
Oracle® Label Security
Administrator's Guide

18c
E87129-08
October 2023



Oracle Label Security Administrator's Guide, 18c

E87129-08

Copyright © 2006, 2023, Oracle and/or its affiliates.

Primary Author: Sumit Jeloka

Contributors: Chi Ching Chui, Rishabh Gupta, John Kati, Lakshmi Kethana, Gopal Mulagund, Paul Needham,
Hozefa Palitanawala, Vikram Pesati, Amoghavarsha Ramappa, Saikat Saha, Digvijay Sirmukaddam, Srividya
Tata, Kamal Tbeileh, Peter Wahl

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xx

Documentation Accessibility xx

Related Documentation xxi

Conventions xxi

 Changes in This Release for Oracle Label Security Administrator's
Guide

Changes in Oracle Database 18c xxii

Changes in Oracle Database 12c Release 2 (12.2) xxiii

Part I   Getting Started with Oracle Label Security

1   Introduction to Oracle Label Security

1.1 About Oracle Label Security 1-1

1.2 Benefits of Oracle Label Security 1-2

1.3 Who Has Privileges to Use Oracle Label Security? 1-2

1.4 Duties of Oracle Label Security Administrators 1-2

1.5 Components of Oracle Label Security 1-3

1.6 Oracle Label Security Architecture 1-4

1.7 Oracle Label Security Administrative Interfaces 1-5

1.7.1 Oracle Label Security Packages 1-5

1.7.2 Oracle Label Security Demonstration File 1-6

1.7.3 Oracle Enterprise Manager Cloud Control 1-6

1.8 How Oracle Label Security Works with Other Oracle Products 1-7

1.8.1 Oracle Label Security Integration with Oracle Internet Directory 1-7

1.8.2 Oracle Label Security Integration in a Multitenant Environment 1-7

iii



2   Understanding Data Labels and User Labels

2.1 About Label-Based Security 2-1

2.2 About User Label and Privilege Management 2-2

2.3 Label Components 2-2

2.3.1 Label Component Definitions and Valid Characters 2-3

2.3.2 Level Sensitivity Components 2-4

2.3.3 Compartment Components 2-5

2.3.4 Group Components 2-7

2.3.5 Industry Examples of Levels, Compartments, and Groups 2-8

2.4 Label Syntax and Type 2-9

2.5 How Data Labels and User Labels Work Together 2-10

2.6 Administration of Labels 2-12

3   Access Controls and Privileges

3.1 Access Mediation 3-1

3.2 How the Session Label and Row Label Work 3-2

3.2.1 The Session Label 3-2

3.2.2 The Row Label 3-3

3.2.3 Session Label Example 3-3

3.3 How User Authorizations Work 3-4

3.3.1 Authorizations Set by the Administrator 3-4

3.3.1.1 Authorized Levels 3-5

3.3.1.2 Authorized Compartments 3-5

3.3.1.3 Authorized Groups 3-6

3.3.2 Computed Session Labels 3-7

3.4 Evaluation of Labels for Access Mediation 3-8

3.4.1 About Read and Write Access 3-8

3.4.1.1 Difference Between Read and Write Operations 3-8

3.4.1.2 Propagation of Read/Write Authorizations on Groups 3-8

3.4.2 How Oracle Label Security Algorithm for Read Access Works 3-9

3.4.3 How the Oracle Label Security Algorithm for Write Access Works 3-11

3.5 Oracle Label Security Privileges 3-13

3.5.1 Privileges Defined by Oracle Label Security Policies 3-13

3.5.2 Special Access Privileges 3-14

3.5.2.1 READ Privilege 3-14

3.5.2.2 FULL Privilege 3-15

3.5.2.3 COMPACCESS Privilege 3-15

3.5.2.4 PROFILE_ACCESS Privilege 3-16

3.5.3 Special Row Label Privileges 3-16

3.5.3.1 WRITEUP Privilege 3-17

iv



3.5.3.2 WRITEDOWN Privilege 3-17

3.5.3.3 WRITEACROSS Privilege 3-17

3.5.4 System Privileges, Object Privileges, and Policy Privileges 3-17

3.5.5 Access Mediation and Views 3-18

3.5.6 Access Mediation and Program Unit Execution 3-18

3.5.7 Access Mediation and Policy Enforcement Options 3-19

3.6 Working with Multiple Oracle Label Security Policies 3-20

3.6.1 Multiple Oracle Label Security Policies in a Single Database 3-20

3.6.2 Multiple Oracle Label Security Policies in a Distributed Environment 3-20

Part II   Using Oracle Label Security Functionality

4   Registering and Logging in to Oracle Label Security

4.1 Registering Oracle Label Security with an Oracle Database 4-1

4.1.1 About Registering Oracle Label Security 4-1

4.1.2 Checking if Oracle Label Security Has Been Registered and Enabled 4-2

4.1.3 Registering and Enabling Oracle Label Security from SQL*Plus 4-2

4.1.4 Registering and Enabling Oracle Label Security Using DBCA 4-3

4.2 Security Guideline for Managing the LBACSYS User and the LBAC_DBA Role 4-4

4.3 Logging in to Cloud Control or SQL*Plus for Oracle Label Security 4-4

4.3.1 Logging in to Oracle Label Security from Enterprise Manager Cloud Control 4-4

4.3.2 Logging in to Oracle Label Security from SQL*Plus 4-5

5   Creating an Oracle Label Security Policy

5.1 About Creating Oracle Label Security Policies 5-1

5.2 Step 1: Create the Label Security Policy Container 5-2

5.2.1 About the Label Security Policy Container 5-2

5.2.2 Creating a Label Policy Container 5-2

5.3 Step 2: Create Data Labels for the Label Security Policy 5-3

5.3.1 About Data Labels 5-3

5.3.2 About Policy Level Sensitivity Components 5-4

5.3.3 Creating a Policy Level Component 5-5

5.3.4 About Policy Compartment Components 5-5

5.3.5 Creating a Policy Compartment Component 5-7

5.3.6 About Policy Group Components 5-7

5.3.7 Creating a Policy Data Label Group 5-9

5.3.8 About Associating the Policy Components with a Named Data Label 5-10

5.3.9 Associating the Policy Components with a Named Data Label 5-10

5.4 Step 3: Authorize Users for the Label Security Policy 5-11

v



5.4.1 About Authorizing Users for Label Security Policies 5-12

5.4.2 About Authorizing Levels 5-12

5.4.3 Authorizing a Level 5-12

5.4.4 About Authorizing Compartments 5-13

5.4.5 Authorizing a Compartment 5-13

5.4.6 About Authorizing Groups 5-14

5.4.7 Authorizing a Group 5-14

5.5 Step 4: Grant Privileges to Users and Trusted Stored Program Units 5-15

5.5.1 About Granting Privileges to Users and Trusted Program Units for the Policy 5-15

5.5.2 Granting Privileges to a User 5-16

5.5.3 Granting Privileges to a Trusted Program Unit 5-16

5.6 Step 5: Apply the Policy to a Database Table or Schema 5-17

5.6.1 About Applying the Policy to a Database Table or Schema 5-17

5.6.2 Applying a Policy to a Schema 5-18

5.7 Step 6: Add Policy Labels to Table Rows 5-18

5.7.1 About Adding Policy Labels to Table Rows 5-19

5.7.2 Adding a Policy Label to a Table Row 5-19

5.8 Step 7: (Optional) Configure Auditing 5-19

5.8.1 About Configuring Auditing 5-19

5.8.2 Configuring Auditing 5-20

5.9 Using Enterprise Manager Cloud Control to Create an OLS Policy 5-20

5.9.1 Creating the Label Security Policy Container Using Cloud Control 5-21

5.9.2 Creating Policy Components Using Cloud Control 5-22

5.9.3 Creating Data Labels for the Policy Using Cloud Control 5-22

5.9.4 Authorizing, Granting Privileges, and Auditing Users for a Policy Using Cloud
Control 5-23

5.9.5 Granting Privileges to Trusted Program Units Using Cloud Control 5-25

5.9.6 Applying a Policy to a Database Table with Cloud Control 5-26

5.9.7 Applying Policy Labels to Table Rows Using Cloud Control 5-26

5.9.8 Auditing Oracle Label Security Policies Using Cloud Control 5-27

6   Working with Labeled Data

6.1 How Policy Label Column and Label Tags Work 6-1

6.1.1 The Policy Label Column 6-1

6.1.1.1 About the Policy Label Column 6-2

6.1.1.2 Hiding the Policy Label Column 6-2

6.1.2 Label Tags 6-3

6.1.2.1 About Label Tags 6-3

6.1.2.2 Manually Defined Label Tags to Order Labels 6-4

6.1.2.3 Manually Defined Label Tags to Manipulate Data 6-4

6.1.2.4 Automatically Generated Label Tags 6-5

vi



6.2 Assignments of Labels to Data Rows 6-5

6.3 Presenting the Label 6-6

6.3.1 Converting a Character String to a Label Tag with CHAR_TO_LABEL 6-6

6.3.2 Conversion of a Label Tag to a Character String, with LABEL_TO_CHAR 6-7

6.3.2.1 Converting a Label Tag to a Character String with LABEL_TO_CHAR 6-7

6.3.2.2 LABEL_TO_CHAR Examples 6-7

6.3.2.3 Retrieving All Columns from a Table When the Policy Label Column Is
Hidden 6-8

6.4 Filtration of Data Using Labels 6-9

6.4.1 Use of Numeric Label Tags in WHERE Clauses 6-9

6.4.2 Ordering Labeled Data Rows 6-10

6.4.3 Ordering by Character Representation of Label 6-11

6.4.4 Determination of the Upper and Lower Bounds of Labels 6-11

6.4.4.1 Finding Least Upper Bound with LEAST_UBOUND 6-11

6.4.4.2 Finding Greatest Lower Bound with GREATEST_LBOUND 6-12

6.4.5 Merging Labels with the MERGE_LABEL Function 6-13

6.5 Inserting Labeled Data 6-14

6.5.1 About Inserting Labeled Data 6-15

6.5.2 Inserting Labels Using CHAR_TO_LABEL 6-15

6.5.3 Inserting Labels Using Numeric Label Tag Values 6-16

6.5.4 Inserting Data Without Specifying a Label 6-16

6.5.5 Inserting Data When the Policy Label Column Is Hidden 6-16

6.5.6 Inserting Labels Using TO_DATA_LABEL 6-17

6.6 Changing Session and Row Labels 6-17

7   Oracle Label Security Using Oracle Internet Directory

7.1 About Label Management on Oracle Internet Directory 7-2

7.2 Configuring Oracle Internet Directory-Enabled Label Security 7-6

7.2.1 About Configuring Oracle Internet Directory-Enabled Label Security 7-6

7.2.2 Granting Permissions for Configuring OID-Enabled Oracle Label Security 7-7

7.2.3 Registering a Database and Configuring OID-Enabled Oracle Label Security 7-7

7.2.3.1 Step 1: Configure Your Oracle Home for Directory Usage 7-8

7.2.3.2 Step 2: Configure Oracle Internet Directory for Oracle Label Security 7-8

7.2.3.3 Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label
Security 7-9

7.2.3.4 Step 3: Set the DIP Password and Connect Data 7-9

7.2.4 Unregisteration of a Database with OID-Enabled Oracle Label Security 7-10

7.3 Oracle Label Security Profiles 7-10

7.4 Integrated Capabilities When Label Security Uses the Directory 7-11

7.5 Oracle Label Security Policy Attributes in Oracle Internet Directory 7-12

7.6 Subscription of Policies in Directory-Enabled Label Security 7-13

vii



7.7 Restrictions on New Data Label Creation 7-14

7.8 Administrator Duties for Oracle Internet Directory and Oracle Label Security 7-14

7.9 Bootstrapping Databases 7-14

7.10 Synchronizing the Database and Oracle Internet Directory 7-15

7.10.1 About Synchronizing the Database and Oracle Internet Directory 7-15

7.10.2 Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles 7-16

7.10.3 Modifying a Provisioning Profile 7-17

7.10.4 Changing the Database Connection Information for a Provisioning Profile 7-18

7.10.5 Configuring OID-Enabled Oracle Label Security with Oracle Data Guard 7-19

7.10.5.1 Step 1: Set Up Directory-Enabled Oracle Label Security with Data
Guard 7-19

7.10.5.2 Step 2: After the Switchover, Update the OID Provisioning Profile 7-20

7.11 Security Roles and Permitted Actions 7-20

7.11.1 Permitted Tasks and Access Levels for Oracle Internet Directory 7-21

7.11.2 Restriction on Policy Creators for Directory-Enabled Oracle Label Security 7-22

7.12 Superseded PL/SQL Statements When OID Is Enabled with OLS 7-22

7.13 Oracle Label Security Procedures for Policy Administrators 7-23

Part III   Oracle Label Security Tutorials

8   Tutorial: Configuring Levels in Oracle Label Security

8.1 About This Tutorial 8-1

8.2 Step 1: Create a Role and User Accounts 8-2

8.3 Step 2: Create the Oracle Label Security Policy Container 8-2

8.4 Step 3: Create the Two Level Components for the Oracle Label Security Policy 8-3

8.5 Step 4: Create the Data Labels for the Levels 8-3

8.6 Step 5: Set User Authorizations for the Oracle Label Security Policy 8-4

8.7 Step 6: Apply the Oracle Label Security Policy to the HR Schema 8-5

8.8 Step 7: Add the Policy Labels to the HR.EMPLOYEES Table Data 8-5

8.9 Step 8: Test the Oracle Label Security Policy 8-6

8.10 Step 9: Optionally, Remove the Oracle Label Security Policy Components 8-8

9   Tutorial: Configuring Compartments in Oracle Label Security

9.1 About This Tutorial 9-1

9.2 Step 2: Authorize Lily Leagull for the HIGHLY_SENSITIVE Level 9-2

9.3 Step 3: Create Two Compartments for the Oracle Label Security Policy 9-2

9.4 Step 4: Create the Data Labels for the Compartments 9-3

9.5 Step 5: Assign the Labels to the Users 9-4

9.6 Step 6: Add the Policy Labels to the HR.EMPLOYEES Table Data 9-4

viii



9.7 Step 7: Test the Oracle Label Security Policy 9-5

9.8 Step 8: Optionally, Remove the Oracle Label Security Policy Components 9-7

10  
 

Tutorial: Configuring Groups in Oracle Label Security

10.1 About This Tutorial 10-1

10.2 Step 1: Create a Role and User Accounts 10-2

10.3 Step 2: Create the Oracle Label Security Policy Container 10-3

10.4 Step 3: Create and Authorize a Level Component for the Oracle Label Security
Policy 10-3

10.5 Step 4: Create and Authorize Groups for the Oracle Label Security Policy 10-4

10.6 Step 5: Apply and Authorize the Policy to the Table 10-6

10.7 Step 6: Add the Policy Labels to the OE.CUSTOMERS Table Data 10-7

10.8 Step 7: Test the Oracle Label Security Policy 10-8

10.9 Step 8: Optionally, Remove the Oracle Label Security Policy Components 10-9

Part IV    Administering an Oracle Label Security Application

11  
 

Implementing Policy Enforcement Options and Labeling Functions

11.1 Oracle Label Security Policy Enforcement Options 11-1

11.1.1 About Policy Enforcement Options 11-2

11.1.2 Levels of Policy Enforcement Options 11-2

11.1.3 Categories of Policy Enforcement Options 11-3

11.1.4 Relationships of Policy Enforcement Options 11-4

11.1.5 How the HIDE Policy Column Option Works 11-6

11.1.6 How the Label Management Enforcement Options Work 11-6

11.1.6.1 About the Label Management Enforcement Options 11-6

11.1.6.2 LABEL_DEFAULT: Using the Session's Default Row Label 11-7

11.1.6.3 LABEL_UPDATE: Changing Data Labels 11-7

11.1.6.4 CHECK_CONTROL: Checking Data Labels 11-7

11.1.7 How the Access Control Enforcement Options Work 11-8

11.1.7.1 READ_CONTROL: Reading Data 11-8

11.1.7.2 WRITE_CONTROL: Writing Data 11-8

11.1.7.3 INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL 11-9

11.1.8 How the Overriding Enforcement Options Work 11-9

11.1.9 Guidelines for Using the Policy Enforcement Options 11-10

11.1.10 Exemptions from Oracle Label Security Policy Enforcement 11-11

11.1.11 Data Dictionary Views for Viewing Policy Options on Tables and Schemas 11-11

11.2 Labeling Functions 11-11

11.2.1 Labeling Data Rows under Oracle Label Security 11-12

ix



11.2.2 How Labeling Functions in Oracle Label Security Policies Works 11-12

11.2.3 Creating a Labeling Function for a Policy 11-13

11.2.4 Specifying a Labeling Function in a Policy 11-14

11.3 Inserting Labeled Data Using Policy Options and Labeling Functions 11-14

11.3.1 Outcome of Insert or Updates Operations on Data Based on Authorizations 11-15

11.3.2 Label Insertions When a Labeling Function Is Specified 11-15

11.3.3 Child Row Insertions in Tables with Declarative Referential Integrity 11-15

11.4 Updating Labeled Data Using Policy Options and Labeling Functions 11-15

11.4.1 Updating Labels Using CHAR_TO_LABEL 11-16

11.4.2 Evaluation of Enforcement Control Options and UPDATE 11-16

11.4.3 Updates to Labels When a Labeling Function Is Specified 11-17

11.4.4 Updates to Child Rows in Tables with Declarative Referential Integrity
Enabled 11-17

11.5 Deletion of Labeled Data Using Policy Options and Labeling Functions 11-18

11.6 SQL Predicates with an Oracle Label Security Policy 11-18

11.6.1 Modifications to an Oracle Label Security Policy with a SQL Predicate 11-19

11.6.2 How Multiple SQL Predicates Affect Oracle Label Security Policies 11-19

12  
 

Administering and Using Trusted Stored Program Units

12.1 About Trusted Stored Program Units 12-1

12.2 How a Trusted Stored Program Unit Runs 12-2

12.3 Example: Trusted Stored Program Unit 12-2

12.4 Creating and Compiling Trusted Stored Program Units 12-3

12.4.1 Creation of Trusted Stored Program Units 12-3

12.4.2 Privileges for Trusted Stored Program Units 12-3

12.4.3 Recompiling of Trusted Stored Program Units 12-4

12.4.4 Re-creation of Trusted Stored Program Units 12-4

12.4.5 Execution of Trusted Stored Program Units 12-4

12.5 How Setting and Returning Label Information Works 12-5

13  
 

Auditing Under Oracle Label Security

13.1 About Oracle Label Security Auditing 13-1

13.2 Systemwide Auditing: AUDIT_TRAIL Initialization Parameter 13-2

13.3 How Oracle Label Security Auditing Is Enabled or Disabled 13-3

13.4 Oracle Label Security and Unified Auditing 13-3

13.5 Oracle Label Security Auditing Tips 13-4

13.5.1 Strategy for Setting SA_AUDIT_ADMIN Options 13-4

13.5.2 Auditing of Privileged Operations 13-4

x



14  
 

Using Oracle Label Security with a Distributed Database

14.1 About the Oracle Label Security Distributed Configuration 14-1

14.2 How Connections to a Remote Database Under Oracle Label Security Work 14-2

14.3 Session Labels and Row Labels in Remote Sessions 14-3

14.4 Labels in a Distributed Environment 14-4

14.4.1 Label Tags in a Distributed Environment 14-4

14.4.2 Numeric Form of Label Components in a Distributed Environment 14-5

14.5 Oracle Label Security Policies in a Distributed Environment 14-5

14.6 Replication with Oracle Label Security 14-6

14.6.1 About Replication Under Oracle Label Security 14-6

14.6.1.1 Replication Functionality Supported by Oracle Label Security 14-6

14.6.1.2 Row-Level Security Restriction on Replication Under Oracle Label
Security 14-7

14.6.2 Contents of a Materialized View 14-7

14.6.2.1 How Materialized View Contents Are Determined 14-7

14.6.2.2 Complete Materialized Views 14-7

14.6.2.3 Partial Materialized Views 14-8

14.6.3 Requirements for Creating Materialized Views Under Oracle Label Security 14-8

14.6.3.1 Requirements for a Replication Administrator 14-8

14.6.3.2 Requirements for the Owner of the Materialized View 14-9

14.6.3.3 Requirements for Creating Partial Multilevel Materialized Views 14-9

14.6.3.4 Requirements for Creating Complete Multilevel Materialized Views 14-10

14.6.4 How to Refresh Materialized Views 14-10

15  
 

Performing DBA Functions Under Oracle Label Security

15.1 Oracle Data Pump Export Use with Oracle Label Security 15-1

15.1.1 Full Database Export 15-1

15.1.2 Schema and Table-Level Export 15-2

15.2 Data Pump Import Use with Oracle Label Security 15-2

15.2.1 Full Database Import for the LBACSYS Schema Metadata 15-2

15.2.2 Schema and Table Level Import 15-3

15.2.2.1 Requirements for Import Under Oracle Label Security 15-3

15.2.2.2 Definition of Data Labels for Import 15-4

15.2.2.3 Imports of Labeled Data Without Installing Oracle Label Security 15-5

15.2.2.4 Imports of Unlabeled Data 15-5

15.2.2.5 Importing Tables with Hidden Columns 15-5

15.3 SQL*Loader Use with Oracle Label Security 15-5

15.3.1 Requirements for Using SQL*Loader Under Oracle Label Security 15-6

15.3.2 Oracle Label Security Input to SQL*Loader 15-6

15.4 Performance Tips for Oracle Label Security 15-7

xi



15.4.1 Use of ANALYZE to Improve Oracle Label Security Performance 15-7

15.4.2 Creation of Indexes on the Policy Label Column 15-7

15.4.3 Label Tag Strategy Plan to Enhance Performance 15-8

15.4.4 Partitioned Data Based on Numeric Label Tags 15-9

15.5 Creation of Additional Databases After Installation 15-10

15.5.1 About the Creation of Additional Databases After Installation 15-10

15.5.2 Creating Additional Databases When the Label Security Schema Is in the
Seed 15-11

15.5.3 Creating Additional Databases with the Custom Installation Option 15-11

15.6 Oracle Label Security Upgrades and Downgrades 15-11

15.6.1 About Oracle Label Security Upgrades and Downgrades 15-11

15.6.2 Oracle Label Security Upgrades 15-12

15.6.2.1 About Oracle Label Security Upgrades 15-12

15.6.2.2 Running the Oracle Label Security Preprocess Script Before Upgrading 15-13

15.6.3 Oracle Label Security Downgrades 15-13

15.6.3.1 About Oracle Label Security Downgrades 15-13

15.6.3.2 Running the Oracle Label Security Preprocess Script Before
Downgrading 15-14

16  
 

Releasability Using Inverse Groups

16.1 About Inverse Groups and Releasability 16-1

16.2 Comparison of Standard Groups and Inverse Groups 16-2

16.3 How Inverse Groups Work 16-3

16.3.1 Implementation of Inverse Groups with INVERSE_GROUP Enforcement 16-3

16.3.2 Inverse Groups and Label Components 16-3

16.3.3 Computed Labels with Inverse Groups 16-4

16.3.3.1 Computed Session Labels with Inverse Groups 16-5

16.3.3.2 Inverse Groups and Computed Max Read Groups and Max Write
Groups 16-5

16.3.4 Inverse Groups and Hierarchical Structure 16-6

16.3.5 Inverse Groups and User Privileges 16-7

16.4 Algorithm for Read Access with Inverse Groups 16-7

16.5 Algorithm for Write Access with Inverse Groups 16-8

16.6 Algorithms for COMPACCESS Privilege with Inverse Groups 16-9

16.7 Session Labels and Inverse Groups 16-10

16.7.1 Initial Session and Row Labels for Standard or Inverse Groups 16-11

16.7.1.1 About the Initial Session and Row Labels for Standard or Inverse
Groups 16-11

16.7.1.2 Standard Groups: Rules for Changing Initial Session/Row Labels 16-11

16.7.1.3 Inverse Groups: Rules for Changing Initial Session/Row Labels 16-11

16.7.2 Setting Current Session or Row Labels for Standard or Inverse Groups 16-12

xii



16.7.2.1 About Setting Current Session or Row Labels for Standard or Inverse
Groups 16-12

16.7.2.2 Standard Groups: Rules for Changing Current Session/Row Labels 16-12

16.7.2.3 Inverse Groups: Rules for Changing Current Session/Row Labels 16-12

16.7.3 Examples of Session Labels and Inverse Groups 16-13

16.7.3.1 Example: Simple Inverse Groups 16-13

16.7.3.2 Example: Complex Inverse Groups 16-14

16.8 Changes in Behavior of Procedures with Inverse Groups 16-15

16.8.1 SA_SYSDBA.CREATE_POLICY with Inverse Groups 16-16

16.8.2 SA_SYSDBA.ALTER_POLICY with Inverse Groups 16-16

16.8.3 SA_USER_ADMIN.ADD_GROUPS with Inverse Groups 16-16

16.8.4 SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups 16-17

16.8.5 SA_USER_ADMIN.SET_GROUPS with Inverse Groups 16-18

16.8.6 SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups 16-18

16.8.7 SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups 16-19

16.8.8 SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups 16-19

16.8.9 SA_COMPONENTS.CREATE_GROUP with Inverse Groups 16-20

16.8.10 SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups 16-20

16.8.11 SA_SESSION.SET_LABEL with Inverse Groups 16-20

16.8.12 SA_SESSION.SET_ROW_LABEL with Inverse Groups 16-21

16.8.13 LEAST_UBOUND with Inverse Groups 16-21

16.8.14 GREATEST_LBOUND with Inverse Groups 16-21

16.9 Dominance Rules for Labels with Inverse Groups 16-22

Part V    Appendixes

A   Disabling and Enabling Oracle Label Security

A.1 When You Must Disable Oracle Label Security A-1

A.2 Disabling Oracle Label Security A-1

A.3 Enabling Oracle Label Security A-2

B   Advanced Topics in Oracle Label Security

B.1 Analyzing the Relationships Between Labels B-1

B.1.1 About Dominant and Dominated Labels B-1

B.1.2 Non-Comparable Labels B-2

B.1.3 Using Dominance Functions B-2

B.1.3.1 About the Dominance Functions B-3

B.1.3.2 OLS_DOMINATES Standalone Function B-3

B.1.3.3 OLS_LABEL_DOMINATES Standalone Function B-4

xiii



B.1.3.4 OLS_STRICTLY_DOMINATES Standalone Function B-6

B.1.3.5 OLS_DOMINATED_BY Standalone Function B-7

B.1.3.6 OLS_STRICTLY_DOMINATED_BY Standalone Function B-7

B.1.3.7 SA_UTL.DOMINATES B-8

B.1.3.8 SA_UTL.STRICTLY_DOMINATES B-9

B.1.3.9 SA_UTL.DOMINATED_BY B-10

B.1.3.10 SA_UTL.STRICTLY_DOMINATED_BY B-11

B.2 Queries for Audited Oracle Label Security Session Labels B-11

B.2.1 About Queries for Auditing Oracle Label Security Session Labels B-12

B.2.2 ORA_GET_AUDITED_LABEL Function B-12

B.3 Oracle Call Interface for Setting Session Labels B-13

B.3.1 About Using the Oracle Call Interface to Set Session Labels B-13

B.3.2 Using the Oracle Call Interface to Set Session Labels B-13

B.3.3 Example: Using Oracle Call Interface with the SYS_CONTEXT Function B-14

C   Command-line Tools for Label Security Using Oracle Internet Directory

C.1 About the Command-line Oracle Label Security Tools C-1

C.2 Oracle Label Security Commands in Categories C-2

C.3 olsadmintool Command Reference C-3

C.3.1 About the olsadmintool Commands C-5

C.3.2 olsadmintool addadmin C-5

C.3.3 olsadmintool addpolcreator C-6

C.3.4 olsadmintool adduser C-6

C.3.5 olsadmintool altercompartent C-6

C.3.6 olsadmintool altergroup C-7

C.3.7 olsadmintool altergroupparent C-7

C.3.8 olsadmintool alterlabel C-7

C.3.9 olsadmintool alterlevel C-8

C.3.10 olsadmintool alterpolicy C-8

C.3.11 olsadmintool audit C-9

C.3.12 olsadmintool createcompartment C-9

C.3.13 olsadmintool creategroup C-9

C.3.14 olsadmintool createlabel C-10

C.3.15 olsadmintool createlevel C-10

C.3.16 olsadmintool createprofile C-10

C.3.17 olsadmintool createpolicy C-11

C.3.18 olsamindtool describeprofile C-11

C.3.19 olsadmintool dropadmin C-12

C.3.20 olsadmintool dropcompartment C-12

C.3.21 olsadmintool dropgroup C-12

xiv



C.3.22 olsadmintool droplabel C-12

C.3.23 olsadmintool droplevel C-13

C.3.24 olsadmintool droppolicy C-13

C.3.25 olsadmintool dropprofile C-13

C.3.26 olsadmintool droppolcreator C-14

C.3.27 olsadmintool dropuser C-14

C.3.28 olsadmintool --help C-14

C.3.29 olsadmintool listprofile C-15

C.3.30 olsadmintool noaudit C-15

C.4 Relating Parameters to Commands for olsadmintool C-15

C.4.1 About Relating Parameters to Commands for olsadmintool C-15

C.4.2 Summaries of olsadmintool Parameters C-16

C.5 Examples of Using the olsadmintool Utility C-19

C.5.1 Example: Making Other Users Policy Creators C-20

C.5.2 Example: Creating Policies with Valid Options C-20

C.5.3 Example: Creating Policy Administrators C-20

C.5.4 Example: Creating Levels C-20

C.5.5 Example: Creating Compartments C-21

C.5.6 Example: Creating Groups C-21

C.5.7 Example: Creating Labels C-21

C.5.8 Example: Creating a Profile C-21

C.5.9 Example: Adding a User to a Profile C-22

C.5.10 Example: Adding Another User to a Profile C-22

C.5.11 Example: Setting Audit Options C-22

C.5.12 Results of These Examples C-22

C.6 olsoidsync Command Reference C-23

D   Oracle Label Security in an Oracle RAC Environment

D.1 Oracle Label Security Policy Functions in an Oracle RAC Environment D-1

D.2 Transparent Application Failover in Oracle Label Security D-2

E   Oracle Label Security PL/SQL Packages

E.1 SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package E-1

E.1.1 About the SA_AUDIT_ADMIN PL/SQL Package E-2

E.1.2 SA_AUDIT_ADMIN.AUDIT E-2

E.1.3 SA_AUDIT_ADMIN.AUDIT_LABEL E-4

E.1.4 SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED E-5

E.1.5 SA_AUDIT_ADMIN.CREATE_VIEW E-5

E.1.6 SA_AUDIT_ADMIN.DROP_VIEW E-6

xv



E.1.7 SA_AUDIT_ADMIN.NOAUDIT E-7

E.1.8 SA_AUDIT_ADMIN.NOAUDIT_LABEL E-8

E.2 SA_COMPONENTS Label Components PL/SQL Package E-9

E.2.1 About the SA_COMPONENTS PL/SQL Package E-10

E.2.2 SA_COMPONENTS.ALTER_COMPARTMENT E-10

E.2.3 SA_COMPONENTS.ALTER_GROUP E-11

E.2.4 SA_COMPONENTS.ALTER_GROUP_PARENT E-12

E.2.5 SA_COMPONENTS.ALTER_LEVEL E-13

E.2.6 SA_COMPONENTS.CREATE_COMPARTMENT E-14

E.2.7 SA_COMPONENTS.CREATE_GROUP E-15

E.2.8 SA_COMPONENTS.CREATE_LEVEL E-16

E.2.9 SA_COMPONENTS.DROP_COMPARTMENT E-17

E.2.10 SA_COMPONENTS.DROP_GROUP E-18

E.2.11 SA_COMPONENTS.DROP_LEVEL E-18

E.3 SA_LABEL_ADMIN Label Management PL/SQL Package E-19

E.3.1 About the SA_LABEL_ADMIN PL/SQL Package E-19

E.3.2 SA_LABEL_ADMIN.ALTER_LABEL E-20

E.3.3 SA_LABEL_ADMIN.CREATE_LABEL E-21

E.3.4 SA_LABEL_ADMIN.DROP_LABEL E-22

E.4 SA_POLICY_ADMIN Policy Administration PL/SQL Package E-23

E.4.1 About the SA_POLICY_ADMIN PL/SQL Package E-24

E.4.2 SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY E-24

E.4.3 SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY E-25

E.4.4 SA_POLICY_ADMIN.APPLY_TABLE_POLICY E-26

E.4.5 SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY E-27

E.4.6 SA_POLICY_ADMIN.DISABLE_TABLE_POLICY E-28

E.4.7 SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY E-29

E.4.8 SA_POLICY_ADMIN.ENABLE_TABLE_POLICY E-29

E.4.9 SA_POLICY_ADMIN.POLICY_SUBSCRIBE E-30

E.4.10 SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE E-31

E.4.11 SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY E-32

E.4.12 SA_POLICY_ADMIN.REMOVE_TABLE_POLICY E-33

E.5 SA_SESSION Session Management PL/SQL Package E-34

E.5.1 About the SA_SESSION PL/SQL Package E-35

E.5.2 SA_SESSION.COMP_READ E-35

E.5.3 SA_SESSION.COMP_WRITE E-36

E.5.4 SA_SESSION.GROUP_READ E-36

E.5.5 SA_SESSION.GROUP_WRITE E-37

E.5.6 SA_SESSION.LABEL E-37

E.5.7 SA_SESSION.MAX_LEVEL E-38

E.5.8 SA_SESSION.MAX_READ_LABEL E-38

xvi



E.5.9 SA_SESSION.MAX_WRITE_LABEL E-39

E.5.10 SA_SESSION.MIN_LEVEL E-40

E.5.11 SA_SESSION.MIN_WRITE_LABEL E-40

E.5.12 SA_SESSION.PRIVS E-41

E.5.13 SA_SESSION.RESTORE_DEFAULT_LABELS E-41

E.5.14 SA_SESSION.ROW_LABEL E-42

E.5.15 SA_SESSION.SET_LABEL E-42

E.5.16 SA_SESSION.SA_USER_NAME E-43

E.5.17 SA_SESSION.SAVE_DEFAULT_LABELS E-44

E.5.18 SA_SESSION.SET_ACCESS_PROFILE E-45

E.5.19 SA_SESSION.SET_ROW_LABEL E-46

E.6 SA_SYSDBA Policy Management PL/SQL Package E-47

E.6.1 About the SA_SYSDBA PL/SQL Package E-47

E.6.2 SA_SYSDBA.ALTER_POLICY E-48

E.6.3 SA_SYSDBA.CREATE_POLICY E-49

E.6.4 SA_SYSDBA.DISABLE_POLICY E-50

E.6.5 SA_SYSDBA.DROP_POLICY E-51

E.6.6 SA_SYSDBA.ENABLE_POLICY E-51

E.7 SA_USER_ADMIN PL/SQL Package E-52

E.7.1 About the SA_USER_ADMIN PL/SQL Package E-53

E.7.2 SA_USER_ADMIN.ADD_COMPARTMENTS E-53

E.7.3 SA_USER_ADMIN.ADD_GROUPS E-54

E.7.4 SA_USER_ADMIN.ALTER_COMPARTMENTS E-56

E.7.5 SA_USER_ADMIN.ALTER_GROUPS E-57

E.7.6 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS E-58

E.7.7 SA_USER_ADMIN.DROP_ALL_GROUPS E-59

E.7.8 SA_USER_ADMIN.DROP_COMPARTMENTS E-59

E.7.9 SA_USER_ADMIN.DROP_GROUPS E-60

E.7.10 SA_USER_ADMIN.DROP_USER_ACCESS E-61

E.7.11 SA_USER_ADMIN.SET_COMPARTMENTS E-61

E.7.12 SA_USER_ADMIN.SET_DEFAULT_LABEL E-62

E.7.13 SA_USER_ADMIN.SET_GROUPS E-64

E.7.14 SA_USER_ADMIN.SET_LEVELS E-65

E.7.15 SA_USER_ADMIN.SET_PROG_PRIVS E-66

E.7.16 SA_USER_ADMIN.SET_ROW_LABEL E-67

E.7.17 SA_USER_ADMIN.SET_USER_LABELS E-68

E.7.18 SA_USER_ADMIN.SET_USER_PRIVS E-70

E.8 SA_UTL PL/SQL Utility Functions and Procedures E-71

E.8.1 About the SA_UTL PL/SQL Package E-72

E.8.2 SA_UTL.CHECK_LABEL_CHANGE E-72

E.8.3 SA_UTL.CHECK_READ E-73

xvii



E.8.4 SA_UTL.CHECK_WRITE E-74

E.8.5 SA_UTL.DATA_LABEL E-74

E.8.6 SA_UTL.GREATEST_LBOUND E-75

E.8.7 SA_UTL.LEAST_UBOUND E-76

E.8.8 SA_UTL.NUMERIC_LABEL E-76

E.8.9 SA_UTL.NUMERIC_ROW_LABEL E-77

E.8.10 SA_UTL.SET_LABEL E-78

E.8.11 SA_UTL.SET_ROW_LABEL E-78

F   Oracle Label Security Reference

F.1 Oracle Label Security Data Dictionary Tables and Views F-1

F.1.1 Oracle Database Data Dictionary Tables F-1

F.1.2 Oracle Label Security Data Dictionary Views F-1

F.1.2.1 ALL_SA_AUDIT_OPTIONS View F-4

F.1.2.2 ALL_SA_COMPARTMENTS F-5

F.1.2.3 ALL_SA_DATA_LABELS F-5

F.1.2.4 ALL_SA_GROUPS F-6

F.1.2.5 ALL_SA_LABELS F-6

F.1.2.6 ALL_SA_LEVELS F-7

F.1.2.7 ALL_SA_POLICIES F-7

F.1.2.8 ALL_SA_PROG_PRIVS F-8

F.1.2.9 ALL_SA_SCHEMA_POLICIES F-8

F.1.2.10 ALL_SA_TABLE_POLICIES F-9

F.1.2.11 ALL_SA_USERS F-9

F.1.2.12 ALL_SA_USER_LABELS F-11

F.1.2.13 ALL_SA_USER_LEVELS F-11

F.1.2.14 ALL_SA_USER_PRIVS F-12

F.1.2.15 DBA_SA_AUDIT_OPTIONS F-12

F.1.2.16 DBA_SA_COMPARTMENTS F-13

F.1.2.17 DBA_SA_DATA_LABELS F-13

F.1.2.18 DBA_SA_GROUPS F-13

F.1.2.19 DBA_SA_GROUP_HIERARCHY F-13

F.1.2.20 DBA_SA_LABELS F-14

F.1.2.21 DBA_SA_LEVELS F-14

F.1.2.22 DBA_SA_POLICIES F-15

F.1.2.23 DBA_SA_PROG_PRIVS F-15

F.1.2.24 DBA_SA_SCHEMA_POLICIES F-15

F.1.2.25 DBA_SA_TABLE_POLICIES F-16

F.1.2.26 DBA_SA_USERS F-16

F.1.2.27 DBA_SA_USER_COMPARTMENTS F-16

xviii



F.1.2.28 DBA_SA_USER_GROUPS F-17

F.1.2.29 DBA_SA_USER_LABELS F-17

F.1.2.30 DBA_SA_USER_LEVELS F-17

F.1.2.31 DBA_SA_USER_PRIVS F-18

F.1.2.32 DBA_OLS_STATUS F-18

F.1.2.33 USER_SA_SESSION F-18

F.1.3 Oracle Label Security User-Created Auditing View F-19

F.2 Restrictions in Oracle Label Security F-20

G   Frequently Asked Questions about Oracle Label Security

G.1 Who Uses Oracle Label Security? G-1

G.2 How Can Oracle Label Security Address My Security Needs? G-2

G.3 Should I Use Oracle Label Security to Protect All My Tables? G-2

G.4 What Is the Difference Between Oracle Virtual Private Database and Oracle Label
Security? G-2

G.5 Can I Combine Oracle Virtual Private Database and Oracle Label Security? G-3

G.6 Can I Use Oracle Label Security with Oracle E-Business Suite? G-3

G.7 Can I Use Oracle Label Security with Oracle Database Vault? G-3

G.8 Does Oracle Label Security Provide Column-Level Access Control? G-4

G.9 Can I Base Secure Application Roles on Oracle Label Security? G-4

G.10 What Are Trusted Stored Program Units? G-4

G.11 Does VPD or OLS Add an Additional Column to the Protected Table? G-5

G.12 Why Should the Additional OLS Row Label Column Be Hidden? G-5

Index

xix



Preface

Oracle Label Security enables access control to reach specific (labeled) rows of a
database. With Oracle Label Security in place, users with varying privilege levels
automatically have (or are excluded from) the right to see or alter labeled rows of data.

Oracle Label Security Administrator’s Guide describes how to use Oracle Label
Security to protect sensitive data. It explains the basic concepts behind label-based
security and provides examples to show how it is used.

• Audience

• Documentation Accessibility

• Related Documentation

• Conventions

Audience
Oracle Label Security Administrator’s Guide is intended for database administrators
(DBAs), application programmers, security administrators, system operators, and other
Oracle users who perform the following tasks:

• Analyze application security requirements

• Create label-based security policies

• Administer label-based security policies

• Use label-based security policies

To use this document, you need a working knowledge of SQL and Oracle
fundamentals. You should also be familiar with Oracle security features described in 
Related Documentation. To use SQL*Loader, you must know how to use the file
management facilities of your operating system.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

xx

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Related Documentation
For more information, see these Oracle resources:

• Oracle Database Concepts

• Oracle Database Security Guide

• Oracle Database Enterprise User Security Administrator's Guide

• Oracle Database Development Guide

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference

• Oracle Database Reference

• Oracle Database Utilities

• Oracle Database Performance Tuning Guide

Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. See 
Oracle Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

Oracle Technical Services

To download the product data sheet, frequently asked questions, links to the latest product
documentation, product download, and other collateral, visit Oracle Technical Resources
(formerly Oracle Technology Network). You must register online before using Oracle
Technical Services. Registration is free and can be done at

https://www.oracle.com/technical-resources/

My Oracle Support

You can find information about security patches, certifications, and the support knowledge
base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxi

https://www.oracle.com/technical-resources/
https://support.oracle.com


Changes in This Release for
Oracle Label Security Administrator's
Guide

This preface contains:

• Changes in Oracle Database 18c

• Changes in Oracle Database 12c Release 2 (12.2)

Changes in Oracle Database 18c
The following are changes in Oracle Label Security Administrator’s Guide for Oracle
Database 18c.

• LBACSYS User Created by Default as a Schema-Only Account
Starting with this release, the LBACSYS user account is create as a schema-only
account.

• Deprecated Columns in Oracle Label Security Views
Starting in this release, four Oracle Label Security data dictionary views have
deprecated columns.

LBACSYS User Created by Default as a Schema-Only Account
Starting with this release, the LBACSYS user account is create as a schema-only
account.

Users cannot login to a schema-only account until an authentication method is
configured for the account by using the ALTER USER statement. LBACSYS is only used
as a login account initially to provision named Oracle Label Security administrators.
Because users do not need to log in to this account (except for initial provisioning),
LBACSYS should remain a schema-only account so that default passwords do not need
to be changed or rotated.

This feature meets requirements for users who must be able to create schemas for
object ownership without actually allowing the schema owner to log in to the database.
Examples of environments that have this need include some Oracle schemas as well
as some customer schemas.

Related Topics

• Security Guideline for Managing the LBACSYS User and the LBAC_DBA Role
As a good practice, for day-to-day use, grant the LBAC_DBA database role to trusted
users who will administer Oracle Label Security.

• Oracle Database Security Guide

Changes in This Release for Oracle Label Security Administrator's Guide

xxii



Deprecated Columns in Oracle Label Security Views
Starting in this release, four Oracle Label Security data dictionary views have deprecated
columns.

Data Dictionary View Deprecated Column

ALL_SA_USER_LABELS LABELS
ALL_SA_USERS USER_LABELS
DBA_SA_USER_LABELS LABELS
DBA_SA_USERS USER_LABELS

The information in the LABELS and USER_LABELS columns is redundant. This information is
displayed in other columns in these data dictionary views.

Related Topics

• Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary views, which are
exempt from any policy enforcement.

Changes in Oracle Database 12c Release 2 (12.2)
The following are changes in Oracle Label Security Administrator’s Guide for Oracle
Database 12c release 2 (12.2).

• Oracle Label Security Support for Oracle Database Real Application Security Users
Starting with this release, Oracle Label Security provides support for the Oracle Database
Real Application Security user account.

• Oracle Label Security Support for Data Guard Rolling Upgrades
Oracle Label Security now supports rolling upgrades for Oracle Data Guard.

• Enhancements for Oracle Label Security in a Multitenant Environment
Starting with this release, Oracle Label Security supports the use of Oracle Label
Security policies in application containers.

Oracle Label Security Support for Oracle Database Real Application
Security Users

Starting with this release, Oracle Label Security provides support for the Oracle Database
Real Application Security user account.

This feature enables Oracle Label Security policies to be enforced for Real Application
Security users by assigning labels and privileges to Real Application Security users.

To configure the Oracle Database Real Application Security user for Oracle Label Security,
you can set the user_name parameter in the SA_USER_ADMIN.SET_USER_LABELS procedure and
in the SA_USER_ADMIN.SET_USER_PRIVS procedure.

Changes in This Release for Oracle Label Security Administrator's Guide

xxiii



Related Topics

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

Oracle Label Security Support for Data Guard Rolling Upgrades
Oracle Label Security now supports rolling upgrades for Oracle Data Guard.

You can perform Oracle Data Guard rolling upgrades to new database releases or
patch sets in a rolling fashion, which reduces the planned downtime. The total
database downtime for a rolling upgrade is limited to the small amount of time that is
required to execute an Oracle Data Guard switchover operation.

See Also:

Oracle Data Guard Concepts and Administration for more information about
Oracle Data Guard rolling upgrades

Enhancements for Oracle Label Security in a Multitenant Environment
Starting with this release, Oracle Label Security supports the use of Oracle Label
Security policies in application containers.

In addition to application container support, there are changes in how you can use
Oracle Label Security in a CDB environment. As part of this enhancement, you can
query the CDB_OLS_STATUS to check the enablement status of Oracle Label Security in
a multitenant environment.

Related Topics

• Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

• #unique_29

Changes in This Release for Oracle Label Security Administrator's Guide

xxiv



Part I
Getting Started with Oracle Label Security

Part I introduces the terms, concepts, and relationships that constitute the basic elements of
Oracle Label Security.

• Introduction to Oracle Label Security
Oracle Label Security provides fine-grained access to individual table rows.

• Understanding Data Labels and User Labels
You should understand fundamental concepts of data labels and user labels.

• Access Controls and Privileges
Oracle provides access controls and privileges that determine the type of access users
can have to labeled rows.



1
Introduction to Oracle Label Security

Oracle Label Security provides fine-grained access to individual table rows.

• About Oracle Label Security
Oracle Label Security controls the display of individual table rows using labels that are
assigned to specific individual table rows and application users.

• Benefits of Oracle Label Security
Oracle Label Security provides several benefits for controlling row level management.

• Who Has Privileges to Use Oracle Label Security?
When you register Oracle Label Security with a database, the registration process
creates an administrative user named LBACSYS, who has the LBAC_DBA role.

• Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based privileges.

• Components of Oracle Label Security
An Oracle Label Security policy has a standard set of components.

• Oracle Label Security Architecture
The Oracle Label Security works with Oracle Database authentication to perform row
level security.

• Oracle Label Security Administrative Interfaces
You can perform Oracle Label Security development and administrative tasks using either
of two interfaces.

• How Oracle Label Security Works with Other Oracle Products
You can integrate Oracle Label Security with Oracle Internet Directory (OID) and in a
multitenant environment.

1.1 About Oracle Label Security
Oracle Label Security controls the display of individual table rows using labels that are
assigned to specific individual table rows and application users.

Oracle Label Security works by comparing the row label with a user's label authorizations to
enable you to easily restrict sensitive information to only authorized users. This way, users
with different authorization levels (for example, managers and sales representatives) can
have access to specific rows of data in a table. You can apply Oracle Label Security policies
to one or more application tables. The design of Oracle Label Security is similar to Oracle
Virtual Private Database (VPD). However, unlike VPD, Oracle Label Security provides the
access mediation functions, data dictionary tables, and policy-based architecture out of the
box, eliminating customized coding and providing a consistent label based access control
model that can be used by multiple applications.

Oracle Label Security is based on multi-level security (MLS) requirements that are found in
government and defense organizations.

Oracle Label Security software is installed by default, but not automatically enabled. You can
enable Oracle Label Security in either SQL*Plus or by using the Oracle Database

1-1



Configuration Assistant (DBCA). The default administrator for Oracle Label Security is
the user LBACSYS. To manage Oracle Label Security, you can use either a set of
PL/SQL packages and standalone functions at the command-line level or Oracle
Enterprise Manager Cloud Control. To find information about Oracle Label Security
policies, you can query ALL_SA_*, DBA_SA_*, or USER_SA_* data dictionary views.

1.2 Benefits of Oracle Label Security
Oracle Label Security provides several benefits for controlling row level management.

• It enables row level data classification and provides out-of-the-box access
mediation based on the data classification and the user label authorization or
security clearance.

• It enables you to assign label authorizations or security clearances to both
database users and application users.

• It provides both APIs and a graphical user interface for defining and storing data
classification labels and user label authorizations.

• It integrates with Oracle Database Vault and Oracle Advanced Security Data
Redaction, enabling security clearances to be use in both Database Vault
command rules and Data Redaction policy definitions.

1.3 Who Has Privileges to Use Oracle Label Security?
When you register Oracle Label Security with a database, the registration process
creates an administrative user named LBACSYS, who has the LBAC_DBA role.

You can grant this role to any database user who will be responsible for managing
Oracle Label Security policies. In addition, you can grant Oracle Label Security
administrators the EXECUTE privilege for the Oracle Label Security packages, and
privileges to manage individual Oracle Label Security policies.

As with other Oracle administrative user accounts, Oracle strongly recommends that
you maintain two accounts for the LBAC_DBA. One account, the primary named user
account, will be used on a day-to-day basis and the other account will be used as a
backup account in case the password of the primary account is lost and must be reset.

1.4 Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based privileges.

These privileges are:

• Package-specific privileges: Most of the Oracle Label Security PL/SQL
packages, except for the public SA_SESSION and SA_UTL packages, require the
EXECUTE privilege. The other packages are SA_AUDIT_ADMIN, SA_COMPONENTS,
SA_LABEL_ADMIN, SA_POLICY_ADMIN, SA_SYSDBA, and SA_USER_ADMIN.

• Role-based privileges: The Oracle Label Security-specific roles are:

– The policy_DBA role, which is created and granted to the user when he or she
creates a policy. For example, for a policy named ols_hr_pol, the role created
is named ols_hr_pol_DBA. This role adds a layer of granularity for access
control for your site's Oracle Label Security policies.

Chapter 1
Benefits of Oracle Label Security

1-2



– The LBAC_DBA role, which provides the EXECUTE privilege for the SA_SYSDBA package.
This role is owned by the LBACSYS user account. The SA_SYSDBA package enables the
user to create, alter, enable, disable, and drop Oracle Label Security policies.

You can use the Oracle Label Security package EXECUTE privilege grants along with grants of
the policy_DBA role to achieve additional separation of duty. The packages are categorized
based on different tasks. For example, you could grant the EXECUTE privilege on the
SA_COMPONENTS and SA_LABEL_ADMIN packages to one user or role to manage label
definitions, and then grant EXECUTE on SA_USER_ADMIN to a different user or role to manage
user labels and privileges. Both of these users or roles must also be granted the policy_DBA
role for the policies for which they are responsible. In this way, different users can be
responsible for the management of different aspects of the policies for which they are
responsible. For example, user psmith could be responsible for the label definitions of the
ols_hr_pol policy, and user tjones could be responsible for the label definitions of the
ols_oe_pol policy. However, user psmith cannot modify label definitions for the ols_oe_pol
policy, nor can tjones modify the ols_hr_pol policy label definitions.

Related Topics

• Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease of
administration.

1.5 Components of Oracle Label Security
An Oracle Label Security policy has a standard set of components.

These components are as follows:

• Labels. Labels for data and users, along with authorizations for users and program units,
govern access to specified protected objects. Labels are composed of the following:

– Levels. Levels indicate the type of sensitivity that you want to assign to the row, for
example, SENSITIVE or HIGHLY SENSITIVE.

– Compartments. (Optional) Data can have the same level (for exmple, Public,
Confidential and Secret), but can belong to different projects inside a company (for
example, ACME Merger and IT Security). Compartments represent the projects in
this example that help define more precise access controls. They are most often
used in government environments.

– Groups. (Optional) Groups identify organizations owning or accessing the data (for
example, UK, US, Asia, Europe). Groups are used both in commercial and
government environments, and frequently used in place of compartments due to their
flexibility.

• Policy. A policy is a name associated with these labels, rules, authorizations, and
protected tables.

For example, assume that a user has the SELECT privilege on an application table. As
illustrated in Figure 1-1, when the user executes a SELECT statement, Oracle Label Security
evaluates each row selected to determine whether the user can access using the privileges
and labels assigned to the user and the label on the row. You can configure Oracle Label
Security to perform security checks on UPDATE, DELETE, and INSERT statements as well.

Chapter 1
Components of Oracle Label Security

1-3



Figure 1-1    Oracle Label Security Label-Based Security

Levels

Highly
Sensitive

Groups

+ +

Compartments

Confidential

Global

EuropeNATO

Sensitive GAMMABETAALPHA

1.6 Oracle Label Security Architecture
The Oracle Label Security works with Oracle Database authentication to perform row
level security.

Figure 1-2 shows how data is accessed under Oracle Label Security and the
sequence of label security checks.

Figure 1-2    Oracle Label Security Architecture

Oracle Database

Application

Oracle User / Session

 

Object Privilege

Access

Check DAC

SQL Request

USER

VPD SQL Modification

Data Record

Data Record
Oracle Label Security

Enforcement

Table

Data Record

Security Policy

Access Control
Tables

User Defined 
VPD Policies

Label Security

Fine Grained

Access Mediation

In this scenario, the following actions take place:

1. An application user in an Oracle Database session sends a SQL request to query
a table.

2. Oracle Database checks the user's data access control (DAC) privileges for
performing a SELECT statement on the table.

3. If the user does have the appropriate privileges, then Oracle Database checks if
there are any Oracle Virtual Private Database (VPD) policies attached to the table.

Chapter 1
Oracle Label Security Architecture

1-4



4. Oracle Database then checks if there are any Oracle Label Security policies that are
assigned to the table.

5. Oracle Label Security then compares the labels that are assigned to individual rows with
the users' label authorizations, allowing or denying access. The session label is based on
label authorizations that are assigned to the user.

1.7 Oracle Label Security Administrative Interfaces
You can perform Oracle Label Security development and administrative tasks using either of
two interfaces.

• Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease of
administration.

• Oracle Label Security Demonstration File
The olsdemo.sql file provides a demonstration on using Oracle Label Security.

• Oracle Enterprise Manager Cloud Control
The Oracle Enterprise Manager Cloud Control Web interface can be used to administer
Oracle Label Security.

1.7.1 Oracle Label Security Packages
Oracle Label Security packages provide a direct, command-line interface for ease of
administration.

Table 1-1 lists the available Oracle Label Security administrative packages.

Table 1-1    Oracle Label Security Administrative Packages

Package Purpose

SA_SYSDBA To create, alter, and drop Oracle Label Security policies

See SA_SYSDBA Policy Management PL/SQL Package

SA_COMPONENTS To define the levels, compartments, and groups for the policy

See SA_COMPONENTS Label Components PL/SQL Package

SA_LABEL_ADMIN To perform standard label policy administrative functions, such as creating
labels

See SA_LABEL_ADMIN Label Management PL/SQL Package

SA_POLICY_ADMIN To apply policies to schemas and tables

See SA_POLICY_ADMIN Policy Administration PL/SQL Package

SA_USER_ADMIN To manage user authorizations for levels, compartments, and groups, as
well as program unit privileges. Also to administer user privileges.

See SA_USER_ADMIN.SET_USER_PRIVS and 
SA_USER_ADMIN.SET_PROG_PRIVS

SA_AUDIT_ADMIN To set options to audit administrative tasks and use of privileges

See SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

SA_SESSION To change labels during a session within the authorizations set by the
administrator

See SA_SESSION Session Management PL/SQL Package

Chapter 1
Oracle Label Security Administrative Interfaces

1-5



Table 1-1    (Cont.) Oracle Label Security Administrative Packages

Package Purpose

SA_UTL A set of utility functions designed for use within PL/SQL programs to
return information about the current values of the session security
attributes, as numeric label values

See SA_UTL PL/SQL Utility Functions and Procedures

1.7.2 Oracle Label Security Demonstration File
The olsdemo.sql file provides a demonstration on using Oracle Label Security.

This file show to create and develop an Oracle Label Security policy using the supplied
packages. You can install this script from the ORACLE_HOME/rdbms/demo directory.

1.7.3 Oracle Enterprise Manager Cloud Control
The Oracle Enterprise Manager Cloud Control Web interface can be used to
administer Oracle Label Security.

Figure 1-3 illustrates the Oracle Enterprise Manager interface.

Figure 1-3    Using Enterprise Manager to Configure Oracle Label Security Policies

Related Topics

• Logging in to Cloud Control or SQL*Plus for Oracle Label Security
After you complete the Oracle Label Security registration and enablement process,
you can begin using it.

• Registering and Logging in to Oracle Label Security
Before using Oracle Label Security, you must register (configure) it with the
database and then you can log in to Oracle Label Security.

Chapter 1
Oracle Label Security Administrative Interfaces

1-6



1.8 How Oracle Label Security Works with Other Oracle
Products

You can integrate Oracle Label Security with Oracle Internet Directory (OID) and in a
multitenant environment.

• Oracle Label Security Integration with Oracle Internet Directory
Sites that integrate their use of Oracle Label Security with Oracle Internet Directory gain
significant efficiencies of label security operation and administration.

• Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

1.8.1 Oracle Label Security Integration with Oracle Internet Directory
Sites that integrate their use of Oracle Label Security with Oracle Internet Directory gain
significant efficiencies of label security operation and administration.

You can create and manage directly policies and user authorization profiles in the directory by
means of the command-line tools for Oracle Label Security using Oracle Internet Directory.
These tools enable changes to be automatically propagated to the associated directories.

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet Directory.

• Oracle Label Security Using Oracle Internet Directory
You can use Oracle Label Security with Oracle Internet Directory.

1.8.2 Oracle Label Security Integration in a Multitenant Environment
You can use Oracle Label Security in a multitenant environment.

In a multitenant environment, pluggable databases (PDBs) can be plugged in and out of a
multitenant container database (CDB) or an application container.

Note the following:

• Each PDB has its own Oracle Label Security metadata, such as policies, labels, and user
authorizations. The LBACSYS schema is a common user schema.

• Before you plug a PDB into a CDB, if the database does not have Oracle Label Security
installed, then ensure that you have run the $ORACLE_HOME/rdbms/admin/catols.sql
script on the database to install the label-based framework, data dictionary, data types,
and packages. This script creates the LBACSYS account.

• Because Oracle Label Security policies are scoped to individual PDBs, you can create
individual policies for each PDB. A policy defined for a PDB can be enforced on the local
tables and schema objects contained in the PDB.

• In a single CDB, there can be multiple PDBs, each configured with Oracle Label Security.

• You cannot create Oracle Label Security policies in the CDB root or the application root.

• You cannot enforce a local Oracle Label Security policy on a common CDB object or a
common application object.

Chapter 1
How Oracle Label Security Works with Other Oracle Products

1-7



• You cannot assign Oracle Label Security policy labels and privileges to common
users and application common users in a pluggable database.

• You cannot assign Oracle Label Security privileges to common procedures or
functions and application common procedures or functions in a pluggable
database.

• If you are configuring Oracle Label Security with Oracle Internet Directory, then be
aware that the same configuration must be used throughout with all PDBs
contained in the CDB. You can determine if your database is configured for Oracle
Internet Directory by querying the DBA_OLS_STATUS data dictionary view as follows
from within any PDB:

SELECT STATUS FROM DBA_OLS_STATUS WHERE NAME = 'OLS_DIRECTORY_STATUS';

If it returns TRUE, then Oracle Label Security is Internet Directory-enabled.
Otherwise, it returns FALSE.

Related Topics

• Oracle Database Security Guide

Chapter 1
How Oracle Label Security Works with Other Oracle Products

1-8



2
Understanding Data Labels and User Labels

You should understand fundamental concepts of data labels and user labels.

• About Label-Based Security
Label-based security provides a flexible way of controlling access to sensitive data.

• About User Label and Privilege Management
To manage user labels and privileges, you must have the EXECUTE privilege for the
SA_USER_ADMIN package and be granted the policy_DBA role.

• Label Components
You should understand the elements that are used in labels.

• Label Syntax and Type
After label components are defined, you can create data labels by combining particular
sets of level, compartments, and groups.

• How Data Labels and User Labels Work Together
A user can access data only within the range of his or her own label authorizations.

• Administration of Labels
Oracle Label Security provides administrative interfaces to define and manage the labels
used in a database.

2.1 About Label-Based Security
Label-based security provides a flexible way of controlling access to sensitive data.

Oracle Label Security controls data access based on the identity and label of the user, and
the sensitivity and label of the data. Label security adds protections beyond the discretionary
access controls that determine the operations users can perform upon data in an object, such
as a table or view.

Table 2-1 shows the three dimensions with which an Oracle Label Security policy controls
access to data.

Table 2-1    Oracle Label Security Data Dimensions

Data Dimension Explanation

Data Labels A data row label indicates the level and nature of the row's sensitivity and
specifies the additional criteria that a user must meet to gain access to that
row.

User Labels A user label specifies that user's sensitivity level plus any compartments and
groups that constrain the user's access to labeled data. Each user is
assigned a range of levels, compartments, and groups, and each session
can operate within that authorized range to access labeled data within that
range.

Policy Privileges Users can be given specific rights (privileges) to perform special operations
or to access data beyond their label authorizations.

2-1



Note that the discussion here concerns access to data. The particular type of access,
such as reading or writing the data, is covered in Access Controls and Privileges.

When an Oracle Label Security policy is applied to a database table, a column is
added to the table to contain each row's label. The administrator can choose to display
or hide this column.

2.2 About User Label and Privilege Management
To manage user labels and privileges, you must have the EXECUTE privilege for the
SA_USER_ADMIN package and be granted the policy_DBA role.

The SA_USER_ADMIN package provides the procedures and functions to manage the
Oracle Label Security user security attributes. It contains several procedures to
manage user labels by component: that is, specifying user levels, compartments, and
groups. For convenience, there are additional procedures that accept character string
representations of full labels, rather than components. Note that the level,
compartment, and group parameters use the short name defined for each component.

All of the label and privilege information is stored in Oracle Label Security data
dictionary tables. When a user connects to the database, his session labels are
established based on the information stored in the Oracle Label Security data
dictionary.

Note that a user can be authorized under multiple policies.

Related Topics

• SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package manages user labels by label component.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

• Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based
privileges.

2.3 Label Components
You should understand the elements that are used in labels.

• Label Component Definitions and Valid Characters
A sensitivity label is a single attribute with multiple components.

• Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

• Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data,
providing a finer level of granularity within a level.

• Group Components
Groups identify organizations owning or accessing the data, such as
EASTERN_REGION, WESTERN_REGION, WR_SALES.

Chapter 2
About User Label and Privilege Management

2-2



• Industry Examples of Levels, Compartments, and Groups
Oracle Label Security levels, compartments, groups are designed to be implemented in
various industries.

2.3.1 Label Component Definitions and Valid Characters
A sensitivity label is a single attribute with multiple components.

All data labels must contain a level component, but the compartment and group components
are optional. An administrator must define the label components before creating labels.

Although the administrator defines both long and short names for the label components, only
the short form of the name is displayed upon retrieval. When users manipulate the labels,
they use only the short form of the component names. Examples of short forms are illustrated
in the Examples column of the following table.

Table 2-2    Sensitivity Label Components

Component Description Examples

Level A single specification of the sensitivity of
labeled data within the ordered ranks
established

CONFIDENTIAL (1), SENSITIVE
(2), HIGHLY_SENSITIVE (3)

Compartments Zero or more categories associated with the
labeled data

FINANCIAL, STRATEGIC,
NUCLEAR

Groups Zero or more identifiers for organizations
owning or accessing the data

EASTERN_REGION,
WESTERN_REGION

Valid characters for specifying all label components include alphanumeric characters,
underscores, and spaces. (Leading and trailing spaces are ignored.)

The following figure illustrates the three dimensions in which data can be logically classified,
using levels, compartments, and groups.

Chapter 2
Label Components

2-3



Figure 2-1    Data Categorization with Levels, Compartments, and Groups

Compartment C

Level 3

Level 2

Level 1

Compartment B
Compartment A

Group 1

Group 2

Group 3

2.3.2 Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

The more sensitive the information, the higher its level. The less sensitive the
information, the lower its level.

Every label must include one level. Oracle Label Security permits defining up to
10,000 levels in a policy. For each level, the Oracle Label Security administrator
defines a numeric form, a long character form, and the required short character form.

Table 2-2 shows examples of levels.

Table 2-3    Level Example

Numeric Form Long Form Short Form

40 HIGHLY_SENSITIVE HS
30 SENSITIVE S
20 CONFIDENTIAL C
10 PUBLIC P

Table 2-4 shows different ways of specifying levels.

Chapter 2
Label Components

2-4



Table 2-4    Forms of Specifying Levels

Form Explanation

Numeric form, also
called "tag"

The numeric form of the level can range from 0 to 9999. Sensitivity is ranked
by this numeric value, so you must assign higher numbers to levels that are
more sensitive, and lower numbers to levels that are less sensitive. In 
Table 2-3, 40 (HIGHLY_SENSITIVE) is a higher level than 30, 20, and 10.

Administrators should avoid using sequential numbers for the numeric form
of levels. A good strategy is to use even increments (such as 50 or 100)
between levels. You can then insert additional levels between two preexisting
levels, at a later date.

Long form The long form of the level name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Although the administrator defines both long and short names for the level (and for each of
the other label components), only the short form of the name is displayed upon retrieval of
the records when the Oracle Label Security policy is in effect. When users manipulate the
labels, they use only the short form of the component names.

Other sets of levels that users commonly define include TOP_SECRET, SECRET, CONFIDENTIAL,
and UNCLASSIFIED or TRADE_SECRET, PROPRIETARY, COMPANY_CONFIDENTIAL, PUBLIC_DOMAIN.

If only levels are used, a level 40 user (in this example) can access or alter any data row
whose level is 40 or less.

Note:

All levels and labels (including TOP_SECRET, SECRET, CONFIDENTIAL, and so on) in
this guide, are used as illustrations only.

2.3.3 Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data, providing a finer
level of granularity within a level.

Compartments associate the data with one or more security areas. All data related to a
particular project can be labeled with the same compartment.

Table 2-5 shows examples of compartments.

Table 2-5    Compartment Example

Numeric Form Long Form Short Form

85 FINANCIAL FINCL
65 CHEMICAL CHEM
45 OPERATIONAL OP

Table 2-6 shows different ways of specifying compartments.

Chapter 2
Label Components

2-5



Table 2-6    Forms of Specifying Compartments

Form Explanation

Numeric form The numeric form can range from 0 to 9999. It is unrelated to the
numbers used for the levels. The numeric form of the compartment
does not indicate greater or less sensitivity. Instead, it controls the
display order of the short form compartment name in the label
character string. For example, assume a label is created that has all
three compartments listed in Table 2-5, and a level of SENSITIVE,
whose short form is S. When this label is displayed in string format, it
looks like the following, meaning SENSITIVE: OPERATIONAL,
CHEMICAL, FINANCIAL:

S:OP,CHEM,FINCL

The display order follows the order of the numbers assigned to the
compartments: 45 is lower than 65, and 65 is lower than 85. By
contrast, if the number assigned to the FINCL compartment were 5, the
character string format of the label would look like this:

S:FINCL,OP,CHEM

Long form The long form of the compartment name scan have up to 80
characters.

Short form The short form can contain up to 30 characters.

Compartments are optional. A label can contain zero or more compartments. Oracle
Label Security permits defining up to 10,000 compartments.

Not all labels need to have compartments. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL levels with no compartments, and a SENSITIVE
level that does contain compartments.

When you analyze the sensitivity of data, you may find that some compartments are
only useful at specific levels.

The following figure shows how compartments can be used to categorize data.

Figure 2-2    Label Matrix

CHEM

Compartments

FINCL

FINCL OP

OP

OP

S

P

HS

Levels

Here, compartments FINCL, CHEM, and OP are used with the level HIGHLY_SENSITIVE
(40). The label HIGHLY_SENSITIVE:FINCL, CHEM indicates a level of 40 with the two
named compartments. Compartment FINCL is not more sensitive than CHEM, nor is
CHEM more sensitive than FINCL. Note also that some data in the protected table may
not belong to any compartment.

Chapter 2
Label Components

2-6



If compartments are specified, then a user whose level would normally permit access to a
row's data will nevertheless be prevented from such access unless the user's label also
contains all the compartments appearing in that row's label.

2.3.4 Group Components
Groups identify organizations owning or accessing the data, such as EASTERN_REGION,
WESTERN_REGION, WR_SALES.

All data pertaining to a certain department can have that department's group in the label.
Groups are useful for the controlled dissemination of data and for timely reaction to
organizational change. When a company reorganizes, data access can change right along
with the reorganization.

Groups are hierarchical. You can label data based upon your organizational infrastructure. A
group can thus be associated with a parent group.

Figure 2-3 shows how you can define a set of groups corresponding to the following
organizational hierarchy.

Figure 2-3    Group Example

WESTERN_REGION

WR_HUMAN_


RESOURCES
WR_SALES WR_FINANCE

WR_ACCOUNTS_


RECEIVABLE

WR_ACCOUNTS_


PAYABLE

The WESTERN_REGION group includes three subgroups: WR_SALES, WR_HUMAN_RESOURCES, and
WR_FINANCE. The WR_FINANCE subgroup is subdivided into WR_ACCOUNTS_RECEIVABLE and
WR_ACCOUNTS_PAYABLE.

Table 2-7 shows how the organizational structure in this example can be expressed in the
form of Oracle Label Security groups. Notice that the numeric form assigned to the groups
affects display order only. The administrator specifies the hierarchy (that is, the parent/child
relationships) separately.

Table 2-7    Group Example

Numeric Form Long Form Short Form Parent Group

1000 WESTERN_REGION WR
1100 WR_SALES WR_SAL WR
1200 WR_HUMAN_RESOURCES WR_HR WR
1300 WR_FINANCE WR_FIN WR

Chapter 2
Label Components

2-7



Table 2-7    (Cont.) Group Example

Numeric Form Long Form Short Form Parent Group

1310 WR_ACCOUNTS_PAYABLE WR_AP WR_FIN
1320 WR_ACCOUNTS_RECEIVABLE WR_AR WR_FIN

Table 2-8 shows different ways of specifying groups.

Table 2-8    Forms of Specifying Groups

Form Explanation

Numeric form The numeric form of the group can range from 0 to 9999, and it
must be unique for each policy.

The numeric form does not indicate any kind of ranking. It does
not indicate a parent-child relationship, or greater or less
sensitivity. It only controls the display order of the short form
group name in the label character string.

For example, assume that a label is created that has the level
SENSITIVE, the compartment CHEMICAL, and the groups
WESTERN_REGION and WR_HUMAN_RESOURCES as listed in 
Table 2-7. When displayed in string format, the label looks like
this:

S:CHEM:WR,WR_HR

WR is displayed before WR_HR because 1000 comes before 1200.

Long form The long form of the group name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Groups are optional; a label can contain zero or more groups. Oracle Label Security
permits defining up to 10,000 groups.

All labels need not have groups. When you analyze the sensitivity of data, you may
find that some groups are only used at specific levels. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL labels with no groups, and a SENSITIVE label
that does contain groups.

Related Topics

• Releasability Using Inverse Groups
Oracle Label Security can implement the releasability using inverse groups.

2.3.5 Industry Examples of Levels, Compartments, and Groups
Oracle Label Security levels, compartments, groups are designed to be implemented
in various industries.

Table 2-9 illustrates the flexibility of Oracle Label Security levels, compartments, and
groups, by listing typical ways in which they can be implemented in various industries.

Chapter 2
Label Components

2-8



Table 2-9    Typical Levels, Compartments, and Groups, by Industry

Industry Levels Compartments Groups

Business to Business TRADE_SECRET
PROPRIETARY
COMPANY_CONFIDENTIAL
PUBLIC

MARKETING
FINANCIAL
SALES
PERSONNEL

AJAX_CORP
BILTWELL_CO
ACME_INC
ERSATZ_LTD

Financial Services ACQUISITIONS
CORPORATE
CLIENT
OPERATIONS

INSURANCE
EQUITIES
TRUSTS
COMMERCIAL_LOANS
CONSUMER_LOANS

CLIENT
TRUSTEE
BENEFICIARY
MANAGEMENT
STAFF

Judicial NATIONAL_SECURITY
SENSITIVE
PUBLIC

CIVIL
CRIMINAL

ADMINISTRATION
DEFENSE
PROSECUTION
COURT

Health Care PRIMARY_PHYSICIAN
PATIENT_CONFIDENTIAL
PATIENT_RELEASE

PHARMACEUTICAL
INFECTIOUS_DISEASES

CDC
RESEARCH
NURSING_STAFF
HOSPITAL_STAFF

Defense TOP_SECRET
SECRET
CONFIDENTIAL
UNCLASSIFIED

ALPHA
DELTA
SIGMA

UK
NATO
SPAIN

2.4 Label Syntax and Type
After label components are defined, you can create data labels by combining particular sets
of level, compartments, and groups.

You can use the Oracle Enterprise Manager graphical user interface or a command line
procedure. Character string representations of labels use the following syntax:

LEVEL:COMPARTMENT1,...,COMPARTMENTn:GROUP1,...,GROUPn
The text string specifying the label can have a maximum of 4,000 characters, including
alphanumeric characters, spaces, and underscores. The labels are case-insensitive. You can
enter them in uppercase, lowercase, or mixed case, but the string is stored in the data
dictionary and displayed in uppercase. A colon is used as the delimiter between components.
It is not necessary to enter trailing delimiters in this syntax.

For example, you can create valid labels such as these:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION
CONFIDENTIAL:FINANCIAL:VP_GRP
SENSITIVE
HIGHLY_SENSITIVE:FINANCIAL 
SENSITIVE::WESTERN_REGION

Chapter 2
Label Syntax and Type

2-9



When a valid data label is created, two additional things occur:

• The label is automatically designated as a valid data label. This functionality limits
the labels that can be assigned to data. Oracle Label Security can also create
valid data labels dynamically at run time, from those that are predefined in Oracle
Internet Directory. Most users, however, prefer to create the labels manually in
order to limit data label proliferation.

• A numeric label tag is associated with the text string representing the label. It is
this label tag, rather than the text string, that is stored in the policy label column of
the protected table.

Note:

For Oracle Label Security installations that do not use Oracle Internet
Directory, dynamic creation of valid data labels uses the TO_DATA_LABEL
function. Its usage should be tightly controlled.

Related Topics

• Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

• How Policy Label Column and Label Tags Work
You should understand how policy label columns in a table or schema are created
and filled.

• Label Tags
You can create label tags, either manually or automatically generating them, that
define the label components.

2.5 How Data Labels and User Labels Work Together
A user can access data only within the range of his or her own label authorizations.

A user has the following:

• Maximum and minimum levels

• A set of authorized compartments

• A set of authorized groups (and, implicitly, authorization for any subgroups)

For example, suppose you have the following levels:

• HIGHLY_SENSITIVE, with the numeric form 40

• SENSITIVE, with the numeric form 30

• CONFIDENTIAL, with the numeric form 20

• PUBLIC, with the numeric form 10

If a user is assigned a maximum level of SENSITIVE, then the user potentially has
access to SENSITIVE, CONFIDENTIAL, and PUBLIC data. The user has no access to
HIGHLY_SENSITIVE data because this level is too high.

Figure 2-4 shows how data labels and user labels work together to provide access
control in Oracle Label Security. While data labels are discrete, user labels are

Chapter 2
How Data Labels and User Labels Work Together

2-10



inclusive. Depending upon authorized compartments and groups, a user can potentially
access data corresponding to all levels within his or her range.

Figure 2-4    Example: Data Labels and User Labels

User 1


User 2


User Session Label


S:CHEM,FIN:WR
Row 1


HS:FIN:WR_SAL
Row 2


U:FIN
Row 3


C:FIN:WR_SAL


 = HIGHLY_SENSITIVE
HS

 = SENSITIVE
S

 = CONFIDENTIAL
C

 = UNCLASSIFIED
U


Row 4


Data Label


HS:FIN:WR


S:FIN:WR_SAL


As shown in the figure, User 1 can access the rows 2, 3, and 4 because her maximum level
is HS. She has access to the FIN compartment, and her access to group WR hierarchically
includes group WR_SAL. She cannot access row 1 because she does not have the CHEM
compartment. (A user must have authorization for all compartments in a row's data label to
be able to access that row.)

User 2 can access rows 3 and 4. His maximum level is S, which is less than HS in row 2.
Although he has access to the FIN compartment, he only has authorization for group WR_SAL.
So, he cannot access row 1.

Figure 2-5 shows how data pertaining to an organizational hierarchy fits into data levels and
compartments.

Chapter 2
How Data Labels and User Labels Work Together

2-11



Figure 2-5    How Label Components Interrelate

UNITED_STATES

CENTRAL_REGIONEASTERN_REGION WESTERN_REGION

NEVADA




Financial OperationalChemical


 600


 








SensitiveLevels

Public

Highly Sensitive

CALIFORNIA

Compartments

Groups

For example, the UNITED_STATES group includes three subgroups: EASTERN_REGION,
CENTRAL_REGION, and WESTERN_REGION. The WESTERN_REGION subgroup is further
subdivided into CALIFORNIA and NEVADA. For each group and subgroup, there may be
data belonging to some of the valid compartments and levels within the database. So,
there may be SENSITIVE data that is FINANCIAL, within the CALIFORNIA subgroup.

Note that data is generally labeled with a single group whereas users' labels form a
hierarchy. If users have a particular group, then that group may implicitly include child
groups. This way a user associated with the UNITED_STATES group has access to all
data, but a user associated with CALIFORNIA would have access to data pertaining to
only that subgroup.

2.6 Administration of Labels
Oracle Label Security provides administrative interfaces to define and manage the
labels used in a database.

You define labels in Oracle Database using Oracle Label Security PL/SQL packages
or by using Oracle Enterprise Manager. Initially, an administrator must define the
levels, compartments, and groups that compose the labels, and then, the user can
define the set of valid data labels for the contents of the database.

An administrator can apply a policy to individual tables in the database or to entire
application schemas. Finally, the administrator assigns to each database user the label
components (and privileges, if needed) required for the user's job function.

Chapter 2
Administration of Labels

2-12



3
Access Controls and Privileges

Oracle provides access controls and privileges that determine the type of access users can
have to labeled rows.

• Access Mediation
To access data protected by an Oracle Label Security policy, a user must have
authorizations based on the labels defined for the policy.

• How the Session Label and Row Label Work
It is important to understand session labels and row labels.

• How User Authorizations Work
Oracle Label Security provides authorizations set by the Oracle Label Security
administrator and authorizations set by computed session labels.

• Evaluation of Labels for Access Mediation
Oracle Label Security evaluates labels by comparing the user’s label components to the
row’s label components.

• Oracle Label Security Privileges
Oracle Label Security provides a set of database and row label privileges.

• Working with Multiple Oracle Label Security Policies
You can use multiple Oracle Label Security policies in both a single database
environments and in a distributed environments.

Related Topics

• Understanding Data Labels and User Labels
You should understand fundamental concepts of data labels and user labels.

3.1 Access Mediation
To access data protected by an Oracle Label Security policy, a user must have authorizations
based on the labels defined for the policy.

The following figure illustrates the relationships between users, data, and labels.

• Data labels specify the sensitivity of data rows.

• User labels provide the appropriate authorizations to users.

• Access mediation between users and rows of data depends on users' labels.

3-1



Figure 3-1    Relationships Between Users, Data, and Label

Data Sensitivity

Users

DataLabels

U
se

r 
A

u
th

o
ri
za

ti
o
n
s A

ccess M
ed

iatio
n

Note:

Oracle Label Security enforcement options affect how access controls apply
to tables and schemas. This chapter assumes that all policy enforcement
options are in effect.

Related Topics

• Oracle Label Security Policy Enforcement Options
Oracle Label Security provides a set of policy enforcement options.

3.2 How the Session Label and Row Label Work
It is important to understand session labels and row labels.

• The Session Label
Each Oracle Label Security user has authorizations that include special
components.

• The Row Label
When a user writes data without specifying its label, a row label is assigned
automatically, using the user's session label.

• Session Label Example
The session label and the row label can fall anywhere within the range of the
user's level, compartment, and group authorizations.

3.2.1 The Session Label
Each Oracle Label Security user has authorizations that include special components.

• A maximum and minimum level

• A set of authorized compartments

Chapter 3
How the Session Label and Row Label Work

3-2



• A set of authorized groups

• For each compartment and group, a specification of read-only access, or read/write
access

The administrator also specifies the user's initial session label when setting up these
authorizations for the user. The session label is the particular combination of levels,
compartments, and groups at which a user works at any given time. The user can change the
session label to any combination of components for which the user is authorized.

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user authorizations.

3.2.2 The Row Label
When a user writes data without specifying its label, a row label is assigned automatically,
using the user's session label.

However, the user can set the label for the written row, within certain restrictions on the
components of the label he specifies. The level of this label can be set to any level within the
range specified by the administrator. For example, it can be set to the level of the user's
current session label down to the user's minimum level. However, the compartments and
groups for this row's new label are more restricted. The new label can include only those
compartments and groups contained in the current session label and, among those, only the
ones for which the user has write access.

When the administrator sets up the user authorizations, he or she also specifies an initial
default row label.

See Also:

• SA_USER_ADMIN PL/SQL Package

• SA_SESSION Session Management PL/SQL Package

3.2.3 Session Label Example
The session label and the row label can fall anywhere within the range of the user's level,
compartment, and group authorizations.

In the following figure, the user's maximum level is SENSITIVE and the minimum level is
UNCLASSIFIED. However, the user's default session label is C:FIN,OP:WR. In this example, the
administrator has set the user's session label so that the user connects to the database at the
CONFIDENTIAL level.

Similarly, although the user is authorized for compartments FIN and OP, and group WR, the
administrator could set the session label so that the user connects with only compartment FIN
and group WR.

Chapter 3
How the Session Label and Row Label Work

3-3



Figure 3-2    User Session Label

Data

UNCLASSIFIED :FIN

UNCLASSIFIED :FIN

SENSITIVE :FIN :HR

CONFIDENTIAL :OP :WR

TOP SECRET :OP :WR

Data Label

UNCLASSIFIED :WR:CHEM

Default Session Label

C:FIN,OP:WR

Levels

Compartments

Groups

Related Topics

• SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a
user and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.ALTER_COMPARTMENTS
The SA_USER_ADMIN.ALTER_COMPARTMENTS procedure changes the write access,
default label indicator, and row label indicator for the specified compartments.

3.3 How User Authorizations Work
Oracle Label Security provides authorizations set by the Oracle Label Security
administrator and authorizations set by computed session labels.

• Authorizations Set by the Administrator
The administrator explicitly sets authorizations for levels, compartments, and
groups.

• Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the
value of the session label.

3.3.1 Authorizations Set by the Administrator
The administrator explicitly sets authorizations for levels, compartments, and groups.

• Authorized Levels
The administrator explicitly sets the level authorization for an Oracle Label
Security policy.

Chapter 3
How User Authorizations Work

3-4



• Authorized Compartments
The administrator specifies the list of compartments that a user can place in his or her
session label.

• Authorized Groups
You must specify a list of groups that a user can place in a session label and grant write
access for each group.

3.3.1.1 Authorized Levels
The administrator explicitly sets the level authorization for an Oracle Label Security policy.

Table 3-1 lists authorized levels that the administrator can set.

Table 3-1    Authorized Levels Set by the Administrator

Authorization Meaning

User Max Level The maximum ranking of sensitivity that a user can access during read
and write operations

User Min Level The minimum ranking of sensitivity that a user can access during write
operations. The User Max Level must be equal to or greater than the
User Min Level.

User Default Level The level that is assumed by default when connecting to Oracle
Database

User Default Row Level The level that is used by default when inserting data into Oracle
Database

For example, in Oracle Enterprise Manager, the administrator might set the following level
authorizations for user Joe:

Type Short Name Long Name Description

Maximum HS HIGHLY_SENSITIVE User's highest level

Minimum P PUBLIC User's lowest level

Default C CONFIDENTIAL User's default level

Row C CONFIDENTIAL Row level on INSERT

3.3.1.2 Authorized Compartments
The administrator specifies the list of compartments that a user can place in his or her
session label.

The administrator must explicitly give write access to the user for each compartment. A user
cannot directly insert, update, or delete a row that contains a compartment that he or she
does not have authorization to write.

For example, in Oracle Enterprise Manager, the administrator might set the following
compartment authorizations for user Joe:

Short Name Long Name WRITE DEFAULT ROW

CHEM CHEMICAL YES YES NO

Chapter 3
How User Authorizations Work

3-5



Short Name Long Name WRITE DEFAULT ROW

FINCL FINANCIAL YES YES NO

OP OPERATIONAL YES YES YES

In Figure 3-3, the row designation indicates whether the compartment should be used
as part of the default row label for newly inserted data. Note also that the policy option
must be in effect for this setting to be valid.

Figure 3-3    Setting Up Authorized Compartments In Enterprise Manager

3.3.1.3 Authorized Groups
You must specify a list of groups that a user can place in a session label and grant
write access for each group.

For example, in Oracle Enterprise Manager, the administrator might set the following
group authorizations:

Short Name Long Name WRITE DEFAULT ROW Parent

WR_HR WR_HUMAN_RESOURCES YES YES YES WR
WR_AP WR_ACCOUNTS_PAYABLE YES YES NO WR_FIN
WR_AR WR_ACCOUNTS_RECEIVABLE YES YES NO WR_FIN

In Figure 3-4, the row designation indicates whether the group should be used as part
of the default row label for newly inserted data. Note also that the LABEL_DEFAULT
policy option must be in effect for this setting to be valid.

Chapter 3
How User Authorizations Work

3-6



Figure 3-4    Setting Up Authorized Groups in Enterprise Manager

Related Topics

• LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated row uses
its original label.

3.3.2 Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the value of the
session label.

Table 3-2 lists the computed session labels.

Table 3-2    Computed Session Labels

Computed Label Definition

Maximum Read Label The user's maximum level combined with any combination of
compartments and groups for which the user is authorized.

Maximum Write Label The user's maximum level combined with the compartments and
groups for which the user has been granted write access.

Minimum Write Label The user's minimum level.

Default Read Label The single default level combined with compartments and groups that
have been designated as default for the user.

Default Write Label A subset of the default read label, containing the compartments and
groups to which the user has been granted write access. The level
component is equal to the level default in the read label. This label is
automatically derived from the read label based on the user's write
authorizations.

Default Row Label The combination of components between the user's minimum write
label and the maximum write label, which has been designated as the
default value for the data label for inserted data.

Related Topics

• Computed Labels with Inverse Groups
Inverse groups affect computed label values.

Chapter 3
How User Authorizations Work

3-7



3.4 Evaluation of Labels for Access Mediation
Oracle Label Security evaluates labels by comparing the user’s label components to
the row’s label components.

This way, the Oracle Label Security policy can determine whether the user can access
the data. This enables Oracle Label Security to evaluate whether the user is
authorized to perform the requested operation on the data in the row.

• About Read and Write Access
Although data labels are stored in a column within data records, information about
user authorizations is stored in relational tables.

• How Oracle Label Security Algorithm for Read Access Works
The READ_CONTROL enforcement determines the ability to read data in a row.

• How the Oracle Label Security Algorithm for Write Access Works
In the context of Oracle Label Security, WRITE_CONTROL enforcement determines
the ability to insert, update, or delete data in a row.

3.4.1 About Read and Write Access
Although data labels are stored in a column within data records, information about
user authorizations is stored in relational tables.

When a user logs on, the tables are used to dynamically generate user labels for use
during the session.

• Difference Between Read and Write Operations
Two fundamental types of access mediation on Data Manipulation language (DML)
operations exist within protected tables: read access and write access.

• Propagation of Read/Write Authorizations on Groups
When groups are organized hierarchically, a user's assigned groups include all
subgroups that are subordinate to the group to which the user belongs.

3.4.1.1 Difference Between Read and Write Operations
Two fundamental types of access mediation on Data Manipulation language (DML)
operations exist within protected tables: read access and write access.

The user has a maximum authorization for the data he or she can read; the user's
write authorization is a subset of that. The minimum write level controls the user's
ability to disseminate data by lowering its sensitivity. The user cannot write data with a
level lower than the minimum level the administrator assigned to this user.

In addition, there are separate lists of compartments and groups for which the user is
authorized; that is, for which the user has at least read access. An access flag
indicates whether the user can also write to individual compartments or groups.

3.4.1.2 Propagation of Read/Write Authorizations on Groups
When groups are organized hierarchically, a user's assigned groups include all
subgroups that are subordinate to the group to which the user belongs.

Chapter 3
Evaluation of Labels for Access Mediation

3-8



In this case, the user's read/write authorizations on a parent group flow down to all the
subgroups.

