Oracle® Database
Oracle Text Reference

19c
E96278-08
November 2024

ORACLE"

Oracle Database Oracle Text Reference, 19¢
E96278-08

Copyright © 2001, 2024, Oracle and/or its affiliates.
Primary Author: Binika Kumar

Contributors: Aleksandra Czarlinska, Asha Makur, Bonnie Xia, Ce Wei, Colin McGregor, Drew Adams, Edwin Balthes,
Eric Belden, Gaurav Yadav, George Krupka, Loic Lefevre, Mohammad Faisal, Nilay Panchal, Padmaja Potineni, Paul
Lane, Rahul Kadwe, Rajesh Bhatiya, Rodrigo Fuentes Hernandez, Roger Ford, Sanoop Sethumadhavan, Saurabh
Naresh Netravalkar, Vidya Vishweshwaraiah, Yiming Qi

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xix
Documentation Accessibility XiX
Diversity and Inclusion XiX
Related Documents Xix
Conventions XX

1 Oracle Text SQL Statements and Operators

1.1 ALTER INDEX 1-1
1.2 ALTER TABLE: Supported Partitioning Statements 1-21
1.3 CATSEARCH 1-26
1.4 CONTAINS 1-32
1.5 CREATE INDEX 1-42
1.6 CREATE SEARCH INDEX 1-68
1.7 DROP INDEX 1-72
1.8 MATCHES 1-72
1.9 MATCH_SCORE 1-74
1.10 SCORE 1-74
2 Oracle Text Indexing Elements

2.1 Overview 2-1
2.2 Creating Preferences 2-2
2.3 Datastore Types 2-2
2.3.1 DIRECT_DATASTORE 2-3
2.3.2 MULTI_COLUMN_DATASTORE 2-4
2.3.2.1 MULTI_COLUMN_DATASTORE Attributes 2-4

2.3.2.2 Indexing and DML 2-5

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction 2-5
2.3.2.4 MULTI_COLUMN_DATASTORE Example 2-5

2.3.25 MULTI_COLUMN_DATASTORE Filter Example 2-6

2.3.2.6 Tagging Behavior 2-6

2.3.2.7 Indexing Columns as Sections 2-6

ORACLE" il

2.3.3 DETAIL_DATASTORE 2-7

2.3.3.1 DETAIL_DATASTORE Attributes 2-8
2.3.3.2 Synchronizing Primary/Detail Indexes 2-8
2.3.3.3 Example Primary/Detail Tables 2-8
2.3.4 FILE_DATASTORE 2-10
2.3.4.1 FILE_DATASTORE Attributes 2-10
2.3.4.2 FILE_DATASTORE and Security 2-11
2.3.4.3 FILE_DATASTORE Example 2-12
2.3.5 DIRECTORY_DATASTORE 2-12
2.3.5.1 DIRECTORY_DATASTORE Attributes 2-13
2.3.5.2 DIRECTORY_DATASTORE Example 2-13
2.3.6 URL_DATASTORE 2-14
2.3.6.1 URL_DATASTORE URL Syntax 2-14
2.3.6.2 URL_DATASTORE Attributes 2-15
2.3.6.3 URL_DATASTORE and Security 2-16
2.3.6.4 URL_DATASTORE Example 2-16
2.3.7 NETWORK_DATASTORE 2-17
2.3.7.1 NETWORK_DATASTORE URL Syntax 2-17
2.3.7.2 NETWORK_DATASTORE Attributes 2-18
2.3.7.3 NETWORK_DATASTORE Example 2-19
2.3.8 USER_DATASTORE 2-20
2.3.8.1 USER_DATASTORE Attributes 2-20
2.3.8.2 USER_DATASTORE Constraints 2-21
2.3.8.3 USER_DATASTORE Editing Procedure after Indexing 2-21
2.3.8.4 USER_DATASTORE with CLOB Example 2-22
2.3.8,5 USER_DATASTORE with BLOB_LOC Example 2-22
2.3.9 NESTED_DATASTORE 2-23
2.3.9.1 NESTED_DATASTORE Attributes 2-23
2.3.9.2 NESTED_DATASTORE Example 2-24
2.4 Filter Types 2-25
2.4.1 AUTO FILTER 2-25
2.4.1.1 AUTO_FILTER Attributes 2-26
2.4.1.2 AUTO_FILTER and Indexing Formatted Documents 2-26
2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns 2-27
2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER 2-28
2.4.2 NULL_FILTER 2-28
2.4.3 MAIL _FILTER 2-29
2.4.3.1 MAIL_FILTER Attributes 2-29
2.4.3.2 MAIL_FILTER Behavior 2-30
2.4.3.3 About the Mail Filter Configuration File 2-30
2.4.3.4 Mail_Filter Example 2-31

ORACLE

244 USER_FILTER

2441
2442
24.4.3

2444
2445

USER_FILTER Attributes
Using USER_FILTER with Charset and Format Columns

USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed
Format Columns

Character Set Conversion with USER_FILTER
User Filter Example

245 PROCEDURE_FILTER

2451
2452
2453
2454
2455

PROCEDURE_FILTER Attributes
PROCEDURE_FILTER Parameter Order
PROCEDURE_FILTER Execute Requirements
PROCEDURE_FILTER Error Handling
PROCEDURE_FILTER Preference Example

2.5 Lexer Types
251 AUTO_LEXER

2511
2512
2513
2514
2515

AUTO_LEXER Language Support

AUTO_LEXER Attributes Inherited from BASIC_LEXER
AUTO_LEXER Language-Independent Attributes
AUTO_LEXER Language-Dependent Attributes
AUTO_LEXER Dictionary Attribute

2.5.2 BASIC_LEXER

2521
2522
2.5.2.3

BASIC_LEXER Attributes
Stemming User-Dictionaries
BASIC_LEXER Example

253 MULTI_LEXER

2531
2.53.2
2533
2534

MULTI_LEXER Restriction

MULTI_LEXER Multi-language Stoplists
MULTI_LEXER Example

MULTI_LEXER and Querying Multi-Language Tables

2.54 CHINESE_VGRAM_LEXER
255 CHINESE_LEXER

2.5.6 JAPANESE_VGRAM_LEXER
2.5.7 JAPANESE_LEXER

258 KOREAN_MORPH_LEXER

2581
2.5.8.2
2583
2584
2.5.8.5

KOREAN_MORPH_ LEXER Dictionaries

KOREAN_MORPH_ LEXER Unicode Support
KOREAN_MORPH_LEXER Attributes

KOREAN_MORPH_ LEXER Limitations
KOREAN_MORPH_LEXER Example: Setting Composite Attribute

259 USER_LEXER

2591
2.59.2

ORACLE

USER_LEXER Routines
USER_LEXER Limitations

2-32
2-32
2-33

2-33
2-34
2-34
2-35
2-35
2-37
2-37
2-37
2-38
2-38
2-38
2-39
2-40
2-40
2-43
2-46
2-46
2-47
2-51
2-54
2-54
2-55
2-55
2-55
2-56
2-56
2-57
2-58
2-59
2-60
2-61
2-61
2-62
2-62
2-62
2-64
2-64
2-64

2.59.3 USER_LEXER Attributes
2.5.94 INDEX_PROCEDURE
2.5.95 INPUT_TYPE
2.59.6 QUERY_PROCEDURE
2.5.9.7 Encoding Tokens as XML
2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure
2.5.9.9 XML Schema for User-defined Indexing Procedure with Location
2.5.9.10 XML Schema for User-defined Lexer Query Procedure
25.10 WORLD_LEXER
2.6 Wordlist Type
2.6.1 BASIC_WORDLIST
2.6.2 BASIC_WORDLIST Example
2.6.2.1 Enabling Fuzzy Matching and Stemming
2.6.2.2 Enabling Sub-string and Prefix Indexing
2.6.2.3 Setting Wildcard Expansion Limit
2.7 Storage Types
2.7.1 BASIC_STORAGE
2.7.1.1 BASIC_STORAGE Attributes
2.7.1.2 BASIC_STORAGE Default Behavior
2.7.1.3 BASIC_STORAGE Examples
2.8 Section Group Types
2.8.1 Section Group Types for Creating a Section Group
2.8.2 Section Group Examples for HTML, XML, and JSON Enabled Documents
2.8.2.1 Creating Section Groups in HTML Documents
2.8.2.2 Creating Sections Groups in XML Documents
2.8.2.3 Automatic Sectioning in XML Documents
2.8.2.4 Creating JSON Section Groups for JSON Search Index
2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS
2.8.2.6 Using JSON Search Index with JSON_EXISTS
2.9 Classifier Types
2.9.1 RULE_CLASSIFIER
2.9.2 SVM_CLASSIFIER
2.9.3 SENTIMENT_CLASSIFIER
2.10 Cluster Types
2.10.1 KMEAN_CLUSTERING
2.11 Stoplists
2.11.1 Multi-Language Stoplists
2.11.2 Creating Stoplists
2.11.3 Modifying the Default Stoplist
2.12 System-Defined Preferences
2.12.1 Data Storage Preferences
2.12.2 Filter Preferences

ORACLE

2-65
2-65
2-66
2-68
2-69
2-69
2-72
2-74
2-76
2-77
2-77
2-85
2-86
2-86
2-86
2-87
2-87
2-88
2-94
2-94
2-96
2-96
2-98
2-98
2-98
2-99
2-99
2-99
2-99
2-100
2-100
2-101
2-102
2-103
2-103
2-104
2-104
2-105
2-105
2-106
2-106
2-106

Vi

2.12.3 Lexer Preferences 2-106
2.12.3.1 CTXSYS.DEFAULT_LEXER 2-107
2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER 2-108
2.12.3.3 CTXSYS.BASIC_LEXER 2-108

2.12.4 Section Group Preferences 2-108

2.12.5 Stoplist Preferences 2-108

2.12.6 Storage Preferences 2-109

2.12.7 Wordlist Preferences 2-109

2.13 System Parameters 2-109

2.13.1 General System Parameters 2-110

2.13.2 Default Index Parameters 2-110
2.13.2.1 CONTEXT Index Parameters 2-110
2.13.2.2 CTXCAT Index Parameters 2-112
2.13.2.3 CTXRULE Index Parameters 2-112

2.13.3 Default Policy Parameters 2-113

2.14 Token Limitations for Oracle Text Indexes 2-114
3 Oracle Text CONTAINS Query Operators
3.1 Operator Precedence 3-2

3.1.1 Group 1 Operators 3-2

3.1.2 Group 2 Operators and Characters 3-2

3.1.3 Procedural Operators 3-3

3.1.4 Precedence Examples 3-3

3.1.5 Altering Precedence 3-3

3.2 ABOUT 3-4
3.3 ACCUMulate (,) 3-6
3.4 AND (&) 3-8
3.5 Broader Term (BT, BTG, BTP, BTI) 3-9
3.6 CTXFILTERCACHE 3-10
3.7 DEFINEMERGE 3-14
3.8 DEFINESCORE 3-15
3.9 EQUIValence (=) 3-18
3.10 Fuzzy 3-19
3.11 HASPATH 3-20
3.12 INPATH 3-22
3.13 MDATA 3-27
3.14 MINUS (-) 3-29
3.15 MNOT 3-30
3.16 Narrower Term (NT, NTG, NTP, NTI) 3-31
3.17 NDATA 3-32
3.18 NEAR () 3-34

ORACLE

Vii

3.19 NEAR2 3-38
3.20 NOT (~) 3-40
3.21 OR() 3-40
3.22 Preferred Term (PT) 3-41
3.23 Related Term (RT) 3-41
3.24 SDATA 3-42
3.25 soundex (1) 3-44
3.26 stem ($) 3-45
3.27 Stored Query Expression (SQE) 3-46
3.28 SYNonym (SYN) 3-46
3.29 threshold (>) 3-47
3.30 Translation Term (TR) 3-48
3.31 Translation Term Synonym (TRSYN) 3-49
3.32 Top Term (TT) 3-50
3.33 weight (*) 3-51
3.34 wildcards (%) 3-52
3.35 WITHIN 3-53
4 Special Characters in Oracle Text Queries
4.1 Grouping Characters 4-1
4.2 Escape Characters 4-1
4.3 Reserved Words and Characters 4-2
5 CTX_ADM Package
5.1 About CTX_ADM Package Procedures 5-1
5.2 MARK_FAILED 5-1
5.3 RECOVER 5-2
5.4 RESET_AUTO_OPTIMIZE_STATUS 5-3
5.5 SET_PARAMETER 5-3
6 CTX_ANL Package
6.1 About CTX_ANL Package Procedures 6-1
6.2 ADD_DICTIONARY 6-1
6.3 DROP_DICTIONARY 6-4
7 CTX _CLS Package
7.1 About CTX_CLS Package Procedures 7-1
7.2 TRAIN 7-1
ORACLE

viii

7.3 CLUSTERING 7-5
7.4 SA_TRAIN_MODEL 7-8
75 SA_DROP_MODEL 7-9
8 CTX_DDL Package
8.1 ADD_ATTR_SECTION 8-3
8.2 ADD_AUTO_OPTIMIZE 8-4
8.3 ADD_FIELD_SECTION 8-5
8.4 ADD_INDEX 8-8
8.5 ADD_MDATA 8-9
8.6 ADD_MDATA COLUMN 8-11
8.7 ADD_MDATA_SECTION 8-12
8.8 ADD_NDATA_SECTION 8-13
8.9 ADD_SDATA COLUMN 8-14
8.10 ADD_SDATA SECTION 8-16
8.11 ADD_SEC_GRP_ATTR_VAL 8-20
8.12 ADD_SPECIAL_SECTION 8-20
8.13 ADD_STOPCLASS 8-22
8.14 ADD_STOP_SECTION 8-23
8.15 ADD_STOPTHEME 8-24
8.16 ADD_STOPWORD 8-25
8.17 ADD_SUB_LEXER 8-26
8.18 ADD_ZONE_SECTION 8-28
8.19 COPY_POLICY 8-31
8.20 CREATE_INDEX_SET 8-31
8.21 CREATE_POLICY 8-32
8.22 CREATE_PREFERENCE 8-33
8.23 CREATE_SECTION_GROUP 8-36
8.24 CREATE_SHADOW_INDEX 8-38
8.25 CREATE_STOPLIST 8-40
8.26 DROP_INDEX_SET 8-42
8.27 DROP_POLICY 8-42
8.28 DROP_PREFERENCE 8-42
8.29 DROP_SECTION_GROUP 8-43
8.30 DROP_SHADOW_INDEX 8-43
8.31 DROP_STOPLIST 8-44
8.32 EXCHANGE_SHADOW_INDEX 8-44
8.33 OPTIMIZE_INDEX 8-46
8.34 POPULATE_PENDING 8-52
8.35 PREFERENCE_IMPLICIT_COMMIT 8-53
8.36 RECREATE_INDEX_ ONLINE 8-54

ORACLE

8.37 REM_SEC _GRP_ATTR_VAL 8-59
8.38 REMOVE_AUTO_OPTIMIZE 8-60
8.39 REMOVE_INDEX 8-60
8.40 REMOVE_MDATA 8-61
8.41 REMOVE_SECTION 8-62
8.42 REMOVE_STOPCLASS 8-63
8.43 REMOVE_STOPTHEME 8-63
8.44 REMOVE_STOPWORD 8-64
8.45 REMOVE_SUB_LEXER 8-64
8.46 REPLACE_INDEX_METADATA 8-65
8.47 SET_ATTRIBUTE 8-66
8.48 SET_SEC_GRP_ATTR 8-67
8.49 SET_SECTION_ATTRIBUTE 8-67
8.50 SYNC_INDEX 8-69
8.51 UNSET_ATTRIBUTE 8-71
8.52 UNSET_SEC_GRP_ATTR 8-72
8.53 UPDATE_SUB_LEXER 8-72
8.54 UPDATE_POLICY 8-73
8.55 UPDATE_SDATA 8-74
o CTX_DOC Package
9.1 About CTX_DOC Package Procedures 9-2
9.2 FILTER 9-2
9.3 GIST 9-5
9.4 HIGHLIGHT 9-8
9.5 IFILTER 9-12
9.6 MARKUP 9-13
9.7 PKENCODE 9-19
9.8 POLICY_FILTER 9-19
9.9 POLICY_GIST 9-20
9.10 POLICY_HIGHLIGHT 9-22
9.11 POLICY_LANGUAGES 9-23
9.12 POLICY_MARKUP 9-25
9.13 POLICY_NOUN_PHRASES 9-28
9.14 POLICY_PART_OF SPEECH 9-30
9.15 POLICY_SNIPPET 9-32
9.16 POLICY_STEMS 9-34
9.17 POLICY_THEMES 9-35
9.18 POLICY_TOKENS 9-37
9.19 SENTIMENT 9-38
9.20 SENTIMENT_AGGREGATE 9-39

ORACLE

9.21 SET_KEY_TYPE 9-41
9.22 SNIPPET 9-42
9.23 THEMES 9-45
9.24 TOKENS 9-48
10 CTX_ENTITY Package
10.1 ADD_EXTRACT_RULE 10-1
10.2 ADD_STOP_ENTITY 10-4
10.3 COMPILE 10-5
10.4 CREATE_EXTRACT_POLICY 10-6
10.5 DROP_EXTRACT_POLICY 10-7
10.6 EXTRACT 10-8
10.7 REMOVE_EXTRACT_RULE 10-9
10.8 REMOVE_STOP_ENTITY 10-10
11 CTX_OUTPUT Package
11.1 ADD_EVENT 11-1
11.2 ADD_TRACE 11-2
11.3 DISABLE_QUERY_STATS 11-3
11.4 ENABLE_QUERY_STATS 11-4
11.5 END_LOG 11-5
11.6 END_QUERY_LOG 11-5
11.7 GET_TRACE_VALUE 11-5
11.8 LOG_TRACES 11-6
11.9 LOGFILENAME 11-7
11.10 REMOVE_EVENT 11-7
11.11 REMOVE_TRACE 11-7
11.12 RESET_TRACE 11-8
11.13 START_LOG 11-8
11.14 START_QUERY_LOG 11-9
12 CTX_QUERY Package
12.1 BROWSE_WORDS 12-1
12.2 COUNT_HITS 12-3
12.3 EXPLAIN 12-4
12.4 HFEEDBACK 12-7
12.5 REMOVE_SQE 12-10
12.6 RESULT_SET 12-11
12.7 RESULT_SET_CLOB_QUERY 12-20

ORACLE"

Xi

12.8 RESULT_SET_DOCUMENT 12-20
129 STORE_SQE 12-21

13 CTX_REPORT Package

13.1 Description of Procedures in CTX_REPORT 13-1
13.2 Using the Function Versions 13-2
13.3 DESCRIBE_INDEX 13-2
13.4 DESCRIBE_POLICY 13-3
13.5 CREATE_INDEX_SCRIPT 13-4
13.6 CREATE_POLICY_SCRIPT 13-4
13.7 INDEX_SIZE 13-5
13.8 INDEX_STATS 13-6
13.9 QUERY_LOG_SUMMARY 13-13
13.10 TOKEN_INFO 13-17
13.11 TOKEN_TYPE 13-18
13.12 VALIDATE_INDEX 13-19

14 CTX_THES Package

14.1 ALTER_PHRASE 14-2
14.2 ALTER_THESAURUS 14-3
143 BT 14-4
14.4 BTG 14-6
145 BTI 14-7
14.6 BTP 14-8
14.7 CREATE_PHRASE 14-9
14.8 CREATE_RELATION 14-10
14.9 CREATE_THESAURUS 14-11
14.10 CREATE_TRANSLATION 14-12
14.11 DROP_PHRASE 14-13
14.12 DROP_RELATION 14-13
1413 DROP_THESAURUS 14-15
14.14 DROP_TRANSLATION 14-15
14.15 EXPORT_THESAURUS 14-16
1416 HAS_RELATION 14-17
14.17 IMPORT_THESAURUS 14-17
1418 NT 14-18
1419 NTG 14-20
14.20 NTI 14-21
1421 NTP 14-23
14.22 OUTPUT_STYLE 14-24

ORACLE" Xii

14.23 PT 14-24

14.24 RT 14-26
14.25 SN 14-27
1426 SYN 14-27
14.27 THES_TT 14-29
1428 TR 14-30
1429 TRSYN 14-32
1430 TT 14-33
14.31 UPDATE_TRANSLATION 14-34

15 CTX_ULEXER Package

15.1 WILDCARD_TAB 15-1

16 Oracle Text Utilities

16.1 Thesaurus Loader (ctxload) 16-1
16.1.1 ctxload Text Loading 16-1
16.1.2 ctxload Syntax 16-2
16.1.3 ctxload Examples 16-3

16.2 Entity Extraction User Dictionary Loader (ctxload) 16-4
16.2.1 ctxload Syntax 16-4
16.2.2 Considerations When Creating a User Dictionary 16-4
16.2.3 XML Schema 16-5
16.2.4 ctxload Example 16-6

16.3 Knowledge Base Extension Compiler (ctxkbtc) 16-6
16.3.1 Knowledge Base Character Set 16-7
16.3.2 ctxkbtc Syntax 16-7
16.3.3 ctxkbtc Usage Notes 16-8
16.3.4 ctxkbtc Limitations 16-8
16.3.5 ctxkbtc Constraints on Thesaurus Terms 16-9
16.3.6 ctxkbtc Constraints on Thesaurus Relations 16-9
16.3.7 Extending the Knowledge Base 16-9
16.3.8 Example for Extending the Knowledge Base 16-10
16.3.9 Adding a Language-Specific Knowledge Base 16-10
16.3.10 Limitations for Adding a Knowledge Base 16-11
16.3.11 Order of Precedence for Multiple Thesauri 16-11
16.3.12 Size Limits for Extended Knowledge Base 16-11

16.4 Lexical Compiler (ctxic) 16-11
16.4.1 Syntax of ctxlc 16-12
16.4.2 ctxlc Performance Considerations 16-13
16.4.3 ctxlc Usage Notes 16-13

ORACLE

Xiii

16.4.4 ctxlc Example 16-13
17 Oracle Text Alternative Spelling
17.1 Overview of Alternative Spelling Features 17-1
17.1.1 Alternate Spelling 17-2
17.1.2 Base-Letter Conversion 17-2
17.1.3 New German Spelling 17-2
17.2 Overriding Alternative Spelling Features 17-3
17.3 Alternative Spelling Conventions 17-3
17.3.1 German Alternate Spelling Conventions 17-4
17.3.2 Danish Alternate Spelling Conventions 17-4
17.3.3 Swedish Alternate Spelling Conventions 17-4
A Oracle Text Result Tables
A.l1 CTX_QUERY Result Tables A-1
A.1.1 EXPLAIN Table A-1
A.1.1.1 EXPLAIN Table Structure A-1
A.1.1.2 EXPLAIN Table Operation Column Values A-2
A.1.1.3 EXPLAIN Table OPTIONS Column Values A-3
A.1l.2 HFEEDBACK Table A-3
A.1.2.1 HFEEDBACK Table Structure A-3
A.1.2.2 HFEEDBACK Table Operation Column Values A-4
A.1.2.3 HFEEDBACK Table OPTIONS Column Values A-4
A.l.24 CTX_FEEDBACK_TYPE A-5
A.2 CTX_DOC Result Tables A-6
A.2.1 Filter Table A-6
A.2.2 Gist Table A-6
A.2.3 Highlight Table A-7
A.2.4 Markup Table A-7
A.2.5 Theme Table A-7
A.2.6 Token Table A-8
A.3 CTX_THES Result Tables and Data Types A-8
A.3.1 EXP_TAB Table Type A-8
B Oracle Text Supported Document Formats
B.1 About Document Filtering Technology B-1
B.1.1 Latest Updates for Patch Releases B-1
B.1.2 Restrictions on Format Support B-2
B.1.3 Supported Platforms for AUTO_FILTER Technology B-2
ORACLE

Xiv

B.1.4 Filtering on PDF Documents and Security Settings B-3

B.1.5 PDF Filtering Limitations B-3
B.1.6 Environment Variables B-4
B.1.7 General Limitations B-4
B.2 Supported Document Formats B-4
B.2.1 Archive File Format B-5
B.2.2 Database Formats B-5
B.2.3 E-Book Formats B-6
B.2.4 Email Formats B-6
B.2.5 Graphic Formats (Raster and Vector Image) B-7
B.2.6 Multimedia Formats B-10
B.2.7 Other Formats B-11
B.2.8 Presentation Formats B-12
B.2.9 Spreadsheet Formats B-12
B.2.10 Text and Markup Formats B-13
B.2.11 Word Processing and Desktop Publishing Formats B-14

C Text Loading Examples for Oracle Text

C.1 SQL INSERT Example C-1
C.2 SQL*Loader Example C-1
C.2.1 Creating the Table C-1
C.2.2 Issuing the SQL*Loader Command C-2
C.2.2.1 Example Control File: loaderl.dat C-2

C.2.2.2 Example Data File: loader2.dat C-2

C.3 Structure of ctxload Thesaurus Import File C-3
C.3.1 Import File Format C-3
C.3.2 Alternate Hierarchy Structure C-5
C.3.3 Usage Notes for Terms in Import Files C-6
C.3.4 Usage Notes for Relationships in Import Files C-7
C.3.5 Examples of Import Files C-7
C.3.5.1 Example 1 (Flat Structure) C-7

C.3.5.2 Example 2 (Hierarchical) C-8

C.3.5.3 Example 3 C-8

D Oracle Text Multilingual Features

D.1 Introduction D-1
D.2 Indexing D-1
D.2.1 Multilingual Features for Text Index Types D-1
D.2.1.1 CONTEXT Index Type D-2
D.2.1.2 CTXCAT Index Type D-2
ORACLE

XV

D.2.1.3 CTXRULE Index Type D-3

D.2.2 Lexer Types D-3
D.2.3 Basic Lexer Features D-3
D.2.3.1 Theme Indexing D-4
D.2.3.2 Alternate Spelling D-4
D.2.3.3 Base Letter Conversion D-4
D.2.3.4 Composite D-4
D.2.3.5 Index stems D-5
D.2.4 Multi Lexer Features D-5
D.2.5 World Lexer Features D-5
D.3 Querying D-7
D.4 Supplied Stoplists D-7
D.5 Knowledge Base D-7
D.6 Multilingual Features Matrix D-8

E Oracle Text Supplied Stoplists

E.1 English Default Stoplist E-1
E.2 Chinese Stoplist (Traditional) E-4
E.3 Chinese Stoplist (Simplified) E-5
E.4 Danish (dk) Default Stoplist E-5
E.5 Dutch (nl) Default Stoplist E-7
E.6 Finnish (sf) Default Stoplist E-14
E.7 French (f) Default Stoplist E-19
E.8 German (d) Default Stoplist E-24
E.9 Italian (i) Default Stoplist E-30
E.10 Portuguese (pt) Default Stoplist E-34
E.11 Spanish (e) Default Stoplist E-36
E.12 Swedish (s) Default Stoplist E-40

F The Oracle Text Scoring Algorithm

F.1 Scoring Algorithm for Word Queries F-1
F.2 Word Scoring Example F-2
F.3 DML and Scoring Algorithm F-2

G Oracle Text Views

G.1 CTX_ALEXER_DICTS G-2

G.2 CTX_AUTO_OPTIMIZE_INDEXES G-3

G.3 CTX_AUTO_OPTIMIZE_STATUS G-3

G.4 CTX_CLASSES G-3
ORACLE

XVi

G.5

G.6

G.7

G.8

G.9

G.10
G.11
G.12
G.13
G.14
G.15
G.16
G.17
G.18
G.19
G.20
G.21
G.22
G.23
G.24
G.25
G.26
G.27
G.28
G.29
G.30
G.31
G.32
G.33
G.34
G.35
G.36
G.37
G.38
G.39
G.40
G.41
G.42
G.43
G.44
G.45
G.46

ORACLE

CTX_FILTER_BY_COLUMNS
CTX_FILTER_CACHE_STATISTICS
CTX_INDEXES
CTX_INDEX_ERRORS
CTX_INDEX_OBJECTS
CTX_INDEX_PARTITIONS
CTX_INDEX_SETS
CTX_INDEX_SET_INDEXES
CTX_INDEX_SUB_LEXERS
CTX_INDEX_SUB_LEXER_VALUES
CTX_INDEX_VALUES
CTX_OBJECTS
CTX_OBJECT ATTRIBUTES
CTX_OBJECT_ATTRIBUTE_LOV
CTX_ORDER_BY_COLUMNS
CTX_PARAMETERS
CTX_PENDING
CTX_PREFERENCES
CTX_PREFERENCE_VALUES
CTX_SECTIONS
CTX_SECTION_GROUPS
CTX_SQES
CTX_STOPLISTS
CTX_STOPWORDS
CTX_SUB_LEXERS
CTX_THESAURI
CTX_THES_PHRASES
CTX_TRACE_VALUES
CTX_USER_ALEXER_DICTS

CTX_USER_AUTO_OPTIMIZE_INDEXES

CTX_USER_EXTRACT_POLICIES

CTX_USER_EXTRACT_POLICY_VALUES

CTX_USER_EXTRACT_RULES

CTX_USER_EXTRACT_STOP_ENTITIES
CTX_USER_ FILTER_BY_COLUMNS

CTX_USER_INDEXES
CTX_USER_INDEX_ERRORS
CTX_USER_INDEX_OBJECTS
CTX_USER_INDEX_PARTITIONS
CTX_USER_INDEX_SETS
CTX_USER_INDEX_SET_INDEXES
CTX_USER_INDEX_SUB_LEXERS

G-10
G-10
G-10
G-10
G-11
G-11
G-11
G-12
G-12
G-12
G-12
G-13
G-13
G-13
G-13
G-14
G-14
G-14
G-15
G-15
G-16
G-16
G-16
G-17
G-17
G-17

XVii

G.47 CTX_USER_INDEX_SUB_LEXER_VALS G-18

G.48 CTX_USER_INDEX_VALUES G-18
G.49 CTX_USER_ORDER_BY_COLUMNS G-18
G.50 CTX_USER_PENDING G-19
G.51 CTX_USER_PREFERENCES G-19
G.52 CTX_USER_PREFERENCE_VALUES G-19
G.53 CTX_USER_SECTIONS G-19
G.54 CTX_USER_SECTION_GROUPS G-20
G.55 CTX_USER_SESSION_SQES G-20
G.56 CTX_USER_SQES G-20
G.57 CTX_USER_STOPLISTS G-21
G.58 CTX_USER_STOPWORDS G-21
G.59 CTX_USER_SUB_LEXERS G-21
G.60 CTX_USER_THESAURI G-21
G.61 CTX_USER_THES_PHRASES G-22
G.62 CTX_VERSION G-22

H Stopword Transformations in Oracle Text

H.1 Understanding Stopword Transformations H-1
H.2 About Stopwords in Phrase Queries H-2
H.3 Word Transformations H-2
H.4 AND Transformations H-2
H.5 OR Transformations H-3
H.6 ACCUMulate Transformations H-3
H.7 MINUS Transformations H-3
H.8 MNOT Transformations H-4
H.9 NOT Transformations H-4
H.10 EQUIValence Transformations H-4
H.11 NEAR Transformations H-5
H.12 Weight Transformations H-5
H.13 Threshold Transformations H-5
H.14 WITHIN Transformations H-5
Index
ORACLE

XViil

Preface

Audience

Oracle Text Reference provides reference information for building applications with Oracle
Text.

e Audience

e Documentation Accessibility
e Diversity and Inclusion

* Related Documents

e Conventions

This document is intended for application developers and system administrators who maintain
an Oracle Text system in an Oracle environment. To use this document, you need experience
with Oracle Database, SQL, SQL*Plus, and PL/SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

ORACLE

For more information about Oracle Text, see:

e Oracle Text Application Developer's Guide

XiX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

For more information about Oracle Database, see:

e Oracle Database Concepts

* Oracle Database Administrator's Guide

* Oracle Database Utilities

e Oracle Database Performance Tuning Guide
e Oracle Database SQL Tuning Guide

e Oracle Database SQL Language Reference
* Oracle Database Reference

e Oracle Database Development Guide

e Oracle Database Sample Schemas

For more information about PL/SQL, see:

e Oracle Database PL/SQL Language Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE Yx

Oracle Text SQL Statements and Operators

This chapter describes the SQL statements and Oracle Text operators for creating and
managing Oracle Text indexes and performing Oracle Text queries.

The following statements are described in this chapter:

e ALTER INDEX

e ALTER TABLE: Supported Partitioning Statements
e CATSEARCH

e CONTAINS

¢ CREATE INDEX

e CREATE SEARCH INDEX

+ DROP INDEX

« MATCHES
* MATCH_SCORE
« SCORE

1.1 ALTER INDEX

Use the ALTER INDEX statement to change or rebuild an existing Oracle Text index or JSON
search index.

Note:

This section describes the ALTER INDEX statement as it pertains to managing an
Oracle Text domain index. For a complete description of the ALTER INDEX Statement,
see Oracle Database SQL Language Reference.

ALTER INDEX Purpose

To make changes to or perform maintenance tasks for a CONTEXT, CTXCAT, or CTXRULE index.

ORACLE 1

ORACLE

Chapter 1
ALTER INDEX

Note:

* When you run any DML or query workload during ALTER INDEX, you might
encounter an ORA-00060 or other error that may mark the index UNUSABLE. This
is because ALTER INDEX behaves like a DDL operation and is not performed
online by default. To overcome this error, set the ONLINE parameter in the ALTER
INDEX Sstatement.

e The FAST DML and FAST QUERY options are not supported for online operations.

All Index Types
Use ALTER INDEX to perform the following tasks on all Oracle Text index types:

* Rename the index or index partition. See ALTER INDEX RENAME Syntax .

* Rebuild the index using different preferences. Some restrictions apply for the CTXCAT index
type. See ALTER INDEX REBUILD Syntax.

e Add stopwords to the index. See ALTER INDEX REBUILD Syntax.

e Add or remove a sub_lexer, and remove a stopword or set of stopwords for a given symbol
(language or language-independent). See "ALTER INDEX Sub_Lexer Syntax"

CONTEXT and CTXRULE Index Types
Use ALTER INDEX to perform the following tasks on CONTEXT and CTXRULE index types:

* Resume a failed index operation (creation/optimization).
e Add sections and stop sections to the index.

* Replace index metadata.

¢ See Also:
ALTER INDEX REBUILD Syntax to learn more about performing these tasks

Overview of ALTER INDEX Syntax

The syntax for ALTER INDEX is fairly complex. The major divisions are covered in the following
sections:

 ALTER INDEX MODIFY PARTITION Syntax: Use this to modify an index partition's
metadata.

« ALTER INDEX PARAMETERS Syntax: Use this to modify the parameters of a
nonpartitioned index, or to modify all partitions of a local partitioned index, without
rebuilding the index.

° ALTER INDEX RENAME Syntax : Use this to rename an index or index partition.

* ALTER INDEX REBUILD Syntax: Use this to rebuild an index or index partition. With this
statement, you can also replace index metadata; add stopwords, sections, and stop
sections to an index; and resume a failed operation.

The parameters for ALTER INDEX REBUILD have their own syntax, which is a subset of the
syntax for ALTER INDEX. For example, the ALTER INDEX REBUILD PARAMETERS Statement

1-2

ORACLE

Chapter 1
ALTER INDEX

can take either REPLACE or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS
('REPLACE'") can take several arguments. Valid examples of ALTER INDEX REBUILD include
the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS ('REPLACE DATASTORE datastore pref')
ALTER INDEX REBUILD PARAMETERS ('REPLACE WORDLIST wordlist pref')

e ALTER INDEX Syntax for JSON Search Index: Use this to modify the JSON search index
preferences, such as DATAGUIDE and SEARCH ON.

