
Oracle® Database
Advanced Security Guide

18c
E83681-18
April 2024

Oracle Database Advanced Security Guide, 18c

E83681-18

Copyright © 1996, 2024, Oracle and/or its affiliates.

Primary Author: Patricia Huey

Contributors: Sudha Duraiswamy , Michael Hwa, Sudha Iyer, Supriya Kalyanasundaram, Lakshmi Kethana,
Peter Knaggs, Andrew Koyfman, Dah-Yoh Lim, Adam Lee, Adam Lindsey, Rahil Mir, Gopal Mulagund, Andy
Philips, Preetam Ramakrishna, Saikat Saha, Philip Thornton, Peter Wahl, Lixia Yuan, Paul Youn

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Audience xix

Documentation Accessibility xix

Related Documents xix

Conventions xx

 Changes in This Release for Oracle Database Advanced Security Guide

Changes in Oracle Database Advanced Security 18c xxi

Changes in Oracle Database Advanced Security 12c Release 2 (12.2) xxiii

1 Introduction to Oracle Advanced Security

1.1 Transparent Data Encryption 1-1

1.2 Oracle Data Redaction 1-1

Part I Using Transparent Data Encryption

2 Introduction to Transparent Data Encryption

2.1 What Is Transparent Data Encryption? 2-1

2.2 Benefits of Using Transparent Data Encryption 2-2

2.3 Who Can Configure Transparent Data Encryption? 2-2

2.4 Types and Components of Transparent Data Encryption 2-3

2.4.1 About Transparent Data Encryption Types and Components 2-3

2.4.2 How Transparent Data Encryption Column Encryption Works 2-3

2.4.3 How Transparent Data Encryption Tablespace Encryption Works 2-4

2.4.4 How the Keystore for the Storage of TDE Master Encryption Keys Works 2-6

2.4.4.1 About the Keystore Storage of TDE Master Encryption Keys 2-6

2.4.4.2 Benefits of the Keystore Storage Framework 2-6

2.4.4.3 Types of Keystores 2-7

2.4.5 Supported Encryption and Integrity Algorithms 2-8

iii

2.5 How the Multitenant Option Affects Transparent Data Encryption 2-9

3 Configuring Transparent Data Encryption

3.1 About Configuring Transparent Data Encryption 3-1

3.2 Configuring a Software Keystore 3-2

3.2.1 About Configuring a Software Keystore 3-2

3.2.2 Step 1: Configure the Software Keystore Location and Type 3-3

3.2.3 Step 2: Create the Software Keystore 3-3

3.2.3.1 About Creating Software Keystores 3-4

3.2.3.2 Creating a Password-Protected Software Keystore 3-4

3.2.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore 3-5

3.2.4 Step 3: Open the Software Keystore 3-6

3.2.4.1 About Opening Software Keystores 3-7

3.2.4.2 Opening a Software Keystore 3-7

3.2.5 Step 4: Set the TDE Master Encryption Key in the Software Keystore 3-8

3.2.5.1 About Setting the Software Keystore TDE Master Encryption Key 3-8

3.2.5.2 Setting the TDE Master Encryption Key in the Software Keystore 3-9

3.2.6 Step 5: Encrypt Your Data 3-10

3.3 Configuring an External Keystore 3-10

3.3.1 About Configuring an External Keystore 3-10

3.3.2 Step 1: Configure the External Keystore 3-11

3.3.3 Step 2: Open the External Keystore 3-11

3.3.3.1 About Opening External Keystores 3-11

3.3.3.2 Opening an External Keystore 3-12

3.3.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore 3-13

3.3.4.1 About Setting the External Keystore TDE Master Encryption Key 3-13

3.3.4.2 Setting a New TDE Master Encryption Key 3-13

3.3.4.3 Migration of a Previously Configured TDE Master Encryption Key 3-14

3.3.5 Step 4: Encrypt Your Data in United Mode 3-15

3.4 Encrypting Columns in Tables 3-15

3.4.1 About Encrypting Columns in Tables 3-16

3.4.2 Data Types That Can Be Encrypted with TDE Column Encryption 3-16

3.4.3 Restrictions on Using TDE Column Encryption 3-17

3.4.4 Creating Tables with Encrypted Columns 3-18

3.4.4.1 About Creating Tables with Encrypted Columns 3-18

3.4.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm 3-18

3.4.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a
Non-Default Algorithm 3-19

3.4.4.4 Using the NOMAC Parameter to Save Disk Space and Improve
Performance 3-20

3.4.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement 3-20

iv

3.4.4.6 Example: Changing the Integrity Algorithm for a Table 3-21

3.4.4.7 Creating an Encrypted Column in an External Table 3-21

3.4.5 Encrypting Columns in Existing Tables 3-22

3.4.5.1 About Encrypting Columns in Existing Tables 3-22

3.4.5.2 Adding an Encrypted Column to an Existing Table 3-22

3.4.5.3 Encrypting an Unencrypted Column 3-22

3.4.5.4 Disabling Encryption on a Column 3-23

3.4.6 Creating an Index on an Encrypted Column 3-23

3.4.7 Adding Salt to an Encrypted Column 3-23

3.4.8 Removing Salt from an Encrypted Column 3-24

3.4.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns 3-24

3.5 Encryption Conversions for Tablespaces and Databases 3-24

3.5.1 About Encryption Conversions for Tablespaces and Databases 3-25

3.5.2 Restrictions on Using Transparent Data Encryption Tablespace Encryption 3-27

3.5.3 Creating an Encrypted New Tablespace 3-28

3.5.3.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace
Encryption 3-28

3.5.3.2 Step 2: Set the Tablespace TDE Master Encryption Key 3-30

3.5.3.3 Step 3: Create the Encrypted Tablespace 3-30

3.5.4 Setting the Tablespace Encryption Default Algorithm 3-32

3.5.5 Encrypting Future Tablespaces 3-33

3.5.5.1 About Encrypting Future Tablespaces 3-33

3.5.5.2 Setting Future Tablespaces to be Encrypted 3-33

3.5.6 Encrypted Sensitive Credential Data in the Data Dictionary 3-34

3.5.7 Encryption Conversions for Existing Offline Tablespaces 3-34

3.5.7.1 About Encryption Conversions for Existing Offline Tablespaces 3-35

3.5.7.2 Encrypting an Existing User-Defined Tablespace with Offline Conversion 3-36

3.5.7.3 Decrypting an Existing Tablespace with Offline Conversion 3-37

3.5.8 Encryption Conversions for Existing Online Tablespaces 3-38

3.5.8.1 About Encryption Conversions for Existing Online Tablespaces 3-38

3.5.8.2 Encrypting an Existing Tablespace with Online Conversion 3-40

3.5.8.3 Rekeying an Existing Tablespace with Online Conversion 3-42

3.5.8.4 Decrypting an Existing Tablespace with Online Conversion 3-43

3.5.8.5 Finishing an Interrupted Online Encryption Conversion 3-44

3.5.9 Encryption Conversions for Existing Databases 3-45

3.5.9.1 About Encryption Conversions for Existing Databases 3-45

3.5.9.2 Encrypting an Existing Database with Offline Conversion 3-46

3.5.9.3 Encrypting an Existing Database with Online Conversion 3-47

3.6 Transparent Data Encryption Data Dynamic and Data Dictionary Views 3-48

v

4 Managing the Keystore and the Master Encryption Key

4.1 Managing the Keystore 4-1

4.1.1 Performing Operations That Require a Keystore Password 4-2

4.1.2 Changing the Password of a Software Keystore 4-3

4.1.2.1 About Changing the Password of a Password-Protected Software
Keystore 4-3

4.1.2.2 Changing the Password-Protected Software Keystore Password 4-3

4.1.3 Changing the Oracle Key Vault Password 4-4

4.1.4 Configuring an External Store for a Keystore Password 4-5

4.1.4.1 About Configuring an External Store for a Keystore Password 4-5

4.1.4.2 Configuring the External Keystore Password Store with WALLET_ROOT 4-5

4.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration 4-6

4.1.5 Backing Up Password-Protected Software Keystores 4-6

4.1.5.1 About Backing Up Password-Protected Software Keystores 4-6

4.1.5.2 Creating a Backup Identifier String for the Backup Keystore 4-7

4.1.5.3 Backing Up a Password-Protected Software Keystore 4-7

4.1.6 How the V$ENCRYPTION_WALLET View Interprets Backup Operations 4-8

4.1.7 Backups of the External Keystore 4-9

4.1.8 Merging Software Keystores 4-9

4.1.8.1 About Merging Software Keystores 4-10

4.1.8.2 Merging One Software Keystore into an Existing Software Keystore 4-10

4.1.8.3 Merging Two Software Keystores into a Third New Keystore 4-11

4.1.8.4 Merging an Auto-Login Software Keystore into an Existing Password-
Protected Software Keystore 4-12

4.1.8.5 Reversing a Software Keystore Merge Operation 4-12

4.1.9 Moving a Software Keystore to a New Location 4-13

4.1.10 Moving a Software Keystore Out of Automatic Storage Management 4-13

4.1.11 Migrating Between a Software Password Keystore and an External Keystore 4-14

4.1.11.1 Migrating from a Password-Protected Software Keystore to an External
Keystore 4-15

4.1.11.2 Migrating from an External Keystore to a Password-Based Software
Keystore 4-17

4.1.11.3 Keystore Order After a Migration 4-19

4.1.12 Migration of Keystores to and from Oracle Key Vault 4-20

4.1.13 Closing a Keystore 4-21

4.1.13.1 About Closing Keystores 4-21

4.1.13.2 Closing a Software Keystore 4-21

4.1.13.3 Closing an External Keystore 4-22

4.1.14 Using a Software Keystore That Resides on ASM Volumes 4-23

4.1.15 Backup and Recovery of Encrypted Data 4-23

4.1.16 Dangers of Deleting Keystores 4-24

vi

4.1.17 Features That Are Affected by Deleted Keystores 4-25

4.2 Managing the TDE Master Encryption Key 4-26

4.2.1 Creating User-Defined TDE Master Encryption Keys 4-27

4.2.1.1 About User-Defined TDE Master Encryption Keys 4-27

4.2.1.2 Creating a User-Defined TDE Master Encryption Key 4-27

4.2.2 Creating TDE Master Encryption Keys for Later Use 4-29

4.2.2.1 About Creating a TDE Master Encryption Key for Later Use 4-29

4.2.2.2 Creating a TDE Master Encryption Key for Later Use 4-29

4.2.2.3 Example: Creating a TDE Master Encryption Key in a Single Database 4-30

4.2.3 Activating TDE Master Encryption Keys 4-31

4.2.3.1 About Activating TDE Master Encryption Keys 4-31

4.2.3.2 Activating a TDE Master Encryption Key 4-31

4.2.3.3 Example: Activating a TDE Master Encryption Key 4-32

4.2.4 TDE Master Encryption Key Attribute Management 4-33

4.2.4.1 TDE Master Encryption Key Attributes 4-33

4.2.4.2 Finding the TDE Master Encryption Key That Is in Use 4-34

4.2.5 Creating Custom TDE Master Encryption Key Attributes for Reports 4-34

4.2.5.1 About Creating Custom Attribute Tags 4-35

4.2.5.2 Creating a Custom Attribute Tag 4-35

4.2.6 Setting or Rekeying the TDE Master Encryption Key in the Keystore 4-36

4.2.6.1 About Setting or Rekeying the TDE Master Encryption Key in the
Keystore 4-37

4.2.6.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key 4-37

4.2.6.3 About Rekeying the TDE Master Encryption Key 4-38

4.2.6.4 Rekeying the TDE Master Encryption Key 4-39

4.2.6.5 Rekeying the TDE Master Encryption Key for a Tablespace 4-40

4.2.7 Exporting and Importing the TDE Master Encryption Key 4-40

4.2.7.1 About Exporting and Importing the TDE Master Encryption Key 4-41

4.2.7.2 About Exporting TDE Master Encryption Keys 4-41

4.2.7.3 Exporting a TDE Master Encryption Key 4-42

4.2.7.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery 4-43

4.2.7.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a
File 4-43

4.2.7.6 Example: Exporting All TDE Master Encryption Keys of the Database 4-44

4.2.7.7 About Importing TDE Master Encryption Keys 4-44

4.2.7.8 Importing a TDE Master Encryption Key 4-44

4.2.7.9 Example: Importing a TDE Master Encryption Key 4-45

4.2.7.10 How Keystore Merge Differs from TDE Master Encryption Key Export or
Import 4-45

4.2.8 Moving TDE Master Encryption Keys into a New Keystore 4-46

4.2.8.1 About Moving TDE Master Encryption Keys into a New Keystore 4-46

4.2.8.2 Moving a TDE Master Encryption Key into a New Keystore 4-47

vii

4.2.9 Management of TDE Master Encryption Keys Using Oracle Key Vault 4-49

4.3 Storing Oracle Database Secrets 4-49

4.3.1 About Storing Oracle Database Secrets in a Keystore 4-50

4.3.2 Storage of Oracle Database Secrets in a Software Keystore 4-50

4.3.3 Example: Adding an Oracle Key Vault Password to a Software Keystore 4-52

4.3.4 Example: Changing an Oracle Key Vault Password Stored as a Secret in a
Software Keystore 4-52

4.3.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in a
Software Keystore 4-53

4.3.6 Storage of Oracle Database Secrets in an External Keystore 4-53

4.3.7 Example: Adding an Oracle Database Secret to an External Keystore 4-54

4.3.8 Example: Changing an Oracle Database Secret in an External Keystore 4-55

4.3.9 Example: Deleting an Oracle Database Secret in an External Keystore 4-55

4.3.10 Configuring Auto-Open Connections into External Key Managers 4-55

4.3.10.1 About Auto-Open Connections into External Key Managers 4-56

4.3.10.2 Configuring an Auto-Open Connection into an External Key Manager 4-56

4.4 Storing Oracle GoldenGate Secrets in a Keystore 4-58

4.4.1 About Storing Oracle GoldenGate Secrets in Keystores 4-58

4.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements 4-59

4.4.3 Configuring Keystore Support for Oracle GoldenGate 4-59

4.4.3.1 Step 1: Decide on a Shared Secret for the Keystore 4-59

4.4.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle
GoldenGate 4-59

4.4.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore 4-60

4.4.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract
Process 4-61

5 Managing Keystores and TDE Master Encryption Keys in United Mode

5.1 About Managing Keystores and TDE Master Encryption Keys in United Mode 5-1

5.2 Operations That Are Allowed in United Mode 5-2

5.3 Operations That Are Not Allowed in a United Mode PDB 5-7

5.4 Configuring the Keystore Location and Type for United Mode 5-7

5.4.1 Configuring United Mode by Editing the Initialization Parameter File 5-8

5.4.2 Configuring United Mode with the Initialization Parameter File and ALTER
SYSTEM 5-9

5.5 Configuring a Software Keystore for Use in United Mode 5-11

5.5.1 About Configuring a Software Keystore in United Mode 5-11

5.5.2 Step 1: Create the Software Keystore 5-12

5.5.3 Step 2: Open the Software Keystore in a United Mode PDB 5-13

5.5.4 Step 3: Set the TDE Master Encryption Key in the Software Keystore in United
Mode 5-14

5.5.5 Step 4: Encrypt Your Data in United Mode 5-15

viii

5.6 Configuring an External Keystore in United Mode 5-15

5.6.1 About Configuring an External Keystore in United Mode 5-16

5.6.2 Step 1: Configure the External Keystore for United Mode 5-16

5.6.3 Step 2: Open the External Keystore 5-17

5.6.3.1 About Opening External Keystores 5-17

5.6.3.2 Opening an External Keystore in a United Mode PDB 5-18

5.6.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore 5-19

5.6.4.1 About Setting the External Keystore TDE Master Encryption Key 5-19

5.6.4.2 Heartbeat Batch Size for External Keystores 5-19

5.6.4.3 Step 3: Set the TDE Master Encryption Key in the External Keystore in
United Mode 5-21

5.6.4.4 Migration of a Previously Configured TDE Master Encryption Key 5-22

5.6.5 Step 4: Encrypt Your Data in United Mode 5-23

5.7 Administering Keystores and TDE Master Encryption Keys in United Mode 5-23

5.7.1 Changing the Keystore Password in United Mode 5-24

5.7.1.1 Changing the Password-Protected Software Keystore Password in
United Mode 5-24

5.7.1.2 Changing the Password of an External Keystore in United Mode 5-25

5.7.2 Backing Up a Password-Protected Software Keystore in United Mode 5-26

5.7.3 Closing Keystores in United Mode 5-27

5.7.3.1 Closing a Software Keystore in United Mode 5-28

5.7.3.2 Closing an External Keystore in United Mode 5-28

5.7.4 Creating a User-Defined TDE Master Encryption Key in United Mode 5-29

5.7.5 Example: Creating a Master Encryption Key in All PDBs 5-30

5.7.6 Creating a TDE Master Encryption Key for Later Use in United Mode 5-31

5.7.7 Activating a TDE Master Encryption Key in United Mode 5-32

5.7.8 Rekeying the TDE Master Encryption Key in United Mode 5-33

5.7.9 Finding the TDE Master Encryption Key That Is in Use in United Mode 5-34

5.7.10 Creating a Custom Attribute Tag in United Mode 5-34

5.7.11 Moving a TDE Master Encryption Key into a New Keystore in United Mode 5-35

5.7.12 Automatically Removing Inactive TDE Master Encryption Keys in United
Mode 5-36

5.7.13 Isolating a Pluggable Database Keystore 5-37

5.8 Administering Transparent Data Encryption in United Mode 5-38

5.8.1 Moving PDBs from One CDB to Another in United Mode 5-38

5.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode 5-38

5.8.2.1 Unplugging a PDB That Has Encrypted Data in United Mode 5-39

5.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode 5-40

5.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in United Mode 5-41

5.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode 5-41

ix

5.8.3 Managing Cloned PDBs with Encrypted Data in United Mode 5-42

5.8.3.1 About Managing Cloned PDBs That Have Encrypted Data in United
Mode 5-43

5.8.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode 5-43

5.8.3.3 Performing a Remote Clone of PDB with Encrypted Data Between Two
CDBs in United Mode 5-44

5.8.3.4 TDE Academy Videos: Remotely Cloning and Upgrading Encrypted
PDBs 5-45

5.8.3.5 Relocating Across CDBs a Cloned PDB with Encrypted Data in United
Mode 5-45

5.8.4 How Keystore Open and Close Operations Work in United Mode 5-47

5.8.5 Finding the Keystore Status for All of the PDBs in United Mode 5-47

6 Managing Keystores and TDE Master Encryption Keys in Isolated Mode

6.1 About Managing Keystores and TDE Master Encryption Keys in Isolated Mode 6-1

6.2 Operations That Are Allowed in Isolated Mode 6-2

6.3 Operations That Are Not Allowed in an Isolated Mode PDB 6-7

6.4 Configuring the Keystore Location and Type for Isolated Mode 6-7

6.4.1 Configuring Isolated Mode 6-8

6.4.2 Example: Restoring an Older Version of a Control File 6-10

6.4.3 Example: Addressing the Problem of a Lost Control File 6-10

6.4.4 Example: Configuring Isolated Mode in an Oracle Real Application Clusters
Environment 6-11

6.5 Configuring a Keystore and TDE Master Encryption Key in Isolated Mode 6-11

6.5.1 About Configuring a Software Keystore in Isolated Mode 6-12

6.5.2 Step 1: Create a Software Keystore in a PDB Configured in Isolated Mode 6-13

6.5.3 Step 2: Open the Software Keystore in an Isolated Mode PDB 6-13

6.5.4 Step 3: Set the TDE Master Encryption Key in the Software Keystore of the
Isolated Mode PDB 6-14

6.5.5 Step 4: Encrypt Your Data in Isolated Mode 6-15

6.6 Configuring an External Keystore in Isolated Mode 6-15

6.6.1 About Configuring an External Keystore in Isolated Mode 6-16

6.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault 6-16

6.6.3 Step 2: Open the External Keystore in an Isolated Mode PDB 6-17

6.6.4 Step 3: Set TDE Master Encryption Key in the External Keystore of a PDB in
Isolated Mode 6-17

6.6.4.1 Setting a New TDE Master Encryption Key in Isolated Mode 6-18

6.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode 6-19

6.6.5 Step 4: Encrypt Your Data in Isolated Mode 6-19

6.7 Administering Keystores and TDE Master Encryption Keys in Isolated Mode 6-19

6.7.1 Changing the Keystore Password in Isolated Mode 6-20

x

6.7.1.1 Changing the Password-Protected Software Keystore Password in
Isolated Mode 6-21

6.7.1.2 Changing the Password of an External Keystore in Isolated Mode 6-22

6.7.2 Backing Up a Password-Protected Software Keystore in Isolated Mode 6-23

6.7.3 Merging Software Keystores in Isolated Mode 6-24

6.7.3.1 Merging One Software Keystore into an Existing Software Keystore in
Isolated Mode 6-24

6.7.3.2 Merging Two Software Keystores into a Third New Keystore in Isolated
Mode 6-25

6.7.4 Closing Keystores in Isolated Mode 6-26

6.7.4.1 Closing a Software Keystore in Isolated Mode 6-26

6.7.4.2 Closing an External Keystore in Isolated Mode 6-27

6.7.5 Creating a User-Defined TDE Master Encryption Key in Isolated Mode 6-27

6.7.6 Creating a TDE Master Encryption Key for Later Use in Isolated Mode 6-29

6.7.7 Activating a TDE Master Encryption Key in Isolated Mode 6-30

6.7.8 Rekeying the TDE Master Encryption Key in Isolated Mode 6-31

6.7.9 Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode 6-32

6.7.10 Creating a Custom Attribute Tag in Isolated Mode 6-33

6.7.11 Exporting and Importing the TDE Master Encryption Key in Isolated Mode 6-34

6.7.11.1 Exporting a TDE Master Encryption Key in Isolated Mode 6-34

6.7.11.2 Importing a TDE Master Encryption Key in Isolated Mode 6-35

6.7.12 Storing Oracle Database Secrets in Isolated Mode 6-36

6.7.12.1 Storing Oracle Database Secrets in a Software Keystore in Isolated
Mode 6-36

6.7.12.2 Storing Oracle Database Secrets in an External Keystore in Isolated
Mode 6-37

6.7.13 Migrating Keystores in Isolated Mode 6-38

6.7.13.1 Migrating from a Password-Protected Software Keystore to an External
Keystore in Isolated Mode 6-38

6.7.13.2 Migrating from an External Keystore to a Password-Protected Software
Keystore in Isolated Mode 6-39

6.7.14 Uniting a Pluggable Database Keystore 6-41

6.7.15 Creating a Keystore When the PDB Is Closed 6-42

6.7.15.1 About Creating a Keystore When the PDB Is Closed 6-42

6.7.15.2 Reverting a Keystore Creation Operation When a PDB Is Closed 6-43

6.8 Administering Transparent Data Encryption in Isolated Mode 6-44

6.8.1 Moving PDBs from One CDB to Another in Isolated Mode 6-44

6.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated
Mode 6-45

6.8.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode 6-45

6.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode 6-46

6.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in Isolated Mode 6-47

xi

6.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in Isolated Mode 6-47

6.8.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode 6-48

6.8.4 Performing a Remote Clone of PDB with Encrypted Data Between Two CDBs
in Isolated Mode 6-49

6.8.5 Relocating Across CDBs a Cloned PDB with Encrypted Data in Isolated Mode 6-50

6.8.6 How Keystore Open and Close Operations Work in Isolated Mode 6-51

6.8.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode 6-52

6.8.7.1 About Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode 6-52

6.8.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated
Mode 6-53

6.8.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated
Mode 6-54

6.8.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode 6-54

7 General Considerations of Using Transparent Data Encryption

7.1 Compression and Data Deduplication of Encrypted Data 7-1

7.2 Security Considerations for Transparent Data Encryption 7-2

7.2.1 Transparent Data Encryption General Security Advice 7-2

7.2.2 Transparent Data Encryption Column Encryption-Specific Advice 7-2

7.2.3 Managing Security for Plaintext Fragments 7-3

7.3 Performance and Storage Overhead of Transparent Data Encryption 7-3

7.3.1 Performance Overhead of Transparent Data Encryption 7-3

7.3.2 Storage Overhead of Transparent Data Encryption 7-4

7.4 Modifying Your Applications for Use with Transparent Data Encryption 7-5

7.5 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT 7-6

7.6 Data Loads from External Files to Tables with Encrypted Columns 7-9

7.7 Transparent Data Encryption and Database Close Operations 7-10

8 Using Transparent Data Encryption with Other Oracle Features

8.1 How Transparent Data Encryption Works with Export and Import Operations 8-1

8.1.1 About Exporting and Importing Encrypted Data 8-2

8.1.2 Exporting and Importing Tables with Encrypted Columns 8-2

8.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets 8-3

8.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data 8-4

8.2 How Transparent Data Encryption Works with Oracle Data Guard 8-5

8.2.1 About Using Transparent Data Encryption with Oracle Data Guard 8-5

8.2.2 Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment 8-6

8.2.3 Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard
Environment 8-12

xii

8.3 How Transparent Data Encryption Works with Oracle Real Application Clusters 8-13

8.3.1 About Using Transparent Data Encryption with Oracle Real Application
Clusters 8-13

8.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault 8-14

8.4 How Transparent Data Encryption Works with SecureFiles 8-21

8.4.1 About Transparent Data Encryption and SecureFiles 8-21

8.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm 8-21

8.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified 8-22

8.5 How Transparent Data Encryption Works with Oracle Call Interface 8-22

8.6 How Transparent Data Encryption Works with Editions 8-22

8.7 Configuring Transparent Data Encryption to Work in a Multidatabase Environment 8-22

9 Using sqlnet.ora to Configure Transparent Data Encryption Keystores

9.1 About the Keystore Location in the sqlnet.ora File 9-1

9.2 Configuring the sqlnet.ora File for a Software Keystore Location 9-2

9.3 Example: Configuring a Software Keystore for a Regular File System 9-3

9.4 Example: Configuring a Software Keystore When Multiple Databases Share the
sqlnet.ora File 9-3

9.5 Example: Configuring a Software Keystore for Oracle Automatic Storage
Management 9-3

9.6 Example: Configuring a Software Keystore for an Oracle Automatic Storage
Management Disk Group 9-4

10

Frequently Asked Questions About Transparent Data Encryption

10.1 Transparency Questions About Transparent Data Encryption 10-1

10.2 Performance Questions About Transparent Data Encryption 10-3

Part II Using Oracle Data Redaction

11

Introduction to Oracle Data Redaction

11.1 What Is Oracle Data Redaction? 11-1

11.2 When to Use Oracle Data Redaction 11-2

11.3 Benefits of Using Oracle Data Redaction 11-2

11.4 Target Use Cases for Oracle Data Redaction 11-2

11.4.1 Oracle Data Redaction Use with Database Applications 11-2

11.4.2 Oracle Data Redaction with Ad Hoc Database Queries Considerations 11-3

xiii

12

Oracle Data Redaction Features and Capabilities

12.1 Full Data Redaction to Redact All Data 12-1

12.2 Partial Data Redaction to Redact Sections of Data 12-2

12.3 Regular Expressions to Redact Patterns of Data 12-3

12.4 Redaction Using Null Values 12-4

12.5 Random Data Redaction to Generate Random Values 12-4

12.6 Comparison of Full, Partial, and Random Redaction Based on Data Types 12-5

12.6.1 Oracle Built-in Data Types Redaction Capabilities 12-6

12.6.2 ANSI Data Types Redaction Capabilities 12-6

12.6.3 Built-in and ANSI Data Types Full Redaction Capabilities 12-7

12.6.4 User-Defined Data Types or Oracle Supplied Types Redaction Capabilities 12-9

12.7 No Redaction for Testing Purposes 12-9

12.8 Central Management of Named Data Redaction Policy Expressions 12-9

13

Configuring Oracle Data Redaction Policies

13.1 About Oracle Data Redaction Policies 13-2

13.2 Who Can Create Oracle Data Redaction Policies? 13-3

13.3 Planning an Oracle Data Redaction Policy 13-4

13.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure 13-4

13.5 Using Expressions to Define Conditions for Data Redaction Policies 13-7

13.5.1 About Using Expressions in Data Redaction Policies 13-7

13.5.2 Supported Functions for Data Redaction Expressions 13-8

13.5.2.1 Expressions Using Namespace Functions 13-8

13.5.2.2 Expressions Using the SUBSTR Function 13-9

13.5.2.3 Expressions Using Length of Character String Functions 13-10

13.5.2.4 Expressions Using Oracle Application Express Functions 13-10

13.5.2.5 Expressions Using Oracle Label Security Functions 13-11

13.5.3 Applying the Redaction Policy Based on User Environment 13-12

13.5.4 Applying the Redaction Policy Based on Database Roles 13-12

13.5.5 Applying the Redaction Policy Based on Oracle Label Security Label
Dominance 13-12

13.5.6 Applying the Redaction Policy Based on Application Express Session States 13-13

13.5.7 Applying the Redaction Policy to All Users 13-13

13.6 Creating and Managing Multiple Named Policy Expressions 13-14

13.6.1 About Data Redaction Policy Expressions to Define Conditions 13-14

13.6.2 Creating and Applying a Named Data Redaction Policy Expression 13-15

13.6.3 Updating a Named Data Redaction Policy Expression 13-17

13.6.4 Dropping a Named Data Redaction Expression Policy 13-17

13.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy Expression 13-18

13.6.5.1 Step 1: Create Users for This Tutorial 13-18

xiv

13.6.5.2 Step 2: Create an Oracle Data Redaction Policy 13-19

13.6.5.3 Step 3: Test the Oracle Data Redaction Policy 13-20

13.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table
Columns 13-20

13.6.5.5 Step 5: Test the Data Redaction Policy Expression 13-21

13.6.5.6 Step 6: Modify the Data Redaction Policy Expression 13-22

13.6.5.7 Step 7: Test the Modified Policy Expression 13-22

13.6.5.8 Step 8: Remove the Components of This Tutorial 13-23

13.7 Creating a Full Redaction Policy and Altering the Full Redaction Value 13-24

13.7.1 Creating a Full Redaction Policy 13-24

13.7.1.1 About Creating Full Data Redaction Policies 13-25

13.7.1.2 Syntax for Creating a Full Redaction Policy 13-25

13.7.1.3 Example: Full Redaction Policy 13-26

13.7.1.4 Example: Fully Redacted Character Values 13-26

13.7.2 Altering the Default Full Data Redaction Value 13-27

13.7.2.1 About Altering the Default Full Data Redaction Value 13-27

13.7.2.2 Syntax for the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure 13-27

13.7.2.3 Modifying the Default Full Data Redaction Value 13-28

13.8 Creating a DBMS_REDACT.NULLIFY Redaction Policy 13-29

13.8.1 About Creating a Policy That Returns Null Values 13-29

13.8.2 Syntax for Creating a Policy That Returns Null Values 13-29

13.8.3 Example: Redaction Policy That Returns Null Values 13-30

13.9 Creating a Partial Redaction Policy 13-30

13.9.1 About Creating Partial Redaction Policies 13-31

13.9.2 Syntax for Creating a Partial Redaction Policy 13-31

13.9.3 Creating Partial Redaction Policies Using Fixed Character Formats 13-32

13.9.3.1 Settings for Fixed Character Formats 13-32

13.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format 13-34

13.9.4 Creating Partial Redaction Policies Using Character Data Types 13-35

13.9.4.1 Settings for Character Data Types 13-35

13.9.4.2 Example: Partial Redaction Policy Using a Character Data Type 13-36

13.9.5 Creating Partial Redaction Policies Using Number Data Types 13-37

13.9.5.1 Settings for Number Data Types 13-37

13.9.5.2 Example: Partial Redaction Policy Using a Number Data Type 13-38

13.9.6 Creating Partial Redaction Policies Using Date-Time Data Types 13-38

13.9.6.1 Settings for Date-Time Data Types 13-39

13.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type 13-39

13.10 Creating a Regular Expression-Based Redaction Policy 13-40

13.10.1 About Creating Regular Expression-Based Redaction Policies 13-40

13.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy 13-41

13.10.3 Regular Expression-Based Redaction Policies Using Formats 13-42

xv

13.10.3.1 Regular Expression Formats 13-43

13.10.3.2 Example: Regular Expression Redaction Policy Using Formats 13-46

13.10.4 Custom Regular Expression Redaction Policies 13-46

13.10.4.1 Settings for Custom Regular Expressions 13-47

13.10.4.2 Example: Custom Regular Expression Redaction Policy 13-47

13.11 Creating a Random Redaction Policy 13-48

13.11.1 Syntax for Creating a Random Redaction Policy 13-48

13.11.2 Example: Random Redaction Policy 13-49

13.12 Creating a Policy That Uses No Redaction 13-49

13.12.1 Syntax for Creating a Policy with No Redaction 13-49

13.12.2 Example: Performing No Redaction 13-50

13.13 Exemption of Users from Oracle Data Redaction Policies 13-50

13.14 Altering an Oracle Data Redaction Policy 13-51

13.14.1 About Altering Oracle Data Redaction Policies 13-51

13.14.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure 13-52

13.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions 13-53

13.14.4 Tutorial: Altering an Oracle Data Redaction Policy 13-53

13.15 Redacting Multiple Columns 13-57

13.15.1 Adding Columns to a Data Redaction Policy for a Single Table or View 13-57

13.15.2 Example: Redacting Multiple Columns 13-57

13.16 Disabling and Enabling an Oracle Data Redaction Policy 13-57

13.16.1 Disabling an Oracle Data Redaction Policy 13-58

13.16.2 Enabling an Oracle Data Redaction Policy 13-58

13.17 Dropping an Oracle Data Redaction Policy 13-59

13.18 Tutorial: SQL Expressions to Build Reports with Redacted Values 13-60

13.19 Oracle Data Redaction Policy Data Dictionary Views 13-61

14

Managing Oracle Data Redaction Policies in Oracle Enterprise Manager

14.1 About Using Oracle Data Redaction in Oracle Enterprise Manager 14-1

14.2 Oracle Data Redaction Workflow 14-2

14.3 Management of Sensitive Column Types in Enterprise Manager 14-2

14.4 Managing Oracle Data Redaction Formats Using Enterprise Manager 14-4

14.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager 14-5

14.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise Manager 14-5

14.4.3 Editing a Custom Oracle Data Redaction Format Using Enterprise Manager 14-8

14.4.4 Viewing Oracle Data Redaction Formats Using Enterprise Manager 14-9

14.4.5 Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager 14-10

14.5 Managing Oracle Data Redaction Policies Using Enterprise Manager 14-10

14.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager 14-11

14.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager 14-12

xvi

14.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager 14-15

14.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager 14-16

14.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager 14-17

14.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager 14-17

14.6 Managing Named Data Redaction Policy Expressions Using Enterprise Manager 14-18

14.6.1 About Named Data Redaction Policy Expressions in Enterprise Manager 14-18

14.6.2 Creating a Named Data Redaction Policy Expression in Enterprise Manager 14-19

14.6.3 Editing a Named Data Redaction Policy Expression in Enterprise Manager 14-20

14.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise Manager 14-21

14.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise Manager 14-21

15

Using Oracle Data Redaction with Oracle Database Features

15.1 Oracle Data Redaction General Usage Guidelines 15-2

15.2 Oracle Data Redaction and DML and DDL Operations 15-3

15.3 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE
Clause 15-3

15.4 Oracle Data Redaction and Queries on Columns Protected by Data Redaction
Policies 15-4

15.5 Oracle Data Redaction and Database Links 15-4

15.6 Oracle Data Redaction and Aggregate Functions 15-4

15.7 Oracle Data Redaction and Object Types 15-5

15.8 Oracle Data Redaction and XML Generation 15-5

15.9 Oracle Data Redaction and Editions 15-5

15.10 Oracle Data Redaction in a Multitenant Environment 15-5

15.11 Oracle Data Redaction and Oracle Virtual Private Database 15-5

15.12 Oracle Data Redaction and Oracle Database Real Application Security 15-6

15.13 Oracle Data Redaction and Oracle Database Vault 15-6

15.14 Oracle Data Redaction and Oracle Data Pump 15-6

15.14.1 Oracle Data Pump Security Model for Oracle Data Redaction 15-7

15.14.2 Export of Objects That Have Oracle Data Redaction Policies Defined 15-7

15.14.2.1 Finding Type Names Used by Oracle Data Pump 15-8

15.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data
Redaction Policies 15-8

15.14.2.3 Importing Objects Using the INCLUDE Parameter in IMPDP 15-9

15.14.3 Export of Data Using the EXPDP Utility access_method Parameter 15-9

15.14.4 Import of Data into Objects Protected by Oracle Data Redaction 15-9

15.15 Oracle Data Redaction and Data Masking and Subsetting Pack 15-10

15.16 Oracle Data Redaction and JSON 15-10

xvii

16

Security Considerations for Oracle Data Redaction

16.1 Oracle Data Redaction General Security Guidelines 16-1

16.2 Restriction of Administrative Access to Oracle Data Redaction Policies 16-2

16.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas 16-2

16.4 Policy Expressions That Use SYS_CONTEXT Attributes 16-3

16.5 Oracle Data Redaction Policies on Materialized Views 16-3

16.6 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled 16-3

Glossary

Index

xviii

Preface

Welcome to Oracle Database Advanced Security Guide. This guide describes how to
implement, configure, and administer Transparent Data Encryption (TDE) and Oracle Data
Redaction.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle Database Advanced Security Guide is intended for users and systems professionals
involved with the implementation, configuration, and administration of Oracle Advanced
Security including:

• Implementation consultants

• System administrators

• Security administrators

• Database administrators (DBAs)

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
Before you configure Oracle Advanced Security features, you should be familiar with the
following guides:

• Oracle Database Administrator’s Guide

• Oracle Database Security Guide

• Oracle Database SQL Language Reference

xix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Multitenant Administrator's Guide

Many books in the documentation set use the sample schemas of the default
database. Refer to Oracle Database Sample Schemas for information about how
these schemas were created and how you can use them.

Oracle Technical Services

To download the product data sheet, frequently asked questions, links to the latest
product documentation, product download, and other collateral, visit Oracle Technical
Resources (formerly Oracle Technology Network). You must register online before
using Oracle Technical Services. Registration is free and can be done at

https://www.oracle.com/technical-resources/

My Oracle Support

You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xx

https://www.oracle.com/technical-resources/
https://support.oracle.com

Changes in This Release for Oracle Database
Advanced Security Guide

This preface contains:

• Changes in Oracle Database Advanced Security 18c

• Changes in Oracle Database Advanced Security 12c Release 2 (12.2)

Changes in Oracle Database Advanced Security 18c
The following are changes in Oracle Database Advanced Security Guide for Oracle Database
18c.

• Ability to Create a Keystore for Each Pluggable Database
Each pluggable database (PDB) can now have its own keystore instead of there only
being one keystore for the entire container database (CDB).

• Ability to Create a User-Defined Master Encryption Key
This release introduces the ability to create a user-defined master encryption key, also
known as “bring your own key.”

• Ability to Use Encrypted Passwords for Database Links with Oracle Data Pump
The behavior for handling database link passwords has changed in this release.

Ability to Create a Keystore for Each Pluggable Database
Each pluggable database (PDB) can now have its own keystore instead of there only being
one keystore for the entire container database (CDB).

In previous releases, PDBs shared the keystore with the entire container database (CDB),
which included the CDB root and all the PDBs. This keystore stored the master encryption
keys for the CDB as well as all the PDBs. In this release, a PDB can either continue to share
the same keystore with the entire CDB as before, or have a separate keystore. This design
offers greater isolation between PDBs, because each separate keystore can be administered
independently. For example, each keystore can be protected by a different password

Note:

This feature can only be used in an Oracle Cloud environment, and with engineered
systems on premises, including Oracle Exadata, Exadata Cloud at Customer
(ExaC@C), as well as Autonomous Database Dedicated on Exadata Cloud at
Customer (ADB on ExaC@C).

xxi

The additional advantage of this feature is that it enables independent key
management operations to be performed by each tenant (PDB) in a multitenant
environment rather than having to share a keystore at the CDB root level.

This feature provides the following new functionality:

• For multitenant environments, the following two modes:

– United mode, in which the keystores and master encryption keys are primarily
managed from the CDB root, and can be accessed from the united mode
PDB. Within the PDB, the keystore can be opened and closed just for that
PDB. Each PDB has its own set of master encryption keys in the shared
keystore.

– Isolated mode, in which the keystore and encryption keys are managed in an
individual PDB. This way, each PDB can configure its own keystore type
independently, and create and manage this keystore after configuring it.

You can mix these two modes. For example, suppose you have 1 CDB and 10
PDBs. You can run 3 of these PDBs in united mode and the remaining 7 in
isolated mode. This design offers the highest flexibility depending on your
environment and site requirements.

To accommodate these modes, the ADMINISTER KEY MANAGEMENT SQL statement
has been enhanced to behave differently in the two modes.

• For both non-multitenant and multitenant environments, the following new
features:

– Addition of the WALLET_ROOT static instance initialization parameter, to specify
the keystore path. In this guide, WALLET_ROOT refers to the configuration of
software keystores or Oracle Key Vault, but this parameter can be used to
designate the wallet location for other products as well: Enterprise User
Security, Secure Sockets Layer, Oracle XML DB, and Secure External
Password Store.

– Addition of the TDE_CONFIGURATION dynamic instance initialization parameter,
to specify the type of keystore to use. You can set this parameter for TDE
software keystores, external keystores, and Oracle Key Vault.

– When the WALLET_ROOT parameter has been set, then WALLET_ROOT overrides
SQLNET.ENCRYPTION_WALLET_LOCATION. If WALLET_ROOT has not been set, then
SQLNET.ENCRYPTION_WALLET_LOCATION is the default.

Related Topics

• How the Multitenant Option Affects Transparent Data Encryption
In a multitenant environment, you can configure keystores for either the entire
container database (CDB) or for individual pluggable databases (PDBs).

Ability to Create a User-Defined Master Encryption Key
This release introduces the ability to create a user-defined master encryption key, also
known as “bring your own key.”

Instead of requiring that TDE master encryption keys always be generated in the
database, Oracle Database now supports the use of master encryption keys that have
been generated outside the database.

Changes in This Release for Oracle Database Advanced Security Guide

xxii

To create the user-defined key, you supply your own master key identification value when you
create the master encryption key by using the ADMINISTER KEY MANAGEMENT SET
[ENCRYPTION] KEY or ADMINISTER KEY MANAGEMENT CREATE [ENCRYPTION] KEY statements.
This enhancement applies to master encryption keys that are used in software keystores
only, not PKCS#11-compatible key managers. However, Oracle Key Vault introduced "bring
your own key" from Oracle Key Vault release 12.2.0.6, and all database versions starting
from Oracle Database release 12.1.0.2 can activate those keys.

Related Topics

• Creating a User-Defined TDE Master Encryption Key
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

• Creating a User-Defined TDE Master Encryption Key in United Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

• Creating a User-Defined TDE Master Encryption Key in Isolated Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

Ability to Use Encrypted Passwords for Database Links with Oracle Data
Pump

The behavior for handling database link passwords has changed in this release.

Passwords in database links are now encrypted. Oracle Data Pump handles the export and
import of these passwords. Import operations from older versions and export operations to
older versions can still be used.

The benefit of this feature is that it prevents an intruder from decrypting an encrypted
database link password.

Related Topics

• Using Oracle Data Pump with Encrypted Data Dictionary Data
Oracle Data Pump operations provide protections for encrypted passwords and other
encrypted data.

Changes in Oracle Database Advanced Security 12c Release 2
(12.2)

The following are changes in Oracle Database Advanced Security Guide for Oracle Database
12c release 2 (12.2).

• Ability to Encrypt Existing Tablespaces and Fully Encrypt Databases
Starting with this release, you can encrypt existing tablespaces and fully encrypt
databases.

• Additional Supported Encryption Algorithms
You now can use the ARIA, GOST, and SEED encryption algorithms for column and
tablespace encryption, in addition to the AES and DES encryption standards.

Changes in This Release for Oracle Database Advanced Security Guide

xxiii

• Ability to Force Software Keystore Operations
You now can force a keystore operation that is prevented because of an in-use
auto-login keystore or a closed software or an external keystore.

• Ability to Use an External Store for Software Keystore Passwords
You can now configure the database to use an external keystore to hide the
password to a TDE software keystore or an external keystore from the SQL*Plus
command line.

• New Way to Specify Oracle Key Vault as a Keystore
As an alternative to third-party hardware security modules, you now can specify
Oracle Key Vault as a keystore.

• Ability to Redact Data Based on Different Runtime Conditions
You now can define and associate different Data Redaction policy expressions
with different columns within the same table or view.

• Ability to Centrally Manage Data Redaction Policy Expressions within a Database
This new feature applies to named Oracle Data Redaction policy expressions.

• Ability to Use NULL as the Redacted Value
Starting with this release, the redacted value can be NULL.

• Enhanced Support for Redacting Unstructured Data
You now can define regular expression-based redaction (DBMS_REDACT.REGEXP)
policies on columns of the CLOB and NCLOB data types.

Ability to Encrypt Existing Tablespaces and Fully Encrypt Databases
Starting with this release, you can encrypt existing tablespaces and fully encrypt
databases.

In previous releases, you could only encrypt new application tablespaces. However,
this new feature enables you to encrypt existing application tablespaces in an offline or
online method. To encrypt a database, you encrypt the Oracle-supplied tablespaces,
such as SYSTEM and SYSAUX with the online method. Offline tablespace encryption can
be used for tablespaces in Oracle Database 11g release 2 (11.2.0.4) and Oracle
Database 12g release 1 (12.1.0.2). You can perform encryption and decryption
operations in parallel and perform the encryption in an Oracle Data Guard environment
to minimize the application downtime to the time it takes to perform a Data Guard
switchover. You can configure all future tablespaces to be automatically encrypted,
which is beneficial for an Oracle Cloud environment.

Related Topics

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

Additional Supported Encryption Algorithms
You now can use the ARIA, GOST, and SEED encryption algorithms for column and
tablespace encryption, in addition to the AES and DES encryption standards.

The main benefit of these new encryption standards is that they meet the national
standards for their respective countries.

Changes in This Release for Oracle Database Advanced Security Guide

xxiv

• ARIA uses the same block sizes as AES. It is designed for lightweight environments and
the implementation in hardware. ARIA meets the standards used in Korea.

• GOST is very similar to DES except that it has a large number of rounds and secret S-
boxes. GOST meets the standards used in Russia.

• SEED is used by several standard protocols: S/MIME, TLS/SSL, IPSec, and ISO/IEC.
SEED meets the standards used in Korea.

Related Topics

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

Ability to Force Software Keystore Operations
You now can force a keystore operation that is prevented because of an in-use auto-login
keystore or a closed software or an external keystore.

In previous releases, for many keystore operations, you had to manually open the software or
external keystore before performing the operation. In this release, you can perform these two
actions in one ADMINISTER KEY MANAGEMENT statement execution by including the FORCE
KEYSTORE clause.

The operations that you can use the FORCE KEYSTORE clause on are as follows: changing a
keystore password; creating, using, rekeying, tagging, importing, exporting, migrating, or
reverse migrating encryption keys; opening or backing up keystores; adding, updating, or
deleting secret keystores.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both software and external keystores.

Ability to Use an External Store for Software Keystore Passwords
You can now configure the database to use an external keystore to hide the password to a
TDE software keystore or an external keystore from the SQL*Plus command line.

This feature enables you to hide the keystore password from the SQL*Plus command line.
That increases separation of duties between database administrators and keystore
administrators. To use this functionality, you first create an auto-login wallet in an existing
directory with this new syntax: ADMINISTER KEY MANAGEMENT ADD SECRET
'Oracle_Key_Vault_password' FOR CLIENT 'OKV_PASSWORD' TO [LOCAL] AUTO_LOGIN
KEYSTORE '/existing/directory'. Then you set the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION initialization parameter to the directory in which
the auto-login wallet was created. Afterward, you can you can replace the password in the
ADMINISTER KEY MANAGEMENT IDENTIFIED BY password statement with EXTERNAL
STORE for the following operations: opening, closing, backing up the keystore; adding,
updating, or deleting a secret; creating, using, rekeying, tagging, importing, exporting
encryption keys.

Changes in This Release for Oracle Database Advanced Security Guide

xxv

Related Topics

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a
centrally accessed and managed location.

New Way to Specify Oracle Key Vault as a Keystore
As an alternative to third-party hardware security modules, you now can specify Oracle
Key Vault as a keystore.

To configure Oracle Key Vault as a keystore, you can edit the sqlnet.ora file METHOD
setting in the ENCRYPTION_WALLET_LOCATION parameter to point to OKV.

Related Topics

• Configuring an External Keystore
There are two types of external keystores that Oracle Database supports: Oracle
Key Vault keystores and OCI Vault - Key Management keystores.

Ability to Redact Data Based on Different Runtime Conditions
You now can define and associate different Data Redaction policy expressions with
different columns within the same table or view.

This feature provides greater flexibility for anyone who creates Data Redaction
policies.

For example, this feature enables you to share a single Data Redaction policy
expression with multiple Data Redaction policies.

When you create the policy expression, you can apply it to any table or view column
that is included in an existing Data Redaction policy. If you change the policy
expression, the change is reflected in all Data Redaction policies that redact the
associated table or view columns.

Related Topics

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be
used in multiple redaction policies and applied to multiple tables or views.

Ability to Centrally Manage Data Redaction Policy Expressions within
a Database

This new feature applies to named Oracle Data Redaction policy expressions.

This feature facilitates the maintenance and administration of policy expressions.
When you modify the named policy expression, the changes are automatically applied
to all tables and views in the database that use the expression.

Related Topics

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be
used in multiple redaction policies and applied to multiple tables or views.

Changes in This Release for Oracle Database Advanced Security Guide

xxvi

Ability to Use NULL as the Redacted Value
Starting with this release, the redacted value can be NULL.

For example, you can use this feature to hide data.

When you define an Oracle Data Redaction policy, you can set the function_type parameter
to DBMS_REDACT.NULLIFY to ensure that the redacted value to always be NULL.

Related Topics

• Creating a DBMS_REDACT.NULLIFY Redaction Policy
You can create Oracle Data Redaction policies that return null values for the displayed
value of the table or view column.

Enhanced Support for Redacting Unstructured Data
You now can define regular expression-based redaction (DBMS_REDACT.REGEXP) policies on
columns of the CLOB and NCLOB data types.

Related Topics

• Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a
regular expression-based redaction policy.

Changes in This Release for Oracle Database Advanced Security Guide

xxvii

1
Introduction to Oracle Advanced Security

Two features comprise Oracle Advanced Security: Transparent Data Encryption and Oracle
Data Redaction.

• Transparent Data Encryption
Transparent Data Encryption (TDE) enables you to encrypt data so that only an
authorized recipient can read it.

• Oracle Data Redaction
Oracle Data Redaction enables you to redact (mask) column data using several redaction
types.

1.1 Transparent Data Encryption
Transparent Data Encryption (TDE) enables you to encrypt data so that only an authorized
recipient can read it.

Use encryption to protect sensitive data in a potentially unprotected environment, such as
data you placed on backup media that is sent to an off-site storage location. You can encrypt
individual columns in a database table, or you can encrypt an entire tablespace.

To use Transparent Data Encryption, you do not need to modify your applications. TDE
enables your applications to continue working seamlessly as before. It automatically encrypts
data when it is written to disk, and then automatically decrypts the data when your
applications access it. Key management is built-in, eliminating the complex task of managing
and securing encryption keys.

1.2 Oracle Data Redaction
Oracle Data Redaction enables you to redact (mask) column data using several redaction
types.

The types of redaction that you can perform are as follows:

• Full redaction. You redact all of the contents of the column data. The redacted value that
is returned to the querying user depends on the data type of the column. For example,
columns of the NUMBER data type are redacted with a zero (0) and character data types
are redacted with a blank space.

• Partial redaction. You redact a portion of the column data. For example, you can redact
most of a Social Security number with asterisks (*), except for the last 4 digits.

• Regular expressions. You can use regular expressions in both full and partial redaction.
This enables you to redact data based on a search pattern for the data. For example, you
can use regular expressions to redact specific phone numbers or email addresses in your
data.

• Random redaction. The redacted data presented to the querying user appears as
randomly generated values each time it is displayed, depending on the data type of the
column.

1-1

• No redaction. This option enables you to test the internal operation of your
redaction policies, with no effect on the results of queries against tables with
policies defined on them. You can use this option to test the redaction policy
definitions before applying them to a production environment.

Data Redaction performs the redaction at runtime, that is, the moment that the user
tries to view the data. This functionality is ideally suited for dynamic production
systems in which data constantly changes. While the data is being redacted, Oracle
Database is able to process all of the data normally and to preserve the back-end
referential integrity constraints. Data redaction can help you to comply with industry
regulations such as Payment Card Industry Data Security Standard (PCI DSS) and the
Sarbanes-Oxley Act.

Chapter 1
Oracle Data Redaction

1-2

Part I
Using Transparent Data Encryption

Part I describes how to use Transparent Data Encryption.

• Introduction to Transparent Data Encryption
Transparent Data Encryption enables you to encrypt sensitive data, such as credit card
numbers or Social Security numbers.

• Configuring Transparent Data Encryption
You can configure software or external keystores, for use on both individual table
columns or entire tablespaces.

• Managing the Keystore and the Master Encryption Key
You can modify settings for the keystore and TDE master encryption key, and store
Oracle Database and store Oracle GoldenGate secrets in a keystore.

• Managing Keystores and TDE Master Encryption Keys in United Mode
United mode enables you to create a common keystore for the CDB and the PDBs for
which the keystore is in united mode.

• Managing Keystores and TDE Master Encryption Keys in Isolated Mode
In an Oracle Cloud database (but not an on-premises database), isolated mode enables
you to create a keystore for each pluggable database (PDB).

• General Considerations of Using Transparent Data Encryption
When you use Transparent Data Encryption, you should consider factors such as
security, performance, and storage overheads.

• Using Transparent Data Encryption with Other Oracle Features
You can use Oracle Data Encryption with other Oracle features, such as Oracle Data
Guard or Oracle Real Application Clusters.

• Using sqlnet.ora to Configure Transparent Data Encryption Keystores
If you do not want to use the WALLET_ROOT parameter to configure keystores, then you
can use the sqlnet.ora file.

• Frequently Asked Questions About Transparent Data Encryption
Users frequently have questions about transparency and performance issues with
Transparent Data Encryption.

2
Introduction to Transparent Data Encryption

Transparent Data Encryption enables you to encrypt sensitive data, such as credit card
numbers or Social Security numbers.

• What Is Transparent Data Encryption?
Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store
in tables and tablespaces.

• Benefits of Using Transparent Data Encryption
Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, meets
compliance requirements, and provides functionality that streamlines encryption
operations.

• Who Can Configure Transparent Data Encryption?
You must be granted the ADMINISTER KEY MANAGEMENT system privilege to configure
Transparent Data Encryption (TDE).

• Types and Components of Transparent Data Encryption
Transparent Data Encryption can be applied to individual columns or entire tablespaces.

• How the Multitenant Option Affects Transparent Data Encryption
In a multitenant environment, you can configure keystores for either the entire container
database (CDB) or for individual pluggable databases (PDBs).

2.1 What Is Transparent Data Encryption?
Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in
tables and tablespaces.

After the data is encrypted, this data is transparently decrypted for authorized users or
applications when they access this data. TDE helps protect data stored on media (also called
data at rest) in the event that the storage media or data file is stolen.

Oracle Database uses authentication, authorization, and auditing mechanisms to secure data
in the database, but not in the operating system data files where data is stored. To protect
these data files, Oracle Database provides Transparent Data Encryption (TDE). TDE
encrypts sensitive data stored in data files. To prevent unauthorized decryption, TDE stores
the encryption keys in a security module external to the database, called a keystore.

You can configure Oracle Key Vault as part of the TDE implementation. This enables you to
centrally manage TDE keystores (called virtual wallets in Oracle Key Vault) in your enterprise.
For example, you can upload a software keystore to Oracle Key Vault, migrate the database
to use Oracle Key Vault as the default keystore, and then share the contents of this keystore
with other primary and standby Oracle Real Application Clusters (Oracle RAC) nodes of that
database to streamline daily database adminstrative operations with encrypted databases.

Related Topics

• Oracle Key Vault Administrator's Guide

2-1

2.2 Benefits of Using Transparent Data Encryption
Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, meets
compliance requirements, and provides functionality that streamlines encryption
operations.

Benefits are as follows:

• As a security administrator, you can be sure that sensitive data is encrypted and
therefore safe in the event that the storage media or data file is stolen.

• Using TDE helps you address security-related regulatory compliance issues.

• You do not need to create auxiliary tables, triggers, or views to decrypt data for the
authorized user or application. Data from tables is transparently decrypted for the
database user and application. An application that processes sensitive data can
use TDE to provide strong data encryption with little or no change to the
application.

• Data is transparently decrypted for database users and applications that access
this data. Database users and applications do not need to be aware that the data
they are accessing is stored in encrypted form.

• Using online or offline encryption of existing un-encrypted tablespaces enables
you to implement Transparent Data Encryption with little or no downtime.

• You do not need to modify your applications to handle the encrypted data. The
database manages the data encryption and decryption.

• Oracle Database automates TDE master encryption key and keystore
management operations. The user or application does not need to manage TDE
master encryption keys.

2.3 Who Can Configure Transparent Data Encryption?
You must be granted the ADMINISTER KEY MANAGEMENT system privilege to configure
Transparent Data Encryption (TDE).

If you must open the keystore at the mount stage, then you must be granted the SYSKM
administrative privilege, which includes the ADMINISTER KEY MANAGEMENT system
privilege and other necessary privileges.

When you grant the SYSKM administrative privilege to a user, ensure that you create a
password file for it so that the user can connect to the database as SYSKM using a
password. This enables the user to perform actions such as querying the V$DATABASE
view.

To configure TDE column or tablespace encryption, you do not need the SYSKM or
ADMINISTER KEY MANAGEMENT privileges. You must have the following additional
privileges to encrypt table columns and tablespaces:

• CREATE TABLE
• ALTER TABLE
• CREATE TABLESPACE
• ALTER TABLESPACE (for online and offline tablespace encryption)

Chapter 2
Benefits of Using Transparent Data Encryption

2-2

• ALTER DATABASE (for fast offline tablespace encryption)

2.4 Types and Components of Transparent Data Encryption
Transparent Data Encryption can be applied to individual columns or entire tablespaces.

• About Transparent Data Encryption Types and Components
You can encrypt sensitive data at the column level or the tablespace level.

• How Transparent Data Encryption Column Encryption Works
Transparent Data Encryption (TDE) column encryption protects confidential data, such as
credit card and Social Security numbers, that is stored in table columns.

• How Transparent Data Encryption Tablespace Encryption Works
Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an
entire tablespace.

• How the Keystore for the Storage of TDE Master Encryption Keys Works
To control the encryption, you use a keystore and a TDE master encryption key.

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

2.4.1 About Transparent Data Encryption Types and Components
You can encrypt sensitive data at the column level or the tablespace level.

At the column level, you can encrypt sensitive data in application table columns. TDE
tablespace encryption enables you to encrypt all of the data that is stored in a tablespace.

Both TDE column encryption and TDE tablespace encryption use a two-tiered key-based
architecture. Unauthorized users, such as intruders who are attempting security attacks,
cannot read the data from storage and back up media unless they have the TDE master
encryption key to decrypt it.

2.4.2 How Transparent Data Encryption Column Encryption Works
Transparent Data Encryption (TDE) column encryption protects confidential data, such as
credit card and Social Security numbers, that is stored in table columns.

TDE column encryption uses the two-tiered key-based architecture to transparently encrypt
and decrypt sensitive table columns. The TDE master encryption key is stored in an external
keystore, which can be an Oracle wallet, Oracle Key Vault, or the Oracle Cloud Infrastructure
key management service (KMS). This TDE master encryption key encrypts and decrypts the
TDE table key, which in turn encrypts and decrypts data in the table column.

Figure 2-1 an overview of the TDE column encryption process.

Chapter 2
Types and Components of Transparent Data Encryption

2-3

Figure 2-1 TDE Column Encryption Overview

Data Dictionary

S.No Name
Credit Card

No.

1. SCOTT #!&*!%@)$(

3. MARY @!@*!$%)#&

2. JOHN !#%&*@!)$(

TDE Master
Encryption Key

External Security
Module

(Software/Hardware
Keystore)

TDE Table
Keys

Encrypt/Decrypt

Encrypt/
Decrypt

Oracle Database

As shown in Figure 2-1, the TDE master encryption key is stored in an external
security module that is outside of the database and accessible only to a user who was
granted the appropriate privileges. For this external security module, Oracle Database
uses an Oracle software keystore (wallet, in previous releases) or an external key
manager keystore. Storing the TDE master encryption key in this way prevents its
unauthorized use.

Using an external security module separates ordinary program functions from
encryption operations, making it possible to assign separate, distinct duties to
database administrators and security administrators. Security is enhanced because
the keystore password can be unknown to the database administrator, requiring the
security administrator to provide the password.

When a table contains encrypted columns, TDE uses a single TDE table key
regardless of the number of encrypted columns. Each TDE table key is individually
encrypted with the TDE master encryption key. No keys are stored in plaintext.

2.4.3 How Transparent Data Encryption Tablespace Encryption Works
Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an
entire tablespace.

All of the objects that are created in the encrypted tablespace are automatically
encrypted. TDE tablespace encryption is useful if your tables contain sensitive data in
multiple columns, or if you want to protect the entire table and not just individual
columns. You do not need to perform a granular analysis of each table column to
determine the columns that need encryption.

In addition, TDE tablespace encryption takes advantage of bulk encryption and
caching to provide enhanced performance. The actual performance impact on
applications can vary.

TDE tablespace encryption encrypts all of the data stored in an encrypted tablespace
including its redo data. TDE tablespace encryption does not encrypt data that is stored
outside of the tablespace. For example, BFILE data is not encrypted because it is

Chapter 2
Types and Components of Transparent Data Encryption

2-4

stored outside the database. If you create a table with a BFILE column in an encrypted
tablespace, then this particular column will not be encrypted.

All of the data in an encrypted tablespace is stored in encrypted format on the disk. Data is
transparently decrypted for an authorized user having the necessary privileges to view or
modify the data. A database user or application does not need to know if the data in a
particular table is encrypted on the disk. In the event that the data files on a disk or backup
media is stolen, the data is not compromised.

TDE tablespace encryption uses the two-tiered, key-based architecture to transparently
encrypt (and decrypt) tablespaces. The TDE master encryption key is stored in a security
module (Oracle wallet, Oracle Key Vault, or Oracle Cloud Infrastructure (OCI) key
management service (KMS)). This TDE master encryption key is used to encrypt the TDE
tablespace encryption key, which in turn is used to encrypt and decrypt data in the
tablespace.

Figure 2-2 shows an overview of the TDE tablespace encryption process.

Figure 2-2 TDE Tablespace Encryption

TDE Master
Encryption Key

External Security
Module

(Software/Hardware
Keystore)

Tablespace

TDE Tablespace
Encryption Key

Encrypt/
Decrypt

Encrypt/
Decrypt

Oracle Database

TDE Tablespace Encryption

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

Encrypted Data Files

Tablespace

TDE Tablespace
Encryption Key

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

@!@*!
@!@*!
@!@*!

Encrypted Data Files

Note:

The encrypted data is protected during operations such as JOIN and SORT. This
means that the data is safe when it is moved to temporary tablespaces. Data in
undo and redo logs is also protected.

TDE tablespace encryption also allows index range scans on data in encrypted tablespaces.
It does not interfere with ExaData Hybrid Columnar Compression (EHCC), Oracle Advanced
Compression, or Oracle Recovery Manager (Oracle RMAN) compression. This is not
possible with TDE column encryption.

Chapter 2
Types and Components of Transparent Data Encryption

2-5

2.4.4 How the Keystore for the Storage of TDE Master Encryption
Keys Works

To control the encryption, you use a keystore and a TDE master encryption key.

• About the Keystore Storage of TDE Master Encryption Keys
Oracle Database provides a key management framework for Transparent Data
Encryption (TDE) that stores and manages keys and credentials.

• Benefits of the Keystore Storage Framework
The key management framework provides several benefits for Transparent Data
Encryption.

• Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud
Infrastructure (OCI) key management systems (KMS).

2.4.4.1 About the Keystore Storage of TDE Master Encryption Keys
Oracle Database provides a key management framework for Transparent Data
Encryption (TDE) that stores and manages keys and credentials.

The key management framework includes the keystore to securely store the TDE
master encryption keys and the management framework to securely and efficiently
manage keystore and key operations for various database components.

The Oracle keystore stores a history of retired TDE master encryption keys, which
enables you to rotate the TDE master encryption key, and still be able to decrypt data
(for example, for incoming Oracle Recovery Manager (Oracle RMAN) backups) that
was encrypted under an earlier TDE master encryption key.

2.4.4.2 Benefits of the Keystore Storage Framework
The key management framework provides several benefits for Transparent Data
Encryption.

• Enables separation of duty between the database administrator and the security
administrator who manages the keys. You can grant the ADMINISTER KEY
MANAGEMENT or SYSKM privilege to users who are responsible for managing the
keystore and key operations.

• Facilitates compliance, because it helps you to track encryption keys and
implement requirements such as keystore password rotation and TDE master
encryption key re-key operations. Both wallet password rotations and TDE master
key re-key operation do not require database or application downtime.

• Facilitates and helps enforce keystore backup requirements. A backup is a copy of
the password-protected software keystore that is created for all of the critical
keystore operations.

The mandatory WITH BACKUP clause of the ADMINISTER KEY MANAGEMENT statement
creates a backup of the password-protected wallet before the changes are applied
to the original password-protected wallet.

• Enables the keystore to be stored on an Oracle Automatic Storage Management
(Oracle ASM) file system. This is particularly useful for Oracle Real Application

Chapter 2
Types and Components of Transparent Data Encryption

2-6

Clusters (Oracle RAC) environments where database instances share a unified file
system view. In Oracle RAC, you must store the Oracle wallet in a shared location
(Oracle ASM or Oracle Advanced Cluster File System (ACFS)), to which all Oracle RAC
instances that belong to one database, have access to. Individual TDE wallets for each
Oracle RAC instances are not supported.

• Enables reverse migration from an external keystore to a file system-based software
keystore. This option is useful if you must migrate back to a software keystore.

2.4.4.3 Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure
(OCI) key management systems (KMS).

Figure 2-3 illustrates the types of keystores that Oracle Database supports.

Figure 2-3 Oracle Database Supported Keystores

Keystore

Software
Keystore

External Key
Manager

Oracle Key Vault
(OKV)

OCI Vault - Key
Management

Auto-Login
Keystore

Local Auto-Login
Keystore

Password-Protected
Keystore

These keystores are as follows:

• Auto-login TDE wallets: Auto-login TDE wallets are protected by a system-generated
password, and do not need to be explicitly opened by a security administrator. Auto-login
TDE wallets are automatically opened when accessed at database startup. Auto-login
TDE wallets can be used across different systems. If your environment does not require
the extra security provided by a keystore that must be explicitly opened for use, then you
can use an auto-login TDE wallet. Auto-login TDE wallets are ideal for unattended
scenarios (for example, Oracle Data Guard standby databases).

• Local auto-login TDE wallets: Local auto-login TDE wallets are auto-login TDE wallets
that are local to the computer on which they are created. Local auto-login keystores
cannot be opened on any computer other than the one on which they are created. This
type of keystore is typically used for scenarios where additional security is required (that
is, to limit the use of the auto-login for that computer) while supporting an unattended
operation. You cannot use local auto-open wallets in Oracle RAC-enabled databases,
because only shared wallets (in ACFS or ASM) are supported.

• Password-protected TDE wallets: Password-protected TDE wallets are protected by
using a password that you create. You must open this type of keystore before the keys
can be retrieved or used and use a password to open this type of keystore.

Chapter 2
Types and Components of Transparent Data Encryption

2-7

TDE wallets can be stored in Oracle Automatic Storage Management (Oracle ASM),
Oracle Automatic Storage Management Cluster File System (Oracle ACFS), or regular
file systems.

Under External Keystore Manager are the following categories:

• Oracle Key Vault (OKV): Oracle Key Vault is a software appliance that provides
continuous key availability and scalable key management through clustering with
up to 16 Oracle Key Vault nodes, potentially deployed across geographically
distributed data centers. It is purpose-built for Oracle Database and its many
deployment models (Oracle RAC, Oracle Data Guard, Exadata, multitenant
environments). In addition, Oracle Key Vault provides online key management for
Oracle GoldenGate encrypted trail files and encrypted ACFS. It is also certified for
ExaDB-C@C and Autonomous Database (dedicated) (ADB-C@C). Oracle Key
Vault is distributed as a full-stack software appliance for installation on dedicated
hardware. It is also available in the OCI Marketplace and can be deployed in your
OCI tenancy quickly and easily. See the video Deploying Oracle Key Vault in OCI.

• OCI Vault - Key Management: The Oracle Cloud Infrastructure (OCI) Key
Management Service (KMS) is a cloud-based service that provides centralized
management and control of encryption keys for data stored in OCI. It enables
integration of encryption with other OCI services such as storage, database, and
Fusion Applications for protecting data stored in these services.

Related Topics

• Oracle Key Vault Administrator's Guide

2.4.5 Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

for TDE column encryption, salt is added by default to plaintext before encryption
unless specified otherwise. You cannot add salt to indexed columns that you want to
encrypt. For indexed columns, choose the NO SALT parameter for the SQL ENCRYPT
clause.

For TDE tablespace encryption and database encryption, the default is to use the
Advanced Encryption Standard with a 128-bit length cipher key (AES128). By default,
Transparent Data Encryption (TDE) column encryption uses the Advanced Encryption
Standard (AES) with a 192-bit length cipher key (AES192).

You can change encryption algorithms and encryption keys on existing encrypted
columns by setting a different algorithm with the SQL ENCRYPT clause.

Table 2-1 lists the supported encryption algorithms.

Chapter 2
Types and Components of Transparent Data Encryption

2-8

https://www.oracle.com/security/database-security/key-vault/?ytid=ULKHmTyqu6s

Table 2-1 Supported Encryption Algorithms for Transparent Data Encryption

Algorithm Key Size Parameter Name

Advanced Encryption Standard (AES) • 128 bits (default
for tablespace
encryption)

• 192 bits (default
for column
encryption)

• 256 bits

• AES128
• AES192
• AES256

ARIA • 128 bits
• 192 bits
• 256 bits

• ARIA128
• ARIA192
• ARIA256

GOST 256 bits GOST256
SEED 128 bits SEED128
Triple Encryption Standard (DES) 168 bits 3DES168

For integrity protection of TDE column encryption, the SHA-1 hashing algorithm is used. If you
have storage restrictions, then use the NOMAC option.

Related Topics

• Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

2.5 How the Multitenant Option Affects Transparent Data
Encryption

In a multitenant environment, you can configure keystores for either the entire container
database (CDB) or for individual pluggable databases (PDBs).

Oracle Database supports the following multitenant modes for the management of keystores:

• United mode enables you to configure one keystore for the CDB root and any associated
united mode PDBs. United mode operates much the same as how TDE was managed in
an multitenant environment in previous releases.

• Isolated mode enables you to create and manage both keystores and TDE master
encryption keys in an individual PDB. Different isolated mode PDBs can have different
keystore types.

Oracle Database supports isolated PDBs with TDE wallets (wallets) and Oracle Key Vault.
The cloud tooling in Oracle Cloud Infrastructure (OCI) and the OCI Key Management Service
(KMS), do not support isolated PDBs. This includes Oracle Exadata Cloud@Customer
(ExaDB-C@C), Autonomous Database Cloud@Customer (ADB-C@C), and Oracle Exadata
Database Service (ExaDB-D and ExaDB-D@Azure).

Depending on your site’s needs, you can use a mixture of both united mode and isolated
mode. For example, if you want most of the PDBs to use one type of a keystore, then you
can configure the keystore type in the CDB root (united mode). For the PDBs in this CDB that
must use a different type of keystore, then you can configure the PDB itself to use the

Chapter 2
How the Multitenant Option Affects Transparent Data Encryption

2-9

keystore it needs (isolated mode). The isolated mode setting for the PDB will override
the united mode setting for the CDB.

Before you can configure keystores for use in united or isolated mode, you must
perform a one-time configuration by using initialization parameters. To configure
keystores for united mode and isolated mode, you use the ADMINISTER KEY
MANAGEMENT statement.

Related Topics

• Managing Keystores and TDE Master Encryption Keys in United Mode
United mode enables you to create a common keystore for the CDB and the PDBs
for which the keystore is in united mode.

• Managing Keystores and TDE Master Encryption Keys in Isolated Mode
In an Oracle Cloud database (but not an on-premises database), isolated mode
enables you to create a keystore for each pluggable database (PDB).

• Using sqlnet.ora to Configure Transparent Data Encryption Keystores
If you do not want to use the WALLET_ROOT parameter to configure keystores, then
you can use the sqlnet.ora file.

Chapter 2
How the Multitenant Option Affects Transparent Data Encryption

2-10

3
Configuring Transparent Data Encryption

You can configure software or external keystores, for use on both individual table columns or
entire tablespaces.

• About Configuring Transparent Data Encryption
To configure Transparent Data Encryption, you must perform a one-time setup before you
create keystores and encrypt data.

• Configuring a Software Keystore
A software keystore is a container for the master encryption key, and it resides in the
software file system.

• Configuring an External Keystore
There are two types of external keystores that Oracle Database supports: Oracle Key
Vault keystores and OCI Vault - Key Management keystores.

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

• Transparent Data Encryption Data Dynamic and Data Dictionary Views
You can query a set of dynamic and data dictionary views to find more information about
Transparent Data Encryption (TDE) data.

3.1 About Configuring Transparent Data Encryption
To configure Transparent Data Encryption, you must perform a one-time setup before you
create keystores and encrypt data.

Before you can configure keystores and begin to encrypt data, you must perform a one-time
configuration using the WALLET_ROOT and TDE_CONFIGURATION parameters to designate the
location and type of keystores that you plan to create.

The WALLET_ROOT parameter specifies the keystore directory location. Before you set
WALLET_ROOT, ensure that you have an existing directory that you can use to store keystores.
Oracle Database retrieves the keystore by searching in these locations, in the following order:

1. The location set by the WALLET_ROOT location

2. The location specified in the ENCRYPTION_WALLET_LOCATION setting in the sqlnet.ora file

3. The location specified by the WALLET_LOCATION setting in the sqlnet.ora file

4. The $ORACLE_BASE/admin/db_unique_name/wallet directory

The TDE_CONFIGURATION parameter specifies the type of keystore (software keystore or
Oracle Key Vault). After you set the type of keystore using TDE_CONFIGURATION, when you
create the keystore, Oracle Database creates a directory within the WALLET_ROOT location for
the keystore type. For example, if you set TDE_CONFIGURATION to FILE, then Oracle Database

3-1

creates a TDE wallet in WALLET_ROOT/tde. To use Oracle Key Vault, install the Oracle
Key Vault client software into WALLET_ROOT/okv and set TDE_CONFIGURATION to OKV. To
establish an auto-open Oracle Key Vault configuration, add the Oracle Key Vault
password into an auto-open wallet in WALLET_ROOT/tde, and set TDE_CONFIGURATION to
OKV|FILE. If you want to migrate from one keystore type to another, then you must first
set TDE_CONFIGURATION parameter to the keystore type that you want to use, and then
use the ADMINISTER KEY MANAGEMENT statement to perform the migration. For
example, you can migrate from a TDE keystore to OKV by setting it to OKV|FILE.

The KEYSTORE_MODE column of the V$ENCRYPTION_WALLET dynamic view shows whether
united mode or isolated mode has been enabled.

3.2 Configuring a Software Keystore
A software keystore is a container for the master encryption key, and it resides in the
software file system.

• About Configuring a Software Keystore
A software keystore is a container that stores the TDE master encryption key.

• Step 1: Configure the Software Keystore Location and Type
You must configure the keystore location and type by setting WALLET_ROOT in
init.ora and TDE_CONFIGURATION in the database instance.

• Step 2: Create the Software Keystore
After you have specified a directory location for the software keystore, you can
create the keystore.

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the
keystore before you can use it.

• Step 4: Set the TDE Master Encryption Key in the Software Keystore
Once the keystore is open, you can set a TDE master encryption key for it.

• Step 5: Encrypt Your Data
Now that you have completed the keystore configuration, you can begin to encrypt
data in the PDB.

3.2.1 About Configuring a Software Keystore
A software keystore is a container that stores the TDE master encryption key.

Before you can configure the keystore, you first must define a location for it by setting
the WALLET_ROOT parameter in the init.ora file. The database locates this keystore by
first checking the WALLET_ROOT setting. If this setting has not been created, then the
database checks the sqlnet.ora file. You can create other keystores, such as copies
of the keystore and export files that contain keys, depending on your needs. If you
must remove or delete the keystore that you configured in the WALLET_ROOT location,
then you must do so only after you have moved the TDE master encryption key in this
keystore to another keystore. Then you must reset WALLET_ROOT to point to the new
location of the keystore.

After you configure the software keystore location by using the WALLET_ROOT and
TDE_CONFIGURATION parameters, you can log in to the CDB to create and open the
keystore, and then set the TDE master encryption key. After you complete these steps,
you can begin to encrypt data.

Chapter 3
Configuring a Software Keystore

3-2

3.2.2 Step 1: Configure the Software Keystore Location and Type
You must configure the keystore location and type by setting WALLET_ROOT in init.ora and
TDE_CONFIGURATION in the database instance.

1. Log in to the server where the Oracle database resides.

2. If necessary, create a wallet directory.

Typically, the wallet directory is located in the $ORACLE_BASE/admin/db_unique_name
directory, and it is named wallet. Preferably, this directory should be empty.

3. Log in to the database instance as a user who has been granted the SYSDBA
administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

4. Set the WALLET_ROOT static initialization parameter for the wallet directory.

The TDE wallets will be created in WALLET_ROOT/tde. For example, for a database
instance named orcl:

ALTER SYSTEM SET WALLET_ROOT = '$ORACLE_BASE/ADMIN/ORCL/WALLET' SCOPE = SPFILE SID
= '*';

5. Set the TDE_CONFIGURATION parameter to specify the keystore type.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=BOTH SID = '*';

In this specification, keystore_type must be set to FILE to configure a TDE keystore.

To configure a TDE keystore if the server parameter file (spfile) is in use, set scope to
both:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE" SCOPE = BOTH SID
= '*';

3.2.3 Step 2: Create the Software Keystore
After you have specified a directory location for the software keystore, you can create the
keystore.

• About Creating Software Keystores
There are three different types of software keystores.

• Creating a Password-Protected Software Keystore
A password-protected software keystore requires a password, which is used to protect
the TDE master keys.

• Creating an Auto-Login or a Local Auto-Login Software Keystore
As an alternative to password-protected keystores, you can create either an auto-login or
local auto-login software keystore.

Chapter 3
Configuring a Software Keystore

3-3

3.2.3.1 About Creating Software Keystores
There are three different types of software keystores.

You can create password-protected software keystores, auto-login software keystores,
and local auto-login software keystores.

Be aware that executing the query SELECT * FROM V$ENCRYPTION_WALLET will
automatically open an auto-login software keystore. For example, suppose you have a
password-protected keystore and an auto-login keystore. If the password-protected
keystore is open and you close the password-protected keystore and then query the
V$ENCRYPTION_WALLET view, then the output will indicate that a keystore is open.
However, this is because V$ENCRYPTION_WALLET opened up the auto-login software
keystore and then displayed the status of the auto-login keystore.

Related Topics

• Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud
Infrastructure (OCI) key management systems (KMS).

3.2.3.2 Creating a Password-Protected Software Keystore
A password-protected software keystore requires a password, which is used to protect
the TDE master keys.

A TDE wallet can only contain TDE-related security objects, and no security objects
used by other database or application components. In addition, do not use orapki or
mkstore to create password-protected or (local) auto-open TDE wallets. Instead, use
the ADMINISTER KEY MANAGEMENT statement.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Use the SHOW PARAMETER command to confirm that WALLET_ROOT is set, and
TDE_CONFIGURATION is set to KEYSTORE_CONFIGURATION=FILE.

3. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the keystore using
the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY
software_keystore_password;

The /tde directory is automatically created under WALLET_ROOT, if it does not
already exist. In Oracle Automatic Storage Management (Oracle ASM), for
the /tde directory to be automatically created if it does not already exist,
WALLET_ROOT must point to +DATA/ORACLE_UNQNAME.

In this specification, software_keystore_password is the password of the keystore
that you, the security administrator, creates.

For example, to create the keystore in the WALLET_ROOT/tde directory:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY password;

keystore altered.

Chapter 3
Configuring a Software Keystore

3-4

After you run this statement, the ewallet.p12 file, which is the keystore, appears in the
keystore location.

3.2.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore
As an alternative to password-protected keystores, you can create either an auto-login or
local auto-login software keystore.

Both of these keystores have system-generated passwords. They are also PKCS#12-based
files. The auto-login software keystore can be opened from different computers from the
computer where this keystore resides, but the local auto-login software keystore can only be
opened from the computer on which it was created. Both the auto-login and local auto-login
keystores are created from the password-protected software keystores. Creating any of them
does not require database downtime.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

If SQL*Plus is already open and you had modified the init.ora file to set the
WALLET_ROOT parameter during this time, then reconnect to SQL*Plus. The database
session must be changed before the init.ora changes can take effect.

2. Create a password-protected software keystore.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl'
IDENTIFIED BY keystore_password;

3. Create the auto-login or local auto-login keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE
FROM KEYSTORE 'keystore_location'
IDENTIFIED BY software_keystore_password;

In this specification:

• LOCAL enables you to create a local auto-login software keystore. Otherwise, omit this
clause if you want the keystore to be accessible by other computers. LOCAL creates a
local auto-login wallet file, cwallet.sso, and this wallet will be tied to the host on
which it was created. For an Oracle Real Application Clusters (Oracle RAC)
environment, omit the LOCAL keyword, because each Oracle RAC node has a
different host name. If you configure a local auto-login wallet for the Oracle RAC
instance, then only the first Oracle RAC node, where the cwallet.sso file was
created, would be able to access the software keystore. If you try to open the
keystore from another node instead of from that first node, there would be a problem
auto-opening cwallet.sso, and so it would result in a failure to auto-open the
software keystore. This restriction applies if you are using a shared location to hold
the cwallet.sso file for the Oracle RAC cluster, because using LOCAL only works if
you have a separate cwallet.sso file (containing the same credentials) on each
node of the Oracle RAC environment.

• keystore_location is the path to the directory location of the password-protected
keystore for which you want to create the auto-login keystore (for example, /etc/

Chapter 3
Configuring a Software Keystore

3-5

ORACLE/WALLETS/orcl). Enclose this setting in single quotation marks (' '). To
find this location, query the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view.

• software_keystore_password is the password-protected keystore for which
you want to create the auto-login keystore.

For example, to create an auto-login software keystore of the password-protected
keystore that is located in the/etc/ORACLE/WALLETS/orcl directory:

ADMINISTER KEY MANAGEMENT CREATE AUTO_LOGIN KEYSTORE
FROM KEYSTORE '/etc/ORACLE/WALLETS/orcl'
IDENTIFIED BY password;

keystore altered.

After you run this statement, the cwallet.sso file appears in the keystore location.
The ewallet.p12 file is the password-protected wallet.

Note:

Do not remove the PKCS#12 wallet (ewallet.p12 file) after you create the
auto login keystore (.sso file). You must have the PKCS#12 wallet to
regenerate or rekey the TDE master encryption key in the future. By default,
this file is located in the $ORACLE_HOME/admin/ORACLE_SID/wallet directory.

Transparent Data Encryption uses an auto login keystore only if it is available at the
correct location (ENCRYPTION_WALLET_LOCATION, WALLET_LOCATION, or the default
keystore location), and the SQL statement to open an encrypted keystore has not
already been executed. (Note that auto-login keystores are encrypted, because they
have system-generated passwords.)

Related Topics

• Creating a Password-Protected Software Keystore
A password-protected software keystore requires a password, which is used to
protect the TDE master keys.

3.2.4 Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the keystore
before you can use it.

• About Opening Software Keystores
A password-protected software keystore must be open before any TDE master
encryption keys can be created or accessed in the keystore.

• Opening a Software Keystore
To open a software keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

Chapter 3
Configuring a Software Keystore

3-6

3.2.4.1 About Opening Software Keystores
A password-protected software keystore must be open before any TDE master encryption
keys can be created or accessed in the keystore.

Many Transparent Data Encryption operations require the software keystore to be open.
There are two ways that you can open the software keystore:

• Manually open the keystore by issuing the ADMINISTER KEY MANAGEMENT SET KEYSTORE
OPEN statement. Afterward, you can perform the operation.

• Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement that is
used to perform the operation. FORCE KEYSTORE temporarily opens the keystore for the
duration of the operation, and when the operation completes, the keystore is closed
again. FORCE KEYSTORE is useful for situations when the database is heavily loaded. In
this scenario, because of concurrent access to encrypted objects in the database, the
auto-login keystore continues to open immediately after it has been closed but before a
user has had chance to open the password-based keystore.

Keystores can be in the following states: open, closed, open but with no master encryption
key, open but with an unknown master encryption key, undefined, or not available (that is, not
present in the WALLET_ROOT location).

After you manually open a keystore, it remains open until you manually close it. Each time
you restart a database instance, you must manually open the password keystore to reenable
encryption and decryption operations.

You can check the status of whether a keystore is open or not by querying the STATUS column
of the V$ENCRYPTION_WALLET view.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both software and external keystores.

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

3.2.4.2 Opening a Software Keystore
To open a software keystore, you must use the ADMINISTER KEY MANAGEMENT statement with
the SET KEYSTORE OPEN clause.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Run the ADMINISTER KEY MANAGEMENT statement to open the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY password;
keystore altered.

Chapter 3
Configuring a Software Keystore

3-7

To switch over to opening the password-protected software keystore when an
auto-login keystore is configured and is currently open, specify the FORCE
KEYSTORE clause as follows.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;
keystore altered.

Here, the IDENTIFIED BY EXTERNAL STORE clause is included in the statement
because the keystore credentials exist in an external store. This enables
the password-protected keystore to be opened without specifying the
keystore password within the statement itself.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the
external store by searching in this path: WALLET_ROOT/PDB_GUID/tde_seps.

3. Confirm that the keystore is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;
Note that if the keystore is open but you have not created a TDE master encryption
key yet, the STATUS column of the V$ENCRYPTION_WALLET view reminds you with an
OPEN_NO_MASTER_KEY status.

3.2.5 Step 4: Set the TDE Master Encryption Key in the Software
Keystore

Once the keystore is open, you can set a TDE master encryption key for it.

• About Setting the Software Keystore TDE Master Encryption Key
The TDE master encryption key is stored in the keystore.

• Setting the TDE Master Encryption Key in the Software Keystore
To set the TDE master encryption key in a software keystore, use the ADMINISTER
KEY MANAGEMENT statement with the SET KEY clause.

3.2.5.1 About Setting the Software Keystore TDE Master Encryption Key
The TDE master encryption key is stored in the keystore.

The TDE master encryption key protects the TDE table keys and tablespace
encryption keys. By default, the TDE master encryption key is a key that TDE
generates. You can find if a keystore has no TDE master encryption key set or an
unknown TDE master encryption key by querying the STATUS column of the
V$ENCRYPTION_WALLET view.

You can manually create a master encryption ID outside the database, which is useful
for Cloud environments. You also can create TDE master encryption keys for use later
on, and then manually activate them.

Related Topics

• Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

• Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.

Chapter 3
Configuring a Software Keystore

3-8

3.2.5.2 Setting the TDE Master Encryption Key in the Software Keystore
To set the TDE master encryption key in a software keystore, use the ADMINISTER KEY
MANAGEMENT statement with the SET KEY clause.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Ensure that the database is open in READ WRITE mode.

You can set the TDE master encryption key if OPEN_MODE is set to READ WRITE. To find the
status, query the OPEN_MODE column of the V$DATABASE dynamic view. (If you cannot
access this view, then connect as SYSDBA and try the query again. In order to connect as
SYSKM for this type of query, you must create a password file for it.)

3. Set the TDE master encryption key in the software by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE] | keystore_password
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• FORCE KEYSTORE should be included if the keystore is closed. This automatically
opens the keystore before setting the TDE master encryption key. The FORCE
KEYSTORE clause also switches over to opening the password-protected software
keystore when an auto-login keystore is configured and is currently open.

• IDENTIFIED BY specifies the keystore password. Alternatively, if the keystore
password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE
clause.

• WITH BACKUP creates a backup of the keystore. You must use this option for
password-protected keystores. Optionally, you can use the USING clause to add a
brief description of the backup. Enclose this description in single quotation marks
(' '). This identifier is appended to the named keystore file (for example,
ewallet_time_stamp_emp_key_backup.p12, with emp_key_backup being the backup
identifier). Follow the file naming conventions that your operating system uses.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

Chapter 3
Configuring a Software Keystore

3-9

keystore altered.

3.2.6 Step 5: Encrypt Your Data
Now that you have completed the keystore configuration, you can begin to encrypt
data in the PDB.

You can encrypt data in individual table columns or in entire tablespaces or databases.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in
database tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

3.3 Configuring an External Keystore
There are two types of external keystores that Oracle Database supports: Oracle Key
Vault keystores and OCI Vault - Key Management keystores.

• About Configuring an External Keystore
An external keystore is a separate server or device that provides security storage
for encryption keys.

• Step 1: Configure the External Keystore
You can configure the external keystore by setting the TDE_CONFIGURATION
parameter.

• Step 2: Open the External Keystore
After you have configured the external keystore, you must open it before it can be
used.

• Step 3: Set the First TDE Master Encryption Key in the External Keystore
After you have opened the external keystore, you are ready to set the first TDE
master encryption key.

• Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an
Oracle Key Vault keystore, you can begin to encrypt data.

3.3.1 About Configuring an External Keystore
An external keystore is a separate server or device that provides security storage for
encryption keys.

External keystores are external to an Oracle database. Oracle Database can interface
with external keystores but cannot manipulate them outside of the Oracle interface.
The Oracle database can request the external keystore to create a key but it cannot
define how this key is stored in an external database. (Conversely, for software
keystores that are created using TDE, Oracle Database has full control: that is, you
can use SQL statements to manipulate this type of keystore.) Examples of external
keystores are Oracle Key Vault keystores. Supported external keystores are Oracle
Key Vault and the Oracle Cloud Infrastructure Vault.

Chapter 3
Configuring an External Keystore

3-10

To configure an external keystore, you must first include the keystore type in the sqlnet.ora
file, open the external keystore, and then set the external keystore TDE master encryption
key.

For Oracle Key Vault:

IDENTIFIED BY "Oracle_Key_Vault_password"

After you configure the external keystore, you are ready to begin encrypting your data.

3.3.2 Step 1: Configure the External Keystore
You can configure the external keystore by setting the TDE_CONFIGURATION parameter.

1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client software into
the WALLET_ROOT/okv directory.

2. Log in to the database instance as a user who has been granted the ALTER SYSTEM
administrative privilege.

For example:

sqlplus sec_admin
Enter password: password

3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type
by using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=BOTH SID = '*';

In this specification:

• keystore_type can be one of the following types:

– OKV to configure an Oracle Key Vault keystore

– HSM to configure a hardware security module (HSM) keystore

For example, to configure your database to use Oracle Key Vault:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV"
SCOPE=BOTH SID = '*";

3.3.3 Step 2: Open the External Keystore
After you have configured the external keystore, you must open it before it can be used.

• About Opening External Keystores
You must open the external keystore so that it is accessible to the database before you
can perform any encryption or decryption.

• Opening an External Keystore
To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with the
SET KEYSTORE OPEN clause.

3.3.3.1 About Opening External Keystores
You must open the external keystore so that it is accessible to the database before you can
perform any encryption or decryption.

Chapter 3
Configuring an External Keystore

3-11

If a recovery operation is needed on your database (for example, if the database was
not cleanly shut down, and has an encrypted tablespace that needs recovery), then
you must open the external keystore before you can open the database itself.

There are two ways that you can open the external keystore:

• Manually open the keystore by issuing the ADMINISTER KEY MANAGEMENT SET
KEYSTORE OPEN statement. Afterward, you can perform the operation.

• Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement.
FORCE KEYSTORE temporarily opens the keystore for the duration of the operation,
and when the operation completes, the keystore is closed again. FORCE KEYSTORE
is useful for situations when the database is heavily loaded. In this scenario,
because of concurrent access to encrypted objects in the database, the auto-login
keystore continues to open immediately after it has been closed but before a user
has had a chance to open the password-based keystore.

To check the status of the keystore, query the STATUS column of the
V$ENCRYPTION_WALLET view. Keystores can be in the following states: CLOSED,
NOT_AVAILABLE (that is, not present in the WALLET_ROOT location), OPEN,
OPEN_NO_MASTER_KEY, OPEN_UNKNOWN_MASTER_KEY_STATUS.

Be aware that for external keystores, if the database is in the mounted state, then it
cannot check if the master key is set because the data dictionary is not available. In
this situation, the status will be OPEN_UNKNOWN_MASTER_KEY_STATUS.

Related Topics

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united
mode.

3.3.3.2 Opening an External Keystore
To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with the
SET KEYSTORE OPEN clause.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Open the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE | "external_key_manager_password"
[CONTAINER = ALL | CURRENT];

In this specification:

• FORCE KEYSTORE enables the keystore operation if the keystore is closed.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– external_key_manager_password is for an external keystore manager,
which can be Oracle Key Vault or OCI Vault - Key Management. Enclose
this password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If

Chapter 3
Configuring an External Keystore

3-12

at that time no password was given, then the password in the ADMINISTER KEY
MANAGEMENT statement becomes NULL.

For Oracle Key Vault in a multitenant environment, to open the connection into Oracle
KeyVault for the CDB$ROOT and all open PDBs:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE]
IDENTIFIED BY Oracle_Key_Vault_password
CONTAINER = ALL;

3. Repeat this procedure each time you restart the database instance.

3.3.4 Step 3: Set the First TDE Master Encryption Key in the External
Keystore

After you have opened the external keystore, you are ready to set the first TDE master
encryption key.

• About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external keystore.

• Setting a New TDE Master Encryption Key
You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

• Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you previously
configured a software keystore.

3.3.4.1 About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external keystore.

If you have not previously configured a software keystore for TDE, then you can set the first
TDE master encryption key in the external keystore. If you have already configured a
software keystore for TDE, then you must migrate the database to use the external keystore.

Along with the current master encryption key, Oracle wallets maintain historical master
encryption keys that are generated after every re-key operation that rekeys the master
encryption key. These historical master keys help to restore Oracle database backups that
were taken previously using one of the historical master encryption keys.

Related Topics

• Setting a New TDE Master Encryption Key
You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

• Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you previously
configured a software keystore.

3.3.4.2 Setting a New TDE Master Encryption Key
You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

Chapter 3
Configuring an External Keystore

3-13

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

You can set the master encryption key if OPEN_MODE is set to READ WRITE. To find
the status, for a non-multitenant environment, query the OPEN_MODE column of the
V$DATABASE dynamic view. If you are in a multitenant environment, then run the
show_pdbs command.

3. Set the new master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag'] [FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

In this specification:

• tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– external_key_manager_password is for an external keystore manager,
which can be Oracle Key Vault or OCI Vault - Key Management. Enclose
this password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If
at that time no password was given, then the password in the ADMINISTER
KEY MANAGEMENT statement becomes NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY "external_key_manager_password";

keystore altered.

Related Topics

• Creating a TDE Master Encryption Key for Later Use
A keystore must be opened before you can create a TDE master encryption key
for use later on.

• Oracle Database Administrator’s Guide

3.3.4.3 Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you
previously configured a software keystore.

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the
old software keystore to perform decryption and encryption operations on data
exported or backed up using the software keystore. You can migrate from the software
to the external keystore.

Chapter 3
Configuring an External Keystore

3-14

Along with the current master encryption key, Oracle keystores maintain historical master
encryption keys that are generated after every re-key operation that rotates the master
encryption key. These historical master encryption keys help to restore Oracle database
backups that were taken previously using one of the historical master encryption keys.

Related Topics

• Migrating Between a Software Password Keystore and an External Keystore
You can migrate between password-protected software keystores and external keystores.

3.3.5 Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an Oracle Key
Vault keystore, you can begin to encrypt data.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

• Oracle Key Vault Administrator's Guide

3.4 Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database tables.

• About Encrypting Columns in Tables
You can encrypt individual columns in tables.

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

• Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities that
bypass the SQL layer cannot use TDE column encryption services.

• Creating Tables with Encrypted Columns
Oracle Database provides a selection of different algorithms that you can use to define
the encryption used in encrypted columns.

• Encrypting Columns in Existing Tables
You can encrypt columns in existing tables. As with new tables, you have a choice of
different algorithms to use to definite the encryption.

• Creating an Index on an Encrypted Column
You can create an index on an encrypted column.

• Adding Salt to an Encrypted Column
Salt, which is a random string added to data before encryption, is a way to strengthen the
security of encrypted data. .

• Removing Salt from an Encrypted Column
You can use the ALTER TABLE SQL statement to remove salt from an encrypted
column.

Chapter 3
Encrypting Columns in Tables

3-15

• Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
You can use the ALTER TABLE SQL statement to change the encryption key or
algorithm used in encrypted columns.

3.4.1 About Encrypting Columns in Tables
You can encrypt individual columns in tables.

Whether you choose to encrypt individual columns or entire tablespaces depends on
the data types that the table has. There are also several features that do not support
TDE column encryption.

Related Topics

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

• Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities
that bypass the SQL layer cannot use TDE column encryption services.

3.4.2 Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

You can encrypt data columns that use a variety of different data types.

Supported data types are as follows:

• BINARY_DOUBLE
• BINARY_FLOAT
• CHAR
• DATE
• INTERVAL DAY TO SECOND
• INTERVAL YEAR TO MONTH
• NCHAR
• NUMBER
• NVARCHAR2
• RAW (legacy or extended)

• TIMESTAMP (includes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE)

• VARCHAR2 (legacy or extended)

If you want to encrypt large binary objects (LOBs), then you can use Oracle
SecureFiles. Oracle SecureFiles enables you to store LOB data securely. To encrypt a
LOB using SecureFiles, you use the CREATE TABLE or ALTER TABLE statements.

You cannot encrypt a column if the encrypted column size is greater than the size
allowed by the data type of the column.

Chapter 3
Encrypting Columns in Tables

3-16

Table 3-1 shows the maximum allowable sizes for various data types.

Table 3-1 Maximum Allowable Size for Data Types

Data Type Maximum Size

CHAR 1932 bytes

VARCHAR2 (legacy) 3932 bytes

VARCHAR2 (extended) 32,699 bytes

NVARCHAR2 (legacy) 1966 bytes

NVARCHAR2 (extended) 16,315 bytes

NCHAR 966 bytes

RAW (extended) 32,699 bytes

Note:

TDE tablespace encryption does not have these data type restrictions.

Related Topics

• Restrictions on Using Transparent Data Encryption Tablespace Encryption
You should be aware of restrictions on using Transparent Data Encryption when you
encrypt a tablespace.

• Oracle Database SecureFiles and Large Objects Developer's Guide

3.4.3 Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities that bypass
the SQL layer cannot use TDE column encryption services.

Do not use TDE column encryption with the following database features:

• Index types other than B-tree

• Range scan search through an index

• Synchronous change data capture

• Transportable tablespaces

• Columns that have been created as identity columns

In addition, you cannot use TDE column encryption to encrypt columns used in foreign key
constraints.

Applications that must use these unsupported features can use the DBMS_CRYPTO PL/SQL
package for their encryption needs.

Transparent Data Encryption protects data stored on a disk or other media. It does not
protect data in transit. Use the network encryption solutions discussed in Oracle Database
Security Guide to encrypt data over the network.

Chapter 3
Encrypting Columns in Tables

3-17

Related Topics

• How Transparent Data Encryption Works with Export and Import Operations
Oracle Data Pump can export and import tables that contain encrypted columns,
as well as encrypt entire dump sets.

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE
column encryption.

3.4.4 Creating Tables with Encrypted Columns
Oracle Database provides a selection of different algorithms that you can use to define
the encryption used in encrypted columns.

• About Creating Tables with Encrypted Columns
You can use the CREATE TABLE SQL statement to create a table with an encrypted
column.

• Creating a Table with an Encrypted Column Using the Default Algorithm
By default, TDE uses the AES encryption algorithm with a 192-bit key length
(AES192).

• Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default
Algorithm
You an use the CREATE TABLE SQL statement to create a table with an encrypted
column.

• Using the NOMAC Parameter to Save Disk Space and Improve Performance
You can bypass checks that TDE performs. This can save up to 20 bytes of disk
space per encrypted value.

• Example: Using the NOMAC Parameter in a CREATE TABLE Statement
You can use the CREATE TABLE SQL statement to encrypt a table column using
the NOMAC parameter.

• Example: Changing the Integrity Algorithm for a Table
You can use the ALTER TABLE SQL statement to change the integrity algorithm
for a database table.

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the
data were in a database table.

3.4.4.1 About Creating Tables with Encrypted Columns
You can use the CREATE TABLE SQL statement to create a table with an encrypted
column.

To create relational tables with encrypted columns, you can specify the SQL ENCRYPT
clause when you define database columns with the CREATE TABLE SQL statement.

3.4.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm
By default, TDE uses the AES encryption algorithm with a 192-bit key length (AES192).

If you encrypt a table column without specifying an algorithm, then the column is
encrypted using the AES192 algorithm.

Chapter 3
Encrypting Columns in Tables

3-18

TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for attackers to
steal data through a brute force attack. TDE also adds a Message Authentication Code
(MAC) to the data for integrity checking. The SHA-1 integrity algorithm is used by default.

• To create a table that encrypts a column, use the CREATE TABLE SQL statement with the
ENCRYPT clause.

For example, to encrypt a table column using the default algorithm:

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER,
 salary NUMBER(6) ENCRYPT);

This example creates a new table with an encrypted column (salary). The column is
encrypted using the default encryption algorithm (AES192). Salt and MAC are added by
default. This example assumes that the keystore is open and a master encryption key is
set.

Note:

If there are multiple encrypted columns in a table, then all of these columns must
use the same pair of encryption and integrity algorithms.

Salt is specified at the column level. This means that an encrypted column in a table
can choose not to use salt irrespective of whether or not other encrypted columns in
the table use salt.

3.4.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-
Default Algorithm

You an use the CREATE TABLE SQL statement to create a table with an encrypted column.

By default, TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for
attackers to steal data through a brute force attack. However, if you plan to index the
encrypted column, then you must use the NO SALT parameter.

• To create a table that uses an encrypted column that is a non-default algorithm or no
algorithm, run the CREATE TABLE SQL statement as follows:

– If you do not want to use any algorithm, then include the ENCRYPT NO SALT clause.

– If you want to use a non-default algorithm, then use the ENCRYPT USING clause,
followed by one of the following algorithms enclosed in single quotation marks:

* 3DES168
* AES128
* AES192 (default)

* AES256
The following example shows how to specify encryption settings for the empID and salary
columns.

Chapter 3
Encrypting Columns in Tables

3-19

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER ENCRYPT NO SALT,
 salary NUMBER(6) ENCRYPT USING '3DES168');

In this example:

• The empID column is encrypted and does not use salt. Both the empID and salary
columns will use the 3DES168 encryption algorithm, because all of the encrypted
columns in a table must use the same encryption algorithm.

• The salary column is encrypted using the 3DES168 encryption algorithm. Note that
the string that specifies the algorithm must be enclosed in single quotation marks ('
'). The salary column uses salt by default.

3.4.4.4 Using the NOMAC Parameter to Save Disk Space and Improve
Performance

You can bypass checks that TDE performs. This can save up to 20 bytes of disk space
per encrypted value.

If the number of rows and encrypted columns in the table is large, then bypassing TDE
checks can add up to a significant amount of disk space. In addition, this saves
processing cycles and reduces the performance overhead associated with TDE.

TDE uses the SHA-1 integrity algorithm by default. All of the encrypted columns in a
table must use the same integrity algorithm. If you already have a table column using
the SHA-1 algorithm, then you cannot use the NOMAC parameter to encrypt another
column in the same table.

• To bypass the integrity check during encryption and decryption operations, use the
NOMAC parameter in the CREATE TABLE and ALTER TABLE statements.

Related Topics

• Performance and Storage Overhead of Transparent Data Encryption
The performance of Transparent Data Encryption can vary.

3.4.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE
Statement

You can use the CREATE TABLE SQL statement to encrypt a table column using the
NOMAC parameter.

Example 3-1 creates a table with an encrypted column. The empID column is encrypted
using the NOMAC parameter.

Example 3-1 Using the NOMAC parameter in a CREATE TABLE statement

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER ENCRYPT 'NOMAC' ,
 salary NUMBER(6));

Chapter 3
Encrypting Columns in Tables

3-20

3.4.4.6 Example: Changing the Integrity Algorithm for a Table
You can use the ALTER TABLE SQL statement to change the integrity algorithm for a
database table.

Example 3-2 shows how to change the integrity algorithm for encrypted columns in a table.
The encryption algorithm is set to 3DES168 and the integrity algorithm is set to SHA-1. The
second ALTER TABLE statement sets the integrity algorithm to NOMAC.

Example 3-2 Changing the Integrity Algorithm for a Table

ALTER TABLE EMPLOYEE REKEY USING '3DES168' 'SHA-1';

ALTER TABLE EMPLOYEE REKEY USING '3DES168' 'NOMAC';

3.4.4.7 Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the data were
in a database table.

External tables can be updated using the ORACLE_DATAPUMP access driver.

• To encrypt specific columns in an external table, use the ENCRYPT clause when you define
those columns:

A system-generated key encrypts the columns. For example, the following CREATE TABLE
SQL statement encrypts the ssn column using the 3DES168 algorithm:

CREATE TABLE emp_ext (
 first_name,

 ssn ENCRYPT USING '3DES168',

If you plan to move an external table to a new location, then you cannot use a randomly
generated key to encrypt the columns. This is because the randomly generated key will not
be available at the new location.

For such scenarios, you should specify a password while you encrypt the columns. After you
move the data, you can use the same password to regenerate the key required to access the
encrypted column data at the new location.

Table partition exchange also requires a password-protected TDE table key.

Example 3-3 creates an external table using a password to create the TDE table key.

Example 3-3 Creating a New External Table with a Password-Generated TDE Table
Key

CREATE TABLE emp_ext (
 first_name,
 last_name,
 empID,
 salary,
 ssn ENCRYPT IDENTIFIED BY password
) ORGANIZATION EXTERNAL
 (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "D_DIR"

Chapter 3
Encrypting Columns in Tables

3-21

 LOCATION('emp_ext.dat')
)
 REJECT LIMIT UNLIMITED
AS SELECT * FROM EMPLOYEE;

3.4.5 Encrypting Columns in Existing Tables
You can encrypt columns in existing tables. As with new tables, you have a choice of
different algorithms to use to definite the encryption.

• About Encrypting Columns in Existing Tables
The ALTER TABLE SQL statement enables you to encrypt columns in an existing
table.

• Adding an Encrypted Column to an Existing Table
You can encrypt columns in existing tables, use a different algorithm, and use NO
SALT to index the column.

• Encrypting an Unencrypted Column
You can use the ALTER TABLE MODIFY statement to encrypt an existing
unencrypted column.

• Disabling Encryption on a Column
You may want to disable encryption for reasons of compatibility or performance.

3.4.5.1 About Encrypting Columns in Existing Tables
The ALTER TABLE SQL statement enables you to encrypt columns in an existing table.

To add an encrypted column to an existing table, or to encrypt or decrypt an existing
column, you use the ALTER TABLE SQL statement with the ADD or MODIFY clause.

3.4.5.2 Adding an Encrypted Column to an Existing Table
You can encrypt columns in existing tables, use a different algorithm, and use NO SALT
to index the column.

• To add an encrypted column to an existing table, use the ALTER TABLE ADD
statement, specifying the new column with the ENCRYPT clause.

Example 3-4 adds an encrypted column, ssn, to an existing table, called employee.
The ssn column is encrypted with the default AES192 algorithm. Salt and MAC are
added by default.

Example 3-4 Adding an Encrypted Column to an Existing Table

ALTER TABLE employee ADD (ssn VARCHAR2(11) ENCRYPT);

3.4.5.3 Encrypting an Unencrypted Column
You can use the ALTER TABLE MODIFY statement to encrypt an existing unencrypted
column.

• To encrypt an existing unencrypted column, use the ALTER TABLE MODIFY
statement, specifying the unencrypted column with the ENCRYPT clause.

The following example encrypts the first_name column in the employee table. The
first_name column is encrypted with the default AES192 algorithm. Salt is added to the

Chapter 3
Encrypting Columns in Tables

3-22

data, by default. You can encrypt the column using a different algorithm. If you want to index
a column, then you must specify NO SALT. You can also bypass integrity checks by using the
NOMAC parameter.

ALTER TABLE employee MODIFY (first_name ENCRYPT);

The following example encrypts the first_name column in the employee table using the
NOMAC parameter.

ALTER TABLE employee MODIFY (first_name ENCRYPT 'NOMAC');

3.4.5.4 Disabling Encryption on a Column
You may want to disable encryption for reasons of compatibility or performance.

• To disable column encryption, use the ALTER TABLE MODIFY command with the DECRYPT
clause.

Example 3-5 decrypts the first_name column in the employee table.

Example 3-5 Turning Off Column Encryption

ALTER TABLE employee MODIFY (first_name DECRYPT);

3.4.6 Creating an Index on an Encrypted Column
You can create an index on an encrypted column.

The column being indexed must be encrypted without salt. If the column is encrypted with
salt, then the ORA-28338: cannot encrypt indexed column(s) with salt error is raised.

• To create an index on an encrypted column, use the CREATE INDEX statement with the
ENCRYPT NO SALT clause.

Example 3-6 shows how to create an index on a column that has been encrypted without salt.

Example 3-6 Creating Index on a Column Encrypted Without Salt

CREATE TABLE employee (
 first_name VARCHAR2(128),
 last_name VARCHAR2(128),
 empID NUMBER ENCRYPT NO SALT,
 salary NUMBER(6) ENCRYPT USING '3DES168');

CREATE INDEX employee_idx on employee (empID);

3.4.7 Adding Salt to an Encrypted Column
Salt, which is a random string added to data before encryption, is a way to strengthen the
security of encrypted data. .

Salt ensures that the same plaintext data does not always translate to the same encrypted
text. Salt removes the one common method that intruders use to steal data, namely, matching
patterns of encrypted text. Adding salt requires an additional 16 bytes of storage per
encrypted data value.

• To add or remove salt from encrypted columns, use the ALTER TABLE MODIFY SQL
statement.

Chapter 3
Encrypting Columns in Tables

3-23

For example, suppose you want to encrypt the first_name column using salt. If the
first_name column was encrypted without salt earlier, then the ALTER TABLE MODIFY
statement reencrypts it using salt.

ALTER TABLE employee MODIFY (first_name ENCRYPT SALT);

3.4.8 Removing Salt from an Encrypted Column
You can use the ALTER TABLE SQL statement to remove salt from an encrypted
column.

• To remove salt from an encrypted column, use the ENCRYPT NO SALT clause in the
ALTER TABLE SQL statement.

For example, suppose you wanted to remove salt from the first_name column. If you
must index a column that was encrypted using salt, then you can use this statement to
remove the salt before indexing

ALTER TABLE employee MODIFY (first_name ENCRYPT NO SALT);

3.4.9 Changing the Encryption Key or Algorithm for Tables with
Encrypted Columns

You can use the ALTER TABLE SQL statement to change the encryption key or
algorithm used in encrypted columns.

Each table can have only one TDE table key for its columns. You can regenerate the
TDE table key with the ALTER TABLE statement. This process generates a new key,
decrypts the data in the table using the previous key, reencrypts the data using the
new key, and then updates the table metadata with the new key information. You can
also use a different encryption algorithm for the new TDE table key.

• To change the encryption key or algorithm for tables that contain encrypted
columns, use the ALTER TABLE SQL statement with the REKEY or REKEY USING
clause.

For example:

ALTER TABLE employee REKEY;

Example 3-7 regenerates the TDE table key for the employee table by using the
3DES168 algorithm.

Example 3-7 Changing an Encrypted Table Column Encryption Key and
Algorithm

ALTER TABLE employee REKEY USING '3DES168';

3.5 Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-24

• About Encryption Conversions for Tablespaces and Databases
The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces. ALTER
TABLESPACE can encrypt existing tablespaces.

• Restrictions on Using Transparent Data Encryption Tablespace Encryption
You should be aware of restrictions on using Transparent Data Encryption when you
encrypt a tablespace.

• Creating an Encrypted New Tablespace
When you create a new tablespace, you can configure its encryption settings during the
creation process.

• Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

• Encrypting Future Tablespaces
You can configure Oracle Database to automatically encrypt future tablespaces that you
will create.

• Encrypted Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential data in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL system tables.

• Encryption Conversions for Existing Offline Tablespaces
You can perform offline encryption conversions by using the ALTER TABLESPACE SQL
statement OFFLINE, ENCRYPT, and DECRYPT clauses.

• Encryption Conversions for Existing Online Tablespaces
You can encrypt and decrypt an online existing tablespace by using the ALTER
TABLESPACE SQL statement with the ONLINE and ENCRYPT or DECRYPT clauses.

• Encryption Conversions for Existing Databases
You can encrypt both offline and online databases.

3.5.1 About Encryption Conversions for Tablespaces and Databases
The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces. ALTER
TABLESPACE can encrypt existing tablespaces.

In addition to encrypting new and existing tablespaces, you can encrypt full databases, which
entails the encryption of the Oracle-managed tablespaces (in this release, the SYSTEM,
SYSAUX, TEMP, and UNDO tablespaces). To encrypt a full database, you use the ALTER
TABLESPACE statement, not ALTER DATABASE, to encrypt the Oracle-managed tablespaces.

The following table compares the differences between an offline and an online encryption
conversion of tablespaces and databases.

Table 3-2 Offline and Online Tablespace and Database Encryption Conversions

Functionality Offline Conversion Online Conversion

Release with minimum
conversion capability

Oracle Database 11g release 1
(11.1)

Oracle Database 12c release 2
(12.2) and later

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-25

Table 3-2 (Cont.) Offline and Online Tablespace and Database Encryption
Conversions

Functionality Offline Conversion Online Conversion

What can be backported? The ability to encrypt or decrypt
a data file with the AES128
algorithm (using

ALTER DATABASE DATAFILE
data_file ENCRYPT

or DECRYPT) can be used in
Oracle Database releases
12.1.0.2 and 11.2.0.4.

No

Algorithms supported AES128 only All symmetric encryption
algorithm that TDE supports.
See Supported Encryption and
Integrity Algorithms. See also
About Encryption Conversions
for Existing Online Tablespaces.

When can the conversion be
run?

When the tablespace is offline or
the database is in the mount
stage.

When the tablespace is online
and database is open in read/
write mode.

Is auxiliary space required for the
conversion?

No Yes. See Encrypting an Existing
Tablespace with Online
Conversion for guidelines.

Oracle Data Guard conversion
guidelines

Convert both the primary and
standby manually. Convert the
standby first and then switch over
to minimum downtime

After you convert the primary, the
standby conversion takes place
automatically. You cannot
perform an online conversion
directly on the standby.

Encrypt the SYSTEM, SYSAUX,
and UNDO tablespaces (database
conversion)

Oracle Database 12c release 2
(12.2) and later only. You must
set COMPATIBILITY to
12.2.0.0.

Oracle Database 12c release 2
(12.2) and later only. You must
set COMPATIBILITY to
12.2.0.0.

Can an existing TEMP tablespace
be converted?

No, but you can create an
encrypted TEMP tablespace in
Oracle Database 12c release 2
(12.2) and later, make it the
default temporary tablespace,
and then drop the original TEMP
tablespace.

No, but you can create an
encrypted TEMP tablespace in
Oracle Database 12c release 2
(12.2) and later, make it the
default temporary tablespace,
and then drop the original TEMP
tablespace.

Can an existing tablespace be
decrypted?

You only can decrypt a
tablespace or data file that was
previously encrypted by an
offline encrypt operation. Oracle
does not recommend that you
decrypt the UNDO tablespace
once it is encrypted.

Yes, but Oracle does not
recommend that you decrypt the
UNDO tablespace once it is
encrypted.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-26

Table 3-2 (Cont.) Offline and Online Tablespace and Database Encryption
Conversions

Functionality Offline Conversion Online Conversion

Can encryption keys be rekeyed? No, but after the tablespace is
encrypted, you can then use
online conversion to rekey in
Oracle Database 12c release 2
(12.2) compatibility.

Yes

Can encryption operations be
run in parallel?

You can run parallel encryption
conversions at the data file level
with multiple user sessions
running.

You can run parallel encryption
conversions at the tablespace
level with multiple user sessions
running.

What to do if an encryption
conversion SQL statement fails
to complete?

Re-issue the encryption or
decryption SQL statement to
ensure that all the data files
within the tablespace are
consistently either encrypted or
decrypted.

Rerun the SQL statement but
use the FINISH clause.

3.5.2 Restrictions on Using Transparent Data Encryption Tablespace
Encryption

You should be aware of restrictions on using Transparent Data Encryption when you encrypt
a tablespace.

Note the following restrictions:

• Transparent Data Encryption (TDE) tablespace encryption encrypts or decrypts data
during read and write operations, as opposed to TDE column encryption, which encrypts
and decrypts data at the SQL layer. This means that most restrictions that apply to TDE
column encryption, such as data type restrictions and index type restrictions, do not apply
to TDE tablespace encryption.

• To perform import and export operations, use Oracle Data Pump.

• If you encrypt the SYSTEM, SYSAUX, TEMP, or UNDO tablespace, then never close the
keystore manually, even if you later decrypt the tablespace by using the ALTER
TABLESPACE SQL statement.

Related Topics

• Encrypting an Unencrypted Column
You can use the ALTER TABLE MODIFY statement to encrypt an existing unencrypted
column.

• Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

• Oracle Database Utilities

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-27

3.5.3 Creating an Encrypted New Tablespace
When you create a new tablespace, you can configure its encryption settings during
the creation process.

• Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
You must set the COMPATIBLE initialization parameter before creating an encrypted
tablespace.

• Step 2: Set the Tablespace TDE Master Encryption Key
You should ensure that you have configured the TDE master encryption key.

• Step 3: Create the Encrypted Tablespace
After you have set the COMPATIBLE initialization parameter, you are ready to create
the encrypted tablespace.

3.5.3.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace
Encryption

You must set the COMPATIBLE initialization parameter before creating an encrypted
tablespace.

• About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
A minimum COMPATIBLE initialization parameter setting of 11.2.0.0 enables the full
set of tablespace encryption features.

• Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization
parameter file for the database instance.

3.5.3.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace
Encryption

A minimum COMPATIBLE initialization parameter setting of 11.2.0.0 enables the full set
of tablespace encryption features.

Setting the compatibility to 11.2.0.0 enables the following functionality:

• The 11.2.0.0 setting enables the database to use any of the four supported
algorithms for data encryption (3DES168, AES128, AES192, and AES256).

• The 11.2.0.0 setting enables the migration of a key from a software keystore to
an external keystore (ensure that the TDE master encryption key was configured
for the external keystore)

• The 11.2.0.0 setting enables rekeying the TDE master encryption key

Be aware that once you set the COMPATIBLE parameter to 11.2.0.0, the change is
irreversible. To use tablespace encryption, ensure that the compatibility setting is at
the minimum, which is 11.2.0.0.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-28

See Also:

• Oracle Database SQL Language Reference for more information about the
COMPATIBLE parameter

• Oracle Database Administrator’s Guide for more information about initialization
parameter files

3.5.3.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization parameter file
for the database instance.

1. Log in to the database instance.

In a multitenant environment, log in to the PDB. For example:

sqlplus sec_admin@hrpdb
Enter password: password
Connected.

To find the available PDBs, run the show pdbs command. To check the current PDB, run
the show con_name command.

2. Check the current setting of the COMPATIBLE parameter.

For example:

SHOW PARAMETER COMPATIBLE

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
compatible string 11.2.0.0
noncdbcompatible BOOLEAN FALSE

3. If you must change the COMPATIBLE parameter, then complete the remaining steps in this
procedure.

The value should be 12.2.0.0 or later.

4. From the command line, locate the initialization parameter file for the database instance.

• UNIX systems: This file is in the ORACLE_HOME/dbs directory and is named
initORACLE_SID.ora (for example, initmydb.ora).

• Windows systems: This file is in the ORACLE_HOME\database directory and is named
initORACLE_SID.ora (for example, initmydb.ora).

5. Edit the initialization parameter file to use the new COMPATIBLE setting.

For example:

COMPATIBLE=12.2.0.0
6. In SQL*Plus, connect as a user who has the SYSDBA administrative privilege, and then

restart the database.

For example:

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-29

CONNECT /AS SYSDBA
SHUTDOWN
STARTUP

If tablespace encryption is in use, then open the keystore at the database mount.
The keystore must be open before you can access data in an encrypted
tablespace.

For example:

STARTUP MOUNT;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
ALTER DATABASE OPEN;

3.5.3.2 Step 2: Set the Tablespace TDE Master Encryption Key
You should ensure that you have configured the TDE master encryption key.

• Set the TDE master encryption key as follows:

– For software TDE master encryption keys, see Step 4: Set the TDE Master
Encryption Key in the Software Keystore.

– For hardware TDE master encryption keys, see Step 3: Set the First TDE
Master Encryption Key in the External Keystore.

3.5.3.3 Step 3: Create the Encrypted Tablespace
After you have set the COMPATIBLE initialization parameter, you are ready to create the
encrypted tablespace.

• About Creating Encrypted Tablespaces
To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL
statement.

• Creating an Encrypted Tablespace
To create an encrypted tablespace, you must use the CREATE TABLESPACE
statement with the ENCRYPTION USING clause.

• Example: Creating an Encrypted Tablespace That Uses AES192
You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace.

• Example: Creating an Encrypted Tablespace That Uses the Default Algorithm
You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace that uses the default algorithm.

3.5.3.3.1 About Creating Encrypted Tablespaces
To create an encrypted tablespace, you can use the CREATE TABLESPACE SQL
statement.

You must have the CREATE TABLESPACE system privilege to create an encrypted
tablespace.

You can import data into an encrypted tablespace by using Oracle Data Pump. You
can also use a SQL statement such as CREATE TABLE...AS SELECT... or ALTER
TABLE...MOVE... to move data into an encrypted tablespace. The CREATE TABLE...AS

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-30

SELECT... statement creates a table from an existing table. The ALTER TABLE...MOVE...
statement moves a table into the encrypted tablespace.

For security reasons, you cannot encrypt a tablespace with the NO SALT option.

You can query the ENCRYPTED column of the DBA_TABLESPACES and USER_TABLESPACES data
dictionary views to verify if a tablespace was encrypted.

See Also:

Oracle Database Reference for more information about the DBA_TABLESPACES and
USER_TABLESPACES data dictionary views

3.5.3.3.2 Creating an Encrypted Tablespace
To create an encrypted tablespace, you must use the CREATE TABLESPACE statement with the
ENCRYPTION USING clause.

1. Log in to the database instance as a user who has been granted the CREATE TABLESPACE
system privilege.

In a multitenant environment, log in to the PDB. For example:

sqlplus sec_admin@hrpdb as syskm
Enter password: password
Connected.

To find the available PDBs, run the show pdbs command. To check the current PDB, run
the show con_name command.

2. Run the CREATE TABLESPACE statement, using its encryption clauses.

For example:

CREATE TABLESPACE encrypt_ts
 DATAFILE '$ORACLE_HOME/dbs/encrypt_df.dbf' SIZE 1M
 ENCRYPTION USING 'AES256' ENCRYPT;

In this specification:

• ENCRYPTION USING 'AES256' ENCRYPT specifies the encryption algorithm and the key
length for the encryption. The ENCRYPT clause encrypts the tablespace. Enclose this
setting in single quotation marks (' '). The key lengths are included in the names of
the algorithms. If you do not specify an encryption algorithm, then the default
encryption algorithm, AES128, is used.

See Also:

• Supported Encryption and Integrity Algorithms

• Oracle Database SQL Language Reference

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-31

3.5.3.3.3 Example: Creating an Encrypted Tablespace That Uses AES192
You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace.

Example 3-8 creates a tablespace called securespace_1 that is encrypted using the
AES192 algorithm.

Example 3-8 Creating an Encrypted Tablespace That Uses AES192

CREATE TABLESPACE securespace_1
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION USING 'AES192' ENCRYPT;

3.5.3.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm
You can use the CREATE TABLESPACE SQL statement to create an encrypted
tablespace that uses the default algorithm.

Example 3-9 creates a tablespace called securespace_2. Because no encryption
algorithm is specified, the default encryption algorithm (AES128) is used. The key
length is 128 bits.

You cannot encrypt an existing tablespace.

Example 3-9 Creating an Encrypted Tablespace That Uses the Default
Algorithm

CREATE TABLESPACE securespace_2
DATAFILE '/home/user/oradata/secure01.dbf'
SIZE 150M
ENCRYPTION ENCRYPT;

3.5.4 Setting the Tablespace Encryption Default Algorithm
The TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to specific encryption
scenarios.

These scenarios are as follows:

• Encryption commands that do not allow to specify the encryption algorithm

• New tablespaces that are created without the encryption syntax

• The encryption algorithm for the SYSTEM tablespace

TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM only becomes effective if it is set before
the first SET KEY operation with Oracle Key Vault, or the CREATE KEYSTORE command
for software keystore-based TDE configuration.

TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM applies to both offline and online
tablespace encryption operations. It also applies to future encrypted tablespaces, if
TABLESPACE_ENCRYPTION has been set appropriately. In a multitenant environment, you
can set TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM in the CDB root or in individual
PDBs.

• Enter the following ALTER SYSTEM statement:

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-32

ALTER SYSTEM SET TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM = value SCOPE=BOTH;

In this specification, value can be one of the following encryption algorithms: AES128,
AES192, AES256, 3DES168, ARIA128, ARIA192, or ARIA256. The default encryption algorithm
is AES256.

3.5.5 Encrypting Future Tablespaces
You can configure Oracle Database to automatically encrypt future tablespaces that you will
create.

• About Encrypting Future Tablespaces
The ENCRYPT_NEW_TABLESPACES dynamic database initialization parameter controls if
future tablespaces are encrypted.

• Setting Future Tablespaces to be Encrypted
You can set the ENCRYPT_NEW_TABLESPACES database initialization parameter to
automatically encrypt future tablespaces that you create.

3.5.5.1 About Encrypting Future Tablespaces
The ENCRYPT_NEW_TABLESPACES dynamic database initialization parameter controls if future
tablespaces are encrypted.

By default, all Oracle Cloud databases are encrypted. If you install an off-the-shelf application
into such a database, its installation scripts most likely do not have the encryption syntax. In
this case, because ENCRYPT_NEW_TABLESPACES is set to CLOUD_ONLY, those tablespaces would
be created encrypted regardless.

In an Oracle Cloud environment, the following scenarios may occur when you create
encrypted tablespaces in Oracle Cloud and on-premises environments:

• You create a test database in Oracle Cloud and the tablespaces were encrypted by using
when the ENCRYPT_NEW_TABLESPACE parameter has been set to automatically create the
Cloud database as encrypted. However, you may not have the intention or even an
Advanced Security Option license to bring the encrypted database back on premises. For
this use case, Oracle Recovery Manager (Oracle RMAN) provides the option to duplicate
or restore AS DECRYPTED.

• You create a hybrid environment where the primary database is on premises and the
standby database is on Oracle Cloud. If a switchover operation takes place, then the new
primary is on Oracle Cloud. If a new tablespace is transparently encrypted, then a similar
scenario to the first item in this list may occur. For example, suppose you do not have an
Advanced Security Option (ASO) license, and you have an automatically encrypted
tablespace in the Oracle Cloud. The standby database on premises is also automatically
encrypted. In this case, you either need an Advanced Security license (which includes
Transparent Data Encryption and Data Redaction) for the on-premises standby database,
or you cannot use the standby database.

3.5.5.2 Setting Future Tablespaces to be Encrypted
You can set the ENCRYPT_NEW_TABLESPACES database initialization parameter to automatically
encrypt future tablespaces that you create.

• In SQL*Plus, enter the following ALTER SYSTEM statement:

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-33

ALTER SYSTEM SET ENCRYPT_NEW_TABLESPACES = value;

In this specification, value can be:

– CLOUD_ONLY transparently encrypts the tablespace in the Cloud using the
tablespace encryption default algorithm if you do not specify the ENCRYPTION
clause of the CREATE TABLESPACE SQL statement. It applies only to an Oracle
Cloud environment. If you create the tablespace on premises, then it will follow
the CREATE TABLESPACE statement specification that you enter. For example, if
you omit the ENCRYPTION clause, then the tablespace is created unencrypted.
If you include this clause and use a different algorithm, then the tablespace will
use that algorithm. CLOUD_ONLY is the default.

– ALWAYS automatically encrypts the tablespace using the tablespace encryption
default algorithm if you omit the ENCRYPTION clause of CREATE TABLESPACE, for
both the Cloud and premises scenarios.

If you do provide the ENCRYPTION clause, however, the algorithm that you
specify takes precedence over the tablespace encryption default algorithm.

– DDL encrypts the tablespace using the specified setting of the ENCRYPTION
clause of CREATE TABLESPACE, for both Oracle Cloud and on-premises
environments.

Related Topics

• ENCRYPT_NEW_TABLESPACES

3.5.6 Encrypted Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential data in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL system tables.

By default, the credential data in the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL
system tables is obfuscated. However, because of the availability of many types of de-
obfuscation algorithms, Oracle recommends that you encrypt this sensitive credential
data. To check the status the data dictionary credentials, you can query the
DICTIONARY_CREDENTIALS_ENCRYPT data dictionary view.

The encryption of sensitive credential data in these two system tables uses
Transparent Data Encryption. Encryption of credential data uses the AES256
algorithm. To encrypt credential data, you do not need an Oracle Advanced Security
Option license, but you must be granted the SYSKM administrative privilege and the
database must have an open keystore.

Related Topics

• Oracle Database Security Guide

3.5.7 Encryption Conversions for Existing Offline Tablespaces
You can perform offline encryption conversions by using the ALTER TABLESPACE SQL
statement OFFLINE, ENCRYPT, and DECRYPT clauses.

• About Encryption Conversions for Existing Offline Tablespaces
You can encrypt or decrypt an existing data file of a user tablespace when the
tablespace is offline or when the database is not open.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-34

• Encrypting an Existing User-Defined Tablespace with Offline Conversion
To encrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.

• Decrypting an Existing Tablespace with Offline Conversion
To decrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and DECRYPT clauses.

3.5.7.1 About Encryption Conversions for Existing Offline Tablespaces
You can encrypt or decrypt an existing data file of a user tablespace when the tablespace is
offline or when the database is not open.

Use the offline encryption method if you do not plan to change the compatibility of your
databases from Oracle Database 11c release 2 (11.2) or Oracle Database 12c release 1
(12.1) to release 18c, which is irreversible. The offline encryption method is also useful if you
want to quickly make use of Transparent Data Encryption before you upgrade this database
to release 18c. You can both encrypt and decrypt offline tablespaces.

Note the following:

• If you want to encrypt the Oracle Database-supplied tablespaces (SYSTEM, SYSAUX, and
UNDO) using the offline conversion method, then you must use the method that is
described in Encrypting an Existing Database with Offline Conversion.

• You can use the online method to rekey, change the encryption algorithm, or decrypt a
tablespace that was previously encrypted with the offline method.

• If you have configured Oracle Data Guard, you can minimize downtime by encrypting the
tablespaces on the standby first, switching over to the primary, and then encrypting the
tablespaces on the primary. Offline encryption (both on the data file and tablespace level)
are standby first; online encryption is an Oracle Data Guard transaction, and as such,
replayed on the standby database.

• You cannot specify the encryption algorithm in an offline conversion. In an offline
conversion, all data files and tablespaces are encrypted using the AES128 encryption key.
You can check the encryption key by querying the ENCRYPTIONALG column in the
V$DATABASE_KEY_INFO view.

• You can convert offline tablespaces in parallel by using multiple foreground sessions to
encrypt different data files.

• If you are using Oracle Data Guard, you can minimize the downtime by encrypting the
tablespaces on the standby first, switching over, and then encrypting the tablespaces on
the original primary next.

• For Oracle Database 11g release 2 (11.2.0.4) and Oracle Database 12c release 1
(12.1.0.2), you cannot perform an offline encryption of the SYSTEM and SYSAUX
tablespaces. Also, Oracle does not recommend encrypting offline the UNDO tablespace in
these releases. Doing so prevents the keystore from being closed, and this prevents the
database from functioning. In addition, encrypting the UNDO tablespace while the database
is offline is not necessary because all undo records that are associated with any
encrypted tablespaces are already automatically encrypted in the UNDO tablespace. If you
want to encrypt the TEMP tablespace, you must drop and then recreate it as encrypted.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-35

3.5.7.2 Encrypting an Existing User-Defined Tablespace with Offline
Conversion

To encrypt an existing tablespace with offline conversion, you can use the ALTER
TABLESPACE SQL statement with the OFFLINE and ENCRYPT clauses.

The procedure that is described in this section applies to the case where you want to
encrypt individual user-created tablespaces within a database. These tablespaces can
be encrypted offline. However, the Oracle Database-supplied SYSTEM and UNDO
tablespaces cannot be brought offline. If you want to encrypt the tablespaces offline,
then you must use the method that is described in Encrypting an Existing Database
with Offline Conversion.

1. Connect as a user who has the SYSDBA administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

You must have the SYSDBA administrative privilege if you plan to encrypt the
SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative
privilege.

2. Bring the tablespace offline.

ALTER TABLESPACE users OFFLINE NORMAL;
3. Back up the tablespace.

The offline conversion method does not use auxiliary disk space or files, and it
operates directly in-place to the data files. Therefore, you should perform a full
backup of the user tablespace before converting it offline.

4. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM
privilege, open the software keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
software_keystore_password;

5. Encrypt the tablespace.

For example, to encrypt an entire tablespace, include its data files:

ALTER TABLESPACE users ENCRYPTION OFFLINE ENCRYPT;

To encrypt individual data files within a tablespace, use the ALTER DATABASE
DATAFILE SQL statement. For example, to encrypt the data files user_01.dbf and
user_02.dbf:

ALTER DATABASE DATAFILE 'user_01.dbf' ENCRYPT;
ALTER DATABASE DATAFILE 'user_02.dbf' ENCRYPT;

In the same database session, these statements encrypt each of the data files in
sequence, one after another. If you execute each statement in its own database
session, then they will be executed in parallel.

If the encryption process is interrupted, then rerun the ALTER TABLESPACE
statement. The kinds of errors that you can expect in an interruption are general

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-36

errors, such as file system or storage file system errors. The data files within the
tablespace should be consistently encrypted. For example, suppose you offline a
tablespace that has 10 files but for some reason, the encryption only completes for nine
of the files, leaving one decrypted. Although it is possible to bring the tablespace back
online with such inconsistent encryption if the COMPATIBLE parameter is set to 12.2.0.0 or
later, then it is not recommended to leave the tablespace in this state. If COMPATIBLE is
less than 12.2.0.0, then it is not possible to bring the tablespace online if the encryption
property is inconsistent across the data files.

6. Bring the tablespace back online or open the database.

• To bring the tablespace back online:

ALTER TABLESPACE users ONLINE;
• To open a database in a non-multitenant environment:

ALTER DATABASE OPEN
• In a multitenant environment, you can encrypt a data file or tablespace with the offline

method if the root is open and the PDB is not open. For example, for a PDB named
hr_pdb:

ALTER PLUGGABLE DATABASE hr_pdb OPEN
7. Perform a full backup of the converted tablespace.

Related Topics

• Opening a Software Keystore
To open a software keystore, you must use the ADMINISTER KEY MANAGEMENT statement
with the SET KEYSTORE OPEN clause.

3.5.7.3 Decrypting an Existing Tablespace with Offline Conversion
To decrypt an existing tablespace with offline conversion, you can use the ALTER TABLESPACE
SQL statement with the OFFLINE and DECRYPT clauses.

1. Connect as a user who has the SYSDBA administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

You must have the SYSDBA administrative privilege if you plan to decrypt the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Bring the tablespace offline.

ALTER TABLESPACE users OFFLINE NORMAL;
3. As a user who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege,

open the keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
software_keystore_password;

4. Run the ALTER TABLESPACE SQL statement to perform the decryption.

For example, for a tablespace called users:

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-37

ALTER TABLESPACE users ENCRYPTION OFFLINE DECRYPT;

If the decryption process is interrupted, then rerun the ALTER TABLESPACE
statement. The kinds of errors that you can expect in an interruption are general
errors, such as file system or storage file system errors. The data files within the
tablespace should be consistently decrypted. For example, suppose you offline a
tablespace that has 10 files but for some reason, the decryption only completes for
nine of the files, leaving one encrypted. Although it is possible to bring the
tablespace back online with such inconsistent decryption if the COMPATIBLE
parameter is set to 12.2.0.0 or later, then it is not recommended to leave the
tablespace in this state. If COMPATIBLE is less than 12.2.0.0, then it is not possible
to bring the tablespace online if the encryption property is inconsistent across the
data files.

5. Bring the tablespace online.

ALTER TABLESPACE users ONLINE;

Related Topics

• Opening a Software Keystore
To open a software keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

3.5.8 Encryption Conversions for Existing Online Tablespaces
You can encrypt and decrypt an online existing tablespace by using the ALTER
TABLESPACE SQL statement with the ONLINE and ENCRYPT or DECRYPT clauses.

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM,
SYSAUX, and UNDO tablespace when they are online.

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE
with the ONLINE and ENCRYPT clauses.

• Rekeying an Existing Tablespace with Online Conversion
To rekey an existing tablespace that is online, you can use the REKEY clause of the
ALTER TABLESPACE SQL statement.

• Decrypting an Existing Tablespace with Online Conversion
To decrypt an existing tablespace with online conversion, you can use the ALTER
TABLESPACE SQL statement with DECRYPT clause.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the
conversion by rerunning the ALTER TABLESPACE statement using the FINISH
clause.

3.5.8.1 About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
and UNDO tablespace when they are online.

However, you cannot encrypt, decrypt, or rekey a temporary tablespace online.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-38

An online tablespace can be created by using the ONLINE clause of the CREATE TABLESPACE
SQL statement. When you encrypt or rekey a tablespace online, the tablespace will have its
own independent encryption keys and algorithms.

Note the following:

• If an offline tablespace has been encrypted, then you can rekey it online to use a different
algorithm.

• You can encrypt multiple tablespaces online in parallel by using multiple foreground
sessions to encrypt different tablespaces. Within each tablespace, the data files are
encrypted sequentially.

• If the conversion is interrupted, then you can resume the process by issuing the FINISH
clause of the ALTER TABLESPACE SQL statement.

• A redo log is generated for each online tablespace conversion.

• Do not encrypt the SYSTEM and UNDO tablespaces concurrently with other tablespaces.

• You cannot use the transportable tablespace feature with Oracle Data Pump while you
are encrypting a tablespace.

• You cannot run the ALTER TABLESPACE statement concurrently with the following features:

– ADMINISTER KEY MANAGEMENT SET KEY SQL statement

– FLASHBACK DATABASE SQL statement

• If you are using Oracle-managed files for the data files, then the encryption process
rekeys the data files that are associated with the tablespace and then copies or moves
them to the default Oracle-managed files location.

• You can add new files to the tablespace after you have encrypted it. Oracle Database
reformats the new file with the new encryption key. Blocks will be encrypted using the
new key.

• Previous operations that took place in the root or the PDB may require the control files to
be cross-checked against the data dictionary before you can begin the online conversion
process. An ORA-241 operation disallowed: control file is not yet checked
against data dictionary error may occur. To resolve this problem, restart the root or
PDB, and then try issuing the online conversion commands again.

• For security reasons, once online conversion processes a data file, Oracle will zero out
the original data file before deletion. This prevents the database from leaving ghost data
on disk sectors. However, there is a known limitation that can occur if you are performing
an online tablespace conversion at the same time that Oracle Recovery Manager (Oracle
RMAN) is validating files. The online tablespace conversion processes each file one at a
time. If Oracle RMAN is validating a file at the same time that it is being processed by the
online tablespace conversion, then Oracle RMAN could report a corruption problem
(ORA-01578: ORACLE data block corrupted (file # , block #)). It does this
because it sees the blocks that comprise the file as zero. This is a false alarm and you
can ignore the error. If this occurs, then try running the Oracle RMAN validation process
again.

Related Topics

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-39

3.5.8.2 Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with
the ONLINE and ENCRYPT clauses.

1. Connect as a user who has the SYSDBA administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

You must have the SYSDBA administrative privilege if you plan to encrypt the
SYSTEM and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative
privilege.

2. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

You can use the SHOW PARAMETER command to check the current setting of a
parameter.

3. Ensure that the database is open in read-write mode.

You can query the STATUS column of the V$INSTANCE dynamic view to find if a
database is open and the OPEN_MODE column of the V$DATABASE view to find if it in
read-write mode.

4. If necessary, open the database in read-write mode.

ALTER DATABASE OPEN READ WRITE;
5. Ensure that the auxiliary space is at least the same size as the largest data file of

this tablespace.

This size requirement is because Oracle Database performs the conversion one
file at a time. For example, if the largest data file of the tablespace is 32 GB, then
ensure that you have 32 GB of auxiliary space. To find the space used by a data
file, query the BYTES or BLOCKS column of the V$DATAFILE dynamic performance
view.

6. Create and open a master encryption key.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE 'keystore_location' IDENTIFIED BY
software_keystore_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
software_keystore_password;
ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY software_keystore_password
WITH BACKUP;

7. Run the ALTER TABLESPACE statement using the ENCRYPTION and ENCRYPT clauses
to perform the encryption.

For example, for a non-Oracle managed files tablespace named users:

ALTER TABLESPACE users ENCRYPTION ONLINE USING 'AES192' ENCRYPT
FILE_NAME_CONVERT = ('users.dbf', 'users_enc.dbf');

In this example:

• ENCRYPTION ONLINE USING ‘AES192’ ENCRYPT sets the statement to encrypt
the tablespace users while it is online and assigns it the AES192 encryption

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-40

algorithm. If you omit the USING algorithm clause, then the default algorithm,
AES128, is used. For the SYSTEM tablespace, you can use the ENCRYPT clause to
encrypt the tablespace, but you cannot specify an encryption algorithm because it is
encrypted with the existing database key the first time. After encrypting the SYSTEM
tablespace, use the REKEY clause to specify the algorithm.

• FILE_NAME_CONVERT specifies one or more pairs of data files that are associated with
the tablespace. The first name in the pair is an existing data file, and the second
name is for the encrypted version of this data file, which will be created after the
ALTER TABLESPACE statement successfully executes. If the tablespace has more than
one data file, then you must process them all in this statement. Note the following:

– Separate each file name with a comma, including multiple pairs of files. For
example:

FILE_NAME_CONVERT = ('users1.dbf', 'users1_enc.dbf', 'users2.dbf',
'users2_enc.dbf')

– You can specify directory paths in the FILE_NAME_CONVERT clause. For example,
the following clause converts and moves the matching files of the tablespace
from the dbs directory to the dbs/enc directory:

FILE_NAME_CONVERT = ('dbs', 'dbs/enc')
– The FILE_NAME_CONVERT clause recognizes patterns. The following example

converts the data files users_1.dbf and users_2.dbf to users_enc1.dbf and
users_enc2.dbf:

FILE_NAME_CONVERT = ('users', 'users_enc')
– In an Oracle Data Guard environment, include the name of the standby database

data file in the FILE_NAME_CONVERT settings.

– You must use the FILE_NAME_CONVERT clause for non-Oracle managed files. (In
an Oracle-managed files configuration, new data files are created automatically.)

– You can find the data files for a tablespace by querying the V$DATAFILE or
V$DATAFILE_HEADER dynamic views.

By default, data files are in the $ORACLE_HOME/dbs directory. If the data files are
located there, then you do not have to specify a path.

After you complete the conversion, you can check the encryption status by querying the
STATUS column of the V$ENCRYPTED_TABLESPACES dynamic view. The ENCRYPTIONALG column
of this view shows the encryption algorithm that is used. If the conversion process was
interrupted, then you can resume it by running ALTER TABLESPACE with the FINISH clause. For
example, if the primary data file converts but the standby data file does not, then you can run
ALTER TABLESPACE ... FINISH on the standby database for the standby data files.

Related Topics

• Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
To set the COMPATIBLE initialization parameter, you must edit the initialization parameter
file for the database instance.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the conversion by
rerunning the ALTER TABLESPACE statement using the FINISH clause.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-41

3.5.8.3 Rekeying an Existing Tablespace with Online Conversion
To rekey an existing tablespace that is online, you can use the REKEY clause of the
ALTER TABLESPACE SQL statement.

Before you perform a rekey operation, be aware of the following:

• You cannot rekey the TEMP tablespace. If you want to assign a different encryption
algorithm to a TEMP tablespace, then drop TEMP and recreate it with the correct
encryption algorithm.

• Do not perform an online tablespace rekey operation with a master key operation
concurrently. To find if any tablespaces are currently being rekeyed, issue the
following query to find the rekey status of encrypted tablespaces:

SELECT TS#,ENCRYPTIONALG,STATUS FROM V$ENCRYPTED_TABLESPACES;

A status of REKEYING means that the corresponding tablespace is still being
rekeyed. Do not rekey the master key while this status is in effect.

To rekey an existing tablespace with online conversion:

1. Connect as a user who has the SYSDBA administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

You must have the SYSDBA administrative privilege if you plan to rekey the SYSTEM
and SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative
privilege.

2. Ensure that the following requirements are met:

• The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

• The database is open and in read-write mode.

• A master encryption key has been created and is open.

3. Query the KEY_VERSION and STATUS columns of the V$ENCRYPTED_TABLESPACES
dynamic view to find the current status of the encryption algorithm used by the
master encryption key.

4. Perform the rekey operation, based on the status returned by the
V$ENCRYPTED_TABLESPACES dynamic view:

• If the key version status of the tablespace is NORMAL, then specify the new
algorithm of the online tablespace rekey.

For example:

ALTER TABLESPACE users ENCRYPTION USING 'AES192' REKEY FILE_NAME_CONVERT
= ('users.dbf', 'users_enc.dbf');

• If the key version status is ENCRYPTING, DECRYPTING, or REKEYING, then use the
FINISH clause.

For example:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH REKEY FILE_NAME_CONVERT
= ('users.dbf', 'users_enc.dbf');

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-42

5. If the ORA-00241 operation disallowed: control file inconsistent with data
dictionary error appears, then restart the database.

In a multitenant environment, restart the CDB root database and then retry Step 4.

If the conversion process was interrupted, then you can resume it by running ALTER
TABLESPACE with the FINISH clause.

Related Topics

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the
ONLINE and ENCRYPT clauses.

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM, SYSAUX,
and UNDO tablespace when they are online.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the conversion by
rerunning the ALTER TABLESPACE statement using the FINISH clause.

3.5.8.4 Decrypting an Existing Tablespace with Online Conversion
To decrypt an existing tablespace with online conversion, you can use the ALTER TABLESPACE
SQL statement with DECRYPT clause.

1. Connect as a user who has the SYSDBA administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

You must have the SYSDBA administrative privilege if you plan to decrypt the SYSTEM and
SYSAUX tablespaces. Otherwise, connect with the SYSKM administrative privilege.

2. Ensure that the following requirements are met:

• The COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

• The database is open and in read-write mode.

• A master encryption key has been created and is open.

• There is enough auxiliary space to complete the decryption.

3. Run the ALTER TABLESPACE SQL statement with the DECRYPT clause.

For example:

ALTER TABLESPACE users ENCRYPTION ONLINE DECRYPT FILE_NAME_CONVERT =
('users_enc.dbf', 'users.dbf');

In this specification:

• When you specify the files to decrypt, enter them in the reverse order in which they
were originally encrypted. That is, first enter the name of the encrypted file
(users_enc.dbf), followed by the data file (users.dbf).

• Do not provide an algorithm key for the decryption.

If the conversion process was interrupted, then you can resume it by running ALTER
TABLESPACE with the FINISH clause.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-43

Related Topics

• Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE
with the ONLINE and ENCRYPT clauses.

• Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the
conversion by rerunning the ALTER TABLESPACE statement using the FINISH
clause.

3.5.8.5 Finishing an Interrupted Online Encryption Conversion
If an online encryption process is interrupted, then you can complete the conversion by
rerunning the ALTER TABLESPACE statement using the FINISH clause.

An interrupted encryption process (encryption, rekey, or decryption) can be, for
example, an ORA-28425: missing a valid FILE_NAME_CONVERT clause error in the
FILE_NAME_CONVERT clause of the ALTER TABLESPACE SQL statement. Other examples
of interrupted processes are if the conversion skips a data file, which can happen if
there is an error when an Oracle DataBase WRiter (DBWR) process offlines a data
file, or if there is not enough space for the auxiliary file. The tablespace should be
operational even if you do not rerun the ALTER TABLESPACE statement with the FINISH
clause.

In addition to interrupted encryption processes, the tablespace encryption process can
fail during the period when the status is ENCRYPTING. In this case, you can either
decrypt the tablespace back to its original state, or you can resume the encryption by
using the ENCRYPTION ONLINE FINISH ENCRYPT clause of ALTER TABLEPSPACE.

1. Query the V$ENCRYPTED_TABLESPACES to check the STATUS column for the
tablespace.

If the STATUS column reports ENCRYPTING, DECRYPTING, or REKEYING, then re-run
the ALTER TABLESPACE statement with the FINISH clause, as described in this
procedure. If the STATUS reports NORMAL, then you can rerun ALTER TABLESPACE
without the FINISH clause.

You can find the tablespace name that matches the TS# and TABLESPACE_NAME
columns by querying the V$DATAFILE_HEADER view.

2. If necessary query the following additional views to find information about the
tablespace whose online conversion was interrupted:

• DBA_TABLESPACES to find if the STATUS of the tablespace indicates if it is online
or offline.

• V$ENCRYPTED_TABLESPACES to find if the STATUS of the tablespace indicates if it
is encrypted, and what the KEY_VERSION of the encryption key is.

• V$DATAFILE and V$DATAFILE_HEADER to find the data files that are associated
with a tablespace.

3. Run the ALTER TABLESPACE statement using the FINISH clause.

Examples are as follows:

• For an encryption operation:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH ENCRYPT
FILE_NAME_CONVERT = ('users.dbf', 'users_enc.dbf');

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-44

• For a decryption operation:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH DECRYPT FILE_NAME_CONVERT =
('users_enc.dbf', 'users.dbf');

Note the order in which the files are specified: first, the name of the encrypted file,
and then the name of the data file. (In the encryption operation, the name of the data
file is specified first, followed by the name of the encrypted file.)

• For a rekey operation:

ALTER TABLESPACE users ENCRYPTION ONLINE FINISH REKEY FILE_NAME_CONVERT =
('users.dbf', 'users_enc.dbf');

You cannot specify an algorithm when you use the FINISH clause in an ALTER
TABLESPACE statement.

4. To check the conversion, query the STATUS column of the V$ENCRYPTED_TABLESPACES
view.

The status should be NORMAL. In an Oracle Data Guard environment, if the database does
not have NORMAL as the STATUS, then run the ALTER TABLESPACE ... FINISH statement
on the primary or the standby data file that did not successfully convert.

3.5.9 Encryption Conversions for Existing Databases
You can encrypt both offline and online databases.

• About Encryption Conversions for Existing Databases
The encryption conversion of an entire database encrypts all tablespaces, including the
Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces.

• Encrypting an Existing Database with Offline Conversion
When you encrypt an existing database with offline conversion, you do not specify an
encryption algorithm.

• Encrypting an Existing Database with Online Conversion
When you encrypt an existing database with online conversion, you do not specify an
encryption algorithm.

3.5.9.1 About Encryption Conversions for Existing Databases
The encryption conversion of an entire database encrypts all tablespaces, including the
Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces.

Note the following:

• To perform the encryption, you can use the offline and online functionality of the
tablespace encryption conversions.

• You can encrypt any or all of the Oracle-supplied tablespaces, and in any order. The
encryption of the Oracle-supplied tablespaces has no impact on the encryption of user-
created tablespaces.

• When you encrypt the Oracle-supplied tablespaces, Oracle Database prevents the
keystore from being closed.

• You cannot encrypt an existing temporary tablespace, but you can drop the existing
temporary tablespace and then recreate it as encrypted.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-45

• The UNDO and TEMP metadata that is generated from sensitive data in an encrypted
tablespace is already automatically encrypted. Therefore, encrypting UNDO and
TEMP is optional.

• The performance effect of encrypting all the tablespaces in a database depends
on the workload and platform. Many modern CPUs provide built-in hardware
acceleration, which results in a minimal performance impact.

• In a multitenant environment, you can encrypt any tablespaces in any pluggable
databases (PDBs), including the Oracle-supplied tablespaces. However, the
keystore in the CDB root must be open at all times so that a PDB can open its
keystore. You can check the status of whether a keystore is open by querying the
STATUS column of the V$ENCRYPTION_WALLET view

3.5.9.2 Encrypting an Existing Database with Offline Conversion
When you encrypt an existing database with offline conversion, you do not specify an
encryption algorithm.

1. Connect as a user who has the SYSDBA administrative privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

You must have the SYSDBA administrative privilege to encrypt the SYSTEM and
SYSAUX tablespaces.

2. Mount the database.

STARTUP MOUNT
3. Open the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY keystore_password;
4. Run the ALTER TABLESPACE SQL statement to encrypt the SYSTEM, SYSAUX, and

UNDO tablespaces. Do not specify an algorithm, and do not encrypt the SYSTEM
tablespace concurrently with the encryption of other tablespaces.

For example, to encrypt the SYSTEM tablespace:

ALTER TABLESPACE SYSTEM ENCRYPTION OFFLINE ENCRYPT;
5. Open the database.

For example, to open the database in read/write mode:

ALTER DATABASE OPEN READ WRITE;
6. For a temporary tablespace, drop it and then recreate it as encrypted. Do not

specify an algorithm.

For example, for a user-created tablespace:

DROP TABLESPACE temp_01;
CREATE TEMPORARY TABLESPACE temp_01
TEMPFILE 'temp01.dbf' SIZE 5M AUTOEXTEND ON
ENCRYPTION ENCRYPT;

You cannot drop the default TEMP tablespace. You must first create a new
tablespace and make it the default before you can drop TEMP.

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-46

For example:

CREATE TEMPORARY TABLESPACE temp_01
TEMPFILE 'temp01.dbf' SIZE 5M AUTOEXTEND ON
ENCRYPTION ENCRYPT;

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp_01;

DROP TABLESPACE TEMP;
7. Run the ALTER TABLESPACE SQL statement to encrypt other user tablespaces.

Alternatively, you can proceed to the next step and open the database first, and then
perform the steps described in Encrypting an Existing User-Defined Tablespace with
Offline Conversion.

8. Open the database.

ALTER DATABASE OPEN;
See Rekeying the TDE Master Encryption Key for a Tablespace if you want to change the
encryption algorithm of the tablespace.

3.5.9.3 Encrypting an Existing Database with Online Conversion
When you encrypt an existing database with online conversion, you do not specify an
encryption algorithm.

The reason that you do not need to specify an encryption algorithm the first time you perform
the encryption is that the tablespaces that you must use to encrypt the database are
automatically encrypted with the database key. If you want to change the algorithm, then you
can issue the ALTER TABLESPACE ENCRYPTION REKEY SQL statement after the initial
encryption.

1. Perform the following tasks, which are described in Encrypting an Existing Tablespace
with Online Conversion:

a. Connect as a user who has been granted the SYSDBA administrative privilege.

b. Ensure that the COMPATIBLE parameter is set to 12.2.0.0 or later.

c. Ensure that the database is open in read-write mode.

d. Ensure that you have enough auxiliary space to complete the encryption.

e. Back up the tablespaces that you must encrypt.

f. Open the keystore.

2. Run the ALTER TABLESPACE SQL statement to encrypt the SYSTEM, SYSAUX, and UNDO
tablespaces. Do not specify an algorithm, and do not encrypt the SYSTEM tablespace
concurrently with the encryption of other tablespaces.

For example, to encrypt the SYSTEM tablespace:

ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE ENCRYPT
FILE_NAME_CONVERT=('system01.dbf','system01_enc.dbf');

3. For a temporary tablespace, drop it and then recreate it as encrypted. Do not specify an
algorithm.

For example, for a user-created tablespace:

DROP TABLESPACE temp_01;
CREATE TEMPORARY TABLESPACE temp_01

Chapter 3
Encryption Conversions for Tablespaces and Databases

3-47

TEMPFILE 'temp01.dbf' SIZE 5M AUTOEXTEND ON
ENCRYPTION ENCRYPT;

You cannot drop the default TEMP tablespace. You must first create a new
tablespace and make it the default before you can drop TEMP.

For example:

CREATE TEMPORARY TABLESPACE temp_01
TEMPFILE 'temp01.dbf' SIZE 5M AUTOEXTEND ON
ENCRYPTION ENCRYPT;

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temp_01;

DROP TABLESPACE TEMP;

Related Topics

• Rekeying the TDE Master Encryption Key for a Tablespace
You can use the REKEY clause of the ALTER TABLESPACE statement to rekey a TDE
master encryption key for an encrypted tablespace.

3.6 Transparent Data Encryption Data Dynamic and Data
Dictionary Views

You can query a set of dynamic and data dictionary views to find more information
about Transparent Data Encryption (TDE) data.

Table 3-3 describes these dynamic and data dictionary views.

Table 3-3 Transparent Data Encryption Related Views

View Description

ALL_ENCRYPTED_COLUMNS Displays encryption information about encrypted columns in
the tables accessible to the current user

DICTIONARY_CREDENTIALS_E
NCRYPT

Indicates if credential data in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL system tables is encrypted

DBA_ENCRYPTED_COLUMNS Displays encryption information for all of the encrypted
columns in the database

USER_ENCRYPTED_COLUMNS Displays encryption information for encrypted table columns
in the current user's schema

DBA_TABLESPACE_USAGE_MET
RICS

Describes tablespace usage metrics for all types of
tablespaces, including permanent, temporary, and undo
tablespaces

V$CLIENT_SECRETS Lists the properties of the strings (secrets) that were stored in
the keystore for various features (clients).

In a multitenant environment, when you query this view in a
PDB, then it displays information about keys that were created
or activated for the current PDB. If you query this view in the
root, then it displays this information about keys for all of the
PDBs.

V$DATABASE_KEY_INFO Displays information about the default encryption key that is
used for the current database. The default is AES128.

Chapter 3
Transparent Data Encryption Data Dynamic and Data Dictionary Views

3-48

Table 3-3 (Cont.) Transparent Data Encryption Related Views

View Description

V$ENCRYPTED_TABLESPACES Displays information about the tablespaces that are encrypted

V$ENCRYPTION_KEYS When used with keys that have been rekeyed with the
ADMINISTER KEY MANAGEMENT statement, displays
information about the TDE master encryption keys.

In a multitenant environment, when you query this view in a
PDB, it displays information about keys that were created or
activated for the current PDB. If you query this view in the
root, it displays this information about keys for all of the PDBs.

V$ENCRYPTION_WALLET Displays information on the status of the keystore and the
keystore location for TDE

V$RMAN_ENCRYPTION_ALGORI
THMS

Displays supported encryption algorithms in the current PDB
and is used by Oracle Recovery Manager (Oracle RMAN) to
validate user-requested algorithms

See Also:

Oracle Database Reference for detailed information about these views

Chapter 3
Transparent Data Encryption Data Dynamic and Data Dictionary Views

3-49

4
Managing the Keystore and the
Master Encryption Key

You can modify settings for the keystore and TDE master encryption key, and store Oracle
Database and store Oracle GoldenGate secrets in a keystore.

• Managing the Keystore
You can perform maintenance activities on keystores such as changing passwords, and
backing up, merging, and moving keystores.

• Managing the TDE Master Encryption Key
You can manage the TDE master encryption key in several ways.

• Storing Oracle Database Secrets
Secrets are data that support internal Oracle Database features that integrate external
clients such as Oracle GoldenGate into the database.

• Storing Oracle GoldenGate Secrets in a Keystore
You can store Oracle GoldenGate secrets in Transparent Data Encryption keystores.

4.1 Managing the Keystore
You can perform maintenance activities on keystores such as changing passwords, and
backing up, merging, and moving keystores.

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both software and external keystores.

• Changing the Password of a Software Keystore
Oracle Database enables you to easily change password-protected software keystore
passwords.

• Changing the Oracle Key Vault Password
To change the password of Oracle Key Vault, you use okvutil, which is part of the
Oracle Key Vault endpoint software on the database host.

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

• Backing Up Password-Protected Software Keystores
When you back up a password-protected software keystore, you can create a backup
identifier string to describe the backup type.

• How the V$ENCRYPTION_WALLET View Interprets Backup Operations
The BACKUP column of the V$ENCRYPTION_WALLET view indicates a how a copy of the
keystore was created.

• Backups of the External Keystore
You cannot use Oracle Database to back up external keystores.

4-1

• Merging Software Keystores
You can merge software keystores in a variety of ways.

• Moving a Software Keystore to a New Location
You move a software keystore to a new location after you have updated the
WALLET_ROOT parameter.

• Moving a Software Keystore Out of Automatic Storage Management
You can use the ADMINISTER KEY MANAGEMENT statement to move a software
keystore out Automatic Storage Management.

• Migrating Between a Software Password Keystore and an External Keystore
You can migrate between password-protected software keystores and external
keystores.

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both software and external keystores to
and from Oracle Key Vault.

• Closing a Keystore
You can manually close software and external keystores.

• Using a Software Keystore That Resides on ASM Volumes
You can store a software keystore on an Automatic Storage Management (ASM)
disk group.

• Backup and Recovery of Encrypted Data
For software keystores, you cannot access encrypted data without the TDE master
encryption key.

• Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE
master encryption key residing in that keystore is later needed.

4.1.1 Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both software and external keystores.

In some cases, a software keystore depends on an auto-login keystore before the
operation can succeed. Auto-login keystores open automatically when they are
configured and a key is requested. They are generally used for operations where the
keystore could be closed but a database operation needs a key (for example, after the
database is restarted). Because the auto-login keystore opens automatically, it can be
retrieved to perform a database operation without manual intervention. However, some
keystore operations that require the keystore password cannot be performed when the
auto-login keystore is open. The auto-login keystore must be closed and the
password-protected keystore must be opened for the keystore operations that require
a password.

In a multitenant environment, the re-opening of keystores affects other PDBs. For
example, an auto-login keystore in the root must be accessible by the PDBs in the
CDB for this root.

You can temporarily open the keystore by including the FORCE KEYSTORE clause in the
ADMINISTER KEY MANAGEMENT statement when you perform the following operations:
rotating a keystore password; creating, using, rekeying, tagging, importing, exporting,

Chapter 4
Managing the Keystore

4-2

migrating, or reverse migrating encryption keys; opening or backing up keystores; adding,
updating, or deleting secret keystores. In a multitenant environment, if no keystore is open in
the root, then FORCE KEYSTORE opens the password-protected keystore in the root.

4.1.2 Changing the Password of a Software Keystore
Oracle Database enables you to easily change password-protected software keystore
passwords.

• About Changing the Password of a Password-Protected Software Keystore
You can only change the password for protected-protected software keystores.

• Changing the Password-Protected Software Keystore Password
To change the password of a password-protected software keystore, you must use the
ADMINISTER KEY MANAGEMENT statement.

4.1.2.1 About Changing the Password of a Password-Protected Software Keystore
You can only change the password for protected-protected software keystores.

You can change this password at any time, as per the security policies, compliance
guidelines, and other security requirements of your site. As part of the command to change
the password, you will be forced to specify the WITH BACKUP clause, and thus forced to make
a backup of the current keystore. During the password change operation, Transparent Data
Encryption operations such as encryption and decryption will continue to work normally.

You can change this password at any time. You may want to change this password if you
think it was compromised.

4.1.2.2 Changing the Password-Protected Software Keystore Password
To change the password of a password-protected software keystore, you must use the
ADMINISTER KEY MANAGEMENT statement.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Change the password of the password-protected software keystore by using the following
syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
[FORCE KEYSTORE]
IDENTIFIED BY
old_password SET new_password
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• old_password is the current keystore password that you want to change.

• new_password is the new password that you will set for the keystore.

Chapter 4
Managing the Keystore

4-3

• WITH BACKUP creates a backup of the current keystore before the password is
changed. You must include this clause.

• backup_identifier specifies an optional identifier string for the backup that is
created. The backup_identifier is added to the name of the backup file.
Enclose backup_identifier in single quotation marks (' '). This identifier is
appended to the named keystore file (for example,
ewallet_time_stamp_emp_key_pwd_change.p12).

The following example backs up the current keystore and then changes the
password for the keystore:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
FORCE KEYSTORE
IDENTIFIED BY
old_password SET new_password
WITH BACKUP USING 'pwd_change';

keystore altered.

4.1.3 Changing the Oracle Key Vault Password
To change the password of Oracle Key Vault, you use okvutil, which is part of the
Oracle Key Vault endpoint software on the database host.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Close the external keystore.

• Close the connection to the external key manager:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY Oracle_Key_Vault_password | EXTERNAL STORE CONTAINER = ALL;

If the keystore was auto-opened by the database, then close the connection to
Oracle Key Vault as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
CONTAINER = ALL;

3. Change the Oracle Key Vault password.

WALLET_ROOT/okv/bin/okvutil changepwd -t wallet -l
WALLET_ROOT/okv/ssl

4. Open the external keystore.

• For example, for Oracle Key Vault:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE
IDENTIFIED BY new_Oracle_Key_Vault_pwd CONTAINER =ALL;

• If the old Oracle Key Vault password was stored in a [local] auto-open wallet in
the WALLET_ROOT/tde_seps directory, then update the password using the
following syntax:

ADMINISTER KEY MANAGEMENT UPDATE SECRET 'new-Oracle_Key_Vault_password'
FOR CLIENT 'Oracle_Key_Vault_password" TO [LOCAL] AUTO_LOGIN KEYSTORE
'WALLET_ROOT/tde_seps;

Chapter 4
Managing the Keystore

4-4

Then you can open the connection to Oracle Key Vault as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
[FORCE KEYSTORE]IDENTIFIED BY EXTERNAL STORE CONTAINER = ALL;

Related Topics

• Closing an External Keystore
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement
with the SET KEYSTORE CLOSE clause.

• Opening an External Keystore
To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with the
SET KEYSTORE OPEN clause.

4.1.4 Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

• About Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

• Configuring the External Keystore Password Store with WALLET_ROOT
When you configure TDE by using the WALLET_ROOT parameter, the external keystore
password store is auto-discovered in the WALLET_ROOT/tde_seps directory.

• When to Use the EXTERNAL STORE Clause After Configuration
After you configure the external store for a keystore password, you can use the
EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

4.1.4.1 About Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

An external store for a TDE password is useful if you want to hide the keystore password
wallet, Oracle Key Vault, or Oracle Cloud Infrastructure (OCI) key management service
(KMS)) from the database administrator. It is also useful for situations in which you use
automated tools to perform Transparent Data Encryption operations that require a password,
when the scripts that run the automated tools include hard-coded password. To avoid hard-
coding the password in a script, you can store this password in an external store on the
database server. In a multitenant environment, different PDBs can make use of the external
store.

Related Topics

• Storing Oracle Database Secrets
Secrets are data that support internal Oracle Database features that integrate external
clients such as Oracle GoldenGate into the database.

4.1.4.2 Configuring the External Keystore Password Store with WALLET_ROOT
When you configure TDE by using the WALLET_ROOT parameter, the external keystore
password store is auto-discovered in the WALLET_ROOT/tde_seps directory.

Chapter 4
Managing the Keystore

4-5

• Execute the ADMINISTER KEY MANAGEMENT statement by using the following syntax:

ADMINISTER KEY MANAGEMENT ADD SECRET 'keystore_password'
FOR CLIENT 'TDE_WALLET|OKV_PASSWORD'
TO [LOCAL] AUTO_LOGIN KEYSTORE 'WALLET_ROOT/tde_seps';

Related Topics

• When to Use the EXTERNAL STORE Clause After Configuration
After you configure the external store for a keystore password, you can use the
EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

4.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration
After you configure the external store for a keystore password, you can use the
EXTERNAL_STORE clause in the ADMINISTER KEY MANAGEMENT statement.

You must use the EXTERNAL STORE clause in the ADMINISTER KEY MANAGEMENT
statement for the following operations: opening, closing, backing up the keystore;
adding, updating, or deleting a secret keystore; creating, using, rekeying, tagging,
importing, exporting encryption keys.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY EXTERNAL STORE;

You can change or delete external keystore passwords by using the ADMINISTER KEY
MANAGEMENT UPDATE CLIENT SECRET statement or the ADMINISTER KEY MANAGEMENT
DELETE CLIENT SECRET statement.

4.1.5 Backing Up Password-Protected Software Keystores
When you back up a password-protected software keystore, you can create a backup
identifier string to describe the backup type.

• About Backing Up Password-Protected Software Keystores
You must back up password-protected software keystores, as per the security
policy and requirements of your site.

• Creating a Backup Identifier String for the Backup Keystore
The backup file name of a software password keystore is derived from the name of
the password-protected software keystore.

• Backing Up a Password-Protected Software Keystore
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs
up a password-protected software keystore.

4.1.5.1 About Backing Up Password-Protected Software Keystores
You must back up password-protected software keystores, as per the security policy
and requirements of your site.

A backup of the keystore contains all of the keys contained in the original keystore.
Oracle Database prefixes the backup keystore with the creation time stamp (UTC). If
you provide an identifier string, then this string is inserted between the time stamp and
keystore name.

Chapter 4
Managing the Keystore

4-6

After you complete the backup operation, the keys in the original keystore are marked as
"backed up". You can check the status of keys querying the V$ENCRYPTION_WALLET data
dictionary view.

You cannot back up auto-login or local auto-login software keystores. No new keys can be
added to them directly through the ADMINISTER KEY MANAGEMENT statement operations. The
information in these keystores is only read and hence there is no need for a backup.

You must include the WITH BACKUP clause in any ADMINISTER KEY MANAGEMENT statement that
changes the wallet (for example, changing the wallet password or setting the master
encryption key).

4.1.5.2 Creating a Backup Identifier String for the Backup Keystore
The backup file name of a software password keystore is derived from the name of the
password-protected software keystore.

• To create a backup identifier string for a backup keystore, use the ADMINISTER KEY
MANAGEMENT SQL statement with the BACKUP KEYSTORE clause, with the following syntax:

ewallet_creation-time-stamp-in-UTC_user-defined-string.p12

When you create the backup identifier (user_defined_string), use the operating system
file naming convention. For example, in UNIX systems, you may want to ensure that this
setting does not have spaces.

The following example shows the creation of a backup keystore that uses a user-
identified string, and how the resultant keystore appears in the file system. This example
includes the FORCE KEYSTORE clause in the event the auto-login keystore is in use or the
keystore is closed.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'Monthly-backup-2013-04'
FORCE KEYSTORE
IDENTIFIED BY keystore_password;

This version is for a scenario in which the password is stored in an external store:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE USING 'Monthly-backup-2013-04'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

Resultant keystore file:

ewallet_2013041513244657_Monthly-backup-2013-04.p12

4.1.5.3 Backing Up a Password-Protected Software Keystore
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected software keystore.

• Back up the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier']
FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | software_keystore_password]
[TO 'keystore_location'];

In this specification:

Chapter 4
Managing the Keystore

4-7

– USING backup_identifier is an optional string that you can provide to identify
the backup. Enclose this identifier in single quotation marks (' '). This
identifier is appended to the named keystore file (for example, ewallet_time-
stamp_emp_key_backup.p12).

– FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

– IDENTIFIED BY can be one of the following settings:

* EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

* software_keystore_password is the password for the keystore.

– keystore_location is the path at which the backup keystore is stored. If you
do not specify the keystore_location, then the backup is created in the same
directory as the original keystore. Enclose this location in single quotation
marks (' ').

The following example backs up a software keystore into another location.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY software_keystore_password
TO '/etc/ORACLE/KEYSTORE/DB1/';

keystore altered.

In the following version, the password for the keystore is external, so the EXTERNAL
STORE clause is used. The keystore is backed up into the same directory as the
current keystore.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an ewallet_identifier.p12 file (for example,
ewallet_time-stamp_hr.emp_keystore.p12) appears in the keystore location.

4.1.6 How the V$ENCRYPTION_WALLET View Interprets Backup
Operations

The BACKUP column of the V$ENCRYPTION_WALLET view indicates a how a copy of the
keystore was created.

The column indicates if a copy of the keystore had been created with the WITH BACKUP
clause of the ADMINISTER KEY MANAGEMENT statement or the ADMINISTER KEY
MANAGEMENT BACKUP KEYSTORE statement.

When you modify a key or a secret, the modifications that you make do not exist in the
previously backed-up copy, because you make a copy and then modify the key itself.
Because there is no copy of the modification in the previous keystores, the BACKUP
column is set to NO, even if the BACKUP had been set to YES previously. Hence, if the
BACKUP column is YES, then after you perform an operation that requires a backup,
such as adding a custom attribute tag, the BACKUP column value changes to NO.

Chapter 4
Managing the Keystore

4-8

4.1.7 Backups of the External Keystore
You cannot use Oracle Database to back up external keystores.

Uploading TDE wallets into Oracle Key Vault is another way of backing up the wallet and
having it available immediately if the need arises (for example after accidental deletion of the
wallet, or file corruption). If the database is not migrated to online key management with
Oracle Key Vault, then it keeps relying on the TDE wallet, even if the wallet has been
uploaded into Oracle Key Vault.

You can use the Oracle Key Vault okvutil upload and okvutil download commands to
upload and download TDE wallets to and from Oracle Key Vault.

For example, to upload a TDE wallet to Oracle Key Vault:

$ okvutil upload -l "/etc/oracle/wallets" -t wallet -g "HRWallet"
Enter wallet password (<enter> for auto-login): password
Enter Oracle Key Vault endpoint password: Key_Vault_endpoint_password

This example shows how to download a TDE wallet from Oracle Key Vault:

$ okvutil download -l "/etc/oracle/wallets/orcl/" -t WALLET -g HRWallet
Enter new wallet password(<enter> for auto-login): Oracle_wallet_password
Confirm new wallet password: Oracle_wallet_password
Enter Oracle Key Vault endpoint password: Key_Vault_endpoint_password

Related Topics

• Oracle Key Vault Administrator's Guide

4.1.8 Merging Software Keystores
You can merge software keystores in a variety of ways.

• About Merging Software Keystores
You can merge any combination of software keystores, but the merged keystore must be
password-protected. It can have a password that is different from the constituent
keystores.

• Merging One Software Keystore into an Existing Software Keystore
You can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE clause
to merge one software keystore into another existing software keystore.

• Merging Two Software Keystores into a Third New Keystore
You can merge two software keystores into a third new keystore. The two existing source
keystores are not changed.

• Merging an Auto-Login Software Keystore into an Existing Password-Protected Software
Keystore
You can merge an auto-login software keystore into an existing password-protected
software keystore.

• Reversing a Software Keystore Merge Operation
You cannot directly reverse a keystore merge operation.

Chapter 4
Managing the Keystore

4-9

4.1.8.1 About Merging Software Keystores
You can merge any combination of software keystores, but the merged keystore must
be password-protected. It can have a password that is different from the constituent
keystores.

To use the merged keystore, you must explicitly open the merged keystore after you
create it, even if one of the constituent keystores was already open before the merge.

Whether a common key from two source keystores is added or overwritten to a
merged keystore depends on how you write the ADMINISTER KEY MANAGEMENT merge
statement. For example, if you merge Keystore 1 and Keystore 2 to create Keystore 3,
then the key in Keystore 1 is added to Keystore 3. If you merge Keystore 1 into
Keystore 2, then the common key in Keystore 2 is not overwritten.

The ADMINISTER KEY MANAGEMENT merge statement has no bearing on the configured
keystore that is in use. However, the merged keystore can be used as the new
configured database keystore if you want. Remember that you must reopen the
keystore if you are using the newly created keystore as the keystore for the database
at the location configured by the WALLET_ROOT parameter.

Related Topics

• Migrating Between a Software Password Keystore and an External Keystore
You can migrate between password-protected software keystores and external
keystores.

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the
keystore before you can use it.

4.1.8.2 Merging One Software Keystore into an Existing Software Keystore
You can use the ADMINISTER KEY MANAGEMENT statement with the MERGE KEYSTORE
clause to merge one software keystore into another existing software keystore.

• To perform this type of merge, follow the steps in Merging Two Software Keystores
into a Third New Keystore but use the following SQL statement:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'keystore1_location'
[IDENTIFIED BY software_keystore1_password]
INTO EXISTING KEYSTORE 'keystore2_location'
IDENTIFIED BY software_keystore2_password
[WITH BACKUP [USING 'backup_identifier]];

In this specification:

– keystore1_location is the directory location of the first keystore, which will be
left unchanged after the merge. Enclose this path in single quotation marks ('
').

– The IDENTIFIED BY clause is required for the first keystore if it is a password-
protected keystore. software_keystore1_password is the password for the
first keystore.

– keystore2_location is the directory location of the second keystore into
which the first keystore is to be merged. Enclose this path in single quotation
marks (' ').

Chapter 4
Managing the Keystore

4-10

– software_keystore2_password is the password for the second keystore.

– WITH BACKUP creates a backup of the software keystore. Optionally, you can use the
USING clause to add a brief description of the backup. Enclose this description in
single quotation marks (' '). This identifier is appended to the named keystore file (for
example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being the
backup identifier). Follow the file naming conventions that your operating system
uses.

The resultant keystore after the merge operation is always a password-protected keystore.

4.1.8.3 Merging Two Software Keystores into a Third New Keystore
You can merge two software keystores into a third new keystore. The two existing source
keystores are not changed.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Merge the software keystores by using the following syntax:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'keystore1_location'
[IDENTIFIED BY software_keystore1_password]
AND KEYSTORE 'keystore2_location'
[IDENTIFIED BY software_keystore2_password]
INTO NEW KEYSTORE 'keystore3_location'
IDENTIFIED BY software_keystore3_password;

In this specification:

• keystore1_location is the directory location of the first keystore, which will be left
unchanged after the merge. Enclose this path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the first keystore if it is a password-
protected keystore. software_keystore1_password is the current password for the
first keystore.

• keystore2_location is the directory location of the second keystore. Enclose this
path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the second keystore if it is a password-
protected keystore. software_keystore2_password is the current password for the
second keystore.

• keystore3_location specifies the directory location of the new, merged keystore.
Enclose this path in single quotation marks (' '). If there is already an existing
keystore at this location, the command exits with an error.

• software_keystore3_password is the new password for the merged keystore.

The following example merges an auto-login software keystore with a password-
protected keystore to create a merged password-protected keystore at a new location:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY existing_password_for_keystore_2

Chapter 4
Managing the Keystore

4-11

INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3'
IDENTIFIED BY new_password_for_keystore_3;

keystore altered.

4.1.8.4 Merging an Auto-Login Software Keystore into an Existing Password-
Protected Software Keystore

You can merge an auto-login software keystore into an existing password-protected
software keystore.

• Use the ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement to merge
an auto-login software keystore into an existing password-protected software
keystore.

Example 4-1 shows how to merge an auto-login software keystore into a password-
protected software keystore. It also creates a backup of the second keystore before
creating the merged keystore.

Example 4-1 Merging a Software Auto-Login Keystore into a Password
Keystore

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY keystore_password WITH BACKUP;

In this specification:

• MERGE KEYSTORE must specify the auto-login keystore.

• EXISTING KEYSTORE refers to the password keystore.

4.1.8.5 Reversing a Software Keystore Merge Operation
You cannot directly reverse a keystore merge operation.

When you merge a keystore into an existing keystore (rather than creating a new one),
you must include the WITH BACKUP clause in the ADMINISTER KEY MANAGEMENT
statement to create a backup of this existing keystore. Later on, if you decide that you
must reverse the merge, you can replace the merged software keystore with the one
that you backed up.

In other words, suppose you want merge Keystore A into Keystore B. By using the
WITH BACKUP clause, you create a backup for Keystore B before the merge operation
begins. (The original Keystore A is still intact.) To reverse the merge operation, revert
to the backup that you made of Keystore B.

• Use the ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement to perform
merge operations.

– For example, to perform a merge operation into an existing keystore:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY password WITH BACKUP USING "merge1";

Replace the new keystore with the backup keystore, which in this case would
be named ewallet_time-stamp_merge1.p12.

Chapter 4
Managing the Keystore

4-12

– To merge an auto-login keystore into a password-based keystore, use the
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE SQL statement.

4.1.9 Moving a Software Keystore to a New Location
You move a software keystore to a new location after you have updated the WALLET_ROOT
parameter.

If you are using Oracle Key Vault, then you can configure a TDE direct connection where Key
Vault directly manages the master encryption keys. In this case, you will never need to
manually move the keystore to a new location.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Back up the software keystore.

For example:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY
software_keystore_password TO '/etc/ORACLE/KEYSTORE/DB1/';

3. Close the software keystore.

Examples of ways that you can close the keystore are as follows.

For an auto-login software keystore:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE;

For a password-protected software keystore:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY software_keystore_password;

For a keystore for which the password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY EXTERNAL STORE;

4. Exit the database session.

For example, if you are logged in to SQL*Plus:

EXIT
5. In the init.ora file for the database instance, update the WALLET_ROOT parameter to

point to the new location where you want to move the keystore.

6. Use the operating system move command (such as mv) to move the keystore with all of
its keys to the new directory location.

Related Topics

• Oracle Key Vault Administrator's Guide

4.1.10 Moving a Software Keystore Out of Automatic Storage Management
You can use the ADMINISTER KEY MANAGEMENT statement to move a software keystore out
Automatic Storage Management.

Chapter 4
Managing the Keystore

4-13

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Initialize a target keystore on the file system by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE targetKeystorePath
IDENTIFIED BY targetKeystorePassword;

In this specification:

• targetKeystorePath is the directory path to the target keystore on the file
system.

• targetKeystorePassword is a password that you create for the keystore.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1/'
IDENTIFIED BY "targetKeystorePassword";

3. Copy the keystore from ASM to the target keystore that you just created.

This step requires that you merge the keystore from ASM to the file system, as
follows:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE srcKeystorePath
IDENTIFIED BY srcKeystorePassword
INTO EXISTING KEYSTORE targetKeystorePath
IDENTIFIED BY targetKeystorePassword
WITH BACKUP USING backupIdentifier;

In this specification:

• srcKeystorePath is the directory path to the source keystore.

• srcKeystorePassword is th source keystore password.

• targetKeystorePath is the path to the target keystore.

• targetKeystorePassword is the target keystore password.

• backupIdentifier is the backup identifier to be added to the backup file
name.

For example:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '+DATAFILE'
IDENTIFIED BY "srcPassword"
INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB1/'
IDENTIFIED BY "targetKeystorePassword"
WITH BACKUP USING "bkup";

4.1.11 Migrating Between a Software Password Keystore and an
External Keystore

You can migrate between password-protected software keystores and external
keystores.

Chapter 4
Managing the Keystore

4-14

• Migrating from a Password-Protected Software Keystore to an External Keystore
You can migrate from a password-protected software keystore to an external keystore.

• Migrating from an External Keystore to a Password-Based Software Keystore
You can migrate an external keystore to a software keystore.

• Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in their
order.

4.1.11.1 Migrating from a Password-Protected Software Keystore to an External
Keystore

You can migrate from a password-protected software keystore to an external keystore.

• Step 1: Convert the Software Keystore to Open with the External Keystore
Some Oracle tools require access to the old software keystore to encrypt or decrypt data
that was exported or backed up using the software keystore.

• Step 2: Configure the External Keystore Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

• Step 3: Perform the External Keystore Migration
You can use the ADMINISTER KEY MANAGEMENT SQL statement to perform an external
keystore migration.

4.1.11.1.1 Step 1: Convert the Software Keystore to Open with the External Keystore
Some Oracle tools require access to the old software keystore to encrypt or decrypt data that
was exported or backed up using the software keystore.

Examples of these tools are Oracle Data Pump and Oracle Recovery Manager.

• Use the ADMINISTER KEY MANAGEMENT SQL statement to convert a software keystore to
open with an external keystore.

– To set the software keystore password as that of the external keystore, use the
following syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
FORCE KEYSTORE
IDENTIFIED BY software_keystore_password
SET "external_key_manager_password" WITH BACKUP
[USING 'backup_identifier'];

In this specification:

* software_keystore_password is the same password that you used when
creating the software keystore.

* external_key_manager_password is the new software keystore password which
is the same as the password of the external keystore.

* WITH BACKUP creates a backup of the software keystore. Optionally, you can use
the USING clause to add a brief description of the backup. Enclose this description
in single quotation marks (' '). This identifier is appended to the named keystore
file (for example, ewallet_time-stamp_emp_key_backup.p12, with
emp_key_backup being the backup identifier). Follow the file naming conventions
that your operating system uses.

Chapter 4
Managing the Keystore

4-15

– To create an auto-login keystore for a software keystore, use the following
syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE
FROM KEYSTORE 'keystore_location'
IDENTIFIED BY software_keystore_password;

In this specification:

* LOCAL enables you to create a local auto-login software keystore.
Otherwise, omit this clause if you want the keystore to be accessible by
other computers.

* keystore_location is the path to the keystore directory location of the
keystore that is configured in the sqlnet.ora file.

* software_keystore_password is the existing password of the configured
software keystore.

4.1.11.1.2 Step 2: Configure the External Keystore Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

For the software keystore to open with the external keystore, either the software
keystore must have the same password as the external keystore, or alternatively, you
can create an auto-login keystore for the software keystore.

1. Connect to the united mode CDB root or isolated mode PDB as a user who has
been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

For example:

CONNECT c##sec_admin AS SYSKM (or CONNECT sec_admin@pdb_name AS SYSKM)
Enter password: password

2. Set the TDE_CONFIGURATION dynamic initialization parameter.

This example migrates the database from a TDE wallet to Oracle Key Vault.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE =
"BOTH" SID = "*";

4.1.11.1.3 Step 3: Perform the External Keystore Migration
You can use the ADMINISTER KEY MANAGEMENT SQL statement to perform an external
keystore migration.

To migrate from the software keystore to external keystore, you must use the MIGRATE
USING keystore_password clause in the ADMINISTER KEY MANAGEMENT SET KEY SQL
statement to decrypt the existing TDE table keys and tablespace encryption keys with
the TDE master encryption key in the software keystore and then reencrypt them with
the newly created TDE master encryption key in the external keystore. After you
complete the migration, you do not need to restart the database, nor do you need to
manually re-open the external keystore. The migration process automatically reloads
the keystore keys in memory.

• Migrate the external keystores by using the following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY "external_key_manager_password"
MIGRATE USING software_keystore_password
[WITH BACKUP [USING 'backup_identifier']];

Chapter 4
Managing the Keystore

4-16

In this specification:

– external_key_manager_password is the password that was created when the
external keystore was created. Enclose this setting in double quotation marks (" ").

– software_keystore_password is the same password that you used when you
created the software keystore or that you have changed to (when converting a
software keystore to open with an external keystore).

– USING enables you to add a brief description of the backup. Enclose this description
in single quotation marks (' '). This identifier is appended to the named keystore file
(for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being
the backup identifier). Follow the file naming conventions that your operating system
uses.

4.1.11.2 Migrating from an External Keystore to a Password-Based Software
Keystore

You can migrate an external keystore to a software keystore.

• About Migrating Back from an External Keystore
To switch from using an external keystore solution to a software keystore, you can use
reverse migration of the keystore.

• Step 1: Configure the External Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

• Step 2: Configure the Keystore for the Reverse Migration
The ADMINISTER KEY MANAGEMENT statement with the SET ENCRYPTION KEY and REVERSE
MIGRATE clauses can be used to reverse the migration of a keystore.

• Step 3: Configure the External Keystore to Open with the Software Keystore
After you complete the migration, the migration process automatically reloads the
keystore keys in memory.

4.1.11.2.1 About Migrating Back from an External Keystore
To switch from using an external keystore solution to a software keystore, you can use
reverse migration of the keystore.

After you complete the switch, keep the external keystore, in case earlier backup files rely on
the TDE master encryption keys in the external key manager.

If you had originally migrated from the software keystore to the external keystore and
reconfigured the software keystore, then you already have an existing keystore with the same
password as the external keystore password. Reverse migration configures this keystore to
act as the new software keystore with a new password. If your existing keystore is an auto-
login software keystore and you have the password-based software keystore for this auto-
login keystore, then use the password-based keystore. If the password-based keystore is not
available, then merge the auto-login keystore into a newly created empty password-based
keystore, and use the newly created password-based keystore.

If you do not have an existing keystore, then you must specify a keystore location using the
WALLET_ROOT parameter in the init.ora file. When you perform the reverse migration,
migrate to the previous keystore so that you do not lose the keys.

Chapter 4
Managing the Keystore

4-17

Related Topics

• Merging Software Keystores
You can merge software keystores in a variety of ways.

• Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you
previously configured a software keystore.

4.1.11.2.2 Step 1: Configure the External Type
You can use the ALTER SYSTEM statement to configure the external keystore type.

1. Connect to the CDB root as a user who has been granted the ALTER SYSTEM
privilege.

2. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the TDE
keystore type.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=HSM";

Setting KEYSTORE_CONFIGURATION to "OKV" indicates a configuration where the
connection into Oracle Key Vault must be opened by providing the Oracle Key
Vault password. To use an auto-open Oracle Key Vault configuration, you set
KEYSTORE_CONFIGURATION to "OKV|FILE", where the Oracle Key Vault password is
stored in an auto-open keystore in WALLET_ROOT/tde.

3. Restart the database.

SHUTDOWN IMMEDIATE
STARTUP

4.1.11.2.3 Step 2: Configure the Keystore for the Reverse Migration
The ADMINISTER KEY MANAGEMENT statement with the SET ENCRYPTION KEY and
REVERSE MIGRATE clauses can be used to reverse the migration of a keystore.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Reverse migrate the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY software_keystore_password
REVERSE MIGRATE USING "external_key_manager_password"
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• software_keystore_password is the password for the existing keystore or the
new keystore.

• external_key_manager_password is the password that was created when you
first created the external keystore. If the pre-external software keystore is the

Chapter 4
Managing the Keystore

4-18

new keystore, then you must ensure that it has the same password as the
external_key_manager_password before issuing the reverse migration command.
Enclose this setting in double quotation marks (" ").

• WITH BACKUP creates a backup of the software keystore. Optionally, you can include
the USING clause to add a brief description of the backup. Enclose this description in
single quotation marks (' '). This identifier is appended to the named keystore file
(for example, ewallet_time-stamp_emp_key_backup.p12, with emp_key_backup being
the backup identifier). Follow the file naming conventions that your operating system
uses.

For example:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY password
REVERSE MIGRATE USING "external_key_manager_password" WITH BACKUP;

keystore altered.
3. Optionally, change the keystore password.

For example:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
IDENTIFIED BY old_password
SET new_password
WITH BACKUP USING 'new_password';

Related Topics

• Changing the Password of a Software Keystore
Oracle Database enables you to easily change password-protected software keystore
passwords.

4.1.11.2.4 Step 3: Configure the External Keystore to Open with the Software Keystore
After you complete the migration, the migration process automatically reloads the keystore
keys in memory.

You do not need to restart the database, nor do you need to manually re-open the software
keystore.

The external keystore may still be required after reverse migration because the old keys are
likely to have been used for encrypted backups or by tools such as Oracle Data Pump and
Oracle Recovery Manager. You should cache the external keystore credentials in the
keystore so that the HSM can be opened with the software keystore.

Related Topics

• Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

4.1.11.3 Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in their order.

The WALLET_ORDER column of the V$ENCRYPTION_WALLET dynamic view describes whether a
keystore is primary (that is, it holds the current TDE master encryption key) or if it is
secondary (it holds the previous TDE master encryption key). The WRL_TYPE column
describes the type of locator for the keystore (for example, FILE for the sqlnet.ora file). The

Chapter 4
Managing the Keystore

4-19

WALLET_ORDER column shows SINGLE if two keystores are not configured together and
no migration was ever performed previously.

Table 4-1 describes how the keystore order works after you perform a migration.

Table 4-1 Keystore Order After a Migration

Type of Migration Done WRL_TYPE WALLET_ORDER Description

Migration of software
keystore to external
keystore

OKV
FILE

PRIMARY
SECONDARY

Both the external and software keystore are
configured. The TDE master encryption key
can be either in Oracle Key Vault or the
software keystore.

