Oracle® Database
SQL Translation and Migration Guide

Release 18c
E£83924-02
May 2018

ORACLE"

Oracle Database SQL Translation and Migration Guide, Release 18c
E83924-02

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Tanmay Choudhury

Contributors: Tulika Das, Peter Castro, Christopher Jones, Shoaib Lari, Tom Laszewski, Aman Manglik,
Robert Pang, Rajendra Pingte, Jeff D. Smith, Andrei Souleimanian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xi
Related Documents Xi
Documentation Accessibility Xi
Conventions Xi

1 Introduction to Tools and Products that Support Migration

Oracle Database Features for Migration Support 1-1
SQL Translation Framework 1-1
Support for MySQL Applications 1-1
Restrictions on SQL Statement Translation 1-2
Support for Identity Columns 1-2
Creating Identity Columns 1-3
Implicit Statement Results 1-3
JDBC Support for Implicit Results 1-3
OCI Support for Implicit Results 1-4
ODBC Support for Implicit Results 1-5
Enhanced SQL to PL/SQL Bind Handling 1-6
Invoking a Subprogram with a Nested Table Parameter 1-7
Native SQL Support for Query Row Limits and Row Offsets 1-7
Limiting Bulk Selection 1-7
JDBC Driver Support for Application Migration 1-8
ODBC Driver Support for Application Migration 1-8
Other Oracle Products that Enable Migration 1-9
OEM Tuning and Performance Packs 1-9
Oracle GoldenGate 1-9
Oracle Database Gateways 1-9
Oracle SQL Developer 1-9
Migration Support for Other Database Vendors 1-10
Application Support in Third-Party Databases 1-10
Third-Party Database Version Support 1-10

ORACLE

SQL Translation Framework Overview

Architecture of SQL Translation Framework 2-2
How to Use SQL Translation Framework 2-2
When to Use SQL Translation Framework 2-3
SQL Translation Framework Configuration
Installing and Configuring SQL Translation Framework with Oracle SQL Developer 3-1
Overview of Oracle SQL Developer Migration Support 3-1
Setting Up Oracle SQL Developer 3.2 for Windows 3-2
Setting Up Oracle SQL Developer 3.2 Startup 3-2
Starting Oracle SQL Developer 3-2
Creating a Connection to Oracle Database 3-3
Testing SQL Translation 3-4
Creating a Translation Profile and Installing SQL Translator 3-5
Installing SQL Translator 3-5
Creating a Translation Profile 3-8
Using the SQL Translator Profile 3-8
Installing and Configuring SQL Translation Framework from Command Line 3-10
Installing Oracle Sybase Translator 3-10
Setting up a SQL Translation Profile 3-10
Setting Up a Database Service to Use the SQL Translation Profile 3-11
Setting Up a Database Service in Oracle Real Application Clusters 3-11
Testing Sybase SQL Translation Using the SQL Translation Profile 3-11
Granting Necessary Permissions for Installing the SQL Translator 3-12
SQL Translation of JDBC and ODBC Applications
SQL Translation of JDBC Applications 4-1
SQL Translation Profile 4-1
Error Message Translation 4-1
Converting JDBC Standard Parameter Markers 4-2
Executing the Translated Oracle Dialect Query 4-2
Error Translation 4-3
Using JDBC Driver for SQL Translation 4-3
SQL Translation of ODBC Applications 4-4
SQL Translation profile 4-4
Error Message Translation 4-5
Translating Error Messages 4-5
v

ORACLE

5 Example: Application Migration Using SQL Translation Framework

Migrating a Sybase JDBC Application 5-1
Application Overview 5-1
Setting Up Migration 5-2
Capturing Migration 5-3
Setting Migration Preferences 5-6
Converting Migration 5-7
Generating a Migration 5-9

Creating a Target Oracle User 5-10
Moving the Data 5-10
Generating Migration Reports 5-11

6 MySQL Client Library Driver for Oracle

Introduction to MySQL Client Library Driver for Oracle 6-1
Connecting to MySQL 6-2
Installation and First Use of MySQL Client Library Driver for Oracle 6-2
Overview of Migration with MySQL Client Library Driver for Oracle 6-2
Using MySQL Client Library Driver for Oracle 6-3
Relinking the Application with the liboramysql Driver 6-3
Connecting to Oracle Database 6-5
Supported Platforms 6-5
Error Handling 6-5
Globalization 6-5
Expected Differences 6-5

7 API Reference for Oracle MySQL Client Library Driver

Mapping Data Types 7-1
Mapping Oracle Data Types to MySQL Data Types 7-1
Data Type Conversions for MySQL Program Variable Data Types 7-2

MYSQL_TYPE_BLOB 7-3
MYSQL_TYPE_DATE 7-3
MYSQL_TYPE_DATETIME 7-4
MYSQL_TYPE_DOUBLE 7-4
MYSQL_TYPE_FLOAT 7-4
MYSQL_TYPE_LONG 7-4
MYSQL_TYPE_LONG_BLOB 7-4
MYSQL_TYPE_LONGLONG 7-4
MYSQL_TYPE_MEDIUM_BLOB 7-5
MYSQL_TYPE_NEWDECIMAL 7-5

ORACLE Y

MYSQL_TYPE_SHORT
MYSQL_TYPE_STRING
MYSQL_TYPE_TIME
MYSQL_TYPE_TIMESTAMP
MYSQL_TYPE_TINY
MYSQL_TYPE_TINY_BLOB
MYSQL_TYPE_VAR_STRING

Data Type Conversions for MySQL External Data Types (LOB Data Type
Descriptors)

Data Type Conversions for Datetime and Interval Data Types

Error Handling
Available Oracle Support for MySQL APIs
my_init()

mysql_affected_rows()

mysql_autocommit()

mysql_change_user()

mysql_character_set_name()

mysql_close()

mysql_commit()

mysql_connect()

mysql_create_db()

mysql_data_seek()

mysql_debug()

mysql_debug_info()

mysql_drop_db()

mysql_dump_debug_info()

mysql_eof()

mysql_errno()

mysql_error()

mysql_escape_string()

mysql_fetch_field()

mysql_fetch_field_direct()

mysql_fetch_fields()

mysql_fetch_lengths()

mysql_fetch_row()

mysql_field_count()

mysql_field_seek()

mysql_field_tell()

mysql_free_result()

mysql_get _character_set_info()

mysql_get_client_info()

ORACLE

7-5
7-5
7-6
7-6
7-6
7-6
7-6

7-7

7-7

7-7

7-8

7-9
7-10
7-10
7-10
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15

Vi

mysql_get_client_version() 7-15

mysql_get_host_info() 7-15
mysql_get_proto_info() 7-15
mysql_get_server_info() 7-15
mysql_get_server_version() 7-16
mysql_get_ssl_cipher() 7-16
mysql_hex_string() 7-16
mysql_info() 7-16
mysql_init() 7-16
mysql_insert_id() 7-17
mysql_kill() 7-17
mysql_library_end() 7-17
mysql_library_init() 7-17
mysql_list_dbs() 7-17
mysql_list_fields() 7-18
mysql_list_processes() 7-18
mysql_list_tables() 7-18
mysql_more_results() 7-18
mysql_next_result() 7-19
mysql_num_fields() 7-19
mysql_num_rows() 7-19
mysql_options() 7-19
mysql_ping() 7-19
mysql_query() 7-19
mysql_read_query_result() 7-20
mysql_real_connect() 7-20
mysql_real_escape_string() 7-20
mysql_real_query() 7-20
mysql_refresh() 7-21
mysql_reload() 7-21
mysq|l_rollback() 7-21
mysql_row_seek() 7-21
mysql_row_tell() 7-21
mysql_select_db() 7-21
mysql_send_query() 7-22
mysql_server_end() 7-22
mysql_server_init() 7-22
mysql_set_character_set() 7-22
mysql_set_local_infile_default() 7-22
mysql_set_local_infile_handler() 7-22
mysql_set_server_option() 7-23

ORACLE vii

mysql_shutdown() 7-23

mysql_sqlstate() 7-23
mysql_ssl_set() 7-23
mysql_stat() 7-23
mysql_stmt_affected_rows() 7-24
mysql_stmt_attr_get() 7-24
mysql_stmt_attr_set() 7-24
mysql_stmt_bind_param() 7-24
mysql_stmt_bind_result() 7-24
mysql_stmt_close() 7-24
mysql_stmt_data_seek() 7-25
mysql_stmt_errno() 7-25
mysql_stmt_error() 7-25
mysql_stmt_execute() 7-25
mysql_stmt_fetch() 7-25
mysql_stmt_fetch_column() 7-25
mysql_stmt_field_count() 7-26
mysql_stmt_free_result() 7-26
mysql_stmt_init() 7-26
mysql_stmt_insert_id() 7-26
mysql_stmt_next_result() 7-26
mysql_stmt_num_rows() 7-26
mysql_stmt_param_count() 7-27
mysql_stmt_param_metadata() 7-27
mysql_stmt_prepare() 7-27
mysql_stmt_reset() 7-27
mysql_stmt_result_metadata() 7-27
mysql_stmt_row_seek() 7-27
mysql_stmt_row_tell() 7-27
mysql_stmt_send_long_data() 7-28
mysql_stmt_sqlstate() 7-28
mysql_stmt_store_result() 7-28
mysql_store_result() 7-28
mysql_thread_end() 7-28
mysql_thread_id() 7-29
mysql_thread_init() 7-29
mysql_thread_safe() 7-29
mysql_use_result() 7-29
mysql_warning_count() 7-29

ORACLE viii

8 API Reference for SQL Translation of JDBC Applications

Translation Properties 8-1
sqlTranslationProfile 8-1
sqlErrorTranslationFile 8-2

OracleTranslatingConnection Interface 8-2
SqlTranslationVersion 8-3
createStatement() 8-3
prepareCall() 8-6
prepareStatement() 8-9
getSQLTranslationVersions() 8-12

Error Translation Configuration File 8-13

Glossary

Index

ORACLE" iX

List of Tables

1-1
1-2
7-1
7-2
7-3
7-4
8-1
8-2
8-3

Supported Applications in Databases

Supported Database Versions for Migration Using Oracle SQL Developer
Mapping Oracle Data Types to MySQL Data Types

Converting MySQL Program Variable Data Types to Oracle Column Data Types
Data Type Conversions for LOB Data Type Descriptors

Data Conversions for Datetime and Internal Data Type

Translation Properties

OracleTranslatingConnection Enumeration

OracleTranslatingConnection Methods

ORACLE

1-10
1-10
7-1
7-2
7-7
7-7
8-1
8-2

Preface

Audience

This guide describes the installation, configuration, and administration tasks for all
activities related to migrating applications developed for non-Oracle databases, such
as DB2, MySQL, Sybase, and legacy applications, to Oracle Database. This guide
also provides migration scenarios that users may implement in sequence.

This guide is for database administrators and application developers who are
interested in migrating from databases other than Oracle to an Oracle Database.

Related Documents

For more information, see the following documents in the Oracle Database
documentation set:

e Oracle Database SQL Language Reference
* Oracle Database Administrator's Guide
e Oracle Database Development Guide

* Oracle Database Reference

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

ORACLE

Preface

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

Xii

Introduction to Tools and Products that
Support Migration

Before migrating your application to Oracle Database, you must be aware of several
key points that are described in Oracle Database Concepts.

When discussing the migration of a database-centered enterprise, it is useful to keep
in mind that the actual migration of database schema and data is only a part of the
process. The migration of a core business solution often involves several databases
and applications that work together to deliver the product and services that drive the
revenue of an organization. For more information about preparing a migration plan,
see Oracle SQL Developer User's Guide.

Oracle Database Features for Migration Support

Oracle Database 12c introduced a large set of features that collectively enhance the
migration process of hon-Oracle database applications to Oracle Database.

SQL Translation Framework

A key part of migrating non-Oracle databases to Oracle Database involves the
conversion of non-Oracle SQL statements to SQL statements that are acceptable to
Oracle Database. The conversion of the non-Oracle SQL statements of the
applications is a manual and tedious process. To minimize the effort, or to eliminate
the necessity for converting these statements, Oracle Database 12c¢ introduces a new
feature called SQL Translation Framework. SQL Translation Framework receives
these SQL statements from client applications, and then translates them at run-time.

The SQL Translation Profile registers the SQL Translater inside the database so it can
handle the SQL translation for non-Oracle client application. If an error occurs while a
SQL statement is executed, then the SQL Translator can translate the Oracle error
code and the ANSI SQLSTATE into the vendor-specific values expected by the
application. The translated statements are then saved in the SQL Translation Profile,
to be examined and edited at the user’s discretion.

The advantages of SQL Translation Framework follow:

e The translation of SQL statements, Oracle error codes, and ANS| SQLSTATE is
automatic.

* The translations are centralized and examinable.

e The user has the option to extract translations and insert them back into the
application.

Support for MySQL Applications

Oracle Database driver for MySQL eases migration of applications initially developed
to work with MySQL database. This feature has two key benefits:

ORACLE 1-1

Chapter 1
Oracle Database Features for Migration Support

It enables the enterprise to reuse the same application to use data stored in both
MySQL Database and Oracle Database

It reduces the cost and complexity of migrating MySQL applications to Oracle
Database

Oracle Database supports all MySQL functions in the client interface with the same
semantics.

Restrictions on SQL Statement Translation

SQL Translation has the following limitations when translating SQL statements:

SQL Translation ignores the following SQL constructs:

— The ENG NE specification for a table is not used; there is only one storage
engine, namely Or acl e.

— The ENuMand SET types are used as VARCHAR2. These values are not converted
to their index value if they are retrieved in a numeric context.

SQL Translation generates an error when attempting to handle the following SQL
constructs; the application must be recoded.

— Oracle does not support spatial datatypes, such as GEOVETRY, PO NT,
LI NESTRI NG, POLYGON, GEOVETRYCOLLECTI ON, MULTI LI NESTRI NG, MULTI POl NT, and
MULTI POLYGON.

Oracle does not support MySQL-specific NLS commands.

The following SQL commands give Oracle-specific output or have Oracle-specific
effect:

— SHOW DATABASES shows only one database, namely oracl e.
— SHOWENG NES shows the Oracl e engine only.

— CREATE PROCEDURE must follow Oracle PL/SQL specification in Oracle Database
12c¢.

The following data types have different behavior In Oracle Database than what is
expected in the native database:

— Columns of ENUMdata types are created as VARCHAR2(4000) . No validation is
performed for insertion.

— Columns of SET data types are created as VARCHAR2(64) . No validation is
performed for insertion.

For further details, see MySQL Client Library Driver for Oracle and API Reference for
Oracle MySQL Client Library Driver .

Support for Identity Columns

Oracle Database 12c implements ANSI-compliant | DENTI TY columns. Migration from
database systems that use identity columns is simplified and can take advantage of
this new functionality.

ORACLE

This feature implements auto increment by enhancing DEFAULT or DEFAULT ON NULL
semantics for use by SEQUENCE. NEXTVAL and SYS_GUI D, supports built-in functions and
implicit return of default values.

1-2

Chapter 1
Oracle Database Features for Migration Support

Creating Identity Columns

Example 1-1 creates a table with an identity column, which is generated by default.
When explicit nul | s are inserted into the identity column, the sequence generator
creates values by default. For further details, see Oracle Database SQL Language
Reference.

Example 1-1 How to create an identity column

CREATE TABLE t1 (c1 NUMBER GENERATED BY DEFAULT ON NULL AS | DENTITY,
c2 VARCHAR2(10));

I NSERT I NTO t1(c2) VALUES (*abc');

INSERT INTO t1 (cl, c2) VALUES (null, ‘xyz');

SELECT c1, c2 FROMt1;

Implicit Statement Results

Starting with Oracle Database 12c Release 2 (12.2), Oracle implicitly returns to the
client application the results of SQL statements executed within a stored procedure,
bypassing the explicit use REF CURSCORs. This feature eliminates the overhead of re-
writing the client-side code.

Implicit statement results enable the user to write a stored procedure, where each
intended query (the statement after the FOR keyword) is part of the OPEN cursor variable.
When code is migrated to Oracle Database from other vendors environments, the
PL/SQL layer adds the equivalent capability and enables SELECT statements to pass
the results to the client. The stored procedures can then return the results directly to
the client with the DBM5_SQ.. RETURN_RESULT procedure. The SQL*Plus FORMAT command
and its variations may be invoked to customize the output.

For information about the DBVS_SQL package, see Oracle Database PL/SQL Packages
and Types Reference. For information about how to use format output, SQL*Plus
User's Guide and Reference.

JDBC Support for Implicit Results

Starting with Oracle Database 12¢ Release 2 (12.2), JDBC applications provide
support for implicit results through the following new functions:

* getMreResults
° getMreResults(int)
* getResult Set

You can use these methods to retrieve and process the implicit results returned by
PL/SQL procedures or blocks, as demonstrated in Example 1-2.

For more information, see Oracle Database JDBC Developer's Guide

Processing Implicit Results in JDBC
Example 1-2 Retrieving and Processing Implicit Results from PL/ISQL Blocks

Suppose you have a procedure called f oo:

create procedure foo as
cl sys_refcursor;

ORACLE 1-3

Chapter 1
Oracle Database Features for Migration Support

c2 sys_refcursor;
begin
open cl for select * from hr.enpl oyees;
dbns_sql .return_result(cl); --return to client
- open 1 nore cursor
open c2 for select * from hr.departments;
dbns_sql .return_result (c2); --return to client
end;

The following code demonstrates how to retrieve the implicit results returned by
PL/SQL procedures using the JDBC get Mr eResul t s methods:

String sql = "begin foo; end;";

Connection conn = DriverManager. get Connection(j dbcURL, user, password);
try {

Statenent stnt = conn.createStatement ();

stnt. executeQuery (sql);

while (stnt.getMreResults())

{
ResultSet rs = stnt.getResultSet();
Systemout. println("ResultSet");
while (rs.next())

{
}

/* get results */

}
}

OCI Support for Implicit Results

Starting with Oracle Database 12c¢ Release 2 (12.2), Oracle Call Interface (OCI)
provides support for implicit results through a new function, OCI St nt Get Next Resul t (). It
is called iteratively by C applications to retrieve each implicit result from stored
procedures and anonymous blocks. Implicit results consume rows directly from a
stored procedure without going through a Ref Cur sor.

" See Also:

Oracle Call Interface Programmer's Guide

Processing Implicit Results in OCI

ORACLE

Example 1-3 shows how to use the OCl St nt Get Next Resul t () function to retrieve and
process the implicit results returned by either a PL/SQL stored procedure or an
anonymous block:

Example 1-3 Using OCIStmtGetNextResult() to Process Implicit Results

OCl Stmt *stnthp;

ub4 rsetcnt;

voi d *result;

ub4 rtype;

char *sgl = "begin foo; end;";

1-4

Chapter 1
Oracle Database Features for Migration Support

OCl Handl eAl | oc((void *)envhp, (void **)&stnthp,
OCl _HTYPE_STMT, 0, (void **)0);

/* Prepare and execute the PL/SQ procedure. */

OCl Stnt Prepare(stnthp, errhp, (oratext *)sqgl, strlen(sql),
OCl _NTV_SYNTAX, OCl _DEFAULT);

OCl St nt Execut e(svchp, stnthp, errhp, 1, 0,
(const OCl Snapshot *)0,
(OCl Snapshot *)0, OCl _DEFAULT);

/* Now check if any inplicit results are available. */
OCl AttrGet((void *)stnthp, OCI_HTYPE_STMI, é&rsetcnt, O,
OCl _ATTR | MPLI CI T_RESULT_COUNT, errhp);

/* Loop and retrieve the inplicit result-sets.
* ResultSets are returned in the same order as in the PL/SQL
* procedur e/ bl ock.
*|
whi | e (OCI Stnt Get Next Resul t (stnthp, errhp, &result, &type,
OCl _DEFAULT) == OCl _SUCCESS)
{ /* Check the type of inplicit ResultSet, currently
* only supported type is OCl _RESULT_TYPE_SELECT
dl if (rtype == OCl _RESULT_TYPE_SELECT)

{ OClStnt *rsethp = (OCIStmt *)result;
/* Performnormal OCl actions to define and fetch rows. */
} el se

printf("unknown result type %\ n", rtype);
/* The result set handle shoul d not be freed by the user. */
} OCl Handl eFree(stnmthp, OCI_HTYPE STMI); /* Al inplicit result-sets are also
freed. */

ODBC Support for Implicit Results

Starting with Oracle Database 12¢, ODBC applications provide support for implicit
results through a new function, SQ_LMr eResul t s() . ODBC driver is enhanced to make
use of the following new OCI APIs that enhance the migration process:

e (OCl StntGet Next Resul t () function
e (OO _ATTR | MPLI I T_RESULT_COUNT attribute
e OCl _RESULT_TYPE_SELECT attribute

ODBC support for implicit results enables the migration of Sybase and SQL Server
applications that use multiple result sets bundled in the stored procedures. Oracle
achieves this by sending the statements or procedures to the server, where the non-
Oracle SQL is translated to Oracle syntax.

Processing Implicit Results in ODBC

ORACLE

Example 1-4 and Example 1-5 demonstrate how to retrieve implicit results in ODBC.

Example 1-4 Using ODBC to return implicit results with
DBMS_SQL.RETURN_RESULT

create or replace procedure foo
is

cl sys_refcursor;

c2 sys_refcursor;

begin

1-5

Chapter 1
Oracle Database Features for Migration Support

open cl for select enployee_id, first_name from enpl oyees where enpl oyee_i d=7369;
dbms_sql . return_resul t(cl);
open c2 for select department_id, departnent_name from departnents where rownum
<=2:
dbms_sql . return_resul t(c2);
end;
/

Example 1-5 Using ODBC to return implicit results with SQLMoreResults

SQLLEN eni nd, jind,;

SQLUI NTEGER eno = 0;

SQLCHAR enpnane[STR_LEN = "";

/I Al'locate HENV, HDBC, HSTMI handl es

rc = SQLPrepare(hstnt, "begin foo(); end;", SQ_NTS);

rc = SQLExecute(hstnt);

//Bind colums for the first SELECT query in the procedure foo()
rc = SQLBindCol (hstnt, 1, SQ._C ULONG &eno, 0, & ind);

rc = SQBindCol (hstnt, 2, SQ._C CHAR, enpname, sizeof (enpnane),
&eni nd) ;

//so on for all the colums that needs to be fetched as per the SELECT
/lquery in the procedure.

//Fetch all results for first SELECT query

while ((rc = SQLFetch (hstnt)) != SQL_NO DATA)

{

/1 do sonet hi ng

}

/1 Again check if there are any results available by calling

/1 SQ.MoreResul ts. SQLMbreResults will return SQL_SUCCESS if any
/lresults are available else returns errors appropriately as expl ai ned
//in MSDN ODBC spec.

rc = SQLMoreResults (hstnt);

if(rc == SQL_SUCCESS)

[/1f the colums for the second SELECT query are different the rebind
//the colums for the second SELECT SQL statenent.

rc = SQBindCol (hstnt, 1,.);

rc = SQBindCol (hstnt, 2,.);

// Fetch the second result set

while ((rc = SQLFetch (hstnt)) != SQL_NO DATA)
//do sonet hing

}

SQLFreeSt nt (hstnt, SQL_DROP) ;

SQLDi sconnect (hdbc);

SQLFreeConnect (hdbc);
SQLFreeEnv (henv);

Enhanced SQL to PL/SQL Bind Handling

ORACLE

In earlier releases of Oracle Database, a SQL expression could not invoke a PL/SQL
function that had a formal parameter or return type that was not a SQL data type.