ALTER INDEX MODIFY PARTITION Syntax
Use the following syntax to modify the metadata of an index partition:
ALTER INDEX index name MODIFY PARTITION partition name PARAMETER (paramstring)

index_name
Specify the name of the index whose partition metadata you want to modify.

partition_name
Specify the name of the index partition whose metadata you want to modify.

paramstring

The only valid argument here is 'REPLACE METADATA'. This follows the same syntax as ALTER
INDEX REBUILD PARTITION PARAMETERS ('REPLACE METADATA'); see the REPLACE METADATA
subsection of the "ALTER INDEX REBUILD Syntax" section for more information. (The two
statements are equivalent. ALTER INDEX MODIFY PARTITION is offered for ease of use, and is
the recommended syntax.)

ALTER INDEX PARAMETERS Syntax

The parameter string now supports READ ONLY MDATA. Use the following syntax to modify
the parameters either of nonpartitioned or local partitioned indexes, without rebuilding the
index. For partitioned indexes, this statement works at the index level, not at the partition level.
This statement changes information for the entire index, including all partitions.

ALTER INDEX index name PARAMETERS (paramstring)

paramstring

ALTER INDEX PARAMETERS accepts the following arguments for paramstring:
e 'REPLACE METADATA'

Replaces current metadata. See the REPLACE METADATA subsection of the "ALTER INDEX
REBUILD Syntax" section for more information.

e ‘ADD MDATA SECTION secname TAG sectag READ ONLY’

Creates non-updatable MDATA sections so that queries on these MDATA sections do not
require extra cursors to be opened on ST table.

e 'ADD STOPWORD'

Dynamically adds a stopword to an index. See the ADD STOPWORD subsection of the
"ALTER INDEX REBUILD Syntax" section for more information.

e 'ADD FIELD SECTION'

1-3

ORACLE

Chapter 1
ALTER INDEX

Dynamically adds a field section to an index. See the ADD FIELD subsection of the "ALTER
INDEX REBUILD Syntax" section for more information. You can add an unlimited number
of field sections.

e 'ADD ZONE SECTION'

Dynamically adds a zone section to an index. See the ADD ZONE subsection of the "ALTER
INDEX REBUILD Syntax" section for more information.

e 'ADD ATTR SECTION'

Dynamically adds an attribute section to an index. See the ADD ATTR subsection of the
"ALTER INDEX REBUILD Syntax" section for more information.

e 'ADD SDATA SECTION'

Dynamically adds an SDATA section to an index. An SDATA section can only be added to
BASIC, HTML, XML, and NEWS section groups. It supports both global as well as local
indexes. New documents synchronized into the index reflect this new preference. The
syntax is:

ALTER INDEX index name PARAMETERS (ADD SDATA SECTION sdata section name TAG
sdata section tag DATATYPE sdata section datatype);

The datatype can be VARCHAR?2, CHAR, NUMBER, DATE, Of RAW.

See "Adding an SDATA Section" for more information.

Note:

Documents that were indexed before adding an SDATA section do not reflect this
new preference. Rebuild the index in this case.

Each of the above described parameters has an equivalent ALTER INDEX REBUILD PARAMETERS
version, except ADD SDATA SECTION.

For example, ALTER INDEX PARAMETERS ('REPLACE METADATA') is equivalent to ALTER INDEX
REBUILD PARAMETERS ('REPLACE METADATA'). However, the ALTER INDEX PARAMETERS
versions work on either partitioned or nonpartitioned indexes, whereas the ALTER INDEX
REBUILD PARAMETERS versions work only on nonpartitioned indexes.

ALTER INDEX RENAME Syntax

Use the following syntax to rename an index or index partition:

ALTER INDEX [schema.]index name RENAME TO new index name;
ALTER INDEX [schema.]index name RENAME PARTITION part name TO new part name;

[schema.]index_name
Specify the name of the index to rename.

new_index_name

Specify the new name for schema.index. The new index name parameter can be no more
than 25 bytes, and 21 bytes for a partitioned index in earlier releases of Oracle Database that
have not been upgraded to Oracle Database 12¢ Release 2 (12.2). If you specify a name
longer than 25 bytes (or longer than 21 bytes for a partitioned index), then Oracle Text returns
an error and the renamed index is no longer valid.

1-4

ORACLE

Chapter 1
ALTER INDEX

Note:

When new_index name is more than 25 bytes (21 for local partitioned index) and less
than 30 bytes, Oracle Text renames the index, even though the system returns an
error. To drop the index and associated tables, you must drop new index name with
the DROP INDEX statement and then re-create and drop index name.

The upgraded databases that do not have the compatible parameter set to 12.2 can have the
new_index name parameter no more than 30 bytes, and 30 bytes for a partitioned index.

The upgraded databases that have the compatible parameter set to 12.2 or new Oracle
Database 12¢ Release 2 (12.2) installations can have the new_index name parameter no more
than 128 bytes, and 128 bytes for a partitioned index.

part_name
Specify the name of the index partition to rename.

new_part_name
Specify the new name for partition.

ALTER INDEX REBUILD Syntax

Use ALTER INDEX REBUILD to rebuild an index, rebuild an index partition, resume a failed
operation, replace index metadata, add stopwords to an index, or add sections and stop
sections to an index.

The ALTER INDEX REBUILD syntax has its own subsyntax. That is, its parameters have their own
syntax. For example, the ALTER INDEX REBUILD PARAMETERS Statement can take either REPLACE
or RESUME as an argument, and ALTER INDEX REBUILD PARAMETERS ('REPLACE') has several
arguments it can take.

Note:

You cannot use the ALTER INDEX REBUILD Syntax to add or remove the INMEMORY
option associated Text index tables.

Valid examples of ALTER INDEX REBUILD include the following statements:

ALTER INDEX REBUILD PARALLEL n
ALTER INDEX REBUILD PARAMETERS (REPLACE DATASTORE datastore pref)
ALTER INDEX REBUILD PARAMETERS (REPLACE WORDLIST wordlist pref)

This is the syntax for ALTER INDEX REBUILD:

ALTER INDEX [schema.]index [REBUILD] [PARTITION partname] [ONLINE] [PARAMETERS
(paramstring)] [PARALLEL NJ;

PARTITION partname

Rebuilds the index partition partname. Only one index partition can be built at a time.

When you rebuild a partition you can specify only RESUME or REPLACE in paramstring. These
operations work only on the partname you specify.

1-5

ORACLE

Chapter 1
ALTER INDEX

With the REPLACE operation, you can specify MEMORY, STORAGE, and SYNC for each index
partition.

Adding Partitions To add a partition to the base table, use the ALTER TABLE SQL statement.
When you add a partition to an indexed table, Oracle Text automatically creates the metadata
for the new index partition. The new index partition has the same name as the new table
partition. If you must change the index partition name, then use ALTER INDEX RENAME.
Splitting or Merging Partitions Splitting or merging a table partition with ALTER TABLE
renders the index partitions invalid. You must rebuild them with ALTER INDEX REBUILD.

ONLINE

Enables you to continue to perform updates, insertions, and deletions on a base table. It does
not enable you to query the base table. The ONLINE keyword can only be used with the
Enterprise Edition of Oracle Database.

Note:

You can specify REPLACE or RESUME when rebuilding an index or an index partition
ONLINE.

PARAMETERS (paramstring)
Optionally, specify paramstring. If you do not specify paramstring, then Oracle Text rebuilds
the index with existing preference settings.

Note:

Oracle Text rebuilds the index using metadata values that have been deep-copied
into the index. You can use the CTX REPORT.CREATE INDEX SCRIPT procedure to
recreate the user preferences. This procedure generates a script with the
preferences that are identical to those used in the original Text index. However, the
names of the preferences will be system-generated.

The syntax for paramstring is as follows:

paramstring =

'REPLACE
[DATASTORE datastore pref]
[FILTER filter pref]
[LEXER lexer pref]
[WORDLIST wordlist pref]
[STORAGE storage pref]
[STOPLIST stoplist]
[SECTION GROUP section group]
[MEMORY memsize

[[POPULATE | NOPOPULATE]

[INDEX SET index set]

[METADATA preference new preference]
METADATA FORMAT COLUMN format column name]
[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[METADATA] TRANSACTIONAL|NONTRANSACTIONAL
[

[
[
[
[[METADATA] [ASYNCHRONOUS UPDATE | SYNCHRONOUS UPDATE]]

1-6

Chapter 1
ALTER INDEX

[[METADATA] OPTIMIZE (MANUAL | AUTO DAILY | EVERY "interval-string")

[DATAGUIDE [ON | OFF | ON CHANGE [ADD VC|Function name]]
[SEARCH ON TEXT VALUE]

RESUME [memory memsize]

ADD STOPWORD word [language language]

ADD ZONE SECTION section name tag tag

ADD FIELD SECTION section name tag tag [(VISIBLE | INVISIBLE)]
ADD ATTR SECTION section name tag tag@attr

ADD STOP SECTION tag'

|
|
|
|
|
|
|
|
REPLACE [optional_preference_list]

Rebuilds an index. You can optionally specify your own preferences, or system-defined
preferences.

You can replace only the preferences that are supported for that index type. For instance, you
cannot replace index set for a CONTEXT or CTXRULE index. Similarly, for the CTXCAT index type,
you can replace lexer, wordlist, storage index set, and memory preferences.

The POPULATE parameter is the default and need not be specified. If you want to empty the
index of its contents, then specify NOPOPULATE. Clear an index of its contents when you must
rebuild your index incrementally. The NOPOPULATE choice is available for a specific partition of
the index, and not just for the entire index.

Note that ALTER INDEX REBUILD creates a populated index by default, unless you explicitly
specify the NOPOPULATE keyword. The outputs of CTX REPORT.CREATE INDEX SCRIPT and
CTX_REPORT.DESCRIBE INDEX include the NOPOPULATE keyword for such indexes.

If you are rebuilding a partitioned index using the REPLACE parameter, then you can specify
only STORAGE, MEMORY, and NOPOPULATE.

A new wordlist preference SEPARATE OFFSETS specifies that the token info in the index is
stored as docids only in one place, and offsets is stored only in another place. Refer to
Oracle Text Application Developer's Guide for information on improved response time using
the SEPARATE_OFFSETS option of CONTEXT index.

Note:

If this procedure modifies the existing index tables for only the following storage
attributes of the BASIC_STORAGE type (any one of them), then it will not result in re-
indexing of data:

¢ BIG IO
e I _INDEX CLAUSE
e I TABLE CLAUSE

C SEPARATE OFFSETS

REPLACE METADATA preference new_preference

Replaces the existing preference class settings, including sYNC parameters, of the index with
the settings from new_preference. Only index preferences and attributes are replaced. The
index is not rebuilt.

This statement is useful when you want to replace a preference and its attribute settings after
the index is built, without re-indexing all data. re-indexing data can require significant time and
computing resources.

This statement is also useful for changing the SYNC parameter type, which can be automatic,
manual, or on-commit.

ORACLE .

ORACLE

Chapter 1
ALTER INDEX

The ALTER INDEX REBUILD PARAMETER ('REPLACE METADATA') statement does not work for a
local partitioned index at the global level for the index. You cannot, for example, use this
syntax to change a global preference, such as filter or lexer type, without rebuilding the index.
Use ALTER INDEX PARAMETERS instead to change the metadata of an index at the global level,
including all partitions. See ALTER INDEX PARAMETERS Syntax.

Note:

The ALTER INDEX REPLACE METDATA option is essentially a DDL operation (and not
an ONLINE operation), so it may fail if there are any concurrent DML operations
requesting locks on the underlying table, including queries. You must perform ALTER
INDEX REPLACE METDATA operations during a quiet time on the system when other
user operations are not ongoing on the table or index.

When should | use the METADATA keyword? REPLACE METADATA should be used only when
the change in index metadata will not lead to an inconsistent index, which can lead to incorrect
query results.

For example, use this statement in the following instances:

* To go from a single-language lexer to a multilexer in anticipation of multilingual data. For
an example, see Replacing Index Metadata: Changing Single-Lexer to Multilexer.

* To change the WILDCARD MAXTERMS setting in BASIC_WORDLIST.
e To change the syNC parameter type, which can be automatic, manual, or on-commit.

These changes are safe and will not lead to an inconsistent index that might adversely affect
your query results.

WARNING:

The REPLACE METADATA statement can result in inconsistent index data, which can
lead to incorrect query results. As such, Oracle does not recommend using this
statement, unless you carefully consider the effect it will have on the consistency of
your index data and subsequent queries.

There can be many instances when changing metadata can result in inconsistent index data.
For example, Oracle recommends against using the METADATA keyword after performing the
following procedures:

e Changing the USER_DATASTORE procedure to a new PL/SQL stored procedure that has
different output.

» Changing the BASIC_WORDLIST attribute PREFIX INDEX from NO to YES because no
prefixes have been generated for existing documents. Changing it from YES to NO is safe.

* Adding or changing BASIC LEXER printjoin and skipjoin characters, because new queries
with these characters would be lexed differently from how these characters were lexed at
index time.

° Do not use REPLACE METADATA with FORWARD INDEX. Instead use REPLACE STORAGE.

In these unsafe cases, Oracle recommends rebuilding the index.

1-8

Chapter 1
ALTER INDEX

REPLACE [METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies sYNC for synchronization of the CONTEXT index when a DML change has occurred to
the base table. You can specify one of the sYNC methods shown in Table 1-1.

SYNC Type Description

MANUAL Means no automatic synchronization. This is the default.
You must manually synchronize the index using
CTX DDL.SYNC_ INDEX.
Use MANUAL to disable ON COMMIT and EVERY
synchronization.

EVERY interval-string Automatically synchronize the index at a regular interval
specified by the value of interval-string, which takes the
same syntax as that for scheduler jobs. Automatic
synchronization using EVERY requires that the index creator
have CREATE JOB privileges.

Ensure that interval-string is set to a long enough period so
that any previous synchronization jobs will have completed.
Otherwise, the synchronization job may stop responding.
The interval-string argument must be enclosed in double
quotation marks (" ").

See "Enabling Automatic Index Synchronization” for an
example of automatic synchronization syntax.

ON COMMIT Synchronize the index immediately after a commit. The
commit does not return until the sync is complete. Before
Oracle Database Release 18c, the synchronization was
performed as a separate transaction. There was a time
period, usually small, when the data was committed but
index changes were not. Starting with Oracle Database
Release 18c, the synchronization is performed as part of
the same transaction.

The operation uses the memory specified with the memory
parameter.

Before Oracle Database Release 18c, the sync operation
had its own transaction context. If the operation failed, the
data transaction still committed. Starting with Oracle
Database Release 18c, if there is an irrecoverable index
synchronization error, the entire data transaction is rolled
back. Recoverable (individual row) synchronization errors
are logged in the CTX_USER INDEX ERRORS view but the
transaction still completes. See "Viewing Index Errors"
under CREATE INDEX.

ON COMMIT sync works best when the STAGE ITAB index
option is enabled, because otherwise it causes significant
fragmentation of the main index, requiring frequent
OPTIMIZE calls.

See "Enabling Automatic Index Synchronization" for an
example of ON COMMIT syntax.

Refer to Oracle Text Application Developer's Guide for more
information about the STAGE_ITAB option of the CONTEXT
index.

Each partition of a locally partitioned index can have its own type of sync: (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions unless a partition specifies its own type.

ORACLE 19

ORACLE

Chapter 1
ALTER INDEX

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. The syntax is:

. EVERY interval string MEMORY mem size PARALLEL paradegree ...

ON COMMIT synchronizations can only be executed serially and at the same memory size as
what was specified at index creation.

Note:

This command rebuilds the index. When you want to change the SYNC setting without
rebuilding the index, use the REBUILD REPLACE METADATA SYNC (MANUAL | ON
COMMIT) operation.

REPLACE [METADATA] TRANSACTIONAL | NONTRANSACTIONAL

This parameter enables you to turn the TRANSACTIONAL property on or off. For more
information, see "TRANSACTIONAL".

Using this parameter only succeeds if there are no rows in the DML pending queue.
Therefore, you may need to sync the index before issuing this command.

To turn on the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS ('replace metadata transactional');

or

ALTER INDEX myidx REBUILD PARAMETERS ('replace transactional');

To turn off the TRANSACTIONAL index property:

ALTER INDEX myidx REBUILD PARAMETERS ('replace metadata nontransactional');

or
ALTER INDEX myidx REBUILD PARAMETERS ('replace nontransactional');

REPLACE [METADATA] [ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE]
When you update the column in a document on which an Oracle Text index is based, that
document is marked as invalid for search operations until index synchronization is performed.
Enabling asynchronous update for an index enables a document to be searchable even
though its index has not yet been synchronized after the index column was updated. Until the
index is synchronized, Oracle Text uses the contents of the old document to answer user

queries.
To enable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ('REPLACE METADATA asynchronous update');

To disable asynchronous update for a Text index:

ALTER INDEX idx PARAMETERS ('REPLACE METADATA synchronous update');

< Note:

Synchronous update is not supported with the TRANSACTIONAL option and for
updates that cause row movement.

1-10

ORACLE

Chapter 1
ALTER INDEX

REPLACE [[METADATA] OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")]
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX DDL.OPTIMIZE INDEX.

AUTO_DAILY When you specify OPTIMIZE (AUTO_DAILY) in the create

index parameter list, a repeatedly running optimize token

job and a repeatedly running optimize full job are

scheduled.

e The Optimize token job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night, in order to optimize the top 10 most fragmented
tokens (determined automatically). Jobs that are not
started before 3 A.M. are skipped. These skipped jobs
are started before the other jobs that are scheduled to
run at 12 A.M. the next day.

e The Optimize full job is scheduled to run weekly from
12 A.M. every Saturday night in order to optimize index
tables and clean up $N.

Existing indexes do not have OPTIMIZE (AUTO DAILY) by

default. You must use ALTER INDEX to enable automatic

background index optimization.

EVERY "interval-string" Automatically runs optimize token for the top 10 most
fragmented tokens at a regular interval specified by the
value interval-string, which takes the same syntax as
scheduler jobs.

Ensure that interval-string is set to a long enough period so
that any previous optimize jobs are complete. The interval-
string value must be enclosed in double quotes, and any
single quote within interval-string must be preceded by an
escape character with another single quote.

With AUTO DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

[AUTO_DAILY | EVERY "interval-string"] PARALLEL paradegree ...

RESUME [MEMORY memsize]
Resumes a failed index operation. You can optionally specify the amount of memory to use
with memsize.

< Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not
apply to CTXCAT indexes.

ADD STOPWORD word [language language]
Dynamically adds a stopword word to the index.

1-11

Chapter 1
ALTER INDEX

Index entries for word that existed before this operation are not deleted. However, subsequent
gueries on word are treated as though it has always been a stopword.

When your stoplist is a multilanguage stoplist, you must specify 1anguage.

The index is not rebuilt by this statement.

ADD ZONE SECTION section_name tag tag

Dynamically adds the zone section section name identified by tag to the existing index.

The added section section name applies only to documents indexed after this operation. For
the change to take effect, you must manually re-index any existing documents that contain the
tag.

The index is not rebuilt by this statement.

¢ Note:

This ALTER INDEX operation applies only to CONTEXT and CTXRULE indexes. It does not
apply to CTXCAT indexes.

¢ See Also:

"Notes"

ADD FIELD SECTION section_name tag tag [(VISIBLE | INVISIBLE)]

Dynamically adds the field section section name identified by tag to the existing index. There
is no limit to the number of field sections that can be added.

Optionally specify VISIBLE to make the field sections visible. The default is INVISIBLE.

¢ See Also:

CTX_DDL.ADD_FIELD_SECTION for more information on visible and invisible field
sections

The added section section name applies only to documents indexed after this operation. For
the change to affect previously indexed documents, you must explicitly re-index the
documents that contain the tag.

This statement does not rebuild the index.

Note:

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not
apply to CTXCAT indexes.

See Also:

"Notes"

ORACLE 110

ORACLE

Chapter 1
ALTER INDEX

ADD ATTR SECTION section_name tag tag@attr

Dynamically adds an attribute section section name to the existing index. You must specify
the XML tag and attribute in the form tagtattr. You can add attribute sections only to XML
section groups.

The added attribute section section name applies only to documents indexed after this
operation. For the change to take effect, you must manually re-index any existing documents
that contain the tag.

The index is not rebuilt by this statement.

¢ Note:

This ALTER INDEX operation applies only to CONTEXT CTXRULE indexes. It does not
apply to CTXCAT indexes.

¢ See Also:

"Notes"

ADD STOP SECTION tag

Dynamically adds the stop section identified by tag to the existing index. As stop sections
apply only to automatic sectioning of XML documents, the index must use the

AUTO SECTION GROUP section group. The tag you specify must be case sensitive and unique
within the automatic section group or else ALTER INDEX raises an error.

The added stop section tag applies only to documents indexed after this operation. For the
change to affect previously indexed documents, you must explicitly re-index the documents
that contain the tag.

The text within a stop section can always be searched.

The number of stop sections you can add is unlimited.

The index is not rebuilt by this statement.

¢ See Also:

"Notes"

Note:

This ALTER INDEX operation applies only to CONTEXT indexes. It does not apply to
CTXCAT indexes.

PARALLEL n

Using n, you can optionally specify the parallel degree for parallel indexing. This parameter is
supported only when you use SYNC, REPLACE, and RESUME in paramstring. The actual degree
of parallelism might be smaller depending on your resources.

Parallel indexing can speed up indexing when you have large amounts of data to index and
when your operating system supports multiple CPUs.

1-13

ORACLE

Chapter 1
ALTER INDEX

ALTER INDEX Syntax for JSON Search Index

ALTER INDEX [schema.]index REBUILD
PARAMETERS (
[DATAGUIDE ON [CHANGE (ADD VC | function name)] | OFF]
[SEARCH ON (NONE | TEXT | TEXT VALUE)]
)i

Note:

The REPLACE keyword is not required with the ALTER INDEX REBUILD PARAMETERS
statement for changing the JSON search index preferences. Also, you cannot change
both the JSON and Oracle Text search index preferences in a single ALTER INDEX
statement.

If you specify the JSON search index preferences (such as DATAGUIDE and
SEARCH_ON), other preferences in the PARAMETERS clause are not updated. Similarly, if
you specify the Oracle Text search index preferences (such as STORAGE and LEXER),
the JSON preferences are not updated.

[schema.]index
Modifies the JSON search index name.

DATAGUIDE ON | OFF
Modifies data guide support for an existing JSON search index. If you enable the JSON data
guide support, then you can also define change-trigger procedures.

Note:

You use the DATAGUIDE clause only for JSON search indexes.

Specify one of the following options:

* ON: Enables data guide support. Also, allows you to define your own PL/SQL procedure or
use the predefined change-trigger procedure add_vec.

» OFF: Disables both the data guide support and change-trigger procedures. Provides only
general search-index functionality.

Note:

You cannot turn off the DATAGUIDE clause if the value of SEARCH ON clause is set
to NONE.

See "Change Triggers For Data Guide-Enabled Search Index" in Oracle Database JSON
Developer's Guide.

1-14

ORACLE

Chapter 1
ALTER INDEX

SEARCH_ON (TEXT | TEXT_VALUE)
Modifies search preferences specified for JSON search index. Enabling a search option
rebuilds the index with updated preferences.

Note:

You use the SEARCH ON clause only for JSON search indexes.

Specify one of the following options:
e TEXT: Indicates that full-text search queries use the search index.

* TEXT VALUE: Indicates that both the full-text and range-based indexes are created for
numeric and date-time values.

Specifying TEXT VALUE has a higher cost in indexing time and index space.

In the SEARCH_ON clause, specify a value as described in "Table 1-3".

Current Parameter Value Supported New Parameter Value
NONE TEXT

TEXT VALUE
TEXT TEXT VALUE

For example, you can change the SEARCH ON parameter value from NONE to TEXT or from TEXT
to TEXT VALUE but not from TEXT VALUE to TEXT or from TEXT to NONE.

Note:

You must specify the SEARCH ON preferences as described in "Table 1-3". Otherwise,
an error is returned while rebuilding the index.

To change the SEARCH ON parameter value to any of the unsupported values (that is, from
TEXT VALUE to TEXT or from TEXT to NONE), you must first drop the index using the DROP INDEX
statement and then recreate the index using the CREATE SEARCH INDEX Statement.

ALTER INDEX Sub_Lexer Syntax

Use the following syntax.

See Also:
"ALTER INDEX Purpose" for list of types of indexes and syntax for ALTER INDEX

New paramstring =
'REPLACE

[DATASTORE datastore pref]
FILTER filter pref]
LEXER lexer pref]
WORDLIST wordlist pref]

[
[
[
[STORAGE storage pref]

1-15

ORACLE

Chapter 1
ALTER INDEX

[STOPLIST stoplist]

[SECTION GROUP section_group]
[MEMORY memsize

[[POPULATE | NOPOPULATE]
[INDEX SET index set]

[METADATA preference new preference]
[[METADATA] SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[[METADATA] TRANSACTIONAL|NONTRANSACTIONAL

| RESUME [memory memsize]

| OPTIMIZE [token index token | fast | full [maxtime (time | unlimited)]
| SYNC [memory memsize]

| ADD STOPWORD word [language language] [LANGUAGE DEPENDENT (TRUE|FALSE)]
| ADD ZONE SECTION section name tag tag

| ADD FIELD SECTION section name tag tag [(VISIBLE | INVISIBLE)]

| ADD ATTR SECTION section name tag tag@attr

| ADD STOP SECTION tag

| ADD SUB LEXER sub lexer name LANGUAGE language [ALT VALUE
alternate value for language] [LANGUAGE DEPENDENT (TRUE|FALSE)]

| REMOVE SUB_LEXER LANGUAGE language

| REMOVE STOPWORD word [LANGUAGE language]

| REMOVE STOPWORDS FOR LANGUAGE language

| MIGRATE to MULTI STOPLIST [LANGUAGE COLUMN lang]

| MIGRATE FIELD SECTION field section name to [READ ONLY] MDATA

| UPDATE SUB LEXER LANGUAGE language TO sub lexer preference

| ADD MDATA SECTION secname TAG sectag READ ONLY

Sub_Lexer Example

ALTER INDEX myidx PARAMETERS ('ADD SUB_LEXER mycompany lexer LANGUAGE mycompany
LANGUAGE DEPENDENT FALSE');

ALTER INDEX myidx PARAMETERS ('REMOVE STOPWORDS FOR LANGUAGE mycompany');

Sub_Lexer Notes

The language can be Oracle predefined language symbols (globalization support name or
abbreviation of an Oracle Text-supported language), or user-defined symbols for language
independent sub_lexer or stopword.

ADD SUB_LEXER
The following conditions apply:

e If LANGUAGE_DEPENDENT clause is not provided, it will default TRUE.
e Sync will be blocked (or it will be blocked by sync).
e If adding first language independent sub_lexer, then base table will also be locked.

e Adding first language independent sub_lexer or stopword will take longer to complete.
Otherwise, it should take fraction of a second to complete unless it's being blocked by
ongoing sync process on the same index.

REMOVE SUB_LEXER
Will succeed only if there are no documents with language column set to the symbol for the
sub_lexer being removed.

REMOVE STOPWORD
The following conditions apply:

1-16

Chapter 1
ALTER INDEX

* If LANGUAGE clause is not specified, it is assumed that the index is using basic_stoplist.
If the index is not using basic_stoplist, an error will be raised.

e Ifthe index is using basic_stoplist (instead of multi_stoplist), then it will succeed only if the
base table is empty.

e If the index is using multi_stoplist, and user specifies "ALL" for LANGUAGE clause, then it
will succeed only if the base table is empty.

e If the index is using multi_stoplist, and user specifies a symbol for LANGUAGE clause,
then it will succeed only if there are no documents with language column set to the symbol
for the stopword being removed.

¢ See Also:
"ALTER INDEX REBUILD Syntax"

MIGRATE TO MULTI_STOPLIST [LANGUAGE COLUMN lang]
The following conditions apply:

* Migrate the stoplist of an existing Text index to Multi_stoplist. The language of the existing
stopwords will have the value of ALL.

* If LANGUAGE column has already been defined for the index:
— LANGUAGE COLUMN can be skipped (old language column is retained for the index).

— If LANGUAGE COLUMN is specified and there is a mismatch between index language
column and the one specified, an error will be raised.

* LANGUAGE COLUMN must be specified for the index; otherwise, an error is raised.
MIGRATE FIELD SECTION TO MDATA SECTION
The following conditions apply:

* Allow user to convert a field section to MDATA section. Specify READ ONLY if the MDATA
section is meant to be a READ_ONLY MDATA section (ADD and REMOVE not allowed).

e Limitation: Tokens in migrated MDATA sections will not have typical MDATA
characteristics - case information, tokens being stored as it is in the document, etc. To
retain these, those documents need to be reindexed.

UPDATE SUB_LEXER LANGUAGE SUB_LEXER_SYMBOL TO
SUB_LEXER_PREFERENCE

The following conditions apply:
e Allows user to update sublexer dynamically.

e Language, alt_value, language dependency should remain same for the old and new
sublexer preference.

e For updating the default sublexer, the syntax is:

UPDATE SUB LEXER DEFAULT TO SUB LEXER PREFERENCE

ADD MDATA SECTION secnhame TAG sectag READ ONLY
The following conditions apply:

* Allows users to add MDATA section to the index.
e Cannot be used with NULL/AUTO/PATH section groups.

ORACLE 1-17

ORACLE

Chapter 1
ALTER INDEX

ALTER INDEX Examples
Resuming Failed Index

The following statement resumes the indexing operation on newsindex with 2 megabytes of
memory:

ALTER INDEX newsindex REBUILD PARAMETERS ('resume memory 2M');

Rebuilding an Index
The following statement rebuilds the index, replacing the stoplist preference with new_stop.

ALTER INDEX newsindex REBUILD PARAMETERS ('replace stoplist new stop');

Rebuilding a Partitioned Index

The following example creates a partitioned text table, populates it, and creates a partitioned
index. It then adds a new partition to the table and rebuilds the index with ALTER INDEX as
follows:

PROMPT create partitioned table and populate it

create table part tab (a int, b varchar2(40)) partition by range(a)
(partition p tabl values less than (10),

partition p tab2 values less than (20),

partition p tab3 values less than (30));

insert into part tab values (1,'Actinidia deliciosa');
insert into part tab values (8,'Distictis buccinatoria');
insert into part tab values (12, 'Actinidia quinata');
insert into part tab values (18, 'Distictis Rivers');
insert into part tab values (21, 'pandorea jasminoides');
insert into part tab values (28, 'pandorea rosea');

commit;

PROMPT create partitioned index
create index part idx on part tab(b) indextype is ctxsys.context
local (partition p idxl, partition p idx2, partition p idx3);

PROMPT add a partition and populate it

alter table part tab add partition p tab4 values less than (40);
insert into part tab values (32, 'passiflora citrina');

insert into part tab values (33, 'passiflora alatocaerulea');
commit;

The following statement rebuilds the index in the newly populated partition. In general, the
index partition name for a newly added partition is the same as the table partition name, unless
the name has already been used. In this case, Oracle Text generates a new name.

alter index part idx rebuild partition p tab4;

The following statement queries the table for the two hits in the newly added partition:

select * from part tab where contains (b, 'passiflora') >0;

The following statement queries the newly added patrtition directly:

select * from part tab partition (p tab4) where contains (b, 'passiflora') >;

1-18

ORACLE

Chapter 1
ALTER INDEX

Replacing Index Metadata: Changing Single-Lexer to Multilexer

The following example demonstrates how an application can migrate from single-language
documents (English) to multilanguage documents (English and Spanish) by replacing the index
metadata for the lexer.

REM creates a simple table, which stores only English (American) text

create table simple (text varchar2(80));
insert into simple values ('the quick brown fox');
commit;

REM create a simple lexer to lex this English text

begin
ctx ddl.create preference('us lexer', 'basic lexer');
end;

/

REM create a text index on the simple table
create index simple idx on simple (text)
indextype is ctxsys.context parameters ('lexer us lexer');

REM we can query easily
select * from simple where contains (text, 'fox')>0;

REM now suppose we want to start accepting Spanish documents.
REM first we have to extend the table with a language column
alter table simple add (lang varchar2(10) default 'us');

REM now let's create a Spanish lexer,
begin
ctx ddl.create preference('e lexer',6 'basic lexer');
ctx ddl.set attribute('e lexer',6 'base letter','yes');
end;
/
REM Then create a multilexer incorporating our English and Spanish lexers.
REM Note that the DEFAULT lexer is the exact same lexer, with which we have
REM have already indexed all the documents.
begin
ctx ddl.create preference('m lexer', 'multi lexer');
ctx ddl.add sub lexer('m lexer', 'default', 'us lexer');
ctx ddl.add sub lexer('m lexer', 'spanish','e lexer');
end;
/
REM next replace our metadata
alter index simple idx rebuild
parameters ('replace metadata language column lang lexer m lexer');

REM We are ready for some Spanish data. Note that we could have inserted
REM this BEFORE the alter index, as long as we did not SYNC.

insert into simple values ('el zorro marrón rápido', 'e');
commit;

exec ctx ddl.sync index('simple idx');

REM now query the Spanish data with base lettering:

select * from simple where contains(text, 'rapido')>0;

Optimizing the Index
To optimize your index, use CTX_DDL.OPTIMIZE_INDEX.

Synchronizing the Index

1-19

Chapter 1
ALTER INDEX

To synchronize your index, use CTX_DDL.SYNC_INDEX.
Adding a Zone Section

To add to the index the zone section author identified by the tag <author>, enter the following
statement:

ALTER INDEX myindex REBUILD PARAMETERS ('add zone section author tag author');

Adding a Stop Section

To add a stop section identified by tag <f1uff> to the index that uses the AUTO SECTION GROUP,
enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS ('add stop section fluff');

Adding an Attribute Section

Assume that the following text appears in an XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

Assume also that you want to create a separate section for the title attribute and you want to
name the new attribute section booktitle. To do so, enter the following statement:

ALTER INDEX myindex REBUILD PARAMETERS ('add attr section booktitle tag
title@book');

Adding an SDATA Section

To add an SDATA section S1 of NUMBER data type and identified by tag T1, to the index, enter
the following statement:

ALTER INDEX myindex PARAMETERS ('add sdata section S1 tag Tl datatype NUMBER) ;

Disabling Automatic Background Index Optimization

The following example disables optimize token and optimize full jobs which are automatically
running in the background:

ALTER INDEX myindex PARAMETERS ('REPLACE METADATA OPTIMIZE (MANUAL)');

Using Flashback Queries

If a Text query is flashed back to a point before an ALTER INDEX Sstatement was issued on the
Text index for which the query is being run, then:

* The query optimizer will not choose the index access path for that given index because the
index is treated according to its creation time with ALTER INDEX. Therefore, to the query
optimizer, the index is perceived not to exist.

e The functional processing of the Text operator will fail with ORA-01466 or ORA-08176
errors if the ALTER INDEX statement involves re-creation of DRS index tables.

To work around this issue, use the DBMS FLASHBACK package. For example:

EXEC dbms flashback.enable at system change number (:scn);
SELECT id from documents WHERE CONTAINS (text, 'oracle')>0;
EXEC dbms flashback.disable;

ORACLE 190

Chapter 1
ALTER TABLE: Supported Partitioning Statements

See Also:

"Using DBMS_FLASHBACK Package" in Oracle Database Development Guide

Notes
Add Section Constraints

Before altering the index section information, Oracle Text checks the new section against the
existing sections to ensure that all validity constraints are met. These constraints are the same
for adding a section to a section group with the cTx DDL PL/SQL package and are as follows:

* You cannot add zone, field, or stop sections to a NULL_SECTION GROUP.

* You cannot add zone, field, or attribute sections to an automatic section group.
* You cannot add attribute sections to anything other than XML section groups.
* You cannot have the same tag for two different sections.

* Section names for zone, field, and attribute sections cannot intersect.

* You cannot exceed 64 fields per section.

* You cannot add stop sections to basic, HTML, XML, or news section groups.

° SENTENCE and PARAGRAPH are reserved section names.

* You cannot have embedded blanks in section and field names.

1.2 ALTER TABLE: Supported Partitioning Statements

ORACLE

¢ Note:

This section describes the ALTER TABLE statement as it pertains to adding and
modifying a partitioned text table with a context domain index.

For a complete description of the ALTER TABLE statement, see Oracle Database SQL
Language Reference.

Purpose

Use the ALTER TABLE statement to add, modify, split, merge, exchange, or drop a partitioned
text table with a context domain index. The following sections describe some of the ALTER
TABLE operations.

Modify Partition Syntax
Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition UNUSABLE LOCAL INDEXES

Marks the index partition corresponding to the given table partition UNUSABLE. You might mark
an index partition unusable before you rebuild the index partition as described in "Rebuild
Unusable Local Indexes".

1-21

ORACLE

Chapter 1
ALTER TABLE: Supported Partitioning Statements

If the index partition is not marked unusable, then the statement returns without actually
rebuilding the local index partition.

Rebuild Unusable Local Indexes

ALTER TABLE [schema.]table MODIFY PARTITION partition REBUILD UNUSABLE LOCAL
INDEXES

Rebuilds the index partition corresponding to the specified table partition that has an UNUSABLE
status.

Note:

If the index partition status is already VALID before you enter this statement, then this
statement does not rebuild the index partition. Do not depend on this statement to
rebuild the index partition unless the index partition status is UNUSABLE.

Add Partition Syntax

ALTER TABLE [schema.]table ADD PARTITION [partition]
VALUES LESS THAN (value list) [partition description]

Adds a new patrtition to the high end of a range-partitioned table.

To add a partition to the beginning or to the middle of the table, use the ALTER TABLE SPLIT
PARTITION statement.

The newly added table partition is always empty, and the context domain index (if any) status
for this partition is always VALID. After issuing DML, if you want to synchronize or optimize this
newly added index patrtition, then you must look up the index partition name and enter the
ALTER INDEX REBUILD PARTITION statement. For this newly added partition, the index partition
name is usually the same as the table partition name, but if the table partition name is already
used by another index partition, the system assigns a name in the form of SYS Pn.

By querying the USER_IND PARTITIONS view and comparing the HIGH VALUE field, you can
determine the index partition name for the newly added partition.

Merge Partition Syntax

ALTER TABLE [schema.]table

MERGE PARTITIONS partitionl, partition2

[INTO PARTITION [new partition] [partition description]]
[UPDATE GLOBAL INDEXES]

Applies only to a range partition. This statement merges the contents of two adjacent partitions
into a new partition and then drops the original two partitions. If the resulting partition is non-
empty, then the corresponding local domain index partition is marked UNUSABLE. You can use
ALTER TABLE MODIFY PARTITION to rebuild the partition index.

For a global, nonpartitioned index, if you perform the merge operation without an UPDATE
GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt.
If you specify the UPDATE GLOBAL INDEXES clause after the operation and the SYNC type is
MANUAL, then the index will be valid, but you still must synchronize the index with
CTX_DDL.SYNC_INDEX for the update to take place.

1-22

ORACLE

Chapter 1
ALTER TABLE: Supported Partitioning Statements

The naming convention for the resulting index partition is the same as in the ALTER TABLE ADD
PARTITION Statement.

Split Partition Syntax

ALTER TABLE [schema.]table

SPLIT PARTITION partitioninameiold

AT (value list)

[into (partition description, partition description)]
[parallel clause]

[UPDATE GLOBAL INDEXES]

Applies only to range partitions. This statement divides a table partition into two partitions, thus
adding a new partition to the table. The local corresponding index partitions will be marked
UNUSABLE if the corresponding table partitions are non-empty. Use the ALTER TABLE MODIFY
PARTITION Statement to rebuild the partition indexes.

For a global, nonpartitioned index, if you perform the split operation without an UPDATE GLOBAL
INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt. If you
specify the UPDATE GLOBAL INDEXES clause after the operation and the SYNC type is MANUAL,
then the index will be valid, but you still must synchronize the index with
CTX_DDL.SYNC_INDEX for the update to take place.

The naming convention for the two resulting index partition is the same as in the ALTER TABLE
ADD PARTITION Statement.

Exchange Partition Syntax

ALTER TABLE [schema.]table EXCHANGE PARTITION partition WITH TABLE table
[INCLUDING |EXCLUDING INDEXES}

[WITH|WITHOUT VALIDATION]

[EXCEPTIONS INTO [schema.]table]

[UPDATE GLOBAL INDEXES]

Converts a partition to a nonpartitioned table, and converts a table to a partition of a partitioned
table by exchanging their data segments. Rowids are preserved.

If EXCLUDING INDEXES is specified, all the context indexes corresponding to the partition and all
the indexes on the exchanged table are marked as UNUSABLE. To rebuild the new index partition
in this case, issue an ALTER TABLE MODIFY PARTITION Statement.

If INCLUDING INDEXES is specified, then for every local domain index on the partitioned table,
there must be a nonpartitioned domain index on the nonpatrtitioned table. The local index
partitions are exchanged with the corresponding regular indexes.

For a global, nonpartitioned index, if you perform the exchange operation without an UPDATE
GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt.
If you specify the UPDATE GLOBAL INDEXES clause after the operation and the SYNC type is
MANUAL, then the index will be valid, but you still must synchronize the index with
CTX_DDL.SYNC_INDEX for the update to take place.

Field Sections

Field section queries might not work the same way if the nonpartitioned index and local index
use different section IDs for the same field section.

Storage

1-23

ORACLE

Chapter 1
ALTER TABLE: Supported Partitioning Statements

Storage is not changed. So if the index on the nonpartitioned table $1 table was in tablespace
XYZ, then after the exchange partition, it will still be in tablespace XYZ, but now it is the $1
table for an index patrtition.

Storage preferences are not switched, so if you switch and then rebuild the index, then the
table may be created in a different location.

Restrictions

Both indexes must be equivalent. They must use the same objects and the same settings for
each object. Note that Oracle Text checks only that the indexes are using the same object. But
they should use the same exact everything.

No index object can be partitioned, that is, when the user has used the storage object to
partition the $I, $N tables.

If either index or index partition does not meet all these restrictions an error is raised and both
the index and index partition will be INVALID. You must manually rebuild both index and index
partition using the ALTER INDEX REBUILD Statement.

Truncate Partition Syntax

ALTER TABLE
INDEXES]

[schema.]table TRUNCATE PARTITION [DROP|REUSE STORAGE] [UPDATE GLOBAL

Removes all rows from a partition in a table. Corresponding CONTEXT index partitions are also
removed.

For a global, nonpartitioned index, if you perform the truncate operation without an UPDATE
GLOBAL INDEXES clause, then the resulting index (if not NULL) will be invalid and must be rebuilt.
If you specify the UPDATE GLOBAL INDEXES clause after the operation, the index will be valid.

ALTER TABLE Examples
Global Index on Partitioned Table Examples

The following example creates a range-partitioned table with three partitions. Each partition is
populated with two rows. A global, nonpartitioned CONTEXT index is then created. To
demonstrate the UPDATE GLOBAL INDEXES clause, the partitions are split and merged with an
index synchronization.

create table tdrexglb part(a int, b varchar2(40)) partition by range(a)
(partition pl values less than (10),
partition p2 values less than (20),
partition p3 values less than (30));

insert into tdrexglb part values
insert into tdrexglb part values
insert into tdrexglb part values
insert into tdrexglb part values
insert into tdrexglb part values
insert into tdrexglb part values

1,'rowl'");
8, 'row2');
11, 'rowll'");
18, 'rowl8"');
)
)

’

21, 'row2l"
28, 'row28"'

’

(
(
(
(
(
(

commit;
create index tdrexglb parti on tdrexglb part(b) indextype is ctxsys.context;

create table tdrexglb(a int, b varchar2(40));

insert into tdrexglb values (20, 'newrow20');
commit;

1-24

ORACLE

PROMPT make sure query works
select * from tdrexglb part where contains (b,

PROMPT split partition

Chapter 1

ALTER TABLE: Supported Partitioning Statements

'rowl8') >0;

alter table tdrexglb part split partition p2 at (15) into
(partition p2l, partition p22) update global indexes;

PROMPT before sync
select * from tdrexglb part where
select * from tdrexglb part where

contains (b,
contains (b,

exec ctx ddl.sync index('tdrexglb parti')
PROMPT after sync

select * from tdrexglb part where
select * from tdrexglb part where

contains (b,
contains (b,

PROMPT merge partition

alter table tdrexglb part merge partitions p22, p3

into partition pnew3 update global indexes;

PROMPT before sync

select * from tdrexglb part where contains (b,
select * from tdrexglb part where contains (b,
exec ctx ddl.sync index('tdrexglb parti');

PROMPT after sync
select * from tdrexglb part where
select * from tdrexglb part where

contains (b,
contains (b,

PROMPT drop partition

'rowll') >0;
'rowl8') >0;
'rowll') >0;
'rowl8') >0;
'rowl8') >0;
'row28') >0;
'rowl8') >0;
'row28') >0;

alter table tdrexglb part drop partition pl update global

PROMPT before sync
select * from tdrexglb part where contains (b,
exec ctx ddl.sync index('tdrexglb parti');

PROMPT after sync
select * from tdrexglb part where contains (b,

PROMPT exchange partition

'rowl') >0;

'rowl') >0;

indexes;

alter table tdrexglb part exchange partition pnew3 with table

tdrexglb update global indexes;

PROMPT before sync
select * from tdrexglb part where
select * from tdrexglb part where

contains (b,
contains (b,

exec ctx ddl.sync index('tdrexglb parti');
PROMPT after sync

select * from tdrexglb part where
select * from tdrexglb part where

contains (b,
contains (b,

PROMPT move table partition

'newrow20"')
'row28') >0;

'newrow20"')
'row28') >0;

>0;

>0;

alter table tdrexglb part move partition p2l update global indexes;

PROMPT before sync
select * from tdrexglb part where contains (b,

exec ctx ddl.sync index('tdrexglb parti');
PROMPT after sync
select * from tdrexglb part where contains (b,

'rowll') >0;

'rowll') >0;

1-25

Chapter 1
CATSEARCH

PROMPT truncate table partition
alter table tdrexglb part truncate partition p2l update global indexes;

update global indexes;

1.3 CATSEARCH

ORACLE

Use the CATSEARCH operator to search CTXCAT indexes. Use this operator in the WHERE clause of
a SELECT statement.

The CATSEARCH operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Indexing of remote views is not supported.)

The grammar of this operator is called CTXCAT. You can also use the CONTEXT grammar if your
search criteria require special functionality, such as thesaurus, fuzzy matching, proximity
searching, or stemming. To utilize the CONTEXT grammar, use the "Query Template
Specification” in the text_query parameter as described in this section.

About Performance

Use the CATSEARCH operator with a CTXCAT index mainly to improve mixed-query
performance. Specify your text query condition with text query and your structured condition
with the structured query argument.

Internally, Oracle Text uses a combined B-tree index on text and structured columns to quickly
produce results satisfying the query.

Limitations

If the optimizer chooses to use the functional query invocation, then your query will fail. The
optimizer might choose functional invocation when your structured clause is highly selective.

You can use the INDEX hint to specify the optimizer to use the index and avoid functional
evaluation of CATSEARCH.

The structured query argument of the CATSEARCH operator must reference columns used
during CREATE INDEX sets; otherwise, error DRG-10845 will be raised. For example, the error
will be raised if you issue a CATSEARCH query on a view created on top of a table with the
CTXCAT index on it, and the name of the logical column on the view is different from the actual
column name on the physical table. The columns referenced by the structured query
argument of the CATSEARCH operator must be the physical column name used during CREATE
INDEX sets, not the logical column on the view.

Syntax

CATSEARCH (

[schema.] column,

text query [VARCHARZ2 |CLOB],

structured query VARCHARZ,

RETURN NUMBER;

1-26

Chapter 1
CATSEARCH

[schema.]Jcolumn
Specifies the text column to be searched on. This column must have a CTXCAT index
associated with it.

text_query
Specify one of the following to define your search in column:

e CATSEARCH Query Operations
* Query Template Specification (for using CONTEXT grammatr)
CATSEARCH Query Operations

The CATSEARCH operator supports only the following query operations:

e Logical AND

* Logical 0R (])

* Logical NOT (-)

e ""(quoted phrases)
e Wildcarding

CATSEARCH Query Operations provides the syntax for these operators.

Table 1-4 CATSEARCH Query Operators
]

Operation Syntax Description of Operation

Logical AND abc Returns rows that contain a, b, and c.

Logical OR albjc Returns rows that contain a, b, or c.

Logical NOT a-b Returns rows that contain a and not b.

Hyphen with no a-b Hyphen treated as a regular character.

Space For example, if the hyphen is defined as skipjoin, words such

as web-site are treated as the single query term website.

Likewise, if the hyphen is defined as a printjoin, words such
as web-site are treated as web-site in the CTXCAT query
language.

"abc" Returns rows that contain the phrase "a b c".

For example, entering "Sony CD Player" means return all
rows that contain this sequence of words.

) (AB)|C Parentheses group operations. This query is equivalent to
the CONTAINS query (A &B) | C.

Wildcard term* The wildcard character matches zero or more characters.

(right and double a*b For example, do* matches dog, and gl*s matches glass.

truncated) Left truncation not supported.

Note: Oracle recommends that you create a prefix index if
your application uses wildcard searching. Set prefix indexing
with the BASIC_WORDLIST preference.

The following limitations apply to these operators:

e The left-hand side (the column name) must be a column named in at least one of the
indexes of the index set.

ORACLE 1-27

Chapter 1
CATSEARCH

* The left-hand side must be a plain column name. Functions and expressions are not
allowed.

* The right-hand side must be composed of literal values. Functions, expressions, other
columns, and subselects are not allowed.

e Multiple criteria can be combined with AND. Note that OR is not supported.

* When querying a remote table through a database link, the database link must be specified
for CATSEARCH as well as for the table being queried.

For example, these expressions are supported:

catsearch (text, 'dog', 'foo > 15'")

catsearch (text, 'dog', 'bar = ''SMITH''')

catsearch (text, 'dog', 'foo between 1 and 15'")
catsearch (text, 'dog', 'foo = 1 and abc = 123")
catsearch@remote (text, 'dog', 'foo = 1 and abc = 123'")

These expressions are not supported:

catsearch
catsearch
catsearch
catsearch

text, 'dog', 'upper(bar) = "'A'''")
text, 'dog', 'bar LIKE ''A%'''")
text, 'dog', 'foo = abc')

text, 'dog', 'foo =1 or abc = 3')

Query Template Specification

Specifies a marked-up string that specifies a query template. Specify one of the following
templates:

e Query rewrite, used to expand a query string into different versions

e Progressive relaxation, used to progressively enter less restrictive versions of a query to
increase recall

e Alternate grammar, used to specify CONTAINS operators (See "CONTEXT Query Grammar
Examples")

* Alternate language, used to specify alternate query language

« Alternate scoring, used to specify alternate scoring algorithms

See Also:

The text_query parameter description for CONTAINS for more information about
the syntax for these query templates

structured_query

Specifies the structured conditions and the ORDER BY clause. There must exist an index for any
column you specify. For example, if you specify 'category id=1 order by bid close', you
must have an index for 'category id, bid close' as specified with the CTX DDL.ADD INDEX
package.

With structured guery, you can use standard SQL syntax only with the following operators:

ORACLE L8

Chapter 1

CATSEARCH
o >
e <
. IN
e BETWEEN

e AND (to combine two or more clauses)

< Note:

You cannot use parentheses () in the structured query parameter.

Examples

1. Create the table.
The following statement creates the table to be indexed:

CREATE TABLE auction (category id number primary key, title varchar2(20),
bid close date);

The following statements insert the values into the table:

INSERT INTO auction values
INSERT INTO auction values
INSERT INTO auction values
INSERT INTO auction values

(1, 'Sony DVD Player', '20-FEB-2012');

(

(

(
INSERT INTO auction values (

(

(

(

1
2, 'Sony DVD Player', '24-FEB-2012'");
3, 'Pioneer DVD Player', '25-FEB-2012');
4, 'Sony DVD Player', '25-FEB-2012');
5, 'Bose Speaker', '22-FEB-2012');

6, 'Tascam CD Burner', '25-FEB-2012'");

7, 'Nikon digital camera', '22-FEB-2012");
8, 'Canon digital camera', '26-FEB-2012");

INSERT INTO auction values
INSERT INTO auction values
INSERT INTO auction values

2. Create the CTXCAT index.
The following statements create the CTXCAT index:
begin

ctx ddl.create index set('auction iset');
ctx ddl.add index('auction iset', 'bid close');

end;

/
CREATE INDEX auction titlex ON auction(title) INDEXTYPE IS CTXSYS.CTXCAT
PARAMETERS ('index set auction iset');

3. Query the table.

A typical query with CATSEARCH might include a structured clause as follows to find all rows
that contain the word camera ordered by bid close:

SELECT * FROM auction WHERE CATSEARCH (title, 'camera', 'order by bid close desc')>
0;

CATEGORY ID TITLE BID CLOSE

8 Canon digital camera 26-FEB-12
7 Nikon digital camera 22-FEB-12

ORACLE 190

ORACLE

Chapter 1
CATSEARCH

The following query finds all rows that contain the phrase Sony DVD Player and that have
a bid close date of February 20, 2012:

SELECT * FROM auction WHERE CATSEARCH(title, '"Sony DVD Player"',
'bid close=''20-FEB-00"'""')> 0;

CATEGORY ID TITLE BID CLOSE

1 Sony DVD Player 20-FEB-12

The following query finds all rows with the terms Sony and DVD and Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'Sony DVD Player',
'order by bid close
desc')> 0;

CATEGORY ID TITLE BID CLOSE
4 Sony DVD Player 25-FEB-12
2 Sony DVD Player 24-FEB-12
1 Sony DVD Player 20-FEB-12

The following query finds all rows with the term DVD and not Player:

SELECT * FROM auction WHERE CATSEARCH(title, 'DVD - Player', 'order by bid close
desc')> 0;

CATEGORY ID TITLE BID CLOSE

6 Tascam CD Burner 25-FEB-12

The following query finds all rows with the terms CD or DVD or Speaker:

SELECT * FROM auction WHERE CATSEARCH(title, 'CD | DVD | Speaker', 'order by
bid close desc')> 0;

CATEGORY ID TITLE BID CLOSE
3 Pioneer DVD Player 25-FEB-12
4 Sony DVD Player 25-FEB-12
6 Tascam CD Burner 25-FEB-12
2 Sony DVD Player 24-FEB-12
5 Bose Speaker 22-FEB-12
1 Sony DVD Player 20-FEB-12

The following query finds all rows that are about audio equipment:

SELECT * FROM auction WHERE CATSEARCH (title, 'ABOUT (audio equipment)',
NULL)> 0O;

CONTEXT Query Grammar Examples

The following examples show how to specify the CONTEXT grammar in CATSEARCH queries using
the template feature:

PROMPT
PROMPT fuzzy: query = ?test
PROMPT should match all fuzzy variations of test (for example, text)
select pk||'" ==> '||text from test
where catsearch (text,
'<query>

<textquery grammar="context">

?test

</textquery>

</query>',"'")>0

1-30

ORACLE

order by pk;

PROMPT
PROMPT fuzzy: query = !sail
PROMPT should match all soundex variations of bot (for example, sell)

select pk||' ==> "||text from test
where catsearch (text,
'<query>
<textquery grammar="context">
!sail
</textquery>
</query>',"'')>0
order by pk;
PROMPT

PROMPT theme (ABOUT) query
PROMPT query: about (California)
select pk||' ==> "||text from test
where catsearch (text,
'<query>
<textquery grammar="context">
about (California)

</textquery>
</query>',"'')>0
order by pk;

The following example shows a field section search against a CTXCAT index using CONTEXT

grammar by means of a query template in a CATSEARCH query:

-- Create and populate table
create table BOOKS (ID number, INFO varchar2(200), PUBDATE DATE);

insert into BOOKS values (1, '<author>NOAM CHOMSKY</author><subject>CIVIL
RIGHTS</subject><language>ENGLISH</language><publisher>MIT
PRESS</publisher>', '01-NOV-2003");

insert into BOOKS values (2, '<author>NICANOR PARRA</author><subject>POEMS
AND ANTIPOEMS</subject><language>SPANISH</language>
<publisher>VASQUEZ</publisher>', '01-JAN-2001"');

insert into BOOKS values (1, '<author>LUC SANTE</author><subject>XML
DATABASE</subject><language>FRENCH</language><publisher>FREE
PRESS</publisher>', '15-MAY-2002'");

commit;

-- Create index set and section group
exec ctx ddl.create index set ('BOOK INDEX SET');
exec ctx ddl.add index('BOOKSET', 'PUBDATE');

exec ctx ddl.create section group ('BOOK SECTION GROUP',
"BASIC_SECTION GROUP');
exec ctx ddl.add field section('BOOK SECTION GROUP', 'AUTHOR', 'AUTHOR');
exec ctx ddl.add field section('BOOK SECTION GROUP','SUBJECT', 'SUBJECT');
exec ctx ddl.add field section(
(

-- Create index
create index books index on books(info) indextype is ctxsys.ctxcat
parameters ('index set book index set section group book section group');

-- Use the index

'BOOK_SECTION_GROUP','LANGUAGE','LANGUAGE');
exec ctx ddl.add field section('BOOK SECTION GROUP','PUBLISHER', 'PUBLISHER');

Chapter 1
CATSEARCH

1-31

Chapter 1
CONTAINS

-- Note that: even though CTXCAT index can be created with field sections, it
-- cannot be accessed using CTXCAT grammar (default for CATSEARCH).

-- We need to use query template with CONTEXT grammar to access field

-- sections with CATSEARCH.

select 1id, info from books
where catsearch (info,
'<query>
<textquery grammar="context">
NOAM within author and english within language
</textquery>
</query>',
'order by pubdate')>0;

Related Topics
"Syntax for CTXCAT Index Type"

Oracle Text Application Developer's Guide

1.4 CONTAINS

Use the CONTAINS operator in the WHERE clause of a SELECT statement to specify the query
expression for a Text query.

The CONTAINS operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view (querying of remote views is not supported).

CONTAINS returns a relevance score for every row selected. Obtain this score with the SCORE
operator.

The grammar for this operator is called the CONTEXT grammar. You can also use CTXCAT
grammar if your application works better with simpler syntax. To do so, use the Query Template
Specification in the text query parameter as described in this section.

¢ See Also:

e Query Rewrite Template

e Query Result Set Descriptor Template
e Query Relaxation Template

e Alternate Grammar Template

e Language Independent Template

e Alternate Language Template

e Alternative Scoring Template

« The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide

Syntax

CONTAINS (
[schema.]column,

ORACLE Lo

ORACLE

Chapter 1
CONTAINS

text query [VARCHAR2 | CLOB]
[,label NUMBER])
RETURN NUMBER;

[schema.]column
Specify the text column to be searched on. This column must have a Text index associated
with it.

text_query
Specify one of the following (limited to 4000 bytes for a VARCHAR2 or 64000 bytes for a CLOB):
e The query expression that defines your search in column.
e A marked-up document that specifies a query template.
Use one of the following query templates:
— Query Rewrite Template
— Query Result Set Descriptor Template
— Query Relaxation Template
— Alternate Grammar Template
— Language Independent Template
— Alternate Language Template
— Alternative Scoring Template
Query Rewrite Template

Use this template to automatically write different versions of a query before you submit the
query to Oracle Text. This is useful when you need to maximize the recall of a user query. For
example, you can program your application to expand a single phrase query of ‘cat dog' into
the following queries:

{cat} {dog}

{cat} ; {dog}
{cat} AND {dog}
{cat} ACCUM {dog}

These queries are submitted as one query and results are returned with no duplication. In this
example, the query returns documents that contain the phrase cat dog as well as documents in
which cat is near dog, and documents that have cat and dog.

This is done with the following template:

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> cat dog
<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite></seqgq>
<seg><rewrite>transform((TOKENS, "{", "}", " ACCUM "))</rewrite></seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

The operator TRANSFORM is used to specify the rewrite rules and has the following syntax (note
that it uses double parentheses). The parameters are described in the following table.

TRANSFORM ((terms, prefix, suffix, connector))

1-33

Chapter 1
CONTAINS

Table 1-5 TRANSFORM Parameters
]

Parameter Description
term Specifies the type of terms to be produced from the original query. Specify either
TOKENS or THEMES.
prefix Specifies the literal string to be prepended to all terms.
suffix Specifies the literal string to be appended to all terms.
connector Specifies the literal string to connect all terms after applying the prefix and suffix.
¢ Note:

An error will be raised if the input Text query string specified in the Query Rewrite

Template with TRANSFORM rules contains any Oracle Text query operators (such as
AND, OR, Or SOUNDEX). Also, any special characters (such as % or $) in the input Text
query string must be preceded by an escape character, or an error is raised.

Query Result Set Descriptor Template

Use this template to take in a Result Set Descriptor. The element ctx_result_set_descriptor is
added to the query template. This enables the CONTAINS query cursor to take in a group
count query.

The Result Set Interface document is placed in a public variable in the ctx_query package.
(ctx_query.result_set_document.)

The CONTAINS query cursor behavior remains unchanged and the Result Set Document is
available right after closing the cursor

For example, the following query of kukui nut returns a result set with the following template.

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " ACCUM "))</rewrite></seqg>
</progression>
</textquery>

<score datatype="INTEGER" algorithm="COUNT"/>
<ctx result set descriptor>
<group>
<group values>
<value 1d="2"/>
<value 1d="3"/>
<value id="4"/>
</group_values>
<count/>
</group>
</ctx result set descriptor>
</query>

Query Relaxation Template

ORACLE Laa

ORACLE

Chapter 1
CONTAINS

Use this template to progressively relax your query. Progressive relaxation is when you
increase recall by progressively issuing less restrictive versions of a query, so that your
application can return an appropriate number of hits to the user.

For example, the query of blue pen can be progressively relaxed to:

blue pen

blue NEAR pen
blue AND pen
blue ACCUM pen

This is done with the following template

<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>blue pen</seq>
<seg>blue NEAR pen</seq>
<seg>blue AND pen</seq>
<segq>blue ACCUM pen</seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Alternate Grammar Template

Use this template to specify an alternate grammar, such as CONTEXT or CATSEARCH. Specifying
an alternate grammar enables you to enter queries using different syntax and operators.

For example, with CATSEARCH, enter ABOUT queries using the CONTEXT grammar. Likewise with
CONTAINS, enter logical queries using the simplified CATSEARCH syntax.

The phrase ‘dog cat mouse'is interpreted as a phrase in CONTAINS. However, with CATSEARCH,
this is equivalent to an AND query of '‘dog AND cat AND mouse'. Specify that CONTAINS use the
alternate grammar with the following template:
<query>

<textquery grammar="CTXCAT">dog cat mouse</textquery>

<score datatype="integer"/>
</query>

Language Independent Template

Use this template to specify a lexer that uses user-defined symbols (or abbreviations) and
does not depend on any language.

The following example specifies that the query take a list of language-independent sublexers.

<query>
<textquery grammar="CONTEXT" lang="ENGLISH">
Oracle
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<sublexers>
<sublexer label> SESSION LANG </sublexer_label>
<sublexer label> MAIL </sublexer_label>
<sublexer label> CALENDER </sub1exer_label>
</sublexers>
</query>

The following conditions apply:

1-35

ORACLE

Chapter 1
CONTAINS

* The sublexers element consists of one or more sublexer label elements.

* Each sublexer label element contains the symbol for the language independent
sub_lexer.

e When the sublexers element is specified, the query will be processed with the stopwords
and sub_lexers for each of the symbols specified in the sublexers element, and query will
return only the documents indexed by the specified sub_lexers.

* A special reserved symbol called SESSION LANG can be used for the system to pick a
language-dependent sub_lexer based on the language specified in 1ang attribute of the
textquery element in the query template. If 1ang attribute is not specified, then the lang
attribute will be based on session language. Query parsed by the chosen sub_lexer will
only return documents indexed by that language-dependent sub_lexer. If both
SESSION LANG and lang attribute are specified, the lang attribute will take priority.

* If sublexers element is specified without SESSION LANG, then lang attribute of textquery
element will be ignored.

¢ Default Behavior:

If sublexers element is not present in the query template, then query will be parsed with
one language-dependent sub-lexer (if any), which is chosen based on the specified lang
attribute value or the session language AND all language independent sub-lexers.

Alternate Language Template

Use this template to specify an alternate language:
<query><textquery lang="french">bon soir</textquery></query>
Alternative Scoring Template

Use this template to specify an alternative scoring algorithm.

The following example specifies that the query use the CONTEXT grammar and return integer
scores using the COUNT algorithm. This algorithm returns a score as the number of query
occurrences in the document.

<query>
<textquery grammar="CONTEXT" lang="english"> mustang
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

The following example uses the normalization expr attribute to add SDATA(price) into the
score returned by the query, and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization expr ="doc score+ SDATA(price)"/>
</query>

The normalization expr attribute is used only with the alternate scoring template, and is an
arithmetic expression that consists of:

* Arithmetic operators: + - * /. The operator precedence is the same as that for SQL operator
precedence.

* Grouping operators: (). Parentheses can be used to alter the precedence of the arithmetic
operators.

1-36

ORACLE

Chapter 1
CONTAINS

* Absolute function: ABS(n) returns the absolute value of n; where n is any expression that
returns a number.

e Logarithmic function: LOG(n): returns the base-10 logarithmic value of n; where n is any
expression that returns a number.

* Predefined components: The doc_score predefined component can be used to return the
initial query score of a particular document.

* SDATA component: SDATA(hame) returns the value of the SDATA with the specified hame as
the score.

— Only SDATA with a NUMBER or DATE data type is allowed. An error is raised otherwise.
— The sdata string and the SDATA name are case-insensitive.

— Because an SDATA section value can be NULL, any expression with NULL SDATA section
value is evaluated as 0. For example: the normalization expr "doc score +
SDATA (price) " will be evaluated to O if SDATA (price) for a given document has a NULL
value.

* Numeric literals: There are any number literal that conforms to the SQL pattern of NUMBER
literal and is within the range of the double-precision floating-point (-3.4e38 to 3.4e38).

e Date literals: Date literals must be enclosed with DATE (). Only the following format is
allowed: YYYY-MM-DD Or YYYY-MM-DD HH24:MI:SS. For example: DATE (2005-11-08).

Consistent with SQL, if no time is specified, then 00:00:00 is assumed.

The normalization expr attribute overrides the algorithm attribute. That is, if algorithm is set
to COUNT, and the user also specifies normalization expr, then the score will not be count, but
the calculated score based on the normalization expr.

If the score (either from algorithm = COUNT Or normalization expr =...)is internally
calculated to be greater than 100, then it will be set to 100.

If the query relaxation template is used, the score will be further normalized in such a way that
documents returned from higher sequences will always have higher scores than documents
returned from sequence(s) below.

DATE Literal Restrictions

Only the minus (-) operator is allowed between date-type data (DATE literals and date-type
SDATA). Using other operators will result in an error. Subtracting two date-type data will
produce a number (float) that represents the difference in number of days between the two
dates. For example, the following expression is allowed:

SDATA (dob) - DATE (2005-11-08)

The following expression is not allowed:

SDATA (dob) + DATE(2005-11-08)

The plus (+) and minus (-) operators are allowed between numeric data and date type of data.
The number operand is interpreted as the number or fraction of days. For example, the
following expression is allowed:

DATE (2005-11-08) + 1 = 9 NOV 2005

The following expression is not allowed:

DATE (2005-11-08) * 3 = ERROR

Template Attribute Values

1-37

Chapter 1
CONTAINS

Table 1-6 gives the possible values for template attributes.

Table 1-6 Template Attribute Values

Tag Attribute Description Possible Values Meaning
grammar= Specifies the grammar CONTEXT The grammar of the query.
of the query. CTXCAT
datatype= Specifies the type of INTEGER Returns score as integer
number returned as between 0 and 100.
FLOAT . .
score. Returns score as its high-

precision floating-point number
between 0 and 100.

algorithm= Specifies the scoring DEFAULT Returns the default.
algorithm to use. COUNT Returns scores as the number
of occurrences in the
document.
lang= Specifies the language Any language supported The language name.
name. by Oracle Database. See

Oracle Database
Globalization Support
Guide.

Template Grammar Definition

The query template interface is an XML document. Its grammar is defined with the following
XML DTD:

<!DOCTYPE query [

<!ELEMENT query (textquery, score?, order?)>

<!ELEMENT textquery (#PCDATA|progression)*>

<!ELEMENT progression (seq)+>

<!ELEMENT seq (#PCDATA|rewrite)*>

<!ELEMENT rewrite (#PCDATA)>

<!ELEMENT score EMPTY>

<!ELEMENT order (orderkey+)>

<!ELEMENT orderkey (#PCDATA)>

<!ATTLIST textquery grammar (CONTEXT | CTXCAT | CTXRULE) #REQUIRED>
<!ATTLIST textquery lang CDATA #IMPLIED>

<!ATTLIST score datatype (integer | float) "integer">
<!ATTLIST score algorithm (default | count) "default">
<!ATTLIST score normalization expr CDATA >

Values are case insensitive: integer | float, default | count, context |ctxcat .

¢ See Also:

Oracle Text CONTAINS Query Operators for more information about the operators in
guery expressions

label
Optionally, specifies the label that identifies the score generated by the CONTAINS operator.

ORACLE a8

ORACLE

Chapter 1
CONTAINS

Returns

For each row selected, the CONTAINS operator returns a number between 0 and 100 that
indicates how relevant the document row is to the query. The number 0 means that Oracle Text
found no matches in the row.

Note:

You must use the SCORE operator with a label to obtain this number.

Example

The following example searches for all documents in the text column that contain the word
oracle. The score for each row is selected with the SCORE operator using a label of 1:

SELECT SCORE (1), title from newsindex
WHERE CONTAINS (text, 'oracle', 1) > 0;

The CONTAINS operator must be followed by an expression such as > 0, which specifies that
the score value calculated must be greater than zero for the row to be selected.

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause must
reference the score label value as in the following example:

SELECT SCORE (1), title from newsindex
WHERE CONTAINS (text, 'oracle', 1) > 0 ORDER BY SCORE (1) DESC;

The following example specifies that the query be parsed using the CATSEARCH grammatr:

SELECT id FROM test WHERE CONTAINS (text,
'<query>
<textquery lang="ENGLISH" grammar="CATSEARCH">
cheap pokemon
</textquery>
<score datatype="INTEGER"/>
</query>') > 0;

Grammar Template Example

The following example shows how to use the CTXCAT grammar in a CONTAINS query. The
example creates a CTXCAT and a CONTEXT index on the same table, and compares the query
results.

PROMPT create context and ctxcat indexes, both using theme indexing
PROMPT

create index tdrbgcglOlx on test (text) indextype is ctxsys.context
parameters ('lexer theme lexer');

create index tdrbgcglOlcx on test(text) indextype is ctxsys.ctxcat
parameters ('lexer theme lexer');

PROMPT * % Kk k ok San Diego *kkkkkkkxkx
PROMPT ****x CONTEXT grammar KHK KKK KK KKK
PROMPT ** should be interpreted as phrase query **
select pk||' ==> '||text from test

where contains (text, 'San Diego')>0

order by pk;

1-39

ORACLE

Chapter 1
CONTAINS

PROMPT *k k k% San Diego kkkkkhkkkkkkk
PROMPT ***** CTXCAT grammar ****kkxxikx
PROMPT ** should be interpreted as AND query ***

select pk||' ==> "||text from test
where contains (text,
'<query>

<textquery grammar="CTXCAT">San Diego</textquery>
<score datatype="integer"/>

</query>")>0

order by pk;

PROMPT ***** Hitlist from CTXCAT index *****xxxxkx*

select pk||' ==> "||text from test
where catsearch (text, 'San Diego','')>0
order by pk;

Alternate Scoring Query Template Example

The following query template adds price SDATA section (or SDATA filter-by column) value into the
score returned by the query and uses it as the final score:

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score algorithm="COUNT" normalization expr ="doc_ score+SDATA (price)"/>
</query>

Query Relaxation Template Example

The following query template defines a query relaxation sequence. The query of blue pen is
entered in sequence as blue pen, then blue NEAR pen, then blue AND pen, and then blue
ACCUM pen. Query hits are returned in this sequence with no duplication as long as the
application requires results.

select id from docs where CONTAINS (text, '
<query>
<textquery lang="ENGLISH" grammar="CONTEXT">
<progression>
<seg>blue pen</seqg>
<seg>blue NEAR pen</seq>
<seg>blue AND pen</seq>
<seg>blue ACCUM pen</seq>
</progression>
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Query relaxation is most effective when your application requires the top n hits to a query,
which you can obtain with the DOMAIN INDEX SORT or FIRST ROWS hint, which is being
deprecated, in a PL/SQL cursor.

Query Rewrite Template Example

The following template defines a query rewrite sequence. The query of kukui nut is rewritten as
follows:

{kukui} {nut}
{kukui} ; {nut}
{kukui} AND {nut}

1-40

ORACLE

Chapter 1
CONTAINS

{kukui} ACCUM {nut}

select id from docs where CONTAINS (text, '

<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> kukui nut
<progression>
<seg><rewrite>transform((TOKENS, "{", "}", " "))</rewrite></seq>
<seg><rewrite>transform((TOKENS, "{", "}", " ; "))</rewrite>/seq>
<seg><rewrite>transform((TOKENS, "{", "}", " AND "))</rewrite><seq/>
<seg><rewrite>transform((TOKENS, "{", "}", " ACCUM "))</rewrite><seq/>
</progression>
</textquery>

<score datatype="INTEGER" algorithm="COUNT"/>
</query>')>0;

Order By SDATA Sections Template Example

The following query template defines a query sequence for ordering by SDATA section values
using the <order> and <orderkey> elements. The first level of ordering is done on the SDATA
section price, which is sorted in the ascending order. The second and third level of ordering is
done by the SDATA section pub_date and score, both of which are sorted in the descending
order.

select id from docs where CONTAINS (text, '
<query>
<textquery lang="ENGLISH" grammar="CONTEXT"> Oracle </textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
<order>
<orderkey> SDATA (price) ASC </orderkey>
<orderkey> SDATA (pub date) DESC </orderKey>
<orderkey> Score DESC </orderkey>
</order>
</query>', 1)>0;

The <orderkey> element value must have the following format:

<orderkey> SDATA(sdata_section_name) | score [DESC|ASC] </orderkey>

The sort order is ascending by default, if not specified as either DESC or ASC.
The <orderkey> element will be ignored in the following cases:

» when the Oracle Cost-Based Optimizer (CBO) pushes the SQL query level ordering into
the Text index

e when the CONTAINS () predicate is processed functionally
* when the ordering is already specified by the ORDER BY clause in the SQL query
statement

Notes
Querying Multilanguage Tables

With the multilexer preference, you can create indexes from multilanguage tables. At query
time, the multilexer examines the session's language setting and uses the sublexer preference
for that language to parse the query. If the language setting is not mapped, then the default
lexer is used.

When the language setting is mapped, the query is parsed and run as usual. The index
contains tokens from multiple languages, so such a query can return documents in several
languages.

1-41

Chapter 1
CREATE INDEX

To limit your query to returning documents of a given language, use a structured clause on the
language column.

Query Performance Limitation with a Partitioned Index
Oracle Text supports the CONTEXT indexing and querying of a partitioned text table.

However, for optimal performance when querying a partitioned table with an ORDER BY SCORE
clause, query the partition. If you query the entire table and use an ORDER BY SCORE clause, the
query might not perform optimally unless you include a range predicate that can limit the query
to a single partition.

For example, the following statement queries the partition p tab4 partition directly:

select * from part tab partition (p_tab4) where contains(b,'oracle') > 0 ORDER BY
SCORE DESC;

Limitation with Remote Execution of CONTAINS Query

Oracle Text supports the remote execution of the CONTAINS operator, but with some limitations.
You can invoke the CONTAINS operator in a remote query only if the query is executed
completely in the remote database. You cannot use the CONTAINS operator in a subquery of a
guery, which causes the query to run partly on the remote database and partly on the local
database. Doing so will raise the error "ORA-00949: illegal reference to remote database."
However, CONTAINS, when invoked remotely from an inner query might run successfully
sometimes if view merging is enabled and possible on this query, as in this case the query will
be transformed into a single query and, hence, no error will occur.

For example, the following query is correct:

select id from remtab@rdb
where contains@rdb (text, 'hello') > 0;

Related Topics

"Syntax for CONTEXT Index Type"

Oracle Text CONTAINS Query Operators

"The CONTEXT Grammar" topic in Oracle Text Application Developer's Guide
"SCORE"

1.5 CREATE INDEX

ORACLE

Use the CREATE INDEX statement to create an Oracle Text index.

This section describes the CREATE INDEX Statement as it pertains to creating an Oracle Text
domain index and composite domain index. See "Oracle Database SQL Language Reference
for a complete description of the CREATE INDEX statement.

Purpose

To create an Oracle Text index. An Oracle Text index is an Oracle Database domain index or
composite domain index of type CONTEXT, CTXCAT, or CTXRULE. A domain index is an
application-specific index. A composite domain index (CDI) is an Oracle Text index that not
only indexes and processes a specified text column, but also indexes and processes FILTER BY
and ORDER BY structured columns, which are specified during index creation.

1-42

ORACLE

Chapter 1
CREATE INDEX

Example

create table mytab

(item id number,

item info varchar2(4000),

item supplier varchar2(250),
item distributor varchar2(500));

create index idx on mytab(item info) indextype is ctxsys.context
filter by item supplier order by item distributor;

You must create an appropriate Oracle Text index to enter CONTAINS, CATSEARCH, Of MATCHES
queries.

You cannot create an Oracle Text index on an index-organized table.
You can create the following types of Oracle Text indexes.
CONTEXT

A CONTEXT index is the basic type of Oracle Text index. This is an index on a text column. A
CONTEXT index is useful when your source text consists of many large, coherent documents.
Query this index with the CONTAINS operator in the WHERE clause of a SELECT statement. This
index requires manual synchronization after DML. See "Syntax for CONTEXT Index Type".

CTXCAT

The cTXCAT index is a combined index on a text column and one or more other columns. The
CTXCAT type is typically used to index small documents or text fragments, such as item names,
prices, and descriptions found in catalogs. Query this index with the CATSEARCH operator in the
WHERE clause of a SELECT statement. This type of index is optimized for mixed queries. This
index is transactional, automatically updating itself with DML to the base table. CTXCAT indexes
are generally larger and slower to create and update than CONTEXT indexes, and have a
narrower range of indexing options available. See "Syntax for CTXCAT Index Type".

CTXRULE

A CTXRULE index is used to build a document classification application. The CTXRULE index is an
index created on a table of queries or a column containing a set of queries, where the queries
serve as rules to define the classification criteria. Query this index with the MATCHES operator in
the WHERE clause of a SELECT statement. See "Syntax for CTXRULE Index Type".

Required Privileges

You do not need the CTXAPP role to create an Oracle Text index. If you have Oracle Database
privileges to create an index on the text column, you have sufficient privilege to create a text
index. The issuing owner, table owner, and index owner can all be different users, which is
consistent with Oracle standards for creating regular indexes.

< Note:

Whenever you create an Oracle Text index, a number of additional internal objects
are created which have names prefixed with DR$. These internal object names
usually contain the index nhame. In some cases, the index name is shortened to fit in
the object name. In such cases, the index ID is present in the object name to avoid
naming conflicts with objects of other indexes.

1-43

ORACLE

Chapter 1
CREATE INDEX

Syntax for CONTEXT Index Type

Uses a CONTEXT index to create an index on a text column. Query this index with the CONTAINS
operator in the WHERE clause of a SELECT statement. This index requires manual
synchronization after DML.

CREATE INDEX [schema.]index ON [schema.]table(txt column)

INDEXTYPE IS ctxsys.context [ONLINE]

[FILTER BY filter column[, filter column]...]

[ORDER BY oby column[desc|asc][, oby column[desclasc]]...]
[LOCAL [PARTITION [partition] [PARAMETERS ('paramstring')]]
[, PARTITION [partition] [PARAMETERS ('paramstring')]])]
[PARAMETERS (paramstring)] [PARALLEL n] [UNUSABLE]];

[schema.]index
Specifies the name of the Text index to create.

[schema.]table(txt_column)

Specifies the name of the table and column to index. txt_column is the name of the domain
index column on which the CONTAINS () operator will be invoked.

Your table can optionally contain a primary key if you prefer to identify your rows as such
when you use procedures in CTX DOC. When your table has no primary key, document
services identifies your documents by ROWID.

Note:

Primary keys of the following type are supported: NUMBER, VARCHAR?2, DATE, CHAR,
VARCHAR, and RAW.

The column that you specify must be one of the following types: CHAR, VARCHAR, VARCHAR?,
BLOB, CLOB (limited to 4294967295 bytes), BFILE, XMLType, Of URIType.

Note:

In Oracle Database 12c¢ Release 2 (12.2), an Oracle Text index cannot be created
on a column with a declared collation other than BINARY, USING NLS_COMP,
USING NLS SORT Or USING NLS SORT CS. For all the supported collations, the Oracle
Text behavior is the same.

The table that you specify can be a partitioned table. If you do not specify the LOCAL clause,
then a global, nonpartitioned index is created.

The DATE, NUMBER, and nested table columns cannot be indexed. Object columns also cannot
be indexed, but their attributes can be indexed, provided that they are atomic data types.
Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following criteria is true:

e The VPD policy is created such that it does not apply to the INDEX statement type.
* The policy function returns a NULL predicate for the current user.

e The user (or index owner) is SYS.

1-44

ORACLE

Chapter 1
CREATE INDEX

e The user has the EXEMPT ACCESS POLICY privilege.

Note:

If you create VPD policies or use DBMS REDACT after you create a context index on the
base table, then the DR$ index tables like $1 will still contain the redacted column's
indexed information. The CONTAINS queries also return results accordingly. To prevent
indexing of sensitive data, either create the security redaction and VPD policies
before creating a context index or rebuild the context index whenever security
policies are added.

Indexes on multiple columns are not supported with the CONTEXT index type. You must specify
only one column in the column list.

Note:

With the CTXCAT index type, you can create indexes on text and structured columns.
See "Syntax for CTXCAT Index Type"

Note:

Because a Transparent Data Encryption-enabled column does not support domain
indexes, it cannot be used with Oracle Text. However, you can create an Oracle Text
index on a column in a table stored in a Transparent Data Encryption-enabled
tablespace.

ONLINE

Creates the index while enabling DML insertions/updates/deletions on the base table.
During indexing, Oracle Text enqueues DML requests in a pending queue. At the end of the
index creation, Oracle Text locks the base table. During this time, DML is blocked. You must
synchronize the index in order for DML changes to be available.

Limitations
The following limitations apply to using ONLINE:

e At the very beginning or very end of the ONLINE process, DML might fail.

e ONLINE is supported for CONTEXT indexes only.

FILTER BY filter_column

This is the structured indexed column on which a range or equality predicate in the WHERE
clause of a mixed query will operate. You can specify one or more structured columns for
filter column, on which the relational predicates are expected to be specified along with the
CONTAINS () predicate in a query.

The Cost-based Optimizer (CBO) will consider pushing down the structured predicates on
these FILTER BY columns with the following relational operators: <, <=, =, >=, >, between, and
LIKE (for VARCHAR?).

1-45

ORACLE

Chapter 1
CREATE INDEX

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, or RAW type. Additionally, CHAR,
VARCHAR?2 and RAW types are supported only if the maximum length is specified and does not
exceed 249 bytes. If the maximum length of a CHAR or VARCHAR2 column is specified in
characters, for example, VARCHAR2 (50 CHAR), then it cannot exceed FLOOR (249/

max_char width), where max char width is the maximum width of any character in the
database character set. For example, the maximum specified column length cannot exceed 62
characters, if the database character set is AL32UTF8. The ADT attributes of supported types
(CHAR, NUMBER, DATE, VARCHAR2, or RAW) are also allowed. An error is raised for all other data
types. Expressions, for example, func (cola), and virtual columns are not allowed.

txt column is allowed in the FILTER BY column list.

DML operations on FILTER BY columns are always transactional.

ORDER BY oby_column

This is the structured indexed column on which a structured ORDER BY mixed query will be
based. A list of structured oby columns can be specified in the ORDER BY clause of a
CONTAINS () query.

These columns can only be of CHAR, NUMBER, DATE, VARCHAR2, Or RAW type. VARCHAR2 and RAW
columns longer than 249 bytes are truncated to the first 249 bytes. Expressions, for example,
func (cola), and virtual columns are not allowed.

The order of the specified columns matters. The Cost-based Optimizer (CBO) will consider
pushing the sort into the composite domain index only if the ORDER BY clause in the text query
contains:

e Entire ordered ORDER BY columns declared by the ORDER BY clause during the
CREATE INDEX statement

e Only the prefix of the ordered ORDER BY columns declared by the ORDER BY clause
during the CREATE INDEX statement

e The score followed by the prefix of the ordered ORDER BY columns declared by the
ORDER BY clause during the CREATE INDEX statement

e The score following the prefix of the ordered ORDER BY columns declared by the
ORDER BY clause during the CREATE INDEX statement

The following example illustrates Cost-based Optimizer (CBO) behavior with regard to ORDER
BY columns:

CREATE INDEX foox ON foo (D) INDEXTYPE IS CTXSYS.CONTEXT
FILTER BY B, C
ORDER BY A, B desc;

Consider the following query:

SELECT A, SCORE(1) FROM foo WHERE CONTAINS (D, 'oracle',1)>0
AND C>100 ORDER BY col list;

Note:

If you set NLS SORT or NLS_COMP parameters (that is, alter session set NLS_ SORT
= <some lang>;), then CBO will not push the sort or related structured predicate
into the CDI. This behavior is consistent with regular optimized for search SDATA
indexes.

1-46

ORACLE

Chapter 1
CREATE INDEX

The Cost-based Optimizer (CBO) will consider pushing the sort into the composite domain
index (CDI) if col 1list has the following values:

A
A,B

SCORE (1), A
SCORE(1), A, B
A, SCORE (1)

A, B, SCORE (1)

The CBO will not consider to push the sort into the CDI if col 1ist has the following values:

B

B,A

SCORE (1), B
B, SCORE (1)
A, B, C

A, B asc

(or simply 2, B)

Expressions, for example, func (cola), are not allowed.

txt column appearing in the ORDER BY column list is allowed.
DML operations on ORDER BY columns are always transactional.

Limitations
The following limitations apply to FILTER BY and ORDER BY:

e A structured column is allowed in FILTER BY and ORDER BY clauses. However, a column that
is mapped to MDATA in a FILTER BY clause cannot also appear in the ORDER BY clause. An
error will be raised in this case.

e The maximum length for CHAR, VARCHAR2, and RAW columns cannot be greater than 249 for
FILTER BY columns. For ORDER BY columns, the data is truncated at 249 characters.

e The total number of CDI (FILTER BY and ORDER BY) is 32.

Note:

In a CDI, if the indexed column is also a FILTER BY or ORDER BY column, then when
you update the main indexed column, the updates to the FILTER BY or ORDER BY
columns are not transactional.

1-47

Chapter 1
CREATE INDEX

Note:

* As with concatenated optimized for search SDATA indexes or bitmap indexes,
performance degradation may occur in DML as the number of FILTER BY and
ORDER BY columns increases.

e Mapping a FILTER BY column to MDATA is not recommended if the FILTER BY
column contains sequential values or has very high cardinality. Doing so can
result in a very long and narrow $T table and reduced $x performance. An
example is a column of type DATE. For columns of this type, mapping to SDATA is
recommended.

Note:

An index table with the name DRS$indextabless is created to store FILTER BY and
ORDER BY columns that are mapped to SDATA sections. If nothing is mapped to an
SDATA section, then the $s table will not be created.

$S table contains the following columns:

e SDATA ID number is the internal SDATA section ID.
e SDATA LAST number, the last document ID, which is analogous to token last.

* SDATA DATA RAW(2000), the compressed SDATA values. Note that if $s is created
on a tablespace with 4K database block size, then it will be defined as
RAW (1500).

Restriction: For performance reasons, $S table must be created on a tablespace
with db block size >= 4K without overflow segment and without PCTTHRESHOLD clause.
If $3 is created on a tablespace with db block size < 4K, or is created with an overflow
segment or with a PCTTHRESHOLD clause, then appropriate errors will be raised during
the CREATE INDEX Statement.

Restrictions on exporting and importing text tables with composite domain index created with
FILTER BY and/or ORDER BY clauses are as follows:

e Regular exp and imp will not support exporting and importing of composite domain index.
Doing so will lead to the following error: ExP-00113: Feature Composite Domain Index
is unsupported.

* To export a text table with composite domain index, you must use Data Pump Export and
Import utilities (invoked with the expdp and impdp commands, respectively), or
DBMS DATAPUMP PL/SQL package.

¢ See Also:
ADD_SDATA_COLUMN in CTX_DDL Package

ORACLE o

ORACLE

Chapter 1
CREATE INDEX

Limitations of using ALTER INDEX and ALTER TABLE with FILTER BY and ORDER BY columns of the
composite domain index, which are imposed by Extensible Indexing Framework in Oracle
Database:

(These limitations are imposed by Extensible Indexing Framework in Oracle Database.)

Using ALTER INDEX to add or drop FILTER BY and ORDER BY columns is currently not
supported. You must re-create the index to add or drop FILTER BY or ORDER BY columns.

To use ALTER TABLE MODIFY COLUMN to modify the datatype of a column that has the
composite domain index built on it, you must first drop the composite domain index before
modifying the column.

To use ALTER TABLE DROP COLUMN to drop a column that is part of the composite domain
index, you must first drop the composite domain index before dropping the index column.

The following limitations apply to FILTER BY and ORDER BY when used with PL/SQL packages:

Mapping FILTER BY columns to sections is optional. If section mapping does not exist for a
FILTER BY column, then it is mapped to an SDATA section by default. The section nhame
assumes the name of the FILTER BY column.

If a section group is not specified during the CREATE INDEX clause of a composite domain
index, then system default section group settings are used. An SDATA section is created for
each of the FILTER BY and ORDER BY columns.

Note:

Because a section hame does not allow certain special characters and is case-
insensitive, if the column name is case-sensitive or contains special characters,
then an error will be raised. To work around this problem, you must map the
column to an MDATA or SDATA section before creating the index. See
CTX_DDL.ADD_MDATA_COLUMN or CTX_DDL.ADD_SDATA_COLUMN.

An error is raised if a column that is mapped to an MDATA section also appears in the ORDER
BY column clause.

Column section names are unique to their section group. That is, you cannot have an
MDATA column section named FoO if you already have an MDATA column section named FOO.
Nor can you have a field section named F00 if you already have an SDATA column section
named F0O. This is true whether it is implicitly created (by CREATE INDEX for FILTER BY of
ORDER BY clauses) or explicitly created (by CTX DDL.ADD SDATA COLUMN).

One section name can be mapped to only one FILTER BY column, and vice versa. Mapping
a section to more than one column, or mapping a column to more than one section is not
allowed.

Column sections can be added to any type of section group, including the NULL section
group.

If a section group with sections added by the CTX DDL.ADD MDATA COLUMN Of

CTX DDL.ADD SDATA COLUMN packages is specified for a CREATE INDEX statement without a
FILTER BY clause, then the mapped column sections will be ignored. However, the index
will still get created without those column sections. The same is true for a FILTER BY clause
that does not contain mapped columns in the specified section group.

1-49

ORACLE

Chapter 1
CREATE INDEX

See Also:
CTX_DDL.ADD_SDATA_COLUMN

LOCAL [PARTITION [partition] [PARAMETERS('paramstring')]

Specifies a local partitioned context index on a partitioned table. The partitioned table must be
partitioned by range. Hash, composite, and list partitions are not supported.

You can specify the list of index partition names with partition_name. If you do not specify a
partition name, then the system assigns one. The order of the index partition list must
correspond to the table partition order.

The PARAMETERS clause associated with each partition specifies the parameters string specific
to that partition. You can only specify sync (manuallevery |on commit), memory and storage
for each index partition.

The PARAMETERS clause also supports the POPULATE and NOPOPULATE arguments. See
"POPULATE | NOPOPULATE".

Query the views CTX_INDEX_PARTITIONS or CTX_USER_INDEX_ PARTITIONS to find out
index partition information, such as index partition name, and index partition status.

See Also:

"Creating a Local Partitioned Index"

Query Performance Limitation with Partitioned Index

For optimal performance when querying a partitioned index with an ORDER BY SCORE clause,
query the partition. If you query the entire table and use an ORDER BY SCORE clause, the query
might not perform optimally unless you include a range predicate that can limit the query to the
fewest number of partitions, which is optimally a single partition.

¢ See Also:

"Query Performance Limitation with a Partitioned Index"

PARALLEL n

Optionally specifies the parallel degree for parallel indexing. The actual degree of parallelism
might be smaller depending on your resources. You can use this parameter on nonpartitioned
tables. However, creating a nonpartitioned index in parallel does not turn on parallel query
processing. Parallel indexing is supported for creating a local partitioned index.

The indexing memory size specified in the parameter clause applies to each parallel worker.
For example, if indexing memory size is specified in the parameter clause as 500M and
parallel degree is specified as 2, then you must ensure that there is at least 1GB of memory
available for indexing.

1-50

ORACLE

Chapter 1
CREATE INDEX

See Also:

o "Parallel Indexing"
e "Creating a Local Partitioned Index in Parallel"

e The "Performance Tuning" chapter in Oracle Text Application Developer's Guide

Performance

Parallel indexing can speed up indexing when you have large amounts of data to index and
when your operating system supports multiple CPUs.

Note:

Using PARALLEL to create a local partitioned index that enables parallel queries.
(Creating a nonpartitioned index in parallel does not turn on parallel query
processing.)

Parallel querying degrades query throughput especially on heavily loaded systems.
Because of this, Oracle recommends that you disable parallel querying after creating
a local index. To do so, use the ALTER INDEX NOPARALLEL statement.

For more information on parallel querying, see the "Performance Tuning" chapter in
Oracle Text Application Developer's Guide.

Limitations

Parallel indexing is supported only for the CONTEXT index type.

UNUSABLE

Creates an unusable index. This creates index metadata only and exits immediately.
You might create an unusable index when you need to create a local partitioned index in
parallel.

See Also:

"Creating a Local Partitioned Index in Parallel"

PARAMETERS(paramstring)
Optionally specify indexing parameters in paramstring. You can specify preferences owned

by another user using the user.preference notation.
The syntax for paramstring is as follows:

paramstring =

' [ASYNCHRONOUS UPDATE | SYNCHRONOUS UPDATE]
[DATASTORE datastore pref]
[FILTER filter pref]
[CHARSET COLUMN charset column name]

1-51

Chapter 1
CREATE INDEX

[FORMAT COLUMN format column name]
[SAVE COPY COLUMN save copy column name]

[LEXER Iexer pref]
[LANGUAGE COLUMN Ianguage column name]

[WORDLIST wordlist pref]

[STORAGE storage pref]

[STOPLIST stoplist]

[SECTION GROUP section group]

[MEMORY memsize]

[POPULATE | NOPOPULATE]

[SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[TRANSACTIONAL]

[OPTIMIZE (MANUAL | AUTO DAILY | EVERY "interval-string")]'

Create datastore, filter, lexer, wordlist, and storage preferences with
CTX_DDL.CREATE_PREFERENCE and then specify them in the paramstring.

Note:

When you specify no paramstring, Oracle Text uses the system defaults.
For more information about these defaults, see "Default Index Parameters".

ASYNCHRONOUS_UPDATE | SYNCHRONOUS_UPDATE

Specifies whether Oracle Text must retain old index entries for documents in which the
indexed column was updated. The default is SYNCHRONOUS UPDATE which indicates that index
updates are synchronous and that old index entries are unavailable for search operations until
the index is synchronized.

ASYNCHRONOUS UPDATE indicates that until the index is synchronized, search queries will use
the old index entries to return the old document content. After index synchronization, the
rebuilt index is used to return the updated document content.

This option cannot be set at the partition level.

The following example creates a CONTEXT index idx for which asynchronous update is
enabled.

CREATE INDEX myidx ON mytabl (item info) INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS ('asynchronous _update');

Note: Asynchronous updates are not supported for DML operations that cause row
movement.

DATASTORE datastore_pref
Specifies the name of your datastore preference. Use the datastore preference to specify
where your text is stored.See "Datastore Types ".

FILTER filter_pref
Specifies the name of your filter preference. Use the filter preference to specify how to filter
formatted documents to plain text or HTML. See "Filter Types".

ORACLE Lo

ORACLE

Chapter 1
CREATE INDEX

CHARSET COLUMN charset_column_name

Specifies the name of the character set column. This column must be in the same table as the
text column, and it must be of type CHAR, VARCHAR, Or VARCHAR?2. Use this column to specify the
document character set for conversion to the database character set. The value is case-
insensitive. You must specify a globalization support character set string, such as JA16EUC.
When the document is plain text or HTML, the AUTO FILTER and CHARSET filters use this
column to convert the document character set to the database character set for indexing.

Use this column when you have plain text or HTML documents with different character sets or
in a character set different from the database character set.

Setting NLS_LENGTH SEMANTICS parameter to CHAR is not supported at the database level. This
parameter is supported for the following columns:

e The CHARSET COLUMN, for example:
VARCHAR? <size> CHAR
CHAR <size> CHAR
* Anindex created on a VARCHAR2 and CHAR column
e VARCHAR2 and CHAR columns for FILTER BY and ORDER BY clauses of CREATE INDEX

e FORMAT COLUMN

< Note:

* Documents are not marked for re-indexing when only the character set column
changes. The indexed column must be updated to flag the re-index.

* The NLS LENGTH SEMANTICS = CHAR parameter is supported at the column level
only, and is not supported at the database level, as described in this section.

FORMAT COLUMN format_column_name

Specifies the name of the format column. The format column must be in the same table as the
text column and it must be CHAR, VARCHAR, Or VARCHAR? type.

FORMAT COLUMN determines how a document is filtered, or, in the case of the IGNORE value, if it
is to be indexed.

AUTO_FILTER uses the format column when filtering documents. Use this column with
heterogeneous document sets to optionally bypass filtering for plain text or HTML documents.
In the format column, you can specify one of the following options:

e TEXT
e BINARY
° IGNORE

The TEXT option indicates that the document is either plain text or HTML. When TEXT is
specified, the document is not filtered, but may have the character set converted.

The BINARY option indicates that the document is a format supported by the AUTO FILTER
object other than plain text or HTML, for example PDF. BINARY is the default, if the format
column entry cannot be mapped.

The IGNORE option indicates that the row is to be ignored during indexing. Use this value when
you need to bypass rows that contain data incompatible with text indexing such as image
data, or rows in languages that you do not want to process. The difference between
documents with TEXT and IGNORE format column types is that the former are indexed but

1-53

ORACLE

Chapter 1
CREATE INDEX

ignored by the filter, while the latter are not indexed at all. Thus, IGNORE can be used with any
filter type.

Note:

Documents are not marked for re-indexing when only the format column changes.
The indexed column must be updated to flag the re-index.

SAVE_COPY COLUMN save_copy_column_name

Specifies the name of the column that contains the preference of whether to save a copy of a
document into the $D index table during a search operation.

You can specify one of the following three options in the SAVE_COPY column: PLAINTEXT,
FILTERED, Or NONE.

The PLAINTEXT option indicates that the document should be stored as a plain text in the $D
index table. Specify this value when using the SNIPPET procedure.

The FILTERED option indicates that a filter preference should be applied on the text present in
the document before storing it into the $D index table. Specify this value when using the
MARKUP procedure or the HIGHLIGHT procedure.

The NONE option indicates that a copy of the document should not be saved in the $D index
table. Specify this value for any of the following scenarios:

e when SNIPPET, MARKUP, or HIGHLIGHT procedure is not used.

¢ when the indexed column is either VARCHAR2 or CLOB.

LEXER lexer_pref
Specifies the name of your lexer or multilexer preference. Use the lexer preference to identify
the language of your text and how text is tokenized for indexing. See "Lexer Types".

LANGUAGE COLUMN Jlanguage_column_name

Specifies the name of the language column when using a multi-lexer preference. See
"MULTI_LEXER".

This column must exist in the base table. It cannot be the same column as the indexed
column. Only the first 30 bytes of the language column are examined for language
identification.

< Note:

Documents are not marked for re-indexing when only the language column changes.
The indexed column must be updated to flag the re-index.

WORDLIST wordlist_pref

Specifies the name of your wordlist preference. Use the wordlist preference to enable features
such as fuzzy, stemming, and prefix indexing for better wildcard searching. See "Wordlist
Type".

STORAGE storage_pref
Specifies the name of your storage preference for the Text index. Use the storage preference
to specify how the index tables are stored. See "Storage Types".

1-54

Chapter 1
CREATE INDEX

STOPLIST stoplist
Specifies the name of your stoplist. Use stoplist to identify words that are not to be indexed.
See CTX_DDL.CREATE_STOPLIST .

SECTION GROUP section_group
Specifies the name of your section group. Use section groups to create searchable sections in
structured documents. See CTX_DDL.CREATE_SECTION_GROUP .

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX INDEX MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX INDEX MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.

The default is the value specified for DEFAULT INDEX MEMORY in CTX PARAMETERS.

The memsize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

POPULATE | NOPOPULATE

Specifies whether an index should be empty or populated. The default is POPULATE.
The POPULATE and NOPOPULATE parameters are applicable to CONTEXT, CTXRULE, and
SEARCH INDEX types.

¢ Note:

POPULATE | NOPOPULATE is the only option whose default value cannot be set with
CTX_ADM.SET_PARAMETER.

Empty indexes are populated by updates or inserts to the base table. You might create an
empty index when you need to create your index incrementally or to selectively index
documents in the base table. You might also create an empty index when you require only
theme and Gist output from a document set.

Note that a populated index is created by default, unless you explicitly specify the NOPOPULATE
keyword. The outputs of CTX REPORT.CREATE INDEX SCRIPT and CTX REPORT.DESCRIBE INDEX
include the NOPOPULATE keyword for such indexes.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)
Specifies sYNC for synchronization of the CONTEXT index when there are inserts, updates or
deletes to the base table. You can specify one of the following sYNC methods:

ORACLE Lee

Chapter 1
CREATE INDEX

SYNC Type Description

MANUAL Provides no automatic synchronization. This is the default.
You must manually synchronize the index with
CTX DDL.SYNC INDEX.

EVERY "interval-string" Automatically synchronizes the index at a regular interval
specified by the value of interval-string, which takes the
same syntax as that for scheduler jobs. Automatic
synchronization using EVERY requires that the index creator
have CREATE JOB privileges.

Ensure that interval-string is set to a long enough period
that any previous sync jobs will have completed; otherwise,
the sync job might stop responding. interval-string must be
enclosed in double quotes, and any single quote within
interval-string must be preceded by the escape character
with another single quote.

See "Enabling Automatic Index Synchronization” for an
example of automatic sync syntax.

ON COMMIT Synchronizes the index immediately after a commit
transaction. The commit transaction does not return until
the sync is complete. Before Oracle Database Release 18c,
the synchronization was performed as a separate
transaction. There was a time period, usually small, when
the data was committed but index changes were not.
Starting with Oracle Database Release 18c, the
synchronization is performed as part of the same
transaction.

The operation uses the memory specified with the memory
parameter.

Before Oracle Database Release 18c, the sync operation
had its own transaction context. If the operation failed, the
data transaction still committed. Starting with Oracle
Database Release 18c, if there is an irrecoverable index
synchronization error, the entire data transaction is rolled
back. Recoverable (individual row) synchronization errors
are logged in the CTX_USER INDEX ERRORS view but the
transaction still completes. See "Viewing Index Errors".
See "Enabling Automatic Index Synchronization” for an
example of ON COMMIT syntax.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions unless a partition specifies its own type.

With automatic (EVERY) synchronization, users can specify memory size and parallel
synchronization. That syntax is:

. EVERY interval string MEMORY mem size PARALLEL paradegree ...

The ON COMMIT synchronizations can be run only serially and must use the same memory size
that was specified at index creation.

ORACLE L6

ORACLE

Chapter 1
CREATE INDEX

See Also:

* Oracle Database Administrator's Guide for information about job scheduling

e Oracle Database PL/SQL Packages and Types Reference for information about
DBMS SCHEDULER

TRANSACTIONAL

Specifies that documents can be searched immediately after they are inserted or updated. If a
text index is created with TRANSACTIONAL enabled, then, in addition to processing the
synchronized rowids already in the index, the CONTAINS operator will process unsynchronized
rowids as well. Oracle Text does in-memory indexing of unsynchronized rowids and processes
the query against the in-memory index.

TRANSACTIONAL is an index-level parameter and does not apply at the partition level.

You must still synchronize your text indexes from time to time (with CTX DDL.SYNC INDEX) to
bring pending rowids into the index. Query performance degrades as the number of
unsynchronized rowids increases. For that reason, Oracle recommends setting up your index
to use automatic synchronization with the EVERY or ON COMMIT parameter. (See "SYNC
(MANUAL | EVERY "interval-string" | ON COMMIT)".)

Transactional querying for indexes that have been created with the TRANSACTIONAL parameter
can be turned on and off (for the duration of a user session) with the PL/SQL variable

CTX QUERY.disable transactional query. This is useful, for example, if you find that
querying is slow due to the presence of too many pending rowids. Here is an example of
setting this session variable:

exec ctx query.disable transactional query := TRUE;

If the index uses AUTO FILTER, queries involving unsynchronized rowids will require filtering of
unsynchronized documents.

OPTIMIZE (MANUAL | AUTO_DAILY | EVERY "interval-string")
Specify OPTIMIZE to enable automatic background index optimization. You can specify any
one of the following OPTIMIZE methods:

OPTIMIZE Type Description

MANUAL Provides no automatic optimization. You must manually
optimize the index with CTX DDL.OPTIMIZE INDEX.

1-57

Chapter 1
CREATE INDEX

OPTIMIZE Type Description

AUTO_DAILY When you specify OPTIMIZE (AUTO DAILY) in the create
index parameter list, a repeatedly running optimize token
job and a repeatedly running optimize full job are
scheduled.

e The Optimize token job is scheduled to run every
midnight from 12 A.M. to 3 A.M. except on Saturday
night, in order to optimize the top 10 most fragmented
tokens (determined automatically). Jobs that are not
started before 3 A.M. are skipped. These skipped jobs
are started before the other jobs that are scheduled to
run at 12 A.M. the next day.

e The Optimize full job is scheduled to run weekly from
12 A.M. every Saturday night in order to optimize index
tables and clean up $N.

Existing indexes do not have OPTIMIZE (AUTO DAILY) by

default. You must use ALTER INDEX to enable automatic

background index optimization.

EVERY "interval-string" Automatically runs optimize token for the top 10 most
fragmented tokens at a regular interval specified by the
value interval-string, which takes the same syntax as
scheduler jobs.

Ensure that interval-string is set to a long enough period so
that any previous optimize jobs are complete. The interval-
string value must be enclosed in double quotes, and any
single quote within interval-string must be preceded by an
escape character with another single quote.

With AUTO DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

[AUTO DAILY | EVERY "interval-string"] PARALLEL paradegree ...
CREATE INDEX: CONTEXT Index Examples
The following sections give examples of creating a CONTEXT index.

Creating CONTEXT Index Using Default Preferences

The following example creates a CONTEXT index called myindex on the docs column in mytable.
Default preferences are used.

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context;

¢ See Also:

* Oracle Text Application Developer's Guide

* For more information about default settings, see "Default Index Parameters"

Creating CONTEXT Index with Custom Preferences

ORACLE Lea

ORACLE

Chapter 1
CREATE INDEX

The following example creates a CONTEXT index called myindex on the docs column in mytable.
The index is created with a custom lexer preference called my lexer and a custom stoplist
called my stop.

This example also assumes that the preference and stoplist were previously created with
CTX_DDL.CREATE_PREFERENCE for my lexer, and CTX_DDL.CREATE_STOPLIST for
my stop. Default preferences are used for the unspecified preferences.

CREATE INDEX myindex ON mytable (docs) INDEXTYPE IS ctxsys.context
PARAMETERS ('LEXER my lexer STOPLIST my stop');

Any user can use any preference. To specify preferences that exist in another user's schema,
add the user name to the preference name. The following example assumes that the
preferences my lexer and my stop exist in the schema that belongs to user kenny:

CREATE INDEX myindex ON mytable(docs) INDEXTYPE IS ctxsys.context
PARAMETERS ('LEXER kenny.my lexer STOPLIST kenny.my stop');

Enabling Automatic Index Synchronization

You can create your index and specify that the index be synchronized at regular intervals for
insertions, updates and deletions to the base table. To do so, create the index with the syNC
(EVERY "interval-string") parameter.

To use job scheduling, you must log in as a user who has DBA privileges and then grant
CREATE JOB privileges.

The following example creates an index and schedules three synchronization jobs for three
index partitions. The first partition uses ON COMMIT synchronization. The other two partitions are
synchronized by jobs that are scheduled to be executed every Monday at 3 P.M.

CONNECT system/password
GRANT CREATE JOB TO dr_ test

CREATE INDEX tdrmauto02x ON tdrmauto02 (text)

INDEXTYPE IS CTXSYS.CONTEXT local

(PARTITION tdrmOinil PARAMETERS ('

MEMORY 20m SYNC (ON COMMIT) '),

PARTITION tdrmOZXiiZ,

PARTITION tdrm02X7i3) PARAMETERS ('

SYNC (EVERY "NEXTiDAY(TRUNC(SYSDATE), "'MONDAY'') + 15/24")
")

See Oracle Database Administrator's Guide for information about job scheduling syntax.

Enabling Automatic Background Index Optimization

The following example creates an index and schedules a repeatedly running optimize token job
at 12 A.M. every midnight and a repeatedly running optimize full job running at 12 A.M. every
Saturday night.

CREATE TABLE mytable (
text VARCHAR2 (30)
);

1-59

Chapter 1
CREATE INDEX

CREATE INDEX myindex ON mytable (text)
INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS ('OPTIMIZE (EVERY "FREQ=DAILY; BYHOUR=0")"');

Creating CONTEXT Index with Multilexer Preference

The multilexer preference decides which lexer to use for each row based on a language
column. This is a character column in the table that stores the language of the document in the
text column. For example, create the table globaldoc to hold documents of different
languages:

CREATE TABLE globaldoc (
doc_id NUMBER PRIMARY KEY,
lang VARCHARZ2 (10),
text CLOB

)

Assume that global lexer is a multilexer preference you created. To index the global doc
table, specify the multilexer preference and the name of the language column as follows:

CREATE INDEX globalx ON globaldoc (text) INDEXTYPE IS ctxsys.context PARAMETERS
('LEXER global lexer LANGUAGE COLUMN lang');

¢ See Also:

"MULTI_LEXER" for more information about creating multilexer preferences

Creating a Local Partitioned Index

The following example creates a text table that is partitioned into three, populates it, and then
creates a partitioned index:

PROMPT create partitioned table and populate it

CREATE TABLE part tab (a int, b varchar2(40)) PARTITION BY RANGE (a)
(partition p tabl values less than (10),

partition p tab2 values less than (20),

partition p tab3 values less than (30));

PROMPT create partitioned index
CREATE INDEX part idx on part tab(b) INDEXTYPE IS CTXSYS.CONTEXT
LOCAL (partition p idxl, partition p idx2, partition p idx3);

Note:

The limit for the number of partitions in Oracle Text is the same as the maximum
number of partitions per table in Oracle Database.

ORACLE 160

ORACLE

Chapter 1
CREATE INDEX

Using FILTER BY and ORDER BY Clauses

The following example creates an index on table docs and orders the documents by author's
publishing date.

First, create the table:

CREATE TABLE docs (
docid NUMBER,
pub date DATE,
author VARCHARZ2 (30),
category VARCHARZ2 (30),
document CLOB

);

Create the index with FILTER BY and ORDER BY clauses:

CREATE INDEX doc_idx on docs(document) indextype is ctxsys.context
FILTER BY category, author
ORDER BY pub date desc, docid
PARAMETERS ('memory 500M');

Parallel Indexing
Parallel indexing can improve index performance when you have multiple CPUs.
To create an index in parallel, use the PARALLEL clause with a parallel degree. This example

uses a parallel degree of 3:

CREATE INDEX myindex ON mytab (pk) INDEXTYPE IS ctxsys.context PARALLEL 3;

Creating a Local Partitioned Index in Parallel

Creating a local partitioned index in parallel can improve performance when you have multiple
CPUs. With partitioned tables, you can divide the work. You can create a local partitioned index
in parallel in two ways:

e Use the PARALLEL clause with the LOCAL clause in the CREATE INDEX statement. In this
case, the maximum parallel degree is limited to the number of partitions you have. See
"Parallelism with CREATE INDEX".

» Create an unusable index first, then run the DBMS PCLXUTIL.BUILD PART INDEX utility. This
method can result in a higher degree of parallelism, especially if you have more CPUs than
partitions. See "Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX".

If you attempt to create a local partitioned index in parallel, and the attempt fails, you may see
the following error message:

ORA-29953: error in the execution of the ODCIIndexCreate routine for one or
more
of the index partitions

To determine the specific reason why the index creation failed, query the
CTX_USER_INDEX_ERRORS view.

Parallelism with CREATE INDEX

1-61

ORACLE

Chapter 1
CREATE INDEX

You can achieve local index parallelism by using the PARALLEL and LOCAL clauses in the CREATE
INDEX statement. In this case, the maximum parallel degree is limited to the number of
partitions that you have.

The following example creates a table with three partitions, populates them, and then creates
the local indexes in parallel with a degree of 2:

create table part tab3(id number primary key, text varchar2(100))
partition by range(id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for i in 0..2999
loop
insert into part tab3 values (i, 'oracle');
end loop;
end;
/

create index part tab3x on part tab3(text)

indextype is ctxsys.context local (partition part tabxl,
partition part tabx2,
partition part tabx3)

parallel 2;

Parallelism with DBMS_PCLUTIL.BUILD_PART_INDEX

You can achieve local index parallelism by first creating an unusable CONTEXT index, and then
running the DBMS PCLUTIL.BUILD PART INDEX utility. This method can result in a higher degree
of parallelism, especially when you have more CPUs than partitions.

In this example, the base table has three partitions. We create a local partitioned unusable
index first, then run DBMS PCLUTIL.BUILD PART INDEX, which builds the 3 partitions in parallel
(referred to as inter-patrtition parallelism). Also, inside each partition, index creation proceeds in
parallel (called intra-partition parallelism) with a parallel degree of 2. Therefore, the total
parallel degree is 6 (3 times 2).

create table part tab3(id number primary key, text varcharz(100))
partition by range (id)

(partition pl values less than (1000),

partition p2 values less than (2000),

partition p3 values less than (3000));

begin
for i in 0..2999
loop
insert into part tab3 values (i,'oracle');
end loop;
end;
/

create index part tab3x on part tab3(text)
indextype is ctxsys.context local (partition part tabxl,
partition part tabx2z,

1-62

ORACLE

Chapter 1
CREATE INDEX

partition part tabx3)
unusable;

exec dbms pclxutil.build part index(jobs per batch=>3,
procs_per job=>2,
tab name=>'PART TAB3',
idx name=>'PART TAB3X',
force opt=>TRUE);

Viewing Index Errors

After a CREATE INDEX or ALTER INDEX operation, you can view index errors with Oracle Text
views. To view errors on your indexes, query the CTX_USER_INDEX_ ERRORS view. To view
errors on all indexes as CTxsYs, query the CTX_INDEX_ERRORS view.

For example, to view the most recent errors on your indexes, enter the following statement:

SELECT err timestamp, err text FROM ctx user index errors
ORDER BY err timestamp DESC;

Deleting Index Errors

To clear the index error view, enter the following statement:

DELETE FROM ctx user index errors;

Syntax for CTXCAT Index Type

Combines an index on a text column and one or more other columns. Query this index with the
CATSEARCH operator in the WHERE clause of a SELECT statement. This type of index is optimized
for mixed queries. This index is transactional, automatically updating itself with DML to the
base table.

CREATE INDEX [schema.]index on [schema.]table(column) INDEXTYPE IS
ctxsys.ctxcat

[PARAMETERS (' [index set index set]

[lexer lIexer pref]

[storage storage pref]

[stoplist stoplist]

[section group sectiongroup pref]

[wordlist wordlist pref]

[memory memsizel');

[schema.]table(column)

Specifies the name of the table and column to index.

The column that you specify when you create a CTXCAT index must be of type CHAR or
VARCHAR2. No other types are supported for CTXCAT.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following options is true:

e The VPD policy is created such that it does not apply to INDEX statement type, which is the
default
* The policy function returns a null predicate for the current user.

e The user (index owner) is SYS.

1-63

ORACLE

Chapter 1
CREATE INDEX

e The user has the EXEMPT ACCESS POLICY privilege.

Supported CTXCAT Preferences

index set index_set

Specifies the index set preference to create the CTXCAT index. Index set preferences name the
columns that make up your subindexes. Any column that is named in an index set column list
cannot have a NULL value in any row of the base table, or else you get an error.

Always ensure that your columns have non-null values before and after indexing.

See "Creating a CTXCAT Index".

Index Performance and Size Considerations

Although a CTXCAT index offers query performance benefits, creating this type of index has its
costs. The time that it takes Oracle Text to create a CTXCAT index depends on the total size of
the index.

The total size of a CTXCAT index is directly related to:

e Total text to be indexed
* Number of component indexes in the index set
* Number of columns in the base table that make up the component indexes

Having many component indexes in your index set also degrades DML performance because
more indexes must be updated.

Because of these added costs in creating a CTXCAT index, you should carefully consider the
query performance benefit that each component index gives your application before adding it
to your index set.

See Also:

Oracle Text Application Developer's Guide for more information about creating
CTXCAT indexes and the benefits

Other CTXCAT Preferences
When you create an index of type CTXCAT, you can use the supported index preferences listed
in Table 1-9 in the parameters string.

Table 1-9 Supported CTXCAT Index Preferences
]

Preference Class Supported Types

Datastore This preference class is not supported for CTXCAT.

Filter This preference class is not supported for CTXCAT.
Lexer BASIC_LEXER (index_themes attribute not supported)

CHINESE_LEXER
CHINESE_VGRAM_LEXER
JAPANESE_LEXER
JAPANESE_VGRAM_LEXER
KOREAN_MORPH_LEXER

Wordlist BASIC_WORDLIST

1-64

ORACLE

Chapter 1
CREATE INDEX

Table 1-9 (Cont.) Supported CTXCAT Index Preferences

Preference Class Supported Types

Storage BASIC_STORAGE

Stoplist Supports single language stoplists only (BASIC STOPLIST type).
Section Group Only Field Section is supported for CTXCAT.

Unsupported Preferences and Parameters

When you create a CTXCAT index, you cannot specify datastore and filter preferences. For
section group preferences, only the field section preference is supported. You also cannot
specify language, format, or charset columns as with a CONTEXT index.

Creating a CTXCAT Index

This section gives a brief example for creating a CTXCAT index. For a more complete example,
see Oracle Text Application Developer's Guide.

Consider a table called AucTION with the following schema:

create table auction(item id number,
title varchar2(100),

category id number,

price number,

bid close date);

Assume that queries on the table involve a mandatory text query clause and optional
structured conditions on price. Results must be sorted based on bid close. This means that
an index to support good response time for the structured and sorting criteria is required.

You can create a catalog index to support the different types of structured queries a user might
enter. For structured queries, a CTXCAT index improves query performance over a context
index.

To create the indexes, first, create the index set preference, next, optionally, add the storage
preference, and, finally, add the required indexes to it:

begin

ctx ddl.create index set('auction iset');

ctx ddl.add index('auction iset', 'bid close');

ctx ddl.add index('auction iset', 'price, bid close');
end;

Optionally, create the storage preference:

begin

ctx ddl.create preference('auction st pref', 'BASIC STORAGE');

ctx ddl.set attribute('auction st pref', 'I TABLE CLAUSE',
'tablespace TEXT storage (initial 5M)');

ctx ddl.set attribute('auction st pref', 'I ROWID INDEX CLAUSE',
'tablespace TEXT storage (initial 5M)');

ctx ddl.set attribute('auction st pref', 'I INDEX CLAUSE',
'tablespace TEXT storage (initial 5M) compress 2');

1-65

ORACLE

Chapter 1
CREATE INDEX

end;

Then, create the CTXCAT index with the CREATE INDEX statement as follows:

create index auction titlex on AUCTION(title) indextype is CTXSYS.CTXCAT
parameters ('index set auction iset storage auction st pref');

Querying a CTXCAT Index

To query the title column for the word pokemon, enter regular and mixed queries as follows:

select * from AUCTION where CATSEARCH(title, 'pokemon', NULL)> 0;
select * from AUCTION where CATSEARCH(title, 'pokemon', 'price < 50 order by
bid close desc')> 0;

See Also:

Oracle Text Application Developer's Guide for a complete CTXCAT example

Syntax for CTXRULE Index Type

The CTXRULE type is an index on a column containing a set of queries. Query this index with the
MATCHES operator in the WHERE clause of a SELECT statement.

CREATE INDEX [schema.]index on [schema.]table(rule col) INDEXTYPE IS
ctxsys.ctxrule

[PARAMETERS ('[lexer lexer pref] [storage storage pref]

[section group section pref] [wordlist wordlist pref]

[classifier classifier pref]');

[PARALLEL n];

[schema.]table(column)

Specifies the name of the table and rule column to index. The rules can be query compatible
strings, query template strings, or binary Support Vector Machine rules.

The column you specify when you create a CTXRULE index must be VARCHAR?2, CLOB or BLOB.
No other types are supported for the CTXRULE type.

Attempting to create an index on a Virtual Private Database (VPD) protected table will fail
unless one of the following is true:

e The VPD policy does not have the INDEX statement type turned on (which is the default).
e The policy function returns a null predicate for the current user.

e The user (index owner) is SYS.

e The user has the EXEMPT ACCESS POLICY privilege.

lexer_pref

Specifies the lexer preference to be used for processing queries and later for the documents
to be classified with the MATCHES function.

1-66

ORACLE

Chapter 1
CREATE INDEX

With both classifiers SVN_CLASSFIER and RULE CLASSIFIER, you can use the BASIC LEXER,
CHINESE LEXER, JAPANESE LEXER, Or KOREAN MORPH LEXER lexer. (See "Classifier Types" and
"Lexer Types".)

For processing queries, these lexers support the following operators: ABOUT, STEM, AND, NEAR,
NOT, OR, and WITHIN.

The thesaural operators (BT*, NT*, PT, RT, SYN, TR, TRSYS, TT, and so on) are supported.
However, these operators are expanded using a snapshot of the thesaurus at index time, not
when the MATCHES function is entered. This means that if you change your thesaurus after you
index, you must re-index your query set.

storage_pref
Specify the storage preference for the index on the queries. Use the storage preference to
specify how the index tables are stored. See "Storage Types".

section group

Specify the section group. This parameter does not affect the queries. It applies to sections in
the documents to be classified. The following section groups are supported for the CTXRULE
index type:

* BASIC SECTION GROUP

e HTML SECTION GROUP

* XML SECTION GROUP

* AUTO SECTION GROUP
See "Section Group Types".

CTXRULE does not support special sections. It also does not support NDATA sections.

wordlist_pref
Specifies the wordlist preferences. This is used to enable stemming operations on query
terms. See Wordlist Type.

classifier_pref
Specifies the classifier preference. See "Classifier Types". You must use the same preference
name you specify with CTX CLS.TRAIN.

Example for Creating a CTXRULE Index

See Oracle Text Application Developer's Guide for a complete example of using the CTXRULE
index type in a document routing application.

Related Topics
CTX_DDL.CREATE_PREFERENCE
CTX_DDL.CREATE_STOPLIST
CTX_DDL.CREATE_SECTION_GROUP
"ALTER INDEX "

"CATSEARCH "

1-67

Chapter 1
CREATE SEARCH INDEX

1.6 CREATE SEARCH INDEX

ORACLE

Use the CREATE SEARCH INDEX statement to create a JSON search index.

Note:
Search indexes do not support the shadow index.

Search indexes that are partitioned do not support the naming of index partitions
because these indexes use system-managed partitioning.

Purpose

You can create a JSON Search Index on a VARCHAR2, CLOB, or BLOB data type column with an
IS JSON check constraint. To index JSON data, you must specify the FOR JSON clause in the
CREATE SEARCH INDEX statement.

< Note:

You can create a JSON Search Index only on a column with an IS JSON check
constraint.

Example

create table tl (txn date date, po CLOB, constraint cl check (po is json));
create search index idx on tl(po) for JSON parameters (‘DATAGUIDE ON sync (on
commit)’);

Syntax

You can use a simpler alternative syntax to create a search index on JSON.

CREATE SEARCH INDEX [schema.]index ON [schema.]table(json column) FOR JSON
[LOCAL]
PARAMETERS (
[DATAGUIDE ON [CHANGE (ADD VC | function name)] | OFF]
[STORAGE storage pref]
[SEARCH ON (NONE | TEXT | TEXT VALUE)]
[MEMORY memsize]
[SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)]
[OPTIMIZE (MANUAL | EVERY "interval-string" | AUTO DAILY)]
)
[PARALLEL N]
[UNUSABLE] ;

If the PARAMETERS clause is omitted, then the default values for DATAGUIDE, SEARCH ON and SYNC
are ON, TEXT VALUE and ON COMMIT respectively.

1-68

Chapter 1
CREATE SEARCH INDEX

[schema.]index
Specifies the name of the JSON search index to create.

[schema.]table(json_col)

Specifies the name of the table and the JSON column to index. json_col is the name of the
JSON column on which the index is created.

The column must have an IS JSON check constraint.

LOCAL

Creates a local partitioned JSON search index on a partitioned table. The index is partitioned
using the partitioning scheme of the base table.

You can partition a table using range, list, hash, interval, range-composite (range, list, and
hash), list-composite (range, list, and hash), and hash-composite (range, list, and hash)
partitioning schemes. You can create a local JSON search index using reference partitioning if
the base table of the reference partitioned table is partitioned using any of the supported
schemes.

Note:

You cannot create a local JSON search index on an interval-composite partitioned
table.

The following example shows how to create a table that is partitioned into three, populate it,
and then create a partitioned JSON search index:

PROMPT create partitioned table and populate it

CREATE TABLE part tab (a int, b CLOB check (b IS JSON)) PARTITION BY RANGE (a)
(partition p tabl values less than (10),

partition p tab2 values less than (20),

partition p tab3 values less than (30));

PROMPT create partitioned JSON search index
CREATE SEARCH INDEX part idx ON part tab (b) FOR JSON LOCAL;

See Also:

e "Creating a Local Partitioned Index"

e "System Managed Domain Index - Supported Schemes" in Oracle Database
Data Cartridge Developer's Guide

DATAGUIDE ON | OFF

Specifies data guide support for an existing JSON search index. If you enable the JSON data
guide support, then you can also define change-trigger procedures.

Specify one of the following options:

ORACLE Lo

ORACLE

Chapter 1
CREATE SEARCH INDEX

e ON: Enables data guide support. If you set the value of DATAGUIDE to ON, then you can also
define your own PL/SQL procedure or use the predefined change-trigger procedure
ADD VC.

ADD_vC indicates if virtual columns are created based on the data guide.
function name specifies the function to be executed when the data guide changes.

e OFF: Disables both the data guide support and change-trigger procedures. Provides only
general search-index functionality.

¢ Note:

You cannot create an index with the SEARCH ON clause set to NONE when the
DATAGUIDE feature is disabled.

See "Change Triggers For Data Guide-Enabled Search Index" in Oracle Database JSON
Developer's Guide.

STORAGE storage_pref
Specifies the name of your storage preference for JSON search index. Use the storage
preference to specify how index tables are stored. See "Storage Types".

SEARCH_ON (NONE | TEXT | TEXT_VALUE)

Specifies search preferences for JSON search index. Enabling a search option rebuilds the
index with updated preferences.

Specify one of the following options:

* NONE: Indicates that the tables used for full-text and range searches are not populated.
Only the index data guide is maintained. The index will not be used by any JSON query
operators, including JSON_ TEXTCONTAINS.

e TEXT: Indicates that full-text search queries use the search index.

* TEXT VALUE: Indicates that both the full-text and range-based indexes are created for
numeric and date-time values.

Specifying TEXT VALUE has a higher cost in indexing time and index space.

MEMORY memsize
Specifies the amount of run-time memory to use for indexing. The syntax for memsize is as
follows:

memsize = number[K|M|G]

K stands for kilobytes, M stands for megabytes, and G stands for gigabytes.

The value you specify for memsize must be between 1M and the value of MAX INDEX MEMORY in
the CTX_PARAMETERS view. To specify a memory size larger than the MAX INDEX MEMORY,
you must reset this parameter with CTX_ADM.SET_PARAMETER to be larger than or equal
to memsize.

The default is the value specified for DEFAULT INDEX MEMORY in CTX PARAMETERS.

The mensize parameter specifies the amount of memory Oracle Text uses for indexing before
flushing the index to disk. Specifying a large amount memory improves indexing performance
because there are fewer I/O operations and improves query performance and maintenance,
because there is less fragmentation.

1-70

Chapter 1
CREATE SEARCH INDEX

Specifying smaller amounts of memory increases disk I/O and index fragmentation, but might
be useful when run-time memory is scarce.

SYNC (MANUAL | EVERY "interval-string" | ON COMMIT)

Specifies SYNC for automatic synchronization of the CONTEXT index when there are inserts,
updates or deletes to the base table. You can specify one of the sYNC methods as described in
Table 1-7.

Each partition of a locally partitioned index can have its own type of sync (ON COMMIT, EVERY,
or MANUAL). The type of sync specified in primary parameter strings applies to all index
partitions. The oN COMMIT sync is the default synchronization method for JSON search
indexes. The ON COMMIT sync can be run only serially and must use the same memory size
that was specified at index creation.

With automatic (EVERY) synchronization, you can specify memory size and parallel
synchronization. You can define repeating schedules in the interval-string argument using
calendaring syntax values. These values are described in Oracle Database PL/SQL Packages
and Types Reference.

Syntax:

SYNC [EVERY "interval-string"] MEMORY mem size PARALLEL paradegree

Example:

SYNC [EVERY "freg=secondly;interval=20"] MEMORY 500M PARALLEL 2

The following examples create a JSON search index with automatic (EVERY) synchronization:
e Starting every night at 1:00 A.M.:

CREATE SEARCH INDEX nightly refreshed ON purchase orders(json document)
FOR JSON PARAMETERS ('SYNC (EVERY "freg=daily; byhour=1")");

e Starting every 5 minutes:

CREATE SEARCH INDEX nightly refreshed ON purchase orders(json document)
FOR JSON PARAMETERS ('SYNC (EVERY "freg=minutely; interval=5")");

OPTIMIZE

Specify OPTIMIZE to enable automatic background index optimization. You can specify the
OPTIMIZE methods as described in Table 1-8.

With AUTO DAILY | EVERY "interval-string" setting, you can specify parallel optimization.
That syntax is:

[AUTO DAILY | EVERY "interval-string"] PARALLEL paradegree ...

ORACLE L

Chapter 1
DROP INDEX

1.7 DROP INDEX

< Note:

This section describes the DROP INDEX statement as it pertains to dropping a Text
domain index.

For a complete description of the DROP INDEX statement, see Oracle Database SQL
Language Reference.

Purpose

Use DROP INDEX to drop a specified Text index.

Syntax

DROP INDEX [schema.]index [force];

[force]

Optionally forces the index to be dropped. Use the force option when Oracle Text cannot
determine the state of the index, such as when an indexing operation fails.

Oracle recommends against using this option by default. Use it only when a regular call to
DROP INDEX fails.

Example

The following example drops an index named doc_index in the current user's database
schema:

DROP INDEX doc_index;

Related Topics
"ALTER INDEX "
"CREATE INDEX"

1.8 MATCHES

ORACLE

Use the MATCHES operator to find all rows in a query table that match a given document. The
document must be a plain text, HTML, or XML document.

The MATCHES operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

This operator requires a CTXRULE index on your set of queries.

When the SVM_CLASSIFIER classifier type is used, MATCHES returns a score in the range 0 to
100; a higher number indicates a greater confidence in the match. Use the 1abel parameter
and MATCH SCORE to obtain this number. Then use the matching score to apply a category-
specific threshold to a particular category.

1-72

ORACLE

Chapter 1
MATCHES

If the SVM_CLASSIFIER type is not used, then this operator returns either 100 (the document
matches the criteria) or 0 (the document does not match).

Limitation

If the optimizer chooses to use the functional query invocation with a MATCHES query, your
query will fail.

Syntax

MATCHES (

[schema.]colunmn,
document VARCHAR2 or CLOB
[,label INTEGER])

RETURN NUMBER;

column
Specifies the column containing the indexed query set.

document
Specifies the document to be classified. The document can be plain text, HTML, or XML.
Binary formats are not supported.

label
Optionally specifies the label that identifies the score generated by the MATCHES operator. Use
this label with MATCH_SCORE.

Matches Example

The following example creates a table querytable, and populates it with classification names
and associated rules. It then creates a CTXRULE index.

The example enters the MATCHES query with a document string to be classified. The SELECT
statement returns all rows (queries) that are satisfied by the document:

create table querytable (classification varchar2(64), text varchar2(4000));

insert into querytable values ('common names', 'smith OR jones OR brown');
insert into querytable values ('countries', 'United States OR Great Britain OR
France');

insert into querytable values ('Oracle DB', 'oracle NEAR database');

create index query rule on querytable (text) indextype is ctxsys.ctxrule;

SELECT classification FROM querytable WHERE MATCHES (text, 'Smith is a common name
in the United States') > 0;

CLASSIFICATION

common names
countries

Related Topics
"MATCH_SCORE"

"Syntax for CTXRULE Index Type"
CTX_CLS.TRAIN

1-73

Chapter 1
MATCH_SCORE

Oracle Text Application Developer's Guide contains extended examples of simple and
supervised classification, which make use of the MATCHES operator.

1.9 MATCH_SCORE

Use the MATCH SCORE operator in a statement to return scores produced by a MATCHES query.

The MATCH SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

When the SvM CLASSIFIER classifier type is used, this operator returns a score in the range 0
to 100. Use the matching score to apply a category-specific threshold to a particular category.

If the SVM CLASSIFIER classifier is not used, then this operator returns either 100 (the
document matches the criteria) or O (the document does not match).

Syntax

MATCH SCORE (label NUMBER)

label
Specifies a number to identify the score produced by the query. Use this number to identify the
MATCHES clause that returns this score.

Example

To get the matching score, use:

select cat id, match score(l) from training result where matches(profile,
text,1)>0;

Related Topics
"MATCHES "

1.10 SCORE

ORACLE

Use the SCORE operator in SELECT statements to return the score values produced by CONTAINS
queries.

The SCORE operator can be used in a SELECT, ORDER BY, or GROUP BY clause.

The SCORE operator also supports database links. You can identify a remote table or
materialized view by appending @dblink to the end of its name. The dblink must be a
complete or partial name for a database link to the database containing the remote table or
materialized view. (Querying of remote views is not supported.)

Syntax

SCORE (label NUMBER)

Here, label specifies a number to identify the score produced by the query. Use this number to
identify the CONTAINS clause that returns this score.

1-74

ORACLE

Chapter 1
SCORE

Notes

For nested queries, you must specify an alias to avoid errors. For example, here an alias "s" is
used in the inner SELECT query to identify the outer SELECT query:

SELECT s FROM (

);

SELECT SCORE (1) AS s FROM mytable
WHERE CONTAINS (text, 'oracle', 1) > 0

Examples

With a single CONTAINS clause:

When the SCORE operator is called (for example, in a SELECT clause), the CONTAINS clause
must reference the score label value as in the following example:

SELECT SCORE (1), title from newsindex
WHERE CONTAINS (text, 'oracle', 1) > 0
ORDER BY SCORE (1) DESC;

With multiple CONTAINS clauses:

Assume that a news database stores and indexes the title and body of news articles
separately. The following query returns all the documents that include the words Oracle in
their title and java in their body. The articles are sorted by the scores for the first CONTAINS
(Oracle) and then by the scores for the second CONTAINS (java).

SELECT title, body, SCORE(10), SCORE (20)
FROM news
WHERE CONTAINS (news.title, 'Oracle', 10) > 0 OR
CONTAINS (news.body, 'java', 20) > 0
ORDER BY SCORE (10), SCORE(20);

1-75

Oracle Text Indexing Elements

Oracle provides indexing types for storage, filtering, and lexers, and preferences and stoplists

that you can use to create an Oracle Text index.
The chapter includes the following topics:

* Overview

» Creating Preferences
e Datastore Types

* Filter Types

e Lexer Types

* Wordlist Type

e Storage Types

e Section Group Types
e Classifier Types

e Cluster Types

» Stoplists

* System-Defined Preferences
e System Parameters

« Token Limitations for Oracle Text Indexes

2.1 Overview

ORACLE

When you use the CREATE INDEX statement to create an index or the ALTER INDEX

statement to manage an index, you can optionally specify indexing preferences, stoplists, and

section groups in the parameter string. Specifying a preference, stoplist, or section group
answers one of the following questions about the way Oracle Text indexes text:

Preference Class Answers the Question

Datastore How are your documents stored?

Filter How can the documents be converted to plain text?

Lexer What language is being indexed?

Wordlist How should stem and fuzzy queries be expanded?

Storage How should the index tables be stored?

Stop List What words or themes are not to be indexed?

Section Group Is querying within sections enabled, and how are the document sections
defined?

This chapter describes how to set each preference. Enable an option by creating a preference

with one of the types described in this chapter.

2-1

Chapter 2
Creating Preferences

For example, to specify that your documents are stored in external files, you can create a
datastore preference called mydatastore using the FILE_DATASTORE type. Specify
mydatastore as the datastore preference in the parameter clause of the CREATE INDEX
statement.

2.2 Creating Preferences

To create a datastore, lexer, filter, classifier, wordlist, or storage preference, use the
CTX_DDL.CREATE_PREFERENCE procedure and specify one of the types described in this
chapter. For some types, you can also set attributes with the CTX_DDL.SET_ATTRIBUTE
procedure.

An indexing type names a class of indexing objects that you can use to create an index
preference. A type, therefore, is an abstract ID, while a preference is an entity that corresponds
to a type. Many system-defined preferences have the same name as types (for example,

BASIC LEXER), but exact correspondence is not guaranteed. Be careful in assuming the
existence or nature of either indexing types or system preferences.

You specify indexing preferences with the CREATE INDEX and ALTER INDEX statements. Indexing
preferences determine how your index is created. For example, lexer preferences indicate the
language of the text to be indexed. You can create and specify your own user-defined
preferences, or you can use system-defined preferences.

To create a stoplist, use the CTX_DDL.CREATE_STOPLIST procedure. Add stopwords to a
stoplist with CTX DDL.ADD STOPWORD.

To create section groups, use CTX_DDL.CREATE_SECTION_GROUP and specify a section
group type. Add sections to section groups with the CTX DDL.ADD ZONE SECTION Or
CTX DDL.ADD FIELD SECTION procedures.

2.3 Datastore Types

Use the datastore types to create a datastore preference. This helps you specify how your text
is stored.

Table 2-1 Datastore Types
]

Datastore Type Use When

DIRECT_DATASTORE Data is stored internally in the text column. Each row is
indexed as a single document.

MULTI_COLUMN_DATASTORE Data is stored in a text table in more than one column.

Columns are concatenated to create a virtual document,
one for each row.

DETAIL_DATASTORE Data is stored internally in the text column. Document
consists of one or more rows stored in a text column in a
detail table, with header information stored in the primary
table.

ORACLE b5

Chapter 2
Datastore Types

Table 2-1 (Cont.) Datastore Types

. __|]
Datastore Type Use When

FILE_DATASTORE Data is stored externally in operating system files. File
names are stored in the text column, one for each row.

¢ Note:

Starting with Oracle
Database 19c, the Oracle
Text type

FILE DATASTORE is
deprecated. Use
DIRECTORY DATASTORE

instead.
DIRECTORY_DATASTORE Data is stored in Oracle directory objects. File names are
stored in the text column, one for each row.
NESTED DATASTORE Data is stored in a nested table.
URL_DATASTORE Data is stored externally in files located on an intranet or

the Internet. Uniform Resource Locators (URLS) are
stored in the text column.

" Note:

Starting with Oracle
Database 19c, the Oracle
Text type URL DATASTORE
is deprecated. Use
NETWORK DATASTORE
instead.

NETWORK_DATASTORE Data is stored externally in files located on an intranet or
the Internet. Uniform Resource Locators (URLS) are
stored in the text column.

USER_DATASTORE Documents are synthesized at index time by a user-
defined stored procedure.

