Oracle® Database
Advanced Security Guide

19c
E96301-22
May 2025

ORACLE"

Oracle Database Advanced Security Guide, 19c
E96301-22

Copyright © 1996, 2025, Oracle and/or its affiliates.
Primary Author: Patricia Huey

Contributors: Sudha Duraiswamy , Michael Hwa, Sudha lyer, Supriya Kalyanasundaram, Lakshmi Kethana, Peter
Knaggs, Andrew Koyfman, Dah-Yoh Lim, Adam Lee, Adam Lindsey, Rahil Mir, Gopal Mulagund, Andy Philips, Preetam
Ramakrishna, Saikat Saha, Philip Thornton, Peter Wahl, Lixia Yuan, Paul Youn

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience XiX
Documentation Accessibility XiX
Related Documents XiX
Conventions XX

Changes in This Release for Oracle Database Advanced Security Guide

Changes in Oracle Database Advanced Security 19c¢ XXi
Updates to Oracle Advanced Database Security 19¢ XXii

Introduction to Oracle Advanced Security

1.1 Transparent Data Encryption 1-1
1.2 Oracle Data Redaction 1-1

Part | Using Transparent Data Encryption

2

ORACLE"

Quick-start Setup Guide for Wallet Based Transparent Data Encryption

Introduction to Transparent Data Encryption

3.1 What Is Transparent Data Encryption? 3-1
3.2 Benefits of Using Transparent Data Encryption 3-2
3.3 Who Can Configure Transparent Data Encryption? 3-2
3.4 Types and Components of Transparent Data Encryption 3-3
3.4.1 About Transparent Data Encryption Types and Components 3-3
3.4.2 How Transparent Data Encryption Tablespace Encryption Works 3-3
3.4.3 How Transparent Data Encryption Column Encryption Works 3-5
3.4.4 How the Keystore for the Storage of TDE Master Encryption Keys Works 3-6
3.4.4.1 About the Keystore Storage of TDE Master Encryption Keys 3-6

3.4.4.2 Benefits of the Keystore Storage Framework 3-6

3.4.4.3 Types of Keystores 3-7
3.4.5 Supported Encryption and Integrity Algorithms 3-8
3.5 How the Multitenant Option Affects Transparent Data Encryption 3-9
4 Configuring Transparent Data Encryption
4.1 About Configuring Transparent Data Encryption 4-1
4.2 Transparent Data Encryption Keystore Search Order 4-2
4.3 Configuring a TDE Wallet 4-3
4.3.1 About Configuring a TDE Wallet 4-3
4.3.2 Step 1: Configure the TDE Wallet Location and Type 4-3
4.3.3 Step 2: Create the TDE Wallet 4-4
4.3.3.1 About Creating TDE Wallets 4-4
4.3.3.2 Creating a Password-Protected Software Keystore 4-5
4.3.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore 4-5
4.3.4 Step 3: Open the TDE Wallet 4-7
4.3.4.1 About Opening TDE Wallets 4-7
4.3.4.2 Opening a TDE Wallet 4-7
4.3.5 Step 4: Set the TDE Master Encryption Key in the TDE Wallet 4-8
4.3.5.1 About Setting the TDE Wallet TDE Master Encryption Key 4-8
4.3.5.2 Setting the TDE Master Encryption Key in the TDE Wallet 4-9
4.3.6 Step 5: Encrypt Your Data 4-10
4.4 Configuring an External Keystore 4-10
4.4.1 About Configuring an External Keystore 4-10
4.4.2 Step 1: Configure the External Keystore 4-11
4.4.3 Step 2: Open the Connection to Oracle Key Vault 4-11
4.4.3.1 About Opening the Connection to Oracle Key Vault 4-11
4.43.2 Opening an External Keystore 4-12
4.4.4 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault 4-12
4.4.4.1 About Setting the External Keystore TDE Master Encryption Key 4-13
44,42 Setting a New TDE Master Encryption Key 4-13
4.4.4.3 Migration of an Encrypted Database from a TDE Wallet to Oracle Key

Vault or OCI KMS 4-14
4.4.5 Step 4: Encrypt Your Data in United Mode 4-14
4.5 Encrypting Columns in Tables 4-15
4,51 About Encrypting Columns in Tables 4-15
4.5.2 Data Types That Can Be Encrypted with TDE Column Encryption 4-16
453 Restrictions on Using TDE Column Encryption 4-17
4.5.4 Creating Tables with Encrypted Columns 4-17
4.5.4.1 About Creating Tables with Encrypted Columns 4-18
45.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm 4-18

4.5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-
Default Algorithm 4-19

ORACLE

4.5.4.4 Using the NOMAC Parameter to Save Disk Space and Improve
Performance

45.45 Example: Using the NOMAC Parameter in a CREATE TABLE Statement
45.4.6 Example: Changing the Integrity Algorithm for a Table
4.5.4.7 Creating an Encrypted Column in an External Table
4.5.5 Encrypting Columns in Existing Tables
4.55.1 About Encrypting Columns in Existing Tables
4.55.2 Adding an Encrypted Column to an Existing Table
4.5.5.3 Encrypting an Unencrypted Column
4.5.5.4 Disabling Encryption on a Column
4.5.6 Creating an Index on an Encrypted Column
4.5.7 Adding Salt to an Encrypted Column
4.5.8 Removing Salt from an Encrypted Column
4.5.9 Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
Encryption Conversions for Tablespaces and Databases
4.6.1 About Encryption Conversion for Tablespaces and Databases
4.6.2 Impact of a Closed TDE Keystore on Encrypted Tablespaces
4.6.3 Restrictions on Using Transparent Data Encryption Tablespace Encryption
4.6.4 Creating an Encrypted New Tablespace

4.6.4.1 Step 1: Set the COMPATIBLE Initialization Parameter for Tablespace
Encryption

4.6.4.2 Step 2: Set the Tablespace TDE Master Encryption Key
4.6.4.3 Step 3: Create the Encrypted Tablespace

4.6.5 Setting the Tablespace Encryption Default Algorithm

4.6.6 Encrypting Future Tablespaces
4.6.6.1 About Encrypting Future Tablespaces
4.6.6.2 Setting Future Tablespaces to be Encrypted

4.6.7 Encrypted Sensitive Credential Data in the Data Dictionary

4.6.8 Encryption Conversions for Existing Offline Tablespaces
4.6.8.1 About Encryption Conversions for Existing Offline Tablespaces
4.6.8.2 Encrypting an Existing User-Defined Tablespace with Offline Conversion
4.6.8.3 Decrypting an Existing Tablespace with Offline Conversion

4.6.9 Encryption Conversions for Existing Online Tablespaces
4.6.9.1 About Encryption Conversions for Existing Online Tablespaces
4.6.9.2 Encrypting an Existing Tablespace with Online Conversion
4.6.9.3 Rekeying an Existing Tablespace with Online Conversion
4.6.9.4 Decrypting an Existing Tablespace with Online Conversion
4.6.9.5 Finishing an Interrupted Online Encryption Conversion

4.6.10 Encryption Conversions for Existing Databases
4.6.10.1 About Encryption Conversions for Existing Databases
4.6.10.2 Encrypting an Existing Database with Offline Conversion
4.6.10.3 Encrypting an Existing Database with Online Conversion

ORACLE

4-20
4-20
4-20
4-20
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-23
4-24
4-24
4-25
4-26
4-28
4-28

4-28
4-30
4-30
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-36
4-37
4-38
4-38
4-39
4-41
4-42
4-43
4-44
4-45
4-45
4-46

4.7 Transparent Data Encryption Data Dynamic and Data Dictionary Views 4-47

5 Managing the Keystore and the Master Encryption Key

5.1 Managing the Keystore 5-1
5.1.1 Performing Operations That Require a Keystore Password 5-2
5.1.2 Changing the Password of a Software Keystore 5-3

5.1.2.1 About Changing the Password of a Password-Protected Software
Keystore 5-3
5.1.2.2 Changing the Password-Protected Software Keystore Password 5-3
5.1.3 Changing the Oracle Key Vault Password 5-4
5.1.4 Configuring an External Store for a Keystore Password 5-4
5.1.4.1 About Configuring an External Store for a Keystore Password 5-5
5.1.4.2 Configuring the External Keystore Password Store with WALLET_ROOT 5-5
5.1.4.3 When to Use the EXTERNAL STORE Clause After Configuration 5-5
5.1.5 Backing Up Password-Protected Software Keystores 5-6
5.1.5.1 About Backing Up Password-Protected TDE Wallets 5-6
5.1.5.2 Creating a Backup ldentifier String for the Backup TDE Wallet 5-6
5.1.5.3 Backing Up a Password-Protected TDE Wallet 5-7
5.1.6 How the VSENCRYPTION_WALLET View Interprets Backup Operations 5-8
5.1.7 Backups of the External Keystore 5-8
5.1.8 Merging TDE Wallets 5-9
5.1.8.1 About Merging TDE Wallets 5-9
5.1.8.2 Merging One TDE Wallet into an Existing TDE Wallet 5-10
5.1.8.3 Merging Two TDE Wallets into a Third New TDE Wallet 5-10
5.1.8.4 Merging an Auto-Login TDE Wallet into an Existing Password-Protected
TDE Wallet 5-11
5.1.8.5 Reversing a TDE Wallet Merge Operation 5-11
5.1.9 Moving a TDE Wallet to a New Location 5-12
5.1.10 Moving a TDE Wallet Out of Automatic Storage Management 5-13
5.1.11 Migrating from a TDE Wallet to Oracle Key Vault 5-13
5.1.11.1 Migrating from a Password-Protected TDE Wallet to an External Keystore 5-14
5.1.11.2 Migrating from an External Keystore to a Password-Based TDE Wallet 5-16
5.1.11.3 Keystore Order After a Migration 5-18
5.1.12 Migration of Keystores to and from Oracle Key Vault 5-19
5.1.13 Configuring Keystores for Automatic Storage Management 5-19
5.1.13.1 About Configuring Keystores for Automatic Storage Management 5-20
5.1.13.2 Configuring a Keystore on a Standalone Database to Point to an ASM
Location 5-20
5.1.13.3 Configuring a Keystore to Point to an ASM Location 5-21
5.1.13.4 Configuring a Keystore to Point to an ASM Location When the
WALLET_ROOT Location Does Not Follow OMF Guidelines 5-22
5.1.14 Closing a Keystore 5-22

ORACLE Vi

5.1.14.1 About Closing Keystores 5-23

5.1.14.2 Closing a TDE Wallet 5-23
5.1.14.3 Closing an External Keystore 5-24
5.1.15 Backup and Recovery of Encrypted Data 5-24
5.1.16 Dangers of Deleting Keystores 5-25
5.1.17 Features That Are Affected by Deleted Keystores 5-26
5.2 Managing the TDE Master Encryption Key 5-27
5.2.1 Creating User-Defined TDE Master Encryption Keys 5-28
5.2.1.1 About User-Defined TDE Master Encryption Keys 5-28
5.2.1.2 Creating a User-Defined TDE Master Encryption Key 5-28
5.2.2 Creating TDE Master Encryption Keys for Later Use 5-30
5.2.2.1 About Creating a TDE Master Encryption Key for Later Use 5-30
5.2.2.2 Creating a TDE Master Encryption Key for Later Use 5-31
5.2.2.3 Example: Creating a TDE Master Encryption Key in a Single Database 5-32
5.2.3 Activating TDE Master Encryption Keys 5-32
5.2.3.1 About Activating TDE Master Encryption Keys 5-32
5.2.3.2 Activating a TDE Master Encryption Key 5-33
5.2.3.3 Example: Activating a TDE Master Encryption Key 5-34
5.2.4 TDE Master Encryption Key Attribute Management 5-34
5.2.4.1 TDE Master Encryption Key Attributes 5-34
5.2.4.2 Finding the TDE Master Encryption Key That Is in Use 5-35
5.2.5 Creating Custom TDE Master Encryption Key Attributes for Reports 5-36
5.2.5.1 About Creating Custom Attribute Tags 5-36
5.2.5.2 Creating a Custom Attribute Tag 5-36
5.2.6 Setting or Rekeying the TDE Master Encryption Key in the Keystore 5-37
5.2.6.1 About Setting or Rekeying the TDE Master Encryption Key in the Keystore 5-38
5.2.6.2 Creating, Tagging, and Backing Up a TDE Master Encryption Key 5-38
5.2.6.3 About Rekeying the TDE Master Encryption Key 5-39
5.2.6.4 Rekeying the TDE Master Encryption Key 5-40
5.2.6.5 Changing the TDE Master Encryption Key for a Tablespace 5-41
5.2.7 Exporting and Importing the TDE Master Encryption Key 5-41
5.2.7.1 About Exporting and Importing the TDE Master Encryption Key 5-42
5.2.7.2 About Exporting TDE Master Encryption Keys 5-42
5.2.7.3 Exporting a TDE Master Encryption Key 5-43
5.2.7.4 Example: Exporting a TDE Master Encryption Key by Using a Subquery 5-44
5.2.7.5 Example: Exporting a List of TDE Master Encryption Key Identifiers to a
File 5-44
5.2.7.6 Example: Exporting All TDE Master Encryption Keys of the Database 5-44
5.2.7.7 About Importing TDE Master Encryption Keys 5-45
5.2.7.8 Importing a TDE Master Encryption Key 5-45
5.2.7.9 Example: Importing a TDE Master Encryption Key 5-45

ORACLE Vii

5.2.7.10 How Keystore Merge Differs from TDE Master Encryption Key Export or

Import 5-46
5.2.8 Moving TDE Master Encryption Keys into a New Keystore 5-46
5.2.8.1 About Moving TDE Master Encryption Keys into a New Keystore 5-47
5.2.8.2 Moving a TDE Master Encryption Key into a New Keystore 5-48
5.2.9 Converting from ENCRYPTION_WALLET_LOCATION to WALLET_ROOT and
TDE_CONFIGURATION 5-49
5.2.10 Management of TDE Master Encryption Keys Using Oracle Key Vault 5-49
5.3 Storing Oracle Database Secrets 5-50
5.3.1 About Storing Oracle Database Secrets in a Keystore 5-50
5.3.2 Storage of Oracle Database Secrets in a Software Keystore 5-51
5.3.3 Example: Adding an Oracle Key Vault Password to a Software Keystore 5-52
5.3.4 Example: Changing an Oracle Key Vault Password Stored as a Secret in a
Software Keystore 5-53
5.3.5 Example: Deleting an Oracle Key Vault Password Stored as a Secret in a
Software Keystore 5-53
5.3.6 Storage of Oracle Database Secrets in an External Keystore 5-54
5.3.7 Example: Adding an Oracle Database Secret to an External Keystore 5-55
5.3.8 Example: Changing an Oracle Database Secret in an External Keystore 5-55
5.3.9 Example: Deleting an Oracle Database Secret in an External Keystore 5-56
5.3.10 Configuring Auto-Open Connections into External Key Managers 5-56
5.3.10.1 About Auto-Open Connections into External Key Managers 5-56
5.3.10.2 Configuring an Auto-Open Connection into an External Key Manager 5-57
5.4 Storing Oracle GoldenGate Secrets in a Keystore 5-58
5.4.1 About Storing Oracle GoldenGate Secrets in Keystores 5-58
5.4.2 Oracle GoldenGate Extract Classic Capture Mode TDE Requirements 5-59
5.4.3 Configuring Keystore Support for Oracle GoldenGate 5-59
5.4.3.1 Step 1: Decide on a Shared Secret for the Keystore 5-59
5.4.3.2 Step 2: Configure Oracle Database for TDE Support for Oracle
GoldenGate 5-60
5.4.3.3 Step 3: Store the TDE GoldenGate Shared Secret in the Keystore 5-60
5.4.3.4 Step 4: Set the TDE Oracle GoldenGate Shared Secret in the Extract
Process 5-61