Starting with Oracle Database 12c¢, a PL/SQL anonymous block, a SQL CALL
statement, or a SQL query can invoke a PL/SQL function that has parameters of the
following types:

o Bool ean

1-6

Chapter 1
Oracle Database Features for Migration Support

* Record declared in a package specification
* Collection declared in a package specification

The SQL TABLE operator is also enhanced, so that you can query on PL/SQL
collections of locally scoped types as an argument to TABLE operator. Here, the
collections can be of nested table types, VARRAY, or PL/SQL index table that are
indexed by PLS | NTEGER.

This feature extends the flexibility of the TABLE operator, and enables easy migration of
non-Oracle stored procedure code to PL/SQL.

Invoking a Subprogram with a Nested Table Parameter

Example 1-6 shows how to dynamically call a subprogram with a nested table formal
parameter. See Oracle Database PL/SQL Language Reference for more information
on this topic.

Example 1-6 Invoking a subprogram with a nested table formal parameter

CREATE OR REPLACE PACKAGE pkg AUTHI D CURRENT_USER AS
TYPE names |S TABLE OF VARCHAR2(10);

PROCEDURE print_names (x names);

END pkag;

/

CREATE OR REPLACE PACKAGE BODY pkg AS
PROCEDURE print_names (x names) IS
BEG N

FOR i IN x.FIRST .. x.LAST LOOP
DBMS_OUTPUT. PUT_LI NE(x(i));
END LOOP;
END;

END pkag;

/

DECLARE
fruits pkg. names;
dyn_stn VARCHAR2(3000);

BEG N
fruits := pkg.names('apple', 'banana', 'cherry');

dyn_stnt := "BEG N print_nanes(:x); END;';
EXECUTE | MVEDI ATE dyn_stmt USING fruits;
END;

Native SQL Support for Query Row Limits and Row Offsets

Starting with Oracle Database 12c, Oracle provides a row limiting clause that enables
native SQL support for query row limits and row offsets. If your application has queries
that limit the number of rows returned or offset the starting row of the results, this
feature significantly reduces SQL complexity for such queries.

Limiting Bulk Selection

Example 1-7 shows how to limit bulk selection with the FETCH FI RST clause. See Oracle
Database SQL Language Reference for more information on this topic.

ORACLE r

Chapter 1
Oracle Database Features for Migration Support

Example 1-7 How to limit bulk selection

DECLARE
TYPE Sal List IS TABLE OF enpl oyees. sal ar y%@ YPE;
sal s Sal List;
BEG N
SELECT sal ary BULK COLLECT I NTO sal s FROM enpl oyees
VHERE ROANUM <= 50;

SELECT sal ary BULK COLLECT I NTO sal s FROM enpl oyees
SANPLE (10);

SELECT sal ary BULK COLLECT I NTO sal s FROM enpl oyees
FETCH FI RST 50 ROAS ONLY;
END;
/

JDBC Driver Support for Application Migration

Many applications that you want to migrate to Oracle Database from other databases
have Java applications that use JDBC to connect to the database. To facilitate SQL
translation, Oracle Database 12c¢ introduces a new set of JDBC APIs that are specific
to SQL translation.

¢ See Also:

e "SQL Translation of JDBC Applications"
e API Reference for SQL Translation of JDBC Applications

e Complete documentation of the oracl e. j doc package in Oracle Database
JDBC Java API Reference

e http://ww. oracl e. conl t echnet wor k/ dat abase/ ent er pri se-edi tion/
j dbc-112010-090769. ht M for an updated list of JDBC drivers

ODBC Driver Support for Application Migration

ORACLE

ODBC driver supports the migration of third-party applications to Oracle Databases by
using the SQL Translation Framework. This enables non-Oracle database SQL
statements to run against Oracle Database. See "How to Use SQL Translation
Framework" before beginning to migrate third-party ODBC application to Oracle
Database.

To use this feature with an ODBC application, you must specify the service name,
which was created as part of SQL Translation Framework setup, as the Ser ver Nane=
entry in the . odbc. i ni file.

If you require support for translation of Oracle errors (ORA errors) to your the native
database, once your application starts running against Oracle Database, then you
must enable the SQLTr ansl at eErr or s=T entry in the . odbc. i ni file. See "SQL Translation
of ODBC Applications" for more information on this topic.

1-8

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

Chapter 1
Other Oracle Products that Enable Migration

Other Oracle Products that Enable Migration

Oracle recommends the use of several Oracle products as part of an overall migration
Strategy.

OEM Tuning and Performance Packs

For every type of migration, a few of the SQL statements used in the application must
change, and some indexes must be re-built. Oracle SQL Tuning and Performance
Packs provide guidance for the optimization step of the application migration.

Oracle GoldenGate

Oracle GoldenGate is a comprehensive software package for enabling the replication
of data in heterogeneous data environments. The product set enables high availability
solutions, real-time data integration, transactional change data capture, data
replication, transformations, and verification between operational and analytical
enterprise systems.

Oracle GoldenGate enables the exchange and manipulation of data at the transaction
level among multiple, heterogeneous platforms across the enterprise. Its modular
architecture provides the flexibility to extract and replicate selected data records,
transactional changes, and changes to DDL (data definition language) across a variety
of topologies.

When you migrate very large databases, the actual process of copying data from one
database to another is time-consuming. During this time, the enterprise must continue
delivering services using the old solution, which changes some of the data. These run-
time changes must be captured and propagated to Oracle Database. Oracle
GoldenGate captures these changes and enables side-by-side testing to ensure that
the new solution performs as planned.

Oracle Database Gateways

Oracle Database Gateways address the needs of disparate data access. In a
heterogeneously distributed environment, Gateways make it possible to integrate with
any number of non-Oracle systems from an Oracle application. They enable
integration with data stores such as IBM DB2, Microsoft SQL Server and Excel,
transaction managers like IBM CICS and message queuing systems like IBM
WebSphere MQ.

For more information about Oracle Database Gateways, see http://ww. or acl e. cont
t echnet wor k/ dat abase/ gat eways/ i ndex. ht m

Oracle SQL Developer

Oracle SQL Developer, as described in Oracle SQL Developer User's Guide, has a
large suite of features that enable migration, including the following features:

e Support for database migration, such as schema, data, and server-side objects,
from non-Oracle databases to Oracle Database (Migration Wizard)

ORACLE 1-9

http://www.oracle.com/technetwork/database/gateways/index.html
http://www.oracle.com/technetwork/database/gateways/index.html

Chapter 1
Migration Support for Other Database Vendors

» Support for application migration, including SQL statement pre-processing and
data type translation support (Application Migration Assistant)

Migration Support for Other Database Vendors

Oracle provides migration support for applications running on various databases.

Application Support in Third-Party Databases

Table 1-1 provides information about the applications supported in several third-party
databases. Note that while translation framework is available for DB2 LUW, a
translator for DB2 is not available.

Table 1-1 Supported Applications in Databases

Application SQL DB2 LUW DB2 Sybase Teradata Informix
Server AS400 ASE

Oracle SQL Developer Yes Yes No Yes Yes No

Oracle Migration Workbench No No Yes No No Yes

SQL Translation Framework Yes Yes Yes Yes Yes Yes

(SQL Translation Profile)

SQL Translation Framework yes Partial No Yes No No

(SQL Translator)

Third-Party Database Version Support

Table 1-2 lists the supported database versions for migration using Oracle SQL
Developer; this is not a comprehensive list. SQL translation may not work properly for

every database.

Table 1-2 Supported Database Versions for Migration Using Oracle SQL

Developer
__|
RDBMS Supported Versions
SQL Server 7.0, 2000, 2005,2008
Sybase Adaptive Server 12,15

(ASE)

Access 97, 2000, 2002 and 2003
MySQL 3,45

DB2 AS400 V4R3, VAR5

DB2 LUW 8,9

Teradata 12

Informix 7.3,9.1,9.2,9.3,94

ORACLE

1-10

SQL Translation Framework Overview

Various client-side applications, designed to work with non-Oracle Databases, cannot
be used with Oracle Database without significant alterations. This is because SQL
dialect varies among vendors of database technologies and different vendors use
different syntaxes to express SQL queries and statements.

Starting with Oracle Database 12c, there is a new mechanism called SQL Translation
Framework. It translates the SQL statements of a client program from a foreign (non-
Oracle) SQL dialect into the SQL dialect used by the Oracle Database SQL compiler.

In addition to translating non-Oracle SQL statements, the SQL Translation Framework
may be used to substitute an Oracle SQL statement with another Oracle statement to
address a semantic or performance issue. In this way, you can address an application
issue without patching the client application.

The SQL translation framework consists of two basic components: SQL Translator,
and SQL Translation Profile.

The SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party
vendors, which can be installed in Oracle Database. It translates the SQL statements
of a client program before they are processed by the Oracle Database SQL compiler.
If an error results from translated SQL statement execution, then Oracle Database
SQL compiler generates an Oracle error message.

The SQL Translator automatically translates non-Oracle SQL to Oracle SQL, thereby
enabling the existing client-side application code to run largely unchanged against an
Oracle Database. This reduces the cost of migration to Oracle Database storage
significantly. As a corollary, the translation feature may be used in other scenarios,
where it may be expedient to intervene between the original SQL statement submitted
by the client and its actual execution.

The SQL Translation Profile

The SQL Translation Profile is a database object that contains the set of captured non-
Oracle SQL statements, and their translations or translation errors. The SQL
Translation Profile is used to review, approve, and modify translations. A profile is
associated to a single translator. However, a translator can be used in one or more
SQL Translation Profiles. Typically, there is one SQL Translation Profile per
application, otherwise applications can share translated queries. You can export
profiles among various databases.

The following figure illustrates the run-time overview the SQL Translation Framework.

ORACLE 2-1

Chapter 2
Architecture of SQL Translation Framework

Figure 2-1 SQL Translation Framework at Runtime

SQL Translation
Framework

Oracle Database

Non-Oracle SQL | SQL Translator
Results <ol
Application - Translation
Profile

Architecture of SQL Translation Framework

The key component of SQL Translation Framework is the SQL Translation Profile. The
profile is a collection of non-Oracle statements that are processed through the
translator. The application determines which profile to use when connecting to the
Oracle Database. The translator handles the actual translation work.

In most cases, the non-Oracle SQL statements and errors are translated by a SQL
Translator registered in the profile. The translator may be supplied by Oracle or by a
third-party vendor. If the translator does not have a translation for a particular SQL
statement or error, then you may register your own custom translation. You may also
wish to register your own custom translation to override the default translator and to
customize your translation results.

How to Use SQL Translation Framework

ORACLE

Perform the following steps to use SQL Translation Framework:

1. Install a SQL Translator, either from Oracle or a third-party vendor, in Oracle
Database.

2. Create a SQL Translation Profile and register the SQL Translator with the profile.

3. Create a Database service and specify the SQL Translation Profile as a service
attribute to which the application can connect.

Note that setting the SQL Translation Profile at the service level ensures that
everything running through that listener service is translated automatically.

The translator can also be activated at connection level by using the ALTER SESSI ON
statement or the LOGON triggers.

4. Link the application with an Oracle driver to connect the application to Oracle
Database. You must also change the connection settings to connect to the
Database service with the SQL Translation Profile.

2-2

Chapter 2
When to Use SQL Translation Framework

5. Test all functionality of the application against Oracle Database. As the application
runs, the SQL Translation Profile translates SQL statements of the application
from the third-party SQL dialect to semantically-equivalent Oracle syntax and
register them in the profile.

If the translator does not have a translation for a particular SQL statement or error,
then you may register your own translation to fill its place.

6. Verify the custom translations and edit them, if required. Alternatively, register new
ones to ensure that the application performs as intended, until testing is complete.

Oracle recommends establishing a test environment and rigorously testing the
application, ideally through a regression test suite.

7. Set up the server-side application objects and data in the production Oracle
Database for deployment to a production environment.

8. Create a database service with the profile set as a service attribute and change
the connection settings of the application, so that it connects to the database
service in the production database. The application is expected to run as tested.

Oracle recommends that the application be monitored to guard against the possibility
of errors due to unavailability of translation of any SQL statement. You must first
disable the automatic translation of new and unseen SQL statements in the profile;
when any such statement is encountered, it raises an error that is logged. In cases of
alerts for mis-translation, you must make adjustments to the profile.

¢ See Also:

e The new DBM5_SQL_TRANSLATOR PL/SQL package and updated DBVS_SQL
and DBMS_SERVI CE PL/SQL packages in the Oracle Database PL/SQL
Packages and Types Reference.

e Updated GRANT and REVCKE statements and new system privileges in the
Oracle Database SQL Language Reference.

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Database Administrator's Guide

When to Use SQL Translation Framework

ORACLE

Use SQL Translation to migrate a client application that uses SQL statements with
vendor-proprietary SQL syntax.

Currently, SQL Translators are available only for Sybase and SQL Server, and there is
limited support for DB2.

SQL Translation Framework is designed for use with open API applications, such as
ODBC or JDBC, and applications that use SQL statements that may be translated into
semantically-equivalent Oracle syntax. These applications must relink to the Oracle
ODBC or JDBC driver and then execute through the translation service.

Following are the possible scenarios for the connection mechanism:

2-3

ORACLE

Chapter 2
When to Use SQL Translation Framework

If the application uses ODBC, JDBC, OLE DB or .NET driver, or data provider to
connect to the database, then the driver or data provider for Oracle must be
replaced.

If the application uses MySQL client library to connect to MySQL, then the library
with Mysql Client Library Driver for Oracle must be replaced.

No direct translator is available for DB2. For more information, refer to "Migration
Support for Other Database Vendors".

If the application uses IBM DRDA network protocol to connect to DB2, then the
database connection settings must be changed to connect to Oracle through
DRDA Application Server for Oracle.

If the application uses a vendor-proprietary C client API (the case of Sybase), then
the API calls must be replaced with appropriate Oracle OCI APIs.

2-4

SQL Translation Framework Configuration

The SQL Translation Framework may be installed and configured using Oracle SQL
Developer, or from the command line interface. In either case, the user must have the
necessary permissions to install SQL Translator.

Installing and Configuring SQL Translation Framework with
Oracle SQL Developer

You can use the DBA Navigator in Oracle SQL Developer 3.2 to install and manage
the translator and translation profile.

Overview of Oracle SQL Developer Migration Support

ORACLE

The SQL Translation framework is installed as part of Oracle Database installation.
However, it must be configured to recognize the non-Oracle SQL dialect of the
application and you must install at least one translator to fully utilize the framework.

Before using the SQL Translation feature, you must migrate your data, schema, stored
procedures, triggers, and views. Oracle implements database schema migration and
data migration through Oracle SQL Developer functionality. Oracle SQL Developer
simplifies the process of migrating a non-Oracle database to an Oracle Database
through the use of Migration Wizard. The Migration wizard provides convenient and
comprehensive guidance through the phases involved in migrating a database.

Oracle SQL Developer captures information from the source non-Oracle database and
displays it in a captured model, which is a representation of the structure of the source
database. This representation is stored in a migration repository, which is a collection
of schema objects that Oracle SQL Developer uses to store migration information.

The information in the repository is used to generate the converted model, which is a

representation of the structure of the destination database as it will be implemented in
the Oracle database. You can then use the information in the captured model and the
converted model to compare database objects, identify conflicts with Oracle reserved

words, and manage the migration progress. When you are ready to migrate, generate
the Oracle schema objects, and then migrate the data.

This section describes how to perform the subsequent tasks that enable automatic
run-time migration. These examples use SQL Translator with a JDBC application that
runs against a Sybase database; they can be easily adapted for other client/database
configurations. Note that Oracle SQL Developer is shipped with an installed Sybase
translator.

See Oracle SQL Developer User's Guide for more information.

3-1

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Setting Up Oracle SQL Developer 3.2 for Windows

Oracle SQL Developer 3.2 is shipped with Oracle Database 11g JDBC drivers and
there is no client for Windows in this release. If you are using a Windows system, then
you must enable Oracle SQL Developer 3.2 to use Oracle Database 12¢ JDBC driver,
so that all the features of the current release are enabled. Perform the following steps
to achieve this:

* Rename the sqgl devel oper\j dbc\ i b folder to sql devel oper\jdbc\lib_11g.
* Create a new empty folder as sql devel oper\j dbc\lib.

e Unzip Oracle Database 12¢ JDBC JAR files into the new sql devel oper\j dbc\lib
folder.

See Oracle Database JDBC Developer's Guide for more information about Oracle
Database 12c JDBC files.

Setting Up Oracle SQL Developer 3.2 Startup

Oracle SQL Developer automatically uses JDBC drivers found in any ORACLE_HOMVE
\client directory. To override this behavior and make Oracle SQL Developer use
JDBC drivers in the sql devel oper\j dbc\Iib directory, create a new sql devel oper. bat file
in the sql devel oper directory:

set ORACLE_HOVE=%CD%
start sqgl devel oper. exe

Starting Oracle SQL Developer

ORACLE

Run the sql devel oper. bat file to run Oracle SQL Developer.
To check the JDBC driver configuration:

1. Select About from Help menu.

2. Select Properties. It must display the configuration as shown in Figure 3-1:

3-2

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

Figure 3-1 Checking JDBC Configuration for Oracle SQL Developer

X About Oracle SQL Developer

Orade SQL Developer (3.2.09)

({About | Version | Properties |{ Extensions

Name

java.vm.spedfication.name
java.vm.specification.vendor
java.vm.spedfication. version
java.vm,.vendor

java.vm.version

idbc.driver home

jdbc.library

line.separator

log.file.name

oracle.home

oracle.ide.util. AddinPolicyUtils. OVERRIDE _FLAG
oracle.jdbc.mapDateToTimestamp
oradle.translated.locales
oracle.xdkjava.compatibility. version
kg

] /D:fsqldevfsqldev_3.2_prod_otn/sqldeveloper fjdbc/fibfojdbet. jar

XS
a

Value
Java Virtual Machine Spedification ™
Orade Corporation
1.7
Orade Corporation
23.0b21
/D:fsqldev/sgldev_3.2_prod_otn/sgldeveloper/

i
D:\sqldev\sqldev_3.2_prod_otn\sqldeveloper\sqldeveloper\extensic
D:'sqldev\sgldev_3.2_prod_otn\sgldeveloper

true

false

de,es, fr,it,ja,ko,pt_BR,zh_CN,zh_TW

9.0.4 L,

Creating a Connection to Oracle Database

Create a connection to the Database with the credentials as shown in Figure 3-2:

Figure 3-2 Creating an Oracle Database Connection

12c2 pdbl vm_system

L g

~| Role [default ~|

[] 05 Authentication [| Kerberos Authentication [_] Proxy Connection

@ New / Select Database Connection
Connection Name Connection Detais | Connection Name
12c2 pdb1_vm_db... dbo_orade12g@//\... | Username |svsm
12¢2_pdb1_vm_mi... migrep@/flocahost...
Password ~ |ssesss
13 5o 1m_sy..- vtzmofocaio... S
12c2_vm_system system@jfocakhos... | [¥] Saye Password
Oracle Access
Hostname [localhast
Poct B
Osp |
(%) Service name | orcl
Status :
[s]

=

You can use the following command to check the database you are connected to and

the JDBC driver being used:

show j dbc

Setting Up Migration Preferences

You must set up the migration preferences in the following way:

ORACLE"

3-3

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

1. Select Preferences from the Tools menu.

2. Select Generation Options from Migration option on the left panel, as shown in
Figure 3-3.

Figure 3-3 Setting Up Migration Preferences in Oracle SQL Developer

(3 Preferences ==
® e b B ;
& Emronment = Fie Creation Options
@& Change Management Paran ~
() One Single
- Code Editar : B
Compare and Merge () AFile par Ofject
- Databass
& Data Miner General Options
& Data Modeler [#] Generate Comments
@ Debugger
Extensions [Least Privilege Schema Migration
External Editor [] Generate Cata Move Liser
[FleTpes [] Generate Faled Objects
&3~ Mgranion [] Generate Stored Procedure for Mgrate Blobs Offine
"“ [¥] Generate Separate Emulation Liser
{Sybasa) To frdex Organized Tables |NOMNE |
Tracliion [Use all Orace Dajabase 12c features in Migration
Mouseover Popups
Shorteut Keys
UritTest Paramaters
& Versonng
Wieb Browser and Proxy |
XML Schemas =
] ee————
Help Ok I Cancel

Testing SQL Translation

Perform the following steps to determine whether Sybase SQL Translator is properly
installed or not:

1. Open Oracle SQL Developer.

2. From the Tools menu, select Migration, and then select Translation Scratch
Editor.

a Oracle SQL Developer

File Edit View MNavigate Run Versioning QLI Help Automation

=8 g Iﬁj fﬁ x E @ @ & Migration Migrate...

= | EL Unit Test 4 Repository Management 4
&) = I @re..._x * [J] Microsoft Access Exporter »
= 'ii Eﬂ 4 % P Data Miner (3
o, LE Create Database Capture Scripts...
5 +/-([£§ Editions a Database Copy... A ——————
8 l—i-] Java [E3 Database Diff... 2SI S o
E a Database Export...
E, Menitor SQL...
- Monitor Sessions...

SQL Worksheet Al-F10
External Tools...

3. In the Scratch Editor toolbar, select Sybase T_SQL To PL/ISQL option, which is
the Sybase translator.

ORACLE 3-4

2 Scratch Editor * |

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

& % |08 sybase T-5QL To PL/SQL

@~

Worksheet Query Builder

In the left panel of the Scratch Editor, enter
dialect:

select top 10 * from dual

Click the Translate icon.

the following query in Sybase SQL

The translated query text is displayed in the right panel of the editor.

225 scratch Editor *

B 3 & sybase T-5QL ToPL/SQL ~|Cg~|

FPEDOER B8 & 4ed

Warksheet Query Builder

Worksheet Query Builder

1| select top 10 * from duall

1| SELECT *
z FROM dual WHERE ROVHUM <= 10;
3
4

Creating a Translation Profile and Installing SQL Translator

Oracle SQL Developer is installed with Oracle Database 12c. It loads Java classes of
the Sybase Translator, approximately 15 MB, into Oracle Database. Due to the size
and the number of Java classes loaded, Oracle recommends you to install the

translator locally, and not over a WAN.

If the translator is installed under a user profile that has a pre-existing migration
repository, the translator picks up the context of the database, such as name changes.
Therefore, you must create a new user with the following specifications:

CONNECT, RESOURCE, and CREATE VI Ewprivileges

Access to storage in the SYSTEMand/or USER tablespace

Installing SQL Translator

To install SQL Translator:

ORACLE

1.
2.

Log into the database using ADM N privileges.

At the command line, enter the following commands.

GRANT CONNECT, RESOURCE, CREATE VIEWTO Transl User identified by Transl User;
ALTER USER Transl User QUOTA UNLIM TED ON SYSTEM

From the View menu, select DBA.

3-5

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

: X 3
, [iremmiie [[iteme] e sampimdemiic.itess 3 3 L1
200l waN] o sapleiemalia. mie 3 5 L1--1

4. Inthe DBA Navigator, right-click Connections and select Add Connection.

e [t View MNovigste Run Venigeing Took Help Aytomation
Fomg 90, Xam O-0- &
Ricomecoorn = Fasors x 133 = ()

5. In the Select Connection box, select the connection if you want to use an existing
connection. If you want to create a new connection, then add the information for
transl user discussed in step 2.

ORACLE" 3-6

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

6. Click Connect.

7. In the DBA navigator, right-click the connection created in the preceding steps,
and select Install SQL Translator.

» Urace 2L Leveloper

File Edit View Bun Versigning Took Help Automation
BEHa 9% XBmO-O- &
x| flaepers = |03 = [

The Install SQL Translator dialog box opens.

You must have special permissions to install the SQL Translator and create a SQL
Translation Profile. You will be prompted to provide the SYS password, so that
these privileges can be granted. Refer to "Granting Necessary Permissions for
Installing the SQL Translator" for more information about these privileges.

8. Create a SQL Translation Profile, following steps described in "Creating a
Translation Profile .

9. Verify that the user has sufficient privileges to run the translation profile.

You may have to login as SYS user to grant additional privileges.

GRAHT CREATE S0L TRANSLATION PROFILE TO Transilser

<

=]

10. Install SQL Translator.

ORACLE 3.7

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

(3 SQL Translator Install (=]
SQL Translator Install (Running)
@ | | @

[00:08] Loading file:C: \workspace\ transiator. file_name jar

| Run in Background | | Cancel Task |

11. To ensure that both the Profile and Translator are properly installed, verify whether
the appropriate package and Java class files are present or not in the Connections
pane.

[Connections = | [Re... x x [
0T B
H--[#) Editioning Views
H-{38 Indexes
H- [Packages
=) SYBASE_TSQL_TRANSLATOR
B SYBASE_TSQL_TRANSLATOR Body
ﬂ translate_sql
------ translate_error

Creating a Translation Profile

To create a translation profile:

1. From the SQL Translator drop-down box, select Sybase or SQL Translator.
2. Check Create New Profile.

3. Enter SYBASE_PRCFI LE in Profile Name field.

4

In Profile Schema, select the name of the user created in section "Creating a
Translation Profile and Installing SQL Translator".

5. Click Apply.

a Install SQL Translator @
SQL Translator Sybase SQL Translator - ‘
Create New Profile

S0L Profile

Profile Name sybaseProfile

Profile Schema 5 sto_Transitiser]
Help | Apply | | Cancel

Using the SQL Translator Profile

To test the SQL Translation Profile, use SQL Worksheet:

1. Right-click the SYBASE_PROFI LE node.

2. Select Open SQL Worksheet with Profile.

3. Enter a T-SQL statement that you want to translate.

ORACLE

3-8

Chapter 3
Installing and Configuring SQL Translation Framework with Oracle SQL Developer

B Debele SO D SRS O
i - el b

fle bt Yew Heigste fun Verionng Jeoh hew

Bedd @ NE0I0 -0 & =3
[Ty | -) e st m oo | Elvmsen prcrns + |EmARL RrE]

F-BTS buRBn B0 Eusa [@ st m)

ol

4. Click SYBASE_PROFI LE and select the SQL Translation tab to inspect the profile and
view the translated statement.

GoEg 9™ XED 0 -0 &~ E
Bgractors * G * G ot o+ [FESspRoma x| B marae ¢ 5]
+-BTH Detals SQL Translations Error Code Trarslators

2 xaa -] =
1’_‘2: et — - Achors...

1 SELECT TOF <ORAILITERAL TYPE=INT IDelh * FROM ALL CBJECTS SELEST = FRoM ALL SAJECTS FEICH FIRST CORAILITERAL TYPE=]

An alternative way to view the profile SQL in a better way when you double-click
on it, the fingerprint and template open in a Translation Scratch Editor as shown in
the following images:

ORACLE 3-9

Chapter 3

Installing and Configuring SQL Translation Framework from Command Line

Geag 9 Xan0-0- & E

[Bycorrectons * | (Farorts * 0] i sy e g+ (A pRoRmE =] s porze [S]
S-RTD Gtals 50 Transatiors rox Code Terslators]
[— ~l AR B e v dctars...
IR 12 pcbn v b, svciedemald | [TRANRATED: TET

& I eI bl mgm 3 UGLITERAL TYPE-IST 1ei> » PRCH ALL SSJBCTS | FROMAL oRFCT] Fd|

¥ £ 122 b sritem
Byraa

@

) oo

1) Pratecs - 1203 oot v e
2 Sepiebemn1:

[1202 0k v o _pemgiecema 1ix
£ Taustace

(5]

GoEg 90 XG0
Bycorrestors * [amperts *
+-UTH

Y, Commecmons

& I 12 bt v e smoisdematx o[
% Ig) Lo

[Be [t Wew Hovigete Fun Venigning Tooh Help

©-0 &-

) Bt mmyw * | e « (Bt it | Sz mores « [S]

fek-3-»0]

AWl B0 Besd @

| ishent ey e
I SELECT TOF <O0RAILITERAL TWPE-INT ID=i> * FRN ALL_OBJECTS

F

Installing and Configuring SQL Translation Framework from
Command Line

Installing Oracle Sybase Translator

Setting up a SQL Translation Profile

Login as a syst emuser.

> sql pl us systen <password>

There are several processes that you must complete to successfully install and
configure the SQL Translation Framework from command line interface.

To install Oracle Sybase Translator, Use Oracle SQL Developer as described in
"Installing and Configuring SQL Translation Framework with Oracle SQL Developer".

Grant create privileges to the standard user.

Perform the following steps to set up a SQL Translation Profile through a command-
line interface:

ORACLE"

3-10

Chapter 3
Installing and Configuring SQL Translation Framework from Command Line

This allows the standard user to create a SQL Translation Profile.
SQL> grant create sqgl translation profile to <user>;
3. Login as a standard user.
sql pl us <user >/ <passwor d>

4. Invoke the methods of DBMS_SQL_TRANSLATOR PL/SQL package to create and
configure the translation profile.

SQ> exec dbns_sql _translator.create_profile(' sybase_profile')

SQ> exec dbns_sql _translator.set_attribute(' sybase_profile',
dbns_sql _translator.attr_translator,
"migration_repo.sybase_tsqgl _translator')

5. Grant all privileges for the SQL Translation Profile to Oracle Sybase translation
schema.

SQ> grant all on sqgl translation profile sybase profile to migration_repo;

Setting Up a Database Service to Use the SQL Translation Profile

This section describes how to add a database service in a standard environment and
in an Oracle Real Application Clusters environment.

Setting Up a Database Service in a Standard Environment
To set up a database service in a standard environment:

1. Login as a DBA

2. Issue the following commands to use the DBVS_SERVI CE PL/SQL package to create
and invoke the database service:

SQL> declare
parans dbns_service. svc_paraneter_array;
begin
parans(' SQL_TRANSLATI ON_PROFI LE') := 'user.sybase profile';

dbns_servi ce. create_service(' sybase_service', 'network_nanme', parans);
dbns_service. start_service(' sybase_service');

end;

/

Setting Up a Database Service in Oracle Real Application Clusters

To set up a database service in Oracle Real Application Clusters:

1. Add the database service:

srvctl add service -db db_nanme -service sybase_service
-sql _translation_profile user.sybase profile

2. Start the database service:

srvctl start service -db db_nanme -service sybase_service

Testing Sybase SQL Translation Using the SQL Translation Profile

Perform the following steps to test the translation:

ORACLE 3-11

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

Login as a standard user:

sql pl us user/password

Specify the SQL Translation Profile at the SQL prompt:

SQL> alter session set sql _translation_profile = sybase_profile;

Force the database to treat SQL*Plus as a foreign SQL application:

SQL> alter session set events = '10601 trace name context forever, |evel 32';
Run a SQL query that uses Sybase SQL dialect. For example:

select top 3 * fromenp;

The query returns the following results:

EVPNO ENAME JOB MR HI REDATE SAL cow DEPTNO
7369 SMTH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20- FEB- 81 1600 300 30
7521 WARD SALESMAN 7698 22- FEB-81 1250 500 30

Granting Necessary Permissions for Installing the SQL

Translator

ORACLE

This section discusses the privileges that you must have to install the SQL Translator.
The SYBASE_PROFI LE created here has the following two users:

M GREP, where the translator is installed

TARGET_USER, where the profile is installed

To grant privileges necessary for installing the SQL Translator:

1.

Connect as SYS to grant the required privileges:
connect sys/oracle as sysdba
Allow M GREP to create a view and have access to unlimited quota:

GRANT connect, resource, create viewto M GREP,
ALTER USER M GREP QUOTA UNLI M TED ON USERS;

Allow TARGET_USER to create a view and have access to unlimited quota:

GRANT connect, resource, create viewto TARGET_USER
ALTER USER M GREP QUOTA UNLI M TED ON TARGET_USER;

Allow M GREP to load a SQL Translator:

BEG N

DBMS_JAVA. GRANT_PERM SSI ON(UPPER(' M GREP'), ' SYS:j ava. | ang. Runti mePermi ssion',
'getCl assLoader', '');
END;

/

Allow TARGET_USER to create profiles:

GRANT CREATE SQL TRANSLATI ON PROFI LE TO TARGET_USER,

Allow TARGET_USER to explicitly alter the session to use a profile:
GRANT ALTER SESSI ON TO TARCET_USER;

3-12

ORACLE

Chapter 3
Granting Necessary Permissions for Installing the SQL Translator

This privilege is not granted in SQL Developer by default.
Allow the translator to make reference to the profile:

CONNECT TARGET_USER/ TARGET_USER;
GRANT ALL ON SQL TRANSLATI ON PRCFI LE SYBASE_PROFILE TO M CGREP;

Allow the profile to make reference to the translator:

CONNECT M GREP/ M GREP;
GRANT EXECUTE ON SYBASE_TSQL_TRANSLATOR TO TARGET USER

3-13

SQL Translation of JDBC and ODBC
Applications

Oracle provides SQL Translation mechanisms for use with JDBC and ODBC
applications.

SQL Translation of JDBC Applications

Consider the concepts necessary to understanding how to use SQL Translator with a
JDBC application.

SQL Translation Profile

A SQL Translation Profile is a database schema object that directs how SQL
statements in non-Oracle dialects are translated into Oracle SQL dialects. It also
directs how Oracle error codes and SQLSTATES are translated into the SQL dialect of
other vendors.

When you want to migrate a client application written for a non-Oracle SQL database
to Oracle, you can create a SQL Translation Profile and configure it to translate the
SQL statements and errors for the application. At runtime, the application sets the
profile for the connection in Oracle Database to translate its SQL statements and
errors. This profile is set using the oracl e. j dbc. sql Transl ati onProfil e property.

When necessary, you can register custom translations of SQL statements and errors
with the SQL Translation Profile on the Server. When a SQL statement or error is
translated, then first, the custom translation is looked up and then, the translator is
invoked only if no match is found.

See "Architecture of SQL Translation Framework™ and "Setting up a SQL Translation
Profile".

Error Message Translation

You may prefer receiving error messages in the form of messages that used to be
thrown by the native database. You must then use the error message translation file,
which translates error messages when there is no valid connection to the database.
Once a connection to the database is established, the JDBC driver bypasses this file
completely and all errors are handled by the translator on the server. Similar to query
translation, you can also register custom error translations on the server.

The error message translation file is not written by a specific component. You must
provide the file for translation and specify the name of the file. You can also provide
the file path as the value of the corresponding connection property.

The error message translation file is in XML format; it contains a series of error
translations. Each error translation contains the following information:

ORACLE 4-1

Chapter 4
SQL Translation of JDBC Applications

Translation Error Type
ORA error number positive integer
Oracle error message String
Translated error code positive integer
Translated SQL State positive integer

Converting JDBC Standard Parameter Markers

Before submitting the SQL statements for translation., the JDBC driver internally
converts the JDBC standard parameter markers (?) into Oracle style parameter
markers of the format : b<n>.

Here, the naming format for the parameter markers is : b<n>, where n is an incremental
number to specify the position of the (?) marker in the JDBC Pr epar edSt at enment .

Consider the UPDATE enpl oyees SET salary = salary * ? WHERE enployee_id = ?
Prepar edSt at enent statement, where, the first parameter marker (?) will become : b1
and the second parameter marker (?) will become : b2.

After conversion, the driver sends the following query to the server for translation:

UPDATE enpl oyees SET salary = salary * :bl WHERE enpl oyee id = : b2

Note that any query that contains "?" as a parameter marker fails during the
connection translation phase if you change the value of the processEscapes property to
FALSE. For a successful translation, you must retain the default value of the
processEscapes property.

Converting parameter markers helps the driver to automatically reorder any parameter
changes that occurred at translation. At the time of conversion, any custom translation
that must be registered on the server should be registered from the Oracle style
parameter marker version; the server receives the statements. Note that, the custom
translation must have the same number of parameter markers in the Oracle style as in
the original query.

For more information about supported JDBC APIs, API Reference for SQL Translation
of JDBC Applications .

Executing the Translated Oracle Dialect Query

ORACLE

After the JDBC standard parameter markers are converted into Oracle style parameter
markers, the driver makes a round-trip to the server for translating the query into
Oracle dialect. Once the translated query is received by the server, any reordering in
the parameters in handled transparently by the driver, and the query is executed as a
normal query.

If a query cannot be translated due to the unavailability of translation, then the server
can either raise an error or return a NULL, based on the value of the
DBMS_SQL_TRANSLATOR. ATTR_RAI SE_TRANSLATI ON_ERRCR profile attribute. If the server
returns a NULL, then the original untranslated query is assumed to be the query
translated by the driver and executed.

The driver keeps the translation in the local caches to save the future round-trip.

4-2

Chapter 4
SQL Translation of JDBC Applications

Note that the JDBC driver can support the translation errors (when the query cannot
be translated due to the unavailability of translation) set by either value of the
DBMS_SQL_TRANSLATOR. ATTR_RAI SE_ TRANSLATI ON_ERRCR attribute. However, the value must
be set on the server before the connection is established. Because a change in the
value of this attribute in the middle of a session may result in inconsistent behavior,
Oracle recommends that you do not flip the value of this attribute during a session.
See Oracle Database PL/SQL Packages and Types Reference for more information
about the TRANSLATE_SQL procedure.

Error Translation

If any SQLExcept i on is thrown during the query execution, the driver transparently
makes a trip to the server and translates the exception from Oracle codes to the
original vendor-specific code. So, the resulting SQLExcept i on has both vendor-specific
code and SQLSTATE along with the Oracle-specific SQLExcepti on as the cause.

Similar to query translation, custom error translations can also be registered on the
server and given priority over standard translation. The

DBMVB_SQL_TRANSLATOR. ATTR_RAI SE_TRANSLATI ON_ERRCR attribute has the same effect on
custom error translation as on query translation.

Note that the errors are translated only after a connection to the server is established.
So, for errors that occur before the connection to the server is established, Error
Message Translation is used.

Using JDBC Driver for SQL Translation

ORACLE

Example 4-1 demonstrates how to use a JDBC driver for SQL translation. You must
first grant the CREATE SQL TRANSLATI ON PROFI LE privilege to HR as follows:

conn systen nmanager ;
grant create sgl translation profile to HR,
exit

Now, connect to the database as HR and execute the following SQL statements:

drop table sanple_tab;

create table sanple_tab (cl nunber, c2 varchar2(100));

insert into sanple_tab values (1, 'A);

insert into sanple_tab values (1, 'A);

insert into sanple_tab values (1, 'A);

comit;

exec dbnms_sqgl _translator.drop_profile(' FOO);

exec dbms_sql _translator.create_profile('FOO);

exec dbms_sql _translator.register_sqgl_translation('FOO,'select row of select cl,
c2 fromsanple_tab

where cl=:bl and c2=:b2', ' select cl, c2 fromsanple_tab where cl=:bl and c2=:b2");

Now, you can run the following program that translates SQL statements that use JDBC
standard parameter markers.

Example 4-1 Translating Non-Oracle SQL Statements to Oracle SQL Dialect
Using JDBC Driver

public class SQTransPst nt

{
static String url="jdbc:oracle:thin: @ocal host:5521:jvx1";

static String user="HR', pwd="hr";

4-3

Chapter 4
SQL Translation of ODBC Applications

static String PROFILE = "FQO';
static String primtiveSgl = "select row of select cl, c2 fromsanple_tab where
cl1=? and c2=?";

/1 Note that this query contains JDBC style paraneter markers
/1 But the preceding customtranslation registered in SQL is using Oacle style
markers

public static void main(String[] args) throws Exception
{

O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(url);

Properties props = new Properties();
props. put ("user", user);
props. put ("password", pwd);

/1 The Fol | owi ng connection property makes the connection translating

props. put (Oracl eConnect i on. CONNECTI ON_PROPERTY_SQL_TRANSLATI ON_PROFI LE, PRCFI LE);
ods. set Connecti onProperties(props);

Connection conn = ods. get Connection();

Systemout. println("connection for SQL translation: "+conn);

tryf
I/ Any statenments created using a translating connection are
// automatically translating. If you want to get a non-translating
Il statement out of a translating connection please have a | ook at
Il the oracle.jdbc. Oracl eTransl ati ngConnection Interface.
Il Refer to "OracleTranslatingConnection Interface”
Il for more information
PreparedStatement trStmt = conn. prepareStatement (primtiveSqgl);
trStnt.setint(1, 1);
trStnt.setString(2, "A");
Systemout. println("executeQuery for: "+primtiveSgl);
ResultSet trRs = trStnt.executeQuery();
while (trRs.next())
Systemout. printIn("CL:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();

trStnt.close();

}catch (Exception e) {
e.printStackTrace();

}

conn. cl ose();

}
}

SQL Translation of ODBC Applications

Consider the concepts necessary to understanding how to use SQL Translator with an
ODBC application.

SQL Translation profile

For ODBC applications, the SQL Translation Profile is set at the service level. So, you
do not require to set it in the . odbc. i ni file.

ORACLE 4-4

Chapter 4
SQL Translation of ODBC Applications

Error Message Translation

Translating

ORACLE

You may prefer receiving error messages in the form of messages that used to be
thrown by the native database. In such cases, when the application is set to run on
Oracle Database, you must set the SQLTr ansl at eError s=T entry in the . odbc. i ni file to
translate the ORA errors to their native form.

Error Messages

Example 4-2 demonstrates how to use the ODBC driver in SQL translation. The SQL
statement used in the example uses Sybase TOP N syntax.

Note that you must set the Ser ver Nane= entry in the . odbc. i ni file with the Database
service name created in "How to Use SQL Translation Framework" section. Also, set
the 'SQLTransl at eErros=T entry in the . odbc. i ni file, if you require translation of Oracle
errors to native database errors.

Example 4-2 Translating Non-Oracle SQL to Oracle SQL Dialect Using ODBC
Driver

int main()

HENV m_henv; [* environnent handle */

HDBC m_hdbc; [* connection handle */

HSTMI' m_hst nt ; [* statenent handle */

int retCode; [* return code */

char dbdsn[100]; /* Initialize with the DSN nane of connection */

const char szUD[10];/*Initialize with appropriate Usernane of DB */
const char szPW)Y{ 10]; /* Initialize with appropriate Password */

char queryl[100]="select top 3 col1 from babel _tab3 order by col 1";
SQLLEN paranind = SQL_NTS;
SQLU NTEGER no = 0;

/I Al'l ocate HENV, HDBC, HSTMI handl es
ret Code = SQLAIl ocHandl e (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &m henv);
if (retCode !'= SQL_SUCCESS && ret Code != SQ._SUCCESS W TH_I NFO)

{
printf ("SQA locHandle failed \n");
printSQLError (1, mhenv);
}
ret Code = SQLSet EnvAttr (m henv, SQ._ATTR ODBC VERSION, (void *) SQ._OvV_ODBC3,
SQL_I S_INTEGER) ;
if (retCode !'= SQL_SUCCESS && retCode != SQL_SUCCESS W TH_I NFO)
{
printf ("SQ.SetEnvAttr failed\n");
printSQLError (1, mhenv);
}

ret Code = SQLAI | ocHandl e (SQ._HANDLE DBC, m henv, &m hdbc);
if (retCode != SQL_SUCCESS && retCode != SQ._SUCCESS W TH_ | NFO)

{
printf ("SQLA locHandl e failed\n");
print SQLError (2, mhdbc);

}

ret Code = SQLConnect (m_hdbc, (SQLCHAR *) dbdsn, SQL_NTS,

4-5

ORACLE

Chapter 4
SQL Translation of ODBC Applications

(SQLCHAR *) szU' D, SQL_NTS,
(SQLCHAR *) szPWD, SQL_NTS);
if (retCode != SQ._SUCCESS && retCode != SQ._SUCCESS W TH_| NFO)
{
printf ("SQ.Connect failed to connect\n");
print SQLError (2, mhdbc);
}

ret Code = SQLAI | ocHandl e (SQL_HANDLE STMI, m hdbc, &m hstnt);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS W TH_I NFO)
{
printf ("SQA locHandl e with SQL_HANDLE_STMI failed\n");
print SQLError (3, mhstnt);
}

/* Prepare and Execute the Sybase Top-N syntax SQ statenents */

retCode = SQLPrepare (mhstnt, (SQLCHAR *) queryl, SQ_NTS);
if (retCode !'= SQL_SUCCESS && ret Code != SQL_SUCCESS W TH_I NFO)
{
printf ("SQLPrepare failed\n");
print SQLError (3, mhstnt);
}

ret Code=SQLExecut e(m_hstnt);
if (retCode !'= SQL_SUCCESS && ret Code != SQL_SUCCESS W TH_I NFO)
{
printf ("SQLExecute-failed\n");
print SQLError (3, mhstnt);
}

while (retCode = SQLFetch(m hstnt)!=SQ._NO DATA)

ret Code=SQLGet Dat a(m hstnt, 1, SQ._C ULONG &no, 0, ¶mind);
if (retCode !'= SQL_SUCCESS && retCode != SQL_SUCCESS W TH_I NFO)
{
printf ("SQLFetch failed\n");
print SQLError (3, mhstnt);
}
printf("Value is %l\n", no);
}

ret Code = SQLC oseCursor (mhstnt);
if (retCode != SQ._SUCCESS && retCode != SQL_SUCCESS W TH_| NFO)
printf ("SQLC oseCursor failed\in");

printf ("cleanup()\n");
ret Code = SQLFreeHandl e (SQL_HANDLE STMT, m hstnt);
if (retCode != SQ._SUCCESS && retCode != SQ._SUCCESS W TH_| NFO)
{
printf ("SQLFreeHandl e failed\n");
print SQLError (3, mhstnt);
}

ret Code = SQLDi sconnect (m hdbc);
if (retCode != SQ._SUCCESS && retCode != SQ._SUCCESS W TH_| NFO)
{
printf ("SQLDisconnect failed\n");
print SQLError (2, mhdbc);
}

4-6

ORACLE

Chapter 4
SQL Translation of ODBC Applications

ret Code = SQLFreeHandl e (SQ._HANDLE DBC, m hdbc);
if (retCode != SQ._SUCCESS && retCode != SQ._SUCCESS W TH_| NFO)
{
printf ("SQLFreeHandle failed\n");
print SQLError (2, mhdbc);
}

ret Code = SQLFreeHandl e (SQL_HANDLE_ENV, m henv);
if (retCode != SQL_SUCCESS && retCode != SQL_SUCCESS W TH | NFO)
{

printf ("SQLFreeHandl e failed\n");

printSQError (1, mhenv);
}
}

4-7

Example: Application Migration Using SQL
Translation Framework

Consider an example of migrating a Sybase JDBC Application, and the information
contained in the migration reports: how it may be used to tune the migration for optimal
results.