2.3.1 DIRECT_DATASTORE

Use the DIRECT DATASTORE type for text stored directly in the text column, one document for
each row. The DIRECT DATASTORE type has no attributes.

The following column types are supported: CHAR, VARCHAR, VARCHAR2, BLOB, CLOB, BFILE,
XMLType, and URIType.

ORACLE)3

Chapter 2
Datastore Types

Note:

If your column is a BFILE, then the index owner must have read permission on all
directories used by the BFILEs.

The following example creates a table with a CLOB column to store text data. It then populates
two rows with text data and indexes the table using the system-defined preference
CTXSYS.DEFAULT DATASTORE.

create table mytable(id number primary key, docs clob);

insert into mytable values (111555, 'this text will be indexed');
insert into mytable values (111556, 'this is a direct datastore example');
commit;

create index myindex on mytable (docs)
indextype is ctxsys.context
parameters ('DATASTORE CTXSYS. DEFAULT DATASTORE ")

2.3.2 MULTI_COLUMN_DATASTORE

Use the MULTI COLUMN DATASTORE datastore when your text is stored in more than one column.
During indexing, the system concatenates the text columns, tags the column text, and indexes
the text as a single document. The XML-like tagging is optional. You can also set the system to
filter and concatenate binary columns.

e MULTI_COLUMN_DATASTORE Attributes

* Indexing and DML

e MULTI_COLUMN_DATASTORE Restriction

e MULTI_COLUMN_DATASTORE Example

e MULTI_COLUMN_DATASTORE Filter Example
e Tagging Behavior

e Indexing Columns as Sections

2.3.2.1 MULTI_COLUMN_DATASTORE Attributes

ORACLE

The data store MULTI COLUMN DATASTORE has the attributes shown in Table 2-2.

2-4

Chapter 2
Datastore Types

Table 2-2 MULTI_COLUMN_DATASTORE Attributes

|
Attribute Attribute Value

columns Specify a comma-delimited list of columns to be concatenated during indexing.
You can also specify any allowed expression for the SELECT statement column
list for the base table. This includes expressions, PL/SQL functions, column
aliases, and so on.

The NUMBER and DATE column types are supported. They are converted to text
before indexing using the default format mask. The TO_CHAR function can be
used in the column list for formatting.

The RAW and BLOB columns are directly concatenated as binary data.

The LONG, LONG RAW, NCHAR, and NCLOB data types, nested table columns, and
collections are not supported.

The column list is limited to 500 bytes.
filter Specify a comma-delimited list of Y/N flags. Each flag corresponds to a column

in the COLUMNS list and denotes whether to filter the column using the
AUTO FILTER

Specify one of the following allowed values:

Y: Column is to be filtered with AUTO FILTER

N or no value: Column is not to be filtered (default)
delimiter Specify the delimiter that separates column text as follows:

COLUMN NAME TAG: Column text is set off by XML-like open and close tags
(default).

NEWLINE: Column text is separated with a newline.

2.3.2.2 Indexing and DML

To index, you must create a dummy column to specify in the CREATE INDEX Sstatement. This
column's contents are not made part of the virtual document, unless its name is specified in the
columns attribute.

The index is synchronized only when the dummy column is updated. You can create triggers to
propagate changes if needed.

2.3.2.3 MULTI_COLUMN_DATASTORE Restriction

You cannot create a multicolumn datastore with XMLType columns. MULTI COLUMN DATA STORE
does not support XMLType. You can create a CONTEXT index with an XMLType column, as
described in Oracle Text SQL Statements and Operators .

2.3.2.4 MULTI_COLUMN_DATASTORE Example

ORACLE

The following example creates a multicolumn datastore preference called my multi with three
text columns:

begin

ctx ddl.create preference('my multi', 'MULTI COLUMN DATASTORE');
ctx ddl.set attribute('my multi', 'columns', 'columnl, column2, column3');

end;

2-5

Chapter 2
Datastore Types

2.3.2.5 MULTI_COLUMN_DATASTORE Filter Example

The following example creates a multicolumn datastore preference and denotes that the bar
column is to be filtered with the AUTO FILTER.

ctx ddl.create preference('MY MULTI', '"MULTI COLUMN DATASTORE');
ctx ddl.set attribute('MY MULTI', 'COLUMNS', 'foo,bar');
ctx ddl.set attribute('MY MULTI','FILTER',6 'N,Y');

The multicolumn datastore fetches the content of the foo and bar columns, filters bar, then
composes the compound document as:

<FOO0>

foo contents

</F00>

<BAR>

bar filtered contents (probably originally HTML)
</BAR>

The N flags do not need not be specified, and there does not need to be a flag for every
column. Only the Y flags must be specified, with commas to denote which column they apply
to. For example:

ctx ddl.create preference('MY MULTI', '"MULTI COLUMN DATASTORE');
ctx ddl.set attribute('MY MULTI', 'COLUMNS','foo,bar,zoo,jar');
ctx ddl.set attribute('MY MULTI','FILTER',6',,Y');

This example filters only the column zoo.

2.3.2.6 Tagging Behavior

During indexing, the system creates a virtual document for each row. The virtual document is
composed of the contents of the columns concatenated in the listing order with column name
tags automatically added.

For example:

create table mc(id number primary key, name varchar2(10), address varchar2(80));
insert into mc values(l, 'John Smith', '123 Main Street');

exec ctx ddl.create preference('mymds', 'MULTI COLUMN DATASTORE');
exec ctx ddl.set attibute('mymds', 'columns', 'name, address');

This produces the following virtual text for indexing:

<NAME>

John Smith
</NAME>
<ADDRESS>

123 Main Street
</ADDRESS>

2.3.2.7 Indexing Columns as Sections

To index tags as sections, you can optionally create field sections with BASIC SECTION GROUP.

ORACLE 6

Chapter 2
Datastore Types

Note:

No section group is created when you use the MULTI COLUMN DATASTORE. To create
sections for these tags, you must create a section group.

When you use expressions or functions, the tag is composed of the first 30 characters of the
expression unless a column alias is used.

For example, if your expression is as follows:

exec ctx ddl.set attibute('mymds', 'columns', '4 + 17');

then it produces the following virtual text:

<4 + 17>
21
</4 + 17>

If your expression is as follows:

exec ctx_ddl.set_attibute('mymds', 'columns', '4 + 17 coll');

then it produces the following virtual text:

<coll>
21
<coll>

The tags are in uppercase unless the column name or column alias is in lowercase and
surrounded by double quotation marks. For example:

exec ctx ddl.set attibute('mymds', 'COLUMNS', 'foo');

This produces the following virtual text:

<FOO>
content of foo
</F00>

For lowercase tags, use the following:

exec ctx ddl.set attibute('mymds', 'COLUMNS', 'foo "foo"');

This expression produces:

<foo>
content of foo
</foo>

2.3.3 DETAIL_DATASTORE

Use the DETAIL DATASTORE type for text stored directly in the database in detail tables, with the
indexed text column located in the primary table.

* DETAIL_DATASTORE Attributes
e Synchronizing Primary/Detail Indexes

e Example Primary/Detail Tables

ORACLE .

Chapter 2
Datastore Types

2.3.3.1 DETAIL_DATASTORE Attributes

The DETAIL DATASTORE type has the attributes described in Table 2-3.

Table 2-3 DETAIL_DATASTORE Attributes
|

Attribute Attribute Value
binary Specify TRUE for Oracle Text to add no newline character after each detall
row.

Specify FALSE for Oracle Text to add a newline character (\n) after each detail
row automatically.

detail_table Specify the name of the detail table (OWNER. TABLE if necessary).
detail_key Specify the name of the detail table foreign key column.
detail_lineno Specify the name of the detail table sequence column.
detail_text Specify the name of the detail table text column.

2.3.3.2 Synchronizing Primary/Detail Indexes

Changes to the detail table do not trigger re-indexing when you synchronize the index. Only
changes to the indexed column in the primary table triggers a re-index when you synchronize
the index.

You can create triggers on the detail table to propagate changes to the indexed column in the
primary table row.

2.3.3.3 Example Primary/Detail Tables

This example illustrates how primary and detail tables are related to each other.
* Primary Table Example

e Detail Table Example

e Detail Table Example Attributes

* Primary/Detail Index Example

2.3.3.3.1 Primary Table Example

Primary tables define the documents in a primary/detail relationship. Assign an identifying
number to each document. The following table is an example primary table, called my primary:

Column Name Column Type Description

article id NUMBER Document ID, unique for each document (primary
key)

author VARCHARZ2 (30) Author of document

title VARCHAR?Z (50) Title of document

body CHAR (1) Dummy column to specify in CREATE INDEX

ORACLE)8

Chapter 2
Datastore Types

Note:

Your primary table must include a primary key column when you use the
DETAIL DATASTORE type.

2.3.3.3.2 Detail Table Example

Detail tables contain the text for a document, whose content is usually stored across a number
of rows.

The following detail table my detail is related to the primary table my primary with the
article id column. This column identifies the primary document to which each detail row
(sub-document) belongs.

Column Name Column Type Description
article id NUMBER Document ID that relates to primary table
seq NUMBER Sequence of document in the primary document

defined by article id

text VARCHAR2 Document text

2.3.3.3.3 Detail Table Example Attributes

In this example, the DETAIL DATASTORE attributes have the following values:

Attribute Attribute Value
binary TRUE

detail table my detail
detail key article id
detail lineno seq

detail text text

Use CTX_DDL.CREATE_PREFERENCE to create a preference with DETAIL DATASTORE. Use
CTX_DDL.SET_ATTRIBUTE to set the attributes for this preference as described earlier. The
following example shows how this is done:

begin

ctx ddl.create preference('my detail pref', 'DETAIL DATASTORE');

ctx ddl.set attribute('my detail pref', 'binary', 'true');

ctx ddl.set attribute('my detail pref', 'detail table', 'my detail');
ctx ddl.set attribute('my detail pref', 'detail key', 'article id');
ctx ddl.set attribute('my detail pref', 'detail lineno', 'seq');

ctx ddl.set attribute('my detail pref', 'detail text', 'text');

end;

2.3.3.3.4 Primary/Detail Index Example

ORACLE

To index the document defined in this primary/detail relationship, specify a column in the
primary table using the CREATE INDEX statement.

2-9

Chapter 2
Datastore Types

The column you specify must be one of the allowed types.

This example uses the body column, whose function is to enable the creation of the primary/
detail index and to improve readability of the code. The my detail pref preference is set to
DETAIL DATASTORE with the required attributes:

CREATE INDEX myindex on my primary(body) indextype is ctxsys.context
parameters ('datastore my_detail_pref "),

In this example, you can also specify the title or author column to create the index.
However, if you do so, changes to these columns will trigger a re-index operation.

2.3.4 FILE_DATASTORE

The FILE DATASTORE type is used for text stored in files accessed through the local file system.

< Note:

Starting with Oracle Database 19c, the Oracle Text type FILE DATASTORE iS
deprecated. Use DIRECTORY DATASTORE instead.

Oracle recommends that you replace FILE DATASTORE text indexes with the
DIRECTORY DATASTORE index type, which is available starting with Oracle Database
19c. DIRECTORY DATASTORE provides greater security because it enables file access
to be based on directory objects.

Note:

« The FILE DATASTORE type may not work with certain types of remote-mounted file
systems.

» The character set of the file datastore is assumed to be the character set of the
database.

¢ FILE_DATASTORE Attributes
e FILE_DATASTORE and Security
 FILE_DATASTORE Example

2.3.4.1 FILE_DATASTORE Attributes

The FILE DATASTORE type has the attributes described Table 2-4.

Table 2-4 FILE_DATASTORE Attributes

Attribute Attribute Value
path pathl:path2:pathn
filename charset name

ORACLE 510

Chapter 2
Datastore Types

path

Specifies the full directory path name of the files stored externally in a file system. When you
specify the full directory path as such, you need to include only file names in your text column.
You can specify multiple paths for the path attribute, with each path separated by a colon (%)
on UNIX and semicolon(;) on Windows. File names are stored in the text column in the text
table.

If you do not specify a path for external files with this attribute, then Oracle Text requires that
the path be included in the file names stored in the text column.

The PATH attribute has the following limitations:

e If you specify a PATH attribute, then you can only use a simple file name in the indexed
column. You cannot combine the PATH attribute with a path as part of the file name. If the
files exist in multiple folders or directories, you must leave the PATH attribute unset, and
include the full file name, with PATH, in the indexed column.

* On Windows systems, the files must be located on a local drive. They cannot be on a
remote drive, whether the remote drive is mapped to a local drive letter.

filename_charset

Specifies a valid Oracle character set name (maximum length 30 characters) to be used by
the file datastore for converting file names. In general, the Oracle database can use a different
character set than the operating system. This can lead to problems in finding files (which may
raise DRG-11513 errors) when the indexed column contains characters that are not
convertible to the operating system character set. By default, the file datastore will convert the
file name to WE8ISO8859p1 for ASCII platforms or WES8EBCDIC1047 for EBCDIC platforms.
However, this may not be sufficient for applications with multibyte character sets for both the
database and the operating system, because neither WE81SO8859p1 nor WES8EBCDIC1047
supports multibyte characters. The attribute filename charset rectifies this problem. If
specified, then the datastore will convert from the database character set to the specified
character set rather than to 1ISO8859 or EBCDIC.

If the filename charset attribute is the same as the database character set, then the file
name is used as is. If filename charset is not a valid character set, then the error
"DRG-10763: value %s is not a valid character set" is raised.

2.3.4.2 FILE_DATASTORE and Security

ORACLE

File and URL datastores enable access to files on the actual database disk. This may be
undesirable when security is an issue since any user can browse the file system that is
accessible to the Oracle user. Any user attempting to create an index using FILE or URL
datastores must have the TEXT DATASTORE ACCESS system privilege granted to the user
directly, or the index creation will fail. Granting the user TEXT DATASTORE ACCESS privilege
indirectly by granting it to the user’s role does not work and the index creation will still fail.
Thus, by default, users are not able to create indexes that use the FILE or URL datastores.
Granting TEXT DATASTORE ACCESS to PUBLIC gives any user the privilege to index either an
arbitrary file in the file system in the case of FILE datastore and an arbitrary URL in the case of
URL datastore and is not recommended.

For example, the following statement grants TEXT DATASTORE ACCESS to the user SCOTT:

grant TEXT DATASTORE ACCESS to SCOTT;

The CREATE INDEX operation will fail when a user that does not have TEXT DATASTORE
ACCESS privilege tries to create an index on a FILE or URL datastore. For example:

CREATE INDEX myindex ON mydocument (TEXT) INDEXTYPE IS ctxsys.context
PARAMETERS ('DATASTORE ctxsys.file datastore')

2-11

Chapter 2
Datastore Types

In this case, if the user does not have the TEXT DATASTORE ACCESS privilege granted directly to
it, then index creation will fail and returns an error. For users who have the TEXT DATASTORE
ACCESS privilege, the index creation will proceed normally.

The user’s privilege is checked any time the datastore is accessed. This includes index
creation, index sync, and calls to document services, such as CTX DOC.HIGHLIGHT.

2.3.4.3 FILE_DATASTORE Example

This example creates a file datastore preference called COMMON DIR that has a path of /mydocs:

begin
ctx ddl.create preference('COMMON DIR','FILE DATASTORE');
ctx ddl.set attribute('COMMON DIR', 'PATH','/mydocs');
end;

When you populate the table mytable, you need only insert file names. The path attribute tells
the system where to look during the indexing operation.

create table mytable(id number primary key, docs varchar2(2000));
insert into mytable values (111555, 'first.txt');

insert into mytable values (111556, 'second.txt');

commit;

Create the index as follows:

create index myindex on mytable (docs)
indextype 1s ctxsys.context
parameters ('datastore COMMON DIR');

2.3.5 DIRECTORY_DATASTORE

ORACLE

Use the DIRECTORY DATASTORE type during indexing to access the text stored in files which can
be accessed through Oracle directory objects.

Starting with Oracle Database 19c, the Oracle Text type FILE DATASTORE is deprecated. Use
DIRECTORY DATASTORE instead.

Oracle recommends that you replace FILE DATASTORE text indexes with the

DIRECTORY DATASTORE index type, which is available starting with Oracle Database 19c.
DIRECTORY DATASTORE provides greater security because it enables file access to be based on
directory objects.

A directory object specifies an alias for a directory on the server file system where external
binary file LOBs (BFILES) and external table data are located. When you use

DIRECTORY DATASTORE type, another PDB user can not access directory objects in your PDB
without read access to the directory objects.

Use the DIRECTORY DATASTORE type to use an Oracle directory object as an attribute for the
CTX DDL.SET ATTRIBUTE procedure. You must have read access to the Oracle directory object
to access the files stored within the directory. If you have access, then during index creation,
you can use the path stored in the Oracle directory object to access the files stored in the file
system.

 DIRECTORY_DATASTORE Attributes
 DIRECTORY_DATASTORE Example

2-12

Note:

Chapter 2
Datastore Types

» To create an Oracle directory object, you must have the CREATE ANY DIRECTORY
privilege. Typically, a system administrator user creates the directory and
provides read access to the directory for an Oracle Text user.

* DIRECTORY DATASTORE can be used with a context index on CHAR datatype column
only if the file name fills the column.

2.3.5.1 DIRECTORY_DATASTORE Attributes

DIRECTORY DATASTORE has the following attributes:

Table 2-5 DIRECTORY_DATASTORE Attributes

Attribute

Attribute Values

directory

filename charset

Specify the name of the directory object where the data to be indexed
is stored. The default is NULL.

If you have access to the Oracle directory object, then you can also
access the files in its sub-directories.

Specify a valid Oracle character set name (maximum length 30
characters) to be used by the directory datastore for converting file
names.

In general, the Oracle database can use a different character set than
the operating system. This can lead to problems in finding files (which
may raise DRG-11513 errors) when the indexed column contains
characters that are not convertible to the operating system character
set. By default, the directory datastore will convert the file name to
WEB8IS08859p1 for ASCII platforms or WESEBCDIC1047 for EBCDIC
platforms.

However, this may not be sufficient for applications with multibyte
character sets for both the database and the operating system,
because neither WE8ISO8859p1 nor WESEBCDIC1047 supports
multibyte characters. The attribute filename charset rectifies this
problem. If specified, then the datastore will convert from the database
character set to the specified character set rather than to 1ISO8859 or
EBCDIC.

If the filename charset attribute is the same as the database
character set, then the file name is used as is. If filename charset

is not a valid character set, then the error "DRG-10763: value %s is not
a valid character set" is raised.

2.3.5.2 DIRECTORY_DATASTORE Example

This example shows you how to create an index with DIRECTORY DATASTORE type by securely
accessing files under an Oracle directory object.

Create an Oracle directory object to store the path of the files. You must have the CREATE ANY
DIRECTORY privilege to create an Oracle directory object.

create directory myhome as 'directory path';

ORACLE

2-13

Chapter 2
Datastore Types

Create a directory datastore preference called MYDS and set the directory attribute with myhome,
which is the Oracle directory object:

exec ctx ddl.create preference('MYDS', 'DIRECTORY DATASTORE')
exec ctx ddl.set attribute('MYDS', 'DIRECTORY', 'myhome’)

Create a table named mytable and populate it with file names only. The directory attribute
tells the system where to look during the indexing operation.

create table mytable (id number primary key, docs varchar2(2000));
insert into mytable values (111555, 'first.txt');
insert into mytable values (111556, 'second.txt');

Create the index as follows:

create index myindex on mytable (docs)
indextype is ctxsys.context
parameters ('datastore MYDS');

2.3.6 URL_DATASTORE

Use the URL_DATASTORE type for text stored in files on the World Wide Web (accessed through
HTTP or FTP) and local file system (accessed through the file protocol).

Store each URL in a single text field.

Note:

Starting with Oracle Database 19c, the Oracle Text type URL DATASTORE iS
deprecated. Use NETWORK_DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed
through HTTP or FTP), and for text stored in local file system files (accessed through
the file protocol). It is replaced with NETWORK DATASTORE, which uses ACLs to allow
access to specific servers. This change aligns Oracle Text more closely with the
standard operating and security model for accessing URLs from the database.

e URL_DATASTORE URL Syntax
¢ URL_DATASTORE Attributes
* URL_DATASTORE and Security
 URL_DATASTORE Example

2.3.6.1 URL_DATASTORE URL Syntax

ORACLE

The syntax of a URL you store in a text field is as follows (with brackets indicating optional
parameters):

[URL:]<access_scheme>://<host name>[:<port number>]/[<url path>]

The access_scheme string can be either ftp, http, or file. For example:

2-14

Chapter 2
Datastore Types

http://mycomputer.us.example.com/home.html

Note:

The login:password@ syntax within the URL is supported only for the ftp access
scheme.

Because this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax: The URL must contain only printable ASCII characters.
Non-printable ASCII characters and multibyte characters must be escaped with the %xx
notation, where xx is the hexadecimal representation of the special character.

2.3.6.2 URL_DATASTORE Attributes

ORACLE

URL_DATASTORE has the following attributes:

Table 2-6 URL_DATASTORE Attributes
L

Attribute Attribute Value

timeout The value of this attribute is ignored. This is provided for backward
compatibility.

maxthreads The value of this attribute is ignored. URL_DATASTORE is single-threaded.
This is provided for backward compatibility.

urlsize The value of this attribute is ignored. This is provided for backward
compatibility.

maxurls The value of this attribute is ignored. This is provided for backward
compatibility.

maxdocsize The value of this attribute is ignored. This is provided for backward
compatibility.

http proxy Specify the host name of http proxy server. Optionally specify port number

with a colon in the form hostname:port.

ftp proxy Specify the host name of ftp proxy server. Optionally specify port number
with a colon in the form hostname:port.

no_proxy Specify the domain for no proxy server. Use a comma-delimited string of up
to 16 domain names.

timeout
The value of this attribute is ignored. This is provided for backward compatibility.

maxthreads
The value of this attribute is ignored. URL_DATASTORE is single-threaded. This is provided for
backward compatibility.

urlsize
The value of this attribute is ignored. This is provided for backward compatibility.

maxdocsize
The value of this attribute is ignored. This is provided for backward compatibility.

2-15

Chapter 2
Datastore Types

maxurls
The value of this attribute is ignored. This is provided for backward compatibility.

http_proxy

Specify the fully qualified name of the host computer that serves as the HTTP proxy (gateway)
for the computer on which Oracle Text is installed. You can optionally specify port number with
a colon in the form hostname:port.

You must set this attribute if the computer is in an intranet that requires authentication through
a proxy server to access Web files located outside the firewall.

ftp_proxy

Specify the fully qualified name of the host computer that serves as the FTP proxy (gateway)
for the server on which Oracle Text is installed. You can optionally specify a port number with
a colon in the form hostname:port.

This attribute must be set if the computer is in an intranet that requires authentication through
a proxy server to access Web files located outside the firewall.

no_proxy

Specify a string of domains (up to sixteen, separated by commas) that are found in most, if not
all, of the computers in your intranet. When one of the domains is encountered in a host
name, no request is sent to the server(s) specified for ftp proxy and http proxy. Instead, the
request is processed directly by the host computer identified in the URL.

For example, if the string us.example.com, uk.example.com is entered for no_proxy, any URL
requests to computers that contain either of these domains in their host names are not
processed by your proxy server(s).

2.3.6.3 URL_DATASTORE and Security

For a discussion of how to control file access security for file and URL datastores, refer to
"FILE_DATASTORE and Security".

2.3.6.4 URL_DATASTORE Example

ORACLE

This example creates a URL_DATASTORE preference called URL_PREF for which the http proxy,
no_proxy, and timeout attributes are set. The defaults are used for the attributes that are not
set.

begin
ctx ddl.create preference ('URL PREF','URL DATASTORE');
ctx ddl.set attribute('URL PREF', 'HTTP PROXY', 'www-proxy.us.example.com');
ctx ddl.set attribute('URL PREF', 'NO PROXY', 'us.example.com');
ctx ddl.set attribute('URL PREF', 'Timeout', '300");
end;

Create the table and insert values into it:

create table urls(id number primary key, docs varchar2 (2000));
insert into urls values (111555, 'http://context.us.example.com');
insert into urls values (111556, 'http://www.sun.com');

commit;

To create the index, specify URL_PREF as the datastore:

create index datastores text on urls (docs)
indextype 1s ctxsys.context
parameters ('Datastore URL PREF');

2-16

Chapter 2
Datastore Types

2.3.7 NETWORK_DATASTORE

Use the NETWORK DATASTORE type during indexing to access the files stored on the World Wide
Web through HTTP and HTTPS.

Starting with Oracle Database 19c, the Oracle Text type URL_DATASTORE is deprecated. Use
NETWORK DATASTORE instead.

The URL_DATASTORE type is used for text stored in files on the internet (accessed through HTTP
or FTP), and for text stored in local file system files (accessed through the file protocol). It is
replaced with NETWORK DATASTORE, which uses ACLs to allow access to specific servers. This
change aligns Oracle Text more closely with the standard operating and security model for
accessing URLs from the database.

When you use NETWORK DATASTORE type, you can access a URL after the website certificate is
verified in Oracle wallet and ACL package.

FTP and file protocol are not supported in NETWORK DATASTORE type. To access the files stored
in the local file system, use the DIRECTORY DATASTORE type.

During index creation, the URL stored in the datastore is used to access the files stored in the
World Wide Web. The access is granted after verifying the website certificate in Oracle wallet.

* NETWORK_DATASTORE URL Syntax
* NETWORK_DATASTORE Attributes
* NETWORK_DATASTORE Example

Note:

NETWORK DATASTORE can be used with a context index on CHAR datatype column only if
the file name fills the column.

2.3.7.1 NETWORK_DATASTORE URL Syntax

ORACLE

The syntax of a URL you store in a datastore is as follows (with brackets indicating optional
parameters):

[URL:]<access_scheme>://<host name>[:<port number>]/[<url path>]

The access_scheme string can be either http or https. For example:

https://mycomputer.us.example.com/home.html

Because this syntax is partially compliant with the RFC 1738 specification, the following
restriction holds for the URL syntax: The URL must contain only printable ASCII characters.
Non-printable ASCII characters and multibyte characters must be escaped with the %xx
notation, where xx is the hexadecimal representation of the special character.

2-17

Chapter 2
Datastore Types

2.3.7.2 NETWORK_DATASTORE Attributes

NETWORK_DATASTORE has the following attributes:

Table 2-7 NETWORK_DATASTORE Attributes

]
Attribute Attribute Value

timeout Specify the time out value for all future HTTP requests that use the
UTL_HTTP package to read the HTTP response from a web or proxy server.
This attribute can be used to avoid being blocked by busy web servers or
heavy network traffic when retrieving web pages.
The default value is 30 seconds. The minimum value is 1 second and the
maximum value is 3600 seconds.

http proxy Specify the fully qualified name of the host computer that serves as the
HTTP proxy (gateway) for the computer on which Oracle Text is installed.
You can optionally specify port number with a colon in the form
hostname:port.

You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside
the firewall.

For HTTP network connection, an ACL package is required so that the
UTL_HTTP package can interact with the external host. You must have
EXECUTE privilege for the DBMS NETWORK ACL ADMIN package to grant the
CONNECT privilege on the ACL to a user.

https proxy Specify the fully qualified name of the host computer that serves as the
HTTPS proxy (gateway) for the computer on which Oracle Text is installed.
You can optionally specify port number with a colon in the form
hostname:port.
You must set this attribute if the computer is in an intranet that requires
authentication through a proxy server to access Web files located outside
the firewall.

For HTTPS network connection, in addition to the ACL package, an Oracle
wallet is also required. You can create an Oracle wallet using either Oracle
Wallet Manager or the orapki command-line utility.

To create an Oracle wallet using the orapki command-line utility, use the
orapki wallet create command:

orapki wallet create -wallet wallet location -pwd
password -auto login

To add a trusted certificate to an Oracle wallet, use the orapki wallet
add command:

orapki wallet add -wallet wallet location -trusted cert
-cert certificate location -pwd password

Use the UTL_HTTP.SET WALLET procedure to configure the request to hold
the wallet:

EXEC UTL HTTP.SET WALLET (wallet location, password);

ORACLE T

Chapter 2
Datastore Types

Table 2-7 (Cont.) NETWORK_DATASTORE Attributes

|
Attribute Attribute Value

no_proxy Specify a string of domains (up to sixteen, separated by commas) that are
found in most, if not all, of the computers in your intranet. When one of the
domains is encountered in a host name, no request is sent to the server(s)
specified for http proxy and https proxy. Instead, the request is
processed directly by the host computer identified in the URL.
For example, if the string us.example.com, uk.example.com is entered for
no_proxy, any URL requests to computers that contain either of these
domains in their host names are not processed by your proxy server(s).

See Also:
» Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS NETWORK ACL ADMIN package

e Oracle Database PL/SQL Packages and Types Reference for more information
about UTL_HTTP package

e Oracle Database Enterprise User Security Administrator's Guide for more
information about Oracle Wallet Manager

2.3.7.3 NETWORK_DATASTORE Example

ORACLE

This example shows you how to configure HTTP and HTTPS network connections and create
an index based on the NETWORK_DATASTORE type to access the files stored on the World Wide
Web.

Create a user and grant the necessary privileges:

CREATE USER myuser IDENTIFIED by password;
GRANT connect, resource, unlimited tablespace, ctxapp to myuser;

Append an access control entry (ACE) to the ACL of a network host. The ACL controls access
to the given host from the database and the ACE specifies the privileges granted to or denied
from the specified principal. When host is specified as '*', you can access any host through
the network datastore which uses UTL _HTTP package internally to access data from websites
through HTTP.

begin
DBMS NETWORK ACL ADMIN.APPEND HOST ACE (
host => '*!',
ace => xsS$ace type(privilege list => xs$name list('connect', 'resolve'),
principal name => 'MYUSER',
principal type => xs acl.ptype db));
end;
/

2-19

Chapter 2
Datastore Types

Create a network datastore preference called NETWORK_PREF':

begin
ctx ddl.create preference ('NETWORK PREF', 'NETWORK DATASTORE');
ctx _ddl.set attribute ('NETWORK PREF', 'HTTP PROXY', 'www-
proxy.us.example.com') ;
ctx ddl.set attribute ('NETWORK PREF', 'NO PROXY', 'us.example.com');
ctx ddl.set attribute ('NETWORK PREF', 'TIMEOUT','300'");
end;

/

Create a table named mytable and populate it with URLSs:

create table mytable (id number primary key, docs varchar2(2000));
insert into mytable values (111555, 'http://context.example.com');
insert into mytable values (111556, 'http://www.johndoe.com');

Create the index as follows:

create index myindex on mytable (docs)
indextype is ctxsys.context
parameters ('datastore NETWORK PREF');

¢ See Also:
* Oracle Database PL/SQL Packages and Types Reference for more information
about DBMS NETWORK ACL ADMIN package

e Oracle Database PL/SQL Packages and Types Reference for more information
about UTL_HTTP package

2.3.8 USER_DATASTORE

Use the USER DATASTORE type to define stored procedures that synthesize documents during
indexing. For example, a user procedure might synthesize author, date, and text columns into
one document to have the author and date information be part of the indexed text.

e USER_DATASTORE Attributes

e USER_DATASTORE Constraints
 USER_DATASTORE Editing Procedure after Indexing
e USER_DATASTORE with CLOB Example

e USER_DATASTORE with BLOB_LOC Example

2.3.8.1 USER_DATASTORE Attributes

USER DATASTORE has the following attributes:

ORACLE 590

Chapter 2
Datastore Types

Table 2-8 USER_DATASTORE Attributes
]

Attribute Attribute Value

procedure Specify the procedure that synthesizes the document to be indexed.
This procedure can be owned by any user and must be executable by the index
owner.

output type Specify the data type of the second argument to procedure. Valid values are

CLOB, BLOB, CLOB_LOC, BLOB_LOC, or VARCHARZ2. The default is CLOB

When you specify CLOB_LOC, BLOB_LOC, you indicate that no temporary CLOB or
BLOB is needed, because your procedure copies a locator to the IN/OUT second
parameter.

procedure

Specify the name of the procedure that synthesizes the document to be indexed. This
specification must be in the form PROCEDURENAME Or PACKAGENAME . PROCEDURENAME. You can
also specify the schema owner name.

The procedure you specify must have two arguments defined as follows:

procedure (r IN ROWID, c IN OUT NOCOPY output type)

The first argument r must be of type ROWID. The second argument ¢ must be of the type
specified in the output_type attribute. NOCOPY is a compiler hint that instructs Oracle Text to
pass parameter c by reference if possible.

Note:

Procedure names should not include the semicolon character.

The stored procedure is called once for each row indexed. Given the rowid of the current row,
procedure must write the text of the document into its second argument, whose type you
specify with output_type.

2.3.8.2 USER_DATASTORE Constraints

The following constraints apply to procedure:

e It can be owned by any user, but the user must have database permissions to execute
procedure correctly

e It must be executable by the index owner

* It must not enter DDL or transaction control statements, like COMMIT

2.3.8.3 USER_DATASTORE Editing Procedure after Indexing

ORACLE

When you change or edit the stored procedure, indexes based on it will not be notified, so you
must manually re-create such indexes. So if the stored procedure makes use of other columns,
and those column values change, the row will not be re-indexed. The row is re-indexed only
when the indexed column changes.

2-21

Chapter 2
Datastore Types

output_type
Specify the datatype of the second argument to procedure. You can use either CLOB, BLOB,
CLOB_LOC, BLOB LOC, Of VARCHAR2.

2.3.8.4 USER_DATASTORE with CLOB Example

Consider a table in which the author, title, and text fields are separate, as in the articles table
defined as follows:

create table articles(
id number,
author varchar2 (80),
title varchar2 (120),
text clob);

The author and title fields are to be part of the indexed document text. Assume user appowner
writes a stored procedure with the user datastore interface that synthesizes a document from
the text, author, and title fields:

create procedure myproc(rid in rowid, tlob in out clob nocopy) is
begin
for cl in (select author, title, text from articles
where rowid = rid)
loop

dbms lob.writeappend(tlob, length(cl.title), cl.title);
dbms lob.writeappend(tlob, length(cl.author), cl.author);
dbms lob.writeappend(tlob, length(cl.text), cl.text);

end loop;
end;

This procedure takes in a rowid and a temporary CLOB locator, and concatenates all the article's
columns into the temporary cLOB. The for loop executes only once.

The user appowner creates the preference as follows:
begin

ctx ddl.create preference('myud', 'user datastore')
ctx ddl.set attribute('myud', 'procedure', 'myproc'
ctx ddl.set attribute('myud', 'output type', 'CLOB'

)
)l

end;

When appowner creates the index on articles (text) using this preference, the indexing
operation sees author and title in the document text.

2.3.8.5 USER_DATASTORE with BLOB_LOC Example

ORACLE

The following procedure might be used with OUTPUT TYPE BLOB_LOC:

procedure myds (rid in rowid, dataout in out nocopy blob)
is
1 dtype varchar2(10);
1 pk number;
begin
select dtype, pk into 1 dtype, 1 pk from mytable where rowid = rid;
if (1 dtype = 'MOVIE') then

2-22

Chapter 2
Datastore Types

select movie data into dataout from movietab where fk = 1 pk;
elsif (1 dtype = 'SOUND') then
select sound data into dataout from soundtab where fk = 1 pk;
end if;
end;

The user appowner creates the preference as follows:
begin

ctx ddl.create preference('myud', 'user datastore');
ctx ddl.set attribute('myud', 'procedure', 'myproc');

ctx ddl.set attribute('myud', 'output type', 'blob loc');

end;

2.3.9 NESTED_DATASTORE

Use the nested datastore type to index documents stored as rows in a nested table.