Consider the parent group WESTERN_REGION, with three subgroups as illustrated in Figure 3-5.
If the user has read access to WESTERN_REGION, then the read access is also granted to the
three subgroups. The administrator can give the user write access to subgroup WR_FINANCE,
without granting write access to the WESTERN_REGION parent group (or to the other
subgroups). On the other hand, if the user has read/write access on WESTERN_REGION, then
read/write access is also granted on all of the subgroups subordinate to it in the tree.

Write authorization on a group does not give a user write authorization on the parent group. If
a user has read-only access to WESTERN_REGION and WR_FINANCE, then the administrator can
grant write access to WR_ACCOUNTS_RECEIVABLE, without affecting the read-only access to the
higher-level groups.

Figure 3-5     Subgroup Inheritance of Read/Write Access

WESTERN_REGION

WR_HUMAN_

RESOURCES
WR_SALES WR_FINANCE

WR_ACCOUNTS_

RECEIVABLE

WR_ACCOUNTS_

PAYABLE

Read

Read

Read / Write Read / Write

Read / WriteRead

Administrator grants 

user write access 

to WR_FINANCE

Related Topics

• How Inverse Groups Work
Inverse groups are implemented in a special way and are organized to suit the needs of
Oracle Label Security.

3.4.2 How Oracle Label Security Algorithm for Read Access Works
The READ_CONTROL enforcement determines the ability to read data in a row.

The following rules are used, in the sequence listed, to determine a user's read access to a
row of data:

1. The user's level must be greater than or equal to the level of the data.

2. The user's label must include at least one of the groups that belong to the data (or the
parent group of one such subgroup).

3. The user's label must include all the compartments that belong to the data.

If the user's label passes these tests, then it is said to dominate the row's label.

Chapter 3
Evaluation of Labels for Access Mediation

3-9



Note that there is no notion of read or write access connected with levels. This is
because the administrator specifies a range of levels (minimum to maximum) within
which a user can potentially read and write. At any time, the user can read all data
equal to or less than the current session level. No privileges (other than FULL) allow
the user to write below the minimum authorized level.

Figure 3-6 illustrates how the label evaluation process proceeds from levels to groups
to compartments. Note that if the data label is null or invalid, then the user is denied
access.

Figure 3-6    Label Evaluation Process for Read Access

No 

Access

 Access

Data

level =< user


level?

Data has

groups? 

Data

has


compartments?

User has all

compartments? 

N N N

Y YYYY

N
N

User

has at least one


group? 

As a read access request comes in, Oracle Label Security evaluates each row to
determine the following:

1. Is the user's level equal to, or greater than, the level of the data?

2. If so, does the user have access to at least one of the groups present in the data
label?

3. If so, does the user have access to all the compartments present in the data label?
(That is, are the data's compartments a subset of the user's compartments?)

If the answer is no at any stage in this evaluation process, then Oracle Label Security
denies access to the row and moves on to evaluate the next row of data.

Oracle Label Security policies allow user sessions to read rows at their label and
below, which is called reading down. Sessions cannot read rows at labels that they do
not dominate.

For example, if you are logged in at SENSITIVE:ALPHA,BETA, you can read a row
labeled SENSITIVE:ALPHA because your label dominates that of the row. However, you
cannot read a row labeled SENSITIVE:ALPHA,GAMMA because your label does not
dominate that of the row.

Note that the user can gain access to the rows otherwise denied, if she or he has
special Oracle Label Security privileges.

Related Topics

• Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to
bypass certain parts of the policy.

Chapter 3
Evaluation of Labels for Access Mediation

3-10



• How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or DELETE
operations to only those rows whose labels meet established policies.

3.4.3 How the Oracle Label Security Algorithm for Write Access Works
In the context of Oracle Label Security, WRITE_CONTROL enforcement determines the ability to
insert, update, or delete data in a row.

WRITE_CONTROL enables you to control data access with ever finer granularity. Granularity
increases when compartments are added to levels. It increases again when groups are
added to compartments. Access control becomes even more fine grained when you can
manage the user's ability to write the data that he can read.

To determine whether a user can write a particular row of data, Oracle Label Security
evaluates the following rules, in the order given:

1. The level in the data label must be greater than or equal to the user's minimum level and
less than or equal to the user's session level.

2. When groups are present, the user's label must include at least one of the groups with
write access that appear in the data label (or the parent of one such subgroup). In
addition, the user's label must include all the compartments in the data label.

3. When no groups are present, the user's label must have write access on all of the
compartments in the data label.

To state tests 2 and 3 another way:

• If the label has no groups, then the user must have write access on all the compartments
in the label in order to write the data.

• If the label does have groups and the user has write access to one of the groups, she
only needs read access to the compartments in order to write the data.

Just as with read operations, the label evaluation process proceeds from levels to groups to
compartments. Note that the user cannot write any data below the authorized minimum level,
nor above the current session level. The user can always read below the minimum level.

Figure 3-7 illustrates how the process works with INSERT, UPDATE, and DELETE operations.
Note that if the data label is null or invalid, then the user is denied access.

Chapter 3
Evaluation of Labels for Access Mediation

3-11



Figure 3-7    Label Evaluation Process for Write Access

No 

Access

 Access

Data

level =< user


level?

Data

level => user min


level?

Data

has groups?

Data

has


compartments?

User

has at least one

group with Write


access?
User has all


compartments? 

N NN N

Y YYYYY

Data

has


compartments?

User 

has all compartments


with Write


access? 

N

Y N

YN

N

As an access request comes in, Oracle Label Security evaluates each row to
determine the following:

1. Is the data's level equal to, or less than the level of the user?

2. Is the data's level equal to, or greater than the user's minimum level?

3. If the data's level falls within the foregoing bounds, then does the user have write
access to at least one of the groups present in the data label?

4. If so, does the user have access to all the compartments with at least read access
that are present in the data label?

5. If there are no groups but there are compartments, then does the user have write
access to all of the compartments?

If the answer is no at any stage in this evaluation process, then Oracle Label Security
denies access to the row, and moves on to evaluate the next row of data.

Consider a situation in which your session label is S:ALPHA,BETA but you have write
access to only compartment ALPHA. In this case, you can read a row with the label
S:ALPHA,BETA but you cannot update it.

In summary, write access is enforced on INSERT, UPDATE and DELETE operations upon
the data in the row.

In addition, each user may have an associated minimum level below which the user
cannot write. The user cannot update or delete any rows labeled with levels below the
minimum, and cannot insert a row with a row label containing a level less than the
minimum.

Chapter 3
Evaluation of Labels for Access Mediation

3-12



Related Topics

• How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or DELETE
operations to only those rows whose labels meet established policies.

3.5 Oracle Label Security Privileges
Oracle Label Security provides a set of database and row label privileges.

• Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to bypass
certain parts of the policy.

• Special Access Privileges
A user's authorizations can be modified with any of four privileges.

• Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are required to
modify the label.

• System Privileges, Object Privileges, and Policy Privileges
Oracle Label Security privileges are different from the standard Oracle Database system
and object privileges.

• Access Mediation and Views
Prior to accessing data through a view, the users must have the appropriate system and
object privileges on the view.

• Access Mediation and Program Unit Execution
The privileges with which procedures that are owned by different users are executed
differently in Oracle Database and Oracle Label Security.

• Access Mediation and Policy Enforcement Options
An administrator can choose from among a set of policy enforcement options when
applying an Oracle Label Security policy to individual tables.

3.5.1 Privileges Defined by Oracle Label Security Policies
Oracle Label Security supports special privileges that allow authorized users to bypass
certain parts of the policy.

Table 3-3 summarizes the full set of privileges that can be granted to users or trusted stored
program units. Each privilege is more fully discussed after the table.

Table 3-3    Oracle Label Security Privileges

Security Privilege Explanation

READ Allows read access to all data protected by the policy

FULL Allows full read and write access to all data protected by the
policy

COMPACCESS Allows a session access to data authorized by the row's
compartments, independent of the row's groups

PROFILE_ACCESS Allows a session to change its labels and privileges to those
of a different user

Chapter 3
Oracle Label Security Privileges

3-13



Table 3-3    (Cont.) Oracle Label Security Privileges

Security Privilege Explanation

WRITEUP Allows users to set or raise only the level, within a row label,
up to the maximum level authorized for the user. (Active only
if LABEL_UPDATE is active.)

WRITEDOWN Allows users to set or lower the level, within a row label, to
any level equal to or greater than the minimum level
authorized for the user. (Active only if LABEL_UPDATE is
active.)

WRITEACROSS Allows a user to set or change groups and compartments of
a row label, but does not allow changes to the level. (Active
only if LABEL_UPDATE is active.)

3.5.2 Special Access Privileges
A user's authorizations can be modified with any of four privileges.

• READ Privilege
A user with the READ privilege can read all data protected by the policy, regardless
of the authorizations or session label.

• FULL Privilege
The FULL privilege has the same effect and benefits as the READ privilege, with one
difference.

• COMPACCESS Privilege
The COMPACCESS privilege allows a user to access data based on the row label's
compartments, independent of the row label's groups.

• PROFILE_ACCESS Privilege
The PROFILE_ACCESS privilege allows a session to change its session labels and
session privileges to those of a different user.

3.5.2.1 READ Privilege
A user with the READ privilege can read all data protected by the policy, regardless of
the authorizations or session label.

The user does not even need to have label authorizations.

Note, in addition, that a user with READ privilege can write to any data rows for which
he or she has write access, based on any label authorizations.

Note:

Access mediation is still enforced on UPDATE, INSERT, and DELETE operations.

This privilege is useful for system administrators who need to export data but who
should not be allowed to change data. It is also useful for people who must run reports
and compile information but not change data. The READ privilege enables optimal

Chapter 3
Oracle Label Security Privileges

3-14



performance on SELECT statements, because the system behaves as though the Oracle Label
Security policy were not even present.

3.5.2.2 FULL Privilege
The FULL privilege has the same effect and benefits as the READ privilege, with one difference.

A user with the FULL privilege can also write to all the data. For a user with the FULL privilege,
the READ and WRITE algorithms are not enforced.

Oracle system and object authorizations are still enforced for users who have been granted
the FULL privilege. For example, a user must still have the SELECT system privilege on the
application table. The FULL authorization turns off the access mediation check at the
individual row level.

3.5.2.3 COMPACCESS Privilege
The COMPACCESS privilege allows a user to access data based on the row label's
compartments, independent of the row label's groups.

If a row label has no compartments, then access is determined by the group authorizations.
However, when compartments do exist and access to them is authorized, then the group
authorization is bypassed. This allows a privileged user whose label matches all the
compartments of the data to access any data in any particular compartment, independent of
what groups may own or otherwise be allowed access to the data.

Figure 3-8 shows the label evaluation process for read access with the COMPACCESS privilege.
Note that if the data label is null or invalid, then the user is denied access.

Figure 3-8    Label Evaluation Process for Read Access with COMPACCESS Privilege

No 

Access

 Access

Data

level =< user


level?

Data has

groups? 

Data

has


compartments?

User has all

compartments? 

N N N

Y YYYY

N

Y

N
N

User

has at least one


group? 

Data has

compartments?

Figure 3-9 shows the label evaluation process for write access with COMPACCESS privilege.
Note that if the data label is null or invalid, then the user is denied access.

Chapter 3
Oracle Label Security Privileges

3-15



Figure 3-9    Label Evaluation Process for Write Access with COMPACCESS Privilege

No 

Access

 Access

Data

level =< user


level?

Data

level => user min


level?

Data

has groups?

Data

has


compartments?

User

has at least one

group with Write


access?

User has all

compartments? 

N N N

Y YYYYY

Data

has


compartments?

User 

has all compartments


with Write


access? 

Data has

compartments?

N

Y

N

Y

N

N

Y

N

N

3.5.2.4 PROFILE_ACCESS Privilege
The PROFILE_ACCESS privilege allows a session to change its session labels and
session privileges to those of a different user.

This is a very powerful privilege, because the user can potentially become a user with
the FULL privilege. This privilege cannot be granted to a trusted stored program unit.

3.5.3 Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are required to
modify the label.

Note that the LABEL_UPDATE enforcement option must be on for these label
modification privileges to be enforced. When a user updates a row label, the new label
and old label are compared, and the required privileges are determined.

The special row label privileges include:

• WRITEUP Privilege
The WRITEUP privilege enables the user to raise the level of data within a row,
without compromising the compartments or groups.

• WRITEDOWN Privilege
The WRITEDOWN privilege enables the user to lower the level of data within a row,
without compromising the compartments or groups.

Chapter 3
Oracle Label Security Privileges

3-16



• WRITEACROSS Privilege
The WRITEACROSS privilege allows the user to change the compartments and groups of
data, without altering its sensitivity level.

3.5.3.1 WRITEUP Privilege
The WRITEUP privilege enables the user to raise the level of data within a row, without
compromising the compartments or groups.

This privilege enables a user to raise the level up to his or her maximum authorized level. You
can find the privileges that users have by querying the ALL_SA_USER_PRIVS data dictionary
view.

For example, an authorized user can raise the level of a data row that has a level lower than
his own minimum level. If a row is UNCLASSIFIED and the user's maximum level is SENSITIVE,
then the row's level can be raised to SENSITIVE. It can be raised above the current session
level, but it cannot change the compartments.

3.5.3.2 WRITEDOWN Privilege
The WRITEDOWN privilege enables the user to lower the level of data within a row, without
compromising the compartments or groups.

The user can lower the level to any level equal to or greater than his or her minimum
authorized level. You can find the privileges that have been granted to a user by querying the
ALL_SA_USER_PRIVS data dictionary view.

3.5.3.3 WRITEACROSS Privilege
The WRITEACROSS privilege allows the user to change the compartments and groups of data,
without altering its sensitivity level.

This guarantees, for example, that SENSITIVE data remains at the SENSITIVE level, but at the
same time enables the data's dissemination to be managed.

It lets the user change compartments and groups to anything that is currently defined as a
valid compartment or group within the policy, while maintaining the level. With the
WRITEACROSS privilege, a user with read access to one group (or more) can write to a different
group without explicitly being given access to it.

You can find the privileges that have been granted to a user by querying the
ALL_SA_USER_PRIVS data dictionary view.

3.5.4 System Privileges, Object Privileges, and Policy Privileges
Oracle Label Security privileges are different from the standard Oracle Database system and
object privileges.

Table 3-4    Types of Privilege

Source Privileges Definition

Oracle Database System Privileges The right to run a particular type of SQL
statement

Oracle Database Object Privileges The right to access another user's object

Chapter 3
Oracle Label Security Privileges

3-17



Table 3-4    (Cont.) Types of Privilege

Source Privileges Definition

Oracle Label
Security

Policy Privileges The ability to bypass certain parts of the label
security policy

Oracle Database enforces the discretionary access control privileges that a user has
been granted. By default, a user has no privileges except those granted to the PUBLIC
user group. A user must explicitly be granted the appropriate privilege to perform an
operation.

For example, to read an object in Oracle Database, you must either be the object's
owner, or be granted the SELECT privilege on the object, or be granted the SELECT ANY
TABLE system privilege. Similarly, to update an object, you must either be the object's
owner, or be granted the UPDATE privilege on the object, or be granted the UPDATE ANY
TABLE privilege.

Related Topics

• Oracle Database Security Guide

3.5.5 Access Mediation and Views
Prior to accessing data through a view, the users must have the appropriate system
and object privileges on the view.

If the underlying table (on which the view is based) is protected by Oracle Label
Security, then the user of the view must have authorization from Oracle Label Security
to access specific rows of labeled data.

3.5.6 Access Mediation and Program Unit Execution
The privileges with which procedures that are owned by different users are executed
differently in Oracle Database and Oracle Label Security.

For example, in Oracle Database, if user1 executes a procedure that belongs to
user2, then the procedure runs with user2's system and object privileges. You can find
the privileges that have been granted to a user by querying the DBA_SYS_PRIVS data
dictionary view. However, any procedure executed by user1 runs with user1's own
Oracle Label Security labels and privileges. This is true even when user1 executes
stored program units owned by other users.

Figure 3-10 illustrates this process:

• Stored program units run with the DAC privileges of the procedure's owner
(user2).

• In addition, stored program units accessing tables protected by Oracle Label
Security mediate access to data rows based on the label attached to the row, and
the Oracle Label Security labels and privileges of the invoker of the procedure
(user1).

Chapter 3
Oracle Label Security Privileges

3-18



Figure 3-10    Stored Program Unit Execution


 

 
 






































L
A

B
E

L











U
s
e

r 
in

v
o

k
e

s
 s

to
re

d
 


p
ro

g
ra

m
 u

n
it

S
to

re
d

 P
ro

g
ra

m
 U

n
it

T
a

b
le

 a
c

c
e

s
s

e
d

 u
s

in
g

 s
to

re
d

 

p

ro
g

ra
m

 u
n

it
's

 s
y

s
te

m
 a

n
d

 

o

b
je

c
t 

p
ri

v
il

e
g

e
s

R
o

w
 a

c
c

e
s

s
 m

e
d

ia
te

d
 b

y
 u

s
e

r'
s

 

O

ra
c

le
 L

a
b

e
l 

S
e

c
u

ri
ty

 s
e

s
s

io
n

 

la

b
e

ls
 a

n
d

 p
ri

v
il

e
g

e
s

E
x
e

c
u

te
 


p
ri
v
ile

g
e

Stored program units can become trusted when an administrator assigns them Oracle Label
Security privileges. A stored program unit can be run with its own autonomous Oracle Label
Security privileges rather than those of the user who calls it. For example, if you possess no
Oracle Label Security privileges in your own right but run a stored program unit that has the
WRITEDOWN privilege, then you can update labels. In this case, the privileges used are those of
the stored program unit, and not your own.

Trusted program units can encapsulate privileged operations in a controlled manner. By using
procedures, packages, and functions with assigned privileges, you may be able to access
data that your own labels and privileges would not authorize. For example, to perform
aggregate functions over all data in a table, not just the data visible to you, you might use a
trusted program set up by an administrator. This way program units can thus perform
operations on behalf of users, without the need to grant privileges directly to users.

Related Topics

• Administering and Using Trusted Stored Program Units
You can use trusted stored program units to enhance system security.

3.5.7 Access Mediation and Policy Enforcement Options
An administrator can choose from among a set of policy enforcement options when applying
an Oracle Label Security policy to individual tables.

These options enable enforcement to be tailored differently for each database table. In
addition to the access controls based on the labels, a SQL predicate can also be associated
with each table. The predicate can further define which rows in the table are accessible to the
user.

In cases where the label to be associated with a new or updated row should be automatically
computed, an administrator can specify a labeling function when applying the policy. That
function will thereafter always be invoked to provide the data labels written under that policy,
because active labeling functions take precedence over any alternative means of supplying a
label.

Except where noted, this guide assumes that all enforcement options are in effect.

Chapter 3
Oracle Label Security Privileges

3-19



Related Topics

• Implementing Policy Enforcement Options and Labeling Functions
You can customize the enforcement of Oracle Label Security policies and
implement labeling functions.

• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of
the tables in a schema and enables the policy for these tables.

3.6 Working with Multiple Oracle Label Security Policies
You can use multiple Oracle Label Security policies in both a single database
environments and in a distributed environments.

• Multiple Oracle Label Security Policies in a Single Database
Several Oracle Label Security policies can protect data in a single database.

• Multiple Oracle Label Security Policies in a Distributed Environment
In a distributed environment that uses Oracle Label Security, remote connections
are controlled by Oracle Label Security.

3.6.1 Multiple Oracle Label Security Policies in a Single Database
Several Oracle Label Security policies can protect data in a single database.

Each defined policy is associated with a set of labels used only by that policy. Data
labels are constrained by the set of defined labels for each policy.

Each policy may protect a different table, but multiple policies can also apply to a
single table. To access data, you must have label authorizations for all policies
protecting that data. To access any particular row, you must be authorized by all
policies protecting the table containing your desired rows. If you require privileges,
then you may need privileges for all of the policies affecting your work.

3.6.2 Multiple Oracle Label Security Policies in a Distributed
Environment

In a distributed environment that uses Oracle Label Security, remote connections are
controlled by Oracle Label Security.

Related Topics

• Using Oracle Label Security with a Distributed Database
You should understand the special considerations for using Oracle Label Security
in a distributed configuration.

Chapter 3
Working with Multiple Oracle Label Security Policies

3-20



Part II
Using Oracle Label Security Functionality

Part II explains how to work with Oracle Label Security functionality.

• Registering and Logging in to Oracle Label Security
Before using Oracle Label Security, you must register (configure) it with the database and
then you can log in to Oracle Label Security.

• Creating an Oracle Label Security Policy
An Oracle Label Security policy is a named set of commands that implements Oracle
Label Security.

• Working with Labeled Data
You can manage labeled data, view that data of security attributes for a session, and
change the value of session attributes.

• Oracle Label Security Using Oracle Internet Directory
You can use Oracle Label Security with Oracle Internet Directory.



4
Registering and Logging in to Oracle Label
Security

Before using Oracle Label Security, you must register (configure) it with the database and
then you can log in to Oracle Label Security.

• Registering Oracle Label Security with an Oracle Database
You must register Oracle Label Security with the database in which you plan to use it.

• Security Guideline for Managing the LBACSYS User and the LBAC_DBA Role
As a good practice, for day-to-day use, grant the LBAC_DBA database role to trusted users
who will administer Oracle Label Security.

• Logging in to Cloud Control or SQL*Plus for Oracle Label Security
After you complete the Oracle Label Security registration and enablement process, you
can begin using it.

4.1 Registering Oracle Label Security with an Oracle Database
You must register Oracle Label Security with the database in which you plan to use it.

• About Registering Oracle Label Security
When you install Oracle Database, by default Oracle Label Security is not enabled.

• Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS data dictionary view to find if Oracle Label Security
has already been registered and enabled.

• Registering and Enabling Oracle Label Security from SQL*Plus
You can both register and enable Oracle Label Security from SQL*Plus.

• Registering and Enabling Oracle Label Security Using DBCA
You can both register and enable Oracle Label Security using Database Configuration
Assistant.

4.1.1 About Registering Oracle Label Security
When you install Oracle Database, by default Oracle Label Security is not enabled.

You must register Oracle Label Security with the database. Afterwards, you must enable the
default Oracle Label Security user account, LBACSYS. After you register Oracle Label Security,
you can disable and re-enable it when necessary.

If you are using a multitenant environment, then only register Oracle Label Security in the
pluggable databases (PDBs) in which you plan to create Oracle Label Security policies.
Because Oracle Label Security is not designed to protect data dictionary objects, you cannot
create policies in the root.

4-1



4.1.2 Checking if Oracle Label Security Has Been Registered and
Enabled

You can query the DBA_OLS_STATUS data dictionary view to find if Oracle Label Security
has already been registered and enabled.

1. Log into the database instance as user SYS with the SYSDBA administrative
privilege.

sqlplus sys as sysdba
Enter password: password

2. If you are using a multitenant environment, then connect to the appropriate PDB.

For example, to connect to the PDB hrpdb:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

3. Execute the following query:

SELECT * FROM DBA_OLS_STATUS;

NAME                 STATUS  DESCRIPTION        
-------------------- ------- -------------------------------------
OLS_CONFIGURE_STATUS TRUE    Determines if OLS is configured
OLS_DIRECTORY_STATUS FALSE   Determines if OID is enabled with OLS
OLS_ENABLE_STATUS    TRUE    Determines if OLS is enabled

4.1.3 Registering and Enabling Oracle Label Security from SQL*Plus
You can both register and enable Oracle Label Security from SQL*Plus.

1. Log into the database instance as user SYS with the SYSDBA administrative
privilege.

For example:

sqlplus sys as sysdba
Enter password: password 

2. If you are using a multitenant environment, then connect to the appropriate PDB.

For example, to connect to the PDB hrpdb:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

3. Register and enable Oracle Label Security as follows.

EXEC LBACSYS.CONFIGURE_OLS; -- This procedure registers Oracle Label 
Security.
EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS; -- This procedure enables it.

4. Connect as user SYS with the SYSOPER privilege.

Chapter 4
Registering Oracle Label Security with an Oracle Database

4-2



CONNECT SYS AS SYSOPER -- Or, CONNECT SYS@hrpdb AS SYSOPER
Enter password: password

5. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

4.1.4 Registering and Enabling Oracle Label Security Using DBCA
You can both register and enable Oracle Label Security using Database Configuration
Assistant.

1. Start Database Configuration Assistant (DBCA).

• UNIX: Run the following command:

$ORACLE_HOME/bin/dbca
• Windows: From the Start menu, click All Programs. Then click Oracle -

ORACLE_HOME, then Configuration and Migration Tools, and then Database
Configuration Assistant.

The Welcome screen appears.

2. Click Next.

The Operations screen appears.

3. Select Configure Database Options. Click Next.

The Database screen appears.

4. From the list, select the database where you need to configure and enable OLS. Click
Next.

The Database Content screen appears.

5. Select Oracle Label Security. Click Next.

The Connection Mode screen appears.

6. Select either Dedicated Server Mode or Shared Server Mode. Click Finish.

A dialog box is displayed informing you that the operation will require the database to be
restarted.

7. Click OK.

A confirmation dialog box is displayed.

8. Click OK.

The DBCA progress screen is displayed.

9. After the operation is complete, you are prompted to perform another operation. Click No
to exit DBCA.

Chapter 4
Registering Oracle Label Security with an Oracle Database

4-3



4.2 Security Guideline for Managing the LBACSYS User and
the LBAC_DBA Role

As a good practice, for day-to-day use, grant the LBAC_DBA database role to trusted
users who will administer Oracle Label Security.

If you plan to use Enterprise Manager Cloud Control to administer Oracle Label
Security, then ensure that any users to whom you have granted the LBAC_DBA role also
have the SELECT ANY DICTIONARY privilege.

Oracle strongly recommends that you maintain two accounts for users who have been
granted the LBAC_DBA role. One account, the primary user account, will be used on a
day-to-day basis and the other account will be used as a backup account in case the
password of the primary account is lost and must be reset.

4.3 Logging in to Cloud Control or SQL*Plus for Oracle
Label Security

After you complete the Oracle Label Security registration and enablement process,
you can begin using it.

• Logging in to Oracle Label Security from Enterprise Manager Cloud Control
From Enterprise Manager Cloud Control, you use the Oracle Label Security pages
to create and manage Oracle Label Security policies.

• Logging in to Oracle Label Security from SQL*Plus
You can log in to Oracle Label Security from SQL*Plus if you have been granted
the LBAC_DBA database role.

4.3.1 Logging in to Oracle Label Security from Enterprise Manager
Cloud Control

From Enterprise Manager Cloud Control, you use the Oracle Label Security pages to
create and manage Oracle Label Security policies.

1. Ensure that you have configured the Cloud Control target databases that you plan
to use with Oracle Label Security.

See the Oracle Enterprise Manager online help for more information about
configuring target databases.

2. Point your browser to the Cloud Control login page.

For example:

https://myserver.example.com:7799/em
3. Log into Cloud Control as user SYSMAN.

4. In the Cloud Control home page, from the Targets menu, select Databases.

5. In the Databases page, select the link for the database to which you want to
connect.

The Database home page appears.

Chapter 4
Security Guideline for Managing the LBACSYS User and the LBAC_DBA Role

4-4



6. From the Security menu, select Label Security.

The Database Login page appears.

7. Enter the following information:

• Username: Enter the user name of a user who has been granted the LBAC_DBA
database role, or enter LBACSYS.

• Password: Enter the password.

• Role: Select NORMAL from the list.

• Save As: Select this check box if you want these credentials to be automatically filled
in for you the next time that this page appears. The credentials are stored in
Enterprise Manager in a secured manner. Access to these credentials depends on
the user who is currently logged in.

4.3.2 Logging in to Oracle Label Security from SQL*Plus
You can log in to Oracle Label Security from SQL*Plus if you have been granted the
LBAC_DBA database role.

• To use Oracle Label Security from SQL*Plus, connect as user LBACSYS or as a user who
has been granted the LBAC_DBA database role. To find if a user has been granted this
role, query the GRANTEE and GRANTED_ROLE columns of the DBA_ROLE_PRIVS data
dictionary view.

For example:

sqlplus psmith_ols -- Or, sqlplus psmith_ols@hrpdb for a PDB named hrpdb
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the current
PDB, run the show con_name command.

Chapter 4
Logging in to Cloud Control or SQL*Plus for Oracle Label Security

4-5



5
Creating an Oracle Label Security Policy

An Oracle Label Security policy is a named set of commands that implements Oracle Label
Security.

• About Creating Oracle Label Security Policies
When you create an Oracle Label Security policy, you must follow a set of general steps.

• Step 1: Create the Label Security Policy Container
The Oracle Label Security policy container is a storage place for the policy settings.

• Step 2: Create Data Labels for the Label Security Policy
After you create a policy container, you are ready to create data labels for each database
table row.

• Step 3: Authorize Users for the Label Security Policy
Before users can have access to data that is protected by an Oracle Label Security
policy, they must be authorized.

• Step 4: Grant Privileges to Users and Trusted Stored Program Units
You can grant privileges to users, such as READ so that users can read data protected an
Oracle Label Security policy protects.

• Step 5: Apply the Policy to a Database Table or Schema
After you create grant authorizations and privileges to an Oracle Label Security policy,
you can apply it to a database table or schema.

• Step 6: Add Policy Labels to Table Rows
You must add policy labels to table rows.

• Step 7: (Optional) Configure Auditing
You can audit Oracle Label Security policies by using the SA_USER_ADMIN P/L SQL
package.

• Using Enterprise Manager Cloud Control to Create an OLS Policy
You can create Oracle Label Security policies in Oracle Enterprise Manager Cloud
Control.

5.1 About Creating Oracle Label Security Policies
When you create an Oracle Label Security policy, you must follow a set of general steps.

1. Create a policy container that defines the policy name, the name of a column that Oracle
Label Security will add to the tables to be protected, whether to hide this column, whether
to enable the policy, and default enforcement options for the policy.

See Step 1: Create the Label Security Policy Container for more information.

2. Define the following attributes for the label: level of sensitivity, and optionally,
compartments and groups to further filter the label sensitivity. Once you have the
attributes defined, create the label itself and then associate these attributes with the label.

See Step 2: Create Data Labels for the Label Security Policy.

3. Authorize users for the policy.

5-1



See Step 3: Authorize Users for the Label Security Policy for more information.

4. Grant privileges to these users or to trusted program units.

See Step 4: Grant Privileges to Users and Trusted Stored Program Units for more
information.

5. Apply the policy to a database table. Alternatively, you can apply the policy to an
entire schema.

See Step 5: Apply the Policy to a Database Table or Schema for more information.

6. Add the policy labels to the table rows. You must update the table that is being
used for the policy.

See Step 6: Add Policy Labels to Table Rows for more information.

7. Optionally, configure audit settings for users.

See Step 7: (Optional) Configure Auditing for more information.

5.2 Step 1: Create the Label Security Policy Container
The Oracle Label Security policy container is a storage place for the policy settings.

• About the Label Security Policy Container
The Oracle Label Security policy container stores metadata that describes how the
policy behaves.

• Creating a Label Policy Container
You can use the SA_SYSDBA.CREATE_POLICY procedure to create an Oracle Label
Security policy container.

5.2.1 About the Label Security Policy Container
The Oracle Label Security policy container stores metadata that describes how the
policy behaves.

This container defines the policy name, the name of a column that Oracle Label
Security will add to the tables to be protected, whether to hide this column, and default
enforcement options for the policy.

The column that you add to the tables that you want to protect will include data labels
(which you create later on) that are assigned to specific rows in a the table, based on
values in a specific column. The policy creation process creates a special role for the
policy and grants this role to the user who creates the policy. The role name is in the
format policy_DBA. For example, for a policy named EMP_OLS_POL, the role name is
EMP_OLS_POL_DBA. This role becomes effective only after a new user session begins.

You can create the policy container in Oracle Enterprise Manager Cloud Control, or
use the SA_SYSDBA.CREATE_POLICY procedure.

5.2.2 Creating a Label Policy Container
You can use the SA_SYSDBA.CREATE_POLICY procedure to create an Oracle Label
Security policy container.

• To create the policy, run SA_SYSDBA.CREATE_POLICY, specifying the policy name,
column name, and default options.

Chapter 5
Step 1: Create the Label Security Policy Container

5-2



For example:

BEGIN
 SA_SYSDBA.CREATE_POLICY (
  policy_name      => 'emp_ols_pol',
  column_name      => 'ols_col',
  default_options  => 'read_control, update_control');
END;
/

Related Topics

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security policy,
defines a policy-specific column name, and specifies default policy options.

5.3 Step 2: Create Data Labels for the Label Security Policy
After you create a policy container, you are ready to create data labels for each database
table row.

• About Data Labels
A data label indicates the sensitivity of a database table row.

• About Policy Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

• Creating a Policy Level Component
The SA_COMPONENTS.CREATE_LEVEL procedure creates a policy level component.

• About Policy Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data, providing a
finer level of granularity within a level.

• Creating a Policy Compartment Component
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates an Oracle Label Security
compartment.

• About Policy Group Components
Groups identify organizations owning or accessing the data, such as EASTERN_REGION,
WESTERN_REGION, WR_SALES.

• Creating a Policy Data Label Group
The SA_COMPONENTS.CREATE_GROUP procedure creates a data label group.

• About Associating the Policy Components with a Named Data Label
After defining the data label components, you can create a data label itself by associating
it with an existing level.

• Associating the Policy Components with a Named Data Label
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates a data label.

5.3.1 About Data Labels
A data label indicates the sensitivity of a database table row.

Each label is a single attribute with multiple components that control the types of filtering to
be used for user access.

Table 5-1 describes the different components of a data label.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-3



Table 5-1    Sensitivity Data Label Components

Component Description Examples

Level A single specification of the sensitivity of
labeled data within the ordered ranks
established

CONFIDENTIAL (1),
SENSITIVE (2),
HIGHLY_SENSITIVE (3)

Compartments Zero or more categories associated with
the labeled data

FINANCIAL, STRATEGIC,
NUCLEAR

Groups Zero or more identifiers for organizations
owning or accessing the data

EASTERN_REGION,
WESTERN_REGION

All data labels must contain a level component, but the compartment and group
components are optional. Compartments and groups are a way of fine tuning access
that users will have to the data. Valid characters for specifying all label components
include alphanumeric characters, underscores, and spaces. (Leading and trailing
spaces are ignored.) You must define the label components before you can create the
data label itself.

You can use Cloud Control to create the label and its components for an existing
policy. Alternatively, you can use the SA_COMPONENTS PL/SQL package to create the
components, and the SA_LABEL_ADMIN package to create the data label.

Related Topics

• SA_COMPONENTS Label Components PL/SQL Package
The SA_COMPONENTS PL/SQL package manages the component definitions of an
Oracle Label Security label.

5.3.2 About Policy Level Sensitivity Components
A level is a ranking that denotes the sensitivity of the information it labels.

The more sensitive the information, the higher its level. The less sensitive the
information, the lower its level.

Every label must include one level. Oracle Label Security permits up to 10,000 levels
in a policy. For each level, you must define a numeric form, a long character form, and
the required short character form.

Table 5-2 shows examples of levels.

Table 5-2    Policy Level Example

Numeric Form Long Form Short Form

40 HIGHLY_SENSITIVE HS
30 SENSITIVE S
20 CONFIDENTIAL C
10 PUBLIC P

Table 5-2 explains the numeric form, long form, and short form for levels.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-4



Table 5-3    Forms of Specifying Levels

Form Explanation

Numeric form, also called
"tag"

The numeric form of the level can range from 0 to 9999. Sensitivity is
ranked by this numeric value, so you must assign higher numbers to
levels that are more sensitive, and lower numbers to levels that are
less sensitive. In Table 5-2, 40 (HIGHLY_SENSITIVE) is a higher level
than 30, 20, and 10.

Administrators should avoid using sequential numbers for the numeric
form of levels. A good strategy is to use even increments (such as 50
or 100) between levels. You can then insert additional levels between
two preexisting levels, at a later date.

Long form The long form of the level name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Although you define both long and short names for the level (and for each of the other label
components), only the short form of the name is displayed upon retrieval. When users
manipulate the labels, they use only the short form of the component names.

Examples of levels can be names such as TOP_SECRET, SECRET, CONFIDENTIAL, and
UNCLASSIFIED or TRADE_SECRET, PROPRIETARY, COMPANY_CONFIDENTIAL, PUBLIC_DOMAIN.

If you use only levels, a level 40 user (in this example) can access or alter any data row
whose level is 40 or less.

5.3.3 Creating a Policy Level Component
The SA_COMPONENTS.CREATE_LEVEL procedure creates a policy level component.

• To create the policy level component, run SA_COMPONENTS.CREATE_LEVEL, specifying the
policy name and details about the component.

For example:

BEGIN
 SA_COMPONENTS.CREATE_LEVEL (
   policy_name   => 'emp_ols_pol',
   level_num     => 40,
   short_name    => 'HS',
   long_name     => 'HIGHLY_SENSITIVE');
END;
/

Related Topics

• SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short name
and long name.

5.3.4 About Policy Compartment Components
Compartments identify areas that describe the sensitivity of the labeled data, providing a finer
level of granularity within a level.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-5



Compartments associate the data with one or more security areas. All data related to a
particular project can be labeled with the same compartment.

Table 5-4 shows an example set of compartments.

Table 5-4    Policy Compartment Example

Numeric Form Long Form Short Form

85 FINANCIAL FINCL
65 CHEMICAL CHEM
45 OPERATIONAL OP

Table 5-5 shows different ways to specify compartments.

Table 5-5    Forms of Specifying Compartments

Form Explanation

Numeric form The numeric form can range from 0 to 9999. It is unrelated to the
numbers used for the levels. The numeric form of the
compartment does not indicate greater or less sensitivity. Instead,
it controls the display order of the short form compartment name
in the label character string. For example, assume a label is
created that has all three compartments listed in Table 5-4, and a
level of SENSITIVE. When this label is displayed in string format,
it looks like this:

S:OP,CHEM,FINCL

meaning SENSITIVE: OPERATIONAL, CHEMICAL, FINANCIAL
The display order follows the order of the numbers assigned to
the compartments: 45 is lower than 65, and 65 is lower than 85.
By contrast, if the number assigned to the FINCL compartment
were 5, the character string format of the label would look like
this:

S:FINCL,OP,CHEM

Long form The long form of the compartment name scan have up to 80
characters.

Short form The short form can contain up to 30 characters.

Compartments are optional. You can include up to 10,000 compartments for a label.

Not all labels must have compartments. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL levels with no compartments, and a SENSITIVE
level that does contain compartments.

When you analyze the sensitivity of data, you may find that some compartments are
only useful at specific levels.

The following figure shows how compartments can be used to categorize data.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-6



Figure 5-1    Compartments in a Label

CHEM

Compartments

FINCL

FINCL OP

OP

OP

S

P

HS

Levels

Here, compartments FINCL, CHEM, and OP are used with the level HIGHLY_SENSITIVE (HS). The
label HIGHLY_SENSITIVE:FINCL, CHEM indicates a level of 40 with the two named
compartments. Compartment FINCL is not more sensitive than CHEM, nor is CHEM more
sensitive than FINCL. Note also that some data in the protected table may not belong to any
compartment.

If you specify compartments, then a user whose level would normally permit access to a
row's data will nevertheless be prevented from such access unless the user's label also
contains all the compartments appearing in that row's label. For example, user hpreston, who
is granted access to the HS level, could be granted access only to FINCL and CHEM but not to
OP.

5.3.5 Creating a Policy Compartment Component
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates an Oracle Label Security
compartment.

• To create the compartment, run the SA_COMPONENTS.CREATE_COMPARTMENT procedure to
create a compartment, specifying the policy name and details about the compartment.

For example:

BEGIN
  SA_COMPONENTS.CREATE_COMPARTMENT (
   policy_name     => 'emp_ols_pol',
   comp_num        => '85',
   short_name      => 'FINCL',
   long_name       => 'FINANCIAL');
END;
/

Related Topics

• SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and specify
its short name and long name.

5.3.6 About Policy Group Components
Groups identify organizations owning or accessing the data, such as EASTERN_REGION,
WESTERN_REGION, WR_SALES.

All data pertaining to a certain department can have that department's group in the label.
Groups are useful for the controlled dissemination of data and for timely reaction to

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-7



organizational change. When a company reorganizes, data access can change right
along with the reorganization.

Groups are hierarchical. You can label data based upon your organizational
infrastructure. A group can thus be associated with a parent group.

Figure 5-2 shows how you can define a set of groups corresponding to the following
organizational hierarchy.

Figure 5-2    Group Example

WESTERN_REGION

WR_HUMAN_


RESOURCES
WR_SALES WR_FINANCE

WR_ACCOUNTS_


RECEIVABLE

WR_ACCOUNTS_


PAYABLE

The WESTERN_REGION group includes three subgroups: WR_SALES, WR_HUMAN_RESOURCES,
and WR_FINANCE. The WR_FINANCE subgroup is subdivided into
WR_ACCOUNTS_RECEIVABLE and WR_ACCOUNTS_PAYABLE.

Table 5-6 shows how the organizational structure in this example can be expressed in
the form of Oracle Label Security groups. The numeric form assigned to the groups
affects display order only. You specify the hierarchy (that is, the parent and child
relationships) separately. The first group listed, WESTERN_REGION, is the parent group of
the remaining groups in the table.

Table 5-6    Group Example

Numeric Form Long Form Short Form Parent Group

1000 WESTERN_REGION WR
1100 WR_SALES WR_SAL WR
1200 WR_HUMAN_RESOURCES WR_HR WR
1300 WR_FINANCE WR_FIN WR
1310 WR_ACCOUNTS_PAYABLE WR_AP WR_FIN
1320 WR_ACCOUNTS_RECEIVABLE WR_AR WR_FIN

Table 5-7 shows the forms that you must use when you specify groups.

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-8



Table 5-7    Forms of Specifying Groups

Form Explanation

Numeric form The numeric form of the group can range from 0 to 9999, and it must be
unique for each policy.

The numeric form does not indicate any kind of ranking. It does not
indicate a parent-child relationship, or greater or less sensitivity. It only
controls the display order of the short form group name in the label
character string.

For example, assume that a label is created that has the level
SENSITIVE, the compartment CHEMICAL, and the groups
WESTERN_REGION and WR_HUMAN_RESOURCES as listed in Table 5-6.
When displayed in string format, the label looks like this:

S:CHEM:WR,WR_HR

WR is displayed before WR_HR because 1000 comes before 1200.

Long form The long form of the group name can contain up to 80 characters.

Short form The short form can contain up to 30 characters.

Groups are optional. A label can contain up to 10,000 groups.

All labels do not need to have groups. When you analyze the sensitivity of data, you may find
that some groups are only used at specific levels. For example, you can specify
HIGHLY_SENSITIVE and CONFIDENTIAL labels with no groups, and a SENSITIVE label that does
contain groups.

5.3.7 Creating a Policy Data Label Group
The SA_COMPONENTS.CREATE_GROUP procedure creates a data label group.

• Run the SA_COMPONENTS.CREATE_GROUP procedure for each data label group that you
need.

In the following example, the first CREATE_GROUP procedure creates the parent group, WR, and
the second procedure associates a second group with the WR group by using the parent_name
parameter.

BEGIN
 SA_COMPONENTS.CREATE_GROUP (
  policy_name     => 'emp_ols_pol',
  group_num       => 1000,
  short_name      => 'WR',
  long_name       => 'WESTERN_REGION');
END;
/
BEGIN
 SA_COMPONENTS.CREATE_GROUP (
  policy_name     => 'emp_ols_pol',
  group_num       => 1100,
  short_name      => 'WR_SAL',
  long_name       => 'WR_SALES',
  parent_name     => 'WR');
END;
/

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-9



Related Topics

• SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short
name and long name, and optionally a parent group.

5.3.8 About Associating the Policy Components with a Named Data
Label

After defining the data label components, you can create a data label itself by
associating it with an existing level.

Optionally, you can include compartments and groups in this association.

You can use Oracle Enterprise Manager Cloud Control or the
SA_LABEL_ADMIN.CREATE_LABEL procedure. Character string representations of labels
use the following syntax:

level:compartment1,...,compartmentn:group1,...,groupn

The text string that specifies the label can have a maximum of 4,000 characters,
including alphanumeric characters, spaces, and underscores. The label names are
case-insensitive. You can enter them in uppercase, lowercase, or mixed case, but the
string is stored in the data dictionary and displayed in uppercase. Separate each set of
components with a colon. You do not need to enter trailing delimiters in this syntax.

For example, you can create valid labels such as these:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION
CONFIDENTIAL:FINANCIAL:VP_GRP
SENSITIVE
HIGHLY_SENSITIVE:FINANCIAL 
SENSITIVE::WESTERN_REGION

5.3.9 Associating the Policy Components with a Named Data Label
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates a data label.

• Run SA_LABEL_ADMIN.CREATE_LABEL, specifying the policy name and details about
the policy components.

For example:

BEGIN
 SA_LABEL_ADMIN.CREATE_LABEL  (
  policy_name     => 'emp_ols_pol',
  label_tag       => '1310',
  label_value     => 'S:FINCL,CHEM:ER,WR',
  data_label      => TRUE);
END;
/

In this example, the label_value setting is in the short form, which translates to the
following long form:

SENSITIVE:FINANCIAL,CHEMICAL:EASTERN_REGION,WESTERN_REGION

When you create a data label, two additional actions occur:

Chapter 5
Step 2: Create Data Labels for the Label Security Policy

5-10



• The label is automatically designated as a valid data label. This functionality limits the
labels that can be assigned to data. Oracle Label Security can also create valid data
labels dynamically at run time, from those that are predefined in Oracle Internet Directory.
Most users, however, prefer to create the labels manually in order to limit data label
proliferation.

• A numeric label tag is associated with the text string representing the label. It is this label
tag, rather than the text string, that is stored in the policy label column of the protected
table.

Note:

For Oracle Label Security installations that do not use Oracle Internet Directory,
dynamic creation of valid data labels uses the TO_DATA_LABEL function. Its
usage should be tightly controlled.

Related Topics

• Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

5.4 Step 3: Authorize Users for the Label Security Policy
Before users can have access to data that is protected by an Oracle Label Security policy,
they must be authorized.

• About Authorizing Users for Label Security Policies
When you authorize users, you enable them to have access to row data based on how
the data labels are defined.

• About Authorizing Levels
You can explicitly set default, minimum, and mazimum authorization levels.

• Authorizing a Level
The SA_USER_ADMIN.SET_LEVELS procedure authorizes users for policy levels
components.

• About Authorizing Compartments
After you authorize the user for a specific level, optionally you can specify compartments
to be added to a session label.

• Authorizing a Compartment
The SA_USER_ADMIN.SET_COMPARTMENTS procedure authorizes a user for the
compartments component.

• About Authorizing Groups
You can specify the list of groups that a user can place in session label.

• Authorizing a Group
The SA_USER_ADMIN.SET_GROUPS procedure authorizes users for a policy group.

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-11



5.4.1 About Authorizing Users for Label Security Policies
When you authorize users, you enable them to have access to row data based on how
the data labels are defined.

First, you set the user's authorization for each level, compartment, and group that is
associated with the label. You can find the currently granted privileges for a user by
querying the DBA_SA_USER_PRIVS data dictionary view.

5.4.2 About Authorizing Levels
You can explicitly set default, minimum, and mazimum authorization levels.

Table 5-8    Authorized Levels Set by the Administrator

Authorization Meaning

User Max Level The maximum ranking of sensitivity that a user can access during
read and write operations

User Min Level The minimum ranking of sensitivity that a user can access during
write operations. The User Max Level must be equal to or greater
than the User Min Level.

User Default Level The level that is assumed by default when connecting to Oracle
Database

User Default Row Level The level that is used by default when inserting data into Oracle
Database

For example, you might set the following level authorizations for user hpreston:

Type Short Name Long Name Description

Maximum HS HIGHLY_SENSITIVE User's highest level

Minimum P PUBLIC User's lowest level

Default C CONFIDENTIAL User's default level

Row C CONFIDENTIAL Row level on INSERT

5.4.3 Authorizing a Level
The SA_USER_ADMIN.SET_LEVELS procedure authorizes users for policy levels
components.

Note that when you specify the levels, you must always use the short names, not the
long names.

• Run SA_USER_ADMIN.SET_LEVELS to authorize the level, specifying the policy name,
user name, and levels.

For example:

BEGIN
 SA_USER_ADMIN.SET_LEVELS (
  policy_name   => 'ols_admin_pol',

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-12



  user_name     => 'hpreston', 
  max_level     => 'HS',
  min_level     => 'P',
  def_level     => 'C',
  row_level     => 'C');
END;
/

Related Topics

• SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum
levels and identifies default values for the user's session label and row label.

5.4.4 About Authorizing Compartments
After you authorize the user for a specific level, optionally you can specify compartments to
be added to a session label.

Write access must be explicitly given for each compartment. A user cannot directly insert,
update, or delete a row that contains a compartment that the user does not have
authorization to write.

For example, you could set the following compartment authorizations for user hpreston:

Short Name Long Name WRITE DEFAULT ROW

CHEM CHEMICAL YES YES NO

FINCL FINANCIAL YES YES NO

OP OPERATIONAL YES YES YES

5.4.5 Authorizing a Compartment
The SA_USER_ADMIN.SET_COMPARTMENTS procedure authorizes a user for the compartments
component.

When you specify the compartments, you must use their short names, not their long names.

• Run SA_USER_ADMIN.SET_COMPARTMENTS to authorize a user for a compartment, specifying
the policy name, user name, and compartment details.

For example:

BEGIN
 SA_USER_ADMIN.SET_COMPARTMENTS (
  policy_name   => 'ols_admin_pol',
  user_name     => 'hpreston', 
  read_comps    => 'FINCL',
  write_comps   => 'FINCL',
  def_comps     => 'FINCL',
  row_comps     => 'FINCL');
END;
/

After you have run this procedure, you can authorize the user for additional compartments by
running the SA_USER_ADMIN.ADD_COMPARTMENTS procedure.

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-13



Related Topics

• SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a
user and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments
to a user's authorizations, indicating if the compartments are authorized for write
and read privileges.

5.4.6 About Authorizing Groups
You can specify the list of groups that a user can place in session label.

Write access must be explicitly given for each group listed.

For example, you could set the following group authorizations:

Short Name Long Name WRITE DEFAULT ROW Parent

WR_HR WR_HUMAN_RESOURCES YES YES YES WR
WR_AP WR_ACCOUNTS_PAYABLE YES YES NO WR_FIN
WR_AR WR_ACCOUNTS_RECEIVA

BLE
YES YES NO WR_FIN

5.4.7 Authorizing a Group
The SA_USER_ADMIN.SET_GROUPS procedure authorizes users for a policy group.

• Run SA_USER_ADMIN.SET_GROUPS to authorize the user, specifying the policy name,
user name, and authorizations that you want. When you specify the groups, you
must use the short name, not the long name.

For example:

BEGIN
 SA_USER_ADMIN.SET_GROUPS (
  policy_name   => 'ols_admin_pol',
  user_name     => 'hpreston', 
  read_groups   => 'WR_AP',
  write_groups  => 'WR_AP',
  def_groups    => 'WR_AP',
  row_groups    => 'WR_AP');
END;
/

Related Topics

• SA_USER_ADMIN.SET_GROUPS
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

Chapter 5
Step 3: Authorize Users for the Label Security Policy

5-14



5.5 Step 4: Grant Privileges to Users and Trusted Stored
Program Units

You can grant privileges to users, such as READ so that users can read data protected an
Oracle Label Security policy protects.

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you are
ready to grant the user privileges.

• Granting Privileges to a User
The SA_USER_ADMIN.SET_USER_PRIVS procedure grants users privileges.

• Granting Privileges to a Trusted Program Unit
The SA_USER_ADMIN.SET_PROG_PRIVS procedure grants privileges to trusted program
units.

5.5.1 About Granting Privileges to Users and Trusted Program Units for the
Policy

After you have authorized users for policy levels, compartments, and groups, you are ready
to grant the user privileges.

Trusted program units are functions, procedures, or packages that are granted Oracle Label
Security privileges. You create a trusted stored program unit in the same way that you create
a standard procedure, function, or package, that is by using the CREATE PROCEDURE, CREATE
FUNCTION, or CREATE PACKAGE and CREATE PACKAGE BODY statements. The program unit
becomes trusted when you grant Oracle Label Security privileges to it.

Table 5-9 summarizes the privileges that can be granted to users or trusted stored program
units.

Table 5-9    Oracle Label Security Privileges

Security Privilege Explanation

READ Allows read access to all data protected by the policy

FULL Allows full read and write access to all data protected
by the policy

COMPACCESS Allows a session access to data authorized by the row's
compartments, independent of the row's groups

PROFILE_ACCESS Allows a session to change its labels and privileges to
those of a different user

WRITEUP Allows users to set or raise only the level, within a row
label, up to the maximum level authorized for the user.
(Active only if LABEL_UPDATE is active.)

WRITEDOWN Allows users to set or lower the level, within a row label,
to any level equal to or greater than the minimum level
authorized for the user. (Active only if LABEL_UPDATE is
active.)

Chapter 5
Step 4: Grant Privileges to Users and Trusted Stored Program Units

5-15



Table 5-9    (Cont.) Oracle Label Security Privileges

Security Privilege Explanation

WRITEACROSS Allows a user to set or change groups and
compartments of a row label, but does not allow
changes to the level. (Active only if LABEL_UPDATE is
active.)

5.5.2 Granting Privileges to a User
The SA_USER_ADMIN.SET_USER_PRIVS procedure grants users privileges.

• Run SA_USER_ADMIN.SET_USER_PRIVS, specifying the policy name, user name, and
privileges that you want to grant.

For example:

BEGIN
 SA_USER_ADMIN.SET_USER_PRIVS(
  policy_name   => 'ols_admin_pol',
  user_name     => 'hpreston', 
  privileges    => 'WRITEDOWN');
END;
/

Related Topics

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

5.5.3 Granting Privileges to a Trusted Program Unit
The SA_USER_ADMIN.SET_PROG_PRIVS procedure grants privileges to trusted program
units.

• Run SA_USER_ADMIN.SET_PROG_PRIVS to grant the privileges, specifying the policy
name, schema name, program unit name, and privileges that you want to grant.

For example:

BEGIN
 SA_USER_ADMIN.SET_PROG_PRIVS (
  policy_name         => 'oe_ols_pol',
  schema_name         => 'oe',
  program_unit_name   => 'check_order_updates',
  privileges          => 'READ');
END;
/

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

Chapter 5
Step 4: Grant Privileges to Users and Trusted Stored Program Units

5-16



5.6 Step 5: Apply the Policy to a Database Table or Schema
After you create grant authorizations and privileges to an Oracle Label Security policy, you
can apply it to a database table or schema.

• About Applying the Policy to a Database Table or Schema
When you apply a policy to a table, the policy is automatically enabled.

• Applying a Policy to a Schema
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure applies a policy to either a table
within a schema or an entire schema .

5.6.1 About Applying the Policy to a Database Table or Schema
When you apply a policy to a table, the policy is automatically enabled.

To disable a policy is to turn off its protections, although it is still applied to the table. To
enable a policy is to turn on and enforce its protections for a particular table or schema.

To remove a policy is to take it entirely away from the table or schema. Note, however, that
the policy label column and the labels remain in the table unless you explicitly drop them.

You can alter the default policy enforcement options for future tables that may be created in a
schema. This does not, however, affect policy enforcement options on existing tables in the
schema.

To change the enforcement options on an existing table, you must first remove the policy
from the table, make the desired changes, and then reapply the policy to the table.

Be aware that you cannot enforce Oracle Label Security policies on external tables.

After you have created the policy components and configured user authorizations, privileges,
and auditing for them, you can apply the policy to a database table or to an entire schema.

When you apply the policy to a database table, in addition to the policy name and target
schema table, you must specify the following information:

• table_options: A comma-delimited list of policy enforcement options to be used for the
table. If NULL, then the policy's default options are used.

• label_function: A string calling a function to return a label value to use as the default.
For example, my_label(:new.dept,:new.status) computes the label based on the new
values of the DEPT and STATUS columns in the row.

• predicate: An additional predicate to combine (using AND or OR) with the label-based
predicate for READ_CONTROL

Note the following aspects of using Oracle Label Security policies with schemas:

• If you apply a policy to an empty schema, then every time you create a table within that
schema, the policy is applied. Once the policy is applied to the schema, the default
options you choose are applied to every table added.

• If you remove the policy from a table so that it is unprotected, and then run
SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY, then the table will remain unprotected. If you
wish to protect the table once again, then you must apply the policy to the table, or re-
apply the policy to the schema.

Chapter 5
Step 5: Apply the Policy to a Database Table or Schema

5-17



If you apply a policy to a schema that already contains tables protected by the policy,
then all future tables will have the new options that were specified when you applied
the policy. The existing tables will retain the options they already had.

5.6.2 Applying a Policy to a Schema
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure applies a policy to either a
table within a schema or an entire schema .

• Run SA_POLICY_ADMIN.APPLY_TABLE_POLICY to apply the policy to a schema,
specifying the policy name, schema name, and necessary options.

The following example shows how to use the SA_POLICY_ADMIN.APPLY_TABLE_POLICY
procedure to apply the ols_admin_pol policy to the HR.EMPLOYEES table.

BEGIN
 SA_USER_ADMIN.APPLY_TABLE_POLICY (
  policy_name    => 'ols_admin_pol',
  schema_name    => 'hr', 
  table_name     => 'employees',
  table_options  => 'READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL',
  label_function => 'hr.gen_emp_label(:new.department_id,:new.salary',
  predicate      => NULL);
END;
/

This example shows how to use the SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
procedure to apply a policy to an entire schema.

BEGIN
 SA_USER_ADMIN.APPLY_SCHEMA_POLICY (
  policy_name      => 'ols_admin_pol',
  schema_name      => 'hr', 
  default_options  => NULL);
END;
/

Related Topics

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy
to a table.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of
the tables in a schema and enables the policy for these tables.

5.7 Step 6: Add Policy Labels to Table Rows
You must add policy labels to table rows.

• About Adding Policy Labels to Table Rows
After you have applied a policy to a table, you must add data labels to the rows in
the table.

• Adding a Policy Label to a Table Row
You must update the table to which you are adding a policy label.

Chapter 5
Step 6: Add Policy Labels to Table Rows

5-18



5.7.1 About Adding Policy Labels to Table Rows
After you have applied a policy to a table, you must add data labels to the rows in the table.

These labels are stored in the policy label column that you created earlier in the table. The
user updating the table must have the FULL security privilege for the policy. This user is
normally the owner of the table.

5.7.2 Adding a Policy Label to a Table Row
You must update the table to which you are adding a policy label.

1. To add data labels to a table, in SQL*Plus, enter an UPDATE statement using the following
syntax:

UPDATE table_name
SET ols_column = CHAR_TO_LABEL('ols_policy','data_label')
WHERE UPPER(table_column) IN (column_data);

For example, suppose LABCSYS has created a policy called ACCESS_LOCATIONS and wants
to add the label SENS to the cities Beijing, Tokyo, and Singapore in the HR.LOCATIONS
table. The policy label column is called ROW_LABEL. The UPDATE statement is as follows:

UPDATE LOCATIONS
SET ROW_LABEL = CHAR_TO_LABEL('ACCESS_LOCATIONS','SENS')
WHERE UPPER(city) IN ('BEIJING', 'TOKYO', 'SINGAPORE');

2. Run the following SELECT statement to ensure that the policy was added to the table:

SELECT LABEL_TO_CHAR (ROW_LABEL) FROM LOCATIONS;

5.8 Step 7: (Optional) Configure Auditing
You can audit Oracle Label Security policies by using the SA_USER_ADMIN P/L SQL package.

• About Configuring Auditing
After you authorize users for the policy and grant them privileges, you can configure
auditing for each user and for the policy itself.

• Configuring Auditing
The SA_USER_ADMIN.AUDIT procedure configures auditing for users in a non-unified
auditing environment.

5.8.1 About Configuring Auditing
After you authorize users for the policy and grant them privileges, you can configure auditing
for each user and for the policy itself.

If unified auditing is not enabled, then use the procedures in this section to configure the
auditing. If it is enabled, then you must create a unified audit policy, as described in Oracle
Database Security Guide.

Table 5-10 describes the available auditing options.

Chapter 5
Step 7: (Optional) Configure Auditing

5-19



Table 5-10    Auditing Options for Oracle Label Security

Option Description

APPLY Audits application of specified Oracle Label Security policies to
tables and schemas

REMOVE Audits removal of specified Oracle Label Security policies from
tables and schemas

SET Audits the setting of user authorizations, and user and program
privileges

PRIVILEGES Audits use of all policy-specific privileges

5.8.2 Configuring Auditing
The SA_USER_ADMIN.AUDIT procedure configures auditing for users in a non-unified
auditing environment.

• Run SA_USER_ADMIN.AUDIT to configure user auditing, specifying the policy name,
one or more users, and the appropriate audit options.

For example:

BEGIN
 SA_USER_ADMIN.AUDIT(
  policy_name   => 'ols_admin_pol',
  users         => 'hpreston', 
  audit_option  => 'REMOVE',
  audit_type    => 'BY ACCESS',
  success       => NULL);
END;
/

Related Topics

• SA_AUDIT_ADMIN.AUDIT
The SA_AUDIT_ADMIN.AUDIT procedure enables policy-specific auditing.

5.9 Using Enterprise Manager Cloud Control to Create an
OLS Policy

You can create Oracle Label Security policies in Oracle Enterprise Manager Cloud
Control.

• Creating the Label Security Policy Container Using Cloud Control
You can create the Oracle Label Security policy container in Cloud Control.

• Creating Policy Components Using Cloud Control
After you create a container for the policy and set enforcement options for it, you
can create components for the policy.

• Creating Data Labels for the Policy Using Cloud Control
You can create data labels for an Oracle Label Security policy in Cloud Control.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-20



• Authorizing, Granting Privileges, and Auditing Users for a Policy Using Cloud Control
You can authorize, grant privileges to, and set up auditing for users for a policy during the
user creation process.

• Granting Privileges to Trusted Program Units Using Cloud Control
You can grant privileges to trusted program units in Cloud Control.

• Applying a Policy to a Database Table with Cloud Control
You can apply an Oracle Label Security policy to a database table in Cloud Control.

• Applying Policy Labels to Table Rows Using Cloud Control
You can apply Oracle Label Security policy labels to table rows in Cloud Control.

• Auditing Oracle Label Security Policies Using Cloud Control
You can audit Oracle Label Security policies in Cloud Control, except if you are using
unified auditing.

5.9.1 Creating the Label Security Policy Container Using Cloud Control
You can create the Oracle Label Security policy container in Cloud Control.

1. Log in to Cloud Control as the SYSTEM user.

2. To navigate to your database, select Databases from the Targets menu.

3. Click the database name in the list that appears.

The database page appears.

4. Under the Administration menu, select Security, Oracle Label Security. The Label
Security Policies page appears.

You may be required to log in to the database with appropriate credentials. You can use
the LBACSYS account credentials.

5. Click Create to start creating a new label security policy. The Create Label Security
Policy page appears.

6. Define the policy's name, label column, and the default policy enforcement options.

• Name: Enter a name for the policy, for example, ACCESS_LOCATIONS.

• Label Column: (Optional) Enter a name for the label column, for example,
OLS_COLUMN. If you create an OLS policy without specifying the column name, the
column name is auto-generated as Pol_name_COL.Later on, when you apply the
policy to a table, the label column is added to that table. By default, the data type of
the policy label column is NUMBER(10). You can also specify an existing table column
of the NUMBER(10) data type as the label column.

• Hide Label Column: Select to hide the column. When you first create the policy, you
may want to disable Hide Label Column during the development phase of the policy.
When the policy is satisfactory and ready for use by users, hide the column so that it
is transparent to applications.

• Enabled: Toggle to enable or disable the policy.

• Default Policy Enforcement Options: The default policy enforcement options are
used when the policy is applied. Ensure that these meet the needs of the application
to which you are applying the policy.

Select from the following options:

– Apply No Policy Enforcements (NO_CONTROL)

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-21



– Apply Policy Enforcements

For all queries (READ_CONTROL)

For Insert operations (INSERT_CONTROL)

For Update Operations (UPDATE_CONTROL)

Use session's default label for label column update
(LABEL_DEFAULT)

Operations that update the label column (LABEL_UPDATE)

Update and Insert operations so that they are read accessible
(CHECK_CONTROL)

7. Click OK.

The new policy appears in the Oracle Label Security Policies page.

5.9.2 Creating Policy Components Using Cloud Control
After you create a container for the policy and set enforcement options for it, you can
create components for the policy.

1. In the Oracle Label Security Policies page, select the policy you just created. Click
Edit.

2. In the Edit Label Security Policy page, select the Label Components tab.

3. Click Add 5 Rows under Levels to add levels for the policy. Enter a Long Name,
Short Name, and Numeric Tag for each level that you create. The numeric tag
corresponds to the sensitivity of the level. To create more levels, you can click Add
5 Rows again. Use the same steps to create compartments and rows. For
compartments and groups, the numeric tags do not correspond to sensitivity.

At a minimum, you must create one level, such as SECRET. Creating compartments
and groups is optional.

The level numbers indicate the level of sensitivity for their corresponding labels. A
greater number implies greater sensitivity. Select a numeric range that can be
expanded later on, in case your security policy needs more levels. For example, if
you have created levels PUBLIC (7000) and SENSITIVE (8000), and you now want
to create an intermediate level called CONFIDENTIAL, then you can assign the
numeric value 7500 to this level.

Compartments identify categories associated with data, providing a finer level of
granularity within a level. For example, a single table might have data
corresponding to different departments that you might like to separate using
compartments. Compartments are optional.

Groups identify organizations owning or accessing the data. Groups are useful for
the controlled dissemination of data and for timely reaction to organizational
change. Groups are optional.

4. Click Apply.

5.9.3 Creating Data Labels for the Policy Using Cloud Control
You can create data labels for an Oracle Label Security policy in Cloud Control.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-22



1. In the Label Security Policies page, select the policy that needs to have labels linked to
levels.

2. In the Actions box, select Data Labels. Click Go.

The Data Labels page appears.

3. Click Add.

The Create Data Label page appears.

4. Enter the following information:

• Numeric Tag: Enter a number that uniquely identifies the label. This number should
be unique across all policies.

• Level: Select a level from the list.

5. You can optionally select Compartments to add to the label. To add compartments, click
Add under Compartments. Select the compartments to be added to the label. Click
Select to add the compartments.

6. Optionally, to add groups, click Add under Groups. Select the groups to be added to the
label. Click Select to add the groups.

7. Click OK in the Create Data Label page.

The data label appears in the Data Labels page.

8. Repeat steps 3 to 7 to create more data labels.

Alternatively, you can use the SA_LABEL_ADMIN package to define label components for a
policy.

See Also:

SA_LABEL_ADMIN Label Management PL/SQL Package

5.9.4 Authorizing, Granting Privileges, and Auditing Users for a Policy
Using Cloud Control

You can authorize, grant privileges to, and set up auditing for users for a policy during the
user creation process.

1. In the Label Security Policies page, select the policy that needs authorization.

2. In the Actions box, select Authorization. Click Go.

The Create User page appears.

3. Add users as follows:

• Under Database Users, click Add. In the Search and Select window, select users that
you want and then click Select.

• Under Non Database Users, click Add 5 Rows, and then add the user names of the
non-database users that you want to add. Most application users are considered
non-database users. A non-database user does not exist in the database. This can
be any user name that meets the Oracle Database naming standards and can fit into
the VARCHAR2(30) length field. However, be aware that Oracle Database does not

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-23



automatically configure the associated security information for the non-
database user when the application connects to the database. In this case, the
application needs to call an Oracle Label Security function to assume the label
authorizations of the specified user who is not a real database user.

4. In the Create User page, select the user that you want to authorize. Click Next. If
you have multiple users that need the same authorizations, then select all users
who need the same authorizations. Click Next.

The Privileges step appears.

5. Next, you can assign privileges to the user you selected in the preceding step.
Privileges allow a database user to bypass certain controls enforced by the policy.
Select the privileges you want to grant. Click Next.

If you do not want to assign any privileges to the user, then click Next without
selecting any privileges.

The Labels, Compartments, and Groups step appears.

6. Next, to create the user label for the user: under Levels, use the flashlight icon to
select data to enter for the following fields:

• Maximum Level: Enter the highest level for read and write access for this
user.

• Minimum Level: Enter the lowest level for write access.

• Default Level: Enter the default level when the user logs in.

This value is equal to or greater than the minimum level and equal to or less
than the maximum level.

• Row Level: Enter the level given to the row when user writes to the table.

7. Click Add under Compartments, to add compartments to the user label. Select the
compartments to add. Click Select.

8. For each compartment that you add, you can select the following properties:

• Write: Allows the user to write to data that has the compartment as part of its
label

• Default: Adds the compartment to the user's default session label

• Row: Adds the compartment to the data label when the user writes to the table

9. Click Add under Groups, to add groups to the user label. Select the groups and
click Select.

10. For each group that you add, you can select the following properties:

• Write: Allows the user to write to data that has the group as part of its label

• Default: Adds the group to the user's default session label

• Row: Adds the group to the data label when the user writes to the table

11. Click Next.

The Audit step appears.

12. Select from the following audit options:

• Policy Applied:

Audit On Success By audits successful application of the policy to a table or
schema. Select ACCESS to audit by access or SESSION to audit by session.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-24



Audit On Failure By audits failed application of the policy to a table or schema.
Select ACCESS to audit by access or SESSION to audit by session.

• Policy Removed:

Audit On Success By audits successful removal of the policy from a table or
schema. Select ACCESS to audit by access or SESSION to audit by session.

Audit On Failure By audits failed removal of the policy from a table or schema.
Select ACCESS to audit by access or SESSION to audit by session.

• Labels And Privileges Set:

Audit On Success By audits successful setting of user authorizations and privileges.
Select ACCESS to audit by access or SESSION to audit by session.

Audit On Failure By audits failed setting of user authorizations and privileges. Select
ACCESS to audit by access or SESSION to audit by session.

• All Policy Specific Privileges:

Audit On Success By audits successful use of policy privileges. Select ACCESS to
audit by access or SESSION to audit by session.

Audit On Failure By audits failed use of policy privileges. Select ACCESS to audit by
access or SESSION to audit by session.

13. Click Next.

14. You can review the policy authorization settings. Click Finish to create the policy
authorization. Alternatively, you can click Back to modify the authorization settings.

Alternatively, you can use the SA_USER_ADMIN package to authorize users.

5.9.5 Granting Privileges to Trusted Program Units Using Cloud Control
You can grant privileges to trusted program units in Cloud Control.

1. In the Label Security Policies page, select the policy that needs authorization.

2. In the Actions box, select Authorization. Click Go.

The Authorization page appears.

3. Click the Trusted Program Units tab.

4. Click Add to add Oracle Label Security privileges for a procedure, function, or package.

The Create Program Unit page appears.

5. Enter the name of the procedure, function, or package, for which the privileges need to
be granted, in the Program Unit field. You can also use the Search icon to search for the
procedure, function, or package.

6. Select one or more policy-specific privileges that need to be granted to the program unit.
Click OK.

The trusted program unit is added to the Authorizations page.

Alternatively, you can use the SA_USER_ADMIN package to authorize trusted program units.

Related Topics

• Administering and Using Trusted Stored Program Units
You can use trusted stored program units to enhance system security.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-25



5.9.6 Applying a Policy to a Database Table with Cloud Control
You can apply an Oracle Label Security policy to a database table in Cloud Control.

1. In the Label Security Policies page, select the policy that needs to be applied to a
table.

2. Select Apply from the Actions box. Click Go.

The Apply page appears.

3. Select the Tables tab to apply the policy to a table.

Select the Schemas tab if you are applying the policy to a schema.The process is
same as applying the policy to a table.

4. Click Create.

The Add Table page appears.

5. Next to the Table box, click the flashlight icon.

6. In the Search and Select window, enter the following information under Search:

• Schema: Enter the name of the schema in which the table appears. Leaving
this field empty displays tables in all schemas.

• Name: Optionally, enter the name of the table. Leaving this box empty
displays all the tables within the schema.

To narrow the search by using wildcards, use the percent (%) sign. For example,
enter O% to search for all tables beginning with the letter O.

7. Select the table and click Select.

The Add Table page appears.

8. Enter the following information:

• Policy Enforcement Options: Select enforcement options as needed. These
options will apply to the table on top of the enforcement options that you
selected when you created the policy in Step 1: Create the Label Security
Policy Container.

To make no change from those enforcement options, that is, to use the same
enforcement options created earlier, select Use Default Policy Enforcement.
To add more enforcement options, select from the other options listed.

• Labeling Function: Optionally, specify a labeling function to automatically
compute the label to be associated with a new or updated row. That function is
always invoked thereafter to provide the data labels written under that policy,
because active labeling functions take precedence over any alternative means
of supplying a label.

• Predicate: Optionally, specify an additional predicate to combine (using AND or
OR) with the label-based predicate for READ_CONTROL.

9. Click OK.

5.9.7 Applying Policy Labels to Table Rows Using Cloud Control
You can apply Oracle Label Security policy labels to table rows in Cloud Control.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-26



1. In the Label Security Policies page, select the policy, for example, ACCESS_LOCATIONS.

2. Select Authorization from the Actions box. Click Go.

The Authorization page appears.

3. Click Add.

The Create User page appears.

4. Under Database Users, click Add.

The Search and Select window appears.

5. Select the check box corresponding to the user that owns the table. Click Select.

The Create User page lists the user that was added.

6. Click Next.

The Privileges step appears.

7. Select the appropriate privileges for the user, and then click Next.

The Labels, Compartments, and Groups page appears.

8. Click Next.

The Audit step appears.

9. Click Next.

The Review step appears.

10. Click Finish.

5.9.8 Auditing Oracle Label Security Policies Using Cloud Control
You can audit Oracle Label Security policies in Cloud Control, except if you are using unified
auditing.

1. In the Label Security Policies page, select the policy that you need to configure.

2. Click Edit.

The Edit Label Security Policy Settings page appears.

3. Click the Advanced tab. You can edit the audit settings under the Audit section.

4. Select Include Label In Audit trail under Audit Labels, if you wish to include user
session labels in the audit table.

5. Select the Operation, to audit, under Audit Settings. You can choose from the following
operations:

• Policy Applied: Audits application of the policy to a table or schema.

• Policy Removed: Audits removal of the policy from a table or schema.

• Labels And Privileges Set: Audits setting of user authorizations and privileges.

• All Policy Specific Privileges: Audits use of policy privileges.

6. Click Add under Policy Applied to add users that will be audited for the Operation you
selected in the preceding step.

The Search and Select window appears.

7. Select the users that you need to add. Click Select.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-27



8. Select values for Audit on Success By and Audit on Failure By, for each user
that you added.

For each user that you added, you can choose to audit successful and failed
instances of the chosen operation. You can also choose to audit by access or
session.

9. Repeat steps 5 to 8 for each operation that you choose to audit.

Related Topics

• Auditing Under Oracle Label Security
You can use Oracle Label Security auditing if you have not configured your
database to use unified auditing.

Chapter 5
Using Enterprise Manager Cloud Control to Create an OLS Policy

5-28



6
Working with Labeled Data

You can manage labeled data, view that data of security attributes for a session, and change
the value of session attributes.

Note:

Many of the examples in this guide use the HUMAN_RESOURCES sample policy. Its
policy name is HR and its policy label column is HR_LABEL. Unless otherwise noted,
the examples assume that the SQL statements are performed on rows within the
user's authorization and with full Oracle Label Security policy enforcement in effect.

• How Policy Label Column and Label Tags Work
You should understand how policy label columns in a table or schema are created and
filled.

• Assignments of Labels to Data Rows
For existing data rows, labels can be assigned by a labeling function that you create.

• Presenting the Label
When you retrieve labels, you do not automatically obtain the character string value.

• Filtration of Data Using Labels
When SQL statements are processed, Oracle Label Security makes calls to the security
policies defined in the database by create-and-apply procedures.

• Inserting Labeled Data
You can insert labeled data in a variety of situations.

• Changing Session and Row Labels
During a session, a user can change labels based on the authorizations an administrator
sets.

6.1 How Policy Label Column and Label Tags Work
You should understand how policy label columns in a table or schema are created and filled.

• The Policy Label Column
You should understand how to use policy label columns.

• Label Tags
You can create label tags, either manually or automatically generating them, that define
the label components.

6.1.1 The Policy Label Column
You should understand how to use policy label columns.

6-1



• About the Policy Label Column
Each policy that is applied to a table creates a column in the database.

• Hiding the Policy Label Column
You can choose not to display the column representing a policy.

6.1.1.1 About the Policy Label Column
Each policy that is applied to a table creates a column in the database.

By default, the data type of the NUMBER.

Each row's label for that policy is represented by a tag in that column, using the
numeric equivalent of the character-string label value. The label tag is automatically
generated when the label is created, unless the administrator specifies the tag
manually at that time.

The automatic label generation follows the rules established by the administrator while
defining the label components, as described in Understanding Data Labels and User
Labels.

Note:

The act of creating a policy does not in itself have any effect on tables or
schemas. It only applies the policy to a table or schema.

6.1.1.2 Hiding the Policy Label Column
You can choose not to display the column representing a policy.

Note:

You cannot hide columns in materialized views.

• To hide the display of a column, apply the HIDE option to the table.

After a policy using HIDE is applied to a table, a user running a SELECT * or
performing a DESCRIBE operation will not see the policy label column. If the policy
label column is not hidden, then the label tag is displayed as data type NUMBER.
The following example shows the output of the EMP table, with the HR_LABEL
column showing:

DESCRIBE EMP;
 Name                                      Null?    Type
 ----------------------------------------- -------- --------
 EMPNO                                     NOT NULL NUMBER(4)
 ENAME                                              CHAR(10)
 JOB                                                CHAR(9)
 MGR                                                NUMBER(4)
 SAL                                                NUMBER(7,2)
 DEPTNO                                    NOT NULL NUMBER(2)
 HR_LABEL                                           NUMBER(10)

Chapter 6
How Policy Label Column and Label Tags Work

6-2



Here is how the same table appears with the HR_LABEL column hidden:

DESCRIBE EMP;
 Name                                      Null?    Type
 ----------------------------------------- -------- --------
 EMPNO                                     NOT NULL NUMBER(4)
 ENAME                                              CHAR(10)
 JOB                                                CHAR(9)
 MGR                                                NUMBER(4)
 SAL                                                NUMBER(7,2)
 DEPTNO                                    NOT NULL NUMBER(2)

Related Topics

• How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

6.1.2 Label Tags
You can create label tags, either manually or automatically generating them, that define the
label components.

• About Label Tags
The administrator first defines a set of label components to be used in a policy.

• Manually Defined Label Tags to Order Labels
By manually defining label tags, you can implement a data manipulation strategy that
permits labels to be meaningfully sorted and compared.

• Manually Defined Label Tags to Manipulate Data
An administratively defined label tag is a convenient way to reference a complete label
string (that is, a combination of label components).

• Automatically Generated Label Tags
Dynamically generated label tags have 10 digits, with no relationship to numbers
assigned to any label component.

6.1.2.1 About Label Tags
The administrator first defines a set of label components to be used in a policy.

When creating labels, the administrator specifies the set of valid combinations of components
that can make up a label, that is, a level optionally combined with one or more groups or
compartments.

Each such valid label within a policy is uniquely identified by an associated numeric tag
assigned by the administrator or generated automatically upon its first use. Manual definition
has the advantage of allowing the administrator to control the ordering of label values when
they are sorted or logically compared.

However, label tags must be unique across all policies in the database. When you use
multiple policies in a database, you cannot use the same numeric label tag in different
policies. Remember that each label tag uniquely identifies one label, and that numeric tag is
what is stored in the data rows, not the label's character-string representation.

Chapter 6
How Policy Label Column and Label Tags Work

6-3



6.1.2.2 Manually Defined Label Tags to Order Labels
By manually defining label tags, you can implement a data manipulation strategy that
permits labels to be meaningfully sorted and compared.

To do this, you must predefine all of the labels to be associated with protected data,
and assigns to each label a meaningful label tag value. Manually assigned label tags
can have up to eight digits. The value of a label tag must be greater than zero.

It may be advantageous to implement a strategy in which label tag values are related
to the numeric values of label components. In this way, you can use the tags to group
data rows in a meaningful way. This approach, however, is not mandatory. It is good
practice to set tags for labels of higher sensitivity to a higher numeric value than tags
for labels of lower sensitivity.

Table 6-1 illustrates a set of label tags that have been assigned. Notice that, in this
example, the administrator has based the label tag value on the numeric form of the
levels, compartments, and rows that were discussed in Understanding Data Labels
and User Labels.

Table 6-1    Administratively Defined Label Tags (Example)

Label Tag Label String

10000 P

20000 C

21000 C:FNCL

21100 C:FNCL,OP

30000 S

31110 S:OP:WR

40000 HS

42000 HS:OP

In this example, labels with a level of PUBLIC begin with "1", labels with a level of
CONFIDENTIAL begin with "2", labels with a level of SENSITIVE begin with "3", and labels
with a level of HIGHLY_SENSITIVE begin with "4".

Labels with the FINANCIAL compartment then come in the 1000 range, labels with the
compartment OP are in the 1100 range, and so on. The tens place is used to indicate
the group WR, for example.

Another strategy might be completely based on groups, where the tags might be 3110,
3120, 3130, and so on.

Note, however, that label tags identify the whole label, independent of the numeric
values assigned for the individual label components. The label tag is used as a whole
integer, not as a set of individually evaluated numbers.

6.1.2.3 Manually Defined Label Tags to Manipulate Data
An administratively defined label tag is a convenient way to reference a complete label
string (that is, a combination of label components).

Chapter 6
How Policy Label Column and Label Tags Work

6-4



As illustrated in Table 6-1, for example, the tag "31110" could stand for the complete label
string "S:OP:WR".

Label tags can be used as a convenient way to partition data. For example, all data with
labels in the range 1000 - 1999 could be placed in tablespace A, all data with labels in the
range 2000 - 2999 could be placed in tablespace B, and so on.

This simplified notation also comes in handy when there is a finite number of labels and you
need to perform various operations upon them. Consider a situation in which one company
hosts a human resources system for many other companies. Assume that all users from
Company Y have the label "C:ALPHA:CY", for which the tag "210" has been set. To
determine the total number of application users from Company Y, the host administrator can
enter:

SELECT * FROM tab1
  WHERE hr_label = 210;

6.1.2.4 Automatically Generated Label Tags
Dynamically generated label tags have 10 digits, with no relationship to numbers assigned to
any label component.

You cannot group the data by label.

Table 6-2 describes how automatically generated label tags work.

Table 6-2    Generated Label Tags (Example)

Label Tag Label String

100000020 P
100000052 C
100000503 C:FNCL
100000132 C:FNCL,OP
100000003 S
100000780 S:OP:WR
100000035 HS
100000036 HS:OP

6.2 Assignments of Labels to Data Rows
For existing data rows, labels can be assigned by a labeling function that you create.

In such a function, you specify the exact table and row conditions defining what label to
insert. The function can be named in the call to apply a policy to a table or schema, or in an
update by the administrator.

Related Topics

• Inserting Labeled Data
You can insert labeled data in a variety of situations.

Chapter 6
Assignments of Labels to Data Rows

6-5



• Labeling Functions
Labeling functions can compute and return a label using resources such as
context variables (for example, date or username) and data values.

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy
to a table.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of
the tables in a schema and enables the policy for these tables.

6.3 Presenting the Label
When you retrieve labels, you do not automatically obtain the character string value.

By default, the label tag value is returned. Two label manipulation functions enable you
to convert the label tag value to and from its character string representation.

• Converting a Character String to a Label Tag with CHAR_TO_LABEL
The CHAR_TO_LABEL function converts character strings to a label tag, returning the
label tag for the specified character string.

• Conversion of a Label Tag to a Character String, with LABEL_TO_CHAR
You can convert label tags to character strings.

6.3.1 Converting a Character String to a Label Tag with
CHAR_TO_LABEL

The CHAR_TO_LABEL function converts character strings to a label tag, returning the
label tag for the specified character string.

• To convert a character string to a label tab, use the following syntax for the
CHAR_TO_LABEL function:

FUNCTION CHAR_TO_LABEL (
     policy_name     IN VARCHAR2,
     label_string    IN VARCHAR2)
RETURN NUMBER; 

For example:

INSERT INTO emp (empno,hr_label) 
VALUES (999, CHAR_TO_LABEL('HR','S:A,B:G5');

Here, HR is the label policy name, S is a sensitivity level, A,B compartments, and G5 a
group.

FUNCTION CHAR_TO_LABEL (
     policy_name     IN VARCHAR2,
     label_string    IN VARCHAR2)
RETURN NUMBER; 

Here, HR is the label policy name, S is a sensitivity level, A,B compartments, and G5 a
group.

Chapter 6
Presenting the Label

6-6



6.3.2 Conversion of a Label Tag to a Character String, with
LABEL_TO_CHAR

You can convert label tags to character strings.

• Converting a Label Tag to a Character String with LABEL_TO_CHAR
The LABEL_TO_CHAR function returns a VARCHAR2 string when it converts a label tag to a
character string.

• LABEL_TO_CHAR Examples
Oracle provides examples that illustrate the use of LABEL_TO_CHAR.

• Retrieving All Columns from a Table When the Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you
execute SELECT * on the table.

6.3.2.1 Converting a Label Tag to a Character String with LABEL_TO_CHAR
The LABEL_TO_CHAR function returns a VARCHAR2 string when it converts a label tag to a
character string.

When you query a table or view, you automatically retrieve all of the rows in the table or view
that satisfy the qualifications of the query and are dominated by your label. If the policy label
column is not hidden, then the label tag value for each row is displayed. You must use the
LABEL_TO_CHAR function to display the character string value of each label.

Note that all conversions must be explicit. There is no automatic casting to and from tag and
character string representations.

• To convert a label tag to a character string, use the following syntax for the
LABEL_TO_CHAR function:

FUNCTION LABEL_TO_CHAR (
     label IN NUMBER)
RETURN VARCHAR2; 

6.3.2.2 LABEL_TO_CHAR Examples
Oracle provides examples that illustrate the use of LABEL_TO_CHAR.

Example: Retrieving a Row Label from a Table or a View

To retrieve the label of a row from a table or view, specify the policy label column in the
SELECT statement.

For example:

SELECT label_to_char (hr_label) AS label, ename FROM tab1;
  WHERE ename = 'RWRIGHT';

This statement returns the following:

LABEL          ENAME
------------   ----------
S:A,B:G1       RWRIGHT

Chapter 6
Presenting the Label

6-7



Example: Retrieving a Policy Label Column

You can also specify the policy label column in the WHERE clause of a SELECT
statement.

The following statement displays all rows that have the policy label S:A,B:G1
SELECT label_to_char (hr_label) AS label,ename FROM emp
  WHERE hr_label = char_to_label ('HR', 'S:A,B:G1');

This statement returns the following:

LABEL           ENAME
-------------   ---------
S:A,B:G1        RWRIGHT
S:A,B:G1        ESTANTON 

Alternatively, you could use a more flexible statement to look up data that contains the
string "S:A,B:G1" anywhere in the text of the HR_LABEL column:

SELECT label_to_char (hr_label) AS label,ename FROM emp
  WHERE label_to_char (hr_label) like '%S:A,B:G1%';

If you do not use the LABEL_TO_CHAR function, then you will see the label tag.

Example: Retrieving a Numeric Column Data Type

The following example is with the numeric column data type (NUMBER) and dynamically
generated label tags, but without using the LABEL_TO_CHAR function. If you do not use
the LABEL_TO_CHAR function, then you will see the label tag.

SQL> select empno, hr_label from emp
     where ename='RWRIGHT';

EMPNO      HR_LABEL
---------- ----------
7839       1000000562

6.3.2.3 Retrieving All Columns from a Table When the Policy Label Column Is
Hidden

If the policy label column is hidden, then it is not automatically returned when you
execute SELECT * on the table.

• To explicitly specify that you want to retrieve a label, use the LABEL_TO_CHAR
function in the SELECT statement.

For example, to retrieve all columns from the DEPT table (including the policy label
column in its character representation), enter the following:

COLUMN LABEL FORMAT a10
SELECT LABEL_TO_CHAR (hr_label) AS LABEL, DEPT.* FROM DEPT;

Running these SQL statements returns the following data:

Chapter 6
Presenting the Label

6-8



Table 6-3    Data Returned from Sample SQL Statements re Hidden Column

LABEL DEPTNO DNAME LOC

L1 10 ACCOUNTING NEW YORK
L1 20 RESEARCH DALLAS
L1 30 SALES CHICAGO
L1 40 OPERATIONS BOSTON

By contrast, if you do not explicitly specify the HR_LABEL column, the label is not displayed at
all. Note that while the policy column name is on a policy basis, the HIDE option is on a table-
by-table basis.

Related Topics

• How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

6.4 Filtration of Data Using Labels
When SQL statements are processed, Oracle Label Security makes calls to the security
policies defined in the database by create-and-apply procedures.

For SELECT statements, the policy filters the data rows that the user is authorized to see. For
INSERT, UPDATE, and DELETE statements, Oracle Label Security permits or denies the
requested operation, based on the user's authorizations.

• Use of Numeric Label Tags in WHERE Clauses
There are different techniques of using numeric label tags in WHERE clauses of SELECT
statements.

• Ordering Labeled Data Rows
The ORDER BY clause of a SELECT statement can be used to order rows by the numeric
label tag.