6 Managing Keystores and TDE Master Encryption Keys in United Mode

6.1 About Managing Keystores and TDE Master Encryption Keys in United Mode 6-1
6.2 Operations That Are Allowed in United Mode 6-2
6.3 Operations That Are Not Allowed in a United Mode PDB 6-6
6.4 Configuring United Mode with the Initialization Parameter File and ALTER SYSTEM 6-7
6.5 Configuring a Software Keystore for Use in United Mode 6-9
6.5.1 About Configuring a Software Keystore in United Mode 6-9
6.5.2 Creating a Password-Protected TDE Wallet 6-10
6.5.3 Step 2: Open the TDE Wallet in a United Mode PDB 6-11
ORACLE

viii

6.5.4 Step 3: Set the TDE Master Encryption Key in the TDE Wallet in United Mode
6.6 Configuring a Container Database with United Mode PDBs for Oracle Key Vault

6.6.1 About Configuring a Container Database with United Mode PDBs for Oracle Key
Vault

6.6.2 Step 1: Configure Oracle Key Vault for United Mode
6.6.3 Step 2: Open the Connection to Oracle Key Vault
6.6.3.1 About Opening the Connection to Oracle Key Vault
6.6.3.2 Opening the Oracle Key Vault Connection in a United Mode PDB
6.6.4 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
6.6.4.1 About Setting the External Keystore TDE Master Encryption Key
6.6.4.2 Heartbeat Batch Size for External Keystores

6.6.4.3 Setting the TDE Master Encryption Key in the United Mode External
Keystore

6.6.4.4 Migration of an Encrypted Database from a TDE Wallet to Oracle Key
Vault or OCI KMS

6.6.5 Step 4: Encrypt Your Data in United Mode
6.7 Administering Keystores and TDE Master Encryption Keys in United Mode

6.7.1 Changing the Keystore Password in United Mode
6.7.1.1 Changing the Password-Protected TDE Wallet Password in United Mode
6.7.1.2 Changing the Password of an External Keystore in United Mode

6.7.2 Backing Up a Password-Protected TDE Wallet in United Mode

6.7.3 Closing Keystores in United Mode
6.7.3.1 Closing a Software Keystore in United Mode
6.7.3.2 Closing an External Keystore in United Mode

6.7.4 Creating a User-Defined TDE Master Encryption Key in United Mode

6.7.5 Example: Creating a Master Encryption Key in All PDBs

6.7.6 Creating a TDE Master Encryption Key for Later Use in United Mode

6.7.7 Activating a TDE Master Encryption Key in United Mode

6.7.8 Rekeying the TDE Master Encryption Key in United Mode

6.7.9 Finding the TDE Master Encryption Key That Is in Use in United Mode

6.7.10 Creating a Custom Attribute Tag in United Mode

6.7.11 Moving a TDE Master Encryption Key into a New Keystore in United Mode

6.7.12 Automatically Removing Inactive TDE Master Encryption Keys in United Mode

6.7.13 Isolating a Pluggable Database Keystore

6.8 Administering Transparent Data Encryption in United Mode

6.8.1 Moving PDBs from One CDB to Another in United Mode

6.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in United Mode
6.8.2.1 Unplugging a PDB That Has Encrypted Data in United Mode
6.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in United Mode

6.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in United Mode

6.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in United Mode

ORACLE

6-12
6-13

6-13
6-14
6-14
6-14
6-15
6-16
6-16
6-16

6-18

6-19
6-19
6-20
6-21
6-21
6-22
6-23
6-24
6-24
6-25
6-25
6-27
6-28
6-29
6-29
6-30
6-31
6-32
6-33
6-33
6-34
6-35
6-35
6-35
6-36

6-37

6-38

6.8.3

Managing Cloned PDBs with Encrypted Data in United Mode

6.8.3.1 About Managing Cloned PDBs That Have Encrypted Data in United Mode
6.8.3.2 Cloning a PDB with Encrypted Data in a CDB in United Mode
6.8.3.3 Performing a Remote Clone of PDB with Encrypted Data Between Two

CDBs in United Mode

6.8.3.4 TDE Academy Videos: Remotely Cloning and Upgrading Encrypted PDBs
6.8.3.5 Relocating a PDB with Encrypted Data Across CDBs in United Mode

6.8.4
6.8.5
6.8.6

6.8.7

How Keystore Open and Close Operations Work in United Mode
Finding the Keystore Status for All of the PDBs in United Mode

Unplugging a PDB That Has Encrypted Data in United Mode Without ENCRPYT
Clause

Plugging a PDB That Has Encrypted Data into a CDB in United Mode Without
DECRYPT Clause

6-38
6-39
6-39

6-40
6-41
6-41
6-42
6-43

6-45

6-45

7 Managing Keystores and TDE Master Encryption Keys in Isolated Mode

7.1
7.2
7.3
7.4

About Configuring Isolated Mode

Operations That Are Allowed in Isolated Mode
Operations That Are Not Allowed in an Isolated Mode PDB
Configuring the Keystore Location and Type for Isolated Mode

74.1
7.4.2
7.4.3
7.4.4

Configuring the Keystore Location and Keystore Type for an Isolated Mode CDB
Example: Restoring an Older Version of a Control File
Example: Addressing the Problem of a Lost Control File

Example: Configuring Isolated Mode in an Oracle Real Application Clusters
Environment

7.5 Configuring a TDE Wallet and TDE Master Encryption Key in Isolated Mode

7.5.1
7.5.2
7.5.3
7.5.4

7.5.5

About Configuring a TDE Wallet in Isolated Mode
Step 1: Create a TDE Wallet in a PDB Configured in Isolated Mode
Step 2: Open the TDE Wallet in an Isolated Mode PDB

Step 3: Set the TDE Master Encryption Key in the TDE Wallet of the Isolated
Mode PDB

Step 4: Encrypt Your Data in Isolated Mode

7.6 Configuring a Container Database with Isolated Mode PDBs for Oracle Key Vault

7.7

7.6.1
7.6.2
7.6.3
7.6.4

About Configuring an External Keystore in Isolated Mode

Step 1: Configure Isolated PDBs for Oracle Key Vault

Step 2: Open the External Keystore in an Isolated Mode PDB

Step 3: Set the First TDE Master Encryption Key in the External Keystore

7.6.4.1 Setting the TDE Master Encryption Key in the Isolated Mode External

Keystore

7.6.4.2 Migration of a Previously Configured Encryption Key in Isolated Mode

7.6.5

Step 4: Encrypt Your Data in Isolated Mode

Administering Keystores and TDE Master Encryption Keys in Isolated Mode

7.7.1

Changing the Keystore Password in Isolated Mode

7.7.1.1 Changing the Password-Protected TDE Wallet Password in Isolated Mode

ORACLE

7-1
7-2
7-6
7-6
7-7
7-8
7-9

7-10
7-10
7-10
7-11
7-12

7-12
7-13
7-13
7-14
7-14
7-15
7-15

7-15
7-16
7-16
7-17
7-18
7-18

7.7.1.2 Changing the Password of an External Keystore in Isolated Mode 7-19

7.7.2 Backing Up a Password-Protected TDE Wallet in Isolated Mode 7-20
7.7.3 Merging TDE Wallets in Isolated Mode 7-21
7.7.3.1 Merging One TDE Wallet into an Existing TDE Wallet in Isolated Mode 7-21
7.7.3.2 Merging Two TDE Wallets into a Third New TDE Wallet in Isolated Mode 7-22
7.7.4 Closing Keystores in Isolated Mode 7-23
7.7.4.1 Closing a TDE Wallet in Isolated Mode 7-23
7.7.4.2 Closing an External Keystore in Isolated Mode 7-24
7.7.5 Creating a User-Defined TDE Master Encryption Key in Isolated Mode 7-24
7.7.6 Creating a TDE Master Encryption Key for Later Use in Isolated Mode 7-25
7.7.7 Activating a TDE Master Encryption Key in Isolated Mode 7-26
7.7.8 Rekeying the TDE Master Encryption Key in Isolated Mode 7-27
7.7.9 Moving a TDE Master Encryption Key into a New Keystore in Isolated Mode 7-28
7.7.10 Creating a Custom Attribute Tag in Isolated Mode 7-29
7.7.11 Exporting and Importing the TDE Master Encryption Key in Isolated Mode 7-30
7.7.11.1 Exporting a TDE Master Encryption Key in Isolated Mode 7-31
7.7.11.2 Importing a TDE Master Encryption Key in Isolated Mode 7-31
7.7.12 Storing Oracle Database Secrets in Isolated Mode 7-32
7.7.12.1 Storing Oracle Database Secrets in a TDE Wallet in Isolated Mode 7-32
7.7.12.2 Storing Oracle Database Secrets in an External Keystore in Isolated
Mode 7-33
7.7.13 Migrating Keystores in Isolated Mode 7-34
7.7.13.1 Reverse Migrating an Isolated PDB from Oracle Key Vault to a TDE
Wallet 7-34
7.7.13.2 Migrating from an External Keystore to a Password-Protected TDE
Wallet in Isolated Mode 7-36
7.7.14 Uniting a Pluggable Database Keystore 7-37
7.7.15 Creating a Keystore When the PDB Is Closed 7-38
7.7.15.1 About Creating a Keystore When the PDB Is Closed 7-38
7.7.15.2 Reverting a Keystore Creation Operation When a PDB Is Closed 7-39
7.8 Administering Transparent Data Encryption in Isolated Mode 7-39
7.8.1 Cloning or Relocating Encrypted PDBs in Isolated Mode 7-40
7.8.2 Unplugging and Plugging a PDB with Encrypted Data in a CDB in Isolated Mode 7-40
7.8.2.1 Unplugging a PDB That Has Encrypted Data in Isolated Mode 7-41
7.8.2.2 Plugging a PDB That Has Encrypted Data into a CDB in Isolated Mode 7-41
7.8.2.3 Unplugging a PDB That Has Master Encryption Keys Stored in an
External Keystore in Isolated Mode 7-42
7.8.2.4 Plugging a PDB That Has Master Encryption Keys Stored in an External
Keystore in Isolated Mode 7-42
7.8.3 Cloning a PDB with Encrypted Data in a CDB in Isolated Mode 7-43
7.8.4 Performing a Remote Clone of PDB with Encrypted Data Between Two CDBs in
Isolated Mode 7-44
7.8.5 Relocating an Encrypted PDB in Isolated Mode 7-45

ORACLE Xi

7.8.6 How Keystore Open and Close Operations Work in Isolated Mode 7-46
7.8.7 Exporting and Importing Master Encryption Keys for a PDB in Isolated Mode 7-47
7.8.7.1 About Exporting and Importing Master Encryption Keys for a PDB in
Isolated Mode 7-48
7.8.7.2 Exporting or Importing a Master Encryption Key for a PDB in Isolated
Mode 7-49
7.8.7.3 Example: Exporting a Master Encryption Key from a PDB in Isolated Mode 7-49
7.8.7.4 Example: Importing a Master Encryption Key into a PDB in Isolated Mode 7-49
General Considerations of Using Transparent Data Encryption
8.1 Migrating Encrypted TDE Columns or Tablespaces after a Database Upgrade from
Release 11g 8-1
8.2 Compression and Data Deduplication of Encrypted Data 8-3
8.3 Security Considerations for Transparent Data Encryption 8-4
8.3.1 Transparent Data Encryption General Security Advice 8-4
8.3.2 Transparent Data Encryption Column Encryption-Specific Advice 8-4
8.3.3 Managing Security for Plaintext Fragments 8-5
8.4 Performance and Storage Overhead of Transparent Data Encryption 8-5
8.4.1 Performance Overhead of Transparent Data Encryption 8-5
8.4.2 Storage Overhead of Transparent Data Encryption 8-6
8.5 Modifying Your Applications for Use with Transparent Data Encryption 8-7
8.6 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT 8-7
8.7 Data Loads from External Files to Tables with Encrypted Columns 8-10
8.8 Transparent Data Encryption and Database Close Operations 8-11
Using Transparent Data Encryption with Other Oracle Features
9.1 How Transparent Data Encryption Works with Export and Import Operations 9-1
9.1.1 About Exporting and Importing Encrypted Data 9-2
9.1.2 Exporting and Importing Tables with Encrypted Columns 9-2
9.1.3 Using Oracle Data Pump to Encrypt Entire Dump Sets 9-3
9.1.4 Using Oracle Data Pump with Encrypted Data Dictionary Data 9-4
9.2 How Transparent Data Encryption Works with Oracle Data Guard 9-5
9.2.1 About Using Transparent Data Encryption with Oracle Data Guard 9-5
9.2.2 Encryption of Tablespaces in an Oracle Data Guard Environment 9-6
9.2.2.1 About the Encryption of Tablespace in an Oracle Data Guard Environment 9-6
9.2.2.2 Configuring the Encryption of Tablespaces in an Oracle Data Guard
Environment 9-7
9.2.3 Configuring TDE and Oracle Key Vault in an Oracle Data Guard Environment 9-9
9.2.4 Configuring Wallet-Based Transparent Data Encryption in Oracle Data Guard 9-17
9.2.5 Migrating a TDE Wallet in an Oracle Data Guard Environment to Oracle Key
Vault 9-21

ORACLE

Xii

9.2.6 Isolating an Encrypted PDB in an Oracle Data Guard Environment 9-27

9.3 How Transparent Data Encryption Works with Oracle Real Application Clusters 9-28
9.3.1 About Using Transparent Data Encryption with Oracle Real Application Clusters 9-28
9.3.2 Configuring TDE in Oracle Real Application Clusters for Oracle Key Vault 9-29

9.4 How Transparent Data Encryption Works with SecureFiles 9-36
9.4.1 About Transparent Data Encryption and SecureFiles 9-36
9.4.2 Example: Creating a SecureFiles LOB with a Specific Encryption Algorithm 9-36
9.4.3 Example: Creating a SecureFiles LOB with a Column Password Specified 9-36

9.5 How Transparent Data Encryption Works with Oracle Call Interface 9-37

9.6 How Transparent Data Encryption Works with Editions 9-37
9.6.1 How ALTER SYSTEM and orapki Map to ADMINISTER KEY MANAGEMENT 9-37