The TDE master encryption key is first
searched in Oracle Key Vault.

If the TDE master encryption key is not in the
primary keystore (Oracle Key Vault), then it
will be searched for in the software keystore.

All of the new TDE master encryption keys
will be created in the primary keystore (in this
case, Oracle Key Vault).

Reverse migration from
HSM to software
keystore

FILE
HSM

PRIMARY
SECONDARY

Both the external and software keystore are
configured. The TDE master encryption key
can be either in the external keystore or the
software keystore.

The TDE master encryption key is first
searched for in the software keystore.

If the TDE master encryption key is not
present in the primary (that is, software)
keystore, then it will be searched for in the
HSM's external keystore.

All of the new TDE master encryption keys
will be created in the primary keystore (in this
case, the software keystore).

4.1.12 Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both software and external keystores to and
from Oracle Key Vault.

This enables you to manage the keystores centrally, and then share the keystores as
necessary with other TDE-enabled databases in your enterprise.

Oracle Key Vault enables you to upload a keystore to a container called a virtual
wallet, and then create a new virtual wallet from the contents of previously uploaded
Oracle keystores. For example, suppose you previously uploaded a keystore that
contains 5 keys. You can create a new virtual wallet that consists of only 3 of these
keys. You then can download this keystore to another TDE-enabled database. This
process does not modify the original keystore.

In addition to Oracle keystores, Oracle Key Vault enables you to securely share other
security objects, such as credential files and Java keystores, across the enterprise. It
prevents the loss of keys and keystores due to forgotten passwords or accidentally
deleted keystores. You can use Oracle Key Vault with products other than TDE: Oracle
Real Application Security, Oracle Active Data Guard, and Oracle GoldenGate. Oracle

Chapter 4
Managing the Keystore

4-20

Key Vault facilitates the movement of encrypted data using Oracle Data Pump and Oracle
Transportable Tablespaces.

Related Topics

• Oracle Key Vault Administrator's Guide

4.1.13 Closing a Keystore
You can manually close software and external keystores.

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

• Closing a Software Keystore
You can manually close password-based software keystores, auto-login software
keystores, and local auto-login software keystores.

• Closing an External Keystore
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement
with the SET KEYSTORE CLOSE clause.

4.1.13.1 About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

When you restart the database instance, then auto-login and local auto-login software
keystores automatically open when required (that is, when the TDE master encryption key
must be accessed). However, software password-based and external keystores do not
automatically open. You must manually open them again before you can use them.

When you close a software or an external keystore, you disable all of the encryption and
decryption operations on the database. Hence, a database user or application cannot
perform any operation involving encrypted data until the keystore is reopened.

When you re-open a keystore after closing it, the keystore contents are reloaded back into
the database. Thus, if the contents had been modified (such as during a migration), the
database will have the latest keystore contents.

You can check if a keystore is closed by querying the STATUS column of the
V$ENCRYPTION_WALLET view.

The following data operations will fail if the keystore is not accessible:

• SELECT data from an encrypted column

• INSERT data into on an encrypted column

• CREATE a table with encrypted columns

• CREATE an encrypted tablespace

4.1.13.2 Closing a Software Keystore
You can manually close password-based software keystores, auto-login software keystores,
and local auto-login software keystores.

In the case of an auto-login keystore, which opens automatically when it is accessed,
manually close it if you moved it to a new location. You do this if you are changing your

Chapter 4
Managing the Keystore

4-21

configuration from an auto-login keystore to a password-based keystore: you move out
the auto-login keystore, and then close the auto-login keystore.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Run the ADMINISTER KEY MANAGEMENT SQL statement.

• For a password-based software keystore, use the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL STORE | software_keystore_password]];

In this specification:

– IDENTIFIED BY can be one of the following:

* EXTERNAL STORE uses the keystore password stored in the external
store to perform the keystore operation.

* software_keystore_password is the password of the user who
created the keystore.

• For an auto-login or local auto-login software keystore, use the following SQL
statement:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE;

You do not need to specify a password for this statement.

Closing a keystore disables all of the encryption and decryption operations. Any
attempt to encrypt or decrypt data or access encrypted data results in an error.

4.1.13.3 Closing an External Keystore
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE CLOSE clause.

1. Log into the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Close the external keystore by using this syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

In this specification:

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

Chapter 4
Managing the Keystore

4-22

– external_key_manager_password is for an external keystore manager, which can
be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in
double quotation marks. For Oracle Key Vault, enter the password that was given
during the Oracle Key Vault client installation. If at that time no password was
given, then the password in the ADMINISTER KEY MANAGEMENT statement
becomes NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY "external_key_manager_password";

4.1.14 Using a Software Keystore That Resides on ASM Volumes
You can store a software keystore on an Automatic Storage Management (ASM) disk group.

• Edit the WALLET_ROOT parameter of the init.ora file to use the location of an ASM disk
group specified using the ASM file naming convention that was used in previous releases
when you configured the DIRECTORY setting in the ENCRYPTION_WALLET_LOCATION setting.
That is, you must use the plus sign (+) notation for the ASM file name.

For example:

WALLET_ROOT=+disk1/mydb/wallet

If you must move or merge software keystores between a regular file system and an ASM file
system, then you can use the same keystore merge statements that are used to merge
software keystores.

To manage keystores in an ASM environment, you can use the ASMCMD utility.

Related Topics

• Merging Software Keystores
You can merge software keystores in a variety of ways.

• Step 1: Configure the Software Keystore Location and Type
You must configure the keystore location and type by setting WALLET_ROOT in init.ora
and TDE_CONFIGURATION in the database instance.

• Oracle Automatic Storage Management Administrator's Guide

4.1.15 Backup and Recovery of Encrypted Data
For software keystores, you cannot access encrypted data without the TDE master
encryption key.

Because the TDE master encryption key is stored in the keystore, you should periodically
back up the software keystore in a secure location. You must back up a copy of the keystore
whenever you set a new TDE master encryption key or perform any operation that writes to
the keystore.

Do not back up the software keystore in the same location as the encrypted data. Back up
the software keystore separately. This is especially true when you use the auto-login
keystore, which does not require a password to open. In case the backup tape is lost, a
malicious user should not be able to get both the encrypted data and the keystore.

Oracle Recovery Manager (Oracle RMAN) does not back up the software keystore as part of
the database backup. When using a media manager such as Oracle Secure Backup with

Chapter 4
Managing the Keystore

4-23

Oracle RMAN, Oracle Secure Backup automatically excludes auto-open keystores
(the cwallet.sso files). However, it does not automatically exclude encryption
keystores (the ewallet.p12 files). It is a good practice to add the following exclude
data set statement to your Oracle Secure Backup configuration:

exclude name *.p12

This setting instructs Oracle Secure Backup to exclude the encryption keystore from
the backup set.

If you lose the software keystore that stores the TDE master encryption key, then you
can restore access to encrypted data by copying the backed-up version of the
keystore to the appropriate location. If you archived the restored keystore after the last
time that you reset the TDE master encryption key, then you do not need to take any
additional action.

If the restored software keystore does not contain the most recent TDE master
encryption key, then you can recover old data up to the point when the TDE master
encryption key was reset by rolling back the state of the database to that point in time.
All of the modifications to encrypted columns after the TDE master encryption key was
reset are lost.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

4.1.16 Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

If a keystore becomes overly full, any TDE master encryption key other than the
currently active TDE master encryption key can be moved to a new keystore to reduce
the overall size of the keystore, but it is important to keep a backup of the old and new
keystores because even though the keys have been moved out of the currently active
keystore, they may still be needed by other Oracle features, such as Oracle Recovery
Manager backup operations. (See Related Topics at the end of this topic for a listing of
features that are affected by deleted keystores.)

Deleting a keystore that still contains keys is particularly dangerous if you have
configured Transparent Data Encryption and the keystore is in use. You can find if a
keystore is in use by querying the STATUS column of the V$ENCRYPTION_WALLET view
after you open the keystore. How you should proceed depends on whether you are
using united mode or isolated mode.

• In isolated mode, if the STATUS column of the V$ENCRYPTION_WALLET is
OPEN_NO_MASTER_KEY, then it is safe to archive and later delete the this keystore,
because there are no keys in it.

• In united mode, you must execute the query of V$ENCRYPTION_WALLET from the
CDB$ROOT, not the PDB. If you execute the query in a PDB that does not yet have a
key set, then the STATUS is OPEN_NO_MASTER_KEY. However, this can be misleading,
because a key could have been set in the CDB$ROOT. After you execute the query
in the root and if the STATUS is OPEN_NO_MASTER_KEY, then you can safely archive
and later delete the keystore.

The reason that you should be cautious when moving keys out of the currently-active
TDE keystore is that this keystore may contain keys that are still needed by the
database (even though the TDE master encryption key has been rekeyed). Deleting

Chapter 4
Managing the Keystore

4-24

the keystore deletes these keys, and could result in the loss of encrypted data. Even if you
decrypted all of the data in your database, you still should not delete the keystore, because
doing so could still hamper the normal functioning of the Oracle database. This is because a
TDE master encryption key in the keystore can also be required for other Oracle Database
features. (See Related Topics at the end of this topic for a listing of features that are affected
by deleted keystores.)

Even after you performed TDE keystore migration (which rekeys in such a way that the
location of your currently-active TDE master encryption key changes place between your
software keystore and your external keystore), you still should not delete your original
keystore. The keys in the original keystore may be needed at a later time (for example, when
you must recover an offline encrypted tablespace). Even if all online tablespaces are not
encrypted, the key may still be in use.

The exception is in the case of software auto-login (or local auto-login) keystores. If you do
not want to use this type of keystore, then ideally you should move it to a secure directory.
Only delete an auto-login keystore if you are sure that it was created from a specific
password-based keystore because an auto-login keystore is always based on an ordinary
software keystore. The keystore should be available and known.

If you must delete a keystore, then do so with great caution. You must first move the keys
within the keystore to a new keystore by using the ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE statement.

Related Topics

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE master
encryption key residing in that keystore is later needed.

• Moving a TDE Master Encryption Key into a New Keystore
The ADMINISTER KEY MANAGEMENT MOVE KEYS moves an existing TDE master encryption
key into a new keystore from an existing keystore.

• Moving a TDE Master Encryption Key into a New Keystore in United Mode
In united mode, you can move an existing TDE master encryption key into a new
keystore from an existing software password keystore.

• Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
In isolated mode, you can move an existing TDE master encryption key into a new
keystore from an existing software password keystore.

4.1.17 Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE master
encryption key residing in that keystore is later needed.

Before you delete a keystore, consider the impact that the deletion will have in the event that
you need the any TDE master encryption key in the TDE keystore at a later time. The
following features and activities are affected:

• Offlined tablespace operations

• Oracle Secure Backup operations

• Media recovery and block media recovery operations

• Point-in-time recovery operations

• Physical and logical Oracle Data Guard standby operations

Chapter 4
Managing the Keystore

4-25

• Golden Gate operations

• Oracle Streams operations

• Oracle Recovery Manager operations, including restoring Oracle Recovery
Manager backups

• Applying archived redo logs to a database during database crash recovery
operations

• Database online block recovery. (Online block recovery implies that the database
is still open. Deleting a wallet in an open database with encrypted tablespaces will
cause additional problems other than those associated with online block recovery.)
These problems can include the following:

– Encrypted online data in encrypted tablespaces would no longer be decrypted.
Encrypted metadata in the SYSTEM, UNDO, and TEMP tablespaces would no
longer be decrypted. You will no longer have control over what metadata is
encrypted or where that metadata can reside.

– Buffered data or metadata needs to be encrypted before it can be written back
to the disk, but if the wallet is deleted, then the buffered data or metadata
would no longer be encrypted. This could cause redo generation to fail, and
the DBWR background process would not be able to write the data, which
would possibly lead to a database instance hang or crash.

– After a database instance crash, the database instance recovery and
database crash recovery would fail, leading to the database not being able to
be restarted.

Related Topics

• Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

4.2 Managing the TDE Master Encryption Key
You can manage the TDE master encryption key in several ways.

• Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

• Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.

• Activating TDE Master Encryption Keys
After you activate a TDE master encryption key, it can be used.

• TDE Master Encryption Key Attribute Management
TDE master encryption key attributes store information about the TDE master
encryption key.

• Creating Custom TDE Master Encryption Key Attributes for Reports
Custom TDE master encryption key attributes enable you to defined attributes that
are specific to your needs.

• Setting or Rekeying the TDE Master Encryption Key in the Keystore
You can set or rekey the TDE master encryption key for both software keystores
and external keystores.

Chapter 4
Managing the TDE Master Encryption Key

4-26

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

• Moving TDE Master Encryption Keys into a New Keystore
You can move an existing TDE master encryption key into a new keystore from an
existing password-protected keystore.

• Management of TDE Master Encryption Keys Using Oracle Key Vault
You can use Oracle Key Vault to manage and share TDE master encryption keys across
an enterprise.

4.2.1 Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

• About User-Defined TDE Master Encryption Keys
A TDE master encryption key that is outside the database has its own user-generated ID,
which tracks the use of the TDE master encryption key.

• Creating a User-Defined TDE Master Encryption Key
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

4.2.1.1 About User-Defined TDE Master Encryption Keys
A TDE master encryption key that is outside the database has its own user-generated ID,
which tracks the use of the TDE master encryption key.

You can use the ADMINISTER KEY MANAGEMENT to create and set user-defined TDE master
encryption key IDs. After you generate the TDE master encryption key, you can bring this key
into the database. Optionally, you can specify the TDE master encryption key ID in various
ADMINISTER KEY MANAGEMENT statements.

This type of configuration benefits Oracle Fusion SaaS Cloud environments in that it enables
you to generate a TDE master encryption key this complies with your site’s requirements.
This key that you generate supports the current encryption algorithms and can be used for
software keystores.

After you generate the TDE master encryption key ID, you can encrypt your data as you
normally would.

The TDE master encryption key and its corresponding ID will not be captured by any auditing
logs.

4.2.1.2 Creating a User-Defined TDE Master Encryption Key
To create a user-defined TDE master encryption key, use the ADMINISTER KEY MANAGEMENT
statement with the SET | CREATE [ENCRYPTION] KEY clause.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

Chapter 4
Managing the TDE Master Encryption Key

4-27

2. Create the user-defined TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY
'[mkid:mk | mk]'
[USING ALGORITHM 'algorithm']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• SET | CREATE : Enter SET if you want to create the master and activate the
TDE master encryption key now, or select CREATE if you want to create the key
for later use, without activating it yet.

• mkid and mk:

– mkid, the TDE master encryption key ID, is a 16–byte hex-encoded value
that you can specify or have Oracle Database generate.

– mk, the TDE master encryption key, is a hex-encoded value that you can
specify or have Oracle Database generate, either 32 bytes (for the for
AES256, ARIA256, and GOST256 algorithms) or 16 bytes (for the SEED128
algorithm).

If you omit the mkid:mk|mkid clause but include the mk value, then Oracle
Database generates the mkid for the mk.

If you omit the entire mkid:mk|mkid clause, then Oracle Database generates
these values for you.

• USING ALGORITHM: Specify one of the following supported algorithms:

– AES256
– ARIA256
– SEED128
– GOST256
If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

The following example includes a user-created TDE master encryption key but no
TDE master encryption key ID, so that the TDE master encryption key ID is
generated:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C'
USING ALGORITHM 'GOST256'
FORCE KEYSTORE
IDENTIFIED BY keystore_password;

The next example creates user-defined keys for both the master encryption ID and
the TDE master encryption key. It omits the algorithm specification, so the default
algorithm AES256 is used.

ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY
'10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E30
7F017BA048707B402493C'
IDENTIFIED BY keystore_password;

Chapter 4
Managing the TDE Master Encryption Key

4-28

Related Topics

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

4.2.2 Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.

• About Creating a TDE Master Encryption Key for Later Use
The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create a TDE
master encryption key to be activated at a later date.

• Creating a TDE Master Encryption Key for Later Use
A keystore must be opened before you can create a TDE master encryption key for use
later on.

• Example: Creating a TDE Master Encryption Key in a Single Database
You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to
create a TDE master encryption key in a single database.

4.2.2.1 About Creating a TDE Master Encryption Key for Later Use
The CREATE KEY clause of the ADMINISTER KEY MANAGEMENT statement can create a TDE
master encryption key to be activated at a later date.

You then can activate this key on the same database or export it to another database and
activate it there.

This method of TDE master encryption key creation is useful in a multitenant environment
when you must re-create the TDE master encryption keys. The CREATE KEY clause enables
you to use a single SQL statement to generate a new TDE master encryption key for all of
the PDBs within a multitenant environment. The creation time of the new TDE master
encryption key is later than the activation of the TDE master encryption key that is currently in
use. Hence, the creation time can serve as a reminder to all of the PDBs to activate the most
recently created TDE master encryption key as soon as possible.

4.2.2.2 Creating a TDE Master Encryption Key for Later Use
A keystore must be opened before you can create a TDE master encryption key for use later
on.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Create the TDE master encryption key by using this syntax:

ADMINISTER KEY MANAGEMENT CREATE KEY [USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

Chapter 4
Managing the TDE Master Encryption Key

4-29

In this specification:

• tag is the associated attribute and information that you define. Enclose this
setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the mandatory keystore password that you used
when you created the original keystore. It is case sensitive.

• WITH BACKUP backs up the TDE master encryption key in the same location as
the key, as identified by the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the key locations for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

You must back up password-based software keystores. You do not need to
back up auto-login or local auto-login software keystores. Optionally, include
the USING backup_identifier clause to add a description of the backup.
Enclose backup_identifier in single quotation marks (' ').

3. If necessary, activate the TDE master encryption key.

a. Fin the key ID.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS;

KEY_ID
--
AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

b. Use this key ID to activate the key.

ADMINISTER KEY MANAGEMENT USE KEY
'AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password
WITH BACKUP;

Related Topics

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the
keystore before you can use it.

• Opening an External Keystore
To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with
the SET KEYSTORE OPEN clause.

• Activating TDE Master Encryption Keys
After you activate a TDE master encryption key, it can be used.

4.2.2.3 Example: Creating a TDE Master Encryption Key in a Single Database
You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to
create a TDE master encryption key in a single database.

Chapter 4
Managing the TDE Master Encryption Key

4-30

Example 4-2 shows how to create a TDE master encryption key in a single database. After
you run this statement, a TDE master encryption key with the tag definition is created in the
keystore for that database. You can query the TAG column of the V$ENCRYPTION_KEYS view for
the identifier of the newly created key. You can query the CREATION_TIME column to find the
most recently created key, which would be the key that you created from this statement. You
can export this key to another database if you want or activate it locally later on, as described
in Activating TDE Master Encryption Keys.

Example 4-2 Creating a TDE Master Encryption Key in a Single Database

ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG
'source:admin@source;target:db1@target'
IDENTIFIED BY password WITH BACKUP;

keystore altered.

4.2.3 Activating TDE Master Encryption Keys
After you activate a TDE master encryption key, it can be used.

• About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by using
the USE KEY clause of ADMINISTER KEY MANAGEMENT.

• Activating a TDE Master Encryption Key
To activate a TDE master encryption key, you must open the keystore and use
ADMINISTER KEY MANAGEMENT with the USE KEY clause.

• Example: Activating a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT SQL statement to activate a TDE
master encryption key.

4.2.3.1 About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by using the
USE KEY clause of ADMINISTER KEY MANAGEMENT.

After you activate the master encryption key, it is used to encrypt all data encryption keys in
your database. The key will be used to protect all of the column keys and all of the
tablespace encryption keys. If you have deployed a logical standby database, then you must
export the TDE master encryption keys after recreating them, and then import them into the
standby database. You can have the TDE master encryption key in use on both the primary
and the standby databases. To do so, you must activate the TDE master encryption key after
you import it to the logical standby database.

4.2.3.2 Activating a TDE Master Encryption Key
To activate a TDE master encryption key, you must open the keystore and use ADMINISTER
KEY MANAGEMENT with the USE KEY clause.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

Chapter 4
Managing the TDE Master Encryption Key

4-31

2. Query the KEY_ID column of the V$ENCRYPTION_KEYS view to find the key identifier.

For example:

SELECT KEY_ID FROM V$ENCRYPTION_KEYS;

KEY_ID
--
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Use this key identifier to activate the TDE master encryption key by using the
following syntax:

ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS'
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• key_identifier_from_V$ENCRYPTION_KEYS is the key identifie. Enclose this
setting in single quotation marks (' ').

• tag is the associated attributes and information that you define. Enclose this
setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the mandatory keystore password that you used
when you created the original keystore.

• WITH BACKUP backs up the TDE master encryption key in the same location as
the key, as identified by the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the key locations for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

You must back up password-based software keystores. You do not need to
back up auto-login or local auto-login software keystores. Optionally, include
the USING backup_identifier clause to add a description of the backup.
Enclose backup_identifier in single quotation marks (' ').

Related Topics

• Opening a Software Keystore
To open a software keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

• Opening an External Keystore
To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with
the SET KEYSTORE OPEN clause.

4.2.3.3 Example: Activating a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT SQL statement to activate a TDE
master encryption key.

Chapter 4
Managing the TDE Master Encryption Key

4-32

Example 4-3 shows how to activate a previously imported TDE master encryption key and
then update its tag. This key is activated with the current database time stamp and time zone.

Example 4-3 Activating a TDE Master Encryption Key

ADMINISTER KEY MANAGEMENT USE KEY
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password WITH BACKUP;

keystore altered.

In this version of the same operation, the FORCE KEYSTORE clause is added in the event that
the auto-login keystore is in use, or if the keystore is closed. The password of the keystore is
stored externally, so the EXTERNAL STORE setting is used for the IDENTIFIED BY clause.

ADMINISTER KEY MANAGEMENT USE KEY
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
USING TAG 'quarter:second;description:Activate Key on standby'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

keystore altered.

4.2.4 TDE Master Encryption Key Attribute Management
TDE master encryption key attributes store information about the TDE master encryption key.

• TDE Master Encryption Key Attributes
TDE master encryption key attributes include detailed information about the TDE master
encryption key.

• Finding the TDE Master Encryption Key That Is in Use
A TDE master encryption key that is in use is the encryption key that was activated most
recently for the database.

4.2.4.1 TDE Master Encryption Key Attributes
TDE master encryption key attributes include detailed information about the TDE master
encryption key.

The information contains the following types:

• Key time stamp information: Internal security policies and compliance policies usually
determine the key rekeying frequency. You should expire keys when they reach the end
of their lifetimes and then generate new keys. Time stamp attributes such as key creation
time and activation time help you to determine the key age accurately, and automate key
generation.

The V$ENCRYPTION_KEYS view includes columns such as CREATION_TIME and
ACTIVATION_TIME. See Oracle Database Reference for a complete description of the
V$ENCRYPTION_KEYS view.

• Key owner information: Key owner attributes help you to determine the user who
created or activated the key. These attributes can be important for security, auditing, and
tracking purposes. Key owner attributes also include key use information, such as
whether the key is used for standalone TDE operations or used in a multitenant
environment.

Chapter 4
Managing the TDE Master Encryption Key

4-33

The V$ENCRYPTION_KEYS view includes columns such as CREATOR, CREATOR_ID,
USER, USER_ID, and KEY_USE.

• Key source information: Keys often must be moved between databases for
operations such as import-export operations and Data Guard-related operations.
Key source attributes enable you to track the origin of each key. You can track
whether a key was created locally or imported, and the database name and
instance number of the database that created the key. In a multitenant
environment, you can track the PDB where the key was created.

The V$ENCRYPTION_KEYS view includes columns such as CREATOR_DBNAME,
CREATOR_DBID, CREATOR_INSTANCE_NAME, CREATOR_INSTANCE_NUMBER,
CREATOR_PDBNAME, and so on.

• Key usage information: Key usage information determines the database or PDB
where the key is being used. It also helps determine whether a key is in active use
or not.

The V$ENCRYPTION_KEYS view includes columns such as ACTIVATING_DBNAME,
ACTIVATING_DBID, ACTIVATING_INSTANCE_NAME, ACTIVATING_PDBNAME, and so
on.

• User-defined information and other information: When creating a key, you can
tag it with information using the TAG option. Each key contains important
information such as whether or not it has been backed up.

The V$ENCRYPTION_KEYS view includes columns such as KEY_ID, TAG, and other
miscellaneous columns, for example BACKED_UP.

Note:

TDE Master Key Attributes and Tag are only supported with a hardware
security module that has PKCS#11 data object support.

4.2.4.2 Finding the TDE Master Encryption Key That Is in Use
A TDE master encryption key that is in use is the encryption key that was activated
most recently for the database.

• To find the TDE master encryption key, query the V$ENCRYPTION_KEYS dynamic
view.

For example:

SELECT KEY_ID
FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME = (SELECT MAX(ACTIVATION_TIME)
 FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM
V$DATABASE));

4.2.5 Creating Custom TDE Master Encryption Key Attributes for
Reports

Custom TDE master encryption key attributes enable you to defined attributes that are
specific to your needs.

Chapter 4
Managing the TDE Master Encryption Key

4-34

• About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as accessing a
particular terminal ID.

• Creating a Custom Attribute Tag
To create a custom attribute tag, you must use the SET TAG clause of the ADMINISTER KEY
MANAGEMENT statement.

4.2.5.1 About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as accessing a
particular terminal ID.

By default, Oracle Database defines a set of attributes that describe various characteristics of
the TDE master encryption keys that you create, such as the creation time, database in which
the TDE master encryption key is used, and so on. These attributes are captured by the
V$ENCRYPTION_KEY dynamic view.

You can create custom attributes that can be captured by the TAG column of the
V$ENCRYPTION_KEYS dynamic view. This enables you to define behaviors that you may want to
monitor, such as users who perform activities on encryption keys. The tag can encompass
multiple attributes, such as session IDs from a specific terminal.

After you create the tag for a TDE master encryption key, its name should appear in the TAG
column of the V$ENCRYPTION_KEYS view for that TDE master encryption key. If you create a
tag for the secret, then the tag appears in the SECRET_TAG column of the V$CLIENT_SECRETS
view. If you create a secret with a tag, then the tag appears in the SECRET_TAG column of the
V$CLIENT_SECRETS view.

4.2.5.2 Creating a Custom Attribute Tag
To create a custom attribute tag, you must use the SET TAG clause of the ADMINISTER KEY
MANAGEMENT statement.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. If necessary, query the TAG column of the V$ENCRYPTION_KEY dynamic view to find a
listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing
tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification

Chapter 4
Managing the TDE Master Encryption Key

4-35

• tag is the associated attributes or information that you define. Enclose this
information in single quotation marks (' ').

• master_key_identifier identifies the TDE master encryption key for which
the tag is set. To find a list of TDE master encryption key identifiers, query the
KEY_ID column of the V$ENCRYPTION_KEYS dynamic view.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the password that was used to create the keystore.

• backup_identifier defines the tag values. Enclose this setting in single
quotation marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific
session ID and the second to capture a specific terminal ID:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
USING TAG 'sessionid=3205062574:terminal=xcvt'
IDENTIFIED BY keystore_password
WITH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by
using either the SYS_CONTEXT function with the USERENV namespace, or by using
the USERENV function.

4.2.6 Setting or Rekeying the TDE Master Encryption Key in the
Keystore

You can set or rekey the TDE master encryption key for both software keystores and
external keystores.

• About Setting or Rekeying the TDE Master Encryption Key in the Keystore
You can set or rekey the TDE master encryption key for both software password-
based and external keystores.

• Creating, Tagging, and Backing Up a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement enables you to create, tag, and back
up a TDE master encryption key.

• About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

• Rekeying the TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT statement to rekey a TDE master
encryption key.

• Rekeying the TDE Master Encryption Key for a Tablespace
You can use the REKEY clause of the ALTER TABLESPACE statement to rekey a TDE
master encryption key for an encrypted tablespace.

Chapter 4
Managing the TDE Master Encryption Key

4-36

4.2.6.1 About Setting or Rekeying the TDE Master Encryption Key in the Keystore
You can set or rekey the TDE master encryption key for both software password-based and
external keystores.

The TDE master encryption key is stored in an external security module (keystore), and it is
used to protect the TDE table keys and tablespace encryption keys. By default, the TDE
master encryption key is a system-generated random value created by Transparent Data
Encryption (TDE).

Use the ADMINISTER KEY MANAGEMENT statement to set or reset (REKEY) the TDE master
encryption key. When the master encryption key is set, then TDE is considered enabled and
cannot be disabled.

Before you can encrypt or decrypt database columns or tablespaces, you must generate a
TDE master encryption key. Oracle Database uses the same TDE master encryption key for
both TDE column encryption and TDE tablespace encryption. The instructions for setting a
software or hardware TDE master encryption key explain how to generate a tDE master
encryption key.

Related Topics

• Step 4: Set the TDE Master Encryption Key in the Software Keystore
Once the keystore is open, you can set a TDE master encryption key for it.

• Step 3: Set the First TDE Master Encryption Key in the External Keystore
After you have opened the external keystore, you are ready to set the first TDE master
encryption key.

4.2.6.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement enables you to create, tag, and back up a TDE
master encryption key.

Oracle Database uses the keystore in the keystore location specified by the WALLET_ROOT
parameter in the initialization parameter file to store the TDE master encryption key.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Create and back up the TDE master encryption key, and apply a tag, by using the
following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier'];

In this specification:

• tag is the tag that you want to create. Enclose this tag in single quotation marks ('
').

Chapter 4
Managing the TDE Master Encryption Key

4-37

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is either software_keystore_password or
external_key_manager_password. As with software passwords, it is case
sensitive. You must enclose the password string in double quotation marks
(" "). Separate user_name and password with a colon (:).

• WITH BACKUP backs the TDE master encryption key up in the same location as
the key, as identified by the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the
database instances, query the GV$ENCRYPTION_WALLET view.

You must back up password-based software keystores. You do not need to
use it for auto-login or local auto-login software keystores. Optionally, include
the USING backup_identifier clause to add a description of the backup.
Enclose this identifier in single quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
USING TAG 'backups"
IDENTIFIED BY password
WITH BACKUP USING 'hr.emp_key_backup';

keystore altered.

Related Topics

• Creating Custom TDE Master Encryption Key Attributes for Reports
Custom TDE master encryption key attributes enable you to defined attributes that
are specific to your needs.

4.2.6.3 About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

When you rekey the TDE master encryption key for TDE column encryption, the TDE
Master Encryption Key for TDE tablespace encryption also is rekeyed. Rekey the TDE
Master Encryption Key only if it was compromised or as per the security policies of the
organization. This process deactivates the previous TDE master encryption key.

For better security and to meet compliance regulations, periodically rekey the TDE
master encryption key. This process deactivates the previous TDE master encryption
key, creates a new TDE master encryption key, and then activates it. You can check
the keys that were created recently by querying the CREATION_TIME column in the
V$ENCRYPTION_KEYS view. To find the keys that were activated recently, query the
ACTIVATION_TIME column in the V$ENCRYPTION_KEYS view.

You cannot change the TDE master encryption key or rekey a TDE master encryption
key for an auto-login keystore. Because auto-login keystores do not have a password,
an administrator or a privileged user can change the keys without the knowledge of the
security officer. However, if both the auto-login and the password-based keystores are
present in the configured location (as set in the sqlnet.ora file), then when you rekey

Chapter 4
Managing the TDE Master Encryption Key

4-38

the TDE master encryption key, a TDE master encryption key is added to both the auto-login
and password-based keystores. If the auto-login keystore is in use in a location that is
different from that of the password-based keystore, then you must re-create the auto-login
keystore.

Do not perform a rekey operation of the master key concurrently with an online tablespace
rekey operation. You can find if an online tablespace is in the process of being TDE Master
Encryption Keyed by issuing the following query:

SELECT TS#,ENCRYPTIONALG,STATUS FROM V$ENCRYPTED_TABLESPACES;

A status of REKEYING means that the corresponding tablespace is still being rekeyed.

Note:

You cannot add new information to auto-login keystores separately.

4.2.6.4 Rekeying the TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT statement to rekey a TDE master encryption
key.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. If you are rekeying the TDE master encryption key for a keystore that has auto login
enabled, then ensure that both the auto login keystore, identified by the .sso file, and the
encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

Chapter 4
Managing the TDE Master Encryption Key

4-39

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– keystore_password is the mandatory keystore password that you created
when you created the keystore in Step 2: Create the Software Keystore.

• WITH BACKUP creates a backup of the keystore. You must use this option for
password-based and external keystores. Optionally, you can use the USING
clause to add a brief description of the backup. Enclose this description in
single quotation marks (' '). This identifier is appended to the named
keystore file (for example, ewallet_time-stamp_emp_key_backup.p12). Follow
the file naming conventions that your operating system uses.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

keystore altered.

Related Topics

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the
keystore before you can use it.

• Step 2: Open the External Keystore
After you have configured the external keystore, you must open it before it can be
used.

4.2.6.5 Rekeying the TDE Master Encryption Key for a Tablespace
You can use the REKEY clause of the ALTER TABLESPACE statement to rekey a TDE
master encryption key for an encrypted tablespace.

1. Ensure that the tablespace open in read-write mode.

You can query the STATUS column of the V$INSTANCE dynamic view to find if a
database is open and the OPEN_MODE column of the V$DATABASE view to find if it in
read-write mode.

2. If necessary, open the database in read-write mode.

ALTER DATABASE OPEN READ WRITE;
3. Run the ALTER TABLESPACE SQL statement to encrypt the tablespace.

For example:

ALTER TABLESPACE encrypt_ts ENCRYPTION USING 'AES256' ENCRYPT;

Related Topics

• About Encryption Conversions for Existing Online Tablespaces
You can encrypt, decrypt, or rekey existing user tablespaces, and the SYSTEM,
SYSAUX, and UNDO tablespace when they are online.

4.2.7 Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

Chapter 4
Managing the TDE Master Encryption Key

4-40

• About Exporting and Importing the TDE Master Encryption Key
Oracle Database features such as transportable tablespaces and Oracle Data Pump
move data that is possibly encrypted between databases.

• About Exporting TDE Master Encryption Keys
You can use ADMINISTER KEY MANAGEMENT EXPORT to export TDE master encryption keys
from a keystore, and then import them into another keystore.

• Exporting a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the EXPORT [ENCRYPTION] KEYS WITH
SECRET clause exports a TDE master encryption key.

• Example: Exporting a TDE Master Encryption Key by Using a Subquery
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export a TDE
master encryption key by using a subquery.

• Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET statement can
export a list of TDE master encryption key identifiers to a file.

• Example: Exporting All TDE Master Encryption Keys of the Database
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS SQL statement can export
all TDE master encryption keys of a database.

• About Importing TDE Master Encryption Keys
The ADMINISTER KEY MANAGEMENT IMPORT statement can import exported TDE master
encryption keys from a key export file into a target keystore.

• Importing a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS WITH
SECRET clause can import a TDE master encryption key.

• Example: Importing a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT IMPORT KEYS SQL statement to
import a TDE master encryption key.

• How Keystore Merge Differs from TDE Master Encryption Key Export or Import
The keystore merge operation differs from the TDE master encryption key export and
import operations.

4.2.7.1 About Exporting and Importing the TDE Master Encryption Key
Oracle Database features such as transportable tablespaces and Oracle Data Pump move
data that is possibly encrypted between databases.

These are some common scenarios in which you can choose to export and import TDE
master encryption keys to move them between source and target keystores. For Data Guard
(Logical Standby), you must copy the keystore that is in the primary database to the standby
database. Instead of merging the primary database keystore with the standby database, you
can export the TDE master encryption key that is in use and then import it to the standby
database. Moving transportable tablespaces that are encrypted between databases requires
that you export the TDE master encryption key at the source database and then import it into
the target database.

4.2.7.2 About Exporting TDE Master Encryption Keys
You can use ADMINISTER KEY MANAGEMENT EXPORT to export TDE master encryption keys
from a keystore, and then import them into another keystore.

Chapter 4
Managing the TDE Master Encryption Key

4-41

A TDE master encryption key is exported together with its key identifier and key
attributes. The exported keys are protected with a password (secret) in the export file.

You can specify the TDE master encryption keys to be exported by using the WITH
IDENTIFIER clause of the ADMINSITER KEY MANAGENT EXPORT statement. To export the
TDE master encryption keys, you can either specify their key identifiers as a comma-
separated list, or you can specify a query that enumerates their key identifiers. Be
aware that Oracle Database executes the query determining the key identifiers within
the current user's rights and not with definer's rights.

If you omit the WITH IDENTIFER clause, then all of the TDE master encryption keys of
the database are exported.

Related Topics

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT
EXPORT can export or import master encryption keys for a PDB.

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT
EXPORT can export or import master encryption keys for a PDB.

4.2.7.3 Exporting a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the EXPORT [ENCRYPTION] KEYS
WITH SECRET clause exports a TDE master encryption key.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Export the TDE master encryption keys by using the following syntax:

ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS
WITH SECRET "export_secret"
TO 'file_path'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH IDENTIFIER IN 'key_id1', 'key_id2', 'key_idn' | (SQL_query)];

In this specification:

• export_secret is a password that you can specify to encrypt the export the
file that contains the exported keys. Enclose this secret in double quotation
marks (" "), or you can omit the quotation marks if the secret has no spaces.

• file_path is the complete path and name of the file to which the keys must be
exported. Enclose this path in single quotation marks (' '). You can export to
regular file systems only.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

Chapter 4
Managing the TDE Master Encryption Key

4-42

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– software_keystore_password is the password of the keystore containing the
keys.

• key_id1, key_id2, key_idn is a string of one or more TDE master encryption key
identifiers for the TDE master encryption key being exported. Separate each key
identifier with a comma and enclose each of these key identifiers in single quotation
marks (' '). To find a list of TDE master encryption key identifiers, query the KEY_ID
column of the V$ENCRYPTION_KEYS dynamic view.

• SQL_query is a query that fetches a list of the TDE master encryption key identifiers.
It should return only one column which contains the TDE master encryption key
identifiers. This query is executed with current user rights.

Related Topics

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the keystore
before you can use it.

4.2.7.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export a TDE
master encryption key by using a subquery.

Example 4-5 shows how to export TDE master encryption keys whose identifiers are fetched
by a query to a file called export.exp. The TDE master encryption keys in the file are
encrypted using the secret my_secret. The SELECT statement finds the identifiers for the TDE
master encryption keys to be exported.

Example 4-4 Exporting a List of TDE Master Encryption Key Identifiers to a File

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "my_secret"
TO '/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY password
WITH IDENTIFIER IN 'AdoxnJ0uH08cv7xkz83ovwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
'AW5z3CoyKE/yv3cNT5CWCXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';

keystore altered.

4.2.7.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET statement can
export a list of TDE master encryption key identifiers to a file.

Example 4-4 shows how to export TDE master encryption keys by specifying their identifiers
as a list, to a file called export.exp. TDE master encryption keys in the file are encrypted
using the secret my_secret. The identifiers of the TDE master encryption key to be exported
are provided as a comma-separated list.

Example 4-5 Exporting TDE Master Encryption Key Identifiers by Using a Subquery

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "my_secret" TO '/etc/TDE/export.exp'
FORCE KEYSTORE

Chapter 4
Managing the TDE Master Encryption Key

4-43

IDENTIFIED BY password
WITH IDENTIFIER IN (SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM <3);

keystore altered.

4.2.7.6 Example: Exporting All TDE Master Encryption Keys of the Database
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS SQL statement can
export all TDE master encryption keys of a database.

Example 4-6 shows how to export all of the TDE master encryption keys of the
database to a file called export.exp. The TDE master encryption keys in the file are
encrypted using the secret my_secret.

Example 4-6 Exporting All of the TDE Master Encryption Keys of the Database

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "my_secret" TO '/etc/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY password;

keystore altered.

4.2.7.7 About Importing TDE Master Encryption Keys
The ADMINISTER KEY MANAGEMENT IMPORT statement can import exported TDE master
encryption keys from a key export file into a target keystore.

You cannot re-import TDE master encryption keys that have already been imported.

Related Topics

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT
EXPORT can export or import master encryption keys for a PDB.

4.2.7.8 Importing a TDE Master Encryption Key
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS
WITH SECRET clause can import a TDE master encryption key.

1. Log in to the database instance as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Run the following SQL statement:

ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS
WITH SECRET "import_secret"
FROM 'file_name'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

Chapter 4
Managing the TDE Master Encryption Key

4-44

• import_secret is the same password that was used to encrypt the keys during the
export operation. Enclose this secret in double quotation marks (" "), or you can omit
the quotation marks if the secret has no spaces.

• file_name is the complete path and name of the file from which the keys need to be
imported. Enclose this setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– software_keystore_password is the password of the software keystore where
the keys are being imported.

• WITH BACKUP must be used in case the target keystore was not backed up before the
import operation. backup_identifier is an optional string that you can provide to
identify the keystore backup. Enclose this setting in single quotation marks (' ').

Related Topics

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the keystore
before you can use it.

4.2.7.9 Example: Importing a TDE Master Encryption Key
You can use the ADMINISTER KEY MANAGEMENT IMPORT KEYS SQL statement to import
a TDE master encryption key.

Example 4-7 shows how to import the TDE master encryption key identifiers that are stored in
the file export.exp and encrypted with the secret my_secret.

Example 4-7 Importing TDE Master Encryption Key Identifiers from an Export File

ADMINISTER KEY MANAGEMENT IMPORT KEYS
WITH SECRET "my_secret"
FROM '/etc/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY password WITH BACKUP;

keystore altered.

4.2.7.10 How Keystore Merge Differs from TDE Master Encryption Key Export or
Import

The keystore merge operation differs from the TDE master encryption key export and import
operations.

Even though both the ADMINISTER KEY MANAGEMENT MERGE statement and the ADMINISTER
KEY MANAGEMENT EXPORT and IMPORT statements eventually move the TDE master encryption
keys from one keystore to the next, there are differences in how these two statements
function.

• The MERGE statement merges two keystores whereas the EXPORT and IMPORT statements
export the keys to a file or import the keys from a file. The keystore is different from the

Chapter 4
Managing the TDE Master Encryption Key

4-45

export file, and the two cannot be used interchangeably. The export file is not a
keystore and cannot be configured to be used with a database as a keystore.
Similarly, the IMPORT statement cannot extract the TDE master encryption keys
from the keystore.

• The MERGE statement merges all of the TDE master encryption keys of the
specified keystores where as the EXPORT and IMPORT statements can be selective.

• The EXPORT and IMPORT statements require the user to provide both a location
(filepath) and the file name of the export file, whereas the MERGE statement only
takes in the location of the keystores.

• The file name of the keystores is fixed and is determined by the MERGE operation
and can be either ewallet.p12 or cwallet.sso. The file names for the export files
used in the EXPORT the IMPORT statements are specified by the user.

• The keystores on Automatic Storage Management (ASM) disk groups or regular
file systems can be merged with MERGE statements. The export files used in the
EXPORT and the IMPORT statements can only be a regular operating system file and
cannot be located on an ASM disk group.

• The keystores merged using the MERGE statement do not need to be configured or
in use with the database. The EXPORT statement can only export the keys from a
keystore that is configured and in use with the database and is also open when the
export is done. The IMPORT statement can only import the keys into a keystore that
is open, configured, and in use with the database.

• The MERGE statement never modifies the metadata associated with the TDE master
encryption keys. The EXPORT and IMPORT operations can modify the metadata of
the TDE master encryption keys when required, such as during a PDB plug
operation.

4.2.8 Moving TDE Master Encryption Keys into a New Keystore
You can move an existing TDE master encryption key into a new keystore from an
existing password-protected keystore.

• About Moving TDE Master Encryption Keys into a New Keystore
You can move an unused (and safely archived) TDE master encryption key into a
new keystore.

• Moving a TDE Master Encryption Key into a New Keystore
The ADMINISTER KEY MANAGEMENT MOVE KEYS moves an existing TDE master
encryption key into a new keystore from an existing keystore.

4.2.8.1 About Moving TDE Master Encryption Keys into a New Keystore
You can move an unused (and safely archived) TDE master encryption key into a new
keystore.

Use great caution when you decide to execute ADMINISTER KEY MANAGEMENT MOVE
KEYS. Even though this statement will not move an active master encryption key, it can
still affect keys that are necessary for a range of database features. If you have
deleted a key, then the data that was encrypted by that key is rendered permanently
inaccessible (equivalent to deleting the data) for these features to be used. See
Related Topics at the end of this topic for more information about features that are
affected by deleted keystores.

Chapter 4
Managing the TDE Master Encryption Key

4-46

Therefore, before you move the keystore, it is very important that you safely archive it. Delete
the keystore only after a period of time has passed, to ensure that the keystore is no longer
really useful.

To move a TDE master encryption key into a new keystore, you use the ADMINISTER KEY
MANAGEMENT MOVE KEYS statement. This statement does not move the active TDE master
encryption key (that is, the key that is currently in use at the time that ADMINISTER KEY
MANAGEMENT MOVE KEYS is issued) because the database is currently using it.

If you mistakenly use the ADMINISTER KEY MANAGEMENT MOVE KEYS statement instead of
ADMINISTER KEY MANAGEMENT MERGE KEYSTORE when you are configuring a new TDE keystore
(for example, when you are changing the TDE keystore configuration from one where the
software keystore is located in the operating system's file system to one where the software
keystore is located in Oracle Automatic Storage Management (Oracle ASM)), then the
following symptoms may help you to identify the TDE misconfiguration that was introduced by
the use of the wrong key management command:

• When you open the TDE keystore that was the target of the earlier ADMINISTER KEY
MANAGEMENT MOVE KEYS operation, an ORA-28374: typed master key not found in
wallet error is seen, because the active TDE master encryption key was not moved to
that keystore.

• The value shown in the STATUS column of the V$ENCRYPTION_WALLET view is
OPEN_NO_MASTER_KEY after you open the new keystore. The OPEN_NO_MASTER_KEY status is
expected, because the new TDE keystore that was mistakenly populated by means of the
ADMINISTER KEY MANAGEMENT MOVE KEYS statement does not contain the active TDE
master encryption key.

Related Topics

• Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE master
encryption key residing in that keystore is later needed.

4.2.8.2 Moving a TDE Master Encryption Key into a New Keystore
The ADMINISTER KEY MANAGEMENT MOVE KEYS moves an existing TDE master encryption key
into a new keystore from an existing keystore.

This feature enables you to delete unused keystores. Before you move the keystore, ensure
that it is safely archived. After you move the encryption key to a new keystore, and when you
are sure that the old keystore is no longer needed, you then can delete the old keystore.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin as syskm
Enter password: password
Connected.

2. Query the KEY_ID column of the V$ENCRYPTION_KEYS view to find the key identifier of the
keys you want to move to the "key archival" keystore.

For example:

Chapter 4
Managing the TDE Master Encryption Key

4-47

SELECT KEY_ID FROM V$ENCRYPTION_KEYS;

KEY_ID
--
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Move the key into a new keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 'keystore_location1'
IDENTIFIED BY keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY keystore_password
[WITH IDENTIFIER IN
{ 'key_identifier' [, 'key_identifier']... | (subquery) }]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• keystore_location1 is the path to the wallet directory that will store the new
keystore .p12 file. By default, this directory is in $ORACLE_BASE/admin/
db_unique_name/wallet.

• keystore1_password is the password for the keystore from which the new
keystore is moved.

• keystore_password is the password for the keystore from which the key is
moving.

• key_identifier is the key identifier that you find from querying the KEY_ID
column of the V$ENCRYPTION_KEYS view. Enclose this setting in single quotation
marks (' ').

• subquery can be used to find the exact key identifier that you want.

• backup_identifier is an optional description of the backup. Enclose
backup_identifier in single quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE $ORACLE_BASE/admin/orcl/wallet
IDENTIFIED BY keystore_password
FROM FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH IDENTIFIER IN
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2);

4. To delete the old keystore, go to the wallet directory and then manually delete
the .p12 file containing the keystore.

To find the location of the keystore, open the keystore, and then query the
WRL_PARAMETER column of the V$ENCRYPTION_WALLET view.

Related Topics

• Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

• Features That Are Affected by Deleted Keystores
Some features can be adversely affected if a keystore is deleted and a TDE
master encryption key residing in that keystore is later needed.

Chapter 4
Managing the TDE Master Encryption Key

4-48

4.2.9 Management of TDE Master Encryption Keys Using Oracle Key Vault
You can use Oracle Key Vault to manage and share TDE master encryption keys across an
enterprise.

Oracle Key Vault securely stores the keys in a central repository, along with other security
objects such as credential files and Java keystores, and enables you to share these objects
with other TDE-enabled databases.

Related Topics

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both software and external keystores to and
from Oracle Key Vault.

• Oracle Key Vault Administrator's Guide

4.3 Storing Oracle Database Secrets
Secrets are data that support internal Oracle Database features that integrate external clients
such as Oracle GoldenGate into the database.

• About Storing Oracle Database Secrets in a Keystore
Keystores can store secrets that support internal Oracle Database features and integrate
external clients such as Oracle GoldenGate.

• Storage of Oracle Database Secrets in a Software Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets from a keystore.

• Example: Adding an Oracle Key Vault Password to a Software Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Key Vault
password to a software keystore.

• Example: Changing an Oracle Key Vault Password Stored as a Secret in a Software
Keystore
The ADMINISTER KEY MANAGEMENT UPDATE SECRET statement can change an Oracle Key
Vault password that is stored as a secret in a software keystore.

• Example: Deleting an Oracle Key Vault Password Stored as a Secret in a Software
Keystore
The ADMINISTER KEY MANAGEMENT DELETE SECRET statement can delete Oracle Key Vault
passwords that are stored as secrets in a software keystore.

• Storage of Oracle Database Secrets in an External Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add, update, and delete secrets.

• Example: Adding an Oracle Database Secret to an External Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Database
secret to an external keystore.

• Example: Changing an Oracle Database Secret in an External Keystore
The ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can change an
Oracle Database secret in an external keystore.

Chapter 4
Storing Oracle Database Secrets

4-49

• Example: Deleting an Oracle Database Secret in an External Keystore
The ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT statement can
delete an Oracle Database secret that is in an external keystore.

• Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

4.3.1 About Storing Oracle Database Secrets in a Keystore
Keystores can store secrets that support internal Oracle Database features and
integrate external clients such as Oracle GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add,
update, or delete a client secret in an existing keystore. The Oracle GoldenGate
Extract process must have data encryption keys to decrypt the data that is in data files
and in REDO or UNDO logs. Keys are encrypted with shared secrets when you share the
keys between an Oracle database and an Oracle GoldenGate client. The software
keystore stores the shared secrets.

Depending on your site's requirements, you may require automated open keystore
operations even when an external keystore is configured. For this reason, the external
key manager password can be stored in a software auto-login keystore, which enables
the auto-login capability for the external keystore. The Oracle Database side can also
store the credentials for the database to log in to an external storage server in the
software keystore.

You can store Oracle Database secrets in both software keystores and external
keystores:

• Software keystores: You can store secrets in software password-based, auto-
login, and local auto-login software keystores. If you want to store secrets in an
auto-login (or auto-login local) keystore, then note the following:

– If the software auto-login keystore is in the same location as its corresponding
password-based software keystore, then the secrets are added automatically.

– If the software auto-login keystore is in a different location from its
corresponding password-based software keystore, then you must create the
auto-login keystore again from the password-based keystore, and keep the
two keystores in synchronization.

• External keystores: You can store secrets in standard external key managers.

Related Topics

• Storage of Oracle Database Secrets in an External Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add, update, and delete secrets.

• Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

4.3.2 Storage of Oracle Database Secrets in a Software Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets from a keystore.

Chapter 4
Storing Oracle Database Secrets

4-50

As with all of the ADMINISTER KEY MANAGEMENT statements, you must have the ADMINISTER
KEY MANAGEMENT or the SYSKM administrative privilege. To find information about existing
secrets, you can query the V$CLIENT_SECRETS dynamic view.

• Adding a secret: Use the following syntax:

ADMINISTER KEY MANAGEMENT
ADD SECRET 'secret' FOR CLIENT 'client_identifier'
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING backup_id];

• Updating a secret: Use the following syntax:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'secret' FOR CLIENT 'client_identifier'
[USING TAG 'tag']
 [TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING backup_id];

• Deleting a secret: Use the following syntax:

ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'client_identifier'
[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING backup_id];

In all of these statements, the specification is as follows:

• secret is the client secret key to be stored, updated, or deleted. Enclose this setting in
single quotation marks (' ') or omit the quotation marks if the secret has no spaces. To
find information about existing secrets and their client identifiers, query the
V$CLIENT_SECRETS dynamic view.

• client_identifier is an alphanumeric string used to identify the secret key.
client_identifier does not have a default value. Enclose this setting in single
quotation marks (' ').

• TO [[LOCAL] AUTO_LOGIN] KEYSTORE refers to the location of an auto-login keystore,
which is specified in the sqlnet.ora file.

• tag is an optional, user-defined description for the secret key to be stored. You can use
tag with the ADD and UPDATE operations. Enclose this setting in single quotation marks
(' '). This tag appears in the SECRET_TAG column of the V$CLIENT_SECRETS view.

WITH BACKUP is required in case the keystore was not backed up before the ADD, UPDATE,
or DELETE operation. backup_identifier is an optional user-defined description for the
backup. Enclose backup_identifier in single quotation marks (' ').

• [TO | FROM [[LOCAL] AUTOLLOGIN] KEYSTORE specifies the location of the auto-login or
password keystore, which is set in the sqlnet.ora file.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this operation if
an auto-login keystore is open (and in use) or if the keystore is closed.

• IDENTIFIED BY can be one of the following settings:

Chapter 4
Storing Oracle Database Secrets

4-51

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password for the keystore.

Related Topics

• Creating Custom TDE Master Encryption Key Attributes for Reports
Custom TDE master encryption key attributes enable you to defined attributes that
are specific to your needs.

4.3.3 Example: Adding an Oracle Key Vault Password to a Software
Keystore

The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Key Vault
password to a software keystore.

Example 4-8 shows how to add an Oracle Key Vault password as a secret into an
existing software keystore (for example, after migrating to Oracle Key Vault, the Oracle
Key Vault password can be added to the old TDE software keystore to set up an auto-
open connection into Oracle Key Vault.

Example 4-8 Adding an Oracle Database Secret to a Software Keystore

ADMINISTER KEY MANAGEMENT
ADD SECRET 'external_key_manager_password' FOR CLIENT 'OKV_PASSWORD'
IDENTIFIED BY software_keystore_password WITH BACKUP;

Before migrating from a software keystore to Oracle Key Vault, you can upload the
software keystore into the virtual wallet of that endpoint in Oracle Key Vault. After
migrating, you now can delete the old TDE wallet, because its key is in Oracle Key
Vault. In order to configure auto-open Oracle Key Vault without a wallet being already
present, execute the following statement:

ADMINISTER KEY MANAGEMENT ADD SECRET 'external_keystore_password'
FOR CLIENT 'OKV_PASSWORD' INTO [LOCAL] AUTO_LOGIN KEYSTORE 'WALLET_ROOT/tde';

Note that the setting TDE_CONFIGURATION='KEYSTORE_CONFIGUARTION=OKV' is for a
password-protected connection into Oracle Key Vault. After the Oracle Key Vault
password has been inserted into an existing or newly created wallet, change the
TDE_CONFIGURATION setting to 'KEYSTORE_CONFIGURATION=OKV|FILE'.

4.3.4 Example: Changing an Oracle Key Vault Password Stored as a
Secret in a Software Keystore

The ADMINISTER KEY MANAGEMENT UPDATE SECRET statement can change an Oracle
Key Vault password that is stored as a secret in a software keystore.

Example 4-9 shows how to change an Oracle Key Vault password that is stored as a
secret in a software keystore.

Example 4-9 Changing an Oracle Key Vault Password Secret to a Software
Keystore

ADMINISTER KEY MANAGEMENT
UPDATE SECRET admin_password FOR CLIENT 'admin@myhost'

Chapter 4
Storing Oracle Database Secrets

4-52

USING TAG 'new_host_credentials' FORCE KEYSTORE
IDENTIFIED BY software_keytore_password;

In this version, the password for the keystore is in an external store:

DMINISTER KEY MANAGEMENT
UPDATE SECRET admin_password FOR CLIENT 'admin@myhost'
USING TAG 'new_host_credentials' FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

4.3.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret
in a Software Keystore

The ADMINISTER KEY MANAGEMENT DELETE SECRET statement can delete Oracle Key Vault
passwords that are stored as secrets in a software keystore.

Example 4-10 shows how to delete an Oracle Key Vault password that is stored as a secret in
the software keystore.

Example 4-10 Deleting an Oracle Key Vault Password Secret in a Software Keystore

ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE
IDENTIFIED BY password WITH BACKUP;

In this version, the password for the keystore is in an external store:

ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'OKV_PASSWORD'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE WITH BACKUP;

4.3.6 Storage of Oracle Database Secrets in an External Keystore
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET statements
can add, update, and delete secrets.

As with all ADMINISTER KEY MANAGEMENT statements, you must have the ADMINISTER KEY
MANAGEMENT or the SYSKM administrative privilege. When you add, update, or delete secrets
from a keystore that is in use or presently open, then you must run ADMINISTER KEY
MANAGEMENT in the root.

You can store Oracle Database secrets in both HSM and Oracle Key Vault external
keystores, but be aware that automatic logins do not work if you store the HSM_PASSWORD in a
Key Vault keystore.

• Adding a secret: Use the following syntax:

ADMINISTER KEY MANAGEMENT ADD SECRET 'secret'
FOR CLIENT 'client_identifier' [USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"
[WITH BACKUP [USING backup_id]];

• Updating a secret: Use the following syntax:

Chapter 4
Storing Oracle Database Secrets

4-53

ADMINISTER KEY MANAGEMENT UPDATE SECRET 'secret'
FOR CLIENT 'client_identifier' [USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"
[WITH BACKUP [USING backup_id]];

• Deleting a secret: Use the following syntax:

ADMINISTER KEY MANAGEMENT DELETE SECRET
FOR CLIENT 'client_identifier'
[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"
[WITH BACKUP [USING backup_id]];

In all of these statements, the specification as follows:

• secret is the client secret key to be stored, updated, or deleted. Enclose this
setting in double quotation marks (' ') or omit the quotation marks if the secret
has no spaces. To find information about existing secrets and their client
identifiers, query the V$CLIENT_SECRETS dynamic view.

• client_identifier is an alphanumeric string used to identify the secret key.
client_identifier does not have a default value. Enclose this setting in single
quotation marks (' ').

• tag is an optional, user-defined description for the secret key to be stored. You can
use tag with the ADD and UPDATE operations. Enclose this setting in single
quotation marks (' '). This tag appears in the SECRET_TAG column of the
V$CLIENT_SECRETS view.

• [TO | FROM [[LOCAL] AUTO_LOGIN] KEYSTORE specifies the location of the
keystore used for the external keystore.

• external_key_manager_password is for an external keystore manager, which can
be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in
double quotation marks. For Oracle Key Vault, enter the password that was given
during the Oracle Key Vault client installation. If at that time no password was
given, then the password in the ADMINISTER KEY MANAGEMENT statement becomes
NULL.

Related Topics

• Creating Custom TDE Master Encryption Key Attributes for Reports
Custom TDE master encryption key attributes enable you to defined attributes that
are specific to your needs.

4.3.7 Example: Adding an Oracle Database Secret to an External
Keystore

The ADMINISTER KEY MANAGEMENT ADD SECRET statement can add an Oracle Database
secret to an external keystore.

Example 4-11 shows how to add a password for a user to an external keystore.

Chapter 4
Storing Oracle Database Secrets

4-54

Example 4-11 Adding an Oracle Database Secret to an External Keystore

ADMINISTER KEY MANAGEMENT ADD SECRET 'password'
FOR CLIENT 'admin@myhost' USING TAG 'myhost admin credentials'
IDENTIFIED BY "external_key_manager_password";

In this version, the keystore password is in an external store, so the EXTERNAL STORE setting
is used for IDENTIFIED BY:

ADMINISTER KEY MANAGEMENT ADD SECRET 'password'
FOR CLIENT 'admin@myhost' USING TAG 'myhost admin credentials'
IDENTIFIED BY EXTERNAL STORE;

4.3.8 Example: Changing an Oracle Database Secret in an External
Keystore

The ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET statement can change an
Oracle Database secret in an external keystore.

Example 4-12 shows how to change a password that is stored as a secret in a external
keystore.

Example 4-12 Changing an Oracle Database Secret in an External Keystore

ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET 'password2'
FOR CLIENT 'admin@myhost' USING TAG 'New host credentials'
IDENTIFIED BY "external_key_manager_password";

In this version, the password for the keystore is in an external store:

ADMINISTER KEY MANAGEMENT MANAGEMENT UPDATE SECRET 'password2'
FOR CLIENT 'admin@myhost' USING TAG 'New host credentials'
IDENTIFIED BY EXTERNAL STORE;

4.3.9 Example: Deleting an Oracle Database Secret in an External
Keystore

The ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT statement can delete an
Oracle Database secret that is in an external keystore.

Example 4-13 shows how to delete an external key manager password that is stored as a
secret in the external keystore.

Example 4-13 Deleting an Oracle Database Secret in an External Keystore

ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'admin@myhost'
IDENTIFIED BY "external_key_manager_password";

In this version, the password for the keystore is in an external store:

ADMINISTER KEY MANAGEMENT DELETE SECRET FOR CLIENT 'admin@myhost'
IDENTIFIED BY EXTERNAL STORE;

4.3.10 Configuring Auto-Open Connections into External Key Managers
An external key manager can be configured to use the auto-login capability.

Chapter 4
Storing Oracle Database Secrets

4-55

• About Auto-Open Connections into External Key Managers
An auto-open connection into an external key manager stores the external
keystore credentials in an auto-login keystore.

• Configuring an Auto-Open Connection into an External Key Manager
To configure the auto-open connection, you must use the ADMINISTER KEY
MANAGEMENT statement to add or update a client secret that to authenticate to the
external key manager.

4.3.10.1 About Auto-Open Connections into External Key Managers
An auto-open connection into an external key manager stores the external keystore
credentials in an auto-login keystore.

You can configure a connection to an external key manager so that the database can
open the keystore without prompting for the keystore password. This configuration is
essential in Oracle Real Application Clusters (Oracle RAC) environments, and is highly
recommended for Oracle Data Guard standby databases. Be aware that this
configuration reduces the security of the system as a whole. However, this
configuration does support unmanned or automated operations, and is useful in
deployments where TDE-enabled databases that are enrolled into an external
keystore for key management can start automatically.

Be aware that executing the query SELECT * FROM V$ENCRYPTION_WALLET will
automatically open an auto-login external keystore. For example, suppose you have
an auto-login external keystore configured. If you close the keystore and query the
V$ENCRYPTION_WALLET view, then the output will indicate that a keystore is open. This
is because V$ENCRYPTION_WALLET opened up the auto-login external keystore and then
displayed the status of the auto-login keystore.

To enable the auto-login capability for an external keystore, you must store the
external keystore's credentials in an auto-login wallet.

When you use the ADMINISTER KEY MANAGEMENT statement, there are conceptually two
sets of commands that act on client secrets:

• ADMINISTER KEY MANAGEMENT commands that act on the wallet that is currently in
use (in other words, a wallet that contains an active TDE master encryption key).

• ADMINISTER KEY MANAGEMENT commands that act on a wallet that is not currently
being used to hold the active TDE master encryption key. Oracle recommends that
you use this approach when you configure an auto-login external keystore.

Related Topics

• Configuring an Auto-Open Connection into an External Key Manager
To configure the auto-open connection, you must use the ADMINISTER KEY
MANAGEMENT statement to add or update a client secret that to authenticate to the
external key manager.

4.3.10.2 Configuring an Auto-Open Connection into an External Key Manager
To configure the auto-open connection, you must use the ADMINISTER KEY MANAGEMENT
statement to add or update a client secret that to authenticate to the external key
manager.

Before you begin this procedure, ensure that you have configured the external
keystore.

Chapter 4
Storing Oracle Database Secrets

4-56

In this procedure, the wallet that is created does not contain any keys. It only holds the client
secret. So, when you query the V$ENCRYPTION_WALLET dynamic view for this wallet, the
STATUS column shows OPEN_NO_MASTER_KEY rather than OPEN, because the wallet only
contains the client secret.

1. Reconfigure the WALLET_ROOT parameter in the init.ora file to include the keystore
location of the software keystore, if it is not already present.

The software keystore location may already be present if the you have previously
migrated to using an external keystore.

For example:

WALLET_ROOT=/etc/ORACLE/WALLETS/orcl
2. Add or update the secret in the software keystore.

The secret is the external key manager password and the client is the HSM_PASSWORD.
HSM_PASSWORD is an Oracle-defined client name that is used to represent the external key
manager password as a secret in the software keystore.

For example:

ADMINISTER KEY MANAGEMENT ADD SECRET 'external_key_manager_password'
FOR CLIENT 'HSM_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE software_keystore_location
WITH BACKUP;

In this example:

• software_keystore_location is the location of the software keystore within the
WALLET_ROOT location that you just defined in Step 1.

• LOCAL creates a local auto-login wallet file, cwallet.sso, to hold the credentials for
the HSM. This wallet is tied to the host on which it was created.
For an Oracle Real Application Clusters environment, omit the LOCAL keyword,
because each Oracle RAC node has a different host name, yet they all use the same
external key manager. If you configure a local auto-login wallet for the Oracle RAC
instance, then only the first Oracle RAC node, where the cwallet.sso file was
created, would be able to access the external key manager credentials. If you try to
open the keystore from another node instead of from that first node, there would be a
problem auto-opening cwallet.sso, and so it would result in a failure to auto-open
the auto-login external keystore. This restriction applies if you are using a shared
location to hold the cwallet.sso file for the Oracle RAC cluster, because using LOCAL
only works if you have a separate cwallet.sso file (containing the same credentials)
on each node of the Oracle RAC environment.

At this stage, the next time that a TDE operation executes, the external key manager auto-
login keystore opens automatically.

Related Topics

• About the Keystore Location in the sqlnet.ora File
If you have not set the WALLET_ROOT parameter, then Oracle Database checks the
sqlnet.ora file for the directory location of the keystore.

• Configuring an External Keystore
There are two types of external keystores that Oracle Database supports: Oracle Key
Vault keystores and OCI Vault - Key Management keystores.

Chapter 4
Storing Oracle Database Secrets

4-57

4.4 Storing Oracle GoldenGate Secrets in a Keystore
You can store Oracle GoldenGate secrets in Transparent Data Encryption keystores.

• About Storing Oracle GoldenGate Secrets in Keystores
You can use a keystore to store secret keys for tools and external clients such as
Oracle GoldenGate.

• Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
Ensure that you meet the requirements for Oracle GoldenGate Extract to support
Transparent Data Encryption capture.

• Configuring Keystore Support for Oracle GoldenGate
You can configure Transparent Data Encryption keystore support for Oracle
GoldenGate by using a shared secret for the keystore.

4.4.1 About Storing Oracle GoldenGate Secrets in Keystores
You can use a keystore to store secret keys for tools and external clients such as
Oracle GoldenGate.

The secret key must be a string adhering to Oracle identifier rules. You can add,
update, or delete a client secret in an existing keystore. This section describes how to
capture Transparent Data Encryption encrypted data in the Oracle GoldenGate Extract
(Extract) process using classic capture mode.

TDE support when Extract is in classic capture mode requires the exchange of the
following keys:

• TDE support for Oracle GoldenGate in the classic capture mode of the Extract
process requires that an Oracle database and the Extract process share the secret
to encrypt sensitive information being exchanged. The shared secret is stored
securely in the Oracle database and Oracle GoldenGate domains. The shared
secret is stored in the software keystore or the external keystore as the database
secret.

• The decryption key is a password known as the shared secret that is stored
securely in the Oracle database and Oracle GoldenGate domains. Only a party
that has possession of the shared secret can decrypt the table and redo log keys.

After you configure the shared secret, Oracle GoldenGate Extract uses the shared
secret to decrypt the data. Oracle GoldenGate Extract does not handle the TDE
master encryption key itself, nor is it aware of the keystore password. The TDE master
encryption key and password remain within the Oracle database configuration.

Oracle GoldenGate Extract only writes the decrypted data to the Oracle GoldenGate
trail file, which Oracle GoldenGate persists during transit. You can protect this file
using your site's operating system standard security protocols, as well as the Oracle
GoldenGate AES encryption options. Oracle GoldenGate does not write the encrypted
data to a discard file (specified with the DISCARDFILE parameter). The word ENCRYPTED
will be written to any discard file that is in use.

Oracle GoldenGate does require that the keystore be open when processing
encrypted data. There is no performance effect of Oracle GoldenGate feature on the
TDE operations.

Chapter 4
Storing Oracle GoldenGate Secrets in a Keystore

4-58

4.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE
Requirements

Ensure that you meet the requirements for Oracle GoldenGate Extract to support Transparent
Data Encryption capture.

The requirements are as follows:

• To maintain high security standards, ensure that the Oracle GoldenGate Extract process
runs as part of the Oracle user (the user that runs the Oracle database). That way, the
keys are protected in memory by the same privileges as the Oracle user.

• Run the Oracle GoldenGate Extract process on the same computer as the Oracle
database installation.

4.4.3 Configuring Keystore Support for Oracle GoldenGate
You can configure Transparent Data Encryption keystore support for Oracle GoldenGate by
using a shared secret for the keystore.

• Step 1: Decide on a Shared Secret for the Keystore
A shared secret for a keystore is a password.

• Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
The DBMS_INTERNAL_CLKM PL/SQL package enables you to configure TDE support for
Oracle GoldenGate.

• Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
The ADMINISTER KEY MANAGEMENT statement can store a TDE GoldenGate shared secret
in a keystore.

• Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process
The GoldenGate Software Command Interface (GGSCI) utility sets the TDE Oracle
GoldenGate shared secret in the extract process.

4.4.3.1 Step 1: Decide on a Shared Secret for the Keystore
A shared secret for a keystore is a password.

• Decide on a shared secret that meets or exceeds Oracle Database password standards.

Do not share this password with any user other than trusted administrators who are
responsible for configuring Transparent Data Encryption to work with Oracle GoldenGate
Extract.

Related Topics

• Oracle Database Security Guide

4.4.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
The DBMS_INTERNAL_CLKM PL/SQL package enables you to configure TDE support for Oracle
GoldenGate.

1. Log in to the database instance as user SYS with the SYSDBA administrative privilege.

For example

Chapter 4
Storing Oracle GoldenGate Secrets in a Keystore

4-59

sqlplus sys as sysdba
Enter password: password
Connected.

2. Load the Oracle Database-supplied DBMS_INTERNAL_CLKM PL/SQL package.

For example:

@?/app/oracle/product/12.2/rdbms/admin/prvtclkm.plb

The prvtclkm.plb file also enables Oracle GoldenGate to extract encrypted data
from an Oracle database.

3. Grant the EXECUTE privilege on the DBMS_INTERNAL_CLKM PL/SQL package to the
Oracle GoldenGate Extract database user.

For example:

GRANT EXECUTE ON DBMS_INTERNAL_CLKM TO psmith;

This procedure enables the Oracle database and Oracle GoldenGate Extract to
exchange information.

4. Exit SQL*Plus.

4.4.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
The ADMINISTER KEY MANAGEMENT statement can store a TDE GoldenGate shared
secret in a keystore.

Before you begin this procedure, ensure that you have configured the TDE software or
external keystore, based on Configuring a Software Keystore and Configuring an
External Keystore.

1. Set the Oracle GoldenGate-TDE key in the keystore by using the following syntax.

ADMINISTER KEY MANAGEMENT ADD|UPDATE|DELETE SECRET 'secret'
FOR CLIENT 'secret_identifier' [USING TAG 'tag']
IDENTIFIED BY keystore_password [WITH BACKUP [USING 'backup_identifier']];

In this specification:

• secret is the client secret key to be stored, updated, or deleted. Enclose this
setting in single quotation marks (' ').

• secret_identifier is an alphanumeric string used to identify the secret key.
secret_identifier does not have a default value. Enclose this setting in
single quotation marks (' ').

• tag is an optional, user-defined description for the secret key to be stored. tag
can be used with the ADD and UPDATE operations. Enclose this setting in single
quotation marks (' '). This tag appears in the SECRET_TAG column of the
V$CLIENT_SECRETS view. Creating Custom TDE Master Encryption Key
Attributes for Reports

• keystore_password is the password for the keystore that is configured.

• WITH BACKUP is required in case the keystore was not backed up before the
ADD, UPDATE or DELETE operation. backup_identifier is an optional user-
defined description for the backup. Enclose backup_identifier in single
quotation marks (' ').

Chapter 4
Storing Oracle GoldenGate Secrets in a Keystore

4-60

The following example adds a secret key to the keystore and creates a backup in the
same directory as the keystore:

ADMINISTER KEY MANAGEMENT ADD SECRET 'some_secret'
FOR CLIENT 'ORACLE_GG' USING TAG 'GoldenGate Secret'
IDENTIFIED BY password WITH BACKUP USING 'GG backup';

2. Verify the entry that you just created.

For example:

SELECT CLIENT, SECRET_TAG FROM V$CLIENT_SECRETS WHERE CLIENT = 'ORACLEGG';

CLIENT SECRET_TAG
-------- --
ORACLEGG some_secret

3. Switch the log files.

CONNECT / AS SYSDBA

ALTER SYSTEM SWITCH LOGFILE;

See Also:

• Creating Custom TDE Master Encryption Key Attributes for Reports for more
information about tags

• Oracle Database Administrator’s Guide for more information about switching
log files

• How Transparent Data Encryption Works with Oracle Real Application Clusters
if you are having problems using this procedure in an Oracle Real Application
Clusters environment

4.4.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract
Process

The GoldenGate Software Command Interface (GGSCI) utility sets the TDE Oracle
GoldenGate shared secret in the extract process.

1. Start the GGSCI utility.

For example:

ggsci
2. In the GGSCI utility, run the ENCRYPT PASSWORD command to encrypt the shared secret

within the Oracle GoldenGate Extract parameter file.

ENCRYPT PASSWORD shared_secret algorithm ENCRYPTKEY keyname

In this specification:

• shared_secret is the clear-text shared secret that you created when you decided on
a shared secret for the keystore. This setting is case sensitive.

• algorithm is one of the following values to specify AES encryption:

Chapter 4
Storing Oracle GoldenGate Secrets in a Keystore

4-61

– AES128
– AES192
– AES256

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.
Oracle GoldenGate uses this name to look up the actual key in the ENCKEYS
file.

For example:

ENCRYPT PASSWORD password AES256 ENCRYPTKEY mykey1
3. In the Oracle GoldenGate Extract parameter file, set the DBOPTIONS parameter with

the DECRYPTPASSWORD option.

As input, supply the encrypted shared secret and the Oracle GoldenGate-
generated or user-defined decryption key.

DBOPTIONS DECRYPTPASSWORD shared_secret algorithm ENCRYPTKEY keyname

In this specification:

• shared_secret is the clear-text shared secret that you created when you
decided on a shared secret for the keystore. This setting is case sensitive.

• algorithm is one of the following values to specify AES encryption:

– AES128
– AES192
– AES256

• keyname is the logical name of the encryption key in the ENCKEYS lookup file.

For example:

DBOPTIONS DECRYPTPASSWORD AACAAAAAAAAAAAIALCKDZIRHOJBHOJUH AES256
ENCRYPTKEY mykey1

Related Topics

• Step 1: Decide on a Shared Secret for the Keystore
A shared secret for a keystore is a password.

Chapter 4
Storing Oracle GoldenGate Secrets in a Keystore

4-62

5
Managing Keystores and TDE Master
Encryption Keys in United Mode

United mode enables you to create a common keystore for the CDB and the PDBs for which
the keystore is in united mode.

The keys for the CDB and the PDBs reside in the common keystore.

• About Managing Keystores and TDE Master Encryption Keys in United Mode
In united mode, you create the keystore and TDE master encryption key for CDB and
PDBs that reside in the same keystore.

• Operations That Are Allowed in United Mode
Many ADMINISTER KEY MANAGEMENT operations performed in the CDB root apply to
keystores and encryption keys in the united mode PDB.

• Operations That Are Not Allowed in a United Mode PDB
ADMINISTER KEY MANAGEMENT operations that are not allowed in a united mode PDB can
be performed in the CDB root.

• Configuring the Keystore Location and Type for United Mode
For united mode, you can configure the keystore location and type by using only
parameters or a combination of parameters and the ALTER SYSTEM statement.

• Configuring a Software Keystore for Use in United Mode
In united mode, the software keystore resides in the CDB root but the master keys from
this keystore are available for the PDBs that have their keystore in united mode.

• Configuring an External Keystore in United Mode
In united mode, an external keystore resides in an external key manager, which is
designed to store encryption keys.

• Administering Keystores and TDE Master Encryption Keys in United Mode
After you configure a keystore and master encryption key for use in united mode, you can
perform tasks such as rekeying TDE master encryption keys.

• Administering Transparent Data Encryption in United Mode
You can perform general administrative tasks with Transparent Data Encryption in united
mode.

5.1 About Managing Keystores and TDE Master Encryption
Keys in United Mode

In united mode, you create the keystore and TDE master encryption key for CDB and PDBs
that reside in the same keystore.

The keys for PDBs having keystore in united mode, can be created from CDB root or from
the PDB.

This design enables you to have one keystore to manage the entire CDB environment,
enabling the PDBs to share this keystore, but you can customize the behavior of this keystore

5-1

in the individual united mode PDBs. For example, in a united mode PDB, you can
configure a TDE master encryption key for the PDB in the united keystore that you
created in the CDB root, open the keystore locally, and close the keystore locally. In
order to perform these actions, the keystore in the CDB root must be open.

Before you configure your environment to use united mode or isolated mode, all the
PDBs in the CDB environment are considered to be in united mode.

To use united mode, you must follow these general steps:

1. In the CDB root, configure the database to use united mode by setting the
WALLET_ROOT and TDE_CONFIGURATION parameters.

The WALLET_ROOT parameter sets the location for the wallet directory and the
TDE_CONFIGURATION parameter sets the type of keystore to use.

2. Restart the database so that these settings take effect.

3. In the CDB root, create the keystore, open the keystore, and then create the TDE
master encryption key.

4. In each united mode PDB, perform TDE master encryption key tasks as needed,
such as opening the keystore locally in the united mode PDB and creating the
TDE master encryption key for the PDB. Remember that the keystore is managed
by the CDB root, but must contain a TDE master encryption key that is specific to
the PDB for the PDB to be able to use TDE.

When you run ADMINISTER KEY MANAGEMENT statements in united mode from the CDB
root, if the statement accepts the CONTAINER clause, and if you set it to ALL, then the
statement applies only to the CDB root and its associated united mode PDBs. Any
PDB that is in isolated mode is not affected.

5.2 Operations That Are Allowed in United Mode
Many ADMINISTER KEY MANAGEMENT operations performed in the CDB root apply to
keystores and encryption keys in the united mode PDB.

Available United Mode-Related Operations in a CDB Root

Table 5-1 describes the ADMINISTER KEY MANAGEMENT operations that you can perform
in the CDB root.

Table 5-1 ADMINISTER KEY MANAGEMENT United Mode Operations in a CDB
Root

Operation Syntax United Mode Notes

Creating a keystore ADMINISTER KEY MANAGEMENT
CREATE KEYSTORE
['keystore_location']
IDENTIFIED BY keystore_password;

After you create the keystore in
the CDB root, by default it is
available in the united mode
PDBs. Do not include the
CONTAINER clause.

Chapter 5
Operations That Are Allowed in United Mode

5-2

Table 5-1 (Cont.) ADMINISTER KEY MANAGEMENT United Mode Operations in
a CDB Root

Operation Syntax United Mode Notes

Opening a keystore ADMINISTER KEY MANAGEMENT
SET KEYSTORE OPEN
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
[CONTAINER = ALL | CURRENT];

In this operation, the EXTERNAL
STORE clause uses the
password in the SSO wallet
located in the tde_seps
directory under the per-PDB
WALLET_ROOT location.

Changing a
keystore password

ADMINISTER KEY MANAGEMENT
ALTER KEYSTORE PASSWORD
IDENTIFIED BY
old_keystore_password
SET new_keystore_passwordWITH
BACKUP
[USING 'backup_identifier'];

Do not include the CONTAINER
clause.

Backing up a
keystore

ADMINISTER KEY MANAGEMENT
BACKUP KEYSTORE
[USING 'backup_identifier']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE |
keystore_password]
[TO 'keystore_location'];

Do not include the CONTAINER
clause.

Closing a keystore
without force

ADMINISTER KEY MANAGEMENT
SET KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL STORE |
keystore_password]]
[CONTAINER = ALL | CURRENT];

If an isolated mode PDB
keystore is open, then this
statement raises an
ORA-46692 cannot close
wallet error.

Closing a keystore
with force

ADMINISTER KEY MANAGEMENT
FORCE KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL STORE |
keystore_password]]
[CONTAINER = ALL | CURRENT];

This operation allows the
keystore to be closed in the
CDB root when an isolated
keystore is open.

Creating and
activating a new
TDE master
encryption key
(rekeying)

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE |
keystore_password]
[WITH BACKUP
[USING 'backup_identifier']]
[CONTAINER = ALL | CURRENT]

-

Chapter 5
Operations That Are Allowed in United Mode

5-3

Table 5-1 (Cont.) ADMINISTER KEY MANAGEMENT United Mode Operations in
a CDB Root

Operation Syntax United Mode Notes

Creating a user-
defined TDE
master encryption
key for either now
(SET) or later on
(CREATE)

ADMINISTER KEY MANAGEMENT [SET |
CREATE] [ENCRYPTION] KEY
'mkid:mk | mk'
[USING ALGORITHM 'algorithm']
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE |
keystore_password]
 [WITH BACKUP [USING
'backup_identifier']]
[CONTAINER = CURRENT];

-

Activating an
existing TDE
master encryption
key

ADMINISTER KEY MANAGEMENT
USE [ENCRYPTION] KEY 'key_id'
IDENTIFIED BY [EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING 'backup_identifier'];

Do not include the CONTAINER
clause.

Tagging a TDE
master encryption
key

ADMINISTER KEY MANAGEMENT
SET TAG 'tag' FOR 'key_id'
IDENTIFIED BY [EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING 'backup_identifier'];

Do not include the CONTAINER
clause.

Moving a TDE
master encryption
key to a new
keystore

ADMINISTER KEY MANAGEMENT
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE
'keystore_location1'
IDENTIFIED BY keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY keystore_password
[WITH IDENTIFIER IN
{ 'key_id' [, 'key_id']... |
(subquery) }]
[WITH BACKUP
[USING 'backup_identifier'];

You can only move the master
encryption key to a keystore
that is within the same
container (for example,
between keystores in the CDB
root or between keystores in
the same PDB). You cannot
move the master encryption
key from a keystore in the CDB
root to a keystore in a PDB,
and vice versa.

Do not include the CONTAINER
clause.

Available Operations in a United Mode PDB

Table 5-2 describes the ADMINISTER KEY MANAGEMENT operations that you can perform
in a united mode PDB.

Chapter 5
Operations That Are Allowed in United Mode

5-4

Table 5-2 ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation Syntax United Mode Notes

Opening a keystore ADMINISTER KEY MANAGEMENT
SET KEYSTORE OPEN
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
[CONTAINER = CURRENT];

In this operation, the
EXTERNAL_STORE clause uses
the password in the SSO wallet.
This wallet is located in the
tde_seps directory in the
WALLET_ROOT location.

Closing a keystore without force ADMINISTER KEY MANAGEMENT
SET KEYSTORE CLOSE
[EXTERNAL STORE |
keystore_password]
[CONTAINER = CURRENT];

-

Closing a keystore with force ADMINISTER KEY MANAGEMENT
FORCE KEYSTORE CLOSE
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
[CONTAINER = CURRENT];

-

Creating and activating a new
TDE master encryption key
(rekeying or rotating)

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL
STORE | keystore_password]
[WITH BACKUP
[USING 'backup_identifier']]
[CONTAINER = CURRENT];

-

Creating a user-defined TDE
master encryption key for use
either now (SET) or later on
(CREATE)

ADMINISTER KEY MANAGEMENT
SET | CREATE [ENCRYPTION]
KEY
'mkid:mk | mk'
[USING ALGORITHM
'algorithm']
[FORCE KEYSTORE]
[USING TAG 'tag']
IDENTIFIED BY [EXTERNAL
STORE | keystore_password]
[WITH BACKUP [USING
'backup_identifier']]
[CONTAINER = CURRENT];

-

Chapter 5
Operations That Are Allowed in United Mode

5-5

Table 5-2 (Cont.) ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation Syntax United Mode Notes

Activating an existing TDE
master encryption key

ADMINISTER KEY MANAGEMENT
USE [ENCRYPTION] KEY
'key_id'
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
[WITH BACKUP
[USING
'backup_identifier']];

Do not include the CONTAINER
clause.

Tagging a TDE master
encryption key

ADMINISTER KEY MANAGEMENT
SET TAG 'tag' FOR 'key_id'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL
STORE | keystore_password]
[WITH BACKUP
[USING
'backup_identifier']];

Do not include the CONTAINER
clause.

Moving an encryption key to a
new keystore

ADMINISTER KEY MANAGEMENT
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE
'keystore_location1'
IDENTIFIED BY
keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY
keystore_password
[WITH IDENTIFIER IN
{ 'key_id' [, 'key_id']...
| (subquery) }]
[WITH BACKUP
[USING
'backup_identifier']];

Do not include the CONTAINER
clause.

Moving a key from a united mode
keystore in the CDB root to an
isolated mode keystore in a PDB

ADMINISTER KEY MANAGEMENT
ISOLATE KEYSTORE
IDENTIFIED BY
isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE |
united_keystore_password]
[WITH BACKUP [USING
backup_id]];

Do not include the CONTAINER
clause.

Chapter 5
Operations That Are Allowed in United Mode

5-6

Table 5-2 (Cont.) ADMINISTER KEY MANAGEMENT United Mode PDB Operations

Operation Syntax United Mode Notes

Using the FORCE clause when a
clone of a PDB is using the TDE
master encryption key that is
being isolated; then copying
(rather than moving) the TDE
master encryption keys from the
keystore that is in the CDB root
into the isolated mode keystore
of the PDB

ADMINISTER KEY MANAGEMENT
FORCE ISOLATE KEYSTORE
IDENTIFIED BY
isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE |
united_keystore_password]
[WITH BACKUP [USING
backup_id]];

-

5.3 Operations That Are Not Allowed in a United Mode PDB
ADMINISTER KEY MANAGEMENT operations that are not allowed in a united mode PDB can be
performed in the CDB root.

These operations are as follows:

• Keystore operations:

– Performing merge operations on keystores

– Exporting a keystore

– Importing a keystore

– Migrating a keystore

– Reverse-migrating a keystore

– Moving the keys of a keystore that is in the CDB root into the keystores of a PDB

– Moving the keys from a PDB into a united mode keystore that is in the CDB root

• Encryption key operations:

– Using the CONTAINER = ALL clause to create a new TDE master encryption key for
later user in each pluggable database (PDB)

• Client secret operations:

– Adding client secrets

– Updating client secrets

– Deleting client secrets

5.4 Configuring the Keystore Location and Type for United Mode
For united mode, you can configure the keystore location and type by using only parameters
or a combination of parameters and the ALTER SYSTEM statement.

Chapter 5
Operations That Are Not Allowed in a United Mode PDB

5-7

• Configuring United Mode by Editing the Initialization Parameter File
You can configure united mode by setting both the WALLET_ROOT and
TDE_CONFIGURATION parameters in the initialization parameter file.

• Configuring United Mode with the Initialization Parameter File and ALTER
SYSTEM
If your environment relies on server parameter files (spfile), then you can set
WALLET_ROOT and TDE_CONFIGURATION using ALTER SYSTEM SET with SCOPE.

5.4.1 Configuring United Mode by Editing the Initialization Parameter
File

You can configure united mode by setting both the WALLET_ROOT and
TDE_CONFIGURATION parameters in the initialization parameter file.

1. Log in to the server where the CDB root of the Oracle database resides.

2. If necessary, create a wallet directory.

Typically, the wallet directory is located in the $ORACLE_BASE/admin/
db_unique_name directory, and it is named wallet. Ensure that this directory is
empty.

3. Edit the initialization parameter file, which by default is located in
the $ORACLE_HOME/dbs directory, to include the following parameters:

• WALLET_ROOT, to point to the location of the wallet directory.
For example, for a database named orcl:

wallet_root=$ORACLE_BASE/admin/orcl/wallet
• TDE_CONFIGURATION, to specify one of the following keystore types:

– FILE specifies a software keystore. Oracle Database will create the
keystore in $ORACLE_BASE/admin/orcl/wallet/tde in the root.

– OKV specifies an Oracle Key Vault keystore. In order for the database to
automatically discover the Oracle Key Vault client software when
KEYSTORE_CONFIGURATION is set to include Oracle Key Vault, this client
software must be installed into WALLET_ROOT/okv.

For example, to specify the TDE keystore type:

ALTER SYSTEM SET TDE_CONFIGURATION = 'KEYSTORE_CONFIGURATION=FILE'
SCOPE = BOTH SID = '*'

4. Log in to the CDB root as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

5. Check the configuration settings.

• For the WALLET_ROOT parameter:

SHOW PARAMETER WALLET_ROOT

The VALUE column of the output should show the absolute path location of the
wallet directory.

• For the TDE_CONFIGURATION parameter:

SHOW PARAMETER TDE_CONFIGURATION

Chapter 5
Configuring the Keystore Location and Type for United Mode

5-8

The VALUE column should show the keystore type, prepended with
KEYSTORE_CONFIGURATION=.

If the values do not appear, then try restarting your database with the STARTUP command
pointing to the location of the initialization parameter file where you added these settings.
For example:

STARTUP PFILE = /u01/oracle/dbs/init.ora
6. Confirm that the TDE_CONFIGURATION parameter was set correctly.

SELECT CON_ID, KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be similar to the following:

 CON_ID KEYSTORE
---------- --------
 1 NONE
 2 UNITED
 3 UNITED
 4 UNITED
 5 UNITED

The CDB root (CON_ID 1) will always be in the NONE state, and at this stage, the remaining
CON_IDs should be set to UNITED. PDBs can be either UNITED or ISOLATED, depending on
how you configure them. When you query the V$ENCRYPTION_WALLET view, if the
ORA-46691: The value of the KEYSTORE_CONFIGURATION attribute is invalid error
appears, then check the initialization parameter file where you added this setting.

After you configure united mode, you can create keystores and master encryption keys, and
when these are configured, you can encrypt data.

5.4.2 Configuring United Mode with the Initialization Parameter File and
ALTER SYSTEM

If your environment relies on server parameter files (spfile), then you can set WALLET_ROOT
and TDE_CONFIGURATION using ALTER SYSTEM SET with SCOPE.

1. Log in to the server where the CDB root of the Oracle database resides.

2. If necessary, create a wallet directory.

Typically, the wallet directory is located in the $ORACLE_BASE/admin/db_unique_name
directory, and it is named wallet. This directory cannot contain any wallets. Oracle
recommends that you create a directory outside of $ORACLE_HOME or $ORACLE_BASE, to
avoid backing up the keystore (wallet or Oracle Key Vault installation tree) with the
encrypted database during an operating system-level backup.

3. Edit the initialization parameter file to include the WALLET_ROOT static initialization
parameter for the wallet directory.

By default, the initialization parameter file is located in the $ORACLE_HOME/dbs directory.

For example, for a database instance named orcl:

wallet_root=$ORACLE_BASE/admin/orcl/wallet
4. Log in to the CDB root as a user who has been granted the ADMINISTER KEY MANAGEMENT

or SYSKM privilege.

5. Restart the database.

Chapter 5
Configuring the Keystore Location and Type for United Mode

5-9

SHUTDOWN IMMEDIATE
STARTUP

To start the database by pointing to the location of the initialization file where you
added the WALLET_ROOT setting, issue a STARTUP command similar to the following:

STARTUP PFILE = /u01/oracle/dbs/init.ora
6. Check the WALLET_ROOT setting.

SHOW PARAMETER WALLET_ROOT

The VALUE column of the output should show the absolute path location of the
wallet directory.

7. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the
keystore type, using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=scope_type;

In this specification:

• keystore_type can be one of the following settings for united mode:

– FILE configures a TDE keystore.

– OKV configures an Oracle Key Vault keystore.

• scope_type sets the type of scope (for example, both, memory, spfile, pfile.

For example, to configure a TDE keystore if the parameter file (pfile) is in use,
set scope to memory:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=memory;

To configure a TDE keystore if the server parameter file (spfile) is in use, set
scope to both:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=both;

8. Check the TDE_CONFIGURATION parameter setting.

SHOW PARAMETER TDE_CONFIGURATION

The VALUE column should show the keystore type, prepended with
KEYSTORE_CONFIGURATION=.

9. Confirm that the TDE_CONFIGURATION parameter was set correctly.

SELECT CON_ID, KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be similar to the following:

 CON_ID KEYSTORE
---------- --------
 1 NONE
 2 UNITED
 3 UNITED
 4 UNITED
 5 UNITED

Chapter 5
Configuring the Keystore Location and Type for United Mode

5-10

The CDB root (CON_ID 1) will always be in the NONE state, and at this stage, the remaining
CON_IDs should be set to UNITED. PDBs can be either UNITED or ISOLATED, depending on
how you configure them. When you query the V$ENCRYPTION_WALLET view, if the
ORA-46691: The value of the KEYSTORE_CONFIGURATION attribute is invalid error
appears, then check the initialization parameter file where you added this setting.

After you configure united mode, you can create keystores and master encryption keys, and
when these are configured, you can encrypt data.

5.5 Configuring a Software Keystore for Use in United Mode
In united mode, the software keystore resides in the CDB root but the master keys from this
keystore are available for the PDBs that have their keystore in united mode.

• About Configuring a Software Keystore in United Mode
In united mode, the keystore that you create in the CDB root will be accessible by the
united mode PDBs.

• Step 1: Create the Software Keystore
In united mode, you must create the keystore in the CDB root.

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Step 3: Set the TDE Master Encryption Key in the Software Keystore in United Mode
To set the TDE master encryption key in the keystore when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

• Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an Oracle
Key Vault keystore, you can begin to encrypt data.

5.5.1 About Configuring a Software Keystore in United Mode
In united mode, the keystore that you create in the CDB root will be accessible by the united
mode PDBs.

In general, to configure a united mode software keystore after you have enabled united
mode, you create and open the keystore in the CDB root, and then create a master
encryption key for this keystore. Afterward, you can begin to encrypt data for tables and
tablespaces that will be accessible throughout the CDB environment.

The V$ENCRYPTION_WALLET dynamic view describes the status and location of the keystore.
For example, the following query shows the open-closed status and the keystore location of
the CDB root keystore (CON_ID 1) and its associated united mode PDBs. The WRL_PARAMETER
column shows the CDB root keystore location being in the $ORACLE_BASE/wallet/tde
directory.

SELECT CON_ID, STATUS, WRL_PARAMETER FROM V$ENCRYPTION_WALLET;

CON_ID STATUS WRL_PARAMETER
------ ------ -----------------------------
 1 OPEN /app/oracle/wallet/tde/
 2 CLOSED
 3 OPEN
 4 OPEN
 5 OPEN

Chapter 5
Configuring a Software Keystore for Use in United Mode

5-11

In this output, there is no keystore path listed for the other PDBs in this CDB because
these PDBs use the keystore in the CDB root. If any of these PDBs are isolated and
you create a keystore in the isolated mode PDB, then when you perform this query, the
WRL_PARAMETER column will show the keystore path for the isolated mode PDB.

You can create a secure external store for the software keystore. This feature enables
you to hide the password from the operating system: it removes the need for storing
clear-text keystore passwords in scripts or other tools that can access the database
without user intervention, such as overnight batch scripts. The location for this
keystore is set by the EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION initialization
parameter. In a multitenant environment, different PDBs can access this external store
location when you run the ADMINISTER KEY MANAGEMENT statement using the
IDENTIFIED BY EXTERNAL STORE clause. This way, you can centrally locate the
password and then update it only once in the external store.

5.5.2 Step 1: Create the Software Keystore
In united mode, you must create the keystore in the CDB root.

After you create this keystore in the CDB root, it becomes available in any united
mode PDB, but not in any isolated mode PDBs.

1. Log in to the CDB root as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus c##sec_admin as syskm
Enter password: password

2. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the keystore using
the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
['keystore_location']
IDENTIFIED BY software_keystore_password;

In this specification:

• keystore_location is the path to the keystore directory location of the
password-protected keystore for which you want to create the auto-login
keystore. If the path that is set by the WALLET_ROOT parameter is the path that
you want to use, then you can omit the keystore_location setting.

If you specify the keystore_location, then enclose it in single quotation
marks (' '). To find the default location, you can query the WRL_PARAMETER
column of the V$ENCRYPTION_WALLET view. (If the keystore was not created in
the default location, then the STATUS column of the V$ENCRYPTION_WALLET view
is NOT_AVAILABLE.)

• software_keystore_password is the password of the keystore that you, the
security administrator, creates.

For example, to create the keystore in the default location, assuming that
WALLET_ROOT has been set:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
IDENTIFIED BY password;

keystore altered.

Chapter 5
Configuring a Software Keystore for Use in United Mode

5-12

After you complete these steps, the ewallet.p12 file, which contains the keystore, appears in
the designated keystore location. For example, if you had set the WALLET_ROOT parameter
to $ORACLE_BASE/wallet and the TDE_CONFIGURATION parameter to FILE (for TDE, which
creates a tde directory in the wallet root location), then the keystore will be created in
the $ORACLE_BASE/wallet/tde directory. The name of the keystore is ewallet.p12.

Related Topics

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a centrally
accessed and managed location.

5.5.3 Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE OPEN clause.

1. Log in to the CDB root as a common user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus c##sec_admin as syskm
Enter password: password

2. Open the keystore in the CDB root.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY password;

keystore altered.

If the database instance is configured using the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION instance initialization parameter and has a
keystore at that location containing the credentials of the password-protected keystore,
and you want to switch over from using an auto-login keystore to using the password-
protected keystore with these credentials, you must include the FORCE KEYSTORE clause
and the IDENTIFIED BY EXTERNAL STORE clause in the ADMINISTER KEY MANAGEMENT SET
KEYSTORE OPEN statement, as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

keystore altered.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the external
store by searching in this path in the CDB root: WALLET_ROOT/tde_seps.

3. Ensure that the PDB in which you want to open the keystore is in READ WRITE mode.

For example:

SHOW PDBS

CON_ID CON_NAME OPEN MODE RESTRICTED
------ ---------- ------------ -----------
2 PDB$SEED READ ONLY NO
3 CDB1_PDB1 READ WRITE NO

Chapter 5
Configuring a Software Keystore for Use in United Mode

5-13

If any PDB has an OPEN MODE value that is different from READ WRITE, then run the
following statement to open the PDB, which will set it to READ WRITE mode:

ALTER PLUGGABLE DATABASE CDB1_PDB1 OPEN;

Now the keystore can be opened in both the CDB root and the PDB.

4. Connect to the PDB.

5. Run the ADMINISTER KEY MANAGEMENT statement to open the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY password;
keystore altered.

To switch over to opening the password-protected software keystore when an
auto-login keystore is configured and is currently open, specify the FORCE
KEYSTORE clause as follows.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;
keystore altered.

FORCE KEYSTORE is also useful for databases that are heavily loaded. The
IDENTIFIED BY EXTERNAL STORE clause is included in the statement because the
keystore credentials exist in an external store. This enables the password-
protected keystore to be opened without specifying the keystore password within
the statement itself.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the
external store by searching in this path: WALLET_ROOT/PDB_GUID/tde_seps.

6. Confirm that the keystore is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;

Related Topics

• About Opening Software Keystores
A password-protected software keystore must be open before any TDE master
encryption keys can be created or accessed in the keystore.

5.5.4 Step 3: Set the TDE Master Encryption Key in the Software
Keystore in United Mode

To set the TDE master encryption key in the keystore when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

1. Log in to the CDB root or to the PDB that is configured for united mode as a user
who has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

To find the status, run the show pdbs command.

3. Run the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement to create or
rekey the TDE master encryption key in the keystore.

For example, if the keystore is password-protected and open, and you want to
create or rekey the TDE master encryption key in the current container:

Chapter 5
Configuring a Software Keystore for Use in United Mode

5-14

ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

keystore altered.

If the keystore is closed:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

keystore altered.

In this specification:

• FORCE KEYSTORE should be included if the keystore is closed. This automatically
opens the keystore before setting the TDE master encryption key. The FORCE
KEYSTORE clause also switches over to opening the password-protected software
keystore when an auto-login keystore is configured and is currently open.

• IDENTIFIED BY specifies the keystore password. Alternatively, if the keystore
password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE
clause.

4. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Related Topics

• About Setting the Software Keystore TDE Master Encryption Key
The TDE master encryption key is stored in the keystore.

5.5.5 Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an Oracle Key
Vault keystore, you can begin to encrypt data.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

5.6 Configuring an External Keystore in United Mode
In united mode, an external keystore resides in an external key manager, which is designed
to store encryption keys.

Chapter 5
Configuring an External Keystore in United Mode

5-15

• About Configuring an External Keystore in United Mode
In united mode, you can configure the external keystore by editing sqlnet.ora
(deprecated), or you can set the parameters WALLET_ROOT and
TDE_CONFIGURATION.

• Step 1: Configure the External Keystore for United Mode
You can configure the external keystore for united mode by setting the
TDE_CONFIGURATION parameter.

• Step 2: Open the External Keystore
After you have configured the external keystore, you must open it before it can be
used.

• Step 3: Set the First TDE Master Encryption Key in the External Keystore
After you have opened the external keystore, you are ready to set the first TDE
master encryption key.

• Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an
Oracle Key Vault keystore, you can begin to encrypt data.

5.6.1 About Configuring an External Keystore in United Mode
In united mode, you can configure the external keystore by editing sqlnet.ora
(deprecated), or you can set the parameters WALLET_ROOT and TDE_CONFIGURATION.

Oracle recommends that you set the parameters WALLET_ROOT and
TDE_CONFIGURATION for new deployments. Alternatively, you can migrate from the old
configuration in the sqlnet.ora file to the new configuration with WALLET_ROOT and
TDE_CONFIGURATION at your earliest convenience (for example, the next time you apply
a quarterly bundle patch).

United Mode is the default TDE setup that is used in Oracle Database release 12.1.0.2
and later with the TDE configuration in sqlnet.ora. In Oracle Database release 18c
and later, TDE configuration in sqlnet.ora is deprecated. You must first set the static
initialization parameter WALLET_ROOT to an existing directory; for this change to be
picked up, a database restart is necessary. After the restart, set the
KEYSTORE_CONFIGURATION attribute of the dynamic TDE_CONFIGURATION parameter to
OKV (for a password-protected connection into Oracle Key Vault), or OKV|FILE for an
auto-open connection into Oracle Key Vault, and then open the configured external
keystore, and then set the TDE master encryption keys. After you complete these
tasks, you can begin to encrypt data in your database.

5.6.2 Step 1: Configure the External Keystore for United Mode
You can configure the external keystore for united mode by setting the
TDE_CONFIGURATION parameter.

1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client
software into the WALLET_ROOT/okv directory.

2. Log in to the database instance as a user who has been granted the ALTER
SYSTEM administrative privilege.

3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the
keystore type by using the following syntax:

Chapter 5
Configuring an External Keystore in United Mode

5-16

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=BOTH SID = '*';

In this specification:

• keystore_type is OKV, to configure an Oracle Key Vault keystore.

For example, to configure your database to use Oracle Key Vault:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV"
SCOPE=BOTH SID = '*";

5.6.3 Step 2: Open the External Keystore
After you have configured the external keystore, you must open it before it can be used.

• About Opening External Keystores
You must open the external keystore so that it is accessible to the database before you
can perform any encryption or decryption.

• Opening an External Keystore in a United Mode PDB
To open an external keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

5.6.3.1 About Opening External Keystores
You must open the external keystore so that it is accessible to the database before you can
perform any encryption or decryption.

If a recovery operation is needed on your database (for example, if the database was not
cleanly shut down, and has an encrypted tablespace that needs recovery), then you must
open the external keystore before you can open the database itself.

There are two ways that you can open the external keystore:

• Manually open the keystore by issuing the ADMINISTER KEY MANAGEMENT SET KEYSTORE
OPEN statement. Afterward, you can perform the operation.

• Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement. FORCE
KEYSTORE temporarily opens the keystore for the duration of the operation, and when the
operation completes, the keystore is closed again. FORCE KEYSTORE is useful for situations
when the database is heavily loaded. In this scenario, because of concurrent access to
encrypted objects in the database, the auto-login keystore continues to open immediately
after it has been closed but before a user has had a chance to open the password-based
keystore.

To check the status of the keystore, query the STATUS column of the V$ENCRYPTION_WALLET
view. Keystores can be in the following states: CLOSED, NOT_AVAILABLE (that is, not present in
the WALLET_ROOT location), OPEN, OPEN_NO_MASTER_KEY, OPEN_UNKNOWN_MASTER_KEY_STATUS.

Be aware that for external keystores, if the database is in the mounted state, then it cannot
check if the master key is set because the data dictionary is not available. In this situation,
the status will be OPEN_UNKNOWN_MASTER_KEY_STATUS.

Related Topics

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

Chapter 5
Configuring an External Keystore in United Mode

5-17

5.6.3.2 Opening an External Keystore in a United Mode PDB
To open an external keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

1. Connect to the CDB root as a common user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

For example:

CONNECT c##sec_admin AS SYSKM
Enter password: password

2. Open the keystore in the CDB root by using the following syntax.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password";

In this specification:

• FORCE KEYSTORE enables the keystore operation if the keystore is closed.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– external_key_manager_password is for an external keystore manager,
which can be Oracle Key Vault or OCI Vault - Key Management. Enclose
this password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If
at that time no password was given, then the password in the ADMINISTER
KEY MANAGEMENT statement becomes NULL.

For an Oracle Key Vault keystore, you can only provide the password. No user
name is allowed in the IDENTIFIED BY clause. Enclose the password in double
quotation marks.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "password";

3. Ensure that the PDB in which you want to open the keystore is in READ WRITE
mode.

For example:

SHOW PDBS

CON_ID CON_NAME OPEN MODE RESTRICTED
------ ---------- ------------ -----------
2 PDB$SEED READ ONLY NO
3 CDB1_PDB1 READ WRITE NO

If any PDB has an OPEN MODE value that is different from READ WRITE, then run the
following statement to open the PDB, which will set it to READ WRITE mode:

ALTER PLUGGABLE DATABASE CDB1_PDB1 OPEN;

Now the keystore can be opened in both the CDB root and the PDB.

Chapter 5
Configuring an External Keystore in United Mode

5-18

4. Connect to the PDB and run the ADMINISTER KEY MANAGEMENT statement to open the
keystore.

For example, for an HSM:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "external_key_manager_password";

5. Confirm that the keystore is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;
6. Repeat this procedure each time you restart the PDB.

5.6.4 Step 3: Set the First TDE Master Encryption Key in the External
Keystore

After you have opened the external keystore, you are ready to set the first TDE master
encryption key.

• About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external keystore.

• Heartbeat Batch Size for External Keystores
You can control the size of the batch of heartbeats issued during each heartbeat period.

• Step 3: Set the TDE Master Encryption Key in the External Keystore in United Mode
To set the TDE master encryption key in the keystore when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

• Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you previously
configured a software keystore.

5.6.4.1 About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external keystore.

If you have not previously configured a software keystore for TDE, then you can set the first
TDE master encryption key in the external keystore. If you have already configured a
software keystore for TDE, then you must migrate the database to use the external keystore.

Along with the current master encryption key, Oracle wallets maintain historical master
encryption keys that are generated after every re-key operation that rekeys the master
encryption key. These historical master keys help to restore Oracle database backups that
were taken previously using one of the historical master encryption keys.

Related Topics

• Setting a New TDE Master Encryption Key
You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

• Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you previously
configured a software keystore.

5.6.4.2 Heartbeat Batch Size for External Keystores
You can control the size of the batch of heartbeats issued during each heartbeat period.

Chapter 5
Configuring an External Keystore in United Mode

5-19

When a PDB is configured to use an external key manager, the GEN0 background
process must perform a heartbeat request on behalf of the PDB to the external key
manager. This background process ensures that the external key manager is available
and that the TDE master encryption key of the PDB is available from the external key
manager and can be used for both encryption and decryption. The GEN0 background
process must complete this request within the heartbeat period (which defaults to
three seconds).

When a very large number of PDBs (for example, 1000) are configured to use an
external key manager, you can configure the HEARTBEAT_BATCH_SIZE database
instance initialization parameter to batch heartbeats and thereby mitigate the
possibility of the hang analyzer mistakenly flagging the GEN0 process as being stalled
when there was not enough time for it to perform a heartbeat for each PDB within the
allotted heartbeat period.

By setting the heartbeat batch size, you can stagger the heartbeats across batches of
PDBs to ensure that for each batch a heartbeat can be completed for each PDB within
the batch during the heartbeat period, and also ensure that PDB master encryption
keys can be reliably fetched from an Oracle Key Vault server and cached in the Oracle
Key Vault persistent cache. The HEARTBEAT_BATCH_SIZE parameter configures the size
of the batch of heartbeats sent per heartbeat period to the external key manager. The
value must be between 2 and 100 and it defaults to 5. The default duration of the
heartbeat period is three seconds.

For example, if 500 PDBs are configured and are using Oracle Key Vault, the usual
time taken by GEN0 to perform a heartbeat on behalf of a single PDB is less than half a
second. In addition, assume that the CDB$ROOT has been configured to use an external
key manager such as Oracle Key Vault (OKV). Therefore, it should generally be
possible to send five heartbeats (one for the CDB$ROOT and four for a four-PDB batch)
in a single batch within every three-second heartbeat period.

Even though the HEARTBEAT_BATCH_SIZE parameter configures the number of
heartbeats sent in a batch, if the CDB$ROOT is configured to use an external key
manager, then each heartbeat batch must include a heartbeat for the CDB$ROOT. The
minimum value of the HEARTBEAT_BATCH_SIZE parameter is 2 and its maximum value is
100. When the CDB$ROOT is configured to use an external key manager, then each
batch of heartbeats includes one heartbeat for the CDB$ROOT. This is why the minimum
batch size is two: one must be reserved for the CDB$ROOT, because it might be
configured to use an external key manager.

For example, suppose you set the HEARTBEAT_BATCH_SIZE parameter as follows:

ALTER SYSTEM SET HEARTBEAT_BATCH_SIZE=3 SCOPE=BOTH SID='*';

Each iteration corresponds to one GEN0 three-second heartbeat period.

Example 1: Setting the Heartbeat for Containers That Are Configured to Use
Oracle Key Vault

Suppose the container list is 1 2 3 4 5 6 7 8 9 10, with all containers configured to use
Oracle Key Vault (OKV). The iterations are as follows:

• Iteration 1: batch consists of containers: 1 2 3

• Iteration 2: batch consists of containers: 1 4 5

• Iteration 3: batch consists of containers: 1 6 7

Chapter 5
Configuring an External Keystore in United Mode

5-20

• Iteration 4: batch consists of containers: 1 8 9

• Iteration 5: batch consists of containers: 1 10

• Repeat this cycle.

Example 2: Setting the Heartbeat for Containers That Have OKV and FILE Keystores

In this example, the container list is 1 2 3 4 5 6 7 8 9 10, with only odd-numbered containers
configured to use OKV keystores, and the even-numbered containers configured to use
software keystores (FILE).

• Iteration 1: batch consists of containers: 1 3 5

• Iteration 2: batch consists of containers: 1 7 9

• Iteration 3: batch consists of containers: 1

• Repeat this cycle.

Example 3: Setting the Heartbeat when CDB$ROOT Is Not Configured to Use an External
Key Manager

Assume that the container list is 1 2 3 4 5 6 7 8 9 10, with only even-numbered container
numbers configured to use Oracle Key Vault, and the even-numbered containers configured
to use FILE. In the following example, there is no heartbeat for the CDB$ROOT, because it is
configured to use FILE.

• Iteration 1: batch consists of containers: 2 4 6

• Iteration 2: batch consists of containers: 8 10

• Repeat this cycle.

Related Topics

• Step 3: Set the TDE Master Encryption Key in the External Keystore in United Mode
To set the TDE master encryption key in the keystore when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

• Setting a New TDE Master Encryption Key in Isolated Mode
You should complete this procedure if you have not previously configured a external
keystore for Transparent Data Encryption.

5.6.4.3 Step 3: Set the TDE Master Encryption Key in the External Keystore in
United Mode

To set the TDE master encryption key in the keystore when the PDB is configured in united
mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

1. Log in to the CDB root or to the PDB that is configured for united mode as a user who
has been granted the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

To find the status, run the SHOW PDBS command.

3. Run the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement to create or rekey
the TDE master encryption key in the keystore.

ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']

Chapter 5
Configuring an External Keystore in United Mode

5-21

[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• external_key_manager_password is for an external keystore manager, which
can be Oracle Key Vault or OCI Vault - Key Management. Enclose this
password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If at
that time no password was given, then the password in the ADMINISTER KEY
MANAGEMENT statement becomes NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY "external_key_manager_password";

keystore altered.
4. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Related Topics

• About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external
keystore.

5.6.4.4 Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you
previously configured a software keystore.

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the
old software keystore to perform decryption and encryption operations on data
exported or backed up using the software keystore. You can migrate from the software
to the external keystore.

Along with the current master encryption key, Oracle keystores maintain historical
master encryption keys that are generated after every re-key operation that rotates the
master encryption key. These historical master encryption keys help to restore Oracle
database backups that were taken previously using one of the historical master
encryption keys.

Related Topics

• Migrating Between a Software Password Keystore and an External Keystore
You can migrate between password-protected software keystores and external
keystores.

Chapter 5
Configuring an External Keystore in United Mode

5-22

5.6.5 Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an Oracle Key
Vault keystore, you can begin to encrypt data.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

5.7 Administering Keystores and TDE Master Encryption Keys
in United Mode

After you configure a keystore and master encryption key for use in united mode, you can
perform tasks such as rekeying TDE master encryption keys.

• Changing the Keystore Password in United Mode
You can change the password of either a software keystore or an external keystore only
in the CDB root.

• Backing Up a Password-Protected Software Keystore in United Mode
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected software keystore.

• Closing Keystores in United Mode
You can close both software and external keystores in united mode, unless the system
tablespace is encrypted.

• Creating a User-Defined TDE Master Encryption Key in United Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

• Example: Creating a Master Encryption Key in All PDBs
You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to
create a TDE master encryption key in all PDBs.

• Creating a TDE Master Encryption Key for Later Use in United Mode
A keystore must be opened before you can create a TDE master encryption key for use
later on in united mode.

• Activating a TDE Master Encryption Key in United Mode
To activate a TDE master encryption key in united mode, you must open the keystore and
use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

• Rekeying the TDE Master Encryption Key in United Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to
rekey a TDE master encryption key.

• Finding the TDE Master Encryption Key That Is in Use in United Mode
A TDE master encryption key that is in use is the key that was activated most recently for
the database.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-23

• Creating a Custom Attribute Tag in United Mode
To create a custom attribute tag in united mode, you must use the SET TAG clause
of the ADMINISTER KEY MANAGEMENT statement.

• Moving a TDE Master Encryption Key into a New Keystore in United Mode
In united mode, you can move an existing TDE master encryption key into a new
keystore from an existing software password keystore.

• Automatically Removing Inactive TDE Master Encryption Keys in United Mode
In united mode, the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization
parameter can configure the automatic removal of inactive TDE master encryption
keys.

• Isolating a Pluggable Database Keystore
Isolating a PDB keystore moves the master encryption key from the CDB root
keystore into an isolated mode keystore in the a PDB.

5.7.1 Changing the Keystore Password in United Mode
You can change the password of either a software keystore or an external keystore
only in the CDB root.

• Changing the Password-Protected Software Keystore Password in United Mode
To change the password of a password-protected software keystore in united
mode, you must use the ADMINISTER KEY MANAGEMENT statement in the CDB root.

• Changing the Password of an External Keystore in United Mode
To change the password of an external keystore, you must close the external
keystore and then change the password from the external keystore management
interface.

5.7.1.1 Changing the Password-Protected Software Keystore Password in
United Mode

To change the password of a password-protected software keystore in united mode,
you must use the ADMINISTER KEY MANAGEMENT statement in the CDB root.

You cannot change keystore passwords from a united mode PDB.

1. Log in to the CDB root as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Use the following syntax to change the password for the keystore:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
[FORCE KEYSTORE]
IDENTIFIED BY
old_keystore_password SET new_keystore_password
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation if the keystore is closed if an auto-login keystore is configured and is
currently open, or if a password-protected keystore is configured and is
currently closed.

• old_password is the current keystore password that you want to change.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-24

• new_password is the new password that you set for the keystore.

• You do not need to include the CONTAINER clause because the password can only be
changed locally, in the CDB root.

The following example creates a backup of the keystore and then changes the password:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
IDENTIFIED BY
old_password SET new_password
WITH BACKUP USING 'pwd_change';

keystore altered.

This example performs the same operation but uses the FORCE KEYSTORE clause in case
the auto-login software keystore is in use or the password-protected software keystore is
closed.

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
FORCE KEYSTORE
IDENTIFIED BY
old_password SET new_password
WITH BACKUP USING 'pwd_change';

keystore altered.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both software and external keystores.

• Changing the Password of a Software Keystore
Oracle Database enables you to easily change password-protected software keystore
passwords.

5.7.1.2 Changing the Password of an External Keystore in United Mode
To change the password of an external keystore, you must close the external keystore and
then change the password from the external keystore management interface.

1. Log in to the CDB root as a user who has been granted the ADMINISTER KEY MANAGEMENT
or SYSKM privilege.

2. Close the external keystore.

• Close the connection to the external key manager:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY "external_key_manager_password"|EXTERNAL STORE
CONTAINER = ALL;

• If the keystore was auto-opened by the database, then close the connection to the
external key manager as follows:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
CONTAINER = ALL;

3. Change the Oracle Key Vault password.

WALLET_ROOT/okv/bin/okvutil changepwd -t wallet -l WALLET_ROOT/okv/ssl

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-25

4. Update the credentials of the external store to use
"new_external_key_manager_password".

Currently, the external store contains the old credentials, which would no longer
work.
For example:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'new_external_key_manager_password'
FOR CLIENT "TDE_WALLET"
TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/WALLETS/orcl/external_store';

5. Open the external keystore.

• For example, for Oracle Key Vault:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "Oracle_Key_Vault_password";

• For an external keystore whose password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY EXTERNAL STORE;

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore
password, for both software and external keystores.

5.7.2 Backing Up a Password-Protected Software Keystore in United
Mode

The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up
a password-protected software keystore.

1. Log in to the CDB root as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus c##sec_admin@hrpdb as syskm
Enter password: password
Connected.

2. Back up the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | software_keystore_password]
[TO 'keystore_location'];

In this specification:

• USING backup_identifier is an optional string that you can provide to identify
the backup. Enclose this identifier in single quotation marks (' '). This
identifier is appended to the named keystore file (for example, ewallet_time-
stamp_emp_key_backup.p12).

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-26

• IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-
protected keystore because although the backup is simply a copy of the existing
keystore, the status of the TDE master encryption key in the password-protected
keystore must be set to BACKED UP and for this change the keystore password is
required.

• keystore_location is the path at which the backup keystore is stored. This setting is
restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting
is blocked in the PDB or when the PATH_PREFIX variable was not set when the PDB
was created. If you do not specify the keystore_location, then the backup is
created in the same directory as the original keystore. Enclose this location in single
quotation marks (' ').

• You do not need to include the CONTAINER clause because the keystore can only be
backup up locally, in the CDB root.

The following example backs up a software keystore in the same location as the source
keystore.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY
software_keystore_password ;

keystore altered.

In the following version, the password for the keystore is external, so the EXTERNAL STORE
clause is used.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an ewallet_identifier.p12 file (for example,
ewallet_time-stamp_hr.emp_keystore.p12) appears in the keystore backup location.

Related Topics

• Backing Up Password-Protected Software Keystores
When you back up a password-protected software keystore, you can create a backup
identifier string to describe the backup type.

5.7.3 Closing Keystores in United Mode
You can close both software and external keystores in united mode, unless the system
tablespace is encrypted.

• Closing a Software Keystore in United Mode
You can close password-protected keystores, auto-login keystores, and local auto-login
software keystores in united mode.

• Closing an External Keystore in United Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement
with the SET KEYSTORE CLOSE clause.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-27

5.7.3.1 Closing a Software Keystore in United Mode
You can close password-protected keystores, auto-login keystores, and local auto-
login software keystores in united mode.

In the case of an auto-login keystore, which opens automatically when it is accessed,
you must first move it to a new location where it cannot be automatically opened, then
you must manually close it. You must do this if you are changing your configuration
from an auto-login keystore to a password-protected keystore: you change the
configuration to stop using the auto-login keystore (by moving the auto-login keystore
to another location where it cannot be automatically opened), and then closing the
auto-login keystore.

1. Log in to the CDB root or the united mode PDB as a user who has been granted
the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Close the software keystore.

• For a password-protected software keystore, use the following syntax if you
are in the CDB root:

ADMINISTER KEY MANAGEMENT SET | FORCE KEYSTORE CLOSE
[IDENTIFIED BY [EXTERNAL STORE | software_keystore_password]]
[CONTAINER = ALL | CURRENT];

Use the SET clause to close the keystore without force. If there is a dependent
keystore that is open (for example, an isolated mode PDB keystore and you
are trying to close the CDB root keystore), then an ORA-46692 cannot close
wallet error appears. If this happens, then use the FORCE clause instead of
SET to temporarily close the dependent keystore during the close operation.
The STATUS column of the V$ENCRYPTION_WALLET view shows if a keystore is
open.

If you are in the united mode PDB, then either omit the CONTAINER clause or
set it to CURRENT.

• For an auto-login or local auto-login software keystore, use this syntax if you
are in the CDB root:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
[CONTAINER = ALL | CURRENT];

Closing a keystore disables all of the encryption and decryption operations. Any
attempt to encrypt or decrypt data or access encrypted data results in an error.

Related Topics

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database
instance.

5.7.3.2 Closing an External Keystore in United Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE CLOSE clause.

1. Log in to the CDB root or the united mode PDB as a user who has been granted
the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-28

2. Close the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"]
[CONTAINER = ALL | CURRENT];

For example, for an HSM:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY "external_key_manager_password"
CONTAINER = ALL;

If an ORA-46692 cannot close wallet error appears, then check if any isolated mode
keystores are open. To find the status of a keystore, query the STATUS column of the
V$ENCRYPTION_WALLET view.

Closing a keystore disables all of the encryption and decryption operations. Any attempt to
encrypt or decrypt data or access encrypted data results in an error.

Related Topics

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

5.7.4 Creating a User-Defined TDE Master Encryption Key in United Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY MANAGEMENT
statement with the SET | CREATE [ENCRYPTION] KEY clause.

1. Log in to the CDB root a user who has been granted the ADMINISTER KEY MANAGEMENT or
SYSKM privilege.

For example:

sqlplus c##sec_admin as syskm
Enter password: password

2. Create the user-defined TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY
'mkid:mk | mk'
[USING ALGORITHM 'algorithm']
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• SET | CREATE : Enter SET if you want to create the master and activate the TDE
master encryption key now, or enter CREATE if you want to create the key for later use,
without activating it yet.

• mkid and mk:

– mkid, the TDE master encryption key ID, is a 16–byte hex-encoded value that
you can specify or have Oracle Database generate.

– mk, the TDE master encryption key, is a hex-encoded value that you can specify
or have Oracle Database generate, either 32 bytes (for the for AES256, ARIA256,
and GOST256 algorithms) or 16 bytes (for the SEED128 algorithm).

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-29

If you omit the mkid value but include the mk, then Oracle Database generates
the mkid for the mk.

If you omit the entire mkid:mk|mkid clause, then Oracle Database generates
these values for you.

• USING ALGORITHM: Specify one of the following supported algorithms:

– AES256
– ARIA256
– SEED128
– GOST256
If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

The following example includes a user-created TDE master encryption key but no
TDE master encryption key ID, so that the TDE master encryption key is
generated:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C'
USING ALGORITHM 'ARIA256'
FORCE KEYSTORE
IDENTIFIED BY keystore_password WITH BACKUP;

The next example creates user-defined keys for both the master encryption ID and
the TDE master encryption key. It omits the algorithm specification, so the default
algorithm AES256 is used.

ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY
'10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E30
7F017BA048707B402493C'
IDENTIFIED BY keystore_password WITH BACKUP;

Related Topics

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace
and database encryption keys, can be either 128, 192, or 256 bits long.
Tablespace and database encryption use the 128–bit length cipher key.

5.7.5 Example: Creating a Master Encryption Key in All PDBs
You can use the ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG statement to
create a TDE master encryption key in all PDBs.

Example 5-1 shows how to create a master encryption key in all of the PDBs in a
multitenant environment. It uses the FORCE KEYSTORE clause in the event that the auto-
login keystore in the CDB root is open. The password is stored externally, so the
EXTERNAL STORE setting is used for the IDENTIFIED BY clause. After you execute this
statement, a master encryption key is created in each PDB. You can find the identifiers
for these keys as follows:

• Log in to the PDB and then query the TAG column of the V$ENCRYPTION_KEYS view.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-30

• Log in to the CDB root and then query the INST_ID and TAG columns of the
GV$ENCRYPTION_KEYS view.

You also can check the CREATION_TIME column of these views to find the most recently
created key, which would be the key that you created from this statement. After you create
the keys, you can individually activate the keys in each of the PDBs.

Example 5-1 Creating a Master Encryption Key in All of the PDBs

ADMINISTER KEY MANAGEMENT CREATE KEY USING TAG
'scope:all pdbs;description:Create Key for ALL PDBS'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE
WITH BACKUP
CONTAINER = ALL;

keystore altered.

5.7.6 Creating a TDE Master Encryption Key for Later Use in United Mode
A keystore must be opened before you can create a TDE master encryption key for use later
on in united mode.

1. Log in to the CDB root or the united mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Create the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']]
[CONTAINER = ALL | CURRENT];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB, set it
to CURRENT. In both cases, omitting CONTAINER defaults to CURRENT.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP
CONTAINER = CURRENT;

3. If necessary, activate the TDE master encryption key.

a. Find the key ID.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS;

KEY_ID
--
AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

b. Use this key ID to activate the key.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-31

ADMINISTER KEY MANAGEMENT USE KEY
'AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password
WITH BACKUP;

Related Topics

• Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.

5.7.7 Activating a TDE Master Encryption Key in United Mode
To activate a TDE master encryption key in united mode, you must open the keystore
and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

1. Log in to the CDB root or the united mode PDB as a user who has been granted
the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the ORIGIN and KEY_ID columns of the V$ENCRYPTION_KEYS view to find the
key identifier.

For example:

SELECT ORIGIN, KEY_ID FROM V$ENCRYPTION_KEYS;

ORIGIN KEY_ID
------ --
LOCAL ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Use this key identifier to activate the TDE master encryption key by using the
following syntax:

ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS'
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier']
[CONTAINER = ALL | CURRENT];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB,
omit the CONTAINER clause. In both cases, omitting CONTAINER defaults to
CURRENT.

• WITH BACKUP backs up the wallet in the same location as original wallet, as
identified by WALLET_ROOT/tde. To find the key locations for all of the database
instances, query the V$ENCRYPTION_WALLET or GV$ENCRYPTION_WALLET view.

The WITH BACKUP clause is mandatory for all ADMINISTER KEY MANAGEMENT
statements that modify the wallet. Optionally, include the USING
backup_identifier clause to add a description of the backup. Enclose
backup_identifier in single quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT USE KEY
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-32

FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE
WITH BACKUP
CONTAINER = ALL;

Related Topics

• About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by using
the USE KEY clause of ADMINISTER KEY MANAGEMENT.

5.7.8 Rekeying the TDE Master Encryption Key in United Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to rekey a
TDE master encryption key.

1. Log in to the CDB root or the united mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. If you are rekeying the TDE master encryption key for a keystore that has auto login
enabled, then ensure that both the auto login keystore, identified by the .sso file, and the
encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']]
[CONTAINER = ALL | CURRENT];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password that was created for this keystore.

• CONTAINER: In the CDB root, set CONTAINER to either ALL or CURRENT. In a PDB, set it
to CURRENT. In both cases, omitting CONTAINER defaults to CURRENT.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup'
CONTAINER = CURRENT;

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-33

keystore altered.

Related Topics

• About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

5.7.9 Finding the TDE Master Encryption Key That Is in Use in United
Mode

A TDE master encryption key that is in use is the key that was activated most recently
for the database.

In united mode, the TDE master encryption key in use of the PDB is the one that was
activated most recently for that PDB.

• To find the TDE master encryption key that is in use, query the
V$ENCRYPTION_KEYS dynamic view.

For example:

SELECT KEY_ID
FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME = (SELECT MAX(ACTIVATION_TIME)
 FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_PDBID = SYS_CONTEXT('USERENV', 'CON_ID'));

5.7.10 Creating a Custom Attribute Tag in United Mode
To create a custom attribute tag in united mode, you must use the SET TAG clause of
the ADMINISTER KEY MANAGEMENT statement.

1. Log in to the CDB root or the united mode PDB as a user who has been granted
the ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. If necessary, query the TAG column of the V$ENCRYPTION_KEY dynamic view to find
a listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the
existing tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
WITH BACKUP [USING 'backup_identifier'];

In this specification

• tag is the associated attributes or information that you define. Enclose this
information in single quotation marks (' ').

• master_key_identifier identifies the TDE master encryption key for which
the tag is set. To find a list of TDE master encryption key identifiers, query the
KEY_ID column of the V$ENCRYPTION_KEYS dynamic view.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-34

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password that was created for this keystore.

• backup_identifier defines the tag values. Enclose this setting in single quotation
marks (' ') and separate each value with a colon.

For example, to create a tag that uses two values, one to capture a specific session ID
and the second to capture a specific terminal ID:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
USING TAG 'sessionid=3205062574:terminal=xcvt'
IDENTIFIED BY keystore_password
WITH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by using
either the SYS_CONTEXT function with the USERENV namespace, or by using the USERENV
function.

Related Topics

• About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as accessing a
particular terminal ID.

5.7.11 Moving a TDE Master Encryption Key into a New Keystore in United
Mode

In united mode, you can move an existing TDE master encryption key into a new keystore
from an existing software password keystore.

This feature enables you to delete unused keys. After you move the key to a new keystore,
you then can delete the old keystore.

1. Log in to the CDB root or the united mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

2. Query the KEY_ID column of the V$ENCRYPTION_KEYS view to find the key identifier of the
keystore to which you want to move the keys.

For example:

SELECT CREATION_TIME, KEY_ID FROM V$ENCRYPTION_KEYS;

CREATION TIME
--
22-SEP-17 08.55.12.956170 PM +00:00

KEY_ID
--
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Move the key into a new keystore by using the following syntax:

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-35

ADMINISTER KEY MANAGEMENT
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 'keystore_location1'
IDENTIFIED BY keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY keystore_password
[WITH IDENTIFIER IN
{ 'key_identififier' [, 'key_identifier']... | (subquery) }]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• keystore_location1 is the path to the wallet directory that will store the new
keystore .p12 file. By default, this directory is in $ORACLE_BASE/admin/
db_unique_name/wallet.

• FORCE temporarily opens the keystore for this operation.

• keystore_password is the password for the keystore from which the key is
moving.

For example:

ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE '$ORACLE_BASE/admin/orcl/wallet'
IDENTIFIED BY keystore_password
FROM FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH IDENTIFIER IN
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2)
WITH BACKUP;

4. To delete the old keystore, go to the wallet directory and then manually delete
the .p12 file containing the keystore.

To find the location of the keystore, open the keystores, and then query the
WRL_PARAMETER column of the V$ENCRYPTION_WALLET view.

Related Topics

• Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

5.7.12 Automatically Removing Inactive TDE Master Encryption Keys
in United Mode

In united mode, the REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization
parameter can configure the automatic removal of inactive TDE master encryption
keys.

1. Log in to the server where the CDB root or the united mode PDB of the Oracle
standby database resides.

2. Locate the initialization parameter file for the database.

By default, the initialization parameter fileis located in the $ORACLE_HOME/dbs
directory.

3. Edit the initialization parameter file to include the
REMOVE_INACTIVE_STANDBY_TDE_MASTER_KEY initialization parameter.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-36

For example:

remove_inactive_standby_tde_master_key = true

Setting this parameter to TRUE enables the automatic removal of inactive TDE master
encryption keys; setting it to FALSE disables the automatic removal.

5.7.13 Isolating a Pluggable Database Keystore
Isolating a PDB keystore moves the master encryption key from the CDB root keystore into
an isolated mode keystore in the a PDB.

This process enables the keystore to be managed as a separate keystore in isolated mode.
This way, an administrator who has been locally granted the ADMINISTER KEY MANAGEMENT
privilege for the PDB can manage the keystore.

1. Log in to the united mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin@hrpdb as syskm
Enter password: password
Connected.

2. Move the keys from the keystore of the CDB root into the isolated mode keystore of the
PDB by using the following syntax:

ADMINISTER KEY MANAGEMENT [FORCE] ISOLATE KEYSTORE
IDENTIFIED BY isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE | united_keystore_password]
[WITH BACKUP [USING backup_id]];

In this specification:

• FORCE is used when a clone of the PDB is using the master encryption key that is
being isolated. The ADMINISTER KEY MANAGEMENT statement then copies (rather than
moves) the keys from the wallet of the CDB root into the isolated mode PDB.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation if an auto-login keystore is open (and in use) or if the keystore is closed.

• united_keystore_password: Knowledge of this password does not enable the user
who performs the ISOLATE KEYSTORE operation privileges to perform ADMINISTER KEY
MANAGEMENT UNITE KEYSTORE operations on the CDB root. This password is the same
as the keystore password in the CDB root.

After the keystore of a CDB root has been united with that of a PDB, all of the previously
active (historical) master encryption keys that were associated with the CDB are moved
to the keystore of the PDB.

3. Confirm that the united mode PDB is now an isolated mode PDB.

SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be ISOLATED.

Chapter 5
Administering Keystores and TDE Master Encryption Keys in United Mode

5-37

After the united mode PDB has been converted to an isolated mode PDB, you can
change the password of the keystore.

5.8 Administering Transparent Data Encryption in United
Mode

You can perform general administrative tasks with Transparent Data Encryption in
united mode.

• Moving PDBs from One CDB to Another in United Mode
You can clone or relocate encrypted PDBs within the same container database, or
across container databases

• Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode
In united mode, for a PDB that has encrypted data, you can plug it into a CDB.
Conversely, you can unplug this PDB from the CDB.

• Managing Cloned PDBs with Encrypted Data in United Mode
In united mode, you can clone a PDB that has encrypted data in a CDB.

• How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united
mode.

• Finding the Keystore Status for All of the PDBs in United Mode
You can create a convenience function that uses the V$ENCRYPTION_WALLET view
to find the status for keystores in all PDBs in a CDB.

5.8.1 Moving PDBs from One CDB to Another in United Mode
You can clone or relocate encrypted PDBs within the same container database, or
across container databases

If you are trying to move a non-CDB or a PDB in which the SYSTEM, SYSAUX, UNDO, or
TEMP tablespace is encrypted, and using the manual export or import of keys, then you
must first import the keys for the non-CDB or PDB in the target database's CDB$ROOT
before you create the PDB. Import of the keys are again required inside the PDB to
associate the keys to the PDB.

• Clone or relocate the non-CDB or PDB using the following syntax:

CREATE|RELOCATE PLUGGABLE DATABASE database_name KEYSTORE
IDENTIFIED BY EXTERNAL STORE|target_keystore_password NO REKEY;<

Related Topics

• Oracle Multitenant Administrator's Guide

5.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB
in United Mode

In united mode, for a PDB that has encrypted data, you can plug it into a CDB.
Conversely, you can unplug this PDB from the CDB.

Chapter 5
Administering Transparent Data Encryption in United Mode

5-38

• Unplugging a PDB That Has Encrypted Data in United Mode
In united mode, you can unplug a PDB with encrypted data and export it into an XML
metadata file or an archive file.

• Plugging a PDB That Has Encrypted Data into a CDB in United Mode
To plug a PDB that has encrypted data into a CDB, you first plug in the PDB and then you
create a master encryption key for the PDB.

• Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in
United Mode
You can unplug a PDB from one CDB that has been configured with an HSM and then
plug it into another CDB also configured with an external keystore.

• Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in
United Mode
The ADMINISTER KEY MANAGEMENT statement can import a TDE master encryption key
from an external keystore to a PDB that has been moved to another CDB.

5.8.2.1 Unplugging a PDB That Has Encrypted Data in United Mode
In united mode, you can unplug a PDB with encrypted data and export it into an XML
metadata file or an archive file.

The database that is unplugged contains data files and other associated files. You can check
if a PDB has been unplugged by querying the STATUS column of the DBA_PDBS data dictionary
view.

1. In the CDB root, query the V$ENCRYPTION_WALLET dynamic view to ensure that the
keystore is open.

2. Use the ENCRYPT USING transport_secret clause in the ALTER PLUGGABLE DATABASE
statement when you unplug the PDB.

You must use this clause if the PDB has encrypted data. Otherwise, an ORA-46680:
master keys of the container database must be exported error is returned.

• For example, to export the PDB data into an XML file:

ALTER PLUGGABLE DATABASE CDB1_PDB2
UNPLUG INTO '/tmp/cdb1_pdb2.xml'
ENCRYPT USING transport_secret;

• To export the PDB data into an archive file:

ALTER PLUGGABLE DATABASE CDB1_PDB2
UNPLUG INTO '/tmp/cdb1_pdb2.pdb'
ENCRYPT USING transport_secret;

Related Topics

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

Chapter 5
Administering Transparent Data Encryption in United Mode

5-39

5.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode
To plug a PDB that has encrypted data into a CDB, you first plug in the PDB and then
you create a master encryption key for the PDB.

After you plug the PDB into the target CDB, and you must create a master encryption
key that is unique to this plugged-in PDB. This is because the plugged-in PDB initially
uses the key that was extracted from the wallet of the source PDB. When you plug an
unplugged PDB into another CDB, the key version is set to 0 because this operation
invalidates the history of the previous keys. You can check the key version by querying
the KEY_VERSION column of the V$ENCRYPTED_TABLESPACES dynamic view. Similarly, if a
control file is lost and recreated, then the previous history of the keys is reset to 0. You
can check if a PDB has already been plugged in by querying the STATUS column of the
DBA_PDBS data dictionary view.

1. From the CDB root, create the PDB by plugging the unplugged PDB into the CDB.

To perform this operation for united mode, include the DECRYPT USING
transport_secret clause.

You must use this clause if the XML or archive file for the PDB has encrypted data.
Otherwise, an ORA-46680: master keys of the container database must be
exported error is returned.

• For example, if you had exported the PDB data into an XML file:

CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.xml'
KEYSTORE IDENTIFIED BY EXTERNAL STORE|keystore_password
DECRYPT USING transport_secret;

• If you had exported the PDB into an archive file:

CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.pdb'
KEYSTORE IDENTIFIED BY EXTERNAL STORE|keystore_password
DECRYPT USING transport_secret;

During the open operation of the PDB after the plug operation, Oracle Database
determines if the PDB has encrypted data. If so, it opens the PDB in the
RESTRICTED mode.

If you want to create the PDB by cloning another PDB or from a non-CDB, and if
the source database has encrypted data or a TDE master encryption key that has
been set, then you must provide the keystore password of the target keystore by
including the KEYSTORE IDENTIFIED BY keystore_password clause in the CREATE
PLUGGABLE DATABASE ... FROM SQL statement. You must provide this password
even if the target database is using an auto-login software keystore. You can find if
the source database has encrypted data or a TDE master encryption key set in the
keystore by querying the V$ENCRYPTION_KEYS dynamic view

2. Open the PDB.

For example:

ALTER PLUGGABLE DATABASE CDB1_PDB2 OPEN;
3. Open the keystore in the CDB root by using one of the following methods:

Chapter 5
Administering Transparent Data Encryption in United Mode

5-40

• If the software keystore of the CDB is not open, open it for the container and all open
PDBs by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE|KEYSTORE_PASSWORD CONTAINER = ALL;

• If the software keystore of the CDB is open, connect to the plugged-in PDB and then
open the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE|KEYSTORE_PASSWORD [CONTAINER = CURRENT];

4. In the plugged-in PDB, set the TDE master encryption key for the PDB by using the
following syntax:

ADMINISTER KEY MANAGEMENT SET KEY
[FORCE KEYSTORE]
IDENTIFIED BY EXTERNAL STORE|keystore_password
WITH BACKUP [USING 'backup_identifier'];

Related Topics

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Step 3: Set the TDE Master Encryption Key in the Software Keystore in United Mode
To set the TDE master encryption key in the keystore when the PDB is configured in
united mode, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

5.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode

You can unplug a PDB from one CDB that has been configured with an HSM and then plug it
into another CDB also configured with an external keystore.

1. Unplug the PDB.

You can check if a PDB has already been unplugged by querying the STATUS column of
the DBA_PDBS data dictionary view.

2. Move the master encryption keys of the unplugged PDB in the external keystore that was
used at the source CDB to the external keystore that is in use at the destination CDB.

Refer to the documentation for the external keystore for information about moving master
encryption keys between external keystores.

Related Topics

• Oracle Multitenant Administrator's Guide

5.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode

The ADMINISTER KEY MANAGEMENT statement can import a TDE master encryption key from an
external keystore to a PDB that has been moved to another CDB.

Chapter 5
Administering Transparent Data Encryption in United Mode

5-41

1. Plug the unplugged PDB into the destination CDB that has been configured with
the external keystore.

You can check if a PDB has already been plugged in by querying the STATUS
column of the DBA_PDBS data dictionary view.

After the plug-in operation, the PDB that has been plugged in will be in restricted
mode.

2. Ensure that the master encryption keys from the external keystore that has been
configured with the source CDB are available in the external keystore of the
destination CDB.

3. Log in to the plugged PDB as a user who was granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin@hr_pdb as syskm
Enter password: password
Connected.

Contact your SYSDBA administrator for the correct PDB. To check the current
container, run the SHOW CON_NAME command.

4. Open the master encryption key of the plugged PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY keystore_passsword;

5. Import the external keystore master encryption key into the PDB.

ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS
WITH SECRET "OKV" FROM 'OKV'
IDENTIFIED BY keystore_password;

6. Restart the PDB.

ALTER PLUGGABLE DATABASE PDB1 CLOSE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;

Related Topics

• Oracle Multitenant Administrator's Guide

5.8.3 Managing Cloned PDBs with Encrypted Data in United Mode
In united mode, you can clone a PDB that has encrypted data in a CDB.

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

• Cloning a PDB with Encrypted Data in a CDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can clone a PDB that has encrypted data.

• Performing a Remote Clone of PDB with Encrypted Data Between Two CDBs in
United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can remotely clone a PDB that has encrypted data.

Chapter 5
Administering Transparent Data Encryption in United Mode

5-42

• TDE Academy Videos: Remotely Cloning and Upgrading Encrypted PDBs
The Oracle TDE Academy provides videos on how to remotely clone and upgrade
encrypted pluggable databases (PDBs).

• Relocating Across CDBs a Cloned PDB with Encrypted Data in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can relocate across CDBs a cloned PDB that has encrypted data.

5.8.3.1 About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source PDB
available to cloned PDB.

This allows a cloned PDB to operate on the encrypted data. To perform the clone, you do not
need to export and import the keys because Oracle Database transports the keys for you
even if the cloned PDB is in a remote CDB. However, you will need to provide the keystore
password of the CDB where you are creating the clone.

If the PDBs have encrypted data, then you can perform remote clone operations on PDBs
between CDBs, and relocate PDBs across CDBs.

5.8.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
clone a PDB that has encrypted data.

1. In the CDB root, query the STATUS column of the V$ENCRYPTION_WALLET dynamic view to
ensure that the keystore is open in the CDB root.

2. Log in to the PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT and
the CREATE PLUGGABLE DATABASE privileges.

3. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause to clone the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3
FROM cdb1_pdb1
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY EXTERNAL STORE|keystore_password [NO REKEY];

Replace keystore_password with the password of the keystore of the CDB where the
cdb1_pdb3 clone is created.

By default, during a PDB clone or relocate operation, the data encryption keys are
rekeyed, which implies a re-encryption of all encrypted tablespaces. This rekey operation
can increase the time it takes to clone or relocate a large PDB. With the optional NO
REKEY clause, the data encryption keys are not renewed, and encrypted tablespaces are
not re-encrypted.

After you create the cloned PDB, encrypted data is still accessible by the clone using the
master encryption key of the original PDB. After a PDB is cloned, there may be user data
in the encrypted tablespaces. This encrypted data is still accessible because the master
encryption key of the source PDB is copied over to the destination PDB. Because the
clone is a copy of the source PDB but will eventually follow its own course and have its
own data and security policies, you should rekey the master encrytion key of the cloned
PDB.

Chapter 5
Administering Transparent Data Encryption in United Mode

5-43

4. Rekey the master encryption key of the cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the keystore must be open
during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

5.8.3.3 Performing a Remote Clone of PDB with Encrypted Data Between Two
CDBs in United Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can remotely clone a PDB that has encrypted data.

1. In the CDB root, query the STATUS column of the V$ENCRYPTION_WALLET dynamic
view to ensure that the keystore is open in the CDB root.

2. Log in to the PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

3. Create a database link for the PDB that you want to clone remotely.

Use the CREATE DATABASE LINK SQL statement to create the database link. You
must create the database link by following the database link prerequisites that are
required for cloning a remote PDB or a non-CDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED
BY clause to perform the clone of the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3
FROM cdb1_pdb1
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY keystore_password;

Replace keystore_password with the password of the keystore of the CDB where
the cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone
using the master encryption key of the original PDB. After a PDB is cloned, there
may be user data in the encrypted tablespaces. This encrypted data is still
accessible because the master encryption key of the source PDB is copied over to

Chapter 5
Administering Transparent Data Encryption in United Mode

5-44

the destination PDB. Because the clone is a copy of the source PDB but will eventually
follow its own course and have its own data and security policies, you should rekey the
master encrytion key of the cloned PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the keystore must be open during
the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use
master encryption keys that belong to the original PDB. However, these master
encryption keys do not appear in the cloned PDB V$ dynamic views. Rekeying the master
encryption key ensures that the cloned PDB uses its own unique keys, which will be
viewable in the V$ views.

Related Topics

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

5.8.3.4 TDE Academy Videos: Remotely Cloning and Upgrading Encrypted PDBs
The Oracle TDE Academy provides videos on how to remotely clone and upgrade encrypted
pluggable databases (PDBs).

• TDE Academy #01: Remote clone and upgrade encrypted 18c PDBs to 19c

• TDE Academy #02: Remote clone and upgrade encrypted 12.2.0.1 PDBs to 19c

• TDE Academy #03: Remote clone and upgrade encrypted 12.1.0.2 PDBs to 19c

5.8.3.5 Relocating Across CDBs a Cloned PDB with Encrypted Data in United Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
relocate across CDBs a cloned PDB that has encrypted data.

1. In the CDB root, query the STATUS column of the V$ENCRYPTION_WALLET dynamic view to
ensure that the keystore is open in the CDB root.

2. Log in to the PDB as a user who has been granted the ADMINISTER KEY MANAGEMENT or
SYSKM privilege.

3. Create a database link for the PDB that you want to clone.

Chapter 5
Administering Transparent Data Encryption in United Mode

5-45

https://www.youtube.com/embed/onIQ3CDsjik
https://www.youtube.com/embed/oJipexiHBXk
https://www.youtube.com/embed/ql6352lmi24

Use the CREATE DATABASE LINK SQL statement to create the database link. You
must create the database link by following the database link prerequisites that are
required for cloning a remote PDB or a non-CDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED
BY clause to relocate the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3
FROM cdb1_pdb1
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY keystore_password;

Replace keystore_password with the password of the keystore of the CDB where
the cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone
using the master encryption key of the original PDB. After a PDB is cloned, there
may be user data in the encrypted tablespaces. This encrypted data is still
accessible because the master encryption key of the source PDB is copied over to
the destination PDB. Because the clone is a copy of the source PDB but will
eventually follow its own course and have its own data and security policies, you
should rekey the master encrytion key of the cloned PDB.

5. Use the ALTER PLUGGABLE DATABASE statement to perform the relocation
operation.

For example:

ALTER PLUGGABLE DATABASE cdb1_pdb3
OPEN RELOCATE TO 'instance_name';

6. Rekey the master encryption key of the relocated PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
[FORCE KEYSTORE]
IDENTIFIED BY keystore_password
WITH BACKUP [USING 'emp_key_backup'];

In this example, FORCE KEYSTORE is included because the keystore must be open
during the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

Chapter 5
Administering Transparent Data Encryption in United Mode

5-46

• Oracle Database SQL Language Reference

5.8.4 How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

For each PDB in united mode, you must explicitly open the password-protected software
keystore or external keystore in the PDB to enable the Transparent Data Encryption
operations to proceed. (Auto-login and local auto-login software keystores open
automatically.) Closing a keystore on a PDB blocks all of the Transparent Data Encryption
operations on that PDB.

The open and close keystore operations in a PDB depend on the open and close status of
the keystore in the CDB root.

Note the following:

• You can create a separate keystore password for each PDB in united mode.

• Before you can manually open a software password-protected or an external keystore in
an individual PDB, you must open the keystore in the CDB root.

• If an auto-login keystore is in use, or if the keystore is closed, then include the FORCE
KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you open or close
the keystore.

• If the keystore is a password-protected software keystore that uses an external store for
passwords, then set the IDENTIFIED BY clause to EXTERNAL STORE.

• Before you can set a TDE master encryption key in an individual PDB, you must set the
key in the CDB root.

• Auto-login and local auto-login software keystores open automatically. You do not need to
manually open these from the CDB root first, or from the PDB.

• If you close the keystore in the CDB root, then the keystores in the dependent PDBs also
close. A keystore close operation in the root is the equivalent of performing a keystore
close operation with the CONTAINER clause set to ALL.

• If you perform an ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement in the
CDB root and set the CONTAINER clause to ALL, then the keystore will only be opened in
each PDB that is configured in united mode, and any PDB that is configured in isolated
mode is not opened.

5.8.5 Finding the Keystore Status for All of the PDBs in United Mode
You can create a convenience function that uses the V$ENCRYPTION_WALLET view to find the
status for keystores in all PDBs in a CDB.

The V$ENCRYPTION_WALLET view displays the status of the keystore in a PDB, whether it is
open, closed, uses a software or an external keystore, and so on.

• To create a function that uses theV$ENCRYPTION_WALLET view to find the keystore status,
use the CREATE PROCEDURE PL/SQL statement.

Example 5-2 shows how to create this function.

Chapter 5
Administering Transparent Data Encryption in United Mode

5-47

Example 5-2 Function to Find the Keystore Status of All of the PDBs in a CDB

CREATE OR REPLACE PROCEDURE all_pdb_v$encryption_wallet
IS
 err_occ BOOLEAN;
 curr_pdb VARCHAR2(30);
 pdb_name VARCHAR2(30);
 wrl_type VARCHAR2(20);
 status VARCHAR2(30);
 wallet_type VARCHAR2(20);
 wallet_order VARCHAR2(12);
 fully_backed_up VARCHAR2(15);
 wrl_parameter VARCHAR2(4000);
 cursor sel_pdbs IS SELECT NAME FROM V$CONTAINERS
 WHERE NAME <> 'PDB$SEED' order by con_id desc;
 BEGIN

 -- Store the original PDB name
 SELECT sys_context('userenv', 'con_name') INTO curr_pdb FROM DUAL;
 IF curr_pdb <> 'CDB$ROOT' THEN
 dbms_output.put_line('Operation valid in ROOT only');
 END IF;

 err_occ := FALSE;
 dbms_output.put_line('---');
 dbms_output.put_line('PDB_NAME WRL_TYPE STATUS
');
 dbms_output.put_line('------------------------------ --------
------------------------------');
 dbms_output.put_line('WALLET_TYPE WALLET_ORDER FULLY_BACKED_UP');
 dbms_output.put_line('-------------------- ------------ ---------------');
 dbms_output.put_line('WRL_PARAMETER');

dbms_output.put_line('--'
);
 FOR pdbinfo IN sel_pdbs LOOP

 pdb_name := DBMS_ASSERT.ENQUOTE_NAME(pdbinfo.name, FALSE);
 EXECUTE IMMEDIATE 'ALTER SESSION SET CONTAINER = ' || pdb_name;

 BEGIN
 pdb_name := rpad(substr(pdb_name,1,30), 30, ' ');
 EXECUTE IMMEDIATE 'SELECT wrl_type from V$ENCRYPTION_WALLET' into wrl_type;
 wrl_type := rpad(substr(wrl_type,1,8), 8, ' ');
 EXECUTE IMMEDIATE 'SELECT status from V$ENCRYPTION_WALLET' into status;
 status := rpad(substr(status,1,30), 30, ' ');
 EXECUTE IMMEDIATE 'SELECT wallet_type from V$ENCRYPTION_WALLET' into wallet_type;
 wallet_type := rpad(substr(wallet_type,1,20), 20, ' ');
 EXECUTE IMMEDIATE 'SELECT wallet_order from V$ENCRYPTION_WALLET' into
wallet_order;
 wallet_order := rpad(substr(wallet_order,1,9), 12, ' ');
 EXECUTE IMMEDIATE 'SELECT fully_backed_up from V$ENCRYPTION_WALLET' into fully_backed_up;
 fully_backed_up := rpad(substr(fully_backed_up,1,9), 15, ' ');
 EXECUTE IMMEDIATE 'SELECT wrl_parameter from V$ENCRYPTION_WALLET' into wrl_parameter;
 wrl_parameter := rpad(substr(wrl_parameter,1,79), 79, ' ');
 dbms_output.put_line(pdb_name || ' ' || wrl_type || ' ' || status);
 dbms_output.put_line(wallet_type || ' ' || wallet_order || ' ' || fully_backed_up);
 dbms_output.put_line(wrl_parameter);

 EXCEPTION
 WHEN OTHERS THEN

Chapter 5
Administering Transparent Data Encryption in United Mode

5-48

 err_occ := TRUE;
 END;
 END LOOP;

 IF err_occ = TRUE THEN
 dbms_output.put_line('One or more PDB resulted in an error');
 END IF;
 END;
.
/
set serveroutput on
exec all_pdb_v$encryption_wallet;

Chapter 5
Administering Transparent Data Encryption in United Mode

5-49

6
Managing Keystores and TDE Master
Encryption Keys in Isolated Mode

In an Oracle Cloud database (but not an on-premises database), isolated mode enables you
to create a keystore for each pluggable database (PDB).

• About Managing Keystores and TDE Master Encryption Keys in Isolated Mode
In isolated mode, where a pluggable database (PDB) has its own keystore, you manage
the keystore and its TDE master encryption keys from the PDB only.

• Operations That Are Allowed in Isolated Mode
You can perform many ADMINISTER KEY MANAGEMENT operations in isolated mode.

• Operations That Are Not Allowed in an Isolated Mode PDB
There are several ADMINISTER KEY MANAGEMENT operations that you cannot perform in an
isolated mode PDB.

• Configuring the Keystore Location and Type for Isolated Mode
For isolated mode, you can configure the keystore location and type by using only
parameters or a combination of parameters and the ALTER SYSTEM statement.

• Configuring a Keystore and TDE Master Encryption Key in Isolated Mode
In isolated mode, the software keystore is associated with a PDB.

• Configuring an External Keystore in Isolated Mode
There are two types of external keystores that Oracle Database supports: Oracle Key
Vault keystores or OCI Vault - Key Management keystores.

• Administering Keystores and TDE Master Encryption Keys in Isolated Mode
After you create a keystore and a TDE master encryption key in isolated mode, you can
perform administration tasks such as rekeying or tagging encryption keys.

• Administering Transparent Data Encryption in Isolated Mode
You can perform a number of general administrative tasks with Transparent Data
Encryption in isolated mode.

6.1 About Managing Keystores and TDE Master Encryption
Keys in Isolated Mode

In isolated mode, where a pluggable database (PDB) has its own keystore, you manage the
keystore and its TDE master encryption keys from the PDB only.

Similar to united mode, you must first configure a PDB to use isolated mode by setting the
WALLET_ROOT and TDE_CONFIGURATION parameters. After you set these parameters, you can
create and manage the keystore from the PDB. In this way, you can have the following
scenario:

• The united mode settings in the CDB root will apply to all PDBs that do not have isolated
mode settings. For example, the keystore that you create in the CDB root will be used by
the root’s associated united mode PDBs.

6-1

• The PDBs that are configured in isolated mode are allowed to independently
create and manage their own keystore. An isolated mode PDB can have its own
keystore, independent of the keystore of the CDB root.

This scenario is useful in cases where you have many PDBs that must use one type of
keystore, but you have a few PDBs that must use a different type. By different types of
keystores, this refers to either a TDE software keystore or to one of the external
keystores that Oracle supports (for example, Oracle Key Vault or Cloud Key
Management Service). You cannot have a mixture of different external keystore types
in one CDB environment because the Oracle server can load only one PKCS#11
vendor library. If necessary, you can configure these PDBs in isolated mode so that
each PDB can use its own keystore.

An advantage of configuring a PDB in isolated mode is that it improves the
performance of rekey operations in the PDB as compared to the rekey performance in
united mode when there are a large number of encrypted PDBs.

In a CDB when the number of encrypted PDBs is large, configuring a PDB in isolated
mode allows the performance of the rekey operation in that PDB to remain similar to
the performance of a rekey operation in a standalone system, and remain constant as
the number of encrypted PDBs in the overall system increases.

6.2 Operations That Are Allowed in Isolated Mode
You can perform many ADMINISTER KEY MANAGEMENT operations in isolated mode.

These operations include creating, backing up, opening keystores; changing keystore
passwords, merging keystores, closing keystores; creating, activating, tagging,
moving, exporting, importing, and migrating encryption keys; and adding, updating,
and deleting client secrets.

Table 6-1 describes the ADMINISTER KEY MANAGEMENT operations that you can perform
in an isolated mode PDB.

Table 6-1 ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Isolated Mode Notes

Creating a keystore ADMINISTER KEY MANAGEMENT
CREATE KEYSTORE
['keystore_location']
IDENTIFIED BY
keystore_password;

You can create password-
protected, local auto-login,
and auto-login keystores in
an isolated mode PDB.

The keystore_location
clause is optional only when
you have set the
WALLET_ROOT parameter.
Otherwise, it is mandatory.

Creating an auto-login
keystore

ADMINISTER KEY MANAGEMENT
CREATE [LOCAL] AUTO_LOGIN
KEYSTORE
FROM KEYSTORE
['keystore_location']
IDENTIFIED BY
keystore_password;

The keystore_location is
optional if the WALLET_ROOT
parameter is set.

Chapter 6
Operations That Are Allowed in Isolated Mode

6-2

Table 6-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Isolated Mode Notes

Opening a keystore ADMINISTER KEY MANAGEMENT
SET KEYSTORE OPEN
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password];

In this operation, the
EXTERNAL_STORE clause
uses the password in the
wallet. The wallet is
configured in the tde_seps
directory in the
WALLET_ROOT location. This
wallet contains the password
of the keystore.

For a PDB in isolated mode,
the wallet used by the
EXTERNAL_STORE clause
must be configured at the
WALLET_ROOT/PDB_GUID/
tde_seps location.

Changing a keystore password ADMINISTER KEY MANAGEMENT
ALTER KEYSTORE PASSWORD
IDENTIFIED BY
old_keystore_password
SET new_keystore_password
WITH BACKUP
[USING
'backup_identifier'];

-

Backing up a keystore ADMINISTER KEY MANAGEMENT
BACKUP KEYSTORE
[USING 'backup_identifier']
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
[TO 'keystore_location'];

-

Merging the contents of one
keystore into an existing
keystore

ADMINISTER KEY MANAGEMENT
MERGE KEYSTORE
'keystore_location1'
[IDENTIFIED BY
keystore1_password]
INTO EXISTING KEYSTORE
'keystore_location2'
IDENTIFIED BY
keystore2_password
WITH BACKUP [USING
'backup_identifier'];

-

Chapter 6
Operations That Are Allowed in Isolated Mode

6-3

Table 6-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Isolated Mode Notes

Merging the contents of two
keystores to create a third
keystore

ADMINISTER KEY MANAGEMENT
MERGE KEYSTORE
'keystore_location1'
[IDENTIFIED BY
keystore1_password]
AND KEYSTORE
'keystore_location2'
[IDENTIFIED BY
keystore2_password]
INTO NEW KEYSTORE
'keystore_location3'
IDENTIFIED BY
keystore3_password;

-

Closing a keystore ADMINISTER KEY MANAGEMENT
SET KEYSTORE CLOSE
[IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]];

-

Closing the keystore of the
CDB root when a PDB in
isolated mode has its keystore
open

ADMINISTER KEY MANAGEMENT
FORCE KEYSTORE CLOSE
[IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]];

The FORCE clause allows the
keystore to be closed in the
CDB root even when a PDB
in isolated mode still has its
keystore open

Creating and activating a new
TDE master encryption key
(rekeying)

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
[USING TAG 'tag_name']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL
STORE | keystore_password
]WITH BACKUP
[USING
'backup_identifier'];

-

Creating a user-defined TDE
master encryption key for
either now (SET) or later on
(CREATE

ADMINISTER KEY MANAGEMENT
[SET | CREATE]
[ENCRYPTION] KEY
'mkid:mk | mk'
[USING ALGORITHM
'algorithm']
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY EXTERNAL
STORE | keystore_password
WITH BACKUP [USING
'backup_identifier']
[CONTAINER = CURRENT];

-

Chapter 6
Operations That Are Allowed in Isolated Mode

6-4

Table 6-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Isolated Mode Notes

Activating an existing TDE
master encryption key

ADMINISTER KEY MANAGEMENT
USE [ENCRYPTION] KEY
'key_id'
[USING TAG 'tag']
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING
'backup_identifier'];

-

Tagging a TDE master
encryption key

ADMINISTER KEY MANAGEMENT
SET TAG 'tag' FOR 'key_id'
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING
'backup_identifier'];

-

Exporting a TDE master
encryption key

ADMINISTER KEY MANAGEMENT
EXPORT [ENCRYPTION] KEYS
WITH SECRET secret
TO 'filename'
IDENTIFIED BY
keystore_password
[WITH IDENTIFIER IN
{ 'key_id' [,
'key_id']... |
(subquery) }];

-

Importing a TDE master
encryption key

ADMINISTER KEY MANAGEMENT
IMPORT [ENCRYPTION] KEYS
WITH SECRET secret
FROM 'filename'
IDENTIFIED BY
keystore_password
[WITH BACKUP
[USING
'backup_identifier']];

-

Chapter 6
Operations That Are Allowed in Isolated Mode

6-5

Table 6-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Isolated Mode Notes

Migrating a TDE master
encryption key from a software
keystore to an external
keystore

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
IDENTIFIED BY
external_key_manager_passwo
rd
[FORCE KEYSTORE]
MIGRATE USING
software_keystore_password
WITH BACKUP
[USING
'backup_identifier'];

-

Reverse-migrating a TDE
master encryption key from an
external keystore to a software
keystore

ADMINISTER KEY MANAGEMENT
SET [ENCRYPTION] KEY
IDENTIFIED BY
software_keystore_password
REVERSE MIGRATE USING
external_key_manager_passwo
rd;

-

Adding a client secret ADMINISTER KEY MANAGEMENT
ADD SECRET 'secret'
FOR CLIENT
'client_identifier'
[USING TAG 'tag_name']
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING
'backup_identifier'];

-

Updating a client secret ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'secret'
FOR CLIENT
'client_identifier'
[USING TAG 'tag_name']
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING
'backup_identifier'];

-

Chapter 6
Operations That Are Allowed in Isolated Mode

6-6

Table 6-1 (Cont.) ADMINISTER KEY MANAGEMENT Isolated Mode Operations

Operation Syntax Isolated Mode Notes

Deleting a client secret ADMINISTER KEY MANAGEMENT
DELETE SECRET
FOR CLIENT
'client_identifier'
IDENTIFIED BY
[EXTERNAL STORE |
keystore_password]
WITH BACKUP
[USING
'backup_identifier'];

-

Isolate a PDB ADMINISTER KEY MANAGEMENT
ISOLATE KEYSTORE
IDENTIFIED BY
isolated_keystore_password
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE |
united_keystore_password]
WITH BACKUP [USING
backup_id];

This operation performs two
actions. First, it changes the
TDE_CONFIGURATION of the
PDB so that it is in isolated
mode. Second, it moves the
TDE master encryption key
and all previously active
(historical) TDE master
encryption keys from the
keystore of the CDB root to a
newly-created keystore for
the PDB having its own
password, where the PDB
will be able to manage its
own keys.

6.3 Operations That Are Not Allowed in an Isolated Mode PDB
There are several ADMINISTER KEY MANAGEMENT operations that you cannot perform in an
isolated mode PDB.

These operations include the following:

• Using the CONTAINER = ALL clause to create a new TDE master encryption key for later
use in each pluggable database (PDB)

• Moving encryption keys from the keystore of the CDB root into a keystore of a PDB that
is configured in isolated mode

6.4 Configuring the Keystore Location and Type for Isolated
Mode

For isolated mode, you can configure the keystore location and type by using only
parameters or a combination of parameters and the ALTER SYSTEM statement.

• Configuring Isolated Mode
You can configure isolated mode by setting WALLET_ROOT in the initialization parameter file
in the CDB root and TDE_CONFIGURATION in the PDB you want to isolate.

Chapter 6
Operations That Are Not Allowed in an Isolated Mode PDB

6-7

• Example: Restoring an Older Version of a Control File
You can set TDE_CONFIGURATION if you have an older version of a control file that
must be restored and only a few PDBs were configured in isolated mode.

• Example: Addressing the Problem of a Lost Control File
You can address the problem of a lost control file by using the ALTER SYSTEM
statement.

• Example: Configuring Isolated Mode in an Oracle Real Application Clusters
Environment
You can use ALTER SYSTEM to configure isolated mode in an Oracle Real
Application Clusters (Oracle RAC) environment.

6.4.1 Configuring Isolated Mode
You can configure isolated mode by setting WALLET_ROOT in the initialization parameter
file in the CDB root and TDE_CONFIGURATION in the PDB you want to isolate.

Configuring the WALLET_ROOT and TDE_CONFIGURATION parameters for the CDB
environment is a similar procedure as the one you would use to configure united
mode, except rather than using the RESET clause of the ALTER SYSTEM statement, you
use the SET clause. You can perform the configuration by adding the WALLET_ROOT and
TDE_CONFIGURATION parameters to the initialization parameter file. To configure a PDB
in isolated mode, you must set a value for the TDE_CONFIGURATION parameter of the
PDB, which you can do either by using the ALTER SYSTEM statement or by issuing the
ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement. This section focuses on
the use of the ALTER SYSTEM statement.

Depending on whether your system uses pfile or spfile, you must set the SCOPE clause
in the ALTER SYSTEM statement appropriately when setting the value of the
TDE_CONFIGURATION parameter for the PDB. The value of the TDE_CONFIGURATION
parameter is a list of attribute-value pairs, and it is the value of the
KEYSTORE_CONFIGURATION attribute that specifies the type of the keystore, as follows:

• FILE specifies a software keystore

• OKV specifies an Oracle Key Vault external keystore)

• FILE|OKV specifies a reverse-migration from the OKV keystore type to the FILE
keystore type has occurred

• FILE|HSM specifies a reverse-migration from the HSM keystore type to the FILE
keystore type has occurred

• OKV|FILE specifies a migration from the FILE keystore type to the OKV keystore
type has occurred. The keystore type has two meanings: it either means that you
are migrating from FILE to OKV, or it means that the configuration started out as
using OKV but is now using an auto-login OKV configuration, where the OKV
password resides in a cwallet.sso file in the WALLET_ROOT/PDB_GUID/tde
directory.

After you have used ALTER SYSTEM to configure the TDE_CONFIGURATION value for the
selected PDB, the PDB in the CDB environment is in isolated mode. The steps in this
procedure explain in detail how to configure an individual PDB to be in isolated mode,
using its own keystore type.

1. Connect to the PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Chapter 6
Configuring the Keystore Location and Type for Isolated Mode

6-8

2. Run the ALTER SYSTEM statement to configure the WALLET_ROOT and TDE_CONFIGURATION
parameters for the CDB environment.

• ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=both;

• If the CDB root is open and the PDB is in the mount state, then set scope to spfile:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=spfile;

3. Check the configuration.

• To check the TDE_CONFIGURATION parameter setting:

SHOW PARAMETER TDE_CONFIGURATION

The output should reflect the keystore configuration that you set for the current PDB.
If it shows a different keystore configuration (for example, FILE if you had set it to
OKV), then the setting may be showing the keystore configuration that was set for the
CDB root, in united mode.

• To check the keystore mode:

SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be ISOLATED.

After you configure isolated mode, the CDB root keystore that was available to the PDB when
it was in united mode is no longer available to this PDB. At this stage, the PDB is configured
to use its own keystore. If the KEYSTORE_CONFIGURATION parameter was FILE (meaning that
the PDB is configured to use a software keystore), then the keystore location configured for
the PDB is WALLET_ROOT/PDB-GUID/tde. If a keystore exists at that location and contains a
TDE master encryption key, then that key is only available to this PDB, not to any other PDB.
If no keystore exists at that location, you now can now proceed to create a software keystore
and set a TDE master encryption key. If you later decide that you want the isolated mode
PDB to become a united mode PDB again, then you can use the ADMINISTER KEY
MANAGEMENT UNITE KEYSTORE statement. When you run ADMINISTER KEY MANAGEMENT UNITE
KEYSTORE, it moves the keys from the PDB's keystore to the keystore of the CDB root, but it
leaves any client secrets behind. So if there were no client secrets in the first place, then it
would leave the PDB's keystore essentially "empty". It can now be backed up, and removed.
Always back up keystores before you remove them, even empty keystores.

Related Topics

• Configuring United Mode by Editing the Initialization Parameter File
You can configure united mode by setting both the WALLET_ROOT and TDE_CONFIGURATION
parameters in the initialization parameter file.

• Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM
If your environment relies on server parameter files (spfile), then you can set
WALLET_ROOT and TDE_CONFIGURATION using ALTER SYSTEM SET with SCOPE.

• Uniting a Pluggable Database Keystore
Uniting a PDB keystore moves the TDE master encryption keys from the PDB keystore
into the keystore of the CDB root. This enables the administrator of the keystore of the
CDB root to manage the keys.

Chapter 6
Configuring the Keystore Location and Type for Isolated Mode

6-9

6.4.2 Example: Restoring an Older Version of a Control File
You can set TDE_CONFIGURATION if you have an older version of a control file that must
be restored and only a few PDBs were configured in isolated mode.

When the CDB root and the PDB are both in the mount state, then you can only
change the PDB’s keystore configuration from the CDB root.

1. Log in to the CDB root as a user who was granted the SYSDBA administrative
privilege.

2. For each PDB that you want to change, use the following syntax:

ALTER SYSTEM SET
TDE_CONFIGURATION="CONTAINER=pdb_name;KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=memory;

For example, for the hrpdb and salespdb PDBs using FILE (for software
keystores) as the keystore type:

ALTER SYSTEM SET
TDE_CONFIGURATION="CONTAINER=hrpdb;KEYSTORE_CONFIGURATION=FILE" SCOPE=memory;
ALTER SYSTEM SET
TDE_CONFIGURATION="CONTAINER=salespdb;KEYSTORE_CONFIGURATION=FILE"
SCOPE=memory;

3. After you set the TDE_CONFIGURATION parameter for each PDB, log in to the CDB
root and then set TDE_CONFIGURATION for the CDB root itself.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";

At this stage, CDB root is in the mounted state. The value of the
TDE_CONFIGURATION parameter that was set using ALTER SYSTEM with the
CONTAINER attribute is only present in the memory of the CDB root. To ensure that
the configuration is properly applied to each PDB, you must close and then reopen
the PDB. When an isolated mode PDB is opened, the configuration set by the
ALTER SYSTEM statement that was issued in the CDB root is read from the control
file and then is automatically applied to the PDB.

4. Connect to each PDB and then close and reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

6.4.3 Example: Addressing the Problem of a Lost Control File
You can address the problem of a lost control file by using the ALTER SYSTEM
statement.

Running these statements with SCOPE set to memory will store the CONTAINER value in
memory. When you open the isolated PDB, this configuration will automatically be
updated for the PDB.

If you are using an Oracle Data Guard environment, then to correct the control file, run
these statements on both the primary and the standby databases.

1. Log in to the CDB root as a user who was granted the SYSDBA administrative
privilege.

Chapter 6
Configuring the Keystore Location and Type for Isolated Mode

6-10

2. If you are unsure of the exact state of the system, then you should run ALTER SYSTEM with
RESET.

For example:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=memory;
3. For each PDB that you want to change, use the following syntax:

ALTER SYSTEM SET
TDE_CONFIGURATION="CONTAINER=pdb_name;KEYSTORE_CONFIGURATION=FILE" SCOPE=memory;

For example, for the hrpdb and salespdb PDBs with FILE (for software keystores) as the
keystore type:

ALTER SYSTEM SET TDE_CONFIGURATION="CONTAINER=hrpdb;KEYSTORE_CONFIGURATION=FILE"
SCOPE=memory;
ALTER SYSTEM SET
TDE_CONFIGURATION="CONTAINER=salespdb;KEYSTORE_CONFIGURATION=FILE" SCOPE=memory;

4. After you set the TDE_CONFIGURATION parameter for each PDB, log in to the CDB root and
then set TDE_CONFIGURATION for the CDB root itself.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE";

At this stage, CDB root is in the mounted state. The value of the TDE_CONFIGURATION
parameter that was set using ALTER SYSTEM with the CONTAINER attribute is only present
in the memory of the CDB root. To ensure that the configuration is properly applied to
each PDB, you must close and then reopen the PDB. When an isolated mode PDB is
opened, the configuration set by the ALTER SYSTEM statement that was issued in the CDB
root is read from the control file and then is automatically applied to the PDB.

5. Connect to each PDB and then close and reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

6.4.4 Example: Configuring Isolated Mode in an Oracle Real Application
Clusters Environment

You can use ALTER SYSTEM to configure isolated mode in an Oracle Real Application Clusters
(Oracle RAC) environment.

• To ensure that the effect of the ALTER SYSTEM statement is applied on each Oracle RAC
node, specify the wildcard (*) in the SID clause of the ALTER SYSTEM statement, as
follows. You can run this statement from either the CDB root or a PDB.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type" SID='*';

6.5 Configuring a Keystore and TDE Master Encryption Key in
Isolated Mode

In isolated mode, the software keystore is associated with a PDB.

• About Configuring a Software Keystore in Isolated Mode
You can create all types of software keystores in isolated mode: password-
protected, password protected with the credential provided from an external store, auto-
login, local auto-login.

Chapter 6
Configuring a Keystore and TDE Master Encryption Key in Isolated Mode

6-11

• Step 1: Create a Software Keystore in a PDB Configured in Isolated Mode
A password-protected software keystore requires a password to protect the
keystore keys and credentials.

• Step 2: Open the Software Keystore in an Isolated Mode PDB
To open a software keystore in isolated mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Step 3: Set the TDE Master Encryption Key in the Software Keystore of the
Isolated Mode PDB
To set the TDE master encryption key in a software keystore in an isolated mode
PDB, use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

• Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the keystore configuration and the PDB is
configured in isolated mode, you can begin to encrypt data in the PDB.

6.5.1 About Configuring a Software Keystore in Isolated Mode
You can create all types of software keystores in isolated mode: password-
protected, password protected with the credential provided from an external store,
auto-login, local auto-login.

To enable encryption in the PDB after it is configured in isolated mode with the
KEYSTORE_CONFIGURATION attribute set to FILE (that is, to use a software keystore), you
must create a software keystore, open the software keystore, and then set a TDE
master encryption key in the software keystore. Afterward, you can begin to encrypt
data for tables and tablespaces that will be accessible in the PDB.

In a multitenant environment, you can create a secure external store to hold the
credentials of the software keystore. This feature enables you to hide the keystore
password: it removes the need for storing the keystore password in any script or tool
that accesses the database without user intervention, such as an overnight batch
script. When the WALLET_ROOT parameter is specified, the location of the external store
for the CDB root is WALLET_ROOT/tde_seps and for the PDB it is WALLET_ROOT/PDB-
GUID/tde_seps. When the WALLET_ROOT parameter is set, there is no longer a single
central external store, so when a keystore password is updated, the corresponding
external store must be updated as well. When the WALLET_ROOT parameter is not
specified, then the location of the external store is the same for both the CDB root and
for every PDB. The external store location must then be set by the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION initialization parameter. When the
WALLET_ROOT parameter is not specified, then there is a single central external store,
so when you update the keystore password, only the central external store at the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION must be updated.

In a multitenant environment, different PDBs can access this external store location
when you run the ADMINISTER KEY MANAGEMENT statement using the IDENTIFIED BY
EXTERNAL STORE clause. This way, you can centrally locate the password and then
update it only once in the external store.

Related Topics

• Configuring an External Store for a Keystore Password
An external store for a keystore password stores the keystore password in a
centrally accessed and managed location.

Chapter 6
Configuring a Keystore and TDE Master Encryption Key in Isolated Mode

6-12

6.5.2 Step 1: Create a Software Keystore in a PDB Configured in Isolated
Mode

A password-protected software keystore requires a password to protect the keystore keys
and credentials.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin@hrpdb as syskm
Enter password: password

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Run the ADMINISTER KEY MANAGEMENT SQL statement to create the keystore using the
following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
['keystore_location']
IDENTIFIED BY software_keystore_password;

In this specification:

• keystore_location is the path to the keystore directory location of the password-
protected keystore. If the path that is set by the WALLET_ROOT parameter is the path
that you want to use, then you can omit the keystore_location setting.

If you specify the keystore_location, then enclose it in single quotation marks (' ').
To find this location, you can query the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. (If the keystore was not created in the default location,
then the STATUS column of the V$ENCRYPTION_WALLET view is NOT_AVAILABLE.)

• software_keystore_password is the password of the keystore that you, the security
administrator, creates.

For example, to create the keystore in the default location (assuming WALLET_ROOT is set):

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
IDENTIFIED BY password;
keystore altered.

After you complete these steps, the ewallet.p12 file, which is the keystore, appears in the
default keystore location under the WALLET_ROOT which you have configured. For example, if
you had set the WALLET_ROOT parameter to $ORACLE_BASE/wallet and set the
TDE_CONFIGURATION parameter to FILE (indicating that a software keystore is configured for
the PDB that is in isolated mode), then the keystore of the PDB will be created in
the $ORACLE_BASE/wallet/PDB-GUID/tde directory.

6.5.3 Step 2: Open the Software Keystore in an Isolated Mode PDB
To open a software keystore in isolated mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

Chapter 6
Configuring a Keystore and TDE Master Encryption Key in Isolated Mode

6-13

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current
container, run the SHOW CON_NAME command.

2. Run the ADMINISTER KEY MANAGEMENT statement to open the keystore.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY password;
keystore altered.

To switch over to opening the password-protected software keystore when an
auto-login keystore is configured and is currently open, specify the FORCE
KEYSTORE clause as follows.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;
keystore altered.

Here, the IDENTIFIED BY EXTERNAL STORE clause is included in the statement
because the keystore credentials exist in an external store. This enables
the password-protected keystore to be opened without specifying the
keystore password within the statement itself.

If the WALLET_ROOT parameter has been set, then Oracle Database finds the
external store by searching in this path: WALLET_ROOT/PDB_GUID/tde_seps.

3. Confirm that the keystore is open.

SELECT STATUS FROM V$ENCRYPTION_WALLET;

Related Topics

• About Opening Software Keystores
A password-protected software keystore must be open before any TDE master
encryption keys can be created or accessed in the keystore.

6.5.4 Step 3: Set the TDE Master Encryption Key in the Software
Keystore of the Isolated Mode PDB

To set the TDE master encryption key in a software keystore in an isolated mode PDB,
use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

To find the status, run the show pdbs command.

3. Run the ADMINISTER KEY MANAGEMENT SQL statement to set the key in the
software keystore.

For example, if the keystore of the PDB is password-protected, the PDB is open,
and the keystore of the PDB is open:

ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

Chapter 6
Configuring a Keystore and TDE Master Encryption Key in Isolated Mode

6-14

keystore altered.

If the keystore is closed:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

keystore altered.

In this specification:

• FORCE KEYSTORE should be included if the keystore is closed. This automatically
opens the keystore before setting the TDE master encryption key. The FORCE
KEYSTORE clause also switches over to opening the password-protected software
keystore when an auto-login keystore is configured and is currently open.

• IDENTIFIED BY specifies the keystore password. Alternatively, if the keystore
password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE
clause.

4. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Related Topics

• About Setting the Software Keystore TDE Master Encryption Key
The TDE master encryption key is stored in the keystore.

6.5.5 Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the keystore configuration and the PDB is configured in
isolated mode, you can begin to encrypt data in the PDB.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

6.6 Configuring an External Keystore in Isolated Mode
There are two types of external keystores that Oracle Database supports: Oracle Key Vault
keystores or OCI Vault - Key Management keystores.

• About Configuring an External Keystore in Isolated Mode
You can configure an external keystore for a PDB when the PDB is configured in isolated
mode.

Chapter 6
Configuring an External Keystore in Isolated Mode

6-15

• Step 1: Configure Isolated PDBs for Oracle Key Vault
You can configure isolated mode PDBs for Oracle Key Vault by setting the
TDE_CONFIGURATION parameter.

• Step 2: Open the External Keystore in an Isolated Mode PDB
If the isolated PDB does not have an auto-open connection into the external
keystore, then you must open it manually before your open the PDB.

• Step 3: Set TDE Master Encryption Key in the External Keystore of a PDB in
Isolated Mode
After you have opened the external keystore in an isolated mode PDB, you are
ready to set the TDE master encryption key for the PDB.

• Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the keystore configuration and the PDB is
configured in isolated mode, you can begin to encrypt data in the PDB.

6.6.1 About Configuring an External Keystore in Isolated Mode
You can configure an external keystore for a PDB when the PDB is configured in
isolated mode.

To configure an external keystore for a PDB in isolated mode, you first must set the
WALLET_ROOT parameter. This is necessary for two reasons: first, to have support for
migrating to a software keystore in the future, and second, because the configuration
file for Oracle Key Vault is retrieved from a location under WALLET_ROOT. Afterwards,
you must set the KEYSTORE_CONFIGURATION attribute of the
TDE_CONFIGURATION parameter to OKV, open the configured external keystore, and then
set the TDE master encryption key for the PDB. After you complete these tasks, you
can begin to encrypt data in the PDB.

How you specify the IDENTIFIED BY clause when you run the ADMINISTER KEY
MANAGEMENT statement depends on the type of external keystore. Use the following
syntax:

IDENTIFIED BY "external_key_manager_password"

external_key_manager_password is for an external keystore manager, which can be
Oracle Key Vault or OCI Vault - Key Management. Enclose this password in double
quotation marks. For Oracle Key Vault, enter the password that was given during the
Oracle Key Vault client installation. If at that time no password was given, then the
password in the ADMINISTER KEY MANAGEMENT statement becomes NULL.

For an Oracle Key Vault keystore, you must enclose the password in quotation marks:

IDENTIFIED BY "Oracle_Key_Vault_password"

6.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault
You can configure isolated mode PDBs for Oracle Key Vault by setting the
TDE_CONFIGURATION parameter.

1. If the WALLET_ROOT parameter is set, then install the Oracle Key Vault client
software into the WALLET_ROOT/pdb_guid/okv directory.

2. Log in to the database instance as a user who has been granted the ALTER
SYSTEM administrative privilege.

Chapter 6
Configuring an External Keystore in Isolated Mode

6-16

3. Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type
by using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore_type"
SCOPE=BOTH SID = '*';

In this specification:

• keystore_type can be OKV, to configure an Oracle Key Vault keystore.

For example, to configure your database to use Oracle Key Vault:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV" SCOPE=BOTH SID =
'*';

6.6.3 Step 2: Open the External Keystore in an Isolated Mode PDB
If the isolated PDB does not have an auto-open connection into the external keystore, then
you must open it manually before your open the PDB.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin@hrpdb as syskm
Enter password: password

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Open the external keystore as follows, by enclosing the password in double quotation
marks:

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "Oracle_Key_Vault_password";

3. Repeat this procedure each time you restart the database instance.

You must open the keystore of the CDB root first.

Related Topics

• About Opening External Keystores
You must open the external keystore so that it is accessible to the database before you
can perform any encryption or decryption.

6.6.4 Step 3: Set TDE Master Encryption Key in the External Keystore of a
PDB in Isolated Mode

After you have opened the external keystore in an isolated mode PDB, you are ready to set
the TDE master encryption key for the PDB.

• Setting a New TDE Master Encryption Key in Isolated Mode
You should complete this procedure if you have not previously configured a external
keystore for Transparent Data Encryption.

Chapter 6
Configuring an External Keystore in Isolated Mode

6-17

• Migration of a Previously Configured Encryption Key in Isolated Mode
You must migrate the previously configured master encryption key if you
previously configured a software keystore.

6.6.4.1 Setting a New TDE Master Encryption Key in Isolated Mode
You should complete this procedure if you have not previously configured a external
keystore for Transparent Data Encryption.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

For example:

CONNECT sec_admin@pdb_name AS SYSKM
2. Ensure that the database is open in READ WRITE mode.

You can set the TDE master encryption key if OPEN_MODE is set to READ WRITE. To
find the status, run the show pdbs command.

3. Set the new TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation if the keystore is closed if an auto-login keystore is configured and is
currently open, or if a password-protected keystore is configured and is
currently closed.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store
to perform the keystore operation.

– external_key_manager_password: For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If
at that time no password was given, then the password in the ADMINISTER
KEY MANAGEMENT statement becomes NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'sessionid=3205062574:terminal=xcvt'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

keystore altered.
4. Confirm that the TDE master encryption key is set.

SELECT MASTERKEY_ACTIVATED FROM V$DATABASE_KEY_INFO;

The output should be YES.

Chapter 6
Configuring an External Keystore in Isolated Mode

6-18

Related Topics

• About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external keystore.

6.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode
You must migrate the previously configured master encryption key if you previously
configured a software keystore.

Related Topics

• Migration of a Previously Configured TDE Master Encryption Key
You must migrate the previously configured TDE master encryption key if you previously
configured a software keystore.

6.6.5 Step 4: Encrypt Your Data in Isolated Mode
Now that you have completed the keystore configuration and the PDB is configured in
isolated mode, you can begin to encrypt data in the PDB.

Related Topics

• Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

• Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

6.7 Administering Keystores and TDE Master Encryption Keys
in Isolated Mode

After you create a keystore and a TDE master encryption key in isolated mode, you can
perform administration tasks such as rekeying or tagging encryption keys.

To change the password of an external keystore, you must use the administrative interface of
the external keystore. You cannot perform this operation by using the ADMINISTER KEY
MANAGEMENT statement.

• Changing the Keystore Password in Isolated Mode
You can change the password of a software keystore when the PDB is in isolated mode.

• Backing Up a Password-Protected Software Keystore in Isolated Mode
The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected software keystore.

• Merging Software Keystores in Isolated Mode
In isolated mode, you can merge software keystores.

• Closing Keystores in Isolated Mode
You can close both software and external keystores in isolated mode, unless the system
tablespace is encrypted.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-19

• Creating a User-Defined TDE Master Encryption Key in Isolated Mode
To create a user-defined TDE master encryption key, use the ADMINISTER KEY
MANAGEMENT statement with the SET | CREATE [ENCRYPTION] KEY clause.

• Creating a TDE Master Encryption Key for Later Use in Isolated Mode
A keystore must be open before you can create a TDE master encryption key for
use later on in isolated mode.

• Activating a TDE Master Encryption Key in Isolated Mode
To activate a TDE master encryption key in isolated mode, you must open the
keystore and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

• Rekeying the TDE Master Encryption Key in Isolated Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause
to rekey a TDE master encryption key.

• Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
In isolated mode, you can move an existing TDE master encryption key into a new
keystore from an existing software password keystore.

• Creating a Custom Attribute Tag in Isolated Mode
To create a custom attribute tag in isolated mode, you must use the SET TAG
clause of the ADMINISTER KEY MANAGEMENT statement.

• Exporting and Importing the TDE Master Encryption Key in Isolated Mode
You can export and import the TDE master encryption key in different ways in
isolated mode.

• Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate
external clients such as Oracle GoldenGate into the database.

• Migrating Keystores in Isolated Mode
You can perform migration and reverse migration operations between software
keystores and external keystores in isolated mode.

• Uniting a Pluggable Database Keystore
Uniting a PDB keystore moves the TDE master encryption keys from the PDB
keystore into the keystore of the CDB root. This enables the administrator of the
keystore of the CDB root to manage the keys.

• Creating a Keystore When the PDB Is Closed
When you create a keystore in a PDB that is closed, the new keystore is empty
and the PDB is converted to isolated mode.

6.7.1 Changing the Keystore Password in Isolated Mode
You can change the password of a software keystore when the PDB is in isolated
mode.

To change the password of an external keystore, you must use the administrative
interface of the external keystore. You cannot perform this operation by using the
ADMINISTER KEY MANAGEMENT statement.

• Changing the Password-Protected Software Keystore Password in Isolated Mode
To change the password of a password-protected software keystore in isolated
mode, you must use the ADMINISTER KEY MANAGEMENT statement.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-20

• Changing the Password of an External Keystore in Isolated Mode
To change the password of an external keystore, you must close the external keystore
and then change the password from the external keystore’s management interface.

6.7.1.1 Changing the Password-Protected Software Keystore Password in Isolated
Mode

To change the password of a password-protected software keystore in isolated mode, you
must use the ADMINISTER KEY MANAGEMENT statement.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Change the password for the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
[FORCE KEYSTORE]
IDENTIFIED BY
old_password SET new_password
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation if the keystore is closed if an auto-login keystore is configured and is
currently open, or if a password-protected keystore is configured and is currently
closed.

• old_password is the current keystore password that you want to change.

• new_password is the new password that you set for the keystore.

The following example creates a backup of the keystore and then changes the keystore
password:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
IDENTIFIED BY
old_password SET new_password
WITH BACKUP USING 'pwd_change';

keystore altered.

This example performs the same operation but uses the FORCE KEYSTORE clause in case
the auto-login software keystore is in use or the password-protected software keystore is
closed.

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
FORCE KEYSTORE
IDENTIFIED BY
old_password SET new_password
WITH BACKUP USING 'pwd_change';

keystore altered.

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password,
for both software and external keystores.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-21

• Changing the Password of a Software Keystore
Oracle Database enables you to easily change password-protected software
keystore passwords.

6.7.1.2 Changing the Password of an External Keystore in Isolated Mode
To change the password of an external keystore, you must close the external keystore
and then change the password from the external keystore’s management interface.

1. Connect to the isolated mode PDB as a user who has been granted the
ADMINISTER KEY MANAGEMENT or SYSKM privilege.

For example:

CONNNECT sec_admin@pdb_name AS SYSKM
2. Close the external keystore.

• For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY "external_key_manager_password";

• For an external keystore whose password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY EXTERNAL STORE;

3. Update the credentials of the external store to use
"new_external_key_manager_password".

Currently, the external store contains the old credentials, which would no longer
work.

For example:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'new_external_key_manager_password'
FOR CLIENT 'TDE_WALLET'
TO LOCAL AUTO_LOGIN KEYSTORE '/etc/ORACLE/WALLETS/orcl/external_store';

4. Open the external keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "new_external_key_manager_password";

For an external keystore whose password is stored externally:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY EXTERNAL STORE;

Related Topics

• Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore
password, for both software and external keystores.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-22

6.7.2 Backing Up a Password-Protected Software Keystore in Isolated
Mode

The BACKUP KEYSTORE clause of the ADMINISTER KEY MANAGEMENT statement backs up a
password-protected software keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

sqlplus sec_admin@hrpdb as syskm
Enter password: password
Connected.

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Back up the keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | software_keystore_password]
[TO 'keystore_location'];

In this specification:

• USING backup_identifier is an optional string that you can provide to identify the
backup. Enclose this identifier in single quotation marks (' '). This identifier is
appended to the named keystore file (for example, ewallet_time-
stamp_emp_key_backup.p12).

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-
protected keystore because although the backup is simply a copy of the existing
keystore, the status of the TDE master encryption key in the password-protected
keystore must be set to BACKED UP and for this change the keystore password is
required.

• keystore_location is the path at which the backup keystore is stored. This setting is
restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting
is blocked in the PDB or when the PATH_PREFIX variable was set when the PDB was
created. If you do not specify the keystore_location, then the backup is created in
the same directory as the original keystore. Enclose this location in single quotation
marks (' ').

The following example backs up a software keystore in the same location as the source
keystore.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY
'software_keystore_password';

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-23

keystore altered.

In the following version, the password for the keystore is stored externally, so the
EXTERNAL STORE clause is used.

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
USING 'hr.emp_keystore'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

After you run this statement, an ewallet_identifier.p12 file (for example,
ewallet_time-stamp_hr.emp_keystore.p12) appears in the keystore backup
location.

Related Topics

• Backing Up Password-Protected Software Keystores
When you back up a password-protected software keystore, you can create a
backup identifier string to describe the backup type.

6.7.3 Merging Software Keystores in Isolated Mode
In isolated mode, you can merge software keystores.

• Merging One Software Keystore into an Existing Software Keystore in Isolated
Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement with the
MERGE KEYSTORE clause to merge one software keystore into another existing
software keystore.

• Merging Two Software Keystores into a Third New Keystore in Isolated Mode
In isolated mode, you can merge two software keystores into a third new keystore,
so that the two existing keystores are not changed and the new keystore contains
the keys of both source keystores.

6.7.3.1 Merging One Software Keystore into an Existing Software Keystore in
Isolated Mode

In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement with the
MERGE KEYSTORE clause to merge one software keystore into another existing software
keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current
container, run the SHOW CON_NAME command.

2. Merge the software keystores by using the following syntax:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'keystore1_location'
[IDENTIFIED BY software_keystore1_password]
INTO EXISTING KEYSTORE 'keystore2_location'
IDENTIFIED BY software_keystore2_password
[WITH BACKUP [USING 'backup_identifier]];

In this specification:

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-24

• keystore1_location is the directory location of the first keystore, which will be left
unchanged after the merge. Enclose this path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the first keystore if it is a password-
protected keystore. software_keystore1_password is the password for the first
keystore.

• keystore2_location is the directory location of the second keystore into which the
first keystore is to be merged. Enclose this path in single quotation marks (' ').

• software_keystore2_password is the password for the second keystore.

The target keystore (keystore2) remains a password-protected keystore after the keystore
merge operation.

Related Topics

• About Merging Software Keystores
You can merge any combination of software keystores, but the merged keystore must be
password-protected. It can have a password that is different from the constituent
keystores.

6.7.3.2 Merging Two Software Keystores into a Third New Keystore in Isolated Mode
In isolated mode, you can merge two software keystores into a third new keystore, so that the
two existing keystores are not changed and the new keystore contains the keys of both
source keystores.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Merge the keystores by using the following syntax:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE 'keystore1_location'
[IDENTIFIED BY software_keystore1_password] AND KEYSTORE 'keystore2_location'
[IDENTIFIED BY software_keystore2_password]
INTO NEW KEYSTORE 'keystore3_location'
IDENTIFIED BY software_keystore3_password;

In this specification:

• keystore1_location is the directory location of the first keystore, which will be left
unchanged after the merge. Enclose this path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the first keystore if it is a password-
protected keystore. software_keystore1_password is the current password for the
first keystore.

• keystore2_location is the directory location of the second keystore. Enclose this
path in single quotation marks (' ').

• The IDENTIFIED BY clause is required for the second keystore if it is a password-
protected keystore. software_keystore2_password is the current password for the
second keystore.

• keystore3_location specifies the directory location of the new, merged keystore.
Enclose this path in single quotation marks (' '). If there is already an existing
keystore at this location, the command exits with an error.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-25

• software_keystore3_password is the new password for the merged keystore.

The following example merges an auto-login software keystore with a password-
protected keystore to create a merged password-protected keystore at a new
location:

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
IDENTIFIED BY existing_password_for_keystore_2
INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3'
IDENTIFIED BY new_password_for_keystore_3;

keystore altered.

Related Topics

• About Merging Software Keystores
You can merge any combination of software keystores, but the merged keystore
must be password-protected. It can have a password that is different from the
constituent keystores.

6.7.4 Closing Keystores in Isolated Mode
You can close both software and external keystores in isolated mode, unless the
system tablespace is encrypted.

• Closing a Software Keystore in Isolated Mode
You can close password-protected keystores, auto-login keystores, and local auto-
login software keystores in isolated mode.

• Closing an External Keystore in Isolated Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT
statement with the SET KEYSTORE CLOSE clause.

6.7.4.1 Closing a Software Keystore in Isolated Mode
You can close password-protected keystores, auto-login keystores, and local auto-
login software keystores in isolated mode.

In the case of an auto-login keystore, which opens automatically when it is accessed,
you must first move it to a new location where it cannot be automatically opened, then
you must manually close it. You must do this if you are changing your configuration
from an auto-login keystore to a password-protected keystore: you change the
configuration to stop using the auto-login keystore (by moving the auto-login keystore
to another location where it cannot be automatically opened), and then closing the
auto-login keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Close the software keystore by using the following syntax.

Note that the only difference between the following two ADMINISTER KEY
MANAGEMENT SET KEYSTORE CLOSE statements is that a password must be provided
for a password-protected keystore.

• For a password-protected software keystore:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY [EXTERNAL STORE | software_keystore_password];

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-26

Closing a password-protected keystore disables all encryption and decryption
operations. Any attempt to encrypt or decrypt data or access encrypted data results
in an error.

• For an auto-login or local auto-login software keystore:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE;

The result of this statement will not necessarily be that the keystore status will
change to CLOSED, because unless you also moved the cwallet.sso file to a location
that Oracle Database cannot find, then a background job or background process
could automatically re-open the auto-login keystore. This can cause the status to
potentially always appear to be OPEN even after the ADMINISTER KEY MANAGEMENT SET
KEYSTORE CLOSE statement completed successfully.

Related Topics

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

6.7.4.2 Closing an External Keystore in Isolated Mode
To close an external keystore, you must use the ADMINISTER KEY MANAGEMENT statement with
the SET KEYSTORE CLOSE clause.

For an Oracle Key Vault keystore, you can only provide the password. No user name is
allowed in the IDENTIFIED BY clause. Enclose the password in double quotation marks.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Close the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
IDENTIFIED BY [EXTERNAL STORE | "external_key_manager_password"];

Closing a keystore disables all encryption and decryption operations. Any attempt to encrypt
or decrypt data or access encrypted data results in an error.

Related Topics

• About Closing Keystores
After you open a keystore, it remains open until you shut down the database instance.

6.7.5 Creating a User-Defined TDE Master Encryption Key in Isolated
Mode

To create a user-defined TDE master encryption key, use the ADMINISTER KEY MANAGEMENT
statement with the SET | CREATE [ENCRYPTION] KEY clause.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Create the user-defined TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET | CREATE [ENCRYPTION] KEY
'mkid:mk | mk'

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-27

[USING ALGORITHM 'algorithm']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• SET | CREATE : Enter SET if you want to create the master and activate the
TDE master encryption key now, or enter CREATE if you want to create the key
for later use, without activating it yet.

• mkid and mk:

– mkid, the TDE master encryption key ID, is a 16–byte hex-encoded value
that you can specify or have Oracle Database generate.

– mk, the TDE master encryption key, is a hex-encoded value that you can
specify or have Oracle Database generate, either 32 bytes (for the for
AES256, ARIA256, and GOST256 algorithms) or 16 bytes (for the SEED128
algorithm).

If you omit the mkid:mk|mkid clause but include the mk value, then Oracle
Database generates the mkid for the mk.

If you omit the entire mkid:mk|mkid clause, then Oracle Database generates
these values for you.

• USING ALGORITHM: Specify one of the following supported algorithms:

– AES256
– ARIA256
– SEED128
– GOST256
If you omit the algorithm, then the default, AES256, is used.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

The following example includes a user-created TDE master encryption key but no
TDE master encryption key ID, so that the TDE master encryption key ID is
generated:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
'3D432109DF88967A541967062A6F4E460E892318E307F017BA048707B402493C'
USING ALGORITHM 'GOST256'
FORCE KEYSTORE
IDENTIFIED BY keystore_password WITH BACKUP;

The next example creates user-defined keys for both the master encryption ID and
the TDE master encryption key. It omits the algorithm specification, so the default
algorithm AES256 is used.

ADMINISTER KEY MANAGEMENT CREATE ENCRYPTION KEY
'10203040506070801112131415161718:3D432109DF88967A541967062A6F4E460E892318E30
7F017BA048707B402493C'
IDENTIFIED BY keystore_password WITH BACKUP;

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-28

Related Topics

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

6.7.6 Creating a TDE Master Encryption Key for Later Use in Isolated
Mode

A keystore must be open before you can create a TDE master encryption key for use later on
in isolated mode.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Create the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEY
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY is required for the BACKUP KEYSTORE operation on a password-
protected keystore because although the backup is simply a copy of the existing
keystore, the status of the TDE master encryption key in the password-protected
keystore must be set to BACKED UP and for this change the keystore password is
required.

• keystore_location is the path at which the backup keystore is stored. This setting is
restricted to the PDB when the PDB lockdown profile EXTERNAL_FILE_ACCESS setting
is blocked in the PDB or when the PATH_PREFIX variable was not set when the PDB
was created. If you do not specify the keystore_location, then the backup is
created in the same directory as the original keystore. Enclose this location in single
quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT CREATE KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP;

3. If necessary, activate the TDE master encryption key.

a. Find the key ID.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS;

KEY_ID
--
AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-29

b. Use this key ID to activate the key.

ADMINISTER KEY MANAGEMENT USE KEY
'AWsHwVYC2U+Nv3RVphn/yAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
USING TAG 'quarter:second;description:Activate Key on standby'
IDENTIFIED BY password
WITH BACKUP;

Related Topics

• Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.

6.7.7 Activating a TDE Master Encryption Key in Isolated Mode
To activate a TDE master encryption key in isolated mode, you must open the keystore
and use ADMINISTER KEY MANAGEMENT with the USE KEY clause.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Query the KEY_ID column of the V$ENCRYPTION_KEYS view to find the key identifier.

For example:

SELECT KEY_ID FROM V$ENCRYPTION_KEYS;

KEY_ID
--
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Use this key identifier to activate the TDE master encryption key by using the
following syntax:

ADMINISTER KEY MANAGEMENT USE KEY 'key_identifier_from_V$ENCRYPTION_KEYS'
[USING TAG 'tag']
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

For example:

ADMINISTER KEY MANAGEMENT USE KEY
'ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP;

Related Topics

• About Activating TDE Master Encryption Keys
You can activate a previously created or imported TDE master encryption key by
using the USE KEY clause of ADMINISTER KEY MANAGEMENT.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-30

6.7.8 Rekeying the TDE Master Encryption Key in Isolated Mode
You can use the ADMINISTER KEY MANAGEMENT statement with the SET KEY clause to rekey a
TDE master encryption key.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. If you are rekeying the TDE master encryption key for a keystore that has auto login
enabled, then ensure that both the auto login keystore, identified by the .sso file, and the
encryption keystore, identified by the .p12 file, are present.

You can find the location of these files by querying the WRL_PARAMETER column of the
V$ENCRYPTION_WALLET view. To find the WRL_PARAMETER values for all of the database
instances, query the GV$ENCRYPTION_WALLET view.

3. Rekey the TDE master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION] KEY
[FORCE KEYSTORE]
[USING TAG 'tag_name']
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes and information that you define. Enclose this setting
in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password that was created for this keystore.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

keystore altered.

Related Topics

• About Rekeying the TDE Master Encryption Key
Oracle Database uses a unified TDE Master Encryption Key for both TDE column
encryption and TDE tablespace encryption.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-31

6.7.9 Moving a TDE Master Encryption Key into a New Keystore in
Isolated Mode

In isolated mode, you can move an existing TDE master encryption key into a new
keystore from an existing software password keystore.

This feature enables you to move a subset, or all, of a keystore’s keys into a new
keystore. After you move the key or keys to the new keystore and then back up the old
keystore, optionally you then can delete this old keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Query the CREATION_TIME and KEY_ID columns of the V$ENCRYPTION_KEYS view to
find the key identifier of the key that you want to move.

For example:

SELECT CREATION_TIME, KEY_ID FROM V$ENCRYPTION_KEYS;

CREATION TIME
--
22-SEP-17 08.55.12.956170 PM +00:00

KEY_ID
--
ARaHD762tUkkvyLgPzAi6hMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

3. Move the key into a new keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT
MOVE [ENCRYPTION] KEYS
TO NEW KEYSTORE 'keystore_location1'
IDENTIFIED BY keystore1_password
FROM [FORCE] KEYSTORE
IDENTIFIED BY keystore_password
[WITH IDENTIFIER IN
{ 'key_identifier' [, 'key_identifier']... | (subquery) }]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• keystore_location1 is the path to the wallet directory that will store the new
keystore .p12 file. By default, this directory is $ORACLE_BASE/admin/
db_unique_name/wallet.

• FORCE temporarily opens the keystore for this operation.

• keystore_password is the password for the keystore from which the key is
moving.

For example:

ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE '$ORACLE_BASE/admin/orcl/wallet'
IDENTIFIED BY keystore_password
FROM FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH IDENTIFIER IN

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-32

(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2)
WITH BACKUP;

After the keys are moved to the new keystore, they no longer exist in the old keystore.

4. To delete the old keystore, go to the wallet directory and do the following:

a. Back up the .p12 file containing the keystore that you want to delete.

b. Manually delete the .p12 file containing the keystore.

To find the location of the keystore, open the keystore, and then query the WRL_PARAMETER
column of the V$ENCRYPTION_WALLET view.

Related Topics

• Dangers of Deleting Keystores
Oracle strongly recommends that you do not delete keystores.

6.7.10 Creating a Custom Attribute Tag in Isolated Mode
To create a custom attribute tag in isolated mode, you must use the SET TAG clause of the
ADMINISTER KEY MANAGEMENT statement.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. If necessary, query the TAG column of the V$ENCRYPTION_KEY dynamic view to find a
listing of existing tags for the TDE master encryption keys.

When you create a new tag for a TDE master encryption key, it overwrites the existing
tag for that TDE master encryption key.

3. Create the custom attribute tag by using the following syntax:

ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• tag is the associated attributes or information that you define. Enclose this
information in single quotation marks (' ').

• master_key_identifier identifies the TDE master encryption key for which the tag
is set. To find a list of TDE master encryption key identifiers, query the KEY_ID column
of the V$ENCRYPTION_KEYS dynamic view.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• IDENTIFIED BY can be one of the following settings:

– EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

– keystore_password is the password that was created for this keystore.

– backup_identifier defines the tag values. Enclose this setting in single
quotation marks (' ') and separate each value with a colon.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-33

For example, to create a tag that uses two values, one to capture a specific
session ID and the second to capture a specific terminal ID:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
USING TAG 'sessionid=3205062574:terminal=xcvt'
IDENTIFIED BY keystore_password
WITH BACKUP;

keystore altered.

Both the session ID (3205062574) and terminal ID (xcvt) can derive their values by
using either the SYS_CONTEXT function with the USERENV namespace, or by using
the USERENV function.

Related Topics

• About Creating Custom Attribute Tags
Attribute tags enable you to monitor specific activities users perform, such as
accessing a particular terminal ID.

6.7.11 Exporting and Importing the TDE Master Encryption Key in
Isolated Mode

You can export and import the TDE master encryption key in different ways in isolated
mode.

• Exporting a TDE Master Encryption Key in Isolated Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement to
export a TDE master encryption key.

• Importing a TDE Master Encryption Key in Isolated Mode
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS
WITH SECRET clause can import a TDE master encryption key.

6.7.11.1 Exporting a TDE Master Encryption Key in Isolated Mode
In isolated mode, you can use the ADMINISTER KEY MANAGEMENT statement to export a
TDE master encryption key.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Export the TDE master encryption keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT EXPORT [ENCRYPTION] KEYS
WITH SECRET "export_secret"
TO 'file_path'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH IDENTIFIER IN 'key_id1', 'key_id2', 'key_idn' | (SQL_query)];

In this specification:

• export_secret is a password that you can specify to encrypt the export the
file that contains the exported keys. Enclose this secret in double quotation
marks (" "), or you can omit the quotation marks if the secret has no spaces.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-34

• file_path is the complete path and name of the file to which the keys must be
exported. Enclose this path in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• key_id1, key_id2, key_idn is a string of one or more TDE master encryption key
identifiers for the TDE master encryption key being exported. Separate each key
identifier with a comma and enclose each of these key identifiers in single quotation
marks (' '). To find TDE master encryption key identifiers, query the KEY_ID column
of the V$ENCRYPTION_KEYS dynamic view.

• SQL_query is a query that fetches a list of the TDE master encryption key identifiers.
It should return only one column that contains the TDE master encryption key
identifiers. This query is executed with current user rights.

Related Topics

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

6.7.11.2 Importing a TDE Master Encryption Key in Isolated Mode
The ADMINISTER KEY MANAGEMENT statement with the IMPORT [ENCRYPTION] KEYS WITH
SECRET clause can import a TDE master encryption key.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Contact your SYSDBA administrator for the correct PDB. To check the current container,
run the SHOW CON_NAME command.

2. Run the following SQL statement:

ADMINISTER KEY MANAGEMENT IMPORT [ENCRYPTION] KEYS
WITH SECRET "import_secret"
FROM 'file_name'
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING 'backup_identifier']];

In this specification:

• import_secret is the same password that was used to encrypt the keys during the
export operation. Enclose this secret in double quotation marks (" "), or you can omit
the quotation marks if the secret has no spaces.

• file_name is the complete path and name of the file from which the keys need to be
imported. Enclose this setting in single quotation marks (' ').

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

Related Topics

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-35

6.7.12 Storing Oracle Database Secrets in Isolated Mode
Secrets are data that support internal Oracle Database features that integrate external
clients such as Oracle GoldenGate into the database.

• Storing Oracle Database Secrets in a Software Keystore in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets in a keystore.

• Storing Oracle Database Secrets in an External Keystore in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets in a keystore.

6.7.12.1 Storing Oracle Database Secrets in a Software Keystore in Isolated
Mode

The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET
statements can add secrets, update secrets, and delete secrets in a keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Add, update, or delete a database secret in a software keystore by using the
following syntax:

• To add a secret:

ADMINISTER KEY MANAGEMENT
ADD SECRET 'secret' FOR CLIENT 'client_identifier'
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[WITH BACKUP [USING backup_id]]
| [FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING backup_id]]];

• To update a secret:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'secret' FOR CLIENT 'client_identifier'
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[WITH BACKUP [USING backup_id]]
| [FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING backup_id]]];

• To delete a secret:

ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'client_identifier'
[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | keystore_password]
[WITH BACKUP [USING backup_id]]];

The specification is as follows:

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-36

• secret is the client secret key to be stored, updated, or deleted. To find information
about existing secrets and their client identifiers, query the V$CLIENT_SECRETS
dynamic view.

• client_identifier is an alphanumeric string used to identify the secret key.

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

Related Topics

• Storing Oracle Database Secrets
Secrets are data that support internal Oracle Database features that integrate external
clients such as Oracle GoldenGate into the database.

6.7.12.2 Storing Oracle Database Secrets in an External Keystore in Isolated Mode
The ADMINISTER KEY MANAGEMENT ADD SECRET|UPDATE SECRET|DELETE SECRET statements
can add secrets, update secrets, and delete secrets in a keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Add, update, or delete a database secret in an external keystore by using the following
syntax:

• To add a secret:

ADMINISTER KEY MANAGEMENT
ADD SECRET 'secret' FOR CLIENT 'client_identifier'
[USING TAG 'tag']
[TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"]
[WITH BACKUP [USING backup_id]];

• To update a secret:

ADMINISTER KEY MANAGEMENT
UPDATE SECRET 'secret' FOR CLIENT 'client_identifier'
[USING TAG 'tag']
 [TO [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password"
[WITH BACKUP [USING backup_id]];

• To delete a secret:

ADMINISTER KEY MANAGEMENT
DELETE SECRET FOR CLIENT 'client_identifier'
[FROM [[LOCAL] AUTO_LOGIN] KEYSTORE keystore_location
[FORCE KEYSTORE]
IDENTIFIED BY "external_key_manager_password";

The specification is as follows:

• secret is the client secret key to be stored, updated, or deleted. To find information
about existing secrets and their client identifiers, query the V$CLIENT_SECRETS
dynamic view.

• client_identifier is an alphanumeric string used to identify the secret key.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-37

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation. You must open the keystore for this operation.

• external_key_manager_password is for an external keystore manager, which
can be Oracle Key Vault or OCI Vault - Key Management. Enclose this
password in double quotation marks. For Oracle Key Vault, enter the
password that was given during the Oracle Key Vault client installation. If at
that time no password was given, then the password in the ADMINISTER KEY
MANAGEMENT statement becomes NULL.

Related Topics

• Storing Oracle Database Secrets
Secrets are data that support internal Oracle Database features that integrate
external clients such as Oracle GoldenGate into the database.

6.7.13 Migrating Keystores in Isolated Mode
You can perform migration and reverse migration operations between software
keystores and external keystores in isolated mode.

• Migrating from a Password-Protected Software Keystore to an External Keystore
in Isolated Mode
In isolated mode, you can migrate from a password-protected software keystore to
an external keystore.

• Migrating from an External Keystore to a Password-Protected Software Keystore
in Isolated Mode
In isolated mode, you can migrate from an external keystore to a password-
protected software keystore.

6.7.13.1 Migrating from a Password-Protected Software Keystore to an
External Keystore in Isolated Mode

In isolated mode, you can migrate from a password-protected software keystore to an
external keystore.

For both the software keystore and the external keystore to open at the same time,
either the software keystore must have the same password as the external keystore,
or alternatively, after the migration has completed you can create an auto-login
keystore for the software keystore.

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Set the password of the external keystore so that it matches that of the software
keystore.

Some Oracle tools, such as Oracle Data Pump and Oracle Recovery Manager,
require access to the old software keystore to decrypt data that was exported or
backed up using the TDE master encryption key from the old software keystore.

• To set the software keystore password so that it is the same as that of the
external keystore, use the following syntax:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
[FORCE KEYSTORE]
IDENTIFIED BY software_keystore_password

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-38

SET "external_key_manager_password"
WITH BACKUP [USING 'backup_identifier'];

In this specification:

– software_keystore_password is the password that was assigned to this keystore
when it was created.

– external_key_manager_password is for an external keystore manager, which can
be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in
double quotation marks. For Oracle Key Vault, enter the password that was given
during the Oracle Key Vault client installation. If at that time no password was
given, then the password in the ADMINISTER KEY MANAGEMENT statement
becomes NULL.

• Alternatively, to create an auto-login keystore for a software keystore, use the
following syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO_LOGIN KEYSTORE
FROM KEYSTORE 'keystore_location'
IDENTIFIED BY software_keystore_password;

3. Provision Oracle Key Vault for the isolated mode PDB by following the instructions in
Oracle Key Vault Administrator's Guide to install the Oracle Key Vault software onto the
endpoint.

4. Set the configuration of the keystore so that the external keystore becomes the new
primary, and the password-protected software keystore becomes the secondary, as
follows:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=OKV|FILE";
5. Migrate the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY "external_key_manager_password"
[FORCE KEYSTORE]
MIGRATE USING software_keystore_password;

After you complete the migration, you do not need to restart the database, nor do you
need to manually re-open the external keystore.

Related Topics

• Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in their
order.

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both software and external keystores to and
from Oracle Key Vault.

• Oracle Key Vault Administrator's Guide

6.7.13.2 Migrating from an External Keystore to a Password-Protected Software
Keystore in Isolated Mode

In isolated mode, you can migrate from an external keystore to a password-protected
software keystore.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-39

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER
KEY MANAGEMENT or SYSKM privilege.

2. Ensure that you have enrolled the PDB endpoint and that the Oracle Key Vault
configuration is present at the $WALLET_ROOT/PDB_GUID/okv location.

For both the software keystore and the external keystore to open at the same time,
either the software keystore must have the same password as the external
keystore, or alternatively, after the reverse migration has completed, you can
create an auto-login keystore for the software keystore.

3. Set the TDE_CONFIGURATION parameter as follows, so that FILE becomes the new
primary keystore, and OKV becomes the secondary keystore.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE|OKV";
4. Now that the keystore configuration has been completed, issue the following

statement to reverse migrate from the external keystore to the password-protected
software keystore:

ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
IDENTIFIED BY software_keystore_password
REVERSE MIGRATE USING "external_key_manager_password"
[WITH BACKUP [USING 'backup_identifier']];

5. Optionally, change the password of the newly migrated software keystore.

For example:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE PASSWORD
IDENTIFIED BY
old_password SET new_password
WITH BACKUP USING 'pwd_change';

After you complete these steps, the migration process automatically reloads the
keystore keys in memory. You do not need to restart the database, nor do you need to
manually re-open the software keystore. The external keystore may still be required
after reverse migration because the old keys are likely to have been used for
encrypted backups or by tools such as Oracle Data Pump and Oracle Recovery
Manager. You should create an auto-login keystore and put the HSM_PASSWORD client
secret into it. For example:

ADMINISTER KEY MANAGEMENT ADD SECRET 'external_key_manager_password'
FOR CLIENT 'EXTERNAL_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE software_keystore_location
WITH BACKUP;

Related Topics

• About Migrating Back from an External Keystore
To switch from using an external keystore solution to a software keystore, you can
use reverse migration of the keystore.

• Keystore Order After a Migration
After you perform a migration, keystores can be either primary or secondary in
their order.

• Migration of Keystores to and from Oracle Key Vault
You can use Oracle Key Vault to migrate both software and external keystores to
and from Oracle Key Vault.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-40

6.7.14 Uniting a Pluggable Database Keystore
Uniting a PDB keystore moves the TDE master encryption keys from the PDB keystore into
the keystore of the CDB root. This enables the administrator of the keystore of the CDB root
to manage the keys.

The client secrets are not moved. Instead, they are left behind in the keystore that the PDB
used while it was configured in isolated mode. Oracle recommends that you delete client
secrets from that keystore before you unite the PDB keystore. Similarly, when a PDB
becomes isolated, no client secret contained in the keystore of the CDB root is moved.

1. Connect to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

For example:

CONNECT sec_admin@pdb_name AS SYSKM
2. Unite the PDB keystore, which moves the TDE master encryption keys from the PDB

keystore into the keystore of the CDB root, by using the following syntax:

ADMINISTER KEY MANAGEMENT UNITE KEYSTORE
IDENTIFIED BY isolated_keystore_password
WITH ROOT KEYSTORE [FORCE KEYSTORE]
IDENTIFIED BY
[EXTERNAL STORE | keystore_password_of_cdb_root]
[WITH BACKUP [USING backup_id]];

In this specification:

• FORCE KEYSTORE temporarily opens the password-protected keystore for this
operation if an auto-login keystore is open (and in use) or if the keystore is closed.

• united_keystore_password: Knowledge of this password does not enable the user
who performs the UNITE KEYSTORE operation privileges to perform ADMINISTER KEY
MANAGEMENT UNITE KEYSTORE operations on the PDB.

When the keystore of a PDB is united with a keystore in the CDB root, all of the
previously active (historical) TDE master encryption keys that were associated with the
PDB are moved to the keystore of the CDB root. (If an ORA-46694: The keys are
already in the root keystore error appears, see below.)

3. Confirm that the isolated mode PDB is now a united mode PDB.

SELECT KEYSTORE_MODE FROM V$ENCRYPTION_WALLET;

The output should be UNITED.

The keystore no longer exists but its master encryption key is now in the keystore in the CDB
root. If you later decide that you want the united mode PDB to be an isolated mode PDB
again, then you can use the ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement.
ORA-46694 error: If a wallet is created in the in a PDB context, then it changes the keystore
type of the PDB to isolated, and unless a key is set for the PDB, the wallet status will be
OPEN_NO_MASTER_KEY. Uniting this type of PDB using the ADMINISTER KEY MANAGEMENT UNITE
KEYSTORE statement will result in an ORA-46694: The keys are already in the root
keystore error. To change the KEYSTORE_MODE to UNITED for this PDB, you must change the
TDE configuration for the PDB. In the PDB, execute the following statement:

ALTER SYSTEM RESET TDE_CONFIGURATION;

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-41

Related Topics

• Isolating a Pluggable Database Keystore
Isolating a PDB keystore moves the master encryption key from the CDB root
keystore into an isolated mode keystore in the a PDB.

6.7.15 Creating a Keystore When the PDB Is Closed
When you create a keystore in a PDB that is closed, the new keystore is empty and
the PDB is converted to isolated mode.

• About Creating a Keystore When the PDB Is Closed
Creating a keystore in a PDB that is closed could inadvertently cause problems in
rekey operations, but the keystore creation can be reverted.

• Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to
become configured in isolated mode), then you should reverse the keystore
creation operation.

6.7.15.1 About Creating a Keystore When the PDB Is Closed
Creating a keystore in a PDB that is closed could inadvertently cause problems in
rekey operations, but the keystore creation can be reverted.

In previous releases, if you tried to create a keystore in a closed PDB, you were
prevented and an ORA-65040: operation not allowed from within a pluggable
database error would appear. Starting in Oracle Database release 18c, for
convenience, when the keystore of the PDB is closed and if you run the ADMINISTER
KEY MANAGEMENT CREATE KEYSTORE statement in the PDB, Oracle Database allows the
operation.

If the closed PDB has not been configured to use encryption (that is, it has never had
an ADMINISTER KEY MANAGEMENT SET KEY statement performed in it), after you execute
ADMINISTER KEY MANAGEMENT CREATE KEYSTORE, resulting in an empty keystore and
the configuration of the PDB being changed to isolated mode, then you can create a
TDE master encryption key in this empty keystore.

If, however, the PDB was already configured to use encryption, then the PDB may be
configured in united mode (and thus have its TDE master encryption key being
managed in the keystore of the CDB root).

Mistakenly running an ADMINISTER KEY MANAGEMENT CREATE KEYSTORE statement on
such a closed PDB will create an additional keystore (which will be empty), and will
then configure the PDB to be in isolated mode. This effectively misconfigures the PDB,
because the PDB is now in isolated mode (whereas it should be in united mode), yet
its TDE master encryption key is still in the keystore of the CDB root. This
misconfiguration can cause problems later on, if you try to rekey the TDE master
encryption key by using the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY
statement . An ORA-28362: master key not found error will appear, because when
encryption has already been enabled and a key has been set, Oracle Database treats
the ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY statement as a rekey
operation. In order to perform a rekey operation, Oracle Database must locate the
currently active TDE master encryption key of the PDB. But in this misconfigured PDB,
Oracle Database cannot locate the TDE master encryption key, because the PDB is
now in isolated mode and the necessary key is in the keystore of the CDB root. Hence,

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-42

the PDB is no longer configured to search in the keystore of the PDB, and the rekey
operation fails.

To remedy the misconfiguration of the PDB, you must reconfigure the PDB to united mode
and you must remove the empty keystore. (Always make a backup before removing any
keystore.) When the PDB is configured back to united mode, then the currently active TDE
master encryption key is once again available for rekey and other TDE master encryption key
operations.

If later on you want to configure the PDB to be in isolated mode, then you can open the PDB
and run the ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE statement, which isolates the
PDB and moves its TDE master encryption key and previously-active (historical) keys from
the keystore of the CDB root to a newly-created keystore for the isolated PDB.

Related Topics

• Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to become
configured in isolated mode), then you should reverse the keystore creation operation.

6.7.15.2 Reverting a Keystore Creation Operation When a PDB Is Closed
If you have inadvertently created a keystore in a PDB (and thereby caused it to become
configured in isolated mode), then you should reverse the keystore creation operation.

Use this procedure if you created a keystore in a closed PDB that already had encryption
enabled (that is, it already had a TDE master encryption key).

1. Log in to the isolated mode PDB as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Confirm the mode of the PDB by querying the KEYSTORE_MODE column of the
V$ENCRYPTION_WALLET dynamic view.

3. If the V$ENCRYPTION_WALLET output is ISOLATED, then execute the ALTER SYSTEM
statement to reconfigure the PDB to united mode.

• When pfile is in use, clear the TDE_CONFIGURATION parameter by using the following
statement:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=MEMORY;

In an Oracle Real Application Clusters environment, include the SID parameter:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=MEMORY SID='*';
• When spfile is in use, clear the TDE_CONFIGURATION parameter by using this

statement:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=BOTH;

In an Oracle Real Application Clusters environment, include the SID parameter:

ALTER SYSTEM RESET TDE_CONFIGURATION SCOPE=BOTH SID='*';
4. In the WALLET_ROOT/PDB_GUID/tde directory, find and back up the ewallet.p12 keystore

file that was mistakenly created.

5. Delete the mistakenly-created empty keystore file.

At this stage, the PDB will be in united mode and the correct keystore and TDE master
encryption key will be available for any future rekey operations.

Chapter 6
Administering Keystores and TDE Master Encryption Keys in Isolated Mode

6-43

6.8 Administering Transparent Data Encryption in Isolated
Mode

You can perform a number of general administrative tasks with Transparent Data
Encryption in isolated mode.

• Moving PDBs from One CDB to Another in Isolated Mode
In isolated mode, you can automatically move a PDB from one CDB to another (for
example, for load balancing or adding new functionality).

• Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode
In isolated mode, for a PDB that has encrypted data, you can plug it into a CDB.
Conversely, you can unplug this PDB from the CDB.

• Cloning a PDB with Encrypted Data in a CDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can clone a PDB that has encrypted data.

• Performing a Remote Clone of PDB with Encrypted Data Between Two CDBs in
Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can remotely clone a PDB that has encrypted data.

• Relocating Across CDBs a Cloned PDB with Encrypted Data in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause can relocate across CDBs a cloned PDB that has encrypted data.

• How Keystore Open and Close Operations Work in Isolated Mode
You should be aware of how keystore open and close operations work in isolated
mode.

• Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT
EXPORT can export or import master encryption keys for a PDB.

6.8.1 Moving PDBs from One CDB to Another in Isolated Mode
In isolated mode, you can automatically move a PDB from one CDB to another (for
example, for load balancing or adding new functionality).

If the PDB has TDE-encrypted tables or tablespaces, then you can set the
ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE dynamic system parameter to TRUE to enable the
PDB to include the TDE keys in the PDB move operation. This parameter avoids you
having to manually provide a keystore password when you import the TDE keys into
the PDB after it has moved to a different CDB. When
ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE is set to TRUE, the database caches the keystore
password in memory, obfuscated at the system level, and then uses it for the import
operation. The default for ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE is FALSE.

1. Before you begin the PDB move operation, log in to the CDB root as a user who
has been granted the SYSDBA administrative privilege.

For example:

sqlplus c##sec_admin as sysdba
Enter password: password

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-44

2. Set the ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE dynamic initialization parameter TRUE.

For example:

ALTER SYSTEM SET ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE = TRUE;
3. Move (relocate) the PDB.

Related Topics

• Oracle Multitenant Administrator's Guide

6.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in
Isolated Mode

In isolated mode, for a PDB that has encrypted data, you can plug it into a CDB. Conversely,
you can unplug this PDB from the CDB.

• Unplugging a PDB That Has Encrypted Data in Isolated Mode
You can unplug a PDB (that has encrypted data) from one CDB and then optionally plug
it into another CDB.

• Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
After you plug a PDB that has encrypted data into a CDB, you can set the encryption key
in the PDB.

• Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in
Isolated Mode
You can unplug a PDB from one CDB that has been configured with an external keystore
and then plug it into another CDB also configured with an external keystore.

• Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in
Isolated Mode
The ADMINISTER KEY MANAGEMENT statement can import an external keystore master
encryption key to a PDB that has been moved to another CDB.

6.8.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode
You can unplug a PDB (that has encrypted data) from one CDB and then optionally plug it
into another CDB.

Unlike united mode, you do not need to specify the ENCRYPT clause in the ALTER PLUGGABLE
DATABASE statement. The database that is unplugged contains data files and other associated
files. Because each PDB can have its own unique keystore, you do not need to export the
TDE master encryption key of the PDB that you want to unplug. You can check if a PDB has
already been unplugged by querying the STATUS column of the DBA_PDBS data dictionary view.

• Unplug the isolated mode PDB as you normally unplug PDBs.

For example:

ALTER PLUGGABLE DATABASE pdb1
 UNPLUG INTO '/oracle/data/pdb1.xml';

Related Topics

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-45

6.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
After you plug a PDB that has encrypted data into a CDB, you can set the encryption
key in the PDB.

Unlike united mode, you do not need to specify the DECRYPT clause in the CREATE
PLUGGABLE DATABASE statement. When you plug an unplugged PDB into another CDB,
the key version is set to 0 because this operation invalidates the history of the previous
keys. You can check the key version by querying the KEY_VERSION column of the
V$ENCRYPTED_TABLESPACES dynamic view. Similarly, if a control file is lost and
recreated, then the previous history of the keys is reset to 0. You can check if a PDB
has already been plugged in by querying the STATUS column of the DBA_PDBS data
dictionary view.

1. Create the PDB by plugging the unplugged PDB into the CDB.

• For example, if you had exported the PDB data into a metadata XML file:

CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.xml'
NOCOPY KEYSTORE
IDENTIFIED BY password;

• If you had exported the PDB into an archive file:

CREATE PLUGGABLE DATABASE CDB1_PDB2
USING '/tmp/cdb1_pdb2.pdb';

During the open operation of the PDB after the plug operation, Oracle Database
determines if the PDB has encrypted data. If so, it opens the PDB in the
RESTRICTED mode.

You can find if the source database has encrypted data or a TDE master
encryption key set in the keystore by querying the V$ENCRYPTION_KEYS dynamic
view.

2. Open the PDB.

For example:

ALTER PLUGGABLE DATABASE CDB1_PDB2 OPEN;
3. Open the keystore in the CDB root.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY password;

Optionally, open the keystore in the PDB.

4. In the PDB, open the keystore and set the TDE master encryption key for the
PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-46

6.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in Isolated Mode

You can unplug a PDB from one CDB that has been configured with an external keystore and
then plug it into another CDB also configured with an external keystore.

1. Unplug the PDB.

You can check if a PDB has already been unplugged by querying the STATUS column of
the DBA_PDBS data dictionary view.

2. Move the master encryption keys of the unplugged PDB from the hardware that was used
at the source CDB to the hardware that is in use at the destination CDB.

Refer to the documentation for the external keystore for information about moving master
keys between external keystores.

Related Topics

• Oracle Multitenant Administrator's Guide

6.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in Isolated Mode

The ADMINISTER KEY MANAGEMENT statement can import an external keystore master
encryption key to a PDB that has been moved to another CDB.

1. Plug the unplugged isolated mode PDB into the destination CDB that has been
configured with the external keystore.

You can check if a PDB has already been plugged in by querying the STATUS column of
the DBA_PDBS data dictionary view.

After the plug-in operation, the PDB that has been plugged in will be in restricted mode.

2. Ensure that the master keys from the external keystore that has been configured with the
source CDB are available in the external keystore of the destination CDB.

3. Log in to the plugged PDB as a user who was granted the ADMINISTER KEY MANAGEMENT
or SYSKM privilege.

4. Open the keystore of the plugged PDB.

For example, for a PDB called PDB1:

ALTER SESSION SET CONTAINER = PDB1;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY "external_key_manager_password";

5. Import the external keystore master encryption key into the PDB.

ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS
WITH SECRET "external_keystore" FROM 'external_keystore'
IDENTIFIED BY "external_key_manager_password";

6. Close and re-open the PDB.

ALTER PLUGGABLE DATABASE PDB1 CLOSE;
ALTER PLUGGABLE DATABASE PDB1 OPEN;

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-47

Related Topics

• Oracle Multitenant Administrator's Guide

6.8.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode
The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can clone a PDB that has encrypted data.

1. Log in to the isolated mode PDB as a user who was granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Ensure that the software keystore of the PDB that you plan to clone is open.

You can query the STATUS column of the V$ENCRYPTION_WALLET view to find if the
software keystore is open.

For example:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN FORCE KEYSTORE IDENTIFIED BY
keystore_password;

3. Clone the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3 FROM cdb1_pdb1
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY keystore_password;

Replace keystore_password with the password of the keystore of the CDB where
the cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone
using the master encryption key of the original PDB. After a PDB is cloned, there
may be user data in the encrypted tablespaces. This encrypted data is still
accessible because the master encryption key of the source PDB is copied over to
the destination PDB. Because the clone is a copy of the source PDB but will
eventually follow its own course and have its own data and security policies, you
should rekey the master encryption key of the cloned PDB.

4. Rekey the master encryption key of the cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

Before you rekey the master encryption key of the cloned PDB, the clone can still
use master encryption keys that belong to the original PDB. However, these
master encryption keys do not appear in the cloned PDB V$ dynamic views.
Rekeying the master encryption key ensures that the cloned PDB uses its own
unique keys, which will be viewable in the V$ views.

Related Topics

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-48

6.8.4 Performing a Remote Clone of PDB with Encrypted Data Between
Two CDBs in Isolated Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause can
remotely clone a PDB that has encrypted data.

1. Log in to the isolated mode PDB as a user who was granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET view to ensure that the software
keystore of the PDB that you plan to clone is open.

3. Create a database link for the PDB that you want to clone remotely.

Use the CREATE DATABASE LINK SQL statement to create the database link. You must
create the database link by following the database link prerequisites that are required for
cloning a remote PDB or a non-CDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY
clause to perform the clone of the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3
FROM cdb1_pdb1
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY keystore_password;

Replace keystore_password with the password of the keystore of the CDB where the
cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone using the
master encryption key of the original PDB. After a PDB is cloned, there may be user data
in the encrypted tablespaces. This encrypted data is still accessible because the master
encryption key of the source PDB is copied over to the destination PDB. Because the
clone is a copy of the source PDB but will eventually follow its own course and have its
own data and security policies, you should rekey the master encrytion key of the cloned
PDB.

5. Rekey the master encryption key of the remotely cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the keystore must be open during
the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use
master encryption keys that belong to the original PDB. However, these master
encryption keys do not appear in the cloned PDB V$ dynamic views. Rekeying the master
encryption key ensures that the cloned PDB uses its own unique keys, which will be
viewable in the V$ views.

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-49

Related Topics

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source
PDB available to cloned PDB.

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

6.8.5 Relocating Across CDBs a Cloned PDB with Encrypted Data in
Isolated Mode

The CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED BY clause
can relocate across CDBs a cloned PDB that has encrypted data.

1. Log in to the isolated mode PDB as a user who was granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Query the STATUS column of the V$ENCRYPTION_WALLET view to ensure that the the
software keystore of the PDB that you plan to clone is open.

3. Create a database link for the PDB that you want to clone remotely.

Use the CREATE DATABASE LINK SQL statement to create the database link. You
must create the database link by following the database link prerequisites that are
required for cloning a remote PDB or a non-CDB.

4. Use the CREATE PLUGGABLE DATABASE statement with the KEYSTORE IDENTIFIED
BY clause to clone the PDB.

For example:

CREATE PLUGGABLE DATABASE cdb1_pdb3
FROM cdb1_pdb1
FILE_NAME_CONVERT=('cdb1_pdb1', 'pdb3/cdb1_pdb3') KEYSTORE
IDENTIFIED BY keystore_password;

Replace keystore_password with the password of the keystore of the CDB where
the cdb1_pdb3 clone is created.

After you create the cloned PDB, encrypted data is still accessible by the clone
using the master encryption key of the original PDB. After a PDB is cloned, there
may be user data in the encrypted tablespaces. This encrypted data is still
accessible because the master encryption key of the source PDB is copied over to
the destination PDB. Because the clone is a copy of the source PDB but will
eventually follow its own course and have its own data and security policies, you
should rekey the master encrytion key of the cloned PDB.

5. Use the ALTER PLUGGABLE DATABASE statement to perform the relocation
operation.

For example:

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-50

ALTER PLUGGABLE DATABASE cdb1_pdb3
OPEN RELOCATE TO 'need instance name example';

6. Rekey the master encryption key of the remotely cloned PDB.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH BACKUP USING 'emp_key_backup';

In this example, FORCE KEYSTORE is included because the keystore must be open during
the rekey operation.

Before you rekey the master encryption key of the cloned PDB, the clone can still use
master encryption keys that belong to the original PDB. However, these master
encryption keys do not appear in the cloned PDB V$ dynamic views. Rekeying the master
encryption key ensures that the cloned PDB uses its own unique keys, which will be
viewable in the V$ views.

Related Topics

• About Managing Cloned PDBs That Have Encrypted Data in United Mode
When you clone a PDB, you must make the master encryption key of the source PDB
available to cloned PDB.

• Step 2: Open the Software Keystore in a United Mode PDB
To open a software keystore in united mode, you must use the ADMINISTER KEY
MANAGEMENT statement with the SET KEYSTORE OPEN clause.

• Oracle Multitenant Administrator's Guide

• Oracle Multitenant Administrator's Guide

• Oracle Database SQL Language Reference

6.8.6 How Keystore Open and Close Operations Work in Isolated Mode
You should be aware of how keystore open and close operations work in isolated mode.

For each PDB in isolated mode, you must explicitly open the password-protected software
keystore or external keystore in the PDB to enable the Transparent Data Encryption
operations to proceed. (Auto-login and local auto-login software keystores open
automatically.) Closing a keystore on a PDB blocks all of the Transparent Data Encryption
operations on that PDB.

The open and close keystore operations in a PDB depend on the open and close status of
the keystore in the PDB.

Note the following:

• You can create a separate keystore password for each PDB in the multitenant
environment.

• Before you can manually open a software password-protected or an external keystore in
an individual PDB, you must open the keystore in the CDB root.

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-51

• If an auto-login keystore is in use, or if the keystore is closed, then include the
FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT statement when you
open or close the keystore.

• If the keystore is a password-protected software keystore that uses an external
store for passwords, then set the IDENTIFIED BY clause to EXTERNAL STORE.

• Before you can set a TDE master encryption key in an individual PDB, you must
set the key in the CDB root.

• Auto-login and local auto-login software keystores open automatically. You do not
need to manually open these from the root first, or from the PDB.

• If there is any PDB configured in isolated mode that has its keystore open, then an
attempt to close the keystore in the CDB root would fail with an ORA-46692 cannot
close wallet error. Use the FORCE CLOSE clause in the ADMINISTER KEY
MANAGEMENT statement to override this behavior.

• If you perform an ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN statement in
the CDB root and set the CONTAINER clause to ALL, then the keystore will only be
opened in each PDB that is configured in united mode, and the keystore of any
PDB that is configured in isolated mode is not opened.

6.8.7 Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode

In isolated mode, the EXPORT and IMPORT clauses of ADMINISTER KEY MANAGEMENT
EXPORT can export or import master encryption keys for a PDB.

• About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
In isolated mode, you can export and import master encryption keys from the CDB
root in the same way that you export and import this key for a non-CDB database.

• Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode
In isolated mode, the ADMINISTER KEY MANAGEMENT statement can export or import
a master encryption key for a PDB.

• Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
master encryption keys for a PDB.

• Example: Importing a Master Encryption Key into a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS statement can import
a master encryption key into a PDB.

6.8.7.1 About Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode

In isolated mode, you can export and import master encryption keys from the CDB root
in the same way that you export and import this key for a non-CDB database.

You can export and import all of the master encryption keys that belong to the PDB by
exporting and importing the master encryption keys from within a PDB. Export and
import operations of master encryption keys in a PDB supports the PDB unplug and
plug operations. During a PDB unplug and plug operations, all the master encryption
keys that belong to a PDB, as well as the metadata, are involved. Therefore, the WITH
IDENTIFIER clause of the ADMINISTER KEY MANAGEMENT EXPORT statement is not

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-52

allowed when you export keys from within a PDB. The WITH IDENTIFIER clause is only
permitted in the CDB root.

You should include the FORCE KEYSTORE clause if the CDB root has an auto-login keystore or
if the keystore is closed. If the keystore has been configured to use an external store for the
password, then use the IDENTIFIED BY EXTERNAL STORE clause. For example, to perform an
export operation for this scenario:

ADMINISTER KEY MANAGEMENT EXPORT KEYS
WITH SECRET "my_secret"
TO '/etc/TDE/export.exp'
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;

This ADMINISTER KEY MANAGEMENT EXPORT operation exports not only the keys but creates
metadata that is necessary for PDB environments (as well as for cloning operations).

Inside a PDB, the export operation of master encryption keys exports the keys that were
created or activated by a PDB with the same GUID as the PDB where the keys are being
exported. Essentially, all of the keys that belong to a PDB where the export is being
performed will be exported.

The importing of master encryption keys from an export file within a PDB takes place only if
the master encryption key was exported from another PDB with the same GUID. To support
the plug-in of a PDB into a CDB, the import will also import the master encryption keys from
an export file that contains the master encryption keys of a non-CDB exported without the
WITH IDENTIFIER clause. Because the PDB-specific details, such as the PDB name and
database ID, can change from one CDB to the next, the PDB-specific information is modified
during the import to reflect the updated PDB information.

Note:

Within a PDB, you can only export the keys of a PDB as a whole. The ability to
export them selectively based on a query or an identifier is restricted to the root.

6.8.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode
In isolated mode, the ADMINISTER KEY MANAGEMENT statement can export or import a master
encryption key for a PDB.

1. Log in to the isolated mode PDB as a user who was granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Perform the export or import operation.

For example:

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "hr_secret" TO '/tmp/export.p12'
FORCE KEYSTORE
IDENTIFIED BY password;

Ensure that you include the FORCE KEYSTORE clause because the keystore must be open
for this operation.

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-53

Related Topics

• Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
master encryption keys for a PDB.

6.8.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated
Mode

The ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS statement can export
master encryption keys for a PDB.

Example 6-1 shows how to export a master encryption key from the PDB hrpdb. In this
example, the FORCE KEYSTORE clause is included in case the auto-login keystore is in
use, or if the keystore is closed.

Example 6-1 Exporting a Master Encryption Key from a PDB

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS
WITH SECRET "my_secret" TO '/tmp/export.p12'
FORCE KEYSTORE
IDENTIFIED BY password;

6.8.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated
Mode

The ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS statement can import a
master encryption key into a PDB.

Example 6-2 shows how to import a master encryption key into the PDB hrpdb.

Example 6-2 Importing a Master Encryption Key into a PDB

ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS
WITH SECRET "my_secret"
FROM '/tmp/export.p12'
FORCE KEYSTORE
IDENTIFIED BY password
WITH BACKUP;

Chapter 6
Administering Transparent Data Encryption in Isolated Mode

6-54

7
General Considerations of
Using Transparent Data Encryption

When you use Transparent Data Encryption, you should consider factors such as security,
performance, and storage overheads.

• Compression and Data Deduplication of Encrypted Data
With tablespace encryption, Oracle Database compresses tables and indexes before
encrypting the tablespace.

• Security Considerations for Transparent Data Encryption
As with all Oracle Database features, you should consider security when you create TDE
policies.

• Performance and Storage Overhead of Transparent Data Encryption
The performance of Transparent Data Encryption can vary.

• Modifying Your Applications for Use with Transparent Data Encryption
You can modify your applications to use Transparent Data Encryption.

• How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
Many of the clauses from the ALTER SYSTEM statement correspond to the ADMINISTER KEY
MANAGEMENT statement.

• Data Loads from External Files to Tables with Encrypted Columns
You can use SQL*Loader to perform data loads from files to tables that have encrypted
columns.

• Transparent Data Encryption and Database Close Operations
You should ensure that the software or external keystore is open before you close the
database.

7.1 Compression and Data Deduplication of Encrypted Data
With tablespace encryption, Oracle Database compresses tables and indexes before
encrypting the tablespace.

This ensures that you receive the maximum space and performance benefits from
compression, while also receiving the security of encryption at rest. In the CREATE
TABLESPACE SQL statement, include both the COMPRESS and ENCRYPT clauses.

With column encryption, Oracle Database compresses the data after it encrypts the column.
This means that compression will have minimal effectiveness on encrypted columns. There is
one notable exception: if the column is a SecureFiles LOB, and the encryption is
implemented with SecureFiles LOB Encryption, and the compression (and possibly
deduplication) are implemented with SecureFiles LOB Compression & Deduplication, then
compression is performed before encryption. Similar to the CREATE TABLESPACE statement for
tablespace encryption, include both the COMPRESS and ENCRYPT clauses.

7-1

See Also:

• Oracle Database Backup and Recovery User’s Guide for more
information about the Advanced Compression Option

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles LOB storage

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about SecureFiles Compression

7.2 Security Considerations for Transparent Data Encryption
As with all Oracle Database features, you should consider security when you create
TDE policies.

• Transparent Data Encryption General Security Advice
Security considerations for Transparent Data Encryption (TDE) operate within the
broader area of total system security.

• Transparent Data Encryption Column Encryption-Specific Advice
Additional security considerations apply to normal database and network
operations when using TDE.

• Managing Security for Plaintext Fragments
You should remove old plaintext fragments that can appear over time.

7.2.1 Transparent Data Encryption General Security Advice
Security considerations for Transparent Data Encryption (TDE) operate within the
broader area of total system security.

Follow these general guidelines:

• Identify the degrees of sensitivity of data in your database, the protection that they
need, and the levels of risk to be addressed. For example, highly sensitive data
requiring stronger protection can be encrypted with the AES256 algorithm. A
database that is not as sensitive can be protected with no salt or the nomac option
to enable performance benefits.

• Evaluate the costs and benefits that are acceptable to data and keystore
protection. Protection of keys determines the type of keystore to be used: auto-
login software keystores, password-based software keystores, or external
keystores.

• Consider having separate security administrators for TDE and for the database.

• Consider having a separate and exclusive keystore for TDE.

• Implement protected back-up procedures for your encrypted data.

7.2.2 Transparent Data Encryption Column Encryption-Specific Advice
Additional security considerations apply to normal database and network operations
when using TDE.

Chapter 7
Security Considerations for Transparent Data Encryption

7-2

Encrypted column data stays encrypted in the data files, undo logs, redo logs, and the buffer
cache of the system global area (SGA). However, data is decrypted during expression
evaluation, making it possible for decrypted data to appear in the swap file on the disk.
Privileged operating system users can potentially view this data.

Column values encrypted using TDE are stored in the data files in encrypted form. However,
these data files may still contain some plaintext fragments, called ghost copies, left over by
past data operations on the table. This is similar to finding data on the disk after a file was
deleted by the operating system.

7.2.3 Managing Security for Plaintext Fragments
You should remove old plaintext fragments that can appear over time.

Old plaintext fragments may be present for some time until the database overwrites the
blocks containing such values. If privileged operating system users bypass the access
controls of the database, then they might be able to directly access these values in the data
file holding the tablespace.

To minimize this risk:

1. Create a new tablespace in a new data file.

You can use the CREATE TABLESPACE statement to create this tablespace.

2. Move the table containing encrypted columns to the new tablespace. You can use the
ALTER TABLE.....MOVE statement.

Repeat this step for all of the objects in the original tablespace.

3. Drop the original tablespace.

You can use the DROP TABLESPACE tablespace INCLUDING CONTENTS KEEP DATAFILES
statement. Oracle recommends that you securely delete data files using platform-specific
utilities.

4. Use platform-specific and file system-specific utilities to securely delete the old data file.
Examples of such utilities include shred (on Linux) and sdelete (on Windows).

7.3 Performance and Storage Overhead of Transparent Data
Encryption

The performance of Transparent Data Encryption can vary.

• Performance Overhead of Transparent Data Encryption
Transparent Data Encryption tablespace encryption has small associated performance
overhead.

• Storage Overhead of Transparent Data Encryption
TDE tablespace encryption has no storage overhead, but TDE column encryption has
some associated storage overhead.

7.3.1 Performance Overhead of Transparent Data Encryption
Transparent Data Encryption tablespace encryption has small associated performance
overhead.

Chapter 7
Performance and Storage Overhead of Transparent Data Encryption

7-3

The actual performance impact on applications can vary. TDE column encryption
affects performance only when data is retrieved from or inserted into an encrypted
column. No reduction in performance occurs for operations involving unencrypted
columns, even if these columns are in a table containing encrypted columns.
Accessing data in encrypted columns involves small performance overhead, and the
exact overhead you observe can vary.

The total performance overhead depends on the number of encrypted columns and
their frequency of access. The columns most appropriate for encryption are those
containing the most sensitive data.

Enabling encryption on an existing table results in a full table update like any other
ALTER TABLE operation that modifies table characteristics. Keep in mind the potential
performance and redo log impact on the database server before enabling encryption
on a large existing table.

A table can temporarily become inaccessible for write operations while encryption is
being enabled, TDE table keys are being rekeyed, or the encryption algorithm is being
changed. You can use online table redefinition to ensure that the table is available for
write operations during such procedures.

If you enable TDE column encryption on a very large table, then you may need to
increase the redo log size to accommodate the operation.

Encrypting an indexed column takes more time than encrypting a column without
indexes. If you must encrypt a column that has an index built on it, you can try
dropping the index, encrypting the column with NO SALT, and then re-creating the
index.

If you index an encrypted column, then the index is created on the encrypted values.
When you query for a value in the encrypted column, Oracle Database transparently
encrypts the value used in the SQL query. It then performs an index lookup using the
encrypted value.

Note:

If you must perform range scans over indexed, encrypted columns, then use
TDE tablespace encryption in place of TDE column encryption.

See Also:

• Creating an Encrypted Column in an External Table

• Oracle Database Administrator’s Guide for information about redefining
tables online

7.3.2 Storage Overhead of Transparent Data Encryption
TDE tablespace encryption has no storage overhead, but TDE column encryption has
some associated storage overhead.

Chapter 7
Performance and Storage Overhead of Transparent Data Encryption

7-4

Encrypted column data must have more storage space than plaintext data. In addition, TDE
pads out encrypted values to multiples of 16 bytes. This means that if a credit card number
requires nine bytes for storage, then an encrypted credit card value will require an additional
seven bytes.

Each encrypted value is also associated with a 20-byte integrity check. This does not apply if
you have encrypted columns using the NOMAC parameter. If data was encrypted with salt, then
each encrypted value requires an additional 16 bytes of storage.

The maximum storage overhead for each encrypted value is from one to 52 bytes.

Related Topics

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the data
were in a database table.

7.4 Modifying Your Applications for Use with Transparent Data
Encryption

You can modify your applications to use Transparent Data Encryption.

1. Configure the software or external keystore for TDE, and then set the master encryption
key.

See the following sections for more information:

• Configuring a Software Keystore

• Configuring an External Keystore

2. Verify that the master encryption key was created by querying the KEY_ID column of the
V$ENCRYPTION_KEYS view.

3. Identify the sensitive columns (such as those containing credit card data) that require
Transparent Data Encryption protection.

4. Decide whether to use TDE column encryption or TDE tablespace encryption.

See the following sections for more information:

• How Transparent Data Encryption Column Encryption Works

• How Transparent Data Encryption Tablespace Encryption Works

5. Open the keystore.

See the following sections for more information:

• Step 3: Open the Software Keystore

• Step 2: Open the External Keystore

6. Encrypt the columns or tablespaces.

See the following sections for more information:

• Encrypting Columns in Tables

• Encryption Conversions for Tablespaces and Databases

Chapter 7
Modifying Your Applications for Use with Transparent Data Encryption

7-5

7.5 How ALTER SYSTEM and orapki Map to ADMINISTER
KEY MANAGEMENT

Many of the clauses from the ALTER SYSTEM statement correspond to the ADMINISTER
KEY MANAGEMENT statement.

Table 7-1 compares the Transparent Data Encryption usage of the ALTER SYSTEM
statement and the orapki utility from previous releases with the ADMINISTER KEY
MANAGEMENT statement.

Table 7-1 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior ALTER SYSTEM or
orapki

ADMINISTER KEY MANAGEMENT

Creating a keystore For software keystores (called
wallets in previous releases):

ALTER SYSTEM SET ENCRYPTION KEY
["certificate_ID"] IDENTIFIED
BY keystore_password;

For external keystores, the keystore
is available after you configure the
external keystore.

For software keystores:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE
'keystore_location'
IDENTIFIED BY software_keystore_password

For external keystores, the keystore is available
after you configure the external keystore.

Creating an auto-login
keystore

orapki wallet create -wallet
wallet_location
-auto_login [-pwd password]

For software keystores:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL]
AUTO_LOGIN KEYSTORE FROM KEYSTORE
'keystore_location'
IDENTIFIED BY software_keystore_password;

This type of keystore applies to software keystores
only.

Opening a keystore ALTER SYSTEM SET [ENCRYPTION]
WALLET OPEN IDENTIFIED BY
password;

ADMINISTER KEY MANAGEMENT SET KEYSTORE
OPEN IDENTIFIED BY keystore_password
[CONTAINER = ALL | CURRENT];

Closing a keystore ALTER SYSTEM SET [ENCRYPTION]
WALLET CLOSE IDENTIFIED BY
password;

For both software and external keystores:

ADMINISTER KEY MANAGEMENT SET KEYSTORE
CLOSE IDENTIFIED BY keystore_password
[CONTAINER = ALL | CURRENT];

Chapter 7
How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

7-6

Table 7-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior ALTER SYSTEM or
orapki

ADMINISTER KEY MANAGEMENT

Migrating from an
external keystore to a
software keystore

With Oracle patch 20181737:

ALTER SYSTEM SET
[ENCRYPTION] KEY
IDENTIFIED BY
wallet_password
REVERSE MIGRATE USING
"external_key_manager_pass
word"
WITH BACKUP;

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION]
KEY IDENTIFIED BY
software_keystore_password
REVERSE MIGRATE USING
"external_key_manager_password"
WITH BACKUP [USING 'backup_identifier'];

Migrating from a
software keystore to
Oracle Key Vault

ALTER SYSTEM SET [ENCRYPTION]
KEY
IDENTIFIED BY
"Oracle_Key_Vault_password"
MIGRATE USING wallet_password;

ADMINISTER KEY MANAGEMENT SET [ENCRYPTION]
KEY IDENTIFIED BY
"Oracle_Key_Vault_password"
MIGRATE USING wallet_password;

Changing a keystore
password

orapki wallet change_pwd
-wallet wallet_location
[-oldpwd password]
[-newpwd password]

For password-based software keystores:

ADMINISTER KEY MANAGEMENT ALTER KEYSTORE
PASSWORD IDENTIFIED BY
software_keystore_old_password
SET software_keystore_new_password
[WITH BACKUP [USING 'backup_identifier']];

For external keystores, you close the keystore,
change it in the external key manager interface,
and then reopen the keystore.

Backing up a
password-based
software keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT BACKUP KEYSTORE
[USING 'backup_identifier'] IDENTIFIED BY
software_keystore_password
[TO 'keystore_location'];

Merging two software
keystores into a third
new keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE
'keystore1_location' [IDENTIFIED BY
software_keystore1_password]
AND KEYSTORE 'keystore2_location'
[IDENTIFIED BY software_keystore2_password]
INTO NEW KEYSTORE 'keystore3_location'
IDENTIFIED BY software_keystore3_password;

Merging one software
keystore into another
existing keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT MERGE KEYSTORE
'keystore1_location' [IDENTIFIED BY
software_keystore1_password]
INTO EXISTNG KEYSTORE 'keystore2_location'
IDENTIFIED BY software_keystore2_password
[WITH BACKUP [USING 'backup_identifier']];

Chapter 7
How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

7-7

Table 7-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior ALTER SYSTEM or
orapki

ADMINISTER KEY MANAGEMENT

Setting or rekeying the
master encryption key

For software wallets:

ALTER SYSTEM SET ENCRYPTION KEY
["certificate_ID"] IDENTIFIED
BY keystore_password;

For external keystores:

ALTER SYSTEM SET ENCRYPTION KEY
IDENTIFIED BY
"external_key_manager_password"

Note: The ALTER SYSTEM SET
ENCRYPTION KEY statement does
not update the
V$ENCRYPTION_KEYS dynamic view
after you rekey the encryption key.

ADMINISTER KEY MANAGEMENT
SET ENCRYPTION KEY [USING TAG 'tag']
IDENTIFIED BY keystore_password
WITH BACKUP [USING 'backup_identifier']
[CONTAINER = ALL | CURRENT];

After you rekey the encryption key, the
V$ENCRYPTION_KEYS dynamic view is updated.

Creating a master
encryption key for later
user

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT CREATE KEY
[USING TAG 'tag']
IDENTIFIED BY keystore_password
[WITH BACKUP [USING 'backup_identifier']]
[CONTAINER = (ALL|CURRENT)];

Activating a master
encryption key

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT USE KEY
'key_identifier' [USING TAG 'tag']
IDENTIFIED BY keystore_password
[WITH BACKUP [USING 'backup_identifier']];

Creating custom tags
for master encryption
keys

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT SET TAG 'tag'
FOR 'master_key_identifier'
IDENTIFIED BY keystore_password
[WITH BACKUP [USING 'backup_identifier']];

Exporting a master
encryption key

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT
EXPORT [ENCRYPTION] KEYS
WITH SECRET "export_secret"
TO 'file_path'
IDENTIFIED BY software_keystore_password
[WITH IDENTIFIER IN
'key_id1', 'key_id2', 'key_idn' |
(SQL_query)]

Importing a master
encryption key

No ALTER SYSTEM or orapki
equivalent for this functionality

ADMINISTER KEY MANAGEMENT
IMPORT [ENCRYPTION] KEYS
WITH SECRET "import_secret" |
FROM 'file_name'
IDENTIFIED BY software_keystore_password
[WITH BACKUP [USING 'backup_identifier']];

Chapter 7
How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

7-8

Table 7-1 (Cont.) How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT

Behavior ALTER SYSTEM or
orapki

ADMINISTER KEY MANAGEMENT

Storing Oracle
Database secrets in a
keystore

No ALTER SYSTEM or orapki
equivalent for this functionality

For software keystores:

ADMINISTER KEY MANAGEMENT
ADD SECRET|UPDATE SECRET|DELETE SECRET
"secret" FOR CLIENT 'client_identifier'
[USING TAG'tag']
IDENTIFIED BY keystore_password
[WITH BACKUP [USING 'backup_identifier'];

For external keystores:

ADMINISTER KEY MANAGEMENT
ADD SECRET|UPDATE SECRET|DELETE SECRET
"secret" FOR CLIENT 'client_identifier'
[USING TAG 'tag']
IDENTIFIED BY
"external_key_manager_password"
[WITH BACKUP [USING 'backup_identifier'];

7.6 Data Loads from External Files to Tables with Encrypted
Columns

You can use SQL*Loader to perform data loads from files to tables that have encrypted
columns.

Be aware that with SQL*Loader, you cannot include the ENCRYPT clause in the column
definition of an external table of the type ORACLE_LOADER, but you can include it in the column
definitions of external tables of type ORACLE_DATAPUMP.

• External tables of type ORACLE_LOADER
The reason that you cannot include the ENCRYPT clause in the column definitions of
external tables of the type ORACLE_LOADER is because the contents of an external table
with the ORACLE_LOADER type must come from a user-specified plaintext "backing file,"
and such plaintext files cannot contain any TDE encrypted data.

If you use the ENCRYPT clause in the definition of an external table of type ORACLE_LOADER,
then when you query the TDE-encrypted column in this external table, the query fails.
This is because TDE expects the external data to have been encrypted, and
automatically tries to decrypt it on load. This action fails because the "backing file" only
contains plaintext.

• External tables of type ORACLE_DATAPUMP
You can use TDE column encryption with external tables of type ORACLE_DATAPUMP. This
is because for external tables of ORACLE_DATAPUMP type, the "backing file" is always
created by Oracle Database(during an unload operation) and thus does have support for
being populated with encrypted data.

Chapter 7
Data Loads from External Files to Tables with Encrypted Columns

7-9

7.7 Transparent Data Encryption and Database Close
Operations

You should ensure that the software or external keystore is open before you close the
database.

The master encryption keys may be required during the database close operation. The
database close operation automatically closes the software or external keystore.

Related Topics

• Step 3: Open the Software Keystore
Depending on the type of keystore you create, you must manually open the
keystore before you can use it.

• Step 2: Open the External Keystore
After you have configured the external keystore, you must open it before it can be
used.

Chapter 7
Transparent Data Encryption and Database Close Operations

7-10

8
Using Transparent Data Encryption
with Other Oracle Features

You can use Oracle Data Encryption with other Oracle features, such as Oracle Data Guard
or Oracle Real Application Clusters.

• How Transparent Data Encryption Works with Export and Import Operations
Oracle Data Pump can export and import tables that contain encrypted columns, as well
as encrypt entire dump sets.

• How Transparent Data Encryption Works with Oracle Data Guard
An Oracle Data Guard primary database and secondary secondary database can share
both a software keystore and an external keystore.

• How Transparent Data Encryption Works with Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) nodes can share both a software keystore
and an external keystore.

• How Transparent Data Encryption Works with SecureFiles
SecureFiles, which stores LOBS, has three features: compression, deduplication, and
encryption.

• How Transparent Data Encryption Works with Oracle Call Interface
Transparent Data Encryption does not have any effect on the operation of Oracle Call
Interface (OCI).

• How Transparent Data Encryption Works with Editions
Transparent Data Encryption does not have any effect on the Editions feature of Oracle
Database.

• Configuring Transparent Data Encryption to Work in a Multidatabase Environment
Each Oracle database on the same server (such as databases sharing the same Oracle
binary but using different data files) must access its own TDE keystore.

8.1 How Transparent Data Encryption Works with Export and
Import Operations

Oracle Data Pump can export and import tables that contain encrypted columns, as well as
encrypt entire dump sets.

• About Exporting and Importing Encrypted Data
You can use Oracle Data Pump to export and import tables that have encrypted columns.

• Exporting and Importing Tables with Encrypted Columns
You can export and import tables with encrypted columns using the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY setting.

• Using Oracle Data Pump to Encrypt Entire Dump Sets
Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption
columns.

8-1

• Using Oracle Data Pump with Encrypted Data Dictionary Data
Oracle Data Pump operations provide protections for encrypted passwords and
other encrypted data.

8.1.1 About Exporting and Importing Encrypted Data
You can use Oracle Data Pump to export and import tables that have encrypted
columns.

For both software and external keystores, the following points are important when you
must export tables containing encrypted columns:

• Sensitive data should remain unintelligible during transport.

• Authorized users should be able to decrypt the data after it is imported at the
destination.

When you use Oracle Data Pump to export and import tables containing encrypted
columns, it uses the ENCRYPTION parameter to enable encryption of data in dump file
sets. The ENCRYPTION parameter allows the following values:

• ENCRYPTED_COLUMNS_ONLY: Writes encrypted columns to the dump file set in
encrypted format

• DATA_ONLY: Writes all of the data to the dump file set in encrypted format

• METADATA_ONLY: Writes all of the metadata to the dump file set in encrypted format

• ALL: Writes all of the data and metadata to the dump file set in encrypted format

• NONE: Does not use encryption for dump file sets

8.1.2 Exporting and Importing Tables with Encrypted Columns
You can export and import tables with encrypted columns using the
ENCRYPTION=ENCRYPTED_COLUMNS_ONLY setting.

1. Ensure that the keystore is open before you attempt to export tables containing
encrypted columns.

In a multitenant environment, if you are exporting data in a pluggable database
(PDB), then ensure that the wallet is open in the PDB. If you are exporting into the
root, then ensure that the wallet is open in the root.

To find if the keystore is open, query the STATUS column of the
V$ENCRYPTION_WALLET view. If you must open the keystore, then run the following
SQL statement:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY software_keystore_password
[CONTAINER = ALL | CURRENT];

The software_keystore_password setting is the password for the keystore. The
keystore must be open because the encrypted columns must be decrypted using
the TDE table keys, which requires access to the TDE master encryption key. The
columns are reencrypted using a password, before they are exported.

2. Run the EXPDP command, using the ENCRYPTION_PASSWORD parameter to specify a
password that is used to encrypt column data in the export dump file set.

Chapter 8
How Transparent Data Encryption Works with Export and Import Operations

8-2

The following example exports the employee_data table. The ENCRYPTION_PWD_PROMPT =
YES setting enables you to prompt for the password interactively, which is a
recommended security practice.

expdp hr TABLES=employee_data DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PWD_PROMPT = YES

Password: password_for_hr
3. To import the exported data into the target database, ensure that you specify the same

password that you used for the export operation, as set by the ENCRYPTION_PASSWORD
parameter.

The password is used to decrypt the data. Data is reencrypted with the new TDE table
keys generated in the target database. The target database must have the keystore open
to access the TDE master encryption key. The following example imports the
employee_data table:

impdp hr TABLES=employee_data DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp
ENCRYPTION_PWD_PROMPT = YES

Password: password_for_hr

8.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets
Oracle Data Pump can encrypt entire dump sets, not just Transparent Data Encryption
columns.

While importing, you can use either the password or the keystore TDE master encryption key
to decrypt the data. If the password is not supplied, then the TDE master encryption key in
the keystore is used to decrypt the data. The keystore must be present and open at the target
database. The open keystore is also required to reencrypt column encryption data at the
target database.

You can use the ENCRYPTION_MODE=TRANSPARENT setting to transparently encrypt the dump file
set with the TDE master encryption key stored in the keystore. A password is not required in
this case. The keystore must be present and open at the target database, and it must contain
the TDE master encryption key from the source database for a successful decryption of
column encryption metadata during an import operation.

The open keystore is also required to reencrypt column encryption metadata at the target
database. If a keystore already exists on the target database, then you can export the current
TDE master encryption key from the keystore of the source database and import it into the
keystore of the target database.

• Use the ENCRYPTION_MODE parameter to specify the encryption mode.
ENCRYPTION_MODE=DUAL encrypts the dump set using the TDE master encryption key
stored in the keystore and the password provided.

For example, to use dual encryption mode to export encrypted data:

expdp hr DIRECTORY=dpump_dir1
DUMPFILE=hr_enc.dmp
ENCRYPTION=all
ENCRYPTION_PASSWORD=encryption_password
ENCRYPTION_PWD_PROMPT=yes
ENCRYPTION_ALGORITHM=AES256
ENCRYPTION_MODE=dual

Chapter 8
How Transparent Data Encryption Works with Export and Import Operations

8-3

Password: password_for_hr
Encryption Password: password_for_encryption

Related Topics

• Exporting and Importing the TDE Master Encryption Key
You can export and import the TDE master encryption key in different ways.

• Oracle Database Utilities

• Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the
data were in a database table.

8.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data
Oracle Data Pump operations provide protections for encrypted passwords and other
encrypted data.

When you enable the encryption of fixed-user database passwords in a source
database, then an Oracle Data Pump export operation dump stores a known invalid
password for the database link password. This password is in place instead of the
encrypted password that the export operation extracts from the database. An
ORA-39395: Warning: object <database link name> requires password reset
after import warning message is displayed as a result. If you import data into an
Oracle Database 18c or later database, then this same warning appears when the
database link object with its invalid password is created in the target database. When
this happens, you must reset the database link password, as follows:

ALTER DATABASE LINK database_link_name CONNECT TO schema_name IDENTIFIED BY
password;

To find information about the database link, you can query the V$DBLINK dynamic view.

When the encryption of fixed-user database passwords has been disabled in a source
database, then there are no changes to Data Pump. The obfuscated database link
passwords are exported and imported as in previous releases.

In this case, Oracle recommends the following:

• Set the ENCRYPTION_PASSWORD parameter on the expdp command so that you can
further protect the obfuscated database link passwords.

• Set the ENCRYPTION_PWD_PROMPT parameter to YES so that the password can be
entered interactively from a prompt, instead of being echoed on the screen.

Both the ENCRYPTION_PASSWORD and the ENCRYPTION_PWD_PROMPT parameters are
available in import operations. ENCRYPTION_PWD_PROMPT is only available with the expdp
and impdp command-line clients, whereas ENCRYPTION_PASSWORD is available in both
the command-line clients and the DBMS_DATAPUMP PL/SQL package.

During an import operation, whether the keystore is open or closed affects the
behavior of whether or not an encryption password must be provided. If the keystore
was open during the export operation and you provided an encryption password, then
you do not need to provide the password during the import operation. If the keystore is
closed during the export operation, then you must provide the password during the
import operation.

Chapter 8
How Transparent Data Encryption Works with Export and Import Operations

8-4

Related Topics

• Oracle Database Reference

• Oracle Database Utilities

8.2 How Transparent Data Encryption Works with Oracle Data
Guard

An Oracle Data Guard primary database and secondary secondary database can share both
a software keystore and an external keystore.

• About Using Transparent Data Encryption with Oracle Data Guard
For both software keystores and external keystores, Oracle Data Guard supports
Transparent Data Encryption (TDE).

• Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment
You can configure Oracle Data Guard in a multitenant environment so that it can work
with TDE and Oracle Key Vault.

• Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment
In an Oracle Data Guard environment, to enable a PDB to have an isolated keystore on
the standby, you must manually perform the configuration.

8.2.1 About Using Transparent Data Encryption with Oracle Data Guard
For both software keystores and external keystores, Oracle Data Guard supports Transparent
Data Encryption (TDE).

If the primary database uses TDE, then each standby database in a Data Guard configuration
must have a copy of the encryption keystore from the primary database. If you reset the TDE
master encryption key in the primary database, then you must copy the keystore from the
primary database that contains the TDE master encryption key to each standby database.

Note the following:

• Re-key operations with wallet-based TDE will cause the Managed Recovery Process
(MRP) on the standby databases to fail because the new TDE master encryption key is
not yet available. In order to circumvent this problem, use the ADMINISTER KEY
MANAGEMENT CREATE KEY statement on the primary database to insert new TDE master
encryption keys into the wallet. Copy the wallet to the standby databases, and then
execute a ADMINISTER KEY MANAGEMENT USE KEY statement on the primary.

• Encrypted data in log files remains encrypted when data is transferred to the standby
database. Encrypted data also stays encrypted during transit.

Related Topics

• Merging Software Keystores
You can merge software keystores in a variety of ways.

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-5

8.2.2 Configuring TDE and Oracle Key Vault in an Oracle Data Guard
Environment

You can configure Oracle Data Guard in a multitenant environment so that it can work
with TDE and Oracle Key Vault.

The following scenario shows the configuration with Oracle Key Vault in a single-
instance, multitenant Oracle Data Guard environment with one physical standby
database. The version for the primary and standby databases must be release 18.8 or
later. To complete this procedure, you must perform each step in the sequence shown.
After you complete the procedure, Oracle Data Guard will use Oracle Key Vault for
TDE key management exclusively, and there will be no TDE wallet on your database
servers. Oracle recommends that you monitor the alert logs of both primary and
standby databases.

1. On both the primary and standby databases, execute the opatch lspatches
command to check the patch release.

$ORACLE_HOME/OPatch/opatch lspatches

Output similar to the following appears:

31308624;Database Release Update : 18.11.0.0.200714 (31308624)
27923415;OJVM RELEASE UPDATE: 18.3.0.0.180717 (27923415)
28090553;OCW RELEASE UPDATE 18.3.0.0.0 (28090553)

2. Download the Oracle Key Vault deployment script that the Oracle Key Vault
administrators prepared to enable database administrators to automatically
register their Oracle databases with Oracle Key Vault.

Oracle Key Vault RESTful Services Administrator's Guide has an example of how
to create a script to automatically enroll Oracle databases as endpoints. The
deployment scripts reside on a shared file system from which database
administrators can download. There are two different versions of these
deployment scripts. The primary.zip file is for the primary database, and the
secondary.zip file is for all standby databases. You can use these scripts for an
Oracle Data Guard or an Oracle RAC environment.

Another component that the Oracle Key Vault administrators prepare and add to
the deployment script is a configuration file that contains all details for the
deployment scripts to connect to Oracle Key Vault.

3. Copy the two deployment scripts (primary.zip and secondary.zip) that an Oracle
Key Vault administrator created for database administrators to download from a
shared location.

a. Copy the primary.zip file to the primary database.

$ scp user@ip_address:/path/to/file/primary.zip .

b. Copy the secondary.zip file to the standby database.

$ scp user@ip_address:/path/to/file/secondary.zip .

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-6

4. On their respective servers, extract the zip files.

$ unzip primary.zip

$ unzip secondary.zip
5. Execute the primary-run-me.sh and secondary-run-me.sh scripts, which contain the

commands for the RESTful API to execute in Oracle Key Vault.

The Oracle Key Vault RESTful services will execute these commands in order to register
this database in Oracle Key Vault with unique wallet and endpoint names.

a. Primary database: For example:

$ more primary-run-me.sh

#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_${HOSTNAME/.*}
export WALLET_NAME=${ORACLE_SID^^}
curl -Ok https://Oracle_Key_Vault_IP_address:5695/okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-primary.sh << EOF
#!/bin/bash
mkdir -pv ${ORACLE_BASE}/product/okv
okv manage-access wallet create --wallet ${WALLET_NAME} --unique FALSE
okv admin endpoint create --endpoint ${EP_NAME} --description "$HOSTNAME, $
(hostname -i)" --type ORACLE_DB --platform LINUX64 --subgroup "USE CREATOR
SUBGROUP" --unique FALSE --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
 set timeout 120
 spawn okv admin endpoint provision --endpoint ${EP_NAME} --location $
{ORACLE_BASE}/product/okv --auto-login FALSE
 expect "Enter Oracle Key Vault endpoint password: "
 send "change-on-install\r"
 expect eof
_EOF
EOF

b. Standby database: For example:

$ more secondary-run-me.sh

$ more run-me.sh
#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_SID^^}
curl -Ok --tlsv1.2 https://<OKV-IP-addr>:5695/okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-standby.sh << EOF
#!/bin/bash
okv admin endpoint create --endpoint ${EP_NAME} --description "$(hostname -f) $
(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
 set timeout 120
 spawn okv admin endpoint provision --endpoint ${EP_NAME} --location /etc/
ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
 expect "Enter Oracle Key Vault endpoint password: "
 send "change-on-install\r"

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-7

 expect eof
_EOF
EOF

6. Create the following directories on the primary database and the standby
database.

For example:

$ mkdir -pv /u01/opt/oracle/product/okv
$ mkdir -pv /u01/opt/oracle/product/tde
$ mkdir -pv /u01/opt/oracle/product/tde_seps

In this specification:

• The /u01/opt/oracle/product directory will be defined as WALLET_ROOT in a
later step.

• /u01/opt/oracle/product/okv is the installation directory for the Oracle Key
Vault client software. Depending on how the TDE_CONFIGURATION parameter is
set, the Oracle Database will look for the Oracle Key Vault client software in
wallet_root/okv.

• /u01/opt/oracle/product/tde will store an auto-login wallet, which only
contains the future Oracle Key Vault password, enabling an auto-login Oracle
Key Vault configuration. Depending on how TDE_CONFIGURATION is set, the
Oracle Database will look for the TDE wallet or an auto-open wallet for Oracle
Key Vault, in wallet_root/tde.

• /u01/opt/oracle/product/tde_seps will store an auto-login wallet, which
only contains the future Oracle Key Vault password. This will hide the Oracle
Key Vault password from the SQL*Plus command line and potentially from the
database administrator to enforce separation of duties between Oracle
database administrators and Oracle Key Vault administrators.

7. Execute the RESTful API on the primary database first, because the deployment
script on the standby databases depends on the presence of the shared virtual
wallet in Oracle Key Vault that the script on the primary database creates.

• Primary database:

$./deploy-primary.sh
• Standby databases:

$./deploy-standby.sh
The following message should appear:

The endpoint software for Oracle Key Vault installed successfully
8. On the primary and standby databases, execute the root.sh script to deploy the

PKCS#11 library.

/u01/opt/oracle/product/okv/bin/root.sh

The following output should appear:

Creating directory: /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Copying PKCS library to /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Setting PKCS library file permissions

9. Execute the okvutil changepwd command to change the password for the wallet
that you installed, starting from the primary database and then to the standby.

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-8

Because all database administrators downloaded the same deployment script, all
databases have the same password into Oracle Key Vault. This step enables each
database to have a unique password.

$ /u01/opt/oracle/product/okv/bin/okvutil changepwd -t wallet -l /u01/opt/oracle/
product/okv/ssl/

Enter wallet password: default_password
Enter new wallet password: Oracle_Key_Vault_password
Confirm new wallet password: Oracle_Key_Vault_password
Wallet password changed successfully

10. On the primary and standby databases, execute the following statements.

a. Execute the following statement to add the Oracle Key Vault password as a secret
into an auto-open wallet to replace the Oracle Key Vault password in the SQL*Plus
command line with EXTERNAL STORE.

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'OKV_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde_seps';

b. Execute the following statement to add the Oracle Key Vault password as a secret to
enable an auto-open connection into Oracle Key Vault.

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'HSM_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde';

c. Optionally, if patch 30398099 is installed, then change the database default algorithm
from AES128 to either AES192 or AES256.

Note that the following parameter is preceded by an underscore.

ALTER SYSTEM SET "_tablespace_encryption_default_algorithm" = 'AES256' SCOPE =
BOTH;

d. Configure the primary and standby databases to always encrypt new tablespaces:

ALTER SYSTEM SET ENCRYPT_NEW_TABLESPACES = ALWAYS SCOPE = BOTH SID =
'*';

e. In the primary and standby databases, define the WALLET_ROOT static initialization
parameter:

ALTER SYSTEM SET WALLET_ROOT = '/u01/opt/oracle/product' SCOPE = SPFILE;
f. Restart the primary and standby databases so that the preceding ALTER SYSTEM SET

WALLET_ROOT statement takes effect.

g. After the database restarts, configure TDE to use Oracle Key Vault as the first
keystore and the auto-open wallet in WALLET_ROOT/tde as the secondary keystore.

Execute the following statement in both the primary and standby databases:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE" SCOPE =
BOTH;

11. In the primary database, create your first TDE master encryption keys in Oracle Key
Vault.

Check the alert.log of the standby database. The managed recovery process (MRP)
should not be stopped, since the standby database finds the correct master key in the
shared virtual wallet in Oracle Key Vault.

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-9

a. Primary root container: Set the first master encryption key.

For all ADMINISTER KEY MANAGEMENT statements that do not change the TDE
configuration, the password will be replaced by EXTERNAL STORE. This enables
separation of duties between the database administrators and the Oracle Key
Vault administrators because the Oracle Key Vault administrators do not need
to share the Oracle Key Vault password with the database administrators.

sqlplus sys as syskm
Enter password: password

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY EXTERNAL STORE
CONTAINER = CURRENT;

b. All primary PDBs: Set the first, tagged, master key for each open PDB. The
benefit of tagging the PDB keys is that they can later be easily identified to
belong to a certain PDB.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||''' FORCE KEYSTORE IDENTIFIED BY EXTERNAL
STORE;'
AS "SET KEY COMMAND" FROM DUAL;

c. Execute the generated output of this SELECT statement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'pdb_name date time'
IDENTIFIED BY EXTERNAL STORE;

12. Perform the following steps in the root container.

a. Optionally, encrypt the USERS tablespace in the root container.

For example:

ALTER TABLESPACE USERS ENCRYPTION ONLINE USING 'AES256' ENCRYPT;

Oracle recommends that you not encrypt the SYSTEM, SYSAUX, TEMP, and UNDO
tablespaces in this release.

b. Observe the alert.log of the standby database to confirm that the USERS
tablespace there is also encrypted.

c. As a user with the SYSKM administrative privilege, encrypt the data dictionary of
CDB$ROOT and all open PDBs:

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = ALL;

13. Optionally, encrypt the USERS tablespace in the PDBs.

For example:

ALTER TABLESPACE USERS ENCRYPTION ONLINE USING 'AES256' ENCRYPT;

Oracle recommends that you not encrypt the SYSTEM, SYSAUX, TEMP, and UNDO
tablespaces in this release.

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-10

14. Create a tablespace and table in the primary database PDB.

When you create the tablespace in the primary database, it will be encrypted by default
even though there are no encryption keywords in that statement. Observe the alert.log
of the standby database to confirm the encrypted tablespace is created there as well.

CREATE TABLESPACE protected DATAFILE SIZE 50M;

CREATE TABLE SYSTEM.TEST TABLESPACE protected
AS SELECT * FROM DBA_OBJECTS;

15. Confirm that you can select from the table that is stored in an encrypted tablespace.

SELECT COUNT(*), OWNER FROM SYSTEM.TEST
GROUP BY OWNER
ORDER BY 1 DESC;

16. On the standby database, execute the following query to list the encrypted tablespaces
for the root container, all PDBs, and the encryption algorithm.

SELECT C.NAME AS PDB_NAME, T.NAME AS TBS_NAME, E.ENCRYPTIONALG AS ALG
FROM V$TABLESPACE T, V$ENCRYPTED_TABLESPACES E, V$CONTAINERS C
WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID ORDER BY
E.CON_ID, T.NAME;

PDB_NAME TBS_NAME ALG
--------------- -------------------- -------
CDB$ROOT USERS AES256
FINPDB PROTECTED AES256
FINPDB USERS AES256

17. Optionally, validate the configuration.

a. Perform an Oracle Data Guard switchover between the primary and standby
databases.

See Oracle Data Guard Concepts and Administration.

Perform the following steps in the new primary database.

b. Select from the encrypted table in your PDB.

Because there is an auto-open connection into Oracle Key Vault, the following query
does not require that you enter the Oracle Key Vault password.

SELECT COUNT(*), OWNER FROM SYSTEM.TEST
GROUP BY OWNER
ORDER BY 1 DESC;

24 rows selected.
c. Rekey the PDB.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||'''
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;'
AS "RE-KEY COMMAND" FROM DUAL;

d. Execute the generated output of this SELECT statement.

For example:

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-11

ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'pdb_name date time'
IDENTIFIED BY EXTERNAL STORE;

e. In the root container, as a user who has the SYSKM administrative privilege,
rekey the data dictionary.

ALTER DATABASE DICTIONARY REKEY CREDENTIALS CONTAINER = ALL;
f. Perform another Oracle Data Guard switchover.

See Oracle Data Guard Concepts and Administration.

g. Select from the encrypted table in your PDB.

Because there is an auto-open connection into Oracle Key Vault, the following
query does not require that you enter the Oracle Key Vault password.

SELECT COUNT(*), OWNER FROM SYSTEM.TEST
GROUP BY OWNER
ORDER BY 1 DESC;

24 rows selected.
h. Rekey the PDB.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||UPPER(SYS_CONTEXT('USERENV', 'CON_NAME'))||' '||TO_CHAR
(SYS_EXTRACT_UTC (SYSTIMESTAMP),
'YYYY-MM-DD HH24:MI:SS"Z"')||'''
FORCE KEYSTORE
IDENTIFIED BY EXTERNAL STORE;'
AS "RE-KEY COMMAND" FROM DUAL;

i. Execute the generated output of this SELECT statement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'pdb_name date time'
IDENTIFIED BY EXTERNAL STORE;

8.2.3 Enabling a PDB to Have an Isolated Keystore in an Oracle Data
Guard Environment

In an Oracle Data Guard environment, to enable a PDB to have an isolated keystore
on the standby, you must manually perform the configuration.

This is because the ADMINISTER KEY MANAGEMENT command that is run on the primary
does not affect the standby. First, you isolate the PDB in the primary database. The
ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE command performs the necessary
isolation tasks, such as changing the PDB's TDE_CONFIGURATION parameter to FILE
and moving the key from the united mode wallet to the newly created isolated mode
wallet. Next, you must perform these same tasks manually on the standby to complete
the isolation mode process.

1. If you have not done so you, log in to the CDB root of the primary database, and
then isolate the PDB.

ADMINISTER KEY MANAGEMENT ISOLATE KEYSTORE
IDENTIFIED BY "pdb_wallet_password"
FROM ROOT KEYSTORE

Chapter 8
How Transparent Data Encryption Works with Oracle Data Guard

8-12

IDENTIFIED BY "root_wallet_password"
WITH BACKUP;

2. Log in to the server where the standby database is configured.

3. Ensure that there is a directory for the PDB (for example, $WALLET_ROOT/PDB_GUID/tde/).

4. Connect to the PDB as a user who has the ALTER SYSTEM privilege.

5. Set the KEYSTORE_CONFIGURATION parameter for this PDB.

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=FILE"
SCOPE=BOTH;

6. At the command line, from the CDB root, copy the wallet (.p12 and .sso) from the
primary database to the standby; place this wallet in the $WALLET_ROOT/PDB_GUID/tde/
directory.

7. Close and then re-open the CDB root's wallet.

ADMINISTER KEY MANAGEMENT SET KEYSTORE CLOSE
FORCE KEYSTORE IDENTIFIED BY root_wallet_password;

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE IDENTIFIED BY root_wallet_password;

8. Connect to the PDB.

9. Open the wallet in the PDB.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE IDENTIFIED BY pdb_wallet_password;

8.3 How Transparent Data Encryption Works with Oracle Real
Application Clusters

Oracle Real Application Clusters (Oracle RAC) nodes can share both a software keystore
and an external keystore.

• About Using Transparent Data Encryption with Oracle Real Application Clusters
Oracle requires a shared software keystore for Oracle Real Application Clusters (Oracle
RAC), or a shared common virtual wallet in Oracle Key Vault among cluster instances.

• Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault
You can configure TDE in Oracle Real Application Clusters (Oracle RAC) on Oracle
Exadata Cloud at Customer (ExaCC) and other servers for centralized key management
provided by Oracle Key Vault.

8.3.1 About Using Transparent Data Encryption with Oracle Real
Application Clusters

Oracle requires a shared software keystore for Oracle Real Application Clusters (Oracle
RAC), or a shared common virtual wallet in Oracle Key Vault among cluster instances.

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-13

A TDE configuration with Oracle Key Vault uses a network connection from each
instance of the database to the external key manager. In Oracle Key Vault, you must
create one endpoint for each instance of the Oracle RAC-enabled database, and one
virtual wallet for each Oracle RAC-enabled database. Then, make that virtual wallet
the default wallet of all endpoints that belong to that database. In an Oracle RAC-
enabled Data Guard configuration, all instances (primary and all standby databases)
share that one virtual wallet. With this configuration, set key and re-key operations are
completely transparent because all participating instances are automatically
synchronized. This eliminates the need to manually copy the software keystore to
each of the other nodes in the cluster.

Oracle does not support the use of individual TDE wallets for each Oracle RAC node.
Instead, use shared wallets for TDE in the Oracle RAC environment. This enables all
of the instances to access the same shared software keystore. If your site uses Oracle
Automatic Storage Management Cluster File System (Oracle ACFS), then this is the
preferred location for a shared wallet. Directly sharing the wallet in Oracle Automatic
Storage Management (Oracle ASM) (for example, +DATA/$ORACLE_UNQNAME/WALLETS)
is an alternative if Oracle ACFS is not available.

Keystore operations (such as opening or closing the keystore, or rekeying the TDE
master encryption key) can be issued on any one Oracle RAC instance. Internally, the
Oracle database takes care of synchronizing the keystore context on each Oracle
RAC node, so that the effect of the keystore operation is visible to all of the other
Oracle RAC instances in the cluster. Similarly, when a TDE master encryption key
rekey operation takes place, the new key becomes available to each of the Oracle
RAC instances. You can perform other keystore operations, such as exporting TDE
master encryption keys, rotating the keystore password, merging keystores, or backing
up keystores, from a single instance only.

When using a shared file system, ensure that the ENCRYPTION_WALLET_LOCATION
parameter setting in the sqlnet.ora file for all of the Oracle RAC instances point to the
same shared software keystore location. You also must ensure security of the shared
software keystore by assigning the appropriate directory permissions.

Note:

Storing TDE master encryption keys in individual wallets per Oracle Real
Application Clusters (Oracle RAC) instance is not supported. As an
alternative, use Oracle Key Vault for centralized key management across
your on-premises or Cloud-based database deployments, or Oracle
Automatic Storage Management (Oracle ASM), or Oracle ASM Cluster File
System (Oracle ACFS) to provide local shared wallets.

8.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle
Key Vault

You can configure TDE in Oracle Real Application Clusters (Oracle RAC) on Oracle
Exadata Cloud at Customer (ExaCC) and other servers for centralized key
management provided by Oracle Key Vault.

The following scenario assumes that you have a multitenant two-node Oracle RAC
configuration. In this procedure, you must complete the following steps in the order
shown. After you have completed this procedure, the Oracle RAC environment will

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-14

exclusively use Oracle Key Vault for key management for Transparent Data Encryption. This
procedure assumes that you have installed the October 2019 (18.8) or later upgrade for
Oracle Database release 18c.

Before you begin, monitor the alert logs of your running Oracle RAC database. The Java
version that is included in the default Oracle Database release 18c installation can be used to
install the Oracle Key Vault client with the RESTful services. The provision command of the
RESTful API requires a symbolic link in /usr/bin/java that points to the Java home in the
Oracle database. For example:

ln -sv $ORACLE_HOME/jdk/jre/java /usr/bin/java

1. Download the Oracle Key Vault deployment script that the Oracle Key Vault
administrators prepared to enable database administrators to automatically register their
Oracle databases with Oracle Key Vault.

Oracle Key Vault RESTful Services Administrator's Guide has an example of how to
create a script to automatically enroll Oracle databases as endpoints. The deployment
scripts reside on a shared file system from with database administrators can download.
There are two different versions of these deployment scripts. One script is for only the
first node (which is called lead node in this procedure) and the other script is for all other
nodes (which are called secondary nodes in this procedure). You can use these scripts
for an Oracle RAC or an Oracle Data Guard environment.

Another component that the Oracle Key Vault administrators prepare and add to the
deployment script is a configuration file that contains all details for the deployment scripts
to connect to Oracle Key Vault.

2. Copy the two deployment scripts (primary.zip and secondary.zip) that an Oracle Key
Vault administrator created for database administrators to download from a shared
location.

a. Copy the primary.zip file to the lead node.

$ scp user@ip_address:/path/to/file/primary.zip .

b. Copy the secondary.zip file to each secondary node.

$ scp user@ip_address:/path/to/file/secondary.zip .

3. Extract the zip files.

a. On the lead node: Extract the primary.zip file.

$ unzip primary.zip
b. On the secondary nodes: Extract the secondary.zip file.

$ unzip secondary.zip
4. Create the following directories on all nodes:

For example:

$ mkdir -pv /u01/opt/oracle/product/okv
$ mkdir -pv /u01/opt/oracle/product/tde
$ mkdir -pv /u01/opt/oracle/product/tde_seps

In this specification:

• The /u01/opt/oracle/product directory will be defined as WALLET_ROOT in a later
step.

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-15

• /u01/opt/oracle/product/okv is the installation directory for the Oracle Key
Vault client software. Depending on how the TDE_CONFIGURATION parameter is
set, the Oracle Database will look for the Oracle Key Vault client software in
wallet_root/okv.

• /u01/opt/oracle/product/tde will store an auto-login wallet, which only
contains the future Oracle Key Vault password, enabling an auto-login Oracle
Key Vault configuration. Depending on how TDE_CONFIGURATION is set, the
Oracle Database will look for the TDE wallet or an auto-open wallet for Oracle
Key Vault, in wallet_root/tde.

• /u01/opt/oracle/product/tde_seps will store an auto-login wallet, which
only contains the future Oracle Key Vault password. This will hide the Oracle
Key Vault password from the SQL*Plus command line and potentially from the
database administrator to enforce separation of duties between Oracle
database administrators and Oracle Key Vault administrators.

5. Execute the primary-run-me.sh and secondary-run-me.sh scripts, which contain
the commands for the RESTful API to execute in Oracle Key Vault.

The Oracle Key Vault RESTful services will execute these commands in order to
register this database in Oracle Key Vault with unique wallet and endpoint names.

a. On the lead node: This script creates a shared wallet (for the lead and all
secondary nodes) and an endpoint in Oracle Key Vault, associates this
endpoint for the lead node with the shared wallet, and downloads and installs
the Oracle Key Vault client into an existing installation directory. With the
WALLET_ROOT configuration, this directory is wallet_root/okv.

$ more primary-run-me.sh
#!/bin/bash
export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_UNQNAME^^}${HOSTNAME//[!0-9]/}
curl -Ok https://192.168.1.181:5695/okvrestclipackage.zip --tlsv1.2
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-OKV.sh << EOF
#!/bin/bash
okv manage-access wallet create --wallet ${WALLET_NAME} --unique FALSE
okv admin endpoint create --endpoint ${EP_NAME} --description "$
(hostname -f) $(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique
FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
 set timeout 120
 spawn okv admin endpoint provision --endpoint ${EP_NAME} --
location /etc/ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
 expect "Enter Oracle Key Vault endpoint password: "
 send "change-on-install\r"
 expect eof
_EOF
EOF

b. Secondary nodes: This script only creates an endpoint for the secondary
nodes, associates the endpoint of the secondary nodes with the shared wallet,
and downloads and installs the Oracle Key Vault client into the existing
installation directory on each secondary node.

$ more run-me.sh
#!/bin/bash

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-16

export EP_NAME=${ORACLE_SID^^}_on_$(hostname -s)
export WALLET_NAME=${ORACLE_UNQNAME^^}${HOSTNAME//[!0-9]/}
curl -Ok --tlsv1.2 https://<OKV-IP-addr>:5695/okvrestclipackage.zip
unzip -Voj okvrestclipackage.zip lib/okvrestcli.jar -d ./lib
cat > /home/oracle/deploy-OKV.sh << EOF
#!/bin/bash
okv admin endpoint create --endpoint ${EP_NAME} --description "$(hostname -f) $
(hostname -i)" --subgroup "USE CREATOR SUBGROUP" --unique FALSE
okv admin endpoint update --endpoint ${EP_NAME} --strict-ip-check TRUE
okv manage-access wallet set-default --wallet ${WALLET_NAME} --endpoint $
{EP_NAME}
expect << _EOF
 set timeout 120
 spawn okv admin endpoint provision --endpoint ${EP_NAME} --location /etc/
ORACLE/KEYSTORES/${ORACLE_UNQNAME^^}/okv --auto-login FALSE
 expect "Enter Oracle Key Vault endpoint password: "
 send "change-on-install\r"
 expect eof
_EOF
EOF

6. Execute the RESTful API on the lead node first, because all secondary nodes depend on
the presence of the shared wallet in Oracle Key Vault that the lead node creates.

$ java -jar okvrestservices.jar -c config.ini

Output similar to the following should appear:

[Line 1 OK] [CREATE WALLET] [3E48990A-82A0-48BC-ACEC-FF80CB380D38]
[Line 2 OK] [CREATE ENDPOINT] [6FA40F80-558C-456A-84E3-25AE73B245DD]
[Line 3 OK] [SET DEFAULT WALLET] [FINRAC1_on_rac18a:FINRAC]
[Line 4 OK] [GET ENROLLMENT TOKEN] [FINRAC1_on_rac18a]
The endpoint software for Oracle Key Vault installed successfully.
[Line 4 OK] [PROVISION]
[Line 4 OK] [CLEANUP]

Make a note of the UUID of the wallet, which appears in Line 1 and is in bold.

After you execute this command on the lead node, execute it on all secondary nodes.

7. After successful installation of the Oracle Key Vault client, execute the root.sh script to
install the PKCS library on all nodes.

Oracle_Key_Vault_installation_directory/bin/root.sh

The following output should appear:

Creating directory: /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Copying PKCS library to /opt/oracle/extapi/64/hsm/oracle/1.0.0/
Setting PKCS library file permissions

8. Execute the Oracle Key Vault okvutil changepwd command on all nodes to change the
password for the Oracle Key Vault client that you installed.

Because all database administrators downloaded the same deployment script, all
databases have the same password into Oracle Key Vault. This step enables each
database to have a unique password.

$ /u01/opt/oracle/product/okv/bin/okvutil changepwd -t wallet -l /u01/opt/oracle/
product/okv/ssl/

Enter wallet password: default_password
Enter new wallet password: Oracle_Key_Vault_password

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-17

Confirm new wallet password: Oracle_Key_Vault_password
Wallet password changed successfully

9. On all nodes, add the Oracle Key Vault password into a local auto-login wallet to
hide the newly changed password from database administrators.

sqlplus c##sec_admin as syskm
Enter password: password

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'OKV_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde_seps';

10. In the root container, execute the ALTER SYSTEM statement to set the static
WALLET_ROOT parameter to configure the encryption wallet location for all
instances:

CONNECT AS SYSDBA

ALTER SYSTEM SET WALLET_ROOT = '/u01/opt/oracle/product/'
SCOPE = SPFILE SID = '*';

11. Restart the database.

Execute this command on any node.

$ srvctl stop database -db database_name -o immediate
$ srvctl start database -db database_name

12. In the root container, use the ALTER SYSTEM statement to set the dynamic
TDE_CONFIGURATION parameter.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV"
SCOPE = BOTH SID = '*';

13. Optionally, define the database default encryption algorithm after applying Oracle
patch 30398099.

By default, Oracle Database applies the AES128 algorithm to encryption clauses
that do not specify an encryption algorithm. Patch 30398099 allows you to choose
from the AES128, AES192, and AES256 encryption algorithms. If you have applied
this patch, then you can execute the following command to set the encryption
clause:

ALTER SYSTEM SET "_TABLESPACE_ENCRYPTION_DEFAULT_ALGORITHM" =
'encryption_algorithm'
SCOPE = BOTH SID = '*';

14. In the root container, open the keystore, which opens the connection to Oracle Key
Vault for the root container and all open PDBs.

Note that the Oracle Key Vault password has been replaced in all subsequent
ADMINISTER KEY MANAGEMENT commands with EXTERNAL STORE, because the
database automatically retrieves the Oracle Key Vault password from the local
auto-login wallets that you created on all nodes in Step 9.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY EXTERNAL STORE
CONTAINER = ALL;

15. In the root container, set the master encryption key.

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-18

ADMINISTER KEY MANAGEMENT SET KEY
IDENTIFIED BY EXTERNAL STORE
CONTAINER = CURRENT;

16. Create and activate a tagged master encryption key in all PDBs in this container.

The benefit of adding tagged master encryption keys to PDBs is that it enables you to
easily identify keys that belong to a certain PDB.

a. Connect to each PDB and execute the following SELECT statement to create an
ADMINISTER KEY MANAGEMENT command that contains the PDB name and time stamp
as a tag for the PDB's master encryption key.

CONNECT sec_admin@pdb_name AS SYSKM
Enter password: password

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||
TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||'''
IDENTIFIED BY EXTERNAL STORE;' "SET KEY COMMAND" FROM DUAL;

b. Execute the generated output of this SELECT statement.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'pdb_name date time'
IDENTIFIED BY EXTERNAL STORE;

17. On all nodes, add the Oracle Key Vault password into an auto-login wallet to enable auto-
login connection into Oracle Key Vault.

This step is mandatory in Oracle RAC. Having an auto-login connection into Oracle Key
Vault is especially important when Oracle RAC nodes are automatically restarted (for
example, while applying quarterly release upgrades using the opatchauto patch tool).

ADMINISTER KEY MANAGEMENT ADD SECRET 'Oracle_Key_Vault_password'
FOR CLIENT 'HSM_PASSWORD'
TO LOCAL AUTO_LOGIN KEYSTORE '/u01/opt/oracle/product/tde';

18. In the root container, execute the ALTER SYSTEM statement to change the
TDE_CONFIGURATION parameter.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION = "KEYSTORE_CONFIGURATION=OKV|FILE"
SCOPE = BOTH SID = '*';

19. Change the default behavior of the database to always encrypt new tablespaces with the
AES128 algorithm (or the algorithm that you specified in Step 13), even if the CREATE
TABLESPACE command does not contain the encryption clauses.

Execute this statement once on any node:

ALTER SYSTEM SET ENCRYPT_NEW_TABLESPACES = ALWAYS SCOPE = BOTH SID = '*';
20. From the root, encrypt sensitive credential data with AES256 for database links in the

SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

This command requires the SYSKM administrative privilege:

sqlplus c##sec_admin as syskm
Enter password: password

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-19

21. Log in to the PDB and create a tablespace.

For example, to create a tablespace named protected:

CREATE TABLESPACE protected DATAFILE SIZE 50M;
22. Confirm that the tablespace is encrypted even though the encryption clauses were

omitted.

SELECT C.NAME AS pdb_name, T.NAME AS tablespace_name, E.ENCRYPTIONALG AS ALG
FROM V$TABLESPACE T, V$ENCRYPTED_TABLESPACES E, V$CONTAINERS C
WHERE E.TS# = T.TS# AND E.CON_ID = T.CON_ID AND E.CON_ID = C.CON_ID
ORDER BY E.CON_ID, T.NAME;

23. Create a table in the encrypted tablespace that you just created.

For example:

CREATE TABLE SYSTEM.test TABLESPACE protected
AS SELECT * FROM DBA_OBJECTS;

24. Select from this table to confirm that you can read encrypted data:

SELECT COUNT(*), OWNER FROM SYSTEM.test
GROUP BY OWNER
ORDER BY 1 DESC;

25. In the PDBs, encrypt the existing application tablespaces.

If you omit the encryption algorithm, then the default algorithm (AES128, or the
algorithm that you specified in Step 13) is applied.

ALTER TABLESPACE tablespace_name ENCRYPTION ONLINE ENCRYPT;
26. Optionally, validate the configuration.

a. Confirm that the auto-login for Oracle Key Vault is working.

You can test this by restarting the database, logging into the PDB, and then
selecting from the encrypted table. To restart the database:

$ srvctl stop database -db database_name -o immediate
$ srvctl start database -db database_name

After logging in to the PDB, select from the SYSTEM.test table.

SELECT COUNT(*), OWNER FROM SYSTEM.test
GROUP BY OWNER
ORDER BY 1 DESC;

b. Confirm that the master encryption key re-key operations in all open PDBs are
successful.

First, as a user who has the SYSKM administrative privilege, execute the
following SELECT statement to create an ADMINISTER KEY MANAGEMENT
command that contains the PDB name and time stamp.

SELECT ' ADMINISTER KEY MANAGEMENT SET KEY
USING TAG '''||SYS_CONTEXT('USERENV', 'CON_NAME')||' '||
TO_CHAR (SYSDATE, 'YYYY-MM-DD HH24:MI:SS')||'''
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;' "RE-KEY COMMAND" FROM DUAL;

Next, execute the generated output of this SELECT statement.

ADMINISTER KEY MANAGEMENT SET KEY
USING TAG 'pdb_name date time'
FORCE KEYSTORE IDENTIFIED BY EXTERNAL STORE;

Chapter 8
How Transparent Data Encryption Works with Oracle Real Application Clusters

8-20

c. From the root container, re-key previously encrypted sensitive credential data in the
SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

This command requires the SYSKM administrative privilege:

sqlplus c##sec_admin as syskm
Enter password: password

ALTER DATABASE DICTIONARY REKEY CREDENTIALS;
d. Drop the protected tablespace and its table, test.

DROP TABLESPACE protected
INCLUDING CONTENTS AND DATAFILES;

Related Topics

• Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128–bit length cipher key.

8.4 How Transparent Data Encryption Works with SecureFiles
SecureFiles, which stores LOBS, has three features: compression, deduplication, and
encryption.

• About Transparent Data Encryption and SecureFiles
SecureFiles encryption uses TDE to provide the encryption facility for LOBs.

• Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.

• Example: Creating a SecureFiles LOB with a Column Password Specified
The CREATE TABLE statement can create a SecureFiles LOB with a column password.

8.4.1 About Transparent Data Encryption and SecureFiles
SecureFiles encryption uses TDE to provide the encryption facility for LOBs.

When you create or alter tables, you can specify the SecureFiles encryption or LOB columns
that must use the SecureFiles storage. You can enable the encryption for a LOB column by
either using the current Transparent Data Encryption (TDE) syntax or by using the ENCRYPT
clause as part of the LOB parameters for the LOB column. The DECRYPT option in the current
syntax or the LOB parameters turn off encryption.

8.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption
Algorithm

The CREATE TABLE statement can create a SecureFiles LOB with encryption specified.

Example 8-1 shows how to create a SecureFiles LOB in a CREATE TABLE statement.

Example 8-1 Creating a SecureFiles LOB with a Specific Encryption Algorithm

CREATE TABLE table1 (a BLOB ENCRYPT USING 'AES256')
 LOB(a) STORE AS SECUREFILE (

Chapter 8
How Transparent Data Encryption Works with SecureFiles

8-21

 CACHE
);

8.4.3 Example: Creating a SecureFiles LOB with a Column Password
Specified

The CREATE TABLE statement can create a SecureFiles LOB with a column password.

Example 8-2 shows an example of creating a SecureFiles LOB that uses password
protections for the encrypted column.

All of the LOBS in the LOB column are encrypted with the same encryption
specification.

Example 8-2 Creating a SecureFiles LOB with a Column Password Specified

CREATE TABLE table1 (a VARCHAR2(20), b BLOB)
 LOB(b) STORE AS SECUREFILE (
 CACHE
 ENCRYPT USING 'AES192' IDENTIFIED BY password
);

8.5 How Transparent Data Encryption Works with Oracle
Call Interface

Transparent Data Encryption does not have any effect on the operation of Oracle Call
Interface (OCI).

For most practical purposes, TDE is transparent to OCI except for the row shipping
feature. You cannot use the OCI row shipping feature with TDE because the key to
make the row usable is not available at the receipt-point.

8.6 How Transparent Data Encryption Works with Editions
Transparent Data Encryption does not have any effect on the Editions feature of
Oracle Database.

For most practical purposes, TDE is transparent to Editions. Tables are always
noneditioned objects. TDE Column Encryption encrypts columns of the table. Editions
are not affected by TDE tablespace encryption.

8.7 Configuring Transparent Data Encryption to Work in a
Multidatabase Environment

Each Oracle database on the same server (such as databases sharing the same
Oracle binary but using different data files) must access its own TDE keystore.

Keystores are not designed to be shared among databases. By design, there must be
one keystore per database. You cannot use the same keystore for more than one
database.

Chapter 8
How Transparent Data Encryption Works with Oracle Call Interface

8-22

• To configure the sqlnet.ora file for a multidatabase environment, use one of the
following options:

– Option 1: If the databases share the same Oracle home, then keep the sqlnet.ora
file in the default location, which is in the ORACLE_HOME/network/admin directory.

In this case, it is ideal to use the default location. Ensure that the sqlnet.ora file has
no WALLET_LOCATION or ENCRYPTION_WALLET_LOCATION entries. Transparent Data
Encryption accesses the keystore from the default sqlnet.ora location if these two
entries are not in the sqlnet.ora file.

– Option 2: If Option 1 is not feasible for your site, then you can specify the keystore
location as follows. The WALLET_ROOT initialization parameter is shared by all PDBs,
but each CDB (or standalone database) must have its own separate WALLET_ROOT
setting.

For example:

WALLET_ROOT = /home/oracle/db_unique_name/wallet/

– Option 3: If Options 1 and 2 are not feasible, then use separate sqlnet.ora files,
one for each database. Ensure that you correctly set the TNS_ADMIN environment
variable to point to the correct database configuration.

Caution:

Using a keystore from another database can cause partial or complete data loss.

Related Topics

• SQL*Plus User's Guide and Reference

Chapter 8
Configuring Transparent Data Encryption to Work in a Multidatabase Environment

8-23

9
Using sqlnet.ora to Configure Transparent
Data Encryption Keystores

If you do not want to use the WALLET_ROOT parameter to configure keystores, then you can
use the sqlnet.ora file.

• About the Keystore Location in the sqlnet.ora File
If you have not set the WALLET_ROOT parameter, then Oracle Database checks the
sqlnet.ora file for the directory location of the keystore.

• Configuring the sqlnet.ora File for a Software Keystore Location
Use the sqlnet.ora file to configure the keystore location for a regular file system, for
multiple database access, and for use with Oracle Automatic Storage Management
(ASM).

• Example: Configuring a Software Keystore for a Regular File System
You can configure a software keystore for a regular file system.

• Example: Configuring a Software Keystore When Multiple Databases Share the
sqlnet.ora File
You can configure multiple databases to share the sqlnet.ora file.

• Example: Configuring a Software Keystore for Oracle Automatic Storage Management
You can set the WALLET_ROOT and TDE_CONFIGURATION parameters for an Oracle
Automatic Storage Management (ASM) disk group.

• Example: Configuring a Software Keystore for an Oracle Automatic Storage Management
Disk Group
You can configure sqlnet.ora for an Oracle Automatic Storage Management (ASM) disk
group.

9.1 About the Keystore Location in the sqlnet.ora File
If you have not set the WALLET_ROOT parameter, then Oracle Database checks the sqlnet.ora
file for the directory location of the keystore.

This applies to whether the keystore is a software keystore, a hardware module security
(HSM) keystore, or an Oracle Key Vault keystore. You must edit the sqlnet.ora file to define
a directory location for the keystore that you plan to create. Ensure that this directory exists
beforehand. Preferably, this directory should be empty.

Note the following behavior when you must edit the sqlnet.ora file in an Oracle Real
Application Clusters (Oracle RAC) or a multitenant environment:

• In an Oracle RAC environment: If you are using the srvctl utility and if you want to
include environment variables in the sqlnet.ora configuration file, then you must set
these environment variables in both the operating system and the srvctl environment.
Oracle recommends that you place the keystore on a shared file system, such as Oracle
Automatic Storage Management (ASM) or ACFS.

9-1

• In a multitenant environment: If the sqlnet.ora file is in the CDB root, then the
keystore location will be set for the entire CDB environment. You can configure a
sqlnet.ora at the PDB level if the PDBs are working in isolated mode.

In the sqlnet.ora file, you must set the ENCRYPTION_WALLET_LOCATION parameter to
specify the keystore location. When determining which keystore to use, Oracle
Database searches for the keystore location in the following places, in this order:

1. It attempts to use the keystore in the location specified by the parameter
ENCRYPTION_WALLET_LOCATION in the sqlnet.ora file.

2. If the ENCRYPTION_WALLET_LOCATION parameter is not set, then Oracle Database
looks for a keystore at the default database location, which is ${ORACLE_BASE}/
admin/${DB_UNIQUE_NAME}/wallet. (DB_UNIQUE_NAME is the unique name of the
database specified in the initialization parameter file.) You can check the location
and status of the keystore in the V$ENCRYPTION_WALLET dynamic view. When the
keystore location is not set in the sqlnet.ora file, then the V$ENCRYPTION_WALLET
view displays the default location. You can check the location and status of the
keystore in the V$ENCRYPTION_WALLET view.

By default, the sqlnet.ora file is located in the ${ORACLE_HOME}/network/admin
directory or in the location set by the TNS_ADMIN environment variable. Ensure that you
have properly set the TNS_ADMIN environment variable to point to the correct
sqlnet.ora file.

Related Topics

• SQL*Plus User's Guide and Reference

9.2 Configuring the sqlnet.ora File for a Software Keystore
Location

Use the sqlnet.ora file to configure the keystore location for a regular file system, for
multiple database access, and for use with Oracle Automatic Storage Management
(ASM).

• To create a software keystore on a regular file system, use the following format
when you edit the sqlnet.ora file:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=path_to_keystore)))

If the path_to_keystore will contain an environment variable, then set this
variable in the environment where the database instance is started and before you
start the database. If you are using the srvctl utility to start the database, then set
the environment variable in the srvctl environment as well, using the following
command:

srvctl setenv database -db database_name -env
"environment_variable_name=environment_variable_value"

Chapter 9
Configuring the sqlnet.ora File for a Software Keystore Location

9-2

• To create a software keystore on a shared file system for Oracle Real Application
Clusters (Oracle RAC), use the following format when you edit the sqlnet.ora file:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE = (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = +DATA/$ORACLE_UNQNAME)))

If the DIRECTORY setting will include an environment variable, then set this variable in the
environment where the database instance is started and before you start the database. If
you are using the srvctl utility to start the database, then set the environment variable in
the srvctl environment as well, using a command similar to the following, assuming the
name of the Oracle RAC instance is FINRAC:

srvctl setenv database -db FINRAC -t "ORACLE_UNQNAME=FINRAC,
ORACLE_BASE=/u01/opt/oracle"

9.3 Example: Configuring a Software Keystore for a Regular File
System

You can configure a software keystore for a regular file system.

The following example shows how to configure a software keystore location in the
sqlnet.ora file for a regular file system in which the database name is orcl.

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=/etc/ORACLE/WALLETS/orcl)))

9.4 Example: Configuring a Software Keystore When Multiple
Databases Share the sqlnet.ora File

You can configure multiple databases to share the sqlnet.ora file.

The following example shows how to configure a software keystore location when multiple
databases share the sqlnet.ora file.

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=/etc/ORACLE/WALLETS/$ORACLE_SID/)))

9.5 Example: Configuring a Software Keystore for Oracle
Automatic Storage Management

You can set the WALLET_ROOT and TDE_CONFIGURATION parameters for an Oracle Automatic
Storage Management (ASM) disk group.

Chapter 9
Example: Configuring a Software Keystore for a Regular File System

9-3

The following example shows how to configure a software keystore location in the
sqlnet.ora file for an ASM file system:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=+disk1/mydb/wallet)))

9.6 Example: Configuring a Software Keystore for an Oracle
Automatic Storage Management Disk Group

You can configure sqlnet.ora for an Oracle Automatic Storage Management (ASM)
disk group.

The following format shows how to configure a software keystore if you want to create
a software keystore location on an ASM disk group:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=+ASM_file_path_of_the_diskgroup)))

Chapter 9
Example: Configuring a Software Keystore for an Oracle Automatic Storage Management Disk Group

9-4

10
Frequently Asked Questions About
Transparent Data Encryption

Users frequently have questions about transparency and performance issues with
Transparent Data Encryption.

• Transparency Questions About Transparent Data Encryption
Transparent Data encryption handles transparency in data in a variety of ways.

• Performance Questions About Transparent Data Encryption
There are several performance issues to consider when using Transparent Data
Encryption.

10.1 Transparency Questions About Transparent Data
Encryption

Transparent Data encryption handles transparency in data in a variety of ways.

Security auditors occasionally ask detailed questions about the encryption used by
Transparent Data Encryption (TDE). They request information about TDE keys, algorithms,
lengths, and keystores and then directly compare to requirements of regulations such as PCI-
DSS. This topic contains important details about TDE encryption and key management. This
information is current as of Oracle Database 12c (12.1.0.2). It is intended to help TDE
customers respond to auditor questions quickly and accurately.

1. Is Transparent Data Encryption compatible with my application software?

Transparent Data Encryption is compatible with applications by default because it does
not alter the inbound SQL statements or the outbound SQL query results. Oracle
executes internal testing and validation of certain Oracle and third-party application
software to capture helpful deployment tips or scripts, and to evaluate performance
profiles.

Be aware of the difference between Transparent Data Encryption and the DBMS_CRYPTO
PL/SQL package. This package is intended for different customer use cases. It is an API
and toolkit solution and as such, it is non-transparent.

2. Is Transparent Data Encryption compatible with other Oracle Database tools and
technologies that I am using?

One of the chief benefits of Transparent Data Encryption is its integration with frequently
used Oracle Database tools and technologies such as high-availability clusters, storage
compression, backup compression, data movement, database backup and restore, and
database replication. Specific Oracle technologies that are integrated directly with
Transparent Data Encryption include Oracle Real Application Clusters (Oracle RAC),
Oracle Recovery Manager (RMAN), Oracle Data Guard, Advanced Compression, Oracle
Data Pump, and Oracle GoldenGate, among others. Transparent Data Encryption also
has special points of integration with Oracle Exadata that fully use unique features of
Oracle-engineered systems.

10-1

Transparent Data Encryption also works easily with security features of the Oracle
Database. With Transparent Data Encryption, privilege grants, roles, Oracle
Database Vault realms, Virtual Private Database policies, and Oracle Label
Security labels remain in effect. You can use these and other security features in
tandem with Transparent Data Encryption encryption.

3. Are there any known Transparent Data Encryption limitations or
incompatibilities?

• TDE column encryption: TDE column encryption encrypts and decrypts data
transparently when data passes through the SQL layer. Some features of
Oracle will bypass the SQL layer, and hence cannot benefit from TDE column
encryption. The following are known database features that TDE column
encryption does not support, and their relevant software version numbers:

– Materialized View Logs (not supported prior to Oracle Database 11g
Release 2)

– Streams (not supported prior to Oracle Database 11g Release 1)

– Synchronous and asynchronous change data capture for data
warehousing (CDC)

– Transportable Tablespaces

– LOBs

Note that Secure Files were introduced in Oracle Database 11g Release 1, so
it is not supported with TDE column encryption prior to that release

• TDE tablespace encryption: TDE tablespace encryption encrypts all content
that is stored in the tablespace at the block level in storage, and it generally
does not conflict with other database features. TDE tablespace encryption
does not have any of the limitations that TDE column encryption has.
However, you can use full transportable tablespaces (TTS) with Oracle Data
Pump compression and encryption when going from a TDE-encrypted source
to a TDE-encrypted destination. You must have an Oracle Database release
12c or later database instance available so that you can use its key export or
keystore (wallet) merge capabilities to get the correct master encryption key to
the destination database host without having to overwrite the original Oracle
wallet file. This process is subject to the standard TTS limitations, and you
must remember to check for compatible endianness.

4. What types of keys and algorithms does TDE use?

TDE relies on two distinct sets of encryption keys. The first set of encryption keys
are TDE tablespace encryption keys, which are used to transparently encrypt and
decrypt stored data. DEKs are generated automatically by the database, stored
internally in the database in encrypted form, and managed mostly behind the
scenes. One place where end-users interact with DEKs is when selecting the
encryption algorithm and key length that TDE will use, which can be 3DES168,
AES128, AES192, or AES256. This selection is made independently for each table
containing encrypted columns and for each encrypted tablespace. You may also
hear DEKs referred to as table keys (column encryption) or tablespace keys
(tablespace encryption). The table keys are used in cipher block chaining (CBC)
operating mode, and the tablespace keys are used in cipher feedback (CFB)
operating mode.

The second set of encryption keys consists of current and historical key encryption
keys (KEK), also known as master encryption keys. The master encryption keys
are generated automatically by the database, used automatically to encrypt and

Chapter 10
Transparency Questions About Transparent Data Encryption

10-2

decrypt DEKs as needed, and stored externally in a protected keystore. Users may
interact with the current master encryption key by periodically rekeying it, modifying
certain key attributes, and so forth. Typically, the keystore for master encryption keys is
either an Oracle wallet (out-of-the-box solution) or Oracle Key Vault (a specialized key
management product). Although the database uses only one TDE master key at a time,
all rekeyed master encryption keys are retained in the keystore for long-term recovery of
encrypted data backups.Master encryption keys always are AES256. They encrypt and
decrypt DEKs using CBC operating mode. For both DEKs and master encryption keys,
the underlying key material is not directly exposed. End-users see only attributes of keys
necessary to manage TDE.

5. How are Oracle keystores containing master encryption keys protected?

There are three different types of keystore to consider when you use an Oracle wallet as
the keystore for master encryption keys: password-based, auto-login, and local auto-
login. All of these keystore externalize master encryption keys, so they are separate from
TDE-encrypted data. Oracle recommends that you place wallet files in local or network
directories that are protected by tight file permissions and other security measures.

The password-based wallet is an encrypted key storage file (ewallet.p12) that follows
the PKCS #12 standard. It is encrypted by a password-derived key according to the
PKCS #5 standard. A human user must enter a command containing the password for
the database to open the wallet, decrypt its contents, and gain access to keys. The
password-based wallet is the default keystore for TDE master keys. In the past, it was
encrypted using the 3DES168 encryption algorithm and CBC operating mode. The
orapki command convert wallet enables you to convert password-based wallets to
AES256 and CBC operating mode. Oracle Database Security Guide provides details
about using orapki to convert wallets.

Auto-login wallets (cwallet.sso) optionally are derived from standard password-based
wallets for special cases where automatic startup of the database is required with no
human interaction to enter a wallet password. When using auto-login wallet, the master
password-based wallet must be preserved because it is needed to rekey the master
encryption key. In addition to the best practice of storing auto-login wallet in a local or
network directory that is protected by tight file permissions, the file contents are
scrambled by the database using a proprietary method for added security. A slight
variation on the auto-login wallet called local auto-login wallet has similar behavior. One
notable difference with local auto-login wallet is that its contents are scrambled using
additional factors taken from the host machine where the file was created. This renders
the local auto-login wallet unusable on other host machines. Details of the host factors
and scrambling technique are proprietary.

6. What is Oracle Key Vault and how does it manage TDE master keys?

Oracle Key Vault centrally manages TDE master keys, Oracle wallets, Java keystores,
and more. It helps you to take control of proliferating keys and key storage files. It
includes optimizations specifically for TDE and other components of the Oracle stack. For
more information about using Oracle Key Vault with TDE, see the product pages on
www.oracle.com and Oracle Technology Network and Oracle Key Vault Administrator's
Guide.

10.2 Performance Questions About Transparent Data
Encryption

There are several performance issues to consider when using Transparent Data Encryption.

Chapter 10
Performance Questions About Transparent Data Encryption

10-3

1. What is the typical performance overhead from Transparent Data
Encryption?

There are many different variables involved in the creation of an accurate
Transparent Data Encryption performance test. The results can vary depending on
the test environment, test case or workload, measurement metrics or methods,
and so on. Oracle cannot guarantee a specific performance overhead percentage
that can apply in all possible scenarios. In practice, the performance tests by many
Transparent Data Encryption customers are often in the low single digits as a
percentage, but that is not universally the case.

If possible, use Oracle Real Application Testing (Oracle RAT) to capture a real
production workload and then replay it against Transparent Data Encryption to get
a true indication of the performance overhead that the you can expect within your
environment.

2. How can I tune for optimal Transparent Data Encryption performance?

• TDE column encryption:

– Limit the crypto processing by only encrypting the subset of columns that
are strictly required to be protected. In addition, turn off the optional
integrity checking feature.

– After you apply column encryption, rebuild the column indexes.

• TDE tablespace encryption: TDE tablespace encryption improves
performance by caching unencrypted data in memory in the SGA buffer cache.
This feature reduces the number of crypto operations that must be performed
when users run SELECT queries, which draw from the SGA instead of drawing
from disk. (Drawing from disk forces the database to perform decrypt
operations.) Ensure that the size of the SGA buffer cache is large enough to
take full advantage of this performance optimization.

Another major performance boost comes from using hardware and software
that supports CPU-based cryptographic acceleration available in Intel AES-NI
and Oracle SPARC T4/T5. To take advantage of this feature, you must be
running a recent version of the database, have a recent version of the
operating system installed, and be using hardware that includes crypto
acceleration circuitry within its CPUs/cores.

Database compression further speeds up Transparent Data Encryption
performance because the crypto processing occurs on data that already is
compressed, resulting in less total data to encrypt and decrypt.

• In general:

– Ensure that you have applied the latest patches, which you can download
from My Oracle Support at

https://support.oracle.com/portal/
– When you specify an encryption algorithm, remember that AES is slightly

faster than 3DES. Use AES128 where possible. Be aware that the
performance benefit is small.

– Use Exadata (described in Oracle Database Testing Guide), which
includes additional performance benefits.

3. Are there specific issues that may slow down TDE performance, and if so,
how do I avoid them?

Chapter 10
Performance Questions About Transparent Data Encryption

10-4

https://support.oracle.com/portal/

TDE tablespace performance is slower if the database cannot use CPU-based hardware
acceleration on the host machine due to factors such as older hardware, an older
database version, or an older operating system.

Note the following with regard to specific database workloads:

• Encrypting the whole data set at once (for example, while doing “Bulk Data
Load" into an Oracle data warehouse): Lower crypto performance has been
observed during bulk load of new data into the database or data warehouse. New
data cannot be cached in SGA, so TDE tablespace encryption performance
optimizations are bypassed. Hence, Transparent Data Encryption has no bonus
performance benefits in this type of operation.

Follow these guidelines:

– Ensure that the database is running on servers with CPU-based cryptographic
acceleration. This accelerates not only decrypt operations, but also encrypt
operations as well (for loading new data). Take the crypto processing out of band
by pre-encrypting the data set and then using Transportable Tablespaces (TTS)
to load into the database. Try to parallelize this procedure where possible. This
requires the database instance to copy the required TDE key to the keystore on
the destination database. The procedure may not be feasible when there is a
fixed time window for encryption and loading, and these must be done serially.

– Consider using TDE column encryption. Encrypt only the handful of sensitive
regulated columns instead of encrypting an entire tablespace.

• Decrypting an entire data set at once (for example, while performing a full table
scan by reading directly from disk, with no reading from SGA):

Lower crypto performance is observed when running full table scan queries where
data is read directly from storage. Certain performance optimizations of TDE
tablespace encryption are bypassed (no caching). Hence, Transparent Data
Encryption has no bonus performance benefits in this type of operation.

Follow these guidelines:

– Ensure that the database is running on servers with CPU-based cryptographic
acceleration.

– Retest the full table scan queries with a larger SGA size to measure performance
when data is read from cache. Try setting the Oracle event number 10949 to
disable direct path read.

– Partition the database so that less data is scanned by full table scan operations.
Production databases often use partitioning for this kind of scenario (that is, to
limit the total amount of data scanned).

– Consider using TDE column encryption. Encrypt only the handful of sensitive
regulated columns instead of encrypting an entire tablespace.

Related Topics

• Performance Overhead of Transparent Data Encryption
Transparent Data Encryption tablespace encryption has small associated performance
overhead.

• Oracle Database Testing Guide

• Oracle Database Testing Guide

Chapter 10
Performance Questions About Transparent Data Encryption

10-5

Part II
Using Oracle Data Redaction

Part II describes how to use Oracle Data Redaction.

• Introduction to Oracle Data Redaction
Oracle Data Redaction is the ability to redact sensitive data in real time.

• Oracle Data Redaction Features and Capabilities
Oracle Data Redaction provides a variety of ways to redact different types of data.

• Configuring Oracle Data Redaction Policies
An Oracle Data Redaction policy defines how to redact data in a column based on the
table column type and the type of redaction you want to use.

• Managing Oracle Data Redaction Policies in Oracle Enterprise Manager
Oracle Enterprise Manager Cloud Control (Cloud Control) can manage Oracle Data
Redaction policies and formats.

• Using Oracle Data Redaction with Oracle Database Features
Oracle Data Redaction can be used with other Oracle features, but some Oracle features
may have restrictions with regard to Oracle Data Redaction.

• Security Considerations for Oracle Data Redaction
Oracle provides guidelines for using Oracle Data Redaction.

11
Introduction to Oracle Data Redaction

Oracle Data Redaction is the ability to redact sensitive data in real time.

• What Is Oracle Data Redaction?
Oracle Data Redaction enables you to mask (redact) data that is returned from queries
issued by applications.

• When to Use Oracle Data Redaction
Use Oracle Data Redaction when you must disguise sensitive data that your applications
and application users must access.

• Benefits of Using Oracle Data Redaction
Oracle Data Redaction provides several benefits when you use it to protect your data.

• Target Use Cases for Oracle Data Redaction
Oracle Data Redaction fulfils common use case scenarios.

11.1 What Is Oracle Data Redaction?
Oracle Data Redaction enables you to mask (redact) data that is returned from queries
issued by applications.

You can redact column data by using one of the following methods:

• Full redaction. You redact all of the contents of the column data. The redacted value
returned to the querying application user depends on the data type of the column. For
example, columns of the NUMBER data type are redacted with a zero (0), and character
data types are redacted with a single space.

• Partial redaction. You redact a portion of the column data. For example, you can redact
a Social Security number with asterisks (*), except for the last 4 digits.

• Regular expressions. You can use regular expressions to look for patterns of data to
redact. For example, you can use regular expressions to redact email addresses, which
can have varying character lengths. It is designed for use with character data only.

• Random redaction. The redacted data presented to the querying application user
appears as randomly generated values each time it is displayed, depending on the data
type of the column.

• No redaction. The None redaction type option enables you to test the internal operation
of your redaction policies, with no effect on the results of queries against tables with
policies defined on them. You can use this option to test the redaction policy definitions
before applying them to a production environment.

Oracle Database applies the redaction at runtime, when users access the data (that is, at
query-execution time). This solution works well in a production system. During the time that
the data is being redacted, all of the data processing is performed normally, and the back-end
referential integrity constraints are preserved.

Data redaction can help you to comply with industry regulations such as Payment Card
Industry Data Security Standard (PCI DSS) and the Sarbanes-Oxley Act.

11-1

Related Topics

• Oracle Database Security Guide

11.2 When to Use Oracle Data Redaction
Use Oracle Data Redaction when you must disguise sensitive data that your
applications and application users must access.

Data Redaction enables you to easily disguise the data using several different
redaction styles.

Oracle Data Redaction is ideal for situations in which you must redact specific
characters out of the result set of queries of Personally Identifiable Information (PII)
returned to certain application users. For example, you may want to present a U.S.
Social Security number that ends with the numbers 4320 as ***-**-4320.

Oracle Data Redaction is particularly suited for call center applications and other
applications that are read-only. Take care when using Oracle Data Redaction with
applications that perform updates back to the database, because redacted data can be
written back to this database.

11.3 Benefits of Using Oracle Data Redaction
Oracle Data Redaction provides several benefits when you use it to protect your data.

These benefits are as follows:

• You have different styles of redaction from which to choose.

• Because the data is redacted at runtime, Data Redaction is well suited to
environments in which data is constantly changing.

• You can create the Data Redaction policies in one central location and easily
manage them from there.

• The Data Redaction policies enable you to create a wide variety of function
conditions based on SYS_CONTEXT values, which can be used at runtime to decide
when the Data Redaction policies will apply to the results of the application user's
query.

11.4 Target Use Cases for Oracle Data Redaction
Oracle Data Redaction fulfils common use case scenarios.

• Oracle Data Redaction Use with Database Applications
Oracle Data Redaction protects sensitive data that is displayed in database
applications.

• Oracle Data Redaction with Ad Hoc Database Queries Considerations
You may encounter situations where it is convenient to redact sensitive data for ad
hoc queries that are performed by database users.

11.4.1 Oracle Data Redaction Use with Database Applications
Oracle Data Redaction protects sensitive data that is displayed in database
applications.

Chapter 11
When to Use Oracle Data Redaction

11-2

Data Redaction is transparent to application users because it preserves the original data type
and (optionally) the formatting. It is highly transparent to the database because the data
remains the same in buffers, caches, and storage—only being changed at the last minute just
before SQL query results are returned to the caller. The redaction is enforced consistently
across all of the applications that use the same underlying database. You can specify which
application users should see only redacted data by checking application user information that
is passed into the database through the SYS_CONTEXT function; you can redact data based on
attributes of the current database or application user; and you can implement multiple logical
conditions within a given redaction policy. In addition, Data Redaction is implemented in a
way that minimizes performance overhead. These characteristics make Oracle Data
Redaction particularly well suited for usage by a range of applications, analytics tools,
reporting tools, and monitoring tools that share common production databases. Although its
primary target is redaction of production data for applications, Oracle Data Redaction also
can be used in combination with Oracle Enterprise Manager Data Masking and Subsetting
Pack for protecting sensitive data in testing and development environments.

Related Topics

• Oracle Data Redaction and Data Masking and Subsetting Pack
Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to create a
development or test copy of a production database.

11.4.2 Oracle Data Redaction with Ad Hoc Database Queries
Considerations

You may encounter situations where it is convenient to redact sensitive data for ad hoc
queries that are performed by database users.

For example, in the course of supporting a production application, a user may need to run ad
hoc database queries to troubleshoot and fix an urgent problem with the application. Even
though Oracle Data Redaction is not designed to prevent data exposure to database users
who run ad hoc queries directly against the database, it can provide an additional layer to
reduce the chances of accidental data exposure. Because such users may have rights to
change data, alter the database schema, and circumvent the SQL query interface entirely, it
is possible for a malicious user to bypass Data Redaction policies in certain circumstances.

Be aware that Data Redaction does not place any restriction on the WHERE clause of ad hoc
SQL, so the WHERE clause can be used in an iterative fashion to infer the actual data even
when there is a Data Redaction policy on the queried column and only the redacted value is
displayed.

Remember that the Oracle Database security tools are designed to be used together to
improve overall security. By deploying one or more of these tools as a complement to Oracle
Data Redaction, you can securely increase your overall security posture.

Related Topics

• Oracle Data Redaction General Security Guidelines
It is important to understand general security guidelines for using Oracle Data Redaction.

Chapter 11
Target Use Cases for Oracle Data Redaction

11-3

12
Oracle Data Redaction Features and
Capabilities

Oracle Data Redaction provides a variety of ways to redact different types of data.

• Full Data Redaction to Redact All Data
Full data redaction redacts the entire contents of the specified table or view column.

• Partial Data Redaction to Redact Sections of Data
In partial data redaction, you redact portions of the displayed output.

• Regular Expressions to Redact Patterns of Data
Regular expressions redact specific data within a column data value, based on a pattern
search.

• Redaction Using Null Values
You can create an Oracle Data Redaction policy that redacts column data by replacing it
with null values.

• Random Data Redaction to Generate Random Values
In random data redaction, the entire value is redacted by replacing it with a random
value.

• Comparison of Full, Partial, and Random Redaction Based on Data Types
The full, partial, and random data redaction styles affect the Oracle built-in, ANSI, user-
defined, and Oracle supplied types in different ways.

• No Redaction for Testing Purposes
You can create a Data Redaction policy that does not perform redaction.

• Central Management of Named Data Redaction Policy Expressions
You can create a library of named policy expressions that can be used in the columns of
multiple tables and views.

12.1 Full Data Redaction to Redact All Data
Full data redaction redacts the entire contents of the specified table or view column.

By default the output is displayed as follows:

• Character data types: The output text is a single space.

• Number data types: The output text is a zero (0).

• Date-time data types: The output text is set to the first day of January, 2001, which
appears as 01-JAN-01.

Full redaction is the default and is used whenever a Data Redaction policy specifies the
column but omits the function_type parameter setting. When you run the
DBMS_REDACT.ADD_POLICY procedure, to set the function_type parameter setting for full
redaction, you enter the following setting:

function_type => DBMS_REDACT.FULL

12-1

You can use the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to change
the full redaction output to different values.

Related Topics

• Syntax for Creating a Full Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction
policy.

12.2 Partial Data Redaction to Redact Sections of Data
In partial data redaction, you redact portions of the displayed output.

You can set the position within the actual data at which to begin the redaction, the
number of characters to redact starting from that position, and the redaction character
to use. This type of redaction is useful for situations where you want it to be obvious to
the person viewing the data that it was redacted in some way. Typically, you use this
type of redaction for credit cards or ID numbers.

Be aware that partial data redaction requires that your data width remain fixed. If you
want to redact columns containing string values of variable length, then you must use
regular expressions.

To specify partial redaction, you must set the DBMS_REDACT.ADD_POLICY procedure
function_type parameter to DBMS_REDACT.PARTIAL and use the function_parameters
parameter to define the partial redaction behavior.

The displayed output for partial data redaction can be as follows:

• Character data types: When partially redacted, a Social Security number
(represented as a hyphenated string within a character data type) with value
987-65-4320 could be redacted so that it is displayed as shown in the following
examples. The code on the right specifies how to redact the character data: it
specifies the expected input format of the actual data, the format to use for the
display of the redacted output, the start position at which to begin the redaction,
the character to use for the redaction, and how many characters to redact. The
first example uses a predefined format (in previous releases called a shortcut) for
character data type Social Security numbers, and the second example replaces
the first five numbers with an asterisk (*) while preserving the hyphens (-) in
between the numbers.

XXX-XX-4320 function_parameters => DBMS_REDACT.REDACT_US_SSN_F5,

***-**-4320 function_parameters => 'VVVFVVFVVVV,VVV-VV-VVVV,*,1,5',
• Number data types: The partially redacted NUMBER data type Social Security

number 987654328 could appear as follows. Both redact the first five digits. The
first example uses a predefined format that is designed for Social Security
numbers in the NUMBER data type, and the second replaces the first five numbers
with the number 9, starting from the first digit.

XXXXX4328 function_parameters => DBMS_REDACT.REDACT_NUM_US_SSN_F5,

999994328 function_parameters => '9,1,5',
• Date-time data types: Partially redacted datetime values can appear simply as

different dates. For example, the date 29-AUG-11 10.20.50.000000 AM could
appear as follows. In the first example, the day of the month is redacted to 02

Chapter 12
Partial Data Redaction to Redact Sections of Data

12-2

(using the setting d02) and in the second example, the month is redacted to DEC (using
m12). The uppercase values show the actual month (M), year (Y), hour (H), minute (M), and
second (S).

02-AUG-11 10.20.50.000000 AM function_parameters => 'Md02YHMS',

29-DEC-11 10.20.50.000000 AM function_parameters => 'm12DYHMS',

Related Topics

• Regular Expressions to Redact Patterns of Data
Regular expressions redact specific data within a column data value, based on a pattern
search.

• Syntax for Creating a Partial Redaction Policy
The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact
specific parts of the data returned to the application.

12.3 Regular Expressions to Redact Patterns of Data
Regular expressions redact specific data within a column data value, based on a pattern
search.

For example, you can redact the user name of email addresses, so that only the domain
shows (for example, replacing hpreston in the email address hpreston@example.com with
[redacted] so that it appears as [redacted]@example.com). To perform the redaction, set the
DBMS_REDACT.ADD_POLICY procedure function_type parameter to either
DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH, and then use the following parameters
to build the regular expression:

• A string search pattern (that is, the values to search for), such as:

regexp_pattern => '(.+)@(.+\.[A-Za-z]{2,4})'

This setting looks for a pattern of the following form:

one_or_more_characters@one_or_more_characters.2-4_characters_in_range_A-Z_or_a-z
• A replacement string, which replaces the value matched by the regexp_pattern setting.

The replacement string can include back references to sub-expressions of the main
regular expression pattern. The following example replaces the data before the @ symbol
(from the regexp_pattern setting) with the text [redacted]. The \2 setting refers to the
second match group, which is (.+\.[A-Za-z]{2,4}) from the regexp_pattern setting.

regexp_replace_string => '[redacted]@\2'
• The starting position for the string search string, such as the first character of the data,

such as:

regexp_position => DBMS_REDACT.RE_BEGINNING
• The kind of search and replace operation to perform, such as the first occurrence, every

fifth occurrence, or all of the occurrences, such as:

regexp_occurrence => DBMS_REDACT.RE_ALL
• The default matching behavior for the search and replace operation, such as whether the

search is case-sensitive (i sets it to be not case-sensitive):

regexp_match_parameter => 'i

Chapter 12
Regular Expressions to Redact Patterns of Data

12-3

In addition to the default parameters, you can use a set of predefined formats that
enable you to use commonly used regular expressions for telephone numbers, email
addresses, and credit card numbers.

Related Topics

• Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a
regular expression-based redaction policy.

12.4 Redaction Using Null Values
You can create an Oracle Data Redaction policy that redacts column data by replacing
it with null values.

This feature enables you to use the DBMS_REDACT.NULLIFY function hide all of the
sensitive data in a table or view column and replace it with null values. You can set this
function by using the function_type parameter of the DBMS_REDACT.ADD_POLICY or
DBMS_REDACT.ALTER_POLICY procedure.

For example:

function_type => DBMS_REDACT.NULLIFY

Related Topics

• Creating a DBMS_REDACT.NULLIFY Redaction Policy
You can create Oracle Data Redaction policies that return null values for the
displayed value of the table or view column.

12.5 Random Data Redaction to Generate Random Values
In random data redaction, the entire value is redacted by replacing it with a random
value.

The redacted values displayed in the result set of the query change randomly each
time application users run the query.

This type of redaction is useful in cases where you do not want it to be obvious that
the data was redacted. It works especially well for number and datetime data types,
where it is difficult to distinguish between random and real data.

The displayed output for random values changes based on the data type of the
redacted column, as follows:

• Character data types: The random output is a mixture of characters (for example,
HTU[G{\pjkEWcK). It behaves differently for the CHAR and VARCHAR2 data types, as
follows:

– CHAR data type: The redacted output is always in the same character set as
the character set of the column. The byte length of the redacted output is
always the same as the column definition length (that is, the column length
that was provided at the time of table creation). For example, if the column is
CHAR(20), then a string of 20 random characters is provided in the redacted
output of the user's query.

– VARCHAR2 data type: For random redaction of a VARCHAR data type, the
redacted output is always in the same character set as the character set of the

Chapter 12
Redaction Using Null Values

12-4

column. The length of the redacted output is limited based on the length of the actual
data in the column. No characters in excess of the length of the actual data are
displayed. For example, if the column is VARCHAR2(20) and the row being redacted
contains actual data with a length of 12, then a string of 12 random characters (not
20) is provided in the redacted output of the user's query for that row.

• Number data types: Each actual number value is redacted by replacing it with a
random, non-negative number modulo the absolute value of the actual data. This
redaction results in random numbers that do not exceed the precision of the actual data.
For example, the number 987654321 can be redacted by replacing it with any of the
numbers 12345678, 13579, 0, or 987654320, but not by replacing it with any of the
numbers 987654321, 99987654321, or -1. The number -123 could be redacted by
replacing it with the numbers 122, 0, or 83, but not by replacing it with any of the numbers
123, 1123, or -2.

The only exception to the above is when the actual value is an integer between -1 and 9.
In this case, the actual data is redacted by replacing it with a random, non-negative
integer modulo ten (10).

• Date-time data types: When values of the date data type are redacted using random
Data Redaction, Oracle Database displays them with random dates that are always
different from those of the actual data.

The setting for using random redaction is as follows:

function_type => DBMS_REDACT.RANDOM

Related Topics

• Syntax for Creating a Random Redaction Policy
A random redaction policy presents the redacted data to the querying application user as
randomly generated values, based on the column data type.

12.6 Comparison of Full, Partial, and Random Redaction Based
on Data Types

The full, partial, and random data redaction styles affect the Oracle built-in, ANSI, user-
defined, and Oracle supplied types in different ways.

• Oracle Built-in Data Types Redaction Capabilities
Oracle Data Redaction handles the Oracle built-in data types depending on the type of
Data Redaction policies that are used.

• ANSI Data Types Redaction Capabilities
Oracle Data Redaction converts ANSI data types in specific ways, depending on the type
of redaction that the Data Redaction policy has.

• Built-in and ANSI Data Types Full Redaction Capabilities
For full redaction, the default redacted value depends on whether the data type is Oracle
built-in or ANSI.

• User-Defined Data Types or Oracle Supplied Types Redaction Capabilities
Several data types or types are not supported by Oracle Data Redaction.

Chapter 12
Comparison of Full, Partial, and Random Redaction Based on Data Types

12-5

12.6.1 Oracle Built-in Data Types Redaction Capabilities
Oracle Data Redaction handles the Oracle built-in data types depending on the type of
Data Redaction policies that are used.

Table 12-1 describes the Oracle Data Redaction support for Oracle built-in data types.

Table 12-1 Redaction Support for Oracle Built-in Data Types

Column Data
Type

Full Partial Regexp Random

Character1 Yes Yes Yes Yes

Number2 Yes Yes No Yes

Raw3 No No No No

Date-time4 Yes Yes No Yes

Interval5 No No No No

BFILE No No No No

BLOB Yes No No No

CLOB Yes No Yes No

NCLOB Yes No Yes No

ROWID No No No No

UROWID No No No No

1 Includes CHAR, VARCHAR2 (including long VARCHAR2, for example, VARCHAR2(20000)), NCHAR,
NVARCHAR2

2 Includes NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE
3 Includes LONG RAW, RAW
4 Includes DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME
ZONE

5 Includes INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND

12.6.2 ANSI Data Types Redaction Capabilities
Oracle Data Redaction converts ANSI data types in specific ways, depending on the
type of redaction that the Data Redaction policy has.

Table 12-2 compares how the full, partial, and random redaction styles work for ANSI
data types, with regard to how they are converted and their support status.

Table 12-2 Redaction Support for the ANSI Data Types

Data Type How
Converted

Full
Redaction

Partial
Redaction

Regexp NULL
Redaction

Random
Redaction

CHARACTER(n),

CHAR(n)
Converted
to CHAR(n)

Yes Yes Yes Yes Yes

Chapter 12
Comparison of Full, Partial, and Random Redaction Based on Data Types

12-6

Table 12-2 (Cont.) Redaction Support for the ANSI Data Types

Data Type How
Converted

Full
Redaction

Partial
Redaction

Regexp NULL
Redaction

Random
Redaction

CHARACTER
VARYING(n),

CHAR VARYING(n)

Converted
to
VARCHAR2(
n)

Yes Yes Yes Yes Yes

NATIONAL
CHARACTER(n),

NATIONAL CHAR(n),

NCHAR(n)

Converted
to
NCHAR(n)

Yes Yes Yes Yes Yes

NATIONAL
CHARACTER
VARYING(n),

NATIONAL CHAR
VARYING(n),

NCHAR VARYING(n)

Converted
to
NVARCHAR
2(n)

Yes Yes Yes Yes Yes

NUMERIC[(p,s)]

DECIMAL[(p,s)]

Converted
to
NUMBER(p,
s)

Yes Yes Yes Yes Yes

INTEGER,

INT,

SMALLINT

Converted
to
NUMBER(38
)

Yes Yes Yes Yes Yes

FLOAT,

DOUBLE PRECISION
Converted
to
FLOAT(126
)

Yes Yes Yes Yes Yes

REAL Converted
to
FLOAT(63)

Yes Yes Yes Yes Yes

GRAPHIC,

LONG VARGRAPHIC,

VARGRAPHIC,

TIME

No
conversion

No No No No No

12.6.3 Built-in and ANSI Data Types Full Redaction Capabilities
For full redaction, the default redacted value depends on whether the data type is Oracle
built-in or ANSI.

ANSI Data Types Redaction Capabilities shows the default settings for both Oracle built-in
and ANSI data type columns that use full redaction.

Chapter 12
Comparison of Full, Partial, and Random Redaction Based on Data Types

12-7

Table 12-3 Default Settings and Categories for Columns That Use Full
Redaction

Data Type Default Redacted Value Data Type Category

CHARACTER Single space (“ “) Oracle built-in

CHARACTER(n),

CHAR(n)
Single space (“ “) ANSI

CHARACTER VARYING(n),

CHAR VARYING(n)
Single space (“ “) ANSI

NATIONAL CHARACTER(n),

NATIONAL CHAR(n),

NCHAR(n)

Single space (“ “) ANSI

NATIONAL CHARACTER VARYING(n),

NATIONAL CHAR VARYING(n),

NCHAR VARYING(n)

Single space (“ “) ANSI

NUMBER Zero (0) Oracle built-in

NUMERIC[(p,s)]

DECIMAL[(p,s)]

Zero (0) Oracle built-in

INTEGER,

INT,

SMALLINT

Zero (0) ANSI

FLOAT,

DOUBLE PRECISION
Zero (0) ANSI

REAL Zero (0) ANSI

DATE-TIME 01–01–01 or 01–01–01
01:00:00

Oracle built-in

BLOB Oracle’s raw
representation of
[redacted]
1

Oracle built-in

CLOB [redacted] Oracle built-in

NCLOB [redacted] Oracle built-in

1 If you have changed the character set, then you may need to invoke the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to set the value to the raw
representation in the new character set, as follows:

DECLARE
 new_red_blob BLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(new_red_blob, TRUE);
 DBMS_LOB.WRITE(new_red_blob, 10, 1,
UTL_RAW.CAST_TO_RAW('[redacted]'));
 dbms_redact.update_full_redaction_values(
 blob_val => new_red_blob);
DBMS_LOB.FREETEMPORARY(new_red_blob);

Chapter 12
Comparison of Full, Partial, and Random Redaction Based on Data Types

12-8

END;
/

After you run this procedure, restart the database.

See also Altering the Default Full Data Redaction Value for more information about using the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

12.6.4 User-Defined Data Types or Oracle Supplied Types Redaction
Capabilities

Several data types or types are not supported by Oracle Data Redaction.

Table 12-4 compares how the full, partial, regular expression, and random redaction styles
work for user-defined and Oracle-supplied types.

Table 12-4 Redaction Support for the User-Defined Data Types or Oracle-Supplied Types

Data Type or Type Full
Redaction

Partial
Redaction

Regexp NULL
Redactio
n

Random
Redaction

User-defined data types No No No No No

Oracle supplied types: Any types, XML types,
Oracle Spatial types, Oracle Media types

No No No No No

12.7 No Redaction for Testing Purposes
You can create a Data Redaction policy that does not perform redaction.

This is useful for cases in which you have a redacted base table, yet you want a specific
application user to have a view that always shows the actual data. You can create a new view
of the redacted table and then define a Data Redaction policy for this view. The policy still
exists on the base table, but no redaction is performed when the application queries using the
view as long as the DBMS_REDACT.NONE function_type setting was used to create a policy on
the view.

12.8 Central Management of Named Data Redaction Policy
Expressions

You can create a library of named policy expressions that can be used in the columns of
multiple tables and views.

By having named policy expressions, you can centrally manage all of the policy expressions
within a database.

When you modify the policy expression, the change is reflected in all table columns that use
the expression. The policy expression takes precedence over the expression setting in the
Data Redaction policy. To create the policy expression, you must use the
DBMS_REDACT.CREATE_POLICY_EXPRESSION procedure, and to apply the policy expression to a
column, you use DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL. This feature provides flexibility to
redact different columns in a table or view, based on different runtime conditions.

Chapter 12
No Redaction for Testing Purposes

12-9

For example, consider a use case that involves a customer care application. A
customer calls the customer care center to request a return on a recent purchase. A
level 1 support representative of the call center must first verify the order ID, customer
name, and customer address before initiating the return. During the process, there is
no need for the level 1 support representative to view the customer’s credit card
number. So, the credit card column is redacted when the support representative
queries the customer details in the call center application. When the return is initiated,
a sales representative from the return department may need to view the credit card
number to process the return. However, there is no need for the sales representative
to view the expiration date of the credit card. So, when the sales representative
queries the customer details in the same application, the credit card number is visible
but the expiration date is redacted.

In this use case, different columns in the customer details table must be redacted in
different ways, based on who the logged in user is. Oracle Data Redaction simplifies
the implementation of this use case by using named Data Redaction policy
expressions. This type of policy expression enables you to define and associate
different policy expressions on different columns in the same table or view. Moreover,
you can centrally manage named policy expressions within a database. Any updates
that you make to a named policy expression are immediately propagated to all of the
associated table or view columns.

Related Topics

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be
used in multiple redaction policies and applied to multiple tables or views.

Chapter 12
Central Management of Named Data Redaction Policy Expressions

12-10

13
Configuring Oracle Data Redaction Policies

An Oracle Data Redaction policy defines how to redact data in a column based on the table
column type and the type of redaction you want to use.

• About Oracle Data Redaction Policies
An Oracle Data Redaction policy defines the conditions in which redaction must occur for
a table or view.

• Who Can Create Oracle Data Redaction Policies?
Because data redaction involves the protection of highly sensitive data, only trusted users
should create Oracle Data Redaction policies.

• Planning an Oracle Data Redaction Policy
Before you create a Oracle Data Redaction policy, you should plan the data redaction
policy that best suits your site’s needs.

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

• Using Expressions to Define Conditions for Data Redaction Policies
The expression parameter in the DBMS_REDACT.ADD_POLICY procedure sets the
conditions to which the policy applies.

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be used in
multiple redaction policies and applied to multiple tables or views.

• Creating a Full Redaction Policy and Altering the Full Redaction Value
You can create a full redaction policy to redact all contents in a data column, and
optionally, you can alter the default full redaction value.

• Creating a DBMS_REDACT.NULLIFY Redaction Policy
You can create Oracle Data Redaction policies that return null values for the displayed
value of the table or view column.

• Creating a Partial Redaction Policy
In partial data redaction, you can redact portions of data, and for different kinds of data
types.

• Creating a Regular Expression-Based Redaction Policy
A regular expression-based redaction policy enables you to redact data based on a
search-and-replace model.

• Creating a Random Redaction Policy
A random redaction policy presents redacted data as randomly generated values, such
as Ukjsl32[[]]]s.

• Creating a Policy That Uses No Redaction
You can create policies that use no redaction at all, for when you want to test the policy in
a development environment.

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

13-1

• Altering an Oracle Data Redaction Policy
The DBMS_REDACT.ALTER_POLICY procedure enables you to modify Oracle Data
Redaction policies.

• Redacting Multiple Columns
You can redact more than one column in a Data Redaction policy.

• Disabling and Enabling an Oracle Data Redaction Policy
You can disable and then reenable Oracle Data Redactions policies as necessary.

• Dropping an Oracle Data Redaction Policy
The DBMS_REDACT.DROP_POLICY procedure drops Oracle Data Redaction policies.

• Tutorial: SQL Expressions to Build Reports with Redacted Values
SQL expressions can be used to build reports based on columns that have Oracle
Data Redaction policies defined on them.

• Oracle Data Redaction Policy Data Dictionary Views
Oracle Database provides data dictionary views that list information about Data
Redaction policies.

13.1 About Oracle Data Redaction Policies
An Oracle Data Redaction policy defines the conditions in which redaction must occur
for a table or view.

A Data Redaction policy has the following characteristics:

• The Data Redaction policy defines the following: What kind of redaction to
perform, how the redaction should occur, and when the redaction takes place.
Oracle Database performs the redaction at execution time, just before the data is
returned to the application.

• A Data Redaction policy can fully redact values, partially redact values, or
randomly redact values. In addition, you can define a Data Redaction policy to not
redact any data at all, for when you want to test your policies in a test
environment.

• A Data Redaction policy can be defined with a policy expression which allows for
different application users to be presented with either redacted data or actual data,
based on whether the policy expression returns TRUE or FALSE. Redaction takes
place when the boolean result of evaluating the policy expression is TRUE. For
security reasons, the functions and operators that can be used in the policy
expression are limited to SYS_CONTEXT and a few others. User-created functions
are not allowed. Policy expressions can make use of the SYS_SESSION_ROLES
namespace with the SYS_CONTEXT function to check for enabled roles.

• Different Data Redaction policy expressions can be created and then applied
individually for different columns within the same table or view.

Table 13-1 lists the procedures in the DBMS_REDACT package.

Table 13-1 DBMS_REDACT Procedures

Procedure Description

DBMS_REDACT.ADD_POLICY Adds a Data Redaction policy to a table or view

DBMS_REDACT.ALTER_POLICY Modifies a Data Redaction policy

Chapter 13
About Oracle Data Redaction Policies

13-2

Table 13-1 (Cont.) DBMS_REDACT Procedures

Procedure Description

DBMS_REDACT.APPLY_POLICY_EXPR
_TO_COL

Applies a Data Redaction policy expression to a table
or view column

DBMS_REDACT.CREATE_POLICY_EXP
RESSION

Creates a Data Redaction policy expression

DBMS_REDACT.DISABLE_POLICY Disables a Data Redaction policy

DBMS_REDACT.DROP_POLICY Drops a Data Redaction policy

DBMS_REDACT.DROP_POLICY_EXPRE
SSION

Drops a Data Redaction policy expression

DBMS_REDACT.ENABLE_POLICY Enables a Data Redaction policy

DBMS_REDACT.UPDATE_FULL_REDAC
TION_VALUES

Globally updates the full redaction value for a given
data type. You must restart the database instance
before the updated values can be used.

DBMS_REDACT.UPDATE_POLICY_EXP
RESSION

Updates a Data Redaction policy expression

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_REDACT PL/SQL package

• Managing Oracle Data Redaction Policies in Oracle Enterprise Manager for
information about using Oracle Enterprise Manager Cloud Control to create and
manage Oracle Data Redaction policies and formats

13.2 Who Can Create Oracle Data Redaction Policies?
Because data redaction involves the protection of highly sensitive data, only trusted users
should create Oracle Data Redaction policies.

To create redaction policies, you must have the EXECUTE privilege on the DBMS_REDACT
PL/SQL package. To find the privileges that a user has been granted, you can query the
DBA_SYS_PRIVS data dictionary view.

You do not need any privileges to access the underlying tables or views that will be protected
by the policy.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 13
Who Can Create Oracle Data Redaction Policies?

13-3

13.3 Planning an Oracle Data Redaction Policy
Before you create a Oracle Data Redaction policy, you should plan the data redaction
policy that best suits your site’s needs.

1. Ensure that you have been granted the EXECUTE privilege on the DBMS_REDACT
PL/SQL package.

2. Determine the data type of the table or view column that you want to redact.

3. Determine if the base object to which you want to add the Data Redaction policy
has dependent objects. If it does have dependent objects, then these objects will
become invalid when the Data Redaction policy is added to the base object, and
these objects will be recompiled automatically when they are used.

Alternatively, you can proactively recompile them yourself by using an ALTER ...
COMPILE statement. Be aware that invalidating dependent objects (by adding a
Data Redaction policy on their base object) and causing them to need to be
recompiled can decrease performance in the overall system. Oracle recommends
that you only add a Data Redaction policy to an object that has dependent objects
during off-peak hours or during a scheduled downtime.

4. Ensure that this column is not used in an Oracle Virtual Private Database (VPD)
row filtering condition. That is, it must not be part of the VPD predicate generated
by the VPD policy function.

5. Decide on the type of redaction that you want to perform: full, random, partial,
regular expressions, or none.

6. Decide which users to apply the Data Redaction policy to.

7. Based on this information, create the Data Redaction policy by using the
DBMS_REDACT.ADD_POLICY procedure.

8. Configure the policy to have additional columns to be redacted.

After you create the Data Redaction policy, it is automatically enabled and ready to
redact data.

Related Topics

• Redacting Multiple Columns
You can redact more than one column in a Data Redaction policy.

13.4 General Syntax of the DBMS_REDACT.ADD_POLICY
Procedure

To create a Data Redaction policy, you must use the DBMS_REDACT.ADD_POLICY
procedure.

The complete syntax for the DBMS_REDACT.ADD_POLICY procedure is as follows:

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 policy_description IN VARCHAR2 := NULL,
 column_name IN VARCHAR2 := NULL,

Chapter 13
Planning an Oracle Data Redaction Policy

13-4

 column_description IN VARCHAR2 := NULL,
 function_type IN BINARY_INTEGER := DBMS_REDACT.FULL,
 function_parameters IN VARCHAR2 := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE,
 regexp_pattern IN VARCHAR2 := NULL,
 regexp_replace_string IN VARCHAR2 := NULL,
 regexp_position IN BINARY_INTEGER :=1,
 regexp_occurrence IN BINARY_INTEGER :=0,
 regexp_match_parameter IN VARCHAR2 := NULL);

In this specification:

• object_schema: Specifies the schema of the object on which the Data Redaction policy
will be applied. If you omit this setting (or enter NULL), then Oracle Database uses the
current user's name. Be aware that the meaning of "current user" here can change,
depending on where you invoke the DBMS_REDACT.ADD_POLICY procedure.

For example, suppose user mpike grants user fbrown the EXECUTE privilege on a definer's
rights PL/SQL package called mpike.protect_data in mpike's schema. From within this
package, mpike has coded a procedure called protect_cust_data, which invokes the
DBMS_REDACT.ADD_POLICY procedure. User mpike has set the object_schema parameter
to NULL.

When fbrown invokes the protect_cust_data procedure in the mpike.protect_data
package, Oracle Database attempts to define the Data Redaction policy around the
object cust_data in the mpike schema, not the cust_data object in the schema that
belongs to fbrown.

• object_name: Specifies the name of the table or view to which the Data Redaction policy
applies.

• policy_name: Specifies the name of the policy to be created. Ensure that this name is
unique in the database instance. You can find a list of existing Data Redaction policies by
querying the POLICY_NAME column of the REDACTION_POLICIES data dictionary view.

• policy_description: Specifies a brief description of the purpose of the policy.

• column_name: Specifies the column whose data you want to redact. Note the following:

– You can apply the Data Redaction policy to multiple columns. If you want to
apply the Data Redaction policy to multiple columns, then after you use
DBMS_REDACT.ADD_POLICY to create the policy, run the DBMS_REDACT.ALTER_POLICY
procedure as many times as necessary to add each of the remaining required
columns to the policy. See Altering an Oracle Data Redaction Policy.

– Only one policy can be defined on a table or view. You can, however, create a
new view on the table, and by defining a second redaction policy on this new view,
you can choose to redact the columns in a different way when a query is issued
against this new view. When deciding how to redact a given column, Oracle
Database uses the policy of the earliest view in a view chain.

– If you do not specify a column (for example, by entering NULL), then no
columns are redacted by the policy. This enables you to create your policies so
that they are in place, and then later on, you can add the column specification when
you are ready.

– Do not use a column that is currently used in an Oracle Virtual Private
Database (VPD) row filtering condition. In other words, the column should not be
part of the VPD predicate generated by the VPD policy function. (See Oracle Data

Chapter 13
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

13-5

Redaction and Oracle Virtual Private Database for more information about
using Data Redaction with VPD.)

– You cannot define a Data Redaction policy on a virtual column. In
addition, you cannot define a Data Redaction policy on a column that is
involved in the SQL expression of any virtual column. If you are using the
DBMS_STATS PL/SQL package to collect database statistics, then be aware that
DBMS_STATS will add an invisible virtual column to the table internally when you
create column groups. As a result, Oracle Database returns an ORA-28073:
The column column_name has an unsupported data type or attribute
error if you add a Data Redaction policy on a column that is also the column
that is used to create column groups.

A user with access to the DBA_STAT_EXTENSIONS data dictionary view can look
in the EXTENSION column of DBA_STAT_EXTENSIONS using the following query to
find the virtual column expression (that is internally created by DBMS_STATS), to
see if it contains any column name that is being provided to a
DBMS_REDACT.ADD_POLICY call to create a Data Redaction policy.

SELECT EXTENSION_NAME, EXTENSION, CREATOR
 FROM DBA_STAT_EXTENSIONS
 WHERE TABLE_NAME='table_name_that_you_attempted_to_redact';

• column_description: Specifies a brief description of the column that you are
redacting.

• function_type: Specifies a function that sets the type of redaction. See the
following sections for more information:

– Syntax for Creating a Full Redaction Policy

– Syntax for Creating a Partial Redaction Policy

– Syntax for Creating a Regular Expression-Based Redaction Policy

– Syntax for Creating a Random Redaction Policy

– Syntax for Creating a Policy with No Redaction

If you omit the function_type parameter, then the default redaction
function_type setting is DBMS_REDACT.FULL.

• function_parameters: Specifies how the column redaction should appear for
partial redaction. See Syntax for Creating a Partial Redaction Policy.

• expression: Specifies a Boolean SQL expression to determine how the policy is
applied. Redaction takes place only if this policy expression evaluates to TRUE.
See Using Expressions to Define Conditions for Data Redaction Policies.

By default, a Data Redaction policy expression applies to all the columns that
belong to the Data Redaction policy defined on that table or view. Alternatively,
you can choose to create and associate a policy expression for individual columns
to override the existing expression. These column level expressions are called as
named policy expressions. See Creating and Managing Multiple Named Policy
Expressions.

• enable: When set to TRUE, enables the policy upon creation. When set to FALSE, it
creates the policy as a disabled policy. The default is TRUE. After you create the
policy, you can disable or enable it. See the following sections:

– Disabling an Oracle Data Redaction Policy

Chapter 13
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

13-6

– Enabling an Oracle Data Redaction Policy

• regexp_pattern, regexp_replace_string, regexp_position, regexp_position,
regexp_occurrence, regexp_match_parameter: Enable you to use regular expressions to
redact data, either fully or partially. If the regexp_pattern does not match anything in the
actual data, then full redaction will take place, so be careful when specifying the
regexp_pattern. Ensure that all of the values in the column conform to the semantics of
the regular expression you are using. See Syntax for Creating a Regular Expression-
Based Redaction Policy for more information.

13.5 Using Expressions to Define Conditions for Data Redaction
Policies

The expression parameter in the DBMS_REDACT.ADD_POLICY procedure sets the conditions to
which the policy applies.

• About Using Expressions in Data Redaction Policies
The DBMS_REDACT.ADD_POLICY and DBMS_REDACT.ALTER_POLICY expression parameter
defines a Boolean expression that must evaluate to TRUE to enable a redaction.

• Supported Functions for Data Redaction Expressions
You can create expressions that use functions to return specific types of data, such as
SYS_CONTEXT namespaces.

• Applying the Redaction Policy Based on User Environment
You can apply a Data Redaction policy based on the user’s environment, such as the
session user name or a client identifier.

• Applying the Redaction Policy Based on Database Roles
You can apply a Data Redaction policy based on a database role, such as the DBA role.

• Applying the Redaction Policy Based on Oracle Label Security Label Dominance
You can set a condition on which to apply a Data Redaction policy based on the
dominance of Oracle Label Security labels.

• Applying the Redaction Policy Based on Application Express Session States
You can apply a Data Redaction policy based on an Oracle Application Express (APEX)
session state.

• Applying the Redaction Policy to All Users
You can apply the policy irrespective of the context to any user, with no filtering.

13.5.1 About Using Expressions in Data Redaction Policies
The DBMS_REDACT.ADD_POLICY and DBMS_REDACT.ALTER_POLICY expression parameter
defines a Boolean expression that must evaluate to TRUE to enable a redaction.

The expression that is defined in the expression parameter is the default expression for the
Oracle Data Redaction policy. If you apply a named policy expression for the columns that will
be redacted by the Data Redaction policy, then the named policy expression takes
precedence over the expression defined in the Data Redaction policy.

You can create expressions that make use of other Oracle Database features. For example,
you can create expressions that are based on a user’s environment (using the SYS_CONTEXT
and XS_SYS_CONTEXT functions), character string functions, the Oracle Label Security label
dominance functions, or Oracle Application Express functions.

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-7

Follow these guidelines when you write the expression:

• Use only the following operators: AND, OR, IN, NOT IN, =, !=, <>, <, >, >=, <=
• Because the expression must evaluate to TRUE for redaction, be careful when

making comparisons with NULL. Remember that in SQL the value NULL is
undefined, so comparisons with NULL tend to return FALSE.

• Do not use user-created functions in the expression parameter; this is not
permitted.

• Remember that for user SYS and users who have the EXEMPT REDACTION POLICY
privilege, all of the Data Redaction policies are bypassed, so the results of their
queries are not redacted. See the following topics for more information about
users who are exempted from Data Redaction policies:

– Exemption of Users from Oracle Data Redaction Policies

– Oracle Data Pump Security Model for Oracle Data Redaction

13.5.2 Supported Functions for Data Redaction Expressions
You can create expressions that use functions to return specific types of data, such as
SYS_CONTEXT namespaces.

• Expressions Using Namespace Functions
You can use the SYS_CONTEXT and XS_SYS_CONTEXT namespace functions in Data
Redaction expressions.

• Expressions Using the SUBSTR Function
You can use the SUBSTR function, which returns portion (such as characters 1–3) of
the character string specified, in Data Redaction expressions. The first parameter
must be a constant string or a call to the SYS_CONTEXT function or the
XS_SYS_CONTEXT function.

• Expressions Using Length of Character String Functions
You can use the following functions, which return the length of character strings, in
Data Redaction expressions. Oracle Database also checks that the arguments to
each of these operators is either a constant string or a call to the SYS_CONTEXT or
XS_SYS_CONTEXT function.

• Expressions Using Oracle Application Express Functions
You can use Oracle Application Express functions in Data Redaction expressions.

• Expressions Using Oracle Label Security Functions
You can use Oracle Label Security functions with Data Redaction expressions.

13.5.2.1 Expressions Using Namespace Functions
You can use the SYS_CONTEXT and XS_SYS_CONTEXT namespace functions in Data
Redaction expressions.

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-8

Table 13-2 Expressions Using Namespace Functions

Namespace Function Description

SYS_CONTEXT Returns the value associated with a namespace. The following
namespace functions are valid:

• USERENV (default namespace), which includes values such as
SESSION_USER and CLIENT_IDENTIFIER.

• SYS_SESSION_ROLES, which contains attributes for each role

• XS$SESSION, which contains attributes for the user session.

• User-defined namespaces, but these must exist in the
DBA_CONTEXT catalog view before the policy expression is created.

XS_SYS_CONTEXT Similar to SYS_CONTEXT but designed for an Oracle Real Application
Security environment.

XS_SYS_CONTEXT supports the same namespaces that SYS_CONTEXT
supports.

See Also:

• Oracle Database SQL Language Reference for more information about
SYS_CONTEXT

• Oracle Database Real Application Security Administrator's and Developer's
Guide for more information about XS_SYS_CONTEXT

13.5.2.2 Expressions Using the SUBSTR Function
You can use the SUBSTR function, which returns portion (such as characters 1–3) of the
character string specified, in Data Redaction expressions. The first parameter must be a
constant string or a call to the SYS_CONTEXT function or the XS_SYS_CONTEXT function.

Table 13-3 Expressions Using SUBSTR String Functions

SUBSTR String Function Description

SUBSTR Returns a portion of the input char value, beginning at
character position, substring_length characters long.
SUBSTR calculates length using characters as defined by the
input character set.

SUBSTRB Returns the specified portion of the input value in bytes

SUBSTRC Returns the specified portion of the input value in Unicode
complete characters

SUBSTR2 Returns the specified portion of the input value in UCS2 code
points

SUBSTR4 Returns the specified portion of the input value in UCS4 code
points

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-9

See Also:

Oracle Database SQL Language Reference for more information about the
SUBSTR functions

13.5.2.3 Expressions Using Length of Character String Functions
You can use the following functions, which return the length of character strings, in
Data Redaction expressions. Oracle Database also checks that the arguments to each
of these operators is either a constant string or a call to the SYS_CONTEXT or
XS_SYS_CONTEXT function.

Table 13-4 Expressions Using Character String Functions

Character String Function Description

LENGTH Returns the length of the input char value. LENGTH
calculates length using characters as defined by the input
character set.

LENGTHB Returns the length of the input value in bytes

LENGTHC Returns the length of the input value in Unicode complete
characters

LENGTH2 Returns the length of the input value in UCS2 code points

LENGTH4 Returns the length of the input value in UCS4 code points

See Also:

Oracle Database SQL Language Reference for more information about the
LENGTH functions

13.5.2.4 Expressions Using Oracle Application Express Functions
You can use Oracle Application Express functions in Data Redaction expressions.

Table 13-5 Oracle Application Express Functions

Oracle Application Express Function Description

V Returns the session state for an item. It is a
wrapper for the
APEX_UTIL.GET_SESSION_STATE function

NV Returns the numeric value for a numeric item.
It is a wrapper for the
APEX_UTIL.GET_NUMERIC_SESSION_STATE
function

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-10

See Also:

Oracle Application Express API Reference for more information about the Oracle
Application Express functions

13.5.2.5 Expressions Using Oracle Label Security Functions
You can use Oracle Label Security functions with Data Redaction expressions.

For the functions in the bold font, Oracle Data Redaction checks that their parameters are
either constants or calls to only one of the SA_UTL.NUMERIC_LABEL, CHAR_TO_LABEL, and
SA_SESSION.LABEL functions, and that the arguments to those functions are constant.

Table 13-6 Oracle Label Security Functions

Oracle Label Security Function Description

LBACSYS.OLS_LABEL_DOMINATES Checks if the session label of an Oracle Label
Security policy dominates or is equal to another
OLS label

DOMINATES Checks if one OLS label is dominant to a second
OLS label.

Deprecated in Oracle Database 12c release 1
(12.1); use the OLS_DOMINATES or OLS_DOM
function instead.

OLS_DOMINATES Checks if one OLS label is dominant to a second
OLS label

OLS_DOM Checks if one OLS label is dominant to a second
OLS label

DOM Checks if one OLS label is dominant to a second
OLS label

OLS_STRICTLY_DOMINATES Checks if one OLS label is dominant to a second
OLS label and is not equal to it

STRICTLY_DOMINATES Checks if one OLS label is dominant to a second
OLS label and is not equal to it

S_DOM Checks if one OLS label is dominant to a second
OLS label and is not equal to it.

Deprecated in Oracle Database 12c release 1
(12.1); use the OLS_DOMINATES or OLS_DOM
function instead.

SA_UTL.DOMINATES Checks if one OLS label dominates a second OLS
label or if the session label for a given OLS policy
dominates an OLS label

SA_UTL.CHECK_READ Checks if a user can read a policy-protected row

SA_UTL.NUMERIC_LABEL Returns the current session OLS label

CHAR_TO_LABEL Converts a character string to an OLS label tag

SA_SESSION.LABEL Returns the label that is associated with the
specified OLS policy

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-11

Related Topics

• Oracle Label Security Administrator’s Guide

13.5.3 Applying the Redaction Policy Based on User Environment
You can apply a Data Redaction policy based on the user’s environment, such as the
session user name or a client identifier.

• Use the USERENV namespace of the SYS_CONTEXT function in the
DBMS_REDACT.ADD_POLICY expression parameter to apply the policy based on a
user’s environment.

For example, to apply the policy only to the session user name psmith:

expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''PSMITH'''

See Also:

Oracle Database SQL Language Reference for information about more
namespaces that you can use with the SYS_CONTEXT function

13.5.4 Applying the Redaction Policy Based on Database Roles
You can apply a Data Redaction policy based on a database role, such as the DBA role.

• Use the SYS_SESSION_ROLES namespace in the SYS_CONTEXT function to apply the
policy based on a user role.

This namespace contains attributes for each role. The value of the attribute is TRUE
if the specified role is enabled for the querying application user; the value is FALSE
if the role is not enabled.

For example, suppose you wanted only supervisors to be allowed to see the actual
data. The following example shows how to use the DBMS_REDACT.ADD_POLICY
expression parameter to set the policy to show the actual data to any application user
who has the supervisor role enabled, but redact the data for all of the other
application users.

expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''SUPERVISOR'') = ''FALSE'''

13.5.5 Applying the Redaction Policy Based on Oracle Label Security
Label Dominance

You can set a condition on which to apply a Data Redaction policy based on the
dominance of Oracle Label Security labels.

• Use the public standalone function OLS_LABEL_DOMINATES to check the dominance
of a session label. This function returns 1 (TRUE) if the session label of the
specified policy_name value dominates or is equal to the label that is specified by
the label parameter; otherwise, it returns 0 (FALSE).

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-12

For example, to apply a Data Redaction policy only in cases where the session label for the
policy hr_ols_pol does not dominate nor is equal to label hs:

expression => 'OLS_LABEL_DOMINATES (''hr_ols_pol'',''hs'') = 0'

13.5.6 Applying the Redaction Policy Based on Application Express
Session States

You can apply a Data Redaction policy based on an Oracle Application Express (APEX)
session state.

• Use either of the following public Application Express APIs in the
DBMS_REDACT.ADD_POLICY expression parameter to apply the policy on an Oracle
Application Express session state:

– V, which is a synonym for the APEX_UTIL.GET_SESSION_STATE function

– NV, which is a synonym for the APEX_UTIL.GET_NUMERIC_SESSION_STATE function

For example, to set the DBMS_REDACT.ADD_POLICY expression parameter if you wanted
redaction to take place when the application item called G_JOB has the value CLERK:

expression => 'V(''APP_USER'') != ''mavis@example.com'' or V(''APP_USER'') is null'

You can, for example, use these functions to redact data based on a job or a privilege role
that is stored in a session state in an APEX application.

If you want redaction to take place when the querying user is not within the context of an
APEX application (when the query is issued from outside the APEX framework, for example
directly through SQL*Plus), then use an IS NULL clause as follows. This policy expression
causes actual data to be shown to user mavis only when her query comes from within an
APEX application. Otherwise, the query result is redacted.

See Also:

Oracle Application Express API Reference

13.5.7 Applying the Redaction Policy to All Users
You can apply the policy irrespective of the context to any user, with no filtering.

However, be aware that user SYS and users who have the EXEMPT REDACTION POLICY
privilege are always except from Oracle Data Redaction policies.

• To apply the policy to users who are not SYS or have been granted the EXEMPT REDACTION
POLICY privilege, write the DBMS_REDACT.ADD_POLICY expression parameter to evaluate
to TRUE.

For example:

expression => '1=1'

Chapter 13
Using Expressions to Define Conditions for Data Redaction Policies

13-13

See Also:

Exemption of Users from Oracle Data Redaction Policies

13.6 Creating and Managing Multiple Named Policy
Expressions

A named, centrally managed Oracle Data Redaction policy expression can be used in
multiple redaction policies and applied to multiple tables or views.

• About Data Redaction Policy Expressions to Define Conditions
A named Oracle Data Redaction policy expression is designed to work as an
alternative to the policy expression that is used in existing Data Redaction policies.

• Creating and Applying a Named Data Redaction Policy Expression
The DBMS_REDACT.CREATE_POLICY_EXPRESSION and
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL enable you to create and apply a
named Data Redaction policy expression.

• Updating a Named Data Redaction Policy Expression
You can use the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to update a
Data Redaction policy expression. The update takes place immediately and is
reflected in all columns that use the policy expression.

• Dropping a Named Data Redaction Expression Policy
You can use the DBMS_REDACT.DROP_POLICY_EXPRESSION procedure to drop a Data
Redaction expression policy.

• Tutorial: Creating and Sharing a Named Data Redaction Policy Expression
This tutorial shows how to create an Oracle Data Redaction policy expression,
apply it to multiple tables, and centrally manage the policy expression.

13.6.1 About Data Redaction Policy Expressions to Define Conditions
A named Oracle Data Redaction policy expression is designed to work as an
alternative to the policy expression that is used in existing Data Redaction policies.

A named policy expression enables you to redact data based on runtime conditions.
This type of policy can only affect whether or not redaction takes place on columns of
the table or view on which the redaction policy is defined. By default, a Data Redaction
policy expression applies to all the columns that belong to the Data Redaction policy
defined on that table or view. Alternatively, you can choose to create and associate a
policy expression for individual columns of a table or view. These column level
expressions are called as named policy expressions; in other words, a policy
expression with a name. A named policy expressions has the following properties:

You can use Data Redaction policy expressions in the following ways.:

• A single Data Redaction policy expression can be shared by more than one Data
Redaction policy by applying it to columns that are a part of separate Data
Redaction policies.

• Each named policy expression can be associated with multiple columns of the
same or different tables or views.

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-14

• Each named policy expression can be associated with columns within the same or
different Data Redaction policies.

• The named policy expression overrides the default policy expression of the associated
columns. The default policy expression still applies to redaction columns that have no
named policy expressions applied to them.

• Any updates made to a named policy expression apply to all of the column associations
of the expression.

• You cannot associate multiple named policy expressions for the same column.

• In a multitenant environment, you cannot associate named policy expressions with
columns in a different pluggable database (PDB).

The column to which you apply a named policy expression must already be redacted by a
Data Redaction policy. After the named policy expression is applied, the result of its
evaluation takes precedence over that of the default policy expression when deciding
whether or not to redact the column. When you modify a named policy expression, the
changes are applied to all the tables and views that use it. In a multitenant environment, as
with Data Redaction policies, a named policy expression is valid only in the PDB in which it
was created, and can only be applied to columns of objects within the PDB in which it was
created.

Table 13-7 describes the DBMS_REDACT PL/SQL procedures that you can use to create and
manage named policy expressions. To find information about policy expressions, query the
REDACTION_EXPRESSIONS data dictionary view.

Table 13-7 DBMS_REDACT Policy Expression Procedures

Procedure Description

DBMS_REDACT.CREATE_POLICY_EXPRESSION Creates a Data Redaction policy expression

DBMS_REDACT.UPDATE_POLICY_EXPRESSION Updates a Data Redaction policy expression

DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL Applies a Data Redaction policy expression to a
table or a view column

DBMS_REDACT.DROP_POLICY_EXPRESSION Drops a Data Redaction policy expression

Related Topics

• Managing Named Data Redaction Policy Expressions Using Enterprise Manager
You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud
Control.

13.6.2 Creating and Applying a Named Data Redaction Policy Expression
The DBMS_REDACT.CREATE_POLICY_EXPRESSION and DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL
enable you to create and apply a named Data Redaction policy expression.

1. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current setting, use the SHOW PARAMETER command.

2. To create the policy expression, run the DBMS_REDACT.CREATE_POLICY_EXPRESSION
procedure.

For example:

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-15

BEGIN
 DBMS_REDACT.CREATE_POLICY_EXPRESSION (
 policy_expression_name => 'redact_pol',
 expression => '1=1',
 policy_expression_description => 'Determines whether the column will be
redacted');
END;
/

3. Run the DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL procedure to apply the policy
expression to a table or view column.

For example, assume that you have already created a Data Redaction policy on
the SALARY column of the HR.EMPLOYEES table, as follows:

BEGIN
 DBMS_REDACT.ADD_POLICY (
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'overall_policy',
 expression => '1=0');
END;
/
BEGIN
 DBMS_REDACT.ALTER_POLICY (
 object_schema => 'hr',
 object_name => 'employees' ,
 policy_name => 'overall_policy',
 function_type => DBMS_REDACT.FULL,
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'SALARY);
END;
/

Then you can apply the policy expression to the SALARY table as follows:

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL (
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'salary',
 policy_expression_name => 'redact_pol');
END;
/

In this specification:

• object_schema: Specifies the schema of the object on which the policy
expression will be used. If you omit this setting (or enter NULL), then Oracle
Database uses the name of the current schema.

• object_name: Specifies the name of the table or view to be used for the policy
expression.

• column_name: Specifies the column to which you want to apply the policy
expression.

• policy_expression_name: Specifies the name of the policy expression.

After you create an Oracle Data Redaction policy expression, you can apply it to a
column of a table or view which is part of an existing Data Redaction policy.

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-16

13.6.3 Updating a Named Data Redaction Policy Expression
You can use the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to update a Data
Redaction policy expression. The update takes place immediately and is reflected in all
columns that use the policy expression.

You can query the REDACTION_EXPRESSIONS data dictionary view to find existing Data
Redaction policy expressions.

1. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current setting, use the SHOW PARAMETER command.

2. Run the DBMS_REDACT.UPDATE_POLICY_EXPRESSION procedure to perform the update.

For example:

BEGIN
 DBMS_REDACT.UPDATE_POLICY_EXPRESSION(
 policy_expression_name => 'redact_pol',
 expression => '1=0');
END;
/

13.6.4 Dropping a Named Data Redaction Expression Policy
You can use the DBMS_REDACT.DROP_POLICY_EXPRESSION procedure to drop a Data Redaction
expression policy.

You can query the REDACTION_EXPRESSIONS data dictionary view to find existing Data
Redaction policy expressions.

1. Ensure that the COMPATIBLE initialization parameter is set to 12.2.0.0 or later.

To find the current setting, use the SHOW PARAMETER command.

2. Remove the named policy expression's association with any table or view column.

You cannot drop a policy expression if it is associated with an existing table or view
column. To remove a given column’s association with a named policy expression (to
revert to redacting that column based on the evaluation result of the default policy
expression), you must set the policy_expression_name parameter of the
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL procedure to NULL.

For example:

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'salary',
 policy_expression_name => null);
END;
/

3. Run DBMS_REDACT.DROP_POLICY_EXPRESSION to drop the policy expression.

For example:

BEGIN
 DBMS_REDACT.DROP_POLICY_EXPRESSION(

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-17

 policy_expression_name => 'redact_pol');
END;
/

13.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy
Expression

This tutorial shows how to create an Oracle Data Redaction policy expression, apply it
to multiple tables, and centrally manage the policy expression.

• Step 1: Create Users for This Tutorial
You must create two users for this tutorial: dr_admin, who will create the Oracle
Data Redaction policies, and hr_clerk, who will test them.

• Step 2: Create an Oracle Data Redaction Policy
User dr_admin is ready to create an Oracle Data Redaction policy to protect the
HR.EMPLOYEES and HR.JOBS tables.

• Step 3: Test the Oracle Data Redaction Policy
User hr_clerk is ready to query the tables that have redacted data.

• Step 4: Create and Apply a Policy Expression to the Redacted Table Columns
Next, user dr_admin is ready to create a Data Redaction policy expression and
apply it to two of the three redacted table columns.

• Step 5: Test the Data Redaction Policy Expression
User hr_clerk is now ready to test the hr_redact_pol policy expression.

• Step 6: Modify the Data Redaction Policy Expression
User dr_admin decides to modify the Data Redaction policy expression so that
user HR will have access to the redacted data, not user hr_clerk.

• Step 7: Test the Modified Policy Expression
Users HR and hr_clerk are ready to test the modified Data Redaction policy
expression.

• Step 8: Remove the Components of This Tutorial
If you do not need the components of this tutorial, then you can remove them.

13.6.5.1 Step 1: Create Users for This Tutorial
You must create two users for this tutorial: dr_admin, who will create the Oracle Data
Redaction policies, and hr_clerk, who will test them.

Before you begin this tutorial, ensure that the COMPATIBLE initialization parameter is set
to 12.2.0.0 or later. You can check this setting by using the SHOW PARAMETER
command.

1. Log in to SQL*Plus as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@my_pdb AS SYSDBA
Enter password: password

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-18

To find the available PDBs, run the show pdbs command. To check the current PDB, run
the SHOW CON_NAME command.

3. Create the dr_admin and hr_clerk user accounts.

GRANT CREATE SESSION TO dr_admin IDENTIFIED BY password;
GRANT CREATE SESSION TO hr_clerk IDENTIFIED BY password;

4. Grant the EXECUTE privilege to the dr_admin user.

GRANT EXECUTE ON DBMS_REDACT TO dr_admin;
5. Connect as user HR.

CONNECT HR --Or, for a PDB, CONNECT hr@my_pdb
Enter password: password

6. Grant hr_clerk the SELECT privilege on the EMPLOYEES and JOBS tables.

GRANT SELECT on EMPLOYEES to hr_clerk;
GRANT SELECT on JOBS to hr_clerk;

13.6.5.2 Step 2: Create an Oracle Data Redaction Policy
User dr_admin is ready to create an Oracle Data Redaction policy to protect the
HR.EMPLOYEES and HR.JOBS tables.

