08.15.59.104722|08.15.59.869519
AM -03:00 AM -08:00
TASKS
Target Type Start Time End Time Status
SH.CUSTOMERS TABLE|04-]JAN-13 08.15.59.106025 AM 04-JAN-13 08.15.59.869001 AM COMPLETED
-05:00 -08:00
SH.CUSTOMERS_GENDER_BIX |INDEX|04-JAN-13 08.15.59.734475 AM 04-JAN-13 08.15.59.8168875 AM COMPLETED
-08:00 -08:00
SH.CUSTOMERS_MARITAL_BIX|INDEX|04-JAN-13 08.15.59.819785 AM 04-JAN-13 08.15.59.832755 AM COMPLETED
-08:00 -08:00
SH.CUSTOMERS_YOB_BIX INDEX|04-1AN-13 08.15.59.835456 AM 04-JAN-13 08.15.59.843151 AM COMPLETED
-05:00 -08:00
SH.CUSTOMERS_PK INDEX|04-]AN-13 08.15.55.845522 AM 04-JAN-13 08.15.59.868164 AM COMPLETED
-08:00 -08:00

16-8

ORACLE

Chapter 16
Reporting on Past Statistics Gathering Operations

¢ See Also:

e "Graphical Interface for Optimizer Statistics Management" to learn about
the Cloud Control GUI for statistics management

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_STATS

16-9

Importing and Exporting Optimizer
Statistics

You can export and import optimizer statistics from the data dictionary to user-defined
statistics tables. You can also copy statistics from one database to another database.

This chapter contains the following topics:

17.1 About Transporting Optimizer Statistics

When you transport optimizer statistics between databases, you must use DBVMS_STATS
to copy the statistics to and from a staging table, and tools to make the table contents
accessible to the destination database.

Importing and exporting are especially useful for testing an application using
production statistics. You use DBMS_STATS. EXPORT_SCHEMA STATS to export schema
statistics from a production database to a test database so that developers can tune
execution plans in a realistic environment before deploying applications.

The following figure illustrates the process using Oracle Data Pump and f t p.

Figure 17-1 Transporting Optimizer Statistics

Production } Test
Database Database
| | |
Data Dictionary Data Dictionary
EXPORT_SCHEMA_STATS IMPORT_SCHEMA_STATS
| |)
L Staging Table L Staging Table
Data Pump —— Data Pump ——
Export Import

.dmp .dmp
file \/ Transport ftp, nfs file

As shown in Figure 17-1, the basic steps are as follows:

1. Inthe production database, copy the statistics from the data dictionary to a staging
table using DBMS_STATS. EXPORT_SCHEMA STATS.

2. Export the statistics from the staging table to a . dnp file using Oracle Data Pump.

ORACLE 17-1

Chapter 17
Transporting Optimizer Statistics to a Test Database: Tutorial

Transfer the . dnp file from the production host to the test host using a transfer tool
such as ftp.

In the test database, import the statistics from the . dnp file to a staging table using
Oracle Data Pump.

Copy the statistics from the staging table to the data dictionary using
DBMS_STATS. | MPORT_SCHEMA_STATS.

17.2 Transporting Optimizer Statistics to a Test Database:

Tutorial

ORACLE

You can transport schema statistics from a production database to a test database
using Oracle Data Pump.