* NESTED_DATASTORE Attributes
* NESTED_DATASTORE Example

2.3.9.1 NESTED_DATASTORE Attributes

NESTED DATASTORE has the following attributes:

Table 2-9 NESTED_DATASTORE Attributes

|
Attribute Attribute Value

nested column Specify the name of the nested table column. This attribute is required. Specify
only the column name. Do not specify schema owner or containing table name.

nested type Specify the type of nested table. This attribute is required. You must provide
owner name and type.

nested lineno Specify the name of the attribute in the nested table that orders the lines. This
is like DETAIL LINENO in detail datastore. This attribute is required.

nested text Specify the name of the column in the nested table type that contains the text
of the line. This is like DETAIL TEXT in detail datastore. This attribute is
required. LONG column types are not supported as nested table text columns.

binary Specify FALSE for Oracle Text to automatically insert a newline character when
synthesizing the document text. If you specify TRUE, Oracle Text does not do
this. This attribute is not required. The default is FALSE.

When using the nested table datastore, you must index a dummy column, because the
extensible indexing framework disallows indexing the nested table column. See
"NESTED_DATASTORE Example".

DML on the nested table is not automatically propagated to the dummy column used for
indexing. For DML on the nested table to be propagated to the dummy column, your
application code or trigger must explicitly update the dummy column.

Filter defaults for the index are based on the type of the nested text column.

ORACLE 503

Chapter 2
Datastore Types

During validation, Oracle Text checks that the type exists and that the attributes you specify for
nested lineno and nested text exist in the nested table type. Oracle Text does not check
that the named nested table column exists in the indexed table.

2.3.9.2 NESTED_DATASTORE Example

This section shows an example of using the NESTED DATASTORE type to index documents stored
as rows in a nested table.

* Create the Nested Table

* Insert Values into Nested Table

* Create Nested Table Preferences
* Create Index on Nested Table

* Query Nested Datastore

2.3.9.2.1 Create the Nested Table

The following code creates a nested table and a storage table mytab for the nested table:

create type nt rec as object (

Ino number, -- line number

ltxt varchar2(80) -- text of line
)i

create type nt tab as table of nt rec;

create table mytab (
id number primary key, -- primary key
dummy char (1), -- dummy column for indexing
doc nt tab -- nested table

)

nested table doc store as myntab;

2.3.9.2.2 Insert Values into Nested Table

The following code inserts values into the nested table for the parent row with ID equal to 1.

insert into mytab values (1, null, nt tab());

insert into table(select doc from mytab where id=1) values (1
insert into table(select doc from mytab where id=1) values (2
commit;

'the dog');

r
, 'sat on mat ');

2.3.9.2.3 Create Nested Table Preferences

ORACLE

The following code sets the preferences and attributes for the NESTED DATASTORE according to
the definitions of the nested table type nt tab and the parent table mytab:

begin

-- create nested datastore pref
ctx ddl.create preference('ntds', 'nested datastore');

-- nest tab column in main table
ctx_ddl.set_attribute('ntds‘,'nested_column', 'doc');

-- nested table type
ctx ddl.set attribute('ntds', 'nested type', 'scott.nt tab');

-- lineno column in nested table
ctx ddl.set attribute('ntds', 'nested lineno','lno');

2-24

Chapter 2
Filter Types

--text column in nested table
ctx ddl.set attribute('ntds', 'nested text', 'ltxt');
end;

2.3.9.2.4 Create Index on Nested Table

The following code creates the index using the nested table datastore:

create index myidx on mytab (dummy) -- index dummy column, not nest table
indextype is ctxsys.context parameters ('datastore ntds');

2.3.9.2.5 Query Nested Datastore

The following select statement queries the index built from a nested table:

select * from mytab where contains(dummy, 'dog and mat')>0;
-- returns document 1, because it has dog in line 1 and mat in line 2.

2.4 Filter Types

Use the filter types to create preferences that determine how text is filtered for indexing. Filters
enable word processor documents, formatted documents, plain text, HTML, and XML
documents to be indexed.

For formatted documents, Oracle Text stores documents in their native format and uses filters
to build interim plain text or HTML versions of the documents. Oracle Text indexes the words
derived from the plain text or HTML version of the formatted document.

To create a filter preference, you must use one of the filter types shown in Table 2-10.

Table 2-10 Filter Types

Filter When Used

AUTO_FILTER Auto filter for filtering formatted documents.

NULL_FILTER No filtering required. Use for indexing plain text, HTML, or XML
documents.

MAIL_FILTER Use the MAIL FILTER to transform RFC-822, RFC-2045 messages in to
text that can be indexed.

USER_FILTER User-defined external filter to be used for custom filtering.

PROCEDURE_FILTER User-defined stored procedure filter to be used for custom filtering.

2.4.1 AUTO_FILTER

ORACLE

The AUTO FILTER is a universal filter that filters most document formats, including PDF and
Microsoft Word documents. Use it for indexing both single-format and mixed-format columns.
This filter automatically bypasses plain text, HTML, XHTML, SGML, and XML documents.

e AUTO_FILTER Attributes

 AUTO_FILTER and Indexing Formatted Documents

 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
e AUTO_FILTER and Character Set Conversion With AUTO_FILTER

2-25

Chapter 2
Filter Types

See Also:

Oracle Text Supported Document Formats, for a list of the formats supported by
AUTO_FILTER, and to learn more about how to set up your environment

< Note:

The AUTO FILTER replaces the INSO FILTER, which has been deprecated. While
every effort has been made to ensure maximal backward compatibility between the
two filters, so that applications using INSO FILTER will continue to work without
modification, some differences may arise. Users should therefore use AUTO FILTER in
their new programs and, when possible, replace instances of INSO FILTER, and any
system preferences or constants that make use of it, in older applications.

2.4.1.1 AUTO_FILTER Attributes

The AUTO FILTER preference has the attributes shown in Table 2-11.

Table 2-11 AUTO_FILTER Attributes

|
Attribute Attribute Value

timeout Specify the AUTO_FILTER timeout in seconds. Use a number between 0O
and 42,949,672. Default is 120. Setting this value to 0 disables the feature.

How this wait period is used depends on how you set timeout type.

This feature is disabled for rows for which the corresponding charset and
format column cause the AUTO FILTER to bypass the row, such as when
format is marked TEXT.

Use this feature to prevent the Oracle Text indexing operation from waiting
indefinitely on a hanging filter operation.

timeout type Specify either HEURISTIC or FIXED. Default is HEURISTIC.

Specify HEURISTIC for Oracle Text to check every TIMEOUT seconds if
output from Outside In HTML Export has increased. The operation
terminates for the document if output has not increased. An error is
recorded in the CTX USER INDEX ERRORS view and Oracle Text moves to
the next document row to be indexed.

Specify FIXED to terminate the Outside In HTML Export processing after
TIMEOUT seconds regardless of whether filtering was progressing normally
or just hanging. This value is useful when indexing throughput is more
important than taking the time to successfully filter large documents.

output formatting Setting this attribute has no effect on filter performance or filter output. It is
maintained for backward compatibility.

2.4.1.2 AUTO_FILTER and Indexing Formatted Documents

Use AUTO FILTER to index a text column containing formatted documents, such as Microsoft
Word. This filter automatically detects the document format.

Use the CTXSYS.AUTO FILTER system-defined preference in the parameter clause as follows:

ORACLE 506

Chapter 2
Filter Types

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.directory datastore
filter ctxsys.auto filter');

Note:

The CTXSYS.AUTO FILTER replaces CTXSYS.INSO FILTER, which has been
deprecated. Programs making use of CTXSYS.INSO FILTER should still work. New
programs should use CTXSYS.AUTO FILTER.

2.4.1.3 AUTO_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format

Columns

ORACLE

The AUTO_FILTER can index mixed-format columns, automatically bypassing plain text, HTML,
and XML documents. However, if you prefer not to depend on the built-in bypass mechanism,
you can explicitly tag your rows as text and cause the AUTO_FILTER to ignore the row and not
process the document in any way.

A mixed-format column is a text column containing more than one document format, such as a
column that contains Microsoft Word, PDF, plain text, and HTML documents.

The format column in the base table enables you to specify the type of document contained in
the text column. You can specify the following document types: TEXT, BINARY, and IGNORE.
During indexing, the AUTO FILTER ignores any document typed TEXT, assuming the charset
column is not specified. The difference between a document with a TEXT format column type
and one with an IGNORE type is that the TEXT document is indexed, but ignored by the filter,
while the IGNORE document is not indexed at all. Use IGNORE to overlook documents such as
image files, or documents in a language that you do not want to index. IGNORE can be used
with any filter type.

To set up the AUTO FILTER bypass mechanism, you must create a format column in your base
table.

For example:

create table hdocs (
id number primary key,
fmt varchar2(10),
text varchar? (80)

)i

Assuming you are indexing mostly Word documents, you specify BINARY in the format column
to filter the Word documents. Alternatively, to have the AUTO FILTER ignore an HTML
document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one
format as BINARY and the other TEXT:

insert into hdocs values(l, 'binary', '/docs/myword.doc');
insert in hdocs values (2, 'text', '/docs/index.html');
commit;

To create the index, use CREATE INDEX and specify the format column name in the parameter
string:

2-27

Chapter 2
Filter Types

create index hdocsx on hdocs(text) indextype is ctxsys.context
parameters ('datastore ctxsys.directory datastore
filter ctxsys.auto filter
format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

Note:

You need not specify the format column in CREATE INDEX when using the
AUTO FILTER.

2.4.1.4 AUTO_FILTER and Character Set Conversion With AUTO_FILTER

The AUTO FILTER converts documents to the database character set when the document
format column is set to TEXT. In this case, the AUTO_FILTER looks at the charset column to
determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed
through without any character set conversion.

< Note:

You need not specify the charset column when using the AUTO FILTER.

2.4.2 NULL_FILTER

Use the NULL_FILTER type when plain text or HTML is to be indexed and no filtering needs to
be performed. NULL_FILTER has no attributes.

NULL_FILTER and Indexing HTML Documents

If your document set is entirely HTML, Oracle recommends that you use the NULL FILTER in
your filter preference.

For example, to index an HTML document set, specify the system-defined preferences for
NULL FILTER and HTML SECTION GROUP as follows:

create index myindex on docs(htmlfile) indextype is ctxsys.context

parameters('filter ctxsys.null filter
section group ctxsys.html section group');

¢ See Also:

For more information on section groups and indexing HTML documents, see "Section
Group Types".

ORACLE 508

Chapter 2
Filter Types

2.4.3 MAIL_FILTER

Use MAIL FILTER to transform RFC-822, RFC-2045 messages into indexable text.
The following limitations apply to the input:

* Documents must be US-ASCII
e Lines must not be longer than 1024 bytes
* Documents must be syntactically valid with regard to RFC-822.

Behavior for invalid input is not defined. Some deviations may be robustly handled by the filter
without error. Others may result in a fetch-time or filter-time error.

« MAIL_FILTER Attributes
* MAIL_FILTER Behavior
e About the Mail Filter Configuration File

e Mail_Filter Example

Note:

Starting with Oracle Database 18c, the use of MAIL FILTER in Oracle Text is
deprecated. Before adding email to the database, filter e-mails to indexable plain text,
or to HTML.MAIL FILTER is based on an obsolete email protocol, RFC-822. Modern
email systems do not support RFC-822. There is no replacement.

2.4.3.1 MAIL_FILTER Attributes

The MAIL FILTER has the attributes shown in Table 2-12.

Table 2-12 MAIL_FILTER Attributes

|
Attribute Attribute Value

INDEX FIELDS Specify a colon-separated list of fields to preserve in the output.
These fields are transformed to tag markup. For example, if
INDEX FIELDS is setto "FROM™

From: Scott Tiger

becomes:

<FROM>Scott Tiger</FROM>

Only top-level fields are transformed in this way.

AUTO FILTER TIMEOUT Specify a timeout value for the AUTO FILTER filtering invoked by
the mail filter. Default is 60. (Replaces the INSO TIMEOUT attribute
and is backward compatible with INSO TIMEOUT.)

AUTO FILTER OUTPUT FORMATTING Specify either TRUE or FALSE. Default is TRUE.

This attribute replaces the previous INSO_OUTPUT FORMATTING
attribute. However, it has no effect in the current release.

ORACLE 559

Chapter 2
Filter Types

Table 2-12 (Cont.) MAIL_FILTER Attributes
|

Attribute

Attribute Value

PART FIELD STYLE

Specify how fields occurring in lower-level parts and identified by
the INDEX FIELDS attribute should be transformed. The fields of
the top-level message part identified by INDEX FIELDS are always
transformed to tag markup (see the previous description of

INDEX FIELDS); PART FIELD STYLE controls the transformation
of subsequent parts; for example, attached e-mails.

Possible values include IGNORE (the default), in which the part
fields are not included for indexing; TAG, in which the part field
names are transformed to tags, as occurs with top-level part fields;
FIELD, in which the part field names are preserved as fields, not as
tags; and TEXT, in which the part field names are eliminated and
only the field content is preserved for indexing. See "Mail_Filter
Example" for an example of how PART FIELD STYLE works.

2.4.3.2 MAIL_FILTER Behavior

This filter behaves in the following way for each document:

Read and remove header fields
Decode message body if needed, depending on Content-transfer-encoding field

Take action depending on the Content-Type field value and the user-specified behavior
specified in a mail filter configuration file. (See "About the Mail Filter Configuration File".)
The possible actions are:

— produce the body in the output text (INCLUDE). If no character set is encountered in the
INCLUDE parts in the Content-Type header field, then Oracle defaults to the value
specified in the character set column in the base table. Name your populated character
set column in the parameter string of the CREATE INDEX command.

— AUTO FILTER the body contents (AUTO FILTER directive).
— remove the body contents from the output text (IGNORE)

If no behavior is specified for the type in the configuration file, then the defaults are as
follows:

— text/*: produce body in the output text
— application/*: AUTO_FILTER the body contents
— image/*, audio/*, video/*, model/*: ignore

Multipart messages are parsed, and the mail filter applied recursively to each part. Each
part is appended to the output.

All text produced will be charset-converted to the database character set, if needed.

2.4.3.3 About the Mail Filter Configuration File

The MAIL FILTER filter makes use of a mail filter configuration file, which contains directives
specifying how a mail document should be filtered.

ORACLE

2-30

Chapter 2
Filter Types

The mail filter configuration file is a editable text file. Here you can override default behavior for
each Content-Type. The configuration file also contains IANA-to-Oracle Globalization Support
character set name mappings.

The location of the file must be in ORACLE_HOME/ctx/config. The name of the file to use is stored
in the new system parameter MAIL FILTER CONFIG FILE. On install, this is set to drmailfl.txt,
which has useful default contents.

Oracle recommends that you create your own mail filter configuration files to avoid overwrite by
the installation of a new version or patch set. The mail filter configuration file should be in the
database character set.

Mail File Configuration File Structure

The file has two sections, BEHAVIOR and CHARSETS. Indicate the start of the behavior section as
follows:

[behavior]

Each line following starts with a mime type, then whitespace, then behavior specification. The
MIME type can be a full TYPE/SUBTYPE or just TYPE, which will apply to all subtypes of that type.
TYPE/SUBTYPE specification overrides TYPE specification, which overrides default behavior.
Behavior can be INCLUDE, AUTO FILTER, Or IGNORE (see "MAIL_FILTER Behavior" for
definitions). For instance:

application/zip IGNORE
application/msword AUTO FILTER
model IGNORE

You cannot specify behavior for "multipart” or "message" types. If you do, such lines are
ignored. Duplicate specification for a type replaces earlier specifications.

Comments can be included in the mail configuration file by starting lines with the # symbol.

The charset mapping section begins with

[charsets]

Lines consist of an IANA name, then whitespace, then an Oracle Globalization Support charset
name, like:

US-ASCII USTASCI
IS0-8859-1 WE8IS0O8859P1

This file is the only way the mail filter gets the mappings. There are no defaults.

When you change the configuration file, the changes affect only the documents indexed after
that point. You must flush the shared pool after changing the file.

2.4.3.4 Mail_Filter Example

ORACLE

Suppose there is an e-mail with the following form, in which other e-mails with different subject
lines are attached to this e-mail:

To: somebody@someplace
Subject: mainheader
Content-Type: multipart/mixed

Content-Type: text/plain

X-Ref: some value
Subject: subheader 1

2-31

Chapter 2
Filter Types

Content-Type: text/plain
X-Control: blah blah blah
Subject: subheader 2

Set INDEX FIELDS to be "Subject” and, initially, PART FIELD STYLE tO IGNORE.

CTX DDL.CREATE PREFERENCE ('my mail filt', 'mail filter');
CTX DDL SET ATTRIBUTE (my mail filt', 'INDEX FILES', 'subject');
CTX DDL.SET ATTRIBUTE ('my mail filt', 'PART FIELD STYLE', 'ignore');

Now when the index is created, the file will be indexed as follows:

<SUBJECT>mainheader</SUBJECT>

If PART FIELD STYLE is instead set to TAG, this becomes:

<SUBJECT>mainheader</SUBJECT>
<SUBJECT>subheader1</SUBJECT>
<SUBJECT>subheader2</SUBJECT>

If PART FIELD STYLE is set to FIELD instead, this is the result:

<SUBJECT>mainheader<SUBJECT>
SUBJECT: subheaderl
SUBJECT: subheader?

Finally, if PART FIELD STYLE is instead set to TEXT, then the result is:

<SUBJECT>mainheader</SUBJECT>
subheaderl
subheader?

2.4.4 USER_FILTER

Use the USER_FILTER type to specify an external filter for filtering documents in a column.
This section contains the following topics.

* USER_FILTER Attributes

e Using USER_FILTER with Charset and Format Columns

* USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format Columns
e Character Set Conversion with USER_FILTER

e User Filter Example

2.4.4.1 USER_FILTER Attributes

ORACLE

USER_FILTER has the following attribute:

Table 2-13 USER_FILTER Attribute

]
Attribute Attribute Value

command Specify the name of the filter executable.

2-32

Chapter 2
Filter Types

WARNING:

The USER FILTER type introduces the potential for security threats. A database user
granted the CTXAPP role could potentially use USER FILTER to load a malicious
application. Therefore, the DBA must safeguard against any combination of input and
output file parameters that would enable the named filter executable to compromise
system security.

command

Specify the executable for the single external filter that is used to filter all text stored in a
column. If more than one document format is stored in the column, then the external filter
specified for command must recognize and handle all such formats.

The executable that you specify must exist in the $ORACLE _HOME/ctx/bin directory on UNIX,
and in the $ORACLE_HOME%/ctx/bin directory on Windows.

You must create your user-filter command with two parameters:

e The first parameter is the name of the input file to be read.
e The second parameter is the name of the output file to be written to.

If all the document formats are supported by AUTO FILTER, then use AUTO FILTER instead of
USER FILTER, unless additional tasks besides filtering are required for the documents.

2.4.4.2 Using USER_FILTER with Charset and Format Columns

USER FILTER bypasses documents that do not need to be filtered. Its behavior is sensitive to
the values of the format and charset columns. In addition, USER_FILTER performs character set
conversion according to the charset column values.

2.4.4.3 USER_FILTER and Explicitly Bypassing Plain Text or HTML in Mixed Format

Columns

ORACLE

A mixed-format column is a text column containing more than one document format, such as a
column that contains Microsoft Word, PDF, plain text, and HTML documents.

The USER FILTER executable can index mixed-format columns, automatically bypassing textual
documents. However, if you prefer not to depend on the built-in bypass mechanism, you can
explicitly tag your rows as text and cause the USER_FILTER executable to ignore the row and
not process the document in any way.

The format column in the base table enables you to specify the type of document contained in
the text column. You can specify the following document types: TEXT, BINARY, and IGNORE.
During indexing, the USER FILTER executable ignores any document typed TEXT, assuming the
charset column is not specified. (The difference between a document with a TEXT format
column type and one with an IGNORE type is that the TEXT document is indexed, but ignored by
the filter, while the TGNORE document is not indexed at all. Use IGNORE to overlook documents
such as image files, or documents in a language that you do not want to index. IGNORE can be
used with any filter type.

To set up the USER _FILTER bypass mechanism, you must create a format column in your base
table. For example:

create table hdocs (
id number primary key,
fmt varchar2(10),

2-33

Chapter 2
Filter Types

text varchar? (80)
)

Assuming you are indexing mostly Word documents, you specify BINARY in the format column
to filter the Word documents. Alternatively, to have the USER FILTER executable ignore an
HTML document, specify TEXT in the format column.

For example, the following statements add two documents to the text table, assigning one
format as BINARY and the other TEXT:

insert into hdocs values(l, 'binary', '/docs/myword.doc');
insert into hdocs values (2, 'text', '/docs/index.html');
commit;

Assuming that this file is named upcase.pl, create the filter preference as follows:

ctx ddl.create preference

(

preference name => 'USER FILTER PREF',
object name => 'USER FILTER'

)i

ctx ddl.set attribute ('USER FILTER PREF', 'COMMAND', 'upcase.pl');

To create the index, use CREATE INDEX and specify the format column name in the parameter
string:
create index hdocsx on hdocs(text) indextype is ctxsys.context

parameters ('datastore ctxsys.file datastore

filter 'USER FILTER PREF'
format column fmt');

If you do not specify TEXT or BINARY for the format column, BINARY is used.

2.4.4.4 Character Set Conversion with USER_FILTER

The USER FILTER executable converts documents to the database character set when the
document format column is set to TEXT. In this case, the USER_FILTER executable looks at the
charset column to determine the document character set.

If the charset column value is not an Oracle Text character set name, the document is passed
through without any character set conversion.

2.4.4.5 User Filter Example

ORACLE

The following example shows a Perl script to be used as the user filter. This script converts the
input text file specified in the first argument to uppercase and writes the output to the location
specified in the second argument.

#!/usr/local/bin/perl

open (IN, S$ARGV[0]);
open (OUT, ">".SARGV[1]);

while (<IN>)

{
tr/a-z/A-7/;
print OUT;

}

2-34

Chapter 2
Filter Types

close (IN);
close (OUT);

Assuming that this file is named upcase.pl, create the filter preference as follows:

begin
ctx ddl.create preference
(
preference name => 'USER FILTER PREF',
object name => 'USER FILTER'
)i
ctx ddl.set attribute
('USER_FILTER PREF', 'COMMAND', 'upcase.pl');
end;

Create the index in SQL*Plus as follows:

create index user filter idx on user filter (docs)
indextype 1s ctxsys.context
parameters ('FILTER USER FILTER PREF');

2.4.5 PROCEDURE_FILTER

Use the PROCEDURE_FILTER type to filter your documents with a stored procedure. The stored
procedure is called each time a document needs to be filtered.

This section contains the following topics.

e PROCEDURE_FILTER Attributes

* PROCEDURE_FILTER Parameter Order

* PROCEDURE_FILTER Execute Requirements
¢ PROCEDURE_FILTER Error Handling

* PROCEDURE_FILTER Preference Example

2.4.5.1 PROCEDURE_FILTER Attributes

ORACLE

Table 2-14 lists the attributes for PROCEDURE FILTER.

Table 2-14 PROCEDURE_FILTER Attributes

Attribute Purpose Allowable Values

procedure Name of the filter stored Any procedure. The procedure can be a PL/SQL
procedure. stored procedure.

input type Type of input argument ~ VARCHAR2, BLOB, CLOB, FILE
for stored procedure.

output type Type of output argument VARCHAR2, CLOB, FILE
for stored procedure.

rowid parameter Include rowid parameter? TRUE/FALSE

format parameter Include format TRUE/FALSE
parameter?

charset parameter Include charset TRUE/FALSE
parameter?

2-35

Chapter 2
Filter Types

procedure

Specify the name of the stored procedure to use for filtering. The procedure can be a PL/SQL
stored procedure. The procedure can be a safe callout, or call a safe callout.

With the rowid parameter, format parameter, and charset parameter setto FALSE, the
procedure can have one of the following signatures:

PROCEDURE
PROCEDURE

CLOB, IN VARCHAR2)
VARCHAR2, IN VARCHAR2)

PROCEDURE (IN BLOB, IN OUT NOCOPY CLOB)
PROCEDURE (IN CLOB, IN OUT NOCOPY CLOB)
PROCEDURE (IN VARCHAR, IN OUT NOCOPY CLOB)
PROCEDURE (IN BLOB, IN OUT NOCOPY VARCHARZ)
PROCEDURE (IN CLOB, IN OUT NOCOPY VARCHARZ)
PROCEDURE (IN VARCHAR2, IN OUT NOCOPY VARCHARZ2)
PROCEDURE (IN BLOB, IN VARCHAR2)

(IN

(IN

The first argument is the content of the unfiltered row, output by the datastore. The second
argument is for the procedure to pass back the filtered document text.
The procedure attribute is mandatory and has no default.

input_type
Specify the type of the input argument of the filter procedure. You can specify one of the
following types:

Type Description

procedure Name of the filter stored procedure.

input type Type of input argument for stored procedure.
output_type Type of output argument for stored procedure.
rowid parameter Include rowid parameter?

The input type attribute is not mandatory. If not specified, then BLOB is the default.

output_type
Specify the type of output argument of the filter procedure. You can specify one of the
following types:

Type Description

CLOB The output argument is IN OUT NOCOPY CLOB. Your procedure
must write the filtered content to the CLOB passed in.

VARCHAR2 The output argument is IN OUT NOCOPY VARCHAR?2. Your

procedure must write the filtered content to the VARCHAR2
variable passed in.

FILE The output argument must be IN VARCHAR2. On entering the filter
procedure, the output argument is the name of a temporary file.
The filter procedure must write the filtered contents to this named
file.
Using a FILE output type is useful only when the procedure is a
safe callout, which can write to the file.

The output_type attribute is not mandatory. If not specified, then CLOB is the default.

ORACLE 536

Chapter 2
Filter Types

rowid_ parameter

When you specify TRUE, the rowid of the document to be filtered is passed as the first
parameter, before the input and output parameters.

For example, with INPUT TYPE BLOB, OUTPUT TYPE CLOB, and ROWID PARAMETER TRUE, the filter
procedure must have the signature as follows:

procedure (in rowid, in blob, in out nocopy clob)

This attribute is useful for when your procedure requires data from other columns or tables.
This attribute is not mandatory. The default is FALSE.

format_parameter

When you specify TRUE, the value of the format column of the document being filtered is
passed to the filter procedure before input and output parameters, but after the rowid
parameter, if enabled.

Specify the name of the format column at index time in the parameters string, using the
keyword 'format column <columnname>'. The parameter type must be IN VARCHAR2.

The format column value can be read by means of the rowid parameter, but this attribute
enables a single filter to work on multiple table structures, because the format attribute is
abstracted and does not require the knowledge of the name of the table or format column.
FORMAT PARAMETERiS not mandatory. The default is FALSE.

charset_parameter

When you specify TRUE, the value of the charset column of the document being filtered is
passed to the filter procedure before input and output parameters, but after the rowid and
format parameter, if enabled.

Specify the name of the charset column at index time in the parameters string, using the
keyword 'charset column <columnname>'. The parameter type must be IN VARCHAR?2.
The CHARSET PARAMETER attribute is not mandatory. The default is FALSE.

2.4.5.2 PROCEDURE_FILTER Parameter Order

ROWID PARAMETER, FORMAT PARAMETER, and CHARSET PARAMETER are all independent. The order
is rowid, the format, then charset. However, the filter procedure is passed only the minimum
parameters required.

For example, assume that INPUT TYPE is BLOB and OUTPUT TYPE is CLOB. If your filter procedure
requires all parameters, then the procedure signature must be:

(id IN ROWID, format IN VARCHAR2, charset IN VARCHAR2, input IN BLOB, output IN
OUT NOCOPY CLOB)

If your procedure requires only the ROWID, then the procedure signature must be:

(id IN ROWID,input IN BLOB, output IN OUT NOCOPY CLOB)

2.4.5.3 PROCEDURE_FILTER Execute Requirements

To create an index using a PROCEDURE FILTER preference, the index owner must have execute
permission on the procedure.

2.4.5.4 PROCEDURE_FILTER Error Handling

The filter procedure can raise any errors needed through the normal PL/SQL

raise application error facility. These errors are propagated to the
CTX_USER_INDEX_ ERRORS view or reported to the user, depending on how the filter is
invoked.

ORACLE 2-37

Chapter 2
Lexer Types

2.4.5.5 PROCEDURE_FILTER Preference Example

Consider a filter procedure CTxSYS.NORMALIZE that you define with the following signature:

PROCEDURE NORMALIZE (id IN ROWID, charset IN VARCHAR2, input IN CLOB,
output IN OUT NOCOPY VARCHARZ);

To use this procedure as your filter, set up your filter preference as follows:

begin
ctx ddl.create preference('myfilt', 'procedure filter');
ctx ddl.set attribute('myfilt', 'procedure', 'normalize');

ctx ddl.set attribute
ctx ddl.set attribute
ctx ddl.set attribute
ctx ddl.set attribute
end;

myfilt', 'input type', 'clob');
myfilt', 'output type', 'varchar2');
myfilt', 'rowid parameter', 'TRUE');

(l
(l
(l
('myfilt', 'charset parameter', 'TRUE');

2.5 Lexer Types

Use the lexer preference to specify the language of the text to be indexed. To create a lexer
preference, you must use one of these lexer types.

e AUTO_LEXER

* BASIC_LEXER

e MULTI_LEXER

* CHINESE_VGRAM_LEXER

* CHINESE_LEXER

« JAPANESE_VGRAM_LEXER
« JAPANESE_LEXER

« KOREAN_MORPH_LEXER

* USER_LEXER

* WORLD_LEXER

2.5.1 AUTO_LEXER

ORACLE

Identifies the language being indexed by examining the content, and applies suitable options
(including stemming) for that language. Works best where each document contains a single-
language, and has at least a couple of paragraphs of text to aid identification.

Use the AUTO LEXER type to index columns that contain documents of different languages. It
performs language identification, word segmentation, document analysis, and stemming. The
AUTO LEXER also enables customization of these components. Although parts-of-speech
information that is generated by the AUTO LEXER is not exposed for your use, AUTO LEXER uses
it for context-sensitive or tagged stemming.

2-38

Chapter 2
Lexer Types

Note:

The AUTO LEXER type is currently not supported on Oracle Database Express Edition
(Oracle Database XE).

e AUTO_LEXER Language Support

e AUTO_LEXER Attributes Inherited from BASIC_LEXER
¢ AUTO_LEXER Language-Independent Attributes

e AUTO_LEXER Language-Dependent Attributes

e AUTO_LEXER Dictionary Attribute

2.5.1.1 AUTO_LEXER Language Support

ORACLE

At index time, AUTO_LEXER automatically detects the language of the document, and tokenizes
and stems the document appropriately. To specify an AUTO LEXER dictionary, use the name of
the dictionary you created instead of the filename for the dictionary.

At query time, the language of the query is inherited from the query template. If the query
template is not used, or if no language is specified in the query template, then the language of
the query is inherited from the session language. Table 2-15 lists the supported languages.

Note:

Note that dictionary data will not be processed until index/policy creation time or
ALTER INDEX time. Errors in dictionary data format will be caught at index/policy
creation time or ALTER INDEX time and reported as: DRG-13710: Syntax Error in
Dictionary.

Table 2-15 Languages Supported for AUTO_LEXER

Language Language
ARABIC NYNORSK
BOKMAL PERSIAN
CROATIAN SERBIAN
DANISH SLOVAK
FINNISH SLOVENIAN
HEBREW THAI

CATALAN KOREAN
CZECH POLISH
DUTCH PORTUGUESE
ENGLISH ROMANIAN
FRENCH RUSSIAN
GERMAN SIMPLIFIED CHINESE (See Note)
GREEK SPANISH

2-39

Chapter 2
Lexer Types

Table 2-15 (Cont.) Languages Supported for AUTO_LEXER
]

Language Language
HUNGARIAN SWEDISH
ITALIAN TRADITIONAL CHINESE (See Note)
JAPANESE TURKISH
Note:

Due to the limitation of 30 characters for the string, Traditional Chinese must be
specified as trad chinese. Simplified Chinese must be specified as simp chinese.

2.5.1.2 AUTO_LEXER Attributes Inherited from BASIC_LEXER

The following attributes are used in the same way and have the same effect on the AUTO LEXER
as their corresponding attributes in BASIC LEXER:

* printjoins

e skipjoins

* Dbase letter

* Dbase letter type

* override base letter
° mixed case

* alternate spelling

¢ See Also:
"BASIC_LEXER" and Table 2-20

2.5.1.3 AUTO_LEXER Language-Independent Attributes

These are the language-independent attributes that are supported for the AUTO LEXER
component.

ORACLE 520

Chapter 2
Lexer Types

Table 2-16 AUTO_LEXER Language-Independent Attributes
|

Attribute

Attribute Value

Description

language

deriv_stems

deriv_stems

german_decompound
german_decompound

index_ stems

ORACLE

<characters> (space-
delimited string)

NO (disabled)

YES (default)

NO (disabled)

YES (default, enabled for
German only)

NO (disabled)

Specifies the possible languages of the input documents.

If no language is specified, then AUTO LEXER performs auto
detection.

If one language is specified, then the language is set
manually and AUTO_LEXER does not perform auto detection.

If more than one language is specified, then AUTO LEXER
performs auto detection but limits the detected language to
be among the language set.

Note: The automatic detection of language is statistically
based and, thus, inherently imperfect.

Specifies whether the derivational stemming should be used
or not. Currently, derivational stemming is only available for
English. Hence, the DERIV_STEMS has no effect in other
languages.

Also, when derivational stemming is performed, tagging and
tag stemming is not used. As a result, the tagging and
tagged stemming client dictionary has no effect on the
stemming result.

Specifies whether the derivational stemming should be used
or not. Currently, derivational stemming is only available for
English. Hence, the DERIV_STEMS has no effect in other
languages.

Also, when derivational stemming is performed, tagging and
tag stemming is not used. As a result, the tagging and
tagged stemming client dictionary has no effect on the
stemming result.

Specifies whether German de-compounding should be
performed in the stemmer or not.

Specifies whether German de-compounding should be
performed in the stemmer or not.

Specifies whether an index stemmer should be used.

If specified as YES, then the stemmer that corresponds to
the document language will be used and the stemmer will
always be configured to maximize document recall. Note that
this means that the stemmer attribute of BASIC WORDLIST
will be ignored, and the stemmer used by the AUTO_LEXER
will be used during query to determine the stem of the given
query term.

If specified as NO, then queries with stem operators will use
the word list stemming to try to stem the tokens. If word list
stemming is not available, then the stem operator will be
ignored.

For documents in Swedish and Dutch, if the index stems is
set to YES, then compound word stemming will automatically
be performed, and compounds are always separated into
their component stems.

2-41

Chapter 2
Lexer Types

Table 2-16 (Cont.) AUTO_LEXER Language-Independent Attributes

- __|]
Attribute Attribute Value Description

index stems YES (default) Specifies whether an index stemmer should be used.

If specified as YES, then the stemmer that corresponds to
the document language will be used and the stemmer will
always be configured to maximize document recall. Note that
this means that the stemmer attribute of BASIC WORDLIST
will be ignored, and the stemmer used by the AUTO LEXER
will be used during query to determine the stem of the given
query term.