Migrating a Sybase JDBC Application

Figure 5-1 illustrates how an application that is coded to query a Sybase database
may use SQL Translation Framework to query information stored in Oracle Database
instead.

Figure 5-1 Sybase Application Running Against Oracle Database

Oracle

/ AppTables |

Custom SQL Auto and
Translations Translator Store

t t [
Oracle
Sybase Sybase SQL /
ODBC/JDBC +—) . J
App Driver Translatlton Profile —.:,.w‘a»

Custom Error-Code
Mappings

Application Overview

ORACLE

The Sybase database used in this example has three tables and five procedures and
includes the following features:

* | DENTITY columns

* | NSERT statements into tables with | DENTI TY columns

* VARCHAR columns with size greater than 4000 characters
e Multiple implicit result sets returned from procedures

A Java application connects to this Sybase database using JDBC.

5-1

Chapter 5
Migrating a Sybase JDBC Application

Setting Up Migration

The migration process has four phases - Capture, Convert, Generate, and Data Move.
It is best practice to complete each phase of the migration process, review any issues
on the Summary page, and then continue to the next phase. The Migration Wizard
enables you to complete each step in turn and then return back to the wizard to
complete further steps. To do this, after completing each phase, select the Proceed to
Summary Page check box and click Next.

ORACLE

Perform the following steps to set up migration:

1.
2.

N o g »

Download the JDBC driver JTDS 1.2.

Add JTDS as a third-party JDBC driver as follows:

a. Select Preferences from the Tools menu.

b. Select Third Party JDBC Driver from the Database option on the right panel,
as shown in Figure 5-2.

Figure 5-2 Setting JTDS JDBC Driver

.(3. Preferences @

] Database: Third Party JDBC Drivers
+ Environment Third-party JOBC Driver Path
%~ Change Management Paran
& Code Editor
Compare and Merge
=t Database
Acvanced
Autotrace,Explan Plan
Orag And Drop
Licensng
NS
Objectiiewer |-
PL/SQL Compier
Reparts
S0 Editor Code Templi
% - SCL Formatter
o Party 06 orve
User Defined Extension
@ Utiites
Workshest
- Data Miner
s Data Modeler
% Debugger

Add Enitry... Edit Entry... Remave

Help Ok Cancel

Click Add Entry.

The Select Path Entry box is displayed.

Select the jtds-1.2.jar file and click Select.

Click OK.

Connect to the Oracle Database where you want to migrate the information.

Verify that the connection is using Oracle Database 12¢ JDBC drivers, with the
following command:

show j dbc

Create a new user ni grep in Oracle database, for the migration repository, with the
following command:

GRANT CONNECT, RESOURCE, CREATE VI EWto migrep | NDENTI FI ED BY mi grep;
ALTER USER migrep QUOTA UNLIMTED to users;

5-2

Chapter 5

Migrating a Sybase JDBC Application

9. Connect to the database as the mi grep user and associate the migration repository
with the user, as shown in Figure 5-3.

Figure 5-3 Associating a User with Migration Repository

'ﬂ.msmnmu

| comnections = [lneports
F-0TH

@ connectors

& g} 122 odbl wm miareo:
&g 1z

@)2

Disconmect

File Edit View Havigate Run WVersigning Jook Help
Boag 9o X0 Q-9 &

) 8 1 o v systor ® | G122 pdb) e mgrep ®
FEBYA R0 BRed

3 122 b1 vm migren *

IWM Queery Bulder

- Clonsd €

Fename Connection...
R peiete Dulete
fidd to Folder v

T

Gemerate DB Doc..

Femate Debug

Gagher Scheema Statistags.
Recompile Schema _

EML DB Profo<ol server configuestion

Maruge Database
Open S0L Wedkshest
Schema Browser

& Prgperties...

10. Create a connection to the Sybase database, in this example, si npl edennl2c, as
shown in Figure 5-4.

Figure 5-4 Creating a Connection to the Sybase Database

G} New / Select Database Connection =
ConnectionName Connection Details |ComecﬁmNm sybase
12c2_pdb1_vm_mi... migrep@/flocalhost... | Username sa
12c2_pdb1_vm_sy... system@/focalhos... P
12c2_wm_system system@jlocalhos... e
Save Password
orade | Access | SQLServer = Sybase
[Use Default Password
[[] Use Windows Authentication
Hostname Inralhinst
o
| Retrieve database | |bugtestcase2 v
Imaster "
model
§ pubs2 §
ielp save Chubs3 [comect |[cancel
simpledemo12¢c

Capturing Migration
Perform the following steps to capture migration:

1. Right-click on the si npl edemp12¢ Sybase database and select the Migrate to Oracle
option, as shown in Figure 5-5.

ORACLE" 5-3

Chapter 5

Migrating a Sybase JDBC Application

2.

Figure 5-5 Starting Capture Phase of Migration Process

(3 o501 Deier =g
fle fdit View Havigate Bum Venigning ook Help
Besgd e Xam Q-0 & ’:‘"
x| Gaeports x [B i ot m_system % | B 222 pbt v mgrep * | Shavbase %) =

This opens the Migration Wizard, as shown in Figure 5-6.
Click Next.

Figure 5-6 Migration Wizard Introduction Screen

W

| This wizard enables the migration of third party database on to Oracle.
Diatab igration can be carried out either in an Online o Off line Mode.
You need a ive connaction to third party database to do an Online Migration.

Migration involves the following steps.

1. Priming an Orade connection with the Migration Repository,
2. Creating a Mgraton Project that serves as a container for the migration entities

:
|

Repostory

3. Capturing the source database meta information into the Migration Repository.
4, Converting the captured meta information to Orade specfic meta information.

5. Generating Oradle Database creation script from the converted meta information.
6. Generated Orade D8 Creation saipt.

7. Move the Data from the Scurce Database to the newly created Orade Database.

Following connection privilege prerequisites.

1. Repository Connection - Connect, Resaunce and Create View
2. Tanget Connection for DB Creation -

i

T

0
0
e
e
T
I

[Skip this page on mext laundh.

Choose the Migration Repository, as shown in Figure 5-7.
Click Next.

ORACLE"

5-4

Chapter 5
Migrating a Sybase JDBC Application

3.

4,

Figure 5-7 Choosing the Migration Repository

| 80 ooty gae.
| Semectors (0 122 po1 3 migren

Emm-w:n E

- E

Seiecta for the Migraton Repositary, Chedk Trunchle o reset B repesiiery B3

L

] Trurscate

Eﬁéjéﬁqé?{g

[] Broceed to Summany Fage

[t |

§

[spek | mext>][gnsh || concel |

Enter a project name and specify an output directory to place files, as shown in

Figure 5-8.
Click Next.

Figure 5-8 Specifying Project Name and Output Directory

Project is & contaner for the migration entibes. Al saripts will be saved to the output drect...
;}\ Npme: ‘SempleDema 12]
,rpmgec: Descripton:
4 p
4 —
Comvert
T
1 —
] Smehea
W Ay
Qutput Directory: |C:\SmpleDemo 120 | [Lcnocge..]
[Eroceed to Summary Page
[t | [stock | tiext>][Ereh | [Concdl]

Select the database connection and the mode, as shown in Figure 5-9.

Click Next.

ORACLE"

5-5

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-9 Selecting the Database Connection and Mode

(3 Migeation Wizerd - Stepd of @
Source Database
¥ Qrine () Offine
| Choose the Third Party Database from which you are migrating.
. Source Database] P
| Comnectin: == -
W Cambre)
Avalable Source Patforms:
Server
Sybase
Adid the source platform with chdk: for update or the Ik below.
ek Diatioem
tel <ok | fext> Cancel

5. Select the database, in this case, si npl edeno12c, by moving it from Available
Databases to Selected Databases, as shown in Figure 5-10.

Click Proceed to Summary Page to review the Capture phase before moving to
the next phase of the migration process.

Click Next.

Figure 5-10 Selecting the Database to be Migrated

(3 Mgration Wizsrd - Step $ of &
Capture
. Select the databiaes for defiribon capbre.
p (iodctor Avaiable Databases Selected Databases
it Baepositors bugtestcase? srghekeim 120
' o - bugtestcases
A B dema 120
5, Source Database pubs2
+ Capture e
trap2000
. Comvert
s, Target Database W
v UopaData
@ Summary ®#
| Proceed to Summary Page
teb <pak | Hext> Freh Cancel

The capture phase saves a snapshot of the selected database at this point of time.
Only the object definitions are captured, not the actual table data. This captured
shapshot can be viewed in the Migration Projects navigator.

Note that the snapshot is not a connection to the database, and it only enables you to
browse through the information saved in the Migration Repository.

Setting Migration Preferences

Before starting the conversion phase, you must set the migration preferences. Perform
the following steps to achieve this:

1. From the Tools menu, select Preferences, then Migration, and then Translators.
Select the Generate Compound Triggers option.

ORACLE 5-6

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-11 Setting Migration Preferences

[Preferences]
&8)| Migration: Translators
= ~| | pefautSource DateFormat [ddjmmpyyy |
(Change Management Paran Variable ! Prafic ’v_—
Code Editor 2
Compare and Merge In Parameter Prefix v

Database Query Assignment Translation | Assignment ¥

Data Minar
Data Modeler Display AST D
Debugger Generate Compound Triggers [v]
Extensions
External Editor
+— File Types
- Migration
Data Move Options
Generation Options
Identifier Options
Translators
- Mouseover Popups
Shor tout Keys
+— UnitTest Parameters
- Versionk
Web Browser and Proxy
XML Schemas bt
] H——— >

C o J | T

IR

=-B-8n

2. From the Tools menu, select Preferences, then Migration, and then Generation
Options. Select the Use all Oracle Database 12c features in Migration option.

Figure 5-12 Setting Migration Preferences

a Preferences @
{ Y) | Migration: Generation Options
[Environment e File Creation Options
[#-- Change Management Paran - 5
& Code Editor = ore i
Compare and Merge (L) A File per Object
[#- Database _ A
#- Data Miner General Options
[Data Modeler [v] Generate Comments
[# Debugger
i~ Extensions [] Least Priviege Schema Migration
External Editor [] Generate Data Move User
r File T\"_Dﬁ [] Generate Faied Objects
=i Migration ! [¥] Generate Stored Procedure for Migrate Blabs Offine
Data Generate Separate Emulation User
_G’-"!' Organized Tables |NONE
Identifier Options _tsm*”u Ipdex e [- =
Tearsiators [] Use all Oracle Database 12c features in Migration
- Mouseover Popups
Shortout Keys
- UnitTest Parameters
[# Versioning
Web Browser and Proxy
XML Schemas r
¢ >
& [oo

Converting Migration

Perform the following steps to start convert phase of the migration process:

1. Right-click the Capture Model node and choose Convert, as shown in
Figure 5-13.

ORACLE 5.7

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-13 Starting Convert Phase of Migration Process

fle Edt View HNovigate Rum Versigaing Took Help

[Projects - 1262 pelit_vm_mgren
2 B Srgiebena1d
= 2120900 0402

BoEd 90 XE0N O O & =
[Bycomnectons = [Flaeports *) [ostmers = [§ oplems =)
0T e o
= § nbase ™ FEATE FROCEDURE dbo. topItens
& 3 bgresicasez a5
& £3 tugtestcases HESTH
-3 demonz SELECT TOF 10 items.nare, 1tema, deacription, Ltess.price, itess.isage FRON itess
& £) mester SELECT TOF 50 items.name, items,description, Ltems.price, itens.image INTO #tesp FROM 1t
& B3 moddl UPDATE TOF 5 #temp SET maswe = “666°
-] mubsl SELECT #tesp.mame, ftenp.description, #teup.price, #temp.image FROM Steup
w3 pbsx
=) smpledemoic * Adaptive ferver has expanded all **' elements in the following statement */ SELBCT TOF
= oo SELECT iteas.mane, itens. descriprion, items.price, items,image
2 (£ Tatles FROM itens
- # [customers UMTON ALL]
& [items SELECT items.manw, itens.description, items.price, items,image
w [sales FROM items) &5 X

The Migration Wizard is opened at the Convert phase, as shown in Figure 5-14.

Figure 5-14 Converting the Migrated Data

In) Speafﬂhemmnoptms
T [Data Type Mapping | {OBjecE NG|
)T\Rgs_osihnry
).I.\Pfoﬁ t [] Show only data types used in source model

Source Database Source Data Type Cracle Data Type Type
)T\ TETIME DATE System

Capture. BLOB System
;T:Cnnvert NUMBER[12] System
[MONEY NUMBER[19, 4] System
»T'\Imm VARCHAR VARCHARZ System

Move Data
@ Summary

[_addnewrue][Edirue |[Removerue |
AT IR Advanced Optons

(e)] (o) (omat]

2. Select Proceed to Summary Page and click Next.

3. Click Finish.

During the convert phase, object names are resolved to valid Oracle names. Data
types are converted to Oracle Database types and T-SQL defined objects like stored
procedures, views, and so on are converted to Oracle PL/SQL. A converted model is

created that can be browsed in the Migration Projects navigator. The converted

procedures can be reviewed in the converted model.

ORACLE"

5-8

Chapter 5
Migrating a Sybase JDBC Application

Note that the converted model is not an actual Oracle database, but a prototype of an
Oracle Database. The information is still stored only in the Migration Repository tables.

Generating a Migration

ORACLE

The migration generation phase creates the objects in the target Oracle Database. A
script is created and it is run against a selected Oracle connection in the following two
ways:

* Inoffline mode, the script is opened in a SQL Worksheet and you have to select
the connection and run it manually.

* Inonline mode, you must provide the target connection in the wizard and the
wizard runs the script automatically.

The following steps demonstrate how to perform the generate phase of the migration
process in of f I i ne mode:

1. Right-click on Converted Database Objects in the Migration Projects panel and
select Generate Target.

2. Selectoffline as the database mode in the Migration Wizard, as shown in
Figure 5-15.

Click Next.

Figure 5-15 Selecting the Database Mode

[Migration Wizard - Step 7 of 9 [r5em
Target Database
Mode
Introduction
T Orline (&) Offine
r Repository
,r‘ Projed The offine migration saript will be generated in the project output directory.
Sparce Datahace Generated Soipt Directory:C: \SimpleDema 1 2 \generated
Capture
/T\ e [ClpropT. t Obj
Jw._Target Database Bz LAt =2
I
'y MoveDota
@ Summary
[#] Proceed to Summary Page Advanced Cptons
Help | <@ack || Mext> || FEmsh || Cancel |

3. Choose a connection in the target Oracle Database, as shown in Figure 5-16.

5-9

Chapter 5
Migrating a Sybase JDBC Application

Figure 5-16 Creating Oracle Database Connection for Target User
dbo_simpledemol2c

T Oracie 50U . Hagl [E=n e
fde fdit Yiew Hovigate Run Verigaing Jooh |Help
GoEg 90 XA0H 0-0- &~ =
Btomectorn = [tmorn * (]| EhSmplelemel 201209 10_10-40-d8agl =
+-0TH 5 Worlahee? ristory
G- tese rBER 32 f2usd 13 02 st i ssten
[bogeiniase e
e [] \!.l LEFINE (F¥;
& () demcizc : 1 |
& [) mester FROMFT Creating Mser EMulatisn ...
& [,nuﬁ-l CFEATE FS¥R Emulation IPENTIFIED BY Ewulation DEFRMALT TARLESFME SYSTEM TEXPORBEY TAMESPRE TENF
3) otez BT CREATE SESSION, RESOUSCE, CREATE VIEW, CREATE MATERIALIZED VIEW, CRERTE SYSOHM,CREATE FUst
= 0 pts3 SR SO GFF:
& O T IROMPT Crearisg Waee dbo_sisplesensdls ...
=& de EATE USER s _stmpledensiie IDENTIFIED BY dbe_siapledewsllc DEFMULT TASLESHRCE STSTER TERMURIGC
5 (4 Tables AT CHEATE SESSIIM, MESOURCE, CHEATE VIEW, CMERTE MATERIALLZFD VIE, CHERTE SOMGN,ALTER SESSIC
= [customess comacet Ewslation/Emulation:
& (Ol news
= Dl sskes S create or ceplace
5 [vens FICE UTILS A5
) suLsERER
} | st
@ Mcromn Progerts 1 BN | camanasm_rror
-
TBENTITY MR L0) 2
By propecs - 2o 1_wm mcren TRANCUGNT RBER (L0} i =03
W @ seledumor VAR _NURBER ISIIER L0) £ =04

FUMCTION BRGINTTOMEN | F_EXPR IBSER) FETURN VRO 1
FUSCTION BEGIMTTUSES(F_EXPR BW) FETURN VRRCHRRS §

FUCTION BET SO0(F_PANL BX B JAN BN RETWO BN

Hesssges -Log 1

e g e Lo e WLt _vm_meren U onves iectodeisFoiiertinde e T | | Wimdows: GRAF

The database objects are not created under the connection selected in this step.
However, this connection must have enough privileges to create other users and
objects.

Creating a Target Oracle User

Create a connection to the newly created user (described in step 3), as shown in
Figure 5-17. At this point, the Sybase database objects are migrated to Oracle
Database, but the data is not migrated till now.

Figure 5-17 Targeting an Oracle User

[Mew / Select Datsbase Connection ==l
[comectonMame Connecton Detsis | Connection Name [12c2_pdbl_vm_dbes_smpiedemo Lic

|12c2_petot_vm ... migrep@ifocabost... | isermame {#bo_smpledema 12c

——— ovevem—

|12c2_vm_system system/flocathos.... _D_ o L 4

sybase s8 80 ipap.us...., |] Sawe Password

Oracle | Access | SQuServer | Sybase
Connecton Type [Basc =| moie [defout =]

Hastngme focaihost

Port =3
Osp |
() Service name [pdb1 examle.com
a5 Eerberos [Provey Connextion
States :
_ beb e [Q] Tt | ot][cawel]

Moving the Data

Perform the following steps to move the data to Oracle Database:

1. Right-click the Converted Database Objects node and select Move Data, as
shown in Figure 5-18.

Click Next.

ORACLE" 5-10

Chapter 5
Generating Migration Reports

Figure 5-18 Moving the Data from Sybase Database to Oracle Database

]
Oracte SO Developer)

e [t Yiew lavigite Bun Venigeing Tooh Help
FoEg Do XEh 0 -0 &- =3
Bcomectorn 2| [Fiecor 1 o) {iroeree = (R muonwn_ 008 o

*-ATS Saston Sumwmary | Arves | Catre [emms | Comverson Siate | Corvenson smuee [Target Stakus | Target lesues |Duts Qualey [Model Compare ' [F
o i - .|

B e § cenes § comenr|j e |f oatwace
[
5-10_10-40-20 SybarelsPlogin il (amcivie skt omfen

2. Select online as the data move mode in the Move Data screen.

You can select of f | i ne as the data move mode if the migration process involves
large amount of data.

3. Click Next. The Summary screen appears.
4. Click Finish.

You can browse the database objects to verify the data is moved to Oracle
database.

¢ See Also:

Oracle SQL Developer User's Guide

Generating Migration Reports

Oracle SQL Developer provides a number of reports on the migration process to help
identify tasks and issues to resolve. Click or double-click on the migrated project in the
Migration Projects navigator. A report will appear on the right panel with a number of
tabs and children reports, as shown in Figure 5-19.

ORACLE 5-11

Chapter 5
Generating Migration Reports

Figure 5-19 Generating Migration Reports

(B Oracte 5L Devetoper

e [t Yiew Havigate Ben Venksing Josh Hel
GoEg 9t Xan O-0- &-

[AyConnociom +| (G« [] Bmcebemox =
-BTD ks v

| Y pr—
i roxchuee [§ moceusee
b ew Migraties

2 SimpleDemolls 2012-0F-10_10-40-1% SybarelSFlogin woxiss arsieie Siele Aurpiele

| Coturn bomam |

§ cenezj conent|§ cownae [oaraeoe
wefam

§ ree

B Prageem - 223 pes_m_morep
ot [Sempheiome 13

Targat Stak | Tanpet s | Cnts ity [t Compare | £]

The Analysis report provides information about the size of the migrated database like
the number of objects, line sizes, and so on, as shown in Figure 5-20.

Figure 5-20 Migration Analysis Report

TR ——— S
e [dit View Hovigste Fon Vendgaing ook Help
GoBg 90 Xam o0 & =

By prajecns - 1302 bt reipen
it [Sempleome 12

| 132 pesd_vn_moen| MIGREP | MD_PRO

Ricormectorn » (lames [[smpbetrematze = |
e-ATD Stsie | Sumrsary Arulyes Coptrn ismurs |Corvermon Stats | Corverson tsmurs [Target Statue (Targnt smurs | Data Graley [Model Comparel 11 1]
s - [R ..
R R ﬁ PROZCTHAME ||| MODELMAME | oatapases § umes || Temes|§ vees |§ mosatRs | eeocmouess |f oo
C) n;«m TOTAL 1 1 E] & & 5
* CUSTOMERS » . 1
i Singlelenolls 1 1] 5
& O surs |semptememenze 2m12-29-20_30-10-28 3 1 3 .
= Gmme
& e < ¥
M4 Ednoneg vews = |
LG s nhq—n_uhmlwhmlmlmmlml Tampo... [4] »
L Peages e mebeids ~
1) Procedres . =
@ Furcnons “f
L2 s
) Queues Tables -

The Target Status report provides information about the status of the migrated objects
in the Target database. First, select a target connection with enough privileges to view
the status of other schema objects and then select refresh. Objects that are present in
the converted model, but are missing from the target Oracle Database, are listed as

missing. These objects can be either valid or invalid.

ORACLE"

5-12

Chapter 5
Generating Migration Reports

Figure 5-21 Target Status Report

taar oty

By brogects - 162 o 1_vm_rren
a0) Sevpleema 12

3 orete st 2 pobl =
e [0 Wew Navigate Eun Vesionig Dok felp
FeEg 9® L BhO-0- & ey
Rycornecsons = (Cheors © (1) [i eplebemotas = | =
-ATH 15 denatyss | Captre Iomses | o Staks | Con Tapes S []
A Connaczone ~ I Target L322 pl e it i) = 2t
50 1362 b1 m o miedemorx: | [§ mee g ceormee § sooweer § vun § rowm § emec f sooum

{8 Taies Piterecd) [FROCEDTRE HO_STCRED_FROGRAMS B [] 8 {mall)

| 1203 peb1_vm_igrep | HIGRER | MD_PROJECTS Edtrg

The Data Quality tab provides information about the number of rows in the target
Oracle Database compared with the source database. Perform the following steps to

compare the databases:

1. Select a converted model, a source connection, and a target connection.

2. Click Analyse.
3. Click Refresh.

This performs a count (*) function on each table in the source and the target
database. So, it is advisable not to perform this operation on production data.

ORACLE"

5-13

MySQL Client Library Driver for Oracle

Consider the specifics of MySQL Client Library Driver for Oracle Database, and its use
in migrating applications from MySQL to Oracle.

¢ See Also:

API Reference for Oracle MySQL Client Library Driver for more information
about MySQL programmatic support

Introduction to MySQL Client Library Driver for Oracle

ORACLE

MySQL Client Library Driver for Oracle Database 12c, | i boranysql , is a drop-in
replacement for MySQL Commercial Connector/C 6.0 client library. The | i bor anysg|
driver implements a similar API, enabling C-based applications and tools developed
for MySQL to connect to Oracle Database. The driver may be used to migrate
applications from MySQL to Oracle Database with minimal changes to the application
code.

The i boranysgl driver uses Oracle Call Interface (OCI) to connect to Oracle
Database.

Figure 6-1 MySQL Application Code Using liboramysql Driver to Connect to
Oracle

Application Application
using using
MySQLs C API MySQLs C API

liboramysql
libmysqlclient
OCl
‘MySQL DB (Oracle DB

- D
) B

The C code snippet in Example 6-1 demonstrates how to connect to MySQL and how
to insert a row into a table. After updating the connection credentials, this code can run
unchanged against Oracle Database when the executable is linked using the

l'i boranysgl library, instead of the I'i bnysql client library.

6-1

Chapter 6
Installation and First Use of MySQL Client Library Driver for Oracle

Although the database schema and data must be migrated to Oracle separately, and
although the Ii boranysgl library does not translate SQL statements, considerable
amount of effort is conserved when migrating to Oracle Database because no changes
have to be made to the application code.

Custom C applications can use the | i boranysql library to easily migrate to Oracle
Database.

Additionally, you can migrate applications using programming languages that abstract
the use of the li bnysgl client library and provide MySQL extensions or adapters.
These languages include PHP, Perl, Python, and Ruby. Although native Oracle
adapters already exist for many programming languages implemented in C, migrating
an application to a native Oracle adapter often requires extensive application code
changes.

Connecting to MySQL

Example 6-1 Connecting to MySQL and Inserting a New Row

¢ = nysql _init(NULL);

mysqgl _real _connect (¢, "nyhost", "myun", "nypw', "nydb", 0, NULL, 0);
mysqgl _query(c, "insert into nytable values (1,2)");

mysql _cl ose(c);

Installation and First Use of MySQL Client Library Driver for

Oracle

The MySQL Client Library Driver for Oracle is provided as a file in the | i bor anysgl . so
shared library for Linux and as the oranysql . dl | dynamic link library (DLL) for
Windows. The driver is also packaged as part of the Oracle Instant Client Basi ¢ and
Basi ¢ Lite packages for download from OTN. See htt p: //www. or acl e. conl t echnet wor k/
t opi cs/ i nuxsoft-082809. ht i and http://wwmw. oracl e. con t echnet wor k/ t opi cs/

wi nsoft-085727. htni .

The driver must be installed in the same directory as the Oracle Client Shared Library,
that is, |i bcl nt sh. so for Linux and oci . dl I for Windows. Typically, you must set the
operating system environment variable (LD _LI BRARY_PATH on Linux or PATH on Windows)
to include this installation directory.

For ORACLE_HOME installations, the driver library is installed in the $ORACLE_HOVE/ | i b
directory for Linux and the %0ORACLE_HOVE% bi n directory for Windows. For Instant Client
ZIP files, the library is in the i nstantcl i ent _12_1 directory. For Instant Client RPM
installations, the library is in the /usr/1ib/oracle/12. 1/ client/lib or/usr/lib/oracl e/
12. 1/ client64/1ib directory on 32-bit and 64-bit Linux platforms, respectively.

Overview of Migration with MySQL Client Library Driver for

Oracle

ORACLE

Migrating a C-based MySQL application to Oracle Database involves the following
steps:

1. Confirm that the application runs against MySQL Database.

This ensures that the migration process starts at a known baseline of functionality.

6-2

http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/linuxsoft-082809.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html
http://www.oracle.com/technetwork/topics/winsoft-085727.html

Chapter 6
Using MySQL Client Library Driver for Oracle

2. Replace the |ibnysql client library with the |i boranysgl library.

The application must be relinked to use the Ii boranysqgl library instead of the
l'i bnysql client library.

3. Migrate the application schema to Oracle Database.

The schema must be migrated to use Oracle DDL and types. Oracle SQL
Developer assists in this process.

See Oracle SQL Developer User's Guide for further details.
4. Review all SQL statements used by the application.

If necessary, change the SQL statements of the application to use Oracle syntax,
or implement a SQL Translator to automatically perform the conversion at
application run time. Rewrite any logic that depends on MySQL features that are
not supported by Oracle Database.

See SQL Translation of JDBC and ODBC Applications .

5. Update the connection string of the application to connect to Oracle
Database.

Use Oracle Easy Connect syntax or a t nsnanes. or a connect identifier in the host
parameter of the connection call.

6. Test the application with Oracle Database.

Verify the application against Oracle Database.

Using MySQL Client Library Driver for Oracle

The i boranysgl APl is compatible with MySQL Commercial Connector/C 6.0. MySQL
Driver for Oracle Database, liboramysql, translates MySQL API calls to Oracle Call
Interface (OCI) calls, and between Oracle and MySQL data types.

Existing MySQL-based applications may be relinked to use the | i boranysql driver,
making Oracle Database the new data source. Note that the | i boranysql driver
supports connections only to Oracle Database. Simultaneous connections to both
MySQL Database and Oracle Database in the same application are not possible.

See API Reference for Oracle MySQL Client Library Driver for details on data type
mapping and API compatibility. Additional information may also be found in Oracle
SQL Developer User's Guide.

The i boranysgl driver does not translate SQL statements. You must rewrite the
statements that are not valid for Oracle Database. You can do this directly in the
application, or by using a SQL Translator. The application schema and data must also
be migrated separately. Oracle SQL Developer automates this process.

Whenever cross-version OCI connectivity exists for older versions of Oracle Database,
you can use the |i boranysgl driver to connect to these older versions.

Relinking the Application with the liboramysql Driver

ORACLE

The fundamental step of using the Ii boranysgl library is to relink the application to use
the new library. The i boranysgl library is compatible with the Ii bnysgl cl i ent. so library
from MySQL Commercial Connector/C 6.0.2 package, so you must build and verify
version-sensitive applications with MySQL Commercial Connector/C 6.0.2 before
migrating to Oracle Database.

6-3

ORACLE

Chapter 6
Using MySQL Client Library Driver for Oracle

The installation scripts of public software compiled from source code typically expect
MySQL components to follow a predefined system directory structure. You can use the
set upor anysql . sh script in the deno directory of Instant Client SDK to achieve this.

Depending on the application, you can use one or more of the following ways to relink
the application with the Ii boranysgl library:

Build directly with the | i boranysql library.

You can update your build scripts to use the | i boranysql library and build custom
applications directly with this Oracle library.

Use the | i boranysql library to emulate a MySQL Commercial Connector/C
directory

The set uporanysgl . sh library in the Instant Client SDK shows how a directory
structure emulating a MySQL Commercial Connector/C installation can be
created. You may build applications using this emulated directory.

Use the LD_PRELOAD environment variable.

Preconfigured programs may be able to use the LD_PRELOAD environment variable
to link with the i boranysgl library. However, changing the value of this
environment variable may not work if the program uses the dl open() method.

Duplicate the | i boranysql library.

Perform the following steps to rename the | i boranysgl library to the MySQL client
library name used by the application:

1. Use the | dd command to identify the MySQL library with which the application
is linked:

$ 1'dd yourprogram

Iibnysqlclient.so.16 => /fusr/lib/libnysglclient.so.16 (0x00007f9004e7f 000)

2. Create the following symbolic link as the Oracle software owner user:

$ In -s $ORACLE_HOVE/ li b/ i boranysql 12. so $ORACLE_HOVE/ |i b/ 1i bnysgl client. so.
16

3. Add $ORACLE_HOME/ | i b to the LD LI BRARY_PATH environment variable for any
application that formerly used the i bnysgl cli ent library:

$ export LD LI BRARY PATH=$ORACLE_HOME/ | i b
Replace the system MySQL client library.

Rename the target system MySQL client library and link the new library in its
place. Because this option affects every application on the system that uses
MySQL, and should be done only if absolutely necessary.

mv fusr/lib64/1ibnmysqglclient.so.16 /usr/lib64/1ibnysqlclient.so.16.backup
In -s $ORACLE_HOVE/ li b/ liboranysql 12.so /usr/1ib64/1ibnysglclient.so.16

If MySQL applications are not rebuilt from the source code, then you must first link the
applications against the |i bnysqgl cl i ent. so library from MySQL Commercial
Connector/C 6.0.2 package. This ensures binary compatibility with the data structures
in the | i boranysgl library.

6-4

Chapter 6
Using MySQL Client Library Driver for Oracle

Connecting to Oracle Database

To connect to Oracle Database with the Ii boranysql library, use Oracle Easy Connect
syntax or a t nsnanes. or a connect identifier in the host parameter of the connection call:

mysqgl _real _connect (c, "local host/pdborcl™, "nmyun", "nypw', NULL, 0, NULL, 0);

Supported Platforms

MySQL Client Library Driver for Oracle is available on platforms that support the
Oracle Instant Client.

See the list of supported platforms on the Oracle Support Certification site: https://
support.oracle.com

Error Handling

All errors generated by OCI client code or the Oracle server are passed to the
application when either the nysgl _errno() method or the nysgl _error () method is
invoked after an error.

Globalization

The date format expected by the application may be set using NLS_DATE_FORMAT
environment variable of Oracle Database, or changed with the equivalent ALTER

SESSI ON command after connecting. The NLS_DATE_FORMAT environment variable is only
used if NLS_LANGis also set in the environment.

Expected Differences

Some APIls in the I'i boranysgl library necessarily return different results because of the
underlying differences between MySQL Database and Oracle Database. Existing
applications that use these APIs may require logic changes. For details of these
differences, see API Reference for Oracle MySQL Client Library Driver .

ORACLE 6-5

https://support.oracle.com
https://support.oracle.com

API Reference for Oracle MySQL Client
Library Driver

Consider the APIs that support migration from MySQL, the mapping of data types,
support for specific MySQL APIs within Oracle, and error handling for migrated
applications..

For documentation of MySQL C APIs, refer to MySQL 5.5 documentation.

Mapping Data Types

Oracle database types are described in the Internal Data Types section of Oracle Call
Interface Programmer's Guide.

MySQL data types are fully described in MySQL documentation.

MySQL C APIs use WSQ._TYPE_symbols to process data to and from MySQL
database. These type symbols are mapped to MySQL data types in the server.

For instance, MYSQL_TYPE_VAR STRI NG is mapped to VARCHAR in the server.

Mapping Oracle Data Types to MySQL Data Types

ORACLE

This table shows the value of the type field in MySQL_FI ELD parameter returned from
nysql _fetch_fiel d_* calls. The Oracle database type is mapped to a MySQL C API
data type.

For example: A VARCHAR? column is represented by MYSQL_TYPE_VAR STRI NG.

It is recommended that users use this table when migrating MySQL applications to
Oracle. The MySQL Client Library driver for Oracle will perform Data type conversions
between MySQL and Oracle.

Table 7-1 Mapping Oracle Data Types to MySQL Data Types

Oracle Data Type Maps to MySQL Data Type
CHAR MYSQL_TYPE VAR STRI NG
NCHAR MYSQL_TYPE VAR STRI NG
NVARCHAR2 MYSQL_TYPE_VAR STRI NG
VARCHAR2 MYSQL_TYPE_VAR STRI NG
NUMBER MYSQL_TYPE_NEWDECH MAL
LONG MYSQL_TYPE BLCB

cLoB MYSQL_TYPE_BLOB

NCLOB MYSQL_TYPE_BLOB

DATE MYSQL_TYPE_DATETI ME

7-1

Chapter 7
Mapping Data Types

Table 7-1 (Cont.) Mapping Oracle Data Types to MySQL Data Types

Oracle Data Type

Maps to MySQL Data Type

RAW

BLOB

LONG RAW

ROW D

UROW D

Bl NARY FLOAT
Bl NARY DOUBLE

User-defined type (object type, VARRAY, Nested
Table)

REF

BFI LE

TI MESTAMP

TI MESTAMP WTH TI ME ZONE

TI MESTAMP W TH LOCAL TI ME ZONE
I NTERVAL YEAR TO MONTH

I NTERVAL DAY TO SECOND

MYSQL_TYPE VAR STRI NG
MYSQL_TYPE BLCB
MYSQL_TYPE_BLOB
MYSQL_TYPE_VAR STRI NG
MYSQL_TYPE VAR STRI NG
MYSQL_TYPE_FLOAT
MYSQL_TYPE_DOUBLE

Not supported

Not supported
MYSQL_TYPE_BLOB
MYSQL_TYPE_DATETI ME
MYSQL_TYPE_DATETI ME
MYSQL_TYPE_DATETI ME
MYSQL_TYPE_VAR STRI NG
MYSQL_TYPE_VAR STRI NG

Data Type Conversions for MySQL Program Variable Data Types

The calls to mysqgl_stmt_bind_param() and mysqgl_stmt_bind_result() may be used to
convert between C program variables and database column values. Similarly, OCI
provides rich conversion support from server data types to many client data types.

Input conversions from a C program value to a database column value are handled by
invoking mysql_stmt_bind_param(). Output to a C program value is handled through a

call to mysqgl_stmt_bind_result().

Table 7-2 summarizes viable conversions between MySQL program variable data
types and Oracle column data types. The possible values in the table are:

e |:input conversion is supported

e O output conversion is supported

* |/ G both input and output conversion is supported

e -:conversion is not supported.

Be sure to read the corresponding notes for each data type before finalizing

conversion choices.

Table 7-2 Converting MySQL Program Variable Data Types to Oracle Column Data Types

MySQL Program CHAR VARCHAR2 NUMBER LONG ROWID UROWID DATE RAW LONG
Variable Data Types RAW

MYSQL_TYPE_TINY 110 - - - - -

/0 110

ORACLE 7-2

Chapter 7
Mapping Data Types

Table 7-2 (Cont.) Converting MySQL Program Variable Data Types to Oracle Column Data

Types

L]
NUMBER LONG ROWID UROWID DATE RAW LONG

MySQL Program

CHAR VARCHAR2

Variable Data Types RAW
MYSQL_TYPE_SHORT 1/0 /0 /0 I - - - - -
MYSQL_TYPE_LONG 1/0 /0 /0 I - - - - -
MYSQL_TYPE_LONGL |/0O 110 /0 I - - - - -
ONG

MYSQL_TYPE_FLOAT 1/0O /0 /0 I - - - - -
MYSQL_TYPE_DOUBLE 1/0 110 /0 I - - - - -
MYSQL_TYPE_DATE 1/0 /0 - I - - /0 - -
MYSQL_TYPE_TIME /0 110 - | - - /0 - -
MYSQL_TYPE_DATETI 1/0 /0 - I - - /0 - -
ME

MYSQL_TYPE_TIMEST 1/0 /0 - - - /0 - -
AMP

MYSQL_TYPE_STRING 1/0 110 /0 /0 /0 /0 /0 I/0 1/0
MYSQL_TYPE_VAR_ST O 0 o o o 0 0] 0] 0]
RING

MYSQL_TYPE_BLOB 1/0 110 - /0 - - - I/0 1/0
MYSQL_TYPE_TINY_BL O o - o] - - - o o
OB

MYSQL_TYPE_MEDIUM O o] - o] - - - o 0
_BLOB

MYSQL_TYPE_LONG_B O o -] - - - 0] 0]
LOB

MYSQL_TYPE_NEWDE O o o - - - - - -
CIMAL

MYSQL_TYPE_

ORACLE

CHAR and VARCHAR2: Conversion is valid for input or output. On input, column value

is stored in hexadecimal format.

LONG Conversion is valid for input or output. On input, column value is stored in

hexadecimal format.

RAW Conversion is valid for input or output.

LONG RAW Conversion is valid for input or output.

Conversion is not supported for NUMBER, ROWN D, UROW D, and DATE.

DATE

CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in

Oracle DATE format.

7-3

Chapter 7
Mapping Data Types

DATE: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for NUMBER, RON D, UROW D, RAW and LONG RAW

MYSQL_TYPE_DATETIME

CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

DATE: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for NUMBER, RON D, UROW D, RAW and LONG RAW

MYSQL_TYPE_DOUBLE

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value
must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for ROW D, UROW D, DATE, RAW and LONG RAW

MYSQL_TYPE_FLOAT

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value
must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for ROA D, URON D, DATE, RAW and LONG RAW

MYSQL_TYPE_LONG

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value
must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for ROA D, URON D, DATE, RAW and LONG RAW

MYSQL_TYPE_LONG_BLOB

CHAR, VARCHAR2, LONG, RAW and LONG RAW Conversion is valid for output.
Conversion is not supported for NUMBER, ROW D, UROW D, and DATE.

MYSQL_TYPE_LONGLONG

ORACLE

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value
must represent a valid number.

7-4

Chapter 7
Mapping Data Types

NUMBER: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for ROA D, URON D, DATE, RAW and LONG RAW

MYSQL_TYPE_MEDIUM_BLOB

CHAR, VARCHAR2, LONG, RAW and LONG RAW Conversion is valid for output.
Conversion is not supported for NUMBER, RO D, UROW D, and DATE.

MYSQL_TYPE_NEWDECIMAL

CHAR and VARCHAR2: Conversion is valid for output. Column value must represent a
valid number.

NUMBER: Conversion is valid for output to C program value.

Conversion is not supported for LONG, ROW D, URON D, DATE, RAW and LONG RAW

MYSQL_TYPE_SHORT

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value
must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for ROA D, URON D, DATE, RAW and LONG RAW

MYSQL_TYPE_STRING

ORACLE

CHAR and VARCHAR2: Conversion is valid for input or output.

NUMBER: Conversion is valid for input or output. For input, the host string must
represent a valid number.

LONG Conversion valid for input or output.

ROW D: Conversion is valid for input or output. For input, the host string must be in
Oracle RON D format. For output, column value is returned in Oracle RON D format.

UROW D: Conversion is valid for input or output. For input, the host string must be in
Oracle UROW D format. For output, column value is returned in Oracle UROW D format.

DATE: Conversion is valid for input or output. For input, host string must be in
Oracle DATE character format. For output, column value is returned in Oracle DATE
format.

RAW Conversion is valid for input or output. For input, host string must be in
hexadecimal format.

LONG RAW Conversion is valid for input or output. For input, host string must be in
hexadecimal format.

7-5

Chapter 7
Mapping Data Types

MYSQL_TYPE_TIME

CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

DATE: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for NUVBER, RON D, UROW D, RAW and LONG RAW

MYSQL_TYPE_TIMESTAMP

CHAR and VARCHAR2: Conversion is valid for input or output. For input, host string
must be in Oracle DATE character format. For output, column value is returned in
Oracle DATE format.

DATE: Conversion is valid for input or output.
LONG Conversion valid for input to database column value.

Conversion not supported for NUMBER, RON D, UROW D, RAW and LONG RAW

MYSQL_TYPE_TINY

CHAR and VARCHAR2: Conversion is valid for input or output. For output, column value
must represent a valid number.

NUMBER: Conversion is valid for input or output.
LONG: Conversion valid for input to database column value.

Conversion not supported for RON D, URON D, DATE, RAW and LONG RAW

MYSQL_TYPE_TINY_ BLOB

CHAR, VARCHAR?, LONG, RAW and LONG RAW Conversion is valid for output.
Conversion is not supported for NUMBER, ROW D, UROW D, and DATE.

MYSQL_TYPE_VAR_STRING

ORACLE

CHAR and VARCHAR2: Conversion is valid for output to C program value.
NUMBER: Conversion is valid for output to C program value.
LONG: Conversion is valid for output to C program value.

ROW D: Conversion is valid for output to C program value. On output, column value
is returned in Oracle ROW D format.

UROWN D: Conversion is valid for output to C program value. On output, column value
is returned in Oracle UROW D format.

DATE: Conversion is valid for output to C program value. On output, column value is
returned in Oracle DATE format.

RAW Conversion is valid for output to C program value.

LONG RAW Conversion is valid for output to C program value.

7-6

Chapter 7
Error Handling

Data Type Conversions for MySQL External Data Types (LOB Data
Type Descriptors)

The external data types Table 7-3 may be converted to the specified Oracle internal
data types.

Table 7-3 Data Type Conversions for LOB Data Type Descriptors
|

MySQL External Data Types ORACLE INTERNAL ORACLE INTERNAL
CLOBINCLOB BLOB

MYSQL_TYPE BI T 110 110

MYSQL_TYPE_STRI NG 110 110
MYSQL_TYPE_VAR STRI NG 0 0

MYSQL_TYPE BLOB /0 110

MYSQL_TYPE_TI NY_BLOB o) 0

MYSQL_TYPE_MEDI UM BLOB o) 0

MYSQL_TYPE_LONG BLOB o) 0

Data Type Conversions for Datetime and Interval Data Types

When working with a DATETI ME or | NTERVAL columns, it is possible to use one of the
character data types to define a host variable used in a FETCH or | NSERT operation The
driver automatically converts between the character data type and DATETI ME oOr | NTERVAL
data type.

Table 7-4 lists external data types that may be converted to the specified internal
Oracle data types.

Table 7-4 Data Conversions for Datetime and Internal Data Type
|

Externalllnternal VARCHAR DATE TS TSTZ TSLTZ INTERVAL INTERVAL

Types , CHAR YEARTO DAY TO
MONTH SECOND

MYSQL_TYPE_STRI NG 1/0 /O /0 1/O /0 1/0 1/0

MYSQL_TYPE_VAR STRIN O 0 o o 0 0 0

G

MYSQL_TYPE_DATE 1/0 /O /0 1/O 1/O0 - -

MYSQL_TYPE_TI ME 1/0 /o /0 1/O /0 - -

MYSQL_TYPE DATETIME 1/0 /O 1/0 1/O /0 - -

MYSQL_TYPE_TI MESTAMP 1/0 /O /0 1/O /0 - -

Error Handling

All errors generated by OCI or Oracle server pass to the application when methods
mysql_errno() or mysqgl_error() are invoked after an error. The application receives an

ORACLE .

Chapter 7
Available Oracle Support for MySQL APIs

Oracle-specific error. Oracle error messages are more specific then MySQL error
codes, and are therefore more pertinent to resolving the error condition.

The errors that are generated by the driver itself are in an error range reserved for the
MySQL driver in the OCI error space.

The mysqgl_sqlstate() call attempts to map the error to the appropriate SQLSTATE
whenever possible. In most cases, it returns HY000, which corresponds to the general
error state.

Possible SQLSTATE values are:
e 00000 success
e HY000 all other errors

However, this also means that client applications that expect more specific SQLSTATE
errors must be partially re-written.

Available Oracle Support for MySQL APIs

ORACLE

Oracle MySQL driver implements the APIs listed in MySQL C APl documentation.
Please note the following:

* Some MySQL functions have changed behavior, typically due to not having an
equivalent behavior in Oracle; the description notes the changed behavior.

* Some MySQL functions are not supported; the description marks them
accordingly. The driver returns an error for these functions, and prompts the
application to work around the unsupported functionality.

Supported MySQL APIs are grouped functionally here, and here are links to more
extensive information. However, we do not provide full documentation of function
behavior and parameters, leaving it to the original MySQL C APl documentation.

Client Library Initialization and Termination

The following interfaces support client library initialization and termination:
mysql_library_end(), mysql_library_init(), mysql_server_end(), and mysql_server_init().

Connection Management

The following interfaces support connection management: my_init(),
mysql_change_user(), mysql_close(), mysqgl_connect(),
mysql_get_character_set_info(), mysql_get_ssl_cipher(), mysql_init(),
mysql_options(), mysql_ping(), mysql_real_connect(), mysql_select_db(),
mysql_set_character_set(), andmysql_ssl_set().

Error Reporting

The following interfaces support error reporting: mysql_errno(), mysql_error(),
andmysql_sqlstate()

Statement Construction and Execution

The following interfaces support statement construction and execution:
mysql_affected_rows(), mysql_escape_string(), mysql_hex_string(), mysql_kill(),
mysql_query(), mysql_real_escape_string(), mysql_real_query(), and mysql_reload().

7-8

my _init()

ORACLE

Chapter 7
Available Oracle Support for MySQL APIs

Result Set Processing

The following interfaces support result set processing: mysql_data_seek(),
mysql_eof(), mysql_fetch_field(), mysql_fetch_field_direct(), mysql_fetch_fields(),
mysql_fetch_lengths(), mysql_fetch_row(), mysql_field_count(), mysql_field_seek(),
mysql_field_tell(), mysql_free_result(), mysql_insert_id(), mysql_list_dbs(),
mysql_list_fields(), mysql_list_processes(), mysql_list_tables(), mysqgl_more_results(),
mysql_next_result(), mysql_num_fields(), mysql_num_rows(), mysql_row_seek(),
mysql_row_tell(), mysql_store_result(), and mysql_use_result().

Prepared Statements

The following interfaces support statement preparation: mysqgl_stmt_affected_rows(),
mysql_stmt_attr_get(), mysql_stmt_attr_set(), mysqgl_stmt_bind_param(),
mysql_stmt_bind_result(), mysql_stmt_close(), mysql_stmt_data_seek(),
mysql_stmt_errno(), mysql_stmt_error(), mysql_stmt_execute(), mysql_stmt_fetch(),
mysql_stmt_fetch_column(), mysql_stmt_field_count(), mysql_stmt_free_result(),
mysql_stmt_init(), mysql_stmt_insert_id(), mysql_stmt_next_result(),
mysql_stmt_num_rows(), mysgl_stmt_param_count(), mysql_stmt_param_metadata(),
mysql_stmt_prepare(), mysql_stmt_reset(), mysql_stmt_result_metadata(),
mysql_stmt_row_seek(), mysql_stmt_row_tell(), mysql_stmt_send_long_data(),
mysql_stmt_sqlstate(), and mysql_stmt_store_result().

Transaction Control

The following interfaces support transaction control: mysgl_autocommit(),
mysql_commit(), and mysq|_rollback().

Information Routines

The following interfaces support information routines: mysql_character_set_name(),
mysql_get_client_info(), mysql_get_client_version(), mysql_get_host_info(),
mysql_get_proto_info(), mysql_get_server_info(), mysql_get_server_version(),
mysql_info(), mysql_stat(), mysql_thread_id(), and mysql_warning_count().

Administrative Routines

The following interfaces support administrative routines: mysql_refresh(),
mysql_set_server_option(), mysql_set_local_infile_default(),
mysql_set_local_infile_handler(), and mysql_shutdown().

Miscellaneous Routines

The following interfaces support all remaining routines: mysql_create_db(),
mysql_debug(), mysql_debug_info(), mysql_drop_db(), mysqgl_dump_debug_info(),
mysql_read_query_result(), mysql_send_query(), mysqgl_thread_end(),
mysql_thread_init(), and mysql_thread_safe().

This function is a no-op function. It is called by ny_i nit macro in my_sys. h file. All
initializations are done by the nysql _library_init().

Return Value

0

7-9

Chapter 7
Available Oracle Support for MySQL APIs

mysql_affected rows()

Returns the number of rows processed for | NSERT, UPDATE, and DELETE Statements
executed.

For UPDATE statements, note that the semantics of MySQL do not report rows where the
new value is the same as the old value. In contrast, Oracle reports that rows are
affected, even if the new value is the same as the old value. This function implements
Oracle semantics. Therefore, existing applications that rely on this call may have to
make programmatic changes.

For SELECT statement, the return is (ny_ul ongl ong) -1.

Return Value

A number of rows that were processed by DML statement; >0. 0 indicates no updates
were made by the statement. - 1 indicates that the statement was a query (SELECT), or
an error.

mysql_autocommit()

Sets auto commit mode to ON or OFF.

Return Value

0, if the auto commit mode is changed successfully. Non-zero if an error occurred in
the process.

mysql_change_user()

Changes the user, including user name, password, and database on the same or
different host. In Oracle Database 12¢, change of the database is not supported, so
the value entered for the db parameter is ignored.

A call to nysgl _change_user () rolls back any active transactions, ends the current
session, and then re-establishes a new connection based on information stored in the
host parameter.

Existing applications must make necessary application logic changes to implement this
behavior in Oracle Database 12c.

Return Value

0 if connection can be reestablished with the original host for the supplied user name
and password. Non-zero if an error occurred.

mysqgl_character_set_name()

ORACLE

Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

Empty string.

7-10

Chapter 7
Available Oracle Support for MySQL APIs

mysql_close()
Closes the connection and frees all associated data structures.

Return Value

none

mysql_commit()
Commits the transaction currently associated with the service context.

A nysgl _commi t () call supports the default mode in Oracle Database 12c. It therefore
ignores the conpl eti on type system variable.

Existing applications that use this API to perform MySQL-specific conpl etion type
operations must change their application logic.

Return Value

0 if successful, non-zero otherwise.

mysql_connect()
Deprecated; use mysql_real_connect().

Return Value

Initialized MYSQL structure. NULL if an error occurred.

mysql_create_db()

Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if an invalid MYSQL structure is passed in.

mysql_data_seek()
Seeks to a row in a result set based on the value specified in the offset parameter.

Offset value, being a row number, can range from 0 to nysql _num rows(resul t) -1.

Return Value

None

mysql_debug()

Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

ORACLE 7-11

Chapter 7
Available Oracle Support for MySQL APIs

mysql_debug_info()

Not supported in Oracle Database 12c¢. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if invalid MYSQL structure.

mysql_drop_db()

Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if invalid MYSQL structure.

mysql_dump_debug_info()

Not supported in Oracle Database 12c. Applications that rely on results of this call
must change their application logic.

Return Value

0 if successful; non-zero if an invalid MYSQL structure is passed in.

mysql_eof()
DEPRECATED. Use mysql_errno() or mysql_error() instead.

Determines if the last row of a result set has been read.

Return Value

1 if fetched the last row; otherwise 0.

mysql_errno()
Returns Oracle error number of the last error on the connection or the global context.

If the previous call did not have an established connection, pass in NULL; this returns
the last error number on global context.

Return Value

Last error number on the MYSQL connection, or the last error number on the global
context.

mysql_error()

Returns Oracle error messages for the last error on the connection or the global
context.

ORACLE 7-12

Chapter 7
Available Oracle Support for MySQL APIs

If the previous call did not have an established connection, pass in NULL; this returns
the last error message on global context.

Return Value

Last error message on the MSQL connection, or the last error message on the global
context.

mysql_escape_string()

Encodes the string in the source (f romparameter), places it in the destination (to
parameter), and appends a terminating NULL.

Supports encoding of only one character, "\ ' using the current character set in the
connection.

See mysql_real_escape_string().

Return Value

The length of the value placed into t o, excluding the terminating NULL.

mysql_fetch_field()
Returns the definition of one column of a result set as a MySQL_FI ELD structure.

Only the following attributes of the MYSQL_FI ELD structure are supported: f| ag, nane,
nanme_| ength, org_nane, org_name_| engt h, type, and nax_| engt h.

* The flag attribute supports only the following values: NOT_NULL_FLAG, NUM FLAG, and
Bl NARY_FLAG.

e The attribute or g_nane is set to have the same value as nane attribute.

e The attribute org_nane_| engt h is set to have the same value as nane_| engt h
attribute.

Return value

The MWSQL_FI ELD structure for the current column. NULL if no columns are left.

mysql_fetch_field direct()

Retrieves the column's field definition for a specified field number as a MYSQL_FI ELD
structure.

Return Value

Field definition for the specific field. NULL if an error occurred, or if field number fi el dnr
is not in range.

mysql_fetch_fields()

Returns an array of all MrSQL_FI ELD structures for a result set. Each MSQL_FI ELD
structure gives the field definition for one column of the result set.

ORACLE 7-13

Chapter 7
Available Oracle Support for MySQL APIs

Return Value

NULL if an error occurred.

mysql_fetch_lengths()
Returns an array of lengths of the column on the current row.

Return Value

An array of unsigned long integers that represent the size of each column. NULL if an
error occurred.

mysql_fetch_row()
Retrieves the next row of a result set.

Return Value

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve
or if an error occurred.

mysql_field_count()

Returns the number of columns in the result set for the recent query on the
connection.

Return Value

Number of fields in the result set within the MYSQL structure.; 0 if an error occurred.

mysql_field seek()
Sets the field cursor to the specified offset.

Return Value

The offset to the field set

mysql_field tell()
Returns the position of the field; used for the current field.

Return Value

Offset of the current field

mysql_free_result()
Frees the memory allocated for the result set.

Return Value

None

ORACLE 7-14

Chapter 7
Available Oracle Support for MySQL APIs

mysql_get character_set_info()

Not supported in Oracle Database 12c¢. Applications that rely on results of this call
must change their application logic.

Return Value

None

mysql_get_client_info()

Returns MySQL version humber defined by MySQL_SERVER VERSI ON macro in

nysql _versi on. h header file, in string format. The macro definition is used in the

nysql _version. h file that builds oranysql library; it is not the nysql _versi on. h file used
by the application.

Return Value

A character string that represents MySQL client library version.

mysql_get_client_version()

Returns current MySQL version, as defined by MySQL_VEERSI ON_| D macro in the
nysql _versi on. h header file. The macro definition is used in the nysqgl _version. h file
that builds oranysgl library; it is not the nysql _versi on. h file used by the application.

Return Value

An unsigned long integer for MySQL version stored in the MySQL_VERSI ON_| D macro.
The macro definition is used in the nmysql _version. h file that builds oranysql library; it
is not the nysql _versi on. h file used by the application.

mysql_get_host_info()

Returns the host name used to connect to the database.

Return Value

A character string of host name. NULL in case of an error.

mysql_get_proto_info()

This is a no-op under Oracle environment. Applications that rely on results of this call
must change their application logic.

Return Value

0

mysql_get_server_info()

ORACLE

Returns the Oracle server version in text string format, such as "12.1.0.1.0".

7-15

Chapter 7
Available Oracle Support for MySQL APIs

Applications that rely on results of this call must change their application logic.

Return Value

A character string that represents Oracle Server Number. NULL if an error occurred.

mysql_get_server_version()

Returns Oracle Database version number, such as 120100. This is in integer XXyyzz
format, where XX represents the major version, YY represents the minor version, and zz
represents the version within the release level.

Return Value

Oracle Database version number. 0 if an error occurred.

mysql_get_ssl_cipher()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysql_hex_string()

Encodes string specified by fromparameter to hexadecimal format. Each character is
encoded as two hexadecimal digits. The result is placed in the t o parameter, with a
terminal NULL byte.

The t o buffer should have a minimum size equal to | engt h*2+1 bytes.

Return Value

Length of the value placed into t o parameter, excluding the terminating NULL character.

mysql_info()

mysql_init()

ORACLE

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

Allocates a MYSQL structure if NULL is passed. Otherwise, this call initializes the passed
in MYSQL structure.

Return Value

Initialized MYSQL structure. NULL if MYSQL structure cannot be allocated or initialized.

7-16

Chapter 7
Available Oracle Support for MySQL APIs

mysql_insert_id()

mysql_Kkill()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0, and non-zero if an invalid MYSQL structure is passed in.

mysql_library _end()

Terminates oranysgl library.

Return Value

none

mysql_library_init()

Initializes or anysql library.

Return Value

0 if successful, non-zero in case of a failure to initialize MySQL library.

mysql_list_dbs()

ORACLE

Returns a list of database names that match the wild parameter on the server.

To use this API, the DBA creates the oranysgl _dbs_vi ew view, and grants privileges to
PUBLI C.

For Oracle Database 12¢

For Oracle Database 12c, view or anysql _dbs_vi ewis based on the V$DATABASE and
V$PDBS system objects.

When connecting to Oracle Database 12¢ and subsequent versions, use the following
SQL script to create the view oranysql _dbs_vi ewin Oracle Database 12c:

create view oranysql _dbs_view(nane) as select left.name fromv$pdbs |eft
uni on select right.name from v$database right;

create public synonym oranmysql _dbs_view for oranysql _dbs_view,

grant select on oranysql _dbs_view to public;

7-17

Chapter 7
Available Oracle Support for MySQL APIs

If oranysqgl _dbs_vi ew view does not exist when an application calls the nysqgl _li st _dbs()
function, the information is retrieved from the v$ PDBS and V$ DATABASE tables.
However, this generates errors if the user does not have privileges to access these
tables.

For Oracle Databases prior to Oracle Database 12¢

Use the following SQL script to create the view or anysgl _dbs_vi ewin the Oracle
Database:

create view oranysql _dbs_view(nane) as sel ect nane form v$dat abase;
create public synonym oranmysql _dbs_view for oranysql _dbs_view,
grant select on oranysql _dbs_view to public;

If the view does not exist, the wild parameter is ignored, and the call executes the
following SQL statement:

sel ect SYS CONTEXT(' USERENV', 'DB _NAME') from DUAL;

Return Value

NULL if an error occurs, a MYSQL_RES result set if successful.

mysql_list_fields()
Returns the column names that match the wi | d parameter for a specified table.

Return Value

NULL if an error occurred, a MySq| result set if successful.

mysql_list_processes()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysql_list_tables()

This is a no-op function. Applications that rely on results of this call must change their
application logic.

Return Value

NULL

mysgl_more_results()
Verifies if more results are available from the currently executing statement.

Return Value

TRUE if more results exist; FALSE if no more result sets exist.

ORACLE 7-18

Chapter 7
Available Oracle Support for MySQL APIs

mysql_next_result()
Gets the next result set.

Returns Value

0 if successful and there are more results; - 1 if successful and there are no more
results; >0 if an error occurred.

mysql_num_fields()
Returns the number of columns in a result set.

Return Value

An unsigned integer that represents the number of columns in the result set; returns 0
if not successful.

mysql_num_rows()
Returns the number of rows in the result set.

Return Value

The number of rows in the result set; otherwise 0.

mysql_options()

This is a no-op function. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful, non-zero if an invalid MYSQL structure is passed in.

mysql_ping()
If the server cannot be accessed, returns an error with connection failure details.

Return Value

0 if success, non-zero if error occurred.

mysql_query()
Executes the SQL statement pointed to by the null-terminated string.

Return Value

0 if successful, non-zero if an error occurred.

ORACLE 7-19

Chapter 7
Available Oracle Support for MySQL APIs

mysql_read_query_result()

This is a no-op function; query results from nysqgl _send_query() are available when that
call completes.

Return Value

0

mysql_real_connect()

The db parameter is not used in Oracle Database 12c¢. Existing applications using this
parameter to connect to a db must supply the connection identifier or service name in
the host parameter. The connection string has the following format:

[//]host[:port][/service_nane][:server][/instance_name]

For instance, the host parameter would appear as: ca-t ool s3. us. oracl e. com orcl 3,
when connecting to host ca-t ool s3. us. or acl e. comwith SID orcl 3.

The parameters db, port, uni x_socket, and client_fl ag are not in use. When the user
must specify the port, it has to be in the syntax method used for host parameter.

Return Value

MYSQL structure initialized if successful. NULL in case initialization does not work.

mysql_real_escape_string()

Encodes the string in the source (f romparameter) and the result is placed in the
destination (t o parameter) and a terminating null byte is appended.

Note that only single-quote characters are escaped. Each single-quote is escaped
using Oracle semantics. The t o buffer should have a minimum size of | engt h*2+1
byt es. Each single quote in the original string is replaced by two consecutive single
quotes.

See mysql_escape_string().
Return Value

The length of the value placed into t o buffer, excluding the terminating NULL. 0
otherwise.

mysql_real_query()

ORACLE

This function executes the query string.

Return Value

0 if successful, non-zero in case of an error.

7-20

Chapter 7
Available Oracle Support for MySQL APIs

mysql_refresh()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful. Non-zero if an invalid MySQL structure was passed in.

mysql_reload)

Reloads the grant tables. This function is deprecated, and has not been implemented.
Use mysql_query() instead. Applications that rely on results of this call must change
their application logic.

mysql_rollback()

Rolls back the current transaction defined as the set of statements executed after the
last mysql_commit() or mysql_real_connect() call. If the application is running under
object mode, the modified or updated objects in the object cache for this transaction
are also rolled back.

A nysgl _rol I back() call supports the default mode in Oracle Database 12c. It therefore
ignores the conpl etion type system variable.

Existing applications that use this API to perform MySQL-specific conpl etion type
operations must change their application logic.

Return Value

Error if an attempt is made to roll back a global transaction that is not currently active.

mysql_row_seek()
Sets to a particular row and returns offset of previous row.

Return Value

Offset of previous row in MYSQL_ROW OFFSET structure.

mysql_row_tell()
Gives the current row position in the result set.

Return Value

Offset of current row in MYSQL_ROW OFFSET structure. NULL if an error occurred.

mysql_select_db()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

ORACLE 7-21

Chapter 7
Available Oracle Support for MySQL APIs

Return Value

0

mysql_send_query()

Sends a query. This function is not asynchronous in or anysqgl library. Instead, the call
blocks until the query is executed.

Return Value

0 if successful, non-zero if an error occurred.

mysql_server_end()
Terminates and cleans up oranysgl library.

Return Value

none

mysql_server _init()
Initializes the oranysql client library before any connections are created. The function
nysql _library_init() macro is defined to be nysql _server_init() innysgl.h header file.

This call is not thread-safe. Only one thread is expected to call it.

Return Value

0 if successful, non-zero if an error occurred.

mysql_set character_set()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_set local_infile_default()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_set local_infile_handler()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

ORACLE 7-22

Chapter 7
Available Oracle Support for MySQL APIs

Return Value

0

mysql_set_server_option()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_shutdown()

Helps shutdown an Oracle Database instance. Before using the nysql _shut down API,
the C program must connect to server with SYSDBA or SYSOPER session.

The parameters nysqgl _shut down_| evel and nysql _enum shut down_| evel are ignored.
Internally, the OCl DBShut down() call is executed in the OCI _DEFAULT mode.

Return Value

0 if successful. Non-zero if an error occurred.

mysql_sqlstate()

Returns SQLSTATE string which is not null-terminated. There are many SQLSTATE codes in
MySQL which are not in use.

Return Value

SQLSTATE code: 00000 - Success, or HY000 - All other errors.

mysql_ssl_set()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful. Non-zero if an invalid MYSQL structure was passed.

mysql_stat()

ORACLE

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

A string of 4 blanks (" ") if successful. NULL if an invalid MYSQL structure was passed.

7-23

Chapter 7
Available Oracle Support for MySQL APIs

mysql_stmt_affected rows()

This function returns the number of rows affected by the execution on the prepared
statement.

Return Value

Number of rows affected by the DML operation if successful. (ny_ul ongl ong) - 1 if an
error occurred, or a SELECT statement was executed.

mysql_stmt_attr_get()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_stmt_attr_set()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_stmt_bind_param()
This function binds all the parameters in the prepared statement.

Return Value

0 if parameters are bound successfully. Non-zero if an error occurred.

mysql_stmt_bind_result()
Binds program variables for all SELECT list columns of a prepared statement.

Return Value

0 if successful. Non-zero if an error occurred.

mysql_stmt_close()
Closes a WSQL_STM object.

Return Value

0

ORACLE 7-24

Chapter 7
Available Oracle Support for MySQL APIs

mysql_stmt data_seek()
This function seeks to get data for a particular row.

Return Value

None

mysql_stmt_errno()
Returns error number for the last error that occurred on the MSQL_STMT object.

Return Value

none

mysql_stmt_error()

This function returns error message for the last error that occurred on the MYSQL_STMr
object.

Return Value

A const *char error message.

mysql_stmt_execute()
This function executes the prepared statement.

Return Value

0 if the statement executed successfully; non-zero if an error occurred.

mysql_stmt_fetch()

This function fetches one row in program variables bound by the
nysql _stnt_bind result call.

Return Value

0 if one row is successfully fetched. MySQL_NO DATA if no more rows/data exists.
MYSQL_DATA TRUNCATED if data truncation occurred. 1 if an error occurred.

mysql_stmt_fetch_column()
This function fetches one column from the current result set row.

Return Value

0 if the value was fetched successfully. Non-zero if an error occurred.

ORACLE 7-25

Chapter 7
Available Oracle Support for MySQL APIs

mysql_stmt _field count()
Fetches the number of fields in the MYSQL_STMT object.

Return Value

0 if an error occurred; otherwise, the number of fields in the result set associated with
the MYSQL_STMT object.

mysql_stmt_free_result()

Frees the result set associated with the WSQL_STMT object.

Return Value

0

mysql_stmt_init()
Creates a new MYSQL_STM object from the MSQL connection object.

Return Value

MYSQL_STMT object if successful. NULL if an error occurred.

mysql_stmt_insert_id()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_stmt_next_result()

This function is not implemented. Applications that rely on results of this call must
change their application logic.

Return Value

0

mysql_stmt_num_rows()

Returns the number of rows in a stored result set. In case of a hon-stored (unbuffered
result set), it returns the total number of rows fetched so far.

Return Value

0 if an error occurred in fetching the number of rows.

ORACLE 7-26

Chapter 7
Available Oracle Support for MySQL APIs

mysql_stmt_param_count()

Returns the number of bind parameters in the prepared statement.

Return Value

0 if an error occurred in returning the number of bind parameters.

mysql_stmt_param_metadata()
This function is cast to MySq|l result set (MYSQL_RES *) NULL

Return Value

NULL

mysql_stmt_prepare()
Prepares a statement in the MySQL_STMT for execution.

Return Value

0 if successful, non-zero if an error occurred.

mysql_stmt_reset()
Resets the prepared statement in the MYSQL_STM.

Return Value

0

mysql_stmt_result_metadata()

Returns the metadata for the result of a SELECT statement that is executed through a
MYSQL_STMT object.

Return Value

A result set that describes the metadata of the prepared SELECT statement. NULL if an
error occurred.

mysql_stmt_row_seek()
Seeks to a row position and returns the offset of the previous row.

Return Value

An offset of the previous row in MYSQL_ROW OFFSET structure.

mysql_stmt_row _tell()

Gives the current row position in the result set.

ORACLE 7-27

Chapter 7
Available Oracle Support for MySQL APIs

Return Value

Current row position. NULL if an error occurred.

mysql_stmt _send_long_data()
Sends parameter data to the server in parts.

The function nysgl _stnt _bi nd_paran{) must be called first, then
nysql _stnt_send_| ong_dat a(), followed by nysql _stnt _execute().

The function can be called multiple times to send parts of a character or binary data
value for a column.

Return Value

0 if the data is sent to the server successfully, non-zero if an error occurred.

mysql_stmt_sqlstate()

Returns SQLSTATE string for the recent prepared statement. There are many SQLSTATE
codes in MySQL that are not used.

Return Value

SQLSTATE codes: "00000" - Success, or "HY0000" - All other errors.

mysql_stmt_store_result()

Stores the result set from the last query.

If the last query was a SELECT, a result set is returned. If the last statement was a non-
SELECT or error, a NULL result set is returned.

Return Value

A valid result set if successful, NULL if an error occurred, or a non-SELECT statement.

mysql_store_result()

Stores the result set from the last query.
If the last query was SELECT, returns a result set.

If the last statement was a non-SELECT or an error, a NULL result set is returned.

Return Value

A valid result set if successful; otherwise, NULL for errors or non-SELECT statements.

mysql_thread_end()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

ORACLE 7-28

Chapter 7
Available Oracle Support for MySQL APIs

Return Value

none

mysql_thread_id()

Returns Oracle session identifier (SID) for the connection. This is obtained internally
by executing the following SQL statement:

sel ect SYS_CONTEXT(' USERENV', 'SID') from DUAL;
Applications that rely on results of this call must change their application logic.

Return Value

Oracle session identifier (SID). 0 if an error occurs.

mysql_thread_init()

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0

mysql_thread safe()

The oranysql library is thread-safe, so this function always returns TRUE.

Return Value

TRUE

mysql_use_result()

Initiates a result set retrieval.

Return Value

NULL if an error occurred, a valid result set if successful.

mysql_warning_count()

ORACLE

This is a no-op API. Applications that rely on results of this call must change their
application logic.

Return Value

0 if successful, non-zero if an error occurred.

7-29

API| Reference for SQL Translation of
JDBC Applications

Consider the APIs that are part of the oracl e. j dbc package, specifically the elements
of oracl e. j dbc that assist in SQL translation. To successfully migrate JDBC
applications, it is important to understand the translation properties, interfaces, and the
error translation mechanisms.

¢ See Also:

e Complete documentation of the oracl e. j dbc package in Oracle Database
JDBC Java API Reference

Translation Properties

The translation properties are listed in Table 8-1

Table 8-1 Translation Properties

Property Description
sqlTranslationProfile Specifies the name of the transaction profile
sglErrorTranslationFile Specifies the path of the SQL error translation file

sglTranslationProfile

ORACLE

The property oracl e. j dbc. sql Transl ati onProfi | e specifies the name of the transaction
profile.

Declaration

oracle.jdbc.sql Transl ationProfile

Constant

O acl eConnect i on. CONNECTI ON_PROPERTY_SQL_TRANSLATON_PROFI LE

The value of the constant is oracl e. j dbc. sql Transl ati onProfile. This is also the
property name.

Property Value

The value is a string. There is no default value.

8-1

Chapter 8
OracleTranslatingConnection Interface

Remarks

The property sgl Transl ati onProfi | e can be set as either a system property or a
connection property. The property is required to use SQL translation. If this property is
set then all statements created by the connection have SQL translation enabled unless
otherwise specified.

sglErrorTranslationFile

The property oracl e. j dbc. sql Error Transl at i onFi | e specifies the path of the SQL error
translation file.

Declaration

oracle.jdbc.sqglErrorTransl ationFile

Constant

Oracl e. connect i on. CONNECTI ON_PROPERTY_SQL_ERROR_TRANSLATI ON _FI LE.

Property Value

The value is a path name. It has no default value.

Exceptions

An error in establishing a connection results in a SQLException but without a valid
connection. However the SQL error translation file path is available either as a system
property or connection property and will be used to translate the error.

Remarks

This file is used only for translating errors which occur when connection establishment
fails. Once the connection is established this file is bypassed and is not considered
even if it contains the translation details for any error which occurs after the connection
is established. The property sql Error Transl ati onFi | e can be either a system property
or a connection property. The content of this file is used to translate Oracle
SQLExceptions into foreign SQLExceptions when there is no valid connection.

OracleTranslatingConnection Interface

ORACLE

This interface is only implemented by a Connection object that supports SQL
Translation. The main purpose of this interface is to get non-translating statements
(including prepar edSt at ement and Cal | abl eSt at enent) from a translating connection.

The public interface oracl e. j dbc. Oracl eTransl at i ngConnect i on defines the factory
methods for creating translating and non-translating St at ement objects.

The Oracl eTransl ati ngConnect i on enumerations are listed in Table 8-2:

Table 8-2 OracleTranslatingConnection Enumeration

|
Name Description

SqlTranslationVersion Provides the Keys to the map

8-2

Chapter 8
OracleTranslatingConnection Interface

The Oracl eTransl ati ngConnect i on methods are listed in Table 8-3:

Table 8-3 OracleTranslatingConnection Methods

|
Name Description

createStatement() Creates a St at enent object with option to translate or not
translate SQL.

prepareCall() Creates a Cal | abl eSt at enent object with option to translate or
not translate SQL.

prepareStatement() Creates a Prepar edSt at enent object with option to translate or
not translate SQL.

getSQLTranslationVersions() Returns a map of all the translation versions of the query during
SQL Translation.

SqglTranslationVersion

The Sgl Transl ati onVer si on enumerated values specify the keys to the
getSQLTranslationVersions() method.

Syntax

public enum Sgl Transl ati onVersion {
ORI G NAL_SQ.,
JDBC_MARKER_CONVERTED,
TRANSLATED

}

The following table lists all the Sgl Transl at i onVer si on enumeration values with a
description of each enumerated value.

Member Name Description

ORI G NAL_SQL Specifies the original vendor specific sql

Specifies that JDBC parameter markers ('?') is replaced with
Oracle style parameter markers (":b<n>"). Hence consecutive '?'s
will be converted to : b1, : b2, : b3 and so on. This change is
required to take care of any changes in the order of parameters
during translation. This version is sent to the server for translation.
Hence any custom translations on the server must be registered
from this version and not the ORI G NAL_SQL version.

JDBC_MARKER_CONVERTED

TRANSLATED Specifies the translated query returned from the server

createStatement()

ORACLE

This group of methods create a St at enent object, and specify whether the statement
supports SQL translation. If the value of parameter transl ati ng is TRUE, then the
returning statement supports translation and is identical to the corresponding version
in the java.sql.Connection interface without the translating argument. If the value is
FALSE, then the returning statement does not support translation.

8-3

Chapter 8
OracleTranslatingConnection Interface

Syntax

Description

public Statenent createStatenment(

bool ean transl ating)
throws SQLException;

public Statenent createStatenment(
int
bool ean transl ating)

int resultSetType,
resul t Set Concur rency,
throws SQLExcepti on;

public Statenent createStatenment(

int resultSetType,

int resultSetConcurrency,

Creates a St at enent object with option to
translate or not translate SQL.

Creates a St at enent object with the given
type and concurrency with option to translate
or not translate SQL.

Creates a St at enent object with the given
type, concurrency, and holdability with option
to translate or not translate SQL.

int resultSetHol dability,

bool ean transl ating)
throws SQLException;

Parameters

Parameter

Description

resul t Set Type

resul t Set Concurrency

resul t Set Hol dabi lity

translating

Specifies the i nt value representing the result set type.

Specifies the i nt value representing the result set concurrency
type.

Specifies the i nt value representing the result set holdability type.

Specifies whether or not the statement supports translation.

Return Value

The creat eSt at enent () method returns a St at ement object.

Exceptions

The createSt at enent () method throws SQLExcept i on.

Example

Import the following packages before running the example:

import java.sql.*;

inport java.util.Properties;

i mport oracle.jdbc. Oracl eConnecti on;
import oracle.jdbc. Oracl eTransl atingConnecti on;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

Run the following SQL statements:

conn systen manager ;

grant create sgl translation profile to HR,

ORACLE

8-4

Chapter 8
OracleTranslatingConnection Interface

conn HR/ hr;

drop table sanple_tab;

create table sanple_tab (cl nunber, c2 varchar2(100));

insert into sanple_tab values (1, 'A);

insert into sanple_tab values (2, 'B);

comit;

exec dbns_sql _translator.drop_profile(' FOO);

exec dbnms_sql _translator.create_profile('FOO);

exec dbms_sql _translator.register_sql _translation('FOJ,"'select row of (cl, c2)
fromsanple_tab','select cl, c2 fromsanple_tab');

Example 8-1 Using the createStatement() method

public class SQLTransStnt
{
static String url="jdbc:oracle:thin: @ocal host:5521:orcl";
static String user="HR', pwd="hr";
static String PROFILE = "FOO';
static String primtiveSgl = "select rowof (cl, c2) fromsanple_tab";

public static void main(String[] args) throws Exception
{

O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(url);

Properties props = new Properties();

props. put("user", user);

props. put ("password", pwd);

props. put (Oracl eConnect i on. CONNECTI ON_PROPERTY_SQL_TRANSLATI ON_PROFI LE, PROFILE);
ods. set Connect i onProperti es(props);

Connection conn = ods. get Connection();

Systemout. printlIn("connection for SQ translation: "+conn);

try{
Oracl eTransl ati ngConnection trConn = (Oracl eTransl ati ngConnection) conn;
Systemout.printIn("Call:

oracle.jdbc. Oracl eTransl ati ngConnecti on. creat eSt at ement (true)");
Statenent trStnt = trConn.createStatement(true);
Systemout. println("executeQuery for: "+primtiveSql);
ResultSet trRs = trStnt.executeQuery(primtiveSql);
while (trRs.next())
Systemout.printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));

trRs.close();
trStnt.close();

}catch (Exception e) {
e.printStackTrace();

}

try{
Oracl eTransl ati ngConnection trConn = (Oracl eTransl ati ngConnecti on) conn;
Systemout. printin("Call:

oracle.jdbc. Oracl eTransl ati ngConnecti on. creat eSt at enent (fal se)");
Statenent trStnt = trConn.createStatenent(false);
Systemout. println("executeQuery for: "+primtiveSql);
ResultSet trRs = trStnt.executeQuery(primtiveSql);
while (trRs.next())
Systemout. printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));

trRs.close();
trStnt.close();

}catch (Exception e) {
Systemout. println("expected Exception: "+e.get Message());

ORACLE 8-5

Chapter 8
OracleTranslatingConnection Interface

}

tryf{
Oracl eTransl atingConnection trConn = (Oracl eTransl ati ngConnection) conn;

Systemout.printin("Call: oracle.jdbc. OracleTransl ati ngConnecti on.
createStatenent (Resul t Set. TYPE_SCROLL_SENSI Tl VE, Resul t Set. CONCUR_UPDATABLE, true)");
Statenment trStnt = trConn. createStatenent(Result Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE, true);
Systemout. println("executeQuery for: "+primtiveSql);
ResultSet trRs = trStnt.executeQuery(primtiveSql);
while (trRs.next())
Systemout. printIn("CL:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
Systemout. printIn("nmove resultset back to 2nd row...");
trRs. absol ute(2);
while (trRs.next())
Systemout. printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStnt.close();
}catch (Exception e) {
e.printStackTrace();

}

try{
conn. set Aut oConmi t (f al se);
Oracl eTransl atingConnection trConn = (Oracl eTransl ati ngConnection) conn;
Systemout. printin("Call:
oracl e. jdbc. Oracl eTransl ati ngConnecti on. creat eSt at ement (Resul t Set . TYPE_SCROLL_SENSI TI
VE, Resul t Set. CONCUR_UPDATABLE,
Resul t Set . HOLD_CURSORS_OVER COWM T, true)");
Statenment trStnt = trConn. createStatenent(Resul t Set. TYPE_SCROLL_SENSI Tl VE,
Resul t Set . CONCUR_UPDATABLE, Result Set. HOLD CURSCRS OVER COMM T, true);
Systemout. println("executeQuery for: "+primtiveSql);
ResultSet trRs = trStnt.executeQuery(primtiveSql);
trRs.last();
Systemout.printIn("CL:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs. updateString(2, "Hello");
trRs. updat eRow() ;
conn.commit();
Systemout. printIn("accept the update and list all of the rows again...");
trRs. beforeFirst();
while (trRs.next())
Systemout. printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStnt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn. cl ose();

}
}

prepareCall()

ORACLE

This group of methods create a Cal | abl eSt at enent object, and specify whether the
statement supports SQL translation. If the value of parameter transl| ati ng is TRUE, then
the returning statement supports translation. If the value is FALSE, then the returning
statement does not support translation.

8-6

ORACLE

Chapter 8
OracleTranslatingConnection Interface

Syntax Description

Creates a Cal | abl eSt at enent object with

ublic Callabl eStatenment prepareCall :
P prep (option to translate or not translate SQL

String sql,
bool ean transl ating)
throws SQLException;

Creates a Cal | abl eSt at enent object with
the given type and concurrency with option
to translate or not translate SQL

public Callabl eStatement prepareCall(
String sql,
int resultSetType,
int resultSetConcurrency,
bool ean transl ating)
throws SQLExcepti on;

Creates a Cal | abl eSt at enent object with
the given type, concurrency, and holdability
with option to translate or not translate SQL

public Callabl eStatement prepareCall(
String sql,
int resultSetType,
int resultSetConcurrency,
int resultSetHol dability,
bool ean transl ating)
throws SQLExcepti on;

Parameters
Parameter Description
sql Specifies the Stri ng SQL statement value to be sent to the

database; may contain one or more parameters

r esul t Set Type Specifies the i nt value representing the result set type

Specifies the i nt value representing the result set concurrency
type

resul t Set Hol dabi lity Specifies the i nt value representing the result set holdability type

resul t Set Concurrency

transl ating Specifies whether or not the statement supports translation

Return Value

The prepareCal | () method returns a Cal | abl eSt at ement object.

Exceptions

The prepareCal | () method throws SQLExcepti on.

Example
Import the following packages before running the example:

inmport java.sql.*;
import java.util.Properties;

i mport oracle.jdbc. Oracl eConnecti on;

import oracle.jdbc. Oracl eTransl atingConnecti on;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

8-7

Chapter 8
OracleTranslatingConnection Interface

Run the following SQL statements:

conn syst enf manager ;
grant create sgl translation profile to HR,

conn HR/ hr;

create or replace procedure sanple_proc (p_num nunber, p_vchar in out varchar2) AS
begin
p_vchar :="p_nunm||p_nun|", p_vchar']||p_vchar;
end;
/

exec dbrms_sql _translator.drop_profile(' FOO);

exec dbms_sql _translator.create_profile('FOO);

exec dbms_sql _translator.register_sql _translation('FOO, 'exec
sanple_proc(:bl, :b2)', '{call sanple_proc(:bl, :b2)}");

Example 8-2 Using the prepareCall() method

public class SQTransCst nt
{
static String url="jdbc:oracle:thin: @ocal host:5521: orcl";
static String user="HR', pwd="hr";
static String PROFILE = "FQOO';
static String primtiveSgl = "exec sanple_proc(:bl, :b2)";

public static void main(String[] args) throws Exception
{

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(url);

Properties props = new Properties();

props. put (“user", user);

props. put ("password", pwd);

props. put (Oracl eConnect i on. CONNECTI ON_PROPERTY_SQ._TRANSLATI ON_PROFI LE,
PROFI LE) ;

ods. set Connect i onProperties(props);

Connection conn = ods. get Connection();

Systemout. println("connection for SQL translation: "+conn);

try{
Oracl eTransl atingConnection trConn = (Oracl eTransl ati ngConnection) conn;

System out. print!n(

"Call: oracle.jdbc.Oracl eTransl atingConnecti on. prepareCal | (sql, true)");
Cal l abl eStatenment trStmt = trConn. prepareCall(primtiveSqgl, true);
trStnt.setint("bl", 1);
trStmt.setString("b2", "A");
trStnt.registerQutParaneter("b2", Types.VARCHAR);

Systemout. printIn("execute for: "+primtiveSgl);
trStnt. execute();
Systemout.printIn("out param "+trStnt.getString("b2"));

trStnt.close();
}catch (Exception e) {
e.printStackTrace();

}

try{
Oracl eTransl atingConnection trConn = (Oracl eTransl ati ngConnection) conn;

System out. print!n(

ORACLE 8-8

ORACLE

Chapter 8
OracleTranslatingConnection Interface

"Call: oracle.jdbc. Oracl eTransl ati ngConnecti on. prepareCal | (sql, false)");
Cal I abl eStatenment trStnt = trConn. prepareCall (primtiveSql, false);

trStnt.setint(1, 1);
trstmt.setString(2, "A");

Systemout. printIn("execute for: "+prinitiveSgl);

ResultSet trRs = trStnt.executeQuery();

while (trRs.next())

Systemout. printIn("CL:"+trRs.getInt(1)+", C2:"+trRs.getString(2));

trRs.close();

trStnt.close();
}catch (Exception e) {

Systemout. println("expected Exception: "+e.get Message());

}

conn. cl ose();

}
}

prepareStatement()

This group of methods create a Prepar edSt at ement object, and specify whether the
statement supports SQL translation. If the value of parameter transl| ati ng is TRUE, then
the returning statement supports translation. If the value is FALSE, then the returning

statement does not support translation.

Syntax

Description

publ i c PreparedStatenent prepareStatenent(
String sql,
bool ean transl ating)

throws SQLExcepti on;

publ i c PreparedStatenent prepareStatenent(
String sql,
int resultSetType,
int resultSetConcur,
bool ean transl ating)
throws SQLExcepti on;

publ i c PreparedStatenent prepareStatenent(
String sql,
int resultSetType,
int resultSetConcur,
int resultSetHold,
bool ean transl ating)
throws SQLExcepti on;

Creates a Prepar edSt at enent object
with option to translate or not translate
SQL

Creates a Prepar edSt at enent object
with the given type and concurrency
with option to translate or not translate
SQL

Creates a Prepar edSt at enent object
with the given type, concurrency, and
holdability with option to translate or not
translate SQL

Parameter Description

sql Specifies the Stri ng SQL statement value to be sent to the
database; may contain one or more parameters

resul t Set Type

Specifies the i nt value representing the result set type

8-9

ORACLE

Chapter 8
OracleTranslatingConnection Interface

Parameter Description

Specifies the i nt value representing the result set concurrency
type

resul t Set Hol d Specifies the i nt value representing the result set holdability type

resul t Set Concur

transl ating Specifies whether or not the statement supports translation

Return Value

The prepareSt at enent () method returns a Prepar edSt at enent object.

Usage Notes

When the "?" placeholder is used with the prepareSt at enent () method, the driver
internally changes the "?" to Oracle-style parameters because the server side
translator can only work with Oracle-style markers. This is necessary to distinguish the
bind variables. If not, any change in the order of the bind variables will be
indistinguishable. The replaced oracle style markers follow the format : b<n> where <n>
is an incremental number. For example, exec sanpl e_proc(?,?) becomes exec

sanpl e_proc(:bl,:b2).

To further exemplify, consider a scenario of a vendor format where the vendor query
selecting top three rows is SELECT * FROM enpl oyees WHERE first_nanme=? AND

enpl oyee_i d=? TOP 3. The query has to be converted to oracle dialect. In this case the
following translation is to be registered on the server:

From:

SELECT * FROM enpl oyees WHERE first_name=:bl AND enpl oyee id=:b2 TOP 3

To:
SELECT * FROM enpl oyees WHERE first_name=:bl AND enpl oyee_i d=: b2 AND ROMUM <= 3

See SqlTranslationVersion and "SQL Translation of JDBC Applications" for more
information.

Exceptions

The prepareSt at enent () method throws SQLExcept i on.

Example
Import the following packages before running the example:

inport java.sql.*;
import java.util.Properties;

i mport oracle.jdbc. Oracl eConnecti on;

import oracle.jdbc. Oracl eTransl atingConnecti on;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

Run the following SQL statements:

conn system manager;
grant create sql translation profile to HR

8-10

ORACLE

Chapter 8
OracleTranslatingConnection Interface

conn HR/ hr;

drop table sanple_tab;

create table sanple_tab (cl nunber, c2 varchar2(100));

insert into sanple_tab values (1, 'A);

insert into sanple_tab values (1, 'A);

insert into sanple_tab values (1, 'A);

comit;

exec dbns_sql _translator.drop_profile(' FOO);

exec dbnms_sql _translator.create_profile(' FOO);

exec dbns_sql _translator.register_sqgl _translation(' FOO,'select row of select cl,
c2 fromsanple_tab

where cl=:bl and c2=:b2','select cl, c2 fromsanple_tab where cl=:bl and c2=:b2");

Example 8-3 Using the prepareStatement() method

public class SQLTransPst nt
{
static String url="jdbc:oracle:thin: @ocal host:5521:orcl";
static String user="HR', pwd="hr";
static String PROFILE = "FOO';
static String primtiveSgl = "select row of select cl, c2 fromsanple_tab
where cl=:bl and c2=: b2";

public static void main(String[] args) throws Exception
{

O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(url);

Properties props = new Properties();

props. put("user", user);

props. put ("password", pwd);

props. put (Oracl eConnect i on. CONNECTI ON_PROPERTY_SQL_TRANSLATI ON_PROFI LE,
PROFI LE) ;

ods. set Connect i onProperti es(props);

Connection conn = ods. get Connection();

Systemout. println("connection for SQ translation: "+conn);

tryf
Oracl eTransl ati ngConnection trConn = (Oracl eTransl ati ngConnecti on) conn;

Systemout. printin("Call:
oracle.jdbc. Oracl eTransl ati ngConnecti on. prepareStatement (sql, true)");
PreparedStatenent trStnt = trConn. prepareStatement (primtiveSgl, true);
trStnt.setint(1, 1);
trStnt.setString(2, "A");
Systemout. println("executeQuery for: "+primtiveSql);
ResultSet trRs = trStnt.executeQuery();
while (trRs.next())
Systemout. printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStnt.close();
}catch (Exception e) {
e.printStackTrace();

}

tryf
Oracl eTransl ati ngConnection trConn = (Oracl eTransl ati ngConnecti on) conn;

Systemout. printin("Call:

oracle.jdbc. Oracl eTransl ati ngConnecti on. prepar eStatement (sql, false)");
PreparedStatenent trStnt = trConn. prepareStatement (primtiveSgl, false);
trStnt.setint(1, 1);
trStnt.setString(2, "A");

8-11

Chapter 8
OracleTranslatingConnection Interface

Systemout. println("executeQuery for: "+primtiveSql);
ResultSet trRs = trStnt.executeQuery();
while (trRs.next())
Systemout. printIn("CL:"+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();

trStnt.close();
}catch (Exception e) {
Systemout. println("expected Exception: "+e.getMessage());

}

try{
Oracl eTransl atingConnection trConn = (Oracl eTransl ati ngConnection) conn;

Systemout. printin("Call:
oracle.jdbc. Oracl eTransl ati ngConnect i on. prepar eSt at ement (
sql, ResultSet. TYPE_SCROLL_SENSI TI VE, Resul t Set. CONCUR_UPDATABLE, true)");
PreparedStatenment trStnt = trConn. prepareStatenent (
primtiveSql, ResultSet.TYPE SCROLL_SENSI TI VE,
Resul t Set . CONCUR_READ_ONLY, true);
trStnt.setint(1, 1);
trStnt.setString(2, "A");
Systemout. println("executeQuery for: "+primtiveSgl);
ResultSet trRs = trStnt.executeQuery();
while (trRs.next())
Systemout. printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));

Systemout.printIn("trRs. beforeFirst and show resultSet again...");
trRs. beforeFirst();
while (trRs.next())
Systemout. printIn("CL: "+trRs.getInt(1)+", C2:"+trRs.getString(2));
trRs.close();
trStnt.close();
}catch (Exception e) {
e.printStackTrace();

}

conn. cl ose();

}
}

getSQLTranslationVersions()

ORACLE

Returns a map of all the translation versions of the query during SQL Translation. In
case of an exception, and if suppressExcepti ons is true, then the translated version in
the map is NULL.

Syntax

public Map<Sgl Transl ati onVersion, String> getSql Transl ati onVersions(
String sql,
bool ean suppressExceptions)

throws SQL Exception;

Return Value

Map with all translation versions of a query. See SqlTranslationVersion enumfor more
details about returning versions.

8-12

Chapter 8
Error Translation Configuration File

Exception

This method throws SQLExcepti on if there is a problem in query translation, provided
suppr essExcept i ons is false.

Error Translation Configuration File

ORACLE

An XML configuration file (path) is provided as a value of the

oracl e.jdbc. sql ErrorTransl ati onFi | e property. This file contains the translations
information for errors. These errors occur when a connection to the server cannot be
established and thus translation cannot happen on the server. Error messages are of
the type that define the state of the database that prevents the connection from being
established.

The structure of the configuration XML file is defined in the DTD as follows:

<I DOCTYPE Local Transl ati onProfil e[

<IELEMENT Local Transl ationProfile (Exceptiont)>

<! ELEMENT Exception (ORAError, ErrorCode, SQState)>
< ELEMENT ORAError (#PCDATA)>

<I ELEMENT Error Code (#PCDATA)>

<I ELEMENT SQLState (#PCDATA)>

1>

where,

e ORAError is anint value and specifies the error code for the oracle error.

e FErrorCode is anint value and specifies the vendor error code, that is, the
translated code.

e SQStateis a String value and specifies the vendor SQL state.

8-13

Glossary

ORACLE

adapter

A real-time, proprietary tool used to enable access to data stored in one database from
another database. Adapters are commonly used to translate SQL, map data types,
and facilitate the integration of SQL statements, triggers, and stored procedures.

custom SQL translation

A scenario in which users can register their customer-specific translations of SQL
statements with the SQL Translation Profile. During the translation of non-Oracle
statements, the profile looks up the custom translations first. Then, if no match is
found, it invokes the SQL Translator.

data integration

The exchange of data between different databases, either asynchronously in real-time
transactions or synchronously as batch processes.

data integration framework

A set of tools and processes used to enable data exchanges between different
databases. Traditional frameworks include many nightly processes such as large
batch extractions and feeds, and bulk loading of data. Newer frameworks can include
small daily processes and feeds occurring in near real time.

database schema migration

The process of identifying and converting tables, columns, and other objects in a non-
Oracle schema to conform to the naming, size, and other conventions required by
Oracle Database.

error translation

A scenario in which users can register vendor-specific translations of error codes and
messages with the SQL Translation Profile. During SQL execution, client applications
rely on vendor-specific error codes and messages. When errors occur, the translated
error codes and messages are returned instead of the Oracle error codes and
messages.

migration

The process of modifying a non-Oracle application, including all of its components
(such as architecture, data, SQL code, and client) to use the Oracle RDBMS rather
than a proprietary database management system.

Glossary-1

ORACLE

Glossary

migration repository

A data store in Oracle Database that Oracle SQL Developer uses to manage the
metadata for the source and target schema models during a migration. Multiple
migration repositories can be used to migrate from several databases to Oracle
Database at the same time.

Oracle Database Gateways

A set of Oracle products that support data integration with non-Oracle systems
synchronously using consistent APIs.

Oracle GoldenGate

An Oracle product that supports modular, transaction-level data integration between
diverse data sources that are stored in SQL Server, Sybase, DB2, Oracle, and other
databases.

Oracle SQL*Loader

A fast, flexible, and free Oracle utility that supports loading data from flat files into
Oracle Database. It supports several data formats and many different encodings. It
also supports parallel data loading.

Oracle SQL Developer Migration Wizard

An Oracle tool that enables the migration of a third-party database to an Oracle
database in batch mode. Migration includes data, schemas, objects, triggers, and
stored procedures.

SQL dialect

A variation or extension of SQL implemented by a database vendor. When migrating
client applications from third-party databases to Oracle, all non-Oracle SQL
statements must be translated into Oracle SQL. Because these non-Oracle SQL
statements are embedded within the source code of client applications, locating and
translating them is a time-consuming, manual task. This release enhances the Oracle
database to accept non-Oracle SQL statements from external vendors, and translate
them automatically at run time before execution.

SQL Translation Profile

A database schema object that directs how non-Oracle SQL statements are translated
into Oracle SQL dialects. This schema also contains translations of error codes,
SQLSTATES, and error messages to be returned when errors occur during the SQL
execution.

When migrating a client application with non-Oracle SQL statements to Oracle, the
user creates a SQL Translation Profile and configures it to translate the SQL
statements and errors for the application. At run time, the application sets the
translation profile in the Oracle database to translate its SQL statements and errors.

SQL Translator

The SQL Translator is a software component, provided by Oracle or third-party
vendors, which can be installed in Oracle Database. It translates the SQL statements

Glossary-2

Glossary

of a client program before they are processed by the Oracle Database SQL compiler.
If an error results from translated SQL statement execution, then Oracle Database
SQL compiler generates an Oracle error message.

SQLSTATE

A status parameter defined by the ANSI SQL standard. It is a 5-character string that
indicates the status of a SQL operation. Some of these values are:

* 00XXX: Unqualified Successful Completion
e 01XXX: Warning

* 02XXX: No Data

e 07XXX: Dynamic SQL Error

* 08XXX: Connection Exception

e 09XXX: Triggered Action Exception

ORACLE Glossary-3

Index

A

administrative routines APls, 7-8
ATTR_RAISE_TRANSLATION_ERROR, 4-2

C

client library initialization and termination APIs,
7-8

connection management APls, 7-8

createStatement(), 8-3

creating identity columns, 1-3

D

data types,mapping, 7-1
datetime and interval data types, 7-7

E

enhanced SQL to PL/SQL bind handling, 1-6
error handling, 7-7
error reporting APIs, 7-8

F

features supporting migration, 1-1

G

JDBC API (continued)
configuration file (continued)
SQLErrorTranslation.xml, 8-13
methods
createStatement(), 8-3
getSQLTranslationVersions(), 8-12
prepareCall(), 8-6
prepareStatement(), 8-9
OracleTranslatingConnection interface, 8-2
translation properties, 8-1
sqlErrorTranslationFile, 8-2
sqlTranslationProfile, 8-1
JDBC driver support for application migration, 1-8
JDBC support for implicit results, 1-3

L

liboramysq! driver, 6-1
liboramysq| library
connecting, 6-2
connecting to Oracle Database, 6-5
error handling, 6-5
expected differences, 6-5
globalization, 6-5
migration overview, 6-2
supported platforms, 6-5
usage, 6-3

M

getSQLTranslationVersions(), 8-12

identity columns, 1-2

implicit statement results, 1-3

information routines APls, 7-8

interface
OracleTranslatingConnection, 8-2

J

JDBC API, 8-1
configuration file, 8-13

ORACLE

mapping data types, 7-1
Oracle MySQL client library driver, 7-1
mapping Oracle data types to MySQL data types,
7-1
methods
createStatement(), 8-3
getSQLTranslationVersions(), 8-12
prepareCall(), 8-6
prepareStatement(), 8-9
Migrating a Sybase JDBC application, 5-1
capturing migration, 5-3
converting migration, 5-6, 5-7
generating migration, 5-9
moving the data, 5-10
setting up migration, 5-2

Index-1

migration support for other database vendors,
1-10
miscellaneous APIs, 7-8
my_init(), 7-9
MySQL APlIs, 7-8
MySQL client library driver
installation, 6-2
mysql_affected_rows(), 7-10
mysql_autocommit(), 7-10
mysql_change_user(), 7-10
mysql_character_set_name(), 7-10
mysql_close(), 7-11
mysql_commit(), 7-11
mysql_connect(), 7-11
mysql_create_db(), 7-11
mysql_data_seek(), 7-11
mysql_debug_info(), 7-12
mysql_debug(), 7-11
mysql_drop_db(), 7-12
mysql_dump_debug_info(), 7-12
mysql_eof(), 7-12
mysql_errno(), 7-12
mysql_error(), 7-12
mysql_escape_string(), 7-13
mysql_fetch_field_direct(), 7-13
mysql_fetch_field(), 7-13
mysql_fetch_fields(), 7-13
mysql_fetch_lengths(), 7-14
mysql_fetch_row(), 7-14
mysql_field_count(), 7-14
mysql_field_seek(), 7-14
mysql_field_tell(), 7-14
mysql_free_result(), 7-14
mysql_get_character_set_info(), 7-15
mysql_get_client_info(), 7-15
mysql_get_client_version(), 7-15
mysql_get_host_info(), 7-15
mysql_get_proto_info(), 7-15
mysql_get_server_info(), 7-15
mysql_get_server_version(), 7-16
mysql_get_ssl_cipher(), 7-16
mysql_hex_string(), 7-16
mysql_info(), 7-16
mysql_init(), 7-16
mysql_insert_id(), 7-17
mysql_kill(), 7-17
mysql_library_end(), 7-17
mysql_library_init(), 7-17
mysql_list_dbs(), 7-17
mysql_list_fields(), 7-18
mysql_list_processes(), 7-18
mysql_list_tables(), 7-18
mysql_more_results(), 7-18
mysql_next_result(), 7-19
mysql_num_fields(), 7-19

ORACLE

Index

mysql_num_rows(), 7-19
mysql_options(), 7-19
mysql_ping(), 7-19
mysql_query(), 7-19
mysql_read_query_result(), 7-20
mysql_real_connect(), 7-20
mysql_real_escape_string(), 7-20
mysql_real_query(), 7-20
mysql_refresh(), 7-21
mysql_reload(), 7-21
mysql_rollback(), 7-21
mysql_row_seek(), 7-21
mysql_row_tell(), 7-21
mysql_select_db(), 7-21
mysql_send_query(), 7-22
mysql_server_end(), 7-22
mysql_server_init(), 7-22
mysql_set_character_set(), 7-22
mysql_set_local_infile_default(), 7-22
mysql_set_local_infile_handler(), 7-22
mysql_set_server_option(), 7-23
mysql_shutdown(), 7-23
mysql_sqlstate(), 7-23
mysql_ssl_set(), 7-23
mysql_stat(), 7-23
mysql_stmt_affected_rows(), 7-24
mysql_stmt_attr_get(), 7-24
mysql_stmt_attr_set(), 7-24
mysql_stmt_bind_param(), 7-24
mysql_stmt_bind_result(), 7-24
mysql_stmt_close(), 7-24
mysql_stmt_data_seek(), 7-25
mysql_stmt_errno(), 7-25
mysql_stmt_error(), 7-25
mysql_stmt_execute(), 7-25
mysql_stmt_fetch_column(), 7-25
mysql_stmt_fetch(), 7-25
mysql_stmt_field_count(), 7-26
mysql_stmt_free_result(), 7-26
mysql_stmt_init(), 7-26
mysql_stmt_insert_id(), 7-26
mysql_stmt_next_result(), 7-26
mysql_stmt_num_rows(), 7-26
mysql_stmt_param_count(), 7-27
mysql_stmt_param_metadata(), 7-27
mysql_stmt_prepare(), 7-27
mysql_stmt_reset(), 7-27
mysql_stmt_result_metadata(), 7-27
mysql_stmt_row_seek(), 7-27
mysql_stmt_row_tell(), 7-27
mysql_stmt_send_long_data(), 7-28
mysql_stmt_sqlstate(), 7-28
mysql_stmt_store_result(), 7-28
mysql_store_result(), 7-28
mysql_thread_end(), 7-28

Index-2

mysql_thread_id(), 7-29

mysql_thread_init(), 7-29
mysql_thread_safe(), 7-29
MYSQL_TYPE_BLOB data type, 7-3
MYSQL_TYPE_DATE data type, 7-3
MYSQL_TYPE_DATETIME data type, 7-4
MYSQL_TYPE_DOUBLE data type, 7-4
MYSQL_TYPE_FLOAT data type, 7-4
MYSQL_TYPE_LONG data type, 7-4
MYSQL_TYPE_LONG_BLOB data type, 7-4
MYSQL_TYPE_LONGLONG data type, 7-4
MYSQL_TYPE_MEDIUM_BLOB data type, 7-5
MYSQL_TYPE_NEWDECIMAL data type, 7-5
MYSQL_TYPE_SHORT data type, 7-5
MYSQL_TYPE_STRING data type, 7-5
MYSQL_TYPE_TIME data type, 7-6
MYSQL_TYPE_TIMESTAMP data type, 7-6
MYSQL_TYPE_TINY data type, 7-6
MYSQL_TYPE_TINY_BLOB data type, 7-6
MYSQL_TYPE_VAR_STRING data type, 7-6
mysql_use_result(), 7-29
mysql_warning_count(), 7-29

Index

P

N

native SQL support for query row limits and row
offsets, 1-7

@)

OCI support for implicit results, 1-4
ODBC driver support for application migration,
1-8

ODBC support for implicit results, 1-5

OEM tuning and performance packs, 1-9

Oracle Database Gateways, 1-9

Oracle GoldenGate, 1-9

Oracle MySQL client library driver, 7-1

Oracle SQL developer
migration support, 3-1
set up, 3-2

Oracle SQL Developer, 1-9

OracleTranslatingConnection interface, 8-2
createStatement() method, 8-3
getSQLTranslationVersions() method, 8-12
prepareCall() method, 8-6
prepareStatement() method, 8-9

ORACLE

permissions for installing the SQL translator, 3-12
prepareCall(), 8-6

prepared statements APIs, 7-8
prepareStatement(), 8-9

products supporting migration, 1-9

R

result set processing APIs, 7-8

S

SQL translation framework, 1-1
architecture, 2-2
configuration, 3-1, 3-10
installation, 3-1, 3-10
SQL translation profile, 2-1
SQL translator, 2-1
use, 2-2
when to use, 2-3
SQL translation of JDBC aplications, 4-1
SQL translation of JDBC applications, 4-1
error message translation, 4-1
error translation, 4-3
execution of translated Oracle dialect query,
4-2
parameter marker conversion, 4-2
SQL translation profile, 4-1
SQL translation of ODBC applications, 4-1, 4-4
error message translation, 4-5
SQL translation profile, 4-4
SQL translation profile
set up, 3-10
SQLErrorTranslation.xml, 8-13
sqlErrorTranslationFile, 8-2
sqlTranslationProfile, 8-1
SqlTranslationVersion enumerated values, 8-3
statement construction and execution APIs, 7-8

T

transaction control APls, 7-8

translation properties
sqlErrorTranslationFile, 8-2
sqlTranslationProfile, 8-1

	Contents
	List of Tables
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Conventions

	1 Introduction to Tools and Products that Support Migration
	Oracle Database Features for Migration Support
	SQL Translation Framework
	Support for MySQL Applications
	Restrictions on SQL Statement Translation

	Support for Identity Columns
	Creating Identity Columns

	Implicit Statement Results
	JDBC Support for Implicit Results
	Processing Implicit Results in JDBC

	OCI Support for Implicit Results
	Processing Implicit Results in OCI

	ODBC Support for Implicit Results
	Processing Implicit Results in ODBC

	Enhanced SQL to PL/SQL Bind Handling
	Invoking a Subprogram with a Nested Table Parameter

	Native SQL Support for Query Row Limits and Row Offsets
	Limiting Bulk Selection

	JDBC Driver Support for Application Migration
	ODBC Driver Support for Application Migration

	Other Oracle Products that Enable Migration
	OEM Tuning and Performance Packs
	Oracle GoldenGate
	Oracle Database Gateways
	Oracle SQL Developer

	Migration Support for Other Database Vendors
	Application Support in Third-Party Databases
	Third-Party Database Version Support

	2 SQL Translation Framework Overview
	Architecture of SQL Translation Framework
	How to Use SQL Translation Framework
	When to Use SQL Translation Framework

	3 SQL Translation Framework Configuration
	Installing and Configuring SQL Translation Framework with Oracle SQL Developer
	Overview of Oracle SQL Developer Migration Support
	Setting Up Oracle SQL Developer 3.2 for Windows
	Setting Up Oracle SQL Developer 3.2 Startup
	Starting Oracle SQL Developer

	Creating a Connection to Oracle Database
	Testing SQL Translation
	Creating a Translation Profile and Installing SQL Translator
	Installing SQL Translator
	Creating a Translation Profile

	Using the SQL Translator Profile

	Installing and Configuring SQL Translation Framework from Command Line
	Installing Oracle Sybase Translator
	Setting up a SQL Translation Profile
	Setting Up a Database Service to Use the SQL Translation Profile
	Setting Up a Database Service in Oracle Real Application Clusters

	Testing Sybase SQL Translation Using the SQL Translation Profile

	Granting Necessary Permissions for Installing the SQL Translator

	4 SQL Translation of JDBC and ODBC Applications
	SQL Translation of JDBC Applications
	SQL Translation Profile
	Error Message Translation
	Converting JDBC Standard Parameter Markers
	Executing the Translated Oracle Dialect Query
	Error Translation
	Using JDBC Driver for SQL Translation

	SQL Translation of ODBC Applications
	SQL Translation profile
	Error Message Translation
	Translating Error Messages

	5 Example: Application Migration Using SQL Translation Framework
	Migrating a Sybase JDBC Application
	Application Overview
	Setting Up Migration
	Capturing Migration
	Setting Migration Preferences
	Converting Migration
	Generating a Migration
	Creating a Target Oracle User

	Moving the Data

	Generating Migration Reports

	6 MySQL Client Library Driver for Oracle
	Introduction to MySQL Client Library Driver for Oracle
	Connecting to MySQL

	Installation and First Use of MySQL Client Library Driver for Oracle
	Overview of Migration with MySQL Client Library Driver for Oracle
	Using MySQL Client Library Driver for Oracle
	Relinking the Application with the liboramysql Driver
	Connecting to Oracle Database
	Supported Platforms
	Error Handling
	Globalization
	Expected Differences

	7 API Reference for Oracle MySQL Client Library Driver
	Mapping Data Types
	Mapping Oracle Data Types to MySQL Data Types
	Data Type Conversions for MySQL Program Variable Data Types
	MYSQL_TYPE_BLOB
	MYSQL_TYPE_DATE
	MYSQL_TYPE_DATETIME
	MYSQL_TYPE_DOUBLE
	MYSQL_TYPE_FLOAT
	MYSQL_TYPE_LONG
	MYSQL_TYPE_LONG_BLOB
	MYSQL_TYPE_LONGLONG
	MYSQL_TYPE_MEDIUM_BLOB
	MYSQL_TYPE_NEWDECIMAL
	MYSQL_TYPE_SHORT
	MYSQL_TYPE_STRING
	MYSQL_TYPE_TIME
	MYSQL_TYPE_TIMESTAMP
	MYSQL_TYPE_TINY
	MYSQL_TYPE_TINY_BLOB
	MYSQL_TYPE_VAR_STRING

	Data Type Conversions for MySQL External Data Types (LOB Data Type Descriptors)
	Data Type Conversions for Datetime and Interval Data Types

	Error Handling
	Available Oracle Support for MySQL APIs
	my_init()
	mysql_affected_rows()
	mysql_autocommit()
	mysql_change_user()
	mysql_character_set_name()
	mysql_close()
	mysql_commit()
	mysql_connect()
	mysql_create_db()
	mysql_data_seek()
	mysql_debug()
	mysql_debug_info()
	mysql_drop_db()
	mysql_dump_debug_info()
	mysql_eof()
	mysql_errno()
	mysql_error()
	mysql_escape_string()
	mysql_fetch_field()
	mysql_fetch_field_direct()
	mysql_fetch_fields()
	mysql_fetch_lengths()
	mysql_fetch_row()
	mysql_field_count()
	mysql_field_seek()
	mysql_field_tell()
	mysql_free_result()
	mysql_get_character_set_info()
	mysql_get_client_info()
	mysql_get_client_version()
	mysql_get_host_info()
	mysql_get_proto_info()
	mysql_get_server_info()
	mysql_get_server_version()
	mysql_get_ssl_cipher()
	mysql_hex_string()
	mysql_info()
	mysql_init()
	mysql_insert_id()
	mysql_kill()
	mysql_library_end()
	mysql_library_init()
	mysql_list_dbs()
	mysql_list_fields()
	mysql_list_processes()
	mysql_list_tables()
	mysql_more_results()
	mysql_next_result()
	mysql_num_fields()
	mysql_num_rows()
	mysql_options()
	mysql_ping()
	mysql_query()
	mysql_read_query_result()
	mysql_real_connect()
	mysql_real_escape_string()
	mysql_real_query()
	mysql_refresh()
	mysql_reload()
	mysql_rollback()
	mysql_row_seek()
	mysql_row_tell()
	mysql_select_db()
	mysql_send_query()
	mysql_server_end()
	mysql_server_init()
	mysql_set_character_set()
	mysql_set_local_infile_default()
	mysql_set_local_infile_handler()
	mysql_set_server_option()
	mysql_shutdown()
	mysql_sqlstate()
	mysql_ssl_set()
	mysql_stat()
	mysql_stmt_affected_rows()
	mysql_stmt_attr_get()
	mysql_stmt_attr_set()
	mysql_stmt_bind_param()
	mysql_stmt_bind_result()
	mysql_stmt_close()
	mysql_stmt_data_seek()
	mysql_stmt_errno()
	mysql_stmt_error()
	mysql_stmt_execute()
	mysql_stmt_fetch()
	mysql_stmt_fetch_column()
	mysql_stmt_field_count()
	mysql_stmt_free_result()
	mysql_stmt_init()
	mysql_stmt_insert_id()
	mysql_stmt_next_result()
	mysql_stmt_num_rows()
	mysql_stmt_param_count()
	mysql_stmt_param_metadata()
	mysql_stmt_prepare()
	mysql_stmt_reset()
	mysql_stmt_result_metadata()
	mysql_stmt_row_seek()
	mysql_stmt_row_tell()
	mysql_stmt_send_long_data()
	mysql_stmt_sqlstate()
	mysql_stmt_store_result()
	mysql_store_result()
	mysql_thread_end()
	mysql_thread_id()
	mysql_thread_init()
	mysql_thread_safe()
	mysql_use_result()
	mysql_warning_count()

	8 API Reference for SQL Translation of JDBC Applications
	Translation Properties
	sqlTranslationProfile
	sqlErrorTranslationFile

	OracleTranslatingConnection Interface
	SqlTranslationVersion
	createStatement()
	prepareCall()
	prepareStatement()
	getSQLTranslationVersions()

	Error Translation Configuration File

	Glossary
	adapter
	custom SQL translation
	data integration
	data integration framework
	database schema migration
	error translation
	migration
	migration repository
	Oracle Database Gateways
	Oracle GoldenGate
	Oracle SQL*Loader
	Oracle SQL Developer Migration Wizard
	SQL dialect
	SQL Translation Profile
	SQL Translator
	SQLSTATE

	Index