• Ordering by Character Representation of Label
The LABEL_TO_CHAR function orders data rows by the character representation of the
label.

• Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or the
greatest lower bound of two or more labels.

• Merging Labels with the MERGE_LABEL Function
The MERGE_LABEL function merges two labels together.

6.4.1 Use of Numeric Label Tags in WHERE Clauses
There are different techniques of using numeric label tags in WHERE clauses of SELECT
statements.

When using labels in the NUMBER format, you can set up labels so that a list of your label tags
distinguishes the different levels. Comparisons of these numeric label tags can be used for
ORDER BY processing, and with the logical operators.

Chapter 6
Filtration of Data Using Labels

6-9



For example, if you have assigned all UNCLASSIFIED labels to the 1000 range, all
SENSITIVE labels to the 2000 range, and all HIGHLY_SENSITIVE labels to the 3000
range, then you can list all SENSITIVE records.

SELECT * FROM emp
WHERE hr_label BETWEEN 2000 AND 2999;

To list all SENSITIVE and UNCLASSIFIED records, you can enter:

SELECT * FROM emp
WHERE hr_label <3000;

To list all HIGHLY_SENSITIVE records, you can enter:

SELECT * FROM emp
WHERE hr_label=3000;

Note:

Remember that such queries have meaning only if the administrator has
applied a numeric ordering strategy to the label tags that he or she originally
assigned to the labels. In this way, the administrator can provide for
convenient dissemination of data. If, however, the label tag values are
generated automatically, then there is no intrinsic relationship between the
value of the tag and the order of the labels.

Alternatively, you can use dominance relationships to set up an ordering strategy.

Related Topics

• Using Dominance Functions
Oracle Label Security provides functions to control dominance.

6.4.2 Ordering Labeled Data Rows
The ORDER BY clause of a SELECT statement can be used to order rows by the numeric
label tag.

• To perform the ORDER BY operation, use a SELECT statement similar to the
following:

SELECT * from emp
ORDER BY hr_label;

Notice that no functions were necessary in this statement. The statement made use of
label tags set up by the administrator.

Note:

Again, such queries have meaning only if the administrator has applied a
numeric ordering strategy to the label tags originally assigned to the labels.

Chapter 6
Filtration of Data Using Labels

6-10



6.4.3 Ordering by Character Representation of Label
The LABEL_TO_CHAR function orders data rows by the character representation of the label.

• To order data rows by the character representation of a label, use a statement similar to
the following, which returns all rows sorted by the text order of the label :

SELECT * FROM emp
ORDER BY label_to_char (hr_label);

6.4.4 Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or the greatest
lower bound of two or more labels.

Two single-row functions operate on each row returned by a query. They return one result for
each row.

Note:

In all functions that take multiple labels, the labels must all belong to the same
policy.

• Finding Least Upper Bound with LEAST_UBOUND
The OLS_LEAST_UBOUND (OLS_LUBD) function returns a character string label that is the
least upper bound of label1 and label2:.

• Finding Greatest Lower Bound with GREATEST_LBOUND
The OLS_GREATEST_LBOUND (OLS_GLBD) standalone function determines the lowest label of
the data that can be involved in an operation, given two different labels.

6.4.4.1 Finding Least Upper Bound with LEAST_UBOUND
The OLS_LEAST_UBOUND (OLS_LUBD) function returns a character string label that is the least
upper bound of label1 and label2:.

That is, the one label that dominates both. The least upper bound is the highest level, the
union of the compartments in the labels, and the union of the groups in the labels.

For example, the least upper bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE:BETA is
HIGHLY_SENSITIVE:ALPHA,BETA.
• To find the least upper bound, use the following syntax:

FUNCTION OLS_LEAST_UBOUND (
     label1                    IN NUMBER,
     label2                    IN NUMBER) 
RETURN VARCHAR2; 

The OLS_LEAST_UBOUND function is useful when joining rows with different labels, because it
provides a high water mark label for joined rows.

The following query compares each employee's label with the label of his or her department,
and returns the higher label, whether it be in the EMP table or the DEPT table.

Chapter 6
Filtration of Data Using Labels

6-11



SELECT ename,dept.deptno, 
  OLS_LEAST_UBOUND(emp.hr_label,dept.hr_label) as label
  FROM emp, dept
  WHERE emp.deptno=dept.deptno;

This query returns the following data:

Table 6-4    Data Returned from Sample SQL Statements re Least_UBound

ENAME DEPTNO LABEL

KING 10 L3:M:D10

BLAKE 30 L3:M:D30

CLARK 10 L3:M:D10

JONES 20 L3:M:D20

MARTIN 30 L2:E:D30

Note:

The old OLS functions, LEAST_UBOUND and LUBD have been deprecated in
Oracle Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends
that you use the OLS_LEAST_UBOUND and OLS_LUBD functions instead. Using
the new function names avoids potential name conflicts with other database
components.

6.4.4.2 Finding Greatest Lower Bound with GREATEST_LBOUND
The OLS_GREATEST_LBOUND (OLS_GLBD) standalone function determines the lowest label
of the data that can be involved in an operation, given two different labels.

This function returns a character string label that is the greatest lower bound of label1
and label2. The greatest lower bound is the lowest level, the intersection of the
compartments in the labels and the groups in the labels. For example, the greatest
lower bound of HIGHLY_SENSITIVE:ALPHA and SENSITIVE is SENSITIVE.
• To find the greatest lower bound, use the following syntax:

FUNCTION OLS_GREATEST_LBOUND (
     label1                  IN NUMBER,
     label2                  IN NUMBER) 
RETURN VARCHAR2; 

Chapter 6
Filtration of Data Using Labels

6-12



Note:

The old OLS functions, GREATEST_LBOUND and GLBD were deprecated in Oracle
Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that you
use the OLS_GREATEST_LBOUND and OLS_GLBD functions instead. Using the new
function names avoids potential name conflicts with other database components.

6.4.5 Merging Labels with the MERGE_LABEL Function
The MERGE_LABEL function merges two labels together.

It accepts the character string form of two labels and the three-character specification of a
merge format.

• To merge labels, use the following syntax:

FUNCTION merge_label (label1 IN number,
                      label2 IN number,
                      merge_format IN VARCHAR2)
RETURN number;

The valid merge format is specified with a three-character string:

<highest level or lowest level><union or intersection of compartments><union or
intersection of groups>

• The first character indicates whether to merge using the highest level or the lowest level
of the two labels.

• The second character indicates whether to merge using the union or the intersection of
the compartments in the two labels.

• The third character indicates whether to merge using the union or the intersection of the
groups in the two labels.

Table 6-5 defines the MERGE_LABEL format constants.

Table 6-5    MERGE_LABEL Format Constants

Format
Specification

Data Type Constan
t

Meaning Positions in
Which Format Is
Used

max_lvl_fmt CONSTANT
varchar2(1)

H Maximum level First (level)

min_lvl_fmt CONSTANT
varchar2(1)

L Minimum level First (Level)

union_fmt CONSTANT
varchar2(1)

U Union of the two
labels

Second
(compartments)
and Third (groups)

inter_fmt CONSTANT
varchar2(1)

I Intersection of the
two labels

Second
(compartments)
and Third (groups)

Chapter 6
Filtration of Data Using Labels

6-13



Table 6-5    (Cont.) MERGE_LABEL Format Constants

Format
Specification

Data Type Constan
t

Meaning Positions in
Which Format Is
Used

minus_fmt CONSTANT
varchar2(1)

M Remove second
label from first label

Second
(compartments)
and Third (groups)

null_fmt CONSTANT
varchar2(1)

N If specified in
compartments
column, returns no
compartments. If
specified in groups
column, returns no
groups.

Second
(compartments)
and Third (groups)

For example, HUI specifies the highest level of the two labels, union of the
compartments, intersection of the groups.

The MERGE_LABEL function is particularly useful to developers if the LEAST_UBOUND
function does not provide the intended result. The LEAST_UBOUND function, when used
with two labels containing groups, may result in a less sensitive data label than
expected. The MERGE_LABEL function enables you to compute an intersection on the
groups, instead of the union of groups that is provided by the LEAST_UBOUND function.

For example, if the label of one data record contains the group UNITED_STATES, and
the label of another data record contains the group UNITED_KINGDOM, and the
LEAST_UBOUND function is used to compute the least upper bound of these two labels,
then the resulting label would be accessible to users authorized for either the
UNITED_STATES or the UNITED_KINGDOM.

If, by contrast, the MERGE_LABEL function is used with a format clause of HUI, then the
resulting label would contain the highest level, the union of the compartments, and no
groups. This is because UNITED_STATES and UNITED_KINGDOM do not intersect.

6.5 Inserting Labeled Data
You can insert labeled data in a variety of situations.

• About Inserting Labeled Data
When you insert data into a table protected by an Oracle Label Security policy, you
must supply a numeric label value tag.

• Inserting Labels Using CHAR_TO_LABEL
To insert a row label, you can specify the label character string and then transform
it into a label using the CHAR_TO_LABEL function.

• Inserting Labels Using Numeric Label Tag Values
You can insert data using the numeric label tag value of a label, rather than using
the CHAR_TO_LABEL function.

• Inserting Data Without Specifying a Label
There are two situations in which you do not need to specify a label in INSERT
statements.

Chapter 6
Inserting Labeled Data

6-14



• Inserting Data When the Policy Label Column Is Hidden
If the label column is hidden, then the existence of the column is transparent to the
insertion of data.

• Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

6.5.1 About Inserting Labeled Data
When you insert data into a table protected by an Oracle Label Security policy, you must
supply a numeric label value tag.

Usually, you can insert this value in the INSERT statement itself.

To do this, you must explicitly specify the tag for the desired label or explicitly convert the
character string representation of the label into the correct tag. Note that this does not mean
generating new label tags, but referencing the correct tag. When Oracle Label Security is
using Oracle Internet Directory, the only permissible labels (and corresponding tags) are
those pre-defined by the administrator and already in Oracle Internet Directory.

The only times an INSERT statement may omit a label value are:

• If the LABEL_DEFAULT enforcement option was specified when the policy was applied, or

• If no enforcement options were specified when the policy was applied and
LABEL_DEFAULT was specified when the policy was created

• If the statement applying the policy named a labeling function.

In the first two cases, the user's session default row label is used as the inserted row's label.
In the third case, the inserted row's label is created by that labeling function.

Related Topics

• Labeling Functions
Labeling functions can compute and return a label using resources such as context
variables (for example, date or username) and data values.

• Implementing Policy Enforcement Options and Labeling Functions
You can customize the enforcement of Oracle Label Security policies and implement
labeling functions.

6.5.2 Inserting Labels Using CHAR_TO_LABEL
To insert a row label, you can specify the label character string and then transform it into a
label using the CHAR_TO_LABEL function.

The CHAR_TO_LABEL function automatically creates a valid data label.

• To insert labels, use an INSERT INTO statement.

Using the definition for table emp, the following example shows how to insert data with explicit
labels:

INSERT INTO emp (ename,empno,hr_label)
VALUES ('ESTANTON',10,char_to_label ('HR', 'SENSITIVE'));

Chapter 6
Inserting Labeled Data

6-15



6.5.3 Inserting Labels Using Numeric Label Tag Values
You can insert data using the numeric label tag value of a label, rather than using the
CHAR_TO_LABEL function.

• To insert labels using numeric label tag values, use an INSERT INTO statement.

For example, if the numeric label tag for SENSITIVE is 3000, it would appear as follows:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, 3000);

6.5.4 Inserting Data Without Specifying a Label
There are two situations in which you do not need to specify a label in INSERT
statements.

If LABEL_DEFAULT is set, or if there is a labeling function applied to the table, then you
do not need to specify a label in your INSERT statements. The label will be provided
automatically.

• To insert data without specifying a label, use an INSERT INTO statement.

For example:

INSERT INTO emp (ename, empno)
VALUES ('ESTANTON', 10);

The resulting row label is set according to the default value (or by a labeling function).

6.5.5 Inserting Data When the Policy Label Column Is Hidden
If the label column is hidden, then the existence of the column is transparent to the
insertion of data.

INSERT statements can be written that do not explicitly list the table columns and do
not include a value for the label column.

The session's row label is used to label the data, or a labeling function is used if one
was specified when the policy was applied to the table or schema.

You can insert into a table without explicitly naming the columns, as long as you
specify a value for each non-hidden column in the table. The following example shows
how to insert a row into the table described in #unique_193/
unique_193_Connect_42_BEIIGDED:

• To insert data when the policy label column is hidden, use the following syntax:

INSERT INTO emp
VALUES ('196','ESTANTON',Technician,RSTOUT,50000,10);

Its label will be one of the following three possibilities:

• The label you specify

• The label established by the LABEL_DEFAULT option of the policy being applied

• The label created by a labeling function named by the policy being applied

Chapter 6
Inserting Labeled Data

6-16



Note:

If the policy label column is not hidden, then you must explicitly include a label
value (possibly null, indicated by a comma) in the INSERT statement.

6.5.6 Inserting Labels Using TO_DATA_LABEL
The TO_DATA_LABEL function can generate new labels dynamically.

This approach guarantees that the data labels are valid. However, be aware that when Oracle
Label Security is installed to work with Oracle Internet Directory, dynamic label generation is
not allowed, because labels are managed centrally in Oracle Internet Directory, using
olsadmintool commands. Therefore, when Oracle Label Security is directory-enabled, this
function, TO_DATA_LABEL, is not available and will generate an error message if used.

1. Ensure that you have the EXECUTE privilege on the TO_DATA_LABEL function.

2. Use the TO_DATA_LABEL as necessary, for example, in an INSERT INTO statement.

For example:

INSERT INTO emp (ename, empno, hr_label)
VALUES ('ESTANTON', 10, to_data_label ('HR', 'SENSITIVE'));

Note:

The TO_DATA_LABEL function must be explicitly granted to individuals, in order to be
used. Its usage should be tightly controlled.

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet Directory.

6.6 Changing Session and Row Labels
During a session, a user can change labels based on the authorizations an administrator
sets.

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user authorizations.

Chapter 6
Changing Session and Row Labels

6-17



7
Oracle Label Security Using
Oracle Internet Directory

You can use Oracle Label Security with Oracle Internet Directory.

• About Label Management on Oracle Internet Directory
Managing Oracle Label Security metadata in a centralized LDAP repository provides
many benefits.

• Configuring Oracle Internet Directory-Enabled Label Security
You can configure Oracle Internet Directory-enabled Oracle Label Security.

• Oracle Label Security Profiles
A user profile is a set of user authorizations and privileges.

• Integrated Capabilities When Label Security Uses the Directory
The integration of Oracle Label Security and Oracle Internet Directory enables the
several capabilities.

• Oracle Label Security Policy Attributes in Oracle Internet Directory
In Oracle Internet Directory, Oracle-related metadata is stored under cn=OracleContext.

• Subscription of Policies in Directory-Enabled Label Security
In an Oracle Internet Directory-enabled Oracle Label Security, you must subscribe a
policy before it can be applied (by SA_POLICY_ADMIN.APPLY_TABLE_POLICY or
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY).

• Restrictions on New Data Label Creation
When Oracle Label Security is used with Oracle Internet Directory, data labels must be
pre-defined in the directory.

• Administrator Duties for Oracle Internet Directory and Oracle Label Security
Administrators listed within a policy are those individuals authorized to do the olicy-
specific administrative tasks.

• Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install Oracle
Internet Directory enabled Oracle Label Security on that database.

• Synchronizing the Database and Oracle Internet Directory
After you have installed and configured Oracle Internet Directory with Oracle Label
Security, you should synchronize the database with OID and OLS.

• Security Roles and Permitted Actions
Oracle Label Security permits specific tasks and access levels for Oracle Internet
Directory, including restrictions on directory-enabled OLS policy creators.

• Superseded PL/SQL Statements When OID Is Enabled with OLS
When Oracle Internet Directory is enabled with Oracle Label Security, there are several
procedures that are superseded.

• Oracle Label Security Procedures for Policy Administrators
Several procedures in the SA_POLICY_ADMIN PL/SQL package are allowed to be run only
by policy administrators (enterprise users defined in Oracle Internet Directory).

7-1



7.1 About Label Management on Oracle Internet Directory
Managing Oracle Label Security metadata in a centralized LDAP repository provides
many benefits.

• You can easily provision policies and user label authorizations, and distribute them
throughout the enterprise.

• When employees are terminated, you can revoke their label authorizations in one
place and the change automatically propagates throughout the enterprise.

Previous releases of Oracle Label Security relied on the Oracle Database as the
central repository for policy and user label authorizations. This leveraged the
scalability and high availability of the Oracle Database, but not the identity
management infrastructure, which includes the Oracle Internet Directory (OID).
Integrating your installation of Oracle Label Security with Oracle Internet Directory
allows label authorizations as part of your standard provisioning process.

These advantages apply also to directory-stored information about policies, user
labels, and privileges that Oracle Label Security assigns to users. These labels and
privileges are specific to the installation policies defining access control on tables and
schemas. If a site is not using Oracle Internet Directory, then such information is stored
locally in the database.

The following Oracle Label Security information is stored in the directory:

• Policy information, specifically policy name, column name, policy enforcement
options, and audit options

• User profiles identifying their labels and privileges

• Policy label components: levels, compartments, and groups

• Policy data labels

Database-specific metadata, such as the following, is not stored in the directory:

• Lists of schemas or tables, with associated policy information

• Program units, with associated policy privileges

Note the following important aspects of integrating an Oracle Label Security
installation with Oracle Internet Directory (OID):

Note:

Oracle will continue to support both the database and directory-based (OID)
architectures for Oracle Label Security. However, a single database
environment cannot host both architectures. Administrators must decide
whether to use the centralized LDAP administration model or the database-
centric model.

Chapter 7
About Label Management on Oracle Internet Directory

7-2



Note:

You can manage Oracle Label Security policies directly in the directory using the
Oracle Label Security administration tool (olsadmintool).

You can also use the graphical user interface provided by Oracle Enterprise
Manager to manage Oracle Label Security. The Oracle Enterprise Manager help
contains detailed documentation.

For sites that use Oracle Internet Directory, databases retrieve Oracle Label Security policy
information from the directory. Administrators use the olsadmintool policy administration tool
or the Enterprise Manager graphical user interface to operate directly on the directory to
insert, alter, or remove metadata as needed. Because enterprise users can log in to multiple
databases using the credentials stored in Oracle Internet Directory, it is logical to store their
Oracle Label Security policy authorizations and privileges there as well. An administrator can
then modify these authorizations and privileges by updating such metadata in the directory.

For distributed databases, centralized policy management removes the need for replicating
policies, because the appropriate policy information is available in the directory. Changes are
effective without further effort, synchronized with policy information in the databases by
means of the Directory Integration Platform.

Figure 7-1 illustrates the structure of metadata storage in Oracle Internet Directory.

Chapter 7
About Label Management on Oracle Internet Directory

7-3



Figure 7-1    Diagram of Oracle Label Security Metadata Storage in Oracle Internet Directory

Groups
OracleDBCreators

OracleContextAdmins

OracleDBSecurityAdmins

OracleUserSecurityAdmins

OraclePasswordAccessibleDomains

Oracle Context
Products

User-Schema
Mapping
(Example)

Sales
(Example Database)

OracleDBAdmins
Group

Networking

Products

Common
Nickname Attribute

Oracle Label
Security

. . .Policy3

PolicyOptions

Policy ...  n

PolicyOptions

Policies

Policy1

PolicyOptions

Policy2

PolicyOptions

. . .

Labels
Audit

Options Levels Compartments Groups Profiles
Policy

Creators DB Servers

Figure 7-2 illustrates how different policies stored in Oracle Internet Directory apply to
the databases accessed by different enterprise users. Directory entries corresponding
to the user and the accessed database determine the policy to be applied.

Chapter 7
About Label Management on Oracle Internet Directory

7-4



Figure 7-2    Oracle Label Security Policies Applied through Oracle Internet Directory

OLS Policies
Alpha, Beta info

OID
(b)

OID Changes

DIP Server

OLS Policies
Alpha and Beta

Oracle DB1

OLS Policies
Alpha and Beta

Oracle DB2

(a)

LDAP

SSL or SASL

SSL/non-SSL

logon as an 
enterprise user

LDAP

SSL or SASL

olsadmintool

sqlplus

SSL/non-SSL

logon as an 
enterprise user

PL/SQL
Programs

1. Multiple OLS policy attributes

2. Enterprise users with OLS attributes

Notes:

a. Directory Integration Platform (DIP) provisioning / 
 synchronizing profile in Oracle Internet Directory (OID) 
 changeable using oidprovtool.

b. User profile in OID changeable using olsadmintool.

In this figure, the directory has information about two Oracle Label Security policies, Alpha,
applying to database DB1, and Beta, applying to database DB2 Although both policies are
known to each database, only the appropriate one is applied in each case. In addition,
enterprise users who are to access rows protected by Oracle Label Security are listed in
profiles within the Oracle Label Security attributes in Oracle Internet Directory.

As Figure 7-2 shows, the connections between different databases and the directory are
established over either SSL or SASL. The database always binds to the directory as a known
identity using password-based authentication. Links between databases and their clients
(such as a SQL*Plus session, any PL/SQL programs, and so on) can use either SSL or non-
SSL connections. The example of Figure 7-2 assumes that users are logged on through
password authentication. The choice of connection type depends on the enterprise user
model.

The Oracle Label Security policy administration tool operates directly on metadata in Oracle
Internet Directory. Changes in the directory are then propagated to the Oracle Directory
Integration and Provisioning server, which is configured to send changes to the databases at
specific time intervals.

Chapter 7
About Label Management on Oracle Internet Directory

7-5



The databases update the policy information in Oracle Internet Directory only when
policies are being applied to tables or schemas. These updates ensure that policies
that are in use will not be dropped from the directory.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information on enterprise domains, user models and authentication activities

7.2 Configuring Oracle Internet Directory-Enabled Label
Security

You can configure Oracle Internet Directory-enabled Oracle Label Security.

• About Configuring Oracle Internet Directory-Enabled Label Security
You can configure a database for Oracle Internet Directory-enabled Label Security
after database creation or during custom database creation.

• Granting Permissions for Configuring OID-Enabled Oracle Label Security
Users who perform Oracle Internet Directory-enabled Oracle Label Security using
the Database Configuration Assistant (DBCA) must have additional privileges.

• Registering a Database and Configuring OID-Enabled Oracle Label Security
The registration and configuration process entails configuring an Oracle home for
the directory, performing the configuration, and setting a password and connect
data.

• Unregisteration of a Database with OID-Enabled Oracle Label Security
To unregister a database with Oracle Internet Directory-enabled Oracle Label
Security, you can use DBCA.

7.2.1 About Configuring Oracle Internet Directory-Enabled Label
Security

You can configure a database for Oracle Internet Directory-enabled Label Security
after database creation or during custom database creation.

Oracle Internet Directory-enabled label security relies on the Enterprise User security
feature.

See Also:

• Oracle Database Enterprise User Security Administrator's Guide for
prerequisites and steps to configure a database for directory usage

• Oracle Database Enterprise User Security Administrator's Guide for
information about Database Configuration Assistant (DBCA).

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-6



7.2.2 Granting Permissions for Configuring OID-Enabled Oracle Label
Security

Users who perform Oracle Internet Directory-enabled Oracle Label Security using the
Database Configuration Assistant (DBCA) must have additional privileges.

The following steps describe what permissions are needed, and how to grant them:

1. Use Enterprise Manager to add the user to the OracleDBCreators group.

Oracle Database Enterprise User Security Administrator's Guide describes how to add a
user to an administrative group.

2. Add the user to the Provisioning Admins group.

This is necessary because DBCA creates a DIP provisioning profile for Oracle Label
Security. Use ldapmodify command with the following .ldif file to add a user to the
Provisioning Admins group:

dn: cn=Provisioning Admins,cn=changelog subscriber, cn=oracle internet directory
changetype: modify
add: uniquemember
uniquemember: DN of the user who is to be added

3. Add the user to the policyCreators group using the olsadmintool command line tool.

DBCA bootstraps the database with the Oracle Label Security policy information from
Oracle Internet Directory, and only policyCreators can perform this bootstrap.

4. If the database is already registered with the Oracle Internet Directory using DBCA, use
Enterprise Manager to add the user to the OracleDBAdmins group of that database.

Note that the permissions specified earlier are also needed by the administrator who
unregisters the database that has Oracle Internet Directory enabled Oracle Label Security
configuration.

7.2.3 Registering a Database and Configuring OID-Enabled Oracle Label
Security

The registration and configuration process entails configuring an Oracle home for the
directory, performing the configuration, and setting a password and connect data.

• Step 1: Configure Your Oracle Home for Directory Usage
First, you must configure your Oracle home directory so that you can use Oracle Internet
Directory.

• Step 2: Configure Oracle Internet Directory for Oracle Label Security
Next, you are ready to configure Oracle Internet Directory for Oracle Label security.

• Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label Security
Registering the database and configuring Oracle Label Security can be done in one
invocation of DBCA.

• Step 3: Set the DIP Password and Connect Data
The DIP user manages Oracle Internet Directory.

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-7



7.2.3.1 Step 1: Configure Your Oracle Home for Directory Usage
First, you must configure your Oracle home directory so that you can use Oracle
Internet Directory.

• Follow the instructions in Oracle Database Enterprise User Security
Administrator's Guide to configure your Oracle home for directory usage.

7.2.3.2 Step 2: Configure Oracle Internet Directory for Oracle Label Security
Next, you are ready to configure Oracle Internet Directory for Oracle Label security.

1. Register your database in the directory using Database Configuration Assistant
(DBCA).

See Oracle Database Enterprise User Security Administrator's Guide .

2. After your database is registered in the directory, configure Label Security:

a. Start DBCA, select Configure database options in a database, and click
Next.

b. Select a database and click Next.

c. Regarding the option of unregistering the database or keeping it registered,
select Keep the database registered.

d. If the database is registered with Oracle Internet Directory, the Database
options screen shows a customize button beside the Label Security check
box. Select the Label Security option and click Customize.

e. This customize dialog has two configuration options, for standalone Oracle
Label Security or for Oracle Internet Directory-enabled Oracle Label Security.
Click OID-enabled Label security configuration and enter the Oracle
Internet Directory credentials of an appropriate administrator. Click Ok.

f. Continue with the remaining DBCA steps and click Finish when it appears.

Note:

You can configure a standalone Oracle Label Security on a database
that is registered with Oracle Internet Directory. Select the
standalone option in step e.

When configuring for Oracle Internet Directory-enabled Oracle Label Security, DBCA
does the following actions in addition to registering the database:

1. Creates a provisioning profile for propagating Label Security policy changes to the
database.

2. Installs the required packages on the database side for Oracle Internet Directory-
enabled Oracle Label Security.

3. Bootstraps the database with all the existing Label Security policy information in
the Oracle Internet Directory.

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-8



Related Topics

• Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install Oracle
Internet Directory enabled Oracle Label Security on that database.

7.2.3.3 Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label
Security

Registering the database and configuring Oracle Label Security can be done in one
invocation of DBCA.

1. Start DBCA.

2. Select Configure database options in a database and click Next.

3. Select a database and click Next.

4. Click Register the database.

5. Enter the Oracle Internet Directory credentials of an appropriate administrator, and the
corresponding password for the database wallet that will be created.

6. Enter an optional Custom Database Name for the database.

The ability to specify a custom database name is new in Oracle Database 12c. By
default, the database CN (first part of the DN or the distinguished name) in the directory
is the DB_UNIQUE_NAME. You can change this to a custom value.

7. The Database options screen shows a Customize button beside the Label Security check
box. Select the Label Security option and click Customize.

The Customize dialog box is displayed, showing two configuration options, for standalone
Oracle Label Security or for Oracle Internet Directory-enabled Oracle Label Security.

8. Click OID-enabled Label Security Configuration.

9. Continue with the remaining DBCA steps and click Finish.

7.2.3.4 Step 3: Set the DIP Password and Connect Data
The DIP user manages Oracle Internet Directory.

After you configure this user’s password, you must update the interface connect information
in the DIP provisioning profile.

1. Use the command line tool oidprovtool to set the password for the DIP user and update
the interface connect information in the DIP provisioning profile for that database with the
new password.

2. Upon creation, the DIP profile uses a schedule value of 3600 seconds by default,
meaning that Oracle Label Security changes are propagated to the database every hour.
You can use oidprovtool to change this value if deployment considerations require that.

Once the database is configured for Oracle Internet Directory-enabled Oracle Label Security,
further considerations regarding enterprise user security may apply.

Chapter 7
Configuring Oracle Internet Directory-Enabled Label Security

7-9



See Also:

• Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles

• Oracle Database Enterprise User Security Administrator's Guide for
further concepts, tools, steps, and procedures

7.2.4 Unregisteration of a Database with OID-Enabled Oracle Label
Security

To unregister a database with Oracle Internet Directory-enabled Oracle Label Security,
you can use DBCA.

DBCA does the following in this process:

1. Deletes the DIP provisioning profile for the database created for Oracle Label
Security.

2. Installs the required packages for standalone Oracle Label Security, so that after
unregistering, Oracle Internet Directory enabled Oracle Label Security becomes
standalone Oracle Label Security.

Note:

• Specific instructions for database unregistration appear in the Oracle
Database Enterprise User Security Administrator's Guide. No special
steps are required when Oracle Internet Directory-enabled Oracle
Label Security is configured.

• If a database has standalone Oracle Label Security, it cannot be
converted to Oracle Internet Directory-enabled Oracle Label
Security. You need to drop Oracle Label Security from the database
and then use DBCA again to configure Oracle Internet Directory-
enabled Oracle Label Security.

7.3 Oracle Label Security Profiles
A user profile is a set of user authorizations and privileges.

Profiles are maintained as part of each Oracle Label Security policy stored in the
Directory.If a user is added to a profile, then the authorizations and privileges defined
in that profile for that particular policy are acquired by the user, which include the
following attributes:

• Five label authorizations:

– maximum read label

– maximum write label

– minimum write label

Chapter 7
Oracle Label Security Profiles

7-10



– default read label

– default row label

• Privileges

• The list of enterprise users to whom these authorizations apply

An enterprise user can belong to only one profile, or none.

See Also:

• Oracle Label Security Policy Attributes in Oracle Internet Directory

• Oracle Database Enterprise User Security Administrator's Guide for more
information on creating and managing enterprise users

• Oracle Enterprise Manager help for information on creating and administering
Oracle Label Security profiles and policies

7.4 Integrated Capabilities When Label Security Uses the
Directory

The integration of Oracle Label Security and Oracle Internet Directory enables the several
capabilities.

• User/administrator actions

– Storing multiple Oracle Label Security policies in Oracle Internet Directory

– Managing Oracle Label Security policies and options in the directory, including

* creating or dropping a policy

* changing policy options

* changing audit settings

– Creating label components for any Oracle Label Security policies by

* creating or removing levels, compartments, or groups

* assigning numeric values to levels, compartments, or groups

* changing long names of levels, compartments, or groups

* creating children groups

– Managing enterprise users configured as users of any Oracle Label Security policies,
including

* assigning or removing enterprise users to/from profiles within policies

* assigning policy-specific privileges to enterprise users, or removing them

* changing policy label authorizations assigned to enterprise users

– Managing all user/administrator actions and capabilities by means of an integrated
set of command line tools that monitor and manage Oracle Label Security policies in
Oracle Internet Directory.

Chapter 7
Integrated Capabilities When Label Security Uses the Directory

7-11



• Automatic results of Oracle Label Security

– Limiting database policy usage to directory-defined policies only (no local
policies defined or applied)

– Synchronizing changes to policies in the directory with the databases using
Oracle Label Security (to apply after enterprise users reconnect)

– After changes are propagated by the Directory Integration Platform, having
immediate access to enterprise users' Oracle Label Security attributes when
these users log on to any database using Oracle Label Security, assuming
they are configured within any Oracle Label Security policies. These attributes
include users' label authorizations and users' privileges.

7.5 Oracle Label Security Policy Attributes in Oracle Internet
Directory

In Oracle Internet Directory, Oracle-related metadata is stored under
cn=OracleContext.

Within Label Security, each policy holds the information and parameters shown in 
Figure 7-1:

When Oracle Label Security is used without Oracle Internet Directory, it supports
automatic creation of data labels by means of a label function. However, when Oracle
Label Security is used with Oracle Internet Directory, such functions can create labels
only using data labels that are already defined in the directory.

Table 7-1    Contents of Each Policy

Type of Entry Contents Meaning/Sample Usage/References

Policy Name The name assigned to this policy at its creation Used in olsadmintool commands such
as olsadmintool createpolicy (refer
to Command-line Tools for Label Security
Using Oracle Internet Directory )

Column Name The name of the column that will hold the label
values relevant to this policy

Column is added to database. Refer to 
How Policy Label Column and Label
Tags Work

Inserting Labeled Data

How the HIDE Policy Column Option
Works

Oracle Label Security Reference.

Used in

olsadmintool createpolicy
Enforcement Options Any combination of the following entries:

LABEL_DEFAULT,LABEL_UPDATE,
CHECK_CONTROL,READ_CONTROL,
WRITE_CONTROL,INSERT_CONTROL,
DELETE_CONTROL,UPDATE_CONTROL,
ALL_CONTROL, or NO_CONTROL

Refer to the discussions in Implementing
Policy Enforcement Options and Labeling
Functions and Oracle Label Security
Reference.

Used in

olsadmintool createpolicy
and olsadmintool alterpolicy

Chapter 7
Oracle Label Security Policy Attributes in Oracle Internet Directory

7-12



Table 7-1    (Cont.) Contents of Each Policy

Type of Entry Contents Meaning/Sample Usage/References

Options Enabled:TRUE or FALSE, Type: ACCESS or
SESSION, Success:
SUCCESSFUL,UNSUCCESSFUL, or BOTH.

Used in

olsadmintool audit

Levels Name and number for each level Used in olsadmintool create/
alter/droplevel

Compartments Name and number for each compartment Used in olsadmintool create/
alter/drop compartment

Groups Name, number, and parent for each group Used in olsadmintool create/
alter/dropgroup

Profiles Maximum and default read labels, maximum
and minimum write labels, default row label, list
of users, and a set of privileges from this list:

READ, FULL,
WRITEUP, WRITEDOWN, WRITEACROSS,
PROFILE_ACCESS, or COMPACCESS

Policies can have one or more profiles,
each of which can be assigned to many
users. Profiles reduce the need to set up
label authorizations for individual users.

All users with the same set of labels and
privileges are grouped in a single profile.
Each profile represents a different set of
labels, privileges, and users. Each profile
in a policy is unique.

Data Labels Full name and number for each valid data label Refer to Restrictions on New Data Label
Creation.

Administrators Name of each administrator authorized to
modify the parameters within this policy.

Policy administrators can modify
parameters within a policy. They are not
necessarily also policy creators, who
have the right to create or remove
policies or policy administrators. Refer to 
Security Roles and Permitted Actions.

7.6 Subscription of Policies in Directory-Enabled Label Security
In an Oracle Internet Directory-enabled Oracle Label Security, you must subscribe a policy
before it can be applied (by SA_POLICY_ADMIN.APPLY_TABLE_POLICY or
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY).

In a standalone Oracle Label Security installation, the
SA_POLICY_ADMIN.APPLY_TABLE_POLICY or SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY functions
can be used directly without the need to subscribe.

Related Topics

• SA_POLICY_ADMIN Policy Administration PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package manages Oracle Label Security policies as a
whole.

• Step 5: Apply the Policy to a Database Table or Schema
After you create grant authorizations and privileges to an Oracle Label Security policy,
you can apply it to a database table or schema.

Chapter 7
Subscription of Policies in Directory-Enabled Label Security

7-13



7.7 Restrictions on New Data Label Creation
When Oracle Label Security is used with Oracle Internet Directory, data labels must be
pre-defined in the directory.

They cannot be created dynamically by a label function, as is possible when label
security is not integrated with the directory.

7.8 Administrator Duties for Oracle Internet Directory and
Oracle Label Security

Administrators listed within a policy are those individuals authorized to do the olicy-
specific administrative tasks.

• Modify existing policy options and audit settings.

• Enable or disable auditing for a policy.

• Create or remove levels, compartments, groups or children groups.

• Modify full/long names for levels, compartment, or groups.

• Define or modify enterprise user settings, in this policy, for:

– Privileges

– Maximum or minimum levels

– Read, write, or row access for levels, compartments, or groups

– Label profiles

• Remove enterprise users from a policy.

There is a higher level of administrators, called policy creators, who can create and
remove Oracle Label Security policies and the policy administrators named within
them.

7.9 Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install Oracle
Internet Directory enabled Oracle Label Security on that database.

This installation process automatically creates a Directory Integration Platform (DIP)
provisioning profile enabling policy information to be periodically refreshed in the future
by downloading it to the database.

When configuring the database for Oracle Internet Directory enabled Oracle Label
Security, the DBCA tool puts all the policy information in Oracle Internet Directory into
the database.

• To bootstrap the database, run the bootstrap utility script at $ORACLE_HOME/bin/
olsoidsync using the following parameters:

olsoidsync --dbconnectstring 
"database_connect_string_in_host:port:sid_format"
--dbuser database_user --dbuserpassword database_user_password [-c] [-r]
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Chapter 7
Restrictions on New Data Label Creation

7-14



For example:

olsoidsync --dbconnectstring sales_srvr:1521:ora101 --dbuser lbacsys
--dbuserpassword lbacsys -c
-b "ou=Americas,o=ExampleCorp,c=US" -h yippee -D cn=policycreator -w bind_password

You must provide the database TNS name, the database user name, the database user's
password, the administrative context (if any), the Oracle Internet Directory host name, the
bind DN and bind password, and optionally the Oracle Internet Directory port number. The c
and r parameters are optional. c drops all the existing policies in the database and refreshes
it with policy information from Oracle Internet Directory, and r drops all the policy metadata
(without dropping the policies themselves) and refreshes the policies with new metadata from
Oracle Internet Directory.

Related Topics

• olsoidsync Command Reference
The olsoidsync command pulls policy information from Oracle Internet Directory and
populates the information in the database (bootstrapping).

7.10 Synchronizing the Database and Oracle Internet Directory
After you have installed and configured Oracle Internet Directory with Oracle Label Security,
you should synchronize the database with OID and OLS.

• About Synchronizing the Database and Oracle Internet Directory
The Directory Integration Platform Oracle Directory Provisioning Service synchronizes
Oracle Label Security metadata in the OID directory with the databases.

• Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles
The DIP server synchronizes policy changes in the directory with the connected
databases, using a separate DIP provisioning profile created for each database.

• Modifying a Provisioning Profile
The oidprovtool modify command changes the password for the
interface_connect_info connect string.

• Changing the Database Connection Information for a Provisioning Profile
You can change the database connection information in the DIP profile.

• Configuring OID-Enabled Oracle Label Security with Oracle Data Guard
To configure Oracle Directory-Enabled Oracle Label Security to work with Oracle Data
Guard, first you configure the primary database, then the secondary database.

7.10.1 About Synchronizing the Database and Oracle Internet Directory
The Directory Integration Platform Oracle Directory Provisioning Service synchronizes Oracle
Label Security metadata in the OID directory with the databases.

Changes to the label security data in the directory are conveyed by the provisioning
integration service in the form of provisioning events. A software agent receives these events
and generates appropriate SQL or PL/SQL statements to update the database. After these
statements are processed, Oracle Label Security data dictionaries are updated to match the
changes already made in the directory.

Oracle Label Security subscribes itself to the Provisioning Integration Service automatically
during installation. The provisioning service stores the information associated with each
database in the form of a provisioning profile. The software agent uses the identity of the user

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-15



DIP, which is created as for Oracle Label Security, to connect to the database, when
synchronizing the changes in Oracle Internet Directory with the database.

If the password for the user DIP is changed, then you must update this password in the
provisioning profile of the provisioning integration service.

7.10.2 Oracle Directory Integration and Provisioning (DIP) Provisioning
Profiles

The DIP server synchronizes policy changes in the directory with the connected
databases, using a separate DIP provisioning profile created for each database.

This profile is created automatically as part of the installation process for Oracle
Internet Directory-enabled Oracle Label Security. The administrator can use the
provisioning tool oidprovtool to modify the password for a database profile, using the
script $ORACLE_HOME/bin/oidprovtool. Each such profile contains the following
information:

Table 7-2    Elements in a DIP Provisioning Profile

Element Name for This Element
When Invoking oidprovtool

The LDAP host name ldap_host
The LDAP port number ldap_port
The user DN and password to bind to Oracle Internet
Directory to retrieve policy information

ldap_user
ldap_user_password

The database DN application_dn
The organization DN, that is, the administrative context in
which changes are being made

organization_dn

The callback function to be invoked, that is,
LBACSYS.OLS_DIP_NTFY

interface_name

The database connect information, which is the host name of
the database, the port number used to connect to the
database, the database SID, the database user name and
password

interface_connect_info

Event subscriptions, including all MODIFY, ADD and DELETE
events under cn=LabelSecurity in Oracle Internet Directory

operation

The time interval between synchronizations schedule

Here is an example of using oidprovtool, followed by an explanation of the
parameters in this example:

oidprovtool operation=modify ldap_host=yippee ldap_port=389
ldap_user=cn=defense_admin ldap_user_password=Easy2rem
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US" interface_name=LBACSYS.OLS_DIP_NTFY
interface_type=PLSQL interface_connect_info=yippee:1521:db1:dip:newdip 
schedule=60
event_subscription= "ENTRY:cn=LabelSecurity,cn=Products,cn=OracleContext,
ou=Americas,o=Oracle,c=US:ADD(*)" event_subscription=
"ENTRY:cn=LabelSecurity,cn=Products, cn=OracleContext,ou=Americas,

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-16



o=Oracle,c=US:MODIFY(*)" event_subscription="ENTRY:cn=LabelSecurity,cn=Products,
cn=OracleContext, ou=Americas,o=Oracle,c=US:DELETE"

This sample oidprovtool command creates and enables a new DIP provisioning profile with
the following attributes:

• Oracle Internet Directory in host yippee using port 389

• Oracle Internet Directory user bind DN: cn=defense_admin with password Easy2rem

• Database DN: cn=db1, cn=OracleContext, ou=Americas, o=Oracle, c=US
• Organization DN (administrative context): ou=Americas, o=Oracle, c=US
• Database on host yippee, listening on port 1521

• Oracle SID: db1
• Database user: dip with new password newdip
• Interval to synchronize directory with connected databases: 60 seconds

• All the ADD, MODIFY and DELETE events under cn=LabelSecurity to be sent to DIP

To start the DIP server, use $ORACLE_HOME/bin/oidctl. For example:

oidctl server=odisrv connect=db2 config=0 instance=0 start

This command will start the DIP server by connecting to db2 (the Oracle Internet Directory
database) with config set to 0 and instance number 0.

7.10.3 Modifying a Provisioning Profile
The oidprovtool modify command changes the password for the interface_connect_info
connect string.

Before you change the password, you must temporarily disable the profile. After changing the
password, you then reenable the profile.

1. Disable the profile by using theoidprovtool .

The syntax is as follows:

oidprovtool operation=disable ldap_host=host ldap_port=port 
ldap_user_dn=ldap_user_dn  ldap_user_password=password application_dn=app_dn  
organization_dn=org_dn

For example:

oidprovtool operation=disable ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=password 
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US"
organization_dn="ou=Americas,o=Oracle,c=US"

2. Modify the password and connection information by using the following syntax:

oidprovtool operation=modify  ldap_host=ldap_host ldap_port=port

ldap_user_dn=ldap_user_dn  ldap_user_password=password application_dn=app_dn
organization_dn=org_dn interface_connect_info=new_connect_info

For example:

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-17



oidprovtool operation=modify ldap_host=yippee ldap_port=389

ldap_user=cn=defense_admin ldap_user_password=Easy2rem
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US" 
organization_dn="ou=Americas,o=Oracle,c=US" 
interface_connect_info=yippee:1521:db1:dip:NewestDIPpassword 

3. Reenable the profile by using the following syntax:

oidprovtool operation=enable ldap_host=host ldap_port=port 
ldap_user_dn=ldap_user_dn ldap_user_password=password application_dn=app_dn 
organization_dn=org_dn

For example

oidprovtool operation=enable ldap_host=yippee ldap_port=389 

ldap_user=cn=defense_admin ldap_user_password=password 
application_dn="cn=db1,cn=OracleContext,ou=Americas,o=Oracle,c=US" 
organization_dn="ou=Americas,o=Oracle,c=US"

7.10.4 Changing the Database Connection Information for a
Provisioning Profile

You can change the database connection information in the DIP profile.

1. Disable the provisioning profile.

This step temporarily stops the propagation of label security changes in the
directory to the database, but no data is lost. Once the profile is enabled, any label
security changes that happened in the directory since the profile was disabled are
synchronized with the database.

2. Update the database connection information in the profile.

3. Enable the profile.

Note:

The database character set must be compatible with Oracle Internet
Directory for Oracle Internet Directory-enabled Oracle Label Security to
work correctly. Only then can there be successful synchronization of the
Label Security metadata in Oracle Internet Directory with the Database.

See Also:

• Oracle Database Globalization Support Guide for more information
about character sets and Globalization Support parameters

• Modifying a Provisioning Profile

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-18



7.10.5 Configuring OID-Enabled Oracle Label Security with Oracle Data
Guard

To configure Oracle Directory-Enabled Oracle Label Security to work with Oracle Data Guard,
first you configure the primary database, then the secondary database.

• Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard
You must set up the directory-enabled Oracle Label Security with Oracle Data Guard.

• Step 2: After the Switchover, Update the OID Provisioning Profile
Once you complete the switchover operation, you must update the Oracle Internet
Directory provisioning profile.

7.10.5.1 Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard
You must set up the directory-enabled Oracle Label Security with Oracle Data Guard.

1. Configure Oracle Data Guard for your database.

See Oracle Data Guard Broker for information about installing Oracle Data Guard.

2. Register Oracle Label Security in Oracle Internet Directory on the primary database.

See Registering a Database and Configuring OID-Enabled Oracle Label Security for
more information.

3. Verify the that the policies have been propagated to the primary database.

a. Create the Oracle Label Security policies in an Oracle Internet Directory using the
olsadmintool utility or in Oracle Enterprise Manager Cloud Control.

See Command-line Tools for Label Security Using Oracle Internet Directory for more
information about using the olsadmintool utility.

b. Connect to the primary database as user LBACSYS.

c. Query the DBA_SA_POLICIES data dictionary view to confirm that the policies were
propagated to the primary database.

SELECT POLICY_NAME FROM DBA_SA_POLICIES;
4. Connect to the standby database as user LBACSYS and then perform the SELECT

POLICY_NAME FROM DBA_SA_POLICIES; query to ensure that the policies that were
propagated on the primary database are on the standby database, though the redo log
apply process.

5. Copy the ewallet.p12, sqlnet.ora, and ldap.ora files from the primary database to the
standby database after the OLS-OID registration is complete.

This step is useful in case of failover and the primary database is not accessible. By
default, these files are in the following locations:

• ewallet.p12, the wallet file, is in either the $ORACLE_BASE/admin/Oracle_SID/wallet
directory or the $ORACLE_HOME/admin/Oracle_SID/wallet directory.

• sqlnet.ora is in the $ORACLE_HOME/dbs directory. (Back up this file before copying it
to the standby database.)

• ldap.ora is in the $ORACLE_HOME/dbs directory.

6. Go to the directory where you copied the ewallet.p12 file.

Chapter 7
Synchronizing the Database and Oracle Internet Directory

7-19



7. Create SSO wallet file (cwallet.sso) associated to PKCS#12 wallet
(ewallet.p12) by using the following syntax:

orapki wallet create -wallet wallet_location -auto_login [-pwd password]

7.10.5.2 Step 2: After the Switchover, Update the OID Provisioning Profile
Once you complete the switchover operation, you must update the Oracle Internet
Directory provisioning profile.

In this step, after you have you have performed the switchover and completed steps 5, 
6, and 7 under Step 1: Set Up Directory-Enabled Oracle Label Security with Data
Guard, you are ready to update the provisioning profile in Oracle Internet Directory
with the connection information of the new primary database.

If you do not complete the following procedure, then the policies will continue to be
propagated to the new standby database, and the old primary database will fail with an
ORA-16000 database open for read-only access error. After you have updated the
provisioning profile with the new primary database connection information, then policy
propagation takes place in the new primary database. In addition, these policies are
propagated to the new standby through the redo apply process.

1. On either the primary or the standby computer, run the following oidprovtool
utility command for the new primary database.

oidprovtool operation=modify \
ldap_host=OID_Server_hostname ldap_port=OID_Server_Port \
ldap_user_dn="cn=orcladmin"  \ 
application_dn="LDAP_distinguised_name_of_application" \ 

The application_dn setting can be derived from dn=dbname, cn=oraclecontext,
default_admin_context. The ldap.ora file lists the default_admin_context
setting.

2. When prompted, enter the LDAP user password.

Please enter the LDAP password: 
3. When prompted, enter the interface connection information in the following format:

host:port:service_name:dip:password

DIP is the Oracle Directory Integration and Provisioning (DIP) account that is
installed with Oracle Label Security. This account is created automatically as part
of the installation process for Oracle Internet Directory-enabled Oracle Label
Security.

To specify no interface connection information, omit any settings and press
Return.

4. After you complete the provisioning profile, then restart the DIP server.

7.11 Security Roles and Permitted Actions
Oracle Label Security permits specific tasks and access levels for Oracle Internet
Directory, including restrictions on directory-enabled OLS policy creators.

Chapter 7
Security Roles and Permitted Actions

7-20



• Permitted Tasks and Access Levels for Oracle Internet Directory
To manage Oracle Label Security policies in Oracle Internet Directory, certain entities are
given access control rights in the directory.

• Restriction on Policy Creators for Directory-Enabled Oracle Label Security
A member of the Policy Creators group can only create, browse, and delete Oracle Label
Security policies.

7.11.1 Permitted Tasks and Access Levels for Oracle Internet Directory
To manage Oracle Label Security policies in Oracle Internet Directory, certain entities are
given access control rights in the directory.

The access control mechanisms are provided by Oracle Internet Directory.

Table 7-3 describes, in abstract terms, these entities and the tasks they are enabled to
perform.

Table 7-3    Tasks That Certain Entities Can Perform

Entity Tasks This Entity Can Perform

Policy creators Create new (or delete existing) policies, create new (or remove existing) policy
administrators.

Policy administrators For Policies: modify existing policy options and audit settings, enable or disable
auditing for a policy.

For Label components: create, modify, or remove levels, compartments and groups,
such as by changing their full or long names or (for groups) by creating or deleting
their children groups.

For enterprise users: remove enterprise users from a policy, modify enterprise
users' maximum or minimum levels, their read, write, and row access for
compartments or groups, their privileges for a policy, and their label profiles.

Table 7-4 lists the specific access level operations permitted or disallowed for policy creators,
policy administrators, and label security users.

Table 7-4    Access Levels Allowed by Users in OID

Entries Policy Creators Policy Administrators Databases

cn=Policies can modify no access no access

cn=Admins, cn=Policy1 can modify no access no access

uniqueMember: cn=Policy1 can browse can browse can modify

cn=PolicyCreators no access1 no access no access

cn=Levels, cn=Policy1 can browse and delete can modify no access

cn=Compartments,
cn=Policy1

can browse and delete can modify no access

cn=Groups, cn=Policy1 can browse and delete can modify no access

cn=AuditOptions,cn=Policy1 can browse and delete can modify no access

cn=Profiles,cn=Policy1 can browse and delete can modify no access

cn=Labels,cn=Policy1 can browse and delete can modify no access

cn=DBServers no access2 no access no access

Chapter 7
Security Roles and Permitted Actions

7-21



1 The group cn=OracleContextAdmins is the owner of the group cn=PolicyCreators, so members in cn=OracleContextAdmins
can modify cn=PolicyCreators.

2 The group cn=OracleDBCreators is the owner of the group cn=DBServers, so members in cn=OracleDBCreators can modify
cn=DBServers.

7.11.2 Restriction on Policy Creators for Directory-Enabled Oracle
Label Security

A member of the Policy Creators group can only create, browse, and delete Oracle
Label Security policies.

This user cannot perform policy administrative tasks, such as creating label
components and adding users, even if explicitly added to the Policy Admins group of
that policy. In short, a policy creator cannot be the administrator of any policy.

7.12 Superseded PL/SQL Statements When OID Is Enabled
with OLS

When Oracle Internet Directory is enabled with Oracle Label Security, there are
several procedures that are superseded.

Only user LBACSYS is allowed to run these procedures.

For some of the procedures listed in the table, the functionality they provided is
replaced by the olsadmintool command named in the second column (and explained
in Oracle Label Security Reference).

Table 7-5    Procedures Superseded by olsadmintool When Using Oracle Internet Directory

Disabled Procedure Replaced by olsadmintool Command

SA_SYSDBA.CREATE_POLICY olsadmintool createpolicy
SA_SYSDBA.ALTER_POLICY olsadmintool alterpolicy
SA_SYSDBA.DROP_POLICY olsadmintool droppolicy
SA_COMPONENTS.CREATE_LEVEL olsadmintool createlevel
SA_COMPONENTS.ALTER_LEVEL olsadmintool alterlevel
SA_COMPONENTS.DROP_LEVEL olsadmintool droplevel
SA_COMPONENTS.CREATE_COMPARTMENT olsadmintool createcompartment
SA_COMPONENTS.ALTER_COMPARTMENT olsadmintool altercompartment
SA_COMPONENTS.DROP_COMPARTMENT olsadmintool dropcompartment
SA_COMPONENTS.CREATE_GROUP olsadmintool creategroup
SA_COMPONENTS.ALTER_GROUP olsadmintool altergroup
SA_COMPONENTS.ALTER_GROUP_PARENT olsadmintool altergroup
SA_COMPONENTS.DROP_GROUP olsadmintool dropgroup
SA_USER_ADMIN.SET_LEVELS None

SA_USER_ADMIN.SET_COMPARTMENTS None

SA_USER_ADMIN.SET_GROUPS None

Chapter 7
Superseded PL/SQL Statements When OID Is Enabled with OLS

7-22



Table 7-5    (Cont.) Procedures Superseded by olsadmintool When Using Oracle Internet
Directory

Disabled Procedure Replaced by olsadmintool Command

SA_USER_ADMIN.ADD_COMPARTMENTS None

SA_USER_ADMIN.ALTER_COMPARTMENTS None

SA_USER_ADMIN.DROP_COMPARTMENTS None

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS None

SA_USER_ADMIN.ADD_GROUPS None

SA_USER_ADMIN.ALTER_GROUPS None

SA_USER_ADMIN.DROP_GROUPS None

SA_USER_ADMIN.DROP_ALL_GROUPS None

SA_USER_ADMIN.SET_USER_LABELS olsadmintool createprofile; olsadmintool
adduser; olsadmintool dropprofile;
olsadmintool dropuser;

SA_USER_ADMIN.SET_DEFAULT_LABEL None

SA_USER_ADMIN.SET_ROW_LABEL None

SA_USER_ADMIN.DROP_USER_ACCESS olsadmintool dropuser
SA_USER_ADMIN.SET_USER_PRIVS olsadmintool createprofile; olsadmintool

adduser; olsadmintool dropprofile;
olsadmintool dropuser;

SA_AUDIT_ADMIN.AUDIT olsadmintool audit
SA_AUDIT_ADMIN.NOAUDIT olsadmintool noaudit
SA_AUDIT_ADMIN.AUDIT_LABEL None

SA_AUDIT_ADMIN.NOAUDIT_LABEL None

7.13 Oracle Label Security Procedures for Policy Administrators
Several procedures in the SA_POLICY_ADMIN PL/SQL package are allowed to be run only by
policy administrators (enterprise users defined in Oracle Internet Directory).

These procedures are as follows:

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
• SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
• SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
• SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
• SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
• SA_POLICY_ADMIN.GRANT_PROG_PRIVS
• SA_POLICY_ADMIN.POLICY_SUBSCRIBE
• SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE

Chapter 7
Oracle Label Security Procedures for Policy Administrators

7-23



• SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
• SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
• SA_POLICY_ADMIN.SET_PROG_PRIVS
• SA_POLICY_ADMIN.REVOKE_PROG_PRIVS

Chapter 7
Oracle Label Security Procedures for Policy Administrators

7-24



Part III
Oracle Label Security Tutorials

Part III provides tutorials on how to create Oracle Label Security policies.

• Tutorial: Configuring Levels in Oracle Label Security
This tutorial demonstrates how to create Oracle Label Security levels.

• Tutorial: Configuring Compartments in Oracle Label Security
This tutorial demonstrates how to create Oracle Label Security compartments.

• Tutorial: Configuring Groups in Oracle Label Security
This tutorial demonstrates how to create an Oracle Label Security parent group that has
four child groups.



8
Tutorial: Configuring Levels in Oracle Label
Security

This tutorial demonstrates how to create Oracle Label Security levels.

• About This Tutorial
In this tutorial, you will use the HR schema to learn how to use Oracle Label Security
levels.

• Step 1: Create a Role and User Accounts
The role that you create will enable any user who is granted it to have the SELECT
privilege on the HR.EMPLOYEES table. The user accounts are for the two Human
Resources employees, Susan Mavris and Ida Neau.

• Step 2: Create the Oracle Label Security Policy Container
As an Oracle Label Security administrator, you must create and then enable the policy
container.

• Step 3: Create the Two Level Components for the Oracle Label Security Policy
After you create the Oracle Label Security policy container, you are ready to create two
levels to represent two different levels of sensitivity.

• Step 4: Create the Data Labels for the Levels
A data label tags data records for use with the Oracle Label Security policy.

• Step 5: Set User Authorizations for the Oracle Label Security Policy
Setting user authorizations entails associating the user with the policy and the minimum
and maximum levels that are associated with the Oracle Label Security policy.

• Step 6: Apply the Oracle Label Security Policy to the HR Schema
After you apply the policy to the HR schema, you must enable the policy association with
HR.

• Step 7: Add the Policy Labels to the HR.EMPLOYEES Table Data
Both the Oracle Label Security administrator and the HR user will add the policy labels to
the HR.EMPLOYEES table data in the EMPLOYEE_ID column.

• Step 8: Test the Oracle Label Security Policy
To test the policy, each user will try to query the HR.EMPLOYEES table.

• Step 9: Optionally, Remove the Oracle Label Security Policy Components
You can remove the Oracle Label Security policy, HR_ROLE role, and users Ida Neau and
Susan Mavris.

8.1 About This Tutorial
In this tutorial, you will use the HR schema to learn how to use Oracle Label Security levels.

The Human Resources representative, Susan Mavris, has an assistant working for her, Ida
Neau. Susan Mavris must have access to all employee records, including records of
employees who have left the company. Ida Neau must have access only to employees who
are current.

8-1



You will create an Oracle Label Security policy that will use the following levels of
sensitivity to govern access to current and former employees:

• SENSITIVE enables access to current employees only. User Ida Neau will be
assigned this level.

• HIGHLY_SENSITIVE enables access to former employees. User Susan Mavris will
be assigned this level. This level is a higher level than SENSITIVE, which means
that it will also provide access to rows protected by SENSITIVE. In other words,
Susan Mavris will have access to both former and current employee records.

8.2 Step 1: Create a Role and User Accounts
The role that you create will enable any user who is granted it to have the SELECT
privilege on the HR.EMPLOYEES table. The user accounts are for the two Human
Resources employees, Susan Mavris and Ida Neau.

1. Log in to SQL*Plus as a user who has privileges to create roles, grant privileges,
and create user accounts.

For example:

sqlplus sec_admin
Enter password: password

2. Create the role as follows:

CREATE ROLE HR_ROLE;
3. Grant the SELECT privilege on HR.EMPLOYEES to HR_ROLE.

GRANT SELECT ON HR.EMPLOYEES TO HR_ROLE;
4. Create the user accounts for Susan Mavris and Ida Neau, and grant them the

HR_ROLE role.

GRANT CONNECT, HR_ROLE TO SMAVRIS IDENTIFIED BY password;
GRANT CONNECT, HR_ROLE TO INEAU IDENTIFIED BY password;

8.3 Step 2: Create the Oracle Label Security Policy
Container

As an Oracle Label Security administrator, you must create and then enable the policy
container.

1. Connect as a user who can create and manage Oracle Label Security policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the policy.

BEGIN
 SA_SYSDBA.CREATE_POLICY (
  policy_name      => 'HR_OLS_POL',
  column_name      => 'OLS_COL');
END;
/

Chapter 8
Step 1: Create a Role and User Accounts

8-2



In this specification, the default_options parameter is omitted because you can add it
later on in another procedure.

3. Enable the policy.

EXEC SA_SYSDBA.ENABLE_POLICY ('HR_OLS_POL');

8.4 Step 3: Create the Two Level Components for the Oracle
Label Security Policy

After you create the Oracle Label Security policy container, you are ready to create two levels
to represent two different levels of sensitivity.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the levels as follows:

BEGIN
   SA_COMPONENTS.CREATE_LEVEL (
      policy_name => 'HR_OLS_POL',
      level_num   => 3000,
      short_name  => 'HS',
      long_name   => 'HIGHLY_SENSITIVE');

   SA_COMPONENTS.CREATE_LEVEL (
      policy_name => 'HR_OLS_POL',
      level_num   => 2000,
      short_name  => 'S',
      long_name   => 'SENSITIVE');
END;
/

In this specification:

• policy_name associates the levels with the policy container that you just created.

• level_num determines how much access the user can have. Level number 3000
enables a user to have access to this level and any level number below it, in this
case, level number 2000. In other words, a user who is authorized with the
HIGHLY_SENSITIVE level can also access data assigned to the SENSITIVE level.

• short_name is a short-hand name for the long_name of the level, and will be used in
other procedures to refer to the long_name version of the level.

8.5 Step 4: Create the Data Labels for the Levels
A data label tags data records for use with the Oracle Label Security policy.

In this procedure, the data labels will designate the rows that users Susan Mavris and Ida
Neau will see in the HR.EMPLOYEES table. The rows labeled HS will correspond to the HS
(HIGHLY_SENSITIVE) level to be assigned to Susan Mavris, and the rows labeled S will
correspond with the S (SENSITIVE) level to be assigned to Ida Neau.

Chapter 8
Step 3: Create the Two Level Components for the Oracle Label Security Policy

8-3



1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the data labels as follows:

BEGIN
   SA_LABEL_ADMIN.CREATE_LABEL (
      policy_name  => 'HR_OLS_POL',
      label_tag    => 3100,
      label_value  => 'HS',
      data_label   => TRUE);

   SA_LABEL_ADMIN.CREATE_LABEL (
      policy_name  => 'HR_OLS_POL',
      label_tag    => 2100,
      label_value  => 'S',
      data_label   => TRUE);
END;
/

In this specification:

• label_tag is used internally by Oracle Label Security to identify the level.
Unlike levels, it does not govern any sort of hierarchy with the labels.

• data_label is set to TRUE so that the label can be applied to row data.

8.6 Step 5: Set User Authorizations for the Oracle Label
Security Policy

Setting user authorizations entails associating the user with the policy and the
minimum and maximum levels that are associated with the Oracle Label Security
policy.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Authorize the users as follows:

BEGIN
   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'HR_OLS_POL',
      user_name    => 'SMAVRIS', 
      max_level    => 'HS',
      min_level    => 'S');

   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'HR_OLS_POL',
      user_name    => 'INEAU', 
      max_level    => 'S',
      min_level    => 'S');

Chapter 8
Step 5: Set User Authorizations for the Oracle Label Security Policy

8-4



END;
/

In this specification, the def_level (default level) and row_level parameters are omitted
so that their values can default to the max_level parameter setting.

8.7 Step 6: Apply the Oracle Label Security Policy to the HR
Schema

After you apply the policy to the HR schema, you must enable the policy association with HR.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Apply the policy to the HR schema.

BEGIN
  SA_POLICY_ADMIN.APPLY_TABLE_POLICY (
    policy_name    => 'HR_OLS_POL',
    schema_name    => 'HR', 
    table_name     => 'EMPLOYEES',
    table_options  => 'READ_CONTROL');
END;
/

Earlier, when you created the policy with the SA_SYSDBA.CREATE_POLICY procedure, you
did not set the default_options parameter, which defines the policy enforcement
options. Therefore, you must set the policy enforcement here, with the table_options
parameter of SA_POLICY_ADMIN.APPLY_TABLE_POLICY. READ_CONTROL enforces the OLS
policy during the SELECT statement processing that the users will perform later. (It also
applies to UPDATE and DELETE statement processing.)

3. Enable the policy's association with the HR schema.

BEGIN
   SA_POLICY_ADMIN.ENABLE_TABLE_POLICY (
      policy_name => 'HR_OLS_POL',
      schema_name => 'HR',
      table_name  => 'EMPLOYEES');
END;
/

8.8 Step 7: Add the Policy Labels to the HR.EMPLOYEES Table
Data

Both the Oracle Label Security administrator and the HR user will add the policy labels to the
HR.EMPLOYEES table data in the EMPLOYEE_ID column.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

Chapter 8
Step 6: Apply the Oracle Label Security Policy to the HR Schema

8-5



For example:

sqlplus psmith_ols
Enter password: password

2. Grant the READ privilege to the HR_OLS_POL policy for the HR user.

BEGIN
   SA_USER_ADMIN.SET_USER_PRIVS (
      policy_name => 'HR_OLS_POL',
      user_name   => 'HR',
      privileges  => 'READ');
END;
/

3. Connect as the HR user.

connect hr
Enter password: password

4. Perform the following UPDATE statement to apply the HIGHLY_SENSITIVE level to the
employee IDs of users who have left the company.

This UPDATE statement controls the access that Susan Mavris will have to the
HR.EMPLOYEES table because she is authorized for the HIGHLY_SENSITIVE level.

UPDATE employees
SET    ols_col = CHAR_TO_LABEL('HR_OLS_POL','HS')
WHERE  UPPER(employee_id) IN (200, 101, 102, 176, 201, 122, 114);

5. Perform the following UPDATE statement to apply the SENSITIVE level to the
employee IDs of current employees in the company.

This UPDATE statement controls the access that Ida Neau will have to the
HR.EMPLOYEES table because she is authorized for the SENSITIVE level.

UPDATE employees
SET    ols_col = CHAR_TO_LABEL('HR_OLS_POL','S')
WHERE  UPPER(employee_id) NOT IN (200, 101, 102, 176, 201, 122, 114);

This UPDATE statement translates to "Apply the SENSITIVE label to any employee
who is not a former employee."

8.9 Step 8: Test the Oracle Label Security Policy
To test the policy, each user will try to query the HR.EMPLOYEES table.

1. Connect as user Ida Neau.

connect ineau
Enter password: password

2. Set column widths for the table output.

column first_name format a25
column last_name format a25
column ols_label format a10

3. Execute the following query:

SELECT FIRST_NAME, LAST_NAME, EMPLOYEE_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM HR.EMPLOYEES 
ORDER BY OLS_COL;

Chapter 8
Step 8: Test the Oracle Label Security Policy

8-6



The output should be similar to the following:

FIRST_NAME                LAST_NAME                 EMPLOYEE_ID OLS_LABEL
------------------------- ------------------------- ----------- ----------
Steven                    King                              100 S
Alexander                 Hunold                            103 S
Bruce                     Ernst                             104 S
David                     Austin                            105 S
Valli                     Pataballa                         106 S
Diana                     Lorentz                           107 S
Nancy                     Greenberg                         108 S
Daniel                    Faviet                            109 S
...
100 rows selected

Because Ida Neau was assigned the SENSITIVE label, the output in the column
OLS_LABEL is S (for SENSITIVE) only. 100 rows are returned.

Note that the Oracle Label Security restriction applies to any SELECT query the user
makes. For example, if Ida Neau performs a SELECT COUNT(*) FROM HR.EMPLOYEES;
query, then it would return these 100 rows, not the full 107.

4. Connect as user Susan Mavris.

connect smavris
Enter password: password

5. Execute the same query that Ida Neau executed.

SELECT FIRST_NAME, LAST_NAME, EMPLOYEE_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM HR.EMPLOYEES 
ORDER BY OLS_COL;

The output should be similar to the following:

FIRST_NAME                LAST_NAME                 EMPLOYEE_ID OLS_LABEL
------------------------- ------------------------- ----------- ----------
Steven                    King                              100 S
Alexander                 Hunold                            103 S
...
William                   Gietz                             206 S
Neena                     Kochhar                           101 HS
Lex                       De Haan                           102 HS
Den                       Raphaely                          114 HS
Michael                   Hartstein                         201 HS
Jonathon                  Taylor                            176 HS
Jennifer                  Whalen                            200 HS
Payam                     Kaufling                          122 HS

107 rows selected

Because Susan Mavris was assigned the HIGHLY_SENSITIVE label, the output in the
column OLS_LABEL is HS (for HIGHLY_SENSITIVE) and S (for SENSITIVE). 107 rows are
returned.

Chapter 8
Step 8: Test the Oracle Label Security Policy

8-7



8.10 Step 9: Optionally, Remove the Oracle Label Security
Policy Components

You can remove the Oracle Label Security policy, HR_ROLE role, and users Ida Neau
and Susan Mavris.

However, if you want to try the tutorial on how to create Oracle Label Security
compartments, then do not remove these components. The tutorial on compartments
builds on this tutorial on levels.

1. Connect as a user who can create and manage Oracle Label Security policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Drop the Oracle Label Security policy.

This procedure also removes the levels and the OLS_COL column from the
HR.EMPLOYEES table.

BEGIN
  SA_SYSDBA.DROP_POLICY ( 
    policy_name  => 'HR_OLS_POL',
    drop_column  => TRUE);
END;
/

3. Connect as user who has privileges to drop roles and user accounts.

For example:

connect sec_admin
Enter password: password

4. Drop the HR_ROLE role.

DROP ROLE HR_ROLE;
5. Drop the ineau and smavris accounts.

DROP USER INEAU;
DROP USER SMAVRIS;

Related Topics

• Tutorial: Configuring Compartments in Oracle Label Security
This tutorial demonstrates how to create Oracle Label Security compartments.

Chapter 8
Step 9: Optionally, Remove the Oracle Label Security Policy Components

8-8



9
Tutorial: Configuring Compartments in Oracle
Label Security

This tutorial demonstrates how to create Oracle Label Security compartments.

• About This Tutorial
In this tutorial, you will use the HR schema to learn how to use Oracle Label Security
compartments.

• Step 2: Authorize Lily Leagull for the HIGHLY_SENSITIVE Level
After the lleagull account has been created, you can authorize it to use the
HIGHLY_SENSITIVE level.

• Step 3: Create Two Compartments for the Oracle Label Security Policy
All three users (Susan Mavris, Ida Neau, and Lily Leagull) will use compartments to
access their data.

• Step 4: Create the Data Labels for the Compartments
You will create three data labels for the compartments.

• Step 5: Assign the Labels to the Users
Assigning the labels to the users will designate the rows to which these users will have
access.

• Step 6: Add the Policy Labels to the HR.EMPLOYEES Table Data
The HR user will add the policy labels to the HR.EMPLOYEES table data in the EMPLOYEE_ID
column.

• Step 7: Test the Oracle Label Security Policy
To test the policy, each user will try to query the HR.EMPLOYEES table.

• Step 8: Optionally, Remove the Oracle Label Security Policy Components
You can remove the Oracle Label Security policy, HR_ROLE role, and users Ida Neau,
Susan Mavris, and Lily Leagull.

9.1 About This Tutorial
In this tutorial, you will use the HR schema to learn how to use Oracle Label Security
compartments.

This tutorial builds on the previous tutorial, which demonstrates how to create Oracle Label
Security levels to control the access that two users, Susan Mavris and Ida Neau, have to the
records in the HR.EMPLOYEES schema. For this tutorial, a third user, Lily Leagull, is an attorney
with the company's legal department. Two former employees are suing the company, and she
must have access to their records. She must not have access to any other records. The
access to the former users is set by the HIGHLY_SENSITIVE level, which you created in the
previous tutorial. Access to the records of the two suing former employees will be possible
through the use of a compartment within the HIGHLY_SENSITIVE data set, called LEGAL.

9-1



Related Topics

• Tutorial: Configuring Levels in Oracle Label Security
This tutorial demonstrates how to create Oracle Label Security levels.

9.2 Step 2: Authorize Lily Leagull for the
HIGHLY_SENSITIVE Level

After the lleagull account has been created, you can authorize it to use the
HIGHLY_SENSITIVE level.

1. Connect as a user who can create and manage Oracle Label Security policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Authorize lleagull to use the HIGHLY_SENSITIVE level.

The short name for HIGHLY_SENSITIVE is HS.

BEGIN
   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'HR_OLS_POL',
      user_name    => 'LLEAGULL', 
      max_level    => 'HS',
      min_level    => 'S');
END;
/

9.3 Step 3: Create Two Compartments for the Oracle Label
Security Policy

All three users (Susan Mavris, Ida Neau, and Lily Leagull) will use compartments to
access their data.

The two HR employees, Susan Mavris and Ida Neau, will use the HR compartment.
The Legal department employee, Lily Leagull, will use the LEGAL (LEG) compartment.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the compartments as follows:

BEGIN
  SA_COMPONENTS.CREATE_COMPARTMENT (
    policy_name      => 'HR_OLS_POL',
    long_name        => 'HR',
    short_name       => 'HR',
    comp_num         =>  1000);

  SA_COMPONENTS.CREATE_COMPARTMENT (
    policy_name      => 'HR_OLS_POL',

Chapter 9
Step 2: Authorize Lily Leagull for the HIGHLY_SENSITIVE Level

9-2



    long_name        => 'LEGAL',
    short_name       => 'LEG',
    comp_num         =>  2000);
END;
/

In this specification, the comp_num does not denote hierarchy as the level_num setting
does with levels. It is only used to help identify the compartment.

9.4 Step 4: Create the Data Labels for the Compartments
You will create three data labels for the compartments.

In this procedure, the data labels will designate the rows that users Susan Mavris, Ida Neau,
and Lily Leagull will see in the HR.EMPLOYEES table.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the data labels as follows:

BEGIN
   SA_LABEL_ADMIN.CREATE_LABEL (
      policy_name  => 'HR_OLS_POL',
      label_tag    => 1100,
      label_value  => 'S:HR:', -- SENSITIVE level for the HR compartment
      data_label   => TRUE);

   SA_LABEL_ADMIN.CREATE_LABEL (
      policy_name  => 'HR_OLS_POL',
      label_tag    => 1200,
      label_value  => 'HS:HR:', -- HIGHLY_SENSITIVE level for the HR compartment
      data_label   => TRUE);

   SA_LABEL_ADMIN.CREATE_LABEL (
      policy_name  => 'HR_OLS_POL',
      label_tag    => 1300,
      label_value  => 'HS:LEG:', --HIGHLY_SENSITIVE level for the LEG compartment
      data_label   => TRUE);

END;
/

In this specification:

• label_value S:HR will be assigned to the records of all current employees.

• label_value HS:HR will be assigned to the records all current and former employees.

• label_value HS:LEG will be assigned to the records of former employees who are
suing the company.

Chapter 9
Step 4: Create the Data Labels for the Compartments

9-3



9.5 Step 5: Assign the Labels to the Users
Assigning the labels to the users will designate the rows to which these users will have
access.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Assign the labels to the users as follows:

BEGIN
   SA_USER_ADMIN.SET_USER_LABELS (
      policy_name    => 'HR_OLS_POL',
      user_name      => 'ineau', 
      max_read_label => 'S:HR:');

   SA_USER_ADMIN.SET_USER_LABELS (
      policy_name    => 'HR_OLS_POL',
      user_name      => 'smavris', 
      max_read_label => 'HS:HR,LEG:');

   SA_USER_ADMIN.SET_USER_LABELS (
      policy_name    => 'HR_OLS_POL',
      user_name      => 'lleagull', 
      max_read_label => 'HS:LEG:');
END;
/

In this specification:

• User ineau (Ida Neau), who is authorized for the HR compartment, will
continue to have access to all current employees, but not the former or suing
employees.

• User smavris (Susan Mavris), who is authorized for both the HR and LEG
compartments, will continue to have access to all current and former
employees, and former employees who are suing the company.

• User lleagul (Lily Leagul), who is authorized for the LEG compartment, will
have access only to former employees who are suing the company.

9.6 Step 6: Add the Policy Labels to the HR.EMPLOYEES
Table Data

The HR user will add the policy labels to the HR.EMPLOYEES table data in the
EMPLOYEE_ID column.

1. Connect as the HR user.

connect hr
Enter password: password

Chapter 9
Step 5: Assign the Labels to the Users

9-4



2. Perform the following UPDATE statement to apply the SENSITIVE level and the HR
compartment to the employee IDs of users who are still currently employed with the
company.

This UPDATE statement controls the access that Ida Neau will have to the HR.EMPLOYEES
table because she is authorized for the SENSITIVE level and the HR compartment.

UPDATE employees
SET    ols_col = CHAR_TO_LABEL('HR_OLS_POL','S:HR')
WHERE  UPPER(employee_id) NOT IN (200, 101, 102, 176, 201, 122, 114);

3. Perform the following UPDATE statement to apply the HIGHLY_SENSITIVE level and HR
compartment to the employee IDs of current and former employees.

This UPDATE statement controls the access that Susan Mavris will have to the
HR.EMPLOYEES table because she is authorized for the SENSITIVE level and the HR and
LEG compartments.

UPDATE employees
SET    ols_col = CHAR_TO_LABEL('HR_OLS_POL','HS:HR,LEG')
WHERE  UPPER(employee_id) IN (200, 101, 102, 176, 201, 122, 114);

4. Perform the following UPDATE statement to apply the HIGHLY_SENSITIVE level and LEG
compartment to the employee IDs of former employees who are suing the company.

This UPDATE statement controls the access that Lily Leagull will have to the HR.EMPLOYEES
table because she is authorized for the HIGHLY_SENSITIVE level and the LEG
compartment.

UPDATE employees
SET    ols_col = CHAR_TO_LABEL('HR_OLS_POL','HS:LEG')
WHERE  UPPER(employee_id) IN (200, 101);

9.7 Step 7: Test the Oracle Label Security Policy
To test the policy, each user will try to query the HR.EMPLOYEES table.

1. Connect as user Ida Neau.

connect ineau
Enter password: password

2. Set column widths for the table output.

column first_name format a25
column last_name format a25
column ols_label format a10

3. Execute the following query:

SELECT FIRST_NAME, LAST_NAME, EMPLOYEE_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM HR.EMPLOYEES 
ORDER BY OLS_COL;

The output should be similar to the following:

FIRST_NAME                LAST_NAME                 EMPLOYEE_ID OLS_LABEL
------------------------- ------------------------- ----------- ----------
Steven                    King                              100 S:HR
Alexander                 Hunold                            103 S:HR
Bruce                     Ernst                             104 S:HR
David                     Austin                            105 S:HR

Chapter 9
Step 7: Test the Oracle Label Security Policy

9-5



Valli                     Pataballa                         106 S:HR
Diana                     Lorentz                           107 S:HR
Nancy                     Greenberg                         108 S:HR
Daniel                    Faviet                            109 S:HR
John                      Chen                              110 S:HR
Ismael                    Sciarra                           111 S:HR
...

100 rows selected

Because Ida Neau was assigned the SENSITIVE (S) label and the HR compartment,
the output in the column OLS_LABEL is S:HR. 100 rows are returned.

Note that the Oracle Label Security policy restriction applies to any SELECT query
the user makes. For example, if Ida Neau performs a SELECT COUNT(*) FROM
HR.EMPLOYEES; query, then it would return 100 rows, not the full 107.

4. Connect as user Susan Mavris.

connect smavris
Enter password: password

5. Execute the same query that Ida Neau executed.

SELECT FIRST_NAME, LAST_NAME, EMPLOYEE_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM HR.EMPLOYEES 
ORDER BY OLS_COL;

The output should be similar to the following:

FIRST_NAME                LAST_NAME                 EMPLOYEE_ID OLS_LABEL
------------------------- ------------------------- ----------- ----------
Steven                    King                              100 S:HR
Alexander                 Hunold                            103 S:HR
Bruce                     Ernst                             104 S:HR
David                     Austin                            105 S:HR
Valli                     Pataballa                         106 S:HR
...
Jennifer                  Whalen                            200 HS:LEG
Neena                     Kochhar                           101 HS:LEG
Michael                   Hartstein                         201 HS:HR,LEG
Jonathon                  Taylor                            176 HS:HR,LEG
Den                       Raphaely                          114 HS:HR,LEG
Lex                       De Haan                           102 HS:HR,LEG
Payam                     Kaufling                          122 HS:HR,LEG

107 rows selected

Because Susan Mavris was assigned the HIGHLY_SENSITIVE (HS) level with the HR
and LEG compartments, the output in the column OLS_LABEL is as follows:

• S:HR to capture all current employees

• HS:HR, LEG to capture all former employees

• HS:LEG to capture former employees who are suing.

107 rows are returned.

6. Connect as user Lily Leagull.

connect lleagull
Enter password: password

Chapter 9
Step 7: Test the Oracle Label Security Policy

9-6



7. Execute the same query that Susan Mavris executed.

SELECT FIRST_NAME, LAST_NAME, EMPLOYEE_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM HR.EMPLOYEES 
ORDER BY OLS_COL;

The output should be similar to the following:

FIRST_NAME                LAST_NAME                 EMPLOYEE_ID OLS_LABEL
------------------------- ------------------------- ----------- ----------
Jennifer                  Whalen                            200 HS:LEG
Neena                     Kochhar                           101 HS:LEG

107 rows selected

Because Lily Leagull was assigned the HS level with the LEG compartment, only former
users who are suing are returned for her query.

9.8 Step 8: Optionally, Remove the Oracle Label Security Policy
Components

You can remove the Oracle Label Security policy, HR_ROLE role, and users Ida Neau, Susan
Mavris, and Lily Leagull.

1. Connect as a user who can create and manage Oracle Label Security policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Drop the Oracle Label Security policy.

This procedure also removes the levels, compartments, and from the HR.EMPLOYEES
table, the OLS_COL column.

BEGIN
  SA_SYSDBA.DROP_POLICY ( 
    policy_name  => 'HR_OLS_POL',
    drop_column  => TRUE);
END;
/

3. Connect as user who has privileges to drop roles and user accounts.

For example:

connect sec_admin
Enter password: password

4. Drop the HR_ROLE role.

DROP ROLE HR_ROLE;
5. Drop the ineau, smavris, and lleagull accounts.

DROP USER INEAU;
DROP USER SMAVRIS;
DROP USER LLEAGULL;

Chapter 9
Step 8: Optionally, Remove the Oracle Label Security Policy Components

9-7



10
Tutorial: Configuring Groups in Oracle Label
Security

This tutorial demonstrates how to create an Oracle Label Security parent group that has four
child groups.

• About This Tutorial
In this tutorial, you will use the OE schema to learn how to use Oracle Label Security
groups.

• Step 1: Create a Role and User Accounts
The role that you create will enable any user who is granted it to have the SELECT
privilege on the OE.CUSTOMERS table. The user accounts are for four sales representatives
and the

• Step 2: Create the Oracle Label Security Policy Container
As an Oracle Label Security administrator, you must create and then enable the policy
container.

• Step 3: Create and Authorize a Level Component for the Oracle Label Security Policy
After you create the Oracle Label Security policy container, you are ready to create and
authorize a level component.

• Step 4: Create and Authorize Groups for the Oracle Label Security Policy
You will create and authorize one parent group and four child groups for this parent
group. Each user will be authorized for a group.

• Step 5: Apply and Authorize the Policy to the Table
You must apply the OE_OLS_POL policy to the OE.CUSTOMERS table and then authorize the
OE schema user to have read privileges for the policy.

• Step 6: Add the Policy Labels to the OE.CUSTOMERS Table Data
The OE user will add the policy labels to the OE.CUSTOMERS table data in the
ACCOUNT_MGR_ID column.

• Step 7: Test the Oracle Label Security Policy
To test the policy, each user will query the OE.CUSTOMERS table.

• Step 8: Optionally, Remove the Oracle Label Security Policy Components
You can remove the Oracle Label Security policy, OE_CUST role, and the user accounts.

10.1 About This Tutorial
In this tutorial, you will use the OE schema to learn how to use Oracle Label Security groups.

Each sales manager must have access to the records of his or her customers in the
OE.CUSTOMERS table. The company president of advertising, Steven King, who each sales
manager reports to, must have access to all customer records. The customer records are
divided into groups based on the sales managers' territories.

10-1



The Oracle Label Security policy that you create will assign each of the sales
managers a group, and this group will be used to label the appropriate rows in the
OE.CUSTOMERS table. The groups will have a parent group, GLOBAL_SALES, which will be
associated with advertising president Steven King. The child groups of GLOBAL_SALES
are as follows:

• EUROPE, with access by sales manager Alberto Errazuriz

• ASIA, with access by sales manager Gerald Cambrault

• UNITED_STATES_1, with access by sales manager John Russell

• UNITED_STATES_2, with access by sales manager Eleni Zlotkey

By default, the OE schema is not installed. You can download this schema from GitHub,
as explained in Oracle Database Sample Schemas.

Related Topics

• Oracle Database Sample Schemas

10.2 Step 1: Create a Role and User Accounts
The role that you create will enable any user who is granted it to have the SELECT
privilege on the OE.CUSTOMERS table. The user accounts are for four sales
representatives and the

1. Log in to SQL*Plus as a user who has privileges to create roles, grant privileges,
and create user accounts.

For example:

sqlplus sec_admin
Enter password: password

2. Ensure that the OE schema has been downloaded from GitHub and installed.

Oracle Database Sample Schemas explains how to download and install this
schema.

3. Create the role as follows:

CREATE ROLE OE_CUST;
4. Grant the SELECT privilege on OE.CUSTOMERS to OE_CUST.

GRANT SELECT ON OE.CUSTOMERS TO OE_CUST;
5. Create the user accounts and grant them the OE_CUST role.

GRANT CONNECT, OE_CUST TO SKING IDENTIFIED BY password; --For Steven King, 
president
GRANT CONNECT, OE_CUST TO AERRAZURIZ IDENTIFIED BY password; --For Alberto 
Errazuriz, sales manager
GRANT CONNECT, OE_CUST TO GCAMBRAULT IDENTIFIED BY password; --For Gerald 
Cambrault, sales manager
GRANT CONNECT, OE_CUST TO JRUSSELL IDENTIFIED BY password; --For John 
Russell, sales manager
GRANT CONNECT, OE_CUST TO EZLOTKEY IDENTIFIED BY password; --For Eleni 
Zlotkey, sales manager

Related Topics

• Oracle Database Sample Schemas

Chapter 10
Step 1: Create a Role and User Accounts

10-2



10.3 Step 2: Create the Oracle Label Security Policy Container
As an Oracle Label Security administrator, you must create and then enable the policy
container.

1. Connect as a user who can create and manage Oracle Label Security policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the policy.

BEGIN
 SA_SYSDBA.CREATE_POLICY (
  policy_name      => 'OE_OLS_POL',
  column_name      => 'OLS_COL');
END;
/

In this specification, the default_options parameter is omitted because you can add it
later on in another procedure.

3. Enable the policy.

EXEC SA_SYSDBA.ENABLE_POLICY ('OE_OLS_POL');

10.4 Step 3: Create and Authorize a Level Component for the
Oracle Label Security Policy

After you create the Oracle Label Security policy container, you are ready to create and
authorize a level component.

Levels are used for this policy but you do need to have a default level in order for the data
labels that will be created later on to work.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the levels as follows:

BEGIN
   SA_COMPONENTS.CREATE_LEVEL (
      policy_name => 'OE_OLS_POL',
      level_num   => 50,
      short_name  => 'D',
      long_name   => 'DEFAULT');
END;
/

In this specification:

• policy_name associates the levels with the policy container that you just created.

Chapter 10
Step 2: Create the Oracle Label Security Policy Container

10-3



• level_num determines how much access a user can have. Level number 50
enables a user to have access to this level and any level number below it.
However, this tutorial only uses one level.

• short_name is a short-hand name for the long_name of the level, and will be
used in other procedures to refer to the long_name version of the level.

3. Authorize the level for the five users who will access the OE.EMPLOYEES table.

BEGIN
   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'OE_OLS_POL',
      user_name    => 'SKING', 
      max_level    => 'D');

   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'OE_OLS_POL',
      user_name    => 'AERRAZURIZ', 
      max_level    => 'D');

   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'OE_OLS_POL',
      user_name    => 'GCAMBRAULT', 
      max_level    => 'D');

   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'OE_OLS_POL',
      user_name    => 'JRUSSELL', 
      max_level    => 'D');

   SA_USER_ADMIN.SET_LEVELS (
      policy_name  => 'OE_OLS_POL',
      user_name    => 'EZLOTKEY', 
      max_level    => 'D');
END;
/

10.5 Step 4: Create and Authorize Groups for the Oracle
Label Security Policy

You will create and authorize one parent group and four child groups for this parent
group. Each user will be authorized for a group.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Create the GLOBAL_SALES parent group.

BEGIN
  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'OE_OLS_POL',
   group_num       => 2000,
   short_name      => 'GS',
   long_name       => 'GLOBAL_SALES');

Chapter 10
Step 4: Create and Authorize Groups for the Oracle Label Security Policy

10-4



END;
/

In this specification, group_num is used for identification purposes only. It does not control
any hierarchy in this set of groups.

3. Create the child groups.

Any user who is authorized for the parent group, GLOBAL_SALES (GS), will have
authorization for these child groups as well.

BEGIN
  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'OE_OLS_POL',
   group_num       => 2100,
   short_name      => 'EU',
   long_name       => 'EUROPE',
   parent_name     => 'GS');

  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'OE_OLS_POL',
   group_num       => 2200,
   short_name      => 'AS',
   long_name       => 'ASIA',
   parent_name     => 'GS');

  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'OE_OLS_POL',
   group_num       => 2300,
   short_name      => 'US1',
   long_name       => 'UNITED_STATES_1',
   parent_name     => 'GS');

  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'OE_OLS_POL',
   group_num       => 2400,
   short_name      => 'US2',
   long_name       => 'UNITED_STATES_2',
   parent_name     => 'GS');
END;
/

In this specification, the parent_name parameter designates the parent group, GS.

4. Authorize the users that you created earlier for these groups.

BEGIN 
 SA_USER_ADMIN.SET_GROUPS (
  policy_name    => 'OE_OLS_POL',
  user_name      => 'SKING', 
  read_groups    => 'GS');

 SA_USER_ADMIN.SET_GROUPS (
  policy_name    => 'OE_OLS_POL',
  user_name      => 'AERRAZURIZ', 
  read_groups    => 'EU');

 SA_USER_ADMIN.SET_GROUPS (
  policy_name    => 'OE_OLS_POL',
  user_name      => 'GCAMBRAULT', 
  read_groups    => 'AS');

Chapter 10
Step 4: Create and Authorize Groups for the Oracle Label Security Policy

10-5



 SA_USER_ADMIN.SET_GROUPS (
  policy_name    => 'OE_OLS_POL',
  user_name      => 'JRUSSELL', 
  read_groups    => 'US1');

 SA_USER_ADMIN.SET_GROUPS (
  policy_name    => 'OE_OLS_POL',
  user_name      => 'EZLOTKEY', 
  read_groups    => 'US2');
END;
/

In this specification, user SKING is authorized for the parent group, GS, and the
remaining users, who are all sales managers, are authorized for the groups that
represent their sales territories.

After you set the authorization for these groups, and because you have not yet created
data labels, Oracle Label Security automatically creates the data labels for you. In
earlier tutorials, you learned how to manually create the data labels, but for this
tutorial, you get to allow Oracle Label Security to create them for you. You can see the
labels by querying the DBA_SA_LABELS data dictionary view. For example:

SELECT POLICY_NAME, LABEL, LABEL_TAG FROM DBA_SA_LABELS ORDER BY LABEL_TAG;

Output similar to the following appears:

POLICY_NAME     LABEL      LABEL_TAG
------------    ------     -----------
OE_OLS_POL      D          1000000085
OE_OLS_POL      D::GS      1000000086
OE_OLS_POL      D::EU      1000000087
OE_OLS_POL      D::AS      1000000088
OE_OLS_POL      D::US1     1000000089
OE_OLS_POL      D::US2     1000000090

10.6 Step 5: Apply and Authorize the Policy to the Table
You must apply the OE_OLS_POL policy to the OE.CUSTOMERS table and then authorize
the OE schema user to have read privileges for the policy.

1. If necessary, connect as a user who can create and manage Oracle Label Security
policies.

For example:

sqlplus psmith_ols
Enter password: password

2. Apply the OE_OLS_POL policy to the OE.CUSTOMERS table.

BEGIN
  SA_POLICY_ADMIN.APPLY_TABLE_POLICY (
    policy_name    => 'OE_OLS_POL',
    schema_name    => 'OE', 
    table_name     => 'CUSTOMERS',
    table_options  => 'READ_CONTROL');
END;
/

Chapter 10
Step 5: Apply and Authorize the Policy to the Table

10-6



Earlier, when you created the policy with the SA_SYSDBA.CREATE_POLICY procedure, you
did not set the default_options parameter, which defines the policy enforcement
options. Therefore, you must set the policy enforcement here, with the table_options
parameter of SA_POLICY_ADMIN.APPLY_TABLE_POLICY. READ_CONTROL enforces the OLS
policy during the SELECT statement processing that the users will perform later. (It also
applies to UPDATE and DELETE statement processing.)

3. Enable the OE_OLS_POL policy for OE.CUSTOMERS.

BEGIN
   SA_POLICY_ADMIN.ENABLE_TABLE_POLICY (
      policy_name => 'OE_OLS_POL',
      schema_name => 'OE',
      table_name  => 'CUSTOMERS');
END;
/

4. Set user privileges for OE so that OE can apply the labels to the OE.CUSTOMERS data rows.

BEGIN
   SA_USER_ADMIN.SET_USER_PRIVS (
      policy_name => 'OE_OLS_POL',
      user_name   => 'OE',
      privileges  => 'READ');
END;
/

10.7 Step 6: Add the Policy Labels to the OE.CUSTOMERS
Table Data

The OE user will add the policy labels to the OE.CUSTOMERS table data in the ACCOUNT_MGR_ID
column.

1. Connect as the OE user.

connect OE
Enter password: password

2. Perform the following UPDATE statement to apply the GLOBAL_SALES (GS) group to
OE.CUSTOMERS.

UPDATE customers
SET    ols_col = CHAR_TO_LABEL('OE_OLS_POL','D::GS')
WHERE  UPPER(account_mgr_id) IN (145, 147, 148, 149);

In this specification, the user who is authorized for the label identifier D::GS (Steven King)
will have access to the rows that are available to users whose account_mgr_id IDs are
145, 147, 148, and 149.

3. Perform the following UPDATE statements for the sales managers.

For European sales manager Alberto Errazuriz, whose ID is 147:

UPDATE customers
SET    ols_col = CHAR_TO_LABEL('OE_OLS_POL','D::EU')
WHERE  UPPER(account_mgr_id) = 147;

For Asian sales manager Gerald Cambrault, whose ID is 148:

Chapter 10
Step 6: Add the Policy Labels to the OE.CUSTOMERS Table Data

10-7



UPDATE customers
SET    ols_col = CHAR_TO_LABEL('OE_OLS_POL','D::AS')
WHERE  UPPER(account_mgr_id) = 148;

For US sales manager John Russell, whose ID is 145:

UPDATE customers
SET    ols_col = CHAR_TO_LABEL('OE_OLS_POL','D::US1')
WHERE  UPPER(account_mgr_id) = 145;

For US sales manager Elena Zlotkey, whose ID is 149:

UPDATE customers
SET    ols_col = CHAR_TO_LABEL('OE_OLS_POL','D::US2')
WHERE  UPPER(account_mgr_id) = 149;

10.8 Step 7: Test the Oracle Label Security Policy
To test the policy, each user will query the OE.CUSTOMERS table.

1. Connect as user Alberto Errazuriz.

connect aerrazuriz
Enter password: password

2. Set column widths for the table output.

column cust_first_name format a25
column cust_last_name format a25
column ols_label format a10

3. Execute the following query:

SELECT CUST_FIRST_NAME, CUST_LAST_NAME, ACCOUNT_MGR_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM OE.CUSTOMERS 
ORDER BY OLS_COL;

The output should be similar to the following:

CUST_FIRST_NAME           CUST_LAST_NAME            ACCOUNT_MGR_ID OLS_LABEL
------------------------- ------------------------- -------------- ----------
Hal                       Olin                                 147 D::EU
Hannah                    Kanth                                147 D::EU
Hannah                    Field                                147 D::EU
Margret                   Powell                               147 D::EU
Harry Mean                Taylor                               147 D::EU
Margrit                   Garner                               147 D::EU
Maria                     Warden                               147 D::EU
Marilou                   Landis                               147 D::EU
...
76 rows selected.

Because Alberto Errazuriz is assigned the D level with the EU group, the output is
D:EU.

4. Repeat this query for the other sales managers:

• Asian sales manager Gerald Cambrault (gcambrault), whose output in the
OLS_LABEL column should be D:AS, with 58 rows returned.

Chapter 10
Step 7: Test the Oracle Label Security Policy

10-8



• US sales manager John Russell (jrussell), whose output in the OLS_LABEL column
should be D:US1, with 111 rows returned.

• Elena Zlotkey (ezlotkey), whose output in the OLS_LABEL column should be D:US2,
with 74 rows returned.

5. Connect as president Steven King.

connect sking
Enter password: password

6. Execute the query.

SELECT CUST_FIRST_NAME, CUST_LAST_NAME, ACCOUNT_MGR_ID, 
LABEL_TO_CHAR(OLS_COL) OLS_LABEL 
FROM OE.CUSTOMERS 
ORDER BY OLS_COL;

The output should be similar to the following:

CUST_FIRST_NAME           CUST_LAST_NAME            ACCOUNT_MGR_ID OLS_LABEL
------------------------- ------------------------- -------------- ----------
Kelly                     Lange                                147 D::EU
Kenneth                   Redford                              147 D::EU
Rick                      Lyon                                 147 D::EU
Mammutti                  Sutherland                           147 D::EU
Margaret                  Ustinov                              147 D::EU
Kevin                     Cleveland                            147 D::EU
Klaus Maria               Russell                              147 D::EU
Kris                      de Niro                              147 D::EU
Alain                     Barkin                               147 D::EU
Albert                    Dutt                                 147 D::EU
Amanda                    Finney                               147 D::EU

...

Dom                       McQueen                              149 D::US2
Dom                       Hoskins                              149 D::US2
Don                       Siegel                               149 D::US2
Gvtz                      Bradford                             149 D::US2
Holly                     Kurosawa                             149 D::US2
Rob                       MacLaine                             149 D::US2
Don                       Barkin                               149 D::US2
Meg                       Sen                                  149 D::US2
...
319 rows selected.

Because Steven King is assigned the GS parent group, the output in the OLS_LABEL
column is includes all four child groups: D::EU, D::AS, D::US1, and D::US2.

10.9 Step 8: Optionally, Remove the Oracle Label Security
Policy Components

You can remove the Oracle Label Security policy, OE_CUST role, and the user accounts.

1. Connect as a user who can create and manage Oracle Label Security policies.

For example:

Chapter 10
Step 8: Optionally, Remove the Oracle Label Security Policy Components

10-9



sqlplus psmith_ols
Enter password: password

2. Drop the Oracle Label Security policy.

This procedure also removes the levels, groups, and from the OE.CUSTOMERS table,
the OLS_COL column.

BEGIN
  SA_SYSDBA.DROP_POLICY ( 
    policy_name  => 'OE_OLS_POL',
    drop_column  => TRUE);
END;
/

3. Connect as user who has privileges to drop roles and user accounts.

For example:

connect sec_admin
Enter password: password

4. Drop the OE_CUST role.

DROP ROLE OE_CUST;
5. Drop the user accounts.

DROP USER SKING;
DROP USER AERRAZURIZ;
DROP USER GCAMBRAULT;
DROP USER JRUSSELL;
DROP USER EZLOTKEY;

Chapter 10
Step 8: Optionally, Remove the Oracle Label Security Policy Components

10-10



Part IV
Administering an Oracle Label Security
Application

Part IV describes how to administer an Oracle Label Security application.

• Implementing Policy Enforcement Options and Labeling Functions
You can customize the enforcement of Oracle Label Security policies and implement
labeling functions.

• Administering and Using Trusted Stored Program Units
You can use trusted stored program units to enhance system security.

• Auditing Under Oracle Label Security
You can use Oracle Label Security auditing if you have not configured your database to
use unified auditing.

• Using Oracle Label Security with a Distributed Database
You should understand the special considerations for using Oracle Label Security in a
distributed configuration.

• Performing DBA Functions Under Oracle Label Security
Oracle Label Security supports the standard Oracle Database utilities, but certain
restrictions apply, which may require extra steps to get the expected results.

• Releasability Using Inverse Groups
Oracle Label Security can implement the releasability using inverse groups.



11
Implementing Policy Enforcement Options
and Labeling Functions

You can customize the enforcement of Oracle Label Security policies and implement labeling
functions.

• Oracle Label Security Policy Enforcement Options
Oracle Label Security provides a set of policy enforcement options.

• Labeling Functions
Labeling functions can compute and return a label using resources such as context
variables (for example, date or username) and data values.

• Inserting Labeled Data Using Policy Options and Labeling Functions
It is important to understand how enforcement options and labeling functions affect the
insertion of labeled data.

• Updating Labeled Data Using Policy Options and Labeling Functions
Users must be authorized to change rows that are protected by Oracle Label Security.

• Deletion of Labeled Data Using Policy Options and Labeling Functions
You can delete labeled data.

• SQL Predicates with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of data
access rules.

11.1 Oracle Label Security Policy Enforcement Options
Oracle Label Security provides a set of policy enforcement options.

• About Policy Enforcement Options
Of all the enforcement controls that Oracle Label Security permits, the administrator must
choose those that meet the needs of the given application.

• Levels of Policy Enforcement Options
You can set policy, schema, and table levels of policy enforcement.

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

• Relationships of Policy Enforcement Options
Oracle Label Security has a set of policy enforcement options.

• How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

• How the Label Management Enforcement Options Work
The three label enforcement options control the data label written when a row is inserted
or updated.

11-1



• How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or
DELETE operations to only those rows whose labels meet established policies.

• How the Overriding Enforcement Options Work
Whereas ALL_CONTROL applies all of the label management and access control
enforcement options, NO_CONTROL applies none of them.

• Guidelines for Using the Policy Enforcement Options
You can customize policy enforcement for a schema or table through the Oracle
Enterprise Manager.

• Exemptions from Oracle Label Security Policy Enforcement
Oracle Label Security has several exceptions from OLS policy enforcement.

• Data Dictionary Views for Viewing Policy Options on Tables and Schemas
Oracle Label Security provides data dictionary views that describe the policy
enforcement options currently applied to tables and schemas.

11.1.1 About Policy Enforcement Options
Of all the enforcement controls that Oracle Label Security permits, the administrator
must choose those that meet the needs of the given application.

This means identifying levels of data sensitivity to exposure, alteration, or misuse, as
well as identifying which users have the need or the right to access or alter such data.
The policy enforcement options enable administrators to fine-tune users' abilities to
read or write data or labels.

11.1.2 Levels of Policy Enforcement Options
You can set policy, schema, and table levels of policy enforcement.

Table 11-1 lists the levels on which policy enforcement options can operate.

Table 11-1    When Policy Enforcement Options Take Effect

Level at which option set Options set at this level affect user operations ...

Policy lvel ... only when the policy has been applied to the table or schema

Schema lvel ... whenever a user acts in this schema

Table lvel ... whenever a user acts in this table

When you apply a policy to a table or schema, you can specify the enforcement
options that are to constrain use of that table or schema. If you do not specify
enforcement options at that time, then the default enforcement options you specified
when you created that policy are used automatically.

These options customize your policy enforcement to meet your security requirements
as to READ access, WRITE access, and label changes. You can also specify whether the
label column should be displayed or hidden. You can choose to enforce some or all of
the policy options for any protected table by specifying only those you want.

Optionally, you can assign each table a labeling function, which determines the label of
any row inserted or updated in that table. You can also specify, optionally, a SQL

Chapter 11
Oracle Label Security Policy Enforcement Options

11-2



predicate for a table, to control which rows are accessible to users, based on their labels.

When Oracle Label Security policy enforcement options are applied, they control which rows
are accessible to view or to insert, update, or delete.

Related Topics

• Labeling Functions
Labeling functions can compute and return a label using resources such as context
variables (for example, date or username) and data values.

• SQL Predicates with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of data
access rules.

11.1.3 Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management options,
access control options, and overriding options.

Table 11-2 lists the categories of policy enforcement options.

• Label management options ensure that data labels written for inserted or updated rows
do not violate policies set for such labels

• Access control options ensure that only rows whose labels meet established policies are
accessible for SELECT, UPDATE, INSERT, or DELETE operations.

• Overriding options can suspend or apply all other enforcement options.

Table 11-2    Policy Enforcement Options

Type of
Enforcement

Option Description

How the Label
Management
Enforcement
Options Work

LABEL_DEFAULT Uses the session's default row label value unless the
user explicitly specifies a label on INSERT.

- LABEL_UPDATE Applies policy enforcement to UPDATE operations that set
or change the value of a label attached to a row. The
WRITEUP, WRITEDOWN, and WRITEACROSS privileges are
enforced only if the LABEL_UPDATE option is active.

- CHECK_CONTROL Applies READ_CONTROL policy enforcement to INSERT
and UPDATE statements to assure that the new row label
is read-accessible.

How the Access
Control
Enforcement
Options Work

READ_CONTROL Applies policy enforcement to all queries. Only
authorized rows are accessible for SELECT, UPDATE, and
DELETE operations. See INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL.

- WRITE_CONTROL Determines the ability to INSERT, UPDATE, and DELETE
data in a row. If this option is active, it enforces
INSERT_CONTROL, UPDATE_CONTROL, and
DELETE_CONTROL.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-3



Table 11-2    (Cont.) Policy Enforcement Options

Type of
Enforcement

Option Description

- INSERT_CONTROL Applies policy enforcement to INSERT operations,
according to the algorithm for write access described in
the figure in How Oracle Label Security Algorithm for
Read Access Works.

- DELETE_CONTROL Applies policy enforcement to DELETE operations,
according to the algorithm for write access described in
the figure in How Oracle Label Security Algorithm for
Read Access Works.

- UPDATE_CONTROL Applies policy enforcement to UPDATE operations on the
data columns within a row, according to the algorithm for
write access described in the figure in How Oracle Label
Security Algorithm for Read Access Works.

How the Overriding
Enforcement
Options Work

ALL_CONTROL Applies all enforcement options.

- NO_CONTROL Applies no enforcement options. A labeling function or a
SQL predicate can nonetheless be applied.

Remember that even when Oracle Label Security is applicable to a table, some DML
operations may not be covered by the policies being applied. The policy enforcement
options set by the administrator determine both the SQL processing behavior and what
an authorized user can actually see in response to a query on a protected table.
Except where noted, this chapter assumes that ALL_CONTROL is active, meaning that all
enforcement options are in effect. If users attempt to perform an operation for which
they are not authorized, then an error message is raised and the SQL statement fails.

Understanding the relationships among these policy enforcement options, and what
SQL statements they control, is essential to their effective use in designing and
implementing your Oracle Label Security policies.

Related Topics

• Implementation of Inverse Groups with INVERSE_GROUP Enforcement
When creating an Oracle Label Security policy, you can specify whether the policy
can use inverse group functionality to implement releasability.

11.1.4 Relationships of Policy Enforcement Options
Oracle Label Security has a set of policy enforcement options.

Table 11-3 describes the relationships between policy enforcement options.

Table 11-3    What Policy Enforcement Options Control

Specifying This
Option in a Policy

Controls These SQL Operations Using These Criteria and with These Effects

READ_CONTROL SELECT, UPDATE, and DELETE Only authorized rows (*) are accessible.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-4



Table 11-3    (Cont.) What Policy Enforcement Options Control

Specifying This
Option in a Policy

Controls These SQL Operations Using These Criteria and with These Effects

WRITE_CONTROL INSERT, UPDATE, and DELETE (a) Only authorized rows (**) are accessible

(b) Data labels writable unless LABEL_UPDATE is
active.

WRITE_CONTROL
(necessary for
INSERT_CONTROL,
UPDATE_CONTROL,
and
DELETE_CONTROL)

- -

INSERT_CONTROL INSERT -

UPDATE_CONTROL UPDATE -

DELETE_CONTROL DELETE -

CHECK_CONTROL - Applies READ_CONTROL policy enforcement to INSERT
and UPDATE statements to assure that the new row
label is read-accessible.

How the Access
Control
Enforcement
Options Work

- Applies policy enforcement to all queries. Only
authorized rows are accessible for operations.

INSERT_CONTROL INSERT_CONTROL Applies policy enforcement to INSERT operations,
according to the algorithm for write access described
in the figure in How Oracle Label Security Auditing Is
Enabled or Disabled.

DELETE_CONTROL DELETE_CONTROL Applies policy enforcement to DELETE operations,
according to the algorithm for write access described
in the figure in How Oracle Label Security Auditing Is
Enabled or Disabled.

UPDATE_CONTROL UPDATE_CONTROL Applies policy enforcement to UPDATE operations on
the data columns within a row, according to the
algorithm for write access described in the figure in 
How Oracle Label Security Auditing Is Enabled or
Disabled.

How the Overriding
Enforcement
Options Work

ALL_CONTROL Applies all enforcement options.

NO_CONTROL NO_CONTROL Applies no enforcement options. A labeling function or
a SQL predicate can nonetheless be applied.

(*) A row is authorized for READ access if the following three criteria are all met:(user-
minimum-level) < = (data-row-level) < = (session-level)(any-data-group) is a child of (any-
user-group-or-childgroup) (every-data-compartment) is also in (the user's compartments).
Refer to the figure in How Oracle Label Security Algorithm for Read Access Works

(**) A row is authorized for READ access if the following three criteria are all met:(user-
minimum-level) < = (data-row-level) < = (session-level)(any-data-group) is a child of (any-
user-group-or-childgroup) (every-data-compartment) is also in (the user's compartments).
Refer to the figure in How Oracle Label Security Algorithm for Read Access Works.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-5



11.1.5 How the HIDE Policy Column Option Works
You can specify the HIDE policy configuration option when you add an Oracle Label
Security policy column to a table.

This prevents display of the column containing the policy's labels.

Once the policy has been applied, the hidden (or not hidden) status of the column
cannot be changed unless the policy is removed with the DROP_COLUMN parameter set
to TRUE. Then, the policy can be reapplied with a new hidden status.

INSERT statements doing all-column inserts do not require the values for hidden label
columns.

SELECT statements do not automatically return the values of hidden label columns.
Such values must be explicitly retrieved.

A DESCRIBE on a table may or may not display the label column. If the administrator
sets the HIDE option, then the label column will not be displayed. If HIDE is not
specified for a policy, then the label column is displayed in response to a SELECT.

Related Topics

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy
to a table.

• Retrieving All Columns from a Table When the Policy Label Column Is Hidden
If the policy label column is hidden, then it is not automatically returned when you
execute SELECT * on the table.

11.1.6 How the Label Management Enforcement Options Work
The three label enforcement options control the data label written when a row is
inserted or updated.

• About the Label Management Enforcement Options
When a policy specifies the options and is applied to a table or schema, these
options apply to special situations.

• LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated
row uses its original label.

• LABEL_UPDATE: Changing Data Labels
A user updating a row can normally change its label to any label within his
authorized label range.

• CHECK_CONTROL: Checking Data Labels
If an inserted or updated row gets its label from a labeling function, the label could
be outside the user’s authorizations.

11.1.6.1 About the Label Management Enforcement Options
When a policy specifies the options and is applied to a table or schema, these options
apply to special situations.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-6



A user inserting a row can specify any data label within the range of the user's label
authorizations. If the user does not specify a label for the row being written, LABEL_DEFAULT
can do so. Updates can be restricted by LABEL_UPDATE. Inserts or updates that use a labeling
function need CHECK_CONTROL to prevent assigning a data label outside the user's
authorizations. Such a label would prevent the user from accessing the row just written, and
could enable the user to make data available inappropriately.

Any labeling function in force on a table overrides these options. Such a function can be
named in the call that applies the policy to the table. If the administrator named such a
function when applying a policy, but then disables or removes that policy, then that function is
no longer applied.

Related Topics

• SA_SYSDBA.DISABLE_POLICY
The SA_SYSDBA.DISABLE_POLICY procedure turns off enforcement of a policy, without
removing it from the database.

11.1.6.2 LABEL_DEFAULT: Using the Session's Default Row Label
A user can update a row without specifying a label value, because the updated row uses its
original label.

However, to insert a new row, the user must supply a valid label unless a labeling function is
in force or LABEL_DEFAULT applies for the table. LABEL_DEFAULT causes the user's session
default row label to be used as the new row label.

If neither LABEL_DEFAULT nor a labeling function is in force and the user attempts to INSERT a
row, then an error occurs.

Note that any labeling function in force on a table overrides the LABEL_DEFAULT option.

11.1.6.3 LABEL_UPDATE: Changing Data Labels
A user updating a row can normally change its label to any label within his authorized label
range.

However, if LABEL_UPDATE applies, then to modify a label, the user must have one or more of
these privileges: WRITEUP, WRITEDOWN, and WRITEACROSS.

The LABEL_UPDATE option uses an Oracle after-row trigger which is called only on an update
operation affecting the label. Note that any labeling function in force on a table overrides the
LABEL_UPDATE option.

Related Topics

• Special Row Label Privileges
Once the label on a row has been set, Oracle Label Security privileges are required to
modify the label.

11.1.6.4 CHECK_CONTROL: Checking Data Labels
If an inserted or updated row gets its label from a labeling function, the label could be outside
the user’s authorizations.

This prevents this user from being able to read or update the row. To prevent this problem,
use the CHECK_CONTROL setting to allow READ_CONTROL to apply to the new label. This ensures

Chapter 11
Oracle Label Security Policy Enforcement Options

11-7



that this user will be authorized to read the inserted or updated row after the operation.
If not, then the insert or update operation is canceled and has no effect.

In other words, if CHECK_CONTROL is included as an option in a policy being enforced on
a row, then the user modifying that row must still be able to access it after the
operation. CHECK_CONTROL prevents a user or a labeling function from modifying a row's
label to include a level, group, or compartment that the modifying user would be
prevented from accessing.

Note that CHECK_CONTROL overrides any labeling function in force on a table.

11.1.7 How the Access Control Enforcement Options Work
Access control options limit the rows accessible for SELECT, UPDATE, INSERT, or DELETE
operations to only those rows whose labels meet established policies.

• READ_CONTROL: Reading Data
READ_CONTROL limits the set of records accessible to a session for SELECT, UPDATE
and DELETE operations.

• WRITE_CONTROL: Writing Data
When an Oracle Label Security policy specifying the WRITE_CONTROL option is
applied to a table, triggers are generated and the algorithm is enforced.

• INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL
The INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL options control policy
enforcement during the corresponding operations on the data columns in a row.

11.1.7.1 READ_CONTROL: Reading Data
READ_CONTROL limits the set of records accessible to a session for SELECT, UPDATE and
DELETE operations.

If READ_CONTROL is not active, then even rows in the table protected by the policy are
accessible to all users.

READ_CONTROL uses Oracle virtual private database (VPD) technology to enforce the
read access mediation algorithm illustrated in Figure 3-6.

11.1.7.2 WRITE_CONTROL: Writing Data
When an Oracle Label Security policy specifying the WRITE_CONTROL option is applied
to a table, triggers are generated and the algorithm is enforced.

WRITE_CONTROL uses Oracle after-row triggers to enforce the write access mediation
algorithm illustrated in Figure 3-7.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-8



Note:

The protection implementation for WRITE_CONTROL is the same for all write
operations, but you need not apply all write options across the board. You can apply
WRITE_CONTROL selectively for INSERT, UPDATE, and DELETE operations by using the
corresponding policy enforcement option (INSERT_CONTROL, UPDATE_CONTROL, and
DELETE_CONTROL) instead of WRITE_CONTROL.

If WRITE_CONTROL is on but LABEL_UPDATE is not specified, then the user can change both data
and labels. If you want to control updating the row labels, then specify the LABEL_UPDATE
option in addition to WRITE_CONTROL when creating your policies.

11.1.7.3 INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL
The INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL options control policy
enforcement during the corresponding operations on the data columns in a row.

These options apply according to the algorithm for write access described in Figure 3-7.

Specifying WRITE_CONTROL limits all INSERT, UPDATE, and DELETE operations. However,

• Specifying INSERT_CONTROL limits insertions but not updates or deletes.

• Specifying UPDATE_CONTROL limits updates but not insertions or deletes.

• Specifying DELETE_CONTROL limits deletes but not insertions or updates.

Related Topics

• Inserting Labeled Data Using Policy Options and Labeling Functions
It is important to understand how enforcement options and labeling functions affect the
insertion of labeled data.

• Updating Labeled Data Using Policy Options and Labeling Functions
Users must be authorized to change rows that are protected by Oracle Label Security.

• Deletion of Labeled Data Using Policy Options and Labeling Functions
You can delete labeled data.

11.1.8 How the Overriding Enforcement Options Work
Whereas ALL_CONTROL applies all of the label management and access control enforcement
options, NO_CONTROL applies none of them.

In either case, labeling functions and SQL predicates can be applied. Note that the
ALL_CONTROL option can be used only on the command line. If you apply a policy with
NO_CONTROL specified, then a policy label column is added to the table, but the label values
are NULL. Because no access controls are operating on the table, you can proceed to enter
labels as desired. You can then set the policy enforcement options as you want. NO_CONTROL
can be a useful option if you have a labeling function in force to label the data correctly, but
want to let all users access all the data.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-9



11.1.9 Guidelines for Using the Policy Enforcement Options
You can customize policy enforcement for a schema or table through the Oracle
Enterprise Manager.

This functionality is described in Creating an Oracle Label Security Policy or you can
use the SA_POLICY_ADMIN package as described in SA_POLICY_ADMIN Policy
Administration PL/SQL Package.

This section documents the supported keywords.

Note that when you create a policy, you can specify a string of default options to be
used whenever the policy is applied without schema or table options being specified.

If a policy is first applied to a table, and then also applied to the schema containing
that table, then the options on the table are not affected by the schema policy. The
options of the policy originally applied to the table remain in force.

In general, administrators use the LABEL_DEFAULT policy option, causing data written
by a user to be labeled with that user's row label. Alternatively, a labeling function can
be used to label the data. If neither of these two choices is used, then a label must be
specified in every INSERT statement. (Updates retain the row's original label.)

The following table suggests that certain combinations of policy enforcement options
are useful when implementing an Oracle Label Security policy. As the table indicates,
you might typically enforce READ_CONTROL and WRITE_CONTROL, choosing from among
several possible combinations for setting the data label on writes.

Table 11-4    Suggested Policy Enforcement Option Combinations

Options Access Enforcement

READ_CONTROL, WRITE_CONTROL,
LABEL_DEFAULT

Read and write access based on session
label. Default label provided; users can
insert/update both data and labels.

READ_CONTROL, WRITE_CONTROL, Labeling
Function

Read and write access based on session
label. Users can set/change only row data;
all row labels are set explicitly by the labeling
function.

Add CHECK_CONTROL to restrict new labels
(on insert or update) to visible range of
labels.

READ_CONTROL, WRITE_CONTROL,
LABEL_UPDATE

Read and write access based on session
label. Users cannot change labels without
privileges.

Add CHECK_CONTROL to restrict new labels
(on insert or update) to visible range.

Related Topics

• Authorized Levels
The administrator explicitly sets the level authorization for an Oracle Label
Security policy.

Chapter 11
Oracle Label Security Policy Enforcement Options

11-10



11.1.10 Exemptions from Oracle Label Security Policy Enforcement
Oracle Label Security has several exceptions from OLS policy enforcement.

These exemptions are as follows:

• Oracle Label Security is not enforced during DIRECT path export.

• By design, Oracle Label Security policies cannot be applied to objects in schema SYS. As
a consequence, the SYS user, and users making a DBA-privileged connection to the
database (such as CONNECT AS SYSDBA) do not have Oracle Label Security policies
applied to their actions. DBAs need to be able to administer the database. It would make
no sense, for example, to export part of a table due to an Oracle Label Security policy
being applied. The database user SYS is thus always exempt from Oracle Label Security
enforcement, regardless of the export mode, application, or utility used to extract data
from the database.

• Similarly, database users granted the EXEMPT ACCESS POLICY privilege, either directly or
through a database role, are exempted from some Oracle Label Security policy
enforcement controls such as READ_CONTROL and CHECK_CONTROL, regardless of the export
mode, application or utility used to access the database or update its data. The following
policy enforcement options remain in effect even when EXEMPT ACCESS POLICY is granted:

– INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL, WRITE_CONTROL, LABEL_UPDATE,
and LABEL_DEFAULT.

– If the Oracle Label Security policy specifies the ALL_CONTROL option, then all
enforcement controls are applied except READ_CONTROL and CHECK_CONTROL.

EXEMPT ACCESS POLICY is a very powerful privilege and should be carefully managed.

Note that this privilege does not affect the enforcement of standard Oracle Database
object privileges such as SELECT, INSERT, UPDATE, and DELETE. These privileges are
enforced even if a user has been granted the EXEMPT ACCESS POLICY privilege.

Related Topics

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

11.1.11 Data Dictionary Views for Viewing Policy Options on Tables and
Schemas

Oracle Label Security provides data dictionary views that describe the policy enforcement
options currently applied to tables and schemas.

• DBA_SA_TABLE_POLICIES
• DBA_SA_SCHEMA_POLICIES

11.2 Labeling Functions
Labeling functions can compute and return a label using resources such as context variables
(for example, date or username) and data values.

Chapter 11
Labeling Functions

11-11



• Labeling Data Rows under Oracle Label Security
There are three ways to label data that is being inserted or updated.

• How Labeling Functions in Oracle Label Security Policies Works
Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context.

• Creating a Labeling Function for a Policy
You can use the CREATE OR REPLACE FUNCTION SQL statement to create a labeling
function.

• Specifying a Labeling Function in a Policy
You can use the SA_POLICY_ADMIN package to specify a labeling function.

11.2.1 Labeling Data Rows under Oracle Label Security
There are three ways to label data that is being inserted or updated.

• You can explicitly specify a label in every INSERT or UPDATE to the table.

• You can set the LABEL_DEFAULT option, which causes the session's row label to be
used if an explicit row label is not included in the INSERT or UPDATE statement.

• You can create a labeling function, automatically calls on every INSERT or UPDATE
statement and independently of any user's authorization.

The recommended approach is to write a labeling function to implement your rules for
labeling data. If you specify a labeling function, then Oracle Label Security embeds a
call to that function in INSERT and UPDATE triggers to compute a label.

For example, you could create a labeling function named my_label to use the contents
of COL1 and COL2 of the new row to compute and return the appropriate label for the
row. Then, you could insert, into your INSERT or UPDATE statements, the following
reference:

my_label(:new.col1,:new.col2)

If you do not specify a labeling function, then specify the LABEL_DEFAULT option.
Otherwise, you must explicitly specify a label on every INSERT or UPDATE statement.

11.2.2 How Labeling Functions in Oracle Label Security Policies
Works

Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context.

For example, you can use as a labeling consideration the IP address to which the user
is attached. There are many opportunities to use SYS_CONTEXT in this way.

Note:

If the SQL statement is invalid, then an error will occur when you apply the
labeling function to the table or policy. You should thoroughly test a labeling
function before using it with tables.

Chapter 11
Labeling Functions

11-12



Labeling functions override the LABEL_DEFAULT and LABEL_UPDATE options.

A labeling function is called in the context of a before-row trigger. This enables you to pass in
the old and new values of the data record, as well as the old and new labels.

You can construct a labeling function to permit an explicit label to be passed in by the user.

All labeling functions must have return types of the LBACSYS.LBAC_LABEL data type. The
TO_LBAC_DATA_LABEL function can be used to convert a label in character string format to a
data type of LBACSYS.LBAC_LABEL. Note that LBACSYS must have the EXECUTE privilege on your
labeling function. The owner of the labeling function must have the EXECUTE privilege on the
TO_LBAC_DATA_LABEL function, with the GRANT option.

Note:

LBACSYS is a unique schema providing opaque types for Oracle Label Security.

Related Topics

• Performing DBA Functions Under Oracle Label Security
Oracle Label Security supports the standard Oracle Database utilities, but certain
restrictions apply, which may require extra steps to get the expected results.

11.2.3 Creating a Labeling Function for a Policy
You can use the CREATE OR REPLACE FUNCTION SQL statement to create a labeling function.

• To use the CREATE OR REPLACE FUNCTION statement to create a labeling function for a
policy, set the return value to LBACSYS.LBAC_LABEL.

For example:

CREATE OR REPLACE FUNCTION sa_demo.gen_emp_label
           (Job varchar2,
            Deptno number,
            Total_sal number)
       Return LBACSYS.LBAC_LABEL
     as
       i_label varchar2(80);
     Begin
       /************* Determine Class Level *************/
       if total_sal > 2000 then
       i_label := 'L3:';
       elsif total_sal > 1000 then
       i_label := 'L2:';
       else
       i_label := 'L1:';
       end if;
     
       /************* Determine Compartment *************/
       IF Job in ('MANAGER','PRESIDENT') then
       i_label := i_label||'M:';
       else
       i_label := i_label||'E:';
       end if;
       /************* Determine Groups *************/

Chapter 11
Labeling Functions

11-13



       i_label := i_label||'D'||to_char(deptno);
       return TO_LBAC_DATA_LABEL('human_resources',i_label);
     End;
     /

Note:

When Oracle Label Security is configured to work directly with Oracle
Internet Directory, dynamic label generation is disabled, because labels are
managed centrally in Oracle Internet Directory, using olsadmintool
commands. So, if the label function generates a data label using a string
value that is not already established in Oracle Internet Directory, then an
error message results.

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet
Directory.

11.2.4 Specifying a Labeling Function in a Policy
You can use the SA_POLICY_ADMIN package to specify a labeling function.

• Use SA_POLICY_ADMIN.REMOVE_TABLE_POLICY and
SA_POLICY_ADMIN.APPLY_TABLE_POLICY to specify the labeling function.

For example:

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY('human_resources','sa_demo','emp');
  

SA_POLICY_ADMIN.APPLY_TABLE_POLICY(
  POLICY_NAME     => 'human_resources',
  SCHEMA_NAME     => 'sa_demo',
  TABLE_NAME      => 'emp',
  TABLE_OPTIONS   => 'READ_CONTROL,WRITE_CONTROL,CHECK_CONTROL',
  LABEL_FUNCTION  => 'sa_demo.gen_emp_label(:new.job,:new.deptno,:new.sal)',
  PREDICATE       => NULL);

11.3 Inserting Labeled Data Using Policy Options and
Labeling Functions

It is important to understand how enforcement options and labeling functions affect the
insertion of labeled data.

• Outcome of Insert or Updates Operations on Data Based on Authorizations
When you attempt to insert or update data based on your authorizations, the
outcome depends upon what policy enforcement controls are active.

• Label Insertions When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

Chapter 11
Inserting Labeled Data Using Policy Options and Labeling Functions

11-14



• Child Row Insertions in Tables with Declarative Referential Integrity
If declarative referential integrity protects a parent table, then the parent row must be
visible before a child row can be inserted.

11.3.1 Outcome of Insert or Updates Operations on Data Based on
Authorizations

When you attempt to insert or update data based on your authorizations, the outcome
depends upon what policy enforcement controls are active.

• If INSERT_CONTROL is active, then rows you insert can only have labels within your write
authorizations. If you attempt to update data that you can read, but for which you do not
have write authorization, an error is raised. For example, if you can read compartments A
and B, but you can only write to compartment A, then if you attempt to insert data with
compartment B, then the statement will fail.

• If INSERT_CONTROL is not active, then you can use any valid label on rows you insert.

• If the CHECK_CONTROL option is active, then rows you insert can only have labels you are
authorized to read, even if the labels are generated by a labeling function.

11.3.2 Label Insertions When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

If the administrator has set up an automatic labeling function, then no data label a user enters
will have effect (unless the labeling function itself makes use of the user's proposed label).
New row labels are always determined by an active labeling function, if present.

Note that a labeling function can set the label of a row being inserted to a value outside the
range that the user writing that row can see. If such a function is in use, then the user can
potentially insert a row but not be authorized to see that row. You can prevent this situation by
specifying the CHECK_CONTROL option in the policy. If this option is active, then the new data
label is checked against the user's read authorization, and if the user cannot read it, then the
insert operation is not performed.

11.3.3 Child Row Insertions in Tables with Declarative Referential Integrity
If declarative referential integrity protects a parent table, then the parent row must be visible
before a child row can be inserted.

The user must be able to see the parent row for the insert operation to succeed, that is, the
user must have read access to the parent row.

If READ_CONTROL is active on the parent table, then the user's read authorization must be
sufficient to authorize a SELECT operation on the parent row. For example, a user who cannot
read department 20 cannot insert child rows for department 20. Note that all records will be
visible if the user has FULL or READ privileges on the table or schema.

11.4 Updating Labeled Data Using Policy Options and Labeling
Functions

Users must be authorized to change rows that are protected by Oracle Label Security.

Chapter 11
Updating Labeled Data Using Policy Options and Labeling Functions

11-15



• Updating Labels Using CHAR_TO_LABEL
To change a row label from SENSITIVE to CONFIDENTIAL, you can change the label
by using the CHAR_TO_LABEL function.

• Evaluation of Enforcement Control Options and UPDATE
When you attempt to update data based on your authorizations, the outcome
depends on which enforcement controls are active.

• Updates to Labels When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

• Updates to Child Rows in Tables with Declarative Referential Integrity Enabled
If a child row is in a table with a referential integrity constraint, then the parent row
must be visible for the update to succeed.

11.4.1 Updating Labels Using CHAR_TO_LABEL
To change a row label from SENSITIVE to CONFIDENTIAL, you can change the label by
using the CHAR_TO_LABEL function.

• To change a row label, use the UPDATE SQL statement.

For example:

UPDATE emp 
SET hr_label = char_to_label ('HR', 'CONFIDENTIAL')
WHERE ename = 'ESTANTON';

11.4.2 Evaluation of Enforcement Control Options and UPDATE
When you attempt to update data based on your authorizations, the outcome depends
on which enforcement controls are active.

• If UPDATE_CONTROL is active, then you can only update rows whose labels fall within
your write authorizations. If you attempt to update data that you can read, but for
which you do not have write authorization, then an error is raised. Assume, for
example, that you can read compartments A and B, but you can only write to
compartment A. In this case, if you attempt to update data with compartment B,
then the statement will fail.

• If UPDATE_CONTROL is not active, then you can update all rows to which you have
read access.

• If LABEL_UPDATE is active, then you must have the appropriate privilege (WRITEUP,
WRITEDOWN, or WRITEACROSS) to change a label by raising or lowering its sensitivity
level, or altering its groups or compartments.

• If LABEL_UPDATE is not active but UPDATE_CONTROL is active, then you can update a
label to any new label value within your write authorization.

• If CHECK_CONTROL is active, then you can only write labels you are authorized to
read.

The following figure illustrates the label evaluation process for LABEL_UPDATE.

Chapter 11
Updating Labeled Data Using Policy Options and Labeling Functions

11-16



Figure 11-1    Label Evaluation Process for LABEL_UPDATE

No 

Access

 Access

WRITE

DOWN


Privilege?

New level

< old level?

New level

> old level?

WRITE

UP


Privilege?

New

level


=< Max

=> Min

WRITE

ACROSS

Privilege?

N

Y

N N

N

Y


Y

Y

New groups

not equal to

old groups?

New comp

not equal to

old comp?

Y

NN

Y

N N

YY

11.4.3 Updates to Labels When a Labeling Function Is Specified
A labeling function takes precedence over labels entered by the user.

If the administrator has set up an automatic labeling function, then no label a user enters will
have effect (unless the labeling function itself makes use of the user's proposed label). New
row labels are always determined by an active labeling function, if present.

Note that the security administrator can establish a labeling function that sets the label of a
row being updated to a value outside the range that you can see. If this is the case, then you
can update a row, but not be authorized to see the row. If the CHECK_CONTROL option is on,
then you will not be able to perform such an update. The CHECK_CONTROL option verifies your
read authorization on the new label.

11.4.4 Updates to Child Rows in Tables with Declarative Referential
Integrity Enabled

If a child row is in a table with a referential integrity constraint, then the parent row must be
visible for the update to succeed.

That is, this user must be able to see the parent row.

If the parent table has READ_CONTROL on, then the user's read authorization must be sufficient
to authorize a SELECT on the parent row.

For example, a user who cannot read department 20 in a parent table cannot update an
employee's department to department 20 in a child table. (If the user has FULL or READ
privilege, then all records will be visible.)

Chapter 11
Updating Labeled Data Using Policy Options and Labeling Functions

11-17



See Also:

Oracle Database Development Guide

11.5 Deletion of Labeled Data Using Policy Options and
Labeling Functions

You can delete labeled data.

Note the following:

• If DELETE_CONTROL is active, then you can delete only rows within your write
authorization.

• If DELETE_CONTROL is not active, then you can delete only rows that you can read.

• With DELETE_CONTROL active, and declarative referential integrity defined with
cascading deletes, you must have write authorization on all the rows to be deleted,
or the statement will fail.

You cannot delete a parent row if there are any child rows attached to it, regardless of
your write authorization. To delete such a parent row, you must first delete each of the
child rows. If DELETE_CONTROL is active on any of the child rows, then you must have
write authorization to delete the child rows.

Consider, for example, a situation in which the user is UNCLASSIFIED and there are
three rows as follows:

Row Table Sensitivity

Parent row: DEPT UNCLASSIFIED
Child row: EMP UNCLASSIFIED
Child row: EMP UNCLASSIFIED

In this case, the UNCLASSIFIED user cannot delete the parent row.

DELETE_CONTROL has no effect when DELETERESTRICT is active. DELETERESTRICT is
always enforced. In some cases (depending on the user's authorizations and the
data's labels) it may look as though a row has no child rows, when it actually does
have children but the user cannot see them. Even if a user cannot see child rows, he
still cannot delete the parent row.

11.6 SQL Predicates with an Oracle Label Security Policy
You can use a SQL predicate to provide extensibility for selective enforcement of data
access rules.

• Modifications to an Oracle Label Security Policy with a SQL Predicate
A SQL predicate is a condition, optionally preceded by AND or OR.

• How Multiple SQL Predicates Affect Oracle Label Security Policies
Predicates can be appended to other predicates.

Chapter 11
Deletion of Labeled Data Using Policy Options and Labeling Functions

11-18



11.6.1 Modifications to an Oracle Label Security Policy with a SQL
Predicate

A SQL predicate is a condition, optionally preceded by AND or OR.

The SQL predicate can be appended for READ_CONTROL access mediation. The following
predicate, for example, adds an application-specific test based on COL1 to determine if the
session has access to the row.

AND my_function(col1)=1

The combined result of the policy and the user-specified predicate limits the rows that a user
can read. So, this combination affects the labels and data that CHECK_CONTROL will permit a
user to change. An OR clause, for example, increases the number of rows a user can read.

A SQL predicate can be useful if you want to avoid performing label-based filtering. In certain
situations, a SQL predicate can easily implement row-level security on tables. Used instead
of READ_CONTROL, a SQL predicate will filter the data for SELECT, UPDATE, and DELETE
operations.

Similarly, in a typical, Web-enabled human resources application, a user might have to be a
manager to access rows in the employee table. In such cases, the user's user label would
have to dominate the label on the employee's row. A SQL predicate like the following could
be added, so that an employee could bypass label-based filtering if he wanted to view his
own record in the employee table. (An OR is used so that either the label policy will apply, or
this statement will apply.)

OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = employee_name

This predicate enables you to have additional access controls so that each employee can
access his or her own record.

You can use such a predicate in conjunction with READ_CONTROLs or as a standalone
predicate even if READ_CONTROL is not implemented.

Note:

Verify that the predicate accomplishes your security goals before you implement it
in an application.

If a syntax error occurs in a predicate under Oracle Label Security, then an error will
not arise when you try to apply the policy to a table. Rather, a predicate error
message will arise when you first attempt to reference the table.

11.6.2 How Multiple SQL Predicates Affect Oracle Label Security Policies
Predicates can be appended to other predicates.

A predicate applied to a table with an Oracle Label Security policy is appended to other
predicates that are applied by other Oracle Label Security policies, or by Oracle Database
fine-grained access control or Oracle Virtual Private Database policies. The predicates are
ANDed together.

Chapter 11
SQL Predicates with an Oracle Label Security Policy

11-19



Consider the following predicates applied to the EMP table in the SCOTT schema:

• A predicate generated by an Oracle VPD policy, such as deptno=10
• A label-based predicate generated by an Oracle Label Security policy, such as

label=100, with a user-specified predicate such as

OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename

Correct: These predicates would be ANDed together as follows:

WHERE deptno=10 AND (label=100 OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = 
ename)

Incorrect: The predicates would not be combined in the following way:

WHERE deptno=10 AND label=100 OR SYS_CONTEXT ('USERENV', 'SESSION_USER') = ename

Chapter 11
SQL Predicates with an Oracle Label Security Policy

11-20



12
Administering and Using Trusted Stored
Program Units

You can use trusted stored program units to enhance system security.

• About Trusted Stored Program Units
Oracle Database stored procedures, functions, and packages are sets of PL/SQL
statements stored in a database in compiled form.

• How a Trusted Stored Program Unit Runs
A trusted stored program unit runs using its own privileges, and the caller's labels.

• Example: Trusted Stored Program Unit
A trusted stored program unit with the READ privilege can read all unprotected data and all
data protected by this policy.

• Creating and Compiling Trusted Stored Program Units
You can create and compile trusted stored program units for use in Oracle Label Security.

• How Setting and Returning Label Information Works
The SA_UTL package has functions to return information about current values of session
security attributes using numeric label values.

12.1 About Trusted Stored Program Units
Oracle Database stored procedures, functions, and packages are sets of PL/SQL statements
stored in a database in compiled form.

The single difference between functions and procedures is that functions return a value and
procedures do not. Trusted stored program units are like any other stored program units in
Oracle Database: the underlying logic is the same.

A package is a set of procedures and functions, together with the cursors and variables they
use, stored as a unit. There are two parts to a package, the package specification and the
package body. The package specification declares the external definition of the public
procedures, functions, and variables that the package contains. The package body contains
the actual text of the procedures and functions, as well as any private procedures and
variables.

A trusted stored program unit is a stored procedure, function, or package that has been
granted one or more Oracle Label Security privileges. Trusted stored program units are
typically used to let users perform privileged operations in a controlled manner, or update
data at several labels. This is the optimal approach to permit users to access data beyond
their authorization.

Trusted stored program units provide fine-grained control over the use of privileges. Although
you can potentially grant privileges to many users, the granting of privileges should be done
with great discretion because it might violate the security policy established for your
application. Rather than assigning privileges to users, you can identify any application
operations requiring privileges, and implement them as trusted program units. When you

12-1



grant privileges to these stored program units, you effectively restrict the Oracle Label
Security privileges required by users. This approach employs the principle of least
privilege.

For example, if a user with the label CONFIDENTIAL needs to insert data into SENSITIVE
rows, then you can grant the WRITEUP privilege to a trusted stored program to which
the user has access. In this way, the user can perform the task by means of the trusted
stored program, while staying at the CONFIDENTIAL level.

The trusted program unit performs all the actions on behalf of the user. You can thus
effectively encapsulate the security policy into a module that can be verified to make
sure that it is valid.

12.2 How a Trusted Stored Program Unit Runs
A trusted stored program unit runs using its own privileges, and the caller's labels.

In this way, the trusted stored program unit can perform privileged operations on the
set of rows constrained by the user's labels.

Oracle Database system and object privileges are intended to be bundled into roles.
Users are then granted roles as necessary. By contrast, Oracle Label Security
privileges can only be assigned to users or to stored program units. These trusted
stored program units provide a more manageable mechanism than roles to control the
use of Oracle Label Security privileges.

12.3 Example: Trusted Stored Program Unit
A trusted stored program unit with the READ privilege can read all unprotected data and
all data protected by this policy.

Consider, for example, a user who is responsible for creating purchasing forecast
reports. The user must perform a summation operation on the amount of all
purchases. Regardless of whether or not user's own labels authorize access to the
individual purchase orders. The syntax for creating the summation procedure in this
example is as follows:

CREATE FUNCTION sum_purchases RETURN NUMBER IS
  psum NUMBER;
BEGIN
  SELECT SUM(amount) INTO psum
  FROM purchase_orders;
RETURN psum;
END sum_purchases;

In this way, the program unit can gather information the end user is not able to gather,
and can make it available by means of a summation.

Note that to run SUM_PURCHASES, the user would need to be granted the standard
Oracle Database EXECUTE object privilege upon this procedure.

Related Topics

• Access Controls and Privileges
Oracle provides access controls and privileges that determine the type of access
users can have to labeled rows.

Chapter 12
How a Trusted Stored Program Unit Runs

12-2



12.4 Creating and Compiling Trusted Stored Program Units
You can create and compile trusted stored program units for use in Oracle Label Security.

• Creation of Trusted Stored Program Units
You can create a trusted stored program unit in the same way that you create a standard
procedure, function, or package.

• Privileges for Trusted Stored Program Units
An Oracle Label Security administrator can verify the correctness of a stored program
unit code before granting the privileges to it.

• Recompiling of Trusted Stored Program Units
Recompiling a trusted stored program unit, either automatically or manually (using ALTER
PROCEDURE), does not affect its Oracle Label Security privileges.

• Re-creation of Trusted Stored Program Units
Oracle Label Security privileges are revoked if you perform a CREATE or REPLACE
operation on a trusted stored program unit.

• Execution of Trusted Stored Program Units
Under Oracle Label Security all the standard Oracle Database controls on procedure call
(regarding access to tables and schemas) are still in force.

12.4.1 Creation of Trusted Stored Program Units
You can create a trusted stored program unit in the same way that you create a standard
procedure, function, or package.

To do this, you can use the CREATE PROCEDURE, CREATE FUNCTION, or CREATE PACKAGE and
CREATE PACKAGE BODY statements.

The program unit becomes trusted when you grant it Oracle Label Security privileges.

See Also:

Oracle Database SQL Language Reference

12.4.2 Privileges for Trusted Stored Program Units
An Oracle Label Security administrator can verify the correctness of a stored program unit
code before granting the privileges to it.

Typically another user, such as a developer, creates the stored program unit. Whenever the
trusted stored program unit is re-created or replaced, Oracle Label security removes its
privileges. The Oracle Label Security administrator must then verify the code again and grant
the privileges once again.

The Oracle Label Security administrator should review the program unit code carefully and
evaluate the privileges that are to be granted to it. For example, procedures in trusted
packages should not perform privileged database operations and then write result or status

Chapter 12
Creating and Compiling Trusted Stored Program Units

12-3



information into a public variable of the package. In this way, you can make sure that
no violations of your site's Oracle Label Security policy can occur.

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

12.4.3 Recompiling of Trusted Stored Program Units
Recompiling a trusted stored program unit, either automatically or manually (using
ALTER PROCEDURE), does not affect its Oracle Label Security privileges.

You must, however, grant the EXECUTE privilege on the program unit again after
recompiling.

12.4.4 Re-creation of Trusted Stored Program Units
Oracle Label Security privileges are revoked if you perform a CREATE or REPLACE
operation on a trusted stored program unit.

This limits the potential for misuse of a procedure's Oracle Label Security privileges.

Note that the procedure, function, or package can still run even if the Oracle Label
Security privileges have been removed.

If you re-create a procedure, function, or package, then you should carefully review its
text. When you are certain that the re-created program unit does not violate your site's
Oracle Label Security policy, you can then grant it the required privileges again.

In a development environment where trusted stored program units must frequently be
replaced (for example, during the first few months of a live system), it is advisable to
create a script that can grant the proper Oracle Label Security privileges, as required.

12.4.5 Execution of Trusted Stored Program Units
Under Oracle Label Security all the standard Oracle Database controls on procedure
call (regarding access to tables and schemas) are still in force.

Oracle Label Security complements these security mechanisms by controlling access
to rows.

When a trusted stored program unit is carried out, the policy privileges in force are a
union of the invoking user's privileges and the program unit's privileges. Whether a
trusted stored program unit calls another trusted program unit or a non-trusted
program unit, the program unit called runs with the same privileges as the original
program unit.

If a sequence of non-trusted and trusted stored program units is carried out, the first
trusted program unit will determine the privileges of the entire calling sequence from
that point on. Consider the following sequence:

Procedure A (non-trusted)
Procedure B with WRITEUP
Procedure C with WRITEDOWN
Procedure D (non-trusted)

Chapter 12
Creating and Compiling Trusted Stored Program Units

12-4



Here, Procedures B, C, and D all runs with the WRITEUP privilege, because B was the first
trusted procedure in the sequence. When the sequence ends, the privilege pertaining to
Procedure B is no longer in force for subsequent procedures.

Note:

Unhandled exceptions raised in trusted program units are caught by Oracle Label
Security. This means that error messages may not be displayed to the user. For this
reason, you should always thoroughly test and debug any program units before
granting them privileges.

12.5 How Setting and Returning Label Information Works
The SA_UTL package has functions to return information about current values of session
security attributes using numeric label values.

Although these functions can be used in program units that are not trusted, they are primarily
for use in trusted stored program units.

Note that these are public functions; you do not need the policy_DBA role to use them. In
addition, each of the functions has a parallel SA_SESSION function that returns the same labels
in character string format.

Related Topics

• Duties of Oracle Label Security Administrators
Oracle Label Security administrators have a set of package- and role-based privileges.

Chapter 12
How Setting and Returning Label Information Works

12-5



13
Auditing Under Oracle Label Security

You can use Oracle Label Security auditing if you have not configured your database to use
unified auditing.

• About Oracle Label Security Auditing
Oracle Label Security auditing supplements standard Oracle Database auditing by
tracking use of its own administrative operations and policy privileges.

• Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
If you have not yet enabled unified auditing, for Oracle Label Security to generate audit
records, you must first enable system-wide auditing.

• How Oracle Label Security Auditing Is Enabled or Disabled
After you have enabled systemwide auditing, you can enable or disable Oracle Label
Security auditing.

• Oracle Label Security and Unified Auditing
Oracle Database uses the unified audit trail to capture information from various audit
sources, including Oracle Label Security.

• Oracle Label Security Auditing Tips
Oracle provides a set of tips for auditing Oracle Label Security.

13.1 About Oracle Label Security Auditing
Oracle Label Security auditing supplements standard Oracle Database auditing by tracking
use of its own administrative operations and policy privileges.

You can use either the SA_AUDIT_ADMIN package or Oracle Enterprise Manager to set and
change the auditing options for an Oracle Label Security policy.

When you create a new policy, a label column for that policy is added to the database audit
trail. The label column is created regardless of whether auditing is enabled or disabled, and
independent of whether database auditing or operating system auditing is used. Whenever a
record is written to the audit table, each policy provides a label for that record to indicate the
session label. The administrator can create audit views to display these labels. Note that in
the audit table, the label does not control access to the row, instead it only records the
sensitivity of the row.

The auditing options that you specify apply only to subsequent sessions, not to the current
session. You can specify audit options even if auditing is disabled. No overhead is created by
making only these specifications. When you do enable Oracle Label Security auditing, the
options come into effect, and overhead is created beyond that created by standard Oracle
Database auditing.

Note that Oracle Label Security does not provide labels for audit data written to the operating
system audit trial. All Oracle Label Security audit records are written directly to the database
audit trail, even if operating system auditing is enabled. If auditing is disabled, then no Oracle
Label Security audit records are generated.

If you are using traditional auditing (not unified auditing), then the traditional audit trail lists
only the action numbers. To find the corresponding audit action names, you can query the

13-1



LABACSYS.OLS$AUDIT_ACTIONS system table. You must have the AUDIT_VIEWER,
AUDIT_ADMIN, or policy_DBA role to query this table.

13.2 Systemwide Auditing: AUDIT_TRAIL Initialization
Parameter

If you have not yet enabled unified auditing, for Oracle Label Security to generate audit
records, you must first enable system-wide auditing.

To enable system-wide auditing, you can set the Oracle Database AUDIT_TRAIL
initialization parameter in the database's parameter file.

You can set the AUDIT_TRAIL parameter to one of the following values:

Table 13-1    AUDIT_TRAIL Parameter Settings

Setting Explanation

DB Enables database auditing and directs all audit records to the
database audit trail. This approach is recommended by Oracle.

Note that even with AUDIT_TRAIL set to DB, some records are always
sent to the operating system audit trail. These include STARTUP and
SHUTDOWN statements, as well as CONNECT AS SYSOPER or SYSDBA.

DB, EXTENDED Does all actions of AUDIT_TRAIL=DB and also populates the
SqlBind and SqlText CLOB-type columns of the AUD$ table.

OS Enables operating system auditing. This directs most of your Oracle
Database audit records to the operating system, rather than to the
database; the records will not contain Oracle Label Security labels.
By contrast, any Oracle Label Security auditing will go to the
database, with labels.

If you set AUDIT_TRAIL to OS, then the Oracle Label Security-specific
audit records are written to the database audit trail and the other
Oracle Database audit records are written to the operating system
audit trail (with no policy column in the operating system data).

NONE Disables auditing. This is the default.

After you have edited the parameter file, restart the database instance to enable or
disable database auditing as specified.

Set the AUDIT_TRAIL parameter before you set audit options. If you do not set this
parameter, then you are still able to set audit options. However, audit records are not
written to the database until the parameter is set and the database instance is
restarted.

Chapter 13
Systemwide Auditing: AUDIT_TRAIL Initialization Parameter

13-2



See Also:

• Oracle Database Security Guide for information about enabling and disabling
systemwide auditing, setting audit options, and managing the audit trail

• Oracle Database Reference or information about editing initialization parameter

• Oracle Database SQL Language Reference for details about systemwide AUDIT
and NOAUDIT functioning

13.3 How Oracle Label Security Auditing Is Enabled or Disabled
After you have enabled systemwide auditing, you can enable or disable Oracle Label Security
auditing.

To use Oracle Label Security auditing, you must have the policy_DBA role and use the
SA_AUDIT_ADMIN PL/SQL package procedures.

Related Topics

• SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package
For a non-unified auditing environment, the SA_AUDIT_ADMIN PL/SQL package configures
auditing that is specific to Oracle Label Security.

13.4 Oracle Label Security and Unified Auditing
Oracle Database uses the unified audit trail to capture information from various audit sources,
including Oracle Label Security.

You can configure OLS auditing using audit policies. Oracle Label Security auditing in Oracle
Database 12c release 1 (12.1) enables you to audit additional events such as enabling and
disabling of OLS policies.

If you have upgraded your database to Oracle Database 12c release 1 (12.1), but have not
configured it to use unified auditing, then you must use the pre-12c OLS auditing described in
this chapter.

The Oracle Database audit facility lets you hold database users accountable for the
operations they perform. It can track specific database objects, operations, users, and
privileges. Oracle Label Security supplements this by tracking use of its own administrative
operations and policy privileges. It provides the SA_AUDIT_ADMIN package to set and change
the policy auditing options.

See Also:

Oracle Database Security Guide for instructions on configuring your upgraded
database to use unified auditing. After migration, you can find the OLS unified audit
information at Oracle Database Security Guide

Chapter 13
How Oracle Label Security Auditing Is Enabled or Disabled

13-3



13.5 Oracle Label Security Auditing Tips
Oracle provides a set of tips for auditing Oracle Label Security.

• Strategy for Setting SA_AUDIT_ADMIN Options
Before setting any audit options, you must devise an auditing strategy that
monitors events of interest, without recording extraneous events.

• Auditing of Privileged Operations
Consider auditing any operations that require Oracle Label Security privileges.

13.5.1 Strategy for Setting SA_AUDIT_ADMIN Options
Before setting any audit options, you must devise an auditing strategy that monitors
events of interest, without recording extraneous events.

You should periodically review this strategy, because applications, user base,
configurations, and other external factors can change.

The Oracle Label Security options, and those provided by the Oracle Database audit
facility, might not directly address all of your specific or application-dependent auditing
requirements. However, through use of database triggers, you can audit specific
events and record specific information that you cannot audit and record using the more
generic audit facility.

See Also:

Oracle Database Concepts for more information about using triggers for
auditing

13.5.2 Auditing of Privileged Operations
Consider auditing any operations that require Oracle Label Security privileges.

Because these privileges perform sensitive operations, and because their abuse could
jeopardize security, you should closely monitor their dissemination and use.

Chapter 13
Oracle Label Security Auditing Tips

13-4



14
Using Oracle Label Security with a Distributed
Database

You should understand the special considerations for using Oracle Label Security in a
distributed configuration.

• About the Oracle Label Security Distributed Configuration
In a network configuration that supports distributed databases, multiple Oracle Database
(or other) servers can run on the same or different operating systems.

• How Connections to a Remote Database Under Oracle Label Security Work
Distributed databases act in the standard way with Oracle Label Security: the local user
ends up connected as a particular remote user.

• Session Labels and Row Labels in Remote Sessions
When connecting remotely, you can directly control the session label and row label in
effect when you establish the connection.

• Labels in a Distributed Environment
You should use the same label component definitions and label tags on any database
that is to be protected by the policy.

• Oracle Label Security Policies in a Distributed Environment
Oracle Label Security supports all standard Oracle Database distributed configurations.

• Replication with Oracle Label Security
You should understand how to use the replication option with tables protected by Oracle
Label Security policies.

14.1 About the Oracle Label Security Distributed Configuration
In a network configuration that supports distributed databases, multiple Oracle Database (or
other) servers can run on the same or different operating systems.

Each cooperative server in a distributed system communicates with other clients and servers
over a network.

Figure 14-1 illustrates a distributed database that includes clients and servers with and
without Oracle Label Security. As described in this chapter, if you establish database links
from the WESTERN_REGION database to the EASTERN_REGION database, then you can access
data if your user ID on EASTERN_REGION is authorized to see it, even if locally (on
WESTERN_REGION) you do not have this access.

14-1



Figure 14-1    Using Oracle Label Security with a Distributed Database

Clients

Clients

Server

Server

Clients Server

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Oracle Net and TCP/IP

Oracle
Database

Oracle
Database

Oracle
Database

HQ

EASTERN_

REGION

WESTERN_

REGION

Oracle Label

Security Policies

Installed : HR

and DEFENCE

Oracle Label

Security Policy

Installed : HR

14.2 How Connections to a Remote Database Under Oracle
Label Security Work

Distributed databases act in the standard way with Oracle Label Security: the local
user ends up connected as a particular remote user.

Oracle Label Security protects the labeled data, whether you connect locally or
remotely. If the remote user has the proper labels, then you can access the data. If not,
then you cannot access the data.

The database link sets up the connection to the remote database and identifies the
user who will be associated with the remote session. Your Oracle Label Security
authorizations on the remote database are based on those of the remote user
identified in the database link.

For example, local user JANE might connect as remote user AUSTEN, in the database
referenced by the connect string sales, as follows:

Chapter 14
How Connections to a Remote Database Under Oracle Label Security Work

14-2



CREATE DATABASE LINK sales
  CONNECT TO austen IDENTIFIED BY pride
  USING 'sales'

When JANE connects, her authorizations are based on the labels and privileges of remote
user AUSTEN, because AUSTEN is the user identified in the database link. When JANE makes
the first reference to the remote database, the remote session is actually established. For
example, the remote session would be created if JANE enters:

SELECT * FROM emp@sales

You need not be an Oracle Label Security policy user in the local database. If you connect as
a policy user on the remote database, you can access protected data.

14.3 Session Labels and Row Labels in Remote Sessions
When connecting remotely, you can directly control the session label and row label in effect
when you establish the connection.

When you connect, Oracle Label Security passes these values (for all policies) over to the
remote database. Notice that:

• The local session label and row label are used as the default for the remote session, if
they are valid for the remote user.

• The remote session is constrained by the minimum and maximum authorizations of the
remote user.

• Although the local user's session labels are passed to the remote database, the local
user's privileges are not passed. The privileges for the remote session are those
associated with the remote user.

Consider a local user, Diana, with a maximum level of HS, and a session level of S. On the
remote database, the remote user identified in the database link has a maximum level of S.

• If Diana's session label is S when the database link is established, then the S label is
passed over. This is a valid label. Diana can connect and read SENSITIVE data.

• If Diana's session label is HS when the database link is established, then the HS level is
passed across, but it is not valid for the remote user. Diana will pick up the remote user's
default label (S).

Be aware of the label at which you are running the first time you connect to the remote
database. The first time you reference a database link, your local session labels are sent
across to the remote system when a connection is made. Later, you can change the label, but
to do so, you must run the SA_SESSION.SET_LABEL procedure on the remote database.

Diana can connect at level HS, set the label to S, and then perform a remote access.
Connection is implicitly made when the database link is established. Her default label is S on
the remote database.

On the local database, Diana can set her session label to her maximum level of HS, but if the
label of the remote user is set to S, then she can only retrieve S data from the remote
database. If she performs a distributed query, then she will get HS data from the local
database, and S data from the remote database.

Chapter 14
Session Labels and Row Labels in Remote Sessions

14-3



14.4 Labels in a Distributed Environment
You should use the same label component definitions and label tags on any database
that is to be protected by the policy.

• Label Tags in a Distributed Environment
In a distributed environment, you may choose to use the same label tags across
multiple databases.

• Numeric Form of Label Components in a Distributed Environment
In a distributed environment, the same relative ranking of the numeric form of the
level component ensures that the labels are properly sorted.

14.4.1 Label Tags in a Distributed Environment
In a distributed environment, you may choose to use the same label tags across
multiple databases.

However, if you choose not to use the same tags across multiple databases, then you
should retrieve the character form of the label when performing remote operations.
This will ensure that the labels are consistent.

In the following example, the character string representation of the label string is the
same. However, the label tag does not match. If the retrieved label tag has a value of
11 on the WESTERN_REGION database but a tag of 2001 on the EASTERN_REGION
database, then the tags have no meaning. Serious consequences can result.

Figure 14-2    Label Tags in a Distributed Database

L
a
b

e
l 
T

a
g

E
A

S
T

E
R

N
_
R

E
G

IO
N

W
E

S
T

E
R

N
_
R

E
G

IO
N

L
a
b

e
l

6
0
0

S
:A

S
:A

C
:A

L
a
b

e
l

3
0
0
1

C
:A

2
0
0
1

1
0

U

1
1

6L
a
b

e
l 
T

a
g

U
5

When retrieving labels from a remote system, you should return the character string
representation (rather than the numeric label tag), unless you are using the same
numeric labels on both databases.

If you allow Oracle Label Security to automatically generate labels on different
databases, then the label tags will not be identical. Character strings will have
meaning, but the numeric values will not, unless you have predefined labels with the
same label tags on both instances.

To avoid the complexities of label tags, you can convert labels to strings on retrieval
(using LABEL_TO_CHAR) and use CHAR_TO_LABEL when you store labels. Operations will
succeed as long as the component names are the same.

Chapter 14
Labels in a Distributed Environment

14-4



14.4.2 Numeric Form of Label Components in a Distributed Environment
In a distributed environment, the same relative ranking of the numeric form of the level
component ensures that the labels are properly sorted.

In the following example, the levels in the two databases are effectively the same. Although
the numeric form is different, the relative ranking of the levels numeric form is the same. As
long as the relative order of the components is the same, the labels are perceived as
identical.

Figure 14-3    Label Components in a Distributed Database

Numeric 
Form

EASTERN_REGION WESTERN_REGION

Level 600

S S

C

Level

30

C 20

10U

6

5

Numeric

Form

U 4

14.5 Oracle Label Security Policies in a Distributed Environment
Oracle Label Security supports all standard Oracle Database distributed configurations.

Whether or not you can access protected data depends on the policies installed in each
distributed database.

Be sure to take into account the relationships between databases in a distributed
environment:

• If the same application runs on two databases and you want them to have the same
protection, then you must apply the same Oracle Label Security policy to both the local
and the remote databases.

• If the local and remote databases have a policy in common, then your local session label
and row label will override the default labels for the remote user.

• If the remote database has a different policy than the local database, then the remote
policy can restrict access to the data independent of your local policies. On the other
hand, when you make a connection as a remote user who has authorization on the
remote policy, you can access any data to which the remote user has access to,
regardless of your local authorizations.

If the remote database has no policy applied to it, you can access its data just as you would
with a standard distributed database.

Consider a situation in which three databases exist, with different Oracle Label Security
policies in force:

Database 1 has Policy A and Policy B
Database 2 has Policy A
Database 3 had Policy C

Users authorized for Policy A can obtain protected data from Database 1 and Database 2. If
the remote user is authorized for Policy C, then this user can obtain data from Database 3 as
well.

Chapter 14
Oracle Label Security Policies in a Distributed Environment

14-5



14.6 Replication with Oracle Label Security
You should understand how to use the replication option with tables protected by
Oracle Label Security policies.

• About Replication Under Oracle Label Security
You can replicate data in Oracle Label Security.

• Contents of a Materialized View
Oracle Label Security can create materialized views.

• Requirements for Creating Materialized Views Under Oracle Label Security
The requirements for creating a materialized view depend on the type of
materialized view you are creating.

• How to Refresh Materialized Views
If the contents or definition of a master table changes, then you should refresh the
materialized view.

14.6.1 About Replication Under Oracle Label Security
You can replicate data in Oracle Label Security.

• Replication Functionality Supported by Oracle Label Security
Oracle Label Security supports replication using read-only materialized views
(snapshots).

• Row-Level Security Restriction on Replication Under Oracle Label Security
An Oracle Label Security policy applies Row Level Security (RLS) to a table if
READ_CONTROL is specified as one of the policy options.

14.6.1.1 Replication Functionality Supported by Oracle Label Security
Oracle Label Security supports replication using read-only materialized views
(snapshots).

Oracle Database uses materialized views for replicating data. A materialized view is a
local copy of a local or remote master table that reflects a recent state of the master
table.

As illustrated in the following figure, a master table is a table you wish to replicate, on
a node that you designate as the master node. Using a dblink account, you can
create a materialized view of the table in a different database. (This can also be done
in the same database, and on the same system.) You can select rows from the remote
master table, and copy them into the local materialized view. Here, mvEMP represents
the materialized view of table EMP, and mlog$_EMP represents the materialized view log.

Figure 14-4    Use of Materialized Views for Replication

dblink account: 
REPADMIN

Master Node

EMP mvEMP

mlog$_EMP

Local Node

Chapter 14
Replication with Oracle Label Security

14-6



In a distributed environment, a materialized view alleviates query traffic over the network and
increases data availability when a node is not available.

14.6.1.2 Row-Level Security Restriction on Replication Under Oracle Label Security
An Oracle Label Security policy applies Row Level Security (RLS) to a table if READ_CONTROL
is specified as one of the policy options.

Problems occur if both of the following conditions are true:

• The Oracle Label Security policy is applied to any table relevant to replication (such as
the master table, materialized view, or materialized view log), and

• The policy returns a predicate in the WHERE clause of SELECT statements.

To avoid the additional predicate (and therefore avoid this problem), the users involved in a
replication environment should be given the necessary Oracle Label Security privileges. To
be specific, the designated users in the database link (such as REPADMIN and the materialized
view owner) must have the READ or the FULL privilege. As a result, the queries used to
perform the replication will not be modified by RLS.

14.6.2 Contents of a Materialized View
Oracle Label Security can create materialized views.

• How Materialized View Contents Are Determined
Oracle Label Security performs a set steps when creating materialized views.

• Complete Materialized Views
Oracle Label Security supports complete materialized views.

• Partial Materialized Views
A partial materialized view is created when you specify a WHERE clause in the materialized
view definition.

14.6.2.1 How Materialized View Contents Are Determined
Oracle Label Security performs a set steps when creating materialized views.

The following steps determine the contents of the view:

1. It reads the definition of the master table in the remote database.

2. It reads the rows in the master table that meet the conditions defined in the materialized
view definition.

3. It writes these rows to the materialized view in the local database.

Because Oracle Label Security writes only those rows to which you have write access in the
local database, the contents of the materialized view vary according to:

• The policy options in effect

• The privileges you have defined in the local database

• The session label

14.6.2.2 Complete Materialized Views
Oracle Label Security supports complete materialized views.

Chapter 14
Replication with Oracle Label Security

14-7



If you read all of the rows in the master table and have write access in the local
database to each label in the materialized view, then the result is a complete
materialized view of the master table. To ensure that the materialized view is complete,
you should have read access to all of the data in the master table and write access in
the local database to all labels at which data is stored in the master table.

Note:

Never revoke privileges that you granted when you created the materialized
view. If you do, then you may not be able to perform a replication refresh.

14.6.2.3 Partial Materialized Views
A partial materialized view is created when you specify a WHERE clause in the
materialized view definition.

A partial materialized view is a convenient way to pass subsets of data to a remote
database.

To create a partial materialized view, a user must have write access to all the rows
being replicated. You can find the currently granted privileges for a user by querying
the DBA_SA_USER_PRIVS data dictionary view.

14.6.3 Requirements for Creating Materialized Views Under Oracle
Label Security

The requirements for creating a materialized view depend on the type of materialized
view you are creating.

• Requirements for a Replication Administrator
Requirements for a replication administrator, typically using a REPADMIN account,
vary depending on the configuration.

• Requirements for the Owner of the Materialized View
The privileges that belong to the owner of the materialized view are used during
the refresh of the materialized view.

• Requirements for Creating Partial Multilevel Materialized Views
A partial materialized view can include only some of the rows in a remote master
table that is protected by Oracle Label Security.

• Requirements for Creating Complete Multilevel Materialized Views
A complete materialized view can include every row in a remote master table that
is protected by Oracle Label Security.

14.6.3.1 Requirements for a Replication Administrator
Requirements for a replication administrator, typically using a REPADMIN account, vary
depending on the configuration.

In general, however, it should meet the following requirements:

Chapter 14
Replication with Oracle Label Security

14-8



• It must have the FULL Oracle Label Security privilege (mandatory for all configurations).

• It must have the SELECT privilege on the master table.

• It must be the account that establishes the database link from the remote node to the
database containing the master table.

14.6.3.2 Requirements for the Owner of the Materialized View
The privileges that belong to the owner of the materialized view are used during the refresh of
the materialized view.

If these privileges are not sufficient, then there are two options:

• The materialized view can be created in the REPADMIN account, or

• Additional privileges must be granted to the owner of the materialized view.

Consider, for example, the following materialized view created by user SCOTT:

CREATE MATERIALIZED VIEW mvemp as
SELECT *
FROM EMP@link_to_master
WHERE label_to_char(sa_label) = 'HS';

Here, SCOTT should have permission to insert records at the HS level in the local database. If
Oracle Label Security policies are applied on the materialized view, then SCOTT must have the
FULL privilege to avoid the RLS restriction.

Different configurations can be set up depending on whether Oracle Label Security policies
are applied on the materialized view, what privileges are granted to the owner of the
materialized view, and so on. If Oracle Label Security policies are applied to the materialized
view, but SCOTT should not be granted the FULL privilege, then the REPADMIN account must be
used to create the materialized view. SCOTT can then be granted the SELECT privilege on that
table.

If no policies are applied to the materialized view, then the view can be created in SCOTT's
schema without any additional privileges. In this case, the materialized view should be
created in such a way that a WHERE condition limits the records to those which SCOTT can
read.

Finally, if SCOTT can be granted the FULL privilege, then the materialized view can be created
in SCOTT's schema, and Oracle Label Security policies can also be applied on the
materialized view.

Note that the master table can have Oracle Label Security policies containing any set of
policy options. If SCOTT has the FULL or the READ privilege, he can select all rows, regardless
of policy options.

14.6.3.3 Requirements for Creating Partial Multilevel Materialized Views
A partial materialized view can include only some of the rows in a remote master table that is
protected by Oracle Label Security.

If the partial materialized view is used in a table that Oracle Label Security protects, then you
should ensure that you have sufficient privileges to WRITE in the local database at every label
retrieved by your query. You can find your currently granted privileges by querying the
ALL_SA_USER_PRIVS data dictionary view.

Chapter 14
Replication with Oracle Label Security

14-9



14.6.3.4 Requirements for Creating Complete Multilevel Materialized Views
A complete materialized view can include every row in a remote master table that is
protected by Oracle Label Security.

If the complete materialized view is used in a table that Oracle Label Security protects,
then you must be able to have WRITE access in the local database at the labels of all of
the rows retrieved by the defined materialized view query. You can find your currently
granted privileges by querying the ALL_SA_USER_PRIVS data dictionary view.

14.6.4 How to Refresh Materialized Views
If the contents or definition of a master table changes, then you should refresh the
materialized view.

This ensures that the materialized view accurately reflects the contents of the master
table.

To refresh a materialized view of a remote multilevel table, you must also have
privileges to write in the local database at the labels of all of the rows that the
materialized view query retrieves

WARNING:

A materialized view can potentially contain outdated rows if you refresh a
partial or full materialized view but do not have READ access to all the rows
in the master table, and consequently do not overwrite the rows in the
original materialized view with the updated rows from the master table.

To ensure an accurate materialized view refresh, you should use job queues to refresh
the views automatically. These processes must have sufficient privileges both to read
all of the rows in the master table and to write those rows to the materialized view,
ensuring that the view is completely refreshed. Remember that the privileges used by
these processes are those of the materialized view owner.

See Also:

Oracle Database Data Warehousing Guide for information about job queues

Chapter 14
Replication with Oracle Label Security

14-10



15
Performing DBA Functions
Under Oracle Label Security

Oracle Label Security supports the standard Oracle Database utilities, but certain restrictions
apply, which may require extra steps to get the expected results.

• Oracle Data Pump Export Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• Data Pump Import Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• SQL*Loader Use with Oracle Label Security
SQL*Loader moves data from external files into tables in Oracle Database.

• Performance Tips for Oracle Label Security
You can achieve optimal performance with Oracle Label Security.

• Creation of Additional Databases After Installation
You can create and configure additional databases after you install Oracle Label Security.

• Oracle Label Security Upgrades and Downgrades
You should be aware of how to manage Oracle Label Security upgrades and
downgrades.

15.1 Oracle Data Pump Export Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one database
to another.

• Full Database Export
Starting with Oracle Database 12c, Oracle Label Security metadata in the LBACSYS
schema can be included when doing a full database export and import operation.

• Schema and Table-Level Export
The Data Pump export utility functions in the standard way under Oracle Label Security.

15.1.1 Full Database Export
Starting with Oracle Database 12c, Oracle Label Security metadata in the LBACSYS schema
can be included when doing a full database export and import operation.

The source database can be Oracle Database 11g release 2 (11.2.0.3), or higher, but the
target database must be Oracle Database 12c or higher.

Before starting the Data Pump import on the target database, you must enable Oracle Label
Security.

15-1



15.1.2 Schema and Table-Level Export
The Data Pump export utility functions in the standard way under Oracle Label
Security.

There are, however, a few differences resulting from the enforcement of Oracle Label
Security policies.

Note:

You must have the EXEMPT ACCESS POLICY privilege in order to export all
rows in the table, or else no rows are exported.

• For any tables protected by an Oracle Label Security policy, only rows with labels
authorized for read access are exported. Unauthorized rows are not included in
the export file. Consequently, to export all the data in protected tables, you must
have a privilege (such as FULL or READ) that gives you complete access.

• SQL statements to reapply policies are exported along with tables and schemas
that are exported. These statements are carried out during import to reapply
policies with the same enforcement options as in the original database.

• The HIDE property is not exported. When protected tables are exported, the label
columns in those tables are also exported (as numeric values). However, if a label
column is hidden, then it is exported as a normal, unhidden column.

• The user must have EXEMPT ACCESS POLICY in order to export all rows in the table,
or else no rows are exported.

15.2 Data Pump Import Use with Oracle Label Security
Oracle Data Pump enables high-speed movement of data and metadata from one
database to another.

• Full Database Import for the LBACSYS Schema Metadata
Oracle Label Security metadata in the LBACSYS schema can be included when you
perform a full database export and import operation.

• Schema and Table Level Import
You can use the Oracle Data Pump Import utility functions under Oracle Label
Security.

15.2.1 Full Database Import for the LBACSYS Schema Metadata
Oracle Label Security metadata in the LBACSYS schema can be included when you
perform a full database export and import operation.

The source database can be Oracle Database 11g release 2 (11.2.0.3), or higher, but
the target database must be Oracle Database 12c release 1 (12.1) or higher.

Oracle Data Pump import utility, impdp, automatically imports Label Security metadata
including policies, labels, user authorizations, schema and table policy enforcements.

Chapter 15
Data Pump Import Use with Oracle Label Security

15-2



You must register and enable Oracle Label Security for the target database before beginning
the import operation.

Related Topics

• Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS data dictionary view to find if Oracle Label Security
has already been registered and enabled.

15.2.2 Schema and Table Level Import
You can use the Oracle Data Pump Import utility functions under Oracle Label Security.

• Requirements for Import Under Oracle Label Security
You can use the impdp under Oracle Label Security.

• Definition of Data Labels for Import
The label definitions at the time of import must include all the policy labels used in the
export file.

• Imports of Labeled Data Without Installing Oracle Label Security
When data type for policy label columns is NUMBER, they can be imported into databases
that do not have Oracle Label Security installed.

• Imports of Unlabeled Data
You can import unlabeled data into an existing table protected by an Oracle Label
Security policy.

• Importing Tables with Hidden Columns
A hidden column is exported as a normal column, but the fact that it was hidden is lost.

15.2.2.1 Requirements for Import Under Oracle Label Security
You can use the impdp under Oracle Label Security.

To use the impdp under Oracle Label Security, you must prepare the import database and
ensure that the import user has the proper authorizations.

• Preparing the Import Database
Before you can use the Import utility with Oracle Label Security, you must prepare the
import database.

• Verification of Import User Authorizations
You must be authorized to run the import operation for labels required to insert data and
labels in the export file.

15.2.2.1.1 Preparing the Import Database
Before you can use the Import utility with Oracle Label Security, you must prepare the import
database.

1. Ensure that Oracle Label Security is enabled. See Checking if Oracle Label Security Has
Been Registered and Enabled.

2. Create any Oracle Label Security policies that protect the data to be imported.

Ensure that the policies use the same column names as in the export database.

3. Define in the import database all of the label components and individual labels used in
tables being imported.

Chapter 15
Data Pump Import Use with Oracle Label Security

15-3



Ensure that the same tag values are assigned to the policy labels in each
database. (Note that if you are importing into a database from which you exported,
then the components are most likely already defined.)

15.2.2.1.2 Verification of Import User Authorizations
You must be authorized to run the import operation for labels required to insert data
and labels in the export file.

Errors will be raised upon import if you do not meet the following requirements.

• To import tables or schemas with Label Security policies on them, you must have
execute privilege on the SA_POLICY_ADMIN package.

To ensure that all rows can be imported, you must have the policy_DBA role for all
policies with data being imported. After each schema or table is imported, any
policies from the export database are reapplied to the imported objects.

• You must also have the ability to write all rows that have been exported as follows:

Requirement 2:

– You can granted the FULL privilege or given sufficient authorization to write all
labels contained in the import file.

– A user-defined labeling function can be applied to the table.

15.2.2.2 Definition of Data Labels for Import
The label definitions at the time of import must include all the policy labels used in the
export file.

The DBA_SA_LABELS data dictionary view lists data labels. You can use the views
DBA_SA_LEVELS, DBA_SA_COMPARTMENTS, DBA_SA_GROUPS, and in the export database to
design SQL scripts that re-create the label components and labels for each policy in
the import database. The following example shows how to generate a PL/SQL block
that re-creates the individual labels for the HR policy:

set serveroutput on
BEGIN
   dbms_output.put_line('BEGIN');
   FOR l IN (SELECT label_tag, label 
                FROM dba_sa_labels
                WHERE policy_name='HR'
                ORDER BY label_tag) LOOP
       dbms_output.put_line
           ('  SA_LABEL_ADMIN.CREATE_LABEL(''HR'', ' ||
            l.label_tag || ', ''' || l.label || ''');');
   END LOOP;
   dbms_output.put_line ('END;');
   dbms_output.put_line ('/');
END;
/

If the individual labels do not exist in the import database with the same numeric
values and the same character string representations as in the export database, then
the label values in the imported tables will be meaningless. The numeric label value in
the table may refer to a different character string representation, or it may be a label
value that has not been defined at all in the import database.

Chapter 15
Data Pump Import Use with Oracle Label Security

15-4



If a user attempts to access rows containing invalid numeric labels, then the operation will
fail.

15.2.2.3 Imports of Labeled Data Without Installing Oracle Label Security
When data type for policy label columns is NUMBER, they can be imported into databases that
do not have Oracle Label Security installed.

In this case, the values in the policy label column are imported as numbers. Without the
corresponding Oracle Label Security label definitions, the numbers will not reference any
specific label.

Note that errors will be raised during the import if Oracle Label Security is not installed,
because the SQL statements to reapply the policy to the imported tables and schemas will
fail.

15.2.2.4 Imports of Unlabeled Data
You can import unlabeled data into an existing table protected by an Oracle Label Security
policy.

Either the LABEL_DEFAULT option or a labeling function must be specified for each table being
imported, so that the labels for the rows can be automatically initialized as they are inserted
into the table.

15.2.2.5 Importing Tables with Hidden Columns
A hidden column is exported as a normal column, but the fact that it was hidden is lost.

If you want to preserve the hidden property of the label column, then you must first create the
table in the import database.

1. Before you perform the import, create the table and apply the policy with the HIDE option.
This adds the policy label column to the table as a hidden column.

2. Remove the policy from the table, so that the enforcement options specified in the export
file can be reapplied to the table during the import operation.

3. Perform the import with IGNORE=Y. Setting the IGNORE parameter to Y ignores errors
during import.

4. Manually apply the policy to the table with the HIDE option.

15.3 SQL*Loader Use with Oracle Label Security
SQL*Loader moves data from external files into tables in Oracle Database.

• Requirements for Using SQL*Loader Under Oracle Label Security
You can use SQL*Loader with the conventional path to load data into a database
protected by Oracle Label Security.

• Oracle Label Security Input to SQL*Loader
If the policy column for a table is hidden, then you must use the HIDDEN keyword to
convey this information to SQL*Loader.

Chapter 15
SQL*Loader Use with Oracle Label Security

15-5



15.3.1 Requirements for Using SQL*Loader Under Oracle Label
Security

You can use SQL*Loader with the conventional path to load data into a database
protected by Oracle Label Security.

Because SQL*Loader performs INSERT operations, all of the standard requirements
apply when using SQL*Loader on tables protected by Oracle Label Security policies.

15.3.2 Oracle Label Security Input to SQL*Loader
If the policy column for a table is hidden, then you must use the HIDDEN keyword to
convey this information to SQL*Loader.

To specify row labels in the input file, you must include the policy label column in the
INTO TABLE clause in the control file.

To load policy labels along with the data for each row, you can specify the
CHAR_TO_LABEL function or the TO_DATA_LABEL function in the SQL*Loader control file.

Note:

When Oracle Label Security is installed to work with Oracle Internet
Directory, dynamic label generation is not allowed, because labels are
managed centrally in Oracle Internet Directory, using olsadmintool
commands.

When Oracle Label Security is directory-enabled, then the function
TO_DATA_LABEL is not available and generates an error message if used.

Table 15-1 shows the variations that you can use when you load Oracle Label Security
data with SQL*Loader.

Table 15-1    Input Choices for Oracle Label Security Input to SQL*Loader

Form of Data Explanation of Results

col1 hidden integer external Hidden column loaded with tag value of data directly from data
file

col2 hidden char(5) "func(:col2)" Hidden column loaded with character value of data from data
file.func() used to translate between the character label
and its tag value. Note: func() might be char_to_label().

col3 hidden "func(:col3)" Same as in col2, field type defaults to char

col4 hidden expression "func(:col4)" Hidden column not mapped to input data.func() will be
called to provide the label value. This could be a user function.

For example, the following is a valid INTO TABLE clause in a control file that is loading
data into the DEPT table:

Chapter 15
SQL*Loader Use with Oracle Label Security

15-6



INTO TABLE dept
(hr_label HIDDEN POSITION (1:22) CHAR "CHAR_TO_LABEL('HR',:hr_label)",
deptno    POSITION (23:26) INTEGER EXTERNAL,
dname     POSITION (27:40) CHAR,
loc       POSITION(41,54)  CHAR)

The following could be an entry in the data file specified by this control file:

HS:FN                  231 ACCOUNTING  REDWOOD SHORES 

Related Topics

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet Directory.

15.4 Performance Tips for Oracle Label Security
You can achieve optimal performance with Oracle Label Security.

• Use of ANALYZE to Improve Oracle Label Security Performance
You can run the ANALYZE statement on the Oracle Label Security data dictionary tables in
the LBACSYS schema.

• Creation of Indexes on the Policy Label Column
Creating the appropriate type of index on the policy label column improves the
performance of user-raised queries on protected tables.

• Label Tag Strategy Plan to Enhance Performance
For optimal performance, you can plan a strategy for assigning values to label tags.

• Partitioned Data Based on Numeric Label Tags
Using a numeric ordering strategy with the numeric label tags applied to the labels can a
basis for Oracle Database data partitioning.

15.4.1 Use of ANALYZE to Improve Oracle Label Security Performance
You can run the ANALYZE statement on the Oracle Label Security data dictionary tables in the
LBACSYS schema.

This enables the cost-based optimizer to improve execution plans on queries, which
improves Oracle Label Security performance.

Running ANALYZE on application tables improves the application SQL performance.

See Also:

Oracle Database SQL Language Reference for the ANALYZE syntax

15.4.2 Creation of Indexes on the Policy Label Column
Creating the appropriate type of index on the policy label column improves the performance
of user-raised queries on protected tables.

If you have applied an Oracle Label Security policy on a database table in a particular
schema, then you should compare the number of different labels to the amount of data.

Chapter 15
Performance Tips for Oracle Label Security

15-7



Based on this information, you can decide which type of index to create on the policy
label column.

• If the cardinality of data in the policy label column (that is, the number of labels
compared to the number of rows) is low, then consider creating a bitmapped index.

• If the cardinality of data in the policy label column is high, then consider creating a
B-tree index.

Consider the following case, in which the EMP table is protected by an Oracle Label
Security policy with the READ_CONTROL enforcement option set, and HR_LABEL is the
name of the policy label column. A user raises the following query:

SELECT COUNT (*) FROM SCOTT.EMP;

In this situation, Oracle Label Security adds a predicate based on the label column.
For example:

SELECT COUNT (*) FROM SCOTT.EMP
  WHERE hr_label=100;

In this way, Oracle Label Security uses the security label to restrict the rows that are
processed, based on the user's authorizations. To improve performance of this query,
you could create an index on the HR_LABEL column.

Consider a more complex query (once again, with READ_CONTROL applied to the EMP
table):

SELECT COUNT (*) FROM SCOTT.EMP
  WHERE deptno=10

Again, Oracle Label Security adds a predicate based on the label column:

SELECT COUNT (*) FROM SCOTT.EMP
  WHERE deptno=10
  AND hr_label=100;

In this case, you might want to create a composite index based on the DEPTNO and
HR_LABEL columns, to improve application performance.

15.4.3 Label Tag Strategy Plan to Enhance Performance
For optimal performance, you can plan a strategy for assigning values to label tags.

In general, it is best to assign higher numeric values to labels with higher sensitivity
levels.

This is because, typically, many more users can see data at comparatively low levels
and fewer users at higher levels can see many levels of data.

In addition, with READ_CONTROL set, Oracle Label Security generates a predicate that
uses a BETWEEN clause to restrict the rows to be processed by the query. As illustrated
in the following example, if the higher-sensitivity labels do not have a higher label tag
than the lower-sensitivity labels, then the query will potentially examine a larger set of
rows. This will affect performance.

Table 15-2 shows a set of label tags assigned as follows:

Chapter 15
Performance Tips for Oracle Label Security

15-8



Table 15-2    Label Tag Performance Example: Correct Values

Label Label Tag

TS:A,B 100
S:A 50
S 20
U:A 10

Here, a user whose maximum authorization is S:A can potentially access data at labels S:A,
S, and U:A. Consider what happens when this user raises the following query:

SELECT COUNT (*) FROM SCOTT.EMP

Oracle Label Security adds a predicate that includes a BETWEEN clause (based on the
maximum and minimum authorizations) to restrict the set of rows this user can see:

SELECT COUNT (*) FROM SCOTT.EMP
  WHERE hr_label BETWEEN 10 AND 50;

Performance improves, because the query examines only a subset of data based on the
user's authorizations. It does not fruitlessly process rows that the user is not authorized to
access.

Table 15-3 shows how unnecessary work is performed if the tag values were assigned as
follows:

Table 15-3    Label Tag Performance Example: Incorrect Values

Label Label Tag

TS:A,B 50
S:A 100
S 20
U:A 10

In this case, the user with S:A authorization can see only some of the labels between 100 and
10. Although the user cannot see TS:A,B labels (that is, rows with a label tag of 50). A query
would nonetheless pick up and process these rows, even though the user ultimately will not
have access to them.

15.4.4 Partitioned Data Based on Numeric Label Tags
Using a numeric ordering strategy with the numeric label tags applied to the labels can a
basis for Oracle Database data partitioning.

Depending on the application, partitioning data based on label values may or may not be
useful. Consider, for example, a business-hosting CRM application to which many companies
subscribe. In the same EMP table, there might be rows (and labels) for Subscriber 1 and
Subscriber 2. That is, information for both companies can be stored in the same table, as
long as it is labeled differently. In this case, employees of Subscriber 1 will never need to
access data for Subscriber 2, so it might make sense to partition based on label. You could

Chapter 15
Performance Tips for Oracle Label Security

15-9



put rows for Subscriber 1 in one partition, and rows for Subscriber2 in a different
partition. When a query is raised, it will access only one or the other partition,
depending on the label. Performance improves because partitions that are not relevant
are not examined by the query.

The following example shows this is done. It places labels in the 2000 series on one
partition, labels in the 3000 series on another partition, and labels in the 4000 series
on a third partition.

CREATE TABLE EMPLOYEE(
    EMPNO NUMBER(10) CONSTRAINT PK_EMPLOYEE PRIMARY KEY,
    ENAME VARCHAR2(10),
    JOB VARCHAR2(9),
    MGR NUMBER(4),
    HIREDATE DATE,
    SAL NUMBER(7,2),
    COMM NUMBER(7,2),
    DEPTNO NUMBER(4),
    HR_LABEL NUMBER(10))
    TABLESPACE PERF_DATA
    STORAGE (initial 2M
    NEXT 1M
    MINEXTENTS 1
    MAXEXTENTS unlimited)
    PARTITION BY RANGE (hr_label)
    (partition sx1 VALUES LESS THAN (2000) NOLOGGING,
     partition sx2 VALUES LESS THAN (3000),
     partition sx3 VALUES LESS THAN (4000)
 );

15.5 Creation of Additional Databases After Installation
You can create and configure additional databases after you install Oracle Label
Security.

• About the Creation of Additional Databases After Installation
When you install Oracle Database Enterprise Edition and Oracle Label Security,
an initial Oracle database is created.

• Creating Additional Databases When the Label Security Schema Is in the Seed
You can configure Oracle Label Security if the database was installed with the
label security schema is in the seed database.

• Creating Additional Databases with the Custom Installation Option
You can configure Oracle Label Security after a custom database installation.

15.5.1 About the Creation of Additional Databases After Installation
When you install Oracle Database Enterprise Edition and Oracle Label Security, an
initial Oracle database is created.

If you want to create additional databases, then you should do this using the Database
Configuration Assistant. Alternatively, you can create additional databases by following
the steps listed in Oracle Database Administrator’s Guide.

Each time you create a new database, you must install the Oracle Label Security data
dictionary tables, views, and packages into it, and create the LBACSYS account.

Chapter 15
Creation of Additional Databases After Installation

15-10



For the first database, this is done automatically when you install Oracle Label Security,
regardless of whether or not you choose the custom install. If you do not choose the custom
install, then you are installing the database with the label security schema in the seed.

To create additional databases, there are different processes for configuring label security,
depending on whether the first database was installed with the custom install or with the label
security schema in the seed.

If you initially chose custom install, but did not install label security, you can install and
configure label security using either process described in this section.

15.5.2 Creating Additional Databases When the Label Security Schema Is
in the Seed

You can configure Oracle Label Security if the database was installed with the label security
schema is in the seed database.

1. Select the Oracle Label Security option in DBCA.

2. Select the check box to configure Oracle Label Security.

15.5.3 Creating Additional Databases with the Custom Installation Option
You can configure Oracle Label Security after a custom database installation.

1. Connect to the Oracle Database instance as user SYS, using the AS SYSDBA syntax.

2. Run the script $ORACLE_HOME/rdbms/admin/catols.sql.

This script installs the label-based framework, data dictionary, data types, and packages.
After the script is run, the LBACSYS account exists, with the password LBACSYS. All the
Oracle Label Security packages exist under this account.

3. Change the default password of the LBACSYS user.

15.6 Oracle Label Security Upgrades and Downgrades
You should be aware of how to manage Oracle Label Security upgrades and downgrades.

• About Oracle Label Security Upgrades and Downgrades
Oracle provides preprocess scripts that perform upgrade and downgrade operations.

• Oracle Label Security Upgrades
Oracle provides a preprocess script that you must run before you perform an upgrade.

• Oracle Label Security Downgrades
Oracle provides a preprocess script that you must run before you downgrade.

15.6.1 About Oracle Label Security Upgrades and Downgrades
Oracle provides preprocess scripts that perform upgrade and downgrade operations.

As a safety measure, before you run either the upgrade or downgrade preprocess script,
Oracle recommends that you back up your audit records. To do this, you can archive the
audit trail as described in Oracle Database Security Guide.

Chapter 15
Oracle Label Security Upgrades and Downgrades

15-11



Before they run, the preprocess scripts check that there is enough space in the audit
tablespace to copy all the audit records, and will exit without processing if there is not.

You may continue running your applications on the database while OLS preprocess
scripts are running.

See Also:

Oracle Database Upgrade Guide for requirements for upgrading databases
that use Oracle Label Security and Oracle Database Vault

15.6.2 Oracle Label Security Upgrades
Oracle provides a preprocess script that you must run before you perform an upgrade.

• About Oracle Label Security Upgrades
You must upgrade Oracle Label Security for pre-Oracle Database 12c release 1
(12.1) databases.

• Running the Oracle Label Security Preprocess Script Before Upgrading
You can run the Oracle Label Security preprocess script before upgrading.

15.6.2.1 About Oracle Label Security Upgrades
You must upgrade Oracle Label Security for pre-Oracle Database 12c release 1 (12.1)
databases.

Note:

Running the olspreupgrade.sql script before upgrading is mandatory for
upgrading databases earlier than Oracle Database 12c release (12.1) that
use Oracle Label Security or Database Vault.

After you have upgraded to Oracle Database release 12c or later, you do not
need to run the Oracle Label Security preprocessing script when you patch
or upgrade the database.

Before performing the OLS upgrade process, you must run the Oracle Label Security
preprocess upgrade script, olspreupgrade.sql, to process the AUD$ table contents.
The OLS upgrade moves the AUD$table from the SYSTEM schema to the SYS schema.
The olspreupgrade.sql script is a preprocessing script required for this move. It
creates a temporary table, PREUPG_AUD$, in the SYS schema and moves the
SYSTEM.AUD$ records to SYS.PREUPG_AUD$. The moved records can no longer be
viewed through the DBA_AUDIT_TRAIL view, but can be viewed by directly accessing
the SYS.PREUPG_AUD$ table, until the upgrade completes. Once the upgrade completes,
the SYS.PREUPG_AUD$ table is permanently deleted and all audit records, can be
viewed through the DBA_AUDIT_TRAIL view.

Chapter 15
Oracle Label Security Upgrades and Downgrades

15-12



15.6.2.2 Running the Oracle Label Security Preprocess Script Before Upgrading
You can run the Oracle Label Security preprocess script before upgrading.

1. Copy the ORACLE_HOME/rdbms/admin/olspreupgrade.sql script from the newly installed
Oracle home to the Oracle home of the database to be upgraded.

2. Connect to the database to be upgraded. At the system prompt, enter:

CONNECT SYS AS SYSDBA
Enter password password

3. Run the Oracle Label Security preprocess script:

@$ORACLE_HOME/rdbms/admin/olspreupgrade.sql

Note:

The upgrade status for the Oracle Label Security component will be marked
INVALID if the Oracle Label Security preprocess script reports an error. If this
happens, you must correct the errors and then rerun the upgrade process. See 
Oracle Database Upgrade Guide for more information about rerunning the upgrade
process for Oracle Database.

15.6.3 Oracle Label Security Downgrades
Oracle provides a preprocess script that you must run before you downgrade.

• About Oracle Label Security Downgrades
You can downgrade from an Oracle Database 12c release 1 (12.1) or later database that
uses Oracle Label Security or Oracle Database Vault.

• Running the Oracle Label Security Preprocess Script Before Downgrading
You must connect as SYS wth the SYSDBA administrative privilege before running the
Oracle Label Security preprocess script for a downgrade.

15.6.3.1 About Oracle Label Security Downgrades
You can downgrade from an Oracle Database 12c release 1 (12.1) or later database that
uses Oracle Label Security or Oracle Database Vault.

To do this, you must run the OLS preprocessing script, olspredowngrade.sql to process the
AUD$ table contents. The OLS downgrade script moves the AUD$ table from the SYS schema to
the SYSTEM schema. The olspredowngrade.sql script is a processing script required in
preparation for this move. It creates a temporary table, PREDWG_AUD$, in the SYSTEM schema
and moves the SYS.AUD$ records to SYSTEM.PREDWG_AUD$. The moved records can no longer
be viewed through the DBA_AUDIT_TRAIL view, but you can view them by directly accessing
the SYSTEM.PREDWG_AUD$ table until the downgrade completes. Once the downgrade
completes, the SYSTEM.PREDWG_AUD$ table is permanently deleted. At this point, all audit
records are available for viewing in the DBA_AUDIT_TRAIL data dictionary view.

Chapter 15
Oracle Label Security Upgrades and Downgrades

15-13



15.6.3.2 Running the Oracle Label Security Preprocess Script Before
Downgrading

You must connect as SYS wth the SYSDBA administrative privilege before running the
Oracle Label Security preprocess script for a downgrade.

1. Connect to the database to be downgraded. At the system prompt, enter:

CONNECT SYS AS SYSDBA
Enter password password

2. Run the OLS preprocess downgrade script:

@$ORACLE_HOME/rdbms/admin/olspredowngrade.sql

Chapter 15
Oracle Label Security Upgrades and Downgrades

15-14



16
Releasability Using Inverse Groups

Oracle Label Security can implement the releasability using inverse groups.

• About Inverse Groups and Releasability
Inverse groups indicate releasability of information.

• Comparison of Standard Groups and Inverse Groups
Groups in Oracle Label Security identify organizations that own or access data.

• How Inverse Groups Work
Inverse groups are implemented in a special way and are organized to suit the needs of
Oracle Label Security.

• Algorithm for Read Access with Inverse Groups
You should understand how the algorithm for read access with inverse groups works.

• Algorithm for Write Access with Inverse Groups
You should understand the algorithm for write access with inverse groups.

• Algorithms for COMPACCESS Privilege with Inverse Groups
Oracle provides algorithms for read and write access with inverse groups, for users who
have COMPACCESS privilege.

• Session Labels and Inverse Groups
Inverse groups affect session labels and row labels.

• Changes in Behavior of Procedures with Inverse Groups
The INVERSE_GROUP option affects algorithms that determine the read and write access of
the user to labeled data.

• Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse groups.

16.1 About Inverse Groups and Releasability
Inverse groups indicate releasability of information.

They are used to mark the dissemination of data. When you add an inverse group to a data
label, the data becomes less classified.

For example, a user with inverse groups UK and US cannot access data that only has
inverse group UK. Adding US to that data makes it accessible to all users with the inverse
groups UK and US.

When you assign releasabilities to a user, you mark the communication channel to the user.
For data to flow across the communication channel, the data releasabilities must dominate
the releasabilities assigned to the user. In other words, releasabilities assigned to a data
record must contain all the releasabilities assigned to a user.

The advantage of releasabilities lies in their power to broadly disseminate information.
Releasing data to the entire marketing organization becomes as simple as adding the
Marketing releasability to the data record.

16-1



16.2 Comparison of Standard Groups and Inverse Groups
Groups in Oracle Label Security identify organizations that own or access data.

Like standard groups, inverse groups control the dissemination of information.
However, the behavior of inverse groups differs from Oracle Label Security standard
group behavior. By default, all policies created in Oracle Label Security use the
standard group behavior.

The term, releasabilities is sometimes used to refer to the behavior provided by
inverse groups. When you include inverse groups in a data label, the effect is similar to
assigning label compartment authorizations to a user. When Oracle Label Security
evaluates whether a user can view a row of data assigned to a label with inverse
groups, it checks to see whether the data, not the user, has the appropriate group
authorizations. It checks whether the data has all the inverse groups assigned to the
user. With standard groups, by contrast, Oracle Label Security checks to see whether
a user is authorized for at least one of the groups assigned to a row of data.

Consider a policy that contains three standard groups such as, Eastern, Western, and
Southern. User1's label authorizations include the groups Eastern and Western.
Assuming that User1 has been assigned the appropriate level and compartment
authorizations in the policy, then:

• With standard Oracle Label Security groups, User1 can view all data records that
have the group Eastern, or the group Western, or both Eastern and Western.

• With inverse groups, User1 can only view data records that have, at a minimum,
all the groups assigned to the user, that is, both Eastern and Western. User1
cannot view records that have only the Eastern group, only the Western group, or
that have no groups at all.

Table 16-1 shows all the rows that User1 can potentially access, given the type of
group that is used in the policy.

Table 16-1    Access to Standard Groups and Inverse Groups

If row label contains groups: User1 access with
standard groups?

User1 access with
inverse groups?

None Y N

Eastern Y N

Western Y N

Southern N N

Eastern, Western Y Y

Eastern, Southern Y N

Western, Southern Y N

Eastern, Western, Southern Y Y

Standard groups indicate ownership of information. In this way, all data pertaining to a
certain department can have that department's group in the label. When you add a
group to a data label, the data becomes more classified. For example, a user with no
groups can access data that has no groups in its label. If you add the group US to the
data label, the user can no longer access the data.

Chapter 16
Comparison of Standard Groups and Inverse Groups

16-2



See Also:

Group Components

16.3 How Inverse Groups Work
Inverse groups are implemented in a special way and are organized to suit the needs of
Oracle Label Security.

• Implementation of Inverse Groups with INVERSE_GROUP Enforcement
When creating an Oracle Label Security policy, you can specify whether the policy can
use inverse group functionality to implement releasability.

• Inverse Groups and Label Components
An Oracle Label Security policy created with the inverse group option uses the same
policy label components as standard groups.

• Computed Labels with Inverse Groups
Inverse groups affect computed label values.

• Inverse Groups and Hierarchical Structure
Standard groups in Oracle Label Security are hierarchical, so that a group can be
associated with a parent group.

• Inverse Groups and User Privileges
With inverse groups implemented, the meaning of user privileges remains the same.

16.3.1 Implementation of Inverse Groups with INVERSE_GROUP
Enforcement

When creating an Oracle Label Security policy, you can specify whether the policy can use
inverse group functionality to implement releasability.

To do this, you must specify INVERSE_GROUP as one of the default_options in the
CREATE_POLICY statement.

The INVERSE_GROUP option can be set only at policy creation time. Once a policy is created,
this option cannot be changed.

The INVERSE_GROUP option is thus policywide. It cannot be turned on or off when the policy is
applied to a table or schema. If you attempt to do so, using the procedure
APPLY_TABLE_POLICY or APPLY_SCHEMA_POLICY, then an error will be generated.

While other policy enforcement options can be dropped from a policy, the INVERSE_GROUP
policy configuration option cannot be dropped once it is set. To remove the option, you must
drop and then re-create the policy.

You can give individual users authorization for one or more inverse groups.

16.3.2 Inverse Groups and Label Components
An Oracle Label Security policy created with the inverse group option uses the same policy
label components as standard groups.

Chapter 16
How Inverse Groups Work

16-3



These components include levels, compartments, and groups.

With inverse groups, however, the user's read groups and write groups have a
different meaning and role in data access.

Consider the following policy example, with three levels, one compartment, and three
groups:

Table 16-2    Policy Example

Policy Component Abbreviation

Levels: -

UNCLASSIFIED UN
CONFIDENTIAL CON
SECRET SE
Compartments: -

FINANCIAL FIN
Groups: -

EASTERN EAS

WESTERN WES

SOUTHERN SOU

Two user labels have been assigned, CON:FIN and SE:FIN:EAS,WES
Two data labels have been assigned, CON:FIN:EAS and SE:FIN:EAS
User access to the data differs, depending on the type of group being used:

• If the policy uses standard groups, then:

The user with the label CON:FIN cannot read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES can read SE:FIN:EAS data.

• If the policy has the INVERSE GROUPS policy enforcement option, then:

The user with the label CON: FIN can read CON:FIN:EAS data.

The user with the label SE:FIN:EAS,WES cannot read SE:FIN:EAS data.

16.3.3 Computed Labels with Inverse Groups
Inverse groups affect computed label values.

• Computed Session Labels with Inverse Groups
After the administrator assigns label authorizations to a user, Oracle Label
Security automatically computes a number of labels.

• Inverse Groups and Computed Max Read Groups and Max Write Groups
Oracle Label Security provides different inverse groups to handle read and write
operations.

Chapter 16
How Inverse Groups Work

16-4



16.3.3.1 Computed Session Labels with Inverse Groups
After the administrator assigns label authorizations to a user, Oracle Label Security
automatically computes a number of labels.

With inverse groups, these labels are as follows:

Table 16-3    Computed Session Labels with Inverse Groups

Computed Label Definition

Max Read Label The user's maximum level combined with his or her authorized compartments
and the minimum set of inverse groups that should be in the user label
(session label)

Max Write Label The user's maximum level combined with the compartments for which the user
has been granted write access. Contains the maximum authorized inverse
groups that can be set in any label. The user has write authorizations on all
these inverse groups.

Min Write Label The user's minimum level.

Default Read Label The default level, combined with compartments and inverse groups that have
been designated as default for the user.

Default Write Label A subset of the default read label, containing the compartments and inverse
groups for which the user has been granted write access. However the inverse
groups component has no significance as it is the Max Write Groups that is
always used for write access.

Default Row Label The combination of components between the user's minimum write label and
the maximum write label, which has been designated as the default for the
data label for inserted data. The Inverse groups should be a superset of
inverse groups in the default label and a subset of Max Write Groups.

Related Topics

• Computed Session Labels
Oracle Label Security automatically computes a number of labels based on the value of
the session label.

16.3.3.2 Inverse Groups and Computed Max Read Groups and Max Write Groups
Oracle Label Security provides different inverse groups to handle read and write operations.

From the computed values in Table 16-3, two sets of groups are identified for label evaluation
of read and write access.

Table 16-4    Sets of Groups for Evaluating Read and Write Access

Sets of Groups Meaning

Max Read Groups Max Read Groups are the groups contained in the Max Read Label,
identifying the minimum set of inverse groups that can be set in any user
label.

Chapter 16
How Inverse Groups Work

16-5



Table 16-4    (Cont.) Sets of Groups for Evaluating Read and Write Access

Sets of Groups Meaning

Max Write Groups Max Write Groups are the groups contained in the Max Write Label,
identifying the maximum authorized inverse groups that can be set in any
user label. This set of groups is checked at the time of write access, and
also when setting session labels.

Note that Max Write Groups is a superset of Max Read Groups.

As shown in Table 16-5, for standard groups you can have READ ONLY and READ/WRITE
authorizations; for inverse groups you can have WRITE ONLY and READ/WRITE
authorizations.

Table 16-5    Read and Write Authorizations for Standard Groups and Inverse
Groups

Type of
Group

READ ONLY READ/WRITE WRITE ONLY

Standard
Groups

The group is present only
in Max Read Label, not in
Max Write Label.

The group is present in
both Max Read Label and
Max Write Label.

Not supported

Inverse
Groups

Not supported The group is present in
both Max Read Label and
Max Write Label.

The group is present only
in Max Write Label, not in
Max Read Label.

Although Max Read Groups identifies the set of groups contained in the Max Read
Label, this value represents the minimum set of inverse groups that can be set. For
example:

Max Read Groups: S:C1:G1,G2
Max Write Groups: S:C1:G1,G2,G3,G4,G5
Here, the user can read data that contains at least the two groups listed in Max Read
Groups.

Note that in standard groups, there can never be a situation in which there are more
groups in the Max Write Label than in the Max Read Label.

16.3.4 Inverse Groups and Hierarchical Structure
Standard groups in Oracle Label Security are hierarchical, so that a group can be
associated with a parent group.

For example, the EASTERN region can be the parent of two subordinate groups:
EAS_SALES, and EAS_HR.

In a policy with standard groups, if the user label has the parent group, then it can
access all data of the subordinate groups.

With inverse groups, parent-child relationships are not supported.

Chapter 16
How Inverse Groups Work

16-6



16.3.5 Inverse Groups and User Privileges
With inverse groups implemented, the meaning of user privileges remains the same.

When the user has no special privileges, then the read algorithm and the write algorithm are
different for standard groups and inverse groups. The differences are described later, in 
Algorithm for Read Access with Inverse Groups and Algorithm for Write Access with Inverse
Groups.

The effect of inverse groups on the COMPACCESS privilege is described later, in Algorithms
for COMPACCESS Privilege with Inverse Groups.

Inverse groups have no impact upon the following user privileges:

• PROFILE_ACCESS
• WRITEUP
• WRITEDOWN
• WRITEACROSS

16.4 Algorithm for Read Access with Inverse Groups
You should understand how the algorithm for read access with inverse groups works.

To read data in a table with the INVERSE GROUP option in effect, the label evaluation process
proceeds from levels to groups to compartments, as illustrated in Figure 16-1. (Note that the
current session label is the label being evaluated.)

1. The user's level must be greater than or equal to the level of data.

2. The user's label must include all the compartments assigned to the data

3. The groups in the data label must be a superset of the groups in the user label.

If the user's label passes these tests, then the user can access the data. If not, the user is
denied access. Note that if the data label is null or invalid, then the user is denied access.

Note:

This flow diagram is true only when the user has no special privileges.

Chapter 16
Algorithm for Read Access with Inverse Groups

16-7



Figure 16-1    Read Access Label Evaluation with Inverse Groups

No 

Access

 Access

Data

level =< user


level?

User has

groups? 

Data

has


compartments?

User has all

compartments? 

N N N

Y YYYY

N
N

Data has all

groups in


user label? 

Related Topics

• How Oracle Label Security Algorithm for Read Access Works
The READ_CONTROL enforcement determines the ability to read data in a row.

16.5 Algorithm for Write Access with Inverse Groups
You should understand the algorithm for write access with inverse groups.

To write data in a table with the INVERSE GROUP option, the label evaluation process
proceeds from levels to groups to compartments, as illustrated in Figure 16-2. (Note
that the current session label is the label being evaluated.)

1. The level in the data label must be greater than or equal to the user's minimum
level, and less than or equal to the user's session level.

2. One of the following conditions must be met:

The groups in the data label must be a superset of the groups in the user label.

or

The user has READ access privilege on the policy.

3. The user's Max Write Groups must be a superset of the data label groups.

4. The user label must have write access on all of the compartments in the data
label.

Note that if the data label is null or invalid, then the user is denied access.

Note:

This flow diagram is true only when the user has no special privileges.

Chapter 16
Algorithm for Write Access with Inverse Groups

16-8



Figure 16-2    Write Access Label Evaluation with Inverse Groups

No 

Access

 Access

Data level

=< user

level?

Data level

=> user min


level?

User

has groups?

Data

has


compartments?

Data has all

groups in user


label?

N NN N

Y YYYYY

Data

has


groups?

User's max_write

groups is superset


of datalabel?

Users has all

compartments


with write

access?

N

Y

N

N

Y

N

See Also:

How the Oracle Label Security Algorithm for Write Access Works

16.6 Algorithms for COMPACCESS Privilege with Inverse
Groups

Oracle provides algorithms for read and write access with inverse groups, for users who have
COMPACCESS privilege.

The COMPACCESS privilege allows a user to access data based on the row's compartments,
independent of the row's groups.

• When compartments exist and access to them is authorized, then the group authorization
is bypassed.

• If a row has no compartments, then access is determined by the inverse group
authorizations.

Figure 16-3 and Figure 16-4 show the label evaluation process for read access and write
access for a user with the COMPACCESS privilege. If the data label is null or invalid, then the
user is denied access.

(Note that the current session label is the label being evaluated.)

Chapter 16
Algorithms for COMPACCESS Privilege with Inverse Groups

16-9



Figure 16-3    Read Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

No 

Access

 Access

Data

level =< user


level?

User has

groups? 

Data

has


compartments?

User has all

compartments? 

N N N

Y YYYY

N

Y

N
N

Data has all

groups in user


label? 

Data has

compartments?

Figure 16-4    Write Access Label Evaluation: COMPACCESS Privilege and Inverse Groups

No 

Access

 Access

Data level

=< user

level?

Data level

=> user min


level?

User

has groups?

Data

has


compartments?

Data has all

groups in user


label?

N NN N

Y YYYYY

Data

has


groups?

User's max_write

groups is superset


of datalabel?

Users has all

compartments


with write

access?

N

Y

N

N

Y

N

16.7 Session Labels and Inverse Groups
Inverse groups affect session labels and row labels.

• Initial Session and Row Labels for Standard or Inverse Groups
Oracle provides initial session and row labels for standard and inverse groups.

• Setting Current Session or Row Labels for Standard or Inverse Groups
You can set the current session or row labels for standard or inverse groups.

• Examples of Session Labels and Inverse Groups
Oracle provides examples of using inverse groups.

Chapter 16
Session Labels and Inverse Groups

16-10



16.7.1 Initial Session and Row Labels for Standard or Inverse Groups
Oracle provides initial session and row labels for standard and inverse groups.

• About the Initial Session and Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of Oracle Label Security procedures that
determine the session label.

• Standard Groups: Rules for Changing Initial Session/Row Labels
A user's default session label can be changed using SA_USER_ADMIN.SET_DEFAULT_LABEL.

• Inverse Groups: Rules for Changing Initial Session/Row Labels
The default session label can include groups in the authorized list if the new write label
dominates the current default row label.

16.7.1.1 About the Initial Session and Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of Oracle Label Security procedures that
determine the session label.

The SA_USER_ADMIN.SET_DEFAULT_LABEL and SA_USER_ADMIN.SET_ROW_LABEL procedures set
the user's initial session label and row label, respectively, to the one specified.

16.7.1.2 Standard Groups: Rules for Changing Initial Session/Row Labels
A user's default session label can be changed using SA_USER_ADMIN.SET_DEFAULT_LABEL.

In the case of standard groups, the default session label can be set to include any groups in
the authorized list, as long as the current default row label will still be dominated by the new
write label. That is, the row label will have the same or fewer standard groups than the new
write label.

The same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

16.7.1.3 Inverse Groups: Rules for Changing Initial Session/Row Labels
The default session label can include groups in the authorized list if the new write label
dominates the current default row label.

That is, the row label will have the same or more inverse groups than the new write label. The
same rule applies for SA_USER_ADMIN.SET_ROW_LABEL.

Related Topics

• SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label to
the one specified.

• SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the one
specified.

• Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse groups.

Chapter 16
Session Labels and Inverse Groups

16-11



16.7.2 Setting Current Session or Row Labels for Standard or Inverse
Groups

You can set the current session or row labels for standard or inverse groups.

• About Setting Current Session or Row Labels for Standard or Inverse Groups
The use of inverse groups affects the behavior of the SA_SESSION.SET_LABEL and
SA_SESSION.SET_ROW_LABEL procedures.

• Standard Groups: Rules for Changing Current Session/Row Labels
With standard groups, the SA_SESSION.SET_LABEL procedure can set the session
label to include groups in the user's authorized group list.

• Inverse Groups: Rules for Changing Current Session/Row Labels
With inverse groups, the addition of groups to the session label decreases a user's
ability to access sensitive data with fewer groups.

16.7.2.1 About Setting Current Session or Row Labels for Standard or Inverse
Groups

The use of inverse groups affects the behavior of the SA_SESSION.SET_LABEL and
SA_SESSION.SET_ROW_LABEL procedures.

These procedures can be used to set the user's current session label and row label,
respectively.

16.7.2.2 Standard Groups: Rules for Changing Current Session/Row Labels
With standard groups, the SA_SESSION.SET_LABEL procedure can set the session label
to include groups in the user's authorized group list.

Subgroups of authorized groups are implicitly included in the authorized list.

Note that if you change the session label, then this may affect the value of the
session's row label.

Use the SET_ROW_LABEL procedure to set the row label value for the current database
session. The compartments and groups in the label must be a subset of compartments
and groups in the session label to which the user has write access.

16.7.2.3 Inverse Groups: Rules for Changing Current Session/Row Labels
With inverse groups, the addition of groups to the session label decreases a user's
ability to access sensitive data with fewer groups.

The removal of groups enables the user to access more sensitive information. So, the
user should be allowed to add groups to the session label, as long as Max Read
Groups is a subset of the groups in the session label, and Max Write Groups is a
superset of groups in the session label. The same restriction applies when a user
removes groups from the session label.

Note that there are no subgroups of authorized groups when using inverse groups.
This is because parent groups are not allowed in policies using inverse groups.

Chapter 16
Session Labels and Inverse Groups

16-12



Use the SET_ROW_LABEL procedure to set the row label value for the current database session.
The compartments in the label must be a subset of compartments in the session label to
which the user has write access.

The user is allowed to add inverse groups to the row label, as long as the session label
inverse groups are a subset of the row label inverse groups, and Max Write Groups is a
superset of inverse groups in the row label.

For example:

• If the user has the inverse groups UK and US as his Max Read Groups, and UK,US,CAN as
his Max Write Groups. The user can set his session label to C:ALPHA:UK,US,CAN but not to
C:ALPHA:UK.

• If the user has the inverse group UK as his Max Read Groups, and UK,CAN as his Max
Write Groups.assigned to him. The user can set the session label to C:ALPHA:UK,CAN but
cannot change it to either C:ALPHA or C:ALPHA:UK,US,CAN.

Related Topics

• SA_SESSION.SET_LABEL
The SA_SESSION.SET_LABEL procedure sets the label of the current database session.

• SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

16.7.3 Examples of Session Labels and Inverse Groups
Oracle provides examples of using inverse groups.

• Example: Simple Inverse Groups
You can create a simple policy that implements inverse groups with a set of special
labels.

• Example: Complex Inverse Groups
You can create a more complex policy that implements inverse groups with a set of
special labels.

16.7.3.1 Example: Simple Inverse Groups
You can create a simple policy that implements inverse groups with a set of special labels.

Table 16-6    Labels for Inverse Groups Example 1

Name Definition

Max Read Label SE:ALPHA,BETA:G1,G2
Max Write Label SE:ALPHA:G1,G2,G3
Default Read Label SE:ALPHA,BETA:G1,G2
Default Write Label SE:ALPHA:G1,G2
Default Row Label SE:ALPHA:G1,G2
From which the following
values are derived:

-

Max Read Groups G1,G2

Chapter 16
Session Labels and Inverse Groups

16-13



Table 16-6    (Cont.) Labels for Inverse Groups Example 1

Name Definition

Max Write Groups G1,G2,G3

The following conclusions can be drawn:

• User01 can update data with label SE:ALPHA:G1,G2 as well as data with label
SE:ALPHA:G1,G2,G3. User1 cannot, however, update label SE:ALPHA:G1.

If standard groups were being used, rather than inverse groups, then User1 could
update data with label SE:ALPHA:G1.

• Data that User01 inserts has the label SE:ALPHA:G1,G2. (This is the same as with
standard groups.)

• If User01 leaves the default label as is, and sets the row label to
SE:ALPHA:G1,G2,G3, then user1 will insert SE:ALPHA:G1,G2,G3 in new rows of data
that is written. (In standard groups, User1 can never set more groups in the row
label than in the default label.)

16.7.3.2 Example: Complex Inverse Groups
You can create a more complex policy that implements inverse groups with a set of
special labels.

Table 16-7    Labels for Inverse Groups Example 2

Name Definition

Max Read Label C:ALPHA:
Max Write Label C:ALPHA:G1,G2,G3
Default Read Label C:ALPHA:

Default Write Label C:ALPHA:
Default Row Label C:ALPHA:

From which the following
values are derived:

-

Max Read Groups (an empty set)

Max Write Groups G1,G2,G3

The following conclusions can be drawn:

• User01 can update any data with level C, compartment ALPHA, and any
combination of groups G1, G2, G3, or no groups. User01 inserts the label C:ALPHA:
in new data that User01 writes.

• User02, who has Max Read Groups of G1,G2 or G1,G3, and so on, will not be able to
view the data written by User01. This is because User01's Default Row Label
contains no groups.

Chapter 16
Session Labels and Inverse Groups

16-14



• User01 can choose to set inverse groups in the row label, as long as the inverse groups
in the session label dominates the row label (that is, User01's session label contains the
same or fewer groups than contained in the row label).

This is true because the row label must have at least the groups in the session label, and
can at most have the Maximum Write Groups. If the session label is G1, then you can set
the groups in the row label from G1 to the Max Write Groups (G1,G2,G3).

• If User01 sets his session label and row label to C:ALPHA:G1:G2:G3, then his data
becomes accessible to anyone who has any combination of G1,G2,G3 in his Max Read
Groups.

16.8 Changes in Behavior of Procedures with Inverse Groups
The INVERSE_GROUP option affects algorithms that determine the read and write access of the
user to labeled data.

• SA_SYSDBA.CREATE_POLICY with Inverse Groups
The SA_SYSDBA.CREATE_POLICY procedure creates the policy, defines an optional policy-
specific column name, and specifies policy options.

• SA_SYSDBA.ALTER_POLICY with Inverse Groups
The SA_SYSDBA.ALTER_POLICY procedure changes a policy's default enforcement options,
except for the INVERSE_GROUP option.

• SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
The SA_USER_ADMIN.ADD_GROUPS procedure adds groups to a user, indicating whether the
groups are authorized for write as well as read.

• SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for each group.

• SA_USER_ADMIN.SET_GROUPS with Inverse Groups
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

• SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels, compartments,
and groups using a set of labels, instead of the individual components.

• SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label.

• SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets the user's initial row label.

• SA_COMPONENTS.CREATE_GROUP with Inverse Groups
The SA_COMPONETS.CREATE_GROUP procedure create a group, including its short name and
long name, and optionally a parent group.

• SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
The SA_COMPONENTS.ALTER_GROUP_PARENT function is disabled for policies with the inverse
group option.

• SA_SESSION.SET_LABEL with Inverse Groups
The SA_SESION.SET_LABEL procedure sets the label of the current database session.

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-15



• SA_SESSION.SET_ROW_LABEL with Inverse Groups
The SET_ROW_LABEL procedure sets the default row label value for the current
database session.

• LEAST_UBOUND with Inverse Groups
The LEAST_UBOUND (LUBD) function returns a character string label that is the least
upper bound of label1 and label2.

• GREATEST_LBOUND with Inverse Groups
The GREATEST_LBOUND (GLBD) function determines the lowest label of the data that
can be involved in an operation, given two different labels.

16.8.1 SA_SYSDBA.CREATE_POLICY with Inverse Groups
The SA_SYSDBA.CREATE_POLICY procedure creates the policy, defines an optional
policy-specific column name, and specifies policy options.

With inverse group support the, user has one more policy enforcement option,
INVERSE_GROUP. For example:

PROCEDURE CREATE_POLICY (
 HR IN VARCHAR2,
 SA_LABEL IN VARCHAR2 DEFAULT NULL,
 INVERSE_GROUP IN VARCHAR2 DEFAULT NULL);

Related Topics

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security
policy, defines a policy-specific column name, and specifies default policy options.

16.8.2 SA_SYSDBA.ALTER_POLICY with Inverse Groups
The SA_SYSDBA.ALTER_POLICY procedure changes a policy's default enforcement
options, except for the INVERSE_GROUP option.

Once a policy is configured for inverse groups, it cannot be changed. You can also
change the column names associated with an OLS policy.

Related Topics

• SA_SYSDBA.ALTER_POLICY
The SA_SYSDBA.ALTER_POLICY procedure sets and modifies column names that
are associated with the policy.

16.8.3 SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
The SA_USER_ADMIN.ADD_GROUPS procedure adds groups to a user, indicating whether
the groups are authorized for write as well as read.

The type of access authorized depends on the access_mode parameter.

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-16



Table 16-8    Access Authorized by Values of access_mode Parameter

Access_Mode Parameter Meaning

READ_WRITE Indicates that write is authorized. (That is, the group is contained in
both Max Read Groups and Max Write Groups.)

WRITE_ONLY Indicates that the group is contained in Max Write Groups and not in
Max Read Groups

access_mode If access_mode is set to READ_WRITE, then the group is added to both
Max Read Groups and Max Write Groups.

If access_mode is set to SA_UTL.WRITE_ONLY, then the group is
added only to the Max Write Groups.

If access_mode is NULL, then it is set to SA_UTL.READ_WRITE.

in_def Specifies whether these groups should be in the default groups (Y/N).

If in_def is NULL, then it will be set to Y or N as follows:

If access mode is READ_WRITE, in_def is set to Y.

If access mode is WRITE_ONLY, in_def is set to N.

in_row Specifies whether these groups should be in the row label (Y/N), using
the identical criteria as for in_def.

However, if in_def is Y, then in_row must also be Y.

Note that if in_def is Y in a row, then in_row must also be set to Y, but not the other way
round.

The same is the case with the in_row field.

See Also:

• Syntax for SA_USER_ADMIN.ADD_GROUPS

• Inverse Groups and Computed Max Read Groups and Max Write Groups

16.8.4 SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for each group.

The behavior of inverse groups is the same as described in the case of ADD_GROUPS.

See Also:

Syntax for SA_USER_ADMIN.ALTER_GROUPS

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-17



16.8.5 SA_USER_ADMIN.SET_GROUPS with Inverse Groups
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

Inverse groups are handled differently than standard groups, as follows:

Table 16-9    Assigning Groups to a User

Group Set Name Meaning

read_groups A comma-delimited list of groups that would be Max Read
Groups

write_groups A comma-delimited list of groups that would be Max Write
Groups. It must be a superset of read_groups.

If write_groups is NULL, then they are set to read_groups.

def_groups Specifies the default groups. It should at least have
read_groups, and write_groups should be a superset of
def_groups.

If def_groups is NULL, then they are set to the read_groups.

row_groups Specifies the row groups. It should at least have the def_groups
and should be a subset of max write groups.

If row_groups is NULL, then they are set to the def_groups,
because for inverse groups, all def_groups are also in
write_groups.

See Also:

Syntax for SA_USER_ADMIN.SET_GROUPS

16.8.6 SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual components.

Inverse groups are handled differently than standard groups, as follows:

Table 16-10    Inverse Group Label Definitions

Name Definition

max_read_label Specifies the label string to be used to initialize the user's maximum
authorized read label. Composed of the user's maximum level,
compartments authorized for read access, and if inverse groups,
minimum set of groups that can be set in any label.(Max Read
Groups)

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-18



Table 16-10    (Cont.) Inverse Group Label Definitions

Name Definition

max_write_label Specifies the label string to be used to initialize the user's maximum
authorized write label. Composed of the user's maximum level,
compartments authorized for write access, and if inverse groups, the
maximum authorized groups that can be set in any label (Max Write
Groups). All the inverse groups in this have write authorization also. It
should be a superset of groups in max_read_label. If
max_write_label is not specified, then it is set to
max_read_label.

def_label Specifies the label string to be used to initialize the user's session
label, including level, compartments, and groups (a subset of
max_read_label). If default_label is not specified, then it is set
to max_read_label. For inverse groups, component it should at
least have the groups in max_read_label, and groups in
max_write_label should be a superset of the groups in the
def_label.

row_label Specifies the label string to be used to initialize the program's row
label. Includes levels, compartments, and groups: subsets of
max_write_label and def_label. If row_label is not specified,
then it is set to def_label, with only the compartments and groups
authorized for write access. The inverse groups component is set to
the same as that in def_label if the row_label is not specified.
The inverse groups in row label should at least be those in default
label and should be a subset of Max Write Groups.

See Also:

Syntax for SA_USER_ADMIN.SET_USER_LABELS

16.8.7 SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label.

All the rules mentioned for setting inverse groups component of session label mentioned in 
Session Labels and Inverse Groups are applicable here.

See Also:

Syntax for SA_USER_ADMIN.SET_DEFAULT_LABEL

16.8.8 SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets the user's initial row label.

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-19



When specifying the row_label, the inverse groups component must contain at least
all the inverse groups in def_label and should be a subset of Max Write Groups.

See Also:

• Syntax for SA_USER_ADMIN.SET_ROW_LABEL

• Initial Session and Row Labels for Standard or Inverse Groups

16.8.9 SA_COMPONENTS.CREATE_GROUP with Inverse Groups
The SA_COMPONETS.CREATE_GROUP procedure create a group, including its short name
and long name, and optionally a parent group.

With inverse groups, the parent_name field should always be NULL. If the user specifies
a value for this field, then an error message is displayed, indicating that the group
hierarchy is disabled.

See Also:

Syntax for SA_COMPONENTS.CREATE_GROUP

16.8.10 SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse
Groups

The SA_COMPONENTS.ALTER_GROUP_PARENT function is disabled for policies with the
inverse group option.

An error message is displayed if the user calls this function.

See Also:

Syntax for SA_COMPONENTS.ALTER_GROUP

16.8.11 SA_SESSION.SET_LABEL with Inverse Groups
The SA_SESION.SET_LABEL procedure sets the label of the current database session.

For the current user, this procedure follows the same rules for setting the session label
as does the SA_USER_ADMIN.SET_USER_LABEL function.

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-20



See Also:

• Syntax for SA_SESSION.SET_LABEL.

• Setting Current Session or Row Labels for Standard or Inverse Groups

16.8.12 SA_SESSION.SET_ROW_LABEL with Inverse Groups
The SET_ROW_LABEL procedure sets the default row label value for the current database
session.

For the current user, this procedure follows the same rules for setting the row label as does
the sa_user_admin.set_row_label function.

See Also:

• Syntax for SA_SESSION.SET_ROW_LABEL

• Initial Session and Row Labels for Standard or Inverse Groups

16.8.13 LEAST_UBOUND with Inverse Groups
The LEAST_UBOUND (LUBD) function returns a character string label that is the least upper
bound of label1 and label2.

With standard groups, the least upper bound is the highest level, the union of the
compartments in the labels, and the union of the groups in the labels.

With inverse groups, the least upper bound is the highest level, the union of the
compartments in the labels, and the intersection of the inverse groups in the labels.

For example, with inverse groups, the least upper bound of HIGHLY_SENSITIVE:ALPHA:G1,G2
and SENSITIVE:BETA:G1 is HIGHLY_SENSITIVE:ALPHA,BETA:G1.

16.8.14 GREATEST_LBOUND with Inverse Groups
The GREATEST_LBOUND (GLBD) function determines the lowest label of the data that can be
involved in an operation, given two different labels.

This function returns a character string label that is the greatest lower bound of label1 and
label2.

With standard groups, the greatest lower bound is the lowest level, and the intersection of the
compartments in the labels and the groups in the labels.

With inverse groups, the greatest lower bound is the lowest level, and the intersection of the
compartments in the labels and the union of inverse groups in the labels.

For example, with inverse groups the greatest lower bound of
HIGHLY_SENSITIVE:ALPHA:G1,G3 and SENSITIVE::G1 is SENSITIVE:G1,G3

Chapter 16
Changes in Behavior of Procedures with Inverse Groups

16-21



Related Topics

• Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or
the greatest lower bound of two or more labels.

16.9 Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse
groups.

Dominance rules for Oracle Label Security with standard groups can be summarized
as follows:

A user label dominates a data label if:

• User level is greater than or equal to the data level

• User compartments are a superset of the data compartments

• User groups intersects (have at least one group from) the data groups

Dominance rules for Oracle Label Security with inverse groups can be summarized as
follows:

A user label dominates a data label if:

• User level is greater than or equal to the data level

• User compartments are a superset of the data compartments

• Data groups are a superset of user groups

Related Topics

• About Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance.

Chapter 16
Dominance Rules for Labels with Inverse Groups

16-22



Part V
Appendixes

Part IV contains reference material for using Oracle Label Security.

• Disabling and Enabling Oracle Label Security
You can disable and enable Oracle Label Security as necessary.

• Advanced Topics in Oracle Label Security
Oracle provides advanced functionality for Oracle Label Security, such as the ability to
analyze relationships between labels.

• Command-line Tools for Label Security Using Oracle Internet Directory
Oracle Label Security provides command-line tools for using Oracle Internet Directory.

• Oracle Label Security in an Oracle RAC Environment
You can use Oracle Label Security in an Oracle Real Application Clusters (Oracle RAC)
environment.

• Oracle Label Security PL/SQL Packages
Oracle Label Security provides a set of PL/SQL packages.

• Oracle Label Security Reference
Oracle Label Security provides data dictionary tables and views. You should also be
aware of Oracle Label Security restrictions.

• Frequently Asked Questions about Oracle Label Security
Customers have frequently asked questions about Oracle Label Security.



A
Disabling and Enabling Oracle Label Security

You can disable and enable Oracle Label Security as necessary.

Note:

Oracle does not support the deinstallation of Oracle Label Security.

• When You Must Disable Oracle Label Security
You may need to disable Oracle Label Security to perform upgrade tasks or correct
erroneous configurations.

• Disabling Oracle Label Security
If Oracle Database Vault has been enabled, then do not disable Oracle Label Security.

• Enabling Oracle Label Security
You can enable Oracle Label Security in SQL*Plus.

A.1 When You Must Disable Oracle Label Security
You may need to disable Oracle Label Security to perform upgrade tasks or correct
erroneous configurations.

Another reason for disabling Oracle Label Security is if you want to test an application without
enforcing Oracle Label Security. You can reenable Oracle Label Security after you complete
the tasks.

Related Topics

• Checking if Oracle Label Security Has Been Registered and Enabled
You can query the DBA_OLS_STATUS data dictionary view to find if Oracle Label Security
has already been registered and enabled.

A.2 Disabling Oracle Label Security
If Oracle Database Vault has been enabled, then do not disable Oracle Label Security.

See Oracle Database Vault Administrator's Guide to find if Database Vault has been enabled.

To disable Oracle Label Security:

1. Log into the database instance as user SYS or a user who has been granted the LBAC_DBA
role.

For example:

sqlplus psmith_ols -- Or, psmith_ols@hrpdb for the hrpdb pluggable database (PDB)
Enterp password: password

2. Run the following procedure:

A-1



EXEC LBACSYS.OLS_ENFORCEMENT.DISABLE_OLS;
3. Restart the database.

For example:

CONNECT SYS AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

4. For Oracle Real Application Cluster (Oracle RAC) environment or a multitenant
environment, repeat these steps for each Oracle RAC node or PDB on which you
enabled Oracle Label Security.

A.3 Enabling Oracle Label Security
You can enable Oracle Label Security in SQL*Plus.

1. Log into the database instance as user SYS or a user who has been granted the
LBAC_DBA role.

For example:

sqlplus psmith_ols -- Or, psmith_ols@hrpdb for the hrpdb PDB
Enterp password: password

2. Run the following procedure:

EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS;
3. Restart the database.

For example:

CONNECT SYS AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

4. For Oracle Real Application Cluster (Oracle RAC) environment or a multitenant
environment, repeat these steps for each Oracle RAC node or PDB on which you
disabled Oracle Label Security.

Appendix A
Enabling Oracle Label Security

A-2



B
Advanced Topics in Oracle Label Security

Oracle provides advanced functionality for Oracle Label Security, such as the ability to
analyze relationships between labels.

• Analyzing the Relationships Between Labels
You can analyze the relationships between labels.

• Queries for Audited Oracle Label Security Session Labels
You can use the unified audit trail to capture information from various audit sources,
including Oracle Label Security.

• Oracle Call Interface for Setting Session Labels
You can use an Oracle Call Interface (OCI) to set session labels.

B.1 Analyzing the Relationships Between Labels
You can analyze the relationships between labels.

• About Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance.

• Non-Comparable Labels
It is important to understand how labels can be compared with regard to dominance.

• Using Dominance Functions
Oracle Label Security provides functions to control dominance.

B.1.1 About Dominant and Dominated Labels
The relationship between two labels can be described in terms of dominance.

A user's ability to access an object depends on whether the user's label dominates the label
of the object. If a user's label does not dominate the object's label, then the user is not
allowed to access the object.

Label dominance is analyzed in terms of all its components: levels, compartments, and
groups.

Table B-1    Dominance in the Comparison of Labels

Factor Criteria for Dominance

Level For label1 to dominate label2, the level of label1 must be
greater than or equal to that of label2.

Compartment For label1 to dominate label2, the compartments of label1
must contain all the compartments of label2.

Group For label1 to dominate label2, label1 must contain at least
one of the groups of label2.

B-1



One label dominates another label if all of its components dominate the components of
the other label. For example, the label HIGHLY_SENSITIVE:FINANCE,OPERATIONS
dominates the label HIGHLY_SENSITIVE:FINANCE. Similarly, the label
HIGHLY_SENSITIVE::WR_AP dominates the label HIGHLY_SENSITIVE::WR_AP, WR_AR.

Related Topics

• Dominance Rules for Labels with Inverse Groups
You should understand how dominance rules work for Oracle labels and inverse
groups.

B.1.2 Non-Comparable Labels
It is important to understand how labels can be compared with regard to dominance.

The relationship between two labels cannot always be defined by dominance. Two
labels are non-comparable if neither label dominates the other.

If any compartments differ between the two labels (as with HS:A and HS:B), then they
are non-comparable. Similarly, the labels HS:A and S:B are non-comparable.

You can find existing labels by querying the DBA_SA_LABELS data dictionary view.

B.1.3 Using Dominance Functions
Oracle Label Security provides functions to control dominance.

• About the Dominance Functions
You can use dominance functions to specify ranges in queries.

• OLS_DOMINATES Standalone Function
The OLS_DOMINATES (OLS_DOM) function returns 1 (TRUE) if label1 dominates
label2, or 0 (FALSE) if it does not.

• OLS_LABEL_DOMINATES Standalone Function
The standalone OLS_LABEL_DOMINATES function checks the dominance of session
labels.

• OLS_STRICTLY_DOMINATES Standalone Function
The OLS_STRICTLY_DOMINATES (OLS_S_DOM) function returns 1 (TRUE) if label1
dominates label2 and is not equal to it.

• OLS_DOMINATED_BY Standalone Function
The OLS_DOMINATED_BY (OLS_DOM_BY) function returns 1 (TRUE) if label1 is
dominated by label2.

• OLS_STRICTLY_DOMINATED_BY Standalone Function
The OLS_STRICTLY_DOMINATED_BY (OLS_S_DOM_BY) function returns 1 (TRUE) if
label1 is dominated by label2 and is not equal to it.

• SA_UTL.DOMINATES
The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2 or if the
session label for the given OLS policy dominates label.

• SA_UTL.STRICTLY_DOMINATES
The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates
label2 and is not equal to it.

Appendix B
Analyzing the Relationships Between Labels

B-2



• SA_UTL.DOMINATED_BY
The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by label2.

• SA_UTL.STRICTLY_DOMINATED_BY
The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is dominated by
label2 and is not equal to it.

Related Topics

• Ordering Labeled Data Rows
The ORDER BY clause of a SELECT statement can be used to order rows by the numeric
label tag.

B.1.3.1 About the Dominance Functions
You can use dominance functions to specify ranges in queries.

The following functions enable you to indicate dominance relationships between specified
labels.

Table B-2    Functions to Determine Dominance

Function Description

OLS_DOMINATES The value of label1 dominates, or is equal to, that
of label2.

OLS_LABEL_DOMINATES The value of the session label for the corresponding
policy_name dominates, or is equal to, that of
label.

OLS_STRICTLY_DOMINATES The value of label1 dominates that of label2, and
is not equal to it.

OLS_DOMINATED_BY The value of label1 is dominated by that of label2.

OLS_STRICTLY_DOMINATED_BY The value of label1 is dominated by that of label2,
and is not equal to it.

Note that there are two types of dominance function. While the SA_UTL dominance functions
return BOOLEAN values, the standalone dominance functions return integers.

B.1.3.2 OLS_DOMINATES Standalone Function
The OLS_DOMINATES (OLS_DOM) function returns 1 (TRUE) if label1 dominates label2, or 0
(FALSE) if it does not.

Syntax

OLS_DOMINATES (
  label1          IN NUMBER,
  label2          IN NUMBER) 
RETURN INTEGER; 

Appendix B
Analyzing the Relationships Between Labels

B-3



Parameters

Table B-3    OLS_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SELECT OLS_DOMINATES ('1111', '1112') FROM DUAL;

OLS_DOMINATES('1111','1112')
----------------------------
                           0

Note:

The old OLS functions, DOMINATES and DOM, have been deprecated in Oracle
Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends
that you use the OLS_LABEL_DOMINATES and OLS_DOM functions instead. Using
the new function names avoids potential name conflicts with other database
components.

B.1.3.3 OLS_LABEL_DOMINATES Standalone Function
The standalone OLS_LABEL_DOMINATES function checks the dominance of session
labels.

It returns 1 (TRUE) if the session label of the specified policy_name value dominates or
is equal to the label that is specified by the label parameter. Otherwise, this function
returns 0 (FALSE). This function is publicly available.

Note:

This feature is available starting with Oracle Database 12c release 1
(12.1.0.2).

In addition to Oracle Label Security policies, you can use this function with both Oracle
Data Redaction and Oracle Database Vault policies.

Appendix B
Analyzing the Relationships Between Labels

B-4



Syntax

OLS_LABEL_DOMINATES (
  policy_name    IN VARCHAR2,
  label          IN VARCHAR2)
RETURN INTEGER;

Parameters

Table B-4    OLS_LABEL_DOMINATES Parameters

Parameter Description

policy_name The name of the Oracle Label Security policy whose session label
must be checked for dominance. To find existing label values for
policies, query the POLICY_NAME and LABEL columns of the
ALL_SA_LABELS view.

label The base label against whom the dominance has to be checked

Examples

The following example checks if the session label for the hr_ols_pol policy dominates or is
equal to the hs label.

SELECT OLS_LABEL_DOMINATES ('hr_ols_pol', 'hs') FROM DUAL;

OLS_LABEL_DOMINATES('HR_OLS_POL','HS')
--------------------------------------
                                     0

This example shows how you can use the OLS_LABEL_DOMINATES function in an Oracle Data
Redaction policy:

BEGIN
 DBMS_REDACT.ADD_POLICY(
   object_schema   => 'oe', 
   object_name     => 'customers', 
   column_name     => 'customer_id',
   policy_name     => 'redact_cust_user_ids', 
   function_type   => DBMS_REDACT.FULL,
   expression      => 'OLS_LABEL_DOMINATES(''hr_ols_pol'', ''hs'') = 0');
END;
/

The following example shows how you can use the OLS_LABEL_DOMINATES function in an
Oracle Database Vault rule definition:

EXEC DBMS_MACADM.CREATE_RULE('Check OLS Factor', 'OLS_LABEL_DOMINATES(''hr_ols_pol'', 
''hs'') = 1');

Appendix B
Analyzing the Relationships Between Labels

B-5



See Also:

• Oracle Database Advanced Security Guide for more information about
Data Redaction

• Oracle Database Vault Administrator’s Guide for more information about
Database Vault realms

B.1.3.4 OLS_STRICTLY_DOMINATES Standalone Function
The OLS_STRICTLY_DOMINATES (OLS_S_DOM) function returns 1 (TRUE) if label1
dominates label2 and is not equal to it.

Syntax

OLS_STRICTLY_DOMINATES (
  label1          IN NUMBER,
  label2          IN NUMBER) 
RETURN INTEGER; 

Parameters

Table B-5    OLS_STRICTLY_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Examples

The following example compares existing label tags 1111 and 1112.

SELECT OLS_STRICTLY_DOMINATES ('1111', '1112') FROM DUAL;

OLS_STRICTLY_DOMINATES('1111','1112')
-------------------------------------
                                    0

Note:

The old OLS functions, STRICTLY_DOMINATES and S_DOM have been
deprecated in Oracle Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends
that you use the OLS_STRICTLY_DOMINATES and OLS_S_DOM functions instead.
Using the new function names avoids potential name conflicts with other
database components.

Appendix B
Analyzing the Relationships Between Labels

B-6



B.1.3.5 OLS_DOMINATED_BY Standalone Function
The OLS_DOMINATED_BY (OLS_DOM_BY) function returns 1 (TRUE) if label1 is dominated by
label2.

Syntax

OLS_DOMINATED_BY (
  label1          IN NUMBER,
  label2          IN NUMBER)
RETURN INTEGER;

Parameters

Table B-6    OLS_STRICTLY_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the LABEL
and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SELECT OLS_DOMINATED_BY ('1111', '1112') FROM DUAL;

OLS_DOMINATED_BY('1111','1112')
-------------------------------
                              1

Note:

The old OLS functions, DOMINATED_BY and DOM_BY have been deprecated in Oracle
Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends that you
use the OLS_DOMINATED_BY and OLS_DOM_BY functions instead. Using the new
function names avoids potential name conflicts with other database components.

B.1.3.6 OLS_STRICTLY_DOMINATED_BY Standalone Function
The OLS_STRICTLY_DOMINATED_BY (OLS_S_DOM_BY) function returns 1 (TRUE) if label1 is
dominated by label2 and is not equal to it.

Syntax

OLS_STRICTLY_DOMINATED_BY (
  label1          IN NUMBER,
  label2          IN NUMBER) 
RETURN INTEGER; 

Appendix B
Analyzing the Relationships Between Labels

B-7



Parameters

Table B-7    OLS_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SELECT OLS_STRICTLY_DOMINATES ('1111', '1112') FROM DUAL;

OLS_STRICTLY_DOMINATES('1111','1112')
-------------------------------------
                                    0

Note:

The old OLS functions, STRICTLY_DOMINATED_BY and S_DOM_BY have been
deprecated in Oracle Database 12c release 1 (12.1).

You can still use the old functions in this release, but Oracle recommends
that you use the OLS_STRICTLY_DOMINATED_BY and OLS_S_DOM_BY functions
instead. Using the new function names avoids potential name conflicts with
other database components.

B.1.3.7 SA_UTL.DOMINATES
The SA_UTL.DOMINATES function returns TRUE if label1 dominates label2 or if the
session label for the given OLS policy dominates label.

Syntax

SA_UTL.DOMINATES (
  label1          IN NUMBER,
  label2          IN NUMBER) 
RETURN BOOLEAN; 

Syntax

SA_UTL.DOMINATES (
  ols_policy_name  IN VARCHAR2,
  label            IN VARCHAR2) 
RETURN BOOLEAN; 

Appendix B
Analyzing the Relationships Between Labels

B-8



Parameters

Table B-8    SA_UTL.DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the LABEL
and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN 
 IF SA_UTL.DOMINATES(1111, 1112)
  THEN DBMS_OUTPUT.PUT_LINE('Label 1111 dominates label 1112.');
 ELSE 
  DBMS_OUTPUT.PUT_LINE('Label 1112 dominates label 1111.'); 
 END IF; 
END;
/

Label 1112 dominates label 1111.

Note:

The second SA_UTL.DOMINATES function, which takes the Oracle Label Security
policy name and label as inputs, has been deprecated in Oracle Database 12c
release 1 (12.1).

You can still use this function, but not with Oracle Data Redaction and Oracle
Database Vault conditions. Oracle recommends that you use the
OLS_LABEL_DOMINATES function instead.

The first SA_UTL.DOMINATES function, which uses the NUMBER datatype, is not
deprecated.

B.1.3.8 SA_UTL.STRICTLY_DOMINATES
The SA_UTL.STRICTLY_DOMINATES function returns TRUE if label1 dominates label2 and is
not equal to it.

Syntax

SA_UTL.STRICTLY_DOMINATES (
  label1          IN NUMBER,
  label2          IN NUMBER) 
RETURN BOOLEAN; 

Appendix B
Analyzing the Relationships Between Labels

B-9



Parameters

Table B-9    SA_UTL.STRICTLY_DOMINATES Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN 
 IF SA_UTL.STRICTLY_DOMINATES(1111, 1112)
  THEN DBMS_OUTPUT.PUT_LINE('Label 1111 strictly dominates label 1112.');
 ELSE 
  DBMS_OUTPUT.PUT_LINE('Label 1112 strictly dominates label 1111.'); 
 END IF; 
END;
/

Label 1112 strictly dominates label 1111.

B.1.3.9 SA_UTL.DOMINATED_BY
The SA_UTL.DOMINATED_BY function returns TRUE if label1 is dominated by label2.

Syntax

SA_UTL.DOMINATED_BY (
  label1          IN NUMBER,
  label2          IN NUMBER) 
RETURN BOOLEAN;

Parameters

Table B-10    SA_UTL.DOMINATED_BY Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN 
 IF SA_UTL.DOMINATED_BY(1111, 1112)
  THEN DBMS_OUTPUT.PUT_LINE('Label 1111 is dominated by label 1112.');
 ELSE 

Appendix B
Analyzing the Relationships Between Labels

B-10



  DBMS_OUTPUT.PUT_LINE('Label 1112 is dominated by label 1111.'); 
 END IF; 
END;
/

Label 1111 is dominated by label 1112.

B.1.3.10 SA_UTL.STRICTLY_DOMINATED_BY
The SA_UTL.STRICTLY_DOMINATED_BY function returns TRUE if label1 is dominated by label2
and is not equal to it.

Syntax

SA_UTL.STRICTLY_DOMINATED_BY (
  label1          IN NUMBER,
  label2          IN NUMBER)
RETURN BOOLEAN;

Parameters

Table B-11    SA_UTL.STRICTLY_DOMINATED_BY Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the LABEL
and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing label tags 1111 and 1112.

SET SERVEROUTPUT ON
BEGIN 
 IF SA_UTL.STRICTLY_DOMINATED_BY(1111, 1112)
  THEN DBMS_OUTPUT.PUT_LINE('Label 1111 is strictly dominated by label 1112.');
 ELSE 
  DBMS_OUTPUT.PUT_LINE('Label 1112 is strictly dominated by label 1111.'); 
 END IF; 
END;
/

Label 1111 is strictly dominated by label 1112.

Related Topics

• Determination of the Upper and Lower Bounds of Labels
Oracle Label Security provides functions that determine the least upper bound or the
greatest lower bound of two or more labels.

B.2 Queries for Audited Oracle Label Security Session Labels
You can use the unified audit trail to capture information from various audit sources, including
Oracle Label Security.

Appendix B
Queries for Audited Oracle Label Security Session Labels

B-11



• About Queries for Auditing Oracle Label Security Session Labels
You must configure Oracle Label Security auditing by creating unified audit
policies.

• ORA_GET_AUDITED_LABEL Function
The ORA_GET_AUDITED_LABEL function returns the audited session label for the
specified OLS policy and APPLICATION_CONTEXTS column value.

B.2.1 About Queries for Auditing Oracle Label Security Session Labels
You must configure Oracle Label Security auditing by creating unified audit policies.

OLS auditing enables you to audit additional events such as enabling and disabling of
OLS policies.

The session labels that the audit trail captures are stored in the
APPLICATION_CONTEXTS column of the UNIFIED_AUDIT_TRAIL view. You can use the
LBACSYS.ORA_GET_AUDITED_LABEL function to retrieve session labels that are stored in
the APPLICATION_CONTEXTS column. This function accepts the
UNIFIED_AUDIT_TRAIL.APPLICATION_CONTEXTS column value, and the Oracle Label
Security policy name as arguments, and then returns the session label that is stored in
the column for the specified policy.

See Also:

Oracle Database Security Guide for detailed information about configuring
and using OLS auditing in a unified audit trail

B.2.2 ORA_GET_AUDITED_LABEL Function
The ORA_GET_AUDITED_LABEL function returns the audited session label for the
specified OLS policy and APPLICATION_CONTEXTS column value.

The AUDIT_VIEWER role has EXECUTE privilege on the ORA_GET_AUDITED_LABEL function.

Syntax

ORA_GET_AUDITED_LABEL (
  appctx_col_value   IN VARCHAR2,
  ols_policy_name    IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table B-12    ORA_GET_AUDITED_LABEL Parameters

Parameter Description

appctx_col_value Value in the UNIFIED_AUDIT_TRAIL.APPLICATION_CONTEXTS
column

policy_name The label security policy name

Appendix B
Queries for Audited Oracle Label Security Session Labels

B-12



Example

The following example returns the audited session label for the hr_ols_pol policy.

SELECT ORA_GET_AUDITED_LABEL ('cust_ctx', 'hr_ols_pol') FROM DUAL;

ORA_GET_AUDITED_LABEL('X','HR_OLS_POL')
---------------------------------------
                                     HS

B.3 Oracle Call Interface for Setting Session Labels
You can use an Oracle Call Interface (OCI) to set session labels.

• About Using the Oracle Call Interface to Set Session Labels
When you connect using Oracle Call Interface (OCI), you can use the SYS_CONTEXT
variables to initialize the session label and the row label.

• Using the Oracle Call Interface to Set Session Labels
You can use the Oracle Call Interface to set the session labels.

• Example: Using Oracle Call Interface with the SYS_CONTEXT Function
You can create an OCI call that uses an externalized SYS_CONTEXT function with Oracle
Label Security.

B.3.1 About Using the Oracle Call Interface to Set Session Labels
When you connect using Oracle Call Interface (OCI), you can use the SYS_CONTEXT variables
to initialize the session label and the row label.

You can set the variables using the OCIAttrSet function to initialize externally initialized
SYS_CONTEXT variables. These are available when Oracle Label Security is enabled.

Each policy has a SYS_CONTEXT named SA$policy_name_X. You can set these two variables,
INITIAL_LABEL and INITIAL_ROW_LABEL.

When the new values are set to valid labels within the user's authorizations, they will be used
instead of the default values stored for the user. This is the same mechanism used for remote
connections.

Related Topics

• Using Oracle Label Security with a Distributed Database
You should understand the special considerations for using Oracle Label Security in a
distributed configuration.

B.3.2 Using the Oracle Call Interface to Set Session Labels
You can use the Oracle Call Interface to set the session labels.

1. Call OCIAttrSet with OCI_ATTR_APPCTX_SIZE to initialize the context array size with the
desired number of context attributes:

OCIAttrSet(session, OCI_HTYPE_SESSION, 
                 (dvoid *)&size, (ub4)0, OCI_ATTR_APPCTX_SIZE, error_handle); 
 

Appendix B
Oracle Call Interface for Setting Session Labels

B-13



This defines additional attributes for OCIAttrSet.

Note that the size is ub4 type.

2. Call OCIAttrGet with OCI_ATTR_APPCTX_LIST to get a handle on the application
context list descriptor for the session:

OCIAttrGet(session, OCI_HTYPE_SESSION, 
               (dvoid *)&ctxl_desc, (ub4)0, OCI_ATTR_APPCTX_LIST, 
error_handle);

Note that ctxl_desc is (OCIParam *) type.

3. Call OCIParamGet with the application context list descriptor to obtain an individual
descriptor for the i-th application context:

OCIParamGet(ctxl_desc, OCI_DTYPE_PARAM, error_handle,(dvoid **)&ctx_desc, 
i);  

Note that ctx_desc is (OCIParam *) type.

4. Call OCIAttrSet with each of the three new attributes, OCI_ATTR_APPCTX_NAME,
OCI_ATTR_APPCTX_ATTR, and OCI_ATTR_APPCTX_VALUE, to set the proper values in
the application context:

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
                 (dvoid *)ctx_name, sizeof(ctx_name), OCI_ATTR_APPCTX_NAME,
                 error_handle);  

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
                 (dvoid *)attr_name, sizeof(attr_name), OCI_ATTR_APPCTX_ATTR,
                 error_handle);  

OCIAttrSet(ctx_desc, OCI_DTYPE_PARAM,
                 (dvoid *)value, sizeof(value), OCI_ATTR_APPCTX_VALUE,
                 error_handle);  

Note that only character type is supported, because application context operations
are based on the VARCHAR2 type.

B.3.3 Example: Using Oracle Call Interface with the SYS_CONTEXT
Function

You can create an OCI call that uses an externalized SYS_CONTEXT function with Oracle
Label Security.

Example B-1 shows how to accomplish this.

Example B-1    Using OCI to Externalize SYS_CONTEXT with OLS

#ifdef RCSID
static char *RCSid =
   "$Header: ext_mls.c 09-may-00.10:07:08 jdoe Exp $ ";
#endif /* RCSID */

/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*

   NAME

Appendix B
Oracle Call Interface for Setting Session Labels

B-14



ext_mls.c - externalized SYS_CONTEXT with Label Security

   DESCRIPTION
Run olsdemo.sql script before executing this example.
Usage: <executable obtained with .c file> <user_name> <password> <session-initial-label
Example: avg_sal sa_demo sa_demo L3:M,E:D10

   PUBLIC FUNCTION(S)
<list of external functions declared/defined - with one-line descriptions>

   PRIVATE FUNCTION(S)
<list of static functions defined in .c file - with one-line descriptions>

   RETURNS
The average salary in the EMP table of the SA_DEMO schema querying as the specified 
user with the specified session label.

   NOTES
<other useful comments, qualifications, and so on>

   MODIFIED   (MM/DD/YY)
jlev      09/18/03 - cleanup
jdoe      05/09/00 - cleanup
   jdoe      10/13/99 - standalone OCI program to test MLS SYS_CONTEXT
   jdoe      10/13/99 - Creation

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OCIEnv *envhp;
static OCIError *errhp;

int main(/*_ int argc, char *argv[] _*/);

/* get and print error */
static void checkerr(/*_OCIError *errhp, sword status _*/);
/* print error */
static void printerr(char *call);
static sword status;

/* return the average of employees' salary */
static CONST text *const selectstmt = (text *)
     "select avg(sal) from sa_demo.emp";
 
int main(argc, argv)
int argc;
char *argv[];
{
  OCISession *authp = (OCISession *) 0;
  OCIServer *srvhp;
  OCISvcCtx *svchp;
  OCIDefine *defnp = (OCIDefine *) 0;
  dvoid *parmdp;
  ub4 ctxsize;
  OCIParam *ctxldesc;
  OCIParam *ctxedesc;
  OCIStmt *stmtp = (OCIStmt *) 0;
  ub4 avg_sal = 0;

Appendix B
Oracle Call Interface for Setting Session Labels

B-15



  sword status;

  if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *) 0,
                    (dvoid * (*)(dvoid *, size_t)) 0,
                    (dvoid * (*)(dvoid *, dvoid *, size_t)) 0,
                    (void (*)(dvoid *, dvoid *)) 0))
    printerr("OCIInitialize");

  if (OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0))
    printerr("OCIEnvInit");
  
  if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
                     (size_t) 0, (dvoid **) 0))
    printerr("OCIHandleAlloc:OCI_HTYPE_ERROR");

  if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
                     (size_t) 0, (dvoid **) 0))
    printerr("OCIHandleAlloc:OCI_HTYPE_SERVER");

  if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
                     (size_t) 0, (dvoid **) 0))
    printerr("OCIHandleAlloc:OCI_HTYPE_SVCCTX");

  if (OCIServerAttach(srvhp, errhp, (text *) "", strlen(""), 0))
    printerr("OCIServerAttach");

  /* set attribute server context in the service context */
  if (OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *) srvhp,
                 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp))
    printerr("OCIAttrSet:OCI_HTYPE_SVCCTX");

  if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
                     (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
    printerr("OCIHandleAlloc:OCI_HTYPE_SESSION");

  /* set application context to 1 */
  ctxsize = 1;

  /* set up app ctx buffer */
  if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) &ctxsize,
                 (ub4) 0, (ub4) OCI_ATTR_APPCTX_SIZE, errhp))
    printerr("OCIAttrSet:OCI_ATTR_APPCTX_SIZE");

  /* retrieve the list descriptor */
  if (OCIAttrGet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
                 (dvoid *) &ctxldesc, 0, OCI_ATTR_APPCTX_LIST, errhp))
    printerr("OCIAttrGet:OCI_ATTR_APPCTX_LIST");

  if (status = OCIParamGet(ctxldesc, OCI_DTYPE_PARAM, errhp,
                           (dvoid **) &ctxedesc, 1))
    {
      if (status == OCI_NO_DATA)
        {
          printf("No Data found!\n");
          exit(1);
        }
    }

  /* set context namespace to SA$<pol_name>_X */
  if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
                 (dvoid *) "SA$HUMAN_RESOURCES_X",

Appendix B
Oracle Call Interface for Setting Session Labels

B-16



                 (ub4) strlen((char *) "SA$HUMAN_RESOURCES_X"),
                 (ub4) OCI_ATTR_APPCTX_NAME, errhp))
    printerr("OCIAttrSet:OCI_ATTR_APPCTX_NAME:SA$HUMAN_RESOURCES_X");

  /* set context attribute to INITIAL_LABEL */
  if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
                 (dvoid *) "INITIAL_LABEL",
                 (ub4) strlen((char *) "INITIAL_LABEL"),
                 (ub4) OCI_ATTR_APPCTX_ATTR, errhp))
    printerr("OCIAttrSet:OCI_DTYPE_PARAM:INITIAL_LABEL");

  /* set context value to argv[3] - initial label */
  if (OCIAttrSet((dvoid *) ctxedesc, (ub4) OCI_DTYPE_PARAM,
                 (dvoid *) argv[3],
                 (ub4) strlen((char *) argv[3]),
                 (ub4) OCI_ATTR_APPCTX_VALUE, errhp))
    printerr("OCIAttrSet:argv[3]");

  /* username first command line argument */
  if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[1],
                 (ub4) strlen((char *) argv[1]), (ub4) OCI_ATTR_USERNAME,
                 errhp))
    printerr("OCIAttrSet:username");

  /* password second command line argument */
  if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION, (dvoid *) argv[2],
                 (ub4) strlen((char *) argv[2]), (ub4) OCI_ATTR_PASSWORD,
                 errhp))
    printerr("OCIAttrSet:password");

  if (OCISessionBegin(svchp, errhp, authp, OCI_CRED_RDBMS, (ub4) OCI_DEFAULT))
    printerr("OCISessionBegin");

  if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
                 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
    printerr("OCIAttrSet:OCI_ATTR_SESSION");

  if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmtp, OCI_HTYPE_STMT,
                     0, 0))
    printerr("OCIHandleAlloc:OCI_HTYPE_STMT");

  if (OCIStmtPrepare(stmtp, errhp, (CONST OraText *) selectstmt,
                     (ub4) strlen((const char *) selectstmt),
                     (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
    printerr("OCIStmtPrepare");

  if (OCIDefineByPos(stmtp, &defnp, errhp, (ub4) 1, (dvoid *) &avg_sal,
                     (sb4) sizeof(avg_sal), SQLT_INT, 0, 0, 0, OCI_DEFAULT))
    printerr("OCIDefineByPos");

  if (status = OCIStmtExecute(svchp, stmtp, errhp, 1, 0, NULL, NULL,
                              OCI_DEFAULT))
    {
      if (status == OCI_NO_DATA)
        {
          printf("No Data found!\n");
          exit(1);
        }
    }

  if (OCISessionEnd(svchp, errhp, authp, OCI_DEFAULT))

Appendix B
Oracle Call Interface for Setting Session Labels

B-17



    printerr("OCISessionEnd");

  printf("average salary is: %d\n", avg_sal);
}

void checkerr(errhp, status)
     OCIError *errhp;
     sword status;
{
  text errbuf[512];
  sb4 errcode = 0;

  switch (status)
    {
    case OCI_ERROR:
      (void) OCIErrorGet((dvoid *) errhp, 1, NULL, &errcode, errbuf,
                         (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
      printf("Error - %.*s\n", 512, errbuf);
      break;
    default:
      break;
    }
}

void printerr(call)
     char *call;
{
  printf("Error: %s\n", call);
}
/* end of file ext_mls.c */

Appendix B
Oracle Call Interface for Setting Session Labels

B-18



C
Command-line Tools for Label Security Using
Oracle Internet Directory

Oracle Label Security provides command-line tools for using Oracle Internet Directory.

• About the Command-line Oracle Label Security Tools
When you use Oracle Label Security with Oracle Internet Directory, you can create and
alter label security attributes stored in the directory.

• Oracle Label Security Commands in Categories
Oracle Label Security commands can be categorized according to policies, levels,
groups, and so on.

• olsadmintool Command Reference
The olsadmintool commands performs tasks such as adding enterprise users to
administrative groups for an Oracle Label Security policy.

• Relating Parameters to Commands for olsadmintool
You must follow a set of guidelines for using the olsadmintool parameters.

• Examples of Using the olsadmintool Utility
You use the olsadmintool commands to set up Oracle Label Security in an Oracle
Internet Directory environment.

• olsoidsync Command Reference
The olsoidsync command pulls policy information from Oracle Internet Directory and
populates the information in the database (bootstrapping).

C.1 About the Command-line Oracle Label Security Tools
When you use Oracle Label Security with Oracle Internet Directory, you can create and alter
label security attributes stored in the directory.

The commands perform updates, inserts and deletes of entries in the directory and are
implemented through a script named olsadmintool, which you call from $ORACLE_HOME/bin/
olsadmintool. In addition to the olsadmintool, you can perform bootstrap operations by
using the olsoidsync command.

Note:

You can also use the graphical user interface provided by Oracle Enterprise
Manager to manage Oracle Label Security. Detailed documentation can be found in
Oracle Enterprise Manager help.

C-1



C.2 Oracle Label Security Commands in Categories
Oracle Label Security commands can be categorized according to policies, levels,
groups, and so on.

Table C-1 lists all the commands, in categories, with links to their explanations.

Some of these commands replace PL/SQL procedures that are used for the indicated
purposes when Oracle Label Security is used without Oracle Internet Directory. Sites
already using Oracle Label Security that add Oracle Internet Directory must replace
the use of those PL/SQL procedures by switching to use these new commands
instead.

Table C-1    Oracle Label Security Commands in Categories

Command
Category

Command Replaces PL/SQL Statement

Policies olsadmintool createpolicy SA_SYSDBA.CREATE_POLICY
Policies olsadmintool alterpolicy SA_SYSDBA.ALTER_POLICY
Policies olsadmintool droppolicy SA_SYSDBA.DROP_POLICY
Policies olsadmintool addpolcreator None; new

Policies olsadmintool droppolcreator None; new

Levels in a
Policy

olsadmintool createlevel SA_COMPONENTS.CREATE_LEVEL

Levels in a
Policy

olsadmintool alterlevel SA_COMPONENTS.ALTER_LEVEL

Levels in a
Policy

olsadmintool droplevel SA_COMPONENTS.DROP_LEVEL

Groups in a
Policy

olsadmintool creategroup SA_COMPONENTS.CREATE_GROUP

Groups in a
Policy

olsadmintool altergroup SA_COMPONENTS.ALTER_GROUP

Groups in a
Policy

olsadmintool altercompartent SA_COMPONENTS.ALTER_GROUP_PARE
NT

Groups in a
Policy

olsadmintool dropgroup SA_COMPONENTS.DROP_GROUP

Compartmen
ts in a Policy

olsadmintool createcompartment SA_COMPONENTS.CREATE_COMPARTME
NT

Compartmen
ts in a Policy

olsadmintool altercompartent SA_COMPONENTS.ALTER_COMPARTMEN
T

Compartmen
ts in a Policy

olsadmintool dropcompartment SA_COMPONENTS.DROP_COMPARTMENT

Data Labels olsadmintool createlabel SA_LABEL_ADMIN.CREATE_LABEL
Data Labels olsadmintool alterlabel SA_LABEL_ADMIN.ALTER_LABEL
Data Labels olsadmintool droplabel SA_LABEL_ADMIN.DROP_LABEL
Users olsadmintool adduser None; new

Users olsadmintool dropuser SA_USER_ADMIN.DROP_USER_ACCESS

Appendix C
Oracle Label Security Commands in Categories

C-2



Table C-1    (Cont.) Oracle Label Security Commands in Categories

Command
Category

Command Replaces PL/SQL Statement

Profiles olsadmintool createprofile Replaces the use of several
methods. 1

Profiles olsadmintool listprofile None; new

Profiles olsamindtool describeprofile None; new

Profiles olsadmintool dropprofile None; new

Policy
Administrator
s

olsadmintool addadmin None; new

Policy
Administrator
s

olsadmintool dropadmin None; new

Auditing olsadmintool audit SA_AUDIT_ADMIN.AUDIT
Auditing olsadmintool noaudit SA_AUDIT_ADMIN.NOAUDIT
Help olsadmintool --help None; new

1 Replaces several methods in SA_USER_ADMIN: SET_LEVELS, SET_USER_PRIVILEGES, and
SET_DEFAULT_LABEL

C.3 olsadmintool Command Reference
The olsadmintool commands performs tasks such as adding enterprise users to
administrative groups for an Oracle Label Security policy.

You must run olsadmintool from the command line.

• About the olsadmintool Commands
You run the olsadmintool commands from a command prompt and can use special
characters to perform specific operations.

• olsadmintool addadmin
The olsadmintool addadmin command adds an enterprise user to the administrative
group for a policy.

• olsadmintool addpolcreator
The olsadmintool addpolcreator command enables the specified user to create
policies.

• olsadmintool adduser
The olsadmintool adduser command adds an enterprise user to a profile within a policy.

• olsadmintool altercompartent
The olsadmintool altercompartment command changes the long name of a
compartment.

• olsadmintool altergroup
The olsadmintool altergroup command changes the long name for a group component
or parent group.

Appendix C
olsadmintool Command Reference

C-3



• olsadmintool altergroupparent
The olsadmintool altergroupparent command changes or removes the parent
group of a group.

• olsadmintool alterlabel
The olsadmintool alterlabel command changes the character string defining
the label associated with a label tag.

• olsadmintool alterlevel
The olsadmintool alterlevel command changes the long name of a level.

• olsadmintool alterpolicy
The olsadmintool alterpolicy command alters the options of a policy.

• olsadmintool audit
The olsadmintool olsadmintool audit command sets the audit options for a
policy.

• olsadmintool createcompartment
The olsadmintool createcompartment command creates a new compartment
component.

• olsadmintool creategroup
The olsadmintool creategroup command creates a new group component.

• olsadmintool createlabel
The olsadmintool createlabel command creates a valid data label.

• olsadmintool createlevel
The olsadmintool createlevel command creates a new level component.

• olsadmintool createprofile
The olsadmintool createprofile command creates a new profile.

• olsadmintool createpolicy
The olsadmintool createpolicy command creates a policy.

• olsamindtool describeprofile
The olsadmintool describeprofile command enables you to see the contents
of a policy profile.

• olsadmintool dropadmin
The olsadmintool dropadmin command removes an enterprise user from the
administrative group of a policy.

• olsadmintool dropcompartment
The olsadmintool dropcompartment command removes a compartment
component.

• olsadmintool dropgroup
The olsadmintool dropgroup command removes a group component.

• olsadmintool droplabel
The olsadmintool droplabel command drops a label from the policy.

• olsadmintool droplevel
The olsadmintool droplevel command removes a level component from a
specified policy.

• olsadmintool droppolicy
The olsadmintool droppolicy command drops a policy.

Appendix C
olsadmintool Command Reference

C-4



• olsadmintool dropprofile
The olsadmintool dropprofile command removes the specified profile.

• olsadmintool droppolcreator
The olsadmintool droppolcreator command cancels the ability of the specified user to
create policies.

• olsadmintool dropuser
The olsadmintool dropuser command drops a user from the specified profile in the
specified policy.

• olsadmintool --help
The olsadmintool command_name -- help command displays help information about the
specified command.

• olsadmintool listprofile
The olsadmintool listprofile command to see a list of all profiles in a given policy.

• olsadmintool noaudit
The olsadmintool noaudit command cancels the audit options for a policy.

C.3.1 About the olsadmintool Commands
You run the olsadmintool commands from a command prompt and can use special
characters to perform specific operations.

In the olsadmintool commands, some parameters are optional, which is indicated by
enclosing such a parameter within brackets. The two most common examples are [ -b
admin context ] and [-p port], indicating that it is optional to specify either the
administrative context for the command or the port through which to connect to Oracle
Internet Directory. (Default port is 389.)

The use of two dashes (--, no space) is required for all parameters other than b, h, p, D, and
w, which are preceded by a single dash. The double dash indicates the need to specify the
full or long version of the name or parameter being used. If any such name or parameter
contains spaces, it must be enclosed by double quotation marks, for example, "this is an
extremely long name or parameter."

C.3.2 olsadmintool addadmin
The olsadmintool addadmin command adds an enterprise user to the administrative group
for a policy.

This enables the user to create, modify, or delete the specified policy's metadata. You must
provide the policy name and the new administrator's DN. This group should contain only
enterprise users.

Syntax

olsadmintool addadmin --polname policy_name --admindn admin_DN
[ -b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool addadmin --polname defense --admindn "cn=scott,c=us"
-h sales_west -D cn=lbacsys -w bind_password

Appendix C
olsadmintool Command Reference

C-5



C.3.3 olsadmintool addpolcreator
The olsadmintool addpolcreator command enables the specified user to create
policies.

You must provide the DN for the user.

Syntax

olsadmintool addpolcreator --userdn user_DN
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Examples

olsadmintool addpolcreator --userdn "cn=scott" -h sales_west -D cn=lbacsys -w 
bind_password

C.3.4 olsadmintool adduser
The olsadmintool adduser command adds an enterprise user to a profile within a
policy.

You must provide the profile and policy names and the user DN.1 Enterprise users are
normal Oracle Internet Directory users with the additional capability of connecting to
the database. Users added to a profile must be enterprise users.

Syntax

olsadmintool adduser --polname policy_name --profname profile_name --userdn
enterprise_user_DN[ -b admin_context ] -h OID_host [-p port] -D bind_DN
-w bind_password

Example

olsadmintool adduser --polname tradesecret --profname topsales --userdn 
"cn=perot"
-b "cn=EDS" -h ford -p 1890 -D cn=lbacsys -w bind_password

C.3.5 olsadmintool altercompartent
The olsadmintool altercompartment command changes the long name of a
compartment.

You must provide the name of the policy, the short name of the compartment, and the
new long name of the compartment.

Syntax

olsadmintool altercompartment --polname policy_name --shortname 
short_compartment_name --longname new_long_compartment_name
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

1 Command FootnoteEvery command must include the directory host name, the bind DN, and the bind password.
Any command may, as needed, also supply the subscriber administrative context (optional), the directory port
number (also optional), or both. See also Table C-2 for additional details on these parameters.

Appendix C
olsadmintool Command Reference

C-6



Example

olsadmintool altercompartment --polname defense --shortname A --longname "Allied
Forces" -h sales_west -D cn=defense_admin -w bind_password

C.3.6 olsadmintool altergroup
The olsadmintool altergroup command changes the long name for a group component or
parent group.

You must provide the name of the policy, the short name of the group, and the long name of
the group.

Syntax

olsadmintool altergroup --polname policy_name --shortname short_group_name
--longname "new_long_group_name"
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool altergroup --polname defense --shortname US --longname "United States
of America"  -h sales_west -D cn=defense_admin -w bind_password

C.3.7 olsadmintool altergroupparent
The olsadmintool altergroupparent command changes or removes the parent group of a
group.

You must provide the name of the policy, the short name of the group, and either the short
name of the parent group or the clearparent flag, but not both.

Syntax

olsadmintool altergroupparent --polname policy_name --shortname 
short_group_name [--parentname new_parent_group_name ] [--clearparent]
--longname "new_long_group_name" [--parentname new_short_group_name ]
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Examples

olsadmintool altergroupparent --polname defense --shortname US --parentname
"Earth" -h sales_west -p 5678 -D cn=defense_admin -w bind_password

olsadmintool altergroupparent --polname defense --shortname US --clearparent 
-h sales_west -p 5678 -D cn=defense_admin -w bind_password

C.3.8 olsadmintool alterlabel
The olsadmintool alterlabel command changes the character string defining the label
associated with a label tag.

You must provide the policy name, the numeric tag of the label, and the new character string
representing the label.

Appendix C
olsadmintool Command Reference

C-7



Syntax

olsadmintool alterlabel --polname policy_name --tag tag_number 
--value new_label_value [ -b admin_context ] -h OID_host [-p port] 
-D bind_DN -w bind_password

Example

olsadmintool alterlabel --polname defense --tag 100 --value "TS:A:US" -h 
sales_west -D cn=defense_admin -w bind_password

C.3.9 olsadmintool alterlevel
The olsadmintool alterlevel command changes the long name of a level.

You must provide the name of the policy, the short name of the level, and the new long
name of the level.

Syntax

olsadmintool alterlevel --polname policy_name --shortname short_level_name
--longname "new_long_level_name"
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool alterlevel --polname defense --shortname TS 
--longname "VERY TOP SECRET" -h sales_west -D cn=defense_admin -w bind_password

C.3.10 olsadmintool alterpolicy
The olsadmintool alterpolicy command alters the options of a policy.

You must provide the name of the policy and the new options.

Syntax

olsadmintool alterpolicy --name policy_name --options new_options 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• new_options can be any combination of the following entries: INVERSE_GROUP,
HIDE, LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL,
READ_CONTROL,WRITE_CONTROL,INSERT_CONTROL, DELETE_CONTROL, UPDATE_CONTROL,
ALL_CONTROL, NO_CONTROL

Example

olsadmintool alterpolicy --name defense --options "READ_CONTROL,INSERT_CONTROL"
-h sales_west -D cn=defense_admin -w bind_password

Appendix C
olsadmintool Command Reference

C-8



C.3.11 olsadmintool audit
The olsadmintool olsadmintool audit command sets the audit options for a policy.

You must provide the policy name, the options to be audited, the type of audit, and the type of
success to be audited.

Syntax

olsadmintool audit --polname policy_name --options audit_option_name
--type audit_option_type --success audit_success_type
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• audit_option can be any combination of the following entries: APPLY, REMOVE, SET,
PRIVILEGE

• type can be session or access
• success can be successful, not successful, or both

Example

olsadmintool audit --polname defense --options "APPLY,PRIVILEGE" --type session
--success success -h sales_west -D cn=defense_admin -w bind_password

C.3.12 olsadmintool createcompartment
The olsadmintool createcompartment command creates a new compartment component.

You must provide the name of the policy, the tag numeric value of the compartment, the short
name of the compartment, and the long name of the compartment.

Syntax

olsadmintool createcompartment --polname policy_name --tag tag_number
--shortname short_compartment_name --longname <"long_compartment_name">
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createcompartment --polname defense --tag 100 --shortname A
--longname Alpha -h sales_west -D cn=defense_admin -w bind_password

C.3.13 olsadmintool creategroup
The olsadmintool creategroup command creates a new group component.

You must provide the name of the policy, the tag numeric value of the group, the short name
of the group, the long name of the group, and the parent group name (optional).

Syntax

olsadmintool creategroup --polname policy_name --tag tag_number 
--shortname short_group_name --longname <"long_group_name">
[--parentname parent_group_name]
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Appendix C
olsadmintool Command Reference

C-9



Example

olsadmintool creategroup --polname defense --tag 55 --shortname US
--longname "United States" -h sales_west -D cn=defense_admin -w bind_password

C.3.14 olsadmintool createlabel
The olsadmintool createlabel command creates a valid data label.

You must provide the policy name, the numeric tag of the label to be created, and the
character string representation of the label.

Syntax

olsadmintool createlabel --polname policy_name --tag tag_number 
--value label_value
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createlabel --polname defense --tag 100 --value "TS:A,B:US,CA" 
-h sales_west -D cn=defense_admin -w bind_password

C.3.15 olsadmintool createlevel
The olsadmintool createlevel command creates a new level component.

You must provide the name of the policy, the tag numeric value, the short name of the
level, and the long name of the level.

Syntax

olsadmintool createlevel --polname policy_name --tag tag_number 
--shortname short_level_name --longname <"long_level_name">
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createlevel --polname defense --tag 100 --shortname TS
--longname "TOP SECRET" -h sales_west -D cn=defense_admin -w bind_password

C.3.16 olsadmintool createprofile
The olsadmintool createprofile command creates a new profile.

You must provide the policy name, the profile name, and either privileges, labels, or
both privileges and labels. (A user profile can have either null label information or null
privilege information, but not both null at the same time.) For labels, specify the
maximum label users in this profile can use to read data, the maximum label users in
this profile can use to write data, the minimum label users in this profile can use to
write data, the default label for reading, the default row label for writing. For privileges,
enclose in quotation markets list of privileges, separated by commas, for members of
this profile.

Appendix C
olsadmintool Command Reference

C-10



Syntax

olsadmintool createprofile --polname policy_name --profname profile_name
--maxreadlabel max_read_label --maxwritelabel max_write_label
--minwritelabel min_read_label --defreadlabel default_read_label
--defrowlabel default_row_label --privileges privileges_separated_by_comma
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool createprofile --polname topsecret --profname topsales
--maxreadlabel "TS:A,B:US,CA" --maxwritelabel "TS:A,B:US,CA"
--minwritelabel "C" --defreadlabel "TS:A,B:US,CA"
--defrowlabel "C:A,B:US,CA"
--privileges "READ,COMPACCESS,WRITEACROSS"
-b EDS -h ford -p 1890 -D cn=lbacsys -w bind_password

C.3.17 olsadmintool createpolicy
The olsadmintool createpolicy command creates a policy.

You must provide the name of the policy, the name of its label column, and the options.

Syntax

olsadmintool createpolicy --name policy_name --colname column_name
--options options_separated_by_commas
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• new_options can be any combination of the following entries: INVERSE_GROUP, HIDE,
LABEL_DEFAULT, LABEL_UPDATE, CHECK_CONTROL, READ_CONTROL,
WRITE_CONTROL,INSERT_CONTROL, DELETE_CONTROL, UPDATE_CONTROL, ALL_CONTROL,
NO_CONTROL

Example

olsadmintool createpolicy --name defense --colname defense_col
--options "READ_CONTROL,UPDATE_CONTROL" -h sales_west -p 389 -D cn=defense_admin
-w bind_password

C.3.18 olsamindtool describeprofile
The olsadmintool describeprofile command enables you to see the contents of a policy
profile.

You must provide the policy name and the name of the profile.

Syntax

olsadmintool describeprofile --polname policy_name --profname profile_name
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool describeprofile --polname defense --profname contractors
-h sales_west -D cn=defense_admin -w bind_password

Appendix C
olsadmintool Command Reference

C-11



C.3.19 olsadmintool dropadmin
The olsadmintool dropadmin command removes an enterprise user from the
administrative group of a policy.

This means that the user is no longer able to create, modify, or delete the specified
policy's metadata. You must provide the policy name and the DN of the administrator
to be removed from the administrative group.

Syntax

olsadmintool dropadmin --polname policy_name --admindn admin_DN 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropadmin --polname defense --admindn "cn=scott,c=us" 
-h sales_west -D cn=lbacsys -w bind_password

C.3.20 olsadmintool dropcompartment
The olsadmintool dropcompartment command removes a compartment component.

You must provide the name of the policy and the short name of the compartment.

Syntax

olsadmintool dropcompartment --polname policy_name
--shortname short_compartment_name
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropcompartment --polname defense --shortname A 
-h sales_west -D cn=defense_admin -w bind_password

C.3.21 olsadmintool dropgroup
The olsadmintool dropgroup command removes a group component.

You must provide the policy name and the short group name.

Syntax

olsadmintool dropgroup --polname policy_name --shortname short_group_name 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropgroup --polname defense --shortname US 
-h sales_west -D cn=defense_admin -w bind_password

C.3.22 olsadmintool droplabel
The olsadmintool droplabel command drops a label from the policy.

You must provide the policy name and the string representation of the label.

Appendix C
olsadmintool Command Reference

C-12



Syntax

olsadmintool droplabel --polname policy_name --value label_value 
-h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droplabel --polname defense --value "TS:A:US" 
h sales_west -D cn=defense_admin -w bind_password

C.3.23 olsadmintool droplevel
The olsadmintool droplevel command removes a level component from a specified policy.

You must provide the name of the policy and the short name of the level.

Syntax

olsadmintool droplevel --polname policy_name --shortname short_level_name 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droplevel --polname defense --shortname TS 
-h sales_west -D cn=defense_admin -w bind_password

C.3.24 olsadmintool droppolicy
The olsadmintool droppolicy command drops a policy.

You must provide the name of the policy to be dropped. For directory-enabled installations of
Oracle Label Security, refer to Subscription of Policies in Directory-Enabled Label Security.

Syntax

olsadmintool droppolicy --name policy_name 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droppolicy --name defense -h sales_west -D cn=defense_admin -w 
bind_password

C.3.25 olsadmintool dropprofile
The olsadmintool dropprofile command removes the specified profile.

You must provide the policy name and the name of the profile to be dropped.

Note:

Dropping a profile removes the authorization on that policy for all the users in the
dropped profile. The users will be unable to see data protected by that policy.

Appendix C
olsadmintool Command Reference

C-13



Syntax

olsadmintool dropprofile --polname policy_name --profname profile_name 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropprofile --name defense --profname employees 
-h sales_west -D cn=defense_admin -w bind_password

C.3.26 olsadmintool droppolcreator
The olsadmintool droppolcreator command cancels the ability of the specified user
to create policies.

You must provide the user's DN.

Syntax

olsadmintool droppolcreator --userdn user_DN
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool droppolcreator --userdn "cn-scott,c=us"
-b UA -h sales_west -p 1890 -D bind_DN -w bind_password

C.3.27 olsadmintool dropuser
The olsadmintool dropuser command drops a user from the specified profile in the
specified policy.

You must provide the policy name, the name of the profile, and the DN of the user.

Syntax

olsadmintool dropuser --polname policy_name --profname profile_name 
--userdn enterprise_user_DN
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool dropuser --polname defense --profname contractors
--userdn "cn=hanssen,c=us" -h sales_west -D cn=defense_admin -w bind_password

C.3.28 olsadmintool --help
The olsadmintool command_name -- help command displays help information about
the specified command.

Syntax

olsadmintool command_name --help

Appendix C
olsadmintool Command Reference

C-14



C.3.29 olsadmintool listprofile
The olsadmintool listprofile command to see a list of all profiles in a given policy.

You must provide the policy name.

Syntax

olsadmintool listprofile --polname policy_name
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

Example

olsadmintool listprofile --polname defense -b CIA
-h sales_west -D cn=defense_admin -w bind_password

C.3.30 olsadmintool noaudit
The olsadmintool noaudit command cancels the audit options for a policy.

You must provide the policy name and the options that are no longer to be audited.

Syntax

olsadmintool noaudit --polname policy_name --options audit_option_name 
[ -b admin_context ] -h OID_host [-p port] -D bind_DN -w bind_password

In this specification:

• audit_option_name can be any combination of the following entries: APPLY, REMOVE, SET,
PRIVILEGE

Example

olsadmintool noaudit --polname defense --options "APPLY,PRIVILEGES" -h sales_west
-D cn=defense_admin -w bind_password

C.4 Relating Parameters to Commands for olsadmintool
You must follow a set of guidelines for using the olsadmintool parameters.

• About Relating Parameters to Commands for olsadmintool
All olsadmintool commands must specify connection parameters.

• Summaries of olsadmintool Parameters
The olsadmintool has parameters that to accommodate different categories of need,
such as policies, administration, and auditing.

C.4.1 About Relating Parameters to Commands for olsadmintool
All olsadmintool commands must specify connection parameters.

These parameters include the OID host, the bind DN, the bind password, and optionally, the
port through which the connection to Oracle Internet Directory is to be made. The default port
is 389.

Appendix C
Relating Parameters to Commands for olsadmintool

C-15



All olsadmintool commands may specify, as needed, the subscriber/administrative-
context using the -b flag.

The fact that specifying a parameter is optional, such as a port or an administrative
context, is shown by enclosing the parameter within brackets. The two most common
examples are [ -b admin context] and [-p port].

Because every command must specify a host, bind DN, and password, and may, if
needed, also specify an administrative context, Table C-2 uses the abbreviation CON
to represent all of these connection parameters as a group:

[ -b admin_context ] h OID_host [-p port] -D bind_DN 
Enter bind password: bind_password

C.4.2 Summaries of olsadmintool Parameters
The olsadmintool has parameters that to accommodate different categories of need,
such as policies, administration, and auditing.

Table C-2 summarizes the commands in several categories.

• Policies: creating, altering, or dropping policies or their components, that is,
levels, groups, and compartments

• Data labels: creating, altering, or dropping them

• Administrators and policy creators: adding or dropping them

• Users: adding or dropping users from a profile

• Auditing options: setting the options for what to audit for a policy

• Profiles: creating, listing, describing, or dropping them

• Default read or row labels: setting them

In Table C-2 and Table C-3, the column headings show only the parameters, not the
keywords that must precede them. For example, Table C-2 shows policyname and
column-name as parameters for the createpolicy command, without showing the
keywords that must precede them (--name and --colname).

Table C-2 explains the individual parameters that are used as column headings in the
summaries of Table C-2 and Table C-3.

In all these tables:

• OptionsP means policy enforcement options, that is, any combination of the
following entries, separated by a comma:

– INVERSE_GROUP
– HIDE
– LABEL_DEFAULT
– LABEL_UPDATE
– CHECK_CONTROL
– READ_CONTROL
– WRITE_CONTROL
– INSERT_CONTROL

Appendix C
Relating Parameters to Commands for olsadmintool

C-16



– DELETE_CONTROL
– UPDATE_CONTROL
– ALL_CONTROL
– NO_CONTROL

• OptionsA means audit options, that is, any comma-separated combination of the
following entries: SET, APPLY, REMOVE, or PRIVILEGE.

Table C-2    Summary: olsadmintool Command Parameters

Command
Category

Commands & Parameters - - - - - -

Policies Command policy
name

column-
name

optionsP CON - -

a policy olsadmintool
createpolicy

Requir
ed

Required Required Require
d

- -

a policy olsadmintool
alterpolicy

Requir
ed

Omitted Required Require
d

- -

a policy olsadmintool droppolicy Requir
ed

Omitted Omitted Require
d

- -

Within a Policy,
Create:

Command policy
name

tag short
name

long
name

CON parent
name

a level olsadmintool createlevel Requir
ed

Required Required Require
d

Require
d

Omitted

a group olsadmintool creategroup Requir
ed

Required Required Require
d

Require
d

[ Requir
ed ]

a compartment olsadmintool
createcompartment

Requir
ed

Required Required Require
d

Require
d

Omitted

Within a Policy,
Alter:

Command - - - - - -

a level olsadmintool alterlevel Requir
ed

Omitted Unused Unused Unused Omitted

a group or group
parent

olsadmintool altergroup Requir
ed

Omitted Required Require
d

Require
d

Omitted

a group or group
parent

olsadmintool
altergroupparent

Requir
ed

Omitted Required Omitted Require
d

[Requir
ed]

a group or group
parent

Command policy
name

tag short
name

long
name

CON parent
name

a compartment olsadmintool
altercompartment

Requir
ed

Omitted Required Require
d

Require
d

Omitted

Within a Policy,
Drop:

Command - - - - -

level olsadmintool droplevel Requir
ed

Omitted Required Omitted Require
d

Omitted

group olsadmintool dropgroup Requir
ed

Omitted Required Omitted Require
d

Omitted

compartment olsadmintool
dropcompartment

Requir
ed

Omitted Required Omitted Require
d

Omitted

Appendix C
Relating Parameters to Commands for olsadmintool

C-17



Table C-2    (Cont.) Summary: olsadmintool Command Parameters

Command
Category

Commands & Parameters - - - - - -

Data Labels Command policy
name

tag value CON - -

Create label olsadmintool
createlabel

Requir
ed

Required Required Require
d

- -

Alter data label olsadmintool alterlabel Requir
ed

Required Required Require
d

- -

Drop data label olsadmintool droplabel Requir
ed

Omitted Required Require
d

- -

Policy
Administrators

Command policy
name

userDN CON - - -

Add an Admin olsadmintool addadmin Requir
ed

Required Required - - -

Drop an Admin olsadmintool dropadmin Requir
ed

Required Required - - -

Policy Creation olsadmintool
addpolcreator

Omitte
d

Required Required - - -

Policy Creation olsadmintool
droppolcreator

Omitte
d

Required Required - - -

Users Command policy
name

profile
name

userDN CON - -

add a user olsadmintool adduser Requir
ed

Required Required Require
d

- -

drop a user olsadmintool dropuser Requir
ed

Required Required Require
d

- -

Auditing olsadmintool audit Requir
ed

optionsA type success CON -

auditing olsadmintool noaudit Requir
ed

Required Required Require
d

Require
d

-

Help on
olsadmintool

olsadmintool
command_name -- help

Omitte
d

Omitted Omitted Omitted Omitted -

Table C-3    Summary of Profile and Default Command Parameters

Profile Action Profile
Command

Policy
Name

Profil
e
Name

Max
Read
Labe
l

Max
Write
Labe
l

Min
Write
Labe
l

Def
Read
Labe
l

Def
Row
Labe
l

Priv'
s

CON

Create a Profile1 olsadmintool
createprofile

Required Requir
ed

Requi
red

Requi
red

Requi
red

Requi
red

Requi
red

Requi
red

Requi
red

List Profiles olsadmintool
list profile

Required Omitte
d

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Requi
red

Describe a Profile olsadmintool
describe
profile

Required Requir
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Requi
red

Appendix C
Relating Parameters to Commands for olsadmintool

C-18



Table C-3    (Cont.) Summary of Profile and Default Command Parameters

Profile Action Profile
Command

Policy
Name

Profil
e
Name

Max
Read
Labe
l

Max
Write
Labe
l

Min
Write
Labe
l

Def
Read
Labe
l

Def
Row
Labe
l

Priv'
s

CON

Drop a Profile olsadmintool
drop profile

Required Requir
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Omitt
ed

Requi
red

1 In createprofile, specifying both privileges and labels is not required: a profile can specify labels, privileges, or both.

C.5 Examples of Using the olsadmintool Utility
You use the olsadmintool commands to set up Oracle Label Security in an Oracle Internet
Directory environment.

Each command appears in this listing on multiple lines for readability, but in reality, would be
given out as a single long string on the command line. The summarized results of carrying
out all these commands appear in Results of These Examples, which follows the last
example.

• Example: Making Other Users Policy Creators
The olsadmintool addpolcreator command can enable other users to be policy
creators.

• Example: Creating Policies with Valid Options
The olsadmintool createpolicy command can create policies.

• Example: Creating Policy Administrators
The olsadmintool addadmin command can create policy administrators.

• Example: Creating Levels
The olsadmintool createlevel command can create individual levels.

• Example: Creating Compartments
The olsadmintool createcompartment command can create a compartment.

• Example: Creating Groups
The olsadmintool creategroup can create a group.

• Example: Creating Labels
The olsadmintool createlabel can create a label.

• Example: Creating a Profile
The olsadmintool createprofile command can create a profile.

• Example: Adding a User to a Profile
The olsadmintool adduser command can add a user to a profile.

• Example: Adding Another User to a Profile
You can use the olsadmintool adduser command to add another user to a profile.

• Example: Setting Audit Options
The olsadmintool audit command can set audit options in a non-unified auditing
environment.

Appendix C
Examples of Using the olsadmintool Utility

C-19



• Results of These Examples
As a result of running the sets of olsadmintool commands, the sample Oracle
Label Security site has a specific structure.

C.5.1 Example: Making Other Users Policy Creators
The olsadmintool addpolcreator command can enable other users to be policy
creators.

ORACLE_HOME/bin/olsadmintool addpolcreator --userdn "cn=psmith,c=us"
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=lbacsys,c=us" -w 
bind_password

C.5.2 Example: Creating Policies with Valid Options
The olsadmintool createpolicy command can create policies.

ORACLE_HOME/bin/olsadmintool createpolicy --name Policy1 --colname pol1
--options READ_CONTROL,WRITE_CONTROL -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=psmith,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createpolicy --name Policy2 --colname pol2
--options READ_CONTROL -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=lbacsys,c=us" -w bind_password

C.5.3 Example: Creating Policy Administrators
The olsadmintool addadmin command can create policy administrators.

ORACLE_HOME/bin/olsadmintool addadmin --polname Policy1
--admindn "cn=shwong,c=us" -b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389
-D "cn=psmith,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool addadmin --polname Policy2
--admindn "cn=shwong,c=us" -b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389
-D "cn=lbacsys,c=us" -w bind_password

C.5.4 Example: Creating Levels
The olsadmintool createlevel command can create individual levels.

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 100
--shortname TS --longname "TOP SECRET" -b "ou=Americas,o=Oracle, c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 99
--shortname S --longname SECRET -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createlevel --polname Policy1 --tag 98
--shortname U --longname UNCLASSIFIED -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

Appendix C
Examples of Using the olsadmintool Utility

C-20



C.5.5 Example: Creating Compartments
The olsadmintool createcompartment command can create a compartment.

ORACLE_HOME/bin/olsadmintool createcompartment --polname Policy1 --tag 100
--shortname A --longname ALPHA -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 D "cn=shwong,c=us" -w bind_password

ORACLE_HOME/bin/olsadmintool createcompartment --polname Policy1 --tag 99
--shortname B --longname BETA -b "ou=Americas,o=Oracle,c=US"
-h sales_west -p 389 -D "cn=shwong,c=us" -w bind_password

C.5.6 Example: Creating Groups
The olsadmintool creategroup can create a group.

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 100
--shortname G1 --longname GROUP1
-b "ou=Americas,o=Oracle,c=US"  -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 99
--shortname G2 --longname GROUP2
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

ORACLE_HOME/bin/olsadmintool creategroup --polname Policy1 --tag 98
--shortname G3 --longname GROUP3
-b "ou=Americas,o=Oracle,c=US"  -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

C.5.7 Example: Creating Labels
The olsadmintool createlabel can create a label.

ORACLE_HOME/bin/olsadmintool createlabel --polname Policy1 
--tag 100 --value TS:A:G1
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

ORACLE_HOME/bin/olsadmintool createlabel --polname Policy1 --tag 101
--value TS:A,B:G2
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

C.5.8 Example: Creating a Profile
The olsadmintool createprofile command can create a profile.

ORACLE_HOME/bin/olsadmintool createprofile --polname Policy1 --profname Profile1
--maxreadlabel TS:A:G1 --maxwritelabel TS:A:G1 --minwritelabel U::
--defreadlabel U:A:G1 --defrowlabel U:A:G1 --privileges WRITEUP,READ
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

Appendix C
Examples of Using the olsadmintool Utility

C-21



C.5.9 Example: Adding a User to a Profile
The olsadmintool adduser command can add a user to a profile.

ORACLE_HOME/bin/olsadmintool adduser --polname Policy1 --profname Profile1
--userdn cn=nina,ou=Asia,o=microsoft,l=seattle,st=WA,c=US
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

C.5.10 Example: Adding Another User to a Profile
You can use the olsadmintool adduser command to add another user to a profile.

ORACLE_HOME/bin/olsadmintool adduser --polname Policy1 --profname Profile1
--userdn cn=daniel,ou=France,o=oracle,l=madison,st=WI,c=US
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

C.5.11 Example: Setting Audit Options
The olsadmintool audit command can set audit options in a non-unified auditing
environment.

ORACLE_HOME/bin/olsadmintool audit --polname Policy1 --option "SET,APPLY"
--type SESSION --success BOTH
-b "ou=Americas,o=Oracle,c=US" -h sales_west -p 389 -D "cn=shwong,c=us" -w 
bind_password

C.5.12 Results of These Examples
As a result of running the sets of olsadmintool commands, the sample Oracle Label
Security site has a specific structure.

• Policy creators: User psmith
• Policies: Policy1 and Policy2
• Policy Administrators: User shwong
• Levels, Compartments, and Groups: Refer to Table C-4.

Table C-4    Label Component Definitions from Using olsadmintool Commands

Label
Component

Tag Short Name Long Name

Level 100 TS TOP SECRET

Level 99 S SECRET

Level 98 U UNCLASSIFIED

Compartment 100 A ALPHA

Compartment 99 B BETA

Group 100 G1 GROUP1

Group 99 G2 GROUP2

Appendix C
Examples of Using the olsadmintool Utility

C-22



Table C-4    (Cont.) Label Component Definitions from Using olsadmintool
Commands

Label
Component

Tag Short Name Long Name

Group 98 G3 GROUP3

• Data labels: Tag 100 for TS:A:G1 and tag 101 for TS:A,B:G2

• Users: Nina, from the Asia group of Microsoft, based in Seattle, Washington, managed
under the Americas organization of the US Oracle organization, and Daniel, from the
France group of Oracle in Madison, Wisconsin, managed under the same organization.

• Profiles: Refer to Table C-5.

Table C-5    Contents of Profile1 from Using olsadmintool Commands

Profile Element Contents Long-name Expansion or Meaning

MaxReadLabel TS:A:G1 TOP SECRET:ALPHA:GROUP1

MaxWriteLabel TS:A:G1 TOP SECRET:ALPHA:GROUP1

MinWriteLabel U:: UNCLASSIFIED (not restricted to any
compartments or groups)

DefReadLabel U:A:G1 UNCLASSIFIED:ALPHA:GROUP1

DefRowLabel U:A:G1 UNCLASSIFIED:ALPHA:GROUP1

Privileges WRITE_UP, READ User can read any row and raise the level of
rows the user writes.

• Auditing options: SET, APPLY, SESSION, and BOTH

C.6 olsoidsync Command Reference
The olsoidsync command pulls policy information from Oracle Internet Directory and
populates the information in the database (bootstrapping).

You must provide the database TNS name, the database user name, the database user's
password, the administrative context (if any), the Oracle Internet Directory host name, the
bind DN and bind password, and optionally the Oracle Internet Directory port number.

Syntax

olsoidsync --dbconnectstring "database_connect_string_in_host:port:sid_format"
--dbuser database_user [-c] [-r]
[-b admin_context] -h OID_host [-p port] -D bind_DN -w bind_password

Enter Database password: database_user_password  
Enter bind password: bind_password

In this specification:

• -c drops all the existing policies in the database and refreshes it with policy information
from Oracle Internet Directory. Optional.

Appendix C
olsoidsync Command Reference

C-23



• -r drops all the policy metadata (without dropping the policies themselves) and
refreshes the policies with new metadata from Oracle Internet Directory. Optional.

Without these two switches, the command will only create new policies from Oracle
Internet Directory, and will halt on any errors encountered during the refresh.

Example

olsoidsync --dbconnectstring sales_srvr:1521:ora101 --dbuser lbacsys -c
-b "ou=Americas,o=ExampleCorp,c=US" -h sales_srvr -D cn=policycreator -w 
bind_password

Related Topics

• Bootstrapping Databases
After you register a new database with Oracle Internet Directory, you can install
Oracle Internet Directory enabled Oracle Label Security on that database.

Appendix C
olsoidsync Command Reference

C-24



D
Oracle Label Security in an
Oracle RAC Environment

You can use Oracle Label Security in an Oracle Real Application Clusters (Oracle RAC)
environment.

• Oracle Label Security Policy Functions in an Oracle RAC Environment
Policy changes made on one instance are available to other instances in the Oracle Real
Application Clusters (Oracle RAC) environment immediately.

• Transparent Application Failover in Oracle Label Security
Session information is preserved on Transparent Application Failover.

D.1 Oracle Label Security Policy Functions in an Oracle RAC
Environment

Policy changes made on one instance are available to other instances in the Oracle Real
Application Clusters (Oracle RAC) environment immediately.

It is not necessary to restart the other instances to pick up the changes.

Important changes made on one database instance are automatically propagated to the other
instances. One example would be creating a new policy. Another would be altering the policy
options.

Propagating such changes ensures two valuable protections:

• That all users of the table are subject to the same policy

• That if any instance fails, continuation of its work by other instances will use the same
policies and parameters that were in force immediately prior to that failure. So, if a policy
had been enabled or disabled, it would be seen as such in all instances.

If an administrator changes policy information in one instance by using the policy functions
listed in Table D-1, Oracle Label Security stores the relevant information about whatever that
function call changed. The new information is immediately available to the other active
instances in the Oracle RAC, enabling uniformity among users of the affected policies.

Table D-1    Policy Functions Preserving Status in an Oracle RAC Environment

Policy Functions Description

SA_SYSDBA.CREATE_POLICY Creates a new policy

SA_SYSDBA.DROP_POLICY Drops an existing policy

SA_SYSDBA.ENABLE_POLICY Enables an existing policy

SA_SYSDBA.DISABLE_POLICY Disables an existing policy

SA_SYSDBA.ALTER_POLICY Alters an existing policy

D-1



D.2 Transparent Application Failover in Oracle Label
Security

Session information is preserved on Transparent Application Failover.

Any changes to the session's information by way of session functions listed in 
Table D-2 are preserved on Transparent Application Failover.

For example, suppose a user Scott is logged on with default label Top Secret. If he
calls sa_session.set_label() to change his session label to Secret, and a failover to
another instance occurs, he will see no change but his session label remains Secret.

Preserving current user session information means that the access permissions and
restrictions on what data that user can see or affect remain as they were. Despite the
failover, the user can see and affect only the tables and rows accessible before the
failover. If preservation were not the case, failing over to another instance could cause
or enable the user to see a different set of data.

Whenever one of the session functions listed in Table D-2 is used, Oracle Label
Security stores the relevant information about whatever was changed by that function
call.

Table D-2    Session Functions Preserving Status in an Oracle RAC Environment

Session Functions Description

SA_SESSION.SET_LABEL Lets the user set a new level and new
compartments and groups to which he or she has
read access

SA_SESSION.SET_ROW_LABEL Lets the user set the default row label that will be
applied to new rows

SA_SESSION.SAVE_DEFAULT_LABELS Lets the user store the current session label and
row label as the default for future sessions

SA_SESSION.RESTORE_DEFAULT_LABELS Lets the user reset the current session label and
row label to the stored default settings

SA_SESSION.SET_ACCESS_PROFILE Sets the Oracle Label Security authorizations and
privileges of the database session to those of the
specified user

Appendix D
Transparent Application Failover in Oracle Label Security

D-2



E
Oracle Label Security PL/SQL Packages

Oracle Label Security provides a set of PL/SQL packages.

• SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package
For a non-unified auditing environment, the SA_AUDIT_ADMIN PL/SQL package configures
auditing that is specific to Oracle Label Security.

• SA_COMPONENTS Label Components PL/SQL Package
The SA_COMPONENTS PL/SQL package manages the component definitions of an Oracle
Label Security label.

• SA_LABEL_ADMIN Label Management PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package provides an administrative interface to manage
the labels used by a policy.

• SA_POLICY_ADMIN Policy Administration PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package manages Oracle Label Security policies as a
whole.

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user authorizations.

• SA_SYSDBA Policy Management PL/SQL Package
The SA_SYSDBA PL/SQL package manages Oracle Label Security policies.

• SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package manages user labels by label component.

• SA_UTL PL/SQL Utility Functions and Procedures
The SA_UTL PL/SQL package contains utility functions and procedures that are used in
PL/SQL programs.

See Also:

Using Dominance Functions for additional standalone Oracle Label Security
functions

E.1 SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL
Package

For a non-unified auditing environment, the SA_AUDIT_ADMIN PL/SQL package configures
auditing that is specific to Oracle Label Security.

• About the SA_AUDIT_ADMIN PL/SQL Package
The SA_AUDIT_ADMIN PL/SQL package configures auditing for labels and policies, as well
as creating an auditing-related view.

E-1



• SA_AUDIT_ADMIN.AUDIT
The SA_AUDIT_ADMIN.AUDIT procedure enables policy-specific auditing.

• SA_AUDIT_ADMIN.AUDIT_LABEL
The SA_AUDIT_ADMIN.AUDIT_LABEL procedure records policy labels during
auditing.

• SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED
The SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED function shows whether labels are
being recorded in audit records for the policy.

• SA_AUDIT_ADMIN.CREATE_VIEW
The SA_AUDIT_ADMIN.CREATE_VIEW procedure creates an audit trail view named
DBA_policyname_AUDIT_TRAIL.

• SA_AUDIT_ADMIN.DROP_VIEW
The SA_AUDIT_ADMIN.DROP_VIEW procedure drops the audit trail view for the
specified policy.

• SA_AUDIT_ADMIN.NOAUDIT
The SA_AUDIT_ADMIN.NOAUDIT procedure disables Oracle Label Security policy-
specific auditing.

• SA_AUDIT_ADMIN.NOAUDIT_LABEL
The SA_AUDIT_ADMIN.NOAUDIT_LABEL procedure disables the auditing of policy
labels.

E.1.1 About the SA_AUDIT_ADMIN PL/SQL Package
The SA_AUDIT_ADMIN PL/SQL package configures auditing for labels and policies, as
well as creating an auditing-related view.

If you are using unified auditing, then see Oracle Database Security Guide for
information about creating unified audit policies for Oracle Label Security. In a unified
auditing environment, no new audit records will be generated as a result of setting the
procedures that are described in this section.

After you have enabled systemwide auditing, you can use SA_AUDIT_ADMIN PL/SQL
package procedures to enable or disable Oracle Label Security auditing. To use this
package, you must be granted the policy_DBA role (for example, HR_OLS_POL_DBA for a
role for the hr_ols_pol policy) and the EXECUTE privilege for the SA_AUDIT_ADMIN
package.

See Also:

Duties of Oracle Label Security Administrators for information about the
policy_DBA role

E.1.2 SA_AUDIT_ADMIN.AUDIT
The SA_AUDIT_ADMIN.AUDIT procedure enables policy-specific auditing.

Auditing of each policy is independent of the others. The audit records capture Oracle
Label Security administrative actions and the use of Oracle Label Security privileges

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-2



that were used during logons, DML executions, and trusted stored procedure invocations.

Syntax

SA_AUDIT_ADMIN.AUDIT (
     policy_name     IN VARCHAR2,
     users           IN VARCHAR2 DEFAULT NULL,
     audit_option    IN VARCHAR2 DEFAULT NULL,
     audit_type      IN VARCHAR2 DEFAULT NULL,
     success         IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-1    SA_AUDIT_ADMIN.AUDIT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME column
of the ALL_SA_POLICIES data dictionary view.

users Optional. A comma-delimited list of user names to audit, as follows:

• If you are auditing OLS administrative actions, then ensure that the users
you enter have the policy_DBA role and the EXECUTE privilege for the
Oracle Label Security packages.

• If you are auditing the use of OLS privileges, then these users do not
need to be OLS administrators.

• If you do not specify any users, then all users are audited.
To find users who have privileges to modify Oracle Label Security policies,
query the USER_NAME column of the DBA_SA_USERS view.

audit_option Optional. A comma-delimited list of options to be audited. Options are as
follows:

• APPLY: Audits application of specified Oracle Label Security policies to
tables and schemas

• REMOVE: Audits removal of specified Oracle Label Security policies from
tables and schemas

• SET: Audits the setting of user authorizations, and user and program
privileges

• PRIVILEGES: Audits use of all policy-specific privileges

If not specified, then all default options (that is, options not including
privileges) are audited. Audit options for privileged operations should be set
explicitly by specifying the PRIVILEGES option, which sets audit options for all
privileges.

audit_type Optional. BY ACCESS or BY SESSION. If not specified, then audit records are
written BY SESSION.

success Optional. SUCCESSFUL if the action was successful, or NOT SUCCESSFUL. If
not specified, then audit is written for both.

Examples

The following example audits any failed APPLY and REMOVE attempts by the users psmith and
rlayton.

BEGIN
 SA_AUDIT_ADMIN.AUDIT(
  policy_name      => 'hr_ols_pol',
  users            => 'jjones, rlayton',
  audit_option     => 'apply, remove',

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-3



  audit_type       => 'by access',
  success          => 'not successful');
END;
/

If the you do not specify any audit options, then all options except the privilege-related
ones are audited. You must specify the auditing of privileges explicitly. For example, if
you enter the following statement, then the default options are set for the hr_ols_pol
policy:

EXEC SA_AUDIT_ADMIN.AUDIT ('hr_ols_pol');

When you enable auditing, it will be performed on all users by session, whether their
actions are successful or not.

When you set auditing parameters and options, the new values apply only to
subsequent sessions, not to the current session.

Consider also a case in which one SA_AUDIT_ADMIN.AUDIT call (with no users
specified) enables auditing for APPLY operations for all users, and then a second call
enables auditing of REMOVE operations for a specific user. For example:

EXEC SA_AUDIT_ADMIN.AUDIT ('hr_ols_pol', null, 'apply');
EXEC SA_AUDIT_ADMIN.AUDIT ('hr_ols_pol', 'scott', 'remove');

In this case, SCOTT is audited for both APPLY and REMOVE operations.

E.1.3 SA_AUDIT_ADMIN.AUDIT_LABEL
The SA_AUDIT_ADMIN.AUDIT_LABEL procedure records policy labels during auditing.

This procedure stores the user's session label in the audit table.

Syntax

SA_AUDIT_ADMIN.AUDIT_LABEL (
     policy_name     IN VARCHAR2);

Parameter

Table E-2    SA_AUDIT_ADMIN.AUDIT_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example writes output indicating whether the Oracle Label Security
labels are being audited for the hr_ols_pol policy.

BEGIN
 SA_AUDIT_ADMIN.AUDIT_LABEL(
  policy_name      => 'hr_ols_pol');
END;
/

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-4



E.1.4 SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED
The SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED function shows whether labels are being
recorded in audit records for the policy.

Syntax

SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED ( 
  policy_name IN VARCHAR2)
RETURN BOOLEAN;

Parameters

Table E-3    SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example writes output indicating whether the Oracle Label Security labels are
being audited for the hr_ols_pol policy.

SET SERVEROUTPUT ON
BEGIN 
 IF SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED('hr_ols_pol')  
  THEN DBMS_OUTPUT.PUT_LINE('OLS hr_ols_pol labels are being audited.');
 ELSE 
  DBMS_OUTPUT.PUT_LINE('OLS hr_ols_pol labels not being audited.'); 
 END IF; 
END;
/

E.1.5 SA_AUDIT_ADMIN.CREATE_VIEW
The SA_AUDIT_ADMIN.CREATE_VIEW procedure creates an audit trail view named
DBA_policyname_AUDIT_TRAIL.

This view contains the specified policy's label column as well as all the entries in the audit
trail written on behalf of this policy. If the view name exceeds the database limit of 30
characters, then the user can optionally specify a shorter view name.

Oracle Label Security grants the SELECT privilege on the DBA_policyname_AUDIT_TRAIL view
to the Oracle Label Security policy database administrator.

See Also:

Oracle Label Security User-Created Auditing View to find the columns that are
contained in the DBA_policyname_AUDIT_TRAIL view

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-5



Syntax

SA_AUDIT_ADMIN.CREATE_VIEW (
     policy_name     IN VARCHAR2,
     view_name       IN VARCHAR2    DEFAULT NULL);

Parameters

Table E-4    SA_AUDIT_ADMIN.CREATE_VIEW Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

view_name Optional. Specifies the name of the view name. If you omit this
setting, then the name defaults to
DBA_policyname_AUDIT_TRAIL.

Examples

The following example creates a view called hr_ols_pol_view for the hr_ols_pol
policy.

BEGIN
 SA_AUDIT_ADMIN.CREATE_VIEW(
  policy_name      => 'hr_ols_pol',
  view_name        => 'hr_ols_pol_view');
END;
/

E.1.6 SA_AUDIT_ADMIN.DROP_VIEW
The SA_AUDIT_ADMIN.DROP_VIEW procedure drops the audit trail view for the specified
policy.

Syntax

SA_AUDIT_ADMIN.DROP_VIEW (
     policy_name     IN VARCHAR2,
     view_name       IN VARCHAR2    DEFAULT NULL);

Parameters

Table E-5    SA_AUDIT_ADMIN.DROP_VIEW Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

view_name Specifies an existing view's name. You can find this view by first
querying the ALL_SA_POLICIES data dictionary view to find the
name of the policy on which the view was based, and then
querying ALL_VIEWS data dictionary view to find any views that
have the name of the policy.

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-6



Example

The following example drops the view called hr_ols_pol_view from the hr_ols_pol policy.

BEGIN
 SA_AUDIT_ADMIN.DROP_VIEW(
  policy_name      => 'hr_ols_pol',
  view_name        => 'hr_ols_pol_view');
END;
/

E.1.7 SA_AUDIT_ADMIN.NOAUDIT
The SA_AUDIT_ADMIN.NOAUDIT procedure disables Oracle Label Security policy-specific
auditing.

Syntax

SA_AUDIT_ADMIN.NOAUDIT (
     policy_name     IN VARCHAR2,
     users           IN VARCHAR2 DEFAULT NULL,
     audit_option    IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-6    SA_AUDIT_ADMIN.NO_AUDIT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

users Optional. A comma-delimited list of users who were audited. If not
specified, then auditing is disabled for all users.

To find users who have privileges to modify Oracle Label Security
policies, query the USER_NAME column of the
ALL_SA_AUDIT_OPTIONS view.

audit_option Optional. A comma-delimited list of options to be disabled. Options
are as follows:

• APPLY: Disables auditing of the application of specified Oracle
Label Security policies to tables and schemas

• REMOVE: Disables auditing of the removal of specified Oracle
Label Security policies from tables and schemas

• SET: Disables auditing of the setting of user authorizations, and
user and program privileges

• PRIVILEGES: Disables auditing of the use of all policy-specific
privileges

If not specified, then all default options are disabled. Privileges must
be disabled explicitly.

Examples

The following example disables auditing for failed APPLY and REMOVE attempts by the users
psmith and rlayton.

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-7



BEGIN
 SA_AUDIT_ADMIN.NOAUDIT(
  policy_name      => 'hr_ols_pol',
  users            => 'jjones',
  audit_option     => 'apply, remove');
END;
/

You can disable auditing for all enabled options, or only for a subset of enabled
options. All auditing for the specified options is disabled for all specified users (or all
users, if the users parameter is NULL). For example, the following statement disables
auditing of the APPLY and REMOVE operations for users John, Mary, and Scott:

EXEC SA_AUDIT_ADMIN.NOAUDIT ('HR', 'JOHN, MARY, SCOTT', 'APPLY, REMOVE');

Consider also a case in which one AUDIT call enables auditing for a specific user, and
a second call (with no user specified) enables auditing for all users. For example:

EXEC SA_AUDIT_ADMIN.AUDIT ('HR', 'SCOTT');
EXEC SA_AUDIT_ADMIN.AUDIT ('HR');

In this case, a subsequent call to NOAUDIT with no users specified (such as the
following statement) does not reverse the auditing that was set for SCOTT explicitly in
the first call. So, auditing continues to be performed on SCOTT.

EXEC SA_AUDIT_ADMIN.NOAUDIT ('HR');

In this way, even if SA_AUDIT_ADMIN.NOAUDIT is set for all users, Oracle Label Security
still audits any users for whom auditing was explicitly set.

Auditing of privileged operations must be specified explicitly. If you run
SA_AUDIT_ADMIN.NOAUDIT with no options, the Oracle Label Security will nonetheless
continue to audit privileged operations. For example, if auditing is enabled and you
enter

EXEC SA_AUDIT_ADMIN.NOAUDIT ('HR');

then auditing will continue to be performed on the privileged operations (such as
WRITEDOWN).

SA_AUDIT_ADMIN.NOAUDIT parameters and options that you set apply only to
subsequent sessions, not to current sessions.

If you try to enable an audit option that has already been set, or if you try to disable an
audit option that has not been set, then Oracle Label Security processes the statement
without indicating an error. An attempt to specify an invalid option results in an error
message. You can find the status of audit options by querying the
ALL_SA_AUDIT_OPTIONS data dictionary view.

E.1.8 SA_AUDIT_ADMIN.NOAUDIT_LABEL
The SA_AUDIT_ADMIN.NOAUDIT_LABEL procedure disables the auditing of policy labels.

Syntax

SA_AUDIT_ADMIN.NOAUDIT_LABEL (
   policy_name     IN VARCHAR2);

Appendix E
SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package

E-8



Parameters

Table E-7    SA_AUDIT_ADMIN.NO_AUDIT_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example disables auditing for the hr_ols_pol policy.

BEGIN
 SA_AUDIT_ADMIN.NOAUDIT_LABEL(
  policy_name      => 'hr_ols_pol');
END;
/

E.2 SA_COMPONENTS Label Components PL/SQL Package
The SA_COMPONENTS PL/SQL package manages the component definitions of an Oracle Label
Security label.

• About the SA_COMPONENTS PL/SQL Package
The SA_COMPONENTS PL/SQL package configures compartments, groups, parent groups,
and levels.

• SA_COMPONENTS.ALTER_COMPARTMENT
The SA_COMPONENTS.ALTER_COMPARTMENT procedure changes the short name and long
name associated with a compartment.

• SA_COMPONENTS.ALTER_GROUP
The SA_COMPONENTS.ALTER_GROUP procedure changes the short name and long name
associated with a group.

• SA_COMPONENTS.ALTER_GROUP_PARENT
The SA_COMPONENTS.ALTER_GROUP_PARENT procedure changes the parent group
associated with a particular group.

• SA_COMPONENTS.ALTER_LEVEL
The SA_COMPONENTS.ALTER_LEVEL procedure changes the short name and long name
associated with a level.

• SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and specify
its short name and long name.

• SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short name
and long name, and optionally a parent group.

• SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short name
and long name.

• SA_COMPONENTS.DROP_COMPARTMENT
The SA_COMPONENTS.DROP_COMPARTMENT procedure removes a compartment.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-9



• SA_COMPONENTS.DROP_GROUP
The SA_COMPONENTS.DROP_GROUP procedure removes a group.

• SA_COMPONENTS.DROP_LEVEL
The SA_COMPONENTS.DROP_LEVEL procedure removes a level.

E.2.1 About the SA_COMPONENTS PL/SQL Package
The SA_COMPONENTS PL/SQL package configures compartments, groups, parent
groups, and levels.

To use this package, you must be granted the policy_DBA role (for example,
HR_OLS_POL_DBA for a role for the hr_ols_pol policy) and the EXECUTE privilege on the
SA_COMPONENTS package.

Related Topics

• Understanding Data Labels and User Labels
You should understand fundamental concepts of data labels and user labels.

E.2.2 SA_COMPONENTS.ALTER_COMPARTMENT
The SA_COMPONENTS.ALTER_COMPARTMENT procedure changes the short name and long
name associated with a compartment.

Once set, the comp_num parameter cannot be changed. If the comp_num parameter is
used in any existing label, then its short name cannot be changed but its long name
can be changed.

Syntax

SA_COMPONENTS.ALTER_COMPARTMENT (
   policy_name       IN VARCHAR2,
   comp_num          IN NUMBER(38),
   new_short_name    IN VARCHAR2,
   new_long_name     IN VARCHAR2);

SA_COMPONENTS.ALTER_COMPARTMENT (
   policy_name       IN VARCHAR2,
   short_name        IN VARCHAR2 DEFAULT NULL,
   new_long_name     IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-8    SA_COMPONENTS.ALTER_COMPARTMENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

comp_num Specifies the number of the compartment to be altered. To find a list of
existing compartment numbers, query the COMP_NUM column of the
ALL_SA_COMPARTMENTS view.

short_name Specifies the short name of the compartment to be altered (up to 30
characters). To find the current compartment, query the SHORT_NAME
column of the ALL_SA_COMPARTMENTS view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-10



Table E-8    (Cont.) SA_COMPONENTS.ALTER_COMPARTMENT Parameters

Parameter Description

new_short_name Specifies the new short name of the compartment (up to 30
characters)

new_long_name Specifies the new long name of the compartment (up to 80
characters).

Example

The following example modifies the hr_ols_pol policy.

BEGIN
  SA_COMPONENTS.ALTER_COMPARTMENT (
   policy_name         => 'hr_ols_pol',
   comp_num            => '48',
   new_short_name      => 'FIN',
   new_long_name       => 'FINANCE');
END;
/

E.2.3 SA_COMPONENTS.ALTER_GROUP
The SA_COMPONENTS.ALTER_GROUP procedure changes the short name and long name
associated with a group.

Once set, the group_num parameter cannot be changed. If the group is used in any existing
label, then its short name cannot be changed, but its long name can be changed.

Syntax

SA_COMPONENTS.ALTER_GROUP (
   policy_name    IN VARCHAR2,
   group_num      IN NUMBER(38),
   new_short_name IN VARCHAR2 DEFAULT NULL,
   new_long_name  IN VARCHAR2 DEFAULT NULL);

SA_COMPONENTS.ALTER_GROUP (
   policy_name    IN VARCHAR2,
   short_name     IN VARCHAR2,
   new_long_name  IN VARCHAR2);

Parameters

Table E-9    SA_COMPONENTS.ALTER_GROUP Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

group_num Specifies the existing group number to be altered. To find existing
group numbers, query the GROUP_NUM column of the ALL_SA_GROUPS
view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-11



Table E-9    (Cont.) SA_COMPONENTS.ALTER_GROUP Parameters

Parameter Description

short_name Specifies the existing group short name to be altered. To find existing
short names, query the SHORT_NAME column of the ALL_SA_GROUPS
view.

new_short_name Specifies the new short name for the group (up to 30 characters)

new_long_name Specifies the new long name for the group (up to 80 characters)

Example

The following example modifies the long_name setting for the hr_ols_pol policy.

BEGIN
  SA_COMPONENTS.ALTER_GROUP (
   policy_name     => 'hr_ols_pol',
   short_name      => 'ER_FIN',
   new_long_name   => 'ER_FINANCES');
END;
/

E.2.4 SA_COMPONENTS.ALTER_GROUP_PARENT
The SA_COMPONENTS.ALTER_GROUP_PARENT procedure changes the parent group
associated with a particular group.

Syntax

SA_COMPONENTS.ALTER_GROUP_PARENT (
   policy_name     IN VARCHAR2,
   group_num       IN NUMBER(38),
   new_parent_num  IN NUMBER(38));

SA_COMPONENTS.ALTER_GROUP_PARENT (
   policy_name     IN VARCHAR2,
   group_num       IN NUMBER(38),
   new_parent_name IN VARCHAR2);

SA_COMPONENTS.ALTER_GROUP_PARENT (
   policy_name     IN VARCHAR2,
   short_name      IN VARCHAR2,
   new_parent_name IN VARCHAR2);

Parameters

Table E-10    SA_COMPONENTS.ALTER_GROUP_PARENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-12



Table E-10    (Cont.) SA_COMPONENTS.ALTER_GROUP_PARENT Parameters

Parameter Description

group_num Specifies the existing group number to be altered. To find existing
group numbers, query the GROUP_NUM column of the
ALL_SA_GROUPS view.

short_name Specifies the existing group short name to be altered. To find
existing short names, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

new_parent_num Specifies the number of an existing group as the parent group. To
find existing parent groups, query the PARENT_NUM column of the
ALL_SA_GROUPS view.

new_parent_name Specifies the short name of an existing group as the parent
group. To find existing groups, query the SHORT_NAME column of
the ALL_SA_GROUPS view.

Example

The following example modifies the parent name for the hr_ols_pol policy.

BEGIN
  SA_COMPONENTS.ALTER_GROUP_PARENT (
   policy_name         => 'hr_ols_pol',
   group_num           => 2100,
   new_parent_name     => 'ER');
END;
/

E.2.5 SA_COMPONENTS.ALTER_LEVEL
The SA_COMPONENTS.ALTER_LEVEL procedure changes the short name and long name
associated with a level.

Once they are defined, level numbers cannot be changed. If a level is used in any existing
label, then its short name cannot be changed, but its long name can be changed.

Syntax

SA_COMPONENTS.ALTER_LEVEL (
   policy_name     IN VARCHAR2,
   level_num       IN NUMBER(38),
   new_short_name  IN VARCHAR2 DEFAULT NULL,
   new_long_name   IN VARCHAR2 DEFAULT NULL);

SA_COMPONENTS.ALTER_LEVEL (
   policy_name     IN VARCHAR2,
   short_name      IN VARCHAR2,
   new_long_name   IN VARCHAR2);

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-13



Parameters

Table E-11    SA_COMPONENTS.ALTER_LEVEL Parameters

Parameter Description

policy_name Specifies the policy, which much exist. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

level_num Specifies the number of the level to be altered. To find existing
levels, query the LEVEL_NUM column of the ALL_SA_LEVELS
view.

short_name Specifies the existing short name of the level. To find existing
level short names, query the SHORT_NAME column of the
ALL_SA_LEVELS view.

new_short_name Specifies the new short name for the level (up to 30 characters)

new_long_name Specifies the new long name for the level (up to 80 characters)

Example

The following example modifies the short and long names for the hr_ols_pol policy
level.

BEGIN
 SA_COMPONENTS.ALTER_LEVEL (
   policy_name     => 'hr_ols_pol',
   level_num       => 40,
   new_short_name  => 'TS',
   new_long_name   => 'TOP_SECRET');
END;
/

E.2.6 SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and
specify its short name and long name.

The comp_num parameter determines the order in which compartments are listed in the
character string representation of labels.

Syntax

SA_COMPONENTS.CREATE_COMPARTMENT (
   policy_name IN VARCHAR2,
   comp_num    IN NUMBER(38),
   short_name  IN VARCHAR2,
   long_name   IN VARCHAR2);

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-14



Parameters

Table E-12    SA_COMPONENTS.CREATE_COMPARTMENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

comp_num Specifies the compartment number (0-9999)

short_name Specifies the short name for the compartment (up to 30 characters)

long_name Specifies the long name for the compartment (up to 80 characters)

Example

The following example creates a compartment for the hr_ols_pol policy.

BEGIN
  SA_COMPONENTS.CREATE_COMPARTMENT (
   policy_name     => 'hr_ols_pol',
   comp_num        => '48',
   short_name      => 'FIN',
   long_name       => 'FINANCE');
END;
/

E.2.7 SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short name and
long name, and optionally a parent group.

Syntax

SA_COMPONENTS.CREATE_GROUP (
   policy_name IN VARCHAR2,
   group_num   IN NUMBER(38),
   short_name  IN VARCHAR2,
   long_name   IN VARCHAR2,
   parent_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-13    SA_COMPONENTS.CREATE_GROUP Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

group_num Specifies the group number (0-9999)

short_name Specifies the short name for the group (up to 30 characters)

long_name Specifies the long name for the group (up to 80 characters)

parent_name Specifies the short name of an existing group as the parent group. If
NULL, then the group is a top-level group.

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-15



Note that the group number affects the order in which groups will be displayed when
labels are selected.

Examples

In the following examples, the first creates a parent group, ER, and the second creates
a second group that is part of the parent group.

BEGIN
  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'hr_ols_pol',
   group_num       => 2000,
   short_name      => 'ER',
   long_name       => 'EAST_REGION');
END;
/
 
BEGIN
  SA_COMPONENTS.CREATE_GROUP (
   policy_name     => 'hr_ols_pol',
   group_num       => 2100,
   short_name      => 'ER_FIN',
   long_name       => 'ER_FINANCES',
   parent_name     => 'ER');
END;
/

E.2.8 SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short
name and long name.

The numeric values assigned to the level_num parameter determine the sensitivity
ranking (that is, a lower number indicates less sensitive data).

Syntax

SA_COMPONENTS.CREATE_LEVEL (
   policy_name       IN VARCHAR2,
   level_num         IN NUMBER(38),
   short_name        IN VARCHAR2,
   long_name         IN VARCHAR2);

Parameters

Table E-14    SA_COMPONENTS.CREATE_LEVEL Parameters

Parameter Description

policy_name Specifies the policy, which must exist. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

level_num Specifies the level number (0-9999)

short_name Specifies the short name for the level (up to 30 characters)

long_name Specifies the long name for the level (up to 80 characters)

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-16



Example

The following example creates a level for the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.CREATE_LEVEL (
   policy_name   => 'hr_ols_pol',
   level_num     => 40,
   short_name    => 'HS',
   long_name     => 'HIGHLY_SENSITIVE');
END;
/

E.2.9 SA_COMPONENTS.DROP_COMPARTMENT
The SA_COMPONENTS.DROP_COMPARTMENT procedure removes a compartment.

If the compartment is used in any existing label, then it cannot be dropped. You can find all
existing labels by querying the LABEL column of the ALL_SA_DATA_LABELS data dictionary view.

Syntax

SA_COMPONENTS.DROP_COMPARTMENT (
   policy_name IN VARCHAR2,
   comp_num    IN INTEGER);

SA_COMPONENTS.DROP_COMPARTMENT (
   policy_name IN VARCHAR2,
   short_name  IN VARCHAR2);

Parameters

Table E-15    SA_COMPONENTS.DROP_COMPARTMENT Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

comp_num Specifies the number of an existing compartment for the policy. To find
existing compartment numbers, query the COMP_NUM column of the
DBA_SA_COMPARTMENTS view.

short_name Specifies the short name of an existing compartment for the policy. To
find existing compartment short names, query the SHORT_NAME
column of the DBA_SA_COMPARTMENTS view.

Example

The following example removes the FIN compartment from the hr_ols_pol policy.

BEGIN
  SA_COMPONENTS.DROP_COMPARTMENT (
   policy_name     => 'hr_ols_pol',
   short_name      => 'FIN');
END;
/

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-17



E.2.10 SA_COMPONENTS.DROP_GROUP
The SA_COMPONENTS.DROP_GROUP procedure removes a group.

If the group is used in an existing label, then it cannot be dropped.

Syntax

SA_COMPONENTS.DROP_GROUP (
   policy_name IN VARCHAR2,
   group_num   IN NUMBER(38));

SA_COMPONENTS.DROP_GROUP (
   policy_name IN VARCHAR2,
   short_name  IN VARCHAR2);

Parameters

Table E-16    SA_COMPONENTS.DROP_GROUP Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

group_num Specifies the number of an existing group for the policy. To find
existing group numbers, query the GROUP_NUM column of the
ALL_SA_GROUPS view.

short_name Specifies the short name of an existing group. To find existing
group short names, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

Example

The following example removes a group based on the group number for the
hr_ols_pol policy.

BEGIN
  SA_COMPONENTS.DROP_GROUP (
   policy_name     => 'hr_ols_pol',
   group_num       => 2000);
END;
/

E.2.11 SA_COMPONENTS.DROP_LEVEL
The SA_COMPONENTS.DROP_LEVEL procedure removes a level.

If the level is used in any existing label, then it cannot be dropped.

Syntax

SA_COMPONENTS.DROP_LEVEL (
   policy_name IN VARCHAR2,
   level_num   IN NUMBER(38));

Appendix E
SA_COMPONENTS Label Components PL/SQL Package

E-18



SA_COMPONENTS.DROP_LEVEL (
   policy_name IN VARCHAR2,
   short_name  IN VARCHAR2);

Parameters

Table E-17    SA_COMPONENTS.DROP_LEVEL Parameters

Parameter Description

policy_name Specifies the policy, which much exist. To find existing policies, query
the POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

level_num Specifies the number of an existing level for the policy. To find existing
level numbers, query the LEVEL_NUM column of the ALL_SA_LEVELS
view.

short_name Specifies the short name for the level (up to 30 characters). To find
existing level short names, query the SHORT_NAME column of the
ALL_SA_LEVELS view.

Example

The following example drops the level 40 from the hr_ols_pol policy.

BEGIN
 SA_COMPONENTS.DROP_LEVEL (
   policy_name     => 'hr_ols_pol',
   level_num       => 40);
END;
/

E.3 SA_LABEL_ADMIN Label Management PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package provides an administrative interface to manage the
labels used by a policy.

• About the SA_LABEL_ADMIN PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package creates, alters, and deletes labels.

• SA_LABEL_ADMIN.ALTER_LABEL
The SA_LABEL_ADMIN.ALTER_LABEL procedure changes the character string label
definition associated with a label tag.

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

• SA_LABEL_ADMIN.DROP_LABEL
The SA_LABEL_ADMIN.DROP_LABEL procedure deletes a specified policy label.

E.3.1 About the SA_LABEL_ADMIN PL/SQL Package
The SA_LABEL_ADMIN PL/SQL package creates, alters, and deletes labels.

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-19



E.3.2 SA_LABEL_ADMIN.ALTER_LABEL
The SA_LABEL_ADMIN.ALTER_LABEL procedure changes the character string label
definition associated with a label tag.

The label tag itself cannot be changed.

If you change the character string associated with a label tag, then the sensitivity of
the data in the rows changes accordingly. For example, if the label character string
TS:A with an associated label tag value of 4001 is changed to the label TS:B, then
access to the data changes accordingly. This is true even when the label tag value
(4001) has not changed. In this way, you can change the data's sensitivity without the
need to update all the rows.

Ensure that when you specify a label to alter, you can refer to it either by its label tag
or by its character string value.

Syntax

SA_LABEL_ADMIN.ALTER_LABEL (
   policy_name       IN VARCHAR2,
   label_tag         IN BINARY_INTEGER,
   new_label_value   IN VARCHAR2 DEFAULT NULL,
   new_data_label    IN BOOLEAN  DEFAULT NULL);

SA_LABEL_ADMIN.ALTER_LABEL (
   policy_name       IN VARCHAR2,
   label_value       IN VARCHAR2,
   new_label_value   IN VARCHAR2 DEFAULT NULL,
   new_data_label    IN BOOLEAN  DEFAULT NULL);

Parameters

Table E-18    SA_LABEL_ADMIN.ALTER_LABEL Parameters

Parameter Description

policy_name Specifies the name of an existing policy. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

label_tag Identifies the integer tag assigned to the label to be altered. To
find existing label tags, query the LABEL_TAG column of the
ALL_SA_LABELS view.

label_value Identifies the existing character string representation of the label
to be altered. To find the existing label values, query the LABEL
column of the ALL_SA_LABELS view.

new_label_value Specifies the new character string representation of the label
value. If NULL, the existing value is not changed.

new_data_label TRUE if the label can be used to label row data. If NULL, the
existing value is not changed.

Example

The following example modifies the label_tag and label_value settings of
hr_ols_pol policy.

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-20



BEGIN
  SA_LABEL_ADMIN.ALTER_LABEL (
   policy_name       => 'hr_ols_pol',
   label_tag         => 1111,
   new_label_value   => 'HS',
   new_data_label    => TRUE);
END;
/

E.3.3 SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

Syntax

SA_LABEL_ADMIN.CREATE_LABEL (
   policy_name IN VARCHAR2,
   label_tag   IN BINARY_INTEGER,
   label_value IN VARCHAR2,
   data_label  IN BOOLEAN DEFAULT TRUE);

Parameters

Table E-19    SA_LABEL_ADMIN.CREATE_LABEL Parameters

Parameter Description

policy_name Specifies the name of an existing policy. To find existing policies, query
the POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label_tag Specifies a unique integer value representing the sort order of the
label, relative to other policy labels (0-99999999). This value must be 1
to 8 digits long.

label_value Specifies the character string representation of the label to be created.
Use the short name of the level, compartment, and group. You can find
these values by querying the SHORT_NAME column of the
ALL_SA_LEVELS, ALL_SA_COMPARTMENTS, and ALL_SA_GROUPS
views.

data_label TRUE if the label can be used to label row data. Use this to define the
label as valid for data.

When you identify valid labels, you specify which of all the possible combinations of levels,
compartments, and groups can potentially be used to label data in tables.

Example

The following example creates a label for the hr_ols_pol policy.

BEGIN
  SA_LABEL_ADMIN.CREATE_LABEL (
   policy_name     => 'hr_ols_pol',
   label_tag       => 1111,
   label_value     => 'HS:FIN',
   data_label      => TRUE);
END;
/

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-21



Note:

If you create a new label by using the TO_DATA_LABEL procedure, then a
system-generated label tag of 10 digits is generated automatically.

However, when Oracle Label Security is installed to work with Oracle Internet
Directory, dynamic label generation is not permitted, because labels are
managed centrally in Oracle Internet Directory, using olsadmintool
commands.

So, when Oracle Label Security is directory-enabled, the TO_DATA_LABEL
function is not available and will generate an error message if used.

E.3.4 SA_LABEL_ADMIN.DROP_LABEL
The SA_LABEL_ADMIN.DROP_LABEL procedure deletes a specified policy label.

Any subsequent reference to the label (in data rows, or in user or program unit labels)
will raise an invalid label error.

Use this procedure only while setting up labels, prior to data population. If you should
inadvertently drop a label that is being used, you can recover it by disabling the policy,
fixing the problem, and then re-enabling the policy.

Syntax

SA_LABEL_ADMIN.DROP_LABEL (
   policy_name       IN VARCHAR2,
   label_tag         IN BINARY_INTEGER);

SA_LABEL_ADMIN.DROP_LABEL (
   policy_name       IN VARCHAR2,
   label_value       IN VARCHAR2);

Parameters

Table E-20    SA_LABEL_ADMIN.DROP_LABEL Parameters

Parameter Description

policy_name Specifies the name of an existing policy. To find existing policies,
query the POLICY_NAME column of the ALL_SA_POLICIES data
dictionary view.

label_tag Specifies the integer tag assigned to the label to be dropped. To
find existing label tags, query the LABEL_TAG column of the
ALL_SA_LABELS view.

label_value Specifies the string value of the label to be dropped. To find
existing label values, query the LABEL column of the
ALL_SA_LABELS view.

Appendix E
SA_LABEL_ADMIN Label Management PL/SQL Package

E-22



WARNING:

Do not drop a label that is in use anywhere in the database. You can find labels by
querying the ALL_SA_LABELS data dictionary view.

Example

The following example drops the hr_ols_pol policy label based on its label_tag setting.

BEGIN
  SA_LABEL_ADMIN.DROP_LABEL (
   policy_name     => 'hr_ols_pol',
   label_tag       => 1111);
END;
/

E.4 SA_POLICY_ADMIN Policy Administration PL/SQL
Package

The SA_POLICY_ADMIN PL/SQL package manages Oracle Label Security policies as a whole.

• About the SA_POLICY_ADMIN PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package configures schema and table policies, and
performs subscribe and unsubscribe actions.

• SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
The SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY procedure changes the default
enforcement options for the policy.

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

• SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY procedure disables the enforcement of
the policy for all tables in a schema.

• SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
The SA_POLICY_ADMIN.DISABLE_TABLE_POLICY procedure disables the enforcement of the
policy for a table without changing the enforcement options, labeling function, or
predicate values.

• SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY procedure reenables the current
enforcement options, labeling function, and predicate for the tables in the specified
schema.

• SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
The SA_POLICY_ADMIN.ENABLE_TABLE_POLICY procedure reenables the current
enforcement options, labeling function, and predicate for the specified table.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-23



• SA_POLICY_ADMIN.POLICY_SUBSCRIBE
In an Oracle Internet Directory-enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_SUBSCRIBE procedure subscribes to the policy for usage
in SA_POLICY_ADMIN.APPLY_TABLE_POLICY and
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

• SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
In an Oracle Internet Directory enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE procedure unsubscribes to the policy.

• SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
The SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY procedure removes the specified
policy from a schema.

• SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
The SA_POLICY_ADMIN.REMOVE_TABLE_POLICY procedure removes the specified
policy from a table.

E.4.1 About the SA_POLICY_ADMIN PL/SQL Package
The SA_POLICY_ADMIN PL/SQL package configures schema and table policies, and
performs subscribe and unsubscribe actions.

To use this package, you must be granted the policy_DBA role (for example,
HR_OLS_POL_DBA for a role for the hr_ols_pol policy) and the EXECUTE privilege for the
SA_POLICY_ADMIN package.

E.4.2 SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
The SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY procedure changes the default
enforcement options for the policy.

Any new tables created in the schema will automatically have the new enforcement
options applied. The existing tables in the schema are not affected.

To change enforcement options on a table (rather than a schema), you must first drop
the policy from the table, make the change, and then reapply the policy.

If you alter the enforcement options on a schema, then this will take effect the next
time a table is created in the schema. As a result, different tables within a schema may
have different policy enforcement options in force.

Syntax

SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY (
  policy_name         IN VARCHAR2,
  schema_name         IN VARCHAR2,
  default_options     IN VARCHAR2);

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-24



Parameters

Table E-21    SA_POLICY_ADMIN.ALTER_SCHEMA Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

schema_name The schema that contains the table. To find existing schemas
associated with this policy, query the POLICY_NAME and
SCHEMA_NAME columns of the ALL_SA_TABLE_POLICIES view.

default_options The default options to be used for new tables in the schema. Separate
each option with a comma.

See Table 11-2 for a listing of the default enforcement options.

Example

The following example adds the UPDATE_CONTROL default option to the HR schema.

BEGIN 
 SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY(
  policy_name      => 'hr_ols_pol',
  schema_name      => 'HR',
  default_options  => 'read_control, write_control, update_control');
END;
/

E.4.3 SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the tables in
a schema and enables the policy for these tables.

That is, it applies to those tables that do not already have the policy applied. Then, whenever
a new table is created in the schema, the policy is automatically applied to that table, using
the schema's default options. No changes are made to existing tables in the schema that
already have the policy applied.

Syntax

SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY (
  policy_name        IN VARCHAR2,
  schema_name        IN VARCHAR2,
  default_options    IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-22    SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

schema_name The schema that contains the table to protect

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-25



Table E-22    (Cont.) SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY Parameters

Parameter Description

default_options The default options to be used for tables in the schema. Separate
each option with a comma. If the default_options parameter is
NULL, then the policy's default options will be used to apply the policy
to the tables in the schema.

See Table 11-2 for a listing of the default enforcement options.

Example

The following example applies the READ_CONTROL and WRITE_CONTROL options to the HR
schema.

BEGIN 
 SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY(
  policy_name      => 'hr_ols_pol',
  schema_name      => 'HR',
  default_options  => 'read_control, write_control');
END;
/

E.4.4 SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

A policy label column is added to the table if it does not exist, and is set to NULL. When
a policy is applied, it is automatically enabled. To change the table options, labeling
function, or predicate, you must first remove the policy, and then reapply it.

Syntax

SA_POLICY_ADMIN.APPLY_TABLE_POLICY (
  policy_name       IN VARCHAR2,
  schema_name       IN VARCHAR2,
  table_name        IN VARCHAR2,
  table_options     IN VARCHAR2 DEFAULT NULL,
  label_function    IN VARCHAR2 DEFAULT NULL,
  predicate         IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-23    SA_POLICY_ADMIN.APPLY_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table that the policy protects

table_name The table to be protected by the policy

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-26



Table E-23    (Cont.) SA_POLICY_ADMIN.APPLY_TABLE_POLICY Parameters

Parameter Description

table_options A comma-delimited list of policy enforcement options to be used
for the table. If NULL, then the policy's default options are used.

See Table 11-2 for a listing of the default enforcement options.

label_function A string calling a function to return a label value to use as the
default. For example, my_label(:new.dept,:new.status)
computes the label based on the new values of the DEPT and
STATUS columns in the row.

predicate An additional predicate to combine (using AND or OR) with the
label-based predicate for READ_CONTROL

Example

The following statement applies the hr_ols_pol policy to the EMPLOYEES table in the HR
schema.

BEGIN
 SA_POLICY_ADMIN.APPLY_TABLE_POLICY(
  policy_name    => 'hr_ols_pol',
  schema_name    => 'HR',
  table_name     => 'EMPLOYEES',
  table_options  => NULL,
  label_function => 'hs(:new.dept,:new.status)',
  predicate      => 'no_control');
END;
/

E.4.5 SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY procedure disables the enforcement of the
policy for all tables in a schema.

However, it does not change the enforcement options, labeling function, or predicate values.

This procedure removes the row level security predicate and DML triggers from all the tables
in the schema.

Syntax

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY (
  policy_name    IN VARCHAR2,
  schema_name    IN VARCHAR2);

Parameters

Table E-24    SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-27



Table E-24    (Cont.) SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY Parameters

Parameter Description

schema_name The schema that contains the table for this policy. To find this schema,
query the POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

Example

The following example disables the hr_ols_pol policy for the HR schema.

BEGIN
 SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY(
  policy_name      => 'hr_ols_pol',
  schema_name      => 'HR');
END;
/

E.4.6 SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
The SA_POLICY_ADMIN.DISABLE_TABLE_POLICY procedure disables the enforcement of
the policy for a table without changing the enforcement options, labeling function, or
predicate values.

This procedure removes the row level security predicate and DML triggers from the
table.

Syntax

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY (
  policy_name      IN VARCHAR2,
  schema_name      IN VARCHAR2,
  table_name       IN VARCHAR2);

Parameters

Table E-25    SA_POLICY_ADMIN.DISABLE_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table. To find this schema, query
the POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

table_name The table in the schema specified by schema_name. To find this
table, query the POLICY_NAME, SCHEMA_NAME, and TABLE_NAME
columns of the ALL_SA_TABLE_POLICIES view.

Example

The following statement disables the hr_ols_pos policy on the EMPLOYEES table in the
HR schema:

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-28



BEGIN
 SA_POLICY_ADMIN.DISABLE_TABLE_POLICY(
  policy_name   => 'hr_ols_pol',
  schema_name   => 'HR',
  table_name    => 'EMPLOYEES');
END;
/

E.4.7 SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
The SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY procedure reenables the current enforcement
options, labeling function, and predicate for the tables in the specified schema.

It accomplishes this by re-applying the row level security predicate and DML triggers. The
result is similar to enabling a policy for a table, but it covers all the tables in the schema.

Syntax

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY (
  policy_name    IN VARCHAR2,
  schema_name    IN VARCHAR2);

Parameters

Table E-26    SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies and their status, query the
POLICY_NAME and STATUS columns of the ALL_SA_POLICIES data
dictionary view.

schema_name The schema that contains the table. To find this schema, query the
POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

Example

The following example enables the hr_ols_pol policy for the HR schema.

BEGIN
 SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY(
  policy_name      => 'hr_ols_pol',
  schema_name      => 'HR');
END;
/

E.4.8 SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
The SA_POLICY_ADMIN.ENABLE_TABLE_POLICY procedure reenables the current enforcement
options, labeling function, and predicate for the specified table.

It accomplishes this by reapplying the row level security predicate and DML triggers.

Syntax

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY (
  policy_name     IN VARCHAR2,

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-29



  schema_name     IN VARCHAR2,
  table_name      IN VARCHAR2);

Parameters

Table E-27    SA_POLICY_ADMIN.ENABLE_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. POLICY_NAME and STATUS columns of the
ALL_SA_POLICIES data dictionary view.

schema_name The schema that contains the table. To find this schema, query
the POLICY_NAME and SCHEMA_NAME columns of the
ALL_SA_TABLE_POLICIES view.

table_name The table in the schema specified by schema_name. To find this
table, query the POLICY_NAME, SCHEMA_NAME, and TABLE_NAME
columns of the ALL_SA_TABLE_POLICIES view.

Example

The following statement reenables the hr_ols_pol policy on the EMPLOYEES table in the
HR schema:

BEGIN 
 SA_POLICY_ADMIN.ENABLE_TABLE_POLICY(
  policy_name   => 'hr_ols_pol',
  schema_name   => 'HR',
  table_name    => 'EMPLOYEES');
END;
/

E.4.9 SA_POLICY_ADMIN.POLICY_SUBSCRIBE
In an Oracle Internet Directory-enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_SUBSCRIBE procedure subscribes to the policy for usage in
SA_POLICY_ADMIN.APPLY_TABLE_POLICY and SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

You must call this procedure for a policy before that policy can be applied to a table or
schema. Subscribing is needed only once, not for each use of the policy in a table or
schema.

You cannot drop any subscribed policy unless it has been removed from any table or
schema to which it was applied, and then unsubscribed.

Syntax

SA_POLICY.POLICY_SUBSCRIBE(
  policy_name     IN VARCHAR2);

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-30



Parameter

Table E-28    SA_POLICY_ADMIN.POLICY_SUBSCRIBE Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Note:

This procedure must be used before policy usage only in the case of Oracle Internet
Directory-enabled Oracle Label Security configuration. In the standalone Oracle
Label Security case, the policy can be used in APPLY_TABLE_POLICY and
APPLY_SCHEMA_POLICY directly without the need to subscribe.

Example

The following statement subscribes the database to the hr_ols_pol policy so that it can used
by applying on tables and schema.

BEGIN
 SA_POLICY_ADMIN.POLICY_SUBSCRIBE(
  policy_name   => 'hr_ols_pol');
END;
/

E.4.10 SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
In an Oracle Internet Directory enabled Oracle Label Security configuration, the
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE procedure unsubscribes to the policy.

You can use this procedure only if the policy is not in use; that is, it has not been applied to
any table or schema. (If it has been applied to tables or schemas, then it must be removed
from all of them before it can be unsubscribed.) A policy can be dropped in Oracle Internet
Directory only if is not subscribed in any of the databases that have registered with that
Oracle Internet Directory. To unsubscribe a policy, use the olsadmintool dropprofile
command.

You cannot drop any subscribed policy unless it has been removed from any table or schema
to which it was applied, and then unsubscribed.

Syntax

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE(
  policy_name  IN VARCHAR2);

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-31



Parameter

Table E-29    SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following statement unsubscribes the database to the hr_ols_pol policy.

BEGIN
 SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE(
  policy_name   => 'hr_ols_pol');
END;
/

E.4.11 SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
The SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY procedure removes the specified policy
from a schema.

The policy will be removed from all the tables in the schema and, optionally, the label
column for the policy will be dropped from all the tables.

Syntax

SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY (
  policy_name     IN VARCHAR2,
  schema_name     IN VARCHAR2,
  drop_column     IN BOOLEAN DEFAULT FALSE);

Parameters

Table E-30    SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The schema that contains the table associated with this policy.
To find this schema, query the SCHEMA_NAME of the
ALL_SA_SCHEMA_POLICIES view.

drop_column If TRUE, then the policy's column will be dropped from the tables,
otherwise, the column will remain.

Example

The following example drops the human_resource policy's column from the HR schema.

BEGIN
 SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY(

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-32



  policy_name      => 'hr_ols_pol',
  schema_name      => 'HR',
  drop_column      => TRUE);
END;
/

E.4.12 SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
The SA_POLICY_ADMIN.REMOVE_TABLE_POLICY procedure removes the specified policy from a
table.

The policy predicate and any DML triggers will be removed from the table, and the policy
label column can optionally be dropped. Policies can be removed from tables belonging to a
schema that is protected by the policy.

Syntax

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY (
policy_name        IN VARCHAR2,
schema_name        IN VARCHAR2,
table_name         IN VARCHAR2,
drop_column        IN BOOLEAN DEFAULT FALSE);

Parameters

Table E-31    SA_POLICY_ADMIN.REMOVE_TABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

schema_name The schema that contains the table associated with this policy. To find
this schema, query the SCHEMA_NAME of the
ALL_SA_SCHEMA_POLICIES view.

table_name The table in the schema specified by schema_name. To find this table
query the POLICY_NAME, SCHEMA_NAME, and TABLE_NAME columns of
the ALL_SA_TABLE_POLICIES view.

drop_column Whether the column is to be dropped: if TRUE, then the policy's
column will be dropped from the table, otherwise, it will remain

Example

The following statement removes the hr_ols_pol policy from the EMPLOYEES table in the HR
schema:

BEGIN
 SA_POLICY_ADMIN.REMOVE_TABLE_POLICY(
  policy_name    => 'hr_ols_pol',
  schema_name    => 'HR',
  table_name     => 'EMPLOYEES',
  drop_column    => TRUE);
END;
/

Appendix E
SA_POLICY_ADMIN Policy Administration PL/SQL Package

E-33



E.5 SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user authorizations.

• About the SA_SESSION PL/SQL Package
The SA_SESSION PL/SQL package manages user name, levels, labels, and read
and write permissions for a user session.

• SA_SESSION.COMP_READ
The SA_SESSION.COMP_READ function returns a comma-delimited list of
compartments that the user is authorized to read.

• SA_SESSION.COMP_WRITE
The SA_SESSION.COMP_WRITE function returns a comma-delimited list of
compartments to which the user is authorized to write.

• SA_SESSION.GROUP_READ
The SA_SESSION.GROUP_READ function returns a comma-delimited list of groups
that the user is authorized to read.

• SA_SESSION.GROUP_WRITE
The SA_SESSION.GROUP_WRITE function returns a comma-delimited list of groups
that the user is authorized to write.

• SA_SESSION.LABEL
The SA_SESSION.LABEL function returns the label that is associated with the
specified policy for the current session.

• SA_SESSION.MAX_LEVEL
The SA_SESSION.MAX_LEVEL function returns the maximum Oracle Label Security
level authorized for the session.

• SA_SESSION.MAX_READ_LABEL
The SA_SESSION.MAX_READ_LABEL function returns the label string that was used to
initialize the user's maximum authorized read label.

• SA_SESSION.MAX_WRITE_LABEL
The SA_SESSION.MAX_WRITE_LABEL function returns the label string that was used
to initialize the user's maximum authorized write label.

• SA_SESSION.MIN_LEVEL
The SA_SESSION.MIN_LEVEL function returns the minimum Oracle Label Security
level authorized for the session.

• SA_SESSION.MIN_WRITE_LABEL
The SA_SESSION.MIN_WRITE_LABEL function retrieves the label string that was used
to initialize the user's minimum authorized write label.

• SA_SESSION.PRIVS
The SA_SESSION.PRIVS function returns the set of current session privileges, in a
comma-delimited list.

• SA_SESSION.RESTORE_DEFAULT_LABELS
The SA_SESSION.RESTORE_DEFAULT_LABELS procedure restores the session label
and row label to those stored in the data dictionary.

• SA_SESSION.ROW_LABEL
The SA_SESSION.ROW_LABEL function returns the name of the row label that is
associated with the policy for the current session.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-34



• SA_SESSION.SET_LABEL
The SA_SESSION.SET_LABEL procedure sets the label of the current database session.

• SA_SESSION.SA_USER_NAME
The SA_SESSION.SA_USER_NAME function returns the name of the current Oracle Label
Security user, as set by the SA_SESSION.SET_ACCESS_PROFILE procedure (or as
established at login).

• SA_SESSION.SAVE_DEFAULT_LABELS
The SA_SESSION.SAVE_DEFAULT_LABELS procedure stores the current session label and
row label as your initial session label and default row label.

• SA_SESSION.SET_ACCESS_PROFILE
The SA_SESSION.SET_ACCESS_PROFILE procedure sets the Oracle Label Security
authorizations and privileges of the database session to those of the specified user.

• SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

E.5.1 About the SA_SESSION PL/SQL Package
The SA_SESSION PL/SQL package manages user name, levels, labels, and read and write
permissions for a user session.

Users can change labels during a session within the authorizations set by the administrator.

You do not need special privileges to use this package.

See Also:

SA_UTL PL/SQL Utility Functions and Procedures for additional functions that
return numeric label tags and BOOLEAN values

E.5.2 SA_SESSION.COMP_READ
The SA_SESSION.COMP_READ function returns a comma-delimited list of compartments that the
user is authorized to read.

Syntax

SA_SESSION.COMP_READ ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-32    SA_SESSION.COMP_READ Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-35



Example

The following example returns the compartments that the user can read for the
hr_ols_pol policy.

SELECT SA_SESSION.COMP_READ ('hr_ols_pol') FROM DUAL; 

E.5.3 SA_SESSION.COMP_WRITE
The SA_SESSION.COMP_WRITE function returns a comma-delimited list of compartments
to which the user is authorized to write.

This function is a subset of SA_SESSION.COMP_READ.

Syntax

SA_SESSION.COMP_WRITE ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-33    SA_SESSION.COMP_WRITE Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the compartments that the user can modify for the
hr_ols_pol policy.

SELECT SA_SESSION.COMP_WRITE ('hr_ols_pol') FROM DUAL;

E.5.4 SA_SESSION.GROUP_READ
The SA_SESSION.GROUP_READ function returns a comma-delimited list of groups that the
user is authorized to read.

Syntax

SA_SESSION.GROUP_READ ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Appendix E
SA_SESSION Session Management PL/SQL Package

E-36



Parameter

Table E-34    SA_SESSION.GROUP_READ Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example returns the list of groups that a user can read for the hr_ols_pol
policy.

SELECT SA_SESSION.GROUP_READ ('hr_ols_pol') FROM DUAL;

E.5.5 SA_SESSION.GROUP_WRITE
The SA_SESSION.GROUP_WRITE function returns a comma-delimited list of groups that the user
is authorized to write.

This function is a subset of SA_SESSION.GROUP_READ.

Syntax

SA_SESSION.GROUP_WRITE ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-35    SA_SESSION.GROUP_WRITE Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example returns the groups the user is authorized to modify for the hr_ols_pol
policy.

SELECT SA_SESSION.GROUP_WRITE ('hr_ols_pol') FROM DUAL;

E.5.6 SA_SESSION.LABEL
The SA_SESSION.LABEL function returns the label that is associated with the specified policy
for the current session.

Syntax

SA_SESSION.LABEL ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Appendix E
SA_SESSION Session Management PL/SQL Package

E-37



Parameter

Table E-36    SA_SESSION.LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the label that is associated with the hr_ols_pol policy.

SELECT SA_SESSION.LABEL ('hr_ols_pol') FROM DUAL;

E.5.7 SA_SESSION.MAX_LEVEL
The SA_SESSION.MAX_LEVEL function returns the maximum Oracle Label Security level
authorized for the session.

Syntax

SA_SESSION.MAX_LEVEL ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-37    SA_SESSION.MAX_LEVEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the maximum Oracle Label Security level that is
authorized for the hr_ols_pol policy.

SELECT SA_SESSION.MAX_LEVEL ('hr_ols_pol') FROM DUAL;

E.5.8 SA_SESSION.MAX_READ_LABEL
The SA_SESSION.MAX_READ_LABEL function returns the label string that was used to
initialize the user's maximum authorized read label.

The return string is composed of the user's maximum level, compartments authorized
for read access, and groups authorized for read access.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-38



Syntax

SA_SESSION.MAX_READ_LABEL ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-38    SA_SESSION.MAX_READ_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example returns the maximum read label privileges for the hr_ols_pol policy.

SELECT SA_SESSION.MAX_READ_LABEL ('hr_ols_pol') FROM DUAL;

E.5.9 SA_SESSION.MAX_WRITE_LABEL
The SA_SESSION.MAX_WRITE_LABEL function returns the label string that was used to initialize
the user's maximum authorized write label.

This return string is composed of the user's maximum level, compartments authorized for
write access, and groups authorized for write access.

Syntax

SA_SESSION.MAX_WRITE_LABEL ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-39    SA_SESSION.MAX_WRITE_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example returns the maximum write label privileges for the hr_ols_pol policy.

SELECT SA_SESSION.MAX_WRITE_LABEL ('hr_ols_pol') FROM DUAL;

Appendix E
SA_SESSION Session Management PL/SQL Package

E-39



E.5.10 SA_SESSION.MIN_LEVEL
The SA_SESSION.MIN_LEVEL function returns the minimum Oracle Label Security level
authorized for the session.

Syntax

SA_SESSION.MIN_LEVEL ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-40    SA_SESSION.MIN_LEVEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the current minimum level for the hr_ols_pol policy.

SELECT SA_SESSION.MIN_LEVEL ('hr_ols_pol') FROM DUAL;

E.5.11 SA_SESSION.MIN_WRITE_LABEL
The SA_SESSION.MIN_WRITE_LABEL function retrieves the label string that was used to
initialize the user's minimum authorized write label.

The return string contains only the level, with no compartments or groups.

Syntax

SA_SESSION.MIN_WRITE_LABEL ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-41    SA_SESSION.MIN_WRITE_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the maximum write label privileges for the hr_ols_pol
policy.

SELECT SA_SESSION.MIN_WRITE_LABEL ('hr_ols_pol') FROM DUAL;

Appendix E
SA_SESSION Session Management PL/SQL Package

E-40



E.5.12 SA_SESSION.PRIVS
The SA_SESSION.PRIVS function returns the set of current session privileges, in a comma-
delimited list.

Syntax

SA_SESSION.PRIVS ( 
  policy_name IN VARCHAR2) 
RETURN VARCHAR2;

Parameter

Table E-42    SA_SESSION.Privs Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example returns the current session privileges for the hr_ols_pol policy.

SELECT SA_SESSION.PRIVS ('hr_ols_pol') FROM DUAL;

E.5.13 SA_SESSION.RESTORE_DEFAULT_LABELS
The SA_SESSION.RESTORE_DEFAULT_LABELS procedure restores the session label and row
label to those stored in the data dictionary.

This command is useful to reset values after a SA_SESSION.SET_LABEL command has been
processed.

Syntax

SA_SESSION.RESTORE_DEFAULT_LABELS (
 policy_name in VARCHAR2); 

Parameter

Table E-43    SA_SESSION.RESTORE_DEFAULT_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example restores the default labels for the hr_ols_pol policy.

BEGIN
 SA_SESSION.RESTORE_DEFAULT_LABELS (
  policy_name         => 'hr_ols_pol');

Appendix E
SA_SESSION Session Management PL/SQL Package

E-41



END;
/

E.5.14 SA_SESSION.ROW_LABEL
The SA_SESSION.ROW_LABEL function returns the name of the row label that is
associated with the policy for the current session.

Syntax

SA_SESSION.ROW_LABEL ( 
  policy_name IN VARCHAR2)
RETURN VARCHAR2; 

Parameter

Table E-44    SA_SESSION.ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example returns the row label that is associated with the hr_ols_pol
policy.

SELECT SA_SESSION.ROW_LABEL ('hr_ols_pol') FROM DUAL;

E.5.15 SA_SESSION.SET_LABEL
The SA_SESSION.SET_LABEL procedure sets the label of the current database session.

You can set the session label to:

• Any level equal to or less than the maximum, and equal to or greater than the
minimum level

• Include any compartments in the authorized compartment list

• Include any groups in the authorized group list. (Subgroups of authorized groups
are implicitly included in the authorized list.)

Note that if you change the session label, this change may affect the value of the
session's row label. The session's row label contains the subset of compartments and
groups for which the user has write access. This may or may not be equivalent to the
session label. For example, if you use the SA_SESSION.SET_LABEL procedure to set
your current session label to C:A,B:US and you have write access only on the A
compartment, then your row label would be set to C:A.

Syntax

SA_SESSION.SET_LABEL (
 policy_name IN VARCHAR2,
 label       IN VARCHAR2); 

Appendix E
SA_SESSION Session Management PL/SQL Package

E-42



Parameters

Table E-45    SA_SESSION.SET_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

label The value to set as the label

Example

The following example sets the label for the hr_ols_pol policy.

BEGIN
 SA_SESSION.SET_LABEL (
  policy_name         => 'hr_ols_pol',
  label               => 'C:A,B:US');
END;
/

Related Topics

• SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label to
the one specified.

E.5.16 SA_SESSION.SA_USER_NAME
The SA_SESSION.SA_USER_NAME function returns the name of the current Oracle Label
Security user, as set by the SA_SESSION.SET_ACCESS_PROFILE procedure (or as established at
login).

This is how you can determine the identity of the current user in relation to Oracle Label
Security, rather than in relation to your Oracle login name.

Syntax

SA_SESSION.SA_USER_NAME ( 
  policy_name IN VARCHAR2)
RETURN VARCHAR2; 

Parameter

Table E-46    SA_SESSION.SA_USER_NAME Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example finds the name of the Oracle Label Security user for the hr_ols_pol
policy.

Appendix E
SA_SESSION Session Management PL/SQL Package

E-43



SELECT SA_SESSION.SA_USER_NAME ('hr_ols_pol') FROM DUAL;

E.5.17 SA_SESSION.SAVE_DEFAULT_LABELS
The SA_SESSION.SAVE_DEFAULT_LABELS procedure stores the current session label and
row label as your initial session label and default row label.

This procedure permits you to change your defaults to reflect your current session
label and row label. The saved labels will be used as the initial default settings for
future sessions.

When you log in to a database, your default session label and row label are used to
initialize the session label and row label. When the administrator originally authorized
your Oracle Label Security labels, he or she also defined your default level, default
compartments, and default groups. If you change your session label and row label,
and want to save these values as the default labels, you can use the
SA_SESSION.SAVE_DEFAULT_LABELS procedure.

This procedure is useful if you have multiple sessions and want to be sure that all
additional sessions have the same labels. You can save the current labels as the
default, and all future sessions will have these as the initial labels.

Consider a situation in which you connect to the database through Oracle Forms and
want to run a report. By saving the current session labels as the default before you call
Oracle Reports, you ensure that Oracle Reports will initialize at the same labels as are
being used by Oracle Forms.

Syntax

SA_SESSION.SAVE_DEFAULT_LABELS ( 
  policy_name IN VARCHAR2); 

Parameter

Table E-47    SA_SESSION.SAVE_DEFAULT_LABELS Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

Example

The following example saves the label defaults for the hr_ols_pol policy.

BEGIN
 SA_SESSION.SAVE_DEFAULT_LABELS (
  policy_name       => 'hr_ols_pol');
END;
/

Appendix E
SA_SESSION Session Management PL/SQL Package

E-44



Note:

The SA_SESSION.SAVE_DEFAULT_LABELS procedure overrides the settings
established by the administrator.

E.5.18 SA_SESSION.SET_ACCESS_PROFILE
The SA_SESSION.SET_ACCESS_PROFILE procedure sets the Oracle Label Security
authorizations and privileges of the database session to those of the specified user.

Note that the originating user retains the PROFILE_ACCESS privilege.

The user who executes the SA_SESSION.SET_ACCESS_PROFILE procedure must have the
PROFILE_ACCESS privilege. The logged-in database user (the Oracle user ID) does not
change. That user assumes only the authorizations and privileges of the specified user. By
contrast, the Oracle Label Security user name is changed.

This administrative procedure is useful for various tasks:

• With SA_SESSION.SET_ACCESS_PROFILE, you can see the result of the authorization and
privilege settings for a particular user.

• Applications need to have proxy accounts connect as (and assume the identity of)
application users, for purposes of accessing labeled data. With the
SA_SESSION.SET_ACCESS_PROFILE privilege, the proxy account can act on behalf of the
application users.

Syntax

SA_SESSION.SET_ACCESS_PROFILE (
  policy_name IN VARCHAR2
  user_name   IN VARCHAR2); 

Parameters

Table E-48    SA_SESSION.SET_ACCESS_PROFILE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Name of the user whose authorizations and privileges should be
assumed (typically, the user associated with this policy). To find this
user, query the USER_NAME and POLICY_NAME columns of the
DBA_SA_USERS view.

Example

The following example enables user psmith to have Oracle Label Security authorizations and
privileges for the database session.

BEGIN
 SA_SESSION.SET_ACCESS_PROFILE (
  policy_name       => 'hr_ols_pol',

Appendix E
SA_SESSION Session Management PL/SQL Package

E-45



  user_name         => 'jjones');
END;
/

E.5.19 SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

The compartments and groups in the label must be a subset of the compartments and
groups in the session label to which the user has write access. When the
LABEL_DEFAULT option is set, this row label value is used on insert if the user does not
explicitly specify the label.

If the SA_SESSION.SET_ROW_LABEL procedure is not used to set the default row label
value, then this value is automatically derived from the session label. It contains the
level of the session label and the subset of the compartments and groups in the
session label for which the user has write authorization.

The row label is automatically reset if the session label changes. For example, if you
change your session level from HIGHLY_SENSITIVE to SENSITIVE, then the level
component of the row label automatically changes to SENSITIVE.

The user can set the row label independently, but only to include:

• A level that is less than or equal to the level of the session label, and greater than
or equal to the user's minimum level

• A subset of the compartments and groups from the session label, for which the
user is authorized to have write access

If the user tries to set the row label to an invalid value, then the operation is not
permitted and the row label value is unchanged.

Syntax

SA_SESSION.SET_ROW_LABEL (
 policy_name   IN VARCHAR2,
 row_label     IN VARCHAR2); 

Parameters

Table E-49    SA_SESSION.SET_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The value to set as the default row label

Example

The following example sets the row label for the hr_ols_pol policy.

BEGIN
 SA_SESSION.SET_ROW_LABEL (
  policy_name     => 'hr_ols_pol',

Appendix E
SA_SESSION Session Management PL/SQL Package

E-46



  label           => 'HR');
END;
/

Related Topics

• SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the one
specified.

E.6 SA_SYSDBA Policy Management PL/SQL Package
The SA_SYSDBA PL/SQL package manages Oracle Label Security policies.

• About the SA_SYSDBA PL/SQL Package
The SA_SYSDBA PL/SQL package creates, modifies, enables or disables, and drops
Oracle Label Security policies.

• SA_SYSDBA.ALTER_POLICY
The SA_SYSDBA.ALTER_POLICY procedure sets and modifies column names that are
associated with the policy.

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security policy,
defines a policy-specific column name, and specifies default policy options.

• SA_SYSDBA.DISABLE_POLICY
The SA_SYSDBA.DISABLE_POLICY procedure turns off enforcement of a policy, without
removing it from the database.

• SA_SYSDBA.DROP_POLICY
The SA_SYSDBA.DROP_POLICY procedure deletes the policy and its associated user labels
and data labels from the database.

• SA_SYSDBA.ENABLE_POLICY
The SA_SYSDBA.ENABLE_POLICY procedure enforces access control on the tables and
schemas protected by the policy.

E.6.1 About the SA_SYSDBA PL/SQL Package
The SA_SYSDBA PL/SQL package creates, modifies, enables or disables, and drops Oracle
Label Security policies.

To use this package, you must be granted the LBAC_DBA role and the EXECUTE privilege on the
SA_SYSDBA package. The SA_SYSDBA package is an invoker’s rights package, so you must
provide the following INHERIT PRIVILEGES grant to the user SYS before you can use this
package:

GRANT INHERIT PRIVILEGES ON USER SYS TO LBACSYS;

You only need to grant this privilege on user SYS. You do not need to grant it on other users.

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-47



E.6.2 SA_SYSDBA.ALTER_POLICY
The SA_SYSDBA.ALTER_POLICY procedure sets and modifies column names that are
associated with the policy.

SA_SYSDBA.ALTER_POLICY can only be used to change column name for policies that
are not applied on any user tables or schemas. Otherwise, this error appears:

12474, 00000, "cannot change column name for a policy in use"

Syntax

SA_SYSDBA.ALTER_POLICY (
   policy_name       IN  VARCHAR2,
   default_options   IN  VARCHAR2 DEFAULT NULL,
   column_name       IN  VARCHAR2 DEFAULT NULL);

Parameters

Table E-50    SA_SYSDBA.ALTER_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

default_options Specifies the default enforcement options to be used when the
policy is applied and no table- or schema-specific options are
specified. Includes enforcement options and the option to hide
the label column. Separate each option with a comma.

See Categories of Policy Enforcement Options for a listing of the
default enforcement options.

column_name Specifies the column name associated with the policy. To find this
column name, query the COLUMN_NAME column of the
ALL_SA_POLICIES view.

Example

The following example updates the hr_ols_pol policy to use a different set of default
options. Because the name of the column does not need to change, the column_name
parameter is omitted.

BEGIN
 SA_SYSDBA.ALTER_POLICY ( 
  policy_name      => 'hr_ols_pol',
  default_options  => 'read_control, delete_control');
END;
/

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-48



E.6.3 SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security policy,
defines a policy-specific column name, and specifies default policy options.

After you create the policy, a role for it is created and granted to you. The format of the role
name is policy_DBA (for example, my_ols_pol_DBA).

Syntax

SA_SYSDBA.CREATE_POLICY (
   policy_name       IN VARCHAR2,
   column_name       IN VARCHAR2 DEFAULT NULL,
   default_options   IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-51    SA_SYSDBA.CREATE_POLICY Parameters

Parameter Description

policy_name Specifies the policy name, which must be unique within the database.
It can have a maximum of 30 characters, but only the first 26
characters in the policy_name are significant. Two policies may not
have the same first 26 characters in the policy_name.

To find a list of existing policies, query the POLICY_NAME column of the
ALL_SA_POLICIES data dictionary view.

column_name Specifies the name of the column to be added to tables protected by
the policy. If NULL, then the name policy_name_COL is used. Two
Oracle Label Security policies cannot share the same column name.

default_options Specifies the default options to be used when the policy is applied and
no table- or schema-specific options are specified. Includes
enforcement options and the option to hide the label column. Separate
each option with a comma.

See Categories of Policy Enforcement Options for a listing of the
default enforcement options.

Example

The following example creates a policy container whose default options are READ_CONTROL
and WRITE_CONTROL. The WRITE_CONTROL option encompasses the INSERT_CONTROL,
UPDATE_CONTROL, and DELETE_CONTROL options.

BEGIN
 SA_SYSDBA.CREATE_POLICY ( 
  policy_name      => 'hr_ols_pol',
  column_name      => 'ols_col',
  default_options  => 'read_control, write_control');
END;
/

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-49



E.6.4 SA_SYSDBA.DISABLE_POLICY
The SA_SYSDBA.DISABLE_POLICY procedure turns off enforcement of a policy, without
removing it from the database.

The policy is not enforced for all subsequent access to the database.

To disable a policy means that no access control is enforced on the tables and
schemas protected by the policy. The administrator can continue to perform
administrative operations while the policy is disabled.

Note:

This feature is extremely powerful, and should be used with caution. When a
policy is disabled, anyone who connects to the database can access all the
data normally protected by the policy. So, your site should establish
guidelines for use of this feature.

Normally, a policy should not be disabled in order to manage data. At times, however,
an administrator may need to disable a policy to perform application debugging tasks.
In this case, the database should be run in single-user mode. In a development
environment, for example, you may need to observe data processing operations
without the policy turned on. When you reenable the policy, all of the selected
enforcement options become effective again.

Syntax

SA_SYSDBA.DISABLE_POLICY (
 policy_name IN VARCHAR2);

Parameters

Table E-52    SA_SYSDBA.DISABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies and their status,
query the POLICY_NAME and STATUS columns of the
ALL_SA_POLICIES data dictionary view.

Example

The following example disables the hr_ols_pol policy:

EXEC SA_SYSDBA.DISABLE_POLICY ('hr_ols_pol');

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-50



E.6.5 SA_SYSDBA.DROP_POLICY
The SA_SYSDBA.DROP_POLICY procedure deletes the policy and its associated user labels and
data labels from the database.

This procedure purges the policy and these associations from the system entirely. You can
optionally drop the label column from all tables controlled by the policy. The policy does not
need to be disabled before you drop it.

Syntax

SA_SYSDBA.DROP_POLICY ( 
   policy_name IN VARCHAR2,
   drop_column  BOOLEAN DEFAULT FALSE);

Parameters

Table E-53    SA_SYSDBA.DROP_POLICY Parameters

Parameter Description

policy_name Specifies the policy to be dropped. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary view.

drop_column Indicates that the policy column should be dropped from protected
tables (TRUE)

Example

The following example deletes the hr_ols_pol policy.

EXEC SA_SYSDBA.DROP_POLICY ('hr_ols_pol');

E.6.6 SA_SYSDBA.ENABLE_POLICY
The SA_SYSDBA.ENABLE_POLICY procedure enforces access control on the tables and
schemas protected by the policy.

A policy is automatically enabled when it is created. After creation or enablement, the policy
is enforced for all subsequent access to tables protected by the policy.

Syntax

SA_SYSDBA.ENABLE_POLICY (policy_name IN VARCHAR2);

Parameters

Table E-54    SA_SYSDBA.ENABLE_POLICY Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies and their status, query the
POLICY_NAME and STATUS columns of the ALL_SA_POLICIES data
dictionary view.

Appendix E
SA_SYSDBA Policy Management PL/SQL Package

E-51



Example

The following example enables the hr_ols_pol policy.

EXEC SA_SYSDBA.ENABLE_POLICY('hr_ols_pol');

E.7 SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package manages user labels by label component.

• About the SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package configures compartments, groups, user
access, labels, levels, and privileges.

• SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments
to a user's authorizations, indicating if the compartments are authorized for write
and read privileges.

• SA_USER_ADMIN.ADD_GROUPS
The SA_USER_ADMIN.ADD_GROUPS procedure adds (assigns) groups to a user,
indicating if the groups are authorized for write and read privileges.

• SA_USER_ADMIN.ALTER_COMPARTMENTS
The SA_USER_ADMIN.ALTER_COMPARTMENTS procedure changes the write access,
default label indicator, and row label indicator for the specified compartments.

• SA_USER_ADMIN.ALTER_GROUPS
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default
label indicator, and row label indicator for the specified groups.

• SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
The SA_USER_ADMIN.DROP_ALL_COMPARTMENTS procedure drops all compartments
from a user's authorizations.

• SA_USER_ADMIN.DROP_ALL_GROUPS
The SA_USER_ADMIN.DROP_ALL_GROUPS procedure drops all groups from a user's
authorizations.

• SA_USER_ADMIN.DROP_COMPARTMENTS
The SA_USER_ADMIN.DROP_COMPARTMENTS procedure drops the specified
compartments from a user's authorizations.

• SA_USER_ADMIN.DROP_GROUPS
The SA_USER_ADMIN.DROP_GROUPS procedure drops the specified groups from a
user's authorizations.

• SA_USER_ADMIN.DROP_USER_ACCESS
The SA_USER_ADMIN.DROP_USER_ACCESS procedure removes all Oracle Label
Security authorizations and privileges from the specified user.

• SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a
user and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session
label to the one specified.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-52



• SA_USER_ADMIN.SET_GROUPS
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

• SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum
levels and identifies default values for the user's session label and row label.

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

• SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the one
specified.

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels, compartments,
and groups using a set of labels, instead of the individual components.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for users.

E.7.1 About the SA_USER_ADMIN PL/SQL Package
The SA_USER_ADMIN PL/SQL package configures compartments, groups, user access, labels,
levels, and privileges.

To use this package, you must be granted the policy_DBA role (for example, HR_OLS_POL_DBA
for a role for the hr_ols_pol policy) and the EXECUTE privilege on the SA_USER_ADMIN
package.

E.7.2 SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments to a user's
authorizations, indicating if the compartments are authorized for write and read privileges.

This procedure is useful if you have already used the SA_USER_ADMIN.SET_COMPARTMENTS
procedure for the user but then decide that you want to grant this user authorization for
additional compartments, or to update the current set of compartments. You also can use it in
place of SA_USER_ADMIN.SET_COMPARTMENTS.

Syntax

SA_USER_ADMIN.ADD_COMPARTMENTS ( 
policy_name    IN VARCHAR2,
user_name      IN VARCHAR2,
comps          IN VARCHAR2,
access_mode    IN VARCHAR2 DEFAULT NULL,
in_def         IN VARCHAR2 DEFAULT NULL,
in_row         IN VARCHAR2 DEFAULT NULL);

Appendix E
SA_USER_ADMIN PL/SQL Package

E-53



Parameters

Table E-55    SA_USER_ADMIN.ADD_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. This user can be either a new user or a
user who has already been authorized for this policy's
compartments. To find an existing user, query the USER_NAME
column of the DBA_SA_USER_COMPARTMENTS view.

comps A comma-delimited list of compartments to add, by short name
only. To find existing compartments, query the SHORT_NAME
column of the ALL_SA_COMPARTMENTS view.

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

• SA_UTL.READ_ONLY indicates no write access

• SA_UTL.READ_WRITE indicates that write is authorized

• If access_mode is NULL, then it is set to
SA_UTL.READ_ONLY.

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

If in_def is NULL, then it is set to Y.

in_row Specifies whether these compartments should be in the row label
(Y/N)

If in_row is NULL, then it is set to N.

Example

The following example adds compartments to the hr_ols_pol policy.

BEGIN 
 SA_USER_ADMIN.ADD_COMPARTMENTS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones',
  comps          => 'FIN',
  access_mode    => SA_UTL.READ_ONLY,
  in_def         => 'y',
  in_row         => 'y');
END;
/

E.7.3 SA_USER_ADMIN.ADD_GROUPS
The SA_USER_ADMIN.ADD_GROUPS procedure adds (assigns) groups to a user, indicating
if the groups are authorized for write and read privileges.

This procedure is useful if you have already used the SA_USER_ADMIN.SET_GROUPS
procedure for the user but then decide that you want to grant this user authorization for

Appendix E
SA_USER_ADMIN PL/SQL Package

E-54



additional groups or to update the current set of groups. You also can use it in place of
SA_USER_ADMIN.SET_GROUPS.

Syntax

SA_USER_ADMIN.ADD_GROUPS ( 
  policy_name       IN VARCHAR2,
  user_name         IN VARCHAR2,
  groups            IN VARCHAR2,
  access_mode       IN VARCHAR2 DEFAULT NULL,
  in_def            IN VARCHAR2 DEFAULT NULL,
  in_row            IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-56    SA_USER_ADMIN.ADD_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME column
of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user. This user can be either a new user or a user who has
already been authorized for this policy's groups. To find an existing user,
query the USER_NAME column of the DBA_SA_USER_GROUPS view.

groups A comma-delimited list of groups to add, by short name only. To find a list of
existing groups, query the SHORT_NAME column of the ALL_SA_GROUPS view.

access_mode One of two public variables that contain string values that can specify the type
of access authorized. The variable names, values, and meaning are as
follows:

• SA_UTL.READ_ONLY indicates no write access

• SA_UTL.READ_WRITE indicates that write is authorized

• If access_mode is NULL, then access_mode is set to
SA_UTL.READ_ONLY.

in_def Specifies whether these groups should be in the default groups (Y/N)

If in_def is NULL, then it is set to Y.

in_row Specifies whether these groups should be in the row label (Y/N)

If in_row is NULL, then it is set to N.

Example

The following example adds several groups to the hr_ols_pol policy.

BEGIN 
 SA_USER_ADMIN.ADD_GROUPS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones',
  groups         => 'ER_FIN, SR_FIN, NR_FIN, WR_FIN',
  access_mode    => SA_UTL.READ_WRITE,
  in_def         => 'y',
  in_row         => 'y');
END;
/

Appendix E
SA_USER_ADMIN PL/SQL Package

E-55



E.7.4 SA_USER_ADMIN.ALTER_COMPARTMENTS
The SA_USER_ADMIN.ALTER_COMPARTMENTS procedure changes the write access, default
label indicator, and row label indicator for the specified compartments.

Syntax

SA_USER_ADMIN.ALTER_COMPARTMENTS (
  policy_name  IN VARCHAR2,
  user_name    IN VARCHAR2,
  comps        IN VARCHAR2,
  access_mode  IN VARCHAR2 DEFAULT NULL,
  in_def       IN VARCHAR2 DEFAULT NULL,
  in_row       IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-57    SA_USER_ADMIN.ALTER_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the compartment.
To find authorized users, query the USER_NAME column of the
DBA_SA_USER_COMPARTMENTS view.

comps A comma-delimited list of compartments to modify, using the
short name only. To find existing compartments, query the
SHORT_NAME column of the ALL_SA_COMPARTMENTS view.

access_mode One of two public variables that contain string values that can
specify the type of access authorized. The variable names,
values, and meaning are as follows:

SA_UTL.READ_ONLY indicates no write access

SA_UTL.READ_WRITE indicates that write is authorized

If access_mode is NULL, then access_mode for the compartment
is unaltered.

in_def Specifies whether these compartments should be in the default
compartments (Y/N)

If in_def is NULL, then in_def for the compartment is unaltered.

in_row Specifies whether these compartments should be in the row label
(Y/N)

If in_row is NULL, then in_row for the compartment is unaltered.

If in_def is N, then in_row cannot be Y. This is because the row
label compartments must be a subset of the session label
compartments.

Example

The following example modifies compartments for the hr_ols_pol policy.

BEGIN 
 SA_USER_ADMIN.ALTER_COMPARTMENTS (

Appendix E
SA_USER_ADMIN PL/SQL Package

E-56



  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones',
  comps          => 'FIN',
  access_mode    => SA_UTL.READ_ONLY,
  in_def         => 'y',
  in_row         => 'y');
END;
/

E.7.5 SA_USER_ADMIN.ALTER_GROUPS
The SA_USER_ADMIN.ALTER_GROUPS procedure changes the write access, default label
indicator, and row label indicator for the specified groups.

Syntax

SA_USER_ADMIN.ALTER_GROUPS ( 
  policy_name      IN VARCHAR2,
  user_name        IN VARCHAR2,
  groups           IN VARCHAR2,
  access_mode      IN VARCHAR2 DEFAULT NULL,
  in_def           IN VARCHAR2 DEFAULT NULL,
  in_row           IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-58    SA_USER_ADMIN.ALTER_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user who has been authorized for the group. To find
existing users, query the USER_NAME and GRP columns of the
DBA_SA_USER_GROUPS view.

groups A comma-delimited list of groups to alter, by short name only. To find
existing groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

access_mode Two public variables contain string values that can specify the type of
access authorized. The variable names, values, and meaning are as
follows:

SA_UTL.READ_ONLY indicates no write access

SA_UTL.READ_WRITE indicates that write is authorized

If access_mode is NULL, then access_mode for the group is
unaltered.

in_def Specifies whether these groups should be in the default groups (Y/N)

If in_def is NULL, then in_def for the group is unaltered.

in_row Specifies whether these groups should be in the row label ((Y/N)

If in_row is NULL, then in_row for the group is unaltered.

If in_def is N, then in_row cannot be Y. This is because the row label
groups must be a subset of the session label groups.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-57



Example

The following example sets the access mode for the existing groups to be read only.

BEGIN 
 SA_USER_ADMIN.ALTER_GROUPS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones',
  groups         => 'ER',
  access_mode    => SA_UTL.READ_ONLY);
END;
/

E.7.6 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
The SA_USER_ADMIN.DROP_ALL_COMPARTMENTS procedure drops all compartments from
a user's authorizations.

Syntax

SA_USER_ADMIN.DROP_ALL_COMPARTMENTS (
 policy_name  IN VARCHAR2,
 user_name    IN VARCHAR2);

Parameters

Table E-59    SA_USER_ADMIN.DROP_ALL_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the compartment.
To find existing users, query the USER_NAME column of the
DBA_SA_USER_COMPARTMENTS view.

Example

The following example drops all compartments for the hr_ols_pol policy for user
jjones.

BEGIN 
 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones');
END;
/

Appendix E
SA_USER_ADMIN PL/SQL Package

E-58



E.7.7 SA_USER_ADMIN.DROP_ALL_GROUPS
The SA_USER_ADMIN.DROP_ALL_GROUPS procedure drops all groups from a user's
authorizations.

Syntax

SA_USER_ADMIN.DROP_ALL_GROUPS (
  policy_name IN VARCHAR2,
  user_name   IN VARCHAR2);

Parameters

Table E-60    SA_USER_ADMIN.DROP_ALL_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user who has been authorized for the group. To find
existing users, query the USER_NAME and GRP columns of the
DBA_SA_USER_GROUPS view.

Example

The following example drops all groups from the hr_ols_pol policy for user jjones.

BEGIN 
 SA_USER_ADMIN.DROP_ALL_GROUPS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones');
END;
/

E.7.8 SA_USER_ADMIN.DROP_COMPARTMENTS
The SA_USER_ADMIN.DROP_COMPARTMENTS procedure drops the specified compartments from a
user's authorizations.

Syntax

SA_USER_ADMIN.DROP_COMPARTMENTS ( 
  policy_name     IN VARCHAR2,
  user_name       IN VARCHAR2,
  comps           IN VARCHAR2);

Parameters

Table E-61    SA_USER_ADMIN.DROP_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-59



Table E-61    (Cont.) SA_USER_ADMIN.DROP_COMPARTMENTS Parameters

Parameter Description

user_name Specifies the user who has been authorized for the compartment. To
find existing users, query the USER_NAME column of the
DBA_SA_USER_COMPARTMENTS view.

comps A comma-delimited list of compartments to drop. To find all comps for
this policy, query the POLICY_NAME and COMP columns of the
DBA_SA_USER_COMPARTMENTS view.

Example

The following example drops the FINANCIAL compartment from the hr_ols_pol policy.

BEGIN 
 SA_USER_ADMIN.DROP_COMPARTMENTS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones',
  comps          => 'HR');
END;
/

E.7.9 SA_USER_ADMIN.DROP_GROUPS
The SA_USER_ADMIN.DROP_GROUPS procedure drops the specified groups from a user's
authorizations.

Syntax

SA_USER_ADMIN.DROP_GROUPS ( 
  policy_name IN VARCHAR2,
  user_name   IN VARCHAR2,
  groups      IN VARCHAR2);

Parameters

Table E-62    SA_USER_ADMIN.DROP_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user who has been authorized for the group. To find
existing users, query the USER_NAME and GRP columns of the
DBA_SA_USER_GROUPS view.

groups A comma-delimited list of groups to drop, by short name only. To
find a list of groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

Example

The following example drops the NR_FIN group from the hr_ols_pol policy.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-60



BEGIN 
 SA_USER_ADMIN.DROP_GROUPS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones',
  groups         => 'ER');
END;
/

E.7.10 SA_USER_ADMIN.DROP_USER_ACCESS
The SA_USER_ADMIN.DROP_USER_ACCESS procedure removes all Oracle Label Security
authorizations and privileges from the specified user.

Syntax

SA_USER_ADMIN.DROP_USER_ACCESS (
  policy_name      IN VARCHAR2,
  user_name        IN VARCHAR2); 

Parameters

Table E-63    SA_USER_ADMIN.DROP_USER_ACCESS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user name. To find all users associated with this policy,
query the USER_NAME and POLICY_NAME columns of the
DBA_SA_USER_PRIVS view.

Examples

The following example removes user jjones's authorization for the hr_ols_pol policy.

BEGIN 
 SA_USER_ADMIN.DROP_USER_ACCESS (
  policy_name       => 'hr_ols_pol',
  user_name         => 'jjones');
END;
/

E.7.11 SA_USER_ADMIN.SET_COMPARTMENTS
The SA_USER_ADMIN.SET_COMPARTMENTS procedure assigns compartments to a user and
identifies default values for the user's session label and row label.

After you have set the compartment, you can configure additional compartments by using the
SA_USER_ADMIN.ADD_COMPARTMENTS procedure. (See 
SA_USER_ADMIN.ADD_COMPARTMENTS.)

All users must have their levels set before their authorized compartments can be established.

The write compartments, if specified, must be a subset of the read compartments. (The write
compartments are those to which the user should have write access.)

Appendix E
SA_USER_ADMIN PL/SQL Package

E-61



Syntax

SA_USER_ADMIN.SET_COMPARTMENTS (
  policy_name   IN VARCHAR2,
  user_name     IN VARCHAR2,
  read_comps    IN VARCHAR2,
  write_comps   IN VARCHAR2 DEFAULT NULL,
  def_comps     IN VARCHAR2 DEFAULT NULL,
  row_comps     IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-64    SA_USER_ADMIN.SET_COMPARTMENTS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name to assign compartments

read_comps A comma-delimited list of compartments authorized for read
access, by short name only

To find all compartments, query the SHORT_NAME column of the
ALL_SA_COMPARTMENTS view.

write_comps A comma-delimited list of compartments authorized for write
access (subset of read_comps), by short name only. If
write_comps are NULL, then they are set to the read_comps.

def_comps Specifies the default compartments, by short name only. This
must be a subset of read_comps. If the def_comps are NULL,
then they are set to the read_comps.

row_comps Specifies the row compartments, by short name only. This must
be a subset of write_comps and def_comps. If the row_comps
are NULL, then they are set to the components in def_comps that
are authorized for write access.

Example

The following example sets compartments for the hr_ols_pol policy.

BEGIN
 SA_USER_ADMIN.SET_COMPARTMENTS (
  policy_name   => 'hr_ols_pol',
  user_name     => 'jjones', 
  read_comps    => 'FIN',
  write_comps   => 'FIN',
  def_comps     => 'FIN',
  row_comps     => 'FIN');
END;
/

E.7.12 SA_USER_ADMIN.SET_DEFAULT_LABEL
The SA_USER_ADMIN.SET_DEFAULT_LABEL procedure sets the user's initial session label
to the one specified.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-62



As long as the row label will still be dominated by the new write label, you can set the session
label to:

• Any level equal to or less than his maximum, and equal to or greater than his minimum
label

• Include any compartments in the authorized compartment list

• Include any groups in the authorized group list. (Subgroups of authorized groups are
implicitly included in the authorized list.)

The row label must be dominated by the new write label that will result from resetting the
session label. If this condition is not true, then the SET_DEFAULT_LABEL procedure will fail.

For example, suppose the current row label is S:A,B, and that you have write access to both
compartments. If you attempt to set the new default label to C:A,B, then the SET_LABEL
procedure will fail. This is because the new write label would be C:A,B, which does not
dominate the current row label.

To successfully reset the session label in this case, you must first lower the row label to a
value that will be dominated by the resulting session label.

Syntax

SA_USER_ADMIN.SET_DEFAULT_LABELS (
  policy_name  IN VARCHAR2,
  user_name    IN VARCHAR2,
  def_label    IN VARCHAR2);

Parameters

Table E-65    SA_USER_ADMIN.SET_DEFAULT_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user who has been authorized with label components. To
find this user, query the USER_NAME column of the
ALL_SA_USER_LABELS view.

def_label Specifies the label string to be used to initialize the user's default
labels. This label may contain any compartments and groups that are
authorized for read access. To find existing labels, query the LABEL
column of the ALL_SA_LABELS view.

Example

The following example sets the default label for hr_ols_pol for user jjones.

BEGIN 
 SA_USER_ADMIN.SET_DEFAULT_LABEL (
  policy_name       => 'hr_ols_pol',
  user_name         => 'jjones',
  def_label         => 'HS');
END;
/

Appendix E
SA_USER_ADMIN PL/SQL Package

E-63



Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user
authorizations.

E.7.13 SA_USER_ADMIN.SET_GROUPS
The SA_USER_ADMIN.SET_GROUPS procedure assigns groups to a user and identifies
default values for the user's session label and row label.

All users must have their levels set before their authorized groups can be established.
You can find information about a user's level authorization by querying the
DBA_SA_USER_LEVELS data dictionary view.

Syntax

SA_USER_ADMIN.SET_GROUPS (policy_name IN VARCHAR2,
  user_name        IN VARCHAR2,
  read_groups      IN VARCHAR2,
  write_groups     IN VARCHAR2 DEFAULT NULL,
  def_group        IN VARCHAR2 DEFAULT NULL,
  row_groups       IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-66    SA_USER_ADMIN.SET_GROUPS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. This user is a first-time user for group
authorization, but the user must already be authorized for levels.
To find users who have been authorized for levels, query the
USER_NAME column of the DBA_SA_USER_LEVELS view.

read_groups A comma-delimited list of groups authorized for read, by short
name only.

To find existing groups, query the SHORT_NAME column of the
ALL_SA_GROUPS view.

write_groups A comma-delimited list of groups authorized for write, by short
name only. This must be a subset of read_groups. If set to
NULL, then this setting defaults to read_groups.

def_groups Specifies the default groups, by short name only. This must be a
subset of read_groups. If set to NULL, then this setting defaults
to read_groups.

row_groups Specifies the row groups, by short name only. This must be a
subset of write_groups and def_groups. If set to NULL, then
this setting defaults to the groups in def_groups that are
authorized for write access.

Example

The following example defines groups for the hr_ols_pol policy.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-64



BEGIN 
 SA_USER_ADMIN.SET_GROUPS (
  policy_name    => 'hr_ols_pol',
  user_name      => 'jjones', 
  read_groups    => 'ER_FIN',
  write_groups   => 'ER_FIN',
  def_groups     => 'ER_FIN',
  row_groups     => 'ER_FIN');
END;
/

E.7.14 SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and maximum levels
and identifies default values for the user's session label and row label.

Syntax

SA_USER_ADMIN.SET_LEVELS (policy_name IN VARCHAR2,
   user_name        IN VARCHAR2,
   max_level        IN VARCHAR2,
   min_level        IN VARCHAR2 DEFAULT NULL,
   def_level        IN VARCHAR2 DEFAULT NULL,
   row_level        IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-67    SA_USER_ADMIN.SET_LEVELS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user name. This user does not need to have any Oracle
Label Security authorizations before you run this procedure.

max_level The highest level for read and write access, by short name only.

To find existing levels, query the SHORT_NAME column of the
ALL_SA_LEVELS view.

min_level The lowest level for write access, by short name only. If set to NULL,
then the default is the lowest level for the policy.

def_level Specifies the default level (equal to or greater than the minimum level,
and equal to or less than the maximum level). Use the short name
only. If set to NULL, then the default is the max_level.

row_level Specifies the row level (equal to or greater than the minimum level,
and equal to or less than the default level). Use the short name only. If
set to NULL, then it is set to the def_level.

Example

The following example sets levels for the hr_ols_pol policy.

BEGIN
  SA_USER_ADMIN.SET_LEVELS (
   policy_name     => 'hr_ols_pol',
   user_name       => 'jjones',
   max_level       => 'PUB',

Appendix E
SA_USER_ADMIN PL/SQL Package

E-65



   min_level       => 'HS');
END;
/

E.7.15 SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

If the privileges parameter is NULL, then the program unit's privileges for the policy
are removed.

To grant privileges to a stored program unit, you must have the policy_DBA role, and
the EXECUTE permission on the SA_USER_ADMIN.SA_USER_ADMIN package. You can use
either the SA_USER_ADMIN package or Oracle Enterprise Manager to manage Oracle
Label Security privileges.

Syntax

SA_USER_ADMIN.SET_PROG_PRIVS (
  policy_name           IN VARCHAR2,
  schema_name           IN VARCHAR2,
  program_unit_name     IN VARCHAR2,
  privileges            IN VARCHAR2);

Parameters

Table E-68    SA_USER_ADMIN.SET_PROG_PRIVS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

schema_name The name of the schema that contains the program unit

program_unit_name Specifies the program unit to be granted privileges

privileges A comma-delimited character string of policy-specific privileges.
If you set privileges to NULL, then the program unit's privileges
for the policy are removed.

See About Granting Privileges to Users and Trusted Program
Units for the Policy for list of available privileges to grant.

Example

The following example gives the READ privilege to the SUM_PURCHASES function
(described in Example: Trusted Stored Program Unit):

BEGIN
 SA_USER_ADMIN.SET_PROG_PRIVS (
  policy_name         => 'hr_ols_pol',
  schema_name         => 'HR',
  program_unit_name   => 'sum_purchases',
  privileges          => 'READ');
END;
/

Appendix E
SA_USER_ADMIN PL/SQL Package

E-66



When the check_emp_hours procedure is then called, it runs with the READ privilege as well as
the current user's Oracle Label Security privileges. Using this technique, the user can be
allowed to find the value of the total employee hours that were logged, without learning what
hours any individual employee logged.

E.7.16 SA_USER_ADMIN.SET_ROW_LABEL
The SA_USER_ADMIN.SET_ROW_LABEL procedure sets a user's initial row label to the one
specified.

The user can set the row label independently, but only to:

• A level that is less than or equal to the level of the session label, and greater than or
equal to the user's minimum level

• Include a subset of the compartments and groups from the session label, for which the
user is authorized to have write access

If you try to set the row label to an invalid value, then the operation is disallowed, and the row
label value is unchanged.

Syntax

SA_USER_ADMIN.SET_ROW_LABEL (
  policy_name   IN VARCHAR2,
  user_name     IN VARCHAR2,
  row_label     IN VARCHAR2);

Parameters

Table E-69    SA_USER_ADMIN.SET_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

user_name Specifies the user name. This user must have the sufficient
compartment, group, and level authorizations. To find this user, query
the USER_NAME column of the DBA_SA_USER_COMPARTMENTS,
DBA_SA_USER_GROUPS, and DBA_SA_USER_LEVELS views.

row_label Specifies the label string to be used to initialize the user's row label.
The label must contain only those compartments and groups from the
default label that are authorized for write access. To find existing
compartments and groups, query the ALL_SA_COMPARTMENTS and
ALL_SA_GROUPS views.

Example

The following example sets the row label for the hr_ols_pol policy for user jjones.

BEGIN 
 SA_USER_ADMIN.SET_ROW_LABEL (
  policy_name       => 'hr_ols_pol',
  user_name         => 'jjones',
  row_label         => 'HS');
END;
/

Appendix E
SA_USER_ADMIN PL/SQL Package

E-67



Related Topics

• SA_SESSION.SET_ROW_LABEL
The SA_SESSION.SET_ROW_LABEL procedure sets the default row label value for the
current database session.

E.7.17 SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual components.

Syntax

SA_USER_ADMIN.SET_USER_LABELS (
  policy_name      IN VARCHAR2,
  user_name        IN VARCHAR2,
  max_read_label   IN VARCHAR2,
  max_write_label  IN VARCHAR2 DEFAULT NULL,
  min_write_label  IN VARCHAR2 DEFAULT NULL,
  def_label        IN VARCHAR2 DEFAULT NULL,
  row_label        IN VARCHAR2 DEFAULT NULL);

Parameters

Table E-70    SA_USER_ADMIN.SET_USER_LABELS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name Specifies the user name. The user can be an existing database
user, a Real Application Security user, or any named user that
resides in Oracle Internet Directory. This user does not need any
Oracle Label Security authorizations before you run this
procedure.

max_read_label Specifies the label string to be used to initialize the user's
maximum authorized read label. Composed of the user's
maximum level, compartments authorized for read access, and
groups authorized for read access.

To find information for these settings, query the DBA_SA_USERS
data dictionary view.

max_write_label Specifies the label string to be used to initialize the user's
maximum authorized write label. Composed of the user's
maximum level, compartments authorized for write access, and
groups authorized for write access. If max_write_label is not
specified, then it is set to max_read_label.

min_write_label Specifies the label string to be used to initialize the user's
minimum authorized write label. Contains only the level, with no
compartments or groups. If min_write_label is not specified,
then it is set to the lowest defined level for the policy, with no
compartments or groups.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-68



Table E-70    (Cont.) SA_USER_ADMIN.SET_USER_LABELS Parameters

Parameter Description

def_label Specifies the label string to be used to initialize the user's session
label, including level, compartments, and groups (a subset of
max_read_label). If default_label is not specified, then it is
set to max_read_label.

row_label Specifies the label string to be used to initialize the program's row
label. Includes level, components, and groups: subsets of
max_write_label and def_label. If row_label is not
specified, then it is set to def_label, with only the
compartments and groups authorized for write access.

Examples

The following example sets user labels for the hr_ols_pol policy for user jjones.

BEGIN 
 SA_USER_ADMIN.SET_USER_LABELS (
  policy_name       => 'hr_ols_pol',
  user_name         => 'jjones',
  max_read_label    => 'HS:FIN',
  max_write_label   => 'HS',
  def_label         => 'HS',
  row_label         => 'HS');
END;
/

The following example sets user labels for the XSOLSPOL1 policy for the Oracle Database Real
Application Security user XSUSER1. To execute the following example, you must either be an
administrative user named LBACSYS, be granted the LBAC_DBA database role and granted the
EXECUTE privilege, or be granted the XSOLSPOL1_DBA role and granted the EXECUTE privilege on
the SA_USER_ADMIN package.

EXEC SA_USER_ADMIN.SET_USER_LABELS('XSOLSPOL1', 'XSUSER1',‘MID','MID');

In this specification:

• XSOLSPOL1 is the name of an existing OLS policy.

• XSUSER1 is the name of an existing Oracle Database Real Application Security user.

• MID is the value of the max_read_label.

• MID is the value of the max_write_label.

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

Appendix E
SA_USER_ADMIN PL/SQL Package

E-69



E.7.18 SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

These privileges do not become effective until the next time the user logs into the
database. The new set of privileges replaces any existing privileges. A NULL value for
the privileges parameter removes the user's privileges for the policy.

To assign policy privileges to users, you must have the EXECUTE privilege for the
SA_USER_ADMIN package, and must have been granted the policy_DBA role.

Syntax

SA_USER_ADMIN.SET_USER_PRIVS (
  policy_name     IN VARCHAR2,
  user_name       IN VARCHAR2,
  privileges      IN VARCHAR2);

Parameters

Table E-71    SA_USER_ADMIN.SET_USER_PRIVS Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

user_name The name of the user to be granted privileges. The user can be
an existing database user, a Real Application Security user, or
any named user that resides in Oracle Internet Directory. This
user should already have been authorized for policy levels,
compartments, and groups. To find this user, query the
USER_NAME column of the DBA_SA_USER_COMPARTMENTS,
DBA_SA_USER_GROUPS, and DBA_SA_USER_LABELS views.

privileges A character string of policy-specific privileges separated by
commas. See About Granting Privileges to Users and Trusted
Program Units for the Policy for list of available privileges to
grant.

Examples

The following example grants user jgodfrey full privileges for the hr_ols_pol policy
settings.

BEGIN 
 SA_USER_ADMIN.SET_USER_PRIVS (
  policy_name       => 'hr_ols_pol',
  user_name         => 'jgodfrey',
  privileges        => 'FULL');
END;
/

The following example grants Oracle Database Real Application Security user XSUSER1
the READ privilege for the Oracle Label Security policy XSOLSPOL1. To execute the
following example, you must either be an administrative user named LBACSYS, be

Appendix E
SA_USER_ADMIN PL/SQL Package

E-70



granted the LBAC_DBA database role and granted the EXECUTE privilege, or be granted the
XSOLSPOL1_DBA role and granted the EXECUTE privilege on the SA_USER_ADMIN package.

EXEC SA_USER_ADMIN.SET_USER_PRIVS('XSOLSPOL1', 'XSUSER1','READ');

In this specification:

• XSOLSPOL1 is the name of an existing OLS policy.

• XSUSER1 is the name of an existing Oracle Database Real Application Security user.

• READ is the privilege to be granted to XSUSER1 in OLS policy XSOLSPOL1.

Related Topics

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you are
ready to grant the user privileges.

E.8 SA_UTL PL/SQL Utility Functions and Procedures
The SA_UTL PL/SQL package contains utility functions and procedures that are used in
PL/SQL programs.

• About the SA_UTL PL/SQL Package
The SA_UTL PL/SQL package utility functions include returning the values such as user
privileges or label information.

• SA_UTL.CHECK_LABEL_CHANGE
The SA_UTL.CHECK_LABEL_CHANGE function checks if the user can change the data label
for a policy protected table row.

• SA_UTL.CHECK_READ
The SA_UTL.CHECK_READ function checks if a user can read a policy-protected table row.

• SA_UTL.CHECK_WRITE
The SA_UTL.CHECK_WRITE function to checks if the user can insert, update, or delete data
in a policy protected table row.

• SA_UTL.DATA_LABEL
The SA_UTL.DATA_LABEL function returns TRUE if the label is a data label.

• SA_UTL.GREATEST_LBOUND
The SA_UTL.GREATEST_LBOUND function returns a label that is the greatest lower bound of
the two label arguments.

• SA_UTL.LEAST_UBOUND
The SA_UTL.LEAST_UBOUND function returns a label that is the least upper bound of the
label arguments.

• SA_UTL.NUMERIC_LABEL
The SA_UTL.NUMERIC_LABEL function returns the current session label.

• SA_UTL.NUMERIC_ROW_LABEL
The SA_UTL.NUMERIC_ROW_LABEL function returns the current row label. .

• SA_UTL.SET_LABEL
The SA_UTL.SET_LABEL procedure sets the label of the current database session.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-71



• SA_UTL.SET_ROW_LABEL
The SA_UTL.SET_ROW_LABEL procedure sets the row label of the current database
session.

E.8.1 About the SA_UTL PL/SQL Package
The SA_UTL PL/SQL package utility functions include returning the values such as user
privileges or label information.

These programs return information about the current values of the session security
attributes, as numeric label values. They are primarily for use in trusted stored
program units. You do not need special privileges to use this package.

Related Topics

• How Setting and Returning Label Information Works
The SA_UTL package has functions to return information about current values of
session security attributes using numeric label values.

E.8.2 SA_UTL.CHECK_LABEL_CHANGE
The SA_UTL.CHECK_LABEL_CHANGE function checks if the user can change the data
label for a policy protected table row.

This function returns 1 if the user can change the data label. It returns 0 if the user
cannot change the data label. The input values are the policy name, the current data
label, and the new data label.

Syntax

SA_UTL.CHECK_LABEL_CHANGE (
  policy_name     IN VARCHAR2,
  current_label   IN NUMBER,
  new_label       IN NUMBER)
RETURN NUMBER; 

Note:

You must have update privileges on the table to write any data into the table.

Parameters

Table E-72    SA_UTL.CHECK_LABEL_CHANGE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

current_label The current value of the label. To find existing label values, query
the LABEL column of the ALL_SA_LABELS view.

new_label The new value for the label

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-72



Example

The following example indicates if users can change data labels in policy-protected rows.

SET SERVEROUTPUT ON
BEGIN
  IF SA_UTL.CHECK_LABEL_CHANGE('hr_ols_pol',2000, 2200) = 1 
   THEN DBMS_OUTPUT.PUT_LINE('Users can chagne data labels in policy-protected rows.');
  ELSE
   DBMS_OUTPUT.PUT_LINE('Users cannot change data labels in policy-protected rows.');
  END IF;
END;
/

E.8.3 SA_UTL.CHECK_READ
The SA_UTL.CHECK_READ function checks if a user can read a policy-protected table row.

This function returns 1 if the user can read the table row. It returns 0 if the user cannot read
the table row.

Note:

The user must have the SELECT privilege on the table to read any data from the
table.

Syntax

SA_UTL.CHECK_READ (
  policy_name     IN VARCHAR2,
  label           IN NUMBER) 
RETURN NUMBER; 

Parameters

Table E-73    SA_UTL.CHECK_READ Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

label The label to be checked. To find existing label values, query the
LABEL column of the ALL_SA_LABELS view.

Example

The following example indicates if users can read a policy-protected row.

SET SERVEROUTPUT ON
BEGIN
  IF SA_UTL.CHECK_READ('hr_ols_pol',2000) = 1 
   THEN DBMS_OUTPUT.PUT_LINE('Users can read policy-protected rows.');
  ELSE
   DBMS_OUTPUT.PUT_LINE('Users cannot read policy-protected rows.');

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-73



  END IF;
END;
/

E.8.4 SA_UTL.CHECK_WRITE
The SA_UTL.CHECK_WRITE function to checks if the user can insert, update, or delete
data in a policy protected table row.

The user should already have the UPDATE privilege on the table to write any data into
the table. This function returns 1 if the user can write to the table row. It returns 0 if the
user cannot write to the table row. The input values are the policy name and the row
data label.

Syntax

SA_UTL.CHECK_WRITE (
  policy_name     IN VARCHAR2,
  label           IN NUMBER) 
RETURN NUMBER; 

Parameters

Table E-74    SA_UTL.CHECK_WRITE Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The label to be checked. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

Example

The following example indicates if users can write to policy-protected rows.

SET SERVEROUTPUT ON
BEGIN
  IF SA_UTL.CHECK_WRITE('hr_ols_pol',2000) = 1 
   THEN DBMS_OUTPUT.PUT_LINE('Users can write to policy-protected rows.');
  ELSE
   DBMS_OUTPUT.PUT_LINE('Users cannot write to policy-protected rows.');
  END IF;
END;
/

E.8.5 SA_UTL.DATA_LABEL
The SA_UTL.DATA_LABEL function returns TRUE if the label is a data label.

Syntax

SA_UTL.DATA_LABEL( 
 label IN NUMBER) 
RETURN BOOLEAN;

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-74



Parameters

Table E-75    SA_UTL.DATA_LABEL Parameter

Parameter Description

label The label to be checked. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

Example

The following example indicates if the label 2000 is a data label.

SET SERVEROUTPUT ON
BEGIN 
 IF SA_UTL.DATA_LABEL(2000)
  THEN DBMS_OUTPUT.PUT_LINE('Label 2000 is a data label.');
 ELSE 
  DBMS_OUTPUT.PUT_LINE('Label 2000 is not a data label.'); 
 END IF; 
END;
/

E.8.6 SA_UTL.GREATEST_LBOUND
The SA_UTL.GREATEST_LBOUND function returns a label that is the greatest lower bound of the
two label arguments.

Syntax

SA_UTL.GREATEST_LBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER; 

Parameters

Table E-76    SA_UTL.GREATEST_LBOUND Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the LABEL
and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Examples

The following example compares existing label tags 3110 and 3111.

SELECT SA_UTL.GREATEST_LBOUND(3110,3111) FROM DUAL;

SA_UTL.GREATEST_LBOUND(3110,3111)
---------------------------------
                             3111

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-75



E.8.7 SA_UTL.LEAST_UBOUND
The SA_UTL.LEAST_UBOUND function returns a label that is the least upper bound of the
label arguments.

Syntax

SA_UTL.LEAST_UBOUND (
 label1 IN NUMBER,
 label2 IN NUMBER)
RETURN NUMBER; 

Parameters

Table E-77    SA_UTL.LEAST_UBOUND Parameters

Parameter Description

label1 The first label to check. To find existing label values, query the
LABEL and TAG columns of the ALL_SA_LABELS view.

label2 The second label to check

Example

The following example compares existing labels 3110 and 3111.

SELECT SA_UTL.LEAST_UBOUND(3110,3111) FROM DUAL;

SA_UTL.LEAST_UOUND(3110,3111)
-----------------------------
                         3110

See Also:

Determination of the Upper and Lower Bounds of Labels. The functions
described here are the same as those described in that topic, except that
these return a number instead of a character string.

E.8.8 SA_UTL.NUMERIC_LABEL
The SA_UTL.NUMERIC_LABEL function returns the current session label.

This function takes a policy name as the input parameter and returns a NUMBER value.

Syntax

SA_UTL.NUMERIC_LABEL ( 
  policy_name) 
RETURN NUMBER;

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-76



Parameters

Table E-78    SA_UTL.NUMERIC_LABEL Parameter

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Example

The following example returns a the session numeric label for the user who is currently
connected to the database instance.

SET SERVEROUTPUT ON
DECLARE
 num_label number;
BEGIN 
 num_label := SA_UTL.NUMERIC_LABEL('hr_ols_pol'); 
 DBMS_OUTPUT.PUT_LINE('Numeric label: '||num_label);
END;
/

E.8.9 SA_UTL.NUMERIC_ROW_LABEL
The SA_UTL.NUMERIC_ROW_LABEL function returns the current row label. .

This function takes a policy name as the input parameter and returns a NUMBER value

Syntax

SA_UTL.NUMERIC_ROW_LABEL ( 
  policy_name) 
RETURN NUMBER;

Parameters

Table E-79    SA_UTL.NUMERIC_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

Examples

The following example returns the session numeric row label for the user who is currently
connected to the database instance.

SET SERVEROUTPUT ON
DECLARE
 num_row number;
BEGIN 
 num_row := SA_UTL.NUMERIC_ROW_LABEL('hr_ols_pol'); 
 DBMS_OUTPUT.PUT_LINE('Numeric row label: '||num_row);
END;
/

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-77



E.8.10 SA_UTL.SET_LABEL
The SA_UTL.SET_LABEL procedure sets the label of the current database session.

The session's write label and row label are set to the subset of the label's
compartments and groups that are authorized for write access.

Syntax

SA_UTL.SET_LABEL (
 policy_name IN VARCHAR2,
 label       IN LBAC_LABEL); 

Parameters

Table E-80    SA_UTL.SET_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the
POLICY_NAME column of the ALL_SA_POLICIES data dictionary
view.

label The label to set as the session label. To find existing label
values, query the LABEL column of the ALL_SA_LABELS view.

You must pass this parameter through as an output of the
TO_LBAC_DATA_LABEL function, which converts a label in
character form to an LBAC_LABEL type. (The example in the next
section shows how to do this.)

Example

The following example sets the label for the hr_ols_pol policy.

BEGIN
  SA_UTL.SET_LABEL (
    policy_name => 'hr_ols_pol',
    label       => to_lbac_data_label('hr_ols_pol','hs:pii'));
END;
/

Related Topics

• How Labeling Functions in Oracle Label Security Policies Works
Labeling functions enable you to consider, in your rules for assigning labels,
information drawn from the application context.

E.8.11 SA_UTL.SET_ROW_LABEL
The SA_UTL.SET_ROW_LABEL procedure sets the row label of the current database
session.

The compartments and groups in the label must be a subset of compartments and
groups in the session label that are authorized for write access.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-78



Syntax

SA_UTL.SET_ROW_LABEL (
 policy_name IN VARCHAR2,
 label       IN BINARY_INTEGER); 

Parameters

Table E-81    SA_UTL.SET_ROW_LABEL Parameters

Parameter Description

policy_name Specifies the policy. To find existing policies, query the POLICY_NAME
column of the ALL_SA_POLICIES data dictionary view.

label The label to set as the session default row label. To find existing label
values, query the LABEL column of the ALL_SA_LABELS view.

Example

The following example sets the row label for the hr_ols_pol policy to 1111.

BEGIN
 SA_UTL.SET_ROW_LABEL (
  policy_name         => 'hr_ols_pol',
  label               => 1111);
END;
/

Related Topics

• SA_SESSION Session Management PL/SQL Package
The SA_SESSION PL/SQL package manages session behavior for user authorizations.

Appendix E
SA_UTL PL/SQL Utility Functions and Procedures

E-79



F
Oracle Label Security Reference

Oracle Label Security provides data dictionary tables and views. You should also be aware of
Oracle Label Security restrictions.

• Oracle Label Security Data Dictionary Tables and Views
Oracle Label Security provides data dictionary tables, data dictionary views, and an user-
created auditing view.

• Restrictions in Oracle Label Security
Several restrictions exist in this Oracle Label Security release.

F.1 Oracle Label Security Data Dictionary Tables and Views
Oracle Label Security provides data dictionary tables, data dictionary views, and an user-
created auditing view.

• Oracle Database Data Dictionary Tables
Oracle Label Security does not label the Oracle data dictionary tables; access is
controlled by standard Oracle Database system and object privileges.

• Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary views, which are
exempt from any policy enforcement.

• Oracle Label Security User-Created Auditing View
The SA_AUDIT_ADMIN.CREATE_VIEW procedure can be used to create an audit trail view for
a specific policy.

F.1.1 Oracle Database Data Dictionary Tables
Oracle Label Security does not label the Oracle data dictionary tables; access is controlled by
standard Oracle Database system and object privileges.

See Also:

Oracle Database Reference for detailed information about all data dictionary tables
and views

F.1.2 Oracle Label Security Data Dictionary Views
Oracle Label Security maintains an independent set of data dictionary views, which are
exempt from any policy enforcement.

Access to the data dictionary views is granted by default to the SELECT_CATALOG_ROLE, a
standard Oracle Database role that lets you examine the Oracle Database data dictionary.

F-1



• ALL_SA_AUDIT_OPTIONS View
The ALL_SA_AUDIT_OPTIONS data dictionary view shows for the current user Oracle
Label Security auditing options, based on the SA_AUDIT_ADMIN.AUDIT procedure
settings.

• ALL_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows information for the current
user about Oracle Label Security policy compartments, based on the
SA_COMPONENTS.CREATE_COMPARTMENT procedure settings.

• ALL_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the current user Oracle
Label Security policy labels and tags, based on the
SA_LABEL_ADMIN.CREATE_LABEL procedure settings.

• ALL_SA_GROUPS
The ALL_SA_GROUPS data dictionary shows information about the current user’s
Oracle Label Security policy groups, based on the SA_COMPONENTS.CREATE_GROUP
and SA_COMPONENTS.ALTER_GROUP_PARENT procedures.

• ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information
about the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

• ALL_SA_LEVELS
The ALL_SA_LEVELS data dictionary view shows for the current user information
about levels, based on the SA_COMPONENTS.CREATE_LEVEL procedure.

• ALL_SA_POLICIES
The ALL_SA_POLICIES data dictionary view shows for the current user information
about Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY
procedure.

• ALL_SA_PROG_PRIVS
The ALL_SA_PROG_PRIVS data dictionary view shows for the current user
information about the policy-specific privileges for program units, based on
SA_USER_ADMIN.SET_PROG_PRIVS.

• ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user
information about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

• ALL_SA_TABLE_POLICIES
The ALL_SA_TABLE_POLICIES data dictionary view shows for the current user
information about a policy added to a database table, based
SA_POLICY_ADMIN.APPLY_TABLE_POLICY settings.

• ALL_SA_USERS
The ALL_SA_USERS data dictionary view shows for the current user information
about Oracle Label Security user privileges, based on
SA_USER_ADMIN.SET_USER_LABELS and SA_USER_ADMIN.SET_USER_PRIVS.

• ALL_SA_USER_LABELS
The ALL_SA_USER_LABELS data dictionary view shows for the current user label-
specific information about users, based on the SA_USER_ADMIN.SET_USER_LABELS
procedure settings.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-2



• ALL_SA_USER_LEVELS
The ALL_SA_USER_LEVELS data dictionary view shows for the current user the minimum
and maximum levels assigned to users, based on the SA_USER_ADMIN.SET_LEVELS
procdure.

• ALL_SA_USER_PRIVS
The ALL_SA_USER_PRIVS data dictionary view shows for the current user policy-specific
privileges granted to users, based on the SA_USER_ADMIN.SET_USER_PRIVS procedure.

• DBA_SA_AUDIT_OPTIONS
The DBA_SA_AUDIT_OPTIONS data dictionary view data dictionary view shows for the entire
database the Oracle Label Security audit options.

• DBA_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows for the entire database information
about Oracle Label Security policy compartments.

• DBA_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the entire database the labels
and label tags for the specified Oracle Label Security policy.

• DBA_SA_GROUPS
The ALL_SA_GROUPS data dictionary view shows for the entire database information about
Oracle Label Security policy groups.

• DBA_SA_GROUP_HIERARCHY
The DBA_SA_GROUP_HIERARCHY data dictionary view shows the hierarchy of groups (that is,
parent-child relationships) in a policy.

• DBA_SA_LABELS
The DBA_SA_LABELS data dictionary view shows for the entire database information about
the tags and types of labels for a policy.

• DBA_SA_LEVELS
The DBA_SA_LEVELS data dictionary view shows for the entire database information about
levels associated with a policy.

• DBA_SA_POLICIES
The DBA_SA_POLICIES data dictionary view shows for the entire database information
about Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY procedure.

• DBA_SA_PROG_PRIVS
The DBA_SA_PROG_PRIVS data dictionary view shows for the entire database information
about the policy-specific privileges for program units.

• DBA_SA_SCHEMA_POLICIES
The DBA_SA_SCHEMA_POLICIES data dictionary view shows for the entire database
information about policies that have been applied to all tables in the schema.

• DBA_SA_TABLE_POLICIES
The DBA_SA_TABLE_POLICIES data dictionary view shows for the entire database
information about a policy that has been added to a database table.

• DBA_SA_USERS
The DBA_SA_USERS data dictionary view shows for the entire database information about
the privileges that Oracle Label Security users have.

• DBA_SA_USER_COMPARTMENTS
The DBA_SA_USER_COMPARTMENTS data dictionary view shows for the entire database the
user authorizations, based on the SA_USER_ADMIN.ADD_COMPARTMENTS procedure.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-3



• DBA_SA_USER_GROUPS
The DBA_SA_USER_GROUPS data dictionary view shows for the entire database the
groups associated with users, based on the SA_USER_ADMIN.ADD_GROUPS
procedure.

• DBA_SA_USER_LABELS
The DBA_SA_USER_LABELS data dictionary view shows for the entire database label-
specific information about users.

• DBA_SA_USER_LEVELS
The DBA_SA_USER_LEVELS data dictionary view shows for the entire database the
minimum and maximum levels that have been assigned to users.

• DBA_SA_USER_PRIVS
The DBA_SA_USER_PRIVS data dictionary view shows for the current user the policy-
specific privileges that have been granted to users.

• DBA_OLS_STATUS
The DBA_OLS_STATUS data dictionary view shows the configuration status of Oracle
Label Security in the database.

• USER_SA_SESSION
The USER_SA_SESSION data dictionary view shows the security attribute values for
the current database session.

F.1.2.1 ALL_SA_AUDIT_OPTIONS View
The ALL_SA_AUDIT_OPTIONS data dictionary view shows for the current user Oracle
Label Security auditing options, based on the SA_AUDIT_ADMIN.AUDIT procedure
settings.

See SA_AUDIT_ADMIN.AUDIT.

This view displays whether auditing is configured to generate audit records per
session (BY SESSION) or per access (BY ACCESS) and for successful or unsuccessful
operations. Possible values are as follows:

• A dash (-) indicates that the audit option is not set.

• The S character indicates that the audit option is set BY SESSION.

• The A character indicates that the audit option is set BY ACCESS.

• Each audit option has two possible settings, WHENEVER SUCCESSFUL and WHENEVER
NOT SUCCESSFUL, separated by a slash (/).

For example, in the following output, user jjones is audited with the BY ACCESS audit
type for successful actions involving policy-specific privileges. User rlayton is audited
with the BY SESSION audit type: audit records are written for failed attempts to remove
policies and for successful attempts at setting user authorizations.

SELECT * FROM DBA_SA_AUDIT_OPTIONS;

POLICY_NAME      USER_NAME     APY  REM   SET_  PRV
-----------      ------------  ---  ----  ----  ---
HR_OLS_POL       JJONES        -/-   -/-  -/-   A/-
HR_OLS_POL       RLAYTON       -/-  -/S   S/-   -/-

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-4



Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_NAME VARCHAR2(128) NOT NULL Name of the user associated with
the policy

APY VARCHAR2(3) NULL Audit option; refers to the application
of specified Oracle Label Security
policies to tables and schemas

REM VARCHAR2(3) NULL Audit option; refers to the removal of
specified Oracle Label Security
policies from tables and schemas

SET_ VARCHAR2(3) NULL Audit option; refers to the setting of
user authorizations, and user and
program privileges

PRV VARCHAR2(3) NULL Audit option; refers to the use of all
policy-specific privileges

F.1.2.2 ALL_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows information for the current user about
Oracle Label Security policy compartments, based on the
SA_COMPONENTS.CREATE_COMPARTMENT procedure settings.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

COMP_NUM NUMBER(4) NOT NULL Compartment number in the range of
(0-9999)

SHORT_NAME VARCHAR2(30) NOT NULL Short name for the compartment

LONG_NAME VARCHAR2(80) NOT NULL Long name for the compartment

Related Topics

• SA_COMPONENTS.CREATE_COMPARTMENT
The SA_COMPONENTS.CREATE_COMPARTMENT procedure creates a compartment and specify
its short name and long name.

F.1.2.3 ALL_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the current user Oracle Label
Security policy labels and tags, based on the SA_LABEL_ADMIN.CREATE_LABEL procedure
settings.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

LABEL VARCHAR2(4000) NULL Short name of the level,
compartment, or group that was
specified as the label value

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-5



Column Datatype Null Description

LABEL_TAG NUMBER NULL Integer that represents the sort
order of the label, relative to other
policy labels (0-99999999)

Related Topics

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

F.1.2.4 ALL_SA_GROUPS
The ALL_SA_GROUPS data dictionary shows information about the current user’s Oracle
Label Security policy groups, based on the SA_COMPONENTS.CREATE_GROUP and
SA_COMPONENTS.ALTER_GROUP_PARENT procedures.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

GROUP_NUM NUMBER(4) NOT NULL Group number (0-9999)

SHORT_NAME VARCHAR2(30) NOT NULL Short name of the group

LONG_NAME VARCHAR2(80) NOT NULL Long name of the group

PARENT_NUM NUMBER(4) NULL Numerical ID for the associated
parent group

PARENT_NAME VARCHAR2(30) NULL Name of the group assigned as
the parent for the group

Related Topics

• SA_COMPONENTS.CREATE_GROUP
The SA_COMPONENTS.CREATE_GROUP procedure creates a group and specify its short
name and long name, and optionally a parent group.

• SA_COMPONENTS.ALTER_GROUP_PARENT
The SA_COMPONENTS.ALTER_GROUP_PARENT procedure changes the parent group
associated with a particular group.

F.1.2.5 ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information about
the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

Access to ALL_SA_LABELS is PUBLIC. However, only the labels authorized for read
access by the session are visible.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-6



Column Datatype Null Description

LABEL VARCHAR2(4000) NOT NULL Short name of the level
associated with this label

LABEL_TAG NUMBER(30) NOT NULL Integer tag assigned to the label

LABEL_TYPE VARCHAR2(15) NULL Type of label

Related Topics

• SA_LABEL_ADMIN.CREATE_LABEL
The SA_LABEL_ADMIN.CREATE_LABEL procedure creates data labels.

• SA_LABEL_ADMIN.ALTER_LABEL
The SA_LABEL_ADMIN.ALTER_LABEL procedure changes the character string label
definition associated with a label tag.

F.1.2.6 ALL_SA_LEVELS
The ALL_SA_LEVELS data dictionary view shows for the current user information about levels,
based on the SA_COMPONENTS.CREATE_LEVEL procedure.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

LEVEL_NUM NUMBER(4) NOT NULL Level number (0-9999)

SHORT_NAME VARCHAR2(30) NOT NULL Short name for the level

LONG_NAME VARCHAR2(80) NOT NULL Long name for the level

Related Topics

• SA_COMPONENTS.CREATE_LEVEL
The SA_COMPONENTS.CREATE_LEVEL procedure creates a level and specify its short name
and long name.

F.1.2.7 ALL_SA_POLICIES
The ALL_SA_POLICIES data dictionary view shows for the current user information about
Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY procedure.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

COLUMN_NAME VARCHAR2(128) NOT NULL Name of the column that was added
to tables protected by the policy

STATUS VARCHAR2(8) NULL Whether the policy has been enabled
or disabled

POLICY_OPTIONS VARCHAR2(4000) NULL Options that were set for this policy

See Categories of Policy
Enforcement Options for a listing of
the possible enforcement options.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-7



Related Topics

• SA_SYSDBA.CREATE_POLICY
The SA_SYSDBA.CREATE_POLICY procedure creates a new Oracle Label Security
policy, defines a policy-specific column name, and specifies default policy options.

F.1.2.8 ALL_SA_PROG_PRIVS
The ALL_SA_PROG_PRIVS data dictionary view shows for the current user information
about the policy-specific privileges for program units, based on
SA_USER_ADMIN.SET_PROG_PRIVS.

Column Datatype Null Description

SCHEMA_NAME VARCHAR2(128) NOT NULL Name of the schema that
contains the program unit

PROGRAM_NAME VARCHAR(128) NOT NULL Program unit that was granted
privileges

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label
Security policy

PROGRAM_PRIVILEG
ES

VARCHAR2(4000) NULL Policy-specific privileges.

See About Granting Privileges to
Users and Trusted Program Units
for the Policy for list of possible
privileges.

Related Topics

• SA_USER_ADMIN.SET_PROG_PRIVS
The SA_USER_ADMIN.SET_PROG_PRIVS procedure sets policy-specific privileges for
program units.

F.1.2.9 ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user
information about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

SCHEMA_NAME VARCHAR2(128) NOT NULL Name of the schema associated with
this policy

STATUS VARCHAR2(8) NULL Whether the policy has been enabled
or disabled for the schema (by the
SA_POLICY_ADMIN.APPLY_SCHEMA
_POLICY or
SA_POLICY_ADMIN.DISABLE_SCHE
MA_POLICY for procedure)

SCHEMA_OPTIONS VARCHAR2(4000) NULL Options that have been applied.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-8



Related Topics

• SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
The SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure applies a policy to all of the
tables in a schema and enables the policy for these tables.

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

F.1.2.10 ALL_SA_TABLE_POLICIES
The ALL_SA_TABLE_POLICIES data dictionary view shows for the current user information
about a policy added to a database table, based SA_POLICY_ADMIN.APPLY_TABLE_POLICY
settings.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

SCHEMA_NAME VARCHAR2(128) NOT NULL Schema that contains the table that
the policy protects

TABLE_NAME VARCHAR2(128) NOT NULL Table to be protected by the policy

STATUS VARCHAR2(8) NULL Whether the policy has been enabled
or disabled for the table (by the
SA_POLICY_ADMIN.APPLY_TABLE_P
OLICY or
SA_POLICY_ADMIN.DISABLE_TABLE
_POLICY for procedure)

TABLE_OPTIONS VARCHAR2(4000) NULL Policy enforcement options to be used
for the table

FUNCTION VARCHAR2(1024) NULL Name of the function to return a label
value to use as the default

PREDICATE VARCHAR2(256) NULL Predicate to combine (using AND or
OR) with the label-based predicate for
READ_CONTROL

Related Topics

• SA_POLICY_ADMIN.APPLY_TABLE_POLICY
The SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure adds the specified policy to a
table.

• Categories of Policy Enforcement Options
Oracle Label Security enforces policies using three categories: label management
options, access control options, and overriding options.

F.1.2.11 ALL_SA_USERS
The ALL_SA_USERS data dictionary view shows for the current user information about Oracle
Label Security user privileges, based on SA_USER_ADMIN.SET_USER_LABELS and
SA_USER_ADMIN.SET_USER_PRIVS.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-9



Column Type Null Description

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_PRIVILEGES VARCHAR2(4000) NULL Policy-specific privileges granted
to the user.

MAX_READ_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
maximum authorized read label

MAX_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
maximum authorized write label

MIN_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
minimum authorized write label

DEFAULT_READ_LAB
EL

VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for
read access

DEFAULT_WRITE_LA
BEL

VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for
write access

DEFAULT_ROW_LABE
L

VARCHAR2(4000) NULL Label string to initialize the
program's row label; includes level,
components, and groups

USER_LABELS VARCHAR2(4000) NULL Retained solely for backward
compatibility and will be removed
in the next release.

The USER_LABELS column is
deprecated starting with Oracle
Database 18c because it is
redundant. The information in this
column is displayed in other
ALL_SA_USERS and
DBA_SA_USERS columns.

Related Topics

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels,
compartments, and groups using a set of labels, instead of the individual
components.

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you
are ready to grant the user privileges.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-10



F.1.2.12 ALL_SA_USER_LABELS
The ALL_SA_USER_LABELS data dictionary view shows for the current user label-specific
information about users, based on the SA_USER_ADMIN.SET_USER_LABELS procedure settings.

Column Datatype Null Description

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

LABELS VARCHAR2(4000) NULL Retained solely for backward
compatibility and will be removed in
the next release.

The LABELS column is deprecated
starting with Oracle Database 12c
release (12.2.0.2) because it is
redundant. The information in this
column is displayed in
ALL_SA_USER_LABELS and
DBA_SA_USER_LABELS columns.

MAX_READ_LABEL VARCHAR2(4000) NOT NULL Label string to initialize the user's
maximum authorized read label

MAX_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
maximum authorized write label

MIN_WRITE_LABEL VARCHAR2(4000) NULL Label string to initialize the user's
minimum authorized write label

DEFAULT_READ_LABE
L

VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for read
access

DEFAULT_WRITE_LAB
EL

VARCHAR2(4000) NULL Label string to initialize the user's
session label, including level,
compartments, and groups, for write
access

DEFAULT_ROW_LABEL VARCHAR2(4000) NULL Label string to initialize the
program's row label; includes level,
components, and groups

Related Topics

• SA_USER_ADMIN.SET_USER_LABELS
The SA_USER_ADMIN.SET_USER_LABELS procedure sets the user's levels, compartments,
and groups using a set of labels, instead of the individual components.

F.1.2.13 ALL_SA_USER_LEVELS
The ALL_SA_USER_LEVELS data dictionary view shows for the current user the minimum and
maximum levels assigned to users, based on the SA_USER_ADMIN.SET_LEVELS procdure.

It also lists the user's session label and row label default values.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-11



Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

MAX_LEVEL VARCHAR2(30) NOT NULL Short name of the highest level for
read and write access

MIN_LEVEL VARCHAR2(30) NOT NULL Short name of the lowest level for
read and write access

DEF_LEVEL VARCHAR2(30) NOT NULL Short name of the default level

ROW_LEVEL VARCHAR2(30) NOT NULL Short name of the row level

Related Topics

• SA_USER_ADMIN.SET_LEVELS
The SA_USER_ADMIN.SET_LEVELS procedure assigns a user minimum and
maximum levels and identifies default values for the user's session label and row
label.

F.1.2.14 ALL_SA_USER_PRIVS
The ALL_SA_USER_PRIVS data dictionary view shows for the current user policy-specific
privileges granted to users, based on the SA_USER_ADMIN.SET_USER_PRIVS procedure.

Column Datatype Null Description

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_PRIVILEG
ES

VARCHAR2(4000) NULL Policy-specific privileges granted to
the user

Related Topics

• SA_USER_ADMIN.SET_USER_PRIVS
The SA_USER_ADMIN.SET_USER_PRIVS procedure sets policy-specific privileges for
users.

• About Granting Privileges to Users and Trusted Program Units for the Policy
After you have authorized users for policy levels, compartments, and groups, you
are ready to grant the user privileges.

F.1.2.15 DBA_SA_AUDIT_OPTIONS
The DBA_SA_AUDIT_OPTIONS data dictionary view data dictionary view shows for the
entire database the Oracle Label Security audit options.

Its columns are the same as ALL_SA_AUDIT_OPTIONS.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-12



Related Topics

• ALL_SA_AUDIT_OPTIONS View
The ALL_SA_AUDIT_OPTIONS data dictionary view shows for the current user Oracle Label
Security auditing options, based on the SA_AUDIT_ADMIN.AUDIT procedure settings.

F.1.2.16 DBA_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows for the entire database information
about Oracle Label Security policy compartments.

Its columns are the same as ALL_SA_COMPARTMENTS.

Related Topics

• ALL_SA_COMPARTMENTS
The ALL_SA_COMPARTMENTS data dictionary view shows information for the current user
about Oracle Label Security policy compartments, based on the
SA_COMPONENTS.CREATE_COMPARTMENT procedure settings.

F.1.2.17 DBA_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the entire database the labels and
label tags for the specified Oracle Label Security policy.

Its columns are the same as ALL_SA_DATA_LABELS.

Related Topics

• ALL_SA_DATA_LABELS
The ALL_SA_DATA_LABELS data dictionary view shows for the current user Oracle Label
Security policy labels and tags, based on the SA_LABEL_ADMIN.CREATE_LABEL procedure
settings.

F.1.2.18 DBA_SA_GROUPS
The ALL_SA_GROUPS data dictionary view shows for the entire database information about
Oracle Label Security policy groups.

Its columns are the same as ALL_SA_GROUPS.

Related Topics

• ALL_SA_GROUPS
The ALL_SA_GROUPS data dictionary shows information about the current user’s Oracle
Label Security policy groups, based on the SA_COMPONENTS.CREATE_GROUP and
SA_COMPONENTS.ALTER_GROUP_PARENT procedures.

F.1.2.19 DBA_SA_GROUP_HIERARCHY
The DBA_SA_GROUP_HIERARCHY data dictionary view shows the hierarchy of groups (that is,
parent-child relationships) in a policy.

Column Type Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security policy

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-13



Column Type Null Description

HIERARCHY_LEV
EL

NUMBER NULL Indicates the level of a particular group in a
group hierarchy. A group with no parent
group will have HIERARCHY_LEVEL 1. Its
child group will have HIERARCHY_LEVEL 2
and so on.

For example, consider these groups in the
following order:

1. G1, G4
2. G2, G5
3. G3
Here, G1 and G4 have HIERARCHY_LEVEL 1;
G2 and G5 have HIERARCHY_LEVEL 2, and
G3 has HIERARCHY_LEVEL 3.

The parent-child relationships are:

• G3 is the child group of G2, and G2 is the
child group of G1.

• G5 is the child group of G4.

GROUP_NAME VARCHAR2(4000) NULL Short name of the group intended to indicate
the hierarchy level

F.1.2.20 DBA_SA_LABELS
The DBA_SA_LABELS data dictionary view shows for the entire database information
about the tags and types of labels for a policy.

Its columns are the same as ALL_SA_LABELS.

Related Topics

• ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information
about the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

F.1.2.21 DBA_SA_LEVELS
The DBA_SA_LEVELS data dictionary view shows for the entire database information
about levels associated with a policy.

Its columns are the same as ALL_SA_LEVELS.

Related Topics

• ALL_SA_LABELS
The ALL_SA_LABELS data dictionary view shows for the current user information
about the tags and types of labels, based on SA_LABEL_ADMIN.CREATE_LABEL and
SA_LABEL_ADMIN.ALTER_LABEL.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-14



F.1.2.22 DBA_SA_POLICIES
The DBA_SA_POLICIES data dictionary view shows for the entire database information about
Oracle Label Security policies, based on the SA_SYSDBA.CREATE_POLICY procedure.

This view also shows whether the policy has been enabled or disabled and its subscription
status.

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

COLUMN_NAME VARCHAR2(128) NOT NULL Name of the column that was added to
tables protected by the policy

STATUS VARCHAR2(8) NULL Whether the policy has been enabled
or disabled

POLICY_OPTIONS VARCHAR2(4000) NULL Options that were set for this policy.

See Categories of Policy Enforcement
Options for a listing of the possible
enforcement options.

POLICY_SUBSCRIB
ED

VARCHAR2(5) NULL Indicates the policy's subscription
status, based on the
SA_POLICY_ADMIN.POLICY_SUBSCRI
BE or
SA_POLICY_ADMIN.POLICY_UNSUBSC
RIBE procedure

F.1.2.23 DBA_SA_PROG_PRIVS
The DBA_SA_PROG_PRIVS data dictionary view shows for the entire database information about
the policy-specific privileges for program units.

Its columns are the same as ALL_SA_PROG_PRIVS.

Related Topics

• ALL_SA_PROG_PRIVS
The ALL_SA_PROG_PRIVS data dictionary view shows for the current user information
about the policy-specific privileges for program units, based on
SA_USER_ADMIN.SET_PROG_PRIVS.

F.1.2.24 DBA_SA_SCHEMA_POLICIES
The DBA_SA_SCHEMA_POLICIES data dictionary view shows for the entire database information
about policies that have been applied to all tables in the schema.

Its columns are the same as ALL_SA_SCHEMA_POLICIES.

Related Topics

• ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user information
about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-15



F.1.2.25 DBA_SA_TABLE_POLICIES
The DBA_SA_TABLE_POLICIES data dictionary view shows for the entire database
information about a policy that has been added to a database table.

Its columns are the same as ALL_SA_TABLE_POLICIES.

Related Topics

• ALL_SA_SCHEMA_POLICIES
The ALL_SA_SCHEMA_POLICIES data dictionary view shows for the current user
information about policies applied to all tables in the schema, based on
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY.

F.1.2.26 DBA_SA_USERS
The DBA_SA_USERS data dictionary view shows for the entire database information
about the privileges that Oracle Label Security users have.

Its columns are the same as ALL_SA_USERS.

Related Topics

• ALL_SA_USERS
The ALL_SA_USERS data dictionary view shows for the current user information
about Oracle Label Security user privileges, based on
SA_USER_ADMIN.SET_USER_LABELS and SA_USER_ADMIN.SET_USER_PRIVS.

F.1.2.27 DBA_SA_USER_COMPARTMENTS
The DBA_SA_USER_COMPARTMENTS data dictionary view shows for the entire database
the user authorizations, based on the SA_USER_ADMIN.ADD_COMPARTMENTS procedure.

This view also indicates whether the compartments are authorized for write and read
privileges

Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

COMP VARCHAR2(30) NOT NULL Short name of compartments that were
added

RW_ACCESS VARCHAR2(5) NULL Access mode. Possible values are:

• SA_UTL.READ_ONLY indicates no
write access

• SA_UTL.READ_WRITE indicates
that write is authorized

DEF_COMP VARCHAR2(1) NOT NULL Whether the compartments are in the
default compartments

ROW_COMP VARCHAR2(1) NOT NULL whether the compartments are in the
row label

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-16



Related Topics

• SA_USER_ADMIN.ADD_COMPARTMENTS
The SA_USER_ADMIN.ADD_COMPARTMENTS procedure adds (assigns) compartments to a
user's authorizations, indicating if the compartments are authorized for write and read
privileges.

F.1.2.28 DBA_SA_USER_GROUPS
The DBA_SA_USER_GROUPS data dictionary view shows for the entire database the groups
associated with users, based on the SA_USER_ADMIN.ADD_GROUPS procedure.

Column Datatype Null Description

POLICY_NAM
E

VARCHAR2(30) NOT NULL Name of the Oracle Label Security policy

USER_NAME VARCHAR2(1024) NOT NULL Name of the user

GRP VARCHAR2(30) NOT NULL Short name of groups that were added

RW_ACCESS VARCHAR2(5) NULL Access mode. Possible values are:

• SA_UTL.READ_ONLY indicates read-only
access

• SA_UTL.READ_WRITE indicates read and
write access

DEF_GROUP VARCHAR2(1) NOT NULL Whether the group is in a default group

ROW_GROUP VARCHAR2(1) NOT NULL Whether the group is in a label

Related Topics

• SA_USER_ADMIN.ADD_GROUPS
The SA_USER_ADMIN.ADD_GROUPS procedure adds (assigns) groups to a user, indicating if
the groups are authorized for write and read privileges.

F.1.2.29 DBA_SA_USER_LABELS
The DBA_SA_USER_LABELS data dictionary view shows for the entire database label-specific
information about users.

Its columns are the same as ALL_SA_USER_LABELS.

Related Topics

• ALL_SA_USER_LABELS
The ALL_SA_USER_LABELS data dictionary view shows for the current user label-specific
information about users, based on the SA_USER_ADMIN.SET_USER_LABELS procedure
settings.

F.1.2.30 DBA_SA_USER_LEVELS
The DBA_SA_USER_LEVELS data dictionary view shows for the entire database the minimum
and maximum levels that have been assigned to users.

This view also shows the default values for the user's session label and row label.

Its columns are the same as ALL_SA_USER_LEVELS.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-17



Related Topics

• ALL_SA_USER_LEVELS
The ALL_SA_USER_LEVELS data dictionary view shows for the current user the
minimum and maximum levels assigned to users, based on the
SA_USER_ADMIN.SET_LEVELS procdure.

F.1.2.31 DBA_SA_USER_PRIVS
The DBA_SA_USER_PRIVS data dictionary view shows for the current user the policy-
specific privileges that have been granted to users.

Its columns are the same as ALL_SA_USER_PRIVS.

Related Topics

• ALL_SA_USER_PRIVS
The ALL_SA_USER_PRIVS data dictionary view shows for the current user policy-
specific privileges granted to users, based on the SA_USER_ADMIN.SET_USER_PRIVS
procedure.

F.1.2.32 DBA_OLS_STATUS
The DBA_OLS_STATUS data dictionary view shows the configuration status of Oracle
Label Security in the database.

Column Datatype Null Description

NAME VARCHAR2(20) NULL Name of the status. Values are:

• OLS_CONFIGURE_STATUS
• OLS_DIRECTORY_STATUS
• OLS_ENABLE_STATUS

STATUS VARCHAR2(5) NULL Indicates the status of the feature mentioned in
the corresponding name column. For example, a
TRUE value for the OLS_CONFIGURE_STATUS
status says that Oracle Label Security has been
configured.

DESCRIPTIO
N

VARCHAR2(400
0)

NULL Description of the status:

• OLS_CONFIGURE_STATUS:Determines if
Oracle Label Security is configured.

• OLS_DIRECTORY_STATUS: Determines if
Oracle Internet Directory is enabled with
Oracle Label Security.

• OLS_ENABLE_STATUS: Determines if Oracle
Label Security is enabled.

F.1.2.33 USER_SA_SESSION
The USER_SA_SESSION data dictionary view shows the security attribute values for the
current database session.

Access to this view is PUBLIC.

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-18



Column Datatype Null Description

POLICY_NAME VARCHAR2(30) NOT NULL Name of the Oracle Label Security
policy

SA_USER_NAME VARCHAR2(4000) NULL Name of the current session user

PRIVS VARCHAR2(4000) NULL Current session privileges

MAX_READ_LABEL VARCHAR2(4000) NULL Label string that initialized the user's
maximum authorized read label

MAX_WRITE_LABEL VARCHAR2(4000) NULL Label string that initialized the user's
maximum authorized write label

MIN_LEVEL VARCHAR2(4000) NULL Minimum Oracle Label Security level
authorized for the session

LABEL VARCHAR2(4000) NULL Label for the current database
session

COMP_WRITE VARCHAR2(4000) NULL Compartments to which the user is
authorized to write

GROUP_WRITE VARCHAR2(4000) NULL Groups to which the user is
authorized to write

ROW_LABEL VARCHAR2(4000) NULL Row label that is associated with the
policy for the current session

F.1.3 Oracle Label Security User-Created Auditing View
The SA_AUDIT_ADMIN.CREATE_VIEW procedure can be used to create an audit trail view for a
specific policy.

By default, this view is named DBA_policyname_AUDIT_TRAIL.

Column Datatype Null Description

USERNAME VARCHAR2(128) NULL Name of the user whose actions were audited

USERHOST VARCHAR2(128) NULL Client host machine name

TERMINAL VARCHAR2(255) NULL Identifier of the user's terminal

TIMESTAMP DATE NULL Date and time of the creation of the audit trail
entry (date and time of user login for entries
created by AUDIT SESSION) in the local
database session time zone

OWNER VARCHAR2(128) NULL Creator of the object affected by the action

OBJ_NAME VARCHAR2(128) NULL Name of the object affected by the action

ACTION NUMBER NOT NULL Numeric action type code. The corresponding
name of the action type is in the
ACTION_NAME column.

ACTION_NAME VARCHAR2(47) NULL Name of the action type corresponding to the
numeric code in the ACTION column

Appendix F
Oracle Label Security Data Dictionary Tables and Views

F-19



Column Datatype Null Description

COMMENT_TEXT VARCHAR2(4000) NULL Text comment on the audit trail entry,
providing more information about the
statement audited

Also indicates how the user was
authenticated. The method can be one of the
following:

• DATABASE: Authentication was done by
password

• NETWORK: Authentication was done by
Oracle Net Services or by strong
authentication

SESSIONID NUMBER NOT NULL Numeric ID for each Oracle session

ENTRYID NUMBER NOT NULL Numeric ID for each audit trail entry in the
session

STATEMENTID NUMBER NOT NULL Numeric ID for each statement run

RETURNCODE NUMBER NOT NULL Oracle error code generated by the action.
Some useful values:

• 0: Action succeeded

• 2004: Security violation

EXTENDED_TIMES
TAMP

TIMESTAMP (6)
WITH TIME ZONE

NULL Timestamp of the creation of the audit trail
entry (timestamp of user login for entries
created by AUDIT SESSION) in UTC
(Coordinated Universal Time) time zone

OLS_COL VARCHAR2(4000) NULL Name of the column that was added to the
tables that Oracle Label Security protects

Related Topics

• SA_AUDIT_ADMIN.CREATE_VIEW
The SA_AUDIT_ADMIN.CREATE_VIEW procedure creates an audit trail view named
DBA_policyname_AUDIT_TRAIL.

F.2 Restrictions in Oracle Label Security
Several restrictions exist in this Oracle Label Security release.

These restrictions are as follows:

• CREATE TABLE AS SELECT restriction

If you attempt to perform CREATE TABLE AS SELECT in a schema that is protected by
an Oracle Label Security policy, then the statement will fail.

• Label tag restriction

Label tags must be unique across the policies in the database. When you use
multiple policies in a database, you cannot use the same numeric label tag in
different policies.

• Export restriction

Before Oracle Database 12c release 1 (12.1), the LBACSYS schema could not be
exported due to the use of opaque types in Oracle Label Security. An export of the

Appendix F
Restrictions in Oracle Label Security

F-20



entire database (parameter FULL=Y) with Oracle Label Security installed can be done,
except that the LBACSYS schema would not be exported.

From Oracle Database release 12c on, this restriction has been removed. See Full
Database Export for additional details on the database versions that the export can be
supported from.

• Oracle Label Security removal restriction

You cannot remove Oracle Label Security, but you can disable it. See Disabling Oracle
Label Security.

• Shared schema support restriction

User accounts defined in the Oracle Internet Directory cannot be given individual Oracle
Label Security authorizations. However, authorizations can be given to the shared
schema to which the directory users are mapped.

The Oracle Label Security function SET_ACCESS_PROFILE can be used programmatically
to set the label authorization profile to use after a user has been authenticated and
mapped to a shared schema. Oracle Label Security does not enforce a mapping between
users who are given label authorizations in Oracle Label Security and actual database
users.

• Hidden columns restriction

PL/SQL does not recognize references to hidden columns in tables. A compiler error will
be generated.

Appendix F
Restrictions in Oracle Label Security

F-21



G
Frequently Asked Questions about
Oracle Label Security

Customers have frequently asked questions about Oracle Label Security.

• Who Uses Oracle Label Security?
Sensitivity labels can categorize data in virtually every industry.

• How Can Oracle Label Security Address My Security Needs?
Oracle Label Security can label data and restrict access with a high degree of granularity.

• Should I Use Oracle Label Security to Protect All My Tables?
No, you should not use Oracle Label Security to protect all of your tables.

• What Is the Difference Between Oracle Virtual Private Database and Oracle Label
Security?
Oracle Virtual Private Database (VPD) is provided at no additional cost with the
Enterprise Edition of Oracle Database.

• Can I Combine Oracle Virtual Private Database and Oracle Label Security?
Yes. You can use a WHERE clause or a VPD policy.

• Can I Use Oracle Label Security with Oracle E-Business Suite?
Oracle Applications use Oracle Virtual Private Database (VPD) to provide new
functionality and security protections.

• Can I Use Oracle Label Security with Oracle Database Vault?
Oracle Database Vault and Oracle Label Security can be used together within the same
database.

• Does Oracle Label Security Provide Column-Level Access Control?
No, Oracle Label Security is not column aware.

• Can I Base Secure Application Roles on Oracle Label Security?
Yes, you can base secure application roles on Oracle Label Security.

• What Are Trusted Stored Program Units?
Trusted stored program units are stored procedures, functions, and packages that
execute with the system and object privileges (DAC) of the definer.

• Does VPD or OLS Add an Additional Column to the Protected Table?
When you apply an Oracle Label Security (OLS) policy to a table, the policy adds an
additional column to the table.

• Why Should the Additional OLS Row Label Column Be Hidden?
Most applications are designed with access control mechanisms in mind, so Oracle Label
Security must do this transparently.

G.1 Who Uses Oracle Label Security?
Sensitivity labels can categorize data in virtually every industry.

These industries include health care, law enforcement, energy, retail, national security, and
defense industries.

G-1



The following list gives some examples of sensitivity labels:

• Internal

• ConfidentialPhysician OnlyHighly SensitiveWidget CorporationConfidential:
Chicago OperationSensitive: Finance : EuropeTop SecretUnclassified

G.2 How Can Oracle Label Security Address My Security
Needs?

Oracle Label Security can label data and restrict access with a high degree of
granularity.

This is especially useful when multiple organizations or companies share a single
application. Sensitivity labels can be used to restrict application users to an
organization or to a subset of data within an organization.

Data privacy is important to consumers and regulatory measures continue to be
announced. Oracle Label Security can be used to implement privacy policies on data,
restricting access to only those who have a need-to-know.

G.3 Should I Use Oracle Label Security to Protect All My
Tables?

No, you should not use Oracle Label Security to protect all of your tables.

The traditional Oracle discretionary access control (DAC) object privileges such as
SELECT, INSERT, UPDATE, and DELETE combined with database roles and stored
procedures are sufficient in most cases. You can find a user’s privileges by querying
the DBA_SYS_PRIVS data dictionary view.

In addition, there are many other ways that you can protect access to your database
tables, such using Oracle Virtual Private Database (VPD), Oracle Database Vault,
Oracle Data Redaction, Transparent Data Encryption (TDE), or Transparent Sensitive
Data Protection (TSDP).

G.4 What Is the Difference Between Oracle Virtual Private
Database and Oracle Label Security?

Oracle Virtual Private Database (VPD) is provided at no additional cost with the
Enterprise Edition of Oracle Database.

Oracle Label Security is an add-on security option for the Oracle Database Enterprise
Edition.

Oracle VPD is a term used for several powerful security features like, fine grained
access control (FGAC), application context and global application context. VPD
policies are written using PL/SQL, and can be assigned to an individual table or view.
An information request, that accesses a table or view protected by VPD, is modified
according to the policy assigned to the table or view.

Appendix G
How Can Oracle Label Security Address My Security Needs?

G-2



VPD policies can be as simple as enforcing access during business hours. VPD policies can
restrict access by comparing the value of an attribute in an individual row with an application
context value. Global application context allows an application context to be accessed across
multiple database sessions, reducing or eliminating the need to create a separate application
context for each user session.

Oracle Label Security is an out-of-the-box solution for row level security. No coding or
software development is required, allowing the administrator to focus completely on the
policy. Oracle Label Security provides an interface for creating policies, specifying
enforcement options, defining data sensitivity labels, establishing user label authorizations,
and protecting individual tables or schemes.

Data sensitivity labels provide a powerful and flexible method of restricting access to data.
For example, data belonging to different organizations or companies can be separated using
data sensitivity labels and selectively shared between companies by changing the data
sensitivity label.

Depending on the complexity of the security policy, Oracle Virtual Private Database may be
the preferred method for implementing your security policy. Oracle Label Security is best
suited for situations where access control decisions need to be based on the sensitivity of the
information.

G.5 Can I Combine Oracle Virtual Private Database and Oracle
Label Security?

Yes. You can use a WHERE clause or a VPD policy.

• A WHERE clause can be appended to an OLS policy, which provides one more level of
granularity. An example would be that users, regardless of their label authorizations, are
only allowed to connect from a specific IP address or subnet, and during business hours
only.

• A VPD policy, whether column sensitive or not, can evaluate user labels and determine
access to columns and rows without the need to apply data labels.

G.6 Can I Use Oracle Label Security with Oracle E-Business
Suite?

Oracle Applications use Oracle Virtual Private Database (VPD) to provide new functionality
and security protections.

In addition, you can use other Oracle security products with Oracle E-Business Suite, such as
Oracle Database Vault. Contact Oracle Support for more information.

G.7 Can I Use Oracle Label Security with Oracle Database
Vault?

Oracle Database Vault and Oracle Label Security can be used together within the same
database.

Appendix G
Can I Combine Oracle Virtual Private Database and Oracle Label Security?

G-3



An Oracle Database Vault realm can protect a table that is also protected by an Oracle
Label Security policy. The realm can protect the entire table and the Oracle Label
Security can provide row level security for users that need to access the table data.

In addition, Oracle Label Security can be used together with Database Vault features.
You can assign Oracle Label Security labels to Database Vault Factors. These labels
are then merged with the user clearance labels, following the algorithms documented
in Merging Labels with the MERGE_LABEL Function, before access control decisions
are being made by comparing the merged user labels with the row labels.

The following example on the Oracle Technology Network Web site discusses using
Oracle Label security along with Oracle Database Vault features:

http://www.oracle.com/technetwork/database/security/label-security-
factors-093209.html

G.8 Does Oracle Label Security Provide Column-Level
Access Control?

No, Oracle Label Security is not column aware.

This behavior is available with Virtual Private Database (VPD). A VPD policy can be
written so that it only becomes active when a certain column is part of a SQL
statement against a protected table. If the column sensitivity switch is on, then VPD
either returns only those rows for which the sensitive column values are accessible to
the user, or it returns all rows with all cells in the sensitive column being empty, except
those values that the user is allowed to see.

The following link on the Oracle Technology Network Web site contains an example:

http://www.oracle.com/technetwork/database/security/index-088277.html
A column-sensitive VPD policy can determine access to a specific column by
evaluating OLS user labels, which this example demonstrates:

http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html

G.9 Can I Base Secure Application Roles on Oracle Label
Security?

Yes, you can base secure application roles on Oracle Label Security.

The procedure that determines if the SET ROLE command is executed can evaluate
OLS user labels. In this case, the OLS policy does not need to be applied to a table,
since row labels are not part of this solution.

G.10 What Are Trusted Stored Program Units?
Trusted stored program units are stored procedures, functions, and packages that
execute with the system and object privileges (DAC) of the definer.

If the invoker is a user with Oracle Label Security user clearances (labels), the
procedure executes with a combination of the definer's DAC privileges and the
invoker's security clearances.

Appendix G
Does Oracle Label Security Provide Column-Level Access Control?

G-4

http://www.oracle.com/technetwork/database/security/label-security-factors-093209.html
http://www.oracle.com/technetwork/database/security/label-security-factors-093209.html
http://www.oracle.com/technetwork/database/security/index-088277.html
http://www.oracle.com/technetwork/database/security/ols-cs1-099558.html


Trusted stored procedures are procedures that are either granted the Oracle Label Security
privilege FULL or READ. When a trusted stored program unit is run, the policy privileges in
force are a combination of the invoking user's privileges and the program unit's privileges.

G.11 Does VPD or OLS Add an Additional Column to the
Protected Table?

When you apply an Oracle Label Security (OLS) policy to a table, the policy adds an
additional column to the table.

The name of this column needs to be specified when the policy is initially created.

An existing column can be used to store the OLS row labels. This column must have the
NUMBER(10) data type.

Oracle Virtual Private Database (VPD) does not add an additional column to the protected
table.

G.12 Why Should the Additional OLS Row Label Column Be
Hidden?

Most applications are designed with access control mechanisms in mind, so Oracle Label
Security must do this transparently.

When an application queries a table with a SELECT FROM tablename statement, it returns all
columns, including the unhidden label column. Existing applications may not be designed to
display an additional column, and malfunction. However, if the label column is hidden, then it
is displayed only when its name is included in the SQL statement. A SELECT FROM tablename
would return all columns as expected by the application, excluding the hidden OLS column.

Appendix G
Does VPD or OLS Add an Additional Column to the Protected Table?

G-5



Index

A
access control

discretionary, 3-17
understanding, 3-1

access mediation
and views, 3-18
enforcement options, 3-19
introduction, 3-1
label evaluation, 3-8
program units, 3-18

ADD_GROUPS procedure
inverse groups, 16-16

ALL_CONTROL option, 11-3, 11-4, 11-9
ALL_SA_AUDIT_OPTIONS view, F-4
ALL_SA_COMPARTMENTS view, F-5, F-13
ALL_SA_DATA_LABELS view, F-5, F-13
ALL_SA_GROUPS view, F-6, F-13
ALL_SA_LABELS view, F-6
ALL_SA_LEVELS view, F-7
ALL_SA_POLICIES view, F-7
ALL_SA_PROG_PRIVS view, F-8
ALL_SA_SCHEMA_POLICIES view, F-8
ALL_SA_TABLE_POLICIES view, F-9
ALL_SA_USER_LABELS view, F-11
ALL_SA_USER_LEVELS view, F-11
ALL_SA_USER_PRIVS view, F-12
ALL_SA_USERS view, F-9
ALTER_GROUP_PARENT

inverse groups, 16-20
ALTER_GROUPS procedure

inverse groups, 16-17
ALTER_POLICY procedure

inverse groups, 16-16
ANALYZE command, 15-7
APPLY_SCHEMA_POLICY procedure

with inverse groups, 16-3
APPLY_TABLE_POLICY procedure

with inverse groups, 16-3
architecture, Oracle Label Security, 1-4
AS SYSDBA clause, 15-11
AUDIT_LABEL_ENABLED function, E-5
AUDIT_TRAIL parameter, 13-2
auditing

audit trails, 13-1, 13-2, E-5

auditing (continued)
creating audit view, E-5
disabling, E-8
dropping audit view, E-6
enabling

SA_AUDIT_ADMIN.AUDIT procedure, E-2
finding audit options, F-4
finding if labels are recorded, E-5
Oracle Label Security, 13-1, 13-3
recording policy labels, E-4
SA_AUDIT_ADMIN package, E-2
SA_AUDIT_ADMIN.AUDIT_LABEL procedure,

E-4
SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED

function, E-5
SA_AUDIT_ADMIN.CREATE_VIEW

procedure, E-5
SA_AUDIT_ADMIN.DROP_VIEW procedure,

E-6
SA_AUDIT_ADMIN.NOAUDIT_LABEL

procedure, E-8
strategy, 13-4
systemwide, 13-2
types of, 5-27
views, E-5

B
B-tree indexes, 15-7

C
CDBs, 1-7

Oracle Label Security, 1-7
CHAR_TO_LABEL function, 6-6, 6-15, 6-17
CHECK_CONTROL option

and label update, 11-16, 11-17
and labeling functions, 11-15
definition, 11-4
with other options, 11-10

CHECK_WRITE function, E-74
child rows

deleting, 11-18
inserting, 11-15
updating, 11-17

Index-1



Cloud Control login, 5-21
COMPACCESS privilege, 3-15

inverse groups, 16-7, 16-9
compartments

altering, E-10
creating, E-14
definition, 2-5, 5-5
deleting, E-17
example, 2-5, 5-5
finding, F-16
finding compartments user can read in session,

E-35
finding compartments user can write to in

session, E-36
finding user information, F-5
SA_COMPONENTS.ALTER_COMPARTMENT

procedure, E-10
SA_COMPONENTS.CREATE_COMPARTMENT

procedure, E-14
SA_COMPONENTS.DROP_COMPARTMENT

procedure, E-17
SA_USER_ADMIN package, E-53
SA_USER_ADMIN.ADD_COMPARTMENTS

procedure, E-53
SA_USER_ADMIN.ALTER_COMPARTMENTS,

E-56
SA_USER_ADMIN.DROP_COMPARTMENTS

procedure, E-59
SA_USER_ADMIN.SET_COMPARTMENTS

procedure, E-61
setting authorizations, 3-5, 5-13
tutorial on using, 9-1

components
SA_COMPONENT package, E-10
SA_USER_ADMIN.DROP_ALL_COMPARTMENTS

procedure, E-58
CON, C-15
configuration of Oracle Label security

finding status, F-18
connection parameters, C-15
CREATE FUNCTION statement, 12-3
CREATE PACKAGE BODY statement, 12-3
CREATE PACKAGE statement, 12-3
CREATE PROCEDURE statement, 12-3
CREATE TABLE AS SELECT statement, F-20
CREATE_GROUP procedure

inverse groups, 16-20
CREATE_POLICY procedure

inverse groups, 16-16
creating databases, 15-10

D
data

label-based access, 2-1

data dictionary tables, 2-2, 15-7, 15-10, F-1
data labels

checking if label is data label, E-74
finding label and tag information, F-5
SA_UTL.DATA_LABEL function, E-74

Data Pump export
row labels, 15-2

Data Pump import, 15-2
database links, 14-2
databases, creating additional, 15-10
DBA_OLS_STATUS data dictionary view, 4-2
DBA_OLS_STATUS view, F-18
DBA_policyname_AUDIT_TRAIL view, F-19
DBA_SA_AUDIT_OPTIONS view, F-12
DBA_SA_COMPARTMENTS view, 15-4, F-13
DBA_SA_DATA_LABELS view, F-13
DBA_SA_GROUP_HIERARCHY view, F-13
DBA_SA_GROUPS view, 15-4, F-13
DBA_SA_LABELS view, 15-4, F-14
DBA_SA_LEVELS view, 15-4, F-14
DBA_SA_POLICIES view, F-15
DBA_SA_PROG_PRIVS view, F-15
DBA_SA_SCHEMA_POLICIES view, 11-11, F-15
DBA_SA_TABLE_POLICIES view, 11-11, F-16
DBA_SA_USER_COMPARTMENTS view, F-16
DBA_SA_USER_GROUPS view, F-17
DBA_SA_USER_LABELS view, F-17
DBA_SA_USER_LEVELS view, F-17
DBA_SA_USER_PRIVS view, F-18
DBA_SA_USERS view, F-16
default port, C-15
default row label, E-46
DELETE_CONTROL option, 11-4, 11-18
DELETERESTRICT option, 11-18
deleting labeled data, 11-18
demobld.sql file, 1-6
disabling OLS, A-1
disabling Oracle Label Security, A-1
discretionary access control (DAC), 3-17
distributed databases

connecting to, 14-2
multiple policies, 3-20
Oracle Label Security configuration, 14-1
remote session label, 14-3

dominance
definition, 3-9
functions

about, B-3
greatest lower bound, 6-12
inverse groups, 16-22
least upper bound, 6-11
overview, B-1

DOMINATED_BY function, B-10
DOMINATES function, B-1
DROP USER CASCADE restriction, F-20

Index

Index-2



dropping for specified compartments, E-59
duties

of security administrators, 1-2

E
enabling OLS, A-1
enforcement options

and UPDATE, 11-16
combinations of, 11-10
exemptions, 11-11
guidelines, 11-10
INVERSE_GROUP, 16-3
list of, 11-2
overview, 11-2
viewing, 11-11

EXEMPT ACCESS POLICY privilege, 11-11
Export utility

LBACSYS restriction, F-20
policy enforcement, 11-11
row labels, 3-14, 15-4

external tables, 5-17

F
FULL privilege, 3-15, 3-16
function call, D-1, D-2

G
granularity

to data access, 3-11
GREATEST_LBOUND function

inverse groups, 16-21
groups

altering, E-11
altering parent groups, E-12
creating group parent, E-15
definition, 2-7, 5-7
deleting, E-18
example, 2-7, 5-7
finding for entire database, F-17
finding hierarchy of parent-child relationships,

F-13
finding policy groups, F-6
hierarchical, 2-7, 2-10, 5-7, F-13
inverse, 16-2
parent, 2-7, 3-8, 5-7, 16-6
read/write access, 3-8
SA_COMPONENTS.ALTER_GROUP

procedure, E-11
SA_COMPONENTS.ALTER_GROUP_PARENT

procedure, E-12

groups (continued)
SA_COMPONENTS.CREATE_GROUP

procedure, E-15
SA_COMPONENTS.DROP_GROUP, E-18
SA_SESSION.GROUP_READ function, E-36
SA_SESSION.GROUP_WRITE function, E-37
SA_USER_ADMIN package, E-53
SA_USER_ADMIN.ADD_GROUPS procedure,

E-54
SA_USER_ADMIN.ALTER_GROUPS

procedure, E-57
SA_USER_ADMIN.DROP_ALL_GROUPS

procedure, E-59
SA_USER_ADMIN.DROP_GROUPS

procedure, E-60
SA_USER_ADMIN.SET_GROUPS procedure,

E-64
setting authorizations, 3-6, 5-14
tutorial on using, 10-1

H
HIDE, 6-2, E-48, E-49
HIDE option

default, E-49
discussion of, 11-6
example, 6-2
importing hidden column, 15-5
inserting data, 6-16
not exported, 15-2
per-table basis, 6-8
PL/SQL restriction, F-20
policy label column

inserting data when hidden, 6-16
schema level, 11-2

I
impdp

See Data Pump import
Import utility

importing labeled data, 15-4
importing policies, 15-2
importing unlabeled data, 15-5
with Oracle Label Security, 15-3

indexes, 15-7
INITIAL_LABEL variable, B-13
INITIAL_ROW_LABEL variable, B-13
initialization parameters

AUDIT_TRAIL, 13-2
INSERT_CONTROL option, 11-4, 11-15
inserting labeled data, 6-15, 11-14
INTO TABLE clause, 15-6
inverse groups

and label components, 16-3

Index

Index-3



inverse groups (continued)
COMPACCESS privilege, 16-7, 16-9
computed labels, 16-4
dominance, 16-22
implementation of, 16-3
introduction, 16-2
Max Read Groups, 16-5
Max Write Groups, 16-5
parent-child unsupported, 16-6
read algorithm, 16-7
session labels, 16-10
SET_DEFAULT_LABEL, 16-11
SET_LABEL, 16-12
SET_ROW_LABEL, 16-11, 16-12
user privileges, 16-7
write algorithm, 16-8

INVERSE_GROUP enforcement option
behavior of procedures, 16-15
implementation, 16-3

L
label components

defining, E-10
in distributed environment, 14-4
industry examples, 2-8
interrelation, 2-10

label evaluation process
COMPACCESS read, 3-15
COMPACCESS write, 3-15
inverse groups, COMPACCESS, 16-9
LABEL_UPDATE, 11-16
read access, 3-9
read access, inverse groups, 16-7
write access, 3-11
write access, inverse groups, 16-8

label policy containers
creating, 5-2

label tags
converting from string, 6-6
converting to string, 6-7
distributed environment, 14-4
example, 6-4
inserting data, 6-16
introduction, 2-9, 5-10
manually defined, 6-4
strategy, 15-8
using in WHERE clauses, 6-9

LABEL_DEFAULT option
and labeling functions, 11-12
authorizing compartments, 3-5
authorizing groups, 3-6
importing unlabeled data, 15-5
inserting labeled data, 6-16
with enforcement options, 11-10

LABEL_DEFAULT option (continued)
with SA_SESSION.SET_ROW_LABEL, E-46

LABEL_TO_CHAR function, 6-7, 6-11
LABEL_UPDATE option

and labeling functions, 11-7, 11-12
and privileges, 11-7
and WRITE_CONTROL, 11-8
and WRITEUP, 3-13, 5-15
definition, 11-4
evaluation process, 11-16
with enforcement options, 11-10

label-based security, 2-1
labeling functions

ALL_CONTROL and NO_CONTROL, 11-9
and CHECK_CONTROL, 11-15
and LABEL_DEFAULT, 11-7, 11-12
and LABEL_DEFAULTlLABEL_DEFAULT

option
and labeling functions, 11-7

and LABEL_UPDATE, 11-6, 11-7
and LBACSYS, 11-12
creating, 11-13
example, 11-12
how they work, 11-12
importing unlabeled data, 15-5
in force, 11-6
inserting data, 6-16
introduction, 3-19
override manual insert, 11-15
specifying, 11-14
testing, 11-12
UPDATE, 11-17
using, 11-12
with enforcement options, 11-10

labels, E-74, E-78
administering, 2-12
altering, E-20
and performance, 3-14
checking if a data label, E-74
checking if changed, E-72
creating, E-21
data and user, 2-10
deleting, E-22
finding greatest lower bound, E-75
finding least upper bound, E-76
finding tags and types of, F-6
merging, 6-13
non-comparable, B-2
relationships between, B-1
restoring default for session, E-41
SA_LABEL_ADMIN package, E-19
SA_LABEL_ADMIN.ALTER_LABEL procedure,

E-20
SA_LABEL_ADMIN.CREATE_LABEL

procedure, E-21

Index

Index-4



labels (continued)
SA_LABEL_ADMIN.DROP_LABEL procedure,

E-22
SA_SESSION.LABEL function, E-37
SA_SESSION.MAX_READ_LABEL function,

E-38
SA_SESSION.MAX_WRITE_LABEL function,

E-39
SA_SESSION.MIN_WRITE_LABEL function,

E-40
SA_SESSION.RESTORE_DEFAULT_LABELS,

E-41
SA_SESSION.SET_LABEL procedure, E-42
SA_SESSION.SET_ROW_LABEL procedure,

E-46
SA_USER_ADMIN package, E-53
SA_USER_ADMIN.SET_USER_LABELS

procedure, E-68
SA_UTL.CHECK_LABEL_CHANGE function,

E-72
SA_UTL.GREATEST_LBOUND function, E-75
SA_UTL.LEAST_UBOUNDfunction, E-76
SA_UTL.SET_LABEL procedure, E-78
saving default session label, E-44
setting row label, E-46
syntax, 2-9, 5-10
valid, 2-9, 5-10, 6-3
with inverse groups, 16-4

LBAC_LABEL data type, 11-12
LBACSYS

export, 15-1
import, 15-1
login, 5-21

LBACSYS default user account
about, 4-4
best practice guideline, 4-4

LBACSYS schema
and labeling functions, 11-12
creating additional databases, 15-10
data dictionary tables, 15-7
export restriction, F-20

LEAST_UBOUND function
inverse groups, 16-21

levels
about, 5-4
altering levels, E-13
creating, E-16
definition, 2-4, 5-4
deleting, E-18
example, 2-4, 5-4
finding, F-7
SA_COMPONENTS.ALTER_LEVEL

procedure, E-13
SA_COMPONENTS.CREATE_LEVEL

procedure, E-16

levels (continued)
SA_COMPONENTS.DROP_LEVEL

procedure, E-18
SA_SESSION.MAX_LEVEL function, E-38
SA_SESSION.MIN_LEVEL function, E-40
SA_USER_ADMIN.SET_LEVELS procedure,

E-65
setting authorizations, 3-5, 5-12
tutorial on using, 8-1

logging into Oracle Label Security
from Cloud Control, 4-4
from SQL*Plus, 4-5

login
Cloud Control, 5-21
LBACSYS, 5-21

M
materialized views, 14-6, 14-9
Max Read Groups, 16-5
Max Write Group, 16-5
MERGE_LABEL function, 6-13
multitenant container databases

See CDBs

N
NO_CONTROL option, 11-4, 11-9
NUMBER data type, 6-2

O
object privileges

and Oracle Label Security privileges, 3-17
and trusted stored program units, 3-18, 12-2

OCI interface, B-13
OCI_ATTR_APPCTX_LIST, B-13
OCI_ATTR_APPCTX_SIZE, B-13
OCIAttrSet, B-13
OCIParamGet, B-13
OLS_DOMINATED_BY function, B-7
OLS_DOMINATES function, B-3
OLS_GLBD function, 6-12
OLS_GREATEST_LBOUND function, 6-12
OLS_LABEL_DOMINATES function

about, B-4
in Data Redaction policies, B-4
in Database Vault policies, B-4

OLS_LEAST_UBOUND function, 6-11
OLS_LUBD function, 6-11
OLS_STRICTLY_DOMINATED_BY function, B-7
OLS_STRICTLY_DOMINATES function, B-6
olsadmintool commannds

addadmin, C-5
addpolcreator, C-6

Index

Index-5



olsadmintool commannds (continued)
adduser, C-6
altercompartent, C-6
altergroup, C-7
altergroupparent, C-7
alterlabel, C-7
alterlevel, C-8
alterpolicy, C-8
audit, C-9
createcompartment, C-9
creategroup, C-9
createlabel, C-10
createlevel, C-10
createpolicy, C-11
createprofile, C-10
describeprofile, C-11
dropadmin, C-12
dropcompartment, C-12
dropgroup, C-12
droplabel, C-12
droplevel, C-13
droppolcreator, C-14
droppolicy, C-13
dropprofile, C-13
dropuser, C-14
help, C-14
listprofile, C-15
noaudit, C-15

olsoidsync commannd, C-23
OptionsA, C-16
Oracle Data Redaction

using OLS_LABEL_DOMINATES function
with, B-4

Oracle Database Vault
using OLS_LABEL_DOMINATES function

with, B-4
Oracle Enterprise Manager

administering labels, 2-12
Oracle Internet Directory

configuring OLS after switchover to standby
database, 7-19

integration with OLS, 1-7
OID with Oracle Data Guard, 7-19
Oracle Label Security

about, 7-2
administrator duties in, 7-14
bootstrapping databases, 7-14
configuring, about, 7-6
configuring, permission for, 7-7
configuring, steps, 7-7
integrated capabilities of, 7-11
PL/SQL procedures for policy

administrators, 7-23
policy attributes in, 7-12
profiles, about, 7-10

Oracle Internet Directory (continued)
Oracle Label Security (continued)
provisioning profiles, about, 7-16
provisioning profiles, changing database

connection information, 7-18
provisioning profiles, managing, 7-17
restrictions on new data label creation,

7-14
security roles and permitted actions, 7-21
subscribing policies in, 7-13
superseded PL/SQL statements, 7-22
synchronizing database with OID, 7-15
un-registering database, 7-10

Oracle Label Security
about, 1-1
benefits, 1-2
checking if registered and enabled, 4-2
DBA_OLS_STATUS data dictionary view, 4-2
privileges required to use, 1-2
registering, 4-1

Oracle Label Security (OLS)
integration with Oracle Internet Directory, 1-7

Oracle Label Security data dictionary views
about, F-1
ALL_SA_AUDIT_OPTIONS, F-4
ALL_SA_COMPARTMENTS, F-5, F-13
ALL_SA_DATA_LABELS, F-5, F-13
ALL_SA_GROUPS, F-6, F-13
ALL_SA_LABELS, F-6
ALL_SA_LEVELS, F-7, F-14
ALL_SA_POLICIES, F-7
ALL_SA_PROG_PRIVS, F-8
ALL_SA_SCHEMA_POLICIES, F-8
ALL_SA_TABLE_POLICIES, F-9
ALL_SA_USER_LABELS, F-11
ALL_SA_USER_LEVELS, F-11
ALL_SA_USER_PRIVS, F-12
ALL_SA_USERS, F-9
DBA_OLS_STATUS, F-18
DBA_SA_AUDIT_OPTIONS, F-12
DBA_SA_GROUP_HIERARCHY, F-13
DBA_SA_LABELS, F-14
DBA_SA_POLICIES, F-15
DBA_SA_PROG_PRIVS, F-15
DBA_SA_SCHEMA_POLICIES, F-15
DBA_SA_TABLE_POLICIES, F-16
DBA_SA_USER_COMPARTMENTS, F-16
DBA_SA_USER_GROUPS, F-17
DBA_SA_USER_LABELS, F-17
DBA_SA_USER_LEVELS, F-17
DBA_SA_USER_PRIVS, F-18
DBA_SA_USERS, F-16
policies

finding information about schema
policies, F-8

Index

Index-6



Oracle Label Security data dictionary views (continued)
USER_SA_SESSION, F-18

Oracle Label Security profiles, 7-10
ORDER BY clause, 6-10

P
packages

Oracle Label Security, 1-5
SA_AUDIT_ADMIN, E-2
SA_COMPONENTS, E-10
SA_LABEL_ADMIN, E-19
SA_POLICY_ADMIN, E-24
SA_SESSION, E-35
SA_SYSDBA, E-47
SA_USER_ADMIN, E-53
SA_UTL, E-72
trusted stored program units, 12-1

partitioning, 6-4, 15-9
PDBs, 1-7

Oracle Label Security, 1-7
performance, Oracle Label Security

ANALYZE command, 15-7
indexes, 15-7
label tag strategy, 15-8
partitioning, 15-9
READ privilege, 3-14

PL/SQL
recreating labels for import, 15-4
SA_UTL package, 12-5, E-72
trusted stored program units, 12-1

pluggable databases
See PDBs

policies
about creating, 5-17
enforcement guidelines, 11-10
enforcement options, 3-19, 6-1, 11-2, 11-10
finding for current user, F-7
finding for entire database, F-15
finding information about table policies, F-9
finding privileges for program units, F-8
multiple, 2-2, 6-3
OID subscription, E-30
OID unsubscription, E-31
privileges, 3-17, E-70
SA_POLICY_ADMIN package, E-24
SA_POLICY_ADMIN.POLICY_SUBSCRIBE

procedure, E-30
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE

procedure, E-31
policies, schema

altering, E-24
applying, E-25
deleting, E-32
disabling, E-27

policies, schema (continued)
enabling, E-29
SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY

procedure, E-24
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY

procedure, E-25
SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY

policy, E-29
SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY

procedure, E-32
policies, schema, disabling

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
procedure, E-27

policies, table
applying, E-26
deleting, E-33
disabling, E-28
enabling, E-29
SA_POLICY_ADMIN.APPLY_TABLE_POLICY

procedure, E-26
SA_POLICY_ADMIN.DISABLE_TABLE_POLICY

procedure, E-28
SA_POLICY_ADMIN.ENABLE_TABLE_POLICY

procedure, E-29
SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

procedure, E-33
policy label column

indexing, 15-7
introduction, 6-1, 6-2
retrieving, 6-7
retrieving hidden, 6-8
storing label tag, 2-9, 5-10

policy label containers
about, 5-2

policy management
altering policies, E-48
creating policies, E-49
deleting policies, E-51
disabling policies, E-50
enabling policies, E-51
SA_SYSDBA package, E-47
SA_SYSDBA.ALTER_POLICY procedure,

E-48
SA_SYSDBA.CREATE_POLICY procedure,

E-49
SA_SYSDBA.DISABLE_POLICY procedure,

E-50
SA_SYSDBA.DROP_POLICY policy, E-51
SA_SYSDBA.ENABLE_POLICY procedure,

E-51
policy_DBA role, 2-2, E-19, E-70

about, 1-2
auditing policy_DBA role users, E-2
how to use, 1-2
required for Data Pump import operations, 15-4

Index

Index-7



policy_DBA role (continued)
required for label management, E-19
required for Oracle Label Security auditing, E-2
required for

SA_USER_ADMIN.SET_PROG_PRIVS
procedure, E-66

required for
SA_USER_ADMIN.SET_USER_PRIVS
procedure, E-70

predicates
access mediation, 3-19
errors, 11-19
label tag performance strategy, 15-8
multiple, 11-19
used with policy, 11-19

privileges
COMPACCESS, 3-15
FULL, 3-15, 3-16
Oracle Label Security, 1-2, 3-13
PROFILE_ACCESS, 3-16
program units, 3-18
READ, 3-13, 3-14, 5-15
row label, 3-16
SA_USER_ADMIN.SET_USER_PRIVS

procedure, E-70
trusted stored program units, 12-4
WRITEACROSS, 3-16, 3-17
WRITEDOWN, 3-16, 3-18
WRITEUP, 3-16, 3-17

PROFILE_ACCESS privilege, 3-16
program units

finding policy privileges for, F-8
propagated, D-1

R
RAC, D-1
re-enabling Oracle Label Security, A-1
read access

algorithm, 3-9, 3-15
introduction, 3-8

read label, 3-7
READ privilege, 3-13, 3-14, 5-15
READ_CONTROL option

algorithm, 3-9
and CHECK_CONTROL, 11-7
and child rows, 11-15
definition, 11-4
referential integrity, 11-17
with other options, 11-10
with predicates, 11-19

reading down, 3-9
referential integrity, 11-15, 11-17, 11-18
registering Oracle Label Security, 4-1
releasability, 16-2

remote users, 14-2
REPADMIN account, 14-8, 14-9
replication

materialized views (snapshots), 14-6, 14-9,
14-10

with Oracle Label Security, 14-6, 14-7
replication administrator, 14-8
restrictions, Oracle Label Security, F-20
row labels

default, 3-5–3-7, D-2, E-35, E-46, E-78
example, 3-3
finding current, E-77
in distributed environment, 14-3
inserting, 6-15
LABEL_DEFAULT option, 6-15, 11-7
privileges, 3-16
restoring, E-41
SA_USER_ADMIN.SET_ROW_LABEL

procedure, E-67
SA_UTL.NUMERIC_ROW_LABEL function,

E-77
SA_UTL.SET_ROW_LABEL procedure, E-78
saving defaults, E-44
setting, E-46, E-78
setting compartments, E-61
setting for current database session, E-78
setting for user’s initial use, E-67
setting groups, E-64
setting levels, E-65
understanding, 3-3
updating, 3-16
viewing, E-77

S
SA_AUDIT_ADMIN

procedures, listed, E-2
SA_AUDIT_ADMIN PL/SQL package

about, E-2
SA_AUDIT_ADMIN.AUDIT procedure, E-2
SA_AUDIT_ADMIN.AUDIT_LABEL procedure,

E-4
SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED

procedure, E-5
SA_AUDIT_ADMIN.CREATE_VIEW procedure,

E-5
SA_AUDIT_ADMIN.DROP_VIEW procedure, E-6
SA_AUDIT_ADMIN.NOAUDIT procedure, E-7
SA_AUDIT_ADMIN.NOAUDIT_LABEL

procedure, E-8
SA_COMPONENTS

procedures, listed, E-10
SA_COMPONENTS package, E-10
SA_COMPONENTS PL/SQL package

about, E-10

Index

Index-8



SA_COMPONENTS.ALTER_COMPARTMENT
procedure, E-10

SA_COMPONENTS.ALTER_GROUP procedure,
E-11

SA_COMPONENTS.ALTER_GROUP_PARENT
procedure, E-12

SA_COMPONENTS.ALTER_LEVEL procedure,
E-13

SA_COMPONENTS.CREATE_COMPARTMENT
procedure, E-14

SA_COMPONENTS.CREATE_GROUP
procedure, E-15

SA_COMPONENTS.CREATE_LEVEL
procedure, E-16

SA_COMPONENTS.DROP_COMPARTMENT
procedure, E-17

SA_COMPONENTS.DROP_GROUP procedure,
E-18

SA_COMPONENTS.DROP_LEVEL procedure,
E-18

SA_LABEL_ADMIN
procedures, listed, E-19

SA_LABEL_ADMIN PL/SQL package
about, E-19

SA_LABEL_ADMIN.ALTER_LABEL procedure,
E-20

SA_LABEL_ADMIN.CREATE_LABEL procedure,
E-21

SA_LABEL_ADMIN.DROP_LABEL procedure,
E-22

SA_POLICY_ADMIN
procedures, listed, E-24

SA_POLICY_ADMIN PL/SQL package
about, E-24

SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
procedure, E-24

SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
procedure, E-25

SA_POLICY_ADMIN.APPLY_TABLE_POLICY
procedure, E-26

SA_POLICY_ADMIN.DISABLE_SCHEMA_POLI
CY procedure, E-27

SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
procedure, E-28

SA_POLICY_ADMIN.ENABLE_SCHEMA_POLI
CY procedure, E-29

SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
procedure, E-29

SA_POLICY_ADMIN.POLICY_SUBSCRIBE
procedure, E-30

SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
procedure, E-31

SA_POLICY_ADMIN.REMOVE_SCHEMA_POLI
CY procedure, E-32

SA_POLICY_ADMIN.REMOVE_TABLE_POLICY
procedure, E-33

SA_SESSION
procedures and functions, listed, E-35

SA_SESSION PL/SQL package
about, E-35

SA_SESSION.COMP_READ function, E-35
SA_SESSION.COMP_WRITE function, E-36
SA_SESSION.GROUP_READ function, E-36
SA_SESSION.GROUP_WRITE function, E-37
SA_SESSION.LABEL function, E-37
SA_SESSION.MAX_LEVEL function, E-38
SA_SESSION.MAX_READ_LABEL function,

E-38
SA_SESSION.MAX_WRITE_LABEL function,

E-39
SA_SESSION.MIN_LEVEL function, E-40
SA_SESSION.MIN_WRITE_LABEL function,

E-40
SA_SESSION.PRIVS function, E-41
SA_SESSION.RESTORE_DEFAULT_LABELS

procedure, E-41
SA_SESSION.ROW_LABEL function, E-42
SA_SESSION.SA_USER_NAME function, E-43
SA_SESSION.SAVE_DEFAULT_LABELS

procedure, E-44
SA_SESSION.SET_ACCESS_PROFILE

procedure, E-43, E-45
SA_SESSION.SET_LABEL procedure, E-42

and SA_SESSION.RESTORE_DEFAULT_LABELS,
E-41

SA_SESSION.SET_ROW_LABEL procedure,
E-46

SA_SYSDBA
procedures, listed, E-47

SA_SYSDBA PL/SQL package
about, E-47

SA_SYSDBA.ALTER_POLICY procedure, E-48
SA_SYSDBA.CREATE_POLICY procedure, E-49
SA_SYSDBA.DISABLE_POLICY procedure,

E-50
SA_SYSDBA.DROP_POLICY procedure, E-51
SA_SYSDBA.ENABLE_POLICY procedure, E-51
SA_USER_ADMIN package

administering stored program units, E-66
overview, 2-2
procedures, listed, E-53

SA_USER_ADMIN PL/SQL package
about, E-53

SA_USER_ADMIN.ADD_COMPARTMENTS
procedure, E-53

SA_USER_ADMIN.ADD_GROUPS procedure,
E-54

SA_USER_ADMIN.ALTER_COMPARTMENTS
procedure, E-56

Index

Index-9



SA_USER_ADMIN.ALTER_GROUPS procedure,
E-57

SA_USER_ADMIN.DROP_ALL_COMPARTMEN
TS procedure, E-58

SA_USER_ADMIN.DROP_ALL_GROUPS
procedure, E-59

SA_USER_ADMIN.DROP_COMPARTMENTS
procedure, E-59

SA_USER_ADMIN.DROP_GROUPS procedure,
E-60

SA_USER_ADMIN.DROP_USER_ACCESS
procedure, E-61

SA_USER_ADMIN.SET_COMPARTMENTS
procedure, E-61

SA_USER_ADMIN.SET_DEFAULT_LABEL
procedure, E-62

SA_USER_ADMIN.SET_GROUPS procedure,
E-64

SA_USER_ADMIN.SET_LEVELS procedure,
E-65

SA_USER_ADMIN.SET_ROW_LABEL
procedure, E-67

SA_USER_ADMIN.SET_USER_LABELS
procedure, E-68

SA_USER_ADMIN.SET_USER_PRIVS
procedure, E-70

SA_UTL package
dominance functions, B-8
overview, 12-5
procedures and functions, listed, E-72

SA_UTL PL/SQL package
about, E-72

SA_UTL.CHECK_LABEL_CHANGE function,
E-72

SA_UTL.CHECK_READ function, E-73
SA_UTL.CHECK_WRITE function, E-74
SA_UTL.DATA_LABEL function, E-74
SA_UTL.GREATEST_LBOUND function, E-75
SA_UTL.LEAST_UBOUND function, E-76
SA_UTL.NUMERIC_LABEL function, E-76
SA_UTL.NUMERIC_ROW_LABEL function, E-77
SA_UTL.SET_LABEL procedure, E-78
SA_UTL.SET_ROW_LABEL procedure, E-78
schemas

applying policies to, 11-10, E-48
default policy options, E-49
restrictions on shared, F-20

session labels
changing, E-42
computed, 3-7
distributed database, 14-3
example, 3-3
finding, E-76
OCI interface, B-13
restoring to default, E-41

session labels (continued)
SA_UTL.SET_LABEL, E-78
saving defaults, E-44
setting compartments, E-61
setting groups, E-64
setting user initial, E-62
understanding, 3-2

sessions
compartments readable by user, E-35
compartments writeable by user, E-36
finding current OLS user, E-43
finding row label, E-42
finding security attributes for, F-18
finding session label number, E-76
finding session privileges, E-41
SA_SESSION package, E-35
SA_SESSION.COMP_READ function, E-35
SA_SESSION.COMP_WRITE function, E-36
SA_SESSION.GROUP_READ function, E-36
SA_SESSION.GROUP_WRITE function, E-37
SA_SESSION.LABEL function, E-37
SA_SESSION.MAX_LEVEL function, E-38
SA_SESSION.MAX_READ_LABEL function,

E-38
SA_SESSION.MAX_WRITE_LABEL function,

E-39
SA_SESSION.MIN_LEVEL function, E-40
SA_SESSION.MIN_WRITE_LABEL function,

E-40
SA_SESSION.PRIVS, E-41
SA_SESSION.RESTORE_DEFAULT_LABELS

procedure, E-41
SA_SESSION.ROW_LABEL function, E-42
SA_SESSION.SA_USER_NAME function,

E-43
SA_SESSION.SAVE_DEFAULT_LABELS

procedure, E-44
SA_SESSION.SET_ACCESS_PROFILE

procedure, E-45
SA_SESSION.SET_LABEL procedure, E-42
SA_USER_ADMIN.SET_COMPARTMENTS

procedure, E-61
SA_USER_ADMIN.SET_DEFAULT_LABEL

procedure, E-62
SA_USER_ADMIN.SET_LEVELS procedure,

E-65
SA_UTL.SET_LABEL procedure, E-78
SA_UTL.SET_ROW_LABEL procedure, E-78
saving default session label, E-44
setting label for, E-78
setting OLS privileges for user, E-45
setting row label for, E-78

SET_ACCESS_PROFILE procedure, F-20
SET_DEFAULT_LABEL procedure

inverse groups, 16-11, 16-19

Index

Index-10



SET_GROUPS procedure
inverse groups, 16-18

SET_LABEL procedure
definition, E-35
inverse groups, 16-12, 16-20
on remote database, 14-3

SET_PROG_PRIVS function, E-66
SET_ROW_LABEL procedure, 16-12

inverse groups, 16-11, 16-12, 16-19, 16-21
SET_USER_LABELS procedure

inverse groups, 16-18
setting label for database session, E-78
shared schema restrictions, F-20
SQL*Loader, 15-5
STRICTLY_DOMINATED_BY function, B-11
STRICTLY_DOMINATES function, B-9
SYS account

policy enforcement, 11-11
SYS_CONTEXT

and labeling functions, 11-12
variables, B-13

SYSDBA privilege, 13-2
system privileges, 3-17, 3-18

T
table rows

checking if user can read, E-73
checking if user can write to, E-74
SA_UTL.CHECK_READ function, E-73
SA_UTL.CHECK_WRITE function, E-74

TO_DATA_LABEL function, 6-17, E-21
TO_LBAC_DATA_LABEL function, 11-12
TO_LBAC_DATA_LABEL function, example of

using, E-78
triggers, 11-12
trusted program units

about, 5-15
trusted stored program units

creating, 12-3
error handling, 12-4
example, 12-2
executing, 12-4
introduction, 12-1
privileges, 3-18, 12-4
re-compiling, 12-4
replacing, 12-4

tutorials
creating Oracle Label Security

compartments, 9-1
creating Oracle Label Security groups, 10-1
creating Oracle Label Security levels, 8-1

U
unified audit trail, 13-3
UPDATE_CONTROL option, 11-4, 11-16
updating labeled data, 11-15
user authorizations, E-59

adding for compartments, E-53
adding for groups, E-54
altering for compartments, E-56
altering for groups, E-57
compartments, 3-5, 5-13
dropping for all compartments, E-58
dropping for all groups, E-59
dropping for specified groups, E-60
groups, 3-6, 5-14
levels, 3-5, 5-12
removing all OLS privileges from user, E-61
row labels

default, 3-5–3-7, D-2, E-35, E-46, E-78
SA_USER_ADMIN.SET_USER_PRIVS

procedure, E-70
understanding, 3-4, 5-12

USER_SA_SESSION view, F-18
users

finding label-specific information of, F-11
finding level-specific information of, F-11
finding policy-specific privileges of, F-12
finding privileges of OLS users, F-9
LBACSYS default user account, 4-4

utilities
SA_UTL package, E-72

V
views

access mediation, 3-18
ALL_SA_AUDIT_OPTIONS, F-4
ALL_SA_COMPARTMENTS, F-5
ALL_SA_GROUPS, F-6
ALL_SA_LABELS, F-5, F-6
ALL_SA_LEVELS, F-7
ALL_SA_POLICIES, F-7
ALL_SA_PROG_PRIVS, F-8
ALL_SA_SCHEMA_POLICIES, F-8
ALL_SA_TABLE_POLICIES, F-9
ALL_SA_USER_LABELS, F-11
ALL_SA_USER_LEVELS, F-11
ALL_SA_USER_PRIVS, F-12
ALL_SA_USERS, F-9
DBA_OLS_STATUS, F-18
DBA_SA_AUDIT_OPTIONS, F-12
DBA_SA_COMPARTMENTS, F-13
DBA_SA_DATA_LABELS, F-13
DBA_SA_GROUP_HIERARCHY, F-13
DBA_SA_GROUPS, F-13

Index

Index-11



views (continued)
DBA_SA_LABELS, F-14
DBA_SA_LEVELS, F-14
DBA_SA_POLICIES, F-15
DBA_SA_PROG_PRIVS, F-15
DBA_SA_SCHEMA_POLICIES, 11-11, F-15
DBA_SA_TABLE_POLICIES, 11-11, F-16
DBA_SA_USER_COMPARTMENTS, F-16
DBA_SA_USER_GROUPS, F-17
DBA_SA_USER_LABELS, F-17
DBA_SA_USER_LEVELS, F-17
DBA_SA_USER_PRIVS, F-18
DBA_SA_USERS, F-16

W
write access

algorithm, 3-11, 3-15
introduction, 3-8

write label, 3-7
WRITE_CONTROL option

algorithm, 3-11
definition, 11-4
introduction, 11-8
LABEL_UPDATE, 11-8
with INSERT, UPDATE, DELETE, 11-8
with other options, 11-10

WRITEACROSS privilege, 3-17, 11-3, 11-7,
11-16

WRITEDOWN privilege, 3-18, 11-3, 11-7, 11-16
WRITEUP privilege, 3-16, 3-17

Index

Index-12


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	Changes in This Release for Oracle Label Security Administrator's Guide
	Changes in Oracle Database 18c
	LBACSYS User Created by Default as a Schema-Only Account
	Deprecated Columns in Oracle Label Security Views

	Changes in Oracle Database 12c Release 2 (12.2)
	Oracle Label Security Support for Oracle Database Real Application Security Users
	Oracle Label Security Support for Data Guard Rolling Upgrades
	Enhancements for Oracle Label Security in a Multitenant Environment


	Part I Getting Started with Oracle Label Security
	1 Introduction to Oracle Label Security
	1.1 About Oracle Label Security
	1.2 Benefits of Oracle Label Security
	1.3 Who Has Privileges to Use Oracle Label Security?
	1.4 Duties of Oracle Label Security Administrators
	1.5 Components of Oracle Label Security
	1.6 Oracle Label Security Architecture
	1.7 Oracle Label Security Administrative Interfaces
	1.7.1 Oracle Label Security Packages
	1.7.2 Oracle Label Security Demonstration File
	1.7.3 Oracle Enterprise Manager Cloud Control

	1.8 How Oracle Label Security Works with Other Oracle Products
	1.8.1 Oracle Label Security Integration with Oracle Internet Directory
	1.8.2 Oracle Label Security Integration in a Multitenant Environment


	2 Understanding Data Labels and User Labels
	2.1 About Label-Based Security
	2.2 About User Label and Privilege Management
	2.3 Label Components
	2.3.1 Label Component Definitions and Valid Characters
	2.3.2 Level Sensitivity Components
	2.3.3 Compartment Components
	2.3.4 Group Components
	2.3.5 Industry Examples of Levels, Compartments, and Groups

	2.4 Label Syntax and Type
	2.5 How Data Labels and User Labels Work Together
	2.6 Administration of Labels

	3 Access Controls and Privileges
	3.1 Access Mediation
	3.2 How the Session Label and Row Label Work
	3.2.1 The Session Label
	3.2.2 The Row Label
	3.2.3 Session Label Example

	3.3 How User Authorizations Work
	3.3.1 Authorizations Set by the Administrator
	3.3.1.1 Authorized Levels
	3.3.1.2 Authorized Compartments
	3.3.1.3 Authorized Groups

	3.3.2 Computed Session Labels

	3.4 Evaluation of Labels for Access Mediation
	3.4.1 About Read and Write Access
	3.4.1.1 Difference Between Read and Write Operations
	3.4.1.2 Propagation of Read/Write Authorizations on Groups

	3.4.2 How Oracle Label Security Algorithm for Read Access Works
	3.4.3 How the Oracle Label Security Algorithm for Write Access Works

	3.5 Oracle Label Security Privileges
	3.5.1 Privileges Defined by Oracle Label Security Policies
	3.5.2 Special Access Privileges
	3.5.2.1 READ Privilege
	3.5.2.2 FULL Privilege
	3.5.2.3 COMPACCESS Privilege
	3.5.2.4 PROFILE_ACCESS Privilege

	3.5.3 Special Row Label Privileges
	3.5.3.1 WRITEUP Privilege
	3.5.3.2 WRITEDOWN Privilege
	3.5.3.3 WRITEACROSS Privilege

	3.5.4 System Privileges, Object Privileges, and Policy Privileges
	3.5.5 Access Mediation and Views
	3.5.6 Access Mediation and Program Unit Execution
	3.5.7 Access Mediation and Policy Enforcement Options

	3.6 Working with Multiple Oracle Label Security Policies
	3.6.1 Multiple Oracle Label Security Policies in a Single Database
	3.6.2 Multiple Oracle Label Security Policies in a Distributed Environment



	Part II Using Oracle Label Security Functionality
	4 Registering and Logging in to Oracle Label Security
	4.1 Registering Oracle Label Security with an Oracle Database
	4.1.1 About Registering Oracle Label Security
	4.1.2 Checking if Oracle Label Security Has Been Registered and Enabled
	4.1.3 Registering and Enabling Oracle Label Security from SQL*Plus
	4.1.4 Registering and Enabling Oracle Label Security Using DBCA

	4.2 Security Guideline for Managing the LBACSYS User and the LBAC_DBA Role
	4.3 Logging in to Cloud Control or SQL*Plus for Oracle Label Security
	4.3.1 Logging in to Oracle Label Security from Enterprise Manager Cloud Control
	4.3.2 Logging in to Oracle Label Security from SQL*Plus


	5 Creating an Oracle Label Security Policy
	5.1 About Creating Oracle Label Security Policies
	5.2 Step 1: Create the Label Security Policy Container
	5.2.1 About the Label Security Policy Container
	5.2.2 Creating a Label Policy Container

	5.3 Step 2: Create Data Labels for the Label Security Policy
	5.3.1 About Data Labels
	5.3.2 About Policy Level Sensitivity Components
	5.3.3 Creating a Policy Level Component
	5.3.4 About Policy Compartment Components
	5.3.5 Creating a Policy Compartment Component
	5.3.6 About Policy Group Components
	5.3.7 Creating a Policy Data Label Group
	5.3.8 About Associating the Policy Components with a Named Data Label
	5.3.9 Associating the Policy Components with a Named Data Label

	5.4 Step 3: Authorize Users for the Label Security Policy
	5.4.1 About Authorizing Users for Label Security Policies
	5.4.2 About Authorizing Levels
	5.4.3 Authorizing a Level
	5.4.4 About Authorizing Compartments
	5.4.5 Authorizing a Compartment
	5.4.6 About Authorizing Groups
	5.4.7 Authorizing a Group

	5.5 Step 4: Grant Privileges to Users and Trusted Stored Program Units
	5.5.1 About Granting Privileges to Users and Trusted Program Units for the Policy
	5.5.2 Granting Privileges to a User
	5.5.3 Granting Privileges to a Trusted Program Unit

	5.6 Step 5: Apply the Policy to a Database Table or Schema
	5.6.1 About Applying the Policy to a Database Table or Schema
	5.6.2 Applying a Policy to a Schema

	5.7 Step 6: Add Policy Labels to Table Rows
	5.7.1 About Adding Policy Labels to Table Rows
	5.7.2 Adding a Policy Label to a Table Row

	5.8 Step 7: (Optional) Configure Auditing
	5.8.1 About Configuring Auditing
	5.8.2 Configuring Auditing

	5.9 Using Enterprise Manager Cloud Control to Create an OLS Policy
	5.9.1 Creating the Label Security Policy Container Using Cloud Control
	5.9.2 Creating Policy Components Using Cloud Control
	5.9.3 Creating Data Labels for the Policy Using Cloud Control
	5.9.4 Authorizing, Granting Privileges, and Auditing Users for a Policy Using Cloud Control
	5.9.5 Granting Privileges to Trusted Program Units Using Cloud Control
	5.9.6 Applying a Policy to a Database Table with Cloud Control
	5.9.7 Applying Policy Labels to Table Rows Using Cloud Control
	5.9.8 Auditing Oracle Label Security Policies Using Cloud Control


	6 Working with Labeled Data
	6.1 How Policy Label Column and Label Tags Work
	6.1.1 The Policy Label Column
	6.1.1.1 About the Policy Label Column
	6.1.1.2 Hiding the Policy Label Column

	6.1.2 Label Tags
	6.1.2.1 About Label Tags
	6.1.2.2 Manually Defined Label Tags to Order Labels
	6.1.2.3 Manually Defined Label Tags to Manipulate Data
	6.1.2.4 Automatically Generated Label Tags


	6.2 Assignments of Labels to Data Rows
	6.3 Presenting the Label
	6.3.1 Converting a Character String to a Label Tag with CHAR_TO_LABEL
	6.3.2 Conversion of a Label Tag to a Character String, with LABEL_TO_CHAR
	6.3.2.1 Converting a Label Tag to a Character String with LABEL_TO_CHAR
	6.3.2.2 LABEL_TO_CHAR Examples
	6.3.2.3 Retrieving All Columns from a Table When the Policy Label Column Is Hidden


	6.4 Filtration of Data Using Labels
	6.4.1 Use of Numeric Label Tags in WHERE Clauses
	6.4.2 Ordering Labeled Data Rows
	6.4.3 Ordering by Character Representation of Label
	6.4.4 Determination of the Upper and Lower Bounds of Labels
	6.4.4.1 Finding Least Upper Bound with LEAST_UBOUND
	6.4.4.2 Finding Greatest Lower Bound with GREATEST_LBOUND

	6.4.5 Merging Labels with the MERGE_LABEL Function

	6.5 Inserting Labeled Data
	6.5.1 About Inserting Labeled Data
	6.5.2 Inserting Labels Using CHAR_TO_LABEL
	6.5.3 Inserting Labels Using Numeric Label Tag Values
	6.5.4 Inserting Data Without Specifying a Label
	6.5.5 Inserting Data When the Policy Label Column Is Hidden
	6.5.6 Inserting Labels Using TO_DATA_LABEL

	6.6 Changing Session and Row Labels

	7 Oracle Label Security Using Oracle Internet Directory
	7.1 About Label Management on Oracle Internet Directory
	7.2 Configuring Oracle Internet Directory-Enabled Label Security
	7.2.1 About Configuring Oracle Internet Directory-Enabled Label Security
	7.2.2 Granting Permissions for Configuring OID-Enabled Oracle Label Security
	7.2.3 Registering a Database and Configuring OID-Enabled Oracle Label Security
	7.2.3.1 Step 1: Configure Your Oracle Home for Directory Usage
	7.2.3.2 Step 2: Configure Oracle Internet Directory for Oracle Label Security
	7.2.3.3 Step 2 Alternate: Configuring Database for OID-Enabled Oracle Label Security
	7.2.3.4 Step 3: Set the DIP Password and Connect Data

	7.2.4 Unregisteration of a Database with OID-Enabled Oracle Label Security

	7.3 Oracle Label Security Profiles
	7.4 Integrated Capabilities When Label Security Uses the Directory
	7.5 Oracle Label Security Policy Attributes in Oracle Internet Directory
	7.6 Subscription of Policies in Directory-Enabled Label Security
	7.7 Restrictions on New Data Label Creation
	7.8 Administrator Duties for Oracle Internet Directory and Oracle Label Security
	7.9 Bootstrapping Databases
	7.10 Synchronizing the Database and Oracle Internet Directory
	7.10.1 About Synchronizing the Database and Oracle Internet Directory
	7.10.2 Oracle Directory Integration and Provisioning (DIP) Provisioning Profiles
	7.10.3 Modifying a Provisioning Profile
	7.10.4 Changing the Database Connection Information for a Provisioning Profile
	7.10.5 Configuring OID-Enabled Oracle Label Security with Oracle Data Guard
	7.10.5.1 Step 1: Set Up Directory-Enabled Oracle Label Security with Data Guard
	7.10.5.2 Step 2: After the Switchover, Update the OID Provisioning Profile


	7.11 Security Roles and Permitted Actions
	7.11.1 Permitted Tasks and Access Levels for Oracle Internet Directory
	7.11.2 Restriction on Policy Creators for Directory-Enabled Oracle Label Security

	7.12 Superseded PL/SQL Statements When OID Is Enabled with OLS
	7.13 Oracle Label Security Procedures for Policy Administrators


	Part III Oracle Label Security Tutorials
	8 Tutorial: Configuring Levels in Oracle Label Security
	8.1 About This Tutorial
	8.2 Step 1: Create a Role and User Accounts
	8.3 Step 2: Create the Oracle Label Security Policy Container
	8.4 Step 3: Create the Two Level Components for the Oracle Label Security Policy
	8.5 Step 4: Create the Data Labels for the Levels
	8.6 Step 5: Set User Authorizations for the Oracle Label Security Policy
	8.7 Step 6: Apply the Oracle Label Security Policy to the HR Schema
	8.8 Step 7: Add the Policy Labels to the HR.EMPLOYEES Table Data
	8.9 Step 8: Test the Oracle Label Security Policy
	8.10 Step 9: Optionally, Remove the Oracle Label Security Policy Components

	9 Tutorial: Configuring Compartments in Oracle Label Security
	9.1 About This Tutorial
	9.2 Step 2: Authorize Lily Leagull for the HIGHLY_SENSITIVE Level
	9.3 Step 3: Create Two Compartments for the Oracle Label Security Policy
	9.4 Step 4: Create the Data Labels for the Compartments
	9.5 Step 5: Assign the Labels to the Users
	9.6 Step 6: Add the Policy Labels to the HR.EMPLOYEES Table Data
	9.7 Step 7: Test the Oracle Label Security Policy
	9.8 Step 8: Optionally, Remove the Oracle Label Security Policy Components

	10 Tutorial: Configuring Groups in Oracle Label Security
	10.1 About This Tutorial
	10.2 Step 1: Create a Role and User Accounts
	10.3 Step 2: Create the Oracle Label Security Policy Container
	10.4 Step 3: Create and Authorize a Level Component for the Oracle Label Security Policy
	10.5 Step 4: Create and Authorize Groups for the Oracle Label Security Policy
	10.6 Step 5: Apply and Authorize the Policy to the Table
	10.7 Step 6: Add the Policy Labels to the OE.CUSTOMERS Table Data
	10.8 Step 7: Test the Oracle Label Security Policy
	10.9 Step 8: Optionally, Remove the Oracle Label Security Policy Components


	Part IV Administering an Oracle Label Security Application
	11 Implementing Policy Enforcement Options and Labeling Functions
	11.1 Oracle Label Security Policy Enforcement Options
	11.1.1 About Policy Enforcement Options
	11.1.2 Levels of Policy Enforcement Options
	11.1.3 Categories of Policy Enforcement Options
	11.1.4 Relationships of Policy Enforcement Options
	11.1.5 How the HIDE Policy Column Option Works
	11.1.6 How the Label Management Enforcement Options Work
	11.1.6.1 About the Label Management Enforcement Options
	11.1.6.2 LABEL_DEFAULT: Using the Session's Default Row Label
	11.1.6.3 LABEL_UPDATE: Changing Data Labels
	11.1.6.4 CHECK_CONTROL: Checking Data Labels

	11.1.7 How the Access Control Enforcement Options Work
	11.1.7.1 READ_CONTROL: Reading Data
	11.1.7.2 WRITE_CONTROL: Writing Data
	11.1.7.3 INSERT_CONTROL, UPDATE_CONTROL, and DELETE_CONTROL

	11.1.8 How the Overriding Enforcement Options Work
	11.1.9 Guidelines for Using the Policy Enforcement Options
	11.1.10 Exemptions from Oracle Label Security Policy Enforcement
	11.1.11 Data Dictionary Views for Viewing Policy Options on Tables and Schemas

	11.2 Labeling Functions
	11.2.1 Labeling Data Rows under Oracle Label Security
	11.2.2 How Labeling Functions in Oracle Label Security Policies Works
	11.2.3 Creating a Labeling Function for a Policy
	11.2.4 Specifying a Labeling Function in a Policy

	11.3 Inserting Labeled Data Using Policy Options and Labeling Functions
	11.3.1 Outcome of Insert or Updates Operations on Data Based on Authorizations
	11.3.2 Label Insertions When a Labeling Function Is Specified
	11.3.3 Child Row Insertions in Tables with Declarative Referential Integrity

	11.4 Updating Labeled Data Using Policy Options and Labeling Functions
	11.4.1 Updating Labels Using CHAR_TO_LABEL
	11.4.2 Evaluation of Enforcement Control Options and UPDATE
	11.4.3 Updates to Labels When a Labeling Function Is Specified
	11.4.4 Updates to Child Rows in Tables with Declarative Referential Integrity Enabled

	11.5 Deletion of Labeled Data Using Policy Options and Labeling Functions
	11.6 SQL Predicates with an Oracle Label Security Policy
	11.6.1 Modifications to an Oracle Label Security Policy with a SQL Predicate
	11.6.2 How Multiple SQL Predicates Affect Oracle Label Security Policies


	12 Administering and Using Trusted Stored Program Units
	12.1 About Trusted Stored Program Units
	12.2 How a Trusted Stored Program Unit Runs
	12.3 Example: Trusted Stored Program Unit
	12.4 Creating and Compiling Trusted Stored Program Units
	12.4.1 Creation of Trusted Stored Program Units
	12.4.2 Privileges for Trusted Stored Program Units
	12.4.3 Recompiling of Trusted Stored Program Units
	12.4.4 Re-creation of Trusted Stored Program Units
	12.4.5 Execution of Trusted Stored Program Units

	12.5 How Setting and Returning Label Information Works

	13 Auditing Under Oracle Label Security
	13.1 About Oracle Label Security Auditing
	13.2 Systemwide Auditing: AUDIT_TRAIL Initialization Parameter
	13.3 How Oracle Label Security Auditing Is Enabled or Disabled
	13.4 Oracle Label Security and Unified Auditing
	13.5 Oracle Label Security Auditing Tips
	13.5.1 Strategy for Setting SA_AUDIT_ADMIN Options
	13.5.2 Auditing of Privileged Operations


	14 Using Oracle Label Security with a Distributed Database
	14.1 About the Oracle Label Security Distributed Configuration
	14.2 How Connections to a Remote Database Under Oracle Label Security Work
	14.3 Session Labels and Row Labels in Remote Sessions
	14.4 Labels in a Distributed Environment
	14.4.1 Label Tags in a Distributed Environment
	14.4.2 Numeric Form of Label Components in a Distributed Environment

	14.5 Oracle Label Security Policies in a Distributed Environment
	14.6 Replication with Oracle Label Security
	14.6.1 About Replication Under Oracle Label Security
	14.6.1.1 Replication Functionality Supported by Oracle Label Security
	14.6.1.2 Row-Level Security Restriction on Replication Under Oracle Label Security

	14.6.2 Contents of a Materialized View
	14.6.2.1 How Materialized View Contents Are Determined
	14.6.2.2 Complete Materialized Views
	14.6.2.3 Partial Materialized Views

	14.6.3 Requirements for Creating Materialized Views Under Oracle Label Security
	14.6.3.1 Requirements for a Replication Administrator
	14.6.3.2 Requirements for the Owner of the Materialized View
	14.6.3.3 Requirements for Creating Partial Multilevel Materialized Views
	14.6.3.4 Requirements for Creating Complete Multilevel Materialized Views

	14.6.4 How to Refresh Materialized Views


	15 Performing DBA Functions Under Oracle Label Security
	15.1 Oracle Data Pump Export Use with Oracle Label Security
	15.1.1 Full Database Export
	15.1.2 Schema and Table-Level Export

	15.2 Data Pump Import Use with Oracle Label Security
	15.2.1 Full Database Import for the LBACSYS Schema Metadata
	15.2.2 Schema and Table Level Import
	15.2.2.1 Requirements for Import Under Oracle Label Security
	15.2.2.1.1 Preparing the Import Database
	15.2.2.1.2 Verification of Import User Authorizations

	15.2.2.2 Definition of Data Labels for Import
	15.2.2.3 Imports of Labeled Data Without Installing Oracle Label Security
	15.2.2.4 Imports of Unlabeled Data
	15.2.2.5 Importing Tables with Hidden Columns


	15.3 SQL*Loader Use with Oracle Label Security
	15.3.1 Requirements for Using SQL*Loader Under Oracle Label Security
	15.3.2 Oracle Label Security Input to SQL*Loader

	15.4 Performance Tips for Oracle Label Security
	15.4.1 Use of ANALYZE to Improve Oracle Label Security Performance
	15.4.2 Creation of Indexes on the Policy Label Column
	15.4.3 Label Tag Strategy Plan to Enhance Performance
	15.4.4 Partitioned Data Based on Numeric Label Tags

	15.5 Creation of Additional Databases After Installation
	15.5.1 About the Creation of Additional Databases After Installation
	15.5.2 Creating Additional Databases When the Label Security Schema Is in the Seed
	15.5.3 Creating Additional Databases with the Custom Installation Option

	15.6 Oracle Label Security Upgrades and Downgrades
	15.6.1 About Oracle Label Security Upgrades and Downgrades
	15.6.2 Oracle Label Security Upgrades
	15.6.2.1 About Oracle Label Security Upgrades
	15.6.2.2 Running the Oracle Label Security Preprocess Script Before Upgrading

	15.6.3 Oracle Label Security Downgrades
	15.6.3.1 About Oracle Label Security Downgrades
	15.6.3.2 Running the Oracle Label Security Preprocess Script Before Downgrading



	16 Releasability Using Inverse Groups
	16.1 About Inverse Groups and Releasability
	16.2 Comparison of Standard Groups and Inverse Groups
	16.3 How Inverse Groups Work
	16.3.1 Implementation of Inverse Groups with INVERSE_GROUP Enforcement
	16.3.2 Inverse Groups and Label Components
	16.3.3 Computed Labels with Inverse Groups
	16.3.3.1 Computed Session Labels with Inverse Groups
	16.3.3.2 Inverse Groups and Computed Max Read Groups and Max Write Groups

	16.3.4 Inverse Groups and Hierarchical Structure
	16.3.5 Inverse Groups and User Privileges

	16.4 Algorithm for Read Access with Inverse Groups
	16.5 Algorithm for Write Access with Inverse Groups
	16.6 Algorithms for COMPACCESS Privilege with Inverse Groups
	16.7 Session Labels and Inverse Groups
	16.7.1 Initial Session and Row Labels for Standard or Inverse Groups
	16.7.1.1 About the Initial Session and Row Labels for Standard or Inverse Groups
	16.7.1.2 Standard Groups: Rules for Changing Initial Session/Row Labels
	16.7.1.3 Inverse Groups: Rules for Changing Initial Session/Row Labels

	16.7.2 Setting Current Session or Row Labels for Standard or Inverse Groups
	16.7.2.1 About Setting Current Session or Row Labels for Standard or Inverse Groups
	16.7.2.2 Standard Groups: Rules for Changing Current Session/Row Labels
	16.7.2.3 Inverse Groups: Rules for Changing Current Session/Row Labels

	16.7.3 Examples of Session Labels and Inverse Groups
	16.7.3.1 Example: Simple Inverse Groups
	16.7.3.2 Example: Complex Inverse Groups


	16.8 Changes in Behavior of Procedures with Inverse Groups
	16.8.1 SA_SYSDBA.CREATE_POLICY with Inverse Groups
	16.8.2 SA_SYSDBA.ALTER_POLICY with Inverse Groups
	16.8.3 SA_USER_ADMIN.ADD_GROUPS with Inverse Groups
	16.8.4 SA_USER_ADMIN.ALTER_GROUPS with Inverse Groups
	16.8.5 SA_USER_ADMIN.SET_GROUPS with Inverse Groups
	16.8.6 SA_USER_ADMIN.SET_USER_LABELS with Inverse Groups
	16.8.7 SA_USER_ADMIN.SET_DEFAULT_LABEL with Inverse Groups
	16.8.8 SA_USER_ADMIN.SET_ROW_LABEL with Inverse Groups
	16.8.9 SA_COMPONENTS.CREATE_GROUP with Inverse Groups
	16.8.10 SA_COMPONENTS.ALTER_GROUP_PARENT with Inverse Groups
	16.8.11 SA_SESSION.SET_LABEL with Inverse Groups
	16.8.12 SA_SESSION.SET_ROW_LABEL with Inverse Groups
	16.8.13 LEAST_UBOUND with Inverse Groups
	16.8.14 GREATEST_LBOUND with Inverse Groups

	16.9 Dominance Rules for Labels with Inverse Groups


	Part V Appendixes
	A Disabling and Enabling Oracle Label Security
	A.1 When You Must Disable Oracle Label Security
	A.2 Disabling Oracle Label Security
	A.3 Enabling Oracle Label Security

	B Advanced Topics in Oracle Label Security
	B.1 Analyzing the Relationships Between Labels
	B.1.1 About Dominant and Dominated Labels
	B.1.2 Non-Comparable Labels
	B.1.3 Using Dominance Functions
	B.1.3.1 About the Dominance Functions
	B.1.3.2 OLS_DOMINATES Standalone Function
	B.1.3.3 OLS_LABEL_DOMINATES Standalone Function
	B.1.3.4 OLS_STRICTLY_DOMINATES Standalone Function
	B.1.3.5 OLS_DOMINATED_BY Standalone Function
	B.1.3.6 OLS_STRICTLY_DOMINATED_BY Standalone Function
	B.1.3.7 SA_UTL.DOMINATES
	B.1.3.8 SA_UTL.STRICTLY_DOMINATES
	B.1.3.9 SA_UTL.DOMINATED_BY
	B.1.3.10 SA_UTL.STRICTLY_DOMINATED_BY


	B.2 Queries for Audited Oracle Label Security Session Labels
	B.2.1 About Queries for Auditing Oracle Label Security Session Labels
	B.2.2 ORA_GET_AUDITED_LABEL Function

	B.3 Oracle Call Interface for Setting Session Labels
	B.3.1 About Using the Oracle Call Interface to Set Session Labels
	B.3.2 Using the Oracle Call Interface to Set Session Labels
	B.3.3 Example: Using Oracle Call Interface with the SYS_CONTEXT Function


	C Command-line Tools for Label Security Using Oracle Internet Directory
	C.1 About the Command-line Oracle Label Security Tools
	C.2 Oracle Label Security Commands in Categories
	C.3 olsadmintool Command Reference
	C.3.1 About the olsadmintool Commands
	C.3.2 olsadmintool addadmin
	C.3.3 olsadmintool addpolcreator
	C.3.4 olsadmintool adduser
	C.3.5 olsadmintool altercompartent
	C.3.6 olsadmintool altergroup
	C.3.7 olsadmintool altergroupparent
	C.3.8 olsadmintool alterlabel
	C.3.9 olsadmintool alterlevel
	C.3.10 olsadmintool alterpolicy
	C.3.11 olsadmintool audit
	C.3.12 olsadmintool createcompartment
	C.3.13 olsadmintool creategroup
	C.3.14 olsadmintool createlabel
	C.3.15 olsadmintool createlevel
	C.3.16 olsadmintool createprofile
	C.3.17 olsadmintool createpolicy
	C.3.18 olsamindtool describeprofile
	C.3.19 olsadmintool dropadmin
	C.3.20 olsadmintool dropcompartment
	C.3.21 olsadmintool dropgroup
	C.3.22 olsadmintool droplabel
	C.3.23 olsadmintool droplevel
	C.3.24 olsadmintool droppolicy
	C.3.25 olsadmintool dropprofile
	C.3.26 olsadmintool droppolcreator
	C.3.27 olsadmintool dropuser
	C.3.28 olsadmintool --help
	C.3.29 olsadmintool listprofile
	C.3.30 olsadmintool noaudit

	C.4 Relating Parameters to Commands for olsadmintool
	C.4.1 About Relating Parameters to Commands for olsadmintool
	C.4.2 Summaries of olsadmintool Parameters

	C.5 Examples of Using the olsadmintool Utility
	C.5.1 Example: Making Other Users Policy Creators
	C.5.2 Example: Creating Policies with Valid Options
	C.5.3 Example: Creating Policy Administrators
	C.5.4 Example: Creating Levels
	C.5.5 Example: Creating Compartments
	C.5.6 Example: Creating Groups
	C.5.7 Example: Creating Labels
	C.5.8 Example: Creating a Profile
	C.5.9 Example: Adding a User to a Profile
	C.5.10 Example: Adding Another User to a Profile
	C.5.11 Example: Setting Audit Options
	C.5.12 Results of These Examples

	C.6 olsoidsync Command Reference

	D Oracle Label Security in an Oracle RAC Environment
	D.1 Oracle Label Security Policy Functions in an Oracle RAC Environment
	D.2 Transparent Application Failover in Oracle Label Security

	E Oracle Label Security PL/SQL Packages
	E.1 SA_AUDIT_ADMIN Oracle Label Security Auditing PL/SQL Package
	E.1.1 About the SA_AUDIT_ADMIN PL/SQL Package
	E.1.2 SA_AUDIT_ADMIN.AUDIT
	E.1.3 SA_AUDIT_ADMIN.AUDIT_LABEL
	E.1.4 SA_AUDIT_ADMIN.AUDIT_LABEL_ENABLED
	E.1.5 SA_AUDIT_ADMIN.CREATE_VIEW
	E.1.6 SA_AUDIT_ADMIN.DROP_VIEW
	E.1.7 SA_AUDIT_ADMIN.NOAUDIT
	E.1.8 SA_AUDIT_ADMIN.NOAUDIT_LABEL

	E.2 SA_COMPONENTS Label Components PL/SQL Package
	E.2.1 About the SA_COMPONENTS PL/SQL Package
	E.2.2 SA_COMPONENTS.ALTER_COMPARTMENT
	E.2.3 SA_COMPONENTS.ALTER_GROUP
	E.2.4 SA_COMPONENTS.ALTER_GROUP_PARENT
	E.2.5 SA_COMPONENTS.ALTER_LEVEL
	E.2.6 SA_COMPONENTS.CREATE_COMPARTMENT
	E.2.7 SA_COMPONENTS.CREATE_GROUP
	E.2.8 SA_COMPONENTS.CREATE_LEVEL
	E.2.9 SA_COMPONENTS.DROP_COMPARTMENT
	E.2.10 SA_COMPONENTS.DROP_GROUP
	E.2.11 SA_COMPONENTS.DROP_LEVEL

	E.3 SA_LABEL_ADMIN Label Management PL/SQL Package
	E.3.1 About the SA_LABEL_ADMIN PL/SQL Package
	E.3.2 SA_LABEL_ADMIN.ALTER_LABEL
	E.3.3 SA_LABEL_ADMIN.CREATE_LABEL
	E.3.4 SA_LABEL_ADMIN.DROP_LABEL

	E.4 SA_POLICY_ADMIN Policy Administration PL/SQL Package
	E.4.1 About the SA_POLICY_ADMIN PL/SQL Package
	E.4.2 SA_POLICY_ADMIN.ALTER_SCHEMA_POLICY
	E.4.3 SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY
	E.4.4 SA_POLICY_ADMIN.APPLY_TABLE_POLICY
	E.4.5 SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY
	E.4.6 SA_POLICY_ADMIN.DISABLE_TABLE_POLICY
	E.4.7 SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY
	E.4.8 SA_POLICY_ADMIN.ENABLE_TABLE_POLICY
	E.4.9 SA_POLICY_ADMIN.POLICY_SUBSCRIBE
	E.4.10 SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE
	E.4.11 SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY
	E.4.12 SA_POLICY_ADMIN.REMOVE_TABLE_POLICY

	E.5 SA_SESSION Session Management PL/SQL Package
	E.5.1 About the SA_SESSION PL/SQL Package
	E.5.2 SA_SESSION.COMP_READ
	E.5.3 SA_SESSION.COMP_WRITE
	E.5.4 SA_SESSION.GROUP_READ
	E.5.5 SA_SESSION.GROUP_WRITE
	E.5.6 SA_SESSION.LABEL
	E.5.7 SA_SESSION.MAX_LEVEL
	E.5.8 SA_SESSION.MAX_READ_LABEL
	E.5.9 SA_SESSION.MAX_WRITE_LABEL
	E.5.10 SA_SESSION.MIN_LEVEL
	E.5.11 SA_SESSION.MIN_WRITE_LABEL
	E.5.12 SA_SESSION.PRIVS
	E.5.13 SA_SESSION.RESTORE_DEFAULT_LABELS
	E.5.14 SA_SESSION.ROW_LABEL
	E.5.15 SA_SESSION.SET_LABEL
	E.5.16 SA_SESSION.SA_USER_NAME
	E.5.17 SA_SESSION.SAVE_DEFAULT_LABELS
	E.5.18 SA_SESSION.SET_ACCESS_PROFILE
	E.5.19 SA_SESSION.SET_ROW_LABEL

	E.6 SA_SYSDBA Policy Management PL/SQL Package
	E.6.1 About the SA_SYSDBA PL/SQL Package
	E.6.2 SA_SYSDBA.ALTER_POLICY
	E.6.3 SA_SYSDBA.CREATE_POLICY
	E.6.4 SA_SYSDBA.DISABLE_POLICY
	E.6.5 SA_SYSDBA.DROP_POLICY
	E.6.6 SA_SYSDBA.ENABLE_POLICY

	E.7 SA_USER_ADMIN PL/SQL Package
	E.7.1 About the SA_USER_ADMIN PL/SQL Package
	E.7.2 SA_USER_ADMIN.ADD_COMPARTMENTS
	E.7.3 SA_USER_ADMIN.ADD_GROUPS
	E.7.4 SA_USER_ADMIN.ALTER_COMPARTMENTS
	E.7.5 SA_USER_ADMIN.ALTER_GROUPS
	E.7.6 SA_USER_ADMIN.DROP_ALL_COMPARTMENTS
	E.7.7 SA_USER_ADMIN.DROP_ALL_GROUPS
	E.7.8 SA_USER_ADMIN.DROP_COMPARTMENTS
	E.7.9 SA_USER_ADMIN.DROP_GROUPS
	E.7.10 SA_USER_ADMIN.DROP_USER_ACCESS
	E.7.11 SA_USER_ADMIN.SET_COMPARTMENTS
	E.7.12 SA_USER_ADMIN.SET_DEFAULT_LABEL
	E.7.13 SA_USER_ADMIN.SET_GROUPS
	E.7.14 SA_USER_ADMIN.SET_LEVELS
	E.7.15 SA_USER_ADMIN.SET_PROG_PRIVS
	E.7.16 SA_USER_ADMIN.SET_ROW_LABEL
	E.7.17 SA_USER_ADMIN.SET_USER_LABELS
	E.7.18 SA_USER_ADMIN.SET_USER_PRIVS

	E.8 SA_UTL PL/SQL Utility Functions and Procedures
	E.8.1 About the SA_UTL PL/SQL Package
	E.8.2 SA_UTL.CHECK_LABEL_CHANGE
	E.8.3 SA_UTL.CHECK_READ
	E.8.4 SA_UTL.CHECK_WRITE
	E.8.5 SA_UTL.DATA_LABEL
	E.8.6 SA_UTL.GREATEST_LBOUND
	E.8.7 SA_UTL.LEAST_UBOUND
	E.8.8 SA_UTL.NUMERIC_LABEL
	E.8.9 SA_UTL.NUMERIC_ROW_LABEL
	E.8.10 SA_UTL.SET_LABEL
	E.8.11 SA_UTL.SET_ROW_LABEL


	F Oracle Label Security Reference
	F.1 Oracle Label Security Data Dictionary Tables and Views
	F.1.1 Oracle Database Data Dictionary Tables
	F.1.2 Oracle Label Security Data Dictionary Views
	F.1.2.1 ALL_SA_AUDIT_OPTIONS View
	F.1.2.2 ALL_SA_COMPARTMENTS
	F.1.2.3 ALL_SA_DATA_LABELS
	F.1.2.4 ALL_SA_GROUPS
	F.1.2.5 ALL_SA_LABELS
	F.1.2.6 ALL_SA_LEVELS
	F.1.2.7 ALL_SA_POLICIES
	F.1.2.8 ALL_SA_PROG_PRIVS
	F.1.2.9 ALL_SA_SCHEMA_POLICIES
	F.1.2.10 ALL_SA_TABLE_POLICIES
	F.1.2.11 ALL_SA_USERS
	F.1.2.12 ALL_SA_USER_LABELS
	F.1.2.13 ALL_SA_USER_LEVELS
	F.1.2.14 ALL_SA_USER_PRIVS
	F.1.2.15 DBA_SA_AUDIT_OPTIONS
	F.1.2.16 DBA_SA_COMPARTMENTS
	F.1.2.17 DBA_SA_DATA_LABELS
	F.1.2.18 DBA_SA_GROUPS
	F.1.2.19 DBA_SA_GROUP_HIERARCHY
	F.1.2.20 DBA_SA_LABELS
	F.1.2.21 DBA_SA_LEVELS
	F.1.2.22 DBA_SA_POLICIES
	F.1.2.23 DBA_SA_PROG_PRIVS
	F.1.2.24 DBA_SA_SCHEMA_POLICIES
	F.1.2.25 DBA_SA_TABLE_POLICIES
	F.1.2.26 DBA_SA_USERS
	F.1.2.27 DBA_SA_USER_COMPARTMENTS
	F.1.2.28 DBA_SA_USER_GROUPS
	F.1.2.29 DBA_SA_USER_LABELS
	F.1.2.30 DBA_SA_USER_LEVELS
	F.1.2.31 DBA_SA_USER_PRIVS
	F.1.2.32 DBA_OLS_STATUS
	F.1.2.33 USER_SA_SESSION

	F.1.3 Oracle Label Security User-Created Auditing View

	F.2 Restrictions in Oracle Label Security

	G Frequently Asked Questions about Oracle Label Security
	G.1 Who Uses Oracle Label Security?
	G.2 How Can Oracle Label Security Address My Security Needs?
	G.3 Should I Use Oracle Label Security to Protect All My Tables?
	G.4 What Is the Difference Between Oracle Virtual Private Database and Oracle Label Security?
	G.5 Can I Combine Oracle Virtual Private Database and Oracle Label Security?
	G.6 Can I Use Oracle Label Security with Oracle E-Business Suite?
	G.7 Can I Use Oracle Label Security with Oracle Database Vault?
	G.8 Does Oracle Label Security Provide Column-Level Access Control?
	G.9 Can I Base Secure Application Roles on Oracle Label Security?
	G.10 What Are Trusted Stored Program Units?
	G.11 Does VPD or OLS Add an Additional Column to the Protected Table?
	G.12 Why Should the Additional OLS Row Label Column Be Hidden?


	Index