9.7 Configuring Transparent Data Encryption to Work in a Multidatabase Environment 9-40

10 Frequently Asked Questions About Transparent Data Encryption

10.1 Transparency Questions About Transparent Data Encryption 10-1
10.2 Performance Questions About Transparent Data Encryption 10-3

11 Using sglnet.ora to Configure Transparent Data Encryption Keystores

11.1 About the Keystore Location in the sqlnet.ora File 11-1
11.2 Configuring the sqglnet.ora File for a Software Keystore Location 11-2
11.3 Example: Configuring a Software Keystore for a Regular File System 11-3
11.4 Example: Configuring a TDE Wallet When Multiple Databases Share the Same Host 11-4
11.5 Example: Configuring a Software Keystore for an Oracle Automatic Storage

Management Disk Group 11-4

Part |l Using Oracle Data Redaction

12 Introduction to Oracle Data Redaction

12.1 What Is Oracle Data Redaction? 12-1
12.2 When to Use Oracle Data Redaction 12-2
12.3 Benefits of Using Oracle Data Redaction 12-2
12.4 Target Use Cases for Oracle Data Redaction 12-2
12.4.1 Oracle Data Redaction for Sensitive Data in Read-Only Static Pages 12-3
12.4.2 Oracle Data Redaction for Preventing Data Exposure by Management Tools 12-3
12.4.3 Oracle Data Redaction to Prevent Disclosure of Data from Offline Analytics 12-3
12.4.4 Oracle Data Redaction Use with Database Applications 12-3
12.4.5 Oracle Data Redaction with Ad Hoc Database Queries Considerations 12-4
ORACLE

Xiii

13 Oracle Data Redaction Features and Capabilities

13.1 Full Data Redaction to Redact All Data 13-1
13.2 Partial Data Redaction to Redact Sections of Data 13-2
13.3 Regular Expressions to Redact Patterns of Data 13-3
13.4 Redaction Using Null Values 13-4
13.5 Random Data Redaction to Generate Random Values 13-4
13.6 Comparison of Full, Partial, and Random Redaction Based on Data Types 13-5
13.6.1 Oracle Built-in Data Types Redaction Capabilities 13-5
13.6.2 ANSI Data Types Redaction Capabilities 13-6
13.6.3 Built-in and ANSI Data Types Full Redaction Capabilities 13-7
13.6.4 User-Defined Data Types or Oracle Supplied Types Redaction Capabilities 13-8
13.7 No Redaction for Testing Purposes 13-9
13.8 Central Management of Named Data Redaction Policy Expressions 13-9
14 Configuring Oracle Data Redaction Policies
14.1 About Oracle Data Redaction Policies 14-2
14.2 Who Can Create Oracle Data Redaction Policies? 14-3
14.3 Planning an Oracle Data Redaction Policy 14-4
14.4 General Syntax of the DBMS_REDACT.ADD_POLICY Procedure 14-4
14.5 Using Expressions to Define Conditions for Data Redaction Policies 14-7
14.5.1 About Using Expressions in Data Redaction Policies 14-7
14.5.2 Supported Functions for Data Redaction Expressions 14-8
14.5.2.1 Expressions Using Namespace Functions 14-8
14.5.2.2 Expressions Using the SUBSTR Function 14-9
14.5.2.3 Expressions Using Length of Character String Functions 14-9
14.5.2.4 Expressions Using Oracle Application Express Functions 14-10
14.5.2.5 Expressions Using Oracle Label Security Functions 14-10
14.5.3 Applying the Redaction Policy Based on User Environment 14-11
14.5.4 Applying the Redaction Policy Based on Database Roles 14-12
14.5.5 Applying the Redaction Policy Based on Oracle Label Security Label
Dominance 14-12
14.5.6 Applying the Redaction Policy Based on Application Express Session States 14-13
14.5.7 Applying the Redaction Policy to All Users 14-13
14.6 Creating and Managing Multiple Named Policy Expressions 14-14
14.6.1 About Data Redaction Policy Expressions to Define Conditions 14-14
14.6.2 Creating and Applying a Named Data Redaction Policy Expression 14-15
14.6.3 Updating a Named Data Redaction Policy Expression 14-16
14.6.4 Dropping a Named Data Redaction Expression Policy 14-17
14.6.5 Tutorial: Creating and Sharing a Named Data Redaction Policy Expression 14-17
14.6.5.1 Step 1: Create Users for This Tutorial 14-18
14.6.5.2 Step 2: Create an Oracle Data Redaction Policy 14-18

ORACLE

Xiv

14.6.5.3 Step 3: Test the Oracle Data Redaction Policy

14.6.5.4 Step 4: Create and Apply a Policy Expression to the Redacted Table

Columns
14.6.5.5 Step 5: Test the Data Redaction Policy Expression
14.6.5.6 Step 6: Modify the Data Redaction Policy Expression
14.6.5.7 Step 7: Test the Modified Policy Expression
14.6.5.8 Step 8: Remove the Components of This Tutorial
14.7 Creating a Full Redaction Policy and Altering the Full Redaction Value
14.7.1 Creating a Full Redaction Policy
14.7.1.1 About Creating Full Data Redaction Policies
14.7.1.2 Syntax for Creating a Full Redaction Policy
14.7.1.3 Example: Full Redaction Policy
14.7.1.4 Example: Fully Redacted Character Values
14.7.2 Altering the Default Full Data Redaction Value
14.7.2.1 About Altering the Default Full Data Redaction Value

14.7.2.2 Syntax for the DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES

Procedure
14.7.2.3 Modifying the Default Full Data Redaction Value
14.8 Creating a DBMS_REDACT.NULLIFY Redaction Policy
14.8.1 About Creating a Policy That Returns Null Values
14.8.2 Syntax for Creating a Policy That Returns Null Values
14.8.3 Example: Redaction Policy That Returns Null Values
14.9 Creating a Partial Redaction Policy
14.9.1 About Creating Partial Redaction Policies
14.9.2 Syntax for Creating a Partial Redaction Policy
14.9.3 Creating Partial Redaction Policies Using Fixed Character Formats
14.9.3.1 Settings for Fixed Character Formats
14.9.3.2 Example: Partial Redaction Policy Using a Fixed Character Format
14.9.4 Creating Partial Redaction Policies Using Character Data Types
14.9.4.1 Settings for Character Data Types
14.9.4.2 Example: Partial Redaction Policy Using a Character Data Type
14.9.5 Creating Partial Redaction Policies Using Number Data Types
14.9.5.1 Settings for Number Data Types
14.9.5.2 Example: Partial Redaction Policy Using a Number Data Type
14.9.6 Creating Partial Redaction Policies Using Date-Time Data Types
14.9.6.1 Settings for Date-Time Data Types
14.9.6.2 Example: Partial Redaction Policy Using Date-Time Data Type
14.10 Creating a Regular Expression-Based Redaction Policy
14.10.1 About Creating Regular Expression-Based Redaction Policies
14.10.2 Syntax for Creating a Regular Expression-Based Redaction Policy
14.10.3 Regular Expression-Based Redaction Policies Using Formats
14.10.3.1 Regular Expression Formats

ORACLE

14-19

14-20
14-20
14-21
14-21
14-22
14-23
14-23
14-24
14-24
14-24
14-25
14-26
14-26

14-26
14-27
14-27
14-28
14-28
14-28
14-29
14-30
14-30
14-30
14-31
14-33
14-34
14-34
14-35
14-35
14-36
14-36
14-37
14-37
14-38
14-38
14-38
14-39
14-40
14-41

XV

14.10.3.2 Example: Regular Expression Redaction Policy Using Formats

14.10.4

Custom Regular Expression Redaction Policies

14.10.4.1 Settings for Custom Regular Expressions

14.10.4.2 Example: Custom Regular Expression Redaction Policy

14.11 Creating a Random Redaction Policy

14111
14.11.2

Syntax for Creating a Random Redaction Policy
Example: Random Redaction Policy

14.12 Creating a Policy That Uses No Redaction

14.12.1
14.12.2

Syntax for Creating a Policy with No Redaction
Example: Performing No Redaction

14.13 Exemption of Users from Oracle Data Redaction Policies

14.14 Altering an Oracle Data Redaction Policy

14.14.1
14.14.2
14.14.3
14.14.4

About Altering Oracle Data Redaction Policies

Syntax for the DBMS_REDACT.ALTER_POLICY Procedure
Parameters Required for DBMS_REDACT.ALTER_POLICY Actions
Tutorial: Altering an Oracle Data Redaction Policy

14.15 Redacting Multiple Columns

14.15.1
14.15.2

Adding Columns to a Data Redaction Policy for a Single Table or View
Example: Redacting Multiple Columns

14.16 Disabling and Enabling an Oracle Data Redaction Policy

14.16.1
14.16.2

Disabling an Oracle Data Redaction Policy
Enabling an Oracle Data Redaction Policy

14.17 Dropping an Oracle Data Redaction Policy

14.18 Tutorial: SQL Expressions to Build Reports with Redacted Values

14.19 Using Trace Files to Troubleshoot Oracle Data Redaction Policies

14.20 Oracle Data Redaction Policy Data Dictionary Views

14-44
14-44
14-44
14-45
14-46
14-46
14-46
14-47
14-47
14-48
14-48
14-49
14-49
14-50
14-51
14-51
14-54
14-54
14-54
14-55
14-55
14-56
14-56
14-57
14-59
14-59

15 Managing Oracle Data Redaction Policies in Oracle Enterprise Manager

15.1 About Using Oracle Data Redaction in Oracle Enterprise Manager
15.2 Oracle Data Redaction Workflow
15.3 Management of Sensitive Column Types in Enterprise Manager

15.4 Managing Oracle Data Redaction Formats Using Enterprise Manager

154.1
15.4.2
15.4.3
15.4.4
15.4.5

About Managing Oracle Data Redaction Formats Using Enterprise Manager
Creating a Custom Oracle Data Redaction Format Using Enterprise Manager
Editing a Custom Oracle Data Redaction Format Using Enterprise Manager
Viewing Oracle Data Redaction Formats Using Enterprise Manager

Deleting a Custom Oracle Data Redaction Format Using Enterprise Manager

15.5 Managing Oracle Data Redaction Policies Using Enterprise Manager

155.1
15.5.2
1553

ORACLE

About Managing Oracle Data Redaction Policies Using Enterprise Manager
Creating an Oracle Data Redaction Policy Using Enterprise Manager
Editing an Oracle Data Redaction Policy Using Enterprise Manager

15-1
15-2
15-2
15-4
15-5
15-5
15-8
15-9
15-10
15-10
15-11
15-11
15-14

XVi

15.5.4 Viewing Oracle Data Redaction Policy Details Using Enterprise Manager 15-15
15.5.5 Enabling or Disabling an Oracle Data Redaction Policy in Enterprise Manager 15-16
15.5.6 Deleting an Oracle Data Redaction Policy Using Enterprise Manager 15-16
15.6 Managing Named Data Redaction Policy Expressions Using Enterprise Manager 15-17
15.6.1 About Named Data Redaction Policy Expressions in Enterprise Manager 15-17
15.6.2 Creating a Named Data Redaction Policy Expression in Enterprise Manager 15-18
15.6.3 Editing a Named Data Redaction Policy Expression in Enterprise Manager 15-19
15.6.4 Viewing Named Data Redaction Policy Expressions in Enterprise Manager 15-20
15.6.5 Deleting a Named Data Redaction Policy Expression in Enterprise Manager 15-20
16 Using Oracle Data Redaction with Oracle Database Features
16.1 Oracle Data Redaction General Usage Guidelines 16-2
16.2 Oracle Data Redaction and DML and DDL Operations 16-3
16.3 Oracle Data Redaction and Nested Functions, Inline Views, and the WHERE Clause 16-3
16.4 Oracle Data Redaction and Queries on Columns Protected by Data Redaction
Policies 16-4
16.5 Oracle Data Redaction and Database Links 16-4
16.6 Oracle Data Redaction and Aggregate Functions 16-4
16.7 Oracle Data Redaction and Object Types 16-5
16.8 Oracle Data Redaction and XML Generation 16-5
16.9 Oracle Data Redaction and Editions 16-5
16.10 Oracle Data Redaction and Oracle Data Warehouse Query Rewrite Operation 16-5
16.11 Oracle Data Redaction in a Multitenant Environment 16-5
16.12 Oracle Data Redaction and Oracle Virtual Private Database 16-6
16.13 Oracle Data Redaction and Oracle Database Real Application Security 16-6
16.14 Oracle Data Redaction and Oracle Database Vault 16-6
16.15 Oracle Data Redaction and Oracle Data Pump 16-7
16.15.1 Oracle Data Pump Security Model for Oracle Data Redaction 16-7
16.15.2 Export of Objects That Have Oracle Data Redaction Policies Defined 16-7
16.15.2.1 Finding Type Names Used by Oracle Data Pump 16-8
16.15.2.2 Exporting Only the Data Dictionary Metadata Related to Data Redaction
Policies 16-8
16.15.2.3 Importing Objects Using the INCLUDE Parameter in IMPDP 16-9
16.15.3 Export of Data Using the EXPDP Utility access_method Parameter 16-9
16.15.4 Import of Data into Objects Protected by Oracle Data Redaction 16-10
16.16 Oracle Data Redaction and Data Masking and Subsetting Pack 16-10
16.17 Oracle Data Redaction and JSON 16-11
17 Security Considerations for Oracle Data Redaction
17.1 Oracle Data Redaction General Security Guidelines 17-1
17.2 Restriction of Administrative Access to Oracle Data Redaction Policies 17-2

ORACLE

XVii

17.3 How Oracle Data Redaction Affects the SYS, SYSTEM, and Default Schemas 17-2
17.4 Policy Expressions That Use SYS_CONTEXT Attributes 17-3
17.5 Oracle Data Redaction Policies on Materialized Views 17-3
17.6 REDACTION_COLUMNS Data Dictionary View Behavior When a View Is Invalid 17-3
17.7 Dropped Oracle Data Redaction Policies When the Recycle Bin Is Enabled 17-4
Glossary

Index

ORACLE

XVviil

Preface

Welcome to Oracle Database Advanced Security Guide. This guide describes how to
implement, configure, and administer Transparent Data Encryption (TDE) and Oracle Data
Redaction.

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

Audience

Oracle Database Advanced Security Guide is intended for users and systems professionals
involved with the implementation, configuration, and administration of Oracle Advanced
Security including:

* Implementation consultants
e System administrators
e Security administrators

» Database administrators (DBAS)

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Related Documents

Before you configure Oracle Advanced Security features, you should be familiar with the
following guides:

* Oracle Database Administrator’s Guide

* Oracle Database Security Guide

e Oracle Database SQL Language Reference

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Multitenant Administrator's Guide

ORACLE XiX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

Many books in the documentation set use the sample schemas of the default database. Refer
to Oracle Database Sample Schemas for information about how these schemas were created
and how you can use them.

Oracle Technical Services

To download the product data sheet, frequently asked questions, links to the latest product
documentation, product download, and other collateral, visit Oracle Technical Resources
(formerly Oracle Technology Network). You must register online before using Oracle Technical
Services. Registration is free and can be done at

https://www.oracle.com/technical-resources/

My Oracle Support

You can find information about security patches, certifications, and the support knowledge
base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

XX

https://www.oracle.com/technical-resources/
https://support.oracle.com

Changes in This Release for Oracle Database
Advanced Security Guide

This preface contains:

Changes in Oracle Database Advanced Security 19c¢

Updates to Oracle Advanced Database Security 19¢

Changes in Oracle Database Advanced Security 19c

The following are changes in Oracle Database Advanced Security Guide for Oracle Database
19c.

Improved Key Management Support for Encrypting Oracle-Managed Tablespaces
In this release, closing a TDE keystore is now allowed even when the Oracle-managed
tablespaces (SYSTEM, SYSAUX, TEMP, and UNDO tablespaces) are encrypted.

Transparent Online Conversion Support for Auto-Renaming in Non-Oracle-Managed Files
Mode

Starting with this release, online tablespace encryption no longer requires you to specify
the FILE NAME CONVERT clause in the ALTER TABLESPACE ENCRYPT SQL statement. The file
names will retain their original names.

Support for More Algorithms for Offline Tablespace Encryption

In previous releases, only the AES128 encryption algorithm was supported for offline
tablespace encryption. In addition to AES128, this release introduces support for the AES192
and AES256 encryption algorithms, as well as ARIA, GOST, and 3DES encryption algorithms
for offline tablespace encryption.

Improved Key Management Support for Encrypting Oracle-Managed

Tablespaces

ORACLE

In this release, closing a TDE keystore is now allowed even when the Oracle-managed
tablespaces (SYSTEM, SYSAUX, TEMP, and UNDO tablespaces) are encrypted.

Internal operations on these tablespaces when they are encrypted continue to be unaffected
even when the TDE keystore is in the CLOSED state.

Closing the TDE keystore has no effect on queries of an encrypted SYSTEM, SYSAUX, TEMP, or
UNDO tablespace, unlike queries of a user-created tablespace, which continue to return an
ORA-28365 wallet is not open error when the TDE keystore is closed.

User-initiated operations such as decrypt on any encrypted Oracle-managed tablespace still
require the TDE keystore to be in the OPEN state.

XXI

Changes in This Release for Oracle Database Advanced Security Guide

Related Topics

* Impact of a Closed TDE Keystore on Encrypted Tablespaces
A TDE keystore can be closed or migrated when an Oracle-managed tablespace is
encrypted, and the database system itself must be shut down to disallow operations on an
Oracle-managed tablespace.

Transparent Online Conversion Support for Auto-Renaming in Non-Oracle-
Managed Files Mode

Starting with this release, online tablespace encryption no longer requires you to specify the
FILE NAME CONVERT clause in the ALTER TABLESPACE ENCRYPT SQL statement. The file names
will retain their original names.

This enhancement helps to prevent you from having to rename files back to the original name
afterward, sometimes missing files.

Related Topics

* Encrypting an Existing Tablespace with Online Conversion
To encrypt an existing tablespace with online conversion, use ALTER TABLESPACE with the
ONLINE and ENCRYPT clauses.

Support for More Algorithms for Offline Tablespace Encryption

In previous releases, only the AES128 encryption algorithm was supported for offline tablespace
encryption. In addition to AES128, this release introduces support for the AES192 and AES256
encryption algorithms, as well as ARIA, GOST, and 3DES encryption algorithms for offline
tablespace encryption.

This enhancement benefits scenarios in which you have concerns about auxiliary space usage
required by online tablespace encryption.

Related Topics

e About Encryption Conversion for Tablespaces and Databases
The CREATE TABLESPACE SQL statement can be used to encrypt new tablespaces. ALTER
TABLESPACE can encrypt existing tablespaces.

e Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128-bit length cipher key.

Updates to Oracle Advanced Database Security 19¢

ORACLE

Oracle Advanced Database Security release 19¢ has one update from the last update of
release 19c.

e Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery Configurations
Available for Oracle Database release 19.16, Oracle Data Guard enables you to decrypt
redo operations in hybrid cloud disaster recovery configurations where the Cloud database
is encrypted with TDE and the on-premises database is not.

XX

Changes in This Release for Oracle Database Advanced Security Guide

Oracle Data Guard Redo Decryption for Hybrid Disaster Recovery
Configurations

ORACLE

Available for Oracle Database release 19.16, Oracle Data Guard enables you to decrypt redo
operations in hybrid cloud disaster recovery configurations where the Cloud database is
encrypted with TDE and the on-premises database is not.

Hybrid disaster recovery is often considered a quick-stepping stone to cloud adoption. By
enabling the ability to quickly configure disaster recovery even in cases where on-premises
databases might not already be encrypted with TDE, the steps required to configure hybrid
disaster recovery environments are reduced while still ensuring that redo data is still encrypted
during the transportation process.

To enable this feature, Oracle Database introduces the TABLESPACE ENCRYPTION initialization
parameter, which enables you to control the automatic encryption of tablespaces in both the
primary and standby databases, for on-premises and Oracle Cloud Infrastructure (OCI)
environments. For example, an on-premises database can be unencrypted and an OCI
database can be encrypted.

Related Topics

e Encryption of Tablespaces in an Oracle Data Guard Environment
You can control tablespace encryption in the primary and standby databases in an Oracle
Data Guard environment.

XXIii

Introduction to Oracle Advanced Security

Two features comprise Oracle Advanced Security: Transparent Data Encryption and Oracle
Data Redaction.

e Transparent Data Encryption
Transparent Data Encryption (TDE) transparently encrypts data at rest and is transparent
to database users and applications.

e Oracle Data Redaction
Data Redaction enables you to dynamically mask data as it is selected from the Oracle
Database.

1.1 Transparent Data Encryption

Transparent Data Encryption (TDE) transparently encrypts data at rest and is transparent to
database users and applications.

Use TDE to protect sensitive data from attacks that bypass the database and attempt to
directly read the underlying database files. Examples of this type of attack might include
ransomware (most ransomware also scrapes data from disk and infiltrates it for use in extortion
attempts), lost, or stolen backup files, or direct access to the stored data using operating
system tools like strings or cat. You can encrypt individual columns in a database table, or you
can encrypt an entire tablespace. In almost all cases, tablespace encryption should be your
first choice.

To use Transparent Data Encryption, you do not need to modify your applications. TDE
enables your applications to continue working seamlessly as before. It automatically encrypts
data when it is written to disk, and then automatically decrypts the data when your applications
access it. Key management is built-in, eliminating the complex task of managing and securing
encryption keys.

1.2 Oracle Data Redaction

ORACLE

Data Redaction enables you to dynamically mask data as it is selected from the Oracle
Database.

Unlike the static data masking (see Oracle Data SafeOracle Data Safe or Oracle Data Masking
and SubsettingOracle Data Masking and Subsetting for more information on this type of
masking), Oracle Data Redaction does not actually change the stored data. It simply alters the
presentation of that data at query time to prevent disclosure of sensitive information for those
sessions that should not be able to view the actual data values, while still making the data
available to authorized users under acceptable session conditions.

Data Redaction performs the redaction before the data is returned by the SQL query.
Redaction is suited for production systems when you want to selectively obfuscate selected
sensitive data for certain database users. While the data is being redacted, Oracle Database is
able to process all of the data normally and to preserve the back-end referential integrity
constraints. Data redaction can help you to comply with industry regulations such as Payment
Card Industry Data Security Standard (PCl DSS) and the Sarbanes-Oxley Act by minimizing
exposure of sensitive data such as Pl to unauthorized persons.

1-1

https://docs.oracle.com/en-us/iaas/data-safe/index.html
https://www.oracle.com/security/database-security/data-masking/

Using Transparent Data Encryption

ORACLE

Part | describes how to use Transparent Data Encryption.

Quick-start Setup Guide for Wallet Based Transparent Data Encryption

Introduction to Transparent Data Encryption

Transparent data encryption enables you to encrypt database data files or selected
columns of data. This helps you protect sensitive data contained in your database, such as
credit card numbers or Social Security numbers.

Configuring Transparent Data Encryption
You can configure software or external keystores, for use on both individual table columns
or entire tablespaces.

Managing the Keystore and the Master Encryption Key
You can modify settings for the keystore and TDE master encryption key, and store Oracle
Database and store Oracle GoldenGate secrets in a keystore.

Managing Keystores and TDE Master Encryption Keys in United Mode
United mode enables you to create a common keystore for the CDB and the PDBs for
which the keystore is in united mode.

Managing Keystores and TDE Master Encryption Keys in Isolated Mode
Isolated mode enables you to create a keystore for each pluggable database (PDB).

General Considerations of Using Transparent Data Encryption
When you use Transparent Data Encryption, you should consider factors such as security,
performance, and storage overheads.

Using Transparent Data Encryption with Other Oracle Features
You can use Oracle Data Encryption with other Oracle features, such as Oracle Data
Guard or Oracle Real Application Clusters.

Frequently Asked Questions About Transparent Data Encryption
Users frequently have questions about transparency and performance issues with
Transparent Data Encryption.

Using sqlnet.ora to Configure Transparent Data Encryption Keystores
Configuring TDE with sqlnet.ora parameters has been deprecated, but is still possible
depending on your database configuration.

Quick-start Setup Guide for Wallet Based
Transparent Data Encryption

1. Create the directories that will hold the TDE wallet (a PKCS#12 container that is encrypted
with a key that is derived from the TDE wallet password).
The last two commands change the ownership of the directories to oracle:oinstall and
reduce the file privileges to the minimum:

The ORACLE SID in this example is finance:
mkdir -pv /etc/ORACLE/KEYSTORES/finance/tde seps

chown -Rv oracle:oinstall /etc/ORACLE
chmod -Rv 700 /etc/ORACLE

2. Set static system parameter WALLET ROOT to the directory that you just created:

SYS> alter system set WALLET ROOT = '/etc/ORACLE/KEYSTORES/$ORACLE SID'
scope = spfile;

3. Set the static TABLESPACE ENCRYPTION parameter to AUTO ENABLE, So that all new
tablespaces are encrypted, even if the encryption key-words are not part of the create
tablespace commands:

SYS> alter system set TABLESPACE ENCRYPTION = AUTO ENABLE scope = spfile;

4. Restart the database to activate those two parameters.

5. The next parameter defines AES256 as the default encryption encryption algorithm (it
needs to be executed before the create keystore command, otherwise the default
encryption algorithm remains AES128).

SYS> alter system set " TABLESPACE ENCRYPTION DEFAULT ALGORITHM" =
'AES256"' scope = both;

6. The last parameter configures the database to use a TDE wallet for file-based TDE setup:

SYS> alter system set TDE CONFIGURATION = "KEYSTORE CONFIGURATION=FILE"
scope = both;

7. Create a new password-protected and local auto-open TDE wallet; the local auto-open
wallet enables automatic database restarts without DBA intervention to open the
password-protected TDE wallet:

ORACLE o1

ORACLE

Chapter 2

(N.B.: This command also creates the <WALLET ROOT>/tde directory)

SYSKM> administer key management CREATE KEYSTORE identified by <wallet-
pwd>;

SYSKM> administer key management CREATE LOCAL AUTO LOGIN KEYSTORE from
keystore identified by <wallet-pwd>;

Add the TDE wallet password as a secret into another (local) auto-open wallet in
<WALLET ROOT>/tde_ seps. This allows you to hide the TDE wallet password from the
SQL*Plus command line and replace it with EXTERNAL STORE:

SYSKM> administer key management ADD SECRET '<wallet-pwd>' for client
'"TDE_WALLET' to LOCAL auto login keystore '/etc/ORACLE/KEYSTORES/finance/
tde seps';

In the root container database, set the first TDE master key:

SYSKM> administer key management SET KEY force keystore identified by
EXTERNAL STORE with backup container = current;

10. Create either a united or isolated PDB:

« United PDBIn the PDB, set the first TDE master key:

SYSKM:FINPDB19C> administer key management SET KEY force keystore
identified by EXTERNAL STORE with backup;

* Isolated PDB
a. :Create an isolated PDB with its own individual keystore and keystore password:

SYSKM:FINPDB19C> administer key management CREATE KEYSTORE
identified by <PDB-wallet-pwd>;

This next command does three things:
i. Itsets TDE CONFIGURATION to FILE for the isolated PDB
ii. Itcreates the <PDB_GUID>/tde directories under <WALLET ROOT>

iii. It creates an individual wallet for the PDB, with its own TDE wallet password
(that is potentially unknown to the DBA of the root container)

b. Create a (local) auto-open wallet for the isolated PDB:

SYSKM:FINPDB19C> administer key management CREATE LOCAL AUTO LOGIN
KEYSTORE from keystore identified by <PDB-wallet-pwd>;

c. Create the directory <WALLET ROOT>/<PDB_GUID>/tde_seps by executing the
output of the following command:

SYS:FINPDB19C> select ' host mkdir -pvm700 '''||v.value||'/"]||
guid||'/tde seps'';"' from vSpdbs, vSparameter v where v.name like
'$root%';

2-2

ORACLE

11.

12.

Chapter 2

d. Add the TDE wallet password as a secret into the wallet in <WALLET ROOT>/
<PDB_GUID>/tde seps by executing the output of the following command. This
allows you to hide the TDE wallet password of the isolated PDB from the
SQL*Plus command line and replace it with EXTERNAL STORE:

SYS:FINPDB19C> select ' administer key management ADD SECRET ''<PDB-
wallet-pwd>"'' for client ''TDE WALLET'' to LOCAL auto login

keystore '''||v.valuel||'/'||guid||'/tde seps/'';' from v$pdbs,
vSparameter v where v.name like '%root%';

Encrypt the tablespaces in the PDB:

SYS:FINPDB19C> alter tablespace USERS encryption ONLINE encrypt;
SYS:FINPDB19C> alter tablespace SYSTEM encryption ONLINE encrypt;
SYS:FINPDB19C> alter tablespace SYSAUX encryption ONLINE encrypt;

Confirm:

SYS> select c.name as PDB NAME, t.name as TBS NAME, e.ENCRYPTIONALG as
ALG, e.STATUS from vStablespace t, vSencrypted tablespaces e, vScontainers
c where e.ts# = t.ts# and e.con _id = t.con id and e.con id = c.con id
order by e.con_id, t.name;

PDB NAME TBS_NAME ALG STATUS
FINPDB19C SYSAUX AES256 NORMAL
FINPDB19C SYSTEM AES256 NORMAL
FINPDB19C USERS AES256 NORMAL

2-3

Introduction to Transparent Data Encryption

Transparent data encryption enables you to encrypt database data files or selected columns of
data. This helps you protect sensitive data contained in your database, such as credit card
numbers or Social Security numbers.

e What Is Transparent Data Encryption?
Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in
tables and tablespaces. It also enables you to encrypt database backups.

« Benefits of Using Transparent Data Encryption
Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, helps
address compliance requirements, and provides functionality that streamlines encryption
operations.

e Who Can Configure Transparent Data Encryption?
You must be granted the ADMINISTER KEY MANAGEMENT system privilege to configure
Transparent Data Encryption (TDE).

* Types and Components of Transparent Data Encryption
Transparent Data Encryption can be applied to individual columns or entire tablespaces.

* How the Multitenant Option Affects Transparent Data Encryption
In a multitenant environment, you can configure keystores for either the entire container
database (CDB) or for individual pluggable databases (PDBS).

3.1 What Is Transparent Data Encryption?

ORACLE

Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in
tables and tablespaces. It also enables you to encrypt database backups.

After the data is encrypted, this data is transparently decrypted for authorized users or
applications when they access this data. TDE helps protect data stored on media (also called
data at rest) in the event that the storage media or data file is stolen.

Oracle Database uses authentication, authorization, and auditing mechanisms to secure data
in the database, but not in the operating system data files where data is stored. To protect
these data files, Oracle Database provides Transparent Data Encryption (TDE). TDE encrypts
sensitive data stored in data files. To prevent unauthorized decryption, TDE stores the
encryption keys in a security module that is external to the database. This security module can
be referred to as follows:

* TDE wallets are wallets used for TDE. They cannot contain other security artifacts such as
certificates. In previous releases, they were called software keystores or just wallets.

« External keystores refer to Oracle Key Vault or Oracle Cloud Infrastructure (OCI) Key
Management Service (KMS).

* Keystores is a generic term for both TDE wallets and external keystores.

You can configure Oracle Key Vault as part of the TDE implementation. This enables you to
centrally manage keystores in your enterprise. For example, you can upload a TDE wallet to
Oracle Key Vault, migrate the database to use Oracle Key Vault as the default keystore, and
then share the contents of this keystore with other primary and standby Oracle Real

3-1

Chapter 3
Benefits of Using Transparent Data Encryption

Application Clusters (Oracle RAC) nodes of that database to streamline daily database
administrative operations with encrypted databases.

Related Topics

e Oracle Key Vault Administrator's Guide

3.2 Benefits of Using Transparent Data Encryption

Transparent Data Encryption (TDE) ensures that sensitive data is encrypted, helps address
compliance requirements, and provides functionality that streamlines encryption operations.

Benefits are as follows:

* As a security administrator, you can be sure that sensitive data is encrypted and therefore
safe in the event that the storage media or data file is stolen.

» Using TDE helps you address security-related regulatory compliance issues.

* You do not need to create auxiliary tables, triggers, or views to decrypt data for the
authorized user or application. Data from tables is transparently decrypted for the database
user and application. An application that processes sensitive data can use TDE to provide
strong data encryption with little or no change to the application.

« Data is transparently decrypted for database users and applications that access this data.
Database users and applications do not need to be aware that the data they are accessing
is stored in encrypted form.

* You can encrypt data with zero downtime on production systems by using online table
redefinition or you can encrypt it offline during maintenance periods.

* You do not need to modify your applications to handle the encrypted data. The database
manages the data encryption and decryption.

» Oracle Database automates TDE master encryption key and keystore management
operations. The user or application does not need to manage TDE master encryption keys.

3.3 Who Can Configure Transparent Data Encryption?

ORACLE

You must be granted the ADMINISTER KEY MANAGEMENT system privilege to configure
Transparent Data Encryption (TDE).

If you must open the keystore at the mount stage, then you must be granted the SYSkM
administrative privilege, which includes the ADMINISTER KEY MANAGEMENT system privilege and
other necessary privileges.

When you grant the sYskM administrative privilege to a user, ensure that you create a password
file for it so that the user can connect to the database as SYSkM using a password. This enables
the user to perform actions such as querying the VSDATABASE view.

To use TDE, you do not need the SYSKM or ADMINISTER KEY MANAGEMENT privileges. You must
have the following additional privileges to encrypt table columns and tablespaces:

e CREATE TABLE

e ALTER TABLE

° CREATE TABLESPACE

¢ ALTER TABLESPACE (for online and offline tablespace encryption)

e ALTER DATABASE (for fast offline tablespace encryption)

3-2

Chapter 3
Types and Components of Transparent Data Encryption

3.4 Types and Components of Transparent Data Encryption

Transparent Data Encryption can be applied to individual columns or entire tablespaces.

e About Transparent Data Encryption Types and Components
You can encrypt sensitive data at the column level or the tablespace level.

* How Transparent Data Encryption Tablespace Encryption Works
Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an entire
tablespace.

e How Transparent Data Encryption Column Encryption Works
Transparent Data Encryption (TDE) column encryption protects confidential data, such as
credit card and Social Security numbers, that is stored in table columns.

* How the Keystore for the Storage of TDE Master Encryption Keys Works
To control the encryption, you use a keystore and a TDE master encryption key.

e Supported Encryption and Integrity Algorithms
The supported Advanced Encryption Standard cipher keys, including tablespace and
database encryption keys, can be either 128, 192, or 256 bits long. Tablespace and
database encryption use the 128-bit length cipher key.

3.4.1 About Transparent Data Encryption Types and Components

You can encrypt sensitive data at the column level or the tablespace level.

At the column level, you can encrypt sensitive data in application table columns. TDE
tablespace encryption enables you to encrypt all of the data that is stored in a tablespace.

Both TDE column encryption and TDE tablespace encryption use a two-tiered key-based
architecture. Unauthorized users, such as intruders who are attempting security attacks,

cannot read the data from storage and back up media unless they have the TDE master

encryption key to decrypt it.

3.4.2 How Transparent Data Encryption Tablespace Encryption Works

ORACLE

Transparent Data Encryption (TDE) tablespace encryption enables you to encrypt an entire
tablespace.

All of the objects that are created in the encrypted tablespace are automatically encrypted.
TDE tablespace encryption is useful if your tables contain sensitive data in multiple columns, or
if you want to protect the entire table and not just individual columns. You do not need to
perform a granular analysis of each table column to determine the columns that need
encryption.

In addition, TDE tablespace encryption takes advantage of bulk encryption and caching to
provide enhanced performance. The actual performance impact on applications can vary.

TDE tablespace encryption encrypts all of the data stored in an encrypted tablespace including
its redo data. TDE tablespace encryption does not encrypt data that is stored outside of the
tablespace. For example, BFILE data is not encrypted because it is stored outside the
database. If you create a table with a BFILE column in an encrypted tablespace, then this
particular column will not be encrypted.

All of the data in an encrypted tablespace is stored in encrypted format on the disk. Data is
transparently decrypted for an authorized user having the necessary privileges to view or

3-3

Chapter 3
Types and Components of Transparent Data Encryption

modify the data. A database user or application does not need to know if the data in a
particular table is encrypted on the disk. In the event that the data files on a disk or backup
media is stolen, the data remains protected.

TDE tablespace encryption uses the two-tiered, key-based architecture to transparently
encrypt (and decrypt) tablespaces. The TDE master encryption key is stored in a security
module (Oracle wallet, Oracle Key Vault, or Oracle Cloud Infrastructure (OCI) Key
Management Service (KMS)). This TDE master encryption key is used to encrypt the TDE
tablespace encryption key, which in turn is used to encrypt and decrypt data in the tablespace.

Figure 3-1 shows an overview of the TDE tablespace encryption process.

Figure 3-1 TDE Tablespace Encryption

TDE Tablespace Encryption

!Mmab—ase/

Encrypt/
Decrypt

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

TDE Tablespace |

h Encryption Key |
TDE Master 1
Encryption Key] 1
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Encrypted Data Files

Exterhr;lzldi?:urity Tablespace
(Software/Hardware Encrypt/
Keystore) Decrypt
TDE Tablespace

Encryption Key

AN AN AN
ee'! |lee' | |e@!
@@ @@ @@
e |(ee'! | |ew@!

Encrypted Data Files

Tablespace

< Note:

The encrypted data is protected during operations such as JOIN and SORT. This
means that the data is safe when it is moved to temporary tablespaces. Data in undo
and redo logs is also protected.

TDE tablespace encryption also allows index range scans on data in encrypted tablespaces. It
does not interfere with Exadata Hybrid Columnar Compression (EHCC), Oracle Advanced
Compression, or Oracle Recovery Manager (Oracle RMAN) compression. This is not possible
with TDE column encryption.

ORACLE 34

Chapter 3
Types and Components of Transparent Data Encryption

3.4.3 How Transparent Data Encryption Column Encryption Works

ORACLE

Transparent Data Encryption (TDE) column encryption protects confidential data, such as
credit card and Social Security numbers, that is stored in table columns.

TDE column encryption uses the two-tiered key-based architecture to transparently encrypt
and decrypt sensitive table columns. The TDE master encryption key is stored in an external
keystore, which can be an Oracle wallet or in Oracle Key Vault. The Oracle wallet is a
PKCS#12 container for certificates and encryption keys. It is encrypted with an AES256 key
that is derived from the TDE wallet password. This TDE master encryption key encrypts and
decrypts the TDE table key, which in turn encrypts and decrypts data in the table column.

Figure 3-2 shows an overview of the TDE column encryption process.

Figure 3-2 TDE Column Encryption Overview

Qhase/

, Encrypt/Decrypt h h
TDE Master "

Encryption Key TDE Table Egg:¥3:/
Keys

External Security

Module Data Dicti
(Software/Hardware ala Dictionary

Keystore)

SNo Name Credit Card
No.

1. | SCOTT | #1&*1%@)$(
2. | JOHN | #%s&*@!)$(

3. MARY |@!@*!$%)#&

As shown in Figure 3-2, the TDE master encryption key is stored in an external security
module that is outside of the database and accessible only to a user who was granted the
appropriate privileges. For this external security module, Oracle Database uses an Oracle TDE
wallet (TDE wallet, in previous releases) or Oracle Key Vault. Storing the TDE master
encryption key in this way prevents its unauthorized use.

Using an external security module separates ordinary program functions from encryption
operations, making it possible to assign separate, distinct duties to database administrators
and security administrators. Security is enhanced because the keystore password can be
unknown to the database administrator, requiring the security administrator to provide the
password.

3-5

Chapter 3
Types and Components of Transparent Data Encryption

When a table contains encrypted columns, TDE uses a single TDE table key regardless of the
number of encrypted columns. Each TDE table key is individually encrypted with the TDE
master encryption key.

3.4.4 How the Keystore for the Storage of TDE Master Encryption Keys

Works

To control the encryption, you use a keystore and a TDE master encryption key.

About the Keystore Storage of TDE Master Encryption Keys
Oracle Database provides a key management framework for Transparent Data Encryption
(TDE) that stores and manages keys and credentials.

Benefits of the Keystore Storage Framework
The key management framework provides several benefits for Transparent Data
Encryption.

Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure
(OCI) key management systems (KMS).

3.4.4.1 About the Keystore Storage of TDE Master Encryption Keys

Oracle Database provides a key management framework for Transparent Data Encryption
(TDE) that stores and manages keys and credentials.

The key management framework includes the keystore to securely store the TDE master
encryption keys and the management framework to securely and efficiently manage keystore
and key operations for various database components.

The Oracle keystore stores a history of retired TDE master encryption keys, which enables you
to rotate the TDE master encryption key, and still be able to decrypt data (for example, for
incoming Oracle Recovery Manager (Oracle RMAN) backups) that was encrypted under an
earlier TDE master encryption key.

3.4.4.2 Benefits of the Keystore Storage Framework

The key management framework provides several benefits for Transparent Data Encryption.

ORACLE

Enables separation of duty between the database administrator and the security
administrator who manages the keys. You can grant the ADMINISTER KEY MANAGEMENT Or
SYSKM privilege to users who are responsible for managing the keystore and key
operations.

Facilitates compliance, because it helps you to track encryption keys and implement
requirements such as keystore password rotation and TDE master encryption key re-key
operations. Both wallet password rotations and TDE master key re-key operation do not
require database or application downtime.

Facilitates and helps enforce keystore backup requirements. A backup is a copy of the
password-protected TDE wallet that is created for all of the critical keystore operations.

The mandatory WITH BACKUP clause of the ADMINISTER KEY MANAGEMENT statement creates
a backup of the password-protected wallet before the changes are applied to the original
password-protected wallet.

Enables the keystore to be stored on an Oracle Automatic Storage Management (Oracle
ASM) file system. This is particularly useful for Oracle Real Application Clusters (Oracle

3-6

Chapter 3
Types and Components of Transparent Data Encryption

RAC) environments where database instances share a unified file system view. In Oracle
RAC, you must store the Oracle wallet in a shared location (Oracle ASM or Oracle
Advanced Cluster File System (ACFS)), to which all Oracle RAC instances that belong to
one database, have access to. Individual TDE wallets for each Oracle RAC instances are
not supported.

Enables reverse migration from an external keystore to a file system-based TDE wallet.
This option is useful if you must migrate back to a TDE wallet.

3.4.4.3 Types of Keystores

ORACLE

Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure
(OCI) key management systems (KMS).

Figure 3-3 illustrates the types of keystores that Oracle Database supports.

Figure 3-3 Oracle Database Supported Keystores

Keystore
Software External Key
Keystore Manager
Auto-Login Local Auto-Login Password-Protected Oracle Key Vault OCl Vault - Key
Keystore Keystore Keystore (OKV) Management

These keystores are as follows:

Auto-login TDE wallets: Auto-login TDE wallets are protected by a system-generated
password, and do not need to be explicitly opened by a security administrator. Auto-login
TDE wallets are automatically opened when accessed at database startup. Auto-login TDE
wallets can be used across different systems. If your environment does not require the
extra security provided by a keystore that must be explicitly opened for use, then you can
use an auto-login TDE wallet. Auto-login TDE wallets are ideal for unattended scenarios
(for example, Oracle Data Guard standby databases).

Local auto-login TDE wallets: Local auto-login TDE wallets are auto-login TDE wallets
that are local to the computer on which they are created. Local auto-login keystores cannot
be opened on any computer other than the one on which they are created. This type of
keystore is typically used for scenarios where additional security is required (that is, to limit
the use of the auto-login for that computer) while supporting an unattended operation. You
cannot use local auto-open wallets in Oracle RAC-enabled databases, because only
shared wallets (in ACFS or ASM) are supported.

Password-protected TDE wallets: Password-protected TDE wallets are protected by
using a password that you create. You must open this type of keystore before the keys can
be retrieved or used and use a password to open this type of keystore.

TDE wallets can be stored in Oracle Automatic Storage Management (Oracle ASM), Oracle
Automatic Storage Management Cluster File System (Oracle ACFS), or regular file systems.

3-7

Chapter 3
Types and Components of Transparent Data Encryption

Under External Keystore Manager are the following categories:

e Oracle Key Vault (OKV): Oracle Key Vault is a software appliance that provides
continuous key availability and scalable key management through clustering with up to 16
Oracle Key Vault nodes, potentially deployed across geographically distributed data
centers. It is purpose-built for Oracle Database and its many deployment models (Oracle
RAC, Oracle Data Guard, Exadata, multitenant environments). In addition, Oracle Key
Vault provides online key management for Oracle GoldenGate encrypted trail files and
encrypted ACFS. It is also certified for ExaDB-C@C and Autonomous Database
(dedicated) (ADB-C@C). Oracle Key Vault is distributed as a full-stack software appliance
for installation on dedicated hardware. It is also available in the OCI Marketplace and can
be deployed in your OCI tenancy quickly and easily. See the video Deploying Oracle Key
Vault in OCI.

e OCI Vault - Key Management: The Oracle Cloud Infrastructure (OCI) Key Management
Service (KMS) is a cloud-based service that provides centralized management and control
of encryption keys for data stored in OCI. It enables integration of encryption with other
OCI services such as storage, database, and Fusion Applications for protecting data
stored in these services.

Related Topics

* Oracle Key Vault Administrator's Guide

3.4.5 Supported Encryption and Integrity Algorithms

ORACLE

The supported Advanced Encryption Standard cipher keys, including tablespace and database
encryption keys, can be either 128, 192, or 256 bits long. Tablespace and database encryption
use the 128-bit length cipher key.

for TDE column encryption, salt is added by default to plaintext before encryption unless
specified otherwise. You cannot add salt to indexed columns that you want to encrypt. For
indexed columns, choose the NO SALT parameter for the SQL ENCRYPT clause.

For TDE tablespace encryption and database encryption, the default is to use the Advanced
Encryption Standard with a 128-bit length cipher key (AES128). By default, Transparent Data
Encryption (TDE) column encryption uses the Advanced Encryption Standard (AES) with a
192-bit length cipher key (AES192).

You can change encryption algorithms and encryption keys on existing encrypted columns by
setting a different algorithm with the SQL ENCRYPT clause.

Table 3-1 lists the supported encryption algorithms.

Table 3-1 Supported Encryption Algorithms for Transparent Data Encryption
]

Algorithm Key Size Parameter Name
Advanced Encryption Standard (AES) e 128 bits (default e AES128
for tablespace e AES192
encryptlon) . AES256
e 192 bits (default
for column
encryption)
e 256 bits
ARIA e 128 bits e ARIAI28
e 192 bits e ARIAL92
e 256 bits e ARIA256

3-8

https://www.oracle.com/security/database-security/key-vault/?ytid=ULKHmTyqu6s
https://www.oracle.com/security/database-security/key-vault/?ytid=ULKHmTyqu6s

Chapter 3
How the Multitenant Option Affects Transparent Data Encryption

Table 3-1 (Cont.) Supported Encryption Algorithms for Transparent Data Encryption

Algorithm Key Size Parameter Name
GOST 256 bits GOST256
SEED 128 bhits SEED128
Triple Encryption Standard (DES) 168 hits 3DES168

For integrity protection of TDE column encryption, the sia-1 hashing algorithm is used. If you
have storage restrictions, then use the NOMAC option.

Related Topics

* Setting the Tablespace Encryption Default Algorithm
The TABLESPACE ENCRYPTION DEFAULT ALGORITHM applies to specific encryption scenarios.

3.5 How the Multitenant Option Affects Transparent Data
Encryption

ORACLE

In a multitenant environment, you can configure keystores for either the entire container
database (CDB) or for individual pluggable databases (PDBS).

Oracle Database supports the following multitenant modes for the management of keystores:

< United mode enables you to configure one keystore for the CDB root and any associated
united mode PDBs. United mode operates much the same as how TDE was managed in
an multitenant environment in previous releases.

» |solated mode enables you to create and manage both keystores and TDE master
encryption keys in an individual PDB. Different isolated mode PDBs can have different
keystore types.

Oracle Database supports isolated PDBs with TDE wallets (wallets) and Oracle Key Vault. The
cloud tooling in Oracle Cloud Infrastructure (OCI) and the OCI Key Management Service
(KMS), do not support isolated PDBs. This includes Oracle Exadata Cloud@ Customer
(ExaDB-C@C), Autonomous Database Cloud@Customer (ADB-C@C), and Oracle Exadata
Database Service (ExaDB-D and ExaDB-D@Azure).

Depending on your site’s needs, you can use a mixture of both united mode and isolated
mode. For example, if you want most of the PDBs to use one type of a keystore, then you can
configure the keystore type in the CDB root (united mode). For the PDBs in this CDB that must
use a different type of keystore, then you can configure the PDB itself to use the keystore it
needs (isolated mode). The isolated mode setting for the PDB will override the united mode
setting for the CDB.

Before you can configure keystores for use in united or isolated mode, you must perform a
one-time configuration by using initialization parameters. To configure keystores for united
mode and isolated mode, you use the ADMINISTER KEY MANAGEMENT Statement.

Related Topics

e Managing Keystores and TDE Master Encryption Keys in United Mode
United mode enables you to create a common keystore for the CDB and the PDBs for
which the keystore is in united mode.

e Managing Keystores and TDE Master Encryption Keys in Isolated Mode
Isolated mode enables you to create a keystore for each pluggable database (PDB).

3-9

Chapter 3
How the Multitenant Option Affects Transparent Data Encryption

e Using sqlnet.ora to Configure Transparent Data Encryption Keystores
Configuring TDE with sqlnet.ora parameters has been deprecated, but is still possible
depending on your database configuration.

ORACLE 210

Configuring Transparent Data Encryption

You can configure software or external keystores, for use on both individual table columns or
entire tablespaces.

e About Configuring Transparent Data Encryption
To configure Transparent Data Encryption, you must perform a one-time setup before you
create keystores and encrypt data.

e Transparent Data Encryption Keystore Search Order
The search order for the TDE keystore depends on how you have set either the instance
initialization parameters, the sqlnet.ora parameters, or the environment variables.

e Configuring a TDE Wallet
A TDE wallet is a container for the master encryption key, and it resides in the software file
system.

« Configuring an External Keystore
There are two types of external keystores that Oracle Database supports: Oracle Key Vault
keystores and OCI Vault - Key Management keystores.

e Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

* Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

e Transparent Data Encryption Data Dynamic and Data Dictionary Views
You can query a set of dynamic and data dictionary views to find more information about
Transparent Data Encryption (TDE) data.

4.1 About Configuring Transparent Data Encryption

ORACLE

To configure Transparent Data Encryption, you must perform a one-time setup before you
create keystores and encrypt data.

Before you can begin to encrypt data, you must perform a one-time configuration using the
static WALLET ROOT parameter and the dynamic TDE CONFIGURATION parameter to designate the
location and type of keystores that you plan to use.

The WALLET ROOT parameter specifies the top directory for many different software keystores
(such as TDE, Oracle Enterprise User Security (EUS), TLS). For TDE, the directory for
automated discovery is WALLET ROOT/tde.

The TDE_CONFIGURATION parameter specifies the type of keystore (software keystore or Oracle
Key Vault). After you set the type of keystore using TDE_CONFIGURATION, when you create the
keystore, Oracle Database creates a directory within the WALLET ROOT location for the keystore
type. For example, if you set TDE _CONFIGURATION to FILE, then Oracle Database creates a TDE
wallet in WALLET ROOT/tde. To use Oracle Key Vault, install the Oracle Key Vault client software
into WALLET ROOT/okv and set TDE CONFIGURATION to OKV. To establish an auto-open Oracle
Key Vault configuration, add the Oracle Key Vault password into an auto-open wallet in

4-1

Chapter 4
Transparent Data Encryption Keystore Search Order

WALLET ROOT/tde, and set TDE CONFIGURATION to OKV|FILE. If you want to migrate from one
keystore type to another, then you must first set TDE _CONFIGURATION parameter to the keystore
type that you want to use, and then use the ADMINISTER KEY MANAGEMENT statement to perform
the migration. For example, you can migrate from a TDE keystore to OKV by setting it to OKV |
FILE.

The KEYSTORE MODE column of the VSENCRYPTION WALLET dynamic view shows whether united
mode or isolated mode has been configured. If you want to change the database default
encryption algorithm from AES128, then after you apply patch 30398099, you can set a
dynamic initialization parameter by executing the following statement:

ALTER SYSTEM SET " TABLESPACE ENCRYPTION DEFAULT ALGORITHM" = 'AES256' SCOPE
= BOTH SID = '*';

< Note:

In previous releases, the SOLNET.ENCRYPTION WALLET LOCATION parameter was used
to define the keystore directory location. This parameter has been deprecated.
Oracle recommends that you use the WALLET ROOT static initialization parameter and
TDE CONFIGURATION dynamic initialization parameter instead.

Related Topics

e Transparent Data Encryption Keystore Search Order
The search order for the TDE keystore depends on how you have set either the instance
initialization parameters, the sqlnet.ora parameters, or the environment variables.

4.2 Transparent Data Encryption Keystore Search Order

ORACLE

The search order for the TDE keystore depends on how you have set either the instance
initialization parameters, the sqlnet.ora parameters, or the environment variables.

Oracle Database retrieves the keystore by searching in these locations, in the following order:

1. The location set by the WALLET ROOT instance initialization parameter, when the
KEYSTORE CONFIGURATION attribute of the TDE CONFIGURATION initialization parameter is set
to FILE. Oracle recommends that you use this parameter to configure the keystore
location.

2. Ifthe KEYSTORE CONFIGURATION attribute of the TDE CONFIGURATION initialization parameter
is not set to FILE or WALLET ROOT is not set, then the location specified by the
WALLET LOCATION setting in the sqlnet.ora file. (Note that you cannot have multiple
WALLET LOCATION settings in this file.)

3. IfWALLET ROOT and WALLET LOCATION are not set, then the location specified by the
ENCRYPTION WALLET LOCATION parameter (now deprecated in favor of WALLET ROOT) in the
sqlnet.ora file.

4. If none of these parameters are set, and if the ORACLE BASE environment variable is set,
then the SORACLE BASE/admin/db unique name/wallet directory. If ORACLE BASE is not set,
then $ORACLE HOME/admin/db unique name/wallet.

4-2

Chapter 4
Configuring a TDE Wallet

4.3 Configuring a TDE Wallet

A TDE wallet is a container for the master encryption key, and it resides in the software file
system.

e About Configuring a TDE Wallet
A software keystore is a container that stores the TDE master encryption key.

e Step 1: Configure the TDE Wallet Location and Type
You must configure the TDE wallet location and type by setting WALLET ROOT in init.ora
and TDE_CONFIGURATION in the database instance.

e Step 2: Create the TDE Wallet
After you have specified a directory location for the software keystore, you can create the
TDE wallet.

e Step 3: Open the TDE Wallet
Depending on the type of keystore you create, you must manually open the TDE wallet
before you can use it.

e Step 4: Set the TDE Master Encryption Key in the TDE Wallet
Once the TDE wallet is open, you can set a TDE master encryption key for it.

e Step 5: Encrypt Your Data
Now that you have completed the configuration, you can begin to encrypt data in the PDB.

4.3.1 About Configuring a TDE Wallet

A software keystore is a container that stores the TDE master encryption key.

Before you can configure the TDE wallet, you first must define a location for it by setting the
static initialization parameter WALLET ROOT. Then, after a database restart, you must set the
dynamic initialization parameter TDE_CONFIGURATION to instruct the database to retrieve the
master encryption key from a TDE wallet, Oracle Key Vault, or Oracle Cloud Interface (OCI)
Key Management Service (KMS), according to their documentation. The database locates this
TDE wallet by first checking the WALLET ROOT setting. If this setting has not been created, then
the database checks the sqlnet.ora file. You can create other TDE wallets, such as copies of
the wallet and export files that contain keys, depending on your needs. If you must remove or
delete the TDE wallet that you configured in the WALLET ROOT location, then you must do so
only after you copied all TDE wallets (including backups and auto-login wallets) in the old to
the new location. Then you must reset WALLET ROOT to point to the new location of the TDE
wallet.

After you configure the TDE wallet location by using the WALLET ROOT and TDE CONFIGURATION
parameters, you can log in to the CDB to create and open the keystore, and then set the TDE
master encryption key. After you complete these steps, you can begin to encrypt data.

4.3.2 Step 1: Configure the TDE Wallet Location and Type

You must configure the TDE wallet location and type by setting WALLET ROOT in init.ora and
TDE CONFIGURATION in the database instance.

1. Login to the server where the Oracle database resides.

2. If necessary, create a wallet directory.

ORACLE 43

Chapter 4
Configuring a TDE Wallet

Typically, the wallet directory is located in the $ORACLE BASE/admin/db_unique name
directory, and it is named wallet. Preferably, this directory should be empty.

Log in to the database instance as a user who has been granted the sYSpea administrative
privilege.

For example:

sqlplus sec admin as sysdba
Enter password: password

Set the WALLET ROOT static initialization parameter for the wallet directory.

The TDE wallets will be created in WALLET ROOT/tde. For example, for a database instance
named orcl:

ALTER SYSTEM SET WALLET ROOT = 'SORACLE BASE/ADMIN/ORCL/WALLET' SCOPE = SPFILE SID =

Set the TDE_CONFIGURATION parameter to specify the TDE wallet type.

For example:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore type" SCOPE=BOTH
SID = '*';

In this specification, keystore type must be set to FILE to configure a TDE wallet.

To configure a TDE keystore if the server parameter file (spfile) is in use, set scope to
both:

ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=FILE" SCOPE = BOTH SID =

Tk,
’

4.3.3 Step 2: Create the TDE Wallet

After you have specified a directory location for the software keystore, you can create the TDE
wallet.

About Creating TDE Wallets
There are three different types of TDE wallets.

Creating a Password-Protected Software Keystore
A password-protected software keystore requires a password, which is used to protect the
TDE master keys.

Creating an Auto-Login or a Local Auto-Login Software Keystore
As an alternative to password-protected keystores, you can create either an auto-login or
local auto-login software keystore.

4.3.3.1 About Creating TDE Wallets

There are three different types of TDE wallets.

ORACLE

You can create password-protected TDE wallets, auto-login TDE wallets, and local auto-login
TDE wallets.

Be aware that running the query SELECT * FROM VS$ENCRYPTION WALLET will automatically open
an auto-login TDE wallet. For example, suppose you have a password-protected TDE wallet
and an auto-login TDE wallet. If the password-protected TDE wallet is open and you close the
password-protected TDE wallet and then query the VSENCRYPTION WALLET view, then the output
will indicate that a TDE wallet is open. However, this is because VSENCRYPTION WALLET opened
up the auto-login TDE wallet and then displayed the status of the auto-login wallet.

4-4

Chapter 4
Configuring a TDE Wallet

Related Topics

e Types of Keystores
Oracle Database supports TDE wallets, Oracle Key Vault, and Oracle Cloud Infrastructure
(OCI) key management systems (KMS).

4.3.3.2 Creating a Password-Protected Software Keystore

A password-protected software keystore requires a password, which is used to protect the
TDE master keys.

A TDE wallet can only contain TDE-related security objects, and no security objects used by
other database or application components. In addition, do not use orapki or mkstore to create
password-protected or (local) auto-open TDE wallets. Instead, use the ADMINISTER KEY
MANAGEMENT statement.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

2. Use the sHOW PARAMETER command to confirm that WALLET ROOT is set, and
TDE CONFIGURATION is set to KEYSTORE CONFIGURATION=FILE.

3. Runthe ADMINISTER KEY MANAGEMENT SQL statement to create the keystore using the
following syntax:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY
software keystore password;

The /tde directory is automatically created under WALLET ROOT, if it does not already exist.
In Oracle Automatic Storage Management (Oracle ASM), for the /tde directory to be
automatically created if it does not already exist, WALLET ROOT must point to +DATA/
ORACLE UNQNAME.

In this specification, software keystore password is the password of the keystore that
you, the security administrator, creates.

For example, to create the keystore in the WALLET ROOT/tde directory:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE IDENTIFIED BY password;

keystore altered.

After you run this statement, the ewallet.pl?2 file, which is the keystore, appears in the
keystore location.

4.3.3.3 Creating an Auto-Login or a Local Auto-Login Software Keystore

ORACLE

As an alternative to password-protected keystores, you can create either an auto-login or local
auto-login software keystore.

Both of these keystores have system-generated passwords. They are also PKCS#12-based
files. The auto-login software keystore can be opened from different computers from the
computer where this keystore resides, but the local auto-login software keystore can only be
opened from the computer on which it was created. Both the auto-login and local auto-login
keystores are created from the password-protected software keystores. Creating any of them
does not require database downtime.

1. Log into the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

4-5

Chapter 4
Configuring a TDE Wallet

Confirm that WALLET ROOT is set, and TDE_CONFIGURATION is set to
KEYSTORE CONFIGURATION=FILE.

2. Create the auto-login or local auto-login keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT CREATE [LOCAL] AUTO LOGIN KEYSTORE
FROM KEYSTORE IDENTIFIED BY software keystore password;

In this specification:

e LOCAL enables you to create a local auto-login software keystore. Otherwise, omit this
clause if you want the keystore to be accessible by other computers. LOCAL creates a
local auto-login wallet file, cwallet.sso, and this wallet will be tied to the host on which
it was created. For an Oracle Real Application Clusters (Oracle RAC) environment,
omit the LOCAL keyword, because each Oracle RAC node has a different host name. If
you configure a local auto-login wallet for the Oracle RAC instance, then only the first
Oracle RAC node, where the cwallet.sso file was created, would be able to access
the software keystore. If you try to open the keystore from another node instead of
from that first node, there would be a problem auto-opening cwallet.sso, and so it
would result in a failure to auto-open the software keystore. This restriction applies if
you are using a shared location to hold the cwallet.sso file for the Oracle RAC
cluster, because using LOCAL only works if you have a separate cwallet.sso file
(containing the same credentials) on each node of the Oracle RAC environment.

* software keystore password is the password of the keystore from which you want to
create.

For example, to create an auto-login software keystore of the password-protected keystore
that is located in the/etc/ORACLE/WALLETS/tde directory:

ADMINISTER KEY MANAGEMENT CREATE AUTO LOGIN KEYSTORE
FROM KEYSTORE IDENTIFIED BY password;

keystore altered.

After you run this statement, the cwallet.sso file appears in the keystore location. The
ewallet.pl?2 file is the password-protected wallet.

Follow these guidelines:

* Do not remove the PXCS#12 wallet (ewallet.pl2 file) after you create the auto-login
keystore (.sso file). You must have the PKCS#12 wallet to regenerate or rekey the TDE
master encryption key in the future.

* Remember that Transparent Data Encryption uses an auto login keystore only if it is
available at the correct location (WALLET ROOT/tde), ENCRYPTION WALLET LOCATION, or the
default keystore location), and the SQL statement to open an encrypted keystore has not
already been executed. If you have the ENCRYPTION WALLET LOCATION parameter set, then
be aware this parameter is deprecated. Oracle recommends that you use the WALLET ROOT
static initialization parameter and TDE_CONFIGURATION dynamic initialization parameter
instead.

Related Topics

e Creating a Password-Protected Software Keystore
A password-protected software keystore requires a password, which is used to protect the
TDE master keys.

ORACLE 46

Chapter 4
Configuring a TDE Wallet

4.3.4 Step 3: Open the TDE Wallet

Depending on the type of keystore you create, you must manually open the TDE wallet before
you can use it.

e About Opening TDE Wallets
A password-protected TDE wallet must be open before any TDE master encryption keys
can be created or accessed in the TDE wallet.

e Opening a TDE Wallet
To open a TDE wallet, you must use the ADMINISTER KEY MANAGEMENT statement with the
SET KEYSTORE OPEN clause.

4.3.4.1 About Opening TDE Wallets

A password-protected TDE wallet must be open before any TDE master encryption keys can
be created or accessed in the TDE wallet.

Many Transparent Data Encryption operations require the TDE wallet to be open. There are
two ways that you can open the TDE wallet:

e Manually open the TDE wallet by issuing the ADMINISTER KEY MANAGEMENT SET KEYSTORE
OPEN statement. Afterward, you can perform the operation.

* Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT Statement that is
used to perform the operation. FORCE KEYSTORE temporarily opens the TDE wallet for the
duration of the operation, and when the operation completes, the TDE wallet is closed
again. FORCE KEYSTORE is useful for situations when the database is heavily loaded. In this
scenario, because of concurrent access to encrypted objects in the database, the auto-
login TDE wallet continues to open immediately after it has been closed but before a user
has had chance to open the password-based TDE wallet.

TDE wallets can be in the following states: open, closed, open but with no master encryption
key, open but with an unknown master encryption key, undefined, or not available (that is, not
present in the WALLET ROOT/tde location).

After you manually open a TDE wallet, it remains open until you manually close it. Each time
you restart a database instance, you must manually open the password TDE wallet to reenable
encryption and decryption operations.

You can check the status of whether a TDE wallet is open or not by querying the STATUS
column of the VSENCRYPTION WALLET View.

Related Topics

« Performing Operations That Require a Keystore Password
Many ADMINISTER KEY MANAGEMENT operations require access to a keystore password, for
both TDE wallets and external keystores.

* How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

4.3.4.2 Opening a TDE Wallet

To open a TDE wallet, you must use the ADMINISTER KEY MANAGEMENT statement with the SET
KEYSTORE OPEN clause.

ORACLE 4.7

Chapter 4
Configuring a TDE Wallet

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT Or SYSKM privilege.

2. Runthe ADMINISTER KEY MANAGEMENT statement to open the TDE wallet.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
IDENTIFIED BY TDE wallet password;
keystore altered.

To switch over to opening the password-protected TDE wallet when an auto-login keystore
is configured and is currently open, specify the FORCE KEYSTORE clause as follows.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN
FORCE KEYSTORE

IDENTIFIED BY EXTERNAL STORE;

keystore altered.

Here, the IDENTIFIED BY EXTERNAL STORE clause is included in the statement because the
TDE wallet credentials exist in an external store. This enables the password-protected
TDE wallet to be opened without specifying the TDE wallet password within the statement
itself.

If the WALLET ROOT parameter has been set, then Oracle Database finds the external store
by searching in this path: WALLET ROOT/PDB GUID/tde seps.

3. Confirm that the TDE wallet is open.
SELECT STATUS FROM V$ENCRYPTION WALLET;

Note that if the TDE wallet is open but you have not created a TDE master encryption key yet,
the STATUS column of the VSENCRYPTION WALLET view reminds you with an
OPEN NO MASTER KEY status.

4.3.5 Step 4. Set the TDE Master Encryption Key in the TDE Wallet

Once the TDE wallet is open, you can set a TDE master encryption key for it.

* About Setting the TDE Wallet TDE Master Encryption Key
The TDE master encryption key is stored in the TDE wallet.

e Setting the TDE Master Encryption Key in the TDE Wallet
To set the TDE master encryption key in a TDE wallet, use the ADMINISTER KEY
MANAGEMENT statement with the SET KEY clause.

4.3.5.1 About Setting the TDE Wallet TDE Master Encryption Key

ORACLE

The TDE master encryption key is stored in the TDE wallet.

The TDE master encryption key protects the TDE table keys and tablespace encryption keys.
By default, the TDE master encryption key is a key that TDE generates. You can find if a TDE
wallet has no TDE master encryption key set or an unknown TDE master encryption key by
querying the STATUS column of the VSENCRYPTION WALLET View.

You can import a master encryption key (bring your own key (BYOK)), that was created outside
of the database, into the TDE wallet. You can set a key for immediate use, using ADMINISTER
KEY MANAGEMENT SET, or create a key for later use, by activating it with the ADMINISTER KEY
MANAGEMENT USE KEY Statement.

4-8

Chapter 4
Configuring a TDE Wallet

Related Topics

Creating User-Defined TDE Master Encryption Keys
You can create a user-defined TDE master encryption key outside the database by
generating a TDE master encryption key ID.

Creating TDE Master Encryption Keys for Later Use
You can create a TDE master encryption key that can be activated at a later date.

4.3.5.2 Setting the TDE Master Encryption Key in the TDE Wallet

To set the TDE master encryption key in a TDE wallet, use the ADMINISTER KEY MANAGEMENT
statement with the SET KEY clause.

ORACLE

1.

Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT or SYSKM privilege.

Ensure that the database is open in READ WRITE mode.

You can set the TDE master encryption key if OPEN MODE is set to READ WRITE. To find the
status, query the OPEN MODE column of the V$DATABASE dynamic view. (If you cannot
access this view, then connect as sYSDBA and try the query again. In order to connect as
SYSkM for this type of query, you must create a password file for it.)

Set the TDE master encryption key in the software by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY

[USING TAG 'tag']

[FORCE KEYSTORE]

IDENTIFIED BY EXTERNAL STORE | software keystore password
WITH BACKUP [USING 'backup identifier'];

In this specification:

* tagis the associated attributes and information that you define. Enclose this setting in
single quotation marks (' ').

° FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

e FORCE KEYSTORE should be included if the keystore is closed. This automatically opens
the keystore before setting the TDE master encryption key. The FORCE KEYSTORE
clause also switches over to opening the password-protected TDE wallet when an
auto-login TDE wallet is configured and is currently open.

e IDENTIFIED BY specifies the TDE wallet password. Alternatively, if the TDE wallet
password is in an external store, you can use the IDENTIFIED BY EXTERNAL STORE
clause.

° WITH BACKUP creates a backup of the TDE wallet. You must use this option for
password-protected TDE wallets. Optionally, you can use the USING clause to add a
brief description of the backup. Enclose this description in single quotation marks
(" "). This identifier is appended to the named TDE wallet file (for example,
ewallet time stamp emp key backup.pl2, with emp key backup being the backup
identifier). Follow the file naming conventions that your operating system uses.

For example:

ADMINISTER KEY MANAGEMENT SET KEY

FORCE KEYSTORE

IDENTIFIED BY EXTERNAL STORE | TDE_wallet_password
WITH BACKUP USING 'emp key backup';

4-9

Chapter 4
Configuring an External Keystore

4.3.6 Step 5: Encrypt Your Data

Now that you have completed the configuration, you can begin to encrypt data in the PDB.
You can encrypt data in individual table columns or in entire tablespaces or databases.

Related Topics

e Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

* Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

4.4 Configuring an External Keystore

There are two types of external keystores that Oracle Database supports: Oracle Key Vault
keystores and OCI Vault - Key Management keystores.

e About Configuring an External Keystore
An external keystore is a separate server or device that provides security storage for
encryption keys.

e Step 1: Configure the External Keystore
You can configure the external keystore by setting the TDE CONFIGURATION parameter.

e Step 2: Open the Connection to Oracle Key Vault
After you have configured the database to use Oracle Key Vault for TDE key management,
you must open the connection to Oracle Key Vault before you can use it.

e Step 3: Set the TDE Master Encryption Key in Oracle Key Vault
After you have opened the connection to Oracle Key Vault, you are ready to set the TDE
master encryption key.

e Step 4: Encrypt Your Data in United Mode
Now that you have completed the configuration for an external keystore or for an Oracle
Key Vault keystore, you can begin to encrypt data.

4.4.1 About Configuring an External Keystore

ORACLE

An external keystore is a separate server or device that provides security storage for
encryption keys.

External keystores are external to an Oracle database. Oracle Database can interface with
external keystores but cannot manipulate them outside of the Oracle interface. The Oracle
database can request the external keystore to create a key but it cannot define how this key is
stored in an external database. (Conversely, for software keystores that are created using
TDE, Oracle Database has full control: that is, you can use SQL statements to manipulate this
type of keystore.) Examples of external keystores are Oracle Key Vault keystores. Supported
external keystores are Oracle Key Vault and the Oracle Cloud Infrastructure Vault.

To configure an external keystore, you must first include the keystore type in the sqlnet.ora
file, open the external keystore, and then set the external keystore TDE master encryption key.

For Oracle Key Vault:

IDENTIFIED BY "Oracle Key Vault password"

4-10

Chapter 4
Configuring an External Keystore

After you configure the external keystore, you are ready to begin encrypting your data.

4.4.2 Step 1. Configure the External Keystore

You can configure the external keystore by setting the TDE CONFIGURATION parameter.

1.

If the WALLET ROOT parameter is set, then install the Oracle Key Vault client software into
the WALLET ROOT/okv directory.

Log in to the database instance as a user who has been granted the ALTER SYSTEM
administrative privilege.

Set the TDE_CONFIGURATION dynamic initialization parameter to specify the keystore type by
using the following syntax:

ALTER SYSTEM SET TDE_CONFIGURATION="KEYSTORE_CONFIGURATION=keystore type" SCOPE=BOTH
SID = '*';

In this specification:
* keystore type can be one of the following types:

— 0KV to configure an Oracle Key Vault keystore

— HsMto configure a hardware security module (HSM) keystore
For example, to configure your database to use Oracle Key Vault:

ALTER SYSTEM SET TDE CONFIGURATION="KEYSTORE CONFIGURATION=OKV"
SCOPE=BOTH SID = '*";

4.4.3 Step 2: Open the Connection to Oracle Key Vault

After you have configured the database to use Oracle Key Vault for TDE key management, you
must open the connection to Oracle Key Vault before you can use it.

About Opening the Connection to Oracle Key Vault
You must open the connection to Oracle Key Vault so that it is accessible to the database
before you can perform any encryption or decryption.

Opening an External Keystore
To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with the SET
KEYSTORE OPEN clause.

4.4.3.1 About Opening the Connection to Oracle Key Vault

You must open the connection to Oracle Key Vault so that it is accessible to the database
before you can perform any encryption or decryption.

ORACLE

If a recovery operation is needed on your database (for example, if the database was not
cleanly shut down, and has an encrypted tablespace that needs recovery), then you must open
the connection to Oracle Key Vault before you can open the database itself.

There are two ways that you can open the Oracle Key Vault connection:

Manually open the keystore by issuing the ADMINISTER KEY MANAGEMENT SET KEYSTORE
OPEN statement. Afterward, you can perform the operation.

Include the FORCE KEYSTORE clause in the ADMINISTER KEY MANAGEMENT Statement. FORCE
KEYSTORE temporarily opens the keystore for the duration of the operation, and when the
operation completes, the keystore is closed again. FORCE KEYSTORE is useful for situations

4-11

Chapter 4
Configuring an External Keystore

when the database is heavily loaded. In this scenario, because of concurrent access to
encrypted objects in the database, the auto-login keystore continues to open immediately
after it has been closed but before a user has had a chance to open the password-based
keystore.

To check the status of the keystore, query the STATUS column of the VSENCRYPTION WALLET
view. Keystores can be in the following states: CLOSED, NOT AVAILABLE (that is, not present in
the WALLET ROOT location), OPEN, OPEN NO MASTER KEY, OPEN UNKNOWN MASTER KEY STATUS.

Be aware that for external keystores, if the database is in the mounted state, then it cannot
check if the master key is set because the data dictionary is not available. In this situation, the
status will be OPEN UNKNOWN MASTER KEY STATUS.

Related Topics

How Keystore Open and Close Operations Work in United Mode
You should be aware of how keystore open and close operations work in united mode.

4.4.3.2 Opening an External Keystore

To open an external keystore, use the ADMINISTER KEY MANAGEMENT statement with the SET
KEYSTORE OPEN clause.

1.

3.

Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT Or SYSKM privilege.

Open the external keystore by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN

[FORCE KEYSTORE]

IDENTIFIED BY EXTERNAL STORE | "external key manager password"
[CONTAINER = ALL | CURRENT];

In this specification:
e FORCE KEYSTORE enables the keystore operation if the keystore is closed.
e IDENTIFIED BY can be one of the following settings:

— EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

— external key manager password is for an external keystore manager, which can
be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in
double quotation marks. For Oracle Key Vault, enter the password that was given
during the Oracle Key Vault client installation. If at that time no password was
given, then the password in the ADMINISTER KEY MANAGEMENT statement becomes
NULL.

For Oracle Key Vault in a multitenant environment, to open the connection into Oracle
KeyVault for the cDBSROOT and all open PDBs:

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN [FORCE KEYSTORE]
IDENTIFIED BY Oracle Key Vault password
CONTAINER = ALL;

Repeat this procedure each time you restart the database instance.

4.4.4 Step 3: Set the TDE Master Encryption Key in Oracle Key Vault

After you have opened the connection to Oracle Key Vault, you are ready to set the TDE
master encryption key.

ORACLE

4-12

Chapter 4
Configuring an External Keystore

* About Setting the External Keystore TDE Master Encryption Key
You must create a TDE master encryption key that is stored inside the external keystore.

e Setting a New TDE Master Encryption Key
You should complete this procedure if you have not previously configured an external
keystore for Transparent Data Encryption.

* Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or OClI KMS
To switch from a TDE wallet to centralized key management with Oracle Key Vault or
Oracle Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload all
current and retired TDE master keys you must migrate the database from the TDE wallet
to Oracle Key Vault or OCI KMS.

4.4.4.1 About Setting the External Keystore TDE Master Encryption Key

You must create a TDE master encryption key that is stored inside the external keystore.

Oracle Database uses the master encryption key from Oracle Key Vault or Oracle Cloud
Infrastructure (OCI) Key Management Service (KMS) to encrypt or decrypt TDE table keys or
tablespace encryption keys (data encryption keys) inside the database.

If you have not previously configured TDE with a wallet, then you must set the master
encryption key in Oracle Key Vault or OCI KMS. If you have already configured TDE with a
wallet, then you must migrate the database to Oracle Key Vault or OCI KMS.

Along with the current master encryption key, all TDE keystores (TDE wallet, Oracle Key Vault,
and OCI KMS) maintain historical master encryption keys that are generated after every re-key
operation that rekeys the master encryption key. These historical master keys help to restore
Oracle Database backups that were taken previously using one of the master encryption keys.
Only Oracle Key Vault allows you to upload all historical key from a TDE wallet before
migrating the database to use Oracle Key Vault. After migration to Oracle Key Vault, the TDE
wallet can be deleted, which satisfies security regulation that mandate that encryption keys
cannot reside on the encrypting server.

4.4.4.2 Setting a New TDE Master Encryption Key

ORACLE

You should complete this procedure if you have not previously configured an external keystore
for Transparent Data Encryption.

1. Log in to the database instance as a user who has been granted the ADMINISTER KEY
MANAGEMENT Or SYSKM privilege.

2. Ensure that the database is open in READ WRITE mode.

You can set the master encryption key if OPEN MODE is set to READ WRITE. To find the status,
for a non-multitenant environment, query the OPEN MODE column of the V$DATABASE
dynamic view. If you are in a multitenant environment, then run the show_pdbs command.

3. Set the new master encryption key by using the following syntax:

ADMINISTER KEY MANAGEMENT SET KEY
[USING TAG 'tag'] [FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | "external key manager password"];

In this specification:

e tagis the associated attributes and information that you define. Enclose this setting in
single quotation marks (').

° FORCE KEYSTORE temporarily opens the password-protected TDE wallet for this
operation. You must open the TDE wallet for this operation.

4-13

Chapter 4
Configuring an External Keystore

e IDENTIFIED BY can be one of the following settings:

— EXTERNAL STORE uses the keystore password stored in the external store to
perform the keystore operation.

— external key manager password is for an external keystore manager, which can
be Oracle Key Vault or OCI Vault - Key Management. Enclose this password in
double quotation marks. For Oracle Key Vault, enter the password that was given
during the Oracle Key Vault client installation. If at that time no password was
given, then the password in the ADMINISTER KEY MANAGEMENT Statement becomes
NULL.

For example:

ADMINISTER KEY MANAGEMENT SET KEY
FORCE KEYSTORE
IDENTIFIED BY "external key manager password";

keystore altered.

Related Topics

e Creating a TDE Master Encryption Key for Later Use
A keystore must be opened before you can create a TDE master encryption key for use
later on.

e Oracle Database Administrator’s Guide

4.4.4.3 Migration of an Encrypted Database from a TDE Wallet to Oracle Key Vault or

OCI KMS

To switch from a TDE wallet to centralized key management with Oracle Key Vault or Oracle
Cloud Infrastructure (OCI) Key Management Service (KMS), after you upload all current and
retired TDE master keys you must migrate the database from the TDE wallet to Oracle Key
Vault or OCI KMS.

Tools such as Oracle Data Pump and Oracle Recovery Manager require access to the old TDE
wallet to perform decryption and encryption operations on data exported or backed up using
the TDE wallet. Along with the current master encryption key, Oracle keystores maintain
historical master encryption keys that are generated after every re-key operation that rotates
the master encryption key. These historical master encryption keys help to restore Oracle
database backups that were taken previously using one of the historical master encryption
keys.

Related Topics

* Migrating from a TDE Wallet to Oracle Key Vault
You can migrate between password-protected TDE wallets and external keystores in
Oracle Key Vault.

4.4.5 Step 4: Encrypt Your Data in United Mode

ORACLE

Now that you have completed the configuration for an external keystore or for an Oracle Key
Vault keystore, you can begin to encrypt data.

Related Topics

e Encrypting Columns in Tables
You can use Transparent Data Encryption to encrypt individual columns in database
tables.

4-14

Chapter 4
Encrypting Columns in Tables

Encryption Conversions for Tablespaces and Databases
You can perform encryption operations on both offline and online tablespaces and
databases.

Oracle Key Vault Administrator's Guide

4.5 Encrypting Columns in Tables

You can use Transparent Data Encryption to encrypt individual columns in database tables.

About Encrypting Columns in Tables
You can encrypt individual columns in tables.

Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities that
bypass the SQL layer cannot use TDE column encryption services.

Creating Tables with Encrypted Columns
Oracle Database provides a selection of different algorithms that you can use to define the
encryption used in encrypted columns.

Encrypting Columns in Existing Tables
You can encrypt columns in existing tables. As with new tables, you have a choice of
different algorithms to use to definite the encryption.

Creating an Index on an Encrypted Column
You can create an index on an encrypted column.

Adding Salt to an Encrypted Column
Salt, which is a random string added to data before encryption, is a way to strengthen the
security of encrypted data. .

Removing Salt from an Encrypted Column
You can use the ALTER TABLE SQL statement to remove salt from an encrypted column.

Changing the Encryption Key or Algorithm for Tables with Encrypted Columns
You can use the ALTER TABLE SQL statement to change the encryption key or algorithm
used in encrypted columns.

4.5.1 About Encrypting Columns in Tables

You can encrypt individual columns in tables.

ORACLE

Whether you choose to encrypt individual columns or entire tablespaces depends on the data
types that the table has. There are also several features that do not support TDE column
encryption.

Related Topics

Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

Restrictions on Using TDE Column Encryption
TDE column encryption is performed at the SQL layer. Oracle Database utilities that
bypass the SQL layer cannot use TDE column encryption services.

4-15

Chapter 4
Encrypting Columns in Tables

4.5.2 Data Types That Can Be Encrypted with TDE Column Encryption

ORACLE

Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

You can encrypt data columns that use a variety of different data types.
Supported data types are as follows:

e BINARY DOUBLE

* BINARY FLOAT

° CHAR

° DATE

e INTERVAL DAY TO SECOND

e INTERVAL YEAR TO MONTH

* NCHAR

° NUMBER

* NVARCHAR2

e RAW (legacy or extended)

e TIMESTAMP (includes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE)
° VARCHAR? (legacy or extended)

If you want to encrypt large binary objects (LOBSs), then you can use Oracle SecureFiles.
Oracle SecureFiles enables you to store LOB data securely. To encrypt a LOB using
SecureFiles, you use the CREATE TABLE or ALTER TABLE Statements.

You cannot encrypt a column if the encrypted column size is greater than the size allowed by
the data type of the column.

Table 4-1 shows the maximum allowable sizes for various data types.

Table 4-1 Maximum Allowable Size for Data Types
|

Data Type Maximum Size
CHAR 1932 bhytes
VARCHAR? (legacy) 3932 bytes
VARCHAR? (extended) 32,699 bytes
NVARCHAR? (legacy) 1966 bytes
NVARCHAR? (extended) 16,315 bytes
NCHAR 966 bytes

RAW (extended) 32,699 bytes

4-16

Chapter 4
Encrypting Columns in Tables

Note:

TDE tablespace encryption does not have these data type restrictions.

Related Topics

* Restrictions on Using Transparent Data Encryption Tablespace Encryption
You should be aware of restrictions on using Transparent Data Encryption when you
encrypt a tablespace.

* Oracle Database SecureFiles and Large Objects Developer's Guide

4.5.3 Restrictions on Using TDE Column Encryption

TDE column encryption is performed at the SQL layer. Oracle Database utilities that bypass
the SQL layer cannot use TDE column encryption services.

Do not use TDE column encryption with the following database features:

e Index types other than B-tree

e Range scan search through an index

e Synchronous change data capture

e Transportable tablespaces

e Columns that have been created as identity columns

In addition, you cannot use TDE column encryption to encrypt columns used in foreign key
constraints.

Applications that must use these unsupported features can use the DBMS CRYPTO PL/SQL
package for their encryption needs.

Transparent Data Encryption protects data stored on a disk or other media. It does not protect
data in transit. Use the network encryption solutions discussed in Oracle Database Security
Guide to encrypt data over the network.

Related Topics

e How Transparent Data Encryption Works with Export and Import Operations
Oracle Data Pump can export and import tables that contain encrypted columns, as well as
encrypt entire dump sets.

e Data Types That Can Be Encrypted with TDE Column Encryption
Oracle Database supports a specific set of data types that can be used with TDE column
encryption.

4.5.4 Creating Tables with Encrypted Columns

ORACLE

Oracle Database provides a selection of different algorithms that you can use to define the
encryption used in encrypted columns.

* About Creating Tables with Encrypted Columns
You can use the CREATE TABLE SQL statement to create a table with an encrypted column.

e Creating a Table with an Encrypted Column Using the Default Algorithm
By default, TDE uses the AES encryption algorithm with a 192-bit key length (AES192).

4-17

Chapter 4
Encrypting Columns in Tables

* Creating a Table with an Encrypted Column Using No Algorithm or a Non-Default Algorithm
You an use the CREATE TABLE SQL statement to create a table with an encrypted column.

e Using the NOMAC Parameter to Save Disk Space and Improve Performance
You can bypass checks that TDE performs. This can save up to 20 bytes of disk space per
encrypted value.

e Example: Using the NOMAC Parameter in a CREATE TABLE Statement
You can use the CREATE TABLE SQL statement to encrypt a table column using the
NOMAC parameter.

e Example: Changing the Integrity Algorithm for a Table
You can use the ALTER TABLE SQL statement in different foregrounds to convert different

offline tablespaces in parallel.

e Creating an Encrypted Column in an External Table
The external table feature enables you to access data in external sources as if the data
were in a database table.

4.5.4.1 About Creating Tables with Encrypted Columns

You can use the CREATE TABLE SQL statement to create a table with an encrypted column.

To create relational tables with encrypted columns, you can specify the SQL ENCRYPT clause
when you define database columns with the CREATE TABLE SQL statement.

4.5.4.2 Creating a Table with an Encrypted Column Using the Default Algorithm

ORACLE

By default, TDE uses the AES encryption algorithm with a 192-bit key length (AES192).

If you encrypt a table column without specifying an algorithm, then the column is encrypted
using the AES192 algorithm.

TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for attackers to
steal data through a brute force attack. TDE also adds a Message Authentication Code (MAC)
to the data for integrity checking. The sHA-1 integrity algorithm is used by default.

* To create a table that encrypts a column, use the CREATE TABLE SQL statement with the
ENCRYPT clause.

For example, to encrypt a table column using the default algorithm:

CREATE TABLE employee (
first name VARCHAR2 (128),
last name VARCHAR2 (128),
empID NUMBER,
salary NUMBER(6) ENCRYPT);

This example creates a new table with an encrypted column (salary). The column is
encrypted using the default encryption algorithm (aEs192). Salt and MAC are added by
default. This example assumes that the keystore is open and a master encryption key is
set.

4-18

Chapter 4
Encrypting Columns in Tables

Note:

If there are multiple encrypted columns in a table, then all of these columns must use
the same pair of encryption and integrity algorithms.

Salt is specified at the column level. This means that an encrypted column in a table
can choose not to use salt irrespective of whether or not other encrypted columns in
the table use salt.

4.5.4.3 Creating a Table with an Encrypted Column Using No Algorithm or a Non-
Default Algorithm

You an use the CREATE TABLE SQL statement to create a table with an encrypted column.

By default, TDE adds salt to plaintext before encrypting it. Adding salt makes it harder for
attackers to steal data through a brute force attack. However, if you plan to index the encrypted
column, then you must use the NO SALT parameter.

« To create a table that uses an encrypted column that is a non-default algorithm or no
algorithm, run the CREATE TABLE SQL statement as follows:

— If you do not want to use any algorithm, then include the ENCRYPT NO SALT clause.

— If you want to use a non-default algorithm, then use the ENCRYPT USING clause,
followed by one of the following algorithms enclosed in single quotation marks:

* 3DES168

* AES128

* AES192 (default)
* AES256

The following example shows how to specify encryption settings for the empID and salary
columns.

CREATE TABLE employee (
first name VARCHAR2(128),
last name VARCHARZ (128),
empID NUMBER ENCRYPT NO SALT,
salary NUMBER(6) ENCRYPT USING '3DES168');

In this example:

e The empID column is encrypted and does not use salt. Both t