If specified as NO, then queries with stem operators will use
the word list stemming to try to stem the tokens. If word list
stemming is not available, then the stem operator will be
ignored.

For documents in Swedish and Dutch, if the index stems is
set to YES, then compound word stemming will automatically
be performed, and compounds are always separated into
their component stems.

base letter NO (disabled) Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are converted
to their base form before being stored in the Text index.

base letter YES (enabled) Specify whether characters that have diacritical marks
(umlauts, cedillas, acute accents, and so on) are converted
to their base form before being stored in the Text index.

base letter type GENERIC (default) The GENERIC value is the default and means that base letter
transformation uses one transformation table that applies to
all languages.

base letter type SPECIFIC The GENERIC value is the default and means that base letter
transformation uses one transformation table that applies to
all languages.

override base letter TRUE When base letter is enabled at the same time as

FALSE (default) alternate spelling, itis sometimes necessary to

override base letter to prevent unexpected results from
serial transformations.

mixed case NO (disabled) Specify whether the lexer leaves the tokens exactly as they
appear in the text or converts the tokens to all uppercase.
The default is NO (tokens are converted to all uppercase).

mixed case YES (enabled) Specify whether the lexer leaves the tokens exactly as they
appear in the text or converts the tokens to all uppercase.

alternate spelling GERMAN (German alternate Specifies whether German alternate spelling should be used
spelling) or not.

alternate spelling SWEDISH (Swedish Specifies whether Swedish alternate spelling should be used
alternate spelling) or not.

alternate spelling NONE (No alternate spelling, The default is NONE. No alternate spelling is specified.
default)

printjoins characters Specify the non alphanumeric characters that, when they

appear anywhere in a word (beginning, middle, or end), are
processed as alphanumeric and included with the token in
the Text index. This includes printjoins that occur
consecutively. See Basic Lexer printjoins.

ORACLE 545

Chapter 2
Lexer Types

Table 2-16 (Cont.) AUTO_LEXER Language-Independent Attributes

- __|]
Attribute Attribute Value Description

skipjoins characters Specify the non-alphanumeric characters that, when they
appear within a word, identify the word as a single token;
however, the characters are not stored with the token in the
Text index. See Basic Lexer skipjoins.

timeout number Specify the timeout value in seconds for auto_lexer
tokenization.

Use a number between 0 and 600. The default value is 300.

2.5.1.4 AUTO_LEXER Language-Dependent Attributes

AUTO_LEXER provides language-dependent attributes for the languages specified in
Table 2-15.

Table 2-17 lists the language-dependent attributes available in the AUTO LEXER. The
<language> variable in the attribute name refers to any of the supported language names that
are listed in Table 2-15.

Note:

Attribute names must not exceed 30 characters. Therefore, where the <language>
variable is specified, the language name may need to be abbreviated in certain
instances. For example, traditional chinese should be abbreviated to

trad chinese and simplified chinese should be abbreviated to simp chinese.

Table 2-17 AUTO_LEXER Language-Dependent Attributes
|

Attribute Attribute Value Description

<language> prefix mor characters (space-delimited Specifies the list of inflectional prefixes that, when enclosed

phemes string) by parentheses, are kept together with the base word. For
example, (re) analyze.

<language> suffix mor characters (space-delimited Specifies the list of inflectional suffixes that, when enclosed

phemes string) by parentheses are kept together with the base word. For
example, file(s).

<language> punctuatio characters (space-delimited Specifies punctuation that breaks sentences.

ns string)

<language> non_sent e characters (space-delimited Specifies abbreviations that do not end sentences.

nd abbr string)

Table 2-18 Default Values for AUTO_LEXER Language-Dependent Attributes
|

Attribute Language Default Value
<language> prefix morphemes All languages None
<language> suffix morphemes English seser
<language> suffix morphemes Spanish banses
ORACLE

2-43

Chapter 2
Lexer Types

Table 2-18 (Cont.) Default Values for AUTO_LEXER Language-Dependent Attributes
|

Attribute Language Default Value
<language> suffix morphemes Portuguese ses
<language> suffix morphemes German in innen
<language> suffix morphemes French ne e
<language> suffix morphemes All other languages None
<language> punctuations English L2
<language> punctuations Catalan, Czech, Dutch, Greek, .?!---
Hungarian, Polish, Romanian,
Russian, Turkish
<language> punctuations French, German, Italian, ,?1
Korean, Portuguese, Spanish,
Swedish
<Ianguage>_punctuations Japanese
Pl 7
<language> punctuations Simplified Chinese
Abbreviate to: simp_chinese
A TV
<language> punctuations Traditional Chinese
Abbreviate to: trad_chinese
o W b TN T,

<language> non_sent end abbr

<language> non_sent end abbr
<language> non_sent end abbr

<language> non_sent end abbr

<language> non_sent end abbr

<language> non_sent end abbr

<language> non_sent end abbr

ORACLE

Polish, Romanian, Russian,
Turkish

Catalan
Czech, Greek, Hungarian
Dutch

English, Japanese, Simplified
Chinese (abbreviate to
simp_chinese), Traditional
Chinese (abbreviate to
trad_chinese)

French

German

e.g.i.e.viz. ak.a.

R.D. pp.
e.g.i.e.viz. ak.a.

f.eks. f. eks. inkl. sr. skuesp. sekr. prof. mus. Irs.
logr. kgl. insp. hr. hrs. gdr. frk. fr. forst. forf. fm.
fmd. esq. d.ae d.ze. d.y. dr. dir. dept.chef
civiling. bibl. ass. admn. adj. Skt. H.K.H.

e.g. i.e. viz. a.k.a. Adm. Br. Capt. Cdr. Cmdr.
Col. Comdr. Comdt. Dr. Drs. Fr. Gen. Gov. Hon.
Ins. Lieut. Lt. Maj. Messrs. Mdm. Mlle. Mlles.
Mme. Mmes. Mr. Mrs. Ms. Pres. Prof. Profs.
Pvt. Rep. Rev. Revd. Secy. Sen. Sgt. Sra. Srta.
St. Ste.

c.-a-d. cf. e.g. ex. i.e. Pr. Prof. M. Mr. Mrs. Mme
Mmes Mlle Mlles Mgr. MM. Lieut. Gén. Dr. Col.

ca. bzw. e.g. i.e. inkl. Fr. Frl. Mme. Mile. Mag.
Stud. Tel. Hr. Hrn. apl.Prof. Prof.

2-44

Chapter 2

Lexer Types

Table 2-18 (Cont.) Default Values for AUTO_LEXER Language-Dependent Attributes

Attribute Language Default Value
<language> non sent end abbr Italian e.g. i.e. pag. pagg. tel. T.V. N.H. N.D. comm.
col. cav. cap. geom. gen. ing. jr. mr. mons. mar.
magg. prof. prof.ssa prof.sse proff. pres. perito
ind. p. p.i. st. s.ten. sottoten. sig. serg. sen.
segr. sac. ten. uff. vicepres. vesc. S.S. S.E. avv.
app. amm. arch. on. dir. dott. dott.ssa dr. rag.
<language> non_sent end abbr Korean e.g. i.e. ak.a. Dr. Mr. Mrs. Ms. Prof.
<language> non_sent end abbr Portuguese cf. Cf. e.g. E.g. i.€. .é. p.ex. P.ex. pag. pag.
Péag. Pag. tel. telef. Tel. Telef. sr. srs. sra. mr.
eng. dr. dra. Dr. Dra. V.Ex. V.Exa. S. N. S. Mrs.
Eng. Ex. Exa.
<language> non sent end abbr Spanish e.g. i.e. ej. p.ej. pag. pags. tel. tfno. Fr. Ldo.
Lda. Lic. Pbro. D. Diia. Dr. Dres. Dra. Dras. Dn.
Mons. Rvdo. Sto. Sta. Sr. Srs. Srta. Srtas.
Sres. Sra. Sras. Excmo. Excma. limo. lima. Sto.
Sta.
<language> non sent end abbr Swedish inkl. prof. hrr. hr. Hrr. Hr. dr. Dr.
Examples for AUTO_LEXER Language-Dependent Attributes
Example 2-1 ctx_ddl.create_preference to associate a dictionary with an index
exec CTX DDL.CREATE PREFERENCE ('A LEX', 'AUTO LEXER');
exec CTX ANL. ADD DICTIONARY ('MY ENGLISH', 'ENGLISH', lobloc);
select * from CTX USR ANL DICTS;
exec CTX DDL.SET ATTRIBUTE ('A LEX', 'english dictionary', 'MY ENGLISH'
)
Example 2-2 <language>_prefix_morphemes
ctx ddl.set attribute(
'a lex', 'english prefix morphemes', 're'
)
Example 2-3 <language>_suffix_morphemes
ctx ddl.set attribute(
'a lex', 'english suffix morphemes', 's es'
)i
Example 2-4 <language>_punctuations
ctx ddl.set attribute(
'a lex', 'english punctuations', '. 2 !'
)
Example 2-5 <language>_non_sentence_ending_abbrev
ctx ddl.set attribute(
'a lex', 'english non sentence ending abbrev', 'e.g. a.k.a. Dr.'
)
ORACLE

2-45

Chapter 2
Lexer Types

2.5.1.5 AUTO_LEXER Dictionary Attribute

The dictionary attribute is language-specific and is used to set the name of the language
dictionary. The <language> dictionary attribute specifies one language dictionary for the
supported languages as listed in Table 2-19.

The <language> dictionary attribute has the following behavior:

e The <language> value of the attribute specifies only the dictionary name, not the location.
For example, dutch dictionary specifies that the Dutch dictionary is to be used.

* The set attribute method does not load the dictionary; it only records the dictionary
name. Therefore, the dictionary must be at the specified location when the dictionary is
needed. Otherwise, an error will be raised.

Table 2-19 Supported Languages for AUTO_LEXER Dictionary Attribute
]

Language Attribute Language Attribute
Catalan Korean

Czech Polish

Dutch Portuguese
English Romanian

French Russian

German Simplified Chinese
Greek Spanish

Hungarian Swedish

Italian Traditional Chinese
Japanese Turkish

2.5.2 BASIC_LEXER

ORACLE

Extracts tokens from text in languages, such as English and most of the western European
languages that use whitespace-delimited words.

Use the BASIC LEXER type to identify tokens for creating Text indexes for English and all other
supported whitespace-delimited languages. The BASIC LEXER also enables base-letter
conversion, composite word indexing, case-sensitive indexing and alternate spelling for
whitespace-delimited languages that have extended character sets.

In English and French, you can use the BASIC LEXER to enable theme indexing.

< Note:

Any processing that the lexer does to tokens before indexing (for example, removal
of characters, and base-letter conversion) are also performed on query terms at
query time. This ensures that the query terms match the form of the tokens in the
Text index.

2-46

ORACLE

Chapter 2
Lexer Types

BASIC LEXER supports any database character set.

This section contains the following topics.

* BASIC_LEXER Attributes

e Stemming User-Dictionaries

 BASIC_LEXER Example

2.5.2.1 BASIC_LEXER Attributes

BASIC LEXER has the attributes shown in Table 2-20.

Table 2-20 BASIC_LEXER Attributes

Attribute Attribute Value

continuation characters

numgroup characters

numjoin characters

printjoins characters

punctuations characters

skipjoins characters

startjoins non alphanumeric characters that occur at the beginning of a token
(string)

endjoins non alphanumeric characters that occur at the end of a token (string)

whitespace characters (string)

newline NEWLINE (\n)

base letter
base letter
base letter type
base letter type

override base letter

mixed case
mixed case
composite
composite

composite

CARRIAGE_RETURN (\r)
NO (disabled)

YES (enabled)

GENERIC (default)
SPECIFIC

TRUE
FALSE (default)

NO (disabled)

YES (enabled)

DEFAULT (no composite word indexing, default)
GERMAN (German composite word indexing)
DUTCH (Dutch composite word indexing)

2-47

Chapter 2
Lexer Types

Table 2-20 (Cont.) BASIC_LEXER Attributes

|
Attribute Attribute Value

index stems NONE

Use the numeric value in a ENGLISH

string or the string value. DERIVATIONAL
DUTCH
FRENCH
GERMAN
ITALIAN
SPANISH
CATALAN
CZECH
GREEK
HUNGARIAN
POLISH
PORTUGUESE
ROMANIAN
RUSSIAN
SWEDISH (see Note)
DERIVATIONAL_NEW (see Note)
DUTCH_NEW (see Note)
ENGLISH_NEW (see Note)
FRENCH_NEW (see Note)
GERMAN_NEW (see Note)
ITALIAN_NEW (see Note)
SPANISH_NEW (see Note)
TURKISH

Note: De-compounding word stemming is automatically performed
when index stems is set to SWEDISH, or DUTCH_NEW values.

Note: Seven of the index stem attributes that are new for this release
have a " _NEW?" suffix to enable you to utilize the new stemmer
attributes while maintaining backward compatibility with previous
releases of Oracle Text.

index themes YES (enabled)

index themes NO (disabled, default)

index text YES (enabled, default)

index text NO (disabled)

prove themes YES (enabled, default)

prove themes NO (disabled)

theme language AUTO (default)

theme language (any Globalization Support language)
alternate spelling GERMAN (German alternate spelling)
alternate spelling DANISH (Danish alternate spelling)
alternate spelling SWEDISH (Swedish alternate spelling)

ORACLE 548

Chapter 2
Lexer Types

Table 2-20 (Cont.) BASIC_LEXER Attributes
]

Attribute Attribute Value
alternate spelling NONE (No alternate spelling, default)
new _german spelling YES

NO (default)

continuation
Specify the characters that indicate a word continues on the next line and should be indexed
as a single token. The most common continuation characters are hyphen '-' and backslash '\'.

numgroup

Specify a single character that, when it appears in a string of digits, indicates that the digits
are groupings within a larger single unit.

For example, comma ',' might be defined as a numgroup character because it often indicates a
grouping of thousands when it appears in a string of digits.

numjoin

Specify the characters that, when they appear in a string of digits, cause Oracle Text to index
the string of digits as a single unit or word.

For example, period '.' can be defined as a numjoin character because it often serves as a
decimal point when it appears in a string of digits.

Note:

The default values for numjoin and numgroup are determined by the globalization
support initialization parameters that are specified for the database.

In general, a value need not be specified for either numjoin or numgroup when
creating a lexer preference for BASIC LEXER.

printjoins

Specify the non alphanumeric characters that, when they appear anywhere in a word

(beginning, middle, or end), are processed as alphanumeric and included with the token in the

Text index. This includes printjoins that occur consecutively.

For example, if the hyphen '-' and underscore ' ' characters are defined as printjoins, terms

such as pseudo-intellectual and _file_ are stored in the Text index as pseudo-intellectual and
file_.

Note:

If a printjoins character is also defined as a punctuations character, the character
is only processed as an alphanumeric character if the character immediately
following it is a standard alphanumeric character or has been defined as a
printjoins Or skipjoins character.

ORACLE 549

ORACLE

Chapter 2
Lexer Types

punctuations

Specify a list of non-alphanumeric characters that, when they appear at the end of a word,
indicate the end of a sentence. The defaults are period ., question mark '?', and exclamation
point ",

Characters that are defined as punctuations are removed from a token before text indexing.
However, if a punctuations character is also defined as a printjoins character, then the
character is removed only when it is the last character in the token.

For example, if the period (.) is defined as both a printjoins and a punctuations character,
then the following transformations take place during indexing and querying as well:

Token Indexed Token
.doc .doc

dog.doc dog.doc
dog..doc dog..doc

dog. dog

dog... dog..

In addition, BASIC LEXER use punctuations characters in conjunction with newline and
whitespace characters to determine sentence and paragraph delimiters for sentence/
paragraph searching.

skipjoins

Specify the non-alphanumeric characters that, when they appear within a word, identify the
word as a single token; however, the characters are not stored with the token in the Text
index.

For example, if the hyphen character '-' is defined as a skipjoins, then the word pseudo-
intellectual is stored in the Text index as pseudointellectual.

< Note:

Printjoins and skipjoins are mutually exclusive. The same characters cannot be
specified for both attributes.

startjoins/endjoins

For startjoins, specify the characters that when encountered as the first character in a token
explicitly identify the start of the token. The character, as well as any other startjoins
characters that immediately follow it, is included in the Text index entry for the token. In
addition, the first startjoins character in a string of startjoins characters implicitly ends the
previous token.

For endjoins, specify the characters that when encountered as the last character in a token
explicitly identify the end of the token. The character, as well as any other startjoins
characters that immediately follow it, is included in the Text index entry for the token.

The following rules apply to both startjoins and endjoins:

e The characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASIC LEXER.
e startjoins/endjoins characters can occur only at the beginning or end of tokens

Printjoins differ from endjoins and startjoins in that position does not matter. For example, $35
will be indexed as one token if $is a startjoin or a printjoin, but as two tokens if it is
defined as an endjoin.

2-50

Chapter 2
Lexer Types

whitespace

Specify the characters that are treated as blank spaces between tokens. BASIC LEXER uses
whitespace characters in conjunction with punctuations and newline characters to identify
character strings that serve as sentence delimiters for sentence and paragraph searching.
The predefined default values for whitespace are space and tab. These values cannot be
changed. Specifying characters as whitespace characters adds to these defaults.

newline

Specify the characters that indicate the end of a line of text. BASIC LEXER uses newline
characters in conjunction with punctuations and whitespace characters to identify character
strings that serve as paragraph delimiters for sentence and paragraph searching.

The only valid values for newline are NEWLINE and CARRIAGE RETURN (for carriage returns).
The default is NEWLINE.

base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and
S0 on) are converted to their base form before being stored in the Text index. The default is
NO (base-letter conversion disabled). For more information on base-letter conversions and
base letter type, see Base-Letter Conversion.

base_letter_type

Specify GENERIC Or SPECIFIC.

The GENERIC value is the default and means that base letter transformation uses one
transformation table that applies to all languages. For more information on base-letter
conversions and base letter type, see "Base-Letter Conversion".

override_base_letter

When base letter is enabled at the same time as alternate spelling, it is sometimes
necessary to override base letter to prevent unexpected results from serial transformations.
See "Overriding Alternative Spelling Features". Default is FALSE.

mixed_case
Specify whether the lexer leaves the tokens exactly as they appear in the text or converts the
tokens to all uppercase. The default is NO (tokens are converted to all uppercase).

< Note:

Oracle Text ensures that word queries match the case sensitivity of the index being
queried. As a result, if you enable case sensitivity for your Text index, queries
against the index are always case sensitive.

composite

Specify whether composite word indexing is disabled or enabled for either GERMAN or DUTCH
text. The default is DEFAULT (composite word indexing disabled).

Words that are usually one entry in a German dictionary are not split into composite stems,
while words that aren't dictionary entries are split into composite stems.

To retrieve the indexed composite stems, you must enter a stem query, such as $bahnhof.
The language of the wordlist stemmer must match the language of the composite stems.

2.5.2.2 Stemming User-Dictionaries

You can create a user-dictionary for your own language to customize how words are
decomposed. These dictionaries are shown in Table 2-21.

ORACLE bEq

Chapter 2
Lexer Types

Table 2-21 Stemming User-Dictionaries

Dictionary Stemmer

SORACLE HOME/ctx/data/frlx/drfr.dct French

SORACLE HOME/ctx/data/delx/drde.dct German

SORACLE HOME/ctx/data/nllx/drnl.dct Dutch

SORACLE HOME/ctx/data/itlx/drit.dct Italian

SORACLE HOME/ctx/data/eslx/dres.dct Spanish

SORACLE HOME/ctx/data/enlx/dren.dct English and Derivational

Stemming user-dictionaries are not supported for languages other than those listed in
Table 2-21.

The format for the user dictionary is as follows:

output term <tab> input term

The individual parts of the decomposed word must be separated by the # character. The
following example entries are for the German word Hauptbahnhof:

Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhofes<tab>Haupt#Bahnhof
Hauptbahnhof<tab>Haupt#Bahnhof
Hauptbahnhoefe<tab>Haupt#Bahnhof

index_themes

Specify YES to index theme information in English or French. This makes ABOUT queries more
precise. The index themes and index_text attributes cannot both be NO. The default is NO.
You can set this parameter to TRUE for any index type, including CTXCAT. To enter an ABOUT
guery with CATSEARCH, use the query template with CONTEXT grammar.

prove_themes

Specify YES to prove themes. Theme proving attempts to find related themes in a document.
When no related themes are found, parent themes are eliminated from the document.

While theme proving is acceptable for large documents, short text descriptions with a few
words rarely prove parent themes, resulting in poor recall performance with ABOUT queries.
Theme proving results in higher precision and less recall (less rows returned) for ABOUT
queries. For higher recall in ABOUT queries and possibly less precision, you can disable theme
proving. Default is YES.

The prove themes attribute is supported for CONTEXT and CTXRULE indexes.

theme_language

Specify which knowledge base to use for theme generation when index themes is set to YES.
When index themes is NO, setting this parameter has no effect on anything.

Specify any globalization support language or AUTO. You must have a knowledge base for the
language you specify. This release provides a knowledge base in only English and French. In
other languages, you can create your own knowledge base.

ORACLE -

ORACLE

Chapter 2
Lexer Types

See Also:

"Adding a Language-Specific Knowledge Base" in Oracle Text Utilities .

The default is 2UT0, which instructs the system to set this parameter according to the language
of the environment.

index_stems

Specify the stemmer to use for stem indexing. Choose one of the following stemmers: NONE,
ARABIC, CATALAN, CROATIAN, CZECH, DANISH, DERIVATIONAL, DUTCH, ENGLISH,
FINNISH, FRENCH, GERMAN, HEBREW, HUNGARIAN, ITALIAN, NORWEGIAN, POLISH,
PORTUGUESE, ROMANIAN, SLOVAK, SLOVENIAN, SPANISH, and SWEDISH.

Tokens are stemmed to a single base form at index time in addition to the normal forms.
Indexing stems enables better query performance for stem ($) queries, such as $computed.

Note:

If the index_stems attribute is set to one of the languages with ID 8 to 33, which are
listed Table 2-20, then the stemmer attribute of BASIC WORDLIST will be ignored and
the stemmer used by the BASIC LEXER will be used during query to determine the
stem of the given query term.

index_text

Specify YES to index word information. The index themes and index_text attributes
cannot both be NO.

The default is YES.

alternate_spelling

Specify either GERMAN, DANISH, or SWEDISH to enable the alternate spelling in one of these
languages. Enabling alternate spelling enables you to query a word in any of its alternate
forms.

Alternate spelling is off by default; however, in the language-specific scripts that Oracle
provides in admin/defaults (drdefd.sql for German, drdefdk.sql for Danish, and
drdefs.sql for Swedish), alternate spelling is turned on. If your installation uses these scripts,
then alternate spelling is on. However, you can specify NONE for no alternate spelling. For more
information about the alternate spelling conventions Oracle Text uses, see Alternate Spelling.

new_german_spelling

Specify whether the queries using the BASIC LEXER return both traditional and reformed (new)
spellings of German words. If new _german spelling is set to YES, then both traditional and
new forms of words are indexed. If it is set to NO, then the word will be indexed only as it as
provided in the query. The default is NO.

See Also:

"New German Spelling"

2-53

Chapter 2
Lexer Types

2.5.2.3 BASIC_LEXER Example

The following example sets printjoin characters and disables theme indexing with the
BASIC LEXER:

begin

ctx ddl.create preference('mylex', 'BASIC LEXER');

ctx ddl.set attribute('mylex', 'printjoins', ' -');

ctx ddl.set attribute ('mylex', 'index themes', 'NO');
ctx ddl.set attribute ('mylex', 'index text', 'YES');
end;

To create the index with no theme indexing and with printjoin characters set as described,
enter the following statement:

create index myindex on mytable (docs
indextype 1s ctxsys.context
parameters ('LEXER mylex');

2.5.3 MULTI_LEXER

ORACLE

Requires a LANGUAGE column in the table that identifies the language for each document. Each
language has an associated sub-lexer, defined by the user. This lexer has no attributes.

Use MULTI LEXER to index text columns that contain documents of different languages. For
example, use this lexer to index a text column that stores English, German, and Japanese
documents.

You must have a LANGUAGE column in your base table. To index multi-language tables, specify
the LANGUAGE column when you create the index. You must also specify the language at query
time (through Session settings or a Language settings in a query template), and the queries
only look for documents that are indexed using the current language.

Create a multi-lexer preference with CTX DDL.CREATE PREFERENCE. Add language-specific
lexers to the multi-lexer preference with the CTX DDL.ADD SUB LEXER procedure.

During indexing, the MULTI LEXER examines each row's language column value and switches
in the language-specific lexer to process the document.

Note:

If you drop the language column from a multi-lexer indexed table, you must also drop
the index and rebuild it.

The WORLD LEXER lexer also performs multi-language indexing, but without the need for
separate LANGUAGE columns (that is, it has automatic language detection). For more on
WORLD LEXER, see "WORLD_LEXER".

This section contains the following topics.

e« MULTI_LEXER Restriction
¢ MULTI_LEXER Multi-language Stoplists
e MULTI_LEXER Example

2-54

Chapter 2
Lexer Types

* MULTI_LEXER and Querying Multi-Language Tables

2.5.3.1 MULTI_LEXER Restriction

MULTI_LEXER must have a sublexer specified for different languages. If you already know the
language, you can use BASIC_LEXER as the sublexer. If the language is not known, then you
use AUTO_LEXER instead of MULTI_LEXER. Hence, using AUTO_LEXER as a sublexer of
MULTI_LEXER is not useful and it is disabled.

Thus, the following statements will not work and throw error DRG-13003.

exec ctx ddl.create preference ('multilexer', 'MULTI LEXER');
exec ctx ddl..create preference('autolexer', AUTO LEXER);
exec ctx ddl.add sub lexer('multilexer', 'GERMAN', 'autolexer');

2.5.3.2 MULTI_LEXER Multi-language Stoplists

When you use the MULTI LEXER, you can also use a multi-language stoplist for indexing.

¢ See Also:

"Multi-Language Stoplists".

2.5.3.3 MULTI_LEXER Example

ORACLE

Create the multi-language table with a primary key, a text column, and a language column as
follows:

create table globaldoc (
doc_id number primary key,
lang varchar2 (3),
text clob

)i

Assume that the table holds mostly English documents, with the occasional German or
Japanese document. To handle the three languages, you must create three sub-lexers, one for
English, one for German, and one for Japanese:

ctx ddl.create preference('english lexer', 'basic lexer');
ctx ddl.set attribute('english lexer','index themes', 'yes');
ctx ddl.set attribute('english lexer', 'theme language','english');

ctx ddl.create preference('german lexer', 'basic lexer');

ctx ddl.set attribute('german lexer', 'composite', 'german');

ctx ddl.set attribute('german lexer', 'mixed case','yes');

ctx ddl.set attribute('german lexer', 'alternate spelling', 'german');
ctx ddl.create preference('japanese lexer',6 'japanese vgram lexer');

Create the multi-lexer preference:

ctx ddl.create preference('global lexer', 'multi lexer');

Because the stored documents are mostly English, make the English lexer the default using
CTX_DDL.ADD_SUB_LEXER :

ctx ddl.add sub lexer('global lexer', 'default', 'english lexer');

2-55

Chapter 2
Lexer Types

Now add the German and Japanese lexers in their respective languages with
CTX_DDL.ADD_SUB_LEXER procedure. Also assume that the language column is expressed
in the standard ISO 639-2 language codes, so add those as alternative values.

ctx ddl.add sub lexer('global lexer', 'german', 'german lexer', 'ger');

ctx ddl.add sub lexer('global lexer', 'japanese','japanese lexer','jpn');

Now create the index globalx, specifying the multi-lexer preference and the language column
in the parameter clause as follows:

create index globalx on globaldoc (text) indextype is ctxsys.context
parameters ('lexer global lexer language column lang');

2.5.3.4 MULTI_LEXER and Querying Multi-Language Tables

At query time, the multi-lexer examines the language setting and uses the sub-lexer preference
for that language to parse the query.

If the language is not set, then the default lexer is used. Otherwise, the query is parsed and run
as usual. The index contains tokens from multiple languages, so such a query can return
documents in several languages. To limit your query to a given language, use a structured
clause on the language column.

If the language column is set to AUTO, then the multi-lexer detects the language of the
document for the supported languages shown in Table 2-22.

Table 2-22 Languages Supported for MULTI_LEXER Auto-detection
]

Language Language

Arabic Japanese

Bokmal (Norwegian) Korean

Catalan Latin Serbian
Croatian Nynorsk (Norwegian)
Czech Polish

Danish Portuguese

Dutch Romanian

English Russian

German Slovak

Greek Swedish

Hebrew Thai

Hungarian Traditional Chinese
Italian Turkish

2.5.4 CHINESE_VGRAM_LEXER

Extracts tokens in Chinese text for creating Oracle Text indexes.

ORACLE 56

Chapter 2
Lexer Types

Table 2-23 CHINESE_VGRAM_LEXER Attributes

|
Attribute Attribute Value

mixed case ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text (for
example, cat and Cat). Allowable values are YES and NO (default).

You can use this lexer if your database uses one of the following character sets:

* AL32UTFS8

« ZHS16CGB231280
« ZHS16GBK

e ZHS32GB18030

e ZHT32EUC

« ZHT16BIGS5

e ZHT32TRIS

e ZHT16HKSCS

e ZHT16MSWIN950
- UTF8

2.5.5 CHINESE_LEXER

ORACLE

Identifies tokens in traditional and simplified Chinese text for creating Oracle Text indexes.
The CHINESE LEXER type offers the following benefits over the CHINESE VGRAM LEXER:

e generates a smaller index

e better query response time

e generates real word tokens resulting in better query precision
e supports stop words

Because the CHINESE LEXER uses a different algorithm to generate tokens, indexing time is
longer than with CHINESE VGRAM LEXER.

You can use this lexer if your database character is one of the Chinese or Unicode character
sets supported by Oracle.

The CHINESE LEXER has the following attribute:

Table 2-24 CHINESE_LEXER Attributes

]
Attribute Attribute Value

mixed case ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

You can modify the existing lexicon (dictionary) used by the Chinese lexer, or create your own
Chinese lexicon, with the ctxlc command.

2-57

See Also:

Chapter 2
Lexer Types

"Lexical Compiler (ctxlc)" in Oracle Text Utilities

2.5.6 JAPANESE_VGRAM_LEXER

Identifies tokens in Japanese for creating Oracle Text indexes. This lexer supports the stem ($)

ORACLE

operator.

Table 2-25 JAPANESE_VGRAM_LEXER Attributes
]

Attribute

Attribute Value

delimiter

mixed case ASCII7

bigram

printjoins

skipjoins

Specify whether to consider certain Japanese blank characters, such
as a full-width forward slash or a full-width middle dot, as part of the
indexed token. ALL considers these characters as part of the token
while NONE ignores them. The default is NONE.

Enable mixed-case (upper- and lower-case) searches of ASCII7 text
(for example, cat and Cat). Allowable values are YES and NO (default).

Specify TRUE to enable the bigram mode for the Japanese VGRAM
lexer. In the bigram mode, the Japanese queries run faster because
only 2-gram tokens are generated, thus avoiding the internal wildcard
search. But, in the bigram mode, the index size needs to be increased
to accommodate the large number of tokens. Enable the bigram mode,
if the performance of queries is of higher importance to you than the
disk space. Default is FALSE.

Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed as
alphanumeric and included with the token in the Text index. This
includes printjoins that occur consecutively. See Basic Lexer
"printjoins".

Specify the non-alphanumeric characters that, when they appear within
a word, identify the word as a single token; however, the characters are
not stored with the token in the Text index. See Basic Lexer "skipjoins".

You can use this lexer if your database uses one of the following character sets:

* JA16SJIS
 JAL6EUC
« UTF8
 AL32UTF8

* JALG6EUCTILDE
« JALI6EUCYEN
* JAL6SJISTILDE
* JA16SJISYEN

Rules for PRINTJOIN and SKIPJOIN Characters

e Only non-alphanumeric ASCII characters that do not include any Chinese, Japanese, or
Korean characters or any full-width non-alphanumeric characters are accepted.

2-58

Chapter 2
Lexer Types

* You can specify a single non-alphanumeric character or multiple non-alphanumeric
characters at a time.

e The printjoin/skipjoin will be ignored if you enter any characters that are not allowed. This
includes alphanumeric characters, CJK — Chinese, Japanese, Korean — characters or full-
width non-alphanumeric characters.

* In case of duplicate non-alphanumeric characters, duplicate entries will be ignored.
Examples

Example 2-6 Using Printjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as printjoins thereby indicating
that these characters must be included with the token in the Text index. Therefore, words such
as web-site or web_site as indexed as web-site and web_site. Queries that search for website
will not return documents containing web-site or web_site.

ctx ddl.create preference('mylex', 'JAPANESE VGRAM LEXER');
ctx ddl.set attribute('mylex', 'printjoins', ' -');
Example 2-7 Using Skipjoins with JAPANESE_VGRAM_LEXER

This example defines the hyphen and underscore characters as skipjoins thereby indicating
that these characters must not be included with the token in the Text index. Therefore, words
such as web-site or web_site as indexed as website. Queries that search for website will return
documents containing web-site or web_site.

ctx ddl.create preference('mylex', 'JAPANESE VGRAM LEXER');
ctx ddl.set attribute('mylex', 'skipjoins', ' -'");

2.5.7 JAPANESE_LEXER

Identifies tokens in Japanese for creating Oracle Text indexes. Offers advantages over
JAPANESE VGRAM LEXER, such as generates a smaller index, has a better query response time,
and generates real word tokens resulting in better query precision.

The JAPANESE LEXER type supports the stem ($) operator. Because the JAPANESE LEXER USeS a
new algorithm to generate tokens, indexing time is longer than with JAPANESE VGRAM LEXER.

You can modify the existing lexicon (dictionary) used by the Japanese lexer, or create your own
Japanese lexicon, with the ctxlc command.

¢ See Also:

"Lexical Compiler (ctxIc)" in Oracle Text Utilities

This lexer has the following attributes:

ORACLE 59

Chapter 2
Lexer Types

Table 2-26 JAPANESE_LEXER Attributes

Attribute Attribute Value

delimiter Specify NONE or ALL to ignore certain Japanese blank characters, such

as a full-width forward slash or a full-width middle dot. Default is NONE.

mixed case ASCII7 Enable mixed-case (upper- and lower-case) searches of ASCII7 text

(for example, cat and Cat). Allowable values are YES and NO (default).

The JAPANESE LEXER supports the following character sets:

JA16SJIS
JA16EUC

UTF8
AL32UTF8
JAL6EUCTILDE
JAL6EUCYEN
JA16SJISTILDE
JA16SJISYEN

When you specify JAPANESE LEXER for creating text index, the JAPANESE LEXER resolves a
sentence into words.

For example, the following compound word (natural language institute)

BREEENE

is indexed as three tokens:

B, &8, LE

To resolve a sentence into words, the internal dictionary is referenced. When a word cannot be
found in the internal dictionary, Oracle Text uses the JAPANESE VGRAM LEXER to resolve it.

2.5.8 KOREAN_MORPH_LEXER

Identifies tokens in Korean text for creating Oracle Text indexes.

This section contains the following topics.

ORACLE

KOREAN_MORPH_ LEXER Dictionaries

2-60

Chapter 2
Lexer Types

* KOREAN_MORPH_ LEXER Unicode Support

« KOREAN_MORPH_LEXER Attributes

« KOREAN_MORPH_ LEXER Limitