Oracle® OLAP
Java API Developer's Guide

18c
E91525-01
February 2018

ORACLE"

Oracle OLAP Java API Developer's Guide, 18c

E91525-01

Copyright © 2000, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: David McDermid

Contributors: David Greenfield, Jim Hartsing, Scott Feinstein, Anne Murphy, Richard Samuels, Steve
Mesropian, Chuck Venezia, Afsaneh Koochek

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience X
Documentation Accessibility X
Related Documents X
Conventions Xi

Changes in This Release for Oracle OLAP Java API Developer's
Guide

Changes in Oracle Database 12c Release 1 (12.1) Xii

1 Introduction to the OLAP Java API

OLAP Java API Overview 1-1
What the OLAP Java API Can Do 1-1
Describing the Classes in the OLAP Java API 1-2
Describing the Dimensional Data Model 1-3
Implementing the Dimensional Data Model 1-5
Organizing the Data for OLAP 1-5

Accessing Data Through the OLAP Java API 1-5
Creating Queries 1-6
Specifying Dimension Members 1-6
Creating Cursors 1-6

Sample Schema for OLAP Java APl Examples 1-6

Tasks That an OLAP Java API Application Performs 1-8

2 Understanding OLAP Java API Metadata

Overview of OLAP Java API Metadata Classes 2-1
Identifying, Describing, and Classifying Metadata Objects 2-3
Identifying Objects 2-3
Getting and Setting Names 2-3
Describing Unique Identifiers 2-4

ORACLE iii

Supporting Legacy Metadata Objects 2-4

Using Descriptions 2-5
Using Classifications 2-8
Providing Metadata Objects 2-8
Describing Metadata Providers 2-8
Getting Metadata Objects by ID 2-9
Exporting and Importing Metadata as XML Templates 2-9
Representing Schemas 2-12
Representing the Root Schema 2-12
Representing Database Schemas 2-13
Representing Organizational Schemas 2-14
Providing Access to Data Sources 2-14
Representing Cubes and Measures 2-15
Representing Cubes 2-15
Representing Measures 2-17
Representing Dimensions, Levels, and Hierarchies 2-18
Representing Dimensions 2-19
Representing Dimension Levels 2-20
Representing Hierarchies 2-20
Representing Hierarchy Levels 2-22
Representing Dimension Attributes 2-22
Describing the MdmAttribute Class 2-23
Describing the MdmBaseAttribute Class 2-24
Describing the MdmDerivedAttribute Class 2-28

Using OLAP Views 2-28
Getting Cube View and View Column Names 2-28

Getting Dimension and Hierarchy View and View Column Names 2-29

Using OLAP View Columns 2-30

Using Source Objects 2-34

3 Discovering Metadata

Connecting to Oracle OLAP 3-1
Prerequisites for Connecting 3-1
Establishing a Connection 3-1
Creating a JDBC Connection 3-2
Creating a DataProvider and a UserSession 3-2
Closing the Connection and the DataProvider 3-3
Overview of the Procedure for Discovering Metadata 3-3
Purpose of Discovering the Metadata 3-3
Steps in Discovering the Metadata 3-4

ORACLE

Creating an MdmMetadataProvider 3-4

Getting the MdmSchema Objects 3-4
Getting the Contents of an MdmSchema 3-6
Getting the Objects Contained by an MdmPrimaryDimension 3-7
Getting the Hierarchies and Levels of an MdmPrimaryDimension 3-7
Getting the Attributes for an MdmPrimaryDimension 3-8
Getting the Source for a Metadata Object 3-9

4 Creating Metadata and Analytic Workspaces

Overview of Creating and Mapping Metadata 4-1
Creating an Analytic Workspace 4-2
Creating the Dimensions, Levels, and Hierarchies 4-2
Creating and Mapping Dimensions 4-3
Creating and Mapping Dimension Levels 4-3
Creating and Mapping Hierarchies 4-4
Creating and Mapping an MdmLevelHierarchy 4-4
Creating and Mapping an MdmValueHierarchy 4-5
Creating Attributes 4-7
Creating Cubes and Measures 4-8
Creating Cubes 4-8
Creating and Mapping Measures 4-9
Committing Transactions 4-10
Exporting and Importing XML Templates 4-11
Building an Analytic Workspace 4-11

5 Understanding Source Objects

Overview of Source Objects 5-1
Kinds of Source Objects 5-2
Characteristics of Source Objects 5-3
Elements and Values of a Source 5-3
Data Type of a Source 5-3
Type of a Source 5-4
Source ldentification and SourceDefinition of a Source 5-5
Inputs and Outputs of a Source 5-5
Describing the join Method 5-6
Describing the joined Parameter 5-6
Describing the comparison Parameter 5-7
Describing the comparisonRule Parameter 5-7
Describing the visible Parameter 5-7

ORACLE Y

Outputs of a Source 5-7
Producing a Source with an Output 5-8

Using COMPARISON_RULE_SELECT 5-9

Using COMPARISON_RULE_REMOVE 5-9
Producing a Source with Two Outputs 5-10

Hiding an Output 5-11

Inputs of a Source 5-11
Primary Source Objects with Inputs 5-12
Deriving a Source with an Input 5-12

Type of Inputs 5-13
Matching a Source with an Input 5-13
Matching the Input of the Source for an MdmAttribute 5-13
Matching the Inputs of a Measure 5-14

Using the value Method to Derive a Source with an Input 5-15

Using the value Method to Select Values of a Source 5-16

Using the extract Method to Combine Elements of Source Objects 5-17
Describing Parameterized Source Objects 5-18

6 Making Queries Using Source Methods

Describing the Basic Source Methods 6-1
Using the Basic Methods 6-2
Using the alias Method 6-2
Using the distinct Method 6-4
Using the join Method 6-5
Using the position Method 6-6
Using the recursiveJoin Method 6-7
Using the value Method 6-10
Selecting Elements of a Source 6-10
Reversing a Relation 6-11

Using Other Source Methods 6-13
Using the extract Method 6-13
Creating a Cube and Pivoting Edges 6-14
Drilling Up and Down in a Hierarchy 6-17
Sorting Hierarchically by Measure Values 6-19
Using NumberSource Methods To Compute the Share of Units Sold 6-20
Selecting Based on Time Series Operations 6-21
Selecting a Set of Elements Using Parameterized Source Objects 6-23

ORACLE

Vi

7 Using a TransactionProvider

About Creating a Metadata Object or a Query in a Transaction 7-1
Types of Transaction Objects 7-2
Committing a Transaction 7-2
About Transaction and Template Objects 7-3
Beginning a Child Transaction 7-3
About Rolling Back a Transaction 7-4
Getting and Setting the Current Transaction 7-6

Using TransactionProvider Objects 7-6

8 Understanding Cursor Classes and Concepts

Overview of the OLAP Java API Cursor Objects 8-1
Creating a Cursor 8-1
Sources For Which You Cannot Create a Cursor 8-1
Cursor Objects and Transaction Objects 8-2

Cursor Classes 8-2
Structure of a Cursor 8-2
Specifying the Behavior of a Cursor 8-4

CursorinfoSpecification Classes 8-5

CursorManager Class 8-6
Updating the CursorinfoSpecification for a CursorManager 8-6

About Cursor Positions and Extent 8-7
Positions of a VValueCursor 8-7
Positions of a CompoundCursor 8-8
About the Parent Starting and Ending Positions in a Cursor 8-12
What is the Extent of a Cursor? 8-12

About Fetch Sizes 8-13

o Retrieving Query Results

Retrieving the Results of a Query 9-1

Getting Values from a Cursor 9-2
Navigating a CompoundCursor for Different Displays of Data 9-6
Specifying the Behavior of a Cursor 9-12
Calculating Extent and Starting and Ending Positions of a Value 9-13
Specifying a Fetch Size 9-15

ORACLE vii

10 Creating Dynamic Queries

About Template Objects 10-1
About Creating a Dynamic Source 10-1
About Translating User Interface Elements into OLAP Java API Objects 10-2
Overview of Template and Related Classes 10-2
What Is the Relationship Between the Classes That Produce a Dynamic
Source? 10-2
Template Class 10-3
MetadataState Interface 10-3
SourceGenerator Interface 10-3
DynamicDefinition Class 10-4
Designing and Implementing a Template 10-4
Implementing the Classes for a Template 10-5
Implementing an Application That Uses Templates 10-9
A Setting Up the Development Environment
Overview A-1
Required Class Libraries A-1
Obtaining the Class Libraries A-2
B SingleSelectionTemplate Class
Code for the SingleSelectionTemplate Class B-1

Index

ORACLE"

viii

List of Figures

2-1 The oracle.olapi.metadata Packages

2-2 MdmObject and MdmDescription Associations

2-3 Methods for Getting and Setting Descriptions Before 11g
2-4 Associations Between MdmMetadataProvider and the MdmSchema Subclasses
2-5 Associations of Dimensional Data Model Classes

2-6 MdmCube and Associated Objects

2-7 Regular, Ragged, and Skip-level Hierarchies

8-1 Structure of the queryCursor CompoundCursor

8-2 Cursor Positions in queryCursor

8-3 Crosstab Display of queryCursor

8-4 A Source and Two Cursors for Different Views of the Values
ORACLE

2-2
2-7
2-8
2-13
2-15
2-17
2-21

8-8
8-9
8-13

Preface

Preface

Audience

Oracle OLAP Java API Developer's Guide introduces Java programmers to the Oracle
OLAP Java API, which is the Java application programming interface for Oracle OLAP.
Through Oracle OLAP, the OLAP Java API provides access to data stored in an
Oracle database, particularly data in an analytic workspace. The OLAP Java API
capabilities for creating and maintaining analytic workspaces, and for querying,
manipulating, and presenting data are particularly suited to applications that perform
online analytical processing (OLAP) operations.

The preface contains these topics:

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Oracle OLAP Java API Developer's Guide is intended for Java programmers who are
responsible for creating applications that do one or more of the following:

* Implement an Oracle OLAP metadata model.
» Define, build, and maintain analytic workspaces.
e Perform analysis using Oracle OLAP.

To use this manual, you should be familiar with Java, relational database management
systems, data warehousing, OLAP concepts, and Oracle OLAP.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: / / www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nfo or visit htt p: // ww. or acl e. con pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Related Documents

ORACLE

For more information, see these Oracle resources:

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

» Oracle OLAP Java API Reference
e Oracle OLAP User's Guide
e Oracle OLAP DML Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE' yi

Changes in This Release for Oracle OLAP Java AP| Developer's Guide

Changes in This Release for Oracle OLAP
Java API Developer's Guide

This preface lists changes in Oracle OLAP Java API Developer's Guide.

Changes in Oracle Database 12¢ Release 1 (12.1)

The following are changes in Oracle OLAP Java API Developer's Guide for Oracle
Database 12c Release 1 (12.1).

Desupported Features

Some features previously described in this document are desupported in Oracle
Database 12c¢ Release 1 (12.1). See Oracle Database Upgrade Guide for information
on desupported features.

ORACLE Xii

Introduction to the OLAP Java API

This chapter introduces the Oracle OLAP Java application programming interface
(API). The chapter includes the following topics:

* OLAP Java API Overview

e Accessing Data Through the OLAP Java API

e Sample Schema for OLAP Java API Examples

e Tasks That an OLAP Java API Application Performs

OLAP Java API Overview

The Oracle OLAP Java APl is an application programming interface that provides
access to the online analytic processing (OLAP) technology in Oracle Database with
the OLAP option. This topic lists operations that an OLAP Java API client application
can perform, describes the classes in the OLAP Java API, describes the objects in a
dimensional data model, and discusses organizing data for online analytical
processing.

For a description of the advantages of OLAP technology, see Oracle OLAP User's
Guide. That document describes the capabilities that Oracle OLAP provides for the
analysis of multidimensional data by business intelligence and advanced analytical
applications. It describes in depth the dimensional data model, and it discusses the
database administration and management tasks related to Oracle OLAP.

What the OLAP Java APl Can Do

Using the OLAP Java API, your can develop client applications that do the following
operations.

» Establish one or more user sessions in a JDBC connection to an Oracle Database
instance. Multiple user sessions can share the same connection and the same
cache of metadata objects.

* Manage OLAP transactions with the database.

* Implement a dimensional data model using OLAP metadata objects.
» Create and maintain analytic workspaces.

» Create logical metadata objects and map them to relational sources.

» Deploy the metadata objects as an analytic workspace or as relational tables and
views and commit the objects to the database.

* Explore the metadata to discover the data that is available for viewing or for
analysis.

» Construct analytical queries of the multidimensional data. Enable end users to
create queries that specify and manipulate the data according to the needs of the
user (for example, selecting, aggregating, and calculating data).

ORACLE 1-1

Chapter 1
OLAP Java API Overview

* Modify queries, rather than totally redefine them, as application users refine their
analyses.

* Retrieve query results that are structured for display in a multidimensional format.

For more information on some of these operations, see "Tasks That an OLAP Java
API Application Performs".

Describing the Classes in the OLAP Java API

ORACLE

The OLAP Java API has classes that represent the following types of objects.

e User sessions

e Transactions

* Metadata objects

e Build items, processes, specifications, and commands
e Queries

e Cursors that retrieve the data of a query

» Expressions that specify data objects, such as a column in a relational table or
view, or that specify a function or command that operates on data

Table 1-1 lists packages that contain the majority of the OLAP Java API classes.
These packages are under the oracl e. ol api package. The table contains brief
descriptions of the package contents.

Table 1-1 Packages of the OLAP Java API under oracle.olapi

]
Package Description

dat a. cur sor Contains classes that represent cursor managers and cursors
that retrieve the data specified by a Sour ce object. For
information on Cur sor objects, see Understanding Cursor
Classes and Concepts and Retrieving Query Results.

dat a. source Contains classes that represent data sources and cursor
specifications. You use Sour ce objects to create queries of the
data store. With the Tenpl at e class you can incrementally build
a Sour ce object that represents a query that you can dynamically
modify. For information on Sour ce objects, see Understanding
Source Objects and Making Queries Using Source Methods. For
information on Tenpl at e objects, see Creating Dynamic Queries.

met adat a Contains classes that represent metadata objects, classes that
met adat a. depl oyment map the metadata objects to relational data sources, and
. classes that deploy the metadata objects in an analytic
met adat a. mppi ng workspace or in relational database structures. For a description
net adat a. mim of these packages, see Understanding OLAP Java API
Metadata. For information on using the classes in these
packages, see Discovering Metadata and Creating Metadata
and Analytic Workspaces.

resource Contains classes that support the internationalization of
messages for Except i on classes.

session Contains a class that represents a session in a connection to an
Oracle database.

1-2

Chapter 1
OLAP Java API Overview

Table 1-1 (Cont.) Packages of the OLAP Java API under oracle.olapi

__|
Package Description

synt ax Contains classes that represent the items and commands that
specify how Oracle OLAP builds analytic workspace objects and
classes that implement a syntax for creating SQL-like
expressions. You use Expr essi on objects in mapping metadata
objects to relational data sources such as columns in a table or a
view. You also use Expr essi on objects to specify calculations
and analytical operations for some metadata objects.

transaction Contains classes that represent transactions with Oracle OLAP
in an Oracle Database instance. You use Transact i on objects to
commit changes to the database. For information on
Transact i on objects, see Using a TransactionProvider.

The OLAP Java API also has packages organized under the oracl e. expr ess package.
These packages date from the earliest versions of the API. The classes that remain in
these packages are mostly Excepti on classes for exceptions that occur during
interactions between Oracle OLAP and a client application.

For information on obtaining the OLAP Java API software and on the requirements for
using it to develop applications, see Setting Up the Development Environment.

Describing the Dimensional Data Model

ORACLE

Data warehousing and OLAP applications are based on a multidimensional view of
data. This view is implemented in a dimensional data model that includes the following
dimensional objects.

Cubes

Cubes are containers for measures that have the same set of dimensions. A cube
usually corresponds to a single relational fact table or view. The measures of a cube
contain facts and the dimensions give shape to the fact data. Typically, the
dimensions form the edges of the cube and the measure data is the body of the cube.
For example, you could organize data on product units sold into a cube whose edges
contain values for members from time, product, customer, and channel dimensions
and whose body contains values from a measure of the quantity of units sold and a
measure of sales amounts.

The OLAP concept of a cube edge is not represented by a metadata object in the
OLAP Java API, but edges are often incorporated into the design of applications that
use the OLAP Java API. Each edge contains values of members from one or more
dimensions. Although there is no limit to the number of edges on a cube, data is often
organized for display purposes along three edges, which are referred to as the row
edge, column edge, and page edge.

Measures

Measures contain fact data in a cube. The measure values are organized and
identified by dimensions. Measures are usually multidimensional. Each measure
value is identified by a unique set of dimension members. This set of dimension
members is called a tuple.

1-3

ORACLE

Chapter 1
OLAP Java API Overview

Dimensions

Dimensions contain lists of unique values that identify and categorize data in a
measure. Commonly-used dimensions are customers, products, and times. Typically,
a dimension has one or more hierarchies that organize the dimension members into
parent-child relationships.

By specifying dimension members, measures, and calculations to perform on the
data, end users formulate business questions and get answers to their queries. For
example, using a time dimension that categorizes data by month, a product dimension
that categorizes data by unit item, and a measure that contains data for the quantities
of product units sold by month, you can formulate a query that asks if sales of a
product unit were higher in January or in June.

Hierarchies

Hierarchies are components of a dimension that organize dimension members into
parent-child relationships. Typically, in the user interface of a client application, an
end user can expand or collapse a hierarchy by drilling down or up among the parents
and children. The measure values for the parent dimension members are
aggregations of the values of the children.

A dimension can have more than one hierarchy. For example, a time dimension could
have a calendar year hierarchy and a fiscal year hierarchy. A hierarchy can be level-
based or value-based.

In a level-based hierarchy, a parent must be in a higher level than the children of that
parent. In a cube, the measure values for the parents are typically aggregated from
the values of the children. For example, a time dimension might have levels for year,
guarter, and month. The month level contains the base data, which is the most
detailed data. The measure value for a quarter is an aggregation of the values of the
months that are the children of the quarter and the measure value for a year is the
aggregation of the quarters that are children of the year. Typically each level is
mapped to a different column in the relational dimension table.

In a value-based hierarchy, the parent and the child dimension members typically
come from the same column in the relational table. Another column identifies the
parent of a member. For example, a value hierarchy could contain all employees of a
company and identify the manager for each employee that has one. All employees,
including managers, would come from the same column. Another column would
contain the managers of the employees.

Levels

Levels are components of a level-based hierarchy. A level can be associated with
more than one hierarchy. A dimension member can belong to only one level.

A level typically corresponds to a column in a dimension table or view. The base level
is the primary key.

Attributes

Attributes contain information related to the members of a dimension. An end user
can use an attribute to select data. For example, an end user might select a set of
products by using an attribute that has a descriptive name of each product. An
attribute is contained by a dimension.

Queries

A query is a specification for a particular set of data. The term query in the OLAP Java
API refers to a Sour ce object that specifies a set of data and can include aggregations,
calculations, or other operations to perform using the data. The data and the
operations on it define the result set of the query. In this documentation, the general
term query refers to a Sour ce object.

1-4

Chapter 1
Accessing Data Through the OLAP Java API

The API has a Query class in the oracl e. ol api . synt ax package. A Query represents a
multirow, multicolumn result set that is similar to a relational table, a SQL SELECT
statement, or an OLAP function. You use a Query object in mapping a dimension or
measure to a relational table or view.

Implementing the Dimensional Data Model

In the OLAP Java API, the dimensional data objects are represented by
Multidimensional Model (MDM) classes. These classes are in the

oracl e. ol api . met adat a. mdimpackage. Related classes are in the oracl e. ol api . met adat a
package and the other packages under it. For detailed information about those
classes, see Understanding OLAP Java API Metadata.

Organizing the Data for OLAP

The OLAP Java API makes it possible for Java applications (including applets) to
access data that resides in an Oracle data warehouse. A data warehouse is a
relational database that is designed for query and analysis, rather than for transaction
processing. Warehouse data often conforms to a star schema, which is a dimensional
data model for a relational database. A star schema consists of one or more fact
tables and one or more dimension tables. The fact tables have columns that contain
foreign keys to the dimension tables. Typically, a data warehouse is created from a
transaction processing database by an extraction transformation transport (ETT) tool.

For the data in a data warehouse to be accessible to an OLAP Java API application, a
database administrator must ensure that the data warehouse is configured according
to an organization that is supported by Oracle OLAP. The star schema is one such
organization, but not the only one.

Once the data is organized in the warehouse, you can use an OLAP Java API
application to design an OLAP dimensional data model of cubes, measures,
dimensions, and so on, and to create the logical OLAP metadata objects that
implement the model. You map the metadata objects to data in the warehouse and
build an analytic workspace. Building the analytic workspace populates the OLAP
views and other storage structures with the data that the OLAP metadata objects
represent. You can also use Analytic Workspace Manager to do the same tasks.

An OLAP Java API application can get the OLAP metadata objects created either by
Analytic Workspace Manager or through the OLAP Java API. It can use the metadata
objects to create queries that operate on the data in the warehouse.

The collection of warehouse data in an analytic workspace is the data store to which
the OLAP Java API gives access. Of course, the scope of the data that a user has
access to is limited by the privileges granted to the user by the database administrator.

In addition to ensuring that data and metadata have been prepared appropriately, you
must ensure that application users can make a JDBC connection to the data store and
that users have database privileges that give them access to the data. For information
about establishing a connection, see Discovering Metadata.

Accessing Data Through the OLAP Java API

Oracle OLAP metadata objects organize and describe the data that is available to a
client application. The metadata objects contain other information, as well, such as the
data type of the data. However, you cannot retrieve data directly from a metadata

ORACLE 1-5

Chapter 1
Sample Schema for OLAP Java APl Examples

object. To specify the data that you want, you must create a query. In specifying the
data, you usually must specify one or more dimension member values. To retrieve the
specified data, you create a Cursor. This topic briefly describes those actions.

Another way that you can query the data contained in OLAP metadata objects is
through SQL queries of the views that Oracle OLAP creates for the metadata objects.
For information about querying these views, see "Using OLAP Views" in
Understanding OLAP Java API Metadata.

Creating Queries

Queries are represented by oracl e. ol api . dat a. sour ce. Sour ce objects. You get a Sour ce
from a metadata object and use that Sour ce object in specifying the data that you want
to get. Sour ce classes have methods for selecting and performing operations on the
data. You can use the methods to manipulate data in any way that the user requires.
For information about Sour ce objects, see Understanding Source Objects and Making
Queries Using Source Methods.

Specifying Dimension Members

The members of an Oracle OLAP dimension are usually organized into one or more
hierarchies. Some hierarchies have parent-child relationships based on levels and
some have those relationships based on values. The value of each dimension member
must be unique.

The OLAP Java API uses a three-part format to uniquely identify a dimension member.
The format contains the hierarchy, the level, and the value of the dimension member,
and thereby identifies a unique value in the dimension. The first part of a unique value
is the name of the hierarchy object, the second part is the name of the level object,
and the third part is the value of the member in the level. The parts of the unique value
are separated by a value separation string, which by default is double colons (::). The
following is an example of a unique member value of a level named YEAR in a hierarchy
named CALENDAR _YEAR in a dimension named TI VE_AW.

CALENDAR_YEAR: : YEAR: : CY2001

The third part of a unique value is the local value. The local value in the preceding
example identifies the calendar year 2001.

Creating Cursors

To retrieve the data specified by a Sour ce, you create an

oracl e. ol api . dat a. cursor. Cursor for that Sour ce. You then use this Cur sor to request
and retrieve the data from the data store. You can specify the amount of data that the
Cursor retrieves in each fetch operation (for example, enough to fill a 40-cell table in
the user interface). Oracle OLAP then efficiently manages the timing, sizing, and
caching of the data blocks that it retrieves for your application, so that you do not need
to do so. For information about Cur sor objects, see Understanding Cursor Classes and
Concepts and Retrieving Query Results.

Sample Schema for OLAP Java APl Examples

The examples of OLAP Java API code in this documentation are excerpts from a set
of example programs that are available on the Oracle Technology Network (OTN)

ORACLE 1-6

ORACLE

Chapter 1
Sample Schema for OLAP Java API Examples

website. One example, Cr eat eAndBui | dAW j ava, has methods that create and build an
analytic workspace. Another example, Speci f yAwal ues, calls the methods of

Cr eat eAndBui | dAW j ava and specifies values, such as names for the metadata objects
and names of columns of relational tables for mapping the metadata objects to data

sources. The analytic workspace produced by these examples is named GLOBAL_AW.

Other examples query that analytic workspace. The metadata objects in the analytic

workspace are mapped to columns in relational tables that are in the Global schema.

From the OTN website, you can download a file that contains SQL scripts that create
the Global schema and a file that contains the example programs. The OTN website is
at http:// ww. oracl e. con t echnet wor k/ dat abase/ opti ons/ ol ap/i ndex. htnl .

To get either file, select Sample Code and Schemas in the Download section of the
web page. To get the sample schema, select Global Schema 11g. To get the
example programs, select Example Programs for Documentation and then select
Download the Example Programs for 11g Release 2 (11.2) to download the
compressed file that contains the examples.

The example programs are in a package structure that you can easily add to your
development environment. The classes include a base class that the example program
classes extend, and utility classes that they use. The base class is

BaseExanpl ellg. j ava. The utility classes include Cont ext 11g. j ava and
CursorPrintWiter.java. The Context 11g. j ava class has methods that create a
connection to an Oracle Database instance, that store metadata objects, that return
the stored metadata objects, and that create Cursor objects. The
CursorPrintWiter.java classis aPrintWiter that has methods that display the
contents of Cur sor objects.

The OLAP metadata objects are created and built by the Cr eat eAndBui | dAW j ava and
the Speci f yAW/al ues programs. Those metadata objects include the following:

* GLOBAL_AWSJ, which is the analytic workspace that contains the other objects.

* PRODUCT_AWJ, which is a dimension for products. It has one hierarchy named
PRODUCT_PRIMARY. The lowest level of the hierarchy has product item
identifiers and the higher levels have product family, class, and total products
identifiers.

e CUSTOMER_AWJ, which is a dimension for customers. It has two hierarchies
named SHIPMENTS and MARKETS. The lowest level of each hierarchy has
customer identifiers and higher levels have warehouse, region, and total
customers, and account, market segment, and total market identifiers,
respectively.

* TIME_AWJ, which is a dimension for time values. It has a hierarchy named
CALENDAR_YEAR. The lowest level has month identifiers, and the other levels
have quarter and year identifiers.

* CHANNEL_AWSJ, which is a dimension for sales channels. It has one hierarchy
named CHANNEL_PRIMARY. The lowest level has sales channel identifiers and
the higher level has the total channel identifier.

 UNITS_CUBE_AWJ, which is a cube that contains the measures COST, SALES,
and UNITS. COST has values for the costs of product units. SALES has the dollar
amounts for the sales of product units. UNITS has values for the quantities of
product units sold. The cube is dimensioned by all four dimensions. The
aggregation method for the cube is SUM in which each the value for each parent is
the sum of the values of the children of the parent.

1-7

http://www.oracle.com/technetwork/database/options/olap/index.html

Chapter 1
Tasks That an OLAP Java API Application Performs

PRICE_CUBE_AWJ, which is a cube that contains the measures UNIT_COST
and UNIT_PRICE. UNIT_COST has the costs of the units. UNIT_PRICE has the
prices of the units. The cube is dimensioned by the PRODUCT_AWJ and
TIME_AWJ dimensions. The aggregation method for the cube is AVG, in which the
value for each parent is the average of the values of the children of the parent.

For an example of a program that discovers the OLAP metadata for the analytic
workspace, see Discovering Metadata.

Tasks That an OLAP Java API Application Performs

ORACLE

A client application that uses the OLAP Java API typically performs the following tasks:

1. Connects to the data store and creates a Dat aPr ovi der and a User Sessi on.
2. Creates or discovers metadata objects.

3. Deploys, maps, and builds metadata objects, as needed.

4. Specifies queries that select and manipulate data.

5. Retrieves query results.

The rest of this topic briefly describes these tasks, and the rest of this guide provides
detailed information about how to accomplish them.

Task 1: Connect to the Data Store and Create a DataProvider and UserSession
You connect to the data store by identifying some information about the target Oracle
Database instance and specifying this information in a JDBC connection method.
Having established a connection, you create a Dat aProvi der and use it and the
connection to create a User Sessi on. For more information about connecting and
creating a Dat aProvi der and User Sessi on, see "Connecting to Oracle OLAP" in
Discovering Metadata.

Task 2: Create or Discover Metadata Objects

You use the Dat aProvi der to get an Mim\vet adat aPr ovi der . The Mimvet adat aPr ovi der
gives access to all of the metadata objects in the data store. You next obtain the
MinRoot Schema object by calling the get Root Schena method of the Minvet dat aPr ovi der .
The MinRoot Schena object contains all of the OLAP metadata objects in the database.
From the MinRoot Schema, you get the MinDat abaseSchena objects for the schemas that
the current user has permission to access. An MinDat abaseSchena represents a named
Oracle Database user as returned by the SQL statement SELECT user name FROM

al | _users.

From an MinDat abaseSchema, you can discover the existing metadata objects that are
owned by the schema or you can create new ones. Methods such as get Measur es and
get Di nensi ons get all of the measures or dimensions owned by the MinDat abaseSchena.
Methods such as fi ndOr O eat eAWand fi ndOr Cr eat eCube get an analytic workspace or
cube, if it exists, or create one if it does not already exist.

From a top-level metadata object contained by the MinDat abaseSchems, such as an
analytic workspace, cube, or dimension, you can get the objects that it contains. For
example, from an MinPri nar yDi nensi on, you can get the hierarchies, levels, and
attributes that are associated with it. Having determined the metadata objects that are
available to the user, you can present relevant lists of objects to the user for data
selection and manipulation.

For a description of the metadata objects, see Understanding OLAP Java API
Metadata. For information about how you can discover the available metadata, see
Discovering Metadata.

1-8

ORACLE

Chapter 1
Tasks That an OLAP Java API Application Performs

Task 3: Deploy, Map, and Build Objects

If you create a new MinCube or MinPri mar yDi nensi on, you must deploy it as an analytic
workspace object or as a relational OLAP (Rolap) object. To deploy a cube, you call
an MinCube method such as fi ndOr O eat eAWCubeQr gani zat i on. To deploy a di nensi on,
you call an MinPri mar yDi nensi on method such as

findOr Creat eAWPr i nar yDi mensi onQr gani zati on.

If you create a new metadata object that represents data, you must specify an

Expr essi on that maps the metadata object to a relational source table or view, or that
Oracle OLAP uses to generate the data. For objects that are contained by an analytic
workspace, you can build the metadata objects after mapping them. For information
on creating metadata, deploying, mapping, and building metadata objects, see
Creating Metadata and Analytic Workspaces.

Task 4: Select and Calculate Data Through Queries

An OLAP Java API application can construct queries against the data store. A typical
application user interface provides ways for the user to select data and to specify the
operations to perform using the data. Then, the data manipulation code translates
these instructions into queries against the data store. The queries can be as simple as
a selection of dimension members, or they can be complex, including several
aggregations and calculations involving the measure values that are specified by
selections of dimension members.

The OLAP Java API object that represents a query is a Sour ce. Metadata objects that
represent data are extensions of the MinSour ce class. From an MinSour ce, such as an
Mimveasur e or an MinPri nar yDi mensi on, you can get a Sour ce object. With the methods
of a Sour ce object, you can produce other Sour ce objects that specify a selection of the
elements of the Sour ce, or that specify calculations or other operations to perform on
the values of a Sour ce.

If you are implementing a simple user interface, then you might use only the methods
of a Sour ce object to select and manipulate the data that users specify in the interface.
However, if you want to offer your users multistep selection procedures and the ability
to modify queries or undo individual steps in their selections, then you should design
and implement Tenpl at e classes. Within the code for each Tenpl at e, you use the
methods of the Sour ce classes, but the Tenpl at e classes themselves allow you to
dynamically modify and refine even the most complex query. In addition, you can
write general-purpose Tenpl at e classes and reuse them in various parts of your
application.

For information about working with Sour ce objects, see Understanding Source
Objects. For information about working with Tenpl at e objects, see Creating Dynamic
Queries.

Task 5: Retrieve Query Results

When users of an OLAP Java API application are selecting, calculating, combining,
and generally manipulating data, they also want to see the results of their work. This
means that the application must retrieve the result sets of queries from the data store
and display the data in multidimensional form. To retrieve a result set for a query
through the OLAP Java API, you create a Cursor for the Sour ce that specifies the
query.

You can also get the SQL that Oracle OLAP generates for a query. To do so, you
create a SQL.Cur sor Manager for the Sour ce instead of creating a Cursor. The gener at eSQL
method of the SQLCur sor Manager returns the SQL specified by the Sour ce. You can then
retrieve the data by means outside of the OLAP Java API.

Because the OLAP Java API was designed to deal with a multidimensional view of
data, a Sour ce can have a multidimensional result set. For example, a Sour ce can
represent an Mimveasur e that is dimensioned by four MinPr i mar yDi nensi on objects.

1-9

ORACLE

Chapter 1
Tasks That an OLAP Java API Application Performs

Each MinPri mar yDi mensi on has an associated Sour ce. You can create a query by
joining the Sour ce objects for the dimensions to the Sour ce for the measure. The
resulting query has the Sour ce for the measure as the base and it has the Sour ce
objects for the dimensions as outputs.

A Cursor for a query Sour ce has the same structure as the Sour ce. For example, the
Cursor for the Sour ce just mentioned has base values that are the measure data. The
cursor also has four outputs. The values of the outputs are those of the Sour ce objects
for the dimensions.

To retrieve all of the items of data through a Cursor, you can loop through the
multidimensional Cur sor structure. This design is well adapted to the requirements of
standard user interface objects for painting the computer screen. It is especially well
adapted to the display of data in multidimensional format.

For more information about using Sour ce objects to specify a query, see
Understanding Source Objects. For more information about using Cur sor objects to
retrieve data, see Understanding Cursor Classes and Concepts. For more information
about the SQLCur sor Manager class, see Oracle OLAP Java API Reference.

1-10

Understanding OLAP Java API Metadata

This chapter describes the classes in the Oracle OLAP Java API that represent OLAP
dimensional and relational metadata objects. It also describes the classes that provide
access to the metadata objects and to data sources, or that contain information about
the metadata objects. This chapter includes the following topics:

* Overview of OLAP Java AP| Metadata Classes

» ldentifying, Describing, and Classifying Metadata Objects
e Providing Metadata Objects

e Providing Access to Data Sources

For more information on getting existing metadata objects, see Discovering Metadata.
For more information on creating metadata objects, see Creating Metadata and
Analytic Workspaces.

Overview of OLAP Java API Metadata Classes

ORACLE

Introduction to the OLAP Java API describes the OLAP dimensional data model and
briefly mentions some of the OLAP Java API classes that implement that model.
Those classes are in the or acl e. ol api . net adat a packages. Using those classes, you
can do the following tasks.

e Gain access to the available metadata objects

» Create new metadata objects

» Deploy metadata objects in an analytic workspace or as relational objects
* Map metadata objects to data sources

» Export metadata objects to XML or import them from XML

e Create Sour ce objects to query the data

Figure 2-1 shows the oracl e. ol api . met adat a packages.

2-1

Chapter 2
Overview of OLAP Java API Metadata Classes

Figure 2-1 The oracle.olapi.metadata Packages

oracle.olapi.metadata

deployment mapping mdm

The packages are the following:

e oracle. ol api . met adat a, which has interfaces and abstract classes that specify the
most basic characteristics of metadata objects and metadata providers.

e oracle. ol api . net adat a. mdm which has classes that implement the MDM
(multidimensional model) metadata model. This package has classes that
represent the metadata objects, classes that provide access to those objects, and
classes that contain descriptive information about the objects.

e oracle. ol api . met adat a. depl oynent , which has classes that specify the organization
of a metadata object as an analytic workspace object or as a relational object.

e oracle. ol api . met adat a. mappi ng, which has classes that map a metadata object to
relational data sources.

Some of the classes in the or acl e. ol api . net adat a. mim package directly correspond to
OLAP dimensional metadata objects. Table 2-1 presents some of these
correspondences.

Table 2-1 Corresponding Dimensional and MDM Objects

Dimensional Metadata Objects MDM Metadata Objects

Cube MinCube

Measure MinmBaseMeasur e

Calculated measure MinDer i vedMeasur e

Measure folder MinOr gani zat i onal Schema

Dimension Minili meDi mensi on and MinSt andar dDi nensi on
Hierarchy MinLevel Hi erar chy and MinVal ueHi er ar chy
Level MinDi nensi onLevel and MinHi er ar chyLevel
Attribute MinmBaseAt tri but e and MinDeri vedAttribute

Other classes in the package correspond to relational objects. Table 2-2 shows those
correspondences.

ORACLE 2-2

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

Table 2-2 Corresponding Relational and MDM Objects

Relational Objects MDM Metadata Objects
Schema MinDat abaseSchema
Table MiniTabl e

Table column MinCol urm

Identifying, Describing, and Classifying Metadata Objects

Most OLAP Java APl metadata objects have a unique identifier (ID), a name, and an
owner or a containing object. You can also associate descriptions and classifications
to most metadata objects.

Most metadata classes extend the abstract or acl e. ol api . met adat a. BaseMet adat aCbj ect
class. A BaseMet adat athj ect can have a name and an ID. You can get most metadata
objects by name. The ID is used internally by Oracle OLAP, but an application can
also use the ID to get some metadata objects.

A BaseMet adat abj ect also has an owner, which is returned by the get Owsner method.
For most metadata objects, the owner is an MinDat abaseSchena. For the MinRoot Schena
and mimveasur eDi nensi on objects, the owner is the root schema. For an MinVi ewCol um,
which is not a subclass of BaseMet adat aCbj ect , the get Omer method returns the owning
implementation of the MinVi ewCol unnOaner interface, such as an MinPri mar yDi nensi on,
an MinBaseAt tri bute, or an MimMeasur e. An MinVi ewCol unm represents a column in an
OLAP view. For information on OLAP views, see "Using OLAP Views".

Some BaseMet adat aObj ect objects are contained by the metadata object that created
them. For example, an MinBaseMeasur e is contained by the MinCube that created it. You
can get the container for a metadata object by calling the get Cont ai nedByQvj ect
method.

The MinDbj ect class, which is an abstract subclass of BaseMet adat athj ect , adds
associations with descriptive objects and classifications. Typically, a descriptive object
contains a name or descriptive text that you associate with the metadata object itself.
Applications often use a descriptive object for display purposes in a user interface. A
classification is a string value that your application assigns to the metadata object.
Your application handles the classification for whatever purpose you want.

Identifying Objects

You can identify a BaseMet adat aCbj ect object by name and by ID. Namespaces identify
the type and the format of legacy metadata objects.

Getting and Setting Names

Most metadata objects have a name that you can get by calling the get Name method of
the object. For some objects, you can assign a hame when you create the object. For
example, an oracl e. ol api . met adat a. depl oyment . AWobject represents an analytic
workspace. When you create an AWby calling the fi ndO O eat eAWmethod of an

MinDat abaseSchena, you use the publ i cNane parameter of the method to specify a name
for the Awobiject that the method returns.

ORACLE 2-3

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

For some objects, you can use the set Name method to change the name of an existing
object. For example, you can change the name of an Mintt andar dDi mensi on by calling
the set Nane method of the dimension object. The new name does not take effect until
you commit the root Transacti on of the session. After you call set Nane, but before you
commit the root Transacti on, the get NewNanme method returns the new name while the
get Nane method returns the existing name. For more information on getting objects by
name, see "About Creating a Metadata Object or a Query in a Transaction"

You can get some objects by name from an MinDat abaseSchema. For more information
on getting objects by hame, see "Representing Schemas".

For use in displaying names or descriptions in a user interface, or for any purpose you
want, you can associate any number of names and descriptions with an Mintoj ect by
using the MinDescri pti on class. For information on using that class, see "Using
Descriptions".

Describing Unique Identifiers

Most metadata objects have a unique identifier (ID). The identifier has one of the
following forms.

* object Nane
* owner Nane. obj ect Nare
* owner Nane. cont ai ner Nane. obj ect Name

For example, for the MinDat abaseSchena that represents the schema for the user GLOBAL,
the identifier returned by the get | D method is G_.OBAL. For an MinPri mar yDi nensi on
named PRODUCT_AWJ, the get | D method returns GLOBAL. PRODUCT_AW and for an
MinLevel H erar chy of that dimension named PRODUCT_PRIMARY, the method
returns GLOBAL. PRODUCT _AW. PRODUCT PRI MARY.

The ID of a metadata object is persistent. However, if the name or the owner of a
metadata object changes, then the ID changes as well. For more information on
getting objects by ID, see "Getting Metadata Objects by ID".

For a legacy 10g metadata object, the first part of the identifier is a namespace. The
namespace is followed by the namespace delimiter, which is two periods. An example
of the identifier of a 10g dimension is AWKM._DI MENSI ON. . GLOBAL. PRODUCT_AW

Supporting Legacy Metadata Objects

In Oracle Database, Release 11g, Oracle Database, Release 11g Oracle OLAP
supports legacy 10g OLAP Java API applications. Namespaces identify 10g metadata
objects and enable them to exist in the same session as 11g objects.

Supporting Legacy Applications

ORACLE

To support legacy applications that use OLAP metadata objects that were created in
10g, the oracl e. ol api . dat a. sour ce. Dat aPr ovi der class has a metadata reader mode.
By default, the metadata reader recognizes Oracle OLAP 10g and 11g metadata
objects. You can specify a metadata reader mode with a property of a
java.util.Properties object or with a string in the proper XML format. For information
on the modes and how to specify one, see the constructor methods of the Dat aPr ovi der
class in the Oracle OLAP Java API Reference documentation.

2-4

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

Describing Namespaces

In Oracle Database, Release 10g, an Oracle OLAP cube, dimension, or measure
folder could have the same name as a relational table or view. In Release 11g, top-
level OLAP metadata objects are stored in the Oracle Database data dictionary, so
they cannot have the same name as another relational object. A namespace
designation allows a legacy OLAP Java API 10g metadata object to exist in the same
session as 11g metadata objects. Such legacy metadata objects were created by
using classes in the oracl e. ol api . AMM. package of the Oracle OLAP Analytic
Workspace Java API or by using CWM PL/SQL packages. For 10g and 11g objects to
exist in the same session, the metadata reader mode of the Dat aPr ovi der must be set
to ALL. The ALL mode is the default metadata reader mode. For more information on
metadata reader mode settings, see the Dat aProvi der class documentation in Oracle
OLAP Java API Reference.

The metadata objects for a 10g cube, dimension, and measure folder are represented
in 11g by the MinCube, MinPri mar yDi mensi on, and MinSchema classes. An instance of one
of those classes can have a nhamespace associated with it, which is returned by the
get Nanespace method. For an 11g object, the namespace is null.

The 11g XML definition of a 10g object has a Namespace attribute. For information on
exporting and importing XML definitions of metadata objects, see "Exporting and
Importing Metadata as XML Templates".

The namespace of a legacy metadata object identifies the metadata format and the
type of object. It begins with either AWM._ or CWM_ and then has the type of object, such
as CUBE or DI MENSI ON. For example, a dimension created by using the Oracle OLAP
Analytic Workspace Java API in Oracle Database 10g, Release 2 (10.2), would have
the namespace AWKM._DI MENSI ON in 11g.

The valid namespaces are represented by static constant fields of the

Mim\et adat aPr ovi der class. The get Val i dNanespaces method of that class returns a list of
the valid namespaces, including the default namespace. You cannot create a new
namespace.

You can use the constant fields to get a legacy metadata object from an
MinDat abaseSchenma. For example, the following code gets the PRODUCT_AW
dimension. In the code, ninDBSchena is the MinDat abaseSchena for the GLOBAL user.

Minst andar dDi mensi on mdnPr odAWDI m =
minDBSchena. f i ndOr Cr eat eSt andar dDi mensi on(" PRODUCT_AW ,
Mimvet adat aProvi der . AWKML_DI MENSI ON_NAMESPACE) ;

In the ALL metadata reader mode, you get an existing 10g metadata object but you
cannot create a new one. If the legacy metadata object does not exist, the method
returns an 11g object that has the specified name.

Using Descriptions

ORACLE

With an MinDescri pti on object, you can associate descriptive information with an
MinCoj ect object.

An MimDescri pti onType object represents the type of description of an MinDescri pti on.
You can use MinDescri pti on objects to display names, descriptions, or other

2-5

ORACLE

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

information for a metadata object in a user interface. MinDescri pti on objects are
created, assigned, and handled entirely by your application.

Note:

A descriptive name that you associate with an Minbj ect through an

MinDescri pti on is not the object name that is returned by the Mintoj ect . get Nane
method. The object name is used by Oracle OLAP to identify the object
internally. A descriptive name is used only by an application.

The OLAP Java API defines some types of descriptions. The MinDescri pti onType class
has static methods that provide the following description types:

* Name

e Short name

* Long name

e Plural name

e Short plural name
e Long plural name
e Description

e Short description

e Long description

You get one of these defined description types by calling a method of
MinDescri ptionType. For example, the following code gets the description type object
for a long name and a long description.

MinDescri pti onType mdnLongNanmeDescr Type =

MimDescr i pti onType. get LongNaneDescri ptionType();
MinDescri pti onType mdnLongDescrDescr Type =

MimDescri ptionType. get LongDescri ptionDescri ptionType();

You can create a new type of description by using a constructor method of
MinDescri ptionType. You can get the type of an MinDescri pti onType object with the
get Descri ptiveType method. The first figure below shows the methods of
MinDescri pti onType.

Some of the defined description types have an associated default description type.
You change a default description type or assign a default description type for a new or
existing MinDescri pti onType by using the MinDescri pti onType(j ava. | ang. String type,
MinDescri ptionType defaul t Type) constructor method. You can get the default type of
an MinDescri pti onType object with the get Descri pti veTypeDef ault method.

Example 2-1 Associating a Description with an MdmObject

To associate an MimDescri pti on object with an MinObj ect , use the

findOr CreateDescription or asetDescri pti on method of the Minthj ect . The

findOr CreateDescri pti on method returns an MinDescri pti on object. To specify a value
for the description, use the set Val ue method of MinDescri pti on.

2-6

Chapter 2
Identifying, Describing, and Classifying Metadata Objects

This example shows both ways of associating an MinDescri pti on with an Minoj ect . In
the example, minPr odDi mis an MinSt andar dDi nensi on object.

MinDescri ption mdnShort NaneDescr =
mdnPr odDi m fi ndOr Cr eat eDescri pti on(
MinDescri pti onType. get Short NaneDescri ptionType(), "AVER CAN');
mdnShor t NameDescr . set Val ue(" Product");

mdnPr odDi m set Descri pti on(
MimDescri pti onType. get LongNarmeDescri pti onType(), "Product Dinension");

This figure shows the methods of Minbj ect that use MinDescri ption and

MinDescri pti onType objects. It also shows the MimDescri pti on and MinDescri pti onType
classes and their methods, and the associations between the classes. An Mintoj ect
can have from zero to many MinDescri pti on objects. An MinDescri pti on is associated
with one MinObj ect and one MinDescri pti onType. An MinDescri pti onType can be
associated with one or more MinDescri pti on objects.

Figure 2-2 MdmObject and MdmbDescription Associations

MdmObject

addDescription(MdmDescription desc) : void
findOrCreateDescription(MdmDescriptionType type, String language) : MdmDescription
getDescription(MdmDescriptionType type) : String
getDescription(MdmDescriptionType type, String language) : String

getDescriptions() : List

removeDescription(MdmDescription desc) : void

setDescription(MdmDescriptionType type, String value) : void
setDescription(MdmDescriptionType type, String language, String value) : void

1

0..*

MdmDescription MdmDescriptionType
getDescribedObject() : MdmObiject MdmDescr!pt!onType(J:ava.Iang.Str!ng type) : MdmDescriptionType
getLanguage() : String MdmDescnpt|onType(Java.Iang.Stn_ng type,
getName() : String MdmDescriptionType defaultType) :
getType() : String 15 1 MdmDescriptionType
getValue() : String o o o
setValue(String value) : void getDescriptionDescriptionType() : MdmDescriptionType

getDescriptive Type() : MdmDescriptionType

getDescriptiveTypeDefault() : MdmDescriptionType
getLongDescriptionDescriptionType() : MdmDescriptionType
getLongNameDescriptionType() : MdmDescriptionType
getLongPluralNameDescriptionType() : MdmDescriptionType
getNameDescriptionType() : MdmDescriptionType
getPluralNameDescriptionType() : MdmDescriptionType
getShortDescriptionDescriptionType() : MdmDescriptionType
getShortNameDescriptionType() : MdmDescriptionType
getShortPluralNameDescriptionType() : MdmDescriptionType

Versions of the OLAP Java API before 11g did not have the MinDescri ption and
MinDescri ptionType classes. In those versions, the Minbj ect class had only the
following methods for getting and setting descriptions.

ORACLE .-

Chapter 2
Providing Metadata Objects

Figure 2-3 Methods for Getting and Setting Descriptions Before 11g

MdmObject

getDescription() : String
getShortDescription() : String
setShortDescription(String description) : void
setDescription(String description) : void

For backward compatibility, the OLAP Java API still supports these methods, but
implements them internally using MinDescri pti on and MinDescri pti onType objects.

Using Classifications

Providing

A classification is a property of an Minbj ect . You assign a classification to an object
and then use the classification as you please. For example, you could add a
classification with the value of "HIDDEN" to indicate that an application should not
display the object in the user interface. You can assign a classification to an Minj ect
by using the addbj ect d assi fi cati on method of the object. You can get the
classifications with the get bj ect O assi fi cati ons method and remove one with the
renoveoj ect O assi fi cati on method.

Metadata Objects

Access to Oracle OLAP Java APl metadata objects is initially provided by an

Mimvet adat aPr ovi der and by MinSchenma objects. The Mimvet adat aPr ovi der also has the
ability to import or export an XML representation of a metadata object. The following
topics describe the Mim\et adat aPr ovi der class and its uses.

» Describing Metadata Providers

* Representing Schemas

Describing Metadata Providers

ORACLE

Before you can get or create OLAP Java API metadata objects, you must first create
an Mim\et adat aPr ovi der . For information on creating an Minvet adat aPr ovi der, see
"Creating an MdmMetadataProvider".

With the get Root Schema method of the Mim\kt adat aPr ovi der, you can get the root
MinSchema object, which is an instance of the MinRoot Schema class. The root schema is a
container for MinDat abaseSchema objects.

MinDat abaseSchena objects are owners of top-level metadata objects such as AW
MinCube, and MinPri mar yDi mensi on objects. The top-level objects are first-class data
objects and are represented in the Oracle Database data dictionary. Because they are
in the data dictionary, these OLAP data objects are available to SQL queries. You
create top-level metadata objects by using fi ndOr Cr eat e methods of an

MinDat abaseSchema.

The top-level objects are the containers of objects such as Mimveasur e, Minti er ar chy,
and Mimt t ri but e objects. You create the contained objects by using methods of the
top-level objects.

2-8

Chapter 2
Providing Metadata Objects

For more information on MinSchena objects, see "Representing Schemas". For
information on top-level metadata objects, see "Providing Access to Data Sources".

You can also get an existing metadata object by calling the get Met adat aChj ect or
get Met adat abj ect s method of the Mim\et adat aPr ovi der and providing the ID of the
metadata object.

The following topics describe getting metadata objects:

e Getting Metadata Objects by ID
* Exporting and Importing Metadata as XML Templates

Getting Metadata Objects by ID

Usually, you get or create metadata objects by calling fi ndOr Cr eat e methods on the
owning object. For example, you can get or create an MinCube by calling the

findOr Cr eat eCube method of an MinDat abaseSchema object. However, you can also get an
existing metadata object from an Mim\et adat aPr ovi der by specifying the ID of the
object. The Mim\et adat aPr ovi der . get Met adat aCbj ect method takes a String that is the
ID of an object and returns the object. The get Met adat athj ect s method takes a Li st of
IDs and returns a Li st of objects.

You can store the ID of a metadata object from one session and then get the object by
that ID in another session. Of course, getting an object by a stored ID assumes that
the object still exists and that the ID of the object has not changed. For some metadata
objects, you can change the name or the owner. If the name or owner of the object
changes, then the ID of the object changes.

Exporting and Importing Metadata as XML Templates

ORACLE

The Minet adat aPr ovi der class has many methods for exporting and importing
metadata objects to and from XML definitions of those objects. The XML definition is a
template from which Oracle OLAP can create the metadata objects defined.

You can use XML templates to transport metadata objects between Oracle Database
instances. You can exchange XML templates between Analytic Workspace Manager
and an OLAP Java API application; that is, in Analytic Workspace Manager you can
import a template that you created with an Minvet adat aPr ovi der export XML method,
and you can use an i nport XM method to import an XML template created by Analytic
Workspace Manager.

When exporting XML, you can rename objects or specify bind variables for the values
of XML attributes. You can also supply an implementation of the XMW i t er Cal | back
interface to manage some aspects of the export process. When importing XML, you
can specify an MinDat abaseSchenma to own the imported objects, bind values to replace
the bind variables in the exported XML, and an implementation of the

XM_Par ser Cal | back interface to manage some aspects of the import process.

The following topics describe exporting and importing metadata objects through XML
templates.

* Exporting XML Templates
* Importing XML Templates
» Describing Bind Variables in XML Templates

2-9

Chapter 2
Providing Metadata Objects

Exporting XML Templates

ORACLE

For exporting metadata objects to XML templates, Min\et adat aPr ovi der has many
signatures of the export Ful | XM. and export | ncr enent al XM. methods. The methods
export atemplate to ajava.lang. Stringortoajava.io. Witer.

You can use an XML template produced by these methods to import metadata objects
through the i npor t XM. methods of Mim\et adat aPr ovi der . You can also use the XML
template to import metadata objects in Analytic Workspace Manager.

An export Ful | XM. method exports the complete XML definitions for the specified
objects or for the objects that you have created or modified since a specified
oracl e. ol api . transaction. Transacti on. For an example of using the export Ful | XM
method, see Example 4-10.

An export | ncrenent al XML method exports only the XML attributes that have changed
for a metadata object since a specified Transacti on. If you specify a Li st of objects,
then the exported templates contain the XML attributes that have changed for the
objects that are in the list. The exported incremental XML includes the type and hame
of the objects in the ownership and containment hierarchy of the changed object.

The export Ful | XML and export | ncr ement al XM. methods take various combinations of the
following parameters.

e AlList of the objects to export or a Transacti on.

 AWiter to which Oracle OLAP exports the XML. If you do not specify a Witer,
then the method returns a j ava. | ang. Stri ng that contains the XML.

* Ajava.util.Mp that has metadata object references as keys and that has, as the
objects for the keys, String values that contain new names for the referenced
objects. With this Map, you can rename an object that you export. You can specify
nul | for the parameter if you do not want to rename any objects.

If you specify a Map for this renaneMap parameter, then the Oracle OLAP XML
generator renames a referenced object during the export. You can copy the
definition of an existing object this way, by renaming an object during the export of
an XML template and then importing the template.

* A bool ean that specifies whether or not to include the name of the owning object in
the exported XML.

* An optional Map that has metadata object references as keys and that has, as the
objects for the keys, String values that function like SQL bind variables. For more
information on the bind variables in this parameter, see "Describing Bind Variables
in XML Templates".

e An optional implementation of the oracl e. ol api . met adat a. XM.W i t er Cal | back
interface. With an XM.W i t er Cal | back, you can specify whether or not to exclude an
attribute or an owner name from the exported XML.

All metadata objects that share an ancestor are grouped together in the exported XML.
For any object that is not a top-level object and whose top-level container is not in the
Li st of the objects to export, the exported template contains an incremental definition
to the object and a full definition below that. This supports the export of objects such
as a calculated measure in a cube without having to export the entire cube template.

If an MinDat abaseSchema is in the Li st of objects to export, then the exported template
includes all objects within the database schema. If an

2-10

Chapter 2
Providing Metadata Objects

oracl e. ol api . met adat a. depl oynent . AWobject is in the Li st , then the exported template
includes all of the objects that are contained by the Aw If the MinRoot Schena is in the list,
it is ignored.

Importing XML Templates

For importing metadata objects as XML templates, Mim\et adat aPr ovi der has several
signatures of the i npor t XML method.

An i nport XM method imports XML definitions of objects and either creates new objects
or modifies existing objects. The i nport XM. method take various combinations of the
following parameters.

* Ajava.io.Reader for input of the XML or a Stri ng that contains the XML to import.
e An MinDat abaseSchema to contain the new or modified metadata objects.

e Abool ean, nodi fyl f Exi st s, that indicates whether or not you want differences in the
imported XML definition to modify an existing object of the same name.

e An optional Map, bi ndval ues, that contains bind variables as keys and, as the
objects for the keys, String values to replace the bind variables. For more
information on the bind values in this parameter, see "Describing Bind Variables in
XML Templates".

e An optional implementation of the oracl e. ol api . met adat a. XM_Par ser Cal | back
interface.

If the value of the nodi fyl f Exi st s parameter is true and if the imported XML contains a
full definition for an object that already exists and the object definition is different from
the XML, then the method merges the new or changed elements of the object
definition with the existing definition of the object. If the value of nodi fyl f Exi sts is fal se
and if the XML contains a full definition for an object that already exists, then the

i nport XM method throws an exception.

With the bi ndval ues parameter, you can specify a Map that has key/object pairs that
Oracle OLAP uses to replace bind variables when importing an XML template. A key
in the Map is a bind variable to replace and the object paired to the key is the value with
which to replace the bind variable. When you import a template, if you specify a Map
that contains bind variables as keys, then Oracle OLAP replaces a bind variable in the
imported XML with the value specified for the bind variable in the bi ndVal ues Map.

You can pass an implementation of the XM.Par ser Cal | back interface to an i nport XM
method as the parser Cal | back parameter. With the XM.Par ser Cal | back, you can specify
how Oracle OLAP handles an error that might occur when importing XML. The
XML11 2 Parser Cal | back interface adds methods for renaming the imported object and
for suppressing attributes of the imported object.

Describing Bind Variables in XML Templates

The export Ful | XM and export I ncrenent al XML methods have an optional bi ndvari abl es
parameter. This parameter is a Map that has metadata objects as keys and Stri ng
values as the objects for the keys. The Stri ng values function like SQL bind variables.
During the export of the XML, the Oracle OLAP XML generator replaces the name of
the referenced object with the bind variable.

ORACLE 2-11

Chapter 2
Providing Metadata Objects

If you provide a Map for the bi ndVari abl es parameter to an export Ful | XM or
export | ncrement al XM. method, then the XML produced by the method begins with the
following declaration.

<! DOCTYPE Met adata |

<IENTITY % BI ND_VALUES PUBLI C "COLAP BI ND VALUES' "OLAP METADATA">
98| ND_VALUES;

1>

A value specified in the bi ndvari abl es map appears in the exported XML in the format
"&BV; ", where BV is the bind variable.

The bi ndVval ues parameter of an i nport XM. method specifies values that Oracle OLAP
uses to replace the bind variables when importing an XML template. When you import
a template, if you specify a Map that contains bind variables as keys, then Oracle OLAP
replaces a bind variable in the imported XML with the Stri ng specified as the object for
the bind variable key in the Map.

If you provide a Map for the bi ndval ues parameter, then the i nX\. string that you provide
to the method must include the ! DOCTYPE Met adat a declaration and the bind variables in
the XML to import must be in the "&BV; " format.

Representing Schemas

Schemas are represented by the MinSchena class and the subclasses of it. An
MinSchena is owner of, or a container for, MinCube, MinDi nensi on, and other MinObj ect
objects, including other MinScherma objects. In the 10g and earlier versions of the OLAP
Java API, the MinSchena class had more than one role. The API had one root Mintchens,
an Minscherma for each measure folder, and custom MinSchema objects that an
application could create.

The 11g OLAP Java API introduced subclasses of MinSchena to separate and define
the different roles. In 11g, MinSchema remains a concrete class for compatibility with the
earlier versions and for use in 10g metadata reader modes.

In 11g, an MinSchema is an instance of one of the following subclasses of MinSchena:

e MinRoot Schema, which is a container for MinDat abaseSchema objects and is supplied
by the system.

e MinDat abaseSchema, which represents the relational schema for a database user
and which creates and owns MinCube, MinDi mensi on, and other Minthj ect objects.
MinDat abaseSchena objects are supplied by the system.

e MInOrgani zati onal Schena, which you can use to organize measures and other
MInOr gani zat i onal Schema objects.

The following topics describe the subclasses of MinSchena.

* Representing the Root Schema
* Representing Database Schemas

* Representing Organizational Schemas

Representing the Root Schema

The root schema is a container for database schema objects. This top-level schema is
represented by the MinRoot Schena class. You get the MinRoot Schema with the

ORACLE 2-12

Chapter 2
Providing Metadata Objects

get Root Schema method of the Mim\vet adat aPr ovi der . From the MinRoot Schenma you can get
all of the MinDat abaseSchema objects or you can get an individual MinDat abaseSchema by
name.

The MinRoot Schema class also contains all of the MinCube, Minveasur e, and

MinPri mar yDi nensi on objects that are provided by the Min\et adat aPr ovi der , and has
methods for getting those objects. However, the Li st of objects returned by those
methods contains only the cubes, measures, or dimensions that the user has
permission to see.

Figure 2-4 shows the associations between an Minivet adat aPr ovi der and the
subclasses of MinSchena.

Figure 2-4 Associations Between MdmMetadataProvider and the MdmSchema Subclasses

1 1

0. v

MdmMetadataProvider MdmRootSchema
getRootSchema
1
getDatabaseSchema
o 1 getDatabaseSchemas
addOrganizationalSchema

MdmOrganizationalSchema MdmDatabaseSchema

0.+ 1

findOrCreateOrganizationalSchema

Representing Database Schemas

ORACLE

The relational schema owned by a database user is represented by an
MinDat abaseSchena object.

The MinRoot Schena has one MinDat abaseSchena object for each database user. An
MinDat abaseSchenma has the same name as the database user. For example, the name
of the MinDat abaseSchema for the user GLOBAL is GLOBAL.

You can get one or all of the MinDat abaseSchema objects with methods of the
MinRoot Schema. However, access to the objects that are owned by an MinDat abaseSchena
is determined by the security privileges granted to the user of the session.

An MinDat abaseSchema is the owner of top-level OLAP metadata objects and the objects
created by them. You use an MinDat abaseSchema to get existing metadata objects or to
create new ones. The top-level objects are the following:

e AW

* MinCube

* MinNanmedBui | dProcess

° MInDrgani zat i onal Schena
* MinPrimaryDi nmension

o MinTabl e

2-13

Chapter 2
Providing Access to Data Sources

Except for an MinTabl e, you can create new top-level objects, or get existing ones, with
the findOr Cr eat e methods such as fi ndO Cr eat eAwand f i ndOr Cr eat eSt andar dDi mensi on.
Creating objects is described in Discovering Metadata.

When you commit the Transacti on in which you have created top-level OLAP metadata
objects, those objects then exist in the Oracle data dictionary. They are available for
use by ordinary SQL queries as well as for use by applications that use the Oracle
OLAP Java API.

Because the metadata objects exist in the Oracle data dictionary, an Oracle Database
DBA can restrict access to certain types of the metadata objects. In a client
application, you can set such restrictions by using the JDBC API to send standard
SQL GRANT and REVOKE commands through the JDBC connection for the user session.

You can get an MiniTabl e, or other top-level object, with the get TopLevel Gbj ect method.
You can get all of the instances of a particular type of top-level object with methods
such as get AW, get Di nensi ons, or get Or gani zat i onal Schenas, Or you can use the

get Schemaoj ect s to get all of the objects owned by the MinDat abaseSchema. You can add
or remove top-level objects with methods like addAwand r enoveSchenahj ect .

Representing Organizational Schemas

An OLAP measure folder organizes measures, cubes, and dimensions. A measure
folder is represented by the MinOr gani zat i onal Schena class. Measure folders provide a
way to differentiate among the similarly named measures. For example, a user may
have access to several schemas with measures named SALES or COSTS. You could
separate measures that have the same name into different MinOr gani zat i onal Schema
objects. An MinOr gani zat i onal Schema has methods for adding or removing cubes,
dimensions, and measures. You can nest organizational schemas, so the class also
has methods for adding and removing other Min0x gani zat i onal Schema objects.

Providing Access to Data Sources

Some of the classes in the mimpackage that represent objects that contain or provide
access to the data in the data store. Some of these classes represent OLAP
dimensional data model objects, which include cubes, measures, dimensions, levels,
hierarchies, and attributes. Other nmimclasses represent relational objects such as
tables, or columns in a view or table.

Figure 2-5 shows the associations between the classes that implement dimensional
data model objects. An MinCube can contain from zero to many MinMeasur e objects. An
Mimveasur e is contained by one MinCube object. An MinCube can have from zero to many
MinPri mar yDi mensi on objects, which are associated with it through MinDi nensi onal ity
objects. An MinPri mar yDi nensi on can contain from zero to many MinDi nensi onLevel
objects, Minti er ar chy objects, and MimAt t ri but e objects.

ORACLE 2-14

Chapter 2
Providing Access to Data Sources

Figure 2-5 Associations of Dimensional Data Model Classes

MdmCube et MdmPrimaryDimension
1 1 1 1
0.." 0..* 0.." 0..*
MdmMeasure MdmDimensionLevel MdmHierarchy MdmAttribute

The classes that represent these dimensional or relational data objects are subclasses
of the MinSour ce class. Subclasses of MinSour ce have a get Sour ce method, which
returns a Sour ce object. You use Sour ce objects to define a query of the data. You then
use Cursor objects to retrieve the data. For more information about working with Sour ce
and Cur sor objects, see Understanding Source Objects and Understanding Cursor
Classes and Concepts.

You can also use SQL to query the views that Oracle OLAP automatically generates
for the cubes, dimensions, and hierarchies. For information on querying these views,
see "Getting Dimension and Hierarchy View and View Column Names".

The following topics describe the classes that provide access to data sources.
* Representing Cubes and Measures

* Representing Dimensions, Levels, and Hierarchies

* Representing Dimension Attributes

e Using OLAP Views

Representing Cubes and Measures

Cubes are the physical implementation of the dimensional model. They organize
measures that have the same set of dimensions. Cubes and measures are
dimensioned objects; the dimensions associated with a cube identify and categorize
the data of the measures. The following topics describe cubes and measures.

* Representing Cubes

* Representing Measures

Representing Cubes

ORACLE

An OLAP cube is represented by the MinCube class. An MinCube is a container for
Mimveasur e objects that are dimensioned by the same set of MinPr i nar yDi nensi on
objects. An application creates MinBaseMeasur e or MinDer i vedMeasur e objects with the
findOr Creat eBaseMeasur e and fi ndOr Cr eat eDer i vedMeasur e methods of an MinCube. It
associates each of the dimensions of the measures with the cube by using the
addDi nensi on method.

An MinCube usually corresponds to a single fact table or view. To associate the table or
view with the cube, you use Query and CubeMap objects. You get the Query for the table

or view and then associate the Query with the CubeMap by using the set Query method of
the CubeMap.

2-15

Chapter 2
Providing Access to Data Sources

The CubeMap contains Measur eMap and CubeDi mensi onal i t yMap objects that map the
measures and dimensions of the cube to data sources. With the Measur eMap, you
specify an MinBaseMeasur e and an Expr essi on that identifies the column in the fact table
or view that contains the base data for the measure.

To map the dimensions of the cube you get the MinDi nensi onal i ty objects of the cube.
You create a CubeDi nensi onal i t yMap for each MinDi mensi onal i ty. You then specify an
Expr essi on for the CubeDi nensi onal i t yMap that identifies the foreign key column for the
dimension in the fact table or view. If you want to specify a dimension column other
than the column for the leaf-level dimension members, then you must specify a join
Condi ti on with the set Joi nCondi ti on method of the CubeDi nensi onal i t yMap.

An MinCube has an associated CubeOr gani zat i on. The CubeOr gani zat i on deploys the
cube in an analytic workspace or as a relational database object. To deploy a cube to
an analytic workspace, you call the fi ndO Cr eat eAWCubeOr gani zat i on method of the
MinCube. You use the AwWCubeQr gani zat i on returned by that method to specify
characteristics of the cube, such as how Oracle OLAP builds the cube, how the cube
stores measure data, and whether the database creates materialized views for the
cube. For information on the AWCubeQr gani zat i on class, see Oracle OLAP Java API
Reference.

If the AWCubeQr gani zat i on has a materialized view option of REWRI TE_MW/_CPTI ON, then
Oracle OLAP creates a materialized view for the cube that can be used by the
database query rewrite system. If the materialized view option is

REVRI TE_W TH_ATTRI BUTES_MW_OPTI ON, then Oracle OLAP includes in the rewrite
materialized view the dimension attributes for which the i sPopul at eLi neage method
returns true. You set the materialized view options with the set WQpt i on method of the
AWCubeOr gani zat i on.

An MinCube also has a Consi st ent Sol veSpeci fi cati on object, which contains one or
more Consi st ent Sol veConmand objects that specify how Oracle OLAP calculates (or
solves) the values of the measures of the cube. For example, as the

Consi st ent Sol veConmand, you could specify an Aggr egat i onConmand that represents the
Sumor the MAX function. You specify the Consi st ent Sol veSpeci fi cat i on with the

set Consi st ent Sol veSpeci fi cati on method of the cube.

A cube is consistent when the values of the measures match the specification, for
example, when the values of the parents are equal to the SUMof the values of their
children. A cube becomes consistent when the Bui | dProcess executes the

Consi st ent Sol veCommand.

For examples of creating MinCube and Mim\veasur e objects and mapping them, and of
the other operations described in this topic, see Example 4-7 and Example 4-8.

Figure 2-6 shows the associations between an MinCube and the some of the classes
mentioned in this topic. The figure shows an MinCube as deployed in an analytic
workspace.

ORACLE 2-16

Figure 2-6 MdmCube and Associated Objects

ConsistentSolveCommand

1.7

setConsistentSolveSpecification

[——

findOrCreateAWCubeOrganization

Chapter 2

Providing Access to Data Sources

MdmDimension

findOrCreateBaseMeasure

findOrCreateDerivedMeasure

0..*

0..*

MdmBaseMeasure

MdmDerivedMeasure

ConsistentSolveSpecification K » AWCubeOrganization
: : : addDimension findOrCreateCubeMap
MdmDimensionality MdmCube CubeMap
0...’r 1 0*
1

Representing Measures

ORACLE

An Mimveasur e is an abstract class that represents a set of data that is organized by
one or more MinPri mar yDi nensi on objects. The structure of the data is similar to that of
a multidimensional array. Like the dimensions of an array, which provide the indexes
for identifying a specific cell in the array, the MinPri mar yDi nensi on objects that organize
an Mimveasur e provide the indexes for identifying a specific value of the Minveasur e.

For example, suppose you have an Mim\easur e that has data that records the number
of product units sold to a customer during a time period and through a sales channel.
The data of the measure is organized by dimensions for products, times, customers,
and channels (with a channel representing the sales avenue, such as catalog or
internet.). You can think of the data as occupying a four-dimensional array with the
product, time, customer, and channel dimensions providing the organizational
structure. The values of these four dimensions are indexes for identifying each
particular cell in the array. Each cell contains a single data value for the number of
units sold. You must specify a value for each dimension in order to identify a value in
the array.

The values of an Min\easur e are usually numeric, but a measure can have values of
other data types. The concrete subclasses of Mimveasur e are MinBaseMeasur e and
MinmDer i vedMeasur e.

An MinBaseMeasur e in an analytic workspace has associated physical storage
structures. Typically an MinCube gets the base data for an MinBaseMeasur e from a
column in a fact table. Oracle OLAP then calculates the aggregate values of the
measure and stores those values in an OLAP view for the cube.

When you create an MinBaseMeasur e, you can specify the SQL data type of the
measure with the set SQLDat aType method. If you do not specify it, then the
MinBaseMeasur e has the data type of the source data to which you map it.

By specifying t r ue with the set Al | owAut oDat aTypeChange method, you can allow Oracle
OLAP to automatically set the SQL data type of the measure. This can be useful if the
data type of a measure changes. If you allow the automatic changing of the SQL data

2-17

Chapter 2
Providing Access to Data Sources

type, then Oracle OLAP determines the appropriate SQL data type whether or not you
have specified one with the set SQLDat aType method.

An MinDer i vedMeasur e has no associated physical storage. Oracle OLAP dynamically
calculates the values for an MinDer i vedMeasur e as needed.

The values of an Minm\easur e are determined by the structure of the MinPri mar yDi nensi on
objects of the Mim\veasur e. That is, each value of an Mim\veasur e is identified by a tuple,
which is a unigue combination of members from the MinPri mar yDi nensi on objects.

The MinPri mar yDi nensi on objects of an Minveasur e are Mintt andar dDi nensi on Or

MiniTi meDi mensi on objects. They usually have at least one hierarchical structure. Those
MinPri mar yDi nensi on objects include all of the members of their component

Minti er ar chy objects. Because of this structure, the values of an Min\easur e are of one
or more of the following:

» Values from the fact table column, view, or calculation on which the Mimveasure is
based. These values are identified by a combination of the members at the leaf
levels of the hierarchies of a dimension.

* Aggregated values that Oracle OLAP has provided. These measure values are
identified by at least one member from an aggregate level of a hierarchy.

* Values specified by an Expressi on for a MinDer i vedMeasur e or a custom dimension
member.

As an example, imagine an MinBaseMeasur e that is dimensioned by an Minti meDi nensi on
and an Mintt andar dDi nensi on of products. The metadata objects for the measure and
the dimensions are ndnbni t Cost , mdndi meDi m and mdnPr odDi m Each of the minii meDi m
and the minPr odDi mobjects has all of the leaf members and aggregate members of the
dimension it represents. A leaf member is one that has no children. An aggregate
member has one or more children.

A unique combination of two members, one from minfi neDi mand one from ndnPr odDi m
identifies each minini t Cost value, and every possible combination of dimension
members is used to specify the entire set of ndnini t Cost values.

Some nmdnbni t Cost values are identified by a combination of leaf members (for
example, a particular product item and a particular month). Other ndnbni t Cost values
are identified by a combination of aggregate members (for example, a particular
product family and a particular quarter). Still other ndrbni t Cost values are identified by
a mixture of leaf and aggregate members.

The values of mdnbni t Cost that are identified only by leaf members come directly from
the column in the database fact table (or fact table calculation). They represent the
lowest level of data. However, the values that are identified by at least one aggregate
member are calculated by Oracle OLAP. These higher-level values represent
aggregated, or rolled-up, data. Thus, the data represented by an MinBaseMeasure is a
mixture of fact table data from the data store and aggregated data that Oracle OLAP
makes available for analytical manipulation.

Representing Dimensions, Levels, and Hierarchies

ORACLE

A dimension represents the general concept of a list of members that can organize a
set of data. For example, if you have a set of figures that are the prices of product
items during month time periods, then the unit price data is represented by an
Mimveasur e that is dimensioned by dimensions for time and product values. The time
dimension includes the month values and the product dimension includes item values.

2-18

Chapter 2
Providing Access to Data Sources

The month and item values act as indexes for identifying each particular value in the
set of unit price data.

A dimension can contain levels and hierarchies. Levels can group dimension members
into parent and child relationships, where members of lower levels are the children of
parents that are in higher levels. Hierarchies define the relationships between the
levels. Dimensions usually have associated attributes.

The base class for dimension, level, and hierarchy objects is the abstract class

minDi mensi on, which extends MinSour ce. An MinDi mensi on has methods for getting and
for removing the attributes associated with the object. It also has methods for getting
and setting the cardinality and the custom order of the members of the object. The
direct subclasses of MinDi nensi on are the abstract MinPri mar yDi nensi on and

MinSubDi mensi on classes.

MinPri mar yDi mensi on and MinHi er ar chyLevel objects can have associated Mimattri but e
objects. For information on attributes, see "Representing Dimension Attributes".

The following topics describe dimensions, levels, and hierarchies.
* Representing Dimensions

* Representing Dimension Levels

* Representing Hierarchies

* Representing Hierarchy Levels

Representing Dimensions

ORACLE

Dimensions are represented by instances of the MinPri mar yDi mensi on class, which is an
abstract subclass of MinDi nensi on. The concrete subclasses of the MinPri nar yDi nensi on
class represent different types of data. The concrete subclasses of

MinPri mar yDi nensi on are the following:

e MimMeasur eDi mensi on, which has all of the Mim\veasur e objects in the data store as
the values of the dimension members. A data store has only one
MimMveasur eDi nensi on. You can obtain the Mineasur eDi mensi on by calling the
get Measur eDi nensi on method of the MinRoot Schema. You can get the measures of the
data store by calling the get Measur es method of the Mimveasur eDi nensi on.

* MinStandar dDi mensi on, which has no special characteristics, and which typically
represent dimensions of products, customers, distribution channels, and so on.

e MinTi neDi mensi on, which has time periods as the values of the members. Each time
period has an end date and a time span. An MinTTi neDi nensi on has methods for
getting the attributes that record that information.

An MinPri mar yDi nensi on implements the following interfaces.

* Buildabl e, which is a marker interface for objects that you can specify in
constructing a Bui | dl tem

e MimMenber Li st MapOaner , which defines methods for finding or creating, or getting, a
Menber Li st Map object.

e MinVi ewCol umOaner , which is marker interface for objects that can have an
associated Minvi enCol um.

e Metadat athj ect, which defines a method for getting a unique identifier.

2-19

Chapter 2
Providing Access to Data Sources

* MinQuery, which defines methods for getting the Query object associated with the
implementing class and for getting information about the Query.

An MinPri mar yDi nensi on can have component MinDi nensi onLevel objects that organize
the dimension members into levels. It also can have Minti er ar chy objects, which
organize the levels into the hierarchies. An MinPri mar yDi mensi on has all of the members
of the component MinHi er ar chy objects, while each of the Minti er ar chy objects has only
the members in that hierarchy.

You can get all of the MinPri nar yDi mensi on objects that are contained by an

MinDat abaseSchema or an MinOr gani zat i onal Schena by calling the get Di mensi ons method
of the object. An MinDat abaseSchena has methods for finding an Minili neDi mensi on or an
MinSt andar dDi nensi on by name or creating the object if it does not already exist.

MinSt andar dDi mensi on and MinTi neDi nensi on objects contain MimAt t ri but e objects. Some
of the attributes are derived by Oracle OLAP, such as the parent attribute, and others
you map to data in relational tables or to data that you specify by an Expr essi on. For
information on attributes, see "Representing Dimension Attributes".

An MinPri mar yDi nensi on can organize the dimension members into one or more levels.
Each level is represented by an MinDi nensi onLevel object. An Mintt andar dDi nensi on or
an MinTi meDi mensi on can contain MinHi er ar chy objects that organize the levels into
hierarchical relationships. In an MinLevel H er ar chy the dimension levels are
represented by Minti er archyLevel objects. The concrete MinDi nensi onLevel and

Minti er ar chylLevel classes, and the abstract MinHi er ar chy class, are the direct
subclasses of the abstract MinSubDi mensi on class.

Representing Dimension Levels

An MinDi mensi onLevel represents a set of dimension members that are at the same
level. A dimension member can be in at most one dimension level. You get or create
an MinDi mensi onLevel with the findOr Creat eDi mensi onLevel of an MinPri maryDi mensi on.
You can map an MinDi mensi onLevel to a data source by using a Menber Li st Map.

An MinPri mar yDi nensi on has a method for getting a list of all of the MinDi mensi onLevel
objects that it contains. It also has a method for finding an MinDi nensi onLevel by name
or creating the object if it does not already exist.

Representing Hierarchies

ORACLE

MinHi er ar chy is an abstract subclass of MinSubDi nensi on. The concrete subclasses of
MinHi er ar chy are MinLevel Hi erar chy and MinVal ueHi erar chy.

An MinHi er ar chy organizes the members of a dimension into a hierarchical structure.
The parent-child hierarchical relationships of an MinLevel Hi erar chy are based on the
levels of the dimension. In an MinVal ueH er ar chy, the hierarchical relationships are
based on dimension member values and not on levels. An MinPri mar yDi mensi on can
have more than one of either or both kinds of hierarchies.

The parent of a hierarchy member is recorded in a parent Mimt t ri but e, which you can
get by calling the get Parent At t ri but e method of the Minti er ar chy. The ancestors of a
hierarchy member are recorded in an ancestors Mimit t ri but e, which you can get by
calling the get Ancest orsAt tri but e method.

An MinPri mar yDi nensi on has a method for getting a list of all of the Minti er ar chy objects
that it contains. It also has methods for finding an MiniLevel H erar chy or
MinVal ueH er ar chy by name or creating the object if it does not already exist.

2-20

Chapter 2
Providing Access to Data Sources

The following topics describe the objects that represent level-based and value-based
hierarchies.

* Representing a Level-based Hierarchy

* Representing a Value-based Hierarchy

Representing a Level-based Hierarchy

MinLevel H erarchy is a subclass of MinHi er archy. An MinLevel Hi erar chy has a tree-like
structure with a top, or highest, level, and a leaf, or lowest, level. Each member may
have zero or one parent in the hierarchy. Cycles are not allowed, for example where
member A is the parent of member B, member B is the parent of member C, and
member C is the parent of member A.

Members that are not the child of any other member are the top members. Members
with children are aggregates or aggregate members of the hierarchy. Members with no
children are the leaves or leaf members of the hierarchy.

Each member is in a level. The levels are ordered, from top level to leaf level. The
order is determined by the order in which you create the MinDi nensi onLevel objects of
the MinPri mar yDi nensi on. The first MinDi nensi onLevel that you create is the top level and
the last one you create is the leaf level. For example, for the CALENDAR_YEAR
hierarchy of the TIME_AWJ dimension, the Cr eat eAndBui | dAW j ava and Speci f yAWal ues
example programs create four MinDi nensi onLevel objects in the following order:
TOTAL_TIME, YEAR, QUARTER, and MONTH. The top level is TOTAL_TIME and the
leaf level is MONTH.

If a member of the hierarchy has a parent, then that parent must be in a higher level.
Oracle OLAP expects that all leaf members in the hierarchy are in the leaf level. You
can specify that Oracle OLAP allow the hierarchy to be ragged. In a ragged hierarchy,
one or more leaf members are not in the leaf level. You can specify allowing the
hierarchy to be ragged by calling the set | sRagged(true) method of the

Minmievel Hi erarchy.

Oracle OLAP also expects that if a member is in a level below the top level, then that
member has a parent, and that the parent is in the level just above the level of the
member. If a member is not at the top level and that member either does not have a
parent or the parent is not in the next higher level, then the hierarchy is a ski p- | evel
hierarchy. You can specify allowing a skip-level hierarchy by calling the

set | sSki pLevel (true) method of the MinLevel Hi erarchy.

Figure 2-7 illustrates the relationships of members in a regular hierarchy, a ragged
hierarchy, and two types of skip-level hierarchies.

Figure 2-7 Regular, Ragged, and Skip-level Hierarchies

Regular
Level Hierarchy Ragged Hierarchy Skip-level Hierarchies

WOV SNAVS

ORACLE 2-21

Chapter 2
Providing Access to Data Sources

The different levels of an MinLevel Hi erar chy are represented by Minti er ar chyLevel
objects. For an example of creating a level-based hierarchy, see "Creating and
Mapping an MdmLevelHierarchy".

The MinLevel H erar chy has all of the members of the hierarchy, and each of the
component MintHi er archyLevel objects has only the members at the level that it
represents. An MinLevel H erar chy can also represent a nonhierarchical list of
members, in which case the MinLevel H erar chy has one MinHi er ar chyLevel , and both
objects have the same members. You get the levels of an MinLevel H erar chy by calling
the get Hi erarchyLevel s method.

An MinLevel Hi erar chy has a method for getting a list of all of the Minti er ar chyLevel
objects that it contains. It also has a method for finding an MinHi er ar chyLevel by name
or creating the object if it does not already exist.

An MinPri mar yDi nensi on can contain more than one MinLevel Hi er ar chy. For example, an
MiniTi meDi mensi on dimension might have two MiniLevel Hi erar chy objects, one organized
by calendar year time periods and the other organized by fiscal year time periods. The
Minti er ar chyLevel objects of one hierarchy associate MinDi mensi onLevel objects of
calendar year time periods with the hierarchy. The Minti er ar chyLevel objects of the
other hierarchy associate MinDi nensi onLevel objects of fiscal year time periods with
that hierarchy. Generally, level-based hierarchies share the lowest level, so the

MinHi erarchyLevel for the lowest level of each of the hierarchies associates the same
MinDi nensi onLevel with each hierarchy. For example, the calendar year hierarchy and
the fiscal year hierarchy share the same Minti er ar chyLevel of month time periods.

Representing a Value-based Hierarchy

A value-based hierarchy is one in which levels are not meaningful in defining the
hierarchical relationships. This type of hierarchy is represented by the

MinVal ueH er ar chy class, which is a subclass of MinHi er ar chy. An example of a value
hierarchy is the employee reporting structure of a company, which can be represented
with parent-child relationships but without levels. For an example of creating a value-
based hierarchy, see "Creating and Mapping an MdmValueHierarchy".

The OLAP view for the value hierarchy has a column that contains all employees,
including those who are managers. It has another column that contains the parent
members. Another column identifies the depth of the member in the hierarchy, where
the member that has no manager is at depth 0 (zero), the employees who report to
that manager are at level 1, and so on.

Representing Hierarchy Levels

Minti er ar chyLevel is a subclass of MinSubDi nensi on. An MinHi er ar chyLevel associates
an MinDi mensi onLevel with an MinLevel Hi erar chy.

The order of the levels in the hierarchy is specified by the order in which you create
the MinHi er ar chyLevel objects for the MinLevel Hi erar chy. The first Minti er ar chyLevel
that you create is the highest level and the last one that you create is the lowest level.
For an example of creating a hierarchy, see "Creating and Mapping an
MdmLevelHierarchy".

Representing Dimension Attributes

An OLAP dimension attribute is represented by an Mimt t ri but e object. An
MimAttri but e has values that are related to members of an MinPr i mar yDi nensi on. The

ORACLE 2-22

Chapter 2
Providing Access to Data Sources

MimAttri but e class is a subclass of MinDi nensi onedObj ect because, like an Mimveasur e,
the values of an MimAt t ri but e have meaning in relation to the members of the
dimension.

The relation can be one-to-one, many-to-one, or one-to-many. For example, the
PRODUCT_AWJ dimension has a short description attribute, a package attribute, and
an ancestors attribute. The short description attribute has a separate value for each
dimension member. The package attribute has a set of values, each of which applies
to more than one dimension member. The ancestors attribute has multiple values that
apply to a single dimension member. If an MimAt t ri but e does not apply to a member of
an MinDi nensi on, then the MimAt t ri but e value for that member is nul | .

Table 2-3 shows the first few members of the PRODUCT_AWJ dimension and their
related short description and package attribute values. Only some of the members of
the ITEM level of the dimension have a package attribute. For other items, and for
higher levels, the package attribute value is nul |, which appears as NA in the table.

Table 2-3 Dimension Members and Related Attribute Values

Dimension Member Related Short Description Related Package
TOTAL_PRODUCT: : TOTAL Total Product NA

CLASS: : HRD Har dwar e NA

FAM LY: : DI SK CD/ DVD NA

| TEM : EXT CD ROM External 48X CD-ROM NA

| TEM : EXT DVD External - DVD-RW- 8X Executive

I TEM I NT 8X DVD Internal - DVD-RW- 8X NA

I TEM :INT CD ROM Internal 48X CD-ROM Lapt op Val ue Pack
I TEM : INT CD USB Internal 48X CD- ROM USB NA

| TEM : I NT RW DVD Internal - DVD-RW- 6X Ml ti medi a

To get values from an MimAt t ri but e, you must join the Sour ce for the MimAt tri but e and
a Sour ce that specifies one or more members of the MinDi mensi on. For an explanation
of joining Sour ce objects, see Understanding Source Objects. For examples of joining
the Sour ce objects for an MimAt tri but e and an MinDi nensi on, see Example 4-5 and
examples from Understanding Source Objects and Making Queries Using Source
Methods, such as Example 5-7 and Example 6-10.

The following topics describe the classes that represent dimension attributes.

» Describing the MdmAttribute Class
» Describing the MdmBaseAttribute Class
» Describing the MdmDerivedAttribute Class

Describing the MdmAttribute Class

The abstract MimAt tri but e class has a subclass, which is the abstract class
MinSi ngl eVal uedAt t ri but e. That class has two concrete subclasses: MinBaseAt tri but e
and MinDeri vedAttri bute.

ORACLE 2-23

Chapter 2
Providing Access to Data Sources

Describing Types of Attributes

An Mimt t ri but e is contained by the MinPri nar yDi nensi on that creates it. Some
attributes, such as the parent attribute and the level attribute, are derived by Oracle
OLAP from the structure of the dimension. Others are common attributes for which an
MinPri mar yDi nensi on has accessor methods, such as the long and short description
attributes, or the end date and time span attributes that an Minili meDi nensi on requires.
After you create one of those attributes, you associate it with the dimension through a
method such as the set Short Val ueDescri ptionAttri bute method of an

MinPri mar yDi mensi on or the set Ti meSpanAttri but e method of an MintTi meDi nensi on. You
can also create attributes for your own purposes, such as the PACKAGE attribute in
the GLOBAL_AWJ example analytic workspace.

Associating an Attribute with an MdmSubDimension

After you create an attribute, you associate it with an MinSubDi nensi on. You can
associate it with just a single MinSubDi nensi on by using the addAttri but e method of the
MinSubDi mensi on. You can also associate it with all of the MinDi mensi onLevel objects of
an MinPri mar yDi nensi on by using the set I sVi si bl eFor ALl method of the MimAt tri but e. If
you specify t rue with the set I sVi si bl eFor ALl method, then the attribute applies to all of
the MinDi nensi onLevel objects that are currently contained by the MinPri nar yDi mensi on
and to any MinDi mensi onLevel objects that you subsequently create or add to the
dimension.

Getting MdmAttribute Objects

The get Attri but es method of an MinPri mar yDi nensi on returns all of the MimAttri bute
objects that were created by a client application. The get Attri but es method of an
MinBubDi mensi on returns only those attributes that the application added to it with it the
addAt t ri but e method. Other methods of an MinPri mar yDi nensi on return specific
attributes that Oracle OLAP generates, such as the get Hi erarchyAttri but e, the

get Level Dept hAttribut e, or the get Parent Attri bute method.

Specifying a Target Dimension

A target dimension for an attribute is similar to defining a foreign key constraint
between columns in a table. All of the values of the attribute must also be keys of the
target dimension.

You can specify a target dimension for an attribute by using the set Tar get Di nensi on
method of the MimAt t ri but e. The relational table that is the Query for the target
dimension must have a column that contains all of the values that are in the column of
the dimension table to which you map the attribute.

Describing the MdmBaseAttribute Class

ORACLE

An MinBaseAt tri but e has values that are stored in the OLAP views for the dimension
that contains it and the hierarchy to which it applies. For information on OLAP views,
see "Using OLAP Views".

You create an MinBaseAt t ri but e with the fi ndOr Creat eBaseAt t ri but e method of an
MinPri mar yDi mensi on. You map the MinBaseAt tri but e to a column in a relational table or
view. When you build the minPri mar yDi nensi on that created the attribute, Oracle OLAP
stores the values of the MinBaseAt t ri but e in an OLAP view. You can get the column for

2-24

Chapter 2
Providing Access to Data Sources

the MinBaseAt tri but e in the OLAP view by using the get ETAt t ri but eCol uim method.
That method returns an Minvi ewCol urm object.

Examples of MinBaseAt t ri but e objects are the name attribute created and mapped in
Example 4-5 and the long description attribute created in Example 4-6. The mapping
for that long description attribute is in Example 4-3.

For regular OLAP queries, using Sour ce objects, you only need to map an

MinBaseAt t ri but e to MinDi nensi onLevel objects by using Menber Li st Map objects. For SQL
gueries against OLAP views, you should map the attributes to MinHi er ar chyLevel
objects by using Hi erar chyLevel Map objects.

Specifying a Data Type

When you create an MinBaseAt tri but e, you can specify the SQL data type with the

set SQLDat aType method. If you do not specify it, then the MinBaseAt t ri but e has the data
type of the source data to which you map it. For example, the SQL data type of the
short description attribute is VARCHAR2 and the data type of the end date attribute is
DATE.

By specifying t r ue with the set Al | owAut oDat aTypeChange method, you can allow Oracle
OLAP to automatically set the SQL data type. If you allow the automatic changing of
the SQL data type, then Oracle OLAP ignores the SQL data type specified by the

set SQLDat aType method. This can be useful if you map the same attribute to levels that
have different data types, or if the data type of a level changes.

Grouping Attributes

With the set At t ri but eG oupName method of an MinBaseAt t ri but e, you can specify a
name for an attribute group. You can specify the same group name for other attributes.
For example, you could create a long description attribute for each dimension level
and give each attribute the group name of LONG_DESCRIPTION. You could use the
group name to identify similar kinds of attributes. You get the group name with the

get Attri but eG oupName method.

Creating an Index

You can improve the performance of attribute-based queries by creating an index for
the attribute. Creating an index adds maintenance time and increases the size of the
analytic workspace, which may increase the build time for extremely large dimensions.
You create an index for an attribute by specifying t r ue with the

set Creat eAttri but el ndex method of the AWAt t ri but eOr gani zat i on for the

MinBaseAttri bute.

Specifying a Language for an Attribute

ORACLE

When you create an Attri but eMap for an MinBaseAt t ri but e, you can specify a language
for the attribute. For example, to specify French as the language for the long
description attribute for the MinDi mensi onLevel named CHANNEL, you would create an
Attribut eMap by calling the Menber Li st Map. fi ndOr Cr eat eAt t ri but eMap method and
passing in the long description MinBaseAt t ri but e and FRENCH as the Stri ng that specifies
the language. You would then specify GLOBAL. CHANNEL_DI M CHANNEL_DSC_FRENCH as the
Expr essi on for the Attri but eMap. By using the set Language method of an Attri but eMap,
you can specify a language for an Attri but eMap after you have created it.

2-25

Chapter 2
Providing Access to Data Sources

Specifying Multilingual Attributes

The MinBaseAttri bute. set Mil ti Li ngual method allows you to map more than one
language column to the same attribute. To do so, you specify true with the

set Mul ti Li ngual method of the attribute. You then create a separate Attri but eMap for
each language but you use the same MinBaseAttri bute.

The language in use for the database determines which language appears in the
OLAP view for the dimension. Only one language is in use at a time in a session, but if
the language in use changes, then the language in the attribute column in the OLAP
view also changes. For more information on specifying languages for database
sessions, see Setting Up a Globalization Support Environment in Oracle Database
Globalization Support Guide.

For materialized views, you should create a separate attribute for each language, so
that there is a long description attribute for English, one for French, and so on. That
behavior is more typical in SQL, which does not expect multivalued columns.

Populating OLAP Views with Hierarchical Attribute Values

ORACLE

For SQL queries, you should populate the lineage of the attributes in the view by
specifying t rue with the MinBaseAt t ri but e. set Popul at eLi neage method. Populating the
lineage means that in the column for an attribute in an OLAP view, Oracle OLAP
populates the rows for lower levels in a dimension hierarchy with the attribute values
that are mapped at a higher level. Populating the lineage for the attributes is also
useful if you are creating materialized views for an analytic workspace cube.

If you specify set Popul at eLi neage(f al se), which is the default for the setting, then the
attribute values appear only in the rows for the hierarchy members at the level to
which the attribute is mapped. For hierarchy members at other levels, the attribute
value is nul | . If you specify set Popul at eLi neage(true), then the attribute values appear
in the rows for the members of the mapped level and for the hierarchy members of all
levels that are descendants of the mapped level.

Populating the hierarchy lineage in an OLAP view makes the contents of the view
more like the contents of a relational table in a star schema. For example, you could
create a separate long description attribute on the dimension for each

minDi mensi onLevel of the dimension. You would specify populating the lineage of those
attributes by calling the set Popul at eLi neage(t rue) method of each attribute. You would
then make the attribute visible for a hierarchy level by adding the attribute to the

MinHi er ar chyLevel with the addAttri but e method.

The OLAP view for a hierarchy of the dimension would then have a column for each of
the long description attributes. Those columns would contain the long description
attribute values for the members of the mapped hierarchy level and for the hierarchy
members of all levels that are descendants of the mapped level.

For example, the Cr eat eAndBui | dAWexample class has a line of code that specifies
populating the lineage for the MinBaseAt t ri but e objects that it adds to each individual
Minti er ar chyLevel . The following line appears in the creat eLi neageAt t ri but es method
of the class.

mimAt t r. set Popul at eLi neage(true);

Example 2-2 shows the results of the following SQL query when that line of code is
commented out. Example 2-3 shows the results of the SQL query when the line is

2-26

ORACLE

Chapter 2
Providing Access to Data Sources

included in the class. Both examples show the values that are in the selected columns
of the OLAP view for the PRODUCT_PRIMARY hierarchy. The view name is
PRODUCT_AWJ_PRODUCT_PRIMA_VIEW. The examples show only a few of the
lines returned by the SQL query.

SELECT TOTAL_PRODUCT_SHORT DESC || '*' || CLASS_SHORT DESC || '*' ||
FAM LY_SHORT DESC || '*' || | TEM SHORT_DESC
FROM PRODUCT _AW_PRODUCT PRI MA VI EW
ORDER BY TOTAL_PRODUCT null's first, CLASS nulls first,
FAMLY nulls first, ITEMnulls first;

Example 2-2 Values in OLAP View Columns After setPopulateLineage(false)

In this example, the attribute rows of the OLAP view have only the attribute values for
the hierarchy level to which the dimension member belongs.

TOTAL_PRODUCT_SHORT_DESC| | ' *' | | CLASS_SHORT _DESC| | ' *' || FAM LY_SHORT _DESC| | " *' | |IT
Total Product***

*Har dwar e**

** CD/ DVD*

***External 48X CD- ROM

***External - DVD-RW- 8X

***|nternal - DVD-RW- 8X

**Deskt op PCs*
***Sentinel Financial
***Sentinel Miltinedia
***Sentinel Standard
**Portabl e PCs*
***Envoy Anbassador
***Envoy Executive
***Envoy Standard

Example 2-3 Values in OLAP View Columns After setPopulateLineage(true)

In this example , the attribute rows of the OLAP view are populated with the attribute
values for the ancestors of a dimension member. For example, the first row contains
only the value Total Product because TOTAL_PRODUCT is the highest level in the
hierarchy. The row that contains the value Envoy Standard also has the values for the
TOTAL_PRODUCT, CLASS, and FAMILY levels.

TOTAL_PRODUCT_SHORT_DESC| | ' *' | | CLASS_SHORT _DESC| | ' *" || FAM LY_SHORT DESC||'*'||IT
Total Product***

Total Product *Har dwar e**

Total Product *Har dwar e* COY DVD*

Total Product *Har dwar e* CDY DVD* Ext er nal 48X CD- ROM

Total Product*Har dwar e* CDY DVD* Ext ernal - DVD-RW- 8X

Total Product*Har dwar e*CDY DVD* I nternal - DVD-RW- 8X

Total Product *Har dwar e* Deskt op PCs*

Total Product *Har dwar e* Deskt op PCs*Senti nel Fi nanci al
Total Product *Har dwar e* Deskt op PCs*Sentinel Miltinedia
Total Product *Har dwar e* Deskt op PCs*Sentinel Standard
Total Product*Hardware*Portabl e PCs*

Total Product*Hardware*Portabl e PCs*Envoy Ambassador
Total Product*Hardware*Portabl e PCs*Envoy Executive
Total Product*Hardware*Portabl e PCs*Envoy Standard

2-27

Chapter 2
Providing Access to Data Sources

Preparing Attributes for Materialized Views

To generate materialized views for the OLAP metadata objects, for each

MinDi nensi onLevel you must create an MinBaseAttri bute, map it to a unique key for the
MInDi mensi onLevel , and add it to the MinDi nensi onLevel . An MinDi nensi onLevel has
methods for adding, getting, and removing unique key attributes. The Enabl eMs. j ava
example program creates unique key attributes and adds them to the

minDi mensi onLevel objects of the dimensions.

When Oracle OLAP creates a materialized view for a cube, it creates columns for the
attributes of the dimensions of the cube. For the name of a column, it uses the name
of the attribute column from the OLAP view of the dimension. To ensure that the
column name is unique, Oracle OLAP adds a default prefix to the name. You can
specify the prefix by using the set ETAt tr Prefi x method of the MinDi mensi onal i ty object
for a dimension of the cube.

Describing the MdmDerivedAttribute Class

An MinDer i vedAt t ri but e has values that Oracle OLAP calculates on the fly as you need
them. Oracle OLAP generates several MinDeri vedAt tri but e objects, such as the
attributes returned by the get Parent At t ri but e and the get Ancest or sAttri but e methods
of an MinPri mar yDi nensi on.

Using OLAP Views

For each instance of an MinCube, MinPri mar yDi nensi on, and Minti er ar chy in an analytic
workspace, Oracle OLAP automatically creates an associated relational view. Oracle
OLAP uses these views internally to provide access to the aggregate and calculated
data that is generated by the analytic workspace. An OLAP Java API query
transparently uses the views. In the OLAP Java API, these views are called ET
(embedded totals) views. A SQL application can directly query these views, using
them as it would the fact tables and dimension tables of a star or snowflake schema.

A client OLAP Java API application can get the names of the OLAP views and get the
names of columns in the views. The application could display the names to the end
user of the application, and the end user could then use the names in a SQL SELECT
statement to query the OLAP objects.

The following topics describe getting and using these views.

e Getting Cube View and View Column Names
* Getting Dimension and Hierarchy View and View Column Names
* Using OLAP View Columns

» Using Source Objects

Getting Cube View and View Column Names

ORACLE

To get the name of a cube view, call the MinCube. get Vi emNane() method. For example,
the following code gets the name of the view for the MinCube that is named
UNITS_CUBE_AWaJ. In the code, the nminDBSchena object is the MinDat abaseSchena for
the GLOBAL user.

2-28

Chapter 2
Providing Access to Data Sources

MinCube ndnni t sCube =
(MinmCube) mdnDBSchema. get TopLevel Ooj ect (" UNI TS_CUBE_AW") ;
String cubeVi ewName = mdnlni t sCube. get Vi ewNange() ;
println("The name of the view for the " +
minbni t sCube. get Name() + " cube is " + cubeViewNane + ".");

The output of the code is the following.

The nane of the view for the UN'TS CUBE AW cube is UNITS CUBE AW _VI EW

You can change the name of the OLAP view by using the MinCube. set Vi ewNane method.
To make the name change permanent, you must commit the Transacti on.

The OLAP view for an MinCube has a column for each measure of the cube, including
each derived measure. In Oracle OLAP User's Guide, a derived measure is known as
a calculated measure. A cube view also has a column for each dimension of the cube.
For example, for the MinCube named UNITS_CUBE_AWJ, the view is named
UNITS_CUBE_AWJ_VIEW. The following code gets the names of the view columns.

MinCube ndmni t sCube = ndnDBSchena. fi ndOr Cr eat eCube(" UNI TS_CUBE_AW") ;
Li st <MinQuer yCol um> ndmQCol s = ndmni t sCube. get Quer yCol umms() ;

for (MinQueryCol um nmdmQCol : nmdmQCol s)

{

MinVi ewCol um ndnVi ewCol = (MinMi ewCol unm) ndnQCol ;
print! n(nmdnVi ewCol . get Vi ewCol umNane());

}

The code displays the following output.

TI NE_AW
PRODUCT_AW
CUSTOMVER AW
CHANNEL_AW
UNITS
SALES
cosT

The UNI TS, SALES, and COST columns are for the measures of the cube, and the other
four columns are for the dimensions of the cube.

Getting Dimension and Hierarchy View and View Column Names

ORACLE

To get the name of the OLAP view for a dimension or a hierarchy, call the

get ETVi ewNane() method of the MinPri mar yDi nensi on or MinHi er archy. You can get the
name of a column in the view by calling the appropriate method of the metadata
object. For example, the following code gets the name of the key column for the
CHANNEL_AWJ dimension and the parent column for the CHANNEL_PRIMARY
hierarchy.

print! n(mdnChanDi m get ETKeyCol unm() . get Vi ewCol urmNane());
MInVi ewCol urm mdnPar ent Col =(MinVi ewCol urm) ndnChanHi er. get ETPar ent Col unm() ;
print!| n(ndnPar ent Col . get Vi ewCol ummName()) ;

The code displays the following output.

DI M KEY
PARENT

You can change the name of the OLAP view by using the set ETVi ewName method of the
MinPr i mar yDi mensi on or MinHi er ar chy.

2-29

Chapter 2
Providing Access to Data Sources

The OLAP view for an MinPri mar yDi mensi on has a column for the dimension keys, a
column for each dimension level, and a column for each attribute associated with the
dimension. For example, for the Mintt andar dDi nensi on named CHANNEL_AWJ, the
view is named CHANNEL_AWJ_VIEW. The SQL command DESCRI BE CHANNEL_AW_VI EW
displays the names of the following columns.

DI M KEY
LEVEL_NAME

NEMBER_TYPE

DI M ORDER

LONG_DESCR! PTI ON

SHORT DESCR! PTI ON
TOTAL_CHANNEL_LONG DESC
TOTAL_CHANNEL_SHORT DESC
CHANNEL_LONG DESC
CHANNEL_SHORT DESC

The OLAP view for an MinHi er ar chy has a column for the dimension keys and a
column for the parent of a hierarchy member. If it is an MinLevel Hi erar chy, then it also
has a column for each hierarchy level and a column for the depth of a level. If the
hierarchy has one or more added attributes, then the view has a column for each
attribute. For example, for the MinLevel H er ar chy named CHANNEL_PRIMARY, the
view is named CHANNEL_AWJ CHANNEL_PRIMA_VIEW. The SQL command
DESCRI BE CHANNEL_AW_CHANNEL_PRI MA_VI Ewdisplays the names of the following columns.

DI M KEY
LEVEL_NAME

VEMBER TYPE

DI M_ORDER

H ER ORDER

LONG_DESCR! PTI ON
SHORT_DESCRI PTI ON
TOTAL_CHANNEL_LONG DESC
TOTAL_CHANNEL_SHORT DESC
CHANNEL_LONG DESC
CHANNEL_SHORT DESC
PARENT

DEPTH

TOTAL_CHANNEL

CHANNEL

Using OLAP View Columns

ORACLE

See Oracle OLAP User's Guide for several examples of how to create SQL queries
using the OLAP views. An OLAP Java API query that uses Sour ce objects
automatically uses these views.

You can also provide direct access to the OLAP views to the users of your OLAP Java
API application. You could allow users to specify a SQL SELECT statement that uses the
views and then send that SQL query to the database.

Example 2-4 reproduces Example 4-2 of Oracle OLAP User's Guide except that it
uses the cubes and dimensions of the analytic workspace. The example selects the
SALES measure from UNITS_CUBE_AWJ_VIEW, and joins the keys from the cube
view to the hierarchy views to select the data.

In the example, minDBSchenw is the MinDat abaseSchena for the GLOBAL user. The
example is an excerpt from the Basi cCubeVi enQuery. j ava example program.

2-30

ORACLE

Chapter 2
Providing Access to Data Sources

Example 2-4 Basic Cube View Query

/1 In a nethod. ..
/1 Get the cube.

MinmCube ndnbni t sCube =
MinmCube) ndnDBSchena. get TopLevel Qbj ect (" UNI TS_CUBE_AW") ;
Il Get the OLAP view for the cube.
String cubeVi ewName = ndnbni t sCube. get Vi ewNane() ;
Il Display the nane of the CLAP view for the cube.
println("The nane of the OLAP view for the " + mdnlnitsCube. get Nang()
+ " cube is:\n " + cubeVi ewNane);

Il Get the dinmensions and the hierarchies of the dinmensions.
MinPri mar yDi mensi on nmdnili neDi m =
(MinPri mar yDi nensi on) mdnDBSchena. get TopLevel Obj ect (" TI ME_AW");
Mim_evel Hi erarchy ndnCal H er =
mdnili meDi m fi ndOr Cr eat eLevel Hi erar chy(" CALENDAR_YEAR') ;

I/ Display the nane of the CLAP view name for the hierarchy and
Il display the nanes of the hierarchy |evels.
di spl ayVi ewAndLevel Nanes(ndnCal Hier);

MinPri mar yDi mensi on nmdnProdDi m =
(MinPri mar yDi nensi on) mdnDBSchena. get TopLevel Obj ect (" PRODUCT_AW") ;
Mimievel Hi erarchy ndnProdHi er =
mdnPr odDi m fi ndOr Cr eat eLevel Hi erar chy (" PRODUCT_PRI MARY") ;
di spl ayVi ewAndLevel Nanes(mdnProdHi er);

MinPri mar yDi mensi on mdnCust Di m =
(MinPri mar yDi nensi on) ndnDBSchena. get TopLevel Obj ect (" CUSTOVER_ AW") ;
Mimievel Hi erarchy ndnthi pHier =
midmCust Di m fi ndOr Cr eat eLevel Hi erar chy(" SH PMENTS") ;
di spl ayVi ewAndLevel Nanes(mdnshi pHi er);

MinPri mar yDi mensi on mdnChanDi m =
(MinPri mar yDi nensi on) ndnDBSchena. get TopLevel Obj ect (" CHANNEL_AW") ;
Mimievel Hi erarchy nmdnChanHi er =
midnChanDi m fi ndOr Cr eat eLevel Hi erar chy (" CHANNEL_PRI MARY") ;
di spl ayVi ewAndLevel Nanes(minChanHi er);

Il Create a SQL SELECT statenent using the names of the views and the
Il levels.
/1 UNITS CUBE_AW _VIEWhas a col umm naned SALES for the sal es neasure.
/1 TIME_AW_CALENDAR YEAR VIEWhas a col utm named LONG DESCRI PTI ON
/1 for the long description attribute.
Il The hierarchy views have colums that have the same nanes as the |evels.
String sql = "SELECT t.long_description time,\n" +
" ROUND(f. sal es) sal es\n" +
FROM TI ME_AW_CALENDAR YEAR VIEWt,\n" +

PRODUCT_AW_PRODUCT_PRI MA VI EWp, \n" +

CUSTOVMER AW _SHI PMENTS VI EWcu, \n" +

CHANNEL_AW_CHANNEL PRI MA VI EW ch,\n" +

UNI TS_CUBE_ AW _VIEWf\n" +

VWHERE t.level nane = 'YEAR \n" +

AND p. | evel _name = ' TOTAL_PRODUCT' \n" +

AND cu. | evel _name = ' TOTAL_CUSTOMER \n" +

AND ch. | evel _name = ' TOTAL_CHANNEL' \n" +

AND t.dimkey = f.time_awj\n" +

AND p.di mkey = f.product_aw\n" +

AND cu.dimkey = f.customer_aw\n" +

AND ch.dimkey = f.channel _awj\n" +

2-31

ORACLE

Chapter 2
Providing Access to Data Sources

ORDER BY t.end_date";

/| Display the SQL SELECT statenent.
println("\nThe SQL SELECT statenment is:\n" + sql);

Il Display the results of the SQ query.
String title = "\nThe results of the SQ query are:\n";
executeSQ.(sql, title);

...

} /1 End of nethod.

private void di spl ayVi ewAndLevel Names(MinLevel Hi erarchy mdnLevel Hi er)
{
Il Get the CLAP view name for the hierarchy.
String level H erViewNane = ndnievel H er. get ETVi ewName() ;
/| Display the nane of the OLAP view for the hierarchy.
printIn("\nThe CLAP view for the " + ndnmlevel H er. get Nane() +
" hierarchy is:\n " + |evel H erVi ewNane);

/1 Display the nanes of the levels of the hierarchy.
di spl ayLevel Nanes(ndnievel Hi er);
}

private void di spl ayLevel Nanes(MinLevel Hi erarchy ndnievel Hi er)
{
Li st <MinHi er ar chyLevel > ndnHi er Level Li st =
minLevel Hi er. get Hi erarchyLevel s();
println("The nanes of the levels of the "

+ nmdnlLevel Hier. getName() + " hierarchy are:");
for (MinH erarchyLevel munH erLevel : ndnHierLevel List)
{

printin(" " + nmdnHi erLevel . get Nane());
}
}

/1 The executeSQL nethod is in the BaseExanpl ellg class.
protected void executeSQL(String sql, String heading)
{
try
{
Statenent statement = dp.get Connection().createStatenent();
println(heading);
Resul t Set rs = statenent. executeQuery(sql);
SQLResul t Set Printer. printResul t Set (get CursorPrintWiter(), rs);
rs.close();
statenent. cl ose();

catch (SQLException e)
{

printin("Could not execute SQL statement. " + e);

}
}

The output of the example is the following.

The nane of the OLAP view for the UNITS CUBE AW cube is:
UNI TS_CUBE_AW VI EW

The OLAP view for the CALENDAR YEAR hierarchy is:

TI VE_AW_CALENDAR YEAR VI EW
The names of the levels of the CALENDAR YEAR hierarchy are:

2-32

ORACLE

Chapter 2
Providing Access to Data Sources

TOTAL_TI ME
YEAR

QUARTER
MONTH

The OLAP view for the PRODUCT_PRI MARY hierarchy is:
PRODUCT_AW_PRODUCT PRI MA VI EW

The names of the levels of the PRODUCT_PRI MARY hierarchy are:
TOTAL_PRODUCT
CLASS
FAM LY
| TEM

The OLAP view for the SHI PMENTS hierarchy is:
CUSTOMER_AW_SHI PVMENTS_VI EW

The names of the levels of the SH PMENTS hierarchy are:
TOTAL_CUSTOVER
REG ON
WAREHOUSE
SHI P_TO

The OLAP view for the CHANNEL_PRI MARY hierarchy is:
CHANNEL_AW_CHANNEL_PRI MA_VI EW

The names of the levels of the CHANNEL_PRI MARY hierarchy are:
TOTAL_ CHANNEL
CHANNEL

The SQL SELECT statement is:
SELECT t.long_description tine,
ROUND(f . sal es) sal es
FROM TI ME_AW_CALENDAR_YEAR VI EW't,
PRCDUCT_AW_PRCDUCT_PRI MA_VI EW p,
CUSTOMER_AW_SHI PMENTS_VI EW cu,
CHANNEL_AW_CHANNEL_PRI MA_VI EW ch,
UNI TS_CUBE_AW_VI EW f
VWHERE t. | evel _name = ' YEAR
AND p. | evel _name = ' TOTAL_PRODUCT'
AND cu. | evel _name = ' TOTAL_CUSTOMER
AND ch. | evel _name = ' TOTAL_CHANNEL'
AND t.dimkey = f.tinme_aw
AND p. di mkey = f.product_aw
AND cu. di mkey = f.customer_aw
AND ch. di mkey = f.channel _awj
ORDER BY t.end_date

The results of the SQ query are:

TI ME SALES

1998 100870877
1999 134109248
2000 124173522
2001 116931722
2002 92515295
2003 130276514
2004 144290686
2005 136986572
2006 140138317
2007 <nul | >

2-33

Chapter 2
Providing Access to Data Sources

Using Source Objects

ORACLE

Example 2-4 demonstrates how to create a SQL statement using the OLAP views.
You can produce the same results by using OLAP Java API Sour ce objects, as shown
in Example 2-5. The code in Example 2-5 uses the MinLevel Hi er ar chy objects from
Example 2-4.

Example 2-5 Basic Cube Query Using Source Objects

/] Get the SALES neasure and the Source for it.
MinBaseMeasur e mdnBal es = nunbni t sCube. fi ndOr Cr eat eBaseMeasur e(" SALES") ;
Number Sour ce sal es = (Nunmber Sour ce) minSal es. get Sour ce() ;

/1 Get the Source objects for the PRODUCT_PRI MARY, CHANNEL_PRI MARY

[/ and the SHI PMENTS hi erarchies.

StringSource prodH er = (StringSource)ndnProdHi er. get Source();
StringSource shipH er = (StringSource)ndnShi pHi er. get Source();

StringSource chanHi er = (StringSource)ninChanHi er. get Source();

/1 Get the YEAR hierarchy |evel.

Li st <MinHi er ar chyLevel > hi erLevel s = mdntCal Hi er. get Level s();
MinHi er ar chyLevel mdniear Hi er Level null;

for(MinH erarchyLevel mdnHi erLevel : hierlLevels)

mdmYear Hi er Level = ndnHi er Level ;
i f (mdnear Hi er Level . get Nane() . equal s(" YEAR"))
{

break;

}

}
/1 Get the Source for the YEAR level of the CALENDAR_YEAR hierarchy.
Sour ce yearlLevel = mdniearH erLevel . get Source();

Il Select single values for the hierarchies except for the tinme hierarchy.
Source prodSel = prodHier.sel ect Val ue("PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL") ;
Source cust Sel = shipHier. sel ect Val ue("SHI PVMENTS: : TOTAL_CUSTOMER: : TOTAL") ;
Source chanSel = chanHier. sel ect Val ue(" CHANNEL_PRI MARY: : TOTAL_CHANNEL: : TOTAL") ;

/] Get the long description attribute for the TIME_AW di nensi on.
MinBaseAttribute ndnii meLDAttr = (MinBaseAttribute)

ndnii meDi m get Val ueDescriptionAttribute();
Source timeLDAttr = mdnili meLDAttr. get Source();

Source yearsWthLDVal ue = timeLDAttr.joi n(yearLevel);

Source result = sales.joinH dden(prodSel)
.j oi nH dden(cust Sel)
.j oi nH dden(chanSel)
.join(yearsWthLDval ue);

get Context (). conmit();
get Context (). displayResult(result);

The values of the Cursor for the resul t Sour ce are the following. The code for
formatting the values is not shown. For the complete code for Example 2-4 and
Example 2-5, see the Basi cCubeVi ewQuery. j ava example program.

Year Sales

2-34

ORACLE

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

100870876
134109248
124173521
116931722

92515295
130276513
144290685
136986571
140138317

NA

58
15
55
03
02
86
55
96
39

Chapter 2
Providing Access to Data Sources

2-35

Discovering Metadata

This chapter describes how to connect to an Oracle Database instance and how to
discover existing Oracle OLAP metadata objects. It includes the following topics:

e Connecting to Oracle OLAP

e Overview of the Procedure for Discovering Metadata

e Creating an MdmMetadataProvider

e Getting the MdmSchema Objects

e Getting the Contents of an MdmSchema

e Getting the Objects Contained by an MdmPrimaryDimension

e Getting the Source for a Metadata Object

Connecting to Oracle OLAP

To connect to the Oracle OLAP server in an Oracle Database instance, an OLAP Java
API client application uses the Oracle implementation of the Java Database
Connectivity (JDBC) API. The Oracle JDBC classes that you use to establish a
connection to Oracle OLAP are in the Java archive file oj dbc6. j ar. For information
about getting that file, see Setting Up the Development Environment.

The following topics describe creating a connection to Oracle OLAP.

e Prerequisites for Connecting
e Establishing a Connection

e Closing the Connection and the DataProvider

Prerequisites for Connecting

Before attempting to connect to the Oracle OLAP server, ensure that the following
requirements are met:

* The Oracle Database instance is running and was installed with the OLAP option.

* The Oracle Database user ID that you are using for the connection has access to
the relational schemas that contain the data.

* The Oracle JDBC and OLAP Java API jar files are in your application development
environment. For information about setting up the required jar files, see Setting Up
the Development Environment.

Establishing a Connection

To connect to the OLAP server, perform the following steps:

1. Create a JDBC connection to the database.

ORACLE 3-1

Chapter 3
Connecting to Oracle OLAP

2. Create a DataProvi der and a User Sessi on.
These steps are described in the following topics:
» Creating a JDBC Connection

* Creating a DataProvider and a UserSession

Creating a JDBC Connection

One way to create a connection to an Oracle Database instance is to use

oracl e.jdbc. Oracl eDat aSour ce and oracl e. j dbc. Or acl eConnect i on objects. For example,
the following code creates an oracl e. j dbc. Or acl eDat aSour ce, sets properties of the
object, and then gets a JDBC O acl eConnect i on object from the O acl eDat aSour ce.

The values of the properties for the O acl eDat aSour ce are from a java. util.Properties
object. The url property has the form j dbc: oracl e: t hi n: @er ver Nane: por t Nuber : si d,
where server Nane is the hostname of the server on which the Oracle Database
instance is running, port Nunber is the number of the TCP/IP listener port for the
database, and si d is the system identifier (SID) of the database instance.

Example 3-1 Getting a JDBC OracleConnection

oracl e. jdbc. Oracl eConnection conn = null;
try
{

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL(props. get Property("url"));

ods. set User (props. get Property("user"));

ods. set Passwor d(pr ops. get Property("password"));

conn = (oracle.jdbc. Oracl eConnection) ods. get Connection();

}
cat ch(SQLException e)
{

Systemout. printIn("Connection attenpt failed. " + e);

}

In the example, the connection uses the Oracle JDBC thin driver. There are many
ways to specify your connection characteristics using the get Connect i on method. There
are also other ways to connect to an Oracle Database instance. For more information
about Oracle JDBC connections, see Oracle Database JDBC Developer’s Guide.

After you have the O acl eConnect i on object, you can create OLAP Java API
Dat aProvi der and User Sessi on objects.

Creating a DataProvider and a UserSession

ORACLE

The following code creates a Dat aProvi der and a User Sessi on. The conn object is the
Oracl eConnect i on from Example 3-1.

Example 3-2 Creating a DataProvider

Dat aProvi der dp = new Dat aProvi der();
try
{

User Sessi on session = dp. createSession(conn);

}
cat ch(SQLException e)

{

3-2

Chapter 3
Overview of the Procedure for Discovering Metadata

Systemout. printin("Could not create a UserSession. " + e);

}

Using the Dat aPr ovi der, you can get the Mim\et adat aPr ovi der, which is described in
"Creating an MdmMetadataProvider". You use the Dat aProvi der to get the
Transacti onProvi der and to create Sour ce and Cur sor Manager objects as described in
Understanding Source Objects and Making Queries Using Source Methods.

Closing the Connection and the DataProvider

If you are finished using the OLAP Java API, but you want to continue working in your
JDBC connection to the database, then use the cl ose method of your Dat aPr ovi der to
release the OLAP Java API resources.

dp. cl ose(); /1 dp is the DataProvider

When you have completed your work with the database, use the
Oracl eConnecti on. ¢l ose method.

Example 3-3 Closing the Connection

try
{
conn. cl ose(); /1 conn is the OacleConnection
}
cat ch(SQLException e)
{
Systemout. println("Cannot close the connection. " + e);
}

Overview of the Procedure for Discovering Metadata

The OLAP Java API provides access to the data of an analytic workspace or that is in
relational structures. This collection of data is the data store for the application.

Potentially, the data store includes all of the subchemas of the MinRoot Schena.
However, the scope of the data store that is visible when an application is running
depends on the database privileges that apply to the user ID through which the
connection was made. A user can see all of the MinDat abaseSchena objects that exist
under the MinRoot Schena, but the user can see the objects that are owned by an
MinDat abaseSchena only if the user has access rights to the metadata objects,

The following topics describe discovering metadata.

» Purpose of Discovering the Metadata

» Steps in Discovering the Metadata

Purpose of Discovering the Metadata

ORACLE

The metadata objects in the data store help your application to make sense of the
data. They provide a way for you to find out what data is available, how it is structured,
and what the characteristics of it are.

Therefore, after connecting, your first step is to find out what metadata is available.
You can then present choices to the end user about what data to select or calculate
and how to display it.

3-3

Chapter 3
Creating an MdmMetadataProvider

After an application discovers the metadata, it typically goes on to create queries for
selecting, calculating, and otherwise manipulating the data. To work with data in these
ways, you must get the Sour ce objects from the metadata objects. These Sour ce
objects specify the data for querying. For more information on Sour ce objects, see
Understanding Source Objects.

Steps in Discovering the Metadata

Before investigating the metadata, your application must make a connection to Oracle
OLAP. Then, your application might perform the following steps:

Create a Dat aPr ovi der .
Get the Mim\vet adat aPr ovi der from the Dat aPr ovi der .
Get the MinRoot Schema from the Mimvet adat aPr ovi der .

Get all of the MinDat abaseSchema objects or get individual ones.

o ® NP

Get the MinCube, MinDi nensi on, and MinQr gani zat i onal Schena objects owned by the
MinDat abaseSchena objects.

The following topics describe these steps in detail.
» Creating an MdmMetadataProvider

* Getting the MdmSchema Objects

* Getting the Contents of an MdmSchema

* Getting the Objects Contained by an MdmPrimaryDimension

Creating an MdmMetadataProvider

An Mim\et adat aPr ovi der gives access to the metadata in a data store by providing the
MinRoot Schena. Before you can create an Minvet adat aPr ovi der , you must create a

Dat aProvi der as described in Creating Metadata and Analytic Workspaces.

Example 3-4 creates an Min\et adat aPr ovi der . In the example, dp is the Dat aPr ovi der .

Example 3-4 Creating an MdmMetadataProvider

Mimvet adat aProvi der np = nul | ;

try
{

nmp = (Mim\et adat aProvi der) dp. get Mimvet adat aPr ovi der () ;
}
catch (Exception e)
{

println("Cannot get the MDM netadata provider. " + e);
}

Getting the MdmSchema Obijects

ORACLE

The Oracle OLAP metadata objects that provide access to the data in a data store are
organized by MinSchema objects. The top-level MinSchema is the MinRoot Schena. Getting
the MinRoot Schema is the first step in exploring the metadata in your data store. From
the MinRoot Schema, you can get the MinDat abaseSchenma objects. The MinRoot Schema has
an MinDat abaseSchena for each database user. An MinDat abaseSchena can have

3-4

ORACLE

Chapter 3
Getting the MdmSchema Objects

MInOr gani zat i onal Schema objects that organize the metadata objects owned by the
MinDat abaseSchema.

Example 3-5 Getting the MdmSchema Objects

This example demonstrates getting the MinRoot Schena, the MinDat abaseSchema objects
under it, and any MinOr gani zat i onal Schena objects under them.

private void get Schemas(Minet adat aProvi der np)

{
MinRoot Schema mdnRoot Schema = (MinRoot Schena) np. get Root Schema() ;
Li st <MinDat abaseSchenma> dbSchemas = mdnRoot Schena. get Dat abaseSchenas() ;
f or (MinDat abaseSchenma ndnDBSchenma : dbSchenas)

printl n(minDBSchema. get Name()) ;

get Or gSchemas(ninDBSchens) ;
1
}
private voi d get OrgSchemas(MinSchema ndnSchena)
{

ArrayList orgSchenaLi st = new ArrayList();

i f (mdnSchema instanceof MinDat abaseSchena)

{
MinDat abaseSchema ndnDBSchema = (MinDat abaseSchenma) nunSchens;
orgSchemalLi st = (ArrayList) ndnDBSchema. get Organi zati onal Schemas();

else if (mdnSchena instanceof MInOrgani zational Schems)
{
MInOr gani zat i onal Schema nmdnOr gSchema = (MinOr gani zat i onal Schena)
minSchens;
orgSchenalLi st = (ArrayList) ninOrgSchema. get Or gani zati onal Schemas();

}

if (orgSchenaList.size() > 0)
{
println("The MInOrgani zational Schema subschenas of "
+ nminSchena. get Name() + " are:");
Iterator orgSchenaListltr = orgSchemalist.iterator();
whil e (orgSchemaListltr. hasNext())
{
MinQr gani zat i onal Schema ndnOr gSchenma = (MinOr gani zat i onal Schenm)
orgSchemalListltr.next();
print! n(nmdmOr gSchena. get Nane()) ;
get Or gSchenas(ndnOr gSchens) ;
}
1
el se
{
println(minSchena. get Nane() + " does not have any" +
" MInOr gani zat i onal Schema subschenas.");
1
}

Example 3-6 Getting a Single MdmDatabaseSchema

Rather than getting all of the MinDat abaseSchema objects, you can use the
get Dat abaseSchema method of the MinRoot Schema to get the schema for an individual
user. This example demonstrates getting the MinDat abaseSchena for the GLOBAL user.

3-5

Chapter 3
Getting the Contents of an MdmSchema

MinDat abaseSchema ndn@ obal Schema = ndnRoot Schena. get Dat abaseSchema(" GLOBAL") ;

Getting the Contents of an MdmSchema

ORACLE

From an MinSchena, you can get all of the subschema, MinCube, MinPri mar yDi nensi on,
and minmveasur e objects that it contains. Also, the MinRoot Schena has an
MimMveasur eDi nensi on that has a Li st of all of the available Mim\easur e objects.

If you want to display all of the dimensions and methods that are owned by a particular
user, then you could get the lists of dimensions and measures from the
MinDat abaseSchena for that user.

Example 3-7 Getting the Dimensions and Measures of an
MdmbDatabaseSchema

This example gets the dimensions and measures from the MinDat abaseScherma from
Example 3-6. It displays the name of each dimension and measure.

private void get Objects(MinDat abaseSchema nin@ obal Schema)
{
Li st dinList = mdnG obal Schema. get Di mensi ons();
String obj Name = mdn@ obal Schema. get Name() + " schem";
get Nanes(di nLi st, "dimensions", objNane);

Li st measLi st = mind obal Schena. get Measures();
get Nanes(neasLi st, "measures", obj Nane);

}

private voi d get Names(List objectList, String obj Types, String obj Nane)
{
printIn("The " + objTypes + " of the " + objNane + " are:");
Iterator objListltr = objectList.iterator();
whi | e (objListltr.hasNext())
{
Minbj ect mdnObj = (MinObj ect) objListlitr.next();
println(minbj . get Nane());
1
}

The output of the example is the following.

The di nensions of the GLOBAL schema are:
CHANNEL_AW

CUSTOMER AW

PRODUCT_AW

TI ME_AW

The neasures of the GLOBAL schenm are:
UNIT_COST

UNI T_PRI CE

SALES

UNI TS

CosT

Example 3-8 Getting the Dimensions and Measures of an MdmCube

To display just the dimensions and measures associated with an MinCube, you could
use the findOr Cr eat eCube method of an MinDat abaseSchema to get the cube and then get
the dimensions and measures of the cube. This example gets an MinCube from the
MinDat abaseSchena of Example 3-6 and displays the names of the dimensions and
measures associated with it using the get Nanes method of Example 3-7.

3-6

Chapter 3
Getting the Objects Contained by an MdmPrimaryDimension

private voi d get CubeObj ect s(MinDat abaseSchenma nund obal Schena)
{
MinCube ndnlni t sCube = (MinCube)
mdn@ obal Schema. fi ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
String obj Name = mdnlni t sCube. get Name() + " cube";
Li st dinList = ndnni t sCube. get Di nensi ons();
get Nanes(di nLi st, "dimensions", objNane);

Li st <MimMeasur e> neasLi st = ndnlni t sCube. get Measures() ;
get Nanes(neasLi st, "measures", obj Nane);

}

The output of the example is the following.

The di nensions of the PRICE_CUBE_ AW cube are:
TI ME_AW

PRODUCT AW

The neasures of the PRI CE_CUBE AW cube are:
UNI T_COST

UNI T_PRI CE

Getting the Objects Contained by an MdmPrimaryDimension

In discovering the metadata objects to use in creating queries and displaying the data,
an application typically gets the MinSubDi nensi on components of an

MinPri mar yDi mensi on and the MimAt t ri but e objects that are associated with the
dimension. The following topics demonstrate getting the components and attributes of
a dimension.

e Getting the Hierarchies and Levels of an MdmPrimaryDimension

e Getting the Attributes for an MdmPrimaryDimension

Getting the Hierarchies and Levels of an MdmPrimaryDimension

ORACLE

An MinPri mar yDi nensi on has zero or more component MinHi er ar chy objects, which you
can obtain by calling the get Hi er ar chi es method of the dimension. That method returns
a Li st of MinHi er ar chy objects. The levels of an MinPri nar yDi nensi on are represented
by minDi nensi onLevel objects.

If an MinHi er ar chy is an MinLevel Hi erar chy, then it has Minti er archyLevel objects that
associate MinDi nensi onLevel objects with it. You can obtain the MinHi er ar chyLevel
objects by calling the get Hi erar chyLevel s method of the MinLevel Hi erar chy.

Example 3-9 Getting the Hierarchies and Levels of a Dimension

This example gets an MinPri nar yDi mensi on from the MinDat abaseSchema of Example 3-6
and displays the names of the hierarchies and the levels associated with them.

private void getH erarchi esAndLevel s(MinDat abaseSchema nund obal Schens)
{
MinPri mar yDi mensi on ndmCust Di m = (MinPr i mar yDi nensi on)
min@ obal Schema. fi ndOr Cr eat eSt andar dDi mensi on(" CUSTOMER_AW") ;
Li st <MinHi erarchy> hierList = ninCust Di m get Hi erarchies();
println("The hierarchies of the dinmension are:");
for (MinH erarchy nminHier : hierlList)
{
println(mnHi er. get Name());
if (mdnHier instanceof Minlevel Hierarchy)

3-7

Chapter 3
Getting the Objects Contained by an MdmPrimaryDimension

MinLevel H erarchy mdnLevel Hi er = (MinLevel Hi erarchy) ndnHi er;
Li st <MinHi erarchyLevel > hi erLevel Li st = mdnLevel Hi er. get H erarchyLevel s();
printIn(" The levels of the hierarchy are:");
for (MinH erarchyLevel nuntHierLevel : hierlLevel List)
{
printin(" " + ndnHierLevel . get Nane());
}
}
}
}

The output of Example 3-9 is the following.

The hierarchies of the dimension are:
SHI PMENTS
The levels of the hierarchy are:
TOTAL_CUSTOVER
REG ON
VWAREHOUSE
SH P_TO
MARKETS
The levels of the hierarchy are:
TOTAL_MARKET
MARKET SEGVENT
ACCOUNT
SH P_TO

Getting the Attributes for an MdmPrimaryDimension

ORACLE

An MinPri mar yDi nensi on and the hierarchies and levels of it have associated

MimAt t ri but e objects. You can obtain many of the attributes by calling the

get Attri but es method of the dimension, hierarchy, or level. That method returns a Li st
of MimAt t ri but e objects that an application has explicitly added to or specified for the
MinPri mar yDi nensi on. You can obtain specific attributes, such as a short or long
description attribute or a parent attribute by calling the appropriate method of an
MinPr i mar yDi mensi on or an MinHi er ar chy.

Example 3-10 Getting the MdmAttribute Objects of an MdmPrimaryDimension

This example demonstrates getting the Mimat t ri but e objects for an

MinPri nar yDi mensi on. It also gets the parent attribute separately. The example displays
the names of the MimAt t ri but e objects. The attribute names that end in _LDand _SD are
the attributes that are added to the Minti er ar chyLevel objects, as mentioned in
"Populating OLAP Views with Hierarchical Attribute Values".

private void getAttributes(MinDat abaseSchema minG obal Schema)
{
MiniTi meDi mensi on ndndi meDi m = (MiniTi meDi mensi on)
mind obal Schema. findOr Creat eTi meDi nensi on(" TI ME_LAW") ;
List attrList = munili meDim getAttributes();
Iterator attrListltr = attrList.iterator();
println("The MimAttribute objects of " + ndnTi meDi m getNane() + " are:");
while (attrListltr.hasNext())

MimAttribute mdmAttr = (MimAttribute) attrListitr.next();
printin(" " + ndmAttr.getNane());

}

MimAttri bute mdnParent Attr = nnili neDi m get Parent Attribute();

3-8

Chapter 3
Getting the Source for a Metadata Object

println("The parent attribute is "

}

+ mdnParent Attr. getNanme() + ".");

The output of the example is the following.

The MimAttribute objects of TIME_AW are:
LONG DESCRI PTI ON
SHORT_DESCRI PTI ON
END_DATE

TI ME_SPAN
TOTAL_TIME_LD
YEAR LD
QUARTER LD
NONTH_LD

TOTAL_TI ME_SD
YEAR SD
QUARTER SD
MONTH_SD

TOTAL_TI ME_ED
YEAR ED
QUARTER ED
NONTH_ED
TOTAL_TIME_TS
YEAR TS
QUARTER TS
MONTH_TS

The parent attribute is PARENT_ATTRI BUTE.

Getting the Source for a Metadata Object

ORACLE

A metadata object represents a set of data, but it does not provide the ability to create
gueries on that data. The object is informational. It records the existence, structure,
and characteristics of the data. It does not give access to the data values.

To access the data values for a metadata object, an application gets the Sour ce object
for that metadata object. The Sour ce for a metadata object is a primary Sour ce.

To get the primary Sour ce for a metadata object, an application calls the get Sour ce
method of that metadata object. For example, if an application needs to display the
guantity of product units sold during the year 1999, then it must use the get Sour ce
method of the Mim\easur e for that data, which is ndnihi t s in the following example.

Example 3-11 Getting a Primary Source for a Metadata Object

Source units = ndnnits. get Source();

For more information about getting and working with primary Sour ce objects, see
Understanding Source Objects.

3-9

Creating Metadata and Analytic
Workspaces

This chapter describes how to create new metadata objects and map them to
relational structures or expressions. It describes how to export and import the
definitions of the metadata objects to XML templates. It also describes how to
associate the objects with an analytic workspace, and how to build the analytic
workspace.

The examples in this chapter are from the Cr eat eMet adat aAndAW j ava example program.
That program creates some of the same metadata objects as the

Cr eat eAndBui | dAW j ava and Speci f yAWal ues. j ava example programs. The

Cr eat eMet adat aAndAWprogram also exports the analytic workspace to an XML template.

This chapter includes the following topics:

e Overview of Creating and Mapping Metadata

e Creating an Analytic Workspace

* Creating the Dimensions, Levels, and Hierarchies
* Creating Attributes

e Creating Cubes and Measures

e Committing Transactions

e Exporting and Importing XML Templates

e Building an Analytic Workspace

Overview of Creating and Mapping Metadata

ORACLE

The OLAP Java API provides the ability to create persistent metadata objects. The
top-level metadata objects exist in the data dictionary of the Oracle Database instance.
The API also provides the ability to create transient metadata objects that exist only for
the duration of the session. An application can use both types of metadata objects to
create queries that retrieve or otherwise use the data in the data store.

Before an OLAP Java API application can create metadata objects, a database
administrator must have prepared the Oracle Database instance. The DBA must have
set up permanent and temporary tablespaces in the database to support the creation
of Oracle OLAP metadata objects and must have granted the privileges that allow the
user of the session to create and manage objects. A dimensional metadata model
typically includes the objects described in Understanding OLAP Java AP| Metadata.

You implement the dimensional model by creating OLAP Java API metadata objects.
You use classes in the or acl e. ol api . net adat a. mappi ng package to map the metadata
objects to relational source objects and to build analytic workspaces. You use classes
in the oracl e. ol api . synt ax package to specify Expr essi on objects that you use in
mapping the metadata. You use classes in the oracl e. ol api . met adat a. depl oyment

4-1

Chapter 4
Creating an Analytic Workspace

package to deploy the metadata objects in an analytic workspace or in a relational
database (ROLAP) organization.

The basic steps for implementing the dimensional model as OLAP Java API objects in
an analytic workspace are the following:

1. Create an AwWobject and MinPri mar yDi nensi on and MinCube objects.
2. Deploy the MinPri maryDi nensi on and MinCube objects to the AW

3. Create MinDi nensi onLevel , MinHi erar chy, and MimAt t ri but e objects for each
MinPri mar yDi mensi on, create MinHi er ar chyLevel objects to associate
MinDi nensi onLevel objects with an Minti erar chy, and create the Minveasur e and
related objects for the MinCube objects.

4. Map the metadata objects to the relational sources of the base data.
5. Commit the Transacti on, which creates persistent objects in the database.

6. Load data into the objects from the relational sources by building the analytic
workspace.

For a list of the topics that describe these steps, see Creating Metadata and Analytic
Workspaces.

Creating an Analytic Workspace

An analytic workspace is a container for dimensional objects. It is represented by the
Awclass in the or acl e. ol api . net adat a. depl oynent package. An analytic workspace is
owned by an MinDat abaseSchema.

Example 4-1 demonstrates getting the MinDat abaseSchema for the GLOBAL user and
creating an AW For an example that gets the MinRoot Schena, see Discovering Metadata.

Example 4-1 Creating an AW

private void creat eAW MinRoot Schema ndnRoot Schema)

{
MinDat abaseSchema minDBSchema = mdnmRoot Schena. get Dat abaseSchema(" GLOBAL") ;
aw = mdnDBSchena. findOr Cr eat eAW " GLOBAL_AW") ;

}

Creating the Dimensions, Levels, and Hierarchies

ORACLE

A dimension is a list of unique values that identify and categorize data. Dimensions
form the edges of a cube and identify the values in the measures of the cube. A
dimension can have one or more levels that categorize the dimension members. It can
have one or more hierarchies that further categorize the members. A dimension can
also have no levels or hierarchies. However, a dimension must have one or more
levels before Oracle OLAP can create a materialized view for it.

A dimension also has attributes that contain information about dimension members.
For descriptions of creating attributes, see "Creating Attributes"”.

The following topics describe how to create objects that represent a dimension and the
levels and hierarchies of a dimension.

e Creating and Mapping Dimensions

e Creating and Mapping Dimension Levels

4-2

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

» Creating and Mapping Hierarchies

Creating and Mapping Dimensions

An OLAP dimension is represented by the MinPri mar yDi nensi on class. A dimension is
owned by an MinDat abaseSchema. You create a dimension with the

findOr Creat eTi meDi mensi on or the fi ndOr Cr eat eSt andar dDi nensi on method of the
MinDat abaseSchena. You can map a dimension that has no levels to a relational data
source by creating a Menber Li st Map for the dimension.

Example 4-2 creates a standard dimension that has the name CHANNEL_AWJ. The
example creates an AWPr i nar yDi nensi onOr gani zat i on object to deploy the dimension in
an analytic workspace. The ndnDBSchema and aw objects are created by Example 4-1.
The last three lines call the methods of Example 4-3, Example 4-4, and Example 4-9,
respectively.

Example 4-2 Creating and Deploying an MdmStandardDimension

Mint andar dDi mensi on mdnChanDi m =

minDBSchena. f i ndCOr Cr eat eSt andar dDi mensi on(" CHANNEL_AW") ;
AWPr i mar yDi nensi onOr gani zati on awChanDinOrg =

mdnChanDi m fi ndOr Cr eat eAWPr i mar yDi mensi onOr gani zati on(aw) ;

creat eAndMapDi nensi onLevel s(ndnChanDi mj ;
creat eAndMapHi erarchies();
comi t (ndnmChanDi) ;

Creating and Mapping Dimension Levels

ORACLE

An MinDi mensi onLevel represents the members of a dimension that are at the same
level. Typically, the members of a level are in a column in a dimension table in the
relational source. A Menber Li st Map associates the MinDi mensi onLevel with the relational
source.

Example 4-3 creates two MinDi nensi onLevel objects for the CHANNEL _AWJ dimension
and maps the dimension levels to the key columns of the GLOBAL.CHANNEL_DIM
table. The example also maps the long description attributes for the dimension levels
to columns of that table. The long description attribute, chanLongDescAttr, is created by
Example 4-6.

Example 4-3 Creating and Mapping an MdmDimensionLevel

private ArrayLi st <MinDi nensi onLevel > di n_Level Li st = new ArrayList();
private ArraylList<String> dinlievel Names = new ArrayList();

private ArrayList<String> keyCol ums = new ArrayList();

private ArraylList<String> | DescCol Names = new ArrayList();

private void creat eAndMapDi nensi onLevel s(MinPri mar yDi nensi on mdnChanDi m)

{
di mLevel Nanes. add(" TOTAL_CHANNEL") ;

di mLevel Nanes. add(" CHANNEL") ;

keyCol urms. add(" GLOBAL. CHANNEL_DI M TOTAL_| D') ;
keyCol urms. add(" GLOBAL. CHANNEL_Di M CHANNEL_| D') ;

| DescCol Nanes. add(" GLOBAL. CHANNEL_DI M TOTAL_DSC') ;
| DescCol Nares. add(" GLOBAL. CHANNEL_Di M CHANNEL_DSC') ;

Il Create the MinDi nensionLevel and MenberListMap objects.

4-3

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

inti =0;
for(String dinLevel Nane : dinlLevel Nanes)
{
MinDi mensi onLevel ndnDi mievel =
minChanDi m fi ndOr Cr eat eDi nensi onLevel (di mLevel Names. get (i));
di mLevel Li st. add(mdnDi nLevel);

/] Create a MenberListMap for the dinmension |evel.
Menber Li st Map mdnDi nLevel MenLi st Map =
mdnDi nLevel . findOr Cr eat eMenber Li st Map() ;
Col umExpr essi on keyCol Exp =
(Col umExpr essi on) Synt axChj ect . f ronSynt ax(keyCol ums. get (i),
met adat aPr ovi der) ;
minDi nLevel MenLi st Map. set KeyExpr essi on(keyCol Exp) ;
midnDi nLevel MenLi st Map. set Query(keyCol Exp. get Query());

/] Create an attribute map for the Long Description attribute.
AttributeMap attrMplLong =
mdnDi nLevel Menli st Map. fi ndOr Creat eAt tri but eMap(chanLongDescAttr);

/1 Create an expression for the attribute map.
Expression | DescCol Exp =
(Expressi on) Synt axhj ect . fronBynt ax(| DescCol Nanes. get (i),
met adat aProvi der);
attrMapLong. set Expr essi on(| DescCol Exp) ;
i +4;
1
}

Creating and Mapping Hierarchies

An MintHi erar chy represents a hierarchy in the dimensional object model. An

MinHi er ar chy can be an instance of the MinLevel Hi erarchy or the Minval ueHi er ar chy
class. An MinLevel Hi erar chy has an ordered list of MintHi er archyLevel objects that relate
minDi mensi onLevel objects to the hierarchy.

Creating and Mapping an MdmLevelHierarchy

ORACLE

Example 4-4 creates a hierarchy for the CHANNEL_AWJ dimension. It creates
hierarchy levels for the hierarchy and associates attributes with the hierarchy levels. It
also maps the hierarchy levels and the attributes to relational sources. The example
uses the ArrayLi st objects from Example 4-3. It maps the Minti erar chyLevel objects to
the same relational source objects as the MinDi mensi onLevel objects are mapped.

Example 4-4 Creating and Mapping MdmLevelHierarchy and
MdmHierarchyLevel Objects

private void creat eAndMapHi erar chi es()

Minievel Hi erarchy ndnlievel Hier =
mimChanDi m fi ndCOr Cr eat eLevel Hi erar chy (" CHANNEL_PRI MARY") ;

Il Create the MinH erarchyLevel and Hi erarchylLevel Map obj ects.
int i =0;
for(String dinlievel Nane : di nLevel Nanes)
{
MiInDi mensi onLevel ndnDi nLevel =
mdnmChanDi m fi ndOr Cr eat eDi nensi onLevel (di nLevel Nane) ;
MinHi er ar chyLevel ndnHi erLevel =

4-4

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

mimievel Hier. findOr Creat eHi erar chyLevel (mdnDi nievel) ;
Hi erarchyLevel Map hi erLevel Map =
mdH er Level . findOr Cr eat eHi er ar chyLevel Map() ;
Col umExpr essi on keyCol Exp =
(Col umExpr essi on) Synt axChj ect . f ronSynt ax(keyCol ums. get (i),
met adat aPr ovi der) ;
hi er Level Map. set KeyExpr essi on(keyCol Exp) ;
hi er Level Map. set Quer y(keyCol Exp. get Query());
i +4;
}
}

Creating and Mapping an MdmValueHierarchy

ORACLE

The GLOBAL_AWJ analytic workspace that is used by the examples in this
documentation does not have an MinPri mar yDi nensi on for which an Minval ueHi er ar chy
would be sensible. The sample schema for the user SCOTT has a table that can serve
as an example.

The SCOTT sample schema has a table named EMP. That table has columns for
employees and for managers. You could create a dimension for employees. You could
then create an MinVal ueHi er ar chy in which you map the employee column as the base
values for the hierarchy and you map the manager column as the parent relation, as
shown in Example 4-5. To be able to create OLAP dimensions, the SCOTT user must
be granted the OLAP_USER role and the CREATE SESSI ON privilege.

In the example, minDBSchena is the MinDat abaseSchena for the SCOTT user, dp is the

Dat aProvi der, and np is the Minvet adat aPr ovi der . The example does not show the code
for connecting to the database or getting the Dat aProvi der and creating a User Sessi on,
or getting the Mim\et adat aPr ovi der , the MinRoot Schena, or the MinDat abaseSchema. The
code is an excerpt from a class that extends the BaseExanpl e11g example class. That
class uses other example classes that have methods for committing the current
Transact i on and for displaying output. For the complete code, see the

Creat eVal ueHi erar chy. j ava example program.

Example 4-5 Creating an MdmValueHierarchy

/] Create an anal ytic workspace object.
AW aw = ndnDBSchena. fi ndOr Cr eat eAW awNane) ;
/] Create a dinension and deploy it to the anal ytic workspace.
MinPri mar yDi nensi on ndnEnpDi m =
minDBSchena. f i ndOr Cr eat eSt andar dDi nensi on("EMP_DI M) ;
AWPr i mar yDi mensi onOr gani zati on awEnpDinOrg =
minEnpDi m fi ndOr Cr eat eAWPr i mar yDi nensi onOr gani zati on(aw) ;

/] Get the EMP table and the Query for the table.
MiniTabl e empTabl e = (MiniTabl e) ninDBSchena. get TopLevel Obj ect ("EMP");

Query enpQuery = enpTabl e. get Query();

Il Create a val ue hierarchy.

MinVal ueHi erarchy nmdnVal Hier =

minEnpDi m fi ndOr Cr eat eVal ueHi er ar chy(" EMPVALH ER") ;

/] Create a map for the hierarchy.

Sol vedVal ueHi erar chyMap sol vedVal H er Map =

minVal Hi er. fi ndOr Cr eat eSol vedVal ueHi erar chyMap() ;

/1 Specify the Query, the key expression and the parent key expression for
/'l the hierarchy.

sol vedVal Hi er Map. set Quer y(enpQuery);

Expressi on keyExp =

4-5

ORACLE

Chapter 4
Creating the Dimensions, Levels, and Hierarchies

(Expressi on) Synt axQhj ect . f ronBynt ax(" SCOTT. EMP. EMPNC', np);
sol vedVal Hi er Map. set KeyExpr essi on(keyExp) ;
Expressi on parentExp =

(Expressi on) Synt ax(hj ect . f ronBynt ax(" SCOTT. EMP. MGR", np);
sol vedVal H er Map. set Par ent KeyExpr essi on(par ent Exp) ;

I/ Create an attribute that relates a name to each di nension nenber.
MinBaseAttribute ndmNameAttr =

minEnpDi m fi ndOr Cr eat eBaseAttri but e(" EMP_NAME") ;
SQLDat aType sdtVC2 = new SQ.Dat aType(" VARCHAR2") ;
mimNameAt t r. set SQLDat aType(sdt VC2)
/] Create an attribute map for the attribute.
AttributeMap attrMap =

sol vedVal Hi er Map. fi ndOr Creat eAt tri but eMap(mimNaneAttr);
I/ Create and set an expression for the attribute map.
Expression exp = (Expression)

Synt axCbj ect . f ronBSynt ax(" SCOTT. EMP. ENAMVE", np);
attrMap. set Expressi on(exp);
minVal H er. addAt tri but e(ndmNaneAttr);

/1 Commit the Transaction before building the anal ytic workspace.

/1 The getContext nethod of BaseExanplellg returns a Contextllg object,
/1 which has a method that commts the Transaction.

get Context().commt();

Bui I dI t em bl dEnpDi m = new Bui | dI t en{ mdnEnpDi) ;

ArrayList<Buildltem> items = new ArrayList();

i tens. add(bl dEnpDi) ;

Bui | dProcess bl dProc = new Bui | dProcess(itens);

/1 Execute the build.

try
{
dp. execut eBui | d(bl dProc, 0);
}
catch (Exception ex)
{

println("Could not execute the BuildProcess.");
println("Caught: " + ex);
}

//CGet the Source objects for the dinension, the hierarchy, and the attribute.
Source enpDi m = ndnEnpDi m get Sour ce() ;

Source val H er = minVal Hi er. get Source();

Source enpNaneAttr = minNameAttr. get Source();

/] Get the parent attribute and get the Source for it.

MImAttribute ndnParentAttr = ndnEnpDi m get Parent Attribute();

Source parentAttr = nunParent Attr. get Source();

Sour ce parent ByEnpByNane = parentAttr.join(val H er.join(enpNameAttr));
/1 Sort the values in ascending order by enployee nunber of the nanagers.
Sour ce sortedParent ByEnpByName = par ent ByEnpByNane. sort Ascendi ng();

/1 Commit the Transaction before creating a Cursor.

get Context().commt();

/1 The displayResult nethod of the Context1llg object creates a Cursor and
/1 displays the results.

println("The managers of the enployees are:");

get Cont ext (). di spl ayResul t (sort edPar ent ByEnpByNane) ;

The output of the example is the following. It shows the employee name, the employee
ID and then the employee ID of the manager. The results are sorted by manager. The

4-6

Chapter 4
Creating Attributes

employee King does not have a parent and is the highest member of the hierarchy so
the manager value for King is null, which appears as NA in the output.

The managers of the enployees are:

. ((SCOTT, EMPVALHI ER: : 7788) , EMPVALHI ER: : 7566)
(FORD, EMPVALHI ER: : 7902) , EMPVALHI ER: : 7566)
(ALLEN, EMPVALH ER: : 7499) , EMPVALHI ER: : 7698)
(WARD, EMPVALHI ER: : 7521) , EMPVALH ER: : 7698)

(MARTI N, EMPVALH ER: : 7654) , EMPVALHI ER: : 7698)
(TURNER, EMPVALH ER: : 7844) , EMPVALHI ER: : 7698)
(JAMES, EMPVALH ER: : 7900) , EMPVALHI ER: : 7698)
(M LLER, EMPVALH ER: : 7934) , EMPVALHI ER: : 7782)
(ADAMS, EMPVALH ER: : 7876) , EMPVALHI ER: : 7788)
(JONES, EMPVALH ER: : 7566) , EMPVALHI ER: : 7839)
(BLAKE, EMPVALH ER: : 7698) , EMPVALHI ER: : 7839)
(CLARK, EMPVALH ER: : 7782) , EMPVALHI ER: : 7839)
(SM TH, EMPVALH ER: : 7369) , EMPVALHI ER: : 7902)
(KI NG, ENMPVALHI ER: : 7839) , NA)

XN OHEN P

9:
10: (
11: (
12: (
- (
o (

(
(
(
(
(
(
(
(
(

13
14

Creating Attributes

ORACLE

Attributes contain information about dimension members. An MinBaseAt tri but e
represents values that are based on relational source tables. An MinDeri vedAttribute
represents values that Oracle OLAP derives from characteristics or relationships of the
dimension members. For example, the get Parent At t ri but e method of an

MinPri mar yDi nensi on returns an MimDer i vedAttri but e that records the parent of each
dimension member.

You create a base attribute for a dimension with the fi ndOr Creat eBaseAttri but e
method. You can specify the data type of the attribute, although for many attributes
Oracle OLAP can determine the data type from the attribute mapping. With the

set Al | owAut oDat aTypeChange method, you can specify that Oracle OLAP determine the
data type. Some attributes are used by the dimension in certain ways, such as to
provide descriptions of dimension members or to provide date information that can be
used in calculations. For example, you can specify an attribute for descriptions with the
set Val ueDescri ptionAttribute method of the dimension and you can specify an
attribute that contains end date time period values with the set EndDat eAttri but e
method of an Minili meDi mensi on.

Example 4-6 creates a long description attribute for the CHANNEL_AWJ dimension
and specifies it as the attribute that contains descriptions of the members of the
dimension. The example specifies that Oracle OLAP automatically determines a SQL
data type for the attribute.

Example 4-6 Creating an MdmBaseAttribute

private MinBaseAttribute chanLongDescAttr = null;

private void createlongDesciptionAttribute(MnPrimaryD nmension ndnChanDi n)

{

I/ Create the long description attribute and allow the automatic changing of
/1 the SQL data type.

chanLongDescAttr = ndnChanDi m findOr Creat eBaseAttri but e(" LONG_DESCRI PTI ON');
chanLongDescAttr. set Al | owAut oDat aTypeChange(true));

/] Specifies that the attribute contains descriptions of the dinension nenbers.

mdnChanDi m set Val ueDescri ptionAttribute(chanLongDescAttr);
}

4-7

Chapter 4
Creating Cubes and Measures

An attribute can have different values for the members of different levels of the
dimension. In that case the attribute has an attribute mapping for each level.
Example 4-3 creates an Attri but eMap for the long description attribute for each
dimension level by calling the fi ndOr Creat eAt t ri but eMap method of the Menber Li st Map
for each dimension level. It specifies a different column for each attribute map.

Creating Cubes and Measures

A cube in a dimensional object model is represented by the MinCube class. An MinCube
owns one or more Mim\veasur e objects. It has a list of the MinPri mar yDi nensi on objects
that dimension the measures.

An MinCube has the following objects associated with it.
e MinPrinaryDi mensi on objects that specify the dimensionality of the cube.
* Mim\veasur e objects that contain data that is identified by the dimensions.

e A CubeOrgani zati on that specifies how the cube stores and manages the measure
data.

* CubeMap objects that associate the cube with relational sources.

e A Consi stent Sol veSpeci fi cati on that specifies how to calculate, or solve, the
aggregate level data.

The following examples demonstrate creating and mapping a cube and its measures .
e Creating Cubes

e Creating and Mapping Measures

Creating Cubes

ORACLE

Example 4-7 Creating and Mapping an MdmCube

This example creates a cube and some of the objects associated with it. It creates an
MinCube that has the name PRICE_CUBE_AWLJ. It also creates an AWCubeQr gani zat i on
object to deploy the cube in an analytic workspace. The minDBSchena and aw objects are
created by Example 4-1 and the | eaf Level Arrayli st is created in Example 4-4. The
ndnili meDi mand ndnPr odDi mobjects are dimensions of time periods and product
categories. The Creat eAndBui | dAWprogram creates those dimensions. The last lines of
the example call the methods in Example 4-8 and Example 4-9, respectively.

private MinCube createAndMapCube(MinPri maryDi nensi on ndnii neDi m
MinPri mar yDi mensi on ndnPr odDi m)
{
MinCube ndnPriceCube = mdnDBSchena. findOr Cr eat eCube(" PRI CE_CUBE_AW") ;
/1 Add dinmensions to the cube.
mdnPr i ceCube. addDi mensi on(ndnili meDi nj ;
minPr i ceCube. addDi mensi on(ndnPr odDi nj ;

AWCubeOr gani zati on awCubeCOrg =
mdnPri ceCube. fi ndOr Cr eat eAWCUbeOr gani zat i on(aw) ;
awCubeQr g. set MOpt i on(AWCubeOr gani zat i on. NONE_W_OPTI ON) ;
awCubeCr g. set Measur eSt or age(AWCubeOr gani zat i on. SHARED_MEASURE_STORAGE) ;
awCubeQr g. set CubeSt or ageType(" NUMBER') ;

Aggregati onConmand aggCommand = new Aggr egat i onCommand(" AVG');
ArraylLi st <Consi st ent Sol veCommand> sol veConmands = new Arraylist();

4-8

}

Chapter 4
Creating Cubes and Measures

sol veCommands. add(aggConmand) ;
Consi st ent Sol veSpeci fi cation conSol veSpec =

new Consi st ent Sol veSpeci fi cation(sol veConmands) ;
minPri ceCube. set Consi st ent Sol veSpeci fi cati on(conSol veSpec) ;

I/ Create and map the neasures of the cube.
cr eat eAndMapMeasur es(mdnPri ceCube) ;

[/ Commit the Transaction.

commi t (ndnPri ceCube);

Creating and Mapping Measures

Example 4-8 Creating and Mapping Measures

ORACLE

This example creates measures for a cube and maps the measures to fact tables in
the relational database. The example uses the cube created by Example 4-7.

private void creat eAndMapMeasur es(MinCube nunPri ceCube)

{

ArrayLi st <MinBaseMeasur e> neasures = new ArraylList();
MinBaseMeasur e ndnCost Measure =

mdnPri ceCube. fi ndOr Cr eat eBaseMeasure(" UNI T_COST") ;
MinBaseMeasur e ndnPriceMeasure =

mdnPri ceCube. fi ndOr Cr eat eBaseMeasure("UNI T_PRICE");
minmCost Measur e. set Al | owAut oDat aTypeChange(true);
mdnPri ceMeasur e. set Al | owAut oDat aTypeChange(true);
measur es. add(mdnmCost Measur e) ;
measur es. add(mdnPr i ceMeasure) ;
Minifabl e priceCost Table =

(MimTabl e) mdnDBSchena. get TopLevel Obj ect (" PRI CE_FACT") ;
Query cubeQuery = priceCost Tabl e. get Query();
ArrayList<String> measureCol utms = new ArraylList();
measur eCol ums. add(" GLOBAL. PRI CE_FACT. UNI T_CCST") ;
measur eCol ums. add(" GLOBAL. PRI CE_FACT. UNI T_PRI CE") ;
CubeMap cubeMap = mdnPriceCube. findOr Creat eCubeMap();
cubeMap. set Quer y(cubeQuery);

Il Create MeasureMap objects for the measures of the cube and
Il set the expressions for the measures. The expressions specify the
Il colums of the fact table for the nmeasures.
int i =0;
for (MinBaseMeasure ninBaseMeasure : measures)
{

Measur eMap neasureMap = cubeMap. findOr Cr eat eMeasur eMap(minmBaseMeasur e) ;

Expression expr =

(Expressi on) Synt ax(hj ect . f ronBynt ax(measur eCol ums. get (i),
met adat aPr ovi der);
measur eMap. set Expr essi on(expr);
i+t

}

Il Create CubeDi mensionalityMap objects for the dimensions of the cube and
Il set the expressions for the dinmensions. The expressions specify the
/1 colums of the fact table for the dinensions.

ArrayList<String> fact Col Names = new ArraylList();

fact Col Nanes. add(" GLOBAL. PRI CE_FACT. MONTH_I D") ;

fact Col Nanes. add(" GLOBAL. PRI CE_FACT. I TEM I D");

Li st <MinDi mensi onal i ty> ndmDi M tys = ndnPri ceCube. get Di mensi onal ity();
for (MinDinensionality nminDimty: mdnDimtys)

4-9

Chapter 4
Committing Transactions

CubeDi nensi onal i tyMap cubeDi mvap =
cubeMap. fi ndOr Cr eat eCubeDi mensi onal i t yMap(ndnDi m ty);
MinPri mar yDi nensi on ndnPrinDim =
(MdnPri mar yDi mensi on) mdnDi ml ty. get Di mension();
String columMap = nul | ;
if (mdnPrinDimgetNane().startsWth("TIME"))

{ ;ol umMap = fact Col Nanes. get (0);

} i =0

el se// (mdnPrinDi m get Name().startsWth("PRODUCT"))
{ ;ol umMap = fact Col Nanes. get (1);

} =1,

Expressi on expr =
(Expr essi on) Synt ax(hj ect . f ronBynt ax(col umMap, net adat aPr ovi der) ;
cubeDi mvhp. set Expressi on(expr);

Il Associate the leaf level of the hierarchy with the cube.

MinHi erarchy mdnDef Hier = ndnPri nDi m get Def aul t Hi erarchy();

MinLevel Hi erarchy ndnievH er = (MinLevel Hi erar chy) mdnDef Hi er;

Li st <MinHi er archyLevel > | evHi erLi st = nmdnlLevHi er. get Hi erarchyLevel s();
/1 The last element in the list nust be the leaf |evel of the hierarchy.
MinHi erarchylLevel |eaflevel = |evH erList.get(levH erList.size() - 1);
cubeDi mvap. set MappedDi nensi on(| eaf Level);

}
}

Committing Transactions

To save a metadata object as a persistent entity in the database, you must commit the
Transacti on in which you created the object. You can commit a Transacti on at any
time. Committing the Transacti on after creating a top-level object and the objects that it
owns is a good practice.

Example 4-9 gets the Transacti onProvi der from the Dat aPr ovi der for the session and
commits the current Transact i on.

Example 4-9 Committing Transactions

private void commt(MnSource mdnSource)
{
try
{
Systemout.printIn("Comitting the transaction for " +
minSour ce. get Nane() + ".");
(dp. get Transacti onProvi der()).conmt Current Transaction();
i:atch (Exception ex)
{ Systemout.printIn("Could not conmit the Transaction. " + ex);
1
}

ORACLE 4-10

Chapter 4
Exporting and Importing XML Templates

Exporting and Importing XML Templates

You can save the definition of a metadata object by exporting the object to an XML
template. Exporting an object saves the definition of the object and the definitions of
any objects that it owns. For example, if you export an Awobject to XML, then the XML
includes the definitions of any MinPri nar yDi nensi on and MinCube objects that the Aw
owns, and the MimAt t ri but e, MimMveasur e and other objects owned by the dimensions
and cubes.

You can import a metadata object definition as an XML template. After importing, you
must build the object.

Example 4-10 Exporting to an XML Template

This example exports metadata objects to an XML template and saves it in a file. The
code excerpt at the beginning of the example creates a Li st of the objects to export. It
adds to the Li st the aw object, which is the analytic workspace created by

Example 4-1. It then calls the export ToXM. method.

. Il I'n sonme method.
Li st objectsToExport = new ArrayList();
obj ect sToExport. add(aw) ;
export ToXM_(obj ect sToExport, "gl obal awj.xm");

public void export ToXM_(List objectsToExport, String fileNane)

{
try
{
PrintWiter witer = new PrintWiter(new FileWiter(filenane));
mp. export Ful | XM_(wri ter, /1 nmp is the MimVet adat aProvi der
obj ect sToExport,
null, /1 No Map for renam ng objects
fal se); /1 Do not include the owner nane
writer.close();
}
catch (I OException ie)
{
ie.printStackTrace();
}
}

Building an Analytic Workspace

ORACLE

After creating and mapping metadata objects, or importing the XML definition of an
object, you must perform the calculations that the objects specify and load the
resulting data into physical storage structures.

Example 4-11 creates Bui | dl t emobjects for the dimensions and cubes of the analytic
workspace. It creates a Bui | dProcess that specifies the Bui | dl t emobjects and passes
the Bui | dProcess to the execut eBui | d method of the Dat aProvi der for the session.

Example 4-11 Building an Analytic Workspace

Bui I dI t em bl dChanDi m = new Bui | dI t en{ ndnChanDi m) ;
Bui | dl tem bl dProdDi m = new Bui | dI t en{ nnProdDi nj ;
Bui | dltem bl dCust Di m = new Bui | dI t en{ minCust Di nj ;
Bui | dltem bl dTi reDi m = new Bui | dI t en{ ndnili meDi nj ;

4-11

Chapter 4
Building an Analytic Workspace

Bui | dltem bl dUni t sCube = new Bui | dI t en{ mdnlni t sCube) ;
Bui I dltem bl dPri ceCube = new Bui |l dl t en{ mdnPri ceCube);
ArrayList<Buildltem> items = new ArrayList();

i tens. add(bl dChanDim;

i tens. add(bl dProdDi m;

itens. add(bl dCustDim;

itens. add(bl dTimeDim;

i tens. add(bl dUni t sCube);

i tens. add(bl dPri ceCube);

Bui | dProcess bl dProc = new Buil dProcess(itens);

try
{
dp. execut eBui | d(bl dProc, 0);
}
catch (Exception ex)
{
Systemout. printIn("Could not execute the Buil dProcess." + ex);
}

ORACLE 4-12

Understanding Source Objects

This chapter describes Sour ce objects, which you use to specify a query. With a Sour ce,
you specify the data that you want to retrieve from the data store and the analytical or
other operations that you want to perform on the data. Making Queries Using Source
Methods, provides examples of using Sour ce objects. Creating Dynamic Queries,
describes using Tenpl at e objects to make modifiable queries.

This chapter includes the following topics:
e Overview of Source Objects

e Kinds of Source Objects

e Characteristics of Source Objects

* Inputs and Outputs of a Source

» Describing Parameterized Source Objects

Overview of Source Objects

ORACLE

You use Sour ce objects to create a query that specifies the data that you want to
retrieve from the database. As a query, a Sour ce is similar to a SQL SELECT statement.

To create a query, you typically use the classes in the oracl e. ol api . net adat a. mdm
package to get MinSour ce objects that represent OLAP metadata objects. From an
MinSour ce object, you can get a Sour ce object. You can also create other kinds of

Sour ce objects with methods of a Dat aPr ovi der . You can then use these Sour ce objects
to create a query. To retrieve the data specified by the query, you create a Cursor for
the Source.

With the methods of a Sour ce, you can specify selections of dimension members,
attribute values, or measure values. You can also specify operations on the elements
of the Sour ce, such as mathematical calculations, comparisons, and ordering, adding,
or removing elements of a query.

The Sour ce class has a few basic methods and many shortcut methods that use one or
more of the basic methods. The most complex basic methods are the j oi n(Sour ce
joined, Source conparison, int conparisonRule, boolean visible) method and the
recursi veJoi n(Source joined, Source conpariso4n, Source parent, int

conpari sonRul e, bool ean parentsFirst, bool ean parentsRestrictedToBase, int
max|terations, bool ean visibl e) method. The many other signatures of the j oi n and
recur si veJoi n methods are shortcuts for certain operations of the basic methods.

In this chapter, the information about the j oi n method applies equally to the

recur si veJoi n method, except where otherwise noted. With the j oi n method you can
relate the elements of one Sour ce to those of another Sour ce by joining a Sour ce with an
input to a Sour ce that matches with that input. For example, to specify the dimension
members that are required to retrieve the data of a measure that has the dimension as
an input, you use a j oi n method to relate the dimension members to the measure. The

5-1

Chapter 5
Kinds of Source Objects

j oi n method and the inputs of a Sour ce are described in "Inputs and Outputs of a
Source".

A Sour ce has certain characteristics, such as a type and a data type, and it can have
one or more inputs or outputs. This chapter describes these concepts. It also
describes the different kinds of Sour ce objects and how you get them, and the j oi n
method and other Sour ce methods and how you use those methods to specify a query.

Kinds of Source Objects

ORACLE

The kinds of Sour ce objects that you use to specify data and to perform analysis, and
the ways that you get them, are the following:

* Primary Sour ce objects, which are returned by the get Sour ce method of an
MinSour ce object such as an MinDi nensi on or an MinDi nensi oned(hj ect . A primary
Sour ce provides access to the data that the MinSour ce represents. Getting primary
Sour ce objects is usually the first step in creating a query. You then typically select
elements from the primary Sour ce objects, thereby producing derived Sour ce
objects.

» Derived Sour ce objects, which you get by calling some of the methods of a Source
object. Methods such as j oi n return a new Sour ce that is derived from the Sour ce
on which you call the method. All queries on the data store, other than a simple list
of values specified by the primary Sour ce for an MinDi nensi on, are derived Sour ce
objects.

e Fundamental Sour ce objects, which are returned by the get Sour ce method of a
Fundanment al Met adat aChj ect . These Sour ce objects represent the OLAP Java API
data types.

e List or range Sour ce objects, which are returned by the cr eat eConst ant Sour ce,
creat eLi st Sour ce, Or cr eat eRangeSour ce methods of a Dat aPr ovi der. Typically, you
use this kind of Sour ce as the j oi ned or conpari son parameter to a j oi n method.

e Empty, null, or void Sour ce objects. The empty and void Sour ce objects are returned
by the get Enpt ySour ce or get Voi dSour ce method of a Dat aPr ovi der, and the null
Sour ce object is returned by the nul | Sour ce method of a Sour ce. The empty Sour ce
has no elements. The void Sour ce and a null Sour ce each has one element that has
the value of nul | . The difference between the void Sour ce and a null Sour ce is that
the type of the void Sour ce is the Fundanent al Met adat abj ect for the Value data type
and the type of a null Sour ce is the Sour ce whose nul | Sour ce method returned it.
Typically, you use these kinds of Sour ce objects as the j oi ned or conpari son
parameter to a j oi n method.

» Dynamic Sour ce objects, which are returned by the get Sour ce method of a
Dynani cDef i ni ti on. A dynamic Sour ce is usually a derived Sour ce. It is generated by
a Tenpl at e, which you use to create a dynamic query that you can revise after
interacting with an end user.

» Parameterized Sour ce objects, which are returned by the creat eSour ce methods of
a Paraneter. Like a list or range Sour ce, you use a parameterized Sour ce as a
parameter to the j oi n method. Unlike a list or range Sour ce, however, you can
change the value that the Par anet er represents after the join operation and thereby
change the selection that the derived Sour ce represents. You can create a Cur sor
for that derived Sour ce and retrieve the results of the query. You can then change
the value of the Paranet er, and, without having to create a new Cursor for the
derived Sour ce, use that same Cursor to retrieve the results of the modified query.

5-2

Chapter 5
Characteristics of Source Objects

The Sour ce class has the following subclasses:

* Bool eanSour ce
e DateSource

* Nunber Sour ce
e StringSource

These subclasses have different data types and implement Sour ce methods that
require those data types. Each subclass also implements methods unique to it, such
as the i npl i es method of a Bool eanSour ce or the i ndexd method of a Stri ngSour ce.

Characteristics of Source Objects

A Sour ce has a data type, a type, and an identifier (ID), and all Sour ce objects except
the empty Sour ce have one or more elements. The following topics describe these
concepts.

* Elements and Values of a Source

e Data Type of a Source

e Type of a Source

* Source Identification and SourceDefinition of a Source

Some Sour ce objects have one or more inputs or outputs. Those complex concepts are
discussed in "Inputs and Outputs of a Source".

Elements and Values of a Source

All Sour ce objects, except the empty Sour ce, have one or more elements. An element of
a Sour ce has a value, which can be null. For example, the Sour ce for the

MinPri mar yDi nensi on object for the CHANNEL_AWJ dimension has four elements. The
values of those elements are the unique values of the members of the dimension,
which are the following.

CHANNEL _PRI MARY: : CHANNEL: : TOTAL
CHANNEL _PRI MARY: : CHANNEL: : CAT
CHANNEL_PRI MARY: : CHANNEL: : DI R
CHANNEL _PRI MARY: : CHANNEL: : | NT

Data Type of a Source

ORACLE

The Fundanent al Met adat abj ect class represents the data type of the values of the
elements of an MinSour ce. The data type of a Sour ce is represented by a fundamental
Sour ce. For example, a Bool eanSour ce has elements that have Java bool ean values. The
data type of a Bool eanSour ce is the fundamental Sour ce that represents OLAP Java API
Boolean values.

To get the fundamental Sour ce that represents the data type of a Sour ce, call the
get Dat aType method of the Source. You can also get a fundamental Sour ce by calling the
get Sour ce method of a Fundanent al Met adat atbj ect .

The data type for a primary Sour ce is related to the SQL data type of the associated
metadata object. For example, an MinBaseAt t ri but e that has a SQL data type of
VARCHAR2(30) would produce a Sour ce whose data type is the fundamental Sour ce that

5-3

Chapter 5
Characteristics of Source Objects

represents OLAP Java API String values. The following code gets that fundamental
Sour ce.

fnp. get StringDataType().get Source(); // fnp is the Fundamental Met adat aProvi der.

A typical use of a Sour ce for a data type is as the comparison Sour ce for a join or a
recursive join operation. As such it represents the set of all values of that data type.
For examples of the use of the get Dat aType method, see Example 6-3, Example 6-5,
and Example 6-11.

Type of a Source

Along with a data type, a Sour ce has a type, which is the Sour ce from which the
elements of the Sour ce are drawn. The type of a Sour ce determines whether the j oi n
method can match the Sour ce with the input of another Sour ce. The only Sour ce that
does not have a type is the fundamental Sour ce for the OLAP Java API Value data
type, which represents the set of all values, and from which all other Sour ce objects
ultimately descend. You can find the type by calling the get Type method of a Sour ce.

The type of a fundamental Sour ce is the data type of the Sour ce. The type of a list or
range Sour ce is the data type of the values of the elements of the list or range Sour ce.

The type of a primary Sour ce is one of the following:

* The fundamental Sour ce that represents the data type of the values of the
elements of the primary Sour ce. For example, the type of the Sour ce returned by the
get Sour ce method of a typical numeric Mimveasur e is the fundamental Sour ce that
represents the set of all OLAP Java APl number values.

e The Source for the object that contains the primary Sour ce. For example, the type of
the Sour ce returned by the get Sour ce method of an Min_evel Hi erar chy is the Sour ce
for the MinPri mar yDi mensi on that contains the hierarchy.

The type of a derived Sour ce is one of the following:

The base Sour ce, which is the Sour ce whose method returned the derived Source. A
Sour ce returned by the al i as, di stinct, extract, j oi n, recursiveJoin, or val ue
methods, or one of their shortcuts, has the base Sour ce as the type.

e A fundamental Sour ce. The type of the Sour ce returned by methods such as
posi tion and count is the fundamental Sour ce for the OLAP Java API Integer data
type. The type of the Sour ce returned by methods that make comparisons, such as
eq, | e, and so on, is the fundamental Sour ce for the Boolean data type. The type of
the Sour ce returned by methods that perform aggregate functions, such as the
Nurmber Sour ce methods t ot al and aver age, is a fundamental Sour ce that represents
the function.

A derived Sour ce that has the base Sour ce as the type is a subtype of the Sour ce from
which it is derived. A derived Source that has a fundamental Sour ce as the type is a
subtype of the fundamental Sour ce. You can use the i sSubt ype& method to determine
if a Sour ce is a subtype of another Sour ce.

For example, in Example 5-1 the nyLi st object is a list Sour ce. The example uses
nyLi st to select values from prodHi er, a Sour ce for an MinLevel Hi er ar chy of the
MinPri mar yDi nensi on for the PRODUCT _AWJ dimension. In the example, dp is the
Dat aPr ovi der .

ORACLE 5-4

Chapter 5
Inputs and Outputs of a Source

Example 5-1 Using the isSubtypeOf Method

Source nyList = dp.createListSource(new String[] {
" PRODUCT_PRI MARY: : FAM LY: : LTPC',
" PRODUCT_PRI MARY: : FAM LY: : DTPC",
" PRODUCT_PRI MARY: : FAM LY: : ACC',
" PRODUCT_PRI MARY: : FAM LY: : MN'});
Source prodSel = prodHier. sel ect Val ues(nyList);
if (prodSel.isSubtypeC (prodHier))
println("prodSel is a subtype of prodHer.");
el se
println("prodSel is not a subtype of prodHier.");

Because prodSel is a subtype of prodHi er, the condition in the i f statement is true and
the example displays the following:

prodSel is a subtype of prodHier.

The type of nyLi st is the fundamental String Sour ce. The type of prodHi er is the Source
for the PRODUCT_AWJ dimension. The type of prodSel is prodHi er because the
elements of prodSel are derived from the elements of prodHi er.

The supertype of a Sour ce is the type of the type of a Source, and so on, up through the
types to the Sour ce for the fundamental Value data type. For example, the fundamental
Value Sour ce is the type of the fundamental String Sour ce, which is the type of prodHi er,
which is the type of prodSel . The fundamental Value Sour ce and the fundamental String
Sour ce are both supertypes of prodSel . The prodSel Source is a subtype of prodHi er, and
of the fundamental String Sour ce, and of the fundamental Value Sour ce.

Source Identification and SourceDefinition of a Source

A Sour ce has an identification, an ID, which is a Stri ng that uniquely identifies it during
the current connection to the database. You can get the identification by calling the

get | Dmethod of a Sour ce. For example, the following code gets the identification of the
Sour ce for the MinPri mar yDi nensi on for the PRODUCT_AWJ dimension and displays the
value.

println("The Source ID of prodDimis " + prodDi mgetlDX));

The preceding code displays the following:

The Source I D of prodDimis Hi dden..GLOBAL. PRODUCT_AW

Each Sour ce also has a Sour ceDef i ni ti on object, which records information about the
Sour ce. Oracle OLAP uses this information internally. For example, the

Sour ceDefi ni tion of a derived Sour ce records the parameters of the join operation that
produced the Sour ce, such as the base Sour ce, the joined Sour ce, the comparison

Sour ce, the comparison rule, and the value of the vi si bl e parameter.

The Dynani cDefi ni tion class is a subclass of Sour ceDefi ni ti on. An OLAP Java API
client application uses the Dynani cDefi ni ti on of a Tenpl at e to get the dynamic Sour ce of
the Tenpl ate.

Inputs and Outputs of a Source

An input of a Sour ce indicates that the elements of the Sour ce have a relation to those
of another Sour ce. An output of a Sour ce contains elements from which values of the

ORACLE 5-5

Chapter 5
Inputs and Outputs of a Source

Sour ce with the output are derived. A Sour ce with one or more outputs is somewhat like
an array of arrays.

A Sour ce can have inputs and it can have outputs. The inputs and the outputs of a
Sour ce are other Sour ce objects.

The inputs and outputs of a base Sour ce influence the elements of a Sour ce that you
derive from that base Sour ce. To derive a Sour ce, you use methods of the base Sour ce.
The derived Sour ce can have outputs or inputs or both or neither, depending on the
method and the parameters of the method.

Some Sour ce methods, such as the val ue and posi ti on methods, return a Sour ce that
has an input. The j oi n and recur si veJoi n methods can return a Sour ce that has an
output. If the join operation involves a Sour ce with an input and a Sour ce that matches
with that input, then the input acts as a filter in producing the elements of the derived
Sour ce.

The following topics describe the j oi n method, the concepts of outputs and inputs, and
the matching of inputs. They provide examples of producing Sour ce objects that have
outputs, Sour ce objects that have inputs, and join operations that match an input with a
Sour ce.

» Describing the join Method
* Outputs of a Source
* Inputs of a Source

* Matching a Source with an Input

Describing the join Method

With the j oi n method, you join the elements of one Sour ce with those of another Sour ce
to produce a derived Sour ce. The derived Sour ce could have inputs or outputs. The
elements of the derived Sour ce, and whether it has any inputs or outputs, depend on
the values of the parameters that you pass to the j oi n method.

The full signature of the j oi n method is the following.

Sour ce joi n(Source joined,
Sour ce conpari son,
int conparisonRul e,
bool ean vi sible)

The Sour ce on which you call the j oi n method is the base of the join operation. The
parameters of the method are the following.

Describing the joined Parameter

ORACLE

The j oi ned parameter is a Sour ce object. The j oi n method joins the elements of the
base Sour ce and the elements of the joined Sour ce, with results that are determined by
the values of the other j oi n parameters. If the values of the joined Sour ce are not
related to the values of the base Sour ce, that is, if neither the joined Sour ce nor the
base Sour ce matches with an input of the other, then the join produces a Cartesian
product of the elements of the base and the joined Sour ce objects. The examples in the
"Outputs of a Source" topic demonstrate this kind of join operation.

If the values of the joined Sour ce are related to the values of the base Sour ce, that is, if
either the joined Sour ce or the base Sour ce is an input of the other, then the elements of

5-6

Chapter 5
Inputs and Outputs of a Source

the derived Sour ce are the result of the matching of the input. The examples in
"Matching a Source with an Input" demonstrate this kind of join operation.

Describing the comparison Parameter

The conpari son parameter is another Sour ce object. The join operation compares the
values of the elements of the comparison Sour ce to the values of the joined Source. The
values that are the same in the joined and comparison objects participate in the join
operation or are removed from participation, depending on the value of the

conpari sonRul e parameter.

Describing the comparisonRule Parameter

The value of the conpari sonRul e parameter specifies which values of the joined Sour ce
participate in the join operation. The conpari sonRul e value also determines the sort
order of the participating values. The comparison rule is one of the static constant
fields of the Sour ce class. The basic comparison rules are the following.

e COVPARI SON_RULE_SELECT, which specifies that only the elements of the joined Sour ce
that are also in the comparison Sour ce participate in the join operation.

* COVPARI SON_RULE_REMOVE, which specifies that only the elements of the joined Sour ce
that are not in the comparison Sour ce participate in the join operation.

The other comparison rules are all select operations that sort the resulting values in
various ways. Those rules are the following.

+ COVPARI SON_RULE_ASCENDI NG

« COVPARI SON_RULE_ASCENDI NG NULLS_FI RST
+ COWPARI SON_RULE_ASCENDI NG NULLS_LAST

+ COVPARI SON_RULE_DESCENDI NG

+ COWPARI SON_RULE DESCENDI NG NULLS_FI RST
« COVPARI SON_RULE_DESCENDI NG NULLS_LAST

Describing the visible Parameter

The vi si bl e parameter is a bool ean value that specifies whether the joined Sour ce
appears as an output of the Sour ce that is derived by the join operation. If the value of
the vi si bl e parameter is true, then the derived Sour ce has an output that contains the
elements drawn from the joined Sour ce. If the value is f al se, then the derived Sour ce
does not have an output for the joined Sour ce.

Outputs of a Source

The j oi n method returns a derived Sour ce that has the values of the elements of the
base Sour ce that are specified by the parameters of the method. Those values are the
base values of the derived Sour ce.

If the value of the vi si bl e parameter of the j oi n method is tr ue, then the joined Sour ce
becomes an output of the derived Sour ce. The elements of the derived Sour ce then
have the values of the output and the base values, as specified by the other
parameters of the join operation.

ORACLE .

Chapter 5
Inputs and Outputs of a Source

A derived Sour ce can have from zero to many outputs. A Sour ce that is an output can
itself have outputs. You can get the outputs of a Sour ce by calling the get Qut put s
method, which returns a Li st of Sour ce objects.

The examples in the following topics all have simple join operations that produce
Sour ce objects that have one or more outputs. Because none of the Sour ce objects in
the join operations have inputs, the values of the derived Sour ce objects produced by
the join operations are the Cartesian products of the base and the joined Sour ce
objects.

* Producing a Source with an Output

e Using COMPARISON_RULE_SELECT
¢ Using COMPARISON_RULE_REMOVE
e Producing a Source with Two Outputs

e Hiding an Output

Very different results occur from a join operation that involves a Sour ce that has an
input and a Sour ce that matches with that input. For examples of Sour ce objects with
inputs and the matching of inputs, see the following topics.

* Inputs of a Source

e Matching a Source with an Input

Producing a Source with an Output

ORACLE

Example 5-2 A Simple Join That Produces a Source with an Output

This example uses the simplest signature of the j oi n method to produce a Sour ce that
has one output. The example creates a list Source, | ett er s, that has three elements,
the values of which are A, B, and C. It also creates a list Sour ce, nanes, that has three
elements, the values of which are Stephen, Leo, and Molly.

Source letters = dp.createlistSource(new String[] {"A", "B", "C'});
Source names = dp. createlListSource(new String[] {"Stephen", "Leo", "Mlly"});
Source lettersWthNames = |etters.join(nanmes);

/1 Oracle OLAP translates this shortcut signature of the join method into the
/1 following full signature, where dp is the DataProvider for the session.

/1 Source letters.join(nanes,

/1 dp. get Enpt ySour ce(),

11 Sour ce. COVMPARI SON_RULE_REMOVE,

/1 true);

The letters.join(nanes) operation joins the elements of the base Source, l etters, and
the joined Sour ce, nanes. Because the comparison Sour ce has no elements, the join
operation does not remove any of the elements that are in the joined Source in
producing the derived Sour ce. (The comparison Sour ce is the empty Sour ce that is
returned by the dp. get Enpt ySour ce() parameter of the full j oi n signature shown in the
example.) The resulting derived Sour ce, | ett er sWt hNanes, is the Cartesian product of
the elements of the base | et t ers and the joined nanes. Because both | et t ers and nanes
have three elements, the number of elements in | ett er sWt hNames is nine.

Because the vi si bl e parameter of | etters. j oi n(nanes) is true, the derived Sour ce has
an output. Because no el enent s were removed from the joined Sour ce, the derived
Sour ce has the values of all of the elements of the joined Sour ce.

5-8

Chapter 5
Inputs and Outputs of a Source

A Cursor for a Sour ce has the same structure as the Source. A Cursor for the

| etterswWthNames Sour ce has a Val ueCursor for the base values of the derived Sour ce
and a Val ueCur sor for the output values. The following table presents the values of the
Val ueCur sor objects. The table includes headings that are not in the Vval ueCur sor
objects.

Qut put Val ues Base Val ues
St ephen A
St ephen B
St ephen C
Leo A
Leo B
Leo C
Mol 1y A
Mol 1y B
Mol 1y C

Using COMPARISON_RULE_SELECT

Example 5-3 A Simple Join That Selects Elements of the Joined Source

This example demonstrates using a comparison Sour ce that has values and the
comparison rule COVPARI SON_RULE_SELECT. The example uses the | etter and nanes
Sour ce objects from Example 5-2 and adds the soneNanmes Sour ce. It uses soneNanes as
the comparison Sour ce. The output of the Sour ce derived from the join operation has
only the names that are in both the joined Sour ce and the comparison Sour ce.

Source soneNanes = dp. createLi st Source(new String[] {"Stephen", "MlIy"});
Source |ettersAndSel ect edNanes =
letters.join(nanes, someNames, Source. COVMPARI SON RULE SELECT, true);

A Cursor for the | et t er sAndSel ect edNanmes Sour ce has the values specified by the Sour ce.
The following table presents the Cursor values and has headings added.

Qut put Val ues Base Val ues
St ephen A
St ephen B
St ephen C
Mol |y A
Mol |y B
Mol |y C

Using COMPARISON_RULE_REMOVE

ORACLE

Example 5-4 A Simple Join That Removes Elements of the Joined Source

This example demonstrates using a comparison Sour ce that has values and the
comparison rule COVWPARI SON_RULE_REMOVE. That comparison rule removes from
participation in the join operation those values that are the same in the joined and in
the comparison Sour ce objects. The output of the derived Sour ce therefore has only the
name from the joined Sour ce that is not in the comparison Sour ce.

The example has the same base, joined, and comparison Sour ce objects as
Example 5-3.

Source | ettersAndNamesW t hout RenmovedNanes =
letters.join(nanes,
soneNanes,

5-9

Chapter 5
Inputs and Outputs of a Source

Sour ce. COVPARI SON_RULE_REMOVE,
true);

A Cursor for the | et t er sAndNamesW t hout RenovedNanes Sour ce has the values specified by
the Sour ce. The following table presents the values and has headings added.

Qut put Val ues Base Val ues
Leo A
Leo B
Leo C

Producing a Source with Two Outputs

Example 5-5 A Simple Join That Produces a Source with Two Outputs

If you join a Sour ce to a Sour ce that has an output, and if the vi si bl e paraneter is true,
then the join operation produces a Sour ce that has the joined Sour ce as an additional
output. The additional output becomes the first output, as shown in this example.

The example uses the Sour ce objects from Example 5-3 and creates another list
Sour ce, col or s, that contains the names of two colors. The example joins the col ors
Sour ce to the I ettersWthSel ect edNames Sour ce to produce the

| ettersWthSel ect edNamesAndCol or s Sour ce.

The | ettersWthSel ect edNames Sour ce has nanmes as an output. The
| ettersWthSel ect edNanmesAndCol ors Sour ce has both col ors and nanes as outputs. The
first output is col ors and the second output is nanes.

Source colors = dp. createListSource(new String[] {"Geen", "Maroon"});

Source lettersWthSel ect edNames =
letters.join(nanes,
soneNanes,
Sour ce. COVPARI SON_RULE SELECT,
true);
Source |ettersWthSel ect edNamesAndCol ors =
lettersWthSel ect edNanes. j oi n(col ors);

A Cursor forthe |l ettersWthSel ect edNamesAndCol or s Sour ce has the values shown in the
following table. The table has headings added.

Qutput 1 Val ues Qutput 2 Val ues Base Val ues

G een St ephen A
G een St ephen B
G een St ephen (o
G een Mol Iy A
G een Mol |y B
G een Mol |y (o
Mar oon St ephen A
Mar oon St ephen B
Mar oon St ephen C
Mar oon Mol Iy A
Mar oon Mol Iy B
Mar oon Mol Iy C

ORACLE 5-10

Chapter 5
Inputs and Outputs of a Source

Hiding an Output
Example 5-6 A Simple Join That Hides An Output

If the vi si bl e parameter of a j oi n method is f al se, then the joined Sour ce participates
in the join operation but does not appear as an output of the Sour ce derived by the join.
This example uses the j oi nH dden shortcut method to join the

I ettersWthSel ect edNanes and the col ors Sour ce objects from Example 5-5. The
example includes in a comment the full j oi n signature for the j oi nHi dden shortcut.

Source |ettersWthSel ect edNamesAndH ddenCol ors =
lettersWthSel ect edNanes. j oi nHi dden(col ors);

[l The full signature of the joinH dden shortcut method is
/1 Source result = base.join(joined,

1 dp. get Enpt ySour ce(),
Il Sour ce. COVPARI SON_RULE_REMOVE,
/1 fal se);

/1 So if Source base = lettersWthSel ectedNanes and
/1 Source joined = colors, then the result Source is the sane as the
/1 lettersWthSel ect edNanesAndH ddenCol ors Sour ce.

A Cursor forthe |l ettersWthSel ect edNamesAndH ddenCol or s Sour ce has the values shown
in the following table. The table has headings added.

Note that the derived | ett er sWt hSel ect edNamesAndH ddenCol or s Sour ce still has twelve
elements, even though the values for the col ors Sour ce do not appear as output
values. The derived Sour ce has one set of the six values of the

| ettersWthSel ect edNames Sour ce for each value of the hidden col ors Sour ce.

The example displays the following output.

Qut put Val ues Base Val ues
St ephen A
St ephen B
St ephen C
Mol |y A
Mol |y B
Mol |y C
St ephen A
St ephen B
St ephen C
Mol |y A
Mol |y B
Mol |y C

Inputs of a Source

The examples in the "Outputs of a Source" topic all produce derived Sour ce objects
that have elements that are the Cartesian product of the unrelated base and joined
Sour ce objects. While such an operation can be useful, a more powerful aspect of

Sour ce objects is the ability to relate the elements of one Sour ce to another Sour ce.
When such a relationship exists, you can derive other Sour ce objects that are the result
of operations between the related elements. For example, you can derive a Sour ce that
contains only selected elements of another Sour ce. This relationship between elements
is represented by the input of a Sour ce.

ORACLE 5-11

Chapter 5
Inputs and Outputs of a Source

A Sour ce with an input is an incomplete specification of data. The input represents the
type of Sour ce that can have the elements that a join operation requires to complete
the data specification. Before you can retrieve the data with a Cur sor, you must match
the input with a Sour ce that has the elements that complete the specification.

You match an input with a Sour ce by using the j oi n or recursi veJoi n method. The
match occurs between the base Sour ce and the joined Sour ce.

The matching of an input acts as a filter so that the Sour ce derived by the join operation
has only the elements of the base Sour ce whose values are related to those of the
elements of the joined Sour ce. The rules related to matching a Sour ce with an input are
described in "Matching a Source with an Input". That topic has examples that produce
derived Sour ce objects that are the result of the matching of an input.

A Sour ce can have from zero to many inputs. You can get all of the inputs of a Source
by calling the get | nput s method.

Some primary Sour ce objects have inputs. You can derive a Sour ce that has an input by
using some methods of the Sour ce class.

Primary Source Objects with Inputs

The primary Sour ce objects for the MinDi nensi onedhj ect subclasses MimAttri but e and
Mimveasur e have inputs. The primary Sour ce for an MimAt t ri but e has one input. The
primary Sour ce for an MimMeasur e has one or more inputs.

The inputs of an MimAt t ri but e or an Min\easur e are the Sour ce objects for the

MinPri mar yDi nensi on objects that dimension the attribute or measure. To get the value
of an attribute or a measure, you must join the attribute or measure with a Sour ce that
contains the related dimension members. The join operation matches the input of the
attribute or measure with the Sour ce that contains the dimension members.

Example 5-7 matches the input of an attribute with the dimension of that attribute.
Example 5-8 matches the inputs of a measure with the dimensions of that measure.

Deriving a Source with an Input

ORACLE

Some Sour ce methods always return a Sour ce that has an input. The Sour ce returned by
the extract, posi tion, or val ue method has the base Source as an input. You can use
these methods to produce a Sour ce whose elements are derived, or filtered, from the
elements of another Sour ce.

The val ue method returns a Sour ce that has the elements of the base Source and has
the base Sour ce as an input. You typically use the Sour ce returned by the val ue method
as the base or joined Sour ce of a j oi n method, or sometimes as the comparison Sour ce.
Several examples in this chapter and in Making Queries Using Source Methods use
the val ue method.

The posi ti on method returns a Sour ce that has the position of each element of the
base Sour ce and that has the base Source as an input. For an example of using the
posi ti on method, see Example 6-4.

You use the extract method when elements of the Sour ce objects that you want to join
have Sour ce objects as values. For examples of using the extract method, see
Example 5-12, Example 6-8, Example 6-13, and Example 6-14.

5-12

Chapter 5
Inputs and Outputs of a Source

Type of Inputs

The input of a Sour ce derived by the posi tion or val ue method, and an input intrinsic to
an MinDi mensi onedQbj ect, are regular inputs. A regular input relates the elements of the
Sour ce with the input to the elements of the Sour ce that matches with the input. You can
get the regular inputs by calling the get Regul ar I nput s method.

The input of a Sour ce returned by the extract method is an extraction input. You can
get the extraction inputs by calling the get Ext racti onl nput s method.

Matching a Source with an Input

In a join operation, the matching of a Sour ce with an input occurs only between the
base Sour ce and the joined Sour ce. A Sour ce matches with an input if one of the
following conditions is true.

1. The Source is the same object as the input or it is a subtype of the input.

2. The Sour ce has an output that is the same object as the input or the output is a
subtype of the input.

The join operation looks for the conditions in the order shown in the preceding list. It
searches the list of outputs of the Sour ce recursively, including any outputs of an
output, looking for a match with the input. The search ends with the first matching
Sour ce. An input can match with only one Sour ce.

When a Sour ce with an input is joined to a Sour ce that matches with the input, the
derived Sour ce returned by the j oi n method has the elements of the base that are
related to the elements specified by the parameters of the method. The derived Sour ce
does not have the input.

Matching a Sour ce with an input does not affect the outputs of the base Sour ce or the
joined Sour ce. If a base Sour ce has an output that matches with the input of the joined
Sour ce, then the resulting Sour ce does not have the input but it does have the output. If
the base Sour ce or the joined Sour ce in a join operation has an input that is not matched
in the operation, then the unmatched input is an input of the resulting Sour ce.

The comparison Sour ce of a j oi n method does not participate in the input matching. If
the comparison Sour ce has an input, then that input is not matched and the Sour ce
returned by the j oi n method has that same input.

The examples in the following topics demonstrate matching a Sour ce with an input.

* Matching the Input of the Source for an MdmAttribute

e Matching the Inputs of a Measure

» Using the value Method to Derive a Source with an Input
» Using the value Method to Select Values of a Source

» Using the extract Method to Combine Elements of Source Objects

Matching the Input of the Source for an MdmAttribute

Example 5-7 demonstrates the joining of the Sour ce for an MinBaseAt tri but e to the
Sour ce for an MinPri mar yDi nensi on. The example gets the local value attribute from the

ORACLE 5-13

Chapter 5
Inputs and Outputs of a Source

MinPri mar yDi mensi on for the CHANNEL _AWJ dimension. The Sour ce for the attribute,
I ocval Attr, has the Sour ce for the MinPri mar yDi mensi on as an input.

In the example, | ocVal Attr is the base Sour ce of the join operation and chanDi mis the
joined Sour ce. Because chanDi mis an instance of the Sour ce for the MinPri mar yDi nensi on
for the CHANNEL_AWJ dimension, chanDi mmatches with the input of | ocVal Attr. The
result of the join is di mvenber sW t hLocal Val ue, which has chanDi mas an output and does
not have any inputs.

The I ocVal Attr Sour ce has four elements because each of the four members of the
CHANNEL_AWJ dimension has a different local value. The Sour ce derived by the join
operation, di mvenber sW t hLocal Val ue, has four elements. The value of each element is
the dimension member and the related attribute value. The dimension member is a
value from the output and the attribute value is from the base.

Example 5-7 demonstrates matching the input of a base Sour ce with the joined Sour ce.
In the example, minDBSchena is the MinDat abaseSchena for the GLOBAL schema.

A Cursor for the di mvenber sW t hLocal Val ue Sour ce has the values shown in the following
table. The output values are the unique dimension member values derived from the
joined Sour ce, chanDi m The base values are derived from the base Source, | ocval Attr.
The table has headings added.

Qut put Val ues Base Val ues
CHANNEL_PRI MARY: : TOTAL_CHANNEL: : TOTAL TOTAL
CHANNEL_PRI MARY: : CHANNEL.: : CAT CAT
CHANNEL_PRI MARY: : CHANNEL: : DI R DIR
CHANNEL_PRI MARY: : CHANNEL: : | NT I NT

Example 5-7 Getting an Attribute for a Dimension Member

MinSt andar dDi mensi on ndnChanDi m =
minDBSchena. f i ndCOr Cr eat eSt andar dDi mensi on(" CHANNEL_AW") ;
Source chanDi m = mdnChanDi m get Sour ce() ;
Source locVal Attr = mdnChanDi m get Local Val ueAttribute(). get Source();
Sour ce di mvenber sWthLocal Val ue = | ocVal Attr.join(chanDim;

Matching the Inputs of a Measure

ORACLE

Example 5-8 demonstrates getting values from a measure. The example gets the
MinCube that contains the UNIT_PRICE measure and gets the MinBaseMeasur e for the
measure from that cube. The cube, and the measures of the cube, are dimensioned by
the PRODUCT_AWJ and TIME_AWJ dimensions. The example gets the

MinPri mar yDi nensi on objects for those dimensions and gets the Sour ce objects for those
metadata objects.

The Sour ce for the measure, uni t Pri ce, has the Sour ce objects for the two

MinPri mar yDi mensi on objects as inputs. The example joins the Sour ce for the measure
with the Sour ce objects for the dimensions. The join operations match the inputs of the
measure with the Sour ce objects for the dimensions.

The example first joins the Sour ce for the PRODUCT_AWJ dimension to the Sour ce for
the measure. That uni t Pri ce. j oi n(prodDi m) operation derives a Sour ce that has base
values from uni t Pri ce and has prodDi mas an output. It also has the Sour ce for the
TIME_AWJ dimension as an input. The next join operation joins the Sour ce derived by
unit Price.join(prodDi m) with ti meDi m the Sour ce for the TIME_AWJ dimension. That
join operation matches the input of the Sour ce derived by uni t Pri ce. j oi n(prodDi nj with
timeDi m

5-14

Chapter 5
Inputs and Outputs of a Source

The Sour ce derived by the second join operation is pri cesByProduct AndTi me. That Sour ce
has no inputs and has the Sour ce objects for the PRODUCT_AWJ and TIME_AWJ
dimensions as outputs. A Cursor for pri cesByProduct AndTi me contains the price of each
product value for every time value.

The example finally calls the count method of pri cesByPr oduct AndTi ne. That method
returns the Nunber Sour ce nunPri cesByProduct AndTi me, which contains the number of
elements of the pri cesByProduct AndTi me Sour ce. A Cursor for the

nunPri cesByProduct AndTi me Sour ce contains the value 4998, which is the number of
measure values for the product and time tuples.

To produce a Sour ce that contains only the measure values for certain products and
times, you need to join the Sour ce for the measure with Sour ce objects that specify the
dimension values that you want. You can produce such a selection by using methods
of the primary Sour ce for the dimension. One means of producing a Sour ce that
represents a selection of values of a Sour ce is to use the val ue method.

Example 5-8 Getting Measure Values

This example demonstrates matching the inputs of the base Sour ce with the joined
Sour ce. In the example, minDBSchena is the MinDat abaseSchena for the GLOBAL schema.

MinCube ndnPriceCube =

minDBSchema. f i ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
MinBaseMeasure mdmnitPrice =

mdnPri ceCube. fi ndOr Cr eat eBaseMeasure("UNI T_PRI CE");
Minst andar dDi mensi on ndnProdDi m =

minDBSchema. f i ndCr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
Minili meDi mensi on nunili meDi m =

minDBSchema. f i ndOr Cr eat eTi meDi mensi on(" TI ME_AW") ;

Source prodDi m = mdnProdDi m get Source();
Source timeDi m = minili meDi m get Source();
Source unitPrice = nmdrlnit Price. get Source();

Source pricesByProduct AndTime = unitPrice.join(prodDinm.join(tinmeDin;
Number Sour ce nunPri cesByProduct AndTi me = pricesByProduct AndTi me. count () ;

Using the value Method to Derive a Source with an Input

ORACLE

Example 5-9 Using the value Method to Relate a Source to Itself

In this example, the | et t er sVal ue Sour ce is returned by the | et t ers. val ue() method.
The | ettersVal ue Source has | etters as an input. The input represents a relation
between the values of the Sour ce with the input and the values of the Sour ce that
matches with the input.

The join operation has | ett ers as the base Source and | et t er sVal ue as the joined

Sour ce. The base Source, | ett ers, matches with the input of | et t er sval ue, which is also
| etters, because they are the same. The Sour ce produced by the join operation,
lettersByLettersVal ue has | ettersVval ue as an output. It does not have an input. Each
element of | ett ersByLet t er sVal ue has a base value from | etters and the related value
from I ettersval ue.

Source letters = dp.createlistSource(new String[] {"A", "B", "C'});
Source lettersValue = letters.value();
Source lettersBylLettersValue = letters.join(lettersValue);

5-15

Chapter 5
Inputs and Outputs of a Source

A Cursor for the | ettersByLettersVal ue Sour ce has the values shown in the following
table. The table has headings added.

Qut put Val ues Base Val ues
A A
B B
C C

Because | ettersBylLett ersVal ue contains only those values of the base and joined

Sour ce objects that are related, the base values of the Cursor for | ettersByLettersVal ue
Sour ce are the same as the output values. If the base and joined Sour ce objects had
been unrelated, as inletters.join(letters), then the Source produced by the join
operation would contain the Cartesian product of the base and joined Sour ce objects.

Using the value Method to Select Values of a Source

ORACLE

Example 5-10 Using the value Method to Select Elements of a Source

By using the val ue method, you can derive a Sour ce that is a selection of the elements
of another Sour ce. This example selects two elements from the Sour ce for the
PRODUCT_AWJ dimension from Example 5-7. This example demonstrates a base
Sour ce matching with the input of the joined Sour ce.

Sour ce productsToSel ect = dp. createLi st Source(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});
prodDi m j oi n(prodDi m val ue(),
product sToSel ect,
Sour ce. COVPARI SON_RULE_SELECT,
false); [/ Hde the output.

Sour ce sel ect edProducts

A Cursor for the product sToSel ect Sour ce has the following values.

PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRCDUCT_PRI MARY: : | TEM : ENVY STD

A Cursor for the sel ect edProduct s Sour ce has the following values.

PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRCDUCT_PRI MARY: : | TEM : ENVY STD

The two Sour ce objects contain the same values. However, the types of the objects are
different. The type of the product sToSel ect Sour ce is the Sour ce for the

Fundament al Met adat aChj ect for the String data type. The type of the sel ect edProduct s
Sour ce is prodDi mbecause sel ect edProduct s is derived from prodDi m Therefore,

sel ect edPr oduct s is a subtype of prodDi mand as such it can match with a Sour ce that
has the Sour ce for the PRODUCT_AWJ dimension as an input, as shown in the next
example.

Example 5-11 Using Derived Source Objects to Select Measure Values

This example selects elements from the Sour ce objects for two dimensions and then
gets the measure values for the selected dimension members. The example uses the
same dimensions and measure as in Example 5-8. In this example, however, the

Sour ce objects that match with the inputs of the Sour ce for the measure are not the
Sour ce objects for the dimensions. Instead they are subtypes of the Sour ce objects for
the dimensions. The subtypes specify selected members of the dimensions. The

Sour ce that is derived by joining the measure with the dimensions,

pri cesFor Sel ect edPr oduct sAndTi mes, has six elements, which specify only the measure

5-16

Chapter 5
Inputs and Outputs of a Source

values for the two products for the three time values, instead of the 4998 elements of
the pri cesByProduct AndTi ne Sour ce in Example 5-8. In this example, nminDBSchena is the
MinDat abaseSchena for the GLOBAL schema.

/1 Create lists of product and time di mension nenbers.
Source product sToSel ect = dp. createLi st Source(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});
Source timesToSel ect = dp. createLi st Source(new String[]
{" CALENDAR_YEAR: : MONTH: : 2000. 01",
" CALENDAR_YEAR: : MONTH: : 2001. 01",
" CALENDAR_YEAR: : MONTH: : 2002. 01"}) ;
/I Get the PRI CE_CUBE AW cube.
MinCube ndnPriceCube = mdnDBSchema. fi ndOr Cr eat eCube(" PRI CE_CUBE_AW") ;
/1 Get the UNIT_PRICE neasure fromthe cube.
MinBaseMeasure nmdnbnitPrice =
mdnPri ceCube. fi ndOr Cr eat eBaseMeasure("UNI T_PRI CE");
/1 Get the PRODUCT_AW and TIME_AW di nensi ons.
Mint andar dDi mensi on mdnProdDi m =
nmdnDBSchema. f i ndCr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
Mindi meDi mensi on ndndi meDim =
nmdnDBSchema. f i ndOr Cr eat eTi meDi mensi on(" TI ME_AW") ;
/1 Get the Source objects for the dimensions and the measure.
Source prodDi m = mdnProdDi m get Source();
Source timeDi m = minili meDi m get Source();
Source unitPrice = ndrnitPrice. get Source();
/1 Using the val ue method, derive Source objects that specify the selected
[/ dimension menbers.
Sour ce sel ectedProducts = prodDi mjoi n(prodDi mval ue(),
product sToSel ect,
Sour ce. COVPARI SON_RULE_SELECT,
fal se);
Source sel ectedTimes = tinmeDimjoin(tinmeD mvalue(),
timesToSel ect,
Sour ce. COVPARI SON_RULE_SELECT,
fal se);
/1 Derive a Source that specifies the unitPrice values for the selected products
/1 and tines.
Sour ce pricesFor Sel ect edProduct SAndTi mes = uni t Price.j oi n(sel ect edProducts)
.join(sel ectedTi nes);

A Cursor for the pri cesFor Sel ect edPr oduct sAndTi mes Sour ce has the values shown in the
following table. The table has headings added.

Mont h Product Price

CALENDAR_YEAR: : MONTH: : 2000. 01 PRODUCT_PRI MARY: : | TEM : ENVY EXE 3358. 02
CALENDAR_YEAR: : MONTH; : 2000. 01 PRODUCT_PRI MARY: : | TEM : ENVY STD 3000. 11
CALENDAR_YEAR: : MONTH: : 2001. 01 PRODUCT_PRI MARY: : | TEM : ENVY EXE 3223.28
CALENDAR_YEAR: : MONTH; : 2001. 01 PRCDUCT_PRI MARY: : | TEM : ENVY STD 2426. 07
CALENDAR_YEAR: : MONTH: : 2002. 01 PRODUCT_PRI MARY: : | TEM : ENVY EXE 3008. 95
CALENDAR_YEAR: : MONTH; : 2002. 01 PRODUCT_PRI MARY: : | TEM : ENVY STD 2140.71

Using the extract Method to Combine Elements of Source Objects

The extract method derives a Sour ce that has the base Sour ce as an input. You use the
extract method when the values of the elements of a Sour ce are Sour ce objects
themselves.

ORACLE 5-17

Chapter 5
Describing Parameterized Source Objects

Example 5-12 Extracting Elements of a Source

This example uses the sel ect Val ues method to derive two selections of elements from
a StringSour ce for the PRODUCT_AWJ dimension. The sel ect Val ues method is a
shortcut for the full j oi n signature of the methods in Example 5-10 and Example 5-11
that produce the sel ect edProduct s and sel ect edTi mes Sour ce objects.

This example creates a list Sour ce, sour cesToConbi ne, that has the two derived Sour ce
objects as element values. The sour cesToConbi ne. extract () method produces

sour cesToConbi neW t hAnl nput , which is a Sour ce that has sour cesToConbi ne as an input.
The join operation sour cesToConbi neW t hAnl nput . j oi nHi dden(sour cesToConbi ne) matches
the input of sour cesToConbi neW t hAnl nput with the joined sour cesToCombi ne and
produces conbi nedSour ces, which has no inputs or outputs. A shortcut for this
combining of Sour ce elements is the appendVal ues method.

Minst andar dDi nensi on mdnProdDi m =
nmidnDBSchena. fi ndOr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
StringSource prodDim= (StringSource) mdnProdDi m get Source();
Sour ce product sToSel ect = prodDi m sel ect Val ues(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY ABM',
" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});
Sour ce noreProduct sToSel ect = prodDi m sel ect Val ues(new String|]
{" PRODUCT_PRI MARY: : | TEM : SENT FIN',
" PRODUCT_PRI MARY: : | TEM : SENT MV',
" PRODUCT_PRI MARY: : | TEM : SENT STD'});
Sour ce sour cesToConbi ne =
dp. creat eLi st Sour ce(new Source[] {productsToSel ect, noreProductsToSel ect});
Sour ce sour cesToConbi neW't hAnl nput = sour cesToConbi ne. extract();
Sour ce conbi nedProducts =
sour cesToConbi neW t hAnl nput . j oi nHi dden(sour cesToConbi ne);

A Cursor for the combi nedProduct s Sour ce has the following values.

PRCDUCT_PRI MARY: : | TEM : ENVY ABM
PRODUCT_PRI MARY: : | TEM : ENVY EXE
PRODUCT_PRI MARY: : | TEM : ENVY STD
PRODUCT_PRI MARY: : | TEM : SENT FIN
PRODUCT_PRI MARY: : | TEM : SENT MM

PRODUCT_PRI MARY: : | TEM : SENT STD

Describing Parameterized Source Objects

ORACLE

Parameterized Sour ce objects provide a way of specifying a query and retrieving
different result sets for the query by changing the set of elements specified by the
parameterized Sour ce. You create a parameterized Sour ce with a cr eat eSour ce method
of the Paramet er. The Par anet er supplies the value that the parameterized Sour ce
specifies.

The example in this topic is a very simple demonstration of using a Par amet er object. A
typical use of a Par anet er is to specify the page edges of a cube, as shown in
Example 6-9. Another use of a Paranet er is to fetch from the server only the set of
elements that you currently need. Example 6-15 demonstrates using Par anet er objects
to fetch different sets of elements.

When you create a Par anet er object, you supply an initial value for the Paranet er. You
then create the parameterized Sour ce using the Paranet er. You include the
parameterized Sour ce in specifying a query. You create a Cursor for the query. You can

5-18

ORACLE

Chapter 5
Describing Parameterized Source Objects

change the value of the Par anet er with the set Val ue method, which changes the set of
elements that the query specifies. Using the same Cur sor, you can then retrieve the
new set of values.

This example demonstrates the use of a Paranet er and a parameterized Sour ce to
specify a member in a dimension. The example gets the Mintt andar dDi nensi on for the
PRODUCT_AWJ dimension and gets the Sour ce for the Mintt andar dDi nensi on cast as a
StringSource.

The example creates a StringPar anet er object that has a dimension member as the
initial value. It then creates a parameterized Sour ce, par anProdSel , by using the
creat eSour ce method of the StringPar anet er. Next it uses par anProdSel as the
comparison Sour ce in a join operation that selects the dimension member.

The example gets the Sour ce for the local value attribute of the dimension. It joins that
Sour ce, | ocVal At tr, with par anProdSel . That join operation produces the
di mverrber Wt hLocal Val ue Sour ce.

The example creates a Cursor for di mvenber Wt hLocal Val ue and displays the value of
the Cur sor . After resetting the Cursor position and changing the value of the prodPar am
StringPar anet er, the example displays the value of the Cursor again.

The dp object is the Dat aProvi der. The get Cont ext method gets a Cont ext 11g object that
has a method that commits the current Transacti on and a method that displays the
values of a Cursor.

Example 5-13 Using a Parameterized Source to Change a Dimension Selection

Mint andar dDi mensi on mdnProdDi m =
minDBSchema. f i ndCr Cr eat eSt andar dDi mensi on(" PRODUCT_AW") ;
StringSource prodDim= (StringSource) ndnProdDi m get Source();

StringParaneter prodParam =
new StringParaneter(dp, "PRODUCT_PRI MARY:: FAMLY::LTPC');
Sour ce prodParanrc = prodParam creat eSour ce();
Sour ce paranProdSel = prodDimjoi n(prodDi mval ue(), prodParantrc);

Source |ocVal Attr = minProdDi m get Local Val ueAttribute(). get Source();
Sour ce di mvenber Wt hLocal Val ue = | ocVal Attr.j oi n(paranProdSel);

[/l Commit the Transaction.
get Context().comit();

/1 Create a Cursor for the Source.
Cursor Manager cursorMhgr = dp. creat eCur sor Manager (di mverrber W t hLocal Val ue) ;
Cursor cursor = cursorhgr.createCursor();

/1 Display the value of the Cursor.
get Cont ext (). di spl ayCur sor (cursor);

/1 Change the product paraneter val ue.
prodPar am set Val ue(" PRODUCT_PRI MARY: : FAM LY: : DTPC") ;

/] Reset the Cursor positionto 1
cursor.setPosition(1);

/1 Display the value of the Cursor again.
get Cont ext (). di spl ayCur sor (cursor);

The Cursor for di mvenber Wt hLocal Val ue displays the following.

5-19

Chapter 5
Describing Parameterized Source Objects

PRCDUCT_PRI MARY: : FAM LY: : LTPC, LTPC

After changing the value of the Stri ngPar amet er and resetting the position of the Cursor,
the Cursor for di mvenber Wt hLocal Val ue displays the following.

PRCDUCT_PRI MARY: : FAM LY: : DTPC, DTPC

ORACLE 5-20

Making Queries Using Source Methods

You create a query by producing a Sour ce that specifies the data that you want to
retrieve and any operations that you want to perform on that data. To produce the
guery, you begin with the primary Sour ce objects that represent the metadata of the
measures and the dimensions and their attributes that you want to query. Typically,
you use the methods of the primary Sour ce objects to derive a number of other Sour ce
objects, each of which specifies a part of the query, such as a selection of dimension
members or an operation to perform on the data. You then join the Sour ce objects that
specify the data and the operations that you want. The result is one Sour ce that
represents the query. You can then retrieve the data by creating a Cursor for the

Sour ce.

This chapter briefly describes the various kinds of Sour ce methods, and discusses
some of them in greater detail. It also discusses how to make some typical OLAP
gueries using these methods and provides examples of some of them.

This chapter includes the following topics:

» Describing the Basic Source Methods
* Using the Basic Methods
e Using Other Source Methods

Describing the Basic Source Methods

ORACLE

The Sour ce class has many methods that return a derived Sour ce. The elements of the
derived Sour ce result from operations on the base Sour ce, which is the Sour ce whose
method returns the derived Sour ce. Only a few methods perform the most basic
operations of the Sour ce class.

Many other methods of the Sour ce class use one or more of the basic methods to
perform operations such as selecting elements of the base Sour ce by value or by
position, or sorting elements. Many of the examples in this chapter and in
Understanding Source Objects, use some of these methods. Other Sour ce methods get
objects that have information about the Sour ce, such as the get I D, get I nput s, and

get Type methods, perform comparisons, such as the ge and gt methods, or convert the
values of the Sour ce from one data type to another, such as the t oDoubl eSour ce
method.

Table 6-1 The Basic Source Methods

__|
Method Description

alias Returns a Sour ce that has the same elements as the base
Sour ce, but has the base Sour ce as the type.

di stinct Returns a Sour ce that has the same elements as the base
Sour ce, except that any elements that are duplicated in the base
appear only once in the derived Sour ce.

6-1

Using the

Chapter 6
Using the Basic Methods

Table 6-1 (Cont.) The Basic Source Methods

___|
Method Description

join Returns a Sour ce that has the elements of the base Sour ce that
are specified by the j oi ned, conpari son, and conpari sonRul e
parameters of the method call. If the vi si bl e parameteris true,
then the joined Sour ce is an output of the resulting Sour ce.

posi tion Returns a Sour ce that has the positions of the elements of the
base Sour ce, and that has the base Sour ce as an input.

recursivedoin Similar to the j oi n method, except that this method, in the
Sour ce that it returns, orders the elements of the Sour ce
hierarchically by parent-child relationships.

val ue Returns a Sour ce that has the same elements as the base
Sour ce, but that has the base Sour ce as an input.

The following topics describe the basic Sour ce methods and provide some examples of
their use.

* Using the Basic Methods
* Using Other Source Methods

Basic Methods

The following topics provide examples of using some of the basic methods.
e Using the alias Method

e Using the distinct Method

e Using the join Method

e Using the position Method

e Using the recursiveJoin Method

e Using the value Method

Using the alias Method

ORACLE

You use the al i as method to control the matching of a Sour ce to an input. For example,
if you want to find out if the measure values specified by a member of a dimension of
the measure are greater than the measure values specified by the other members of
the same dimension, then you need to match the inputs of the measure twice in the
same join operation. To do so, you can derive two Sour ce objects that are aliases for
the same dimension, make them inputs of two Sour ce objects that are derived from the
measure, join each derived measure Sour ce to the associated aliased dimension

Sour ce objects, and then compare the results.

Example 6-1 performs such an operation. It produces a Sour ce that specifies whether
the number of units sold for each value of the CHANNEL_AWJ dimension is greater
than the number of units sold for the other values of the CHANNEL_AWJ dimension.

The example joins uni t s, which is the Sour ce for a measure, to Sour ce objects that are
selections of single values of three of the dimensions of the measure to produce

6-2

ORACLE

Chapter 6
Using the Basic Methods

uni tsSel . The uni tsSel Source specifies the units elements for the dimension values
that are specified by the tineSel , cust Sel , and prodSel objects, which are outputs of
uni tsSel . The unitsSel Source has the Source for CHANNEL_AWJ dimension as an
input.

The timeSel, cust Sel , and prodSel Sour ce objects specify single values from hierarchies
of the TIME_AWJ, CUSTOMER_AWJ, and PRODUCT_AWJ dimensions, respectively.
The tinmeSel value is CALENDAR YEAR: : MONTH: : 2001. 01, which identifies the month
January, 2001, the cust Sel value is SH PMENTS: : SHI P_TO : BUSN WRLD SJ, which identifies
the Business World San Jose customer, and the prodSel value is

PRODUCT_PRI MARY: : | TEM : ENVY ABM which identifies the Envoy Ambassador portable PC.

The example next creates two aliases, chanAl i as1 and chanAl i as2, for chanHi er, which
is the Sour ce for the CHANNEL_PRIMARY hierarchy of the CHANNEL_AWJ
dimension. It then produces uni t sSel 1 by joining uni t sSel with the Sour ce returned by
chanAl i asl.val ue(). The unitsSel 1 Sour ce has the elements and outputs of uni t sSel
and it has chanAl i as1 as an input. Similarly, the example produces uni t sSel 2, which
has chanAl i as2 as an input.

The example uses the gt method of uni t sSel 1, which determines whether the values of
uni t sSel 1 are greater than the values of uni t sSel 2. The final join operations match
chanAl i as1 with the input of uni t sSel 1 and match chanAl i as2 with the input of uni t sSel 2.

Example 6-1 Controlling Input-with-Source Matching with the alias Method

Source unitsSel = units.join(tinmeSel).join(custSel).join(prodSel);
Source chanAliasl = chanHier.alias();
Source chanAlias2 = chanHier.alias();
Number Sour ce unitsSel 1 = (Nunber Sour ce)
unitsSel . join(chanAliasl.value());
Number Sour ce uni tsSel 2 = (Nunber Sour ce)
uni tsSel . join(chanAlias2.value());
Source result = unitsSel 1. gt (unitsSel2)
.join(chanAliasl) // Qutput 2, colum
.join(chanAlias2); /] Qutput 1, row

The resul t Sour ce specifies the query, "Are the units sold values of uni t sSel 1 for the
channel values of chanAl i as1 greater than the units sold values of uni t sSel 2 for the
channel values of chanAl i as2?" Because resul t is produced by the joining of

chanAl i as2 to the Sour ce returned by uni tsSel 1. gt (uni t sSel 2) . j oi n(chanAl i asl),
chanAl i as2 is the first output of resul t, and chanAl i asl is the second output of resul t .

A cursor for the result Source has as values the bool ean values that answer the query.
The values of the first output of the Cursor are the channel values specified by

chanAl i as2 and the values of the second output are the channel values specified by
chanAli as1.

The following is a display of the values of the Cursor formatted as a crosstab with
headings added. The column edge values are the values from chanAl i as1, and the row
edge values are the values from chanAl i as2. The values of the crosstab cells are the
bool ean values that indicate whether the units sold value for the column channel value
is greater than the units sold value for the row channel value. For example, the
crosstab values in the first column indicate that the units sold value for the column
channel value Total Channel is not greater than the units sold value for the row Tot al
Channel value but it is greater than the units sold value for the Direct Sal es, Catal og,
and I nternet row values.

----------------- chanAliasl ----------------
chanAl i as2 Total Channel Catalog Direct Sales I nt ernet

6-3

Chapter 6
Using the Basic Methods

Tot al Channel fal se fal se fal se fal se
Catal og true fal se fal se fal se
Direct Sales true true fal se fal se
I nt ernet true true true fal se

Using the distinct Method

ORACLE

You use the di stinct method to produce a Sour ce that does not have any duplicated
values, as shown in Example 6-2. The example joins two selections of dimension
members. Some dimension members exist in both selections. The example uses the
di stinct method to produce a Sour ce that contains only unique dimension members,
with no duplicated values.

The example gets the Mintt andar dDi nensi on object for the CUSTOMER_AWJ
dimension and gets the MinLevel Hi er ar chy object for the MARKETS hierarchy of that
dimension. It gets the StringSour ce object, nkt Hi er, for the MinLevel Hi er ar chy. It then
uses the sel ect Val ues method of nkt H er to produce two selections of members of the
hierarchy, cust oner sToSel ect and nor eCust omer sToSel ect . Two of the members of

cust oner sToSel ect are also present in nor eCust omer sToSel ect .

The example uses the appendVal ues method to combine the elements of

cust onersToSel ect and nor eCust omer sToSel ect in the conbi nedCust oners Sour ce. Finally,
the example uses the di stinct method of conbi nedCust oner s, which returns a Sour ce,
di sti nct Conbi nedCust oner s, that has only the distinct members of the hierarchy.

Example 6-2 Using the distinct Method

MinSt andar dDi mensi on mdnmCust Di m =

minDBSchena. f i ndOr Cr eat eSt andar dDi mensi on(" CUSTOVER_AW") ;
MinLevel Hi erarchy mdm\ktH er =

midmCust Di m fi ndOr Cr eat eLevel Hi erar chy (" MARKETS") ;
StringSource nmktH er = (StringSource)ndmkt Hi er. get Source();

Source custonersToSel ect =
nkt H er. sel ect Val ues(new String[] {"MARKETS:: SH P_TO : KOSH ENT BCS",
"MARKETS: : SHI P_TQ : KOSH ENT TCK",
"MARKETS: : SHI P_TG : KOSH ENT WAN'});
Sour ce noreCust onersToSel ect =
nkt H er. sel ect Val ues(new String[] {"MARKETS:: SH P_TO : KOSH ENT BCS",
"MARKETS: : SHI P_TQ : KOSH ENT TCK",
"MARKETS: : SHI P_TQ : BUSN WRLD NY",
"MARKETS: : SHI P_TG : BUSN WRLD SJ"});
Sour ce conbi nedCust oners =
cust oner sToSel ect . appendVal ues(nmor eCust oner sToSel ect) ;

Sour ce di stinct Combi nedCust oners = conbi nedCust oners. distinct();

A Cur sor for the conbi nedCust oner s Sour ce has the following values:

MARKETS: : SH P_TO: : KOSH ENT BOS
MARKETS: : SH P_TQ : KOSH ENT TCXK
MARKETS: : SH P_TQ : KOSH ENT WAN
MARKETS: : SH P_TO: : KOSH ENT BOS
MARKETS: : SH P_TQ : KOSH ENT TCXK
MARKETS: : SH P_TQ : BUSN WRLD NY
MARKETS: : SH P_TO: : BUSN WRLD SJ

A Cursor for the di sti nct Conbi nedCust oners Sour ce has the following values:

6-4

Chapter 6
Using the Basic Methods

MARKETS: : SH P_TO : KOSH ENT BOS
MARKETS: : SH P_TO : KOSH ENT TCXK
MARKETS: : SH P_TO : KOSH ENT WAN
MARKETS: : SH P_TO : BUSN WRLD NY
MARKETS: : SH P_TO: : BUSN WRLD SJ

Using the join Method

ORACLE

As described in Understanding Source Objects, you use the j oi n method to produce a
Sour ce that has the elements of the base Sour ce that are determined by the j oi ned,
conpari son, and conpari sonRul e parameters of the method. The vi si bl e parameter
determines whether the j oi ned parameter Sour ce is an output of the Sour ce produced
by the join operation. You also use the j oi n method to match a Sour ce with an input of
the base or j oi ned parameter Sour ce.

Most of the examples in this chapter use one or more signatures of the j oi n method,
as do many of the examples in Understanding Source Objects. Example 6-3 uses the
full j oi n signature and the simplest j oi n signature. In the example, the full j oi n
signature demonstrates the use of COVPARI SON_RULE_DESCENDI NG as the conpari sonRul e
parameter.

Example 6-3 uses the following Sour ce objects.

e prodSel WthShort Descr, which is the Sour ce produced by joining the short
description attribute of the PRODUCT_AWJ dimension with the Sour ce for the
FAMILY hierarchy level of the PRODUCT_PRIMARY hierarchy of the dimension.

e sal esMeasur e, which is the Sour ce for the SALES measure of the
UNITS_CUBE_AWJ cube.

e timeSel WthShort Descr, which is the Sour ce produced by joining the short
description attribute of the TIME_AWJ dimension with the Sour ce for a selected
member of the CALENDAR_YEAR hierarchy of the dimension.

e cust Sel WthShort Descr, which is the Sour ce produced by joining the short
description attribute of the CUSTOMER_AW.J dimension with the Sour ce for a
selected member of the SHIPMENTS hierarchy of the dimension.

e chanSel WthShort Descr, which is the Sour ce produced by joining the short
description attribute of the CHANNEL_AWJ dimension with the Sour ce for a
selected member of the CHANNEL_PRIMARY hierarchy of the dimension.

The first join operation uses the full signature of the j oi n method with

prodSel Wt hShort Descr as the base Sour ce, sal esMeasur e as the joined Sour ce, the

Sour ce for the Number data type as the comparison Sour ce, and

COVPARI SON_RULE_DESCENDI NG as the comparison rule. The Sour ce returned by that join
operation has the product family level members and related product short description
values as base values and an output that has the sales amounts in descending order.

The next three join operations join the single member selections of the other three
dimensions of the measure. The resul t Sour ce specifies the product family level
members in descending order of sales amounts for the month of May, 2001 for all
customers and all channels.

Example 6-3 Using COMPARISON_RULE_DESCENDING

Source result = prodSel WthShort Descr. joi n(sal esMeasure,
sal esMeasur e. get Dat aType(),
Sour ce. COVPARI SON_RULE_DESCENDI NG,
true)

6-5

Chapter 6
Using the Basic Methods

.join(timeSel WthShort Descr)
.join(custSel WthShort Descr)
.join(chanSel Wt hShort Descr);

A cursor for the result Sour ce has the following values, displayed as a table. The table
includes only the short value descriptions of the hierarchy members and the sales
amount values, and has headings and formatting added.

Total Channel
Total Custoner
MAY- 01

Total Sales Ampunts Product Family

3,580, 239. 72 Deskt op PCs
2,508, 560. 92 Portabl e PCs

891, 807. 30 CD/ DVD

632, 376. 84 Modens/ Fax

444,444, 38 Menory

312, 389. 39 Accessories

291, 510. 88 Moni t or s

222,995. 92 QOperating Systens

44, 479. 32 Docunent ation

Using the position Method

ORACLE

You use the posi ti on method to produce a Sour ce that has the positions of the
elements of the base and has the base as an input. Example 6-4 uses the posi tion
method in producing a Sour ce that specifies the selection of the first and last members
of the levels of a hierarchy of the TIME_AWJ dimension.

In the example, minTi neDi mis the MinPri mar yDi nensi on for the TIME_AWJ dimension.
The example gets the level attribute and the CALENDAR_YEAR hierarchy of the
dimension. It then gets Sour ce objects for the attribute and the hierarchy.

Next, the example creates an array of Sour ce objects and gets a Li st of the

MinHi er ar chyLevel components of the hierarchy. It gets the Sour ce object for each level
and adds it to the array, and then creates a list Sour ce that has the Sour ce objects for
the levels as element values.

The example then produces | evel Menber s, which is a Sour ce that specifies the
members of the levels of the hierarchy. Because the conpari son parameter of the join
operation is the Sour ce produced by | evel Li st. val ue(), | evel Menbers has | evel Li st as
an input. Therefore, | evel Menber s is a Sour ce that returns the members of each level,
by level, when the input is matched in a join operation.

The range Sour ce specifies a range of elements from the second element to the next to
last element of a Sour ce.

The next join operation produces the first AndLast Sour ce. The base of the operation is
I evel Menbers. The j oi ned parameter is the Sour ce that results from the

| evel Menbers. posi tion() method. The conpari son parameter is the range Sour ce and the
comparison rule is COVPARI SON_RULE_REMOVE. The value of the vi si bl e parameter is true.
The firstAndLast Sour ce therefore specifies only the first and last members of the
levels because it removes all of the other members of the levels from the selection.
The first AndLast Source still has | evel Li st as an input.

The final join operation matches the input of first AndLast with | evel Li st.

6-6

Chapter 6
Using the Basic Methods

Example 6-4 Selecting the First and Last Time Elements

MimAt tri bute mdnili neLevel Attr = mdnili meDi m get Level Attribute();
MinLevel Hi erarchy ndnCal H er =
ndnili meDi m fi ndOr Cr eat eLevel Hi erar chy(" CALENDAR_YEAR') ;

Sour ce | evel Rel = nunfli neLevel Attr. get Source();
StringSource cal Her = (StringSource) mdnCal Hi er. get Source();

Source[] |evel Sources = new Source[3];
List levels = mdntCal Hi er. get Hi erarchylLevel s();
for (int i =0; i < levelSources.length; i++)

| evel Sources[i] = ((MinH erarchyLevel) levels.get(i)).getSource();
}

Source |evel List = dp.createlLi st Source(l evel Sources);

Source | evel Menbers = cal H er.join(level Rel, |evelList.value());

Sour ce range = dp. creat eRangeSource(2, |evel Menbers. count().minus(1));

Source firstAndLast = |evel Menbers. join(level Menbers. position(),
range,
Sour ce. COVPARI SON_ RULE_REMOVE,
true);

Source result = firstAndLast.join(levelList);

A cursor for the resul t Sour ce has the following values, displayed as a table with
column headings and formatting added. The left column names the level, the middle
column is the position of the member in the level, and the right column is the local
value of the member. The TOTAL_TIME level has only one member.

Level Menber Position in Level Menber Value
TOTAL_TI ME 1 TOTAL

YEAR 1 CY1998
YEAR 10 CY2007
QUARTER 1 CY1998. Q1
QUARTER 40 CY2007. Q4
MONTH 1 1998. 01
MONTH 120 2007. 12

Using the recursiveJoin Method

ORACLE

You use the recursi veJoi n method to produce a Sour ce that has elements that are
ordered hierarchically. You use the recursi veJoi n method only with the Sour ce for an
Minti er ar chy or with a subtype of such a Sour ce. The method produces a Sour ce whose
elements are ordered hierarchically by the parents and their children in the hierarchy.

Like the j oi n method, you use the recursi veJoi n method to produce a Sour ce that has
the elements of the base Sour ce that are determined by the j oi ned, conpari son, and
conpar i sonRul e parameters of the method. The vi si bl e parameter determines whether
the joined Sour ce is an output of the Sour ce produced by the recursive join operation.

The full recur si veJoi n method has other parameters that specify the parent attribute of
the hierarchy, whether the result should have the parents before or after their children,
and how to order the elements of the result if the result includes children but not the
parent. The recursi veJoi n method has several signatures that are shortcuts for the full
signature.

6-7

ORACLE

Chapter 6
Using the Basic Methods

Example 6-5 uses a recursi veJoi n method that lists the parents first, restricts the
parents to the base, and does not add the joined Sour ce as an output. The example
first sorts the members of the PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ
dimension by hierarchical levels and then by the value of the package attribute of each
member.

In the first r ecur si veJoi n method, the COVPARI SON_RULE_ASCENDI NG parameter specifies
that the members of the prodHi er hierarchy be in ascending alphabetical order within
each level. The prodParent Attr object is the Sour ce for the parent attribute of the
hierarchy.

The prodPkgAt tr object in the second recursi veJoi n method is the Sour ce for the
package attribute of the dimension. Only the members of the ITEM level have a
related package attribute value. Because the members in the aggregate levels
TOTAL_PRODUCT, CLASS, and FAMILY, do not have a related package, the
package attribute value for members in those levels is nul I, which appears as NA in the
results. Some of the ITEM level members do not have a related package value, so
their values are Na, also.

The second recursi veJoi n method joins the package attribute values to their related
hierarchy members and sorts the members hierarchically by level, and then sorts them
in ascending alphabetical order in the level by the package attribute value. The

COVPARI SON_RULE_ASCENDI NG NULLS_FI RST parameter specifies that members that have a
nul | value appear before the other members in the same level. The example then joins
the result of the method, sort edHi er Ascendi ng, to the package attribute to produce a
Sour ce that has the package attribute values as element values and

sort edH er Ascendi ng as an output.

The third recur si veJoi n method is the same as the second, except that the
COVPARI SON_RULE_DESCENDI NG_NULLS_FI RST parameter sorts the hierarchy members in
descending alphabetical order in the level by package attribute value.

Example 6-5 Sorting Products Hierarchically by Attribute

Source resultl = prodHi er.recursivedoi n(prodD mval ue(),
prodHi er. get Dat aType(),
prodParent Attr,
Sour ce. COMPARI SON_RULE_ASCENDI NG) ;

Sour ce sortedH erAscending =
prodHi er. recursiveJoi n(prodPkgAttr,
prodPkgAttr. get Dat aType(),
prodParent Attr,
Sour ce. COMPARI SON_RULE_ASCENDI NG NULLS_FI RST) ;
Source result2 = prodPkgAttr.join(sortedH erAscending);

Sour ce sortedH erDescending =
prodHi er. recursiveJoi n(prodPkgAttr,
prodPkgAttr. get Dat aType(),
prodParent Attr,
Sour ce. COMPARI SON_RULE_DESCENDI NG NULLS_FI RST) ;
Source result3 = prodPkgAttr.join(sortedH erDescending);

A cursor for the resul t 1 Sour ce has the following values, displayed with a heading
added. The list contains only the first seventeen values of the Cursor.

Product Primary Hierarchy Value

PRODUCT_PRI MARY: : TOTAL_PRCDUCT: : TOTAL

6-8

ORACLE

PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :

CLASS: : HRD
FAMLY: : DI SK

| TEM : EXT CD ROM
| TEM : EXT DVD

| TEM : I NT 8X DVD
| TEM : INT CD ROM
| TEM : INT CD USB
| TEM : | NT RW DVD
FAM LY: : DTPC

| TEM : SENT FIN

| TEM : SENT MM

| TEM : SENT STD
FAMLY: : LTPC

| TEM : ENVY ABM

| TEM : ENVY EXE

| TEM : ENVY STD

Chapter 6
Using the Basic Methods

PRODUCT PRI MARY: :

A cursor for the resul t 2 Sour ce has the following values, displayed as a table with
headings added. The table contains only the first seventeen values of the Cursor. The
left column has the member values of the hierarchy and the right column has the
package attribute value for the member.

The ITEM level members that have a nul | value appear first, and then the other level
members appear in ascending order of package value. Since the data type of the
package attribute is String, the package values are in ascending alphabetical order.

Product Primary Hierarchy Val ue
PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL NA
PRODUCT_PRI MARY: : CLASS: : HRD NA
PRODUCT_PRI MARY: : FAM LY: : DI SK NA
PRODUCT_PRI MARY: : | TEM : EXT CD ROM NA
NA
NA

Package Attribute Val ue

PRODUCT_PRI MARY: : | TEM : I NT 8X DVD
PRODUCT_PRI MARY: : | TEM : I NT CD USB

PRODUCT_PRI MARY: : | TEM : EXT DVD Executive
PRODUCT_PRI MARY: : | TEM : I NT CD ROM Laptop Val ue Pack
PRODUCT_PRI MARY: : | TEM : I NT RW DVD Ml ti medi a
PRODUCT_PRI MARY: : FAM LY: : DTPC NA

PRODUCT_PRI MARY: : | TEM : SENT FI N NA

PRODUCT_PRI MARY: : | TEM : SENT STD NA

PRODUCT_PRI MARY: : | TEM : SENT WM Ml ti medi a
PRODUCT_PRI MARY: : FAM LY. : LTPC NA

RODUCT_PRI MARY: : | TEM : ENVY ABM NA

PRODUCT_PRI MARY: : | TEM : ENVY EXE Executive

PRODUCT_PRI MARY: : | TEM : ENVY STD Laptop Val ue Pack

A cursor for the resul t 3 Sour ce has the following values, displayed as a table with
headings added. This time the members are in descending order, alphabetically by
package attribute value.

Product Primary Hierarchy Val ue

Package Attribute Val ue

PRODUCT_PRI MARY: : TOTAL_PRCDUCT: : TOTAL NA
PRODUCT_PRI MARY: : CLASS: : HRD NA
PRODUCT_PRI MARY: : FAM LY: : DI SK NA
PRODUCT_PRI MARY: : | TEM : EXT CD ROM NA
PRODUCT_PRI MARY: : | TEM : I NT 8X DVD NA
PRODUCT_PRI MARY: : | TEM : I NT CD USB NA
PRODUCT_PRI MARY: : | TEM : | NT RW DVD Ml ti medi a

6-9

Chapter 6
Using the Basic Methods

PRODUCT_PRI MARY: : | TEM : I NT CD ROM Lapt op Val ue Pack
PRODUCT_PRI MARY: : | TEM : EXT DVD Executive
PRODUCT_PRI MARY: : FAM LY: : DTPC NA

PRODUCT_PRI MARY: : | TEM : SENT FI N NA

PRODUCT_PRI MARY: : | TEM : SENT STD NA

PRODUCT_PRI MARY: : | TEM : SENT WM Ml ti medi a
PRODUCT_PRI MARY: : FAM LY: : LTPC NA

PRODUCT_PRI MARY: : | TEM : ENVY ABM NA

PRODUCT_PRI MARY: : | TEM : ENVY STD Laptop Val ue Pack

PRODUCT_PRI MARY: : | TEM : ENVY EXE Executive

Using the value Method

As described in "Deriving a Source with an Input”, you use the val ue method to create
a Sour ce that has itself as an input. That relationship enables you to select a subset of
elements of the Sour ce. You can also use the value method to reverse a relation.

The following topics have examples of these operations.

» Selecting Elements of a Source

* Reversing a Relation

Selecting Elements of a Source

ORACLE

Example 5-11 and Example 6-6 demonstrate the selection of a subset of the elements
of a Sour ce. In Example 6-6, shi pHi er is a Sour ce for the SHIPMENTS hierarchy of the
CUSTOMER_AWJ dimension. The sel ect Val ues method of shi pH er produces cust Sel ,
which is a selection of some of the elements of shi pHi er. The sel ect Val ues method of
cust Sel produces cust Sel 2, which is a subset of that selection.

The first j oi n method has cust Sel as the base and as the joined Sour ce. It has cust Sel 2
as the comparison Sour ce. The elements of the resulting Sour ce, resul t 1, are the
Cartesian product of the base and joined Sour ce objects that are specified by the
comparison Sour ce. The resul t 1 Sour ce has one set of the elements of cust Sel for each
element of cust Sel that is in the comparison Sour ce. The true value of the visibl e
parameter causes the joined Sour ce to be an output of resul t 1.

The second j oi n method also has cust Sel as the base and cust Sel 2 as the comparison
Sour ce, but it has the Sour ce returned by the cust Sel . val ue() method as the joined

Sour ce. Because cust Sel is an input of the joined Sour ce, the base Sour ce matches with
that input. That input relationship causes the resulting Sour ce, resul t 2, to have only
those elements of cust Sel that are also in the comparison Sour ce.

Example 6-6 Selecting a Subset of the Elements of a Source

StringSource custSel = shipHier.sel ectVal ues(new String[]
{" SHI PMENTS: : SHI P_TO : COMP WHSE SIN',
"SH PMENTS: : SHI P_TO: : COWP WHSE LON',
"SH PMENTS: : SHI P_TG: : COWP WHSE SJ",
"SH PMENTS: : SH P_TO : COWP WHSE ATL"});

Sour ce cust Sel 2 = cust Sel . sel ect Val ues(new String[]
{" SHI PMENTS: : SHI P_TO : COMP WHSE SIN',
" SH PMENTS: : SH P_TO : COWP WHSE SJ"});

Source resultl = custSel.join(custSel, custSel2, true);

6-10

Chapter 6
Using the Basic Methods

Source result2 = custSel.join(custSel.value(), custSel2, true);

A Cursor forresul t 1 has the values shown in the following table. The table has
formatting and headings that are not in the Cursor. The left column has the values of
the elements of the output of the Cursor. The right column has the base values of the
Cursor.

Qut put Val ue resultl Val ue
SH PMENTS: : SHI P_TG : COMP WHSE SJ SH PMENTS: : SH P_TG : COMP WHSE ATL
SH PMENTS: : SHI P_TG : COMP WHSE SJ SH PMENTS: : SHI P_TG : COMP WHSE SJ
SH PMENTS: : SHI P_TG : COMP WHSE SJ SH PMENTS: : SHI P_TG : COMP WHSE SIN
SH PMENTS: : SHI P_TG : COMP WHSE SJ SH PMENTS: : SHI P_TG : COMP WHSE LON
SH PMENTS: : SHI P_TG : COMP WHSE SIN SHI PMENTS: : SHI P_TG : COMP WHSE ATL
SH PMENTS: : SHI P_TGO : COMP WHSE SIN SHI PMENTS: : SHI P_TG : COMP WHSE SJ
SH PMENTS: : SHI P_TG : COMP WHSE SIN SHI PMENTS: : SHI P_TG : COMP WHSE SIN
SH PMENTS: : SHI P_TGO : COMP WHSE SIN SHI PMENTS: : SHI P_TG : COMP WHSE LON

A cursor forresul t 2 has the following values, displayed as a table with headings
added. The left column has the values of the elements of the output of the Cursor. The
right column has the base values of the Cursor.

Qut put Val ue result2 Val ue

SHI PVMENTS: : SHI P_TQ: : COMP WHSE SJ SHI PMENTS: : SHI P_TQ: : COMP WHSE SJ
SHI PMENTS: : SHIP_TO : COMP WHSE SIN SHI PMENTS: : SH P_TQ : COWP WHSE SIN

Reversing a Relation

ORACLE

Another use of the val ue method is to reverse a relation, as shown in Example 6-7.
The example reverses the ancestor attribute relation of the CUSTOMER_AWJ
dimension to produce a Sour ce, mar ket sDescendant s, that represents a descendants
relation. The nar ket sDescendant s Sour ce has as an input the Sour ce for the MARKETS
hierarchy of the dimension. When you join mar ket sDescendant s with a Sour ce that
matches with that input, you get a Sour ce that specifies the descendants of the
participating members of the hierarchy.

Another example of reversing a relation is Example 6-10. It uses the val ue method in
reversing the parent attribute to get the children of a parent.

Example 6-7 first gets the Mintt andar dDi nensi on object for the CUSTOMER_AWJ
dimension and the MinLevel Hi er ar chy object for the MARKETS hierarchy of that
dimension. It gets the Sour ce for the hierarchy.

The example next gets the ancestors attribute of the dimension and the Sour ce for it.
The ancestors attribute relates each dimension member to the ancestors of that
member.

To produce a Sour ce that represents the descendants of each member of the
dimension, the example reverses the ancestor relation by joining the Sour ce for the
hierarchy, nkt H er, with the ancestors attribute, ancest or sAttr. The join operation uses
nkt H er.val ue() as the comparison Sour ce, SO that the Sour ce returned by the join
operation, mar ket sDescendant s, has nkt H er as an input. The nar ket sDescendant s Sour ce
specifies, for each element of ancest orsAttr, the elements of nkt H er that have the
ancestorsAttr element as their ancestor. Because it has nkt H er as an input, the

mar ket sDescendant s Sour ce functions in the same way as an attribute that represents
the descendants relationship for the hierarchy.

6-11

ORACLE

Chapter 6
Using the Basic Methods

The example demonstrates this when it joins nkt Hi er to mar ket sDescendant s in the
following line.

Sour ce sel Val Descendants = market sDescendants. j oi n(nkt Hi er, selVal);

In the join operation, the joined Sour ce, nkt H er, matches with the input of

mar ket sDescendant s. The comparison Sour ce is sel Val , which specifies a single member
of the hierarchy. The join operation returns sel Val Descendant s, which specifies the
elements of mar ket sDescendant s that are the descendants of the sel Val member. The
result also includes the ancestor member itself. The nkt H er Sour ce is not an output of
sel Val Descendant s because the signature of the j oi n method used derives a Sour ce that
does not have the joined Sour ce as an output.

The example next uses the full signature of the j oi n method to produce

sel Val Descendant sOnl y, which contains only the descendants and not the ancestor
value. To remove the ancestor value, the example again uses the val ue method, this
time to return a Sour ce that is the j oi ned parameter of the join operation that returns
sel Val Descendant sOnl y. The comparison Sour ce is sel Val , and the comparison rule is
COMPARI SON_RULE_REMOVE.

Finally, the example uses the removeval ue method to produce sel Val Descendant sOnl y2,
which is the same as sel Val Descendant sOnl y. This simply demonstrates that the
renoveVal ue method is a shortcut for the join operation that returned

sel Val Descendant sOnl y.

Example 6-7 Using the value Method to Reverse a Relation

MinSt andar dDi nensi on ndnCust Dim =

mdnDBSchena. fi ndOr Cr eat eSt andar dDi nensi on(" CUSTOVER_AW") ;
MinLevel Hi erarchy ndm\ktH er =

mdmCust Di m fi ndOr Cr eat eLevel Hi erar chy (" MARKETS") ;
StringSource nktH er = (StringSource)mdnkt Hi er. get Source();
MimAt tri bute mdmAncestorsAttr = mdmCust Di m get AncestorsAttribute();
Sour ce ancestorsAttr = mdmAncestorsAttr. get Source();

/1 Reverse the ancestors relation to get the descendants relation.
Sour ce mar ket sDescendants = mktH er.join(ancestorsAttr, nktHier.value());

Source sel Val = nktHier.sel ectVal ue(" MARKETS: : ACCOUNT: : BUSN WRLD") ;

/1 Select the descendants of the specified hierarchy nenber.
StringSource sel Val Descendants =
(StringSource)nar ket sDescendants. j oi n(nkt H er, sel Val);

/1 Remove the ancestor value so that only the descendants renain.
Sour ce sel Val DescendantsOnly =
sel Val Descendant s. j oi n(sel Val Descendant s. val ue(),
sel Val ,
Sour ce. COVPARI SON_RULE_REMOVE) ,
fal se;

/1 Produce the sane result using the renoveVal ue method.
Sour ce sel Val Descendant sOnly2 =
sel Val Descendant s. r enmoveVal ue(" MARKETS: : ACCOUNT: : BUSN WRLD") ;

A Cursor for sel Val Descendant s has the following values.

MARKETS: : ACCOUNT: : BUSN WRLD
MARKETS: : SHI P_TO : BUSN VRLD HAM
MARKETS: : SHI P_TO : BUSN WRLD NAN

6-12

Chapter 6
Using Other Source Methods

MARKETS: : SH P_TO : BUSN WRLD NY
MARKETS: : SH P_TO: : BUSN WRLD SJ

A Cursor for sel Val Descendant sOnl y has the following values.

MARKETS: : SH P_TQ: : BUSN WVRLD HAM
MARKETS: : SH P_TO : BUSN WRLD NAN
MARKETS: : SHI P_TO: : BUSN WVRLD NY
MARKETS: : SHI P_TQ : BUSN WRLD SJ

A Cursor for sel Val Descendant sOnl y2 has the following values.

MARKETS: : SH P_TCO : BUSN WRLD HAM
MARKETS: : SH P_TCO : BUSN WRLD NAN
MARKETS: : SH P_TCO : BUSN WRLD NY
MARKETS: : SH P_TO: : BUSN WRLD SJ

Using Other Source Methods

Along with the methods that are various signatures of the basic methods, the Source
class has many other methods that use combinations of the basic methods. Some
methods perform selections based on a single position, such as the at and of f set
methods. Others operate on a range of positions, such as the i nt erval method. Some
perform comparisons, such as eq and gt, select one or more elements, such as

sel ect Val ue or renoveVal ue, or sort elements, such as sort Ascendi ng or

sort Descendi ngHi erarchical | y.

The subclasses of Sour ce each have other specialized methods, also. For example, the
Nunber Sour ce class has many methods that perform mathematical functions such as
abs, di v, and cos, and methods that perform aggregations, such as average and total .

The following topics have examples that demonstrate the use of some of the Source
methods. Some of the examples are tasks that an OLAP application typically performs.

» Using the extract Method

» Creating a Cube and Pivoting Edges

e Dirilling Up and Down in a Hierarchy

e Sorting Hierarchically by Measure Values

* Using NumberSource Methods To Compute the Share of Units Sold
» Selecting Based on Time Series Operations

* Selecting a Set of Elements Using Parameterized Source Objects

Using the extract Method

ORACLE

You use the extract method to extract the values of a Sour ce that is the value of an
element of another Sour ce. If the elements of a Sour ce have element values that are not
Sour ce objects, then the extract method operates like the val ue method.

Example 6-8 uses the extract method to get the values of the Nunber Sour ce objects
that are themselves the values of the elements of the list Sour ce measDi m Each of the
Nunber Sour ce objects represents a measure.

6-13

Chapter 6
Using Other Source Methods

The example selects elements from St ri ngSour ce objects for the hierarchies of the
dimensions of the UNITS_CUBE_AWJ cube. The cost, units, and sal es objects are
Nurber Sour ce objects for the COST, UNITS, and SALES measures of the cube.

Next, the example creates measDi m which is a list Sour ce that has the three

Nunber Sour ce objects as element values. It then uses the extract method to get the
values of the Nunber Sour ce objects. The resulting unnamed Sour ce has neasDi mas an
extraction input. The first join operation has measDi m extract () as the base Source. The
input of the base Sour ce matches with measDi m which is the j oi ned parameter. The
example then matches the other inputs of the measures by joining the dimension
selections to produce the result Sour ce.

Example 6-8 Using the extract Method

Source prodSel = prodHier.selectVal ues(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY STD',

" PRODUCT_PRI MARY: : | TEM : ENVY EXE",

" PRODUCT_PRI MARY: : | TEM : ENVY ABM'});
chanHi er. sel ect Val ue(" CHANNEL_PRI MARY: : CHANNEL: : DIR") ;
timeH er. sel ect Val ue(" CALENDAR_YEAR: : MONTH: : 2001. 05") ;
cust Hi er. sel ect Val ue(" SH PVMENTS: : TOTAL_CUSTOMER: : TOTAL") ;

Sour ce chanSel
Source tineSel
Sour ce cust Sel

Source neasDim = dp. creat elLi st Source(new Source[] {cost, units, sales});

Source result = measDimextract().join(measDinm) // colum
.join(prodSel) // row
.join(tinmeSel) [/ page
.join(chanSel) // page
.join(custSel); [/ page

The following crosstab displays the values of a Cursor for the result Sour ce, with
headings and formatting added.

SHI PMENTS: : TOTAL_CUSTOMER: : TOTAL
CHANNEL _PRI MARY: : CHANNEL: : DI R
CALENDAR_YEAR: : MONTH: : 2001. 05

| TEM CcosT UNITS SOLD SALES AMOUNT
ENVY ABM 73, 316. 10 26 77,825.54
ENVY EXE 111, 588. 30 37 116, 470. 45
ENVY STD 92, 692. 47 39 93, 429. 57

Creating a Cube and Pivoting Edges

ORACLE

One typical OLAP operation is the creation of a cube, which is a multi-dimensional
array of data. The data of the cube is specified by the elements of the column, row,
and page edges of the cube. The data of the cube can be data from a measure that is
specified by the members of the dimensions of the measure. The cube data can also
be dimension members that are specified by some calculation of the measure data,
such as products that have unit sales quantities greater than a specified amount.

Most of the examples in this topic create cubes. Example 6-9 creates a cube that has
the quantity of units sold as the data of the cube. The column edge values are initially
from a channel dimension hierarchy, the row edge values are from a time dimension
hierarchy, and the page edge values are from hierarchies for product and customer
dimensions. The product and customer member values on the page edge are
represented by parameterized Sour ce objects.

6-14

ORACLE

Chapter 6
Using Other Source Methods

The example joins the selections of the hierarchy members to the short value
description attributes for the dimensions so that the results include the attribute values.
The example then joins the Sour ce objects derived from the hierarchies to the Source
for the measure to produce the cube query. It commits the current Transacti on, and
then creates a Cursor for the query and displays the values.

After displaying the values of the Cursor, the example changes the value of the

Par amet er for the parameterized Sour ce for the customer selection, thereby retrieving a
different result set using the same Cursor in the same Transacti on. The example resets
the position of the Cursor, and displays the values of the Cursor again.

The example then pivots the column and row edges so that the column values are
time members and the row values are channel members. It commits the Transacti on,
creates another Cursor for the query, and displays the values. It then changes the
value of each Par anet er object and displays the values of the Cursor again.

The dp object is the Dat aProvi der. The get Cont ext method gets a Cont ext 11g object that
has a method that displays the values of the Cursor in a crosstab format.

Example 6-9 Creating a Cube and Pivoting the Edges

/| Create Paranmeter objects with values fromthe hierarchies
/1 of the CUSTOVER_AW and PRODUCT_AW di mensi ons.
StringParaneter custParam =

new StringParaneter(dp, "SH PVENTS:: REG ON: : EMEA");
StringParaneter prodParam =

new StringParaneter(dp, "PRODUCT_PRI MARY:: FAMLY::LTPC");

/| Create paraneterized Source objects using the Paranmeter objects.
Source cust Paranfrc = cust Param creat eSource();
Sour ce prodParantrc = prodParam creat eSource();

Il Select single values fromthe hierarchies, using the Paraneter
/] objects as the conparisons in the join operations.
Sour ce paranCustSel = custH er.join(custHer.value(), custParanfrc);
Source paranProdSel = prodHier.join(prodH er.value(), prodParanfrc);
Il Select menbers fromthe other dinensions of the neasure.
Source timeSel =
timeH er.sel ect Val ues(new String[] {"CALENDAR_YEAR : YEAR : CY1999"
" CALENDAR_YEAR: : YEAR: : CY2000",
" CALENDAR_YEAR: : YEAR: : CY2001"});
Source chanSel =
chanHi er. sel ect Val ues(new String[] {"CHANNEL_PRI MARY:: CHANNEL: : DIR",
" CHANNEL _PRI MARY: : CHANNEL.: : CAT
" CHANNEL_PRI MARY: : CHANNEL: : I NT"});

/1 Join the hierarchy selections to the short description attributes
/1 for the dimensions.

Sour ce col utmEdge = chanSel . j oi n(chanShort Descr);

Sour ce rowkdge = timeSel.join(tinmeShortDescr);

Source pagel = paranProdSel . joi n(prodShortDescr);

Source page2 = paranCust Sel . j oi n(cust Short Descr);

/1 Join the dimension selections to the measure.
Sour ce cube = units.join(col umEdge)

.joi n(rowEdge)

.j oi n(page2)

.join(pagel);

/1 The following nethod comits the current Transaction.

6-15

ORACLE

Chapter 6
Using Other Source Methods

get Context().commt();

Il Create a Cursor for the query.
Cursor Manager cursor Mhgr = dp. creat eCur sor Manager (cube);
ConpoundCur sor cubeCursor = (ConpoundCursor) cursorMhgr.createCursor();

/1 Display the values of the Cursor as a crosstab.
get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCur sor) ;

/1 Change the customer paraneter val ue.
cust Par am set Val ue(" SH PMENTS: : REG ON: : AVMER") ;

/1 Reset the Cursor position to 1 and display the values again.
cubeCursor. set Posi tion(1);

printlin();

get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCur sor) ;

/1 Pivot the colum and row edges.
col umEdge = tinmeSel.join(timeShortDescr);
rowEdge = chanSel . j oi n(chanShort Descr);

/1 Join the dinension selections to the measure.
cube = units.join(col umEdge)

.join(rowEdge))

.j oi n(page2)

.join(pagel);

/I Commit the current Transaction.
get Context().commt();

/] Create another Cursor.

cursor Mgr = dp. creat eCur sor Manager (cube) ;

cubeCursor = (CompoundCursor) cursorMgr. createCursor();
get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCur sor) ;

/1 Change the product paraneter val ue.
prodPar am set Val ue(" PRODUCT_PRI MARY: : FAM LY: : DTPC") ;

/] Reset the Cursor positionto 1

cubeCur sor. set Posi tion(1);

printlin();

get Cont ext (). di spl ayCur sor AsCr osst ab(cubeCur sor) ;

The following crosstab has the values of cubeCur sor displayed by the first
di spl ayCur sor AsCr osst ab method.

Portabl e PCs
Eur ope

Catalog Direct Sales Internet

1999 1986 86 0
2000 1777 193 10
2001 1449 196 215

The following crosstab has the values of cubeCursor after the example changed the
value of the cust Par amPar anet er object.

Portabl e PCs
North Anerica

6-16

Chapter 6
Using Other Source Methods

Catalog Direct Sales |Internet

1999 6841 385 0
2000 6457 622 35
2001 5472 696 846

The next crosstab has the values of cubeCur sor after pivoting the column and row
edges.

Portabl e PCs
North Anerica

1999 2000 2001
Cat al og 6841 6457 5472
Direct Sales 385 622 696
| nt ernet 0 35 846

The last crosstab has the values of cubeCur sor after changing the value of the
prodPar amPar anet er object.

Deskt op PCs
North Anerica

1999 2000 2001
Catal og 14057 13210 11337
Direct Sales 793 1224 1319
| nt ernet 0 69 1748

Drilling Up and Down in a Hierarchy

ORACLE

Drilling up or down in a dimension hierarchy is another typical OLAP operation.
Example 6-10 demonstrates getting the members of one level of a dimension
hierarchy, selecting a member, and then getting the parent, children, and ancestors of
the member. The example gets the children of a parent by reversing the parent
relation to produce the prodHi er Chi | dren Sour ce.

The example uses the following objects.

* level Src, which is the Sour ce for the FAMILY level of the PRODUCT_PRIMARY
hierarchy of the PRODUCT_AWJ dimension.

e prodHier, which is the Sour ce for the PRODUCT_PRIMARY hierarchy.
e prodHierParent Attr, which is the Sour ce for the parent attribute of the hierarchy.
e prodHi er AncsAt tr, which is the Sour ce for the ancestors attribute of the hierarchy.

e prodShort Label , which is the Sour ce for the short value description attribute of the
PRODUCT_AWJ dimension.

Example 6-10 Drilling in a Hierarchy

int pos = 5;
/1 Get the element at the specified position of the |evel Source.
Source |evel El enent = | evel Src. at(pos);

/1 Get ancestors of the level menber.

Source | evel El enent Ancs = prodH er AncsAttr.join(prodH er, |evel El enent);

/1 Get the parent of the |evel nenber.

Source | evel El enent Parent = prodHi erParentAttr.join(prodHi er, |evel El enent);
/1 Get the children of a parent.

Sour ce prodHierChildren = prodHi er.join(prodH erParentAttr, prodHier.value());

6-17

ORACLE

Chapter 6
Using Other Source Methods

Il Select the children of the |evel nenber.
Source | evel El enent Chil dren = prodHi er Chil dren.join(prodH er, |evel El enent);

/1 Get the short val ue descriptions for the nenbers of the |evel.
Source | evel SrcWthShortDescr = prodShort Label . join(level Src);

/1 Get the short value descriptions for the children.
Sour ce | evel El enent Chi | drenW t hShort Descr =
prodShort Label . j oi n(1 evel El enent Chi | dren);

/1 Get the short val ue descriptions for the parents.
Sour ce | evel El ement Par ent Wt hShort Descr =
prodShort Label . j oi n(prodH er, |evel El enentParent, true);

/1 Get the short val ue descriptions for the ancestors.
Source | evel El enent AncsW t hShort Descr =
prodShort Label . j oi n(prodH er, |evel El enent Ancs, true);

/I Commit the current Transaction.
get Context().commt();

/1 Create Cursor objects and display their val ues.
printin("Level Source elenment values:");

get Context (). di spl ayResul t (I evel SrcWt hShort Descr);
printin("\nLevel Source elenent at position " + pos + ":");
get Context (). di spl ayResul t (| evel El enent);

printin("\nParent of the level nenber:");

get Context (). di spl ayResul t (| evel El enent Par ent W t hShort Descr) ;
printin("\nChildren of the |evel nenmber:");

get Context (). di spl ayResul t (I evel El enent Chi | drenW t hShort Descr) ;
println("\nAncestors of the level menber:");

get Context (). di spl ayResul t (I evel El enent AncsW t hShort Descr) ;

The following list has the values of the Cursor objects created by the di spl ayResul ts
methods.

Source el enent val ues:

FAM LY: : ACC, Accessori es

FAM LY: : DI SK, CDY DVD

FAM LY: : DOC, Document at i on
FAM LY: : DTPC, Port abl e PCs
FAM LY: : LTPC, Deskt op PCs
FAM LY: : MEM Menory

FAM LY: : MOD, Modens/ Fax
FAMLY: : MON, Moni tors

FAMLY: : CS, Operating Systens

Level
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :

Level Source el enent at position 5:
PRODUCT_PRI MARY: : FAM LY: LTPC

Parent of the |evel nenber:
PRODUCT_PRI MARY: : CLASS: : HRD, Har dwar e

Children of the |evel nenber:

PRODUCT_PRI MARY: : | TEM : ENVY ABM Envoy Ambassador
PRODUCT_PRI MARY: : | TEM : ENVY EXE, Envoy Executive
PRODUCT_PRI MARY: : | TEM : ENVY STD, Envoy St andard

Ancestors of the |evel member:

PRODUCT_PRI MARY: : TOTAL_PRCDUCT: : TOTAL, Total Product

6-18

Chapter 6
Using Other Source Methods

PRODUCT_PRI MARY: : CLASS: : HRD, Har dwar e
PRODUCT_PRI MARY: : FAM LY: : LTPC, Port abl e PCs

Sorting Hierarchically by Measure Values

ORACLE

Example 6-11 uses the recursi veJoi n method to sort the members of the
PRODUCT_PRIMARY hierarchy of the PRODUCT_AWJ dimension hierarchically in
ascending order of the values of the UNITS measure. The example joins the sorted
products to the short value description attribute of the dimension, and then joins the
result of that operation, sort edProduct sShort Descr, to uni ts.

The successive j oi nH dden methods join the selections of the other dimensions of

uni ts to produce the resul t Sour ce, which has the measure data as element values
and sort edPr oduct sShort Descr as an output. The example uses the j oi nH dden methods
so that the other dimension selections are not outputs of the result.

The example uses the following objects.

e prodHi er, which is the Sour ce for the PRODUCT_PRIMARY hierarchy.
* units, which is the Sour ce for the UNITS measure of product units sold.

e prodParent Attr, which is the Sour ce for the parent attribute of the
PRODUCT_PRIMARY hierarchy.

e prodShort Descr, which is the Sour ce for the short value description attribute of the
PRODUCT_AWJ dimension.

e custSel, which is a Sour ce that specifies a single member of the SHIPMENTS
hierarchy of the CUSTOMER_AWJ dimension. The member is
SHI PMENTS: : TOTAL_CUSTOMER: : TOTAL, which is the total for all customers.

* chanSel , which is a Sour ce that specifies a single member of the
CHANNEL_PRIMARY hierarchy of the CHANNEL_AWJ dimension. The member
value is CHANNEL_PRI MARY: : CHANNEL: : DI R, which is the direct sales channel.

* timeSel, which is a Sour ce that specifies a single member of the
CALENDAR_YEAR hierarchy of the TIME_AWJ dimension. The member is
CALENDAR_YEAR: : YEAR : CY2001, which is the year 2001.

Example 6-11 Hierarchical Sorting by Measure Value

Source sortedProduct =
prodHi er. recursiveJoin(units,
uni ts. get Dat aType(),
prodParent Attr,
Sour ce. COMPARI SON_RULE_ASCENDI NG,
true, [/ Parents first
true); // Restrict parents to base

Sour ce sortedProduct ShortDescr = prodShortDescr.join(sortedProduct);
Source result = units.join(sortedProduct ShortDescr)

.j oi nH dden(cust Sel)

.j oi nHi dden(chanSel)

.joinH dden(timeSel);

A cursor for the result Sour ce has the following values, displayed in a table with
column headings and formatting added. The left column has the name of the level in
the PRODUCT_PRI MARY hierarchy. The next column to the right has the product
identification value, and the next column has the short value description of the product.

6-19

Chapter 6
Using Other Source Methods

The rightmost column has the number of units of the product sold to all customers in
the year 2001 through the direct sales channel.

The table contains only the first nine and the last eleven values of the Cursor, plus the
Software/Other class value. The product values are listed hierarchically and in
ascending order by units sold. The Hardware class appears before the Software/Other
class because the Software/Other class has a greater number of units sold. In the
Hardware class, the Portable PCs family sold the fewest units, so it appears first. In
the Software/Other class, the Accessories family has the greatest number of units

sold, so it appears last.

Product Level ID Description Units Sold
TOTAL_PRCDUCT TOTAL Total Product 43,785
CLASS HRD Har dwar e 16, 543
FAM LY LTPC Portabl e PCs 1,192
| TEM ENVY ABM Envoy Anbassador 330
| TEM ENVY EXE Envoy Executive 385
| TEM ENVY STD Envoy Standard 477
FAM LY MON Moni tors 1,193
| TEM 19 SVAA Monitor- 19" Super VGA 207
| TEM 17 SVGA Monitor- 17" Super VGA 986
CLASS SFT Sof t war e/ & her) 27,242
FAM LY ACC Accessori es 18, 949
| TEM ENVY EXT KBD Envoy External Keyboard 146
| TEM EXT KBD External 101-key keyboard 678
| TEM MM SPKR 5 Mul ti medi a speakers- 5" cones 717
| TEM STD MOUSE Standard Muse 868
| TEM MM SPKR 3 Mul ti medi a speakers- 3" cones 1,120
| TEM 144MB DI SK 1.44MB External 3.5" Diskette 1,145
TEM KBRD REST Keyboard Wi st Rest 2,231
| TEM LT CASE Laptop carrying case 3,704
| TEM DLX MOUSE Del uxe Mouse 3,884
| TEM MOUSE PAD Mouse Pad 4,456

Using NumberSource Methods To Compute the Share of Units Sold

Example 6-12 uses the Nunber Sour ce methods di v and ti mes to produce a Sour ce that

ORACLE

specifies the share that the Desktop PC and Portable PC families have of the total
guantity of product units sold for the selected time, customer, and channel values. The
example first uses the sel ect Val ue method of prodHi er, which is the Sour ce for a
hierarchy of the PRODUCT_AWJ dimension, to produce t ot al Prods, which specifies a
single element with the value PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL, which is the
highest aggregate level of the hierarchy.

The j oi nH dden method of the Nunber Sour ce uni ts produces t ot al Uni t s, which specifies
the UNITS measure values at the total product level, without having t ot al Prods appear
as an output of tot al Uni ts. The di v method of uni ts then produces a Sour ce that
represents each units sold value divided by the total quantity of units sold. The ti nes
method then multiplies the result of that di v operation by 100 to produce pr oduct Share,
which represents the percentage, or share, that a product member has of the total
guantity of units sold. The product Shar e Sour ce has the inputs of the uni ts measure as
inputs.

The prodFani | i es object is the Sour ce for the FAMILY level of the
PRODUCT_PRIMARY hierarchy. The j oi n method of product Shar e, with prodFanilies

6-20

Chapter 6
Using Other Source Methods

as the joined Sour ce, produces a Sour ce that specifies the share that each product
family has of the total quantity of products sold.

The cust Sel, chanSel , and ti meSel Sour ce objects are selections of single members of
hierarchies of the CUSTOMER_AWJ, CHANNEL AWJ, and TIME_AWJ dimensions.
The remaining j oi n methods match those Sour ce objects to the other inputs of
product Shar e, to produce resul t. The joi n(Source joi ned, String conparison)
signature of the j oi n method produces a Sour ce that does not have the joined Sour ce
as an output.

The resul't Sour ce specifies the share for each product family of the total quantity of
products sold to all customers through the direct sales channel in the year 2001.

Example 6-12 Getting the Share of Units Sold

Source total Prods =

prodHi er. sel ect Val ue(" PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL") ;
Number Source total Units = (Nunber Source) units.joinH dden(total Prods);
Source product Share = units.div(total Units).times(100);
Source result =

product Share. j oi n(prodFami | i es)

.join(timeH er, "CALENDAR YEAR : YEAR : CY2001")

.join(chanH er, "CHANNEL_PRI MARY:: CHANNEL: : DI R")
.join(custH er, "SH PMENTS:: TOTAL_CUSTOMER: : TOTAL");
Source sortedResult = result.sortAscending();

A cursor for the sortedResul t Sour ce has the following values, displayed in a table with
column headings and formatting added. The left column has the product family value
and the right column has the share of the total number of units sold for the product
family to all customers through the direct sales channel in the year 2001.

Product Fam |y Menber Share of Total Units Sold
PRODUCT_PRI MARY: : FAM LY: : LTPC 2. 72%
PRCDUCT_PRI MARY: : FAM LY: : MON 2.73%
PRODUCT_PRI MARY: : FAM LY: : MEM 3.57%
PRODUCT_PRI MARY: : FAM LY: : DTPC 5. 13%
PRODUCT_PRI MARY: : FAM LY: : DOC 6. 4%
PRODUCT_PRI MARY: : FAM LY: : DI SK 11.71%
PRODUCT_PRI MARY: : FAM LY: : MOD 11. 92%
PRCDUCT_PRI MARY: : FAM LY: : OS 12. 54%
PRODUCT_PRI MARY: : FAM LY: : ACC 43.28%

Selecting Based on Time Series Operations

ORACLE

This topic has two examples of using methods that operate on a series of elements of
the MinLevel Hi erar chy for the CALENDAR_YEAR hierarchy of the TIME_AWJ
dimension. Example 6-13 uses the | ag method of uni t Pri ce, which is the Sour ce for the
UNIT_PRICE measure, to produce uni t Pri ceLag4, which specifies, for each element of
uni t Pri ce that matches with a member of the hierarchy, the element of uni t Pri ce that
matches with the hierarchy member that is four time periods earlier at the same level
in the hierarchy.

In the example, dp is the Dat aProvi der . The creat elLi st Sour ce method creates

neasur esDi m which has the uni t Pri ce and uni t Pri ceLag4 Sour ce objects as element
values. The extract method of measur esDi mgets the values of the elements of
neasur esDi m The Sour ce produced by the extract method has measuresDi mas an
extraction input. The first j oi n method matches a Sour ce, nmeasur esbi m to the input of
the Sour ce returned by the extract method.

6-21

ORACLE

Chapter 6
Using Other Source Methods

The unitPrice and uni t Pri ceLag4 measures both have the Sour ce objects for the
PRODUCT_AWJ and TIME_AWJ dimensions as inputs. The second j oi n method
matches quarter Level , which is a Sour ce for the QUARTER level of the
CALENDAR_YEAR hierarchy of the TIME_AWJ dimension, with the TIME_AWJ
dimension input of the measure, and makes it an output of the resulting Sour ce.

The j oi nH dden method matches prodSel with the PRODUCT_AWJ dimension input of
the measure, and does not make prodSel an output of the resulting Sour ce. The prodSel
Sour ce specifies the single hierarchy member PRODUCT_PRI MARY: : FAM LY: : DTPC, which is
Desktop PCs.

The | agResul t Sour ce specifies the aggregate unit prices for the Desktop PC product
family for each quarter and the quarter that is four quarters earlier.

Example 6-13 Using the Lag Method

Number Sour ce unitPriceLagd = unitPrice.lag(nminCal Her, 4);
Sour ce nmeasuresDim = dp. creat elLi st Sour ce(new Source[] {unitPrice,
uni t PricelLag4});

Source | agResult = nmeasuresDi mextract()
.joi n(measuresDi m
.join(quarterLevel)
.j oi nHi dden(prodSel);

A cursor for the | agResul t Sour ce has the following values, displayed in a table with
column headings and formatting added. The left column has the quarter, the middle
column has the total of the unit prices for the members of the Desktop PC family for
that quarter, and the right column has the total of the unit prices for the quarter that is
four quarters earlier. The first four values in the right column are NA because quarter 5,
Q1-98, is the first quarter in the CALENDAR_YEAR hierarchy. The table includes only
the first eight quarters.

Unit Price
Quarter Unit Price Four Quarters Before
CALENDAR_YEAR: : QUARTER : CY1998. QL 2687. 54 NA
CALENDAR_YEAR: : QUARTER : CY1998. 2 2704. 48 NA
CALENDAR_YEAR: : QUARTER : CY1998. (B 2673. 27 NA
CALENDAR_YEAR: : QUARTER : CY1998. (4 2587.76 NA
CALENDAR_YEAR: : QUARTER : CY1999. Q1 2394. 79 2687. 54
CALENDAR_YEAR: : QUARTER : CY1999. @2 2337.18 2704. 48
CALENDAR_YEAR: : QUARTER : CY1999. B 2348. 39 2673. 27

CALENDAR_YEAR: : QUARTER: : CY1999. (4 2177. 89 2587.76

Example 6-14 Using the movingTotal Method

This example uses the same uni t Pri ce, mdnCal Hi er, quarterLevel , and prodSel objects
as Example 6-13, but it uses the uni t Pri ceMvi ngTot al measure as the second element
of neasuresDi m The uni t Pri ceMvi ngTot al Sour ce is produced by the novi ngTot al

method of uni t Pri ce. That method provides mintCal Hi er, which is the MinLevel Hi er ar chy
for the CALENDAR_YEAR hierarchy of the TIME_AWJ dimension, as the di nensi on
parameter and the integers 0 and 3 as the starting and ending offset values.

The novi ngTot al Resul t Sour ce specifies, for each quarter, the aggregate of the unit
prices for the members of the Desktop PC family for that quarter and the total of that
unit price plus the unit prices for the next three quarters.

6-22

Chapter 6
Using Other Source Methods

Nunber Sour ce uni t PriceMvingTotal =
unit Price. novi ngTotal (mdnCal Hier, 0, 3);

Source neasuresDim =
dp. creat elLi st Sour ce(new Source[]{unitPrice, unitPriceMvingTotal});

Source novingTotal Result = neasuresDimextract()
.join(nmeasuresDi m
.join(quarterLevel)
. j oi nHi dden(prodSel);

A cursor for the movi ngTot al Resul t Sour ce has the following values, displayed in a table
with column headings and formatting added. The left column has the quarter, the
middle column has the total of the unit prices for the members of the Desktop PC
family for that quarter, and the left column has the total of the unit prices for that
guarter and the next three quarters. The table includes only the first eight quarters.

Unit Price Mving Total

Quarter Unit Price Current Plus Next Three Periods
CALENDAR_YEAR: : QUARTER : CY1998. QL 2687. 54 10653. 05
CALENDAR_YEAR: : QUARTER : CY1998. 2 2704. 48 10360. 30
CALENDAR_YEAR: : QUARTER : CY1998. (B 2673. 27 9993. 00
CALENDAR_YEAR: : QUARTER : CY1998. (4 2587.76 9668. 12
CALENDAR_YEAR: : QUARTER : CY1999. (1 2394.79 9258. 25
CALENDAR_YEAR: : QUARTER : CY1999. @2 2337.18 8911. 87
CALENDAR_YEAR: : QUARTER : CY1999. B 2348. 39 8626. 48

CALENDAR_YEAR: : QUARTER: : CY1999. (4 2177.89 8291. 37

Selecting a Set of Elements Using Parameterized Source Objects

ORACLE

Example 6-15 uses Nunber Par anet er objects to create parameterized Sour ce objects.
Those objects are the bott omand t op parameters for the i nt erval method of prodHi er .
That method returns par anPr odSel | nt erval , which is a Sour ce that specifies the set of
elements of prodHi er from the bot t omto the t op positions of the hierarchy.

The elements of the product Sour ce specify the elements of the uni t s measure that
appear in the resul t Sour ce. By changing the values of the Par anet er objects, you can
select a different set of units sold values using the same Cursor and without having to
produce new Sour ce and Cur sor objects.

The example uses the following objects.

e dp, which is the Dat aProvi der for the session.

e prodHi er, which is the Sour ce for the PRODUCT_PRIMARY hierarchy of the
PRODUCT_AWJ dimension.

e prodShort Descr, which is the Sour ce for the short value description attribute of the
PRODUCT_AWJ dimension.

* units, which is the Sour ce for the UNITS measure of product units sold.

e chanHi er, which is the Sour ce for the CHANNEL_PRIMARY hierarchy of the
CHANNEL_AWJ dimension.

e cal H er, which is the Sour ce for the CALENDAR_YEAR hierarchy of the
TIME_AWJ dimension.

6-23

ORACLE

Chapter 6
Using Other Source Methods

e shipHier, which is the Sour ce for the SHIPMENTS hierarchy of the
CUSTOMER_AWJ dimension.

e The Context 11g object that is returned by the get Cont ext method. The Cont ext 11g
has methods that commit the current Transacti on, that create a Cursor for a Sour ce,
that display text, and that display the values of the Cursor.

The j oi n method of prodShort Descr gets the short value descriptions for the elements
of par anPr odSel I nterval . The next four j oi n methods match Sour ce objects with the
inputs of the uni ts measure. The example creates a Cursor and displays the result set
of the query. Next, the set Posi ti on method of resul t Cursor sets the position of the
Cursor back to the first element.

The set Val ue methods of the Nurmber Par anet er objects change the values of those
objects, which changes the selection of elements of the product Sour ce that are
specified by the query. The example then displays the values of the Cursor again.

Example 6-15 Selecting a Range With NumberParameter Objects

Number Par amet er startParam = new Nunber Paraneter (dp, 1);
Number Par amet er endPar am = new Nunber Par anet er (dp, 6);

Number Sour ce startParanfrc = (Nunber Sour ce) st art Param cr eat eSour ce() ;
Number Sour ce endPar anrc = (Nunber Sour ce) endPar am cr eat eSour ce() ;

Sour ce paranProdSel Interval =
prodHi er.interval (startParanfrc, endParanfrc);
Sour ce paranProdSel | nt erval Short Descr =
prodShort Descr. j oi n(paranProdSel I nterval);

Number Source result =
(Nunber Source)units.join
.join
.join
.join

chanHi er, "CHANNEL_PRI MARY: : CHANNEL: : I NT")
cal H er, "CALENDAR YEAR: : YEAR : CY2001")

shi pHi er, "SH PMENTS: : TOTAL_CUSTOMER: : TOTAL")
par anPr odSel | nt er val Short Descr);

P

[/l Commit the current transaction.
get Context().comit();

Cursor Manager cursorMhgr = dp. creat eCur sor Manager (result);
Cursor resul tCursor = cursorMhgr.createCursor();

get Cont ext (). di spl ayCursor(resul t Cursor);

/I Reset the Cursor position to 1.
resul t Cursor. set Position(1);

/1 Change the value of the paraneterized Source.
startParam set Val ue(7);
endPar am set Val ue(12);

[/ Display the results again.
get Cont ext (). di spl ayCursor (resul t sCursor);

The following table displays the values of resul t Cur sor, with column headings and
formatting added. The left column has the product hierarchy members, the middle
column has the short value description, and the right column has the quantity of units
sold.

Product Descri ption Units Sold

6-24

Chapter 6
Using Other Source Methods

PRODUCT_PRI MARY: : TOTAL_PRODUCT: : TOTAL Total Product 55, 872
PRODUCT _PRI MARY: : CLASS: : HRD Har dwar e 21, 301
PRODUCT_PRI MARY: : FAM LY: : DI SK Menory 6, 634
PRODUCT_PRI MARY: : | TEM : EXT CD ROM External 48X CD- ROM 136
PRODUCT_PRI MARY: : | TEM : EXT DVD External - DVD-RW- 8X 1,526
PRODUCT_PRI MARY: : | TEM : I NT 8X DVD Internal - DVD-RW- 8X 1,543
Product Description Units Sold
PRODUCT_PRI MARY: : | TEM : I NT CD ROM I nternal 48X CD-ROM 380
PRODUCT_PRI MARY: : | TEM : I NT CD USB I nternal 48X CD- ROM USB 162
PRODUCT_PRI MARY: : | TEM : | NT RW DVD Internal - DVD-RW- 6X 2,887
PRODUCT_PRI MARY: : FAM LY: : DTPC Deskt op PCs 2,982
PRODUCT_PRI MARY: : | TEM : SENT FI N Sentinel Financial 1,015
PRODUCT_PRI MARY: : | TEM : SENT MM Sentinel Miltinmedia 875

ORACLE 6-25

Using a TransactionProvider

This chapter describes the Oracle OLAP Java API Transaction and

Transact i onProvi der interfaces and describes how you use implementations of those
interfaces in an application. You get a Transact i onProvi der from a Dat aPr ovi der. You
use the commi t Current Transacti on method of the Transacti onProvi der to save a
metadata object in persistent storage in the database. You also use that method after
creating a derived Sour ce and before creating a Cursor for the Sour ce. For examples of
committing a Transact i on after creating a metadata object, see Creating Metadata and
Analytic Workspaces.

This chapter includes the following topics:

» About Creating a Metadata Object or a Query in a Transaction

» Using TransactionProvider Objects

About Creating a Metadata Object or a Query in a
Transaction

ORACLE

The Oracle OLAP Java APl is transactional. Creating metadata objects or Sour ce
objects for a query occurs in the context of a Transact i on. A Transact i onProvi der
provides Transact i on objects to the application and commits or discards those
Transact i on objects.

The Transacti onProvi der ensures the following:

e ATransaction is isolated from other Transact i on objects. Operations performed in
a Transacti on are not visible in, and do not affect, other Transact i on objects.

e If an operation in a Transacti on fails, then the effects of the operation are undone
(the Transacti on is rolled back).

e The effects of a completed Transact i on persist.

When you create a Dat aProvi der and User Sessi on, the session does not at first have a
Transact i on. The first Transacti on in a session is a root Transact i on. You can explicitly
create a root Transact i on by calling the cr eat eRoot Transact i on method of the
Transacti onProvi der. If you do not explicitly created one, then Oracle OLAP
automatically creates a root Transact i on the first time that you create or modify an
Min(bj ect or a derived Sour ce. To make permanent the changes to an Mintbj ect , you
must commit the root Transact i on in which you made the changes.

A single-user application does not need to explicitly create a root Transacti on. The
ability to create multiple root Transact i on objects is provided for use by multithreaded,
middle-tier applications. If your application uses multiple root Transact i on objects, the
changes that the application makes in one root Transacti on can be overwritten by
changes the application makes in another root Transacti on. The changes that occur in
the last root Transact i on that the application commits are the changes that persist.

7-1

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

When you or Oracle OLAP creates the initial root Transacti on, it is the current
Transact i on. If you create another root Transact i on, it becomes the current Transact i on.

Oracle OLAP creates other Transact i on objects as you create Sour ce objects or child
Transact i on objects under a root Transacti on. You must commit the root Transacti on for
the Oracle Database to add to persistent storage any metadata objects that you have
created in any Transacti on in the session.

When you create a derived Sour ce by calling a method of another Sour ce, the derived
Sour ce is created in the context of the current Transacti on. The Sour ce is active in the
Transact i on in which you create it or in a child Transact i on of that Transacti on.

You get or set the current Transact i on, or begin a child Transact i on, by calling methods
of a Transact i onProvi der. In a child Transacti on you can alter a query, for example by
changing the selection of dimension elements or by performing a different
mathematical or analytical operation on the data, which changes the state of a

Tenpl at e that you created in the parent Transact i on. By displaying the data specified by
the Sour ce produced by the Tenpl at e in the parent Transact i on and also displaying the
data specified by the Sour ce produced by the Tenpl at e in the child Transacti on, you can
provide the end user of your application with the means of easily altering a query and
viewing the results of different operations on the same set of data, or the same
operations on different sets of data.

Types of Transaction Objects

The OLAP Java API has the following two types of Transacti on objects:

e Aread Transacti on. Initially, the current Transacti on is a read Transacti on. A read
Transact i on is required for creating a Cursor to fetch data from Oracle OLAP. For
more information on Cur sor objects, see Retrieving Query Results.

e A write Transaction. A write Transact i on is required for creating a derived Sour ce or
for changing the state of a Tenpl at e. For more information on creating a derived
Sour ce, see Understanding Source Objects. For information on Tenpl at e objects,
see Creating Dynamic Queries.

In the initial read Transacti on, if you create a derived Sour ce or if you change the state
of a Tenpl at e object, then a child write Transact i on is automatically generated. That
child Transacti on becomes the current Transacti on.

If you then create another derived Sour ce or change the Tenpl at e state again, then that
operation occurs in the same write Transacti on. You can create any number of derived
Sour ce objects, or make any number of Tenpl at e state changes, in that same write
Transact i on. You can use those Sour ce objects, or the Sour ce produced by the Tenpl at e,
to define a complex query.

Before you can create a Cursor to fetch the result set specified by a derived Sour ce,
you must move the Sour ce from the child write Transacti on into the parent read
Transacti on. To do so, you commit the Transacti on.

Committing a Transaction

ORACLE

To move a Sour ce that you created in a child Transacti on into the parent read
Transacti on, call the commi t Current Transacti on method of the Transact i onPr ovi der.
When you commit a child write Transacti on, & Sour ce you created in the child

Transact i on moves into the parent read Transacti on. The child Transacti on disappears

7-2

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

and the parent Transact i on becomes the current Transacti on. The Source is active in
the current read Transacti on and you can therefore create a Cursor for it.

Example 7-1 Committing the Current Transaction

In this example, comi t () is a method that commits the current Transact i on. In the
example, dp is the Dat aProvi der .

private void comrt()
{
try
{
(dp. get Transacti onProvi der()).conmt Current Transaction();
1
catch (Exception ex)
{
Systemout.printIn("Could not conmit the Transaction. " + ex);
1
}

About Transaction and Template Objects

Getting and setting the current Transact i on, beginning a child Transacti on, and rolling
back a Transacti on are operations that you use to allow an end user to make different
selections starting from a given state of a dynamic query.

To present the end user with alternatives based on the same initial query, you do the
following:

1. Create a Tenpl at e in a parent Transact i on and set the initial state for the Tenpl at e.

2. Get the Source produced by the Tenpl at e, create a Cursor to retrieve the result set,
get the values from the Cur sor, and then display the results to the end user.

3. Begin a child Transacti on and modify the state of the Tenpl ate.

4. Get the Source produced by the Tenpl at e in the child Transacti on, create a Cursor,
get the values, and display them.

You can then replace the first Tenpl at e state with the second one or discard the
second one and retain the first.

Beginning a Child Transaction

ORACLE

To begin a child read Transact i on, call the begi nSubt ransacti on method of the
Transact i onProvi der you are using. In the child read Transacti on, if you change the
state of a Tenpl at e, then a child write Transact i on begins automatically. The write
Transaction is a child of the child read Transact i on.

To get the data specified by the Sour ce produced by the Tenpl at e, you commit the write
Transact i on into the parent read Transacti on. You can then create a Cursor to fetch the
data. The changed state of the Tenpl at e is not visible in the original parent. The
changed state does not become visible in the parent until you commit the child read
Transact i on into the parent read Transacti on.

After beginning a child read Transacti on, you can begin a child read Transact i on of that
child, or a grandchild of the initial parent Transacti on. For an example of creating child
and grandchild Transacti on objects, see Example 7-3.

7-3

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

About Rolling Back a Transaction

ORACLE

You roll back, or undo, a Transacti on by calling the rol | backCurrent Transact i on method
of the Transact i onProvi der you are using. Rolling back a Transacti on discards any
changes that you made during that Transacti on and makes the Transacti on disappear.

Before rolling back a Transacti on, you must close any Cur sor Manager objects you
created in that Transact i on. After rolling back a Transacti on, any Sour ce objects that
you created or Tenpl at e state changes that you made in the Transacti on are no longer
valid. Any Cursor objects you created for those Sour ce objects are also invalid.

Once you roll back a Transacti on, you cannot commit that Transact i on. Likewise, once
you commit a Transact i on, you cannot roll it back.

Example 7-2 Rolling Back a Transaction

This example uses the TopBot t onTenpl at e and Si ngl eSel ecti onTenpl at e classes that are
described in Creating Dynamic Queries. In creating the TopBot t oniTenpl at e and

Si ngl eSel ecti onTenpl at e objects, the example uses the same code that appears in
Example 10-4. This example does not show that code. It sets the state of the

TopBot t onTenpl at e. It begins a child Transact i on that sets a different state for the

TopBot t oniTenpl at e and then rolls back the child Transacti on. The print|n method
displays text through a Cursor Print Wit er object and the get Cont ext method gets a

Cont ext 11g object that has methods that create Cursor objects and display their values
through the CursorPrintWiter. The CursorPrintWiter and Cont ext 11g classes are used
by the example programs in this documentation.

[l The current Transaction is a read Transaction, t1.

/] Create a TopBottonienpl ate using a hierarchy of the PRODUCT_AW di nension
/] as the base and dp as the DataProvider.

TopBot t onffenpl at e t opNBott om = new TopBot t onifenpl at e(prodH er, dp);

/1 Changing the state of a Tenplate requires a wite Transaction, so a
[/ wite child Transaction, t2, is automatically started.

t opNBot t om set TopBot t onType(TopBot t oniTenpl at e. TOP_BOTTOM TYPE_TOP) ;

t opNBot t om set N(10) ;

topNBott om set Criterion(singleSel ections. getSource());

/] Get the TransactionProvider and commit the Transaction t2.
Transacti onProvider tp = dp.get TransactionProvider();

try
{

}
cat ch(Exception e)
{

}

tp. commit Current Transaction(); /] t2 disappears

println("Cannot conmit the Transaction. " + e);

[/ The current Transaction is now t1.
/] Get the dynam ¢ Source produced by the TopBottonilenpl at e.
Source result = topNBottom get Source();

I/ Create a Cursor and display the results

println("\nThe current state of the TopBottonTenplate" +
"\'nproduces the foll owing val ues:\n");

get Context (). di spl ayTopBot t onResul t (resul t);

7-4

ORACLE

Chapter 7
About Creating a Metadata Object or a Query in a Transaction

It is a read Transaction.
/1 t3 is the current Transaction

/I Start a child Transaction, t3.
t p. begi nSubt ransaction();

/1 Change the state of topNBottom Changing the state requires a

/1 wite Transaction so Transaction t4 starts automatically.

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTOM ;
t opNBot t om set N(15) ;

/I Commit the Transaction.
try
{

tp. comit Current Transaction();

}
cat ch(Exception e)

{

println("Cannot commit the Transaction. " + e);

}

/] t4 disappears

/] Create a Cursor and display the results. // t3 is the current Transaction
printIn("\nln the child Transaction, the state of the" +
"\ nTopBot t onTenpl at e produces the fol owing val ues:\n");
get Context (). di spl ayTopBot t onResul t (resul t);
/1 The displayTopBottonResult nethod cl oses the CursorManager for the
/1 Cursor created in t3.

/1 Undo t3, which discards the state of topNBottomthat was set in t4.
tp.rol I backCurrent Transaction(); /1 t3 disappears

/I Transaction t1 is now the current Transaction and the state of
/1 topNBottomis the one defined in t2.

/1 To show the current state of the TopNBottomtenplate Source, comit
/1 the Transaction, create a Cursor, and display the Cursor val ues.
try
{
tp. comit Current Transaction();
}
cat ch(Exception e)
{
println("Cannot commit the Transaction. " + e);

}

printin("\nAfter rolling back the child Transaction, the state of"
+ "\'nthe TopBottonilenpl ate produces the follow ng val ues:\n");
get Context (). di spl ayTopBot t onResul t (resul t);

The example produces the following output.

The current state of the TopBottonienpl ate
produces the fol | owi ng val ues:

PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: : FAM LY: : OS
PRODUCT_PRI MARY: : FAM LY: : DI SK
PRODUCT_PRI MARY: : | TEM : MOUSE PAD
PRODUCT_PRI MARY: : I TEM : S 1 USER
PRODUCT_PRI MARY: : | TEM : DLX MOUSE

TOTAL_PRCDUCT: : TOTAL
CLASS: : SFT

FAM LY: : ACC

CLASS: : HRD

FAMLY: : MDD

SComNoOUI A WNE

[EEN

7-5

Chapter 7
Using TransactionProvider Objects

In the child Transaction, the state of the
TopBot t onffenpl at e produces the fol |l owing val ues:

1. PRODUCT_PRI MARY:: | TEM : EXT CD ROM
2. PRODUCT_PRI MARY: : I TEM : OS DCC | TA
3. PRODUCT_PRI MARY: : I TEM : S DOC SPA
4. PRODUCT_PRI MARY: : I TEM : INT CD USB
5. PRCDUCT_PRI MARY: : | TEM : ENVY EXT KBD
6. PRODUCT_PRI MARY: : I TEM : 19 SVGA
7. PRODUCT_PRI MARY: : I TEM : OS DOC FRE
8. PRODUCT_PRI MARY: : I TEM : S DOC GER
9. PRCDUCT_PRI MARY: : | TEM : ENVY ABM
10. PRCDUCT_PRI MARY: : I TEM : I NT CD ROM
11. PRODUCT_PRI MARY: : | TEM : ENVY EXE
12. PRODUCT_PRI MARY: : I TEM : OS DOC KAN
13. PRCDUCT_PRI MARY: : | TEM : ENVY STD
14. PRCDUCT_PRI MARY: : | TEM : 1GB USB DRV
15. PRCDUCT_PRI MARY: : | TEM : SENT MM

After rolling back the child Transaction, the state of
the TopBottonlenpl ate produces the follow ng val ues:

PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: :
PRODUCT_PRI MARY: : FAM LY. : CS
PRODUCT_PRI MARY: : FAM LY: : DI SK
PRODUCT_PRI MARY: : | TEM : MOUSE PAD
PRODUCT_PRI MARY: : I TEM : OS 1 USER
PRODUCT_PRI MARY: : | TEM : DLX MOUSE

TOTAL_PRCDUCT: : TOTAL
CLASS: : SFT

FAMLY: : ACC

CLASS: : HRD

FAM LY: : MOD

COONIAR~LNE

[y

Getting and Setting the Current Transaction

You get the current Transact i on by calling the get Current Transact i on method of the
Transact i onProvi der you are using, as in the following example.

Transaction t1 = tp.getCurrent Transaction();

To make a previously saved Transact i on the current Transacti on, you call the
set Current Transact i on method of the Transact i onProvi der, as in the following example.

tp.setCurrent Transaction(tl);

Using TransactionProvider Objects

ORACLE

In the Oracle OLAP Java API, a Dat aProvi der provides an implementation of the
Transact i onProvi der interface. The Transacti onProvi der provides Transacti on objects to
your application.

As described in "Committing a Transaction", you use the commi t Curr ent Tr ansact i on
method to make a derived Sour ce that you created in a child write Transacti on visible in
the parent read Transacti on. You can then create a Cursor for that Sour ce.

If you are using Tenpl at e objects in your application, then you might also use the other
methods of Transacti onProvi der to do the following:

7-6

ORACLE

Chapter 7
Using TransactionProvider Objects

* Begin a child Transacti on.
e Getthe current Transacti on SO you can save it.
* Set the current Transacti on to a previously saved one.

e Rollback, or undo, the current Transacti on, which discards any changes made in
the Transacti on. Once a Transacti on has been rolled back, it is invalid and cannot
be committed. Once a Transact i on has been committed, it cannot be rolled back. If
you created a Cursor for a Sour ce in a Transacti on, then you must close the
Cur sor Manager before rolling back the Transacti on.

Example 7-3 demonstrates the use of Transacti on objects to modify dynamic queries.
Like Example 7-2, this example uses the same code to create TopBot t onifenpl at e and
Si ngl eSel ecti onTenpl at e objects as does Example 10-4. This example does not show
that code.

To help track the Transact i on objects, this example saves the different Transacti on
objects with calls to the get Current Transact i on method. In the example, the t p object is
the Transacti onProvi der. The print| n method displays text through a CursorPrint Wi ter
and the get Cont ext method gets a Cont ext 11g object that has methods that create
Cursor objects and display their values through the CursorPrintWiter. The commit
method is the method from Example 7-1.

Example 7-3 Using Child Transaction Objects

/1 The parent Transaction is the current Transaction at this point.
/1 Save the parent read Transaction as parentT1.
Transaction parentT1 = tp.getCurrent Transaction();

/] Get the dynami ¢ Source produced by the TopBottonilenpl at e.
Source result = topNBottom get Source();

/] Create a Cursor and display the results.

printin("\nThe current state of the TopBottonienpl ate" +
"\'nproduces the foll owing val ues:\n");

get Context (). di spl ayTopBot t onResul t (resul t);

/1 Begin a child Transaction of parentT1.
tp. begi nSubtransaction(); // This is a read Transaction.

/1 Save the child read Transaction as childT2.
Transaction childT2 = tp. getCurrent Transaction();

/1 Change the state of the TopBottonTenplate. This starts a

/1 wite Transaction, a child of the read Transaction childT2.

t opNBot t om set N(12) ;

t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTOM ;

/] Save the child wite Transaction as writeT3.
Transaction witeT3 = tp.getCurrentTransaction();

/1 Commit the wite Transaction witeT3.

comrt();

/1 The commt noves the changes made in witeT3 into its parent,
/1 the read Transaction childT2. The witeT3 Transaction

/| disappears. The current Transaction is now childT2

/] again but the state of the TopBottonTenpl ate has changed.

/] Create a Cursor and display the results of the changes to the

7-7

ORACLE

Chapter 7
Using TransactionProvider Objects

/] TopBottonienpl ate that are visible in childT2.
try
{

printIn("\nln the child Transaction, the state of the" +
"\ nTopBot t onTenpl at e produces the fol | owing val ues:\n");

get Context (). di spl ayTopBottonResul t (resul t);
}
cat ch(Exception e)
{
println("Cannot display the results of the query. " + ¢e);

}

/] Begin a grandchild Transaction of the initial parent.
t p. begi nSubt ransaction(); // This is a read Transaction.

/1 Save the grandchild read Transaction as grandchil dT4.
Transaction grandchildT4 = tp.getCurrent Transaction();

/1 Change the state of the TopBottonTenplate. This starts another
/1 wite Transaction, a child of grandchildT4.
t opNBot t om set TopBot t onType(TopBot t oniTenpl at e. TOP_BOTTOM TYPE_TOP) ;

/1 Save the wite Transaction as writeT5.
Transaction witeT5 = tp.getCurrent Transaction();

/1 Commit writeT5.
commit();

/1 Transaction grandchildT4 is now the current Transaction and the
/1 changes made to the TopBottonienpl ate state are visible.

/] Create a Cursor and display the results visible in grandchildT4.
try
{

printIn("\nln the grandchild Transaction, the state of the" +
"\ nTopBot t onTenpl at e produces the fol | owing val ues:\n");
get Context (). di spl ayTopBottonResul t (resul t);

cat ch(Exception e)

{
println(""Cannot display the results of the query. " + e);
}
/1 Commit the grandchild into the child.
commit();

/1 Transaction childT2 is now the current Transaction.

/1 Instead of preparing and committing the grandchild Transaction,
/'l you could rollback the Transaction, as in the follow ng

/1 method call:

Il rollbackCurrentTransaction();

/1 1f you roll back the grandchild Transaction, then the changes
/1 you made to the TopBottonienplate state in the grandchild

/1 are discarded and childT2 is the current Transaction.

/1 Commit the child into the parent.
commit();

/1 Transaction parentTl is now the current Transaction. Again,
/1 you can roll back the childT2 Transaction instead of committing it.

7-8

ORACLE

1
1
1
1

If you do so, then the changes that you made in childT2 are discarded.
The current Transaction is be parentTl, which has the original state
of the TopBottonTenplate, without any of the changes nade in the

grandchild or the

child transactions.

Example 7-3 produces the following output.

The current state of the TopBottonienpl ate
produces the fol l owing val ues:

[EEN

CLoOoNoARWNE

PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :

TOTAL_PRCDUCT: : TOTAL
CLASS: : SFT

FAM LY: : ACC

CLASS: : HRD

FAM LY: : MOD

FAMLY: : CS

FAMLY: : DI SK

| TEM : MOUSE PAD
ITEM:0S 1 USER

| TEM : DLX MOUSE

In the child Transaction, the state of the

TopBot t onffenpl at e produces the fol |l owing val ues:

NN E

©

10.
11.
12.

PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :

| TEM : EXT CD ROM
I TEM:0S DOC I TA
| TEM : OS DOC SPA
I TEM : INT CD USB
| TEM : ENVY EXT KBD
I TEM : 19 SV

| TEM : OS DOC FRE
| TEM : 0S DOC GER
| TEM : ENVY ABM

I TEM :INT CD ROM
| TEM : ENVY EXE

| TEM : OS DOC KAN

In the grandchild Transaction, the state of the

TopBot t onffenpl at e produces the fol |l owing val ues:

NN E

[l
M= oo

PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :
PRCDUCT_PRI MARY: :

TOTAL_PRCDUCT: : TOTAL
CLASS: : SFT

FAM LY: : ACC

CLASS: : HRD

FAM LY: : MOD
FAMLY: : CS

FAMLY: : DI SK

| TEM : MOUSE PAD
ITEM:0S 1 USER

| TEM : DLX MOUSE

| TEM : LT CASE

| TEM : 56KPS MODEM

Chapter 7
Using TransactionProvider Objects

7-9

Understanding Cursor Classes and
Concepts

This chapter describes the Oracle OLAP Java API Cursor class and the related classes
that you use to retrieve the results of a query. This chapter also describes the Cur sor
concepts of position, fetch size, and extent. For examples of creating and using a
Cursor and its related objects, see Retrieving Query Results.

This chapter includes the following topics:

e Overview of the OLAP Java API Cursor Objects
* Cursor Classes

e CursorinfoSpecification Classes

e CursorManager Class

* About Cursor Positions and Extent

* About Fetch Sizes

Overview of the OLAP Java API Cursor Objects

A Cursor retrieves the result set specified by a Sour ce. You create a Cursor by calling
the creat eCur sor method of a Cur sor Manager . You create a Cur sor Manager by calling the
cr eat eCur sor Manager method of a Dat aPr ovi der .

You can get the SQL generated for a Sour ce by the Oracle OLAP SQL generator
without having to create a Cursor. To get the SQL for the Sour ce, you create an

SQLCur sor Manager by using a creat eSQLCur sor Manager method of a Dat aProvi der. You can
then use classes outside of the OLAP Java API, or other methods, to retrieve data
using the generated SQL.

Creating a Cursor

You create a Cursor for a Sour ce by doing the following:

1. Creating a Cur sor Manager by calling one of the cr eat eCur sor Manager methods of the
Dat aProvi der and passing it the Sour ce. If you want to alter the behavior of the
Cur sor, then you can create a Cur sor | nf oSpeci fi cati on and use the methods of it to
specify the behavior. You then create a Cur sor Manager with a method that takes the
Sour ce and the Cursor I nf oSpeci fi cati on.

2. Creating a Cursor by calling the creat eCur sor method of the Cur sor Manager .

Sources For Which You Cannot Create a Cursor

Some Sour ce objects do not specify data that a Cursor can retrieve from the data store.
The following are Sour ce objects for which you cannot create a Cur sor that contains
values.

ORACLE 8-1

Chapter 8
Cursor Classes

* A Sour ce that specifies an operation that is not computationally possible. An
example is a Sour ce that specifies an infinite recursion.

* A Source that defines an infinite result set. An example is the fundamental Sour ce
that represents the set of all String objects.

* A Source that has no elements or includes another Sour ce that has no elements.
Examples are a Sour ce returned by the get Enpt ySour ce method of Dat aPr ovi der and
another Sour ce derived from the empty Sour ce. Another example is a derived Sour ce
that results from selecting a value from a primary Sour ce that you got from an
minDi mensi on and the selected value does not exist in the dimension.

If you create a Cursor for such a Sour ce and try to get the values of the Cursor, then an
Excepti on occurs.

Cursor Objects and Transaction Objects

When you create a derived Sour ce or change the state of a Tenpl at e, you create the
Sour ce in the context of the current Transacti on. The Sour ce is active in the Transacti on
in which you create it or in a child Transacti on of that Transacti on. A Source must be
active in the current Transacti on for you to be able to create a Cursor for it.

Creating a derived Sour ce occurs in a write Transact i on. Creating a Cursor occurs in a
read Transact i on. After creating a derived Sour ce, and before you can create a Cur sor
for that Sour ce, you must change the write Transacti on into a read Transacti on by
calling the conmi t Current Transact i on methods of the Transact i onProvi der your
application is using. For information on Transacti on and Transact i onProvi der objects,
see Using a TransactionProvider.

For a Cursor that you create for a query that includes a parameterized Sour ce, you can
change the value of the Par anet er object and then get the new values of the Cur sor
without having to commit the Transact i on again. For information on parameterized
Sour ce objects, see Understanding Source Objects.

Cursor Classes

In the oracl e. ol api . dat a. cursor package, the Oracle OLAP Java API defines the
interfaces described in the following table.

Interface Description

Cur sor An abstract superclass that encapsulates the notion of a current
position.

Val ueCur sor A Cursor that has a value at the current position. A Val ueCur sor

has no child Cur sor objects.

CompoundCur sor A Cursor that has child Cur sor objects, which are a child
Val ueCur sor for the values of the Sour ce associated with it and an
output child Cur sor for each output of the Sour ce.

Structure of a Cursor

The structure of a Cursor mirrors the structure of the Sour ce associated with it. If the
Sour ce does not have any outputs, then the Cursor for that Sour ce is a val ueCursor. If
the Sour ce has one or more outputs, then the Cursor for that Sour ce is a ConpoundCur sor .

ORACLE 8-2

ORACLE

Chapter 8
Cursor Classes

A ConpoundCur sor has as children a base Val ueCur sor, which has the values of the base
of the Sour ce of the ConpoundCur sor, and one or more output Cur sor objects.

The output of a Sour ce is another Sour ce. An output Sour ce can itself have outputs. The
child cursor for an output of a Sour ce is a Val ueCur sor if the output Sour ce does not have
any outputs and a ConpoundCur sor if it does.

Example 8-1 creates a query that specifies the prices of selected product items for
selected months. In the example, ti meHi er is a Sour ce for a hierarchy of a dimension of
time values, and prodHi er is a Sour ce for a hierarchy of a dimension of product values.

If you create a Cursor for prodSel or fortineSel , then either Cursor is a Val ueCur sor
because both prodSel and tineSel have no outputs.

The uni t Pri ce object is a Sour ce for an MinBaseMeasur e that represents values for the
price of product units. The MinBaseMeasur e has as inputs the MinPri mar yDi mensi on
objects representing products and times, and the uni t Pri ce Sour ce has as inputs the
Sour ce objects for those dimensions.

The example selects elements of the dimension hierarchies and then joins the Sour ce
objects for the selections to that of the measure to produce quer ySour ce, which has
prodSel andtineSel as outputs.

Example 8-1 Creating the querySource Query

Source timeSel = timeHi er.selectValues(new String[]
{" CALENDAR_YEAR: : MONTH: : 2001. 01",
" CALENDAR_YEAR: : MONTH: : 2001. 04",
" CALENDAR_YEAR: : MONTH: : 2001. 07",
" CALENDAR_YEAR: : MONTH: : 2001. 10"});

Source prodSel = prodHier.sel ectVal ues(new String[]
{" PRODUCT_PRI MARY: : | TEM : ENVY ABM',
" PRODUCT_PRI MARY: : | TEM : ENVY EXE",
" PRODUCT_PRI MARY: : | TEM : ENVY STD'});

Source querySource = unitPrice.join(timeSel).join(prodSel);

The result set defined by quer ySour ce is the unit price values for the selected products
for the selected months. The results are organized by the outputs. Since ti meSel is
joined to the Sour ce produced by the unit Price. j oi n(prodSel) operation, ti meSel is the
slower varying output, which means that the result set specifies the set of selected
products for each selected time value. For each time value the result set has three
product values so the product values vary faster than the time values. The values of
the base Val ueCur sor of querySour ce are the fastest varying of all, because there is one
price value for each product for each day.

Example 9-1 in Retrieving Query Results, creates a Cursor, quer yCur sor, for

quer ySour ce. Since quer ySour ce has outputs, quer yCur sor is a ConpoundCur sor. The base
Val ueCur sor of queryCursor has values from uni t Pri ce, which is the base Sour ce of the
operation that created quer ySour ce. The values from uni t Pri ce are those specified by
the outputs. The outputs for queryCursor are a Val ueCur sor that has values from prodSel
and a Val ueCur sor that has values from ti neSel .

Figure 8-1 Structure of the queryCursor CompoundCursor
This figure illustrates the structure of queryCursor. The base Val ueCursor and the two

output Val ueCur sor objects are the children of queryCursor, which is the parent
ConpoundCur sor .

8-3

Chapter 8
Cursor Classes

queryCursor
CompoundCursor
Base
\L Output 1 Output 2 ¢ ValueCursor
ValueCursor for ValueCursor for ValueCursor for
timeSel prodSel querySource

The following table displays the values from queryCursor in a table. The left column has
time values, the middle column has product values, and the right column has the unit
price of the product for the month.

Month Product Price of Unit
2001.01 ENVY ABM 3042.22
2001.01 ENVY EXE 3223.28
2001.01 ENVY STD 3042.22
2001.04 ENVY ABM 2412.42
2001.04 ENVY EXE 3107.65
2001.04 ENVY STD 3026.12
2001.07 ENVY ABM 2505.57
2001.07 ENVY EXE 3155.91
2001.07 ENVY STD 2892.18
2001.10 ENVY ABM 2337.30
2001.10 ENVY EXE 3105.53
2001.10 ENVY STD 2856.86

For examples of getting the values from a Val ueCur sor, see Retrieving Query Results.

Specifying the Behavior of a Cursor

Cur sor Speci fi cati on objects specify some aspects of the behavior of their
corresponding Cursor objects. You must specify the behavior on a Cur sor Speci fi cati on
before creating the corresponding Cursor. To specify the behavior, use the following
Cur sor Speci fi cati on methods:

ORACLE

set Def aul t Fet chSi ze

set Ext ent Cal cul ati onSpecified

set Par ent EndCal cul ati onSpeci fi ed

set Parent Start Cal cul ati onSpeci fi ed

speci f yDef aul t Fet chSi zeOnChi | dren (for a ConpoundCur sor Speci fi cati on only)

A Cursor Speci fi cati on also has methods that you can use to discover if the behavior is
specified. Those methods are the following:

i sExt ent Cal cul ationSpecified

8-4

Chapter 8
CursorlnfoSpecification Classes

* isParentEndCal cul ationSpecified
° isParentStartCal cul ati onSpecified

If you have used the Cur sor Speci fi cati on methods to set the default fetch size, or to
calculate the extent or the starting or ending positions of a value in the parent of the
value, then you can successfully use the following Cur sor methods:

° getExtent

e getFetchSize

e getParentEnd

e getParentStart
* setFetchSize

For examples of specifying Cursor behavior, see Retrieving Query Results. For
information on fetch sizes, see "About Fetch Sizes". For information on the extent of a
Cursor, see "What is the Extent of a Cursor?". For information on the starting and
ending positions in a parent Cursor of the current value of a Cursor, see "About the
Parent Starting and Ending Positions in a Cursor".

CursorinfoSpecification Classes

ORACLE

The Cursorl nfoSpeci fi cati on interface and the subinterfaces

ConpoundCur sor I nf oSpeci fi cati on and Val ueCur sor | nf oSpeci fi cati on, specify methods
for the abstract Cur sor Speci fi cati on class and the concrete

ConpoundCur sor Speci fi cati on and Val ueCur sor Speci fi cati on classes. A

Cur sor Speci fi cati on specifies certain aspects of the behavior of the Cursor that
corresponds to it. You can create instances of classes that implement the

Cur sor | nf oSpeci fi cati on interface either directly or indirectly.

You can create a Cur sor Speci fi cati on for a Sour ce by calling the

creat eCursor | nf oSpeci fi cati on method of a Dat aPr ovi der . That method returns a
ConpoundCur sor Speci fi cation or a Val ueCur sor Speci fi cation. You can use the methods
of the Cursor Speci fi cati on to specify aspects of the behavior of a Cursor. You can then
use the Cursor Speci fi cati on in creating a Cur sor Manager by passing it as the

cursor | nf oSpec argument to the cr eat eCur sor Manager method of a Dat aPr ovi der .

With Cur sor Speci fi cati on methods, you can do the following:

* Get the Sour ce that corresponds to the Cur sor Speci fi cati on.

* Get or set the default fetch size for the corresponding Cur sor.

» Specify that Oracle OLAP should calculate the extent of a Cur sor.
» Determine whether calculating the extent is specified.

e Specify that Oracle OLAP should calculate the starting or ending position of the
current value of the corresponding Cur sor in the parent Cursor . If you know the
starting and ending positions of a value in the parent, then you can determine how
many faster varying elements the parent Cursor has for that value.

» Determine whether calculating the starting or ending position of the current value
of the corresponding Cur sor in the parent is specified.

e Accept a Cursor Speci ficationVisitor.

8-5

Chapter 8
CursorManager Class

For more information, see "About Cursor Positions and Extent" and "About Fetch
Sizes".

In the oracl e. ol api . dat a. sour ce package, the Oracle OLAP Java API defines the
classes described in the following table.

Interface Description

Cursor I nf oSpecification An interface that specifies methods for
Cur sor Speci fi cati on objects.

Cur sor Speci fication An abstract class that implements some
methods of the Cur sor | nf oSpeci fi cation
interface.

CompoundCur sor Speci fi cation A Cursor Speci fi cation for a Sour ce that has

one or more outputs. A
CompoundCur sor Speci fi cati on has component
child Cur sor Speci fi cati on objects.

Cormpoundl nf oCur sor Speci fi cation An interface that specifies methods for
ConpoundCur sor Speci fi cati on objects.

Val ueCur sor Speci fi cation A Cur sor Speci fi cati on for a Sour ce that has
values and no outputs.

Val ueCur sor | nf oSpeci fication An interface for Val ueCur sor Speci fi cation
objects.

A Cursor has the same structure as the Cur sor Speci fi cati on. Every

Val ueCur sor Speci fi cati on or ConmpoundCur sor Speci fi cati on has a corresponding

Val ueCur sor or ConpoundCur sor. To be able to get certain information or behavior from a
Cur sor, your application must specify that it wants that information or behavior by
calling methods of the corresponding Cur sor Speci f i cati on before it creates the Cursor.

CursorManager Class

With a Cur sor Manager , you can create a Cursor for a Sour ce. The class returned by one
of the creat eCur sor Manager methods of a Dat aPr ovi der manages the buffering of data
for the Cursor objects it creates.

You can create more than one Cursor from the same Cur sor Manager , which is useful for
displaying data from a result set in different formats such as a table or a graph. All of
the Cursor objects created by a Cur sor Manager have the same specifications, such as
the default fetch sizes. Because the Cursor objects have the same specifications, they
can share the data managed by the Cur sor Manager .

A SQ.Cur sor Manager has methods that return the SQL generated by the Oracle OLAP
SQL generator for a Sour ce. You create one or more SQLCur sor Manager objects by
calling the creat eSQLCur sor Manager Or cr eat eSQLCur sor Manager s methods of a

Dat aProvi der. You do not use a SQLCur sor Manager to create a Cursor. Instead, you use
the SQL returned by the SQLCur sor Manager with classes outside of the OLAP Java API,
or by other means, to retrieve the data specified by the query.

Updating the CursorinfoSpecification for a CursorManager

If your application is using OLAP Java API Tenpl at e objects and the state of a Tenpl ate
changes in a way that alters the structure of the Sour ce produced by the Tenpl at e, then

ORACLE 8-6

Chapter 8
About Cursor Positions and Extent

any Cur sor I nf oSpeci fi cati on objects for the Sour ce are no longer valid. You need to
create new Cur sor | nf oSpeci fi cati on objects for the changed Sour ce.

After creating a new Cur sor | nf oSpeci fi cati on, you can create a new Cur sor Manager for
the Sour ce. You do not, however, need to create a new Cur sor Manager . You can call the
updat eSpeci fi cati on method of the existing Cur sor Manager to replace the previous

Cur sor | nf oSpeci fi cati on with the new Cur sor | nf oSpeci fi cati on. You can then create a
new Cur sor from the Cur sor Manager .

About Cursor Positions and Extent

A Cursor has one or more positions. The current position of a Cur sor is the position that
is currently active in the Cursor. To move the current position of a Cursor call the
set Posi ti on or next methods of the Cursor.

Oracle OLAP does not validate the position that you set on the Cur sor until you attempt
an operation on the Cursor, such as calling the get Current Val ue method. If you set the
current position to a negative value or to a value that is greater than the number of
positions in the Cursor and then attempt a Cur sor operation, then the Cursor throws a
Posi t i onQut Of BoundsExcept i on.

The extent of a Cursor is described in "What is the Extent of a Cursor?".

Positions of a ValueCursor

ORACLE

The current position of a Val ueCur sor specifies a value, which you can retrieve. For
example, prodSel , a derived Sour ce described in "Structure of a Cursor”, is a selection
of three products from a primary Sour ce that specifies a dimension of products and
their hierarchical groupings. The Val ueCur sor for prodSel has three elements. The
following example gets the position of each element of the Vval ueCur sor, and displays
the value at that position.

[l prodSel Val Cursor is the ValueCursor for prodSel
println("Val ueCursor Position Value ");

Println("--eeeemmmmm e e "),
do
{

printlin(" " + prodSel Val Cursor. get Position() +

" + prodSel Val Cursor. get Current Val ue());
} whil e(prodSel Val Cursor. next());

The preceding example displays the following:

Val ueCur sor Position Val ue
1 PRCDUCT_PRI MARY: : | TEM : ENVY ABM
2 PRCDUCT_PRI MARY: : | TEM : ENVY EXE
3 PRCDUCT_PRI MARY: : | TEM : ENVY STD

The following example sets the current position of prodSel Val Cursor to 2 and retrieves
the value at that position.

prodSel Val Cur sor. set Posi tion(2);
println(prodSel Val Cursor.getCurrentString());

The preceding example displays the following:

PRODUCT_PRI MARY: : | TEM : ENVY EXE

8-7

Chapter 8
About Cursor Positions and Extent

For more examples of getting the current value of a Val ueCur sor, see Retrieving Query
Results.

Positions of a CompoundCursor

ORACLE

A ConpoundCur sor has one position for each set of the elements of the descendent
Val ueCur sor objects. The current position of the ConpoundCur sor specifies one of those
sets.

For example, quer ySour ce, the Sour ce created in Example 8-1, has values from a
measure, uni t Pri ce. The values are the prices of product units at different times. The
outputs of querySour ce are Sour ce objects that represent selections of four month
values from a time dimension and three product values from a product dimension.

The result set for quer ySour ce has one measure value for each tuple (each set of
output values), so the total number of values is twelve (one value for each of the three
products for each of the four months). Therefore, the quer yCur sor ConpoundCur sor
created for quer ySour ce has twelve positions.

Each position of quer yCur sor specifies one set of positions of the outputs and the base
Val ueCur sor . For example, position 1 of queryCursor defines the following set of
positions for the outputs and the base Val ueCur sor :

» Position 1 of output 1 (the Val ueCur sor for ti neSel)
e Position 1 of output 2 (the Val ueCur sor for prodSel)

» Position 1 of the base Val ueCursor for queryCursor (This position has the value from
the uni t Pri ce measure that is specified by the values of the outputs.)

Figure 8-2 Cursor Positions in queryCursor

This example illustrates the positions of quer yCur sor ConpoundCur sor, the base
Val ueCur sor, and the outputs.

8-8

ORACLE

Chapter 8
About Cursor Positions and Extent

queryCursor
CompoundCursor

Positions
Output 1 =1, Output 2 =1, VC
Output 1 =1, Output 2 =2, VC
Output 1 =1, Output 2 =3, VC
Output 1 =2, Output2 =1, VC
Output 1 =2, Output 2 =2, VC
Qutput 1 =2, Output 2 =3, VC
Output 1 =3, Output2 =1, VC
C
C
C
C
C

Qutput 1 =3, Output2=2, V
Output 1 =3, Output 2 =3, V
Output 1 = 4, Output 2 =1, VC=
Output 1 =4, Output2 =2, V
Output 1 =4, Output2 =3,V

| ; .

O©CoOoONOOPr~WN =

—_
)

1
1
1
1
1
1
1
1
1
1
1
1

re
N

v

Positions Positions Positions

1| 2001.01 1 | ENVY ABM 1| n

2| 2001.04 2 | ENVY EXE

3| 2001.07 3 | ENVY STD

4| 2001.10
Output 1 Output 2 Base ValueCursor

ValueCursor for ValueCursor for with specified values

timeSel prodSel from unitPrice

The Val ueCursor for queryCursor has only one position because only one value of

uni t Pri ce is specified by any one set of values of the outputs. For a query such as
quer ySour ce, the Val ueCur sor of the Cursor has only one value, and therefore only one
position, at a time for any one position of the root ConpoundCur sor .

Figure 8-3 Crosstab Display of queryCursor

This figure illustrates one possible display of the data from quer yCursor. It is a crosstab
view with four columns and five rows. In the left column are the month values. In the
top row are the product values. In each of the intersecting cells of the crosstab is the
price of the product for the month.

Product
Month | ENVY ABM | ENVY EXE | ENVY STD
2001.01 3042.22 3223.28 2426.07
2001.04 3026.12 3107.65 2412.42
2001.07 2892.18 3155.91 2505.57
2001.10 2892.18 3105.53 2337.30

A ConpoundCur sor coordinates the positions of the Val ueCur sor objects relative to each
other. The current position of the ConpoundCur sor specifies the current positions of the
descendent Val ueCur sor objects.

8-9

ORACLE

Chapter 8
About Cursor Positions and Extent

Example 8-2 Setting the CompoundCursor Position and Getting the Current
Values

This example sets the position of queryCur sor and then gets the current values and the
positions of the child Cur sor objects.

ConpoundCur sor root Cursor = (ConpoundCursor) queryCursor;

Val ueCur sor baseVal ueCursor = root Cursor. get Val ueCursor();

Li st outputs = rootCursor.get Qut puts();

Val ueCursor outputl = (Val ueCursor) outputs.get(0);

Val ueCursor output2 = (Val ueCursor) outputs.get(1);

int pos = 5;

root Cur sor. set Posi ti on(pos);

println("ConpoundCursor position set to " + pos + ".");

printin("The current position of the CompoundCursor is =" +
root Cursor.getPosition() + ".");

printin("Qutput 1 position =" + outputl.getPosition() +
", value =" + outputl. getCurrentValue());

printin("Qutput 2 position =" + output2.getPosition() +
", value =" + output2.getCurrentValue());

println("VC position =" + baseVal ueCursor.getPosition() +
", value =" + baseVal ueCursor.get CurrentVal ue());

This example displays the following:

ConpoundCur sor position set to 5.

The current position of the ConpoundCursor is 5.

Qutput 1 position = 2, value = CALENDAR_YEAR: : MONTH. : 2001. 04
Qutput 2 position = 2, value = PRODUCT_PRI MARY:: | TEM : ENVY EXE
VC position = 1, value = 3107. 65

The positions of quer yCur sor are symmetric in that the result set for quer ySour ce always
has three product values for each time value. The Val ueCursor for prodSel , therefore,
always has three positions for each value of the ti meSel Val ueCursor. The ti meSel
output Val ueCur sor is slower varying than the prodSel Val ueCursor .

In an asymmetric case, however, the number of positions in a Val ueCur sor is not
always the same relative to the slower varying output. For example, if the price of units
for product ENVY ABM for month 2001.10 were null because that product was no
longer being sold by that date, and if null values were suppressed in the query, then
queryCur sor would only have eleven positions. The Val ueCur sor for prodSel would only
have two positions when the position of the Val ueCursor for ti meSel was 4.

Example 8-3 demonstrates an asymmetric result set that is produced by selecting
elements of one dimension based on a comparison of measure values. The example
uses the same product and time selections as in Example 8-1. It uses a Sour ce for a
measure of product units sold, uni ts, that is dimensioned by product, time, sales
channels, and customer dimensions. The chanSel and cust Sel objects are selections of
single values of the dimensions. The example produces a Sour ce, quer ySour ce2, that
specifies which of the selected products sold more than one unit for the selected time,
channel, and customer values. Because querySour ce2 is a derived Sour ce, this example
commits the current Transact i on.

The example creates a Cursor for quer ySour ce2, loops through the positions of the
ConpoundCur sor, gets the position and current value of the first output val ueCur sor and
the Val ueCur sor of the CompoundCur sor, and displays the positions and values of the
Val ueCur sor objects. The get Local Val ue method is a method in the program that
extracts the local value from a unique value.

8-10

ORACLE

Chapter 8
About Cursor Positions and Extent

Example 8-3 Positions in an Asymmetric Query

Il Create the query
prodSel . join(chanSel).join(custSel).join(tinmeSel).select(units.gt(1));

/1 Commit the current Transaction.
try
{ [l The DataProvider is dp.
(dp. get Transact i onProvi der()).commt Current Transaction();

}
cat ch(Exception e)
{
output.println("Cannot conmit current Transaction " + e);
}

/1 Create the CursorManager and the Cursor.
Cur sor Manager cursor Manager = dp. creat eCur sor Manager (quer ySour ce2);
Cursor queryCursor2 = cursor Manager. creat eCursor();

CompoundCur sor root Cursor = (ConpoundCursor) queryCursor2;
Val ueCur sor baseVal ueCursor = root Cursor. get Val ueCursor();
Li st outputs = root Cursor.get Qut puts();

Val ueCursor outputl = (Val ueCursor) outputs.get(0);

/1 Get the positions and val ues and display them

println("ConpoundCursor CQutput Val ueCursor Val ueCursor");
println(" position position | value position | value");
do

{

println(sp6 + rootCursor.getPosition() + // sp6is 6 spaces
spl3 + outputl.getPosition() + /1 spl3 is 13 spaces
sp7 + getLocal Val ue(output1l.getCurrentString()) + //sp7 is 7 spaces
sp7 + baseVal ueCursor. getPosition() +
sp7 + getLocal Val ue(baseVal ueCursor. getCurrentString()));

}
whi | e(queryCursor2.next());

The example displays the following:

ConpoundCur sor Qut put Val ueCur sor Val ueCur sor
position position | value position | value
1 1 2001. 01 1 ENVY ABM
2 1 2001. 01 2 ENVY EXE
3 1 2001. 01 3 ENVY STD
4 2 2001. 04 1 ENVY ABM
5 3 2001. 07 1 ENVY ABM
6 3 2001. 07 2 ENVY EXE
7 4 2001. 10 1 ENVY EXE
8 4 2001. 10 2 ENVY STD

Because not every combination of product and time selections has unit sales greater
than 1 for the specified channel and customer selections, the number of elements of
the Vval ueCur sor for the values derived from prodSel is not the same for each value of
the output Val ueCur sor . For time value 2001.01, all three products have sales greater
than one, but for time value 2001.04, only one of the products does. The other two
time values, 2001.07 and 2001.10, have two products that meet the criteria. Therefore,
the Val ueCur sor for the ConpoundCur sor has three positions for time 2001.01, only one
position for time 2001.04, and two positions for times 2001.07 and 2001.10.

8-11

Chapter 8
About Cursor Positions and Extent

About the Parent Starting and Ending Positions in a Cursor

To effectively manage the display of the data that you get from a ConpoundCur sor, you
sometimes need to know how many faster varying values exist for the current slower
varying value. For example, suppose that you are displaying in a crosstab one row of
values from an edge of a cube, then you might want to know how many columns to
draw in the display for the row.

To determine how many faster varying values exist for the current value of a child

Cur sor, you find the starting and ending positions of that current value in the parent

Cur sor . Subtract the starting position from the ending position and then add 1, as in the
following.

I ong span = (cursor.getParentEnd() - cursor.getParentStart()) + 1;

The result is the span of the current value of the child Cursor in the parent Cur sor,
which tells you how many values of the fastest varying child Cursor exist for the current
value. Calculating the starting and ending positions is costly in time and computing
resources, so you should only specify that you want those calculations performed
when your application needs the information.

An Oracle OLAP Java API Cursor enables your application to have only the data that it
is currently displaying actually present on the client computer. For information on
specifying the amount of data for a Cursor, see "About Fetch Sizes".

From the data on the client computer, however, you cannot determine at what position
of the parent Cursor the current value of a child Cursor begins or ends. To get that
information, you use the get Parent Start and get Par ent End methods of a Cursor.

To specify that you want Oracle OLAP to calculate the starting and ending positions of
a value of a child Cursor in the parent Cursor, call the

set Parent Start Cal cul ati onSpeci fi ed and set Par ent EndCal cul at i onSpeci fi ed methods of
the Cursor Speci fi cati on corresponding to the Cursor. You can determine whether
calculating the starting or ending positions is specified by calling the

i sParent Start Cal cul ati onSpeci fied or i sParent EndCal cul ati onSpeci fi ed methods of the
Cur sor Speci fi cation. For an example of specifying these calculations, see Retrieving
Query Results.

What is the Extent of a Cursor?

ORACLE

The extent of a Cursor is the total number of elements it contains relative to any slower
varying outputs.

The extent is information that you can use, for example, to display the correct number
of columns or correctly-sized scroll bars. The extent, however, can be expensive to
calculate. For example, a Sour ce that represents a cube might have four outputs. Each
output might have hundreds of values. If all null values and zero values of the measure
for the sets of outputs are eliminated from the result set, then to calculate the extent of
the ConpoundCur sor for the Sour ce, Oracle OLAP must traverse the entire result space
before it creates the ConpoundCur sor . If you do not specify that you wants the extent
calculated, then Oracle OLAP only needs to traverse the sets of elements defined by
the outputs of the cube as specified by the fetch size of the Cursor and as needed by
your application.

8-12

Chapter 8
About Fetch Sizes

To specify that you want Oracle OLAP to calculate the extent for a Cursor, call the

set Ext ent Cal cul at i onSpeci fi ed method of the Cursor Speci fi cati on corresponding to the
Cursor. You can determine whether calculating the extent is specified by calling the

i sExtent Cal cul ati onSpeci fi ed method of the Cursor Speci fi cati on. For an example of
specifying the calculation of the extent of a Cursor, see Retrieving Query Results.

About Fetch Sizes

An OLAP Java API Cursor represents the entire result set for a Source. The Cursor is a
virtual Cur sor, however, because it retrieves only a portion of the result set at a time
from Oracle OLAP. A Cursor Manager manages a virtual Cur sor and retrieves results
from Oracle OLAP as your application needs them. By managing the virtual Cur sor, the
Cur sor Manager relieves your application of a substantial burden.

The amount of data that a Cur sor retrieves in a single fetch operation is determined by
the fetch size specified for the Cursor. You specify a fetch size to limit the amount of
data your application needs to cache on the local computer and to maximize the
efficiency of the fetch by customizing it to meet the needs of your method of displaying
the data.

You can also regulate the number of elements that Oracle OLAP returns by using
Par amet er and parameterized Sour ce objects in constructing your query. For more
information on Par anet er objects, see Understanding Source Objects. For examples of
using parameterized Sour ce objects, see Making Queries Using Source Methods.

When you create a Cur sor Manager for a Sour ce, Oracle OLAP specifies a default fetch
size on the root Cur sor Speci fi cati on. You can change the default fetch size with the
set Def aul t Fet chSi ze method of the root Cur sor Speci fi cati on.

You can create two or more Cursor objects from the same Cur sor Manager and use both
Cur sor objects simultaneously. Rather than having separate data caches, the Cursor
objects can share the data managed by the Cur sor Manager .

An example is an application that displays the results of a query to the user as both a
table and a graph. The application creates a Cur sor Manager for the Source. The
application creates two separate Cursor objects from the same Cur sor Manager , one for a
table view and one for a graph view. The two views share the same query and display
the same data, just in different formats.

Figure 8-4 A Source and Two Cursors for Different Views of the Values

This figure illustrates the relationship between the Sour ce, the Cur sor objects, and the
views.

ORACLE 8-13

ORACLE

Table View

1000's ——

Bar Graph View

tableView : View

tableCursor : Cursor

Chapter 8
About Fetch Sizes

graphView : View

graphCurs

or : Cursor

queryCM : CursorManager

querySource : Source

8-14

Retrieving Query Results

This chapter describes how to retrieve the results of a query with an Oracle OLAP
Java API Cursor and how to gain access to those results. This chapter also describes
how to customize the behavior of a Cursor to fit your method of displaying the results.
For information on the class hierarchies of Cursor and its related classes, and for
information on the Cursor concepts of position, fetch size, and extent, see
Understanding Cursor Classes and Concepts.

This chapter includes the following topics:

* Retrieving the Results of a Query

* Navigating a CompoundCursor for Different Displays of Data

* Specifying the Behavior of a Cursor

» Calculating Extent and Starting and Ending Positions of a Value

* Specifying a Fetch Size

Retrieving the Results of a Query

ORACLE

A query is an OLAP Java API Sour ce that specifies the data that you want to retrieve
from the data store and any calculations that you want Oracle OLAP to perform on the
data. A Cursor is the object that retrieves, or fetches, the result set specified by a

Sour ce. Creating a Cursor for a Sour ce involves the following steps:

1. Get a primary Sour ce from an Minbj ect or create a derived Sour ce through
operations on a Dat aProvi der or a Sour ce. For information on getting or creating
Sour ce objects, see Understanding Source Objects.

2. If the Source is a derived Sour ce, then commit the Transacti on in which you created
the Sour ce. To commit the Transacti on, call the conmi t Current Transact i on method
of your Transact i onProvi der. For more information on committing a Transacti on,
see Using a TransactionProvider. If the Sour ce is a primary Sour ce, then you do not
need to commit the Transacti on.

3. Create a Cursor Manager by calling a creat eCur sor Manager method of your
Dat aProvi der and passing that method the Sour ce.

4. Create a Cursor by calling the creat eCursor method of the Cur sor Manager .

Example 9-1 Creating a Cursor

This example creates a Cursor for the derived Sour ce named quer ySour ce. The example
uses a Dat aProvi der named dp. The example creates a Cur sor Manager named
cursor Mhgr and a Cursor named quer yCur sor .

Finally, the example closes the Cur sor Manager . When you have finished using the
Cur sor, you should close the Cursor Manager to free resources.

Cur sor Manager cursorMgr = dp. creat eCur sor Manager (quer ySour ce) ;
Cursor queryCursor = cursorhgr. createCursor();

9-1

Chapter 9
Retrieving the Results of a Query

/1 Use the Cursor in some way, such as to display the values of it.

cursor Mgr. cl ose();

Getting Values from a Cursor

ORACLE

The Cursor interface encapsulates the notion of a current position and has methods for
moving the current position. The Val ueCur sor and ConpoundCur sor interfaces extend the
Cursor interface. The Oracle OLAP Java API has implementations of the Val ueCur sor
and ConpoundCur sor interfaces. Calling the creat eCur sor method of a Cur sor Manager
returns either a Val ueCur sor or a ConpoundCur sor implementation, depending on the

Sour ce for which you are creating the Cursor.

A Val ueCur sor is returned for a Sour ce that has a single set of values. A Val ueCursor has
a value at its current position, and it has methods for getting the value at the current
position.

A ConpoundCur sor is created for a Sour ce that has more than one set of values, which is
a Sour ce that has one or more outputs. Each set of values of the Sour ce is represented
by a child val ueCur sor of the ConpoundCur sor . A ConpoundCur sor has methods for getting
its child Cursor objects.

The structure of the Sour ce determines the structure of the Cursor. A Sour ce can have
nested outputs, which occurs when one or more of the outputs of the Sour ce is itself a
Sour ce with outputs. If a Sour ce has a nested output, then the ConpoundCur sor for that
Sour ce has a child ConpoundCur sor for that nested output.

The ConmpoundCur sor coordinates the positions of the child Cursor objects that it
contains. The current position of the ConpoundCur sor specifies one set of positions of
the child Cursor objects.

For an example of a Sour ce that has only one level of output values, see Example 9-4.
For an example of a Sour ce that has nested output values, see Example 9-5.

An example of a Sour ce that represents a single set of values is one returned by the
get Sour ce method of an MinDi mensi on, such as an MinPri mar yDi mensi on that represents
product values. Creating a Cur sor for that Sour ce returns a Val ueCur sor . Calling the
get Current Val ue method returns the product value at the current position of that

Val ueCur sor.

Example 9-2 Getting a Single Value from a ValueCursor

This example gets the Sour ce from ndnProdHi er, which is an MinLevel Hi er ar chy that
represents product values, and creates a Cursor for that Sour ce. The example sets the
current position to the fifth element of the Val ueCur sor and gets the product value from
the Cursor. The example then closes the Cur sor Manager . In the example, dp is the

Dat aPr ovi der .

Sour ce prodSource = ndnProdHi er. get Source();

/1 Because prodSource is a primary Source, you do not need to
/1 commit the current Transaction.

Cur sor Manager cursorMhgr = dp. creat eCur sor Manager (prodSour ce) ;
Cursor prodCursor = cursorhgr.createCursor();

/1 Cast the Cursor to a Val ueCursor.

Val ueCursor prodVal ues = (Val ueCursor) prodCursor;

/] Set the position to the fifth element of the Val ueCursor.
prodVal ues. set Posi tion(5);

/1 Product values are strings. Get the value at the current position.

9-2

ORACLE

Chapter 9
Retrieving the Results of a Query

String value = prodVal ues. get Current String();
/1 Do sonmething with the value, such as display it.

/1 O ose the CursorMnager.
cursor Mgr. cl ose();

Example 9-3 Getting All of the Values from a ValueCursor

This example uses the same Cursor as Example 9-2. This example uses a do. .. while
loop and the next method of the Val ueCur sor to move through the positions of the

Val ueCur sor . The next method begins at a valid position and returns true when an
additional position exists in the Cursor . It also advances the current position to that
next position.

The example sets the position to the first position of the Val ueCur sor. The example
loops through the positions and uses the get Current Val ue method to get the value at
the current position.

/1 prodVal ues is the Val ueCursor for prodSource.
prodVal ues. set Posi tion(1);
do

{
println(prodVal ues. get CurrentVal ue);

} whil e(prodVval ues. next());

The values of the result set represented by a ConpoundCur sor are in the child
Val ueCur sor objects of the ConpoundCur sor. To get those values, you must get the child
Val ueCur sor objects from the ConpoundCur sor.

An example of a CompoundCur sor is one that is returned by calling the creat eCur sor
method of a Cur sor Manager for a Sour ce that represents the values of a measure as
specified by selected values from the dimensions of the measure.

Example 9-4 uses a Sour ce, named uni t s, that results from calling the get Sour ce
method of an MinBaseMeasur e that represents the number of units sold. The dimensions
of the measure are MinPri nar yDi mensi on objects representing products, customers,
times, and channels. This example uses Sour ce objects that represent selected values
from the default hierarchies of those dimensions. The names of those Sour ce objects
are prodSel , cust Sel , ti meSel , and chanSel . The creation of the Sour ce objects
representing the measure and the dimension selections is not shown.

Example 9-4 joins the dimension selections to the measure, which results in a Sour ce
named uni t sFor Sel ecti ons. It creates a ConpoundCur sor, named uni t sFor Sel Cur sor, for
uni t sFor Sel ect i ons, and gets the base Val ueCursor and the outputs from the
ConpoundCur sor . Each output is a Val ueCur sor , in this case. The outputs are returned in
a Li st. The order of the outputs in the Li st is the inverse of the order in which the
outputs were added to the list of outputs by the successive join operations. In the
example, dp is the Dat aPr ovi der .

Example 9-4 Getting ValueCursor Objects from a CompoundCursor

Sour ce unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(tinmeSel)
.join(chanSel);

[/ Commit the current Transaction (code not shown).

/] Create a Cursor for unitsForSelections.
Cur sor Manager cursorMhgr = dp. creat eCur sor Manager (uni t sFor Sel ections);

9-3

ORACLE

Chapter 9
Retrieving the Results of a Query

CormpoundCur sor uni t sFor Sel Cursor = (ConpoundCur sor)
cursor Mhgr. createCursor();

/1 Get the base Val ueCursor.
Val ueCursor specifiedUnitsVals = unitsForSel Cursor. get Val ueCursor();

Il Get the outputs.
Li st outputs = unitsForSel Cursor. get Qut puts();

Val ueCursor chanSel Val s = (Val ueCursor) outputs. get(0);
Val ueCursor timeSel Val s = (Val ueCursor) outputs.get(1);
Val ueCursor cust Sel Val s = (Val ueCursor) outputs.get(2);
Val ueCursor prodSel Val s = (Val ueCursor) outputs. get(3);

/'l You can now get the values fromthe Val ueCursor objects.
/1 When you have finished using the Cursor objects, close the CursorManager.
cursor Mgr. cl ose();

Example 9-5 uses the same units measure as Example 9-4, but it joins the dimension
selections to the measure differently. Example 9-5 joins two of the dimension
selections together. It then joins the result to the Sour ce produced by joining the single
dimension selections to the measure. The resulting Sour ce, uni t sFor Sel ecti ons,
represents a query has nested outputs, which means it has more than one level of
outputs.

The ConpoundCur sor that this example creates for uni t sFor Sel ect i ons therefore also has
nested outputs. The ConpoundCur sor has a child base Val ueCursor and has as outputs
three child Vval ueCur sor objects and one child ConpoundCur sor .

Example 9-5 joins the selection of channel dimension values, chanSel , to the selection
of customer dimension values, cust Sel . The result is cust ByChanSel , a Sour ce that has
customer values as the base values and channel values as the values of the output.
The example joins to uni t s the selections of product and time values, and then joins
cust ByChanSel . The resulting query is represented by uni t sFor Sel ect i ons.

The example commits the current Transacti on and creates a ConpoundCur sor, named
uni t sFor Sel Cur sor, for uni t sFor Sel ecti ons.

The example gets the base Val ueCursor and the outputs from the ConpoundCur sor. In
the example, dp is the Dat aProvi der .

Example 9-5 Getting Values from a CompoundCursor with Nested Outputs

Sour ce custByChanSel = cust Sel.join(chanSel);

Sour ce unitsForSel ections = units.join(prodSel)
.join(tinmeSel)
.join(custByChanSel);

/1 Commit the current Transaction (code not shown).

Il Create a Cursor for unitsForSelections.
Cur sor Manager cursorMgr = dp. creat eCur sor Manager (uni t sFor Sel ecti ons);
Cursor unitsForSel Cursor = cursorMgr. createCursor();

/1 Send the Cursor to a method that does different operations
/| depending on whether the Cursor is a ConpoundCursor or a
/'l Val ueCursor.

print Cursor (unit sFor Sel Cursor);

cursor Mgr. cl ose();

/1 The remaining code of sonmeMethod is not shown.

/1 The following code is in fromthe CursorPrintWiter class.

9-4

Chapter 9
Retrieving the Results of a Query

/1 The printCursor nethod has a do...while |oop that noves through the positions
/1 of the Cursor passed to it. At each position, the method prints the nunber of
/1 the iteration through the loop and then a colon and a space. The out put
/1 object is a PrintWiter. The method calls the private _printTuple nethod and
[l then prints a newline. A"tuple" is the set of output Val ueCursor val ues
/'l specified by one position of the parent ConmpoundCursor. The nethod prints one
[l line for each position of the parent ConpoundCursor.
private void printCursor(Cursor rootCursor)
{ . .
int i =1,
do
{
print(i++ +": ");
_printTupl e(root Cursor);
println();
flush();
} while(rootCursor.next());

}

[l 1f the Cursor passed to the _printTuple nethod is a Val ueCursor, then
/1 the nmethod prints the value at the current position of the Val ueCursor.
[l 1f the Cursor passed in is a ConpoundCursor, then the nethod gets the
/1 outputs of the ConpoundCursor and iterates through the outputs,
Il recursively calling itself for each output. The nethod then gets the
/'l base Val ueCursor of the ConpoundCursor and calls itself again.
private void _printTuple(Cursor cursor)
{
i f(cursor instanceof ConpoundCursor)
{
ConpoundCur sor conmpoundCur sor = (ConpoundCur sor) cur sor;
/1 Put an open parenthesis before the value of each output.
print("(");
Iterator iterQutputs = conpoundCursor.getQutputs().iterator();
Cursor output = (Cursor)iterQutputs.next();
_printTupl e(out put);
whi | e(iterQutputs.hasNext())
{
I/ Put a comma after the value of each output.
print(*,");
_printTupl e((Cursor)iterQutputs.next());
}
/1 Put a comma after the value of the last output.
print(",");
/1 Get the base Val ueCursor.
_print Tupl e(compoundCur sor . get Val ueCursor ());

/1 Put a close parenthesis after the base value to indicate
/1 the end of the tuple.
print(")");
1
el se if(cursor instanceof Val ueCursor)
{
Val ueCursor val ueCursor = (Val ueCursor) cursor;
i f (valueCursor.hasCurrentVal ue())
print(val ueCursor. get Current Val ue());
el se [/ 1f this position has a null val ue.
print("NA");

ORACLE 9-5

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

Navigating a CompoundCursor for Different Displays of Data

ORACLE

With the methods of a ConpoundCur sor you can easily move through, or navigate, the
ConpoundCur sor structure and get the values from the Val ueCur sor descendents of the
ConpoundCur sor . Data from a multidimensional OLAP query is often displayed in a
crosstab format, or as a table or a graph.

To display the data for multiple rows and columns, you loop through the positions at
different levels of the ConpoundCur sor depending on the needs of your display. For
some displays, such as a table, you loop through the positions of the parent
ConpoundCur sor . For other displays, such as a crosstab, you loop through the positions
of the child Cursor objects.

To display the results of a query in a table view, in which each row contains a value
from each output Val ueCur sor and from the base Val ueCur sor, you determine the
position of the top-level, or root, ConpoundCur sor and then iterate through its positions.
Example 9-6 displays only a portion of the result set at one time. It creates a Cursor for
a Sour ce that represents a query that is based on a measure that has unit cost values.
The dimensions of the measure are the product and time dimensions. The creation of
the primary Sour ce objects and the derived selections of the dimensions is not shown.

The example joins the Sour ce objects representing the dimension value selections to
the Sour ce representing the measure. It commits the current Transacti on and then
creates a Cur sor, casting it to a CompoundCur sor . The example sets the position of the
ConpoundCur sor, iterates through twelve positions of the ConpoundCur sor, and prints out
the values specified at those positions. The Dat aPr ovi der is dp.

Example 9-6 Navigating for a Table View

Source unitPriceByMnth = unitPrice.join(productSel)
.join(tineSel);
/1 Commit the current Transaction (code not shown).

Il Create a Cursor for unitPriceByMnth.
Cur sor Manager cursor Mhgr = dp. creat eCur sor Manager (uni t Pri ceByMont h);
CompoundCur sor root Cursor = (ConpoundCursor) cursorMhgr. createCursor();

/| Determine a starting position and the nunber of rows to display.
int start = 7;
int nunRows = 12;

println("Mnth Pr oduct Unit Price");
printIn("------- ce-eeeisaeeioaaas ");

Il 1terate through the specified positions of the root ConpoundCursor.
/1 Assune that the Cursor contains at |east (start + nunRows) positions.
for(int pos = start; pos < start + nunRows; pos++)
{
/1 Set the position of the root ConpoundCursor.
root Cur sor . set Posi ti on(pos);
Il Print the local values of the output and base Val ueCursors.
Il The getLocal Val ue nethod gets the local value fromthe unique
/1 value of a dinmension elenent.
String timeVal ue = ((Val ueCursor)root Cursor. getQutputs().get(0))
.getCurrentString();
String tinmelLocVal = getLocal Val ue(tineval ue);
String prodVal ue = ((Val ueCursor)root Cursor.getQutputs().get(1))
.getCurrentString();

9-6

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

String prodLocVal = getLocal Val ue(prodVval ue);
hj ect price = rootCursor. getVal ueCursor().getCurrentVal ue();
printIn(tinmeLocval +" " + prodLocval +" " + price);

}

cursor Mgr. cl ose();

If the time selection for the query has eight values, such as the first month of each
calendar quarter for the years 2001 and 2002, and the product selection has three
values, then the result set of the uni t Pri ceByMnt h query has twenty-four positions. The
example displays the following table, which has the values specified by positions 7
through 18 of the ConpoundCur sor .

Mont h Product Unit Price

2002.01 ENVY EXE 3008. 95
2002.01 ENVY STD 2140.71
2002.04 ENVY ABM 2880. 39
2002.04 ENVY EXE 2953.96
2002.04 ENVY STD 2130. 88

Example 9-7 Navigating for a Crosstab View Without Pages

This example uses the same query as Example 9-6. In a crosstab view, the first row is
column headings, which are the values from prodSel in this example. The output for
prodSel is the faster varying output because the prodSel dimension selection is the last
output in the list of outputs that results from the operations that join the measure to the
dimension selections. The remaining rows begin with a row heading. The row
headings are values from the slower varying output, which is ti meSel . The remaining
positions of the rows, under the column headings, contain the uni t Pri ce values
specified by the set of the dimension values. To display the results of a query in a
crosstab view, you iterate through the positions of the children of the top-level
ConpoundCur sor .

The Dat aPr ovi der is dp.

Source unitPriceByMnth = unitPrice.join(productSel)
.join(timeSel);
[/ Commit the current Transaction (code not shown).

/] Create a Cursor for unitPriceByMnth.
Cur sor Manager cursorMgr = dp. creat eCur sor Manager (uni t Pri ceByMont h);
ConpoundCur sor root Cursor = (ConpoundCursor) cursorMhgr. createCursor();

/1 Get the outputs and the Val ueCursor objects.

Li st outputs = rootCursor. get Qut puts();

/1 The first output has the values of timeSel, the slower varying output.
Val ueCur sor rowCursor = (Val ueCursor) outputs.get(0);

/1 The second output has the faster varying val ues of product Sel.

Val ueCur sor col umCursor = (Val ueCursor) outputs.get(1);

/1 The base Val ueCursor has the values fromunitPrice.

Val ueCur sor unitPriceVal ues = root Cursor. get Val ueCursor();

/| Display the values as a crosstab.

9-7

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

println(" PRODUCT") ;

printin(" e ")

print("Mnth ");

do

{
String value = ((ValueCursor) columCursor).getCurrentString();
print(getContext().getLocal Val ue(value) + " ");

} while (columCursor.next());

printin("\n------- c----o--aeeaio il ");

/! Reset the colum Cursor to its first element.
col umCur sor. set Posi tion(1);

do
{

[l Print the row di nension val ues.

String value = ((ValueCursor) rowCursor).getCurrentString();
print(getContext().getLocal Val ue(value) + " ");

/1 Loop over col ums.

do

/1 Print data val ue.
print(unitPriceVal ues.getCurrentValue() + " "),
} while (col umCursor.next());

println();

I/ Reset the colum Cursor to its first elenent.
col umCur sor. set Position(1);
} while (rowCursor.next());

cursor Mgr. cl ose();

The following is a crosstab view of the values from the result set specified by the

uni t Pri ceByMont h query. The first line labels the rightmost three columns as having
product values. The third line labels the first column as having month values and then
labels each of the rightmost three columns with the product value for that column. The
remaining lines have the month value in the left column and then have the data values
from the units measure for the specified month and product.

Example 9-8 Navigating for a Crosstab View With Pages

This example creates a Sour ce that is based on a measure of units sold values. The
dimensions of the measure are the customer, product, time, and channel dimensions.
The Sour ce objects for the dimensions represent selections of the dimension values.
The creation of those Sour ce objects is not shown.

9-8

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

The query that results from joining the dimension selections to the measure Sour ce
represents unit sold values as specified by the values of the outputs.

The example creates a Cursor for the query and then sends the Cursor to the
print AsCrosst ab method, which prints the values from the Cursor in a crosstab. That
method calls other methods that print page, column, and row values.

The fastest-varying output of the Cursor is the selection of products, which has three
values (the product items ENVY ABM, ENVY EXE, and ENVY STD). The product
values are the column headings of the crosstab. The next fastest-varying output is the
selection of customers, which has three values (the customers COMP SERV TOK,
COMP WHSE LON, and COMP WHSE SD). Those three values are the row headings.
The page dimensions are selections of three time values (the months 2000.01,
2000.02, and 2000.03), and one channel value (DIR, which is the direct sales
channel).

The Dat aProvi der is dp. The get Local Val ue method gets the local value from a unique
dimension value.

/1 I'n someMet hod.

Sour ce unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(tinmeSel)
.join(chanSel);

/1 Commit the current Transaction (code not shown).

/] Create a Cursor for unitsForSelections.
Cur sor Manager cursor Mhgr = dp. creat eCur sor Manager (uni t sFor Sel ections);
ConpoundCur sor uni t sFor Sel Cursor = (ConpoundCur sor) cursorMgr. createCursor();

/1 Send the Cursor to the printAsCrosstab nethod.
print AsCrosst ab(unitsFor Sel Cursor);

cursor Mgr. cl ose();
/1 The remainder of the code of someMethod is not shown.

private void printAsCrosstab(ConpoundCursor root Cursor)
{

Li st outputs
int nQutputs

= root Cursor. get Qut put s();
= out puts.size();
/1 Set the initial positions of all outputs.
Iterator outputlter = outputs.iterator();
whil e (outputlter.hasNext())

((Cursor) outputlter.next()).setPosition(1);

/1 The last output is fastest-varying; it represents col ums.
/1 The next to last output represents rows.
/1 Al other outputs are on the page.
Cursor col Cursor = (Cursor) outputs.get(nQutputs - 1);
Cursor rowCursor = (Cursor) outputs.get(nQutputs - 2);
ArrayList pageCursors = new ArrayList();
for (int i =0; i <nQutputs - 2 ; i++4)
{

pageCur sors. add(out puts. get(i));
1

Il Get the base Val ueCursor, which has the data val ues.
Val ueCur sor dataCursor = root Cursor. get Val ueCursor();

9-9

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

I/ Print the pages of the crosstab.
print Pages(pageCursors, 0, rowCursor, col Cursor, dataCursor);

}

/] Prints the pages of a crosstab.
private void printPages(List pageCursors, int pagelndex, Cursor rowCursor,
Cursor col Cursor, Val ueCursor dataCursor)

{
Il Get a Cursor for this page.
Cursor pageCursor = (Cursor) pageCursors. get(pagel ndex);
/1 Loop over the values of this page di nension.
do
[l 1f this is the fastest-varying page dimension, print a page.
if (pagel ndex == pageCursors.size() - 1)
I/ Print the values of the page di nensions.
print PageHeadi ngs(pageCursors);
[/ Print the colum headings.
print Col utmmHeadi ngs(col Cursor);
Il Print the rows.
print Rows(rowCursor, col Cursor, dataCursor);
Il Print a couple of blank lines to delinmit pages.
println();
println();
}
[l 1f this is not the fastest-varying page, recurse to the
/'l next fastest-varying di nmension.
el se
{
print Pages(pageCursors, pagelndex + 1, rowCursor, col Cursor,
dataCursor);
}
} while (pageCursor.next());
I/ Reset this page dinension Cursor to its first elenent.
pageCur sor. set Position(1);
}

Il Prints the values of the page di nensions on each page.
private void printPageHeadi ngs(List pageCursors)

{
Il Print the values of the page di mensions.
Iterator pagelter = pageCursors.iterator();
whil e (pagelter.hasNext())
String value = ((Val ueCursor) pagelter.next()).getCurrentString();
println(getLocal Val ue(val ue));
println();
}

/1 Prints the colum headings on each page.
private void printCol utmHeadi ngs(Cursor col Cursor)

{
do

9-10

ORACLE

Chapter 9
Navigating a CompoundCursor for Different Displays of Data

print("\t");
String value = ((ValueCursor) col Cursor).getCurrentString();
print (getLocal Val ue(val ue));

} while (col Cursor.next());

println();

col Cursor. setPosition(1);

}

/1 Prints the rows of each page.

private void printRows(Cursor rowCursor, Cursor col Cursor,
Val ueCur sor dat aCursor)

{

/1 Loop over rows.

do

{
[l Print row dimension val ue.
String value = ((Val ueCursor) rowCursor).getCurrentString();
print(getLocal Val ue(val ue));

print("\t");
/1 Loop over col ums.
do

[/ Print data val ue.
print (dataCursor. get CurrentVal ue());
print("\t");

} while (col Cursor.next());

printlin();

/1 Reset the colum Cursor to its first element.
col Cursor. setPosition(1);
} while (rowCursor.next());

/] Reset the row Cursor to its first elenent.
rowCur sor. set Position(1);

}

The example displays the following values, formatted as a crosstab. The display has
added page, column, and row headings to identify the local values of the dimensions.

Channel DIR
Month 2001. 01

Product
Cust oner ENVY ABM ENVY EXE ENVY STD
COWP WHSE SD 0 0 1
COW SERV TOXK 2 4 2
COW VHSE LON 1 1 2
Channel DR
Mont h 2000. 02

Product
Cust oner ENVY ABM ENVY EXE ENVY STD
COW VHSE SD 1 1 1
COW SERV TOXK 5 6 6
COWP VWHSE LON 1 2 2

9-11

Chapter 9
Specifying the Behavior of a Cursor

Channel DIR
Mont h 2000. 03

Product
Cust oner ENVY ABM ENVY EXE ENVY STD
COW VHSE SD 0 2 2
COW SERV TCK 2 0 2
COWP WHSE LON 0 2 3

Specifying the Behavior of a Cursor

ORACLE

You can specify the following aspects of the behavior of a Cursor.

 The fetch size of a Cursor, which is the number of elements of the result set that
the Cursor retrieves during one fetch operation.

* Whether or not Oracle OLAP calculates the extent of the Cursor. The extent is the
total number of positions of the Cursor. The extent of a child Cursor of a
ConpoundCur sor is relative to any of the slower varying outputs of the
ConpoundCur sor .

* Whether or not Oracle OLAP calculates the positions in the parent Cursor at which
the value of a child Cursor starts or ends.

To specify the behavior of Cursor, you use methods of a Cur sor Speci fi cati on that you
specify for that Cursor. A Cursor Speci fi cati on implements the Cur sor I nf oSpeci fi cation
interface.

You create a Cursor Speci fi cati on for a Sour ce by calling the

creat eCursor | nf oSpeci fi cati on method of the Dat aPr ovi der . You use methods of the
Cur sor Speci fi cati on to set the characteristics that you want. You then create a

Cur sor Manager by calling the appropriate cr eat eCur sor Manager method of the

Dat aPr ovi der .

Note:

Specifying the calculation of the extent or the starting or ending position in a
parent Cur sor of the current value of a child Cursor can be a very expensive
operation. The calculation can require considerable time and computing
resources. You should only specify these calculations when your application
needs them.

For more information on the relationships of Sour ce, Cursor, and Cur sor Speci fi cati on
objects or the concepts of fetch size, extent, or Cursor positions, see Understanding
Cursor Classes and Concepts.

Example 9-9 creates a Sour ce, creates a ConpoundCur sor Speci fi cati on for a Sour ce, and
then gets the child Cur sor Speci fi cati on objects from the top-level
ConpoundCur sor Speci fi cati on.

Example 9-9 Getting CursorSpecification Objects for a Source

Sour ce unitsForSel ections = units.join(prodSel)
.join(custSel)

9-12

Chapter 9
Calculating Extent and Starting and Ending Positions of a Value

.join(tineSel)
.join(chanSel);
/1 Commit the current Transaction (code not shown).

/] Create a ConpoundCursor Specification for unitsForSel ections.
ConpoundCur sor Speci fi cation root Cursor Spec = (ConpoundCur sor Speci fi cati on)
dp. creat eCursor | nfoSpeci fi cation(unitsForSel ections);

/] Get the Val ueCursorSpecification for the base val ues.
Val ueCur sor Speci fi cation baseVal ueSpec =
root Cur sor Spec. get Val ueCur sor Speci fi cation();

/1 Get the Val ueCursorSpecification objects for the outputs.
Li st out put Specs = root Cursor Spec. get Qut put s();
Val ueCur sor Speci fi cation chanSel Val CSpec =

(Val ueCur sor Speci fication) output Specs. get(0);
Val ueCur sor Speci fication tinmeSel Val CSpec =

(Val ueCursor Speci fication) output Specs. get(1);
Val ueCur sor Speci fi cation prodSel Val CSpec =

(Val ueCursor Speci fication) output Specs. get(2);
Val ueCur sor Speci fication cust Sel Val CSpec =

(Val ueCursor Speci fication) output Specs. get(3);

Once you have the Cursor Speci fi cati on objects, you can use their methods to specify
the behavior of the Cursor objects that correspond to them.

Calculating Extent and Starting and Ending Positions of a

Value

ORACLE

To manage the display of the result set retrieved by a ConpoundCur sor, you sometimes
need to know the extent of the child Cursor components. You might also want to know
the position at which the current value of a child Cursor starts in the parent
ConpoundCur sor . You might want to know the span of the current value of a child
Cursor. The span is the number of positions of the parent Cursor that the current value
of the child Cursor occupies. You can calculate the span by subtracting the starting
position of the value from the ending position and subtracting 1.

Before you can get the extent of a Cursor or get the starting or ending positions of a
value in the parent Cursor, you must specify that you want Oracle OLAP to calculate
the extent or those positions. To specify the performance of those calculations, you
use methods of the Cursor Speci fi cati on for the Cursor.

Example 9-10 specifies calculating the extent of a Cursor. The example uses the
ConpoundCur sor Speci fi cati on from Example 9-9.

Example 9-10 Specifying the Calculation of the Extent of a Cursor

root Cur sor Spec. set Ext ent Cal cul ati onSpeci fied(true);

You can use methods of a Cursor Speci fi cati on to determine whether the
Cur sor Speci fi cati on specifies the calculation of the extent of a Cursor as in the
following example.

bool ean isSet = root Cursor Spec. i sExt ent Cal cul ati onSpeci fied();

9-13

ORACLE

Chapter 9
Calculating Extent and Starting and Ending Positions of a Value

Example 9-11 specifies calculating the starting and ending positions of the current
value of a child Cursor in the parent Cur sor. The example uses the
ConpoundCur sor Speci fi cati on from Example 9-9.

Example 9-11 Specifying the Calculation of Starting and Ending Positions in a
Parent

/1 Get the List of CursorSpecification objects for the outputs.

/1 Iterate through the Iist, specifying the calculation of the extent
/1 for each output CursorSpecification.

Iterator iterQutputSpecs = root CursorSpec. get Qutputs().iterator();
whi | e(iterQutput Specs. hasNext ())

Val ueCur sor Speci fication val Cursor Spec =

(Val ueCursor Speci fication)iterQut put Specs. next();
val Cur sor Spec. set Parent St art Cal cul ati onSpeci fied(true);
val Cur sor Spec. set Par ent EndCal cul ati onSpeci fied(true);

}

You can use methods of a Cur sor Speci fi cati on to determine whether the
Cur sor Speci fi cati on specifies the calculation of the starting or ending positions of the
current value of a child Cursor in a parent Cursor, as in the following example.

Iterator iterQutputSpecs = root CursorSpec. get Qutputs().iterator();
Val ueCur sor Speci fication val Cursor Spec =

(Val ueCur sor Speci fication)iterQutputSpecs. next();
whi | e(iterQutput Specs. hasNext ())

{
if (val CursorSpec.isParentStartCal cul ationSpecified())
/1 Do sonething.
i f (val Cursor Spec.isParent EndCal cul ationSpecified())
/1 Do sonething.
val Cur sor Spec = (Val ueCursor Specification) iterQutputSpecs.next();
}

Example 9-12 determines the span of the positions in a parent ConpoundCur sor of the
current value of a child Cursor for two of the outputs of the ConpoundCur sor . The
example uses the uni t For Sel ecti ons Sour ce from Example 9-8.

The example gets the starting and ending positions of the current values of the time
and product selections and then calculates the span of those values in the parent
Cursor. The parent is the root ConpoundCur sor . The Dat aPr ovi der is dp.

Example 9-12 Calculating the Span of the Positions in the Parent of a Value

Sour ce unitsForSel ections = units.join(prodSel)
.join(custSel)
.join(tinmeSel)
.join(chanSel);

/1 Commit the current Transaction (code not shown).

/1 Create a ConmpoundCursor Speci fication for unitsForSelections.
ConpoundCur sor Speci fi cation root Cursor Spec = (ConpoundCur sor Speci fi cati on)
dp. creat eCursor | nfoSpeci fication(unitsForSel ections);
/1 Get the CursorSpecification objects for the outputs.
Li st out put Specs = root Cursor Spec. get Qut put s();
Val ueCur sor Speci fication tinmeSel Val CSpec =
(Val ueCur sor Speci fi cati on) out put Specs. get (1); // Qutput for tine.
Val ueCur sor Speci fication prodSel Val CSpec =
(Val ueCur sor Speci fi cati on) out put Specs. get(3); // Qutput for product.

9-14

Chapter 9
Specifying a Fetch Size

/1 Specify the calculation of the starting and ending positions.
timeSel Val CSpec. set Parent Start Cal cul ati onSpeci fied(true);
timeSel Val CSpec. set Par ent EndCal cul ati onSpeci fied(true);

prodSel Val CSpec. set Parent Start Cal cul ati onSpeci fied(true);
prodSel Val CSpec. set Par ent EndCal cul ati onSpeci fi ed(true);

/| Create the CursorManager and the Cursor.
Cur sor Manager cursor Mhgr =

dp. creat eCur sor Manager (uni t sFor Sel ections, 100, root Cursor Spec);
ConpoundCur sor root Cursor = (ConpoundCursor) cursorMhgr.createCursor();

/] Get the child Cursor objects.
Val ueCursor baseVal Cursor = cursor. get Val ueCursor();
Li st outputs = rootCursor.get Qut puts();

Val ueCursor chanSel Val s = (Val ueCursor) outputs. get(0)
Val ueCursor timeSel Vals = (Val ueCursor) outputs.get(1)
Val ueCursor cust Sel Val s = (Val ueCursor) outputs.get(2);
Val ueCursor prodSel Val s = (Val ueCursor) outputs. get(3)

/1 Set the position of the root ConpoundCursor.
root Cursor. set Posi tion(15);

/1 Get the values at the current position and deternine the span
/1 of the values of the time and product outputs.

print(chanSel Val s. getCurrentValue() + ", ");

print(timeSel Vals.getCurrentValue() + ",\n ");

print(custSel Vals.getCurrentValue() + ", ");

print(prodSel Val s.getCurrentValue() + ", ");

print (baseVal Cursor. get Current Val ue());

printlin();

/1 Deternmine the span of the values of the two fastest-varying outputs.
I ong span;
span = (prodSel Val s. get Parent End() - prodSel Val s. getParentStart()) +1);
printin("\nThe span of " + prodSel Val s. get CurrentVal ue() +

" at the current positionis " + span + ".")
span = (tineSel Val s. getParentEnd() - tineSel Vals.getParentStart()) +1);
println("The span of " + tineSelVals.getCurrentValue() +

"at the current positionis " + span + ".")
cursor Mgr. cl ose();

This example displays the following text.

CHANNEL_PRI MARY: : CHANNEL: : DI R, CALENDAR_YEAR: : MONTH: : 2000. 02,
SH PMENTS: : SHI P_TG : COVWP SERV TOK, PRCDUCT_PRI MARY: : | TEM : ENVY STD, 6.0

The span of PRODUCT_PRI MARY:: | TEM : ENVY STD at the current position is 1.
The span of CALENDAR_YEAR: : MONTH. : 2000. 02 at the current position is 9.

Specifying a Fetch Size

The number of elements of a Cursor that Oracle OLAP sends to the client application
during one fetch operation depends on the fetch size specified for that Cursor. The
default fetch size is 100. To change the fetch size, you can set the fetch size on the
root Cursor for a Sour ce.

ORACLE 9-15

Chapter 9
Specifying a Fetch Size

Example 9-13 Specifying a Fetch Size

This example gets the default fetch size from the ConpoundCur sor Speci fi cati on from
Example 9-9. The example creates a Cursor and sets a different fetch size on it, and
then gets the fetch size for the Cursor. The Dat aProvi der is dp.

printin("The default fetch size is "
+ root Cursor Spec. get Def aul t FetchSi ze() + ".");
Sour ce source = root Cursor Spec. get Source();
Cur sor Manager cursor Mhgr = dp. creat eCur sor Manager ('sour ce) ;
Cursor rootCursor = cursorhhgr.createCursor();
root Cursor. set Fet chSi ze(10) ;
printin("The fetch size is now" + rootCursor.getFetchSize()) + "."

The example displays the following text.

The default fetch size is 100.
The fetch size is now 10.

ORACLE 9-16

Creating Dynamic Queries

To create dynamic queries, you use the Oracle OLAP Java API Tenpl at e class and
other related classes. The following topics describe these classes and provide
examples of implementations of them.

e About Template Objects
* Overview of Template and Related Classes

» Designing and Implementing a Template

About Template Objects

The Tenpl at e class is the basis of a very powerful feature of the Oracle OLAP Java
API. You use Tenpl at e objects to create modifiable Sour ce objects. With those Sour ce
objects, you can create dynamic queries that can change in response to end-user
selections. Tenpl at e objects also offer a convenient way for you to translate user-
interface elements into OLAP Java API operations and objects.

For information on the Transacti on objects that you use to make changes to the
dynamic Sour ce and to either save or discard those changes, see Using a
TransactionProvider.

About Creating a Dynamic Source

ORACLE

The main feature of a Tenpl at e is the ability to produce a dynamic Sour ce. That ability is
based on two of the other objects that a Tenpl at e uses: instances of the
Dynani cDef i ni ti on and Met adat aSt at e classes.

When a Sour ce is created, Oracle OLAP automatically associates a Sour ceDefi ni ti on
with it. The Sour ceDef i ni ti on has information about the Sour ce. Once created, the
Sour ce and the associated Sour ceDefi ni ti on are associated immutably. The get Sour ce
method of a Sour ceDef i ni ti on returns the Sour ce associated with it.

Dynami cDef i ni tion is a subclass of Sour ceDefi nition. A Tenpl at e creates a

Dynani cDef i ni ti on, which acts as a proxy for the Sour ceDef i ni ti on of the Source
produced by the Tenpl at e. This means that instead of always getting the same
immutably associated Sour ce, the get Sour ce method of the Dynani cDef i ni ti on gets
whatever Sour ce is currently produced by the Tenpl at e. The instance of the

Dynani cDef i ni ti on does not change even though the Sour ce that it gets is different.

The Sour ce that a Tenpl at e produces can change because the values, including other
Sour ce objects, that the Tenpl at e uses to create the Sour ce can change. A Tenpl ate
stores those values in a Met adat aSt at e. A Tenpl at e provides methods to get the current
state of the Met adat aSt at e, to get or set a value, and to set the state. You use those
methods to change the data values that the Met adat aSt at e stores.

You use a Dynani cDefini ti on to get the Sour ce produced by a Tenpl at e. If your
application changes the state of the values that the Tenpl at e uses to create the Sour ce,
for example, in response to end-user selections, then the application uses the same

10-1

Chapter 10
Overview of Template and Related Classes

Dynani cDef i ni tion to get the Sour ce again, even though the new Sour ce defines a result
set different than the previous Sour ce.

The Sour ce produced by a Tenpl at e can be the result of a series of Sour ce operations
that create other Sour ce objects, such as a series of selections, sortings, calculations,
and joins. You put the code for those operations in the gener at eSour ce method of a
Sour ceCGener at or for the Tenpl at e. That method returns the Sour ce produced by the
Tenpl at e. The operations use the data stored in the Met adat aSt at e.

You might build an extremely complex guery that involves the interactions of dynamic
Sour ce objects produced by many different Tenpl at e objects. The end result of the
guery building is a Sour ce that defines the entire complex query. If you change the
state of any one of the Tenpl at e objects that you used to create the final Sour ce, then
the final Sour ce represents a result set that is different from that of the previous Sour ce.
You can thereby modify the final query without having to reproduce all of the
operations involved in defining the query.

About Translating User Interface Elements into OLAP Java API

Objects

You design Tenpl at e objects to represent elements of the user interface of an
application. Your Tenpl at e objects turn the selections that the end user makes into
OLAP Java API query-building operations that produce a Sour ce. You then create a
cursor to fetch from Oracle OLAP the result set defined by the Sour ce. You get the
values from the Cursor and display them to the end user. When an end user makes
changes to the selections, you change the state of the Tenpl ate. You then get the

Sour ce produced by the Tenpl at e, create a new Cur sor, get the new values, and display
them.

Overview of Template and Related Classes

In the OLAP Java API, several classes work together to produce a dynamic Sour ce. In
designing a Tenpl at e, you must implement or extend the following:

e The Tenpl at e abstract class
e The Metadat aSt at e interface
* The SourceGenerat or interface

Instances of those three classes, plus instances of the Dat aProvi der and
Dynani cDef i ni ti on classes, work together to produce the Sour ce that the Tenpl at e
defines.

What Is the Relationship Between the Classes That Produce a
Dynamic Source?

ORACLE

The classes that produce a dynamic Sour ce work together as follows:

e A Tenpl ate has methods that create a Dynani cDef i ni ti on and that get and set the
current state of a Met adat aSt at e. An extension to the Tenpl at e abstract class adds
methods that get and set the values of fields on the Met adat aSt at e.

* The Met adat aSt at e implementation has fields for storing the data to use in
generating the Sour ce for the Tenpl at e. When you create a new Tenpl at e, you pass

10-2

Chapter 10
Overview of Template and Related Classes

the Met adat aSt at e to the constructor of the Tenpl at e. When you call the get Sour ce
method of the Dynani cDef i ni ti on, the Met adat aSt at e is passed to the
gener at eSour ce method of the Sour ceGener at or .

e The Dat aProvi der is used in creating a Tenpl at e and by the Sour ceGenerat or in
creating new Sour ce objects.

e The SourceGener at or implementation has a gener at eSour ce method that uses the
current state of the data in the Met adat aSt at e to produce a Sour ce for the Tenpl ate.
You pass in the Sour ceGener at or to the creat eDynani cDef i ni ti on method of the
Tenpl at e to create a Dynami cDefi nition.

e The Dynanmi cDefi ni ti on has a get Sour ce method that gets the Sour ce produced by
the Sour ceGener at or. The Dynani cDefi ni ti on serves as a proxy for the
Sour ceDefi ni tion that is immutably associated with the Sour ce.

Template Class

You use a Tenpl at e to produce a modifiable Source. A Tenpl at e has methods for
creating a Dynani cDef i ni ti on and for getting and setting the current state of the
Tenpl at e. In extending the Tenpl at e class, you add methods that provide access to the
fields on the Met adat aSt at e for the Tenpl at e. The Tenpl at e creates a Dynani cDefi ni tion
that you use to get the Sour ce produced by the Sour ceGener at or for the Tenpl at e.

For an example of a Tenpl at e implementation, see Example 10-1.

MetadataState Interface

An implementation of the Met adat aSt at e interface stores the current state of the values
for a Tenpl ate. A Met adat aSt at e must include a cl one method that creates a copy of the
current state.

When instantiating a new Tenpl at e, you pass a Met adat aSt at e to the Tenpl ate
constructor. The Tenpl at e has methods for getting and setting the values stored by the
Met adat aSt at e. The gener at eSour ce method of the Sour ceGener at or for the Tenpl at e uses
the Met adat aSt at e when the method produces a Sour ce for the Tenpl at e.

For an example of a Met adat aSt at e implementation, see Example 10-2.

SourceGenerator Interface

ORACLE

An implementation of Sour ceGener at or must include a gener at eSour ce method, which
produces a Sour ce for a Tenpl at e. A Sour ceGener at or must produce only one type of
Sour ce, such as a Bool eanSour ce, a Nunber Sour ce, or a Stri ngSour ce. In producing the
Sour ce, the gener at eSour ce method uses the current state of the data represented by
the Met adat aSt at e for the Tenpl at e.

To get the Sour ce produced by the gener at eSour ce method, you create a

Dynani cDef i ni ti on by passing the Sour ceGener at or to the creat eDynani cDefini tion
method of the Tenpl at e. You then get the Sour ce by calling the get Sour ce method of the
Dynani cDefinition.

A Tenpl at e can create more than one Dynani cDefi ni ti on, each with a differently
implemented Sour ceGener at or . The gener at eSour ce methods of the different

Sour ceCGener at or objects use the same data, as defined by the current state of the

Met adat aSt at e for the Tenpl at e, to produce Sour ce objects that define different queries.

10-3

Chapter 10
Designing and Implementing a Template

For an example of a Sour ceGener at or implementation, see Example 10-3.

DynamicDefinition Class

Dynami cDef i ni tion is a subclass of Sour ceDef i ni ti on. You create a Dynani cDefinition
by calling the creat eDynani cDef i ni ti on method of a Tenpl at e and passing it a

Sour ceGener at or . You get the Sour ce produced by the Sour ceGener at or by calling the
get Sour ce method of the Dynani cDef i ni ti on.

A Dynani cDefi ni tion created by a Tenpl at e is a proxy for the Sour ceDefi ni ti on of the
Sour ce produced by the Sour ceGener at or . The Sour ceDefi ni ti on is immutably associated
with the Sour ce. If the state of the Tenpl at e changes, then the Sour ce produced by the
Sour ceGener at or is different. Because the Dynani cDefi ni ti on is a proxy, you use the
same Dynani cDefi ni ti on to get the new Sour ce even though that Sour ce has a different
Sour ceDefinition.

The get Current method of a Dynani cDefi ni tion returns the Sour ceDef i ni ti on immutably
associated with the Sour ce that the gener at eSour ce method currently returns. For an
example of the use of a Dynani cDefi ni ti on, see Example 10-4.

Designing and Implementing a Template

ORACLE

The design of a Tenpl at e reflects the query-building elements of the user interface of
an application. For example, suppose you want to develop an application that allows
the end user to create a query that requests a humber of values from the top or bottom
of a list of values. The values are from one dimension of a measure. The other
dimensions of the measure are limited to single values.

The user interface of your application has a dialog box that allows the end user to do
the following:

e Select a radio button that specifies whether the data values should be from the top
or bottom of the range of values.

e Select a measure from a drop-down list of measures.

e Select a number from a field. The number specifies the number of data values to
display.

* Select one of the dimensions of the measure as the base of the data values to
display. For example, if the user selects the product dimension, then the query
specifies some number of products from the top or bottom of the list of products.
The list is determined by the measure and the selected values of the other
dimensions.

e Click a button to bring up a dialog box through which the end user selects the
single values for the other dimensions of the selected measure. After selecting the
values of the dimensions, the end user clicks an OK button on the second dialog
box and returns to the first dialog box.

e Click an OK button to generate the query. The results of the query appear.

To generate a Sour ce that represents the query that the end user creates in the first
dialog box, you design a Tenpl at e called TopBot t onTTenpl at e. You also design a second
Tenpl at e, called Si ngl eSel ecti onTenpl at e, to create a Sour ce that represents the end
user's selections of single values for the dimensions other than the base dimension.
The designs of your Tenpl at e objects reflect the user interface elements of the dialog
boxes.

10-4

Chapter 10
Designing and Implementing a Template

In designing the TopBot t onTenpl at e and its Met adat aSt at e and Sour ceGener at or , you do
the following:

» Create a class called TopBot t onfTenpl at e that extends Tenpl at e. To the class, you
add methods that get the current state of the Tenpl at e, set the values specified by
the user, and then set the current state of the Tenpl ate.

e Create a class called TopBot t onTenpl at eSt at e that implements Met adat aSt ate. You
provide fields on the class to store values for the Sour ceGener at or to use in
generating the Sour ce produced by the Tenpl at e. The values are set by methods of
the TopBot t onfTenpl at e.

e Create a class called TopBot t onTenpl at eGener at or that implements Sour ceGener at or .
In the gener at eSour ce method of the class, you provide the operations that create
the Sour ce specified by the end user's selections.

Using your application, an end user selects units sold as the measure and products as
the base dimension in the first dialog box. The end user also selects the Asia Pacific
region, the first quarter of 2001, and the direct sales channel as the single values for
each of the remaining dimensions.

The query that the end user has created requests the ten products that have the
highest total amount of units sold through the direct sales channel to customers in the
Asia Pacific region during the calendar year 2001.

For examples of implementations of the TopBot t onfTenpl at e, TopBot t onfTenpl at eSt at e,
and TopBot t onTenpl at eGener at or classes, and an example of an application that uses
them, see Example 10-1, Example 10-2, Example 10-3, and Example 10-4. The
TopBot t oniTenpl at eSt at e and TopBot t onTenpl at eGener at or classes are implemented as
inner classes of the TopBot t oniTenpl at e outer class.

Implementing the Classes for a Template

ORACLE

The examples in this topic implement the Tenpl at e, Met adat aSt at e, and Sour ceGener at or
classes.

Example 10-1 Implementing a Template
This example is an implementation of the TopBot t onTenpl at e class.

i mport oracle. ol api . dat a. sour ce. Dat aProvi der;

i mport oracle. ol api . dat a. sour ce. Dynami cDefinition;

i mport oracl e. ol api . dat a. sour ce. Sour ce;

i mport oracle. ol api . dat a. sour ce. Sour ceGener at or ;

i mport oracle. ol api . dat a. sour ce. Tenpl at e;

import oracle.ol api.transaction. net adat aSt at eManager . Met adat aSt at e;

/**
* Creates a TopBottonienpl ateState, a TopBottoniTenpl at eGener at or,
* and a Dynani cDefinition.
* Gets the current state of the TopBottoniTenpl ateState and the val ues
* that it stores.
* Sets the data val ues stored by the TopBottonienpl ateState and sets the
* changed state as the current state.
*/
public class TopBottonienpl ate extends Tenpl ate
{
/] Constants for specifying the selection of elenments fromthe
/1 beginning or the end of the result set.
public static final int TOP_BOTTOM TYPE TOP = 0;

10-5

ORACLE

Chapter 10
Designing and Implementing a Template

public static final int TOP_BOTTOM TYPE BOTTOM = 1;

Il Variable to store the DynamicDefinition.
private Dynam cDefinition dynam cDef;

/**
* Creates a TopBottonienpl ate with a default type and nunber val ues
* and the specified base di nension.
*
/
publ i ¢ TopBott onilenpl at e(Sour ce base, DataProvider dataProvider)
{
super (new TopBot t onTenpl at eSt at e(base, TOP_BOTTOM TYPE_TCP, 0),
dat aProvi der);
/1 Create the DynanmicDefinition for this Tenplate. Create the
/] TopBottonienpl at eGenerator that the DynanicDefinition uses.
dynanmi cDef =
creat eDynami cDefi ni ti on(new TopBott onTenpl at eGener at or (dat aProvi der));

}
/**

* Gets the Source produced by the TopBottonifenpl at eGener at or
* fromthe Dynami cDefinition.

*|
public final Source getSource()
{

return dynani cDef. get Source();
1
/**

* Gets the Source that is the base of the elenents in the result set.

* Returns null if the state has no base.

*
/

public Source getBase()

{
TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
return state. base;

1
/**
* Sets a Source as the base.
*|
public void setBase(Source base)
{

TopBot t onfTenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
state. base = base;
setCurrentState(state);

1

/**
* CGets the Source that specifies the neasure and the single
* selections fromthe dinmensions other than the base.
*
/
public Source getCriterion()

{
TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();

return state.criterion;
1
/**

* Specifies a Source that defines the neasure and the single val ues
* selected fromthe dinensions other than the base.

10-6

Chapter 10
Designing and Implementing a Template

* The SingleSel ectionTenpl ate produces such a Source.
*
/
public void setCriterion(Source criterion)
{
TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
state.criterion = criterion;
setCurrentState(state);
1

/**

* Cets the type, which is either TOP_BOTTOM TYPE_TOP or

* TOP_BOTTOM TYPE_BOTTOM

*|

public int getTopBottonType()

{
TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
return state.topBottoniype;

}

/**
* Sets the type.
*/
public void set TopBottoniType(int topBottoniype)
{
if ((topBottoniType < TOP_BOTTOM TYPE_TOP) ||
(topBot t omlype > TOP_BOTTOM TYPE_BOTTOM)
throw new ||| egal Argunent Exception("Inval i dTopBottonilype");
TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
state.topBottonType = topBottoniype;
setCurrentState(state);

1

/**
* Gets the nunber of values sel ected.
*/

public float getN)

{

TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
return state. N,

}

/**
* Sets the nunber of values to select.
*
/
public void setN(float N)
{
TopBot t onifenpl ateState state = (TopBottonTenpl ateState) getCurrentState();
state.N = N,
setCurrentState(state);
1
}

Example 10-2 Implementing a MetadataState

This example is an implementation of the TopBot t onTenpl at eSt at e inner class.
/**

* Stores data that can be changed by a TopBottonfTenpl ate.

* The data is used by a TopBottonienpl at eGenerator in produci ng
* a Source for the TopBottonienpl ate.

*/

ORACLE 10-7

ORACLE

Chapter 10
Designing and Implementing a Template

private static final class TopBottonienpl ateState
i mpl ements Cl oneabl e, MetadataState

{

public int topBottonType;
public float N,

public Source criterion;
public Source base;

/**
* Creates a TopBottonienpl ateSt ate.
*
/
public TopBottonTenpl at eSt at e(Sour ce base, int topBottonType, float N)
{

this. base = base;
this.topBottonType = topBottoniype;
this.N =N,

1

/**
* Creates a copy of this TopBottonienpl ateState.
*/
public final Onbject clone()
{
try
{

return super.clone();

}
cat ch(C oneNot Support edException e)

{

return null;

}
}
}

Example 10-3 Implementing a SourceGenerator

This example is an implementation of the TopBot t onTenpl at eGener at or inner class.
/**
* Produces a Source for a TopBottonTenpl ate based on the data
* val ues of a TopBottonTenpl ateState.
*/
private final class TopBottonfTenpl at eGener at or
i mpl ement's Sour ceGener at or

{
/] Store the DataProvider.

private DataProvider _dataProvider;

/**

* Creates a TopBottonienpl at eGenerat or.

*|

publi ¢ TopBottonTenpl at eGener at or (Dat aPr ovi der dat aProvi der)
{

_dataProvider = dataProvider;

}

/**

* Generates a Source for a TopBottonTenplate using the current
* state of the data values stored by the TopBottoniTenpl ateSt ate.
*|

public Source generateSource(MetadataState state)

10-8

Chapter 10
Designing and Implementing a Template

TopBot t onffenpl ateState castState = (TopBottonTenpl ateState) state;
if (castState.criterion == null)

t hrow new Nul | Poi nter Exception("CriterionParameterM ssing");
Source sortedBase = null;

/| Depending on the topBottoniType val ue, select fromthe base Source
/1 the elements specified by the criterion Source and sort the

/'l elements in ascending or descending order.

/1 For descending order, specify that null values are |ast.

/1 For ascending order, specify that null values are first.

if (castState.topBottoniype == TOP_BOTTOM TYPE_TOP)
sortedBase = cast State. base. sortDescendi ng(cast State.criterion, false);
el se
sortedBase = cast State. base. sortAscendi ng(castState.criterion, true);
return sortedBase.interval (1, Math.round(castState.N));
1
}

Implementing an Application That Uses Templates

ORACLE

After you have stored the selections made by the end user in the Met adat aSt at e for the
Tenpl at e, use the get Sour ce method of the Dynani cDefi ni ti on to get the dynamic Sour ce
created by the Tenpl at e. This topic provides an example of an application that uses the
TopBot t oniTenpl at e described in Example 10-1. For brevity, the code does not contain
much exception handling.

The BaseExanpl ellg class creates and stores an instance of the Cont ext 11g class, which
has methods that do the following:

e Connect to an Oracle Database instance as the user in the command line
arguments.

e Create Cursor objects and displays their values.

Example 10-4 does the following:

e Gets the Mim\et adat aPr ovi der and the MinRoot Schena.
e Gets the Dat aProvi der.
e Gets the MinDat abaseSchema for the user.

* Gets the MinCube that has the COSTS, UNITS and SALES measures. From the
cube, the example gets the UNITS and SALES measures and the dimensions
associated with the cube.

e Creates a Si ngl eSel ecti onTenpl at e for selecting single values from some of the
dimensions of the measure. For the code of the Si ngl eSel ecti onTenpl at e class that
this example uses, see SingleSelectionTemplate Class.

e Creates a TopBot t oniTenpl at e and stores selections made by the end user.
* Gets the Sour ce produced by the TopBot t onfTenpl at e.

e Uses the Context 11g object to create a Cursor for that Sour ce and to display the
Cursor values.

The complete code for Example 7-3 includes some of the same code that is in
Example 10-4. The example does not show this code, which extends from the
beginning of Example 10-4 to the following comment in the example:

10-9

ORACLE

Chapter 10
Designing and Implementing a Template

/1 End of code not shown in
/| Example 7-3.

Example 10-4 Getting the Source Produced by the Template

i mport oracl e. ol api . dat a. sour ce. Dat aPr ovi der;

i mport oracl e. ol api . dat a. sour ce. Sour ce;

i mport oracl e. ol api . exanpl es. *;

i mport oracl e. ol api . met adat a. mdm MimAt t ri but e;

i mport oracle. ol api . met adat a. mdm MinBaseMeasur e;

i mport oracl e. ol api . met adat a. mdm MinCube;

i mport oracl e. ol api . met adat a. mdm MinDat abaseSchene;

i mport oracl e. ol api . met adat a. mdm MinDi mensi onLevel ;

i mport oracl e. ol api . met adat a. mdm MinDi mensi onMenber I nf o;
i mport oracl e. ol api . met adat a. mdm MinHi er ar chyLevel ;

i mport oracl e. ol api . met adat a. mdm Minievel Hi er ar chy;

i mport oracl e. ol api . met adat a. mdm Mimivet adat aPr ovi der;
i mport oracl e. ol api . met adat a. mdm MinPri mar yDi mensi on;
i mport oracl e. ol api . met adat a. mdm MinRoot Schens;

/**

* Creates a query that specifies a nunber of elenments fromthe top
* or bottomof a selection of dinension menbers, creates a Cursor

* for the query, and displays the values of the Cursor.

* The sel ected dimension menbers are those that have neasure val ues
* that are specified by selected menbers of the other dinensions of
* the measure.

*
public class TopBottoniest extends BaseExanpl ellg
{
/**
* (Gets the Mimvet adat aProvi der, the DataProvider, the MinRoot Schenm, and the
* MinDat abaseSchema for the current user.
* Cets the UNITS_CUBE_AW MinCube.
* Fromthe cube, gets the MinBaseMeasure objects for the UNNTS and SALES
* measures and the MinPrimaryDi mension objects that dinension them
* Cets a hierarchy of the PRODUCT_AW dinension and the |eaf |evel of the
* di nmensi on.
* Cets the short description attribute of the dinension.
* Creates a SingleSelectionTenplate and adds selections to it.
* Creates a TopBottonfTenpl ate and sets the properties of it.
* Cets the Source produced by the TopBottonienpl ate, creates a Cursor
* for it, and displays the values of the Cursor.
* Changes the state of the SingleSelectionTenplate and the
* TopBottonTenpl ate, creates a new Cursor for the Source produced by the
* TopBot t onTenpl ate, and di splays the val ues of that Cursor.
*|
public void run() throws Exception
{

/1 Get the Mim\et adataProvider fromthe superclass.

MimMet adat aPr ovi der net adat aProvi der = get Mim\et adat aProvi der () ;

/1 Get the DataProvider fromthe Context1lg object of the superclass.
Dat aProvi der dp = get Context (). get DataProvider();

/1 Get the MinRoot Schema and the MinDat abaseSchema for the user.
MinRoot Schema mdnRoot Schema =

(MinRoot Schena) net adat aPr ovi der . get Root Schema() ;
MinDat abaseSchema ndnDBSchema =

minRoot Schema. get Dat abaseSchema(get Context (). get User());

MinCube unitsCube =

10-10

ORACLE

Chapter 10
Designing and Implementing a Template

(MinCube) mdnDBSchena. get TopLevel Obj ect (" UNI TS_CUBE_AW") ;
MinBaseMeasure mdmnits = unitsCube. findO Creat eBaseMeasure("UNI TS");
MinBaseMeasure ndnBal es = unitsCube. findOr Cr eat eBaseMeasur e(" SALES") ;

/] Get the Source objects for the neasures.
Source units = ndrlnits. get Source();
Source sal es = ndnfal es. get Source();

/1 Get the MinPrimaryDi mension objects for the dimensions of the cube.
Li st <MinPri maryDi mensi on> cubeDi ms = uni t sCube. get Di nensi ons() ;

MinPri mar yDi nensi on ndnii neDi m = nul | ;
MinPri mar yDi nensi on ndnProdDi m = nul | ;
MinPri mar yDi nensi on ndnCustDim = nul | ;
MinPri mar yDi nensi on ndnChanDi m = nul | ;

for (MinPri maryDi nensi on mdnPrinDi m: cubeDi ns)
{
if (nmdnPrinDimgetNanme().startsWth("TIME"))
mdnili meDi m = ndnPri nDi m
else if (mdnPrinDi mgetName().startsWth("PROD'))
mdnProdDi m = mdnPri nDi m
else if (mdnPrinDi mgetName().startsWth("CUST"))
mdnCust Di m = mdnPri nDi m
else if (mdnPrinDi mgetName().startsWth("CHAN'))
mdnChanDi m = mdnPri nDi m
}

/1 Get the hierarchy of the PRODUCT_AW di mensi on.
MinLevel Hi erarchy nmdnProdHi er =
ndnProdDi m fi ndOr Cr eat eLevel Hi erar chy (" PRODUCT_PRI MARY") ;

/1 Get the detail dinenson |evel of the PRODUCT_AW di nension.
MInDi mensi onLevel ndmi tenDi nLevel =
mdnPr odDi m fi ndOr Cr eat eDi nensi onLevel ("I TEM');
/1 Get the hierarchy level of the dinmension |evel.
MinHi er archyLevel mdnitenH erlevel =

mdnPr odHi er. findOr Cr eat eHi er ar chyLevel (mdm t enDi nLevel) ;

/1 Get the Source for the hierarchy |evel.
Source itemlevel = mdnltenH erLevel . get Source();

/1 Get the short description attribute for the PRODUCT_AW dinension and
/1 the Source for the attribute.
MimAt tri bute mdnProdShort DescrAttr =
mdnPr odDi m get Short Val ueDescriptionAttribute();
Sour ce prodShortDescrAttr = mdnProdShort DescrAttr. get Source();

/] Create a SingleSelectionTenplate to produce a Source that
Il represents the measure val ues specified by single menbers of each of
/1 the dinensions of the neasure other than the base di nension.
Si ngl eSel ectionTenpl ate singl eSel ections =
new Singl eSel ectionTenpl ate(units, dp);

/1 Create MInDi mensi onMenberInfo objects for single nenbers of the
/I other dinensions of the neasure.
MinDi nensi onMenberInfo timeMemnfo =
new MinDi mensi onMenber | nf o(minili meDi m " CALENDAR_YEAR: : YEAR: : CY2001");
MinDi nensi onMenber I nfo custMem nfo =
new MinDi mensi onMenber | nf o(mdmCust Di m " SHI PMENTS: : REG ON: : APAC");
MinDi nensi onMenber I nfo chanMem nfo =
new MinDi mensi onMenber | nf o(mdnChanDi m " CHANNEL_PRI MARY: : CHANNEL: : DIR") ;

10-11

ORACLE

Chapter 10
Designing and Implementing a Template

/1 Add the dinension nenber information objects to the
/'l SingleSel ectionTenpl ate.

singl eSel ecti ons. addDi mvenber | nf o(cust Mem nf 0) ;

si ngl eSel ecti ons. addDi mvenber | nf o(chanMem nf o) ;

singl eSel ecti ons. addDi mvenber | nf o(ti meMem nf o) ;

/] Create a TopBottonienpl ate specifying, as the base, the Source for a
/1 a level of a hierarchy.
TopBot t onffenpl at e t opNBott om = new TopBot t onifenpl at e(i tenLevel , dp);

/'l Specify whether to retrieve the elenents fromthe beginning (top) or the
/1 end (bottom) of the selected el enments of the base di nension.
t opNBot t om set TopBot t onType(TopBot t oniTenpl at e. TOP_BOTTOM TYPE_TOP) ;

/1 Set the nunmber of elements of the base dinension to retrieve.

t opNBot t om set N(10) ;

/1 Get the Source produced by the SingleSelectionTenplate and specify it as
Il the criterion object.

topNBott om set Cri terion(singleSel ections. getSource());

/! End of code not shown in
/'l Example 7-3.

/1 Display a description of the result.
String resul tDescription =" products with the nost units sold \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

/1 Get the Source produced by the TopBottonilenpl at e.
Source result = topNBottom get Source();

/1 Join the Source produced by the TopBottonTenplate with the short
/1 val ue descriptions. Use the joinH dden nethod so that the

/1 dimension nember val ues do not appear in the result.

Source result = prodShortDescrAttr.joi nH dden(topNBottonResult);

[/l Commit the current transaction.
get Context().commit(); // Method of Context1lg.

/1 Create a Cursor for the result and display the values of the Cursor.
get Cont ext (). di spl ayTopBot t onResul t (resul t);

/1 Change a di mension nenber selection of the SingleSelectionTenplate.
ti meMem nf o. set Uni queVal ue(" CALENDAR_YEAR: : YEAR: : CY2000");
singl eSel ections. changeSel ection(ti meMem nfo);

/1 Change the nunber of elenments selected and the type of selection.
t opNBot t om set N(5) ;
t opNBot t om set TopBot t onType(TopBot t onfTenpl at e. TOP_BOTTOM TYPE_BOTTOM ;

/1 Join the Source produced by the TopBottonfTenplate to the short
/1 description attribute.
result = prodShortDescrAttr.joinH dden(topNBottonResult);

/1 Commit the current transaction.
get Context().comit();

/1 Display a description of the result.

resultDescription =" products with the fewest units sold \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

10-12

ORACLE

Chapter 10
Designing and Implementing a Template

/] Create a new Cursor for the Source produced by the TopBottonienpl ate
/1 and display the Cursor val ues.
get Context (). di spl ayTopBot t onResul t (resul t);

/1 Now change the neasure to SALES, and get the top and bottom products by
/1 SALES.

singl eSel ections. set Measure(sal es);

/] Change the nunber of elements sel ected.

topNBott om set N(7) ;

/1 Change the type of selection back to the top.

t opNBot t om set TopBot t onType(TopBot t oniTenpl at e. TOP_BOTTOM TYPE_TOP) ;

resul tDescription =" products with the highest sales amounts \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

t opNBot t omResul t = t opNBot t om get Sour ce();
result = prodShortDescrAttr.joi nHi dden(topNBottonResult);

[/ Commit the current transaction.
get Context().commt();
get Context (). di spl ayTopBot t onResul t (resul t);

/1 Change the type of selection back to the bottom
t opNBot t om set TopBot t onType(TopBot t onTenpl at e. TOP_BOTTOM TYPE_BOTTOM ;

resul tDescription =" products with the | owest sales amounts \nfor";
di spl ayResul t Descr (si ngl eSel ections, topNBottom resultDescription);

t opNBot t omResult = t opNBot t om get Sour ce() ;
result = prodShortDescrAttr.joi nHi dden(topNBottonResult);

[/ Commit the current transaction.
get Context().commt();
get Context (). di spl ayTopBot t onResul t (resul t);

}

/**

* Displays a description of the results of the query.

*

* @aram singl eSel ections The SingleSel ectionsTenpl ate used by the query.
*
* (@aram t opNBott om The TopBottoniTenpl ate used by the query.
*
*

@aramresul tDescr A String that contains a description of the query.
*
/
private void di spl ayResul t Descr(Singl eSel ecti onTenpl ate singl eSel ecti ons,
TopBot t onffenpl at e t opNBot t om
String resul t Descr)

Dat aProvi der dp = get Context (). get Dat aProvi der();

/1 Get the short descriptions of the dinension nembers of the
/'l SingleSel ectionTenpl ate.
StringBuffer shortDescrsFor MenberVal s =

si ngl eSel ecti ons. get Menber Short Descrs(dp);

/1 Display the nunber of dinension nenbers selected, the result description,
/1 and the short descriptions of the single selection dinension nenbers.
printin("\nThe " + Math. round(topNBottom getN()) + resultDescr

+ short DescrsFor MenberVal s +" are:\n");

10-13

ORACLE

}
/

public static void main(String[] args)

{
}

}

* %

* Runs the TopBottonfTest application.

*
*
*

*

*|

new TopBot t onTTest (). execut e(args);

Chapter 10
Designing and Implementing a Template

@aramargs An array of String objects that provides the arguments
required to connect to an Oracle Database instance, as
specified in the Context1lg class.

The TopBot t onTest program produces the following output.

The 10 products with the most units sold
Asia Pacific, Direct Sales, 2001 are:

for

CONAR~WNE

[EEN

—- o
o =
- @

kRN

The
for

NogaR~wNE

The
for

a0 E

Mouse Pad

Uni x/ Wndows 1-user pack

Del uxe Muse

Laptop carrying case

56Kbps V.90 Type Il Mdem
56Kbps V.92 Type || Fax/ Modem
Keyboard Wi st Rest

Internal - DVD-RW- 6X

Q'S Docunentation Set - English
External - DVD-RW- 8X

5 products with the fewest units sold
Asia Pacific, Direct Sales, 2000 are:

Envoy External Keyboard

Q'S Docunentation Set - Italian
External 48X CD-ROM

Q'S Docunentation Set - Spanish
Internal 48X CD-ROM USB

7 products with the highest sal es amounts
Asia Pacific, Direct Sales, 2000 are:

Sentinel Financial
Sentinel Standard

Envoy Executive

Sentinel Miltinedia

Envoy Standard

Envoy Anbassador

56Kbps V.90 Type Il Mdem

7 products with the | owest sal es amounts
Asia Pacific, Direct Sales, 2000 are:

Envoy External Keyboard
Keyboard Wi st Rest

Mouse Pad

Q'S Docunmentation Set - Italian
Q'S Docunentation Set - Spanish

10-14

Chapter 10
Designing and Implementing a Template

6. Standard Muse
7. OS Docunentation Set - French

ORACLE" 10-15

Setting Up the Development Environment

Overview

This appendix describes the development environment for creating applications that
use the OLAP Java API.

This appendix includes the following topics:

* Overview
* Required Class Libraries

e Obtaining the Class Libraries

The OLAP Java API client software is a set of Java packages containing classes that
implement a Java programming interface to Oracle OLAP. An Oracle Database with
the OLAP option provides the OLAP Java API and other required class libraries as
Java archive (JAR) files. As an application developer, you must copy the required JAR
files to the computer on which you develop your Java application, or otherwise make
them accessible to your development environment.

When a Java application calls methods of OLAP Java API objects, it uses the OLAP
Java API client software to communicate with Oracle OLAP, which resides within an
Oracle Database instance. The communication between the OLAP Java API client
software and Oracle OLAP is provided through the Java Database Connectivity
(JDBC) API, which is a standard Java interface for connecting to relational databases.
Another required JAR file provides support for importing and exporting OLAP Java API
metadata objects XML.

To use the OLAP Java API classes as you develop your application, import them into
your Java code. When you deliver your application to users, include the OLAP Java
API classes with the application. You must also ensure that users can access JDBC.

To develop an OLAP Java API application, you must have the Java Development Kit
(JDK), such as one in Oracle JDeveloper. Users must have a Java Runtime
Environment (JRE) whose version number is compatible with the JDK that you used
for development.

Required Class Libraries

ORACLE

Your application development environment must have the following files:

e The ol ap_api . jar file, which contains the OLAP Java API class libraries.

e The ojdbcé. jar file, which is an Oracle JDBC (Java Database Connectivity) library
that contains classes required to connect to an Oracle Database instance. The
Oracle installation includes the JDBC file. You must use that JDBC file and not
one from another Oracle product or from a product from another vender.

e The xnm parserv2.jar file, which contains classes that provide XML parsing support.

A-1

Appendix A
Obtaining the Class Libraries

* The Java Development Kit (JDK) version 1.6. The Oracle Database installation
does not provide the JDK. If you are using Oracle JDeveloper as your
development environment, then the JDK is already installed on your computer.
However, ensure that you are using the correct version of the JDK in JDeveloper.
For information about obtaining and using some other JDK, see the Oracle
Technology Network Java website at ht t p: / / ww. or acl e. com t echnet wor k/ j ava/

i ndex. htm .

Obtaining the Class Libraries

ORACLE

Table A-1 lists the OLAP Java API and other JAR files that you must include in your
application development environment. The table includes the locations of the files
under the directory identified by the ORACLE_HOME environment variable on the system
on which the Oracle Database is installed. You can copy these files to your application
development computer, or otherwise include them in your development environment.

Table A-1 Required Class Libraries and Their Locations in the Oracle
Installation

Class Library jar File Location under ORACLE_HOME
ol ap_api.jar /olap/api/lib

oj dbc6j ar ljdbc/lib

xm parserv2.jar /lib

A-2

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

SingleSelectionTemplate Class

This appendix contains the code for the Si ngl eSel ecti onTenpl at e class. This class is
used by the examples in Using a TransactionProvider, and Creating Dynamic Queries.

Code for the SingleSelectionTemplate Class

The following is the Si ngl eSel ecti onTenpl at e. j ava class.

ORACLE

inmport java.util.Arraylist;

inmport java.util.Collections;

inport java.util.lterator;

inmport java.util.List;

i mport oracle. ol api . dat a. cursor. Cur sor Manager ;

i mport oracle. ol api . dat a. cursor. Val ueCur sor;

import oracle. ol api . dat a. sour ce. Dat aProvi der;

i mport oracle. ol api . dat a. sour ce. Dynani cDefinition;

i mport oracle. ol api . dat a. sour ce. Sour ce;

import oracle. ol api . dat a. sour ce. Stri ngSour ce;

i mport oracle. ol api . dat a. sour ce. Sour ceGener at or ;

i mport oracle. ol api . dat a. sour ce. Tenpl at e;

import oracle. ol api . met adat a. mdm MimAttri but e;

import oracle. ol api . met adat a. mdm MinDi mensi onMenber | nf o;
import oracle. ol api . met adat a. mdm MinHi er ar chy;

i mport oracle. ol api . met adat a. mdm MinPri mar yDi nensi on;
import oracle.ol api.transaction. Transacti onProvi der;
import oracle.ol api.transaction. Not Conmittabl eException;
import oracle. ol api.transaction. net adat aSt at eManager . Met adat aSt at e;

/**

* A Tenplate that joins Source objects for selected nenbers of
* dimension hierarchies to a Source for a neasure.
*/

public class SingleSelectionTenpl ate extends Tenpl ate

{

Il Variable to store the Dynani cDefinition.
private DynamicDefinition dynam cDef;

/**
* Creates a SingleSel ectionTenpl ate.
*|
public SingleSelectionTenpl ate(Source measure, DataProvider dataProvider)
{
super (new Singl eSel ectionTenpl at eSt at e(nmeasure), dataProvider);
dynami cDef = createDynani cDefinition(
new Si ngl eSel ectionTenpl at eGener at or (dat aProvi der));

}

/**

* Gets the Source produced by the SingleSel ectionTenpl at eGener at or
* fromthe Dynam cDefinition.

*|

public final Source getSource()

B-1

ORACLE

Appendix B
Code for the SingleSelectionTemplate Class

{

return dynani cDef. get Source();

}

/**

* Gets the Source for the neasure stored by the SingleSelectionTenplateState.
*/

public Source getMeasure()

Singl eSel ectionTenpl ateState state =
(Singl eSel ecti onTenpl at eState)get Current State();
return state. measure;

}

/**

* Specifies the Source for the measure stored by the
* SingleSel ectionTenpl ateSt ate.

*|

public void setMeasure(Source measure)

Si ngl eSel ectionTenpl ateState state =

(Singl eSel ectionTenpl ateState)get Current State();
state. measure = measure;
setCurrentState(state);

}

/**

* Gets the List of MinDi mensionMenberinfo objects for the selected menbers
* of the dinmensions.

*|

public List getD mvenberlnfos()

Singl eSel ectionTenpl ateState state =
(Singl eSel ecti onTenpl at eState)get Current State();
return Collections.unnodifiabl eli st (state.di mvenber| nfos);

}

/**
* Adds an MinDi mensi onMenberinfo to the List of
* MinDi mensi onMenber I nfo obj ects.
*|
public void addD mvenber | nf o(MinDi mensi onMenber | nf o ndnDi mvenber | nf o)

Si ngl eSel ectionTenpl ateState state =

(Singl eSel ecti onTenpl at eState) get Current State();
state. di mvenber | nf os. add(mdnDi mvenber I nf o) ;
setCurrentState(state);

}

/**

* Changes the nenmber specified for a dinension.

*/

public void changeSel ecti on(MinDi nensi onMenber | nfo ndnDi mvenber | nf o)

Singl eSel ectionTenpl ateState state =
(Singl eSel ectionTenpl at eState)get Current State();
int i =0;

Iterator dimvenberinfositr = state.di mvermberinfos.iterator();

whi | e (di mvenber|nfosltr.hasNext())
{

B-2

ORACLE

}
/

}

Appendix B
Code for the SingleSelectionTemplate Class

MiInDi nensi onMenber | nf o mdnDi mvenber | nf ol nLi st =
(MinDi mensi onMenber | nf 0) di mvenber I nfosltr. next();
MinPri mar yDi mensi on mdnPrinDi L = ndnDi mvenber | nf 0. get Pri mar yDi mensi on() ;
MinPri mar yDi mensi on mdnPrinDi n2 =
mdnDi mMenber | nf ol nLi st . get Pri maryDi mensi on();
//String value = (String)valuesltr.next();
i f (mdnPrinDinl. get Nane() . equal s(ndnPri nDi n2. get Nane()))

{
state. di mvenber | nf os. renove(i);
state. di mvenber | nf os. add(i, mdnDi mvenber | nfo);
br eak;

)

i ++

setCurrentState(state);

* %

* Gets the short value description of the each of the dinension nenbers
* specified by the list of MinDi nensionMenber|nfo objects and returns
* the descriptions in a StringBuffer.

*|

public StringBuffer getMenber ShortDescrs(DataProvider dp)

{

bool ean firsttine = true;

Li st mdnDi mvem nfoli st = get Di mvenber | nfos();

StringBuffer shortDescrFor MenberVals = new StringBuffer(" ");
Iterator ndnDi mvem nfolistltr = mdnDi mvem nfolist.iterator();

whi | e(mdnDi mver nfoLi st1tr. hasNext())

{

MinDi nensi onMenber | nf o ndnDi mven nfo =
(MinDi nensi onMenber | nf o) ndnDi mvem nfoLi stltr. next();
MinPri mar yDi mensi on mdnPri nDi m = ndnDi mvent nf o. get Pri mar yDi nensi on();
MimAttri bute mdnShort DescrAttr =
mdnPri nDi m get Short Val ueDescri ptionAttribute();
Source shortDescrAttr = nunShortDescrAttr. get Source();
MinH erarchy mdnHi er = nmdnDi mivent nf o. get H erarchy();
StringSource hierSrc = (StringSource) minHier. get Source();
Source nenber Sel = hierSrc. sel ect Val ue(mdnDi mver nf 0. get Uni queVal ue());
Sour ce shortDescr For Menber = shortDescrAttr.joi nH dden(menber Sel);

/] Commit the current transaction.

try
{
(dp. get Transacti onProvi der()).conmt Current Transaction();
1
catch (Exception ex)
{
printin("Could not comit the Transaction. " + ex);
1

Cur sor Manager cmmgr = dp. cr eat eCur sor Manager (short Descr For Menber) ;
Val ueCursor val Cursor = (Val ueCursor)cmgr. createCursor();

String shortDescrFor MenberVal = val Cursor. getCurrent String();

B-3

Appendix B
Code for the SingleSelectionTemplate Class

if(firsttinme)

{
short Descr For Menber Val s. append(short Descr For Menber Val) ;
firsttinme = fal se;

1

el se

{

}
}

return short DescrFor Menber Val s;
}

/**
* Inner class that inplements the MetadataState object for this Tenplate.
* Stores data that can be changed by its SingleSel ectionTenplate.
* The data is used by a SingleSelectionTenpl ateGenerator in producing
* a Source for the SingleSelectionTenplate.
*|
private static class SingleSelectionTenplateState
i mpl ements Met adat aState

short Descr For Menber Val s. append(", " + short Descr For Menber Val) ;

{

public Source neasure;
public ArrayList di mvenberl nfos;

/**
* Creates a SingleSel ectionTenpl ateState.
*/
public SingleSelectionTenpl at eSt at e(Source measure)
{
thi s(nmeasure, new ArrayList());

}

private SingleSelectionTenpl ateState(Source nmeasure,
ArraylLi st di mvenber I nf os)
{
this. measure = measure;
this. di mvenber I nfos = di mvenber | nf os;

}
public Cbject clone()
{
return new Singl eSel ecti onTenpl at eSt at e(neasur e,
(ArrayList)
di mvenber | nfos. cl one());
}
1
/**

* Inner class that inplements the SourceGenerator object for this Tenplate.
* Produces a Source based on the data values of a SingleSelectionTenpl ate.
*|
private static final class SingleSelectionTenpl at eGenerat or
i npl ement's Sour ceGener at or

{
Dat aProvi der dp = null;
/**
* Creates a SingleSel ectionTenpl at eGenerator.
*/

ORACLE B-4

ORACLE

Appendix B
Code for the SingleSelectionTemplate Class

public SingleSel ectionTenpl at eGener at or (Dat aProvi der dat aProvi der)

{
dp = dat aProvi der;

}
/**
* Cenerates a Source for the SingleSelectionTenpl ate.
*/
public Source generateSource(MetadataState state)
{
Singl eSel ectionTenpl ateState castState =
(Singl eSel ectionTenpl ateSt at e) st at e;
Source result = castState. measure;
Iterator dimvenberinfoslitr = castState.di mvenberlinfos.iterator();
whi | e (di mvenberlnfosltr.hasNext())
{
MinDi nensi onMenber | nf o ndnDi mveni nfo =
(MinDi nensi onMenber | nf o) di mvenber I nfosltr. next();
MinHi erarchy mdnHi er = ndnDi mvend nf 0. get Hi erar chy();
StringSource hierSrc = (StringSource) nunHier. get Source();
Source nember Sel = hierSrc. sel ect Val ue(mdnDi mver nf 0. get Uni queVal ue());
/1 Join the Source objects for the selected dinension menbers
/1 to the neasure.
result = result.joinH dden(menber Sel);
1
return result;
}

B-5

Index

A attributes (continued)
specifying target dimension for, 2-24

access to metadata objects unique key, 2-28

restricting, 2-13 AW objects
addObjectClassification method, 2-8 creating, 4-2
aggregate levels of a hierarchy, 2-21 naming, 2-3
AggregationCommand objects AWCubeOrganization class, 2-16

example of creating, 4-8 AWCubeOrganization objects
alias method example of creating, 4-8

description, 6-1 AWPrimaryDimensionOrganization objects

example of, 6-3 creating, 4-3
ALL metadata reader mode, 2-5
Analytic Workspace Manager, 1-5 B
analytic workspaces

building, 1-5 base Source

building, example of, 4-11 definition, 5-4, 6-1

creating, 4-2 of a join operation, 5-6

sample, 1-6 BaseExamplellg.java example program, 1-7
ancestors attribute BaseMetadataObject class, 2-3

example of getting, 6-11 basic Source methods, 6-1

method for getting, 2-20 bind variables
appendValues method, 5-18 in XML templates, 2-11

example of, 6-4 Buildable interface, 2-19
applications building analytic workspaces, 1-5

requirements for developing, A-1 example of, 4-11

typical tasks performed by, 1-8 Buildltem objects
ascending creating, 4-11

comparison rules in a join operation, 5-7 BuildProcess objects
asymmetric result set, Cursor positions in an, creating, 4-11

8-10

at method

example of, 6-17 C
AttributeMap objects Cartesian product

creating, 4-3 result of joining unrelated Source objects, 5-6
attributes _ class libraries

as dimensional data objects, 1-4 obtaining, A-2

creating, 4-7

classifying metadata objects, 2-8
ColumnExpression objects

creating, 4-3
. committing transactions, 4-10
mapping, example of, 4-3 comparison parameter
multiingual, 2-26 . of the join method, 5-7
prefixes for in materialized views, 2-28 COMPARISON RULE ASCENDING
represented by MdmaAttribute objects, 2-22 example of. 6-8, 6-19

specifying language for, 2-25 COMPARISON_RULE_ASCENDING_NULLS_FIRST

creating an index for, 2-25
grouping, 2-25
mapping, 4-8

ORACLE Index-1

Index

COMPARISON_RULE_ASCENDING_NULLS_FIRST (contirwesgtab view (continued)

example of, 6-8
COMPARISON_RULE_DESCENDING
example of, 6-5

COMPARISON_RULE_DESCENDING_NULLS_FIRST

example of, 6-8
COMPARISON_RULE_REMOVE

description, 5-7

example of, 5-9, 6-6, 6-12
COMPARISON_RULE_SELECT

description, 5-7

example of, 5-9, 5-10, 5-16
comparisonRule parameter

of a join method, 5-7
CompoundCursor objects

getting children of, example, 9-3

navigating for a crosstab view, example, 9-7,

9-8

navigating for a table view, example, 9-6

positions of, 8-8
connections

closing, 3-3

creating, 3-2

prerequisites for, 3-1
consistent cube, 2-16
ConsistentSolveCommand objects

contained by a ConsistentSolveSpecification,

2-16

example of creating, 4-8
ConsistentSolveSpecification objects

associated with an MdmCube, 2-16
container

of a BaseMetadataObject, 2-3
Contextllg.java example program, 1-7
count method

example of, 5-15
CreateAndBuildAW .java example program, 1-7
createCursor method, 8-1

example of, 6-24, 8-11, 9-1, 9-3
createCursorManager method, 8-1, 8-6

example of, 6-24, 8-11, 9-1
createListSource method

example of, 5-19, 6-14, 6-21, 6-22
createParameterizedSource method

example of, 5-18
createRangeSource method

example of, 6-6
createRootTransaction method, 7-1
createSource method, 5-18

example of, 5-19, 6-14, 6-23
createSQLCursorManager method, 8-6
CreateValueHierarchy.java example program,

4-5

crosstab view

example of, 6-3

ORACLE

navigating Cursor for, example, 9-7, 9-8
CubeDimensionalityMap objects
contained by a CubeMap, 2-16
creating, 4-9
CubeMap objects
creating, 4-9
specifying a Query for, 2-15
CubeOrganization objects
contained by an MdmCube, 2-16
cubes
as dimensional data objects, 1-3
consistent, 2-16
creating, 4-8
example of, 6-14
metadata object representing, 2-15
current position in a Cursor, definition, 8-7
current Transaction, 7-2, 7-6
Cursor objects
created in the current Transaction, 8-2
creating, 8-1
creating, example of, 6-14, 9-1
current position, definition, 8-7
CursorManager objects for creating, 8-6
extent calculation, example, 9-13
extent, definition, 8-12
faster and slower varying components, 8-3
fetch size, definition, 8-13
getting children of, example, 9-3
getting the values of, examples, 9-2
parent starting and ending position, 8-12
position, 8-7
retrieving data with, 1-6
Source objects for which you cannot create,
8-1
span, definition, 8-12
specifying fetch size for a table view,
example, 9-16
specifying the behavior of, 8-4, 9-12
starting and ending positions of a value,
example of calculating, 9-14
structure, 8-2
cursor package
description, 1-2
CursorinfoSpecification interface, 8-5
CursorManager class, 8-6
CursorManager objects
closing before rolling back a Transaction, 7-7
creating, 8-1
creating, example of, 6-14, 9-1
updating the CursorManagerSpecification,
8-6
CursorPrintWriter.java example program, 1-7
CursorSpecification class, 8-5
CursorSpecification objects

Index-2

CursorSpecification objects (continued)
getting from a CursorManagerSpecification,
example, 9-12

D

data
retrieving, 1-6, 8-1
specifying, 1-6, 5-1
data objects
first-class, 2-8
data store
definition, 1-5
exploring, 3-3
gaining access to data in, 1-5, 2-14, 3-3
scope of, 3-3
data types, 5-3
converting, 6-1
of Source objects, 5-3
See also SQL data types
data warehouse, 1-5
database schemas
represented by MdmDatabaseSchema
objects, 2-13
DataProvider objects
creating, 3-2
needed to create MdmMetadataProvider, 3-4
deployment package
description, 1-2
derived Source objects
definition, 5-2
descending
comparison rules in a join operation, 5-7
descriptions
metadata objects for, 2-5
types provided by API, 2-5
dimension levels
mapping, 4-3
metadata object for, 2-20
dimensional data model
associations between classes, 2-14
description, 1-3
designing an OLAP, 1-5
implementing, 1-5
objects corresponding to MDM objects, 2-2
star schema as a, 1-5
dimensioned Source
definition, 5-12
dimensions
as dimensional data objects, 1-4
creating, 4-2
dimensioning measures, 2-18
MdmDimension classes, 2-18
MdmDimension objects, 4-2
member value formatting, 1-6

ORACLE

Index

dimensions (continued)
metadata objects representing, 2-19
distinct method
description, 6-1
example of, 6-4
div method
example of, 6-20
drilling in a hierarchy
example of, 6-17
dynamic queries, 10-1
dynamic Source objects
definition, 5-2
example of getting, 10-9
produced by a Template, 10-1
DynamicDefinition class, 10-4

E

edges of a cube

creating, 4-2

definition, 1-3

pivoting, example of, 6-14
elements

of a Source, 5-3
empty Source objects

definition, 5-2
EnableMVs.java example program, 2-28
end date

attribute, 2-24

of a time dimension, 2-19
ET views, 2-28

embedded total views for OLAP metadata

objects, 2-28
See also OLAP views

example programs

compressed file containing, 1-7

sample schema for, 1-6
executeBuild method

example of, 4-11
exportFullXML methods

description, 2-10

example of, 4-11
exportincrementalXML methods

description, 2-10
exporting XML templates, 2-10, 4-11
Expression objects

creating, 4-3

example of, 4-9
extent of a Cursor

definition, 8-12

example of calculating, 9-13

use of, 8-12
extract method, 5-12

description, 6-13

example of, 5-19, 6-13, 6-21, 6-22

extraction input
definition, 5-13

F

faster varying Cursor components, 8-3
fetch size of a Cursor
definition, 8-13
example of specifying, 9-16
reasons for specifying, 8-13
findOrCreateAttributeMap method, 2-25, 4-8
example of, 4-3, 4-4
findOrCreateAW method, 2-3
example of, 4-2
findOrCreateAWCubeOrganization method
example of, 4-8
findOrCreateAWPrimaryDimensionOrganization
method
example of, 4-3
findOrCreateBaseAttribute method
description, 2-24
example of, 4-7
findOrCreateBaseMeasure method, 2-15
example of, 2-34, 4-9
findOrCreateCube method
example of, 2-29, 4-8
findOrCreateCubeDimensionalityMap method
example of, 4-10
findOrCreateDerivedMeasure method, 2-15
findOrCreateDescription method, 2-5
findOrCreateDimensionLevel method, 2-20
example of, 4-3, 4-4
findOrCreateHierarchylLevel method
example of, 4-5
findOrCreatelLevelHierarchy method
example of, 2-31
findOrCreateMeasureMap method
example of, 4-9
findOrCreateMemberListMap method
example of, 4-3
findOrCreateStandardDimension method, 2-5
example of, 4-3
first-class data objects, 2-8
fromSyntax method
example of, 4-3
fundamental Source objects
definition, 5-2
for data types, 5-3
FundamentalMetadataObject class
representing data types, 5-3
FundamentalMetadataProvider objects
example of, 5-4

ORACLE

Index

G

generated SQL, getting, 8-1
getAncestorsAttribute method, 2-20
getAttributeGroupName method, 2-25
getContainedByObject method, 2-3
getDataType method

of a Source, 5-3

of a Source, example of, 6-5, 6-8, 6-19
getEmptySource method, 5-2

example of, 5-8
getETAttributeColumn method, 2-24
getlD method

example of, 5-19

of a BaseMetadataObject, 2-4

of a Source, 5-5
getlnputs method, 5-12
getLevelAttribute method

example of, 6-6
getMdmMetadataProvider method

example of, 3-4
getMetadataObject method, 2-9
getMetadataObjects method, 2-9
getNewName method, 2-4
getOutputs method, 5-8
getOwner method, 2-3
getParentAttribute method, 2-20
getRootSchema method, 2-8
getSource method

example of, 3-9, 6-6, 6-17

for getting Source produced by a Template,

example, 10-9

in DynamicDefinition class, 10-1
getTopLevelObject method, 2-13

example of, 4-9
getType method, 5-4
getValidNamespaces method, 2-5
getVoidSource method, 5-2
Global schema for example programs, 1-6
GLOBAL_AWJ sample analytic workspace, 1-6
grouping attributes, 2-25
gt method

of a Source, example of, 6-3

H

hierarchical sorting
example of, 6-19

hierarchies
as dimensional data objects, 1-4
creating, 4-4
lineage in materialized views, 2-16
lineage in OLAP views, 2-26
ragged, 2-21
skip-level, 2-21

Index-4

ID, 2-4
getting metadata objects by, 2-9
of a metadata object, 2-4
of a Source, 5-5
See also unique identifiers
importing XML templates, 2-11, 4-11
importXML methods
description, 2-11
indexes
for attributes, 2-25
inputs
of a derived Source, 5-12
of a primary Source, 5-12
of a Source
definition, 5-11
deriving with the value method, 5-15,
5-16
matching with a Source, 5-13
obtaining, 5-12
types of, 5-13
interval method
example of, 6-23
isSubType method
example of, 5-4

J

Index

legacy metadata objects (continued)
supporting, 2-4
level-based hierarchy, 2-21
levels
as dimensional data objects, 1-4
creating, 4-4
MdmDimensionLevel objects, 2-20
lineage
populating attribute hierarchy values, 2-26
list Source objects
definition, 5-2
example of creating, 6-6
local dimension member values, 1-6

M

Java archive (JAR) files, required, A-1
Java Development Kit, version required, A-1
JDBC
creating connections, 3-2
libraries required, A-1
join method
description, 5-6, 6-2
examples of, 6-2
full signature, 5-6
rules governing matching an input with a
Source, 5-13
joined parameter
of a join method, 5-6
joinHidden method
example of, 5-11, 6-20, 6-22

L

lag method
example of, 6-21
languages
specifying for an attribute, 2-25
leaves of a hierarchy
defined, 2-21
legacy metadata objects
namespaces for, 2-5

ORACLE

mapping

dimension levels, 4-3

hierarchy levels, 4-4

measures, 4-9

objects contained by an MdmCube, 2-16
mapping package

description, 1-2
matching an input with a Source

example of, 5-15, 5-16

rules governing, 5-13
materialized views

for a cube, 2-16

for OLAP metadata, 2-28

including hierarchy lineage, 2-16

populating attribute hierarchy lineage for,

2-26

prefixes for attribute columns in, 2-28
MDM metadata model

description, 2-2
mdm package

description, 1-2
MdmAttribute objects

creating, 4-7

description, 2-22

example of the values of, 2-23

inputs of, 5-12
MdmBaseAttribute class

description, 2-24
MdmBaseAttribute objects

creating, 2-24, 4-7

mapping, 2-25, 4-8

mapping, example of, 4-3
MdmBaseMeasure objects

creating, 4-9

description, 2-17
MdmCube class

description, 2-15
MdmCube objects

associations, 2-16

MdmCube objects (continued)
corresponding to a fact table or view, 2-15
example of creating, 4-8

MdmDatabaseSchema objects
creating, 4-2
definition, 2-13
owner of top-level objects, 2-8

MdmDerivedAttribute class
description, 2-28

MdmDerivedMeasure objects
description, 2-18

MdmDescription objects, 2-5
associations, 2-5

MdmDescriptionType objects
associations, 2-5
creating, 2-5

MdmDimension classes
description, 2-18

MdmDimension objects
creating, 4-2
example of getting related objects, 3-7, 3-8
related MdmAttribute objects, 2-22

MdmDimensionLevel objects
creating, 4-3
description, 2-20

MdmHierarchy class, 2-20

MdmHierarchy objects
creating, 4-4

MdmHierarchyLevel class
description, 2-22

MdmHierarchyLevel objects
creating, 4-4
mapping, 4-4

MdmLevelHierarchy objects
creating, 4-4
description, 2-21

MdmMeasure objects
creating, 4-9
description, 2-17
inputs of, 5-12
origin of values, 2-18

MdmMemberListMapOwner interface
implemented by MdmPrimaryDimension,

2-19

MdmMetadataProvider class

associations with MdmSchema subclasses,
2-13

MdmMetadataProvider objects
creating, 3-4
description, 2-8, 3-4

MdmObject class
10g accessor methods for descriptions, 2-5
11g methods for descriptions, 2-5
associations with descriptions, 2-5

MdmOrganizationalSchema objects

ORACLE

Index

MdmOrganizationalSchema objects (continued)
description, 2-14
MdmPrimaryDimension class
interfaces implemented by, 2-19
MdmPrimaryDimension objects
creating, 4-3
description, 2-19
MdmQuery interface
implemented by MdmPrimaryDimension,
2-20
MdmRootSchema class, 2-8
MdmRootSchema objects
description, 2-12
MdmSchema class
associations between subclass and
MdmMetadataProvider, 2-13
MdmSchema objects
getting contents of, 3-6
subclasses of, 2-12
MdmSingleValuedAttribute class
description, 2-23
MdmSource class, 2-15
MdmStandardDimension objects
creating, 4-3
description, 2-19
MdmSubDimension class, 2-20
MdmTable objects
getting, 2-13, 4-9
MdmTimeDimension objects
creating, 4-3
description, 2-19
MdmValueHierarchy class
description, 2-22
MdmValueHierarchy objects
example of, 4-5
MdmViewColumn class, 2-3
MdmViewColumn objects, 2-24
MdmViewColumnOwner interface, 2-3
implemented by MdmPrimaryDimension,
2-19
measure folders
represented by MdmOrganizationalSchema
objects, 2-14
MeasureMap objects
contained by a CubeMap, 2-16
creating, 4-9
measures
as dimensional data objects, 1-3
creating, 4-9
dimensioned by dimensions, 2-18
getting values from, 5-14
MdmMeasure objects representing, 2-17
sources of data for, 2-17
MemberListMap objects
creating, 4-3

Index-6

members
of an MdmDimension, 2-18
of an MdmDimensionLevel, 2-20
metadata
creating, 4-1
creating a provider, 3-4
discovering, 3-3
mapping, 4-1
metadata model
implementing, 1-5
MDM, 2-2
metadata objects
classifying, 2-8
creating OLAP, 1-5
getting and setting names for, 2-3
getting by ID, 2-9
in example programs, 1-7
OLAP, 1-5
renaming, 2-4
representing data sources, 2-14
restricting access to, 2-13
supporting legacy, 2-4
top-level, 2-13
unique identifiers of, 2-4
metadata package
description, 1-2
subpackages, 2-2
metadata reader modes, 2-4
MetadataObject interface
implemented by MdmPrimaryDimension,
2-19
MetadataState class, 10-3
example of implementation, 10-7
movingTotal method
example of, 6-22
multidimensional metadata objects
corresponding to dimensional data model
objects, 2-2
corresponding to relational objects, 2-2
multilingual attributes, 2-26
multiple user sessions, 1-1

N

names
getting and setting for metadata objects, 2-3
namespaces
description, 2-5
nested outputs
getting values from a Cursor with, example,
9-4
of a Source, definition, 9-2
null Source objects
definition, 5-2
nullSource method, 5-2

ORACLE

Index

NumberParameter objects
example of, 6-23

O

ojdbcé.jar file, A-2
OLAP Java API
description, 1-1
required class libraries, A-1
sample schema for examples, 1-6
software components, A-1
uses of, 1-1, 1-8
OLAP metadata, 1-5
OLAP metadata objects, 1-5
OLAP views,
description, 2-28
getting name of cube view, 2-28
getting name of dimension or hierarchy view,
2-29
populating attribute hierarchy lineage in, 2-26
olap_api.jar file, A-2
Oracle OLAP
database administration and management
tasks related to, 1-1
Oracle Technology Network (OTN), 1-6
ORACLE_HOME environment variable, A-2
OracleConnection objects
creating, 3-2
OracleDataSource objects
creating, 3-2
outputs
getting from a CompoundCursor, example,
9-3
getting from a
CompoundCursorSpecification,
example, 9-12
getting nested, example, 9-4
in a CompoundCursor, 8-2, 8-12
positions of, 8-8
of a Source
definition, 5-7
hiding, 5-11
obtaining, 5-8
order of, 6-3
producing, 5-8
owner
of a BaseMetadataObject, 2-3

P

package attribute
MdmAttribute for the PRODUCT_AWJ
dimension, 2-23
packages
in the OLAP Java API, 1-2

packages (continued)
metadata, 2-2
Parameter objects
description, 5-18
example of, 5-18, 6-14, 6-23
parameterized Source objects
definition, 5-2
description, 5-18
example of, 5-18, 6-14, 6-23
parent attribute
method for getting, 2-20
parent-child relationships
in a level hierarchy, 2-20
in hierarchies, 2-20
pivoting cube edges, example of, 6-14
position method, 5-12
description, 6-2
example of, 6-6
positions
of a CompoundCursor, 8-8
of a Cursor, 8-7
of a ValueCursor, 8-7
parent starting and ending, 8-12
prefixes

for attribute column in materialized view, 2-28

primary Source objects

definition, 5-2

result of getSource method, 3-9
privileges

specifying, 1-5

Q

gueries
creating using Source methods, 6-1
definition, 1-4
dynamic, 10-1
represented by Source objects, 1-6, 5-1
retrieving data specified by, 1-6
Source objects that are not, 8-1
specifying data, 1-6
SQL, of OLAP views, 2-28
steps in retrieving results of, 9-1
Query class, 1-5
Query objects
associating with a CubeMap, 2-15
creating, 4-9
query rewrite, 2-16

R

ragged hierarchies, 2-21
range Source objects
definition, 5-2
example of creating, 6-6

ORACLE

Index

read Transaction object, 7-2
recursiveJoin method

description, 6-2

example of, 6-7, 6-19

signature of, 5-1
regular input

definition, 5-13
relating Source objects

with inputs, 5-11
relational objects

corresponding to MDM objects, 2-2
relational schemas

for a data warehouse, 1-5

represented by MdmDatabaseSchema

objects, 2-13

sample, 1-6
relations

reversing with the value method, 6-11, 6-17
removeValue method

example of, 6-12
removing

elements in a join operation, 5-7
resource package

description, 1-2
reversing relations

example of, 6-11, 6-17
REWRITE_MV_OPTION, 2-16
REWRITE_WITH_ATTRIBUTES_MV_OPTION,

2-16

root schema, 2-8, 2-12
root Transaction

definition, 7-1
rotating cube edges, example of, 6-14

S

sample analytic workspace, 1-6
sample schema
used by examples, 1-6
schemas
getting MdmDatabaseSchema for, 4-2
metadata objects representing, 2-12
represented by MdmDatabaseSchema
objects, 2-13
sample, 1-6
star, 1-5
selecting
by position, 6-23
by time series, 6-21
by value, 6-4, 6-10, 6-14, 6-20
elements to include in a join operation, 5-7
selectValue method
example of, 6-4, 6-14, 6-20
selectValues method
example of, 5-18, 6-10, 6-14

Index-8

session package
description, 1-2
sessions
creating a UserSession object, 3-2
sharing connection, 1-1
setAllowAutoDataTypeChange method, 2-17,
2-25
example of, 4-7, 4-9
setConsistentSolveSpecification method, 2-16
example of, 4-9
setCreateAttributelndex method, 2-25
setETAttrPrefix method, 2-28
setExpression method
example of, 4-3
setJoinCondition method, 2-16
setKeyExpression method
example of, 4-3
setLanguage method, 2-25
setMultiLingual method, 2-26
setName method, 2-4
setPopulateLineage method, 2-26
setQuery method
example of, 4-3
setShortValueDescriptionAttribute method, 2-24
setTimeSpanAttribute method, 2-24
setValue method
of a Parameter, example of, 5-19, 6-14, 6-23
of an MdmDescription, 2-5
setValueDescriptionAttribute method
example of, 4-7
sharing connection, 1-1
SID (system identifier), 3-2
SingleSelectionTemplate class, 7-4, 7-7, 10-9,
B-1
skip-level hierarchies, 2-21
slower varying Cursor components, 8-3, 8-10
sort order
determined by comparisonRule parameter,
5-7
sortAscending method
example of, 6-20
sorting hierarchically
example of, 6-19
Source class
basic methods, 6-1
subclasses of, 5-3
Source objects
active in a Transaction object, 8-2
base of a join operation, 5-6
data type
definition, 5-3
getting, 5-4
dimensioned, 5-12
elements of, 5-3
getting ID of, 5-5

ORACLE

Index

Source objects (continued)
inputs of
a derived, 5-12
a primary, 5-12
definition, 5-11
matching with a Source, 5-13
obtaining, 5-12
types, 5-13
kinds of, 5-2
methods of getting, 5-2
modifiable, 10-1
outputs of
definition, 5-7
obtaining, 5-8
parameterized, 5-18
representing queries, 1-6, 5-1
SourceDefinition for, 5-5
subtype
definition, 5-4
obtaining, 5-4
type
definition, 5-4
obtaining, 5-4
source package
description, 1-2
SourceDefinition class, 5-5, 10-1
SourceGenerator class, 10-3
example of implementation, 10-8
span of a value in a Cursor
definition, 8-12, 9-13
SpecifyAWValues.java
example program, 1-7
SQL
getting generated, 1-9, 8-1
gueries of OLAP objects, 2-8, 2-13
gueries of OLAP views, 2-28
SQL data types,
allowing automatic changing of, 2-17, 2-25
specifying for an MdmBaseAttribute, 2-25
specifying for an MdmBaseMeasure, 2-17
SQLCursorManager class, 1-9, 8-6
star schema, 1-5
StringParameter objects
example of, 5-18, 6-14
subtype of a Source object
definition, 5-4
matching an input, 5-16
obtaining, 5-4
syntax package
description, 1-3

T

table view
navigating Cursor for, example, 9-6

target dimension

of an attribute, 2-24
Template class, 10-3

designing, 10-4

example of implementation, 10-5
Template objects

classes used to create, 10-2

for creating modifiable Source objects, 10-1
relationship of classes producing a dynamic

Source, 10-2

Transaction objects used in, 7-3
templates

bind variables in XML, 2-11

exporting XML, 2-10, 4-11

importing XML, 2-11, 4-11
time series

selecting based on, 6-21
time span

attribute, 2-24

of a time dimension, 2-19
times method

example of, 6-20
top-level metadata objects

creating, 2-13

defined, 2-8

getting, 2-13

listed, 2-13
TopBottomTemplate class, 7-4, 7-7, 10-5
Transaction objects

child read and write, 7-2

committing, 4-10, 7-2

creating a Cursor in the current, 8-2

current, 7-2

example of using child, 7-7

getting the current, 7-6

preparing, 7-2

read, 7-2

rolling back, 7-4

root, 7-1

setting the current, 7-6

using in Template classes, 7-3

write, 7-2
transaction package

description, 1-3
TransactionProvider

provided by DataProvider, 7-6
tuple

definition, 2-18

in a Cursor, example, 9-5

specifying a measure value, 8-8
type of an Source object

definition, 5-4

obtaining, 5-4

ORACLE

U

Index

unique dimension member values, 1-6
unique identifiers,

of a Source, 5-5

of dimension members, 1-6

of metadata objects, 2-4
unique key attributes, 2-28
UserSession objects

creating, 3-2

sharing connection, 1-1

Vv

Value data type, 5-2
value method, 5-12
description, 6-2

example of, 5-15, 5-16, 6-6, 6-10, 6-11, 6-17

value separation string, 1-6
value-based hierarchy, 2-22
ValueCursor objects
getting from a parent CompoundCursor,
example, 9-3
getting values from, example, 9-2, 9-3
position, 8-7
values
of a Cursor, 8-2, 8-7
of the elements of a Source, 5-3
views
materialized, 2-28
OLAP, 2-28
virtual Cursor
definition, 8-13
visible parameter
of a join method, 5-7
void Source objects
definition, 5-2

W

write Transaction object, 7-2

X

XML templates
bind variables in, 2-11
controlling attribute export, 2-10
exporting, 2-10, 4-11
importing, 2-11, 4-11
XMLParserCallback interface, 2-9
xmlparserv2.jar file, A-2
XMLWriterCallback interface, 2-10

Index-10

	Contents
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle OLAP Java API Developer's Guide
	Changes in Oracle Database 12c Release 1 (12.1)
	Desupported Features

	1 Introduction to the OLAP Java API
	OLAP Java API Overview
	What the OLAP Java API Can Do
	Describing the Classes in the OLAP Java API
	Describing the Dimensional Data Model
	Implementing the Dimensional Data Model
	Organizing the Data for OLAP

	Accessing Data Through the OLAP Java API
	Creating Queries
	Specifying Dimension Members
	Creating Cursors

	Sample Schema for OLAP Java API Examples
	Tasks That an OLAP Java API Application Performs

	2 Understanding OLAP Java API Metadata
	Overview of OLAP Java API Metadata Classes
	Identifying, Describing, and Classifying Metadata Objects
	Identifying Objects
	Getting and Setting Names
	Describing Unique Identifiers
	Supporting Legacy Metadata Objects
	Supporting Legacy Applications
	Describing Namespaces

	Using Descriptions
	Using Classifications

	Providing Metadata Objects
	Describing Metadata Providers
	Getting Metadata Objects by ID
	Exporting and Importing Metadata as XML Templates
	Exporting XML Templates
	Importing XML Templates
	Describing Bind Variables in XML Templates

	Representing Schemas
	Representing the Root Schema
	Representing Database Schemas
	Representing Organizational Schemas

	Providing Access to Data Sources
	Representing Cubes and Measures
	Representing Cubes
	Representing Measures

	Representing Dimensions, Levels, and Hierarchies
	Representing Dimensions
	Representing Dimension Levels
	Representing Hierarchies
	Representing a Level-based Hierarchy
	Representing a Value-based Hierarchy

	Representing Hierarchy Levels

	Representing Dimension Attributes
	Describing the MdmAttribute Class
	Describing Types of Attributes
	Associating an Attribute with an MdmSubDimension
	Getting MdmAttribute Objects
	Specifying a Target Dimension

	Describing the MdmBaseAttribute Class
	Specifying a Data Type
	Grouping Attributes
	Creating an Index
	Specifying a Language for an Attribute
	Specifying Multilingual Attributes
	Populating OLAP Views with Hierarchical Attribute Values
	Preparing Attributes for Materialized Views

	Describing the MdmDerivedAttribute Class

	Using OLAP Views
	Getting Cube View and View Column Names
	Getting Dimension and Hierarchy View and View Column Names
	Using OLAP View Columns
	Using Source Objects

	3 Discovering Metadata
	Connecting to Oracle OLAP
	Prerequisites for Connecting
	Establishing a Connection
	Creating a JDBC Connection
	Creating a DataProvider and a UserSession

	Closing the Connection and the DataProvider

	Overview of the Procedure for Discovering Metadata
	Purpose of Discovering the Metadata
	Steps in Discovering the Metadata

	Creating an MdmMetadataProvider
	Getting the MdmSchema Objects
	Getting the Contents of an MdmSchema
	Getting the Objects Contained by an MdmPrimaryDimension
	Getting the Hierarchies and Levels of an MdmPrimaryDimension
	Getting the Attributes for an MdmPrimaryDimension

	Getting the Source for a Metadata Object

	4 Creating Metadata and Analytic Workspaces
	Overview of Creating and Mapping Metadata
	Creating an Analytic Workspace
	Creating the Dimensions, Levels, and Hierarchies
	Creating and Mapping Dimensions
	Creating and Mapping Dimension Levels
	Creating and Mapping Hierarchies
	Creating and Mapping an MdmLevelHierarchy
	Creating and Mapping an MdmValueHierarchy

	Creating Attributes
	Creating Cubes and Measures
	Creating Cubes
	Creating and Mapping Measures

	Committing Transactions
	Exporting and Importing XML Templates
	Building an Analytic Workspace

	5 Understanding Source Objects
	Overview of Source Objects
	Kinds of Source Objects
	Characteristics of Source Objects
	Elements and Values of a Source
	Data Type of a Source
	Type of a Source
	Source Identification and SourceDefinition of a Source

	Inputs and Outputs of a Source
	Describing the join Method
	Describing the joined Parameter
	Describing the comparison Parameter
	Describing the comparisonRule Parameter
	Describing the visible Parameter

	Outputs of a Source
	Producing a Source with an Output
	Using COMPARISON_RULE_SELECT
	Using COMPARISON_RULE_REMOVE
	Producing a Source with Two Outputs
	Hiding an Output

	Inputs of a Source
	Primary Source Objects with Inputs
	Deriving a Source with an Input
	Type of Inputs

	Matching a Source with an Input
	Matching the Input of the Source for an MdmAttribute
	Matching the Inputs of a Measure
	Using the value Method to Derive a Source with an Input
	Using the value Method to Select Values of a Source
	Using the extract Method to Combine Elements of Source Objects

	Describing Parameterized Source Objects

	6 Making Queries Using Source Methods
	Describing the Basic Source Methods
	Using the Basic Methods
	Using the alias Method
	Using the distinct Method
	Using the join Method
	Using the position Method
	Using the recursiveJoin Method
	Using the value Method
	Selecting Elements of a Source
	Reversing a Relation

	Using Other Source Methods
	Using the extract Method
	Creating a Cube and Pivoting Edges
	Drilling Up and Down in a Hierarchy
	Sorting Hierarchically by Measure Values
	Using NumberSource Methods To Compute the Share of Units Sold
	Selecting Based on Time Series Operations
	Selecting a Set of Elements Using Parameterized Source Objects

	7 Using a TransactionProvider
	About Creating a Metadata Object or a Query in a Transaction
	Types of Transaction Objects
	Committing a Transaction
	About Transaction and Template Objects
	Beginning a Child Transaction
	About Rolling Back a Transaction
	Getting and Setting the Current Transaction

	Using TransactionProvider Objects

	8 Understanding Cursor Classes and Concepts
	Overview of the OLAP Java API Cursor Objects
	Creating a Cursor
	Sources For Which You Cannot Create a Cursor
	Cursor Objects and Transaction Objects

	Cursor Classes
	Structure of a Cursor
	Specifying the Behavior of a Cursor

	CursorInfoSpecification Classes
	CursorManager Class
	Updating the CursorInfoSpecification for a CursorManager

	About Cursor Positions and Extent
	Positions of a ValueCursor
	Positions of a CompoundCursor
	About the Parent Starting and Ending Positions in a Cursor
	What is the Extent of a Cursor?

	About Fetch Sizes

	9 Retrieving Query Results
	Retrieving the Results of a Query
	Getting Values from a Cursor

	Navigating a CompoundCursor for Different Displays of Data
	Specifying the Behavior of a Cursor
	Calculating Extent and Starting and Ending Positions of a Value
	Specifying a Fetch Size

	10 Creating Dynamic Queries
	About Template Objects
	About Creating a Dynamic Source
	About Translating User Interface Elements into OLAP Java API Objects

	Overview of Template and Related Classes
	What Is the Relationship Between the Classes That Produce a Dynamic Source?
	Template Class
	MetadataState Interface
	SourceGenerator Interface
	DynamicDefinition Class

	Designing and Implementing a Template
	Implementing the Classes for a Template
	Implementing an Application That Uses Templates

	A Setting Up the Development Environment
	Overview
	Required Class Libraries
	Obtaining the Class Libraries

	B SingleSelectionTemplate Class
	Code for the SingleSelectionTemplate Class

	Index