1. Connect as user dr_admin.

CONNECT dr_admin --Or, for a PDB, CONNECT dr_admin@my_pdb
Enter password: password

2. Create the hr_emp_redact_comp_pol policy, which will perform full redaction of the
HR.EMPLOYEES.SALARY column.

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'salary',
 policy_name => 'hr_emp_redact_comp_pol',
 function_type => DBMS_REDACT.FULL,
 expression => '1=1');
END;
/

3. Alter the hr_redact_comp_pol policy to also redact the COMMISSION_PCT column of the
HR.EMPLOYEES table.

BEGIN
 DBMS_REDACT.ALTER_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'hr_emp_redact_comp_pol',
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'commission_pct',
 function_type => DBMS_REDACT.FULL,
 expression => '1=1');
END;
/

4. Create the hr_jobs_redact_comp_pol policy for the max_salary column of the HR.JOBS
table.

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-19

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'jobs',
 column_name => 'max_salary',
 policy_name => 'hr_jobs_redact_comp_pol',
 function_type => DBMS_REDACT.FULL,
 expression => '1=1');
END;
/

At this stage, the data in the HR.EMPLOYEES.SALARY, HR.EMPLOYEES.COMMISSION_PCT,
and HR.JOBS.MAX_SALARY columns are redacted.

13.6.5.3 Step 3: Test the Oracle Data Redaction Policy
User hr_clerk is ready to query the tables that have redacted data.

1. Connect as user hr_clerk.

CONNECT hr_clerk --Or, for a PDB, CONNECT hr_clerk@my_pdb
Enter password: password

2. Query the HR.EMPLOYEES table.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

The output should be as follows:

 SALARY COMMISSION_PCT
---------- --------------
 0
 0
 0

3. Query the HR.JOBS table.

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

The output should be as follows:

MAX_SALARY

 0
 0
 0
 0
 0

13.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table
Columns

Next, user dr_admin is ready to create a Data Redaction policy expression and apply it
to two of the three redacted table columns.

This policy expression will enable user hr_clerk to view the redacted data.

1. Connect as user dr_admin.
CONNECT dr_admin --Or, for a PDB, CONNECT dr_admin@my_pdb
Enter password: password

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-20

2. Create the policy expression.

BEGIN
 DBMS_REDACT.CREATE_POLICY_EXPRESSION(
 policy_expression_name => 'hr_redact_pol',
 expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') !=
''HR_CLERK''');
END;
/

This expression returns FALSE for the hr_clerk user, which enables the hr_clerk user to
view actual data in the HR.EMPLOYEES and HR.JOBS tables that are subject to the Data
Redaction policies.

3. Apply the hr_redact_pol policy expression to the HR.EMPLOYEES.SALARY column.

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'salary',
 policy_expression_name => 'hr_redact_pol');
END;
/

4. Apply the hr_redact_pol policy expression to the HR.JOBS.MAX_SALARY column.

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
 object_schema => 'hr',
 object_name => 'jobs',
 column_name => 'max_salary',
 policy_expression_name => 'hr_redact_pol');
END;
/

User hr_clerk can view data in the HR.EMPLOYEES.SALARY and HR.JOBS.MAX_SALARY, but the
data in the HR.EMPLOYEES.COMMISSION_PCT column will still be redacted for this user.

13.6.5.5 Step 5: Test the Data Redaction Policy Expression
User hr_clerk is now ready to test the hr_redact_pol policy expression.

1. Connect as user hr_clerk.

CONNECT hr_clerk --Or, for a PDB, CONNECT hr_clerk@my_pdb
Enter password: password

2. Query the HR.EMPLOYEES table.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

The output should be as follows:

 SALARY COMMISSION_PCT
---------- --------------
 24000
 17000
 17000

User hr_clerk now can view the SALARY column data, but still has not access to the
COMMISSION_PCT column data.

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-21

3. Query the HR.JOBS table.

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

The output should be as follows:

MAX_SALARY

 40000
 30000
 16000
 16000
 20080

User hr_clerk now can view the MAX_SALARY column data.

13.6.5.6 Step 6: Modify the Data Redaction Policy Expression
User dr_admin decides to modify the Data Redaction policy expression so that user HR
will have access to the redacted data, not user hr_clerk.

1. Connect as user dr_admin.

CONNECT dr_admin --Or, for a PDB, CONNECT dr_admin@my_pdb
Enter password: password

2. Modify the hr_redact_pol policy as follows:

BEGIN
 DBMS_REDACT.UPDATE_POLICY_EXPRESSION(
 policy_expression_name => 'hr_redact_pol',
 expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') !=
''HR''');
END;
/

13.6.5.7 Step 7: Test the Modified Policy Expression
Users HR and hr_clerk are ready to test the modified Data Redaction policy
expression.

1. Connect as user HR.

CONNECT HR --Or, for a PDB, CONNECT HR@my_pdb
Enter password: password

2. Query the HR.EMPLOYEES table.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

The output should be as follows:

 SALARY COMMISSION_PCT
---------- --------------
 24000
 17000
 17000

User HR now has access to the redacted data. A query by HR on the
HR.JOBS.MAX_SALARY column will produce similar results.

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-22

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

MAX_SALARY

 40000
 30000
 16000
 16000
 20080

3. Connect as user hr_clerk.

CONNECT hr_clerk --Or, for a PDB, CONNECT hr_clerk@my_pdb
Enter password: password

4. Query the HR.EMPLOYEES and HR.JOBS tables and then observe the results.

SELECT SALARY, COMMISSION_PCT FROM HR.EMPLOYEES WHERE SALARY > 15000;

 SALARY COMMISSION_PCT
---------- --------------
 0
 0
 0

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 15000;

MAX_SALARY

 0
 0
 0
 0
 0

13.6.5.8 Step 8: Remove the Components of This Tutorial
If you do not need the components of this tutorial, then you can remove them.

1. Connect as user dr_admin.

CONNECT dr_admin --Or, for a PDB, CONNECT dr_admin@my_pdb
Enter password: password

2. Modify the policy expression so that it is no longer associated with the table columns that
are associated with the expression.

To do so, you must set the policy_expression_name parameter to NULL.

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'salary',
 policy_expression_name => null);
END;
/

BEGIN
 DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL(
 object_schema => 'hr',
 object_name => 'jobs',
 column_name => 'max_salary',

Chapter 13
Creating and Managing Multiple Named Policy Expressions

13-23

 policy_expression_name => null);
END;
/

3. Drop the policy expressions.

BEGIN
 DBMS_REDACT.DROP_POLICY_EXPRESSION(
 policy_expression_name => 'hr_redact_pol');
END;
/

4. Drop the hr_emp_redact_comp_pol and hr_jobs_redact_comp_pol Data
Redaction policies.

BEGIN
 DBMS_REDACT.DROP_POLICY (
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'hr_emp_redact_comp_pol');
END;
/

BEGIN
 DBMS_REDACT.DROP_POLICY (
 object_schema => 'hr',
 object_name => 'jobs',
 policy_name => 'hr_jobs_redact_comp_pol');
END;
/

5. Connect as the SYSTEM user or a user who has privileges to drop user accounts.

For example:

CONNECT SYSTEM
Enter password: password

6. Drop the dr_admin and hr_clerk user accounts.

DROP USER dr_admin;
DROP USER hr_clerk;

13.7 Creating a Full Redaction Policy and Altering the Full
Redaction Value

You can create a full redaction policy to redact all contents in a data column, and
optionally, you can alter the default full redaction value.

• Creating a Full Redaction Policy
A full data redaction policy redacts all the contents of a data column.

• Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default
full data redaction value.

13.7.1 Creating a Full Redaction Policy
A full data redaction policy redacts all the contents of a data column.

Chapter 13
Creating a Full Redaction Policy and Altering the Full Redaction Value

13-24

• About Creating Full Data Redaction Policies
To set a redaction policy to redact all data in the column, you must set the function_type
parameter to DBMS_REDACT.FULL.

• Syntax for Creating a Full Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.

• Example: Full Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a full redaction
policy.

• Example: Fully Redacted Character Values
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a policy that
fully redacts character values.

13.7.1.1 About Creating Full Data Redaction Policies
To set a redaction policy to redact all data in the column, you must set the function_type
parameter to DBMS_REDACT.FULL.

By default, NUMBER data type columns are replaced with zero (0) and character data type
columns are replaced with a single space (). You can modify this default by using the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

Related Topics

• Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data
redaction value.

13.7.1.2 Syntax for Creating a Full Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure enables you to create a full redaction policy.

The DBMS_REDACT.ADD_POLICY fields for creating a full data redaction policy are as follows:

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2,
 column_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 function_type IN BINARY_INTEGER := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable: See
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.FULL.

If you omit the function_type parameter, then the default redaction function_type
setting is DBMS_REDACT.FULL.

Remember that the data type of the column determines which function_type settings
that you are permitted to use. See Comparison of Full, Partial, and Random Redaction
Based on Data Types.

Chapter 13
Creating a Full Redaction Policy and Altering the Full Redaction Value

13-25

13.7.1.3 Example: Full Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a full redaction
policy.

Example 13-1 shows how to use full redaction for all the values in the HR.EMPLOYEES
table COMMISSION_PCT column. The expression parameter applies the policy to any
user querying the table, except for users who have been granted the EXEMPT
REDACTION POLICY system privilege.

Example 13-1 Full Data Redaction Policy

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'commission_pct',
 policy_name => 'redact_com_pct',
 function_type => DBMS_REDACT.FULL,
 expression => '1=1');
END;
/

Query and redacted result:

SELECT COMMISSION_PCT FROM HR.EMPLOYEES;

COMMISSION_PCT

0
0
0

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

13.7.1.4 Example: Fully Redacted Character Values
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a policy
that fully redacts character values.

Example 13-2 shows how to redact fully the user IDs of the user_id column in the
mavis.cust_info table. The user_id column is of the VARCHAR2 data type. The output
is a blank string. The expression setting enables users who have the MGR role to view
the user IDs.

Example 13-2 Fully Redacted Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'user_id',
 policy_name => 'redact_cust_user_ids',
 function_type => DBMS_REDACT.FULL,

Chapter 13
Creating a Full Redaction Policy and Altering the Full Redaction Value

13-26

 expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''MGR'') = ''FALSE''');
END;
/

Query and redacted result:

SELECT user_id FROM mavis.cust_info;

USER_ID

0
0
0

13.7.2 Altering the Default Full Data Redaction Value
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure alters the default full data
redaction value.

• About Altering the Default Full Data Redaction Value
You can alter the default displayed values for full Data Redaction polices.

• Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure
The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the
standard supported Oracle Database data types.

• Modifying the Default Full Data Redaction Value
To modify the default full data redaction value, use the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

13.7.2.1 About Altering the Default Full Data Redaction Value
You can alter the default displayed values for full Data Redaction polices.

By default, 0 is the redacted value when Oracle Database performs full redaction
(DBMS_REDACT.FULL) on a column of the NUMBER data type. If you want to change it to another
value (for example, 7), then you can run the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
procedure to modify this value. The modification applies to all of the Data Redaction policies
in the current database instance. After you modify a value, you must restart the database for
it to take effect. You can find the current values by querying the
REDACTION_VALUES_FOR_TYPE_FULL data dictionary view.

Be aware that this change affects all Data Redaction policies in the database that use full
data redaction. Before you alter the default full data redaction value, examine the affect that
this change would have on existing full Data Redaction policies.

13.7.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
Procedure

The DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure accommodates the standard
supported Oracle Database data types.

The syntax is as follows:

DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES (
 number_val IN NUMBER NULL,
 binfloat_val IN BINARY_FLOAT NULL,

Chapter 13
Creating a Full Redaction Policy and Altering the Full Redaction Value

13-27

 bindouble_val IN BINARY_DOUBLE NULL,
 char_val IN CHAR NULL,
 varchar_val IN VARCHAR2 NULL,
 nchar_val IN NCHAR NULL,
 nvarchar_val IN NVARCHAR2 NULL,
 date_val IN DATE NULL,
 ts_val IN TIMESTAMP NULL,
 tswtz_val IN TIMESTAMP WITH TIME ZONE NULL,
 blob_val IN BLOB NULL,
 clob_val IN CLOB NULL,
 nclob_val IN NCLOB NULL);

In this specification:

• number_val modifies the default value for columns of the NUMBER data type.

• binfloat_val modifies the default value for columns of the BINARY_FLOAT data
type.

• bindouble_val modifies the default value for columns of the BINARY_DOUBLE data
type.

• char_val modifies the default value for columns of the CHAR data type.

• varchar_val modifies the default value for columns of the VARCHAR2 data type.

• nchar_val modifies the default value for columns of the NCHAR data type.

• nvarchar_val modifies the default value for columns of the NVARCHAR2 data type.

• date_val modifies the default value for columns of the DATE data type.

• ts_val modifies the default value for columns of the TIMESTAMP data type.

• tswtz_val modifies the default value for columns of the TIMESTAMP WITH TIME
ZONE data type.

• blob_val modifies the default value for columns of the BLOB data type.

• clob_val modifies the default value for columns of the CLOB data type.

• nclob modifies the default value for columns of the NCLOB data type.

13.7.2.3 Modifying the Default Full Data Redaction Value
To modify the default full data redaction value, use the
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure.

1. Log in to the database instance as a user who has been granted the EXECUTE
privilege on the DBMS_REDACT PL/SQL package and who has administrative
privileges, such as users who have been granted the DBA role.

2. Check the value that you want to change.

For example, to check the current value for columns that use the NUMBER data type:

SELECT NUMBER_VALUE FROM REDACTION_VALUES_FOR_TYPE_FULL;

NUMBER_VALUE

 0

3. Run the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES procedure to modify the
value.

Chapter 13
Creating a Full Redaction Policy and Altering the Full Redaction Value

13-28

For example:

EXEC DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES (number_val => 7);
4. Restart the database instance.

For example:

SHUTDOWN IMMEDIATE

STARTUP

13.8 Creating a DBMS_REDACT.NULLIFY Redaction Policy
You can create Oracle Data Redaction policies that return null values for the displayed value
of the table or view column.

• About Creating a Policy That Returns Null Values
The DBMS_REDACT.NULLIFY function_type parameter redacts all the data in a column
and replace it with null values.

• Syntax for Creating a Policy That Returns Null Values
The DBMS_REDACT.ADD_POLICY procedure can create a redaction policy that performs a
full redaction and displays null values for the redacted columns.

• Example: Redaction Policy That Returns Null Values
The DBMS_REDACT.ADD_POLICY procedure will return null values for the
COMMISSION_PCT column of the HR.EMPLOYEES table.

13.8.1 About Creating a Policy That Returns Null Values
The DBMS_REDACT.NULLIFY function_type parameter redacts all the data in a column and
replace it with null values.

You can use this function type on all supported column types that the DBMS_REDACT.FULL
function type supports. It also supports the CLOB and NCLOB data types. To use the
DBMS_REDACT.NULLIFY function, you must first ensure that the COMPATIBLE parameter is set to
12.2.0.0 or later.

13.8.2 Syntax for Creating a Policy That Returns Null Values
The DBMS_REDACT.ADD_POLICY procedure can create a redaction policy that performs a full
redaction and displays null values for the redacted columns.

The syntax for using DBMS_REDACT.ADD_POLICY to return null values is as follows:

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2,
 column_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 function_type IN BINARY_INTEGER := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE);

In this specification:

Chapter 13
Creating a DBMS_REDACT.NULLIFY Redaction Policy

13-29

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.NULLIFY.

If you omit the function_type parameter, then the default setting is
DBMS_REDACT.FULL.

Remember that the data type of the column determines which function_type
settings that you are permitted to use. See Comparison of Full, Partial, and
Random Redaction Based on Data Types.

13.8.3 Example: Redaction Policy That Returns Null Values
The DBMS_REDACT.ADD_POLICY procedure will return null values for the
COMMISSION_PCT column of the HR.EMPLOYEES table.

The expression parameter applies the policy to any user who queries the table,
except for users who have been granted the EXEMPT REDACTION POLICY system
privilege.

Example 13-3 shows how to create the Oracle Data Redaction policy.

Example 13-3 Redaction Policy That Returns Null Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 column_name => 'commission_pct',
 policy_name => 'nullify_com_pct',
 function_type => DBMS_REDACT.NULLIFY,
 expression => '1=1');
END;
/

Query and redacted result:

SELECT COMMISSION_PCT FROM HR.EMPLOYEES;

COMMISSION_PCT

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

13.9 Creating a Partial Redaction Policy
In partial data redaction, you can redact portions of data, and for different kinds of data
types.

Chapter 13
Creating a Partial Redaction Policy

13-30

• About Creating Partial Redaction Policies
In partial data redaction, only a portion of the data, such as the first five digits of an
identification number, are redacted.

• Syntax for Creating a Partial Redaction Policy
The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact
specific parts of the data returned to the application.

• Creating Partial Redaction Policies Using Fixed Character Formats
The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to use fixed
character formats.

• Creating Partial Redaction Policies Using Character Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to redact
character data types.

• Creating Partial Redaction Policies Using Number Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact number data
types.

• Creating Partial Redaction Policies Using Date-Time Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact date-time
data types.

13.9.1 About Creating Partial Redaction Policies
In partial data redaction, only a portion of the data, such as the first five digits of an
identification number, are redacted.

For example, you can redact most of a credit card number with asterisks (*), except for the
last 4 digits. You can create policies for columns that use character, number, or date-time
data types. For policies that redact character data types, you can use fixed character
redaction formats. If you have the Enterprise Manager for Oracle Database 12.1.0.7 plug-in
deployed on your system, then you can also create and save custom redaction formats.

Note:

In previous releases, the term shortcut was used for the term format.

13.9.2 Syntax for Creating a Partial Redaction Policy
The DBMS_REDACT.ADD_POLICY statement enables you to create policies that redact specific
parts of the data returned to the application.

The DBMS_REDACT.ADD_POLICY fields for creating a partial redaction policy are as follows:

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2,
 column_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 function_type IN BINARY_INTEGER := NULL,
 function_parameters IN VARCHAR2 := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE);

Chapter 13
Creating a Partial Redaction Policy

13-31

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.PARTIAL.

• function_parameters: The parameters that you set here depend on the data type
of the column specified for the column_name parameter. See the following sections
for details:

– Creating Partial Redaction Policies Using Fixed Character Formats

– Creating Partial Redaction Policies Using Character Data Types

– Creating Partial Redaction Policies Using Number Data Types

– Creating Partial Redaction Policies Using Date-Time Data Types

13.9.3 Creating Partial Redaction Policies Using Fixed Character
Formats

The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to use
fixed character formats.

• Settings for Fixed Character Formats
Oracle Data Redaction provides special predefined formats to configure policies
that use fixed characters.

• Example: Partial Redaction Policy Using a Fixed Character Format
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a partial
redaction policy that uses a fixed character format.

13.9.3.1 Settings for Fixed Character Formats
Oracle Data Redaction provides special predefined formats to configure policies that
use fixed characters.

Table 13-8 describes DBMS_REDACT.ADD_POLICY function_parameters parameter
formats that you can use for commonly redacted identity numbers (such as Social
Security numbers or Canadian Social Insurance Numbers), postal codes, and credit
cards that use either the VARCHAR2 or NUMBER data types for their columns.

Table 13-8 Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT.REDACT_US_SSN_F5 Redacts the first 5 numbers of Social Security
numbers when the column is a VARCHAR2 data
type. For example, the number 987-65-4320
becomes XXX-XX-4320.

DBMS_REDACT.REDACT_US_SSN_L4 Redacts the last 4 numbers of Social Security
numbers when the column is a VARCHAR2 data
type. For example, the number 987-65-4320
becomes 987-65-XXXX.

Chapter 13
Creating a Partial Redaction Policy

13-32

Table 13-8 (Cont.) Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT.REDACT_US_SSN_ENTIRE Redacts the entire Social Security number when
the column is a VARCHAR2 data type. For
example, the number 987-65-4320 becomes
XXX-XX-XXXX.

DBMS_REDACT.REDACT_NUM_US_SSN_F5 Redacts the first 5 numbers of Social Security
numbers when the column is a NUMBER data
type. For example, the number 987654320
becomes XXXXX4320.

DBMS_REDACT.REDACT_NUM_US_SSN_L4 Redacts the last 4 numbers of Social Security
numbers when the column is a NUMBER data
type. For example, the number 987654320
becomes 98765XXXX.

DBMS_REDACT.REDACT_NUM_US_SSN_ENTI
RE

Redacts the entire Social Security number when
the column is a NUMBER data type. For example,
the number 987654320 becomes XXXXXXXXX.

DBMS_REDACT.REDACT_SIN_NUMBER Redacts the Canadian Social Insurance number
by replacing the first 6 digits by 9 (number). For
example, 123456789 is redacted to 999999789.

DBMS_REDACT.REDACT_SIN_UNFORMATTED Redacts the Canadian Social Insurance number
by replacing the first 6 digits by X (string). For
example, 123456789 is redacted to XXXXXX789.

DBMS_REDACT.REDACT_SIN_FORMATTED Redacts the Canadian Social Insurance Number
by replacing the first 6 digits by X (string). For
example, 123-456-789 is redacted to XXX-
XXX-789.

DBMS_REDACT.REDACT_UK_NIN_FORMATTE
D

Redacts the UK National Insurance number by
replacing the first 6 digits by X (string) but
leaving the alphabetic characters as is. For
example, ET 27 02 23 D is redacted to ET XX
XX XX D.

DBMS_REDACT.REDACT_UK_NIN_UNFORMAT
TED

Redacts the UK National Insurance number by
replacing the first 6 digits by X (string) and
leaving the alphabetic characters as is. For
example, ET270223D is redacted to ETXXXXXXD.

DBMS_REDACT.REDACT_CCN_FORMATTED Redacts the credit card number (other than
American Express) by replacing everything but
the last 4 digits by *. For example, the credit
card number 5105–1051–0510–5100 is
redacted to ****—****—****—5100.

DBMS_REDACT.REDACT_CCN_NUMBER Redacts the credit card number (other than
American Express) by replacing everything but
the last 4 digits by 0. For example, the credit
card number 5105105105105100 is redacted to
************5100.

DBMS_REDACT.REDACT_CCN16_F12 Redacts a 16-digit credit card number (other
than American Express), leaving the last 4 digits
displayed. For example, 5105 1051 0510
5100 becomes ****-****-****-5100.

Chapter 13
Creating a Partial Redaction Policy

13-33

Table 13-8 (Cont.) Partial Fixed Character Redaction Formats

Format Description

DBMS_REDACT.REDACT_AMEX_CCN_FORMAT
TED

Redacts the American Express credit card
number by replacing the digits with * except the
last 5 digits. For example, the credit card number
3782 822463 10005 is redacted to ****
****** 10005.

DBMS_REDACT.REDACT_AMEX_CCN_NUMBER Redacts the American Express Credit Card
Number by replacing the digits with 0 except the
last 5 digits. For example, the credit card number
3782 822463 10005 is redacted to 0000
000000 10005.

DBMS_REDACT.REDACT_ZIP_CODE Redacts a 5-digit postal code when the column
is a VARCHAR2 data type. For example, 95476
becomes XXXXX.

DBMS_REDACT.REDACT_NUM_ZIP_CODE Redacts a 5-digit postal code when the column
is a NUMBER data type. For example, 95476
becomes XXXXX.

DBMS_REDACT.REDACT_DATE_EPOCH Redacts all dates to 01-JAN-70.

DBMS_REDACT.REDACT_NA_PHONE_FORMAT
TED

Redacts the North American phone number by
leaving the area code, but replacing everything
else with X. For example, 650-555–0100 is
redacted to 650-XXX-XXXX.

DBMS_REDACT.REDACT_NA_PHONE_NUMBER Redacts the North American phone number by
leaving the area code, but replacing everything
else with 0. For example, 6505550100 gets
redacted to 650000000.

DBMS_REDACT.REDACT_NA_PHONE_UNFORM
ATTED

Redacts the North American phone number by
leaving the area code, but replacing everything
else with X. For example, 6505550100 is
redacted to 650XXXXXXX.

DBMS_REDACT.REDACT_DATE_MILLENNIUM Redacts dates that are in the DD-MON-YY format
to 01-JAN-00 (January 1, 2000).

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for
information about other DBMS_REDACT.ADD_POLICY parameters

13.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure to create a partial
redaction policy that uses a fixed character format.

Example 13-4 shows how Social Security numbers in a VARCHAR2 data type column
and can be redacted using the REDACT_US_SSN_F5 format.

Chapter 13
Creating a Partial Redaction Policy

13-34

Example 13-4 Partially Redacted Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'ssn',
 policy_name => 'redact_cust_ssns3',
 function_type => DBMS_REDACT.PARTIAL,
 function_parameters => DBMS_REDACT.REDACT_US_SSN_F5,
 expression => '1=1',
 policy_description => 'Partially redacts 1st 5 digits in SS numbers',
 column_description => 'ssn contains Social Security numbers');
END;
/

Query and redacted result:

SELECT ssn FROM mavis.cust_info;

SSN

XXX-XX-4320
XXX-XX-4323
XXX-XX-4325
XXX-XX-4329

13.9.4 Creating Partial Redaction Policies Using Character Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter enables you to redact
character data types.

• Settings for Character Data Types
Oracle Data Redaction provides special settings to configure policies that use character
data types.

• Example: Partial Redaction Policy Using a Character Data Type
The DBMS_REDACT.ADD_POLICY PL/SQL procedure can create a partial redaction policy
that uses a character data type.

13.9.4.1 Settings for Character Data Types
Oracle Data Redaction provides special settings to configure policies that use character data
types.

When you set the DBMS_REDACT.ADD_POLICY function_parameters parameter to define
partial redaction of character data types, enter values for the following settings in the order
shown. Separate each value with a comma

Note:

Be aware that you must use a fixed width character set for the partial redaction. In
other words, each character redacted must be replaced by another of equal byte
length. If you want to use a variable-length character set (for example, UTF-8), then
you must use a regular expression-based redaction. See Syntax for Creating a
Regular Expression-Based Redaction Policy for more information.

Chapter 13
Creating a Partial Redaction Policy

13-35

The settings are as follows:

1. Input format: Defines how the data is currently formatted. Enter V for each
character that potentially can be redacted, such as all of the digits in a credit card
number. Enter F for each character that you want to format using a formatting
character, such as hyphens or blank spaces in the credit card number. Ensure that
each character has a corresponding V or F value. (The input format values are not
case-sensitive.)

2. Output format: Defines how the displayed data should be formatted. Enter V for
each character to be potentially redacted. Replace each F character in the input
format with the character that you want to use for the displayed output, such as a
hyphen. (The output format values are not case-sensitive.)

3. Mask character: Specifies the character to be used for the redaction. Enter a
single character to use for the redaction, such as an asterisk (*).

4. Starting digit position: Specifies the starting V digit position for the redaction.

5. Ending digit position: Specifies the ending V digit position for the redaction. Do
not include the F positions when you decide on the ending position value.

For example, the following setting redacts the first 12 V digits of the credit card number
5105 1051 0510 5100, and replaces the F positions (which are blank spaces) with
hyphens to format it in a style normally used for credit card numbers, resulting in ****-
****-****-4320.

function_parameters => 'VVVVFVVVVFVVVVFVVVV,VVVV-VVVV-VVVV-VVVV,*,1,12',

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for
information about other DBMS_REDACT.ADD_POLICY parameters

13.9.4.2 Example: Partial Redaction Policy Using a Character Data Type
The DBMS_REDACT.ADD_POLICY PL/SQL procedure can create a partial redaction policy
that uses a character data type.

Example 13-5 shows how to redact Social Security numbers that are in a VARCHAR2
data type column and to preserve the character hyphens in the Social Security
number.

Example 13-5 Partially Redacted Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'ssn',
 policy_name => 'redact_cust_ssns2',
 function_type => DBMS_REDACT.PARTIAL,
 function_parameters => 'VVVFVVFVVVV,VVV-VV-VVVV,*,1,5',
 expression => '1=1',
 policy_description => 'Partially redacts Social Security numbers',
 column_description => 'ssn contains character Social Security numbers');

Chapter 13
Creating a Partial Redaction Policy

13-36

END;
/

Query and redacted result:

SELECT ssn FROM mavis.cust_info;

SSN

***-**-4320
***-**-4323
***-**-4325
***-**-4329

13.9.5 Creating Partial Redaction Policies Using Number Data Types
The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact number data
types.

• Settings for Number Data Types
When you set values for the number data type, you must specify a mask character, a
starting digit position, and ending digit position.

• Example: Partial Redaction Policy Using a Number Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses a
number data type.

13.9.5.1 Settings for Number Data Types
When you set values for the number data type, you must specify a mask character, a starting
digit position, and ending digit position.

For partial redaction of number data types, you can enter values for the following settings for
the function_parameters parameter of the DBMS_REDACT.ADD_POLICY procedure, in the order
shown.

1. Mask character: Specifies the character to display. Enter a number from 0 to 9.

2. Starting digit position: Specifies the starting digit position for the redaction, such as 1
for the first digit.

3. Ending digit position: Specifies the ending digit position for the redaction.

For example, the following setting redacts the first five digits of the Social Security number
987654321, resulting in 999994321.

function_parameters => '9,1,5',

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for information
about other DBMS_REDACT.ADD_POLICY parameters

Chapter 13
Creating a Partial Redaction Policy

13-37

13.9.5.2 Example: Partial Redaction Policy Using a Number Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that
uses a number data type.

Example 13-6 shows how to partially redact a set of Social Security numbers in the
mavis.cust_info table, for any application user who logs in. (Hence, the expression
parameter evaluates to TRUE.)

This type of redaction is useful when the application is expecting a formatted number
and not a string. In this scenario, the Social Security numbers are in a column of the
data type NUMBER. In other words, the ssn column contains numbers only, not other
characters such as hyphens or blank spaces.

Example 13-6 Partially Redacted Data Redaction Numeric Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'ssn',
 policy_name => 'redact_cust_ssns1',
 function_type => DBMS_REDACT.PARTIAL,
 function_parameters => '7,1,5',
 expression => '1=1',
 policy_description => 'Partially redacts Social Security numbers',
 column_description => 'ssn contains numeric Social Security numbers');
END;
/

Query and redacted result:

SELECT ssn FROM mavis.cust_info;

SSN

777774320
777774323
777774325
777774329

13.9.6 Creating Partial Redaction Policies Using Date-Time Data
Types

The DBMS_REDACT.ADD_POLICY function_parameters parameter can redact date-time
data types.

• Settings for Date-Time Data Types
Oracle Data Redaction provides special settings for configuring date-time data
types.

• Example: Partial Redaction Policy Using Date-Time Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that
uses the date-time data type.

Chapter 13
Creating a Partial Redaction Policy

13-38

13.9.6.1 Settings for Date-Time Data Types
Oracle Data Redaction provides special settings for configuring date-time data types.

For partial redaction of date-time data types, enter values for the following
DBMS_REDACT.ADD_POLICY function_parameters parameter settings.

Enter these values in the order shown:

1. m: Redacts the month. To redact with a month name, append 1–12 to lowercase m. For
example, m5 displays as MAY. To omit redaction, enter an uppercase M.

2. d: Redacts the day of the month. To redact with a day of the month, append 1–31 to a
lowercase d. For example, d7 displays as 07. If you enter a higher number than the days
of the month (for example, 31 for the month of February), then the last day of the month
is displayed (for example, 28). To omit redaction, enter an uppercase D.

3. y: Redacts the year. To redact with a year, append 1–9999 to a lowercase y. For example,
y1984 displays as 84. To omit redaction, enter an uppercase Y.

4. h: Redacts the hour. To redact with an hour, append 0–23 to a lowercase h. For example,
h20 displays as 20. To omit redaction, enter an uppercase H.

5. m: Redacts the minute. To redact with a minute, append 0–59 to a lowercase m. For
example, m30 displays as 30. To omit redaction, enter an uppercase M.

6. s: Redacts the second. To redact with a second, append 0–59 to a lowercase s. For
example, s45 displays as 45. To omit redaction, enter an uppercase S.

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for information
about other DBMS_REDACT.ADD_POLICY parameters

13.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type
The DBMS_REDACT.ADD_POLICY procedure can create a partial redaction policy that uses the
date-time data type.

Example 13-7 shows how to partially redact a date. This example redacts the birth year of
customers; replacing it with 13, but retaining the remaining values.

Example 13-7 Partially Redacted Data Redaction Using Date-Time Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'birth_date',
 policy_name => 'redact_cust_bdate',
 function_type => DBMS_REDACT.PARTIAL,
 function_parameters => 'mdy2013HMS',
 expression => '1=1',
 policy_description => 'Replaces birth year with 2013',
 column_description => 'birth_date contains customer's birthdate');

Chapter 13
Creating a Partial Redaction Policy

13-39

END;
/

Query and redacted result:

SELECT birth_date FROM mavis.cust_info;

BIRTH_DATE
07-DEC-13 09.45.40.000000 AM
12-OCT-13 04.23.29.000000 AM

13.10 Creating a Regular Expression-Based Redaction
Policy

A regular expression-based redaction policy enables you to redact data based on a
search-and-replace model.

• About Creating Regular Expression-Based Redaction Policies
Regular expression-based redaction enables you to search for patterns of data to
redact.

• Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a
regular expression-based redaction policy.

• Regular Expression-Based Redaction Policies Using Formats
The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and
regexp_replace_string parameters both support formats.

• Custom Regular Expression Redaction Policies
You can customize regular expressions in Data Redaction policies.

13.10.1 About Creating Regular Expression-Based Redaction Policies
Regular expression-based redaction enables you to search for patterns of data to
redact.

For example, you can use regular expressions to redact email addresses, which can
have varying character lengths. It is designed for use with character data only. You can
use formats for the search and replace operation, or you can create custom pattern
formats.

You cannot use regular expressions to redact a subset of the values in a column. The
REGEXP_PATTERN (regular expression pattern) must match all of the values in order for
the REGEXP_REPLACE_STRING setting to take effect, and the REGEXP_REPLACE_STRING
must change the value.

For rows where the REGEXP_PATTERN fails to match, Data Redaction performs
DBMS_REDACT.FULL redaction. This mitigates the risk of a mistake in the
REGEXP_PATTERN which causes the regular expression to fail to match all of the values
in the column, from showing the actual data for those rows which it failed to match.

In addition, if no change to the value occurs as a result of the REGEXP_REPLACE_STRING
setting during regular expression replacement operation, Data Redaction performs
DBMS_REDACT.FULL redaction.

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-40

13.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy
The regexp_* parameters of the DBMS_REDACT.ADD_POLICY procedure can create a regular
expression-based redaction policy.

The DBMS_REDACT.ADD_POLICY fields for creating a regular expression-based data redaction
policy are as follows:

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2,
 column_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 function_type IN BINARY_INTEGER := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE,
 regexp_pattern IN VARCHAR2 := NULL,
 regexp_replace_string IN VARCHAR2 := NULL,
 regexp_position IN BINARY_INTEGER := 1,
 regexp_occurrence IN BINARY_INTEGER := 0,
 regexp_match_parameter IN VARCHAR2 := NULL);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable: See
General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the type of redaction. For regular expression based redaction,
use either DBMS_REDACT.REGEXP or DBMS_REDACT.REGEXP_WIDTH.

If you use the DBMS_REDACT.REGEXP redaction type, then no truncation occurs. This
applies even if the redacted value is wider than the column width, and if the Oracle Call
Interface width attribute (OCI_ATTR_CHAR_SIZE) of the column is not preserved. (It
becomes 4000, just as it does when the REGEXP_REPLACE SQL operator is used on a
column.)

Using the DBMS_REDACT.REGEXP_WIDTH redaction type truncates any redacted value that
exceeds the width of the column, and ensures that the OCI width attribute of the column
(OCI_ATTR_CHAR_SIZE) remains unchanged.

Note the following:

– Use the DBMS_REDACT.REGEXP_WIDTH function type if your applications depend on the
value of the OCI_ATTR_CHAR_SIZE attribute. For example, applications that are built
using the Oracle OLE DB Provider interface are sensitive to the value of the
OCI_ATTR_CHAR_SIZE attribute. If you use DBMS_REDACT.REGEXP as the redaction type,
then the OCI_ATTR_CHAR_SIZE always becomes 4000. This setting makes it
unsuitable as the redaction type of policies on tables that are used by Oracle OLE DB
based applications. See Oracle Call Interface Programmer's Guide for more
information about Oracle Call Interface parameter attributes.

– When you set the function_type parameter to DBMS_REDACT.REGEXP or
DBMS_REDACT.REGEXP_WIDTH, omit the function_parameters parameter from the
DBMS_REDACT.ADD_POLICY procedure.

– Specify the regular expression parameters in much the same way that you specify
the pattern, replace, position, occurrence, and match_parameter arguments to

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-41

the REGEXP_REPLACE SQL function. See Oracle Database SQL Language
Reference for information about the REGEXP_REPLACE SQL function.

• regexp_pattern: Describes the search pattern for data that must be matched. If it
finds a match, then Oracle Database replaces the data as specified by the
regexp_replace_string setting. See the following sections for more information:

– Regular Expression-Based Redaction Policies Using Formats

– Custom Regular Expression Redaction Policies

• regexp_replace_string: Specifies how you want to replace the data to be
redacted. See the following sections for more information:

– Regular Expression-Based Redaction Policies Using Formats

– Custom Regular Expression Redaction Policies

• regexp_position: Specifies the starting position for the string search. The value
that you enter must be a positive integer indicating the character of the
column_name data where Oracle Database should begin the search. The default is
1 or the DBMS_REDACT.RE_BEGINNING format, meaning that Oracle Database begins
the search at the first character of the column_name data.

• regexp_occurrence: Specifies how to perform the search and replace operation.
The value that you enter must be a nonnegative integer indicating the occurrence
of the replace operation:

– If you specify 0 or the DBMS_REDACT.RE_ALL format, then Oracle Database
replaces all the occurrences of the match.

– If you specify the DBMS_REDACT.RE_FIRST format, then Oracle Database
replaces the first occurrence of the match.

– If you specify a positive integer n, then Oracle Database replaces the nth
occurrence of the match.

If the occurrence is greater than 1, then the database searches for the second
occurrence beginning with the first character following the first occurrence of
pattern, and so forth.

• regexp_match_parameter: Specifies a text literal that lets you change the default
matching behavior of the function. The behavior of this parameter is the same for
this function as for the REGEXP_REPLACE SQL function. See Oracle Database SQL
Language Reference for detailed information.

To filter the search so that it is not case sensitive, specify the
RE_CASE_INSENSITIVE format.

13.10.3 Regular Expression-Based Redaction Policies Using Formats
The DBMS_REDACT.ADD_POLICY procedure regexp_pattern and
regexp_replace_string parameters both support formats.

• Regular Expression Formats
The regular expression formats represent commonly used expressions, such as
the replacement of digits within a credit card number.

• Example: Regular Expression Redaction Policy Using Formats
The DBMS_REDACT.ADD_POLICY procedure can create a regular expression
redaction policy that uses formats.

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-42

13.10.3.1 Regular Expression Formats
The regular expression formats represent commonly used expressions, such as the
replacement of digits within a credit card number.

Table 13-9 describes the formats that you can use with the regexp_pattern parameter in the
DBMS_REDACT.ADD_POLICY procedure.

Table 13-9 Formats for the regexp_pattern Parameter

Format Description

DBMS_REDACT.RE_PATTERN_ANY_DIGIT Searches for any digit. Replaces the identified pattern
with the characters specified by
theregexp_replace_string parameter. The
DBMS_REDACT.RE_PATTERN_ANY_DIGIT is
commonly used with the following values of the
regexp_replace_string parameter:

regexp_replace_string =>
DBMS_REDACT.RE_REDACT_WITH_SINGLE_X,

This setting replaces any matched digit with the X
character.

The following setting replaces any matched digit with
the 1 character.

regexp_replace_string =>
DBMS_REDACT.RE_REDACT_WITH_SINGLE_1,

DBMS_REDACT.RE_PATTERN_CC_L6_T4 Searches for the middle digits of any credit card
(other than American Express) that has 6 leading
digits and 4 trailing digits. Replaces the identified
pattern with the characters specified by the
regexp_replace_string parameter.

The appropriate regexp_replace_string setting to
use with this format is
DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGITS,
which finds any credit card that could have 6 leading
and 4 trailing digits left as actual data. It then redacts
the middle digits.

DBMS_REDACT.RE_PATTERN_CCN Matches credit card numbers other than American
Express credit card numbers. The appropriate
regexp_replace_string setting to use with this
format is DBMS_REDACT.RE_REDACT_CCN. The end
result is a redaction of all the digits except the last 4.

DBMS_REDACT.RE_PATTERN_AMEX_CCN Matches American Express credit card numbers. The
appropriate regexp_replace_string setting to use
with this format is
DBMS_REDACT.RE_REDACT_AMEX_CCN. The end
result is a redaction of all the digits except the last 5.

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-43

Table 13-9 (Cont.) Formats for the regexp_pattern Parameter

Format Description

DBMS_REDACT.RE_PATTERN_US_PHONE Searches for any U.S. telephone number. Replaces
the identified pattern with the characters specified by
theregexp_replace_string parameter

The appropriate regexp_replace_string setting to
use with this format is
DBMS_REDACT.RE_REDACT_US_PHONE_L7, which
finds United States phone numbers and then redacts
the last 7 digits.

DBMS_REDACT.RE_PATTERN_EMAIL_ADDRESS Searches for any email address. Replaces the
identified pattern with the characters specified by
theregexp_replace_string parameter

The appropriate regexp_replace_string settings
that you can use with this format are as follows:

RE_REDACT_EMAIL_NAME, which finds any email
address and redacts the email user name

RE_REDACT_EMAIL_DOMAIN, which finds any email
address and redacts the email domain

RE_REDACT_EMAIL_ENTIRE, which finds any email
address and redacts the entire email address

DBMS_REDACT.RE_PATTERN_IP_ADDRESS Searches for an IP address. Replaces the identified
pattern with the characters specified by
theregexp_replace_string parameter.

The appropriate regexp_replace_string setting to
use with this format is
DBMS_REDACT.RE_REDACT_IP_L3, which replaces
the last section of the dotted decimal string
representation of an IP address with the characters
999 to indicate that it was redacted.

Table 13-10 describes formats that you can use with the regexp_replace_string
parameter in the DBMS_REDACT.ADD_POLICY procedure.

Table 13-10 Formats for the regexp_replace_string Parameter

Format Description

DBMS_REDACT.RE_REDACT_WITH_SINGLE_
X

Replaces the data with a single X character for
each of the actual data characters. For example,
the credit card number 5105 1051 0510 5100
could be replaced with XXXX XXXX XXXX XXXX.

DBMS_REDACT.RE_REDACT_WITH_SINGLE_
1

Replaces the data with a single 1 digit for each
of the actual data digits. For example, the credit
card number 5105 1051 0510 5100 could be
replaced with 1111 1111 1111 1111.

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-44

Table 13-10 (Cont.) Formats for the regexp_replace_string Parameter

Format Description

DBMS_REDACT.RE_REDACT_CC_MIDDLE_DI
GITS

Redacts the middle digits in credit card numbers,
as specified by setting the regexp_pattern
parameter with the RE_PATTERN_CC_L6_T4
format. The redaction replaces each redacted
character with an X. For example, the credit card
number 5105 1051 0510 5100 could be
replaced with 5105 10XX XXXX 5100.

DBMS_REDACT.RE_REDACT_CCN Redacts the first 12 digits of a credit card
number other than an American Express card
number. For example, 4012888888881881 is
redacted to ************1881.

DBMS_REDACT.RE_REDACT_AMEX_CCN Redacts the first 10 digits of an American
Express number. For example,
378282246310005 is redacted to
**********10005.

DBMS_REDACT.RE_REDACT_PHONE_L7 Redacts the last 7 digits of U.S. telephone
numbers, as specified by setting the
regexp_pattern parameter with the
RE_PATTERN_US_PHONE format. The redaction
replaces each redacted character with an X. This
setting only applies to hyphenated phone
numbers, not phone numbers with spaces. For
example, the telephone number 415-555-0100
could be replaced with 415-XXX-XXXX.

DBMS_REDACT.RE_REDACT_EMAIL_NAME Redacts the email name as specified by setting
the regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format. The
redaction replaces the email user name with four
x characters. For example, the email address
psmith@example.com could be replaced with
xxxx@example.com.

DBMS_REDACT.RE_REDACT_EMAIL_DOMAIN Redacts the email domain name as specified by
setting the regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format. The
redaction replaces the domain with five x
characters. For example, the email address
psmith@example.com could be replaced with
psmith@xxxxx.com.

DBMS_REDACT.RE_REDACT_IP_L3 Redacts the last three digits of the IP address as
specified by setting the regexp_pattern
parameter with the RE_PATTERN_IP_ADDRESS
format. For example, the IP address
192.0.2.254 could be replaced with
192.0.2.999, which is an invalid IP address.

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-45

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for
information about other DBMS_REDACT.ADD_POLICY parameters

13.10.3.2 Example: Regular Expression Redaction Policy Using Formats
The DBMS_REDACT.ADD_POLICY procedure can create a regular expression
redaction policy that uses formats.

Example 13-8 shows how to use regular expression formats to redact credit card
numbers.

Example 13-8 Regular Expression Data Redaction Character Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'cc_num',
 policy_name => 'redact_cust_cc_nums',
 function_type => DBMS_REDACT.REGEXP,
 function_parameters => NULL,
 expression => '1=1',
 regexp_pattern => DBMS_REDACT.RE_PATTERN_CC_L6_T4,
 regexp_replace_string => DBMS_REDACT.RE_REDACT_CC_MIDDLE_DIGITS,
 regexp_position => DBMS_REDACT.RE_BEGINNING,
 regexp_occurrence => DBMS_REDACT.RE_FIRST,
 regexp_match_parameter => DBMS_REDACT.RE_CASE_INSENSITIVE,
 policy_description => 'Regular expressions to redact credit card numbers',
 column_description => 'cc_num contains customer credit card numbers');
END;
/

Query and redacted result:

SELECT cc_num FROM mavis.cust_info;

CC_NUM

401288XXXXXX1881
411111XXXXXX1111
555555XXXXXX1111
511111XXXXXX1118

13.10.4 Custom Regular Expression Redaction Policies
You can customize regular expressions in Data Redaction policies.

• Settings for Custom Regular Expressions
Oracle Data Redaction provides special settings to configure policies that use
regular expressions.

• Example: Custom Regular Expression Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure regexp* parameters can create a
custom regular expression redaction policy.

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-46

13.10.4.1 Settings for Custom Regular Expressions
Oracle Data Redaction provides special settings to configure policies that use regular
expressions.

To create custom regular expression redaction policies, you use the following parameters in
the DBMS_REDACT.ADD_POLICY procedure:

• regexp_pattern: This pattern is usually a text literal and can be of any of the data types
CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The pattern can contain up to 512 bytes. For
further information about writing the regular expression for the regexp_pattern
parameter, see the description of the pattern argument of the REGEXP_REPLACE SQL
function in Oracle Database SQL Language Reference, because the support that Data
Redaction provides for regular expression matching is similar to that of the
REGEXP_REPLACE SQL function.

• regexp_replace_string: This data can be of any of the data types CHAR, VARCHAR2,
NCHAR, or NVARCHAR2. The regexp_replace_string can contain up to 500 back references
to subexpressions in the form \n, where n is a number from 1 to 9. If you want to include
a backslash (\) in the regexp_replace_string setting, then you must precede it with the
escape character, which is also a backslash. For example, to literally replace the
matched pattern with \2 (rather than replace it with the second matched subexpression of
the matched pattern), you enter \\2 in the regexp_replace_string setting. For more
information, see Oracle Database SQL Language Reference.

See Also:

General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for information
about other DBMS_REDACT.ADD_POLICY parameters

13.10.4.2 Example: Custom Regular Expression Redaction Policy
The DBMS_REDACT.ADD_POLICY procedure regexp* parameters can create a custom regular
expression redaction policy.

Example 13-9 shows how to use regular expressions to redact the emp_id column data. In
this example, taken together, the regexp_pattern and regexp_replace_string parameters
do the following: first, find the pattern of 9 digits. For reference, break them into three groups
that contain the first 3, the next 2, and then the last 4 digits. Then, replace all 9 digits with
XXXXX concatenated with the third group (the last 4 digits) as found in the original pattern.

Query and redacted result:

SELECT emp_id FROM mavis.cust_info;

EMP_ID

XXXXX1234
XXXXX5678

Chapter 13
Creating a Regular Expression-Based Redaction Policy

13-47

Example 13-9 Partially Redacted Data Redaction Using Regular Expressions

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'emp_id',
 policy_name => 'redact_cust_ids',
 function_type => DBMS_REDACT.REGEXP,
 expression => '1=1',
 regexp_pattern => '(\d\d\d)(\d\d)(\d\d\d\d)',
 regexp_replace_string => 'XXXXX\3',
 regexp_position => 1,
 regexp_occurrence => 0,
 regexp_match_parameter => 'i',
 policy_description => 'Redacts customer IDs using regular expression',
 column_description => 'emp_id contains employee ID numbers');
END;
/

13.11 Creating a Random Redaction Policy
A random redaction policy presents redacted data as randomly generated values,
such as Ukjsl32[[]]]s.

• Syntax for Creating a Random Redaction Policy
A random redaction policy presents the redacted data to the querying application
user as randomly generated values, based on the column data type.

• Example: Random Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure create a
random redaction policy.

13.11.1 Syntax for Creating a Random Redaction Policy
A random redaction policy presents the redacted data to the querying application user
as randomly generated values, based on the column data type.

Be aware that LOB columns are not supported.

The DBMS_REDACT.ADD_POLICY fields for creating a random redaction policy are as
follows:

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2,
 column_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 function_type IN BINARY_INTEGER := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the function used to set the type of redaction. Enter
DBMS_REDACT.RANDOM.

Chapter 13
Creating a Random Redaction Policy

13-48

If you omit the function_type parameter, then the default redaction function_type
setting is DBMS_REDACT.FULL.

Remember that the data type of the column determines which function_type settings
that you are permitted to use. See Comparison of Full, Partial, and Random Redaction
Based on Data Types.

13.11.2 Example: Random Redaction Policy
You can use the DBMS_REDACT.ADD_POLICY PL/SQL procedure create a random redaction
policy.

Example 13-10 shows how to generate random values. Each time you run the SELECT
statement, the output will be different.

Example 13-10 Randomly Redacted Data Redaction Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'login_username',
 policy_name => 'redact_cust_rand_username',
 function_type => DBMS_REDACT.RANDOM,
 expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''APP_USER''');
END;
/

Query and redacted result:

SELECT login_username FROM mavis.cust_info;

LOGIN_USERNAME

N[CG{\pTVcK

13.12 Creating a Policy That Uses No Redaction
You can create policies that use no redaction at all, for when you want to test the policy in a
development environment.

• Syntax for Creating a Policy with No Redaction
The None redaction type option can be used to test the internal operation of redaction
policies.

• Example: Performing No Redaction
The DBMS_REDACT.ADD_POLICY procedure can create a policy that performs no redaction.

13.12.1 Syntax for Creating a Policy with No Redaction
The None redaction type option can be used to test the internal operation of redaction
policies.

The None redaction type has no effect on the query results against tables that have policies
defined on them. You can use this option to test the redaction policy definitions before
applying them to a production environment. Be aware that LOB columns are not supported.

The DBMS_REDACT.ADD_POLICY fields for creating a policy with no redaction are as follows:

Chapter 13
Creating a Policy That Uses No Redaction

13-49

DBMS_REDACT.ADD_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2,
 column_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 function_type IN BINARY_INTEGER := NULL,
 expression IN VARCHAR2,
 enable IN BOOLEAN := TRUE);

In this specification:

• object_schema, object_name, column_name, policy_name, expression, enable:
See General Syntax of the DBMS_REDACT.ADD_POLICY Procedure.

• function_type: Specifies the functions used to set the type of data redaction.
Enter DBMS_REDACT.NONE.

If you omit the function_type parameter, then the default redaction
function_type setting is DBMS_REDACT.FULL.

13.12.2 Example: Performing No Redaction
The DBMS_REDACT.ADD_POLICY procedure can create a policy that performs no
redaction.

Example 13-11 shows how to create a Data Redaction policy that does not redact any
of the displayed values.

Example 13-11 No Redacted Data Redaction Values

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 column_name => 'user_name',
 policy_name => 'redact_cust_no_vals',
 function_type => DBMS_REDACT.NONE,
 expression => '1=1');
END;
/

Query and redacted result:

SELECT user_name FROM mavis.cust_info;

USER_NAME

IDA NEAU

13.13 Exemption of Users from Oracle Data Redaction
Policies

You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

To do so, you should grant the users the EXEMPT REDACTION POLICY system privilege.
Grant this privilege to trusted users only.

Chapter 13
Exemption of Users from Oracle Data Redaction Policies

13-50

In addition to users who were granted this privilege, user SYS is also exempt from all Data
Redaction policies. The person who creates the Data Redaction policy is by default not
exempt from it, unless this person is user SYS or has the EXEMPT REDACTION POLICY system
privilege.

Note the following:

• Users who have the INSERT privilege on a table can insert values into a redacted column,
regardless of whether a Data Redaction policy exists on the table. Data Redaction only
affects SQL SELECT statements (that is, queries) issued by a user, and has no effect on
any other SQL issued by a user, including INSERT, UPDATE, or DELETE statements. (See
the next bullet for exceptions to this rule.)

• Users cannot perform a CREATE TABLE AS SELECT where any of the columns being
selected (source columns) is protected by a Data Redaction policy (and similarly, any
DML operation where the source is a redacted column), unless the user was granted the
EXEMPT REDACTION POLICY system privilege.

• The EXEMPT REDACTION POLICY system privilege is included in the DBA role, but this
privilege must be granted explicitly to users because it is not included in the WITH ADMIN
OPTION for DBA role grants. Users who were granted the DBA role are exempt from
redaction policies because the DBA role contains the EXP_FULL_DATABASE role, which is
granted the EXEMPT REDACTION POLICY system privilege.

Related Topics

• Restriction of Administrative Access to Oracle Data Redaction Policies
You can restrict the list of users who can create, view and edit Data Redaction policies.

• Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY
system privilege.

13.14 Altering an Oracle Data Redaction Policy
The DBMS_REDACT.ALTER_POLICY procedure enables you to modify Oracle Data Redaction
policies.

• About Altering Oracle Data Redaction Policies
The DBMS_REDACT.ALTER_POLICY procedure alters a Data Redaction policy.

• Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
The DBMS_REDACT.ALTER_POLICY procedure syntax can be used to alter all types of the
Data Redaction policies.

• Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform
various actions, such as adding or modifying a column.

• Tutorial: Altering an Oracle Data Redaction Policy
You can redact multiple columns in a table or view, with each column having its own
redaction setting.

13.14.1 About Altering Oracle Data Redaction Policies
The DBMS_REDACT.ALTER_POLICY procedure alters a Data Redaction policy.

Chapter 13
Altering an Oracle Data Redaction Policy

13-51

If the policy is already enabled, then you do not need to disable it first, and after you
alter the policy, it remains enabled.

You can find the names of existing Data Redaction policies by querying the
POLICY_NAME column of the REDACTION_POLICIES data dictionary view, and information
about the columns, functions, and parameters specified in a policy by querying the
REDACTION_COLUMNS view. To find the current value for policies that use full data
redaction, you can query the REDACTION_VALUES_FOR_TYPE_FULL data dictionary view.

The action parameter specifies the type of modification that you want to perform. At a
minimum, you must include the object_name and policy_name parameters when you
run this procedure.

13.14.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
The DBMS_REDACT.ALTER_POLICY procedure syntax can be used to alter all types of the
Data Redaction policies.

The syntax for the DBMS_REDACT.ALTER_POLICY procedure is as follows:

DBMS_REDACT.ALTER_POLICY (
 object_schema IN VARCHAR2 := NULL,
 object_name IN VARCHAR2 := NULL,
 policy_name IN VARCHAR2,
 action IN BINARY_INTEGER := DBMS_REDACT.ADD_COLUMN,
 column_name IN VARCHAR2 := NULL,
 function_type IN BINARY_INTEGER := DBMS_REDACT.FULL,
 function_parameters IN VARCHAR2 := NULL,
 expression IN VARCHAR2 := NULL,
 regexp_pattern IN VARCHAR2 := NULL,
 regexp_replace_string IN VARCHAR2 := NULL,
 regexp_position IN BINARY_INTEGER := NULL,
 regexp_occurrence IN BINARY_INTEGER := NULL,
 regexp_match_parameter IN VARCHAR2 := NULL,
 policy_description IN VARCHAR2 := NULL,
 column_description IN VARCHAR2 := NULL);

In this specification:

• action: Enter one of the following values to define the kind of action to use:

– DBMS_REDACT.MODIFY_COLUMN if you plan to change the column_name value.

– DBMS_REDACT.ADD_COLUMN if you plan to add a new column (in addition to
columns that are already protected by the policy) for redaction. This setting is
the default for the action parameter.

– DBMS_REDACT.DROP_COLUMN if you want to remove redaction from a column.

– DBMS_REDACT.MODIFY_EXPRESSION if you plan to change the expression value.
Each policy can have only one policy expression. In other words, when you
modify the policy expression, you are replacing the existing policy expression
with a new policy expression.

– DBMS_REDACT.SET_POLICY_DESCRIPTION if you want to change the description
of the policy.

– DBMS_REDACT.SET_COLUMN_DESCRIPTION if you want to change the description
of the column.

Chapter 13
Altering an Oracle Data Redaction Policy

13-52

See Also:

• Parameters Required for DBMS_REDACT.ALTER_POLICY Actions

• General Syntax of the DBMS_REDACT.ADD_POLICY Procedure for
information about the remaining parameters

13.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY
Actions

The DBMS_REDACT.ALTER_POLICY procedure provides parameters than can perform
various actions, such as adding or modifying a column.

Table 13-11 shows the combinations of these parameters.

Table 13-11 Parameters Required for Various DBMS_REDACT.ALTER_POLICY
Actions

Desired Alteration Parameters to Set

Add or modify a column • action (DBMS_REDACT.MODIFY_COLUMN)

• column_name
• function_type
• function_parameters (if necessary)

• regexp* (if necessary)

Change the policy expression • action (DBMS_REDACT.MODIFY_EXPRESSION)

• expression
Change the description of the policy • action (DBMS_REDACT.SET_POLICY_DESCRIPTION)

• policy_description
Change the description of the
column

• action (DBMS_REDACT.SET_COLUMN_DESCRIPTION)

• column_description
Drop a column • action (DBMS_REDACT.DROP_COLUMN)

• column_name

13.14.4 Tutorial: Altering an Oracle Data Redaction Policy
You can redact multiple columns in a table or view, with each column having its own redaction
setting.

The exercise in this section shows how to modify a Data Redaction policy so that multiple
columns are redacted. It also shows how to change the expression setting for the policy. To
accomplish this, you must run the DBMS_REDACT.ALTER_POLICY procedure in stages.

1. Connect as a user who has privileges to create users and grant them privileges.

For example:

CONNECT sec_admin
Enter password: password

2. Create the following users:

Chapter 13
Altering an Oracle Data Redaction Policy

13-53

GRANT CREATE SESSION TO dr_admin IDENTIFIED BY password;
GRANT CREATE SESSION TO sales_rep IDENTIFIED BY password;
GRANT CREATE SESSION TO support_rep IDENTIFIED BY password;

3. Grant EXECUTE on the DBMS_REDACT PL/SQL package to user dr_admin:

GRANT EXECUTE ON DBMS_REDACT TO dr_admin;
4. Connect as user OE.

CONNECT OE
Enter password: password

5. Create and populate a table that contains customer credit card information.

CREATE TABLE cust_order_info(
 first_name varchar2(20),
 last_name varchar2(20),
 address varchar2(30),
 city varchar2(30),
 state varchar2(3),
 zip varchar2(5),
 cc_num varchar(19),
 cc_exp varchar2(7));

INSERT INTO cust_order_info VALUES ('Jane','Dough','39 Mockingbird Lane',
'San Francisco', 'CA', 94114, '5105 1051 0510 5100', '10/2018');
INSERT INTO cust_order_info VALUES ('Mary','Hightower','2319 Maple Street',
'Sonoma', 'CA', 95476, '5111 1111 1111 1118', '03/2019');
INSERT INTO cust_order_info VALUES ('Herbert','Donahue','292 Winsome Way',
'San Francisco', 'CA', 94117, '5454 5454 5454 5454', '08/2018');

6. Grant the SELECT privilege on the cust_order_info table to the sales_rep and
support_rep users.

GRANT SELECT ON cust_order_info TO sales_rep, support_rep;
7. Connect as user dr_admin.

CONNECT dr_admin
Enter password: password

8. Create and enable policy to redact the credit card number.

BEGIN DBMS_REDACT.ADD_POLICY(
 object_schema => 'oe',
 object_name => 'cust_order_info',
 column_name => 'cc_num',
 policy_name => 'redact_cust_cc_info',
 function_type => DBMS_REDACT.REGEXP,
 function_parameters => NULL,
 expression => '1=1',
 regexp_pattern => DBMS_REDACT.RE_PATTERN_CCN,
 regexp_replace_string => DBMS_REDACT.RE_REDACT_CCN,
 regexp_position => NULL,
 regexp_occurrence => NULL,
 regexp_match_parameter => NULL,
 policy_description => 'Partially redacts credit card info',
 column_description => 'cc_num_number lists credit card numbers');
END;
/

9. Modify the policy to include redaction of the expiration date.

Chapter 13
Altering an Oracle Data Redaction Policy

13-54

BEGIN DBMS_REDACT.ALTER_POLICY(
 object_schema => 'oe',
 object_name => 'cust_order_info',
 policy_name => 'redact_cust_cc_info',
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'cc_exp',
 function_type => DBMS_REDACT.RANDOM,
 expression => '1-1');
END;
/

10. Modify the policy again, to use a condition so that the sales_rep user views the redacted
values and the support_rep user views the actual data.

BEGIN
 DBMS_REDACT.ALTER_POLICY(
 object_schema => 'oe',
 object_name => 'cust_order_info',
 policy_name => 'redact_cust_cc_info',
 action => DBMS_REDACT.MODIFY_EXPRESSION,
 expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') =
''SALES_REP''');
END;
/

11. To test the policy, have the two users query the cust_order_info table.

CONNECT support_rep
Enter password: password

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM CC_EXP
------------------- -------
5105 1051 0510 5100 10/2018
5111 1111 1111 1118 03/2019
5454 5454 5454 5454 08/2018

User support_rep can view the actual data.

CONNECT sales_rep
Enter password: password

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM CC_EXP
---------------- -------
************5100 lST=033
************1119 OZA.w4C
************5454 B(9+;O1

The actual data is redacted using for user sales_rep.

12. Alter the cust_order_info to include a condition so that only support_rep can see the
redacted data but sales_rep cannot.

CONNECT dr_admin
Enter password: password

BEGIN
 DBMS_REDACT.ALTER_POLICY(
 object_schema => 'oe',
 object_name => 'cust_order_info',

Chapter 13
Altering an Oracle Data Redaction Policy

13-55

 policy_name => 'redact_cust_cc_info',
 action => DBMS_REDACT.MODIFY_EXPRESSION,
 expression => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') =
''SUPPORT_REP''');
END;
/

13. Have the users test the policy again.

CONNECT support_rep
Enter password: password

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM CC_EXP
---------------- -------
************5100 1^XMF~`
************1119 qz+9=#S
************5454 *KCaUkm

User support_rep can no longer view the actual data; it is now redacted.

CONNECT sales_rep
Enter password: password

SELECT cc_num, cc_exp FROM OE.cust_order_info;

CC_NUM CC_EXP
------------------- -------
5105 1051 0510 5100 10/2018
5111 1111 1111 1118 03/2019
5454 5454 5454 5454 08/2018

User sales_rep now can view the actual data.

14. If you do not need the components of this tutorial, then you can remove them as
follows:

CONNECT dr_admin
Enter password: password

BEGIN
 DBMS_REDACT.DROP_POLICY (
 object_schema => 'oe',
 object_name => 'cust_order_info',
 policy_name => 'redact_cust_cc_info');
END;
/

CONNECT sec_admin
Enter password: password

DROP USER dr_admin;
DROP USER sales_rep;
DROP USER support_rep;

CONNECT OE
Enter password: password

DROP TABLE cust_order_info;

Chapter 13
Altering an Oracle Data Redaction Policy

13-56

13.15 Redacting Multiple Columns
You can redact more than one column in a Data Redaction policy.

• Adding Columns to a Data Redaction Policy for a Single Table or View
You can redact columns of different data types, using different redaction types, for one
table or view.

• Example: Redacting Multiple Columns
The DBMS_REDACT.ALTER_POLICY procedure can redact multiple columns.

13.15.1 Adding Columns to a Data Redaction Policy for a Single Table or
View

You can redact columns of different data types, using different redaction types, for one table
or view.

1. Create the policy for the first column that you want to redact.

2. Use the DBMS_REDACT.ALTER_POLICY procedure to add the next column to the policy.

As necessary, set the action, column_name, function_type, and function_parameters
(or the parameters that begin with regexp_) parameters to define the redaction for the
new column, but do not change the object_schema, object_name, policy_name, or
expression parameters. Each redacted column continues to have the same redaction
parameters that were used to create it.

13.15.2 Example: Redacting Multiple Columns
The DBMS_REDACT.ALTER_POLICY procedure can redact multiple columns.

Example 13-12 shows how to add a column to an existing Data Redaction policy. In this
example, the action parameter specifies that a new column must be added, using
DBMS_REDACT.ADD_COLUMN. The name of the new column, card_num, is set by the column_name
parameter.

Example 13-12 Adding a Column to a Data Redaction Policy

BEGIN
 DBMS_REDACT.ALTER_POLICY(
 object_schema => 'mavis',
 object_name => 'cust_info',
 policy_name => 'redact_cust_user_ids',
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'card_num',
 function_type => DBMS_REDACT.FULL,
 function_parameters => '',
 expression => 'SYS_CONTEXT(''SYS_SESSION_ROLES'',''ADM'') = ''TRUE''');
END;
/

13.16 Disabling and Enabling an Oracle Data Redaction Policy
You can disable and then reenable Oracle Data Redactions policies as necessary.

Chapter 13
Redacting Multiple Columns

13-57

• Disabling an Oracle Data Redaction Policy
The DBMS_REDACT.DISABLE_POLICY procedure disables Oracle Data Redaction
policies.

• Enabling an Oracle Data Redaction Policy
The DBMS_REDACT.ENABLE_POLICY procedure enables Oracle Data Redaction
policies.

13.16.1 Disabling an Oracle Data Redaction Policy
The DBMS_REDACT.DISABLE_POLICY procedure disables Oracle Data Redaction
policies.

You can find the names of existing Data Redaction policies and whether they are
enabled by querying the POLICY_NAME and ENABLE columns of the REDACTION_POLICIES
view. However, as long as the policy still exists, you cannot create another policy for
that table or view, even if the original policy is disabled. In other words, if you want to
create a different policy on the same table column, then you must drop the first policy
before you can create and use the new policy.

• To disable a Data Redaction policy, run the DBMS_REDACT.DISABLE_POLICY
procedure, using the following syntax:

DBMS_REDACT.DISABLE_POLICY (
 object_schema IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2);

In this specification:

– object_schema: Specifies the schema of the object on which the Data
Redaction policy will be applied. If you omit this setting (or enter NULL), then
Oracle Database uses the name of the current schema.

– object_name: Specifies the name of the table or view to be used for the Data
Redaction policy.

– policy_name: Specifies the name of the policy to be disabled.

Example 13-13 shows how to disable a Data Redaction policy.

Example 13-13 Disabling a Data Redaction Policy

BEGIN
 DBMS_REDACT.DISABLE_POLICY (
 object_schema => 'mavis',
 object_name => 'cust_info',
 policy_name => 'redact_cust_user_ids');
END;
/

13.16.2 Enabling an Oracle Data Redaction Policy
The DBMS_REDACT.ENABLE_POLICY procedure enables Oracle Data Redaction policies.

Immediately after you create a new policy, you do not need to enable it; the creation
process handles that for you. To find the names of existing Data Redaction policies
and whether they are enabled, you can query the POLICY_NAME and ENABLE columns of

Chapter 13
Disabling and Enabling an Oracle Data Redaction Policy

13-58

the REDACTION_POLICIES view. After you run the procedure to enable the policy, the
enablement takes effect immediately.

• To enable a Data Redaction policy, run the DBMS_REDACT.ENABLE_POLICY procedure,
using the following syntax.

DBMS_REDACT.ENABLE_POLICY (
 object_schema IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2);

In this specification:

– object_schema: Specifies the schema of the object on which the Data Redaction
policy will be applied. If you omit this setting (or enter NULL), then Oracle Database
uses the name of the current schema.

– object_name: Specifies the name of the table or view to be used for the Data
Redaction policy.

– policy_name: Specifies the name of the policy to be enabled.

Example 13-14 shows how to enable a Data Redaction policy.

Example 13-14 Enabling a Data Redaction Policy

BEGIN
 DBMS_REDACT.ENABLE_POLICY (
 object_schema => 'mavis',
 object_name => 'cust_info',
 policy_name => 'redact_cust_user_ids');
END;
/

13.17 Dropping an Oracle Data Redaction Policy
The DBMS_REDACT.DROP_POLICY procedure drops Oracle Data Redaction policies.

You can drop an Oracle Data Redaction policy whether it is enabled or disabled. You can find
the names of existing Data Redaction policies, by querying the POLICY_NAME column of the
REDACTION_POLICIES view. When you drop a table or view that is associated with an Oracle
Data Redaction policy, the policy is automatically dropped. As a best practice, drop the policy
first, and then drop the table or view afterward. See Dropped Oracle Data Redaction Policies
When the Recycle Bin Is Enabled for more information.

• To drop a Data Redaction policy, run the DBMS_REDACT.DROP_POLICY procedure.

Use the following syntax:

DBMS_REDACT.DROP_POLICY (
 object_schema IN VARCHAR2 DEFAULT NULL,
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2);

In this specification:

– object_schema: Specifies the schema of the object to which the Data Redaction
policy applies. If you omit this setting (or enter NULL), then Oracle Database uses the
name of the current schema.

Chapter 13
Dropping an Oracle Data Redaction Policy

13-59

– object_name: Specifies the name of the table or view to be used for the Data
Redaction policy.

– policy_name: Specifies the name of the policy to be dropped.

After you run the DBMS_REDACT.DROP_POLICY procedure, the drop takes effect
immediately.

Example 13-15 shows how to drop a Data Redaction policy.

Example 13-15 Dropping a Data Redaction Policy

BEGIN
 DBMS_REDACT.DROP_POLICY (
 object_schema => 'mavis',
 object_name => 'cust_info',
 policy_name => 'redact_cust_user_ids');
END;
/

13.18 Tutorial: SQL Expressions to Build Reports with
Redacted Values

SQL expressions can be used to build reports based on columns that have Oracle
Data Redaction policies defined on them.

The values used in the SQL expression will be redacted. This redaction occurs in such
a way that the redaction takes place before the SQL expression is evaluated: the
result value that is displayed in the report is the end result of the evaluated SQL
expression over the redacted values, rather than the redacted result of the SQL
expression as a whole.

1. Create the following Data Redaction policy for the HR.EMPLOYEES table.

This policy will replace the first 4 digits of the value from the SALARY column with
the number 9 and the first digit of the value from the COMMISSION_PCT column with
a 9.

BEGIN
 DBMS_REDACT.ADD_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 column_name => 'SALARY',
 column_description => 'emp_sal_comm shows employee salary and
commission',
 policy_name => 'redact_emp_sal_comm',
 policy_description => 'Partially redacts the emp_sal_comm column',
 function_type => DBMS_REDACT.PARTIAL,
 function_parameters => '9,1,4',
 expression => '1=1');
END;
/
BEGIN
 DBMS_REDACT.ALTER_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'redact_emp_sal_comm',
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'COMMISSION_PCT',

Chapter 13
Tutorial: SQL Expressions to Build Reports with Redacted Values

13-60

 function_type => DBMS_REDACT.PARTIAL,
 function_parameters => '9,1,1',
 expression => '1=1');
END;
/

2. Log in to the HR schema and then run the following report.

This report will use the SQL expression (SALARY + COMMISSION_PCT) to combine the
employees' salaries and commissions.

SELECT (SALARY + COMMISSION_PCT) total_emp_compensation
FROM HR.EMPLOYEES
WHERE DEPARTMENT_ID = 80;

TOTAL_EMP_COMPENSATION

 9999.9
 9999.95
 99990.95
...

3. Use SQL expressions for the report, including concatenation.

For example:

SELECT 'Employee ID ' || EMPLOYEE_ID ||
 ' has a salary of ' || SALARY ||
 ' and a commission of ' || COMMISSION_PCT || '.' detailed_emp_compensation
FROM HR.EMPLOYEES
WHERE DEPARTMENT_ID = 80
ORDER BY EMPLOYEE_ID;

DETAILED_EMP_COMPENSATION

Employee ID 150 has a salary of 99990 and a commission of .9.
Employee ID 151 has a salary of 9999 and a commission of .95.
Employee ID 152 has a salary of 9999 and a commission of .95.
...

4. Connect the user who created the redact_emp_sal_comm Data Redaction policy and then
run the following statement to drop the policy.

BEGIN
 DBMS_REDACT.DROP_POLICY (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'redact_emp_sal_comm');
END;
/

13.19 Oracle Data Redaction Policy Data Dictionary Views
Oracle Database provides data dictionary views that list information about Data Redaction
policies.

Before you can query these views, you must be granted the SELECT_CATALOG_ROLE role.

Table 13-12 lists the Data Redaction data dictionary views.

Chapter 13
Oracle Data Redaction Policy Data Dictionary Views

13-61

Table 13-12 Data Redaction Views

View Description

REDACTION_COLUMNS Describes all of the redacted columns in the database,
providing the the owner of the table or view within which
the column resides, the object name, the column name,
the type of redaction function, the parameters to the
redaction function (if any), and a description of the
redaction policy. If a policy expression has been created,
displays the default object-wide policy expression’s SQL
expression.

REDACTION_EXPRESSIONS Displays the names of existing policy expressions and
their SQL expressions

REDACTION_POLICIES Describes all of the data redaction policies in the
database. It includes information about the object owner,
object name, policy name, policy expression, whether the
policy is enabled, and a description of the Data Redaction
policy.

REDACTION_VALUES_FOR_TYPE_F
ULL

Shows the current redaction values for Data Redaction
policies that use full redaction

Chapter 13
Oracle Data Redaction Policy Data Dictionary Views

13-62

14
Managing Oracle Data Redaction Policies in
Oracle Enterprise Manager

Oracle Enterprise Manager Cloud Control (Cloud Control) can manage Oracle Data
Redaction policies and formats.

• About Using Oracle Data Redaction in Oracle Enterprise Manager
Oracle Enterprise Manager Cloud Control provides an unified user interface for creating
and managing Oracle Data Redaction policies.

• Oracle Data Redaction Workflow
First, you should create sensitive column types and formats if necessary, and then create
the Oracle Data Redaction policy afterward.

• Management of Sensitive Column Types in Enterprise Manager
A sensitive column type categorizes table column sensitive information into a sensitive
information type, such as credit card numbers.

• Managing Oracle Data Redaction Formats Using Enterprise Manager
Oracle Data Redaction provides redaction formats to be used directly within a redaction
policy to redact data.

• Managing Oracle Data Redaction Policies Using Enterprise Manager
You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise
Manager Cloud Control.

• Managing Named Data Redaction Policy Expressions Using Enterprise Manager
You can manage Oracle Data Redaction policy expressions in Enterprise Manager Cloud
Control.

14.1 About Using Oracle Data Redaction in Oracle Enterprise
Manager

Oracle Enterprise Manager Cloud Control provides an unified user interface for creating and
managing Oracle Data Redaction policies.

You can do the following:

• Create and manage custom Oracle Data Redaction formats, which were previously
known as Data Redaction shortcuts. (This functionality is not available from the command
line.)

• Create and manage sensitive column types directly from the Oracle Data Redaction
pages. While you create a Data Redaction policy, Cloud Control uses sensitive column
types to obtain the Oracle Data Redaction formats that are relevant to the column that
you are redacting.

14-1

Note:

Ensure that you have the latest plug-in for Oracle Enterprise Manager. For
information about how to deploy a plug-in, see Enterprise Manager Cloud
Control Administrator's Guide. If you have the Oracle Database plug-in
release 13.1.1.0.0, then you can create named Data Redaction policy
expressions in Oracle Enterprise Manager.

14.2 Oracle Data Redaction Workflow
First, you should create sensitive column types and formats if necessary, and then
create the Oracle Data Redaction policy afterward.

The following figure illustrates this process:

Create Sensitive
Column Types
(Optional)

Step 1 Step 2

Create Oracle
Data Redaction
Formats
(Optional)

Step 3

Create an Oracle
Data Redaction
Policy

1. (Optional) If you want to map the database columns (that contain the data that you
want to redact) to new sensitive column types, then create the required sensitive
column types as described in Management of Sensitive Column Types in
Enterprise Manager.

2. (Optional) If you want to redact the data (present in a particular database column)
using a custom redaction format, then create the required redaction format as
described in Creating a Custom Oracle Data Redaction Format Using Enterprise
Manager.

3. Create an Oracle Data Redaction policy for the required database, as described in
Creating an Oracle Data Redaction Policy Using Enterprise Manager.

Note:

When you create an Oracle Data Redaction policy, it is enabled by default.
For information on how to disable an enabled redaction policy, see Enabling
or Disabling an Oracle Data Redaction Policy in Enterprise Manager.

14.3 Management of Sensitive Column Types in Enterprise
Manager

A sensitive column type categorizes table column sensitive information into a sensitive
information type, such as credit card numbers.

Chapter 14
Oracle Data Redaction Workflow

14-2

Sensitive column types use a combination of the column name, column comments, and the
data pattern defined using a regular expression to tag a column to a particular sensitive
information type.

While you create Oracle Data Redaction policies, redaction formats are filtered on the basis
of the chosen sensitive column type, thus saving time and effort. For example, if the database
table column that you want to redact contains U.S. Social Security numbers, and you select
the SOCIAL_SECURITY_NUMBER sensitive column type for the column while adding it to the
Oracle Data Redaction policy, the default redaction formats that you can use to redact the
column data are filtered, and only the relevant redaction formats are displayed.

Figure 14-1 illustrates the filtering of Oracle Data Redaction formats based on sensitive
column types.

Figure 14-1 Oracle Data Redaction Formats Filtered on the Basis of Sensitive Column
Types

Note:

This functionality is available only if you have the Enterprise Manager for Oracle
Database plug-in 12.1.0.7 or later deployed in your system.

For information on how to verify the plug-ins deployed in your environment, see
Enterprise Manager Cloud Control Administrator's Guide..

Chapter 14
Management of Sensitive Column Types in Enterprise Manager

14-3

As part of the Application Data Modeling feature, Oracle provides a number of default
sensitive column types that a database column can be mapped to.

Figure 14-2 displays some of the default sensitive column types. To access this page,
click Manage Sensitive Column Types on the Data Redaction Formats page.

Figure 14-2 Default Sensitive Column Types

If none of the default sensitive column types are suitable for the database column that
contains the data that you want to redact, you can create a new sensitive column type,
or create a sensitive column type that is based on an existing sensitive column type.

14.4 Managing Oracle Data Redaction Formats Using
Enterprise Manager

Oracle Data Redaction provides redaction formats to be used directly within a
redaction policy to redact data.

• About Managing Oracle Data Redaction Formats Using Enterprise Manager
The Oracle Data Redaction formats are used for commonly redacted data, such as
ID numbers, credit cards, or phone numbers.

• Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
You can create and save custom Oracle Data Redaction formats using Enterprise
Manager Cloud Control.

• Editing a Custom Oracle Data Redaction Format Using Enterprise Manager
You can edit custom Oracle Data Redaction formats using Enterprise Manager
Cloud Control, but not in SQL*Plus.

• Viewing Oracle Data Redaction Formats Using Enterprise Manager
Enterprise Manager Cloud Control displays the details of the Oracle-supplied and
custom Oracle Data Redaction formats.

Chapter 14
Managing Oracle Data Redaction Formats Using Enterprise Manager

14-4

• Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager
You can delete custom Oracle Data Redaction formats using Enterprise Manager Cloud
Control.

14.4.1 About Managing Oracle Data Redaction Formats Using Enterprise
Manager

The Oracle Data Redaction formats are used for commonly redacted data, such as ID
numbers, credit cards, or phone numbers.

You can use several default Oracle Data Redaction formats (previously known as Oracle
Data Redaction templates). As an example of the Oracle Data Redaction formats, a set of
Social Security number formats enable you to quickly designate ways to redact Social
Security numbers, such as redacting the first five numbers of the Social Security number.

Figure 14-3 displays the default Oracle Data Redaction formats.

Figure 14-3 Default Oracle Data Redaction Formats

Each default Oracle Data Redaction format consists of a specific redaction function that
determines the redacted output when the redaction format is used in an Oracle Data
Redaction policy. For example, the Credit Card Numbers - NUMBER default redaction format
replaces the first twelve digits of the column data with the digit 0, when it is used in an Oracle
Data Redaction policy. That is, if the column data is 5555555555554444, the redacted output
will be 0000000000004444.

If you have deployed the Enterprise Manager for Oracle Database plug-in 12.1.0.7 or higher
on your system, then you can also create and save custom redaction formats, which you can
then use in your redaction policies.

14.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise
Manager

You can create and save custom Oracle Data Redaction formats using Enterprise Manager
Cloud Control.

Chapter 14
Managing Oracle Data Redaction Formats Using Enterprise Manager

14-5

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. Select the Formats tab.

7. Do one of the following:

• To create a new redaction format, click Create.

• To create a redaction format that is based on a default format, select the
format and then click Create Like.

If you select Create, then the following dialog box appears:

Chapter 14
Managing Oracle Data Redaction Formats Using Enterprise Manager

14-6

8. Provide a name and a description for the redaction format that you want to create.

If you want to map the redaction format to a particular sensitive column type (such that
the created redaction format can be used to redact the data of a column that is
associated with the sensitive column type), then select a value for Sensitive Column
Type.

Select the function that the format should use to redact the column data. For Redaction
Function, select as follows:

• FULL if the format should redact the entire column data.

• PARTIAL if the format should redact only a part of the column data. Ensure that you
provide the function attributes, as well as the data type that you want to use the
redaction format for.

• REGEX if the format should redact data based on a regular expression. Ensure that
you provide the function attributes.

Chapter 14
Managing Oracle Data Redaction Formats Using Enterprise Manager

14-7

• RANDOM if the format should redact data in a random manner, using
randomly generated values

• NONE if the format will be used to only test the definition of a redaction policy,
and not redact any column data

9. Click OK to create and save the custom redaction format.

This format now can be used to create a redaction policy.

Related Topics

• Oracle Data Redaction Features and Capabilities
Oracle Data Redaction provides a variety of ways to redact different types of data.

• Creating an Oracle Data Redaction Policy Using Enterprise Manager
You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

14.4.3 Editing a Custom Oracle Data Redaction Format Using
Enterprise Manager

You can edit custom Oracle Data Redaction formats using Enterprise Manager Cloud
Control, but not in SQL*Plus.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. Select the Formats tab.

7. Select the custom redaction format that you want to edit, then click Edit.

A dialog box similar to the following appears:

Chapter 14
Managing Oracle Data Redaction Formats Using Enterprise Manager

14-8

8. (Optional) Choose to edit the format description, sensitive column type, redaction
function, and the redaction function attributes.

9. Click OK to save the edited format.

14.4.4 Viewing Oracle Data Redaction Formats Using Enterprise Manager
Enterprise Manager Cloud Control displays the details of the Oracle-supplied and custom
Oracle Data Redaction formats.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package.

6. Select the Formats tab.

The Data Redaction Formats page appears, similar to the following page.

Chapter 14
Managing Oracle Data Redaction Formats Using Enterprise Manager

14-9

7. Select the required redaction format, then click View.

14.4.5 Deleting a Custom Oracle Data Redaction Format Using
Enterprise Manager

You can delete custom Oracle Data Redaction formats using Enterprise Manager
Cloud Control.

You can only delete custom Oracle Data Redaction formats, and not the redaction
formats that are provided by Oracle.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. Select the Formats tab.

7. Select the custom redaction format that you want to delete, and then click Delete.

8. In the Confirmation dialog box, click Yes or No.

14.5 Managing Oracle Data Redaction Policies Using
Enterprise Manager

You can create, edit, view, and delete Oracle Data Redaction policies in Enterprise
Manager Cloud Control.

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-10

• About Managing Oracle Data Redaction Policies Using Enterprise Manager
Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction
policies.

• Creating an Oracle Data Redaction Policy Using Enterprise Manager
You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

• Editing an Oracle Data Redaction Policy Using Enterprise Manager
You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

• Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
You can find Oracle Data Redaction policy details such as whether the policy is enabled
by using Enterprise Manager Cloud Control.

• Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
An Oracle Data Redaction policy is executed at run time only if it is enabled. When you
create an Oracle Data Redaction policy, it is enabled by default.

• Deleting an Oracle Data Redaction Policy Using Enterprise Manager
You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

14.5.1 About Managing Oracle Data Redaction Policies Using Enterprise
Manager

Use the Data Redaction page in Cloud Control to manage Oracle Data Redaction policies.

To redact the data present in a particular database table or view column, you must create an
Oracle Data Redaction policy. Data is redacted using a redaction format that is specified by
the Oracle Data Redaction policy. To redact data, you can use any of the Oracle-supplied
redaction formats, or create and use a custom redaction format. If the table or view column
that contains the data that you want to redact is mapped to a sensitive column type, Oracle
uses the mapping to recommend suitable redaction formats for the data. Thus, Oracle Data
Redaction policies encapsulate database schemas, database table and view columns,
sensitive column types, and Oracle Data Redaction formats.

Figure 14-4 shows the Data Redaction page, which enables you to create and manage
Oracle Data Redaction policies in Cloud Control.

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-11

Figure 14-4 Oracle Data Redaction Policies Page

14.5.2 Creating an Oracle Data Redaction Policy Using Enterprise
Manager

You can create an Oracle Data Redaction policy using Enterprise Manager Cloud
Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to
create an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. In the Policies section of the Policies tab, select Create.

If this is the first time that you are creating a Data Redaction policy, then the Data
Redaction: Set up for enabling column sensitive type discovery dialog box
appears. This feature enables the use of column sensitive type discovery for Data
Redaction policies.

To accomplish this, Enterprise Manager creates the
GET_COL_DATA_SENSITIVE_TYPES procedure in the DBSNMP schema. To perform a
sensitive type discovery for a selected column while creating an Oracle Data

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-12

Redaction policy, a user must have the EXECUTE privilege on the
DBSNMP.GET_COL_DATA_SENSITIVE_TYPES procedure. If the database is protected by
Oracle Database Vault, then ensure that any users who must create Data Redaction
policies are participants to realms that protect the DBSNMP schema.

7. If the Data Redaction: Set up for enabling column sensitive type discovery dialog box
appears and if the current login user does not have the correct requirements, select a
credential of a user who has the EXECUTE privilege on
DBSNMP.GET_COL_DATA_SENSITIVE_TYPES. Then click OK.

8. On the Create Data Redaction Policy page, enter the following information:

• Schema: Enter (or search for) the name of the schema that contains the data you
want to redact.

• Table/View: Enter (or search for) the table or field that contains the column you want
to redact.

• Policy Name: Enter a for the policy, such as emp_wages_pol.

• Default Expression: Enter the default expression. The default setting is 1=1, which
means that the policy always will be enforced. If you are not familiar with the
components of a policy expression, then click the pencil icon beside the Policy
Expression field to use Policy Expression Builder. Select Policy is in effect when,
select the required conditions, then click Add. Click Edit if you want to edit the policy
expression manually. After building the required policy expression, click OK. The
Policy Expression Builder appears as follows:

9. In the Object Columns section, click Add to add a table or view column to the redaction
policy.

A dialog box similar to the following appears:

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-13

The redaction policy is applied only on the table or view columns that are added to
it.

10. From the Column menu, select the table or view column to which you want to
apply the redaction policy.

To the right of the Column menu is an icon that you can click to view the contents
of the selected column.

If the column contains sensitive data and has been mapped to a sensitive column
type, then from the Sensitive Column Type menu, select the sensitive column
type that it has been mapped to. If the search pattern in the Sensitive Column
Type menu matches, then the sensitive column type is selected by default. For
example, for a column listing credit card numbers, if there is a match, then the
menu will list Undefined and CREDIT_CARD_TYPE. If there is no sensitive
column type created, then the default Sensitive Column Type menu listing is only
Undefined.

11. From the Redaction Format menu, select the redaction format that you want to
use.

The drop-down list is populated with the Oracle Database-supplied redaction
formats, as well as the custom redaction formats that you have created and saved.
If you do not want to use a pre-defined redaction format (that is, an Oracle-
Database supplied redaction format, or a custom redaction format that you have
created), and instead want to specify the redaction details while creating the
redaction policy, select CUSTOM for Redaction Format.

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-14

The Add dialog box adjusts to accommodate the type of redaction format and function
that you select. For example, if you select the CUSTOM redaction format and the REGEX
redaction function, then the Function Attributes region appears in the dialog box.

12. From the Redaction Function menu, select the function that you want to use to redact
the column data.

Select FULL if you want to redact the entire column data, PARTIAL if you want to redact
only a part of the column data, REGEX if you want to redact the column data based on a
regular expression, RANDOM if you want to redact the column data in a random manner,
using randomly generated values, or NONE if you only want to test the definition of the
redaction policy, and not redact any column data. Note that all the redaction functions
may not be applicable for a particular redaction format. The drop-down list displays only
the redaction functions that are applicable for the selected redaction format.

If you selected CUSTOM for Redaction Format in the previous step, and PARTIAL or
REGEX for Redaction Function, ensure that you specify the function attributes.

13. Click OK.

14. Repeat these steps starting with Step 8 for all the columns that you want to add to the
redaction policy.

15. On the Create Data Redaction Policy page, click OK to create the data redaction policy.

When you create an Oracle Data Redaction policy, it is enabled by default.

Related Topics

• Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
You can create and save custom Oracle Data Redaction formats using Enterprise
Manager Cloud Control.

• Oracle Data Redaction Features and Capabilities
Oracle Data Redaction provides a variety of ways to redact different types of data.

• Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
An Oracle Data Redaction policy is executed at run time only if it is enabled. When you
create an Oracle Data Redaction policy, it is enabled by default.

14.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager
You can edit an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for which
the Oracle Data Redaction policy that you want to edit was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package.

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-15

6. In the Policies section of the Policies tab, select the redaction policy that you want
to edit, then click Edit..

7. On the Edit Data Redaction Policy page, choose to edit the policy expression, add
new columns to the redaction policy, modify the redaction details of a column that
is a part of the policy, or delete a column from the redaction policy.

You can do the following:

• To add a new column to the redaction policy, in the Object Columns section,
click Add, select the table or view column that you want to add, then specify
the redaction details.

• To modify the redaction details of a column that is a part of the policy, select
the column, click Modify, then edit the redaction details.

• To delete a column from the redaction policy, select the column, then click
Delete.

8. On the Edit Data Redaction Policy page, after editing the required fields, click OK
to save and enable the edited redaction policy.

14.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise
Manager

You can find Oracle Data Redaction policy details such as whether the policy is
enabled by using Enterprise Manager Cloud Control.

You can disable an enabled redaction policy, or enable a disabled redaction policy
using Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to view was created.

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-16

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package.

6. In the Policies section of the Policies tab, do one of the following:

• Select the name of the policy in the table.

• Select the required redaction policy, then click View.

7. To exit, click OK.

14.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise
Manager

An Oracle Data Redaction policy is executed at run time only if it is enabled. When you
create an Oracle Data Redaction policy, it is enabled by default.

You can disable an enabled redaction policy, or enable a disabled redaction policy using
Enterprise Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for which
the Oracle Data Redaction policy that you want to enable or disable was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package.

6. In the Policies section of the Policies tab, select the redaction policy that you want to
enable or disable, and then click Enable or Disable.

7. In the Confirmation dialog box, click Yes or No.

14.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise
Manager

You can delete an Oracle Data Redaction policy using Enterprise Manager Cloud Control.

Chapter 14
Managing Oracle Data Redaction Policies Using Enterprise Manager

14-17

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then search for and click the name of the database target for
which the Oracle Data Redaction policy that you want to delete was created.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. In the Policies section of the Policies tab, select the redaction policy that you want
to delete, and then click Delete.

7. In the Confirmation dialog box, click Yes or No.

14.6 Managing Named Data Redaction Policy Expressions
Using Enterprise Manager

You can manage Oracle Data Redaction policy expressions in Enterprise Manager
Cloud Control.

• About Named Data Redaction Policy Expressions in Enterprise Manager
You can create and apply named Oracle Data Redaction policy expression to
multiple columns in tables and views in Oracle Enterprise Manager Cloud Control.

• Creating a Named Data Redaction Policy Expression in Enterprise Manager
You can create and apply a named Oracle Data Redaction policy expression using
Enterprise Manager Cloud Control.

• Editing a Named Data Redaction Policy Expression in Enterprise Manager
You can edit a named Oracle Data Redaction policy expression using Enterprise
Manager Cloud Control.

• Viewing Named Data Redaction Policy Expressions in Enterprise Manager
You can view named Oracle Data Redaction policy expressions using Enterprise
Manager Cloud Control.

• Deleting a Named Data Redaction Policy Expression in Enterprise Manager
You can delete named Oracle Data Redaction policy expressions using Enterprise
Manager Cloud Control.

14.6.1 About Named Data Redaction Policy Expressions in Enterprise
Manager

You can create and apply named Oracle Data Redaction policy expression to multiple
columns in tables and views in Oracle Enterprise Manager Cloud Control.

When you modify the policy expression, the change is reflected in all redacted
columns in the database instance that use the policy expression. Cloud Control

Chapter 14
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

14-18

enables you to create, edit, view, apply to columns, and delete policy expressions. Before you
can create and use named Data Redaction policy expressions, ensure that the COMPATIBLE
initialization parameter is set to 12.2.0.0 or later.

Related Topics

• Creating and Managing Multiple Named Policy Expressions
A named, centrally managed Oracle Data Redaction policy expression can be used in
multiple redaction policies and applied to multiple tables or views.

14.6.2 Creating a Named Data Redaction Policy Expression in Enterprise
Manager

You can create and apply a named Oracle Data Redaction policy expression using Enterprise
Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to create
an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Click Create.

The Create dialog box appears.

8. In the Create dialog box, enter the following information:

• Expression Name: Enter a name for the policy expression. Existing policy
expressions are listed on the Data Redaction page.

• Description: Enter a brief description of the policy.

Chapter 14
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

14-19

• Expression: Enter the expression. For more complex expressions, such as
applying or exempting the policy from specific users, click the Policy
Expression Builder icon at the right of the Expression field. Click OK in the
Policy Expression Builder to create the expression.

9. Click OK in the Create dialog box.

After you create the policy expression, it is listed in the Data Redaction page and
ready to be associated with a Data Redaction policy.

10. In the Data Redaction page, select the Policies tab.

11. Under Policies, select the row for the policy that redacts the column to which you
want to apply the policy expression, and then click Edit.

12. Under Object Columns, select the column that you want and then click the Modify
button.

13. In the Modify dialog box, select the expression from the Expression Name list.

14. Click OK, and then click OK again in the Edit Data Redaction Policy dialog box.

14.6.3 Editing a Named Data Redaction Policy Expression in
Enterprise Manager

You can edit a named Oracle Data Redaction policy expression using Enterprise
Manager Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to
create an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Select the policy expression that you want to edit and then click Edit.

Chapter 14
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

14-20

8. In the Edit dialog box, modify the Description and Expression fields as necessary. For
more complex expressions, click the Policy Expression Builder icon, and then click OK
after you have recreated the expression.

9. Click OK in the Edit dialog box.

14.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise
Manager

You can view named Oracle Data Redaction policy expressions using Enterprise Manager
Cloud Control.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to create
an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on the
DBMS_REDACT PL/SQL package.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Select the policy expression that you want to view and then click View.

The View dialog box appears, showing the definition of the policy expression.

8. Click OK to exit the View dialog box.

14.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise
Manager

You can delete named Oracle Data Redaction policy expressions using Enterprise Manager
Cloud Control.

The deletion process first dissociates the policy expression from all columns to which it is
applied.

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or SYSMAN.

The URL is as follows:

https://host:port/em
2. From the Targets menu, select Databases.

3. Select Search List, then click the name of a database target for which you want to create
an Oracle Data Redaction policy.

4. On the home page of the database target, from the Security menu, select Data
Redaction.

Chapter 14
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

14-21

5. Log in to the database, if you are prompted to do so.

Ensure that you log in to the database as a user that has the EXECUTE privilege on
the DBMS_REDACT PL/SQL package.

6. On the Oracle Data Redaction page, select the Expressions tab.

7. Select the policy expression that you want to delete, and then click Delete.

The Delete Expressions confirmation dialog box appears.

8. Click OK.

Chapter 14
Managing Named Data Redaction Policy Expressions Using Enterprise Manager

14-22

15
Using Oracle Data Redaction with Oracle
Database Features

Oracle Data Redaction can be used with other Oracle features, but some Oracle features
may have restrictions with regard to Oracle Data Redaction.

• Oracle Data Redaction General Usage Guidelines
It is important to understand usage guidelines for using Oracle Data Redaction.

• Oracle Data Redaction and DML and DDL Operations
Oracle Data Redaction affects DML and DDL operations, especially for users who issue
ad-hoc SQL against tables with redacted columns.

• Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause
You can use Oracle Data Redaction with nested functions, inline views, and the WHERE
clause in SELECT statements.

• Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies
Queries that include the DISTINCT or ORDER BY clause on columns that are protected by
Oracle Data Redaction policies may return 0 rows.

• Oracle Data Redaction and Database Links
Do not create Oracle Data Redaction policies on database views that reference database
links.

• Oracle Data Redaction and Aggregate Functions
Aggregate functions can affect performance overhead on Oracle Data Redaction policies.

• Oracle Data Redaction and Object Types
You can use object types to model real-world entities such as customer accounts.

• Oracle Data Redaction and XML Generation
You cannot use XML generation functions on columns that have Oracle Data Redaction
policies defined on them.

• Oracle Data Redaction and Editions
You cannot redact editioned views.

• Oracle Data Redaction in a Multitenant Environment
In a multitenant environment, Oracle Data Redaction policies apply only to the objects
within the current pluggable database (PDB).

• Oracle Data Redaction and Oracle Virtual Private Database
Oracle Data Redaction does not affect Oracle Virtual Private Database policies because
the VPD inline view, which contains the VPD predicate, acts on actual values.

• Oracle Data Redaction and Oracle Database Real Application Security
Oracle Data Redaction differs from Oracle Database Real Application Security because
of how security is implemented for applications.

• Oracle Data Redaction and Oracle Database Vault
You can use Oracle Data Redaction in an Oracle Database Vault environment.

15-1

• Oracle Data Redaction and Oracle Data Pump
Oracle Data Pump export operations can affect objects that have Oracle Data
Redaction policies.

• Oracle Data Redaction and Data Masking and Subsetting Pack
Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to
create a development or test copy of a production database.

• Oracle Data Redaction and JSON
JavaScript Object Notation (JSON) can be used to create is json constraints on
table columns.

15.1 Oracle Data Redaction General Usage Guidelines
It is important to understand usage guidelines for using Oracle Data Redaction.

• Do not include any redacted columns in a SQL expression that is used in a GROUP
BY clause in a SQL statement. Oracle does not support this, and raises an
ORA-00979: not a GROUP BY expression error. This happens because internally
the expression in the SELECT list must be modified by Data Redaction, but this
causes it to no longer be found when it comes time to process the GROUP BY
clause (which is currently not updated by Data Redaction) leading to this
unintended error message.

• Do not include any redacted columns in a SQL expression that is used in both the
DISTINCT clause and ORDER BY clause in a SQL statement. Oracle does not
support this, and raises an error: ORA-01791: not a SELECTed expression. This
happens because internally the expression in the SELECT list must be modified by
Data Redaction, but this causes it to no longer be found when it comes time to
process the GROUP BY clause, leading to this unintended error message.

• An ORA-28094: SQL construct not supported by data redaction error is
raised if a query involves a UNION of redacted columns and each branch of the
UNION does not have the same redaction policy. To avoid the ORA-28094 error,
ensure that the query has the following properties:

– When a column in the UNION has a redaction policy, the corresponding column
in each branch of the UNION must use a redaction policy with the same values
for all of its properties:

* Function type

* Function parameters or REGEXP parameters

* Policy expression

* Enable flag

It can be a different redaction policy, but all these properties must be the
same.

– In an inline view, a UNION cannot have a subquery.

– In a CREATE VIEW definition or an inline view, there cannot be any SQL
expression that involves a redacted column.

• Oracle does not support the following:

– Adding a Data Redaction policy on a virtual column

– Adding a Data Redaction policy on the base column of a virtual column

Chapter 15
Oracle Data Redaction General Usage Guidelines

15-2

– Adding a virtual column whose base column has a Data Redaction policy defined on
it

– Creating a functional index on a column with Data Redaction policy

• In a CREATE VIEW definition or an inline view, there cannot be any SQL expressions (such
as concat, sum, trim, min, max, and so on) that involve a redacted column.

15.2 Oracle Data Redaction and DML and DDL Operations
Oracle Data Redaction affects DML and DDL operations, especially for users who issue ad-
hoc SQL against tables with redacted columns.

Note the following:

• Oracle Data Redaction treats the RETURNING INTO clause of a DML statement as a query,
even though the result is not displayed. The result that is sent to the buffer is what would
have been displayed had the RETURNING INTO clause been run as an ordinary SQL query,
rather than as part of a DML statement. If your application performs further processing on
the buffer that contains the RETURNING INTO value, then consider changing the
application because it may not expect to find a redacted value in the buffer.

• If a redacted column appears as the source in a DML or DDL operation, then Oracle Data
Redaction considers this as an attempt to circumvent the policy and prevents it with an
ORA-28081: Insufficient privileges - the command references a redacted
object error unless you have the EXEMPT REDACTION POLICY system privilege. Internally,
Oracle Data Pump issues these kinds of operations, so you may also need to grant the
EXEMPT REDACTION POLICY system privilege to a user if they need to perform schema-
level exports of tables that have redacted columns.

15.3 Oracle Data Redaction and Nested Functions, Inline Views,
and the WHERE Clause

You can use Oracle Data Redaction with nested functions, inline views, and the WHERE clause
in SELECT statements.

Oracle Data Redaction policies work as follows:

• Nested functions are redacted innermost. For example, in SELECT
SUM(AVG(TO_NUMBER(((X))) FROM HR.EMPLOYEES WHERE ..., the TO_NUMBER function is
redacted first, followed by AVG, and then last the SUM function.

• Inline views are redacted outermost. For example, in SELECT XYZ … AS SELECT A… AS
SELECT B… AS SELECT C…, SELECT XYZ is redacted first, followed by AS SELECT A, then AS
SELECT B, and so on. AS SELECT C is redacted last.

• The WHERE clause is never redacted. Data Redaction redacts only data in the column
SELECT list.

Chapter 15
Oracle Data Redaction and DML and DDL Operations

15-3

15.4 Oracle Data Redaction and Queries on Columns
Protected by Data Redaction Policies

Queries that include the DISTINCT or ORDER BY clause on columns that are protected
by Oracle Data Redaction policies may return 0 rows.

This happens because redaction preserves the semantics of the query. For example, a
query such as SELECT * table_name WHERE sensitive_column LIKE 'value'; would
likely result in 0 rows returned, because the redacted value would not match the
'value' value entered in the WHERE clause. To work around this issue, rewrite the
query to include an inline view so that the semantic layer can find the column. For
example, instead of the following query:

SELECT DISTINCT sensitive_column
FROM table_name
ORDER BY sensitive_column;

Write the query as follows:

SELECT sensitive_column FROM
(SELECT DISTINCT sensitive_column
 FROM table_name
 ORDER BY sensitive_column);

15.5 Oracle Data Redaction and Database Links
Do not create Oracle Data Redaction policies on database views that reference
database links.

You can find information about existing database links by querying the DBA_DB_LINKS
data dictionary view.

See Also:

Oracle Database Administrator’s Guide for detailed information about
database links

15.6 Oracle Data Redaction and Aggregate Functions
Aggregate functions can affect performance overhead on Oracle Data Redaction
policies.

Because Oracle Data Redaction dynamically modifies the value of each row in a
column, certain SQL queries that use aggregate functions cannot take full advantage
of database optimizations that presume the row values to be static.

In the case of SQL queries that call aggregate functions, it may be possible to notice
performance overhead due to redaction.

Chapter 15
Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies

15-4

15.7 Oracle Data Redaction and Object Types
You can use object types to model real-world entities such as customer accounts.

An object type is a user-defined type. You cannot redact object types. This is because
Database Redaction cannot handle all of the possible ways that object types can be
configured, because they are user defined. You can find the type that an object uses by
querying the OBJECT_NAME and OBJECT_TYPE columns of the ALL_OBJECTS data dictionary view.

15.8 Oracle Data Redaction and XML Generation
You cannot use XML generation functions on columns that have Oracle Data Redaction
policies defined on them.

Oracle XML DB Developer’s Guide describes the kinds of SQL functions to which this
restriction applies. This restriction applies irrespective of whether the Oracle Data Redaction
policy has been enabled or disabled, or is active for the querying user.

15.9 Oracle Data Redaction and Editions
You cannot redact editioned views.

In addition to not being able to redact editioned views, you cannot use a redacted column in
the definition of any editioned view. You can find information about editions by querying the
DBA_EDITIONS data dictionary view.

15.10 Oracle Data Redaction in a Multitenant Environment
In a multitenant environment, Oracle Data Redaction policies apply only to the objects within
the current pluggable database (PDB).

You cannot create a Data Redaction policy for a multitenant container database (CDB). This
is because the objects for which you create Data Redaction policies typically reside in a PDB.
If you have the SYSDBA privilege, then you can list all the PDBs in a CDB by running the SHOW
PDBS command.

As with the CDB root, you cannot create Data Redaction policies in an application root.

15.11 Oracle Data Redaction and Oracle Virtual Private
Database

Oracle Data Redaction does not affect Oracle Virtual Private Database policies because the
VPD inline view, which contains the VPD predicate, acts on actual values.

Oracle Data Redaction differs from Oracle Virtual Private Database in the following ways:

• Oracle Data Redaction provides more redacting features than Oracle Virtual Private
Database, which only supports NULL redacting. Many applications cannot use NULL
redacting, so Data Redaction is a good solution for these applications.

Chapter 15
Oracle Data Redaction and Object Types

15-5

• Oracle Virtual Private Database policies can be static, dynamic, and context
sensitive, whereas Data Redaction policies only allow static and context-sensitive
policy expressions.

• Data Redaction permits only one policy to be defined on a table or view, whereas
you can define multiple Virtual Private Database policies on an object.

• Data Redaction is when application users try to access an object that is protected
by a Data Redaction policy using a synonym, but (unlike Oracle Virtual Private
Database) Data Redaction does not support the creation of policies directly on the
synonyms themselves.

15.12 Oracle Data Redaction and Oracle Database Real
Application Security

Oracle Data Redaction differs from Oracle Database Real Application Security
because of how security is implemented for applications.

Oracle Data Redaction differs from Oracle Database Real Application Security in that
Real Application Security provides a comprehensive authorization framework for
application security.

Column security within Real Application Security is based on application privileges that
are defined by applications using the Real Application Security framework.

See Also:

Oracle Database Real Application Security Administrator's and Developer's
Guide for information about how you can protect table columns with custom
application privileges

15.13 Oracle Data Redaction and Oracle Database Vault
You can use Oracle Data Redaction in an Oracle Database Vault environment.

For example, if there is an Oracle Database Vault realm around an object, a user who
does not belong to the authorized list of realm owners or participants cannot see the
object data, regardless of whether the user was granted the EXEMPT REDACTION
POLICY privilege. If the user attempts a DML or DDL statement on the data, error
messages result.

15.14 Oracle Data Redaction and Oracle Data Pump
Oracle Data Pump export operations can affect objects that have Oracle Data
Redaction policies.

• Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION
POLICY system privilege.

Chapter 15
Oracle Data Redaction and Oracle Database Real Application Security

15-6

• Export of Objects That Have Oracle Data Redaction Policies Defined
You can export objects that have already had Oracle Data Redaction policies defined on
them.

• Export of Data Using the EXPDP Utility access_method Parameter
Oracle Data Pump can export data from a schema that contains an object that has a
Data Redaction policy.

• Import of Data into Objects Protected by Oracle Data Redaction
During an import operation, be careful that you do not inadvertently drop data redaction
policies that protect imported data.

15.14.1 Oracle Data Pump Security Model for Oracle Data Redaction
The DATAPUMP_EXP_FULL_DATABASE role includes the powerful EXEMPT REDACTION POLICY
system privilege.

Remember that by default the DBA role is granted the DATAPUMP_EXP_FULL_DATABASE role as
well as DATAPUMP_IMP_FULL_DATABASE.

This enables users who were granted these roles to be exempt from Data Redaction policies.
This means that, when you export objects with Data Redaction policies defined on them, the
actual data in the protected tables is copied to the Data Pump target system without being
redacted. Users with these roles, including users who were granted the DBA role, are able to
see the actual data in the target system.

However, by default, all of the Data Redaction policies associated with any tables and views
in the Data Pump source system are also included in the export and import operation (along
with the objects themselves) and applied to the objects in the target system, so the data is
still redacted when users query the objects in the target system.

Related Topics

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the data
they access.

15.14.2 Export of Objects That Have Oracle Data Redaction Policies
Defined

You can export objects that have already had Oracle Data Redaction policies defined on
them.

• Finding Type Names Used by Oracle Data Pump
You must find the type names Oracle Data Pump uses before exporting objects that have
Oracle Data Redaction policies defined on these objects.

• Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
You can export only the data dictionary metadata that is related to data redaction policies
and full redaction settings.

• Importing Objects Using the INCLUDE Parameter in IMPDP
You can import objects using Oracle Database Pump.

Chapter 15
Oracle Data Redaction and Oracle Data Pump

15-7

15.14.2.1 Finding Type Names Used by Oracle Data Pump
You must find the type names Oracle Data Pump uses before exporting objects that
have Oracle Data Redaction policies defined on these objects.

After you find these types, you should use these types as parameters for the INCLUDE
directive to the IMPDP utility, to selectively export only metadata of these specific types
to the dump file.

• To find type names, query the DATABASE_EXPORT_OBJECTS view.

For example:

SELECT OBJECT_PATH
FROM DATABASE_EXPORT_OBJECTS
WHERE OBJECT_PATH LIKE 'RADM_%';

Output similar to the following appears:

OBJECT_PATH

RADM_FPTM
RADM_POLICY

15.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data
Redaction Policies

You can export only the data dictionary metadata that is related to data redaction
policies and full redaction settings.

This kind of Data Pump export could, for example, be used if you must use the same
set of Data Redaction policies and settings across development, test, and production
databases. Because the flag content=metadata_only is specified, the dump file does
not contain any actual data.

• To export only the data dictionary metadata related to data redaction policies and
full redaction settings, enter an EXPDP utility command similar to the following:

expdp system/password \
full=y \
COMPRESSION=NONE \
content=metadata_only \
INCLUDE=RADM_FPTM,RADM_POLICY\
directory=my_directory \
job_name=my_job_name \
dumpfile=my_data_redaction_policy_metadata.dmp

See Also:

• Oracle Database Utilities for detailed information about the INCLUDE
parameter of the EXPDP utility

• Oracle Database Utilities for detailed information about metadata filters

Chapter 15
Oracle Data Redaction and Oracle Data Pump

15-8

15.14.2.3 Importing Objects Using the INCLUDE Parameter in IMPDP
You can import objects using Oracle Database Pump.

• To import the objects, include these names in the INCLUDE parameter in the IMPDP utility
command, based on the output from querying the OBJECT_PATH column in the
DATABASE_EXPORT_OBJECTS view.

15.14.3 Export of Data Using the EXPDP Utility access_method Parameter
Oracle Data Pump can export data from a schema that contains an object that has a Data
Redaction policy.

If you are using Oracle Data Pump to perform full database export operations using the Data
Pump default settings (direct_path), and if you receive error messages that you do not
understand, then use this section to repeat the operation in such a way as to better
understand the error.

If you try to use the Oracle Data Pump Export (EXPDP) utility with the access_method
parameter set to direct_path to export data from a schema that contains an object that has
a Data Redaction policy defined on it, then the following error message may appear and the
export operation fails:

ORA-31696: unable to export/import TABLE_DATA:"schema.table" using client specified
DIRECT_PATH method

This problem only occurs when you perform a schema-level export as a user who was not
granted the EXP_FULL_DATABASE role. It does not occur during a full database export, which
requires the EXP_FULL_DATABASE role. The EXP_FULL_DATABASE role includes the EXEMPT
REDACTION POLICY system privilege, which bypasses Data Redaction policies.

To find the underlying problem, try the EXPDP invocation again, but do not set the
access_method parameter to direct_path. Instead, use either automatic or external_table.
The underlying problem could be a permissions problem, for example:

ORA-28081: Insufficient privileges - the command references a redacted object.

See Also:

Oracle Database Utilities for more information about using Data Pump Export.

15.14.4 Import of Data into Objects Protected by Oracle Data Redaction
During an import operation, be careful that you do not inadvertently drop data redaction
policies that protect imported data.

Consider a scenario in which the source tables that were exported using the Oracle Data
Pump Export (EXPDP) utility do not have Oracle Data Redaction polices. However, the
destination tables to which the data is to be imported by using Oracle Data Pump Import
(IMPDP) have Oracle Data Redaction policies.

Chapter 15
Oracle Data Redaction and Oracle Data Pump

15-9

During the Data Pump import operation, the status of the Data Redaction policies on
the objects being imported depends on the CONTENT option of IMPDP command.

• If you use the CONTENT=ALL or CONTENT=METADATA_ONLY option in the IMPDP
command, then the Data Redaction policies on the destination tables are dropped.
You must recreate the Data Redaction policies.

• If you use CONTENT=DATA_ONLY in the IMPDP command, then the Data Redaction
polices on the destination tables are not dropped.

See Also:

Oracle Database Utilities for more information about using Data Pump Export

15.15 Oracle Data Redaction and Data Masking and
Subsetting Pack

Oracle Enterprise Manager Data Masking and Subsetting Pack can be used to create
a development or test copy of a production database.

To accomplish this, you can mask this data in bulk, and then put the resulting masked
data in the development or test copy.

You can still apply Data Redaction policies to the non-production database, in order to
redact columns that contain data that was already masked by Oracle Enterprise
Manager Data Masking and Subsetting Pack.

Remember that Oracle Enterprise Manager Data Masking and Subsetting Pack is
used to mask data sets when you want to move the data to development and test
environments. Data Redaction is mainly designed for redacting at runtime for
production applications in a consistent fashion across multiple applications, without
having to make application code changes.

15.16 Oracle Data Redaction and JSON
JavaScript Object Notation (JSON) can be used to create is json constraints on table
columns.

However, you cannot create an Oracle Data Redaction policy on a table column that
has the is json constraint. If you attempt to do so, an ORA-28073 - The column
column_name has an unsupported datatype error is raised. As a workaround
solution, Oracle recommends that you create a relational view that uses the
JSON_TABLE row source operator on top of the JSON object, and then apply the Data
Redaction policy to this view.

See Oracle Database SQL Language Reference for more information about
JASON_TABLE.

Chapter 15
Oracle Data Redaction and Data Masking and Subsetting Pack

15-10

16
Security Considerations for Oracle Data
Redaction

Oracle provides guidelines for using Oracle Data Redaction.

• Oracle Data Redaction General Security Guidelines
It is important to understand general security guidelines for using Oracle Data Redaction.

• Restriction of Administrative Access to Oracle Data Redaction Policies
You can restrict the list of users who can create, view and edit Data Redaction policies.

• How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
Both users SYS and SYSTEM automatically have the EXEMPT REDACTION POLICY system
privilege.

• Policy Expressions That Use SYS_CONTEXT Attributes
Be careful when writing a policy expression that depends on a SYS_CONTEXT attribute that
is populated by an application.

• Oracle Data Redaction Policies on Materialized Views
You can create Oracle Data Redaction policies on materialized views and on their base
tables.

• Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled
You should check if the recycle bin is enabled before you drop Oracle Data Redaction
policies.

16.1 Oracle Data Redaction General Security Guidelines
It is important to understand general security guidelines for using Oracle Data Redaction.

• Oracle Data Redaction is not intended to protect against attacks by regular and privileged
database users who run ad hoc queries directly against the database. If the user can
issue arbitrary SQL or PL/SQL statements, then he or she will be able to access the
actual value.

• Oracle Data Redaction is not intended to protect against users who run ad hoc SQL
queries that attempt to determine the actual values by inference.

• Oracle Data Redaction relies on the database and application context values. For
applications, it is the responsibility of the application to properly initialize the context
value.

• Oracle Data Redaction is not enforced for users who are logged in using the SYSDBA
administrative privilege.

• Certain DDL statements that attempt to copy the actual data out from under the control of
a data redaction policy (that is, CREATE TABLE AS SELECT, INSERT AS SELECT) are
blocked by default, but you can disable this behavior by granting the user the EXEMPT
REDACTION POLICY system privilege.

16-1

• Oracle Data Redaction does not affect day-to-day database operations, such as
backup and recovery, Oracle Data Pump exports and imports, Oracle Data Guard
operations, and replication.

16.2 Restriction of Administrative Access to Oracle Data
Redaction Policies

You can restrict the list of users who can create, view and edit Data Redaction policies.

To accomplish this, you can limit who has the EXECUTE privilege on the DBMS_REDACT
package and by limiting who has the SELECT privilege on the REDACTION_POLICIES and
REDACTION_COLUMNS views.

You also can restrict who is exempted from redaction by limiting the EXEMPT REDACTION
POLICY privilege. If you use Oracle Database Vault to restrict privileged user access,
then you can use realms to restrict granting of EXEMPT REDACTION POLICY.

Related Topics

• Oracle Data Redaction and Oracle Database Vault
You can use Oracle Data Redaction in an Oracle Database Vault environment.

• Exemption of Users from Oracle Data Redaction Policies
You can exempt users from having Oracle Data Redaction policies applied to the
data they access.

• Introduction to Oracle Database Vault

16.3 How Oracle Data Redaction Affects the SYS,
SYSTEM, and Default Schemas

Both users SYS and SYSTEM automatically have the EXEMPT REDACTION POLICY system
privilege.

SYSTEM has the EXP_FULL_DATABASE role, which includes the EXEMPT REDACTION
POLICY system privilege.

This means that the SYS and SYSTEM users can always bypass any existing Oracle
Data Redaction policies, and will always be able to view data from tables (or views)
that have Data Redaction policies defined on them.

Follow these guidelines:

• Do not create Data Redaction policies on the default Oracle Database schemas,
including the SYS and SYSTEM schemas.

• Be aware that granting the EXEMPT REDACTION POLICY system privilege to
additional roles may enable users to bypass Oracle Data Redaction, because the
grantee role may have been granted to additional roles.

• Do not revoke the EXEMPT REDACTION POLICY system privilege from the roles that
it was granted to by default.

Chapter 16
Restriction of Administrative Access to Oracle Data Redaction Policies

16-2

16.4 Policy Expressions That Use SYS_CONTEXT Attributes
Be careful when writing a policy expression that depends on a SYS_CONTEXT attribute that is
populated by an application.

The application might not always populate that attribute.

If the user somehow connects directly (rather than through the application), then the
SYS_CONTEXT attribute would not have been populated. If you do not handle this NULL scenario
in your policy expression, you could unintentionally reveal actual data to the querying user.

For example, suppose you wanted to create a policy expression that intends to redact the
query results for everyone except users who have the client identifier value of SUPERVISOR.
The following expression unintentionally enables querying users who have NULL as the value
for their CLIENT_IDENTIFIER to see the real data:

SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') IS NOT 'SUPERVISOR'

A more rigorous policy expression redacts the result of the query if the client identifier is not
set, that is, it has a NULL value.

SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') IS NOT 'SUPERVISOR' OR IS NULL

Remember that in SQL, comparisons with NULL are undefined, and are thus FALSE, but
redaction only takes place when the policy expression evaluates to TRUE.

16.5 Oracle Data Redaction Policies on Materialized Views
You can create Oracle Data Redaction policies on materialized views and on their base
tables.

However, ensure that the creator of the materialized view, or the user who performs the
refresh of the materialized view, is not blocked by any Data Redaction policies. In other
words, the user performing the materialized view creation or refresh operations should be
exempt from the Data Redaction policy. As a best practice, when you create a new
materalized view, treat it as a copy of the actual table, and then create a separate Data
Redaction policy to protect it.

16.6 Dropped Oracle Data Redaction Policies When the
Recycle Bin Is Enabled

You should check if the recycle bin is enabled before you drop Oracle Data Redaction
policies.

If you drop a table or view that has an Oracle Data Redaction policy defined on it when the
recycle bin feature is enabled, and if you query the REDACTION_COLUMNS or
REDACTION_POLICIES data dictionary views before you purge the recycle bin, then you will see
object names such as BIN$... (for example, BIN$1Xu5PSW5VaPgQxGS5AoAEA==$0).

This is normal behavior. These policies are removed when you purge the recycle bin.

To find if the recycle bin is enabled, you can run the SHOW PARAMETER RECYCLEBIN command
in SQL*Plus.

Chapter 16
Policy Expressions That Use SYS_CONTEXT Attributes

16-3

See Also:

Oracle Database Administrator’s Guide for information about purging objects
from the recycle bin

Chapter 16
Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled

16-4

Glossary

actual data
In Oracle Data Redaction, the data in a protected table or view. An example of actual data
could be the number 123456789, and the redacted data version of this number could be
999996789.

auto-login software keystore
A software keystore that is protected by a system-generated password and does not need to
be explicitly opened by a security administrator. Auto-login software keystores are
automatically opened when accessed and can be used on any computer that runs an Oracle
database. For example, consider an Oracle RAC environment that has four nodes, and each
node is on a different computer. This environment uses an auto-login keystore. When a
REKEY operation is performed on node 1, the auto-login and password-based keystores
must be copied to the computers that host nodes 2, 3, and 4. In this configuration, the auto-
login keystores will be opened on all four nodes when required.

See also local auto-login software keystore.

cipher suite
A set of authentication, encryption, and data integrity algorithms used to exchange messages
between network nodes using Secure Sockets Layer (SSL). During an SSL handshake, for
example, the two nodes negotiate to see which cipher suite they will use when transmitting
messages back and forth.

ciphertext
Message text that has been encrypted.

See also encrypted text.

data redaction
The ability to mask data with different values in real time, that is, at the moment a user tries to
access the data. You can mask all of the data, a partial subset of the data, or display random
values in place of the data. It does not change the actual data in the database.

Glossary-1

decryption
The process of converting an encrypted message (the ciphertext), back to its original
message (plaintext).

encrypted text
Text that has been encrypted, using an encryption algorithm and an encryption key;
the output stream of an encryption process. The text is not readable or decipherable,
without decrypting it first. Also called ciphertext.

encryption
The process of converting an original message (plaintext) to an encrypted message
(ciphertext).

external keystore
A container that stores a Transparent Data Encryption key for a hardware security
module. (The previous term for external keystore was hardware keystore.) An external
keystore can be Oracle Key Vault or Oracle Cloud Infrastructure (OCI) key
management service (KMS). External keystores provide centralized key management
for TDE-enabled databases.

hardware security module
A physical device that provides secure storage for encryption keys. Oracle does not
support third-party hardware security modules to provide key management for
Transparent Data Encryption-enabled databases. (See My Oracle Support note
2310066.1 for more information.) Oracle Key Vault can provide third-party hardware
security modules to provide root-of-trust to Oracle Key Vault. See Oracle Key Vault
Root of Trust HSM Configuration Guide.

inference
A query that is designed to find data by repeatedly trying queries. For example, to find
the users who earn the highest salaries, an intruder could use the following query:

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE SALARY > 16000
ORDER BY SALARY DESC;

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Steven King 24000
Neena Kochhar 17000
Lex De Haan 17000

Glossary

Glossary-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=392345372613593&id=2310066.1&_adf.ctrl-state=tsma1yzfn_52

key pair
A public key and its associated private key. See public and private key pair.

keystore
A general term for any container that stores encryption keys, such as Transparent Data
Encryption keys and other encrypted data. In previous releases, this container was referred
to as a wallet, which is specific to Oracle. Starting with Oracle Database 12c release 12.1, the
term changed to keystore to encompass non-Oracle Database encryption key containers,
such as external key managers.

See also auto-login software keystore, external keystore, and local auto-login software
keystore.

local auto-login software keystore
A software keystore that is local and restricted to the computer on which it was created.

See also auto-login software keystore.

mask
The ability to redact data from a user or an application.

Oracle-managed tablespace
An Oracle-supplied tablespace that contains information necessary for the correct functioning
(confidentiality, integrity, and availability) of the database system. This information includes
the system's data dictionary, the system's temporary sort area, the system's undo segment,
and the system's auxiliary data. This information is only expected to be updated internally by
the Oracle database server itself, and does not normally be updated directly by users.

password-based software keystore
A software keystore that must be opened with a password before it can be accessed.

See also keystore.

plaintext
Message text that has not been encrypted.

private key
In public-key cryptography, this key is the private key that is known only to its owner. It is
primarily used for encrypting message digests used with digital signatures.

See public and private key pair.

Glossary

Glossary-3

public key
One of two keys that are used in public key cryptography, the other key being the
private key. In typical public key cryptography usage, the public key is used to encrypt
data or verify digital signatures. The the private key is used to decrypt data or generate
digital signatures. The public key, unlike the private key, can be made available to
anyone whereas the private key must remain secret.

See public and private key pair.

public key encryption
The process where the sender of a message encrypts the encryption key of the
recipient. Upon delivery, the message is decrypted by the recipient using its private
key.

public and private key pair
A set of two related numbers used for encryption and decryption, where one is called
the private key and the other is called the public key. Public keys are typically made
widely available, while private keys are held by their respective owners. Data
encrypted with either a public key or a private key from a key pair can be decrypted
with its associated key from the key pair.

public key infrastructure (PKI)
Information security technology utilizing the principles of public key cryptography.
Public key cryptography involves encrypting and decrypting information using a shared
public and private key pair. Provides for secure, private communications within a public
network.

redacted data
Masked data that is displayed to the querying user. For example, if the actual data is
3714-4963-5398-4321, then the redacted data could appear, depending on the Data
Redaction policy, as XXXX-XXXX-XXXX-4321.

salt
In cryptography, a way to strengthen the security of encrypted data. Salt is a random
string that is added to the data before it is encrypted, making it more difficult for
attackers to steal the data by matching patterns of ciphertext to known ciphertext
samples. Salt is often also added to passwords, before the passwords are hashed, to
avoid dictionary attacks, a method that attackers use to determine sensitive
passwords. The addition of salt to a password before hashing makes it more difficult
for intruders to match the hash values (sometimes called verifiers) with their dictionary
list of common password hash values, because they do not know the salt beforehand.

Glossary

Glossary-4

software keystore
A container that stores a Transparent Data Encryption a TDE master encryption key for use
as an auto-login software keystore, a local auto-login software keystore, or a password-based
software keystore.

tablespace encryption key
An encryption key for the encryption of a tablespace. The TDE tablespace encryption key
encrypts the tablespace encryption key, which in turn encrypts and decrypts data in the
tablespace.

TDE master encryption key
A key that is stored within a software keystore or a external keystore. For table encryption,
this key encrypts the TDE table key, and for tablespace encryption, it encrypts the tablespace
encryption key.

See also keystore.

TDE table key
An encryption key that is associated with a table whose columns are marked for encryption.
The TDE master encryption key encrypts this table encryption key.

wallet
A data structure used to store and manage security credentials for an individual entity.
Wallets are specific to Oracle Database only. A Wallet Resource Locator (WRL) provides all
of the necessary information to locate the wallet. For Transparent Data Encryption in Oracle
Database Release 12c and later, the term for wallet is keystore.

wallet obfuscation
The ability to store and access an Oracle wallet without querying the user for a password
before access (supports single sign-on (SSO)).

Wallet Resource Locator (WRL)
A tool that provides all of the necessary information to locate a wallet. It is a path to an
operating system directory that contains a wallet.

Glossary

Glossary-5

Index

Symbols
, when to use, 4-6

A
ad hoc tools

Oracle Data Redaction, 11-3
ADMINISTER KEY MANAGEMENT

isolated mode operations, 6-2
isolated mode operations not allowed, 6-7
united mode operations allowed in, 5-2
united mode operations not allowed, 5-7

administrative access to policies, restricting, 16-2
aggregate functions

affect on Data Redaction policy optimization,
15-4

ALTER SYSTEM statement
how compares with ADMINISTER KEY

MANAGEMENT statement, 7-6
APEX_UTIL.GET_NUMERIC_SESSION_STATE

function
Oracle Data Redaction policies (NV public

function), 13-13
APEX_UTIL.GET_SESSION_STATE function

Oracle Data Redaction policies (V public
function), 13-13

applications
database applications and Oracle Data

Redaction, 11-2
modifying to use Transparent Data

Encryption, 7-5
auto login keystores

and Transparent Data Encryption (TDE),
4-39

Automatic Storage Management (ASM)
moving software keystores from, 4-13

C
CDBs, 9-1

cloning PDBs with encrypted data, 5-43
cloning PDBs with encrypted data in isolated

mode, 6-48

CDBs (continued)
cloning PDBs wth encrypted data, about,

5-43
Data Redaction masking policies, 15-5
moving PDB from one CDB to another, 6-44
moving PDB from one CDB to another in

united mode, 5-38
PDBs with encrypted data, 5-38
preserving keystore passwords in PDB move

operations, 6-44
preserving keystore passwords in PDB move

operations in united mode, 5-38
remotely cloning PDBs with encrypted data in

isolated mode, 6-49, 6-50
remotely cloning PDBs with encrypted data in

united mode, 5-44, 5-45
change data capture, synchronous, 3-17
cloning and upgrading encrypted PDBs

TDE Academy videos on, 5-45
closing external keystores, 4-21
closing software keystores, 4-21
column encryption

about, 2-3
changing algorithm, 3-24
changing encryption key, 3-24
creating encrypted table column with default

algorithm, 3-18
creating encrypted table column with non-

default algorithm, 3-19
creating index on encrypted column, 3-23
data loads from external file, 7-9
data types to encrypt, 3-16
existing tables

about, 3-22
adding encrypted column to, 3-22
disabling encryption, 3-23
encrypting unencrypted column, 3-22

external tables, 3-21
incompatibilities, 10-1
limitations, 10-1
performance, optimum, 10-3
salt, 3-23
security considerations, 7-2
skipping integrity check, 3-20

Index-1

column sensitive type discovery
enabling when creating a Data Redaction

policy, 14-12
compliance

Transparent Data Encryption, 2-2
compression of Transparent Data Encryption

data, 7-1
configuring software keystores

creating local auto-login keystore, 3-5
control files

lost, 6-8

D
data at rest, 2-1
data deduplication of Transparent Data

Encryption data, 7-1
data redaction

See Oracle Data Redaction
Data Redaction supported functions, 13-7
data storage

Transparent Data Encryption, 7-4
database close operations

keystores, 7-10
database links

with Oracle Data Redaction policies, 15-4
database roles

Data Redaction policies, 13-12
databases

about encrypting, 3-25
encrypting existing, 3-45
encrypting offline, 3-46
encrypting online, 3-47

DDL statements
Oracle Data Redaction policies, 15-3

decryption
tablespaces, offline, 3-35, 3-37
tablespaces, online, 3-38

DISTINCT clause, Data Redaction policies, 15-2
DML statements

Oracle Data Redaction policies, 15-3

E
editing custom formats, 14-8
editing policies, 14-15
Editions

Transparent Data Encryption, 8-22
encrypted columns

data loads from external files, 7-9
encrypting data

in isolated mode, 6-15, 6-19
in united mode, 5-15, 5-23

encryption, 2-3
algorithm, setting default, 3-32

encryption (continued)
cloning PDBs with encrypted data, 5-43
cloning PDBs with encrypted data in isolated

mode, 6-48
databases offline, 3-46
databases online, 3-47
encrypting future tablespaces, 3-33

about, 3-33
existing databases, 3-45
procedure, 3-33
remotely cloning PDBs with encrypted data in

isolated mode, 6-49, 6-50
remotely cloning PDBs with encrypted data in

united mode, 5-44, 5-45
supported encryption algorithms, 3-38
tablespaces, offline, 3-35
tablespaces, online, 3-38

See also Transparent Data Encryption (TDE)
encryption algorithms, supported, 3-38
encryption keys

setting in isolated mode, 6-14
setting in united mode, 5-14

Errors:
ORA-46694, 6-41

EXEMPT REDACTION POLICY privilege
using with Database Vault, 16-2

expressions, 13-7
LENGTH functions, character string, 13-10
namespace functions, 13-8
Oracle Application Express, 13-10
Oracle Label Security functions, 13-11
SUBSTR function, 13-9

external credential store, external keystores, 4-5
external credential store, external keystores,

sqlnet.ora, 4-5
external credential store, password-based

software keystores, 4-5
external credential store, password-based

software keystores, sqlnet.ora, 4-5
external files

loading data to tables with encrypted
columns, 7-9

external keystores, 3-10
about, 2-7
backing up, 4-9
changing password in isolated mode, 6-22
changing password in united mode, 5-25
closing, 4-21
closing in isolated mode, 6-27
closing in united mode, 5-28
heartbeat batch size, 5-19
opening in isolated mode, 6-17
opening in united mode, 5-18
opening, about, 3-11, 5-17
plugging PDBs, 5-41, 6-47

Index

Index-2

external keystores (continued)
unplugging PDBs, 5-41, 6-47
using external keystore, 4-5
using external keystore, sqlnet.ora, 4-5

external store for passwords
open and close operations in CDB, 5-47,

6-51
external tables, encrypting columns in

ORACLE_DATPUMP, 7-9
ORACLE_LOADER, 7-9

EXTERNAL_STORE clause, 4-6

G
GROUP BY clause, Data Redaction policies,

15-2
guidelines

materialized views and Data Redaction, 16-3
recycle bin and Data Redaction, 16-3
SYS_CONTEXT values and Data Redaction,

16-3
guidelines, general usage

redacted columns and DISTINCT clause,
15-2

redacted columns and GROUP BY clause,
15-2

redacted columns and ORDER BY clause,
15-2

guidelines, security
ad hoc query attacks and Data Redaction,

16-1
application context value handling by Data

Redaction policies, 16-1
day-to-day operations and Data Redaction,

16-1
DDL statements and Data Redaction

policies, 16-1
exhaustive SQL queries and inference and

Data Redaction, 16-1

H
HEARTBEAT_BATCH_SIZE initialization

parameter, 5-19

I
import/export utilities, original, 3-17
index range scans, 2-4
indexes

creating on encrypted column, 3-23
inline views

Data Redaction policies order of redaction,
15-3

inline views (continued)
Data Redaction redaction, 15-3

intruders
ad hoc query attacks, 16-1

isolated mode, 6-2, 6-7
about, 6-1
ADMINISTER KEY MANAGEMENT

operations allowed in, 6-2
ADMINISTER KEY MANAGEMENT

operations not allowed in, 6-7
backing up software keystores, 6-23
changing PDB keystore from CDB root, 6-10
configuring, 6-8
configuring external keystores, about, 6-16
configuring for Oracle Key Vault, 6-16
configuring software keystores, about, 6-12
creating software keystore, 6-13
creating TDE master encryption key for later

use, 6-29
encrypting data, 6-15, 6-19
encryption key, setting, 6-14
exporting or importing master encryption

keys, 6-53
exporting, importing TDE master encryption

keys, 6-52
external keystores, closing, 6-27
external keystores, opening, 6-17
lost control file, 6-10
master encryption keys

moving key from PDB to CDB root, 6-41
master encryption keys, migrating, 6-19
migrating from external keystore to password

software keystore, 6-39
migrating from password software keystore

to external keystore, 6-38
moving encryption key into new keystore,

6-32
moving PDB from one CDB to another, 6-44
Oracle RAC, 6-11
password change for external keystores,

6-22
password change for software keystores,

6-21
plugging PDB with master encryption keys

stored in external keystore, 6-47
plugging PDBs with encrypted data into CDB,

6-46
secrets stored in external keystores, 6-37
secrets stored in software keystores, 6-36
setting new encryption key, 6-18
software keystores, closing, 6-26
software keystores, opening, 6-13
uniting PDB keystore, 6-41
unplugging PDBs, 6-47

Index

Index-3

J
JSON

Oracle Data Redaction, 15-10

K
keystore location

setting, 3-3
setting for isolated mode, 6-8
setting for united mode, 5-8, 5-9

keystore type
setting, 3-3
setting for isolated mode, 6-8
setting for united mode, 5-9
setting for united mode using parameter, 5-8

keystores
about, 2-6
architecture, 2-3
ASM-based, 4-23
auto login, 4-39
auto-login, open and close operations in

CDBs, 5-47, 6-51
backing up isolated mode password-

protected software keystores
procedure, 6-23

backing up password-protected software
keystores

about, 4-6
backup identifier rules, 4-7
procedure, 4-7

backing up united mode password-protected
software keystores

procedure, 5-26
changing Oracle Key Vault password, 4-4
changing passwords for protected-protected

software keystores, 4-3
closing external keystores, 4-21
closing in CDBs, 5-47, 6-51
closing software keystores, 4-21
creating when PDB is closed, 6-42
database close operations, 7-10
deleting, 4-24
deleting unused, 5-35
deleting unused in isolated mode, 6-32
deleting unused, about, 4-46
deleting unused, procedure, 4-47
external, 3-10
external keystore

configuration process, 3-10
external, changing password in isolated

mode, 6-22
external, changing password in united mode,

5-25
external, opening in united mode, 5-18

keystores (continued)
hardware, opening in isolated mode, 6-17
merging

about, 4-10
auto-login into password-protected, 4-12
one into another existing keystore, 4-10
one into another existing keystore in

isolated mode, 6-24
reversing merge operation, 4-12
two into a third new keystore, 4-11
two into a third new keystore in isolated

mode, 6-25
migrating

creating master encryption key for
external keystore-based
encryption, 4-16

external keystore to software keystore,
4-17

keystore order after migration, 4-19
password key into external keystore,

4-16
migration using Oracle Key Vault, 4-20
moving out of ASM, 4-13
moving software keystore to a new location,

4-13
opening external, 3-11, 5-17
opening in CDBs, 5-47, 6-51
Oracle Database secrets

about, 4-50
storing in external keystore, 4-53
storing in software keystore, 4-50

password access, 4-2
password preservation in PDB move

operations, 6-44
password preservation in PDB move

operations in united mode, 5-38
reverting keystore creation operation, 6-43
software, changing password in isolated

mode, 6-21
software, changing password in united mode,

5-24
software, creating in united mode, 5-12
software, opening in isolated mode, 6-13
software, opening in united mode, 5-13
TDE master encryption key merge differing

from import or export, 4-45
using auto-login external keystore, 4-56

keystores, software
configuration process, 3-2

L
LENGTH functions, character string

expressions, 13-10

Index

Index-4

M
masking

See Oracle Data Redaction
materialized views

Data Redaction guideline, 16-3
Transparent Data Encryption tablespace

encryption, 8-5
migration

migrating from external keystore to password
software keystore, 6-39

migrating from password software keystore
to texternal keystore, 6-38

moving encryption key into new keystore
about, 4-46
procedure, 4-47

multitenant container databases
See CDBs

N
namespace functions

expressions, 13-8
nested functions

Data Redaction policies order of redaction,
15-3

NV public function
(APEX_UTIL.GET_NUMERIC_SESSION
_STATE function), Data Redaction
policies, 13-13

O
OLS_LABEL_DOMINATES public function

Data Redaction policies, 13-12
ONE_STEP_PLUGIN_FOR_PDB_WITH_TDE

dynamic system parameter, 5-38, 6-44
opening external keystores, 3-11, 5-17
opening software keystores, 3-7
operations allowed in, 5-2, 6-2
operations not allowed in, 5-7, 6-7
ORA-00979 error

not a GROUP BY expression error, 15-2
ORA-28081

Insufficient privileges - the command
references a redacted object error,
15-3

ORA-46680 error, 5-39
ORA-46694 error, 6-41
ORA-65040 error, 6-42
Oracle Application Express

filtering using by session state in Data
Redaction policies, 13-13

Oracle Application Expression
expressions, 13-10

Oracle Call Interface
Transparent Data Encryption, 8-22

Oracle Data Guard
isolated keystore on PDB, 8-12
TDE and Oracle Key Vault, 8-6
TDE master encryption keys, removing from

standby database, 5-36
Transparent Data Encryption, 8-5

Oracle Data Pump
encrypted columns, 8-2
encrypted data, 8-2
encrypted data with database links, 8-4
encrypted data with dump sets, 8-3
exported data from Data Redaction policies,

15-9
exporting Oracle Data Redaction objects,

15-8
imported data from Data Redaction policies,

15-9
Oracle Data Redaction security policy, 15-7

Oracle Data Redaction, 11-1, 12-4
about, 11-1
ad hoc tools, 11-3
aggregate functions, 15-4
benefits, 11-2
CDBs, 15-5
columns with XML-generated data, 15-5
creating custom format, 14-5
database applications, 11-2
DBMS_REDACT.ADD_POLICY procedure

using, 13-4
DBMS_REDACT.ALTER_POLICY procedure

about, 13-51
example, 13-53
parameters required for various actions, 13-53
syntax, 13-52

DBMS_REDACT.DISABLE_POLICY
about, 13-58
example, 13-58
syntax, 13-58

DBMS_REDACT.DROP_POLICY
about, 13-59
examples, 13-59
syntax, 13-59

DBMS_REDACT.ENABLE_POLICY
about, 13-58
example, 13-58
syntax, 13-58

DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES
procedure

about, 13-27
syntax, 13-27
using, 13-28

deleting policies, 14-17
editing custom format, 14-8

Index

Index-5

Oracle Data Redaction (continued)
editions, 15-5
Enterprise Manager Cloud Control, 14-5, 14-8, 14-11
Enterprise Manager Cloud Control workflow, 14-2
Enterprise Manager Cloud Control, about, 14-1
exporting data using Data Pump Export, 15-9
exporting objects using Data Pump, 15-8
full data redaction

about, 12-1
creating policy for, 13-25
examples, 13-26
modifying default value, 13-27
syntax, 13-25

functions used in expressions, 13-8
how differs from Oracle Database Real Application

Security masking, 15-6
how differs from Oracle Virtual Private Database

masking, 15-5
importing data using Data Pump Export, 15-9
inline views order of redaction, 15-3
JSON, 15-10
managing policies, 14-11
named policy expressions

about, 12-9
nested functions order of redaction, 15-3
no data redaction

about, 12-9, 13-49
creating policies for, 13-49
example, 13-50
syntax, 13-49

Oracle Data Pump security policy, 15-7
Oracle Enterprise Manager Data Masking and Subsetting

Pack, 15-10
partial data redaction

about, 12-2
character types, policies for, 13-35
data-time data types, 13-39
example using character data type, 13-36
example using data-time data type, 13-39
example using fixed character format, 13-34
example using number data type, 13-38
formats, fixed character, 13-32
number data types, 13-37
syntax, 13-31

policy expressions
about, 13-14
creating, 13-15
dropping, 13-17
tutorial, 13-18
updating, 13-17

privileges for creating policies, 13-3
queries on columns protected by Data Redaction policies,

15-4
random data redaction

about, 13-48

Oracle Data Redaction (continued)
random data redaction (continued)
creating policies for, 13-48
example, 13-49

randomized data redaction
about, 12-4

regular expression data redaction
creating policies for, 13-40
custom, creating policies for, 13-46
example, 13-46
example of custom, 13-47
formats, 13-43
formats, creating policies for, 13-42
settings for, 13-47
syntax, 13-41

regular expression redaction
about, 12-3

returning null values
about, 13-29
example, 13-30
syntax, 13-29

SYS schema objects, 16-2
SYSTEM schema objects, 16-2
use cases, 11-2
when to use, 11-2
WHERE clause redaction, 15-3

Oracle Data Redaction formats
creating in Cloud Control, 14-5
deleting in Cloud Control, 14-10
editing in Cloud Control, 14-8
Enterprise Management Cloud Control,

managing in, 14-5
Enterprise Manager Cloud Control, sensitive

column types, 14-2
Enterprise Manager Cloud Control, viewing

in, 14-9
Oracle Data Redaction partial redaction

creating policies for, 13-30, 13-31
Oracle Data Redaction policies, 13-12

about, 13-2
altering, 13-51
building reports, 13-60
creating

examples, 13-26
general syntax, 13-4
procedure, 13-4

creating in Cloud Control, 14-12
deleting in Cloud Control, 14-17
disabling, 13-58
disabling in Cloud Control, 14-17
dropping, 13-59
editing in Cloud Control, 14-15
enabling, 13-58
Enterprise Manager Cloud Control, viewing

in, 14-16

Index

Index-6

Oracle Data Redaction policies (continued)
exempting users from, 13-50
expressions

by Application Express session state,
13-13

by database role, 13-12
by OLS label dominance, 13-12
by user environment, 13-12

filtering users
about, 13-7
no filtering, 13-13

finding information about, 13-61
Oracle Enterprise Manager Cloud Control,

14-17
redacting multiple columns in one policy,

13-57
Oracle Data Redaction policy expressions

Cloud Control, about, 14-18
creating in Cloud Control, 14-19
deleting in Cloud Control, 14-21
editing in Cloud Control, 14-20
viewing in Cloud Control, 14-21

Oracle Data Redaction, database links, 15-4
Oracle Data RedactionEnterprise Manager Cloud

Control
deleting custom format, 14-10

Oracle Database Real Application Security
Data Redaction, 15-6

Oracle Database Vault
using with Data Redaction, 16-2

Oracle Enterprise Manager Cloud Control, 14-15
creating custom formats, 14-5
creating policy expressions, 14-19
deleting policy expressions, 14-21
disabling policies, 14-17
editing policy expressions, 14-20
Oracle Data Redaction, 14-5, 14-8,

14-17–14-21
Oracle Data Redaction formats, viewing in,

14-9
Oracle Data Redaction, creating policies,

14-12
Oracle Data Redaction, viewing details of a

policy, 14-16
policy expressions, about, 14-18
viewing policy expressions, 14-21

Oracle Enterprise Manager Data Masking and
Subsetting Pack

Oracle Data Redaction impact, 15-10
Oracle GoldenGate

storing secrets in Oracle keystores, 4-58
Oracle Key Vault

migration of keystores, 4-20

Oracle Label Security
functions using Data Redaction expressions,

13-11
Oracle Real Application Clusters

multitenant configuration and TDE, 8-14
Transparent Data Encryption, 8-13

Oracle Recovery Manager
Transparent Data Encryption, 4-23

Oracle Securefiles
Transparent Data Encryption, 8-21

Oracle Virtual Private Database (VPD)
Data Redaction, 15-5

Oracle-managed tablespaces, 3-25
orapki utility

how compares with ADMINISTER KEY
MANAGEMENT statement, 7-6

ORDER BY clause, Data Redaction policies,
15-2

original import/export utilities, 3-17

P
passwords

access to for ADMINISTER KEY
MANAGEMENT operations, 4-2

preserving in PDB move operations, 6-44
preserving in PDB move operations in united

mode, 5-38
PDBs, 9-1

Data Redaction policies, 15-5
finding TDE keystore status for all PDBs,

5-47
master encryption keys

exporting, 6-52
importing, 6-52

unplugging with encrypted data, 5-39
performance

Transparent Data Encryption, 7-3
pluggable databases

See PDBs
policy expressions, Oracle Data Redaction,

13-14

R
recycle bin

Data Redaction policies and, 16-3
rekeying

master encryption key, 4-39
TDE master encryption key in isolated mode,

6-31
TDE master encryption key in united mode,

5-33
reports

based Data Redaction policies, 13-60

Index

Index-7

returning null values
about, 12-4

S
salt

removing, 3-24
salt (TDE)

adding, 3-23
secrets

storing Oracle Database secrets in keystore
about, 4-50
storing in external keystore, 4-53
storing in software keystore, 4-50

SecureFiles
Transparent Data Encryption, 8-21

sensitive credential data, 3-34
software keystores

changing password in isolated mode, 6-21
changing password in united mode, 5-24
closing in isolated mode, 6-26
closing in united mode, 5-28
creating in united mode, 5-12
opening in isolated mode, 6-13
opening in united mode, 5-13
opening, about, 3-7
password-based using external keystore, 4-5
password-based using external keystore,

sqlnet.ora, 4-5
SUBSTR function

expressions, 13-9
synchronous change data capture, 3-17
SYS user

Data Redaction policies, 16-2
SYS_CONTEXT function

Data Redaction policies, 16-3
SYS_SESSION_ROLES namespace used in

Data Redaction, 13-12
SYS_SESSION_ROLES SYS_CONTEXT

namespace
Data Redaction, 13-12

SYSTEM user
Data Redaction policies, 16-2

T
tablespace encryption

about, 2-4
architecture, 2-4
creating encrypted tablespaces, 3-31
examples, 3-32
incompatibilities, 10-1
opening keystore, 3-29
performance overhead, 7-3
performance, optimum, 10-3

tablespace encryption (continued)
procedure, 3-28
restrictions, 3-27
security considerations for plaintext

fragments, 7-3
setting tablespace key, 3-30
storage overhead, 7-4

tablespace master encryption key
setting, 3-30

TABLESPACE_ENCRYPTION_DEFAULT_ALGO
RITHM dynamic parameter, 3-32

tablespaces
about encrypting, 3-25
comparison between offline and online

conversions, 3-25
rekeying encryption algorithm, 4-40

tablespaces, offline decryption
procedure, 3-37

tablespaces, offline encryption
about, 3-35
procedure, 3-36

tablespaces, online encryption
about, 3-38
decrypting, 3-43
finishing interrupted job, 3-44
procedure, 3-40
rekeying, 3-42

TDE
See Transparent Data Encryption (TDE)

TDE Academy, 5-45
TDE column encryption

restrictions, 3-17
TDE master encryption key, 3-2

creating for later use in isolated mode, 6-29
creating for later use in united mode, 5-31

TDE master encryption keys
activating

about, 4-31
example, 4-32
procedure, 4-31

activating in isolated mode, 6-30
activating in united mode, 5-32
architecture, 2-3
attributes, 4-33
creating for later use

about, 4-29
examples, 4-30
procedure, 4-29

custom attribute tags
about, 4-35
creating, 4-35
creating in isolated mode, 6-33
creating in united mode, 5-34

disabling not allowed, 4-37
exporting, 4-41

Index

Index-8

TDE master encryption keys (continued)
exporting in PDBs, 6-52
finding currently used encryption key in

united mode, 5-34
finding currently used TDE master encryption

key, 4-34
importing, 4-44
importing in PDBs, 6-52
keystore merge differing from import or

export, 4-45
outside the databaase

about, 4-27
outside the database

create, 4-27
creating in isolated mode, 6-27
creating in united mode, 5-29

rekeying, 4-39, 5-33, 6-31
removing automatically from standby

database, 5-36
resetting in keystore, 4-38
setting in keystore, 4-37

TDE wallets
about, 2-7

Transparent Data Encryption (TDE), 2-1, 2-3
about, 2-1
about configuration, 3-1
benefits, 2-2
column encryption

about, 2-3, 3-16
adding encrypting column to existing

table, 3-22
changing algorithm, 3-24
changing encryption key, 3-24
creating encrypted column in external

table, 3-21
creating index on encrypted column,

3-23
creating tables with default encryption

algorithm, 3-18
creating tables with non-default

encryption algorithm, 3-19
data types supported, 3-16
disabling encryption in existing column,

3-23
encrypting columns in existing tables,

3-22
encrypting existing column, 3-22
encryption and integrity algorithms, 2-8
restrictions, 3-17
salt in encrypted columns, 3-23

columns with identity columns, 3-17
compatibility with application software, 10-1
compatibility with Oracle Database tools,

10-1
compression of encrypted data, 7-1

Transparent Data Encryption (TDE) (continued)
configuring external keystores

about, 3-10
opening, 3-11, 5-17
reconfiguring software keystore, 3-14,

5-22
setting master encryption key, 3-13, 5-19
sqlnet.ora configuration, 3-11, 5-16

configuring external keystores in isolated
mode

reconfiguring software keystore, 6-19
configuring software keystores

about, 3-2
creating auto-login keystore, 3-5
creating password-protected keystore,

3-4
setting software TDE master encryption

key, 3-8
data deduplication of encrypted data, 7-1
editions, 8-22
encryption and integrity algorithms, 2-8
finding information about, 3-48
frequently asked questions, 10-1
incompatibilities, 10-1
keystore management

ASM-based keystore, 4-23
backing up password-protected software

keystores, 4-6
changing Oracle Key Vault keystore

password, 4-4
changing protected-protected software

keystore password, 4-3
closing external keystores, 4-21
closing software keystore, 4-21
merging keystores, about, 4-10
merging keystores, auto-login into

password-protected, 4-12
merging keystores, one into an existing,

4-10
merging keystores, one into an existing

in isolated mode, 6-24
merging keystores, reversing merge

operation, 4-12
merging keystores, two into a third new

keystore, 4-11
merging keystores, two into a third new

keystore in isolated mode, 6-25
migrating password key and external

keystore, 4-16
migrating password key and external

keystore, master encryption key
creation, 4-16

migrating password key and external
keystore, reverse migration, 4-17

Index

Index-9

Transparent Data Encryption (TDE) (continued)
keystore management (continued)
TDE master encryption key attributes,

4-33
keystores

about, 2-6
benefits, 2-6
types, 2-7

master encryption key
rekeying, 4-39
rekeying in united mode, 5-33

master encryption key attributes
creating custom tags, 4-35

master encryption keys
setting in keystore procedure, 4-37
setting in keystore, about, 4-37

modifying applications for use with, 7-5
multidatabase environments, 8-22
multitenant environment, 2-9
Oracle Call Interface, 8-22
Oracle Data Guard, 8-5, 8-6
Oracle Data Guard, isolated keystore on

PDB, 8-12
Oracle Data Pump

export and import operations on dump
sets, 8-3

export and import operations on
encrypted columns, 8-2

export operations on database links, 8-4
Oracle Data Pump export and import

operations
about, 8-2

Oracle Real Application Clusters
about, 8-13
multitenant configuration, 8-14

Oracle Recovery Manager, 4-23
keystores, 4-23

PDBs
finding keystore status for all PDBs, 5-47

performance
database workloads, 10-3
decrypting entire data set, 10-3
optimum, 10-3
worst case scenario, 10-3

performance overheads
about, 7-3
typical, 10-3

privileges required, 2-2
SecureFiles, 8-21
security considerations

column encryption, 7-2
general advice, 7-2
platintext fragments, 7-3

storage overhead, 7-4
storing Oracle GoldenGate secrets, 4-58

Transparent Data Encryption (TDE) (continued)
tablespace encryption

about, 2-4, 3-24
creating, 3-30
encryption and integrity algorithms, 2-8
examples, 3-32
opening keystore, 3-29
restrictions, 3-27
setting master encryption key, 3-30

tablespace encryption, setting with
COMPATIBLE parameter, 3-28

TDE Academy, 5-45
TDE master encryption key

rekeying in isolated mode, 6-31
TDE master encryption key attributes

about, 4-35
creating custom tags in isolated mode,

6-33
creating custom tags in united mode,

5-34
TDE master encryption keys

exporting and importing, 4-41
TDE Master Encryption Keys

resetting in keystore, 4-38
views, 3-48

Transparent Data Encryption (TDE) keystores
deleting, 4-24
features affected if deleted, 4-25
moving software keystore to a new location,

4-13
Transparent Data Encryption (TDE)integrity

column encryption
creating tables without integrity checks

(NOMAC), 3-20
improving performance, 3-20

NOMAC parameter (TDE), 3-20
transportable tablespaces, 3-17
tutorials

named Data Redaction policy expressions,
13-18

U
united mode, 5-2, 5-7

about, 5-1
about managing cloned PDBs with encrypted

data, 5-43
ADMINISTER KEY MANAGEMENT

operations allowed in, 5-2
ADMINISTER KEY MANAGEMENT

operations not allowed in, 5-7
backing up software keystores, 5-26
cloning PDB with encrypted data, 5-43
configuring external keystores, about, 5-16
configuring software keystores, about, 5-11

Index

Index-10

united mode (continued)
configuring, procedure, 5-9
configuring, procedure using parameters, 5-8
creating software keystore, 6-13
creating TDE master encryption key for later

use, 5-31
encrypting data, 5-15, 5-23
encryption key, setting, 5-14
external keystores, closing, 5-28
externals keystores, opening, 5-18
finding keystore status for all PDBs, 5-47
heartbeat batch size for external keystores,

5-19
isolating PDB keystore, 5-37
keystore open and close operations, 5-47
master encryption keys

moving key from CDB root to PDB, 5-37
moving TDE master encryption key into new

keystore, 5-35
password change for external keystores,

5-25
password change for software keystores,

5-24
remotely cloning PDB with encrypted data,

5-44, 6-49

united mode (continued)
remotely cloning PDBs with encrypted data,

5-45, 6-50
setting external keystore encryption key, 5-21
software keystores, closing, 5-28
software keystores, creating in, 5-12
software keystores, opening, 5-13

utilities, import/export, 3-17

V
V public function

(APEX_UTIL.GET_SESSION_STATE
function), Data Redaction policies, 13-13

V$ENCRYPTION_WALLET view
keystore order after migration, 4-19

views
Data Redaction, 13-61

X
XML generation, 15-5

Index

Index-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Advanced Security Guide
	Changes in Oracle Database Advanced Security 18c
	Ability to Create a Keystore for Each Pluggable Database
	Ability to Create a User-Defined Master Encryption Key
	Ability to Use Encrypted Passwords for Database Links with Oracle Data Pump

	Changes in Oracle Database Advanced Security 12c Release 2 (12.2)
	Ability to Encrypt Existing Tablespaces and Fully Encrypt Databases
	Additional Supported Encryption Algorithms
	Ability to Force Software Keystore Operations
	Ability to Use an External Store for Software Keystore Passwords
	New Way to Specify Oracle Key Vault as a Keystore
	Ability to Redact Data Based on Different Runtime Conditions
	Ability to Centrally Manage Data Redaction Policy Expressions within a Database
	Ability to Use NULL as the Redacted Value
	Enhanced Support for Redacting Unstructured Data

	1 Introduction to Oracle Advanced Security
	1.1 Transparent Data Encryption
	1.2 Oracle Data Redaction

	Part I Using Transparent Data Encryption
	2 Introduction to Transparent Data Encryption
	2.1 What Is Transparent Data Encryption?
	2.2 Benefits of Using Transparent Data Encryption
	2.3 Who Can Configure Transparent Data Encryption?
	2.4 Types and Components of Transparent Data Encryption
	2.4.1 About Transparent Data Encryption Types and Components
	2.4.2 How Transparent Data Encryption Column Encryption Works
	2.4.3 How Transparent Data Encryption Tablespace Encryption Works
	2.4.4 How the Keystore for the Storage of TDE Master Encryption Keys Works
	2.4.4.1 About the Keystore Storage of TDE Master Encryption Keys
	2.4.4.2 Benefits of the Keystore Storage Framework
	2.4.4.3 Types of Keystores

	2.4.5 Supported Encryption and Integrity Algorithms

	2.5 How the Multitenant Option Affects Transparent Data Encryption

	3 Configuring Transparent Data Encryption
	3.1 About Configuring Transparent Data Encryption
	3.2 Configuring a Software Keystore
	3.2.1 About Configuring a Software Keystore
	3.2.2 Step 1: Configure the Software Keystore Location and Type
	3.2.3 Step 2: Create the Software Keystore
	3.2.3.1 About Creating Software Keystores
	3.2.3.2 Creating a Password-Protected Software Keystore
	3.2.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore

	3.2.4 Step 3: Open the Software Keystore
	3.2.4.1 About Opening Software Keystores
	3.2.4.2 Opening a Software Keystore

	3.2.5 Step 4: Set the TDE Master Encryption Key in the Software Keystore
	3.2.5.1 About Setting the Software Keystore TDE Master Encryption Key
	3.2.5.2 Setting the TDE Master Encryption Key in the Software Keystore

	3.2.6 Step 5: Encrypt Your Data

	3.3 Configuring an External Keystore
	3.3.1 About Configuring an External Keystore
	3.3.2 Step 1: Configure the External Keystore
	3.3.3 Step 2: Open the External Keystore
	3.3.3.1 About Opening External Keystores
	3.3.3.2 Opening an External Keystore

	3.3.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore
	3.3.4.1 About Setting the External Keystore TDE Master Encryption Key
	3.3.4.2 Setting a New TDE Master Encryption Key
	3.3.4.3 Migration of a Previously Configured TDE Master Encryption Key

	3.3.5 Step 4: Encrypt Your Data in United Mode

	3.4 Encrypting Columns in Tables
	3.4.1 About Encrypting Columns in Tables
	3.4.2 Data Types That Can Be Encrypted with TDE Column Encryption
	3.4.3 Restrictions on Using TDE Column Encryption
	3.4.4 Creating Tables with Encrypted Columns
	3.4.4.1 About Creating Tables with Encrypted Columns
	3.4.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm
	3.4.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm
	3.4.4.4 Using the NOMAC Parameter to Save Disk Space and Improve Performance
	3.4.4.5 Example: Using the NOMAC Parameter in a CREATE TABLE Statement
	3.4.4.6 Example: Changing the Integrity Algorithm for a Table
	3.4.4.7 Creating an Encrypted Column in an External Table

	3.4.5 Encrypting Columns in Existing Tables
	3.4.5.1 About Encrypting Columns in Existing Tables
	3.4.5.2 Adding an Encrypted Column to an Existing Table
	3.4.5.3 Encrypting an Unencrypted Column
	3.4.5.4 Disabling Encryption on a Column

	3.4.6 Creating an Index on an Encrypted Column
	3.4.7 Adding Salt to an Encrypted Column
	3.4.8 Removing Salt from an Encrypted Column
	3.4.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns

	3.5 Encryption Conversions for Tablespaces and Databases
	3.5.1 About Encryption Conversions for Tablespaces and Databases
	3.5.2 Restrictions on Using Transparent Data Encryption Tablespace Encryption
	3.5.3 Creating an Encrypted New Tablespace
	3.5.3.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace Encryption
	3.5.3.1.1 About Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption
	3.5.3.1.2 Setting the COMPATIBLE Initialization Parameter for Tablespace Encryption

	3.5.3.2 Step 2: Set the Tablespace TDE Master Encryption Key
	3.5.3.3 Step 3: Create the Encrypted Tablespace
	3.5.3.3.1 About Creating Encrypted Tablespaces
	3.5.3.3.2 Creating an Encrypted Tablespace
	3.5.3.3.3 Example: Creating an Encrypted Tablespace That Uses AES192
	3.5.3.3.4 Example: Creating an Encrypted Tablespace That Uses the Default Algorithm

	3.5.4 Setting the Tablespace Encryption Default Algorithm
	3.5.5 Encrypting Future Tablespaces
	3.5.5.1 About Encrypting Future Tablespaces
	3.5.5.2 Setting Future Tablespaces to be Encrypted

	3.5.6 Encrypted Sensitive Credential Data in the Data Dictionary
	3.5.7 Encryption Conversions for Existing Offline Tablespaces
	3.5.7.1 About Encryption Conversions for Existing Offline Tablespaces
	3.5.7.2 Encrypting an Existing User-Defined Tablespace with Offline Conversion
	3.5.7.3 Decrypting an Existing Tablespace with Offline Conversion

	3.5.8 Encryption Conversions for Existing Online Tablespaces
	3.5.8.1 About Encryption Conversions for Existing Online Tablespaces
	3.5.8.2 Encrypting an Existing Tablespace with Online Conversion
	3.5.8.3 Rekeying an Existing Tablespace with Online Conversion
	3.5.8.4 Decrypting an Existing Tablespace with Online Conversion
	3.5.8.5 Finishing an Interrupted Online Encryption Conversion

	3.5.9 Encryption Conversions for Existing Databases
	3.5.9.1 About Encryption Conversions for Existing Databases
	3.5.9.2 Encrypting an Existing Database with Offline Conversion
	3.5.9.3 Encrypting an Existing Database with Online Conversion

	3.6 Transparent Data Encryption Data Dynamic and Data Dictionary Views

	4 Managing the Keystore and the Master Encryption Key
	4.1 Managing the Keystore
	4.1.1 Performing Operations That Require a Keystore Password
	4.1.2 Changing the Password of a Software Keystore
	4.1.2.1 About Changing the Password of a Password-Protected Software Keystore
	4.1.2.2 Changing the Password-Protected Software Keystore Password

	4.1.3 Changing the Oracle Key Vault Password
	4.1.4 Configuring an External Store for a Keystore Password
	4.1.4.1 About Configuring an External Store for a Keystore Password
	4.1.4.2 Configuring the External Keystore Password Store with WALLET_ROOT
	4.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration

	4.1.5 Backing Up Password-Protected Software Keystores
	4.1.5.1 About Backing Up Password-Protected Software Keystores
	4.1.5.2 Creating a Backup Identifier String for the Backup Keystore
	4.1.5.3 Backing Up a Password-Protected Software Keystore

	4.1.6 How the V⁠$ENCRYPTION_WALLET View Interprets Backup Operations
	4.1.7 Backups of the External Keystore
	4.1.8 Merging Software Keystores
	4.1.8.1 About Merging Software Keystores
	4.1.8.2 Merging One Software Keystore into an Existing Software Keystore
	4.1.8.3 Merging Two Software Keystores into a Third New Keystore
	4.1.8.4 Merging an Auto-Login Software Keystore into an Existing Password-Protected Software Keystore
	4.1.8.5 Reversing a Software Keystore Merge Operation

	4.1.9 Moving a Software Keystore to a New Location
	4.1.10 Moving a Software Keystore Out of Automatic Storage Management
	4.1.11 Migrating Between a Software Password Keystore and an External Keystore
	4.1.11.1 Migrating from a Password-Protected Software Keystore to an External Keystore
	4.1.11.1.1 Step 1: Convert the Software Keystore to Open with the External Keystore
	4.1.11.1.2 Step 2: Configure the External Keystore Type
	4.1.11.1.3 Step 3: Perform the External Keystore Migration

	4.1.11.2 Migrating from an External Keystore to a Password-Based Software Keystore
	4.1.11.2.1 About Migrating Back from an External Keystore
	4.1.11.2.2 Step 1: Configure the External Type
	4.1.11.2.3 Step 2: Configure the Keystore for the Reverse Migration
	4.1.11.2.4 Step 3: Configure the External Keystore to Open with the Software Keystore

	4.1.11.3 Keystore Order After a Migration

	4.1.12 Migration of Keystores to and from Oracle Key Vault
	4.1.13 Closing a Keystore
	4.1.13.1 About Closing Keystores
	4.1.13.2 Closing a Software Keystore
	4.1.13.3 Closing an External Keystore

	4.1.14 Using a Software Keystore That Resides on ASM Volumes
	4.1.15 Backup and Recovery of Encrypted Data
	4.1.16 Dangers of Deleting Keystores
	4.1.17 Features That Are Affected by Deleted Keystores

	4.2 Managing the TDE Master Encryption Key
	4.2.1 Creating User-Defined TDE Master Encryption Keys
	4.2.1.1 About User-Defined TDE Master Encryption Keys
	4.2.1.2 Creating a User-Defined TDE Master Encryption Key

	4.2.2 Creating TDE Master Encryption Keys for Later Use
	4.2.2.1 About Creating a TDE Master Encryption Key for Later Use
	4.2.2.2 Creating a TDE Master Encryption Key for Later Use
	4.2.2.3 Example: Creating a TDE Master Encryption Key in a Single Database

	4.2.3 Activating TDE Master Encryption Keys
	4.2.3.1 About Activating TDE Master Encryption Keys
	4.2.3.2 Activating a TDE Master Encryption Key
	4.2.3.3 Example: Activating a TDE Master Encryption Key

	4.2.4 TDE Master Encryption Key Attribute Management
	4.2.4.1 TDE Master Encryption Key Attributes
	4.2.4.2 Finding the TDE Master Encryption Key That Is in Use

	4.2.5 Creating Custom TDE Master Encryption Key Attributes for Reports
	4.2.5.1 About Creating Custom Attribute Tags
	4.2.5.2 Creating a Custom Attribute Tag

	4.2.6 Setting or Rekeying the TDE Master Encryption Key in the Keystore
	4.2.6.1 About Setting or Rekeying the TDE Master Encryption Key in the Keystore
	4.2.6.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key
	4.2.6.3 About Rekeying the TDE Master Encryption Key
	4.2.6.4 Rekeying the TDE Master Encryption Key
	4.2.6.5 Rekeying the TDE Master Encryption Key for a Tablespace

	4.2.7 Exporting and Importing the TDE Master Encryption Key
	4.2.7.1 About Exporting and Importing the TDE Master Encryption Key
	4.2.7.2 About Exporting TDE Master Encryption Keys
	4.2.7.3 Exporting a TDE Master Encryption Key
	4.2.7.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery
	4.2.7.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a File
	4.2.7.6 Example: Exporting All TDE Master Encryption Keys of the Database
	4.2.7.7 About Importing TDE Master Encryption Keys
	4.2.7.8 Importing a TDE Master Encryption Key
	4.2.7.9 Example: Importing a TDE Master Encryption Key
	4.2.7.10 How Keystore Merge Differs from TDE Master Encryption Key Export or Import

	4.2.8 Moving TDE Master Encryption Keys into a New Keystore
	4.2.8.1 About Moving TDE Master Encryption Keys into a New Keystore
	4.2.8.2 Moving a TDE Master Encryption Key into a New Keystore

	4.2.9 Management of TDE Master Encryption Keys Using Oracle Key Vault

	4.3 Storing Oracle Database Secrets
	4.3.1 About Storing Oracle Database Secrets in a Keystore
	4.3.2 Storage of Oracle Database Secrets in a Software Keystore
	4.3.3 Example: Adding an Oracle Key Vault Password to a Software Keystore
	4.3.4 Example: Changing an Oracle Key Vault Password Stored as a Secret in a Software Keystore
	4.3.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in a Software Keystore
	4.3.6 Storage of Oracle Database Secrets in an External Keystore
	4.3.7 Example: Adding an Oracle Database Secret to an External Keystore
	4.3.8 Example: Changing an Oracle Database Secret in an External Keystore
	4.3.9 Example: Deleting an Oracle Database Secret in an External Keystore
	4.3.10 Configuring Auto-Open Connections into External Key Managers
	4.3.10.1 About Auto-Open Connections into External Key Managers
	4.3.10.2 Configuring an Auto-Open Connection into an External Key Manager

	4.4 Storing Oracle GoldenGate Secrets in a Keystore
	4.4.1 About Storing Oracle GoldenGate Secrets in Keystores
	4.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements
	4.4.3 Configuring Keystore Support for Oracle GoldenGate
	4.4.3.1 Step 1: Decide on a Shared Secret for the Keystore
	4.4.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle GoldenGate
	4.4.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore
	4.4.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract Process

	5 Managing Keystores and TDE Master Encryption Keys in United Mode
	5.1 About Managing Keystores and TDE Master Encryption Keys in United Mode
	5.2 Operations That Are Allowed in United Mode
	5.3 Operations That Are Not Allowed in a United Mode PDB
	5.4 Configuring the Keystore Location and Type for United Mode
	5.4.1 Configuring United Mode by Editing the Initialization Parameter File
	5.4.2 Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM

	5.5 Configuring a Software Keystore for Use in United Mode
	5.5.1 About Configuring a Software Keystore in United Mode
	5.5.2 Step 1: Create the Software Keystore
	5.5.3 Step 2: Open the Software Keystore in a United Mode PDB
	5.5.4 Step 3: Set the TDE Master Encryption Key in the Software Keystore in United Mode
	5.5.5 Step 4: Encrypt Your Data in United Mode

	5.6 Configuring an External Keystore in United Mode
	5.6.1 About Configuring an External Keystore in United Mode
	5.6.2 Step 1: Configure the External Keystore for United Mode
	5.6.3 Step 2: Open the External Keystore
	5.6.3.1 About Opening External Keystores
	5.6.3.2 Opening an External Keystore in a United Mode PDB

	5.6.4 Step 3: Set the First TDE Master Encryption Key in the External Keystore
	5.6.4.1 About Setting the External Keystore TDE Master Encryption Key
	5.6.4.2 Heartbeat Batch Size for External Keystores
	5.6.4.3 Step 3: Set the TDE Master Encryption Key in the External Keystore in United Mode
	5.6.4.4 Migration of a Previously Configured TDE Master Encryption Key

	5.6.5 Step 4: Encrypt Your Data in United Mode

	5.7 Administering Keystores and TDE Master Encryption Keys in United Mode
	5.7.1 Changing the Keystore Password in United Mode
	5.7.1.1 Changing the Password-Protected Software Keystore Password in United Mode
	5.7.1.2 Changing the Password of an External Keystore in United Mode

	5.7.2 Backing Up a Password-Protected Software Keystore in United Mode
	5.7.3 Closing Keystores in United Mode
	5.7.3.1 Closing a Software Keystore in United Mode
	5.7.3.2 Closing an External Keystore in United Mode

	5.7.4 Creating a User-Defined TDE Master Encryption Key in United Mode
	5.7.5 Example: Creating a Master Encryption Key in All PDBs
	5.7.6 Creating a TDE Master Encryption Key for Later Use in United Mode
	5.7.7 Activating a TDE Master Encryption Key in United Mode
	5.7.8 Rekeying the TDE Master Encryption Key in United Mode
	5.7.9 Finding the TDE Master Encryption Key That Is in Use in United Mode
	5.7.10 Creating a Custom Attribute Tag in United Mode
	5.7.11 Moving a TDE Master Encryption Key into a New Keystore in United Mode
	5.7.12 Automatically Removing Inactive TDE Master Encryption Keys in United Mode
	5.7.13 Isolating a Pluggable Database Keystore

	5.8 Administering Transparent Data Encryption in United Mode
	5.8.1 Moving PDBs from One CDB to Another in United Mode
	5.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode
	5.8.2.1 Unplugging a PDB That Has Encrypted Data in United Mode
	5.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode
	5.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode
	5.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in United Mode

	5.8.3 Managing Cloned PDBs with Encrypted Data in United Mode
	5.8.3.1 About Managing Cloned PDBs That Have Encrypted Data in United Mode
	5.8.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode
	5.8.3.3 Performing a Remote Clone of PDB with Encrypted Data Between Two CDBs in United Mode
	5.8.3.4 TDE Academy Videos: Remotely Cloning and Upgrading Encrypted PDBs
	5.8.3.5 Relocating Across CDBs a Cloned PDB with Encrypted Data in United Mode

	5.8.4 How Keystore Open and Close Operations Work in United Mode
	5.8.5 Finding the Keystore Status for All of the PDBs in United Mode

	6 Managing Keystores and TDE Master Encryption Keys in Isolated Mode
	6.1 About Managing Keystores and TDE Master Encryption Keys in Isolated Mode
	6.2 Operations That Are Allowed in Isolated Mode
	6.3 Operations That Are Not Allowed in an Isolated Mode PDB
	6.4 Configuring the Keystore Location and Type for Isolated Mode
	6.4.1 Configuring Isolated Mode
	6.4.2 Example: Restoring an Older Version of a Control File
	6.4.3 Example: Addressing the Problem of a Lost Control File
	6.4.4 Example: Configuring Isolated Mode in an Oracle Real Application Clusters Environment

	6.5 Configuring a Keystore and TDE Master Encryption Key in Isolated Mode
	6.5.1 About Configuring a Software Keystore in Isolated Mode
	6.5.2 Step 1: Create a Software Keystore in a PDB Configured in Isolated Mode
	6.5.3 Step 2: Open the Software Keystore in an Isolated Mode PDB
	6.5.4 Step 3: Set the TDE Master Encryption Key in the Software Keystore of the Isolated Mode PDB
	6.5.5 Step 4: Encrypt Your Data in Isolated Mode

	6.6 Configuring an External Keystore in Isolated Mode
	6.6.1 About Configuring an External Keystore in Isolated Mode
	6.6.2 Step 1: Configure Isolated PDBs for Oracle Key Vault
	6.6.3 Step 2: Open the External Keystore in an Isolated Mode PDB
	6.6.4 Step 3: Set TDE Master Encryption Key in the External Keystore of a PDB in Isolated Mode
	6.6.4.1 Setting a New TDE Master Encryption Key in Isolated Mode
	6.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode

	6.6.5 Step 4: Encrypt Your Data in Isolated Mode

	6.7 Administering Keystores and TDE Master Encryption Keys in Isolated Mode
	6.7.1 Changing the Keystore Password in Isolated Mode
	6.7.1.1 Changing the Password-Protected Software Keystore Password in Isolated Mode
	6.7.1.2 Changing the Password of an External Keystore in Isolated Mode

	6.7.2 Backing Up a Password-Protected Software Keystore in Isolated Mode
	6.7.3 Merging Software Keystores in Isolated Mode
	6.7.3.1 Merging One Software Keystore into an Existing Software Keystore in Isolated Mode
	6.7.3.2 Merging Two Software Keystores into a Third New Keystore in Isolated Mode

	6.7.4 Closing Keystores in Isolated Mode
	6.7.4.1 Closing a Software Keystore in Isolated Mode
	6.7.4.2 Closing an External Keystore in Isolated Mode

	6.7.5 Creating a User-Defined TDE Master Encryption Key in Isolated Mode
	6.7.6 Creating a TDE Master Encryption Key for Later Use in Isolated Mode
	6.7.7 Activating a TDE Master Encryption Key in Isolated Mode
	6.7.8 Rekeying the TDE Master Encryption Key in Isolated Mode
	6.7.9 Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode
	6.7.10 Creating a Custom Attribute Tag in Isolated Mode
	6.7.11 Exporting and Importing the TDE Master Encryption Key in Isolated Mode
	6.7.11.1 Exporting a TDE Master Encryption Key in Isolated Mode
	6.7.11.2 Importing a TDE Master Encryption Key in Isolated Mode

	6.7.12 Storing Oracle Database Secrets in Isolated Mode
	6.7.12.1 Storing Oracle Database Secrets in a Software Keystore in Isolated Mode
	6.7.12.2 Storing Oracle Database Secrets in an External Keystore in Isolated Mode

	6.7.13 Migrating Keystores in Isolated Mode
	6.7.13.1 Migrating from a Password-Protected Software Keystore to an External Keystore in Isolated Mode
	6.7.13.2 Migrating from an External Keystore to a Password-Protected Software Keystore in Isolated Mode

	6.7.14 Uniting a Pluggable Database Keystore
	6.7.15 Creating a Keystore When the PDB Is Closed
	6.7.15.1 About Creating a Keystore When the PDB Is Closed
	6.7.15.2 Reverting a Keystore Creation Operation When a PDB Is Closed

	6.8 Administering Transparent Data Encryption in Isolated Mode
	6.8.1 Moving PDBs from One CDB to Another in Isolated Mode
	6.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode
	6.8.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode
	6.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode
	6.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an External Keystore in Isolated Mode
	6.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External Keystore in Isolated Mode

	6.8.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode
	6.8.4 Performing a Remote Clone of PDB with Encrypted Data Between Two CDBs in Isolated Mode
	6.8.5 Relocating Across CDBs a Cloned PDB with Encrypted Data in Isolated Mode
	6.8.6 How Keystore Open and Close Operations Work in Isolated Mode
	6.8.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
	6.8.7.1 About Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode
	6.8.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated Mode
	6.8.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated Mode
	6.8.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode

	7 General Considerations of Using Transparent Data Encryption
	7.1 Compression and Data Deduplication of Encrypted Data
	7.2 Security Considerations for Transparent Data Encryption
	7.2.1 Transparent Data Encryption General Security Advice
	7.2.2 Transparent Data Encryption Column Encryption-Specific Advice
	7.2.3 Managing Security for Plaintext Fragments

	7.3 Performance and Storage Overhead of Transparent Data Encryption
	7.3.1 Performance Overhead of Transparent Data Encryption
	7.3.2 Storage Overhead of Transparent Data Encryption

	7.4 Modifying Your Applications for Use with Transparent Data Encryption
	7.5 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT
	7.6 Data Loads from External Files to Tables with Encrypted Columns
	7.7 Transparent Data Encryption and Database Close Operations

	8 Using Transparent Data Encryption with Other Oracle Features
	8.1 How Transparent Data Encryption Works with Export and Import Operations
	8.1.1 About Exporting and Importing Encrypted Data
	8.1.2 Exporting and Importing Tables with Encrypted Columns
	8.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets
	8.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data

	8.2 How Transparent Data Encryption Works with Oracle Data Guard
	8.2.1 About Using Transparent Data Encryption with Oracle Data Guard
	8.2.2 Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment
	8.2.3 Enabling a PDB to Have an Isolated Keystore in an Oracle Data Guard Environment

	8.3 How Transparent Data Encryption Works with Oracle Real Application Clusters
	8.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters
	8.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault

	8.4 How Transparent Data Encryption Works with SecureFiles
	8.4.1 About Transparent Data Encryption and SecureFiles
	8.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm
	8.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified

	8.5 How Transparent Data Encryption Works with Oracle Call Interface
	8.6 How Transparent Data Encryption Works with Editions
	8.7 Configuring Transparent Data Encryption to Work in a Multidatabase Environment

	9 Using sqlnet.ora to Configure Transparent Data Encryption Keystores
	9.1 About the Keystore Location in the sqlnet.ora File
	9.2 Configuring the sqlnet.ora File for a Software Keystore Location
	9.3 Example: Configuring a Software Keystore for a Regular File System
	9.4 Example: Configuring a Software Keystore When Multiple Databases Share the sqlnet.ora File
	9.5 Example: Configuring a Software Keystore for Oracle Automatic Storage Management
	9.6 Example: Configuring a Software Keystore for an Oracle Automatic Storage Management Disk Group

	10 Frequently Asked Questions About Transparent Data Encryption
	10.1 Transparency Questions About Transparent Data Encryption
	10.2 Performance Questions About Transparent Data Encryption

	Part II Using Oracle Data Redaction
	11 Introduction to Oracle Data Redaction
	11.1 What Is Oracle Data Redaction?
	11.2 When to Use Oracle Data Redaction
	11.3 Benefits of Using Oracle Data Redaction
	11.4 Target Use Cases for Oracle Data Redaction
	11.4.1 Oracle Data Redaction Use with Database Applications
	11.4.2 Oracle Data Redaction with Ad Hoc Database Queries Considerations

	12 Oracle Data Redaction Features and Capabilities
	12.1 Full Data Redaction to Redact All Data
	12.2 Partial Data Redaction to Redact Sections of Data
	12.3 Regular Expressions to Redact Patterns of Data
	12.4 Redaction Using Null Values
	12.5 Random Data Redaction to Generate Random Values
	12.6 Comparison of Full, Partial, and Random Redaction Based on Data Types
	12.6.1 Oracle Built-in Data Types Redaction Capabilities
	12.6.2 ANSI Data Types Redaction Capabilities
	12.6.3 Built-in and ANSI Data Types Full Redaction Capabilities
	12.6.4 User-Defined Data Types or Oracle Supplied Types Redaction Capabilities

	12.7 No Redaction for Testing Purposes
	12.8 Central Management of Named Data Redaction Policy Expressions

	13 Configuring Oracle Data Redaction Policies
	13.1 About Oracle Data Redaction Policies
	13.2 Who Can Create Oracle Data Redaction Policies?
	13.3 Planning an Oracle Data Redaction Policy
	13.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure
	13.5 Using Expressions to Define Conditions for Data Redaction Policies
	13.5.1 About Using Expressions in Data Redaction Policies
	13.5.2 Supported Functions for Data Redaction Expressions
	13.5.2.1 Expressions Using Namespace Functions
	13.5.2.2 Expressions Using the SUBSTR Function
	13.5.2.3 Expressions Using Length of Character String Functions
	13.5.2.4 Expressions Using Oracle Application Express Functions
	13.5.2.5 Expressions Using Oracle Label Security Functions

	13.5.3 Applying the Redaction Policy Based on User Environment
	13.5.4 Applying the Redaction Policy Based on Database Roles
	13.5.5 Applying the Redaction Policy Based on Oracle Label Security Label Dominance
	13.5.6 Applying the Redaction Policy Based on Application Express Session States
	13.5.7 Applying the Redaction Policy to All Users

	13.6 Creating and Managing Multiple Named Policy Expressions
	13.6.1 About Data Redaction Policy Expressions to Define Conditions
	13.6.2 Creating and Applying a Named Data Redaction Policy Expression
	13.6.3 Updating a Named Data Redaction Policy Expression
	13.6.4 Dropping a Named Data Redaction Expression Policy
	13.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy Expression
	13.6.5.1 Step 1: Create Users for This Tutorial
	13.6.5.2 Step 2: Create an Oracle Data Redaction Policy
	13.6.5.3 Step 3: Test the Oracle Data Redaction Policy
	13.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table Columns
	13.6.5.5 Step 5: Test the Data Redaction Policy Expression
	13.6.5.6 Step 6: Modify the Data Redaction Policy Expression
	13.6.5.7 Step 7: Test the Modified Policy Expression
	13.6.5.8 Step 8: Remove the Components of This Tutorial

	13.7 Creating a Full Redaction Policy and Altering the Full Redaction Value
	13.7.1 Creating a Full Redaction Policy
	13.7.1.1 About Creating Full Data Redaction Policies
	13.7.1.2 Syntax for Creating a Full Redaction Policy
	13.7.1.3 Example: Full Redaction Policy
	13.7.1.4 Example: Fully Redacted Character Values

	13.7.2 Altering the Default Full Data Redaction Value
	13.7.2.1 About Altering the Default Full Data Redaction Value
	13.7.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES Procedure
	13.7.2.3 Modifying the Default Full Data Redaction Value

	13.8 Creating a DBMS_REDACT.NULLIFY Redaction Policy
	13.8.1 About Creating a Policy That Returns Null Values
	13.8.2 Syntax for Creating a Policy That Returns Null Values
	13.8.3 Example: Redaction Policy That Returns Null Values

	13.9 Creating a Partial Redaction Policy
	13.9.1 About Creating Partial Redaction Policies
	13.9.2 Syntax for Creating a Partial Redaction Policy
	13.9.3 Creating Partial Redaction Policies Using Fixed Character Formats
	13.9.3.1 Settings for Fixed Character Formats
	13.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format

	13.9.4 Creating Partial Redaction Policies Using Character Data Types
	13.9.4.1 Settings for Character Data Types
	13.9.4.2 Example: Partial Redaction Policy Using a Character Data Type

	13.9.5 Creating Partial Redaction Policies Using Number Data Types
	13.9.5.1 Settings for Number Data Types
	13.9.5.2 Example: Partial Redaction Policy Using a Number Data Type

	13.9.6 Creating Partial Redaction Policies Using Date-Time Data Types
	13.9.6.1 Settings for Date-Time Data Types
	13.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type

	13.10 Creating a Regular Expression-Based Redaction Policy
	13.10.1 About Creating Regular Expression-Based Redaction Policies
	13.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy
	13.10.3 Regular Expression-Based Redaction Policies Using Formats
	13.10.3.1 Regular Expression Formats
	13.10.3.2 Example: Regular Expression Redaction Policy Using Formats

	13.10.4 Custom Regular Expression Redaction Policies
	13.10.4.1 Settings for Custom Regular Expressions
	13.10.4.2 Example: Custom Regular Expression Redaction Policy

	13.11 Creating a Random Redaction Policy
	13.11.1 Syntax for Creating a Random Redaction Policy
	13.11.2 Example: Random Redaction Policy

	13.12 Creating a Policy That Uses No Redaction
	13.12.1 Syntax for Creating a Policy with No Redaction
	13.12.2 Example: Performing No Redaction

	13.13 Exemption of Users from Oracle Data Redaction Policies
	13.14 Altering an Oracle Data Redaction Policy
	13.14.1 About Altering Oracle Data Redaction Policies
	13.14.2 Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
	13.14.3 Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
	13.14.4 Tutorial: Altering an Oracle Data Redaction Policy

	13.15 Redacting Multiple Columns
	13.15.1 Adding Columns to a Data Redaction Policy for a Single Table or View
	13.15.2 Example: Redacting Multiple Columns

	13.16 Disabling and Enabling an Oracle Data Redaction Policy
	13.16.1 Disabling an Oracle Data Redaction Policy
	13.16.2 Enabling an Oracle Data Redaction Policy

	13.17 Dropping an Oracle Data Redaction Policy
	13.18 Tutorial: SQL Expressions to Build Reports with Redacted Values
	13.19 Oracle Data Redaction Policy Data Dictionary Views

	14 Managing Oracle Data Redaction Policies in Oracle Enterprise Manager
	14.1 About Using Oracle Data Redaction in Oracle Enterprise Manager
	14.2 Oracle Data Redaction Workflow
	14.3 Management of Sensitive Column Types in Enterprise Manager
	14.4 Managing Oracle Data Redaction Formats Using Enterprise Manager
	14.4.1 About Managing Oracle Data Redaction Formats Using Enterprise Manager
	14.4.2 Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
	14.4.3 Editing a Custom Oracle Data Redaction Format Using Enterprise Manager
	14.4.4 Viewing Oracle Data Redaction Formats Using Enterprise Manager
	14.4.5 Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager

	14.5 Managing Oracle Data Redaction Policies Using Enterprise Manager
	14.5.1 About Managing Oracle Data Redaction Policies Using Enterprise Manager
	14.5.2 Creating an Oracle Data Redaction Policy Using Enterprise Manager
	14.5.3 Editing an Oracle Data Redaction Policy Using Enterprise Manager
	14.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager
	14.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager
	14.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager

	14.6 Managing Named Data Redaction Policy Expressions Using Enterprise Manager
	14.6.1 About Named Data Redaction Policy Expressions in Enterprise Manager
	14.6.2 Creating a Named Data Redaction Policy Expression in Enterprise Manager
	14.6.3 Editing a Named Data Redaction Policy Expression in Enterprise Manager
	14.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise Manager
	14.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise Manager

	15 Using Oracle Data Redaction with Oracle Database Features
	15.1 Oracle Data Redaction General Usage Guidelines
	15.2 Oracle Data Redaction and DML and DDL Operations
	15.3 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause
	15.4 Oracle Data Redaction and Queries on Columns Protected by Data Redaction Policies
	15.5 Oracle Data Redaction and Database Links
	15.6 Oracle Data Redaction and Aggregate Functions
	15.7 Oracle Data Redaction and Object Types
	15.8 Oracle Data Redaction and XML Generation
	15.9 Oracle Data Redaction and Editions
	15.10 Oracle Data Redaction in a Multitenant Environment
	15.11 Oracle Data Redaction and Oracle Virtual Private Database
	15.12 Oracle Data Redaction and Oracle Database Real Application Security
	15.13 Oracle Data Redaction and Oracle Database Vault
	15.14 Oracle Data Redaction and Oracle Data Pump
	15.14.1 Oracle Data Pump Security Model for Oracle Data Redaction
	15.14.2 Export of Objects That Have Oracle Data Redaction Policies Defined
	15.14.2.1 Finding Type Names Used by Oracle Data Pump
	15.14.2.2 Exporting Only the Data Dictionary Metadata Related to Data Redaction Policies
	15.14.2.3 Importing Objects Using the INCLUDE Parameter in IMPDP

	15.14.3 Export of Data Using the EXPDP Utility access_method Parameter
	15.14.4 Import of Data into Objects Protected by Oracle Data Redaction

	15.15 Oracle Data Redaction and Data Masking and Subsetting Pack
	15.16 Oracle Data Redaction and JSON

	16 Security Considerations for Oracle Data Redaction
	16.1 Oracle Data Redaction General Security Guidelines
	16.2 Restriction of Administrative Access to Oracle Data Redaction Policies
	16.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas
	16.4 Policy Expressions That Use SYS_CONTEXT Attributes
	16.5 Oracle Data Redaction Policies on Materialized Views
	16.6 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled

	Glossary
	actual data
	auto-login software keystore
	cipher suite
	ciphertext
	data redaction
	decryption
	encrypted text
	encryption
	external keystore
	hardware security module
	inference
	key pair
	keystore
	local auto-login software keystore
	mask
	Oracle-managed tablespace
	password-based software keystore
	plaintext
	private key
	public key
	public key encryption
	public and private key pair
	public key infrastructure (PKI)
	redacted data
	salt
	software keystore
	tablespace encryption key
	TDE master encryption key
	TDE table key
	wallet
	wallet obfuscation
	Wallet Resource Locator (WRL)

	Index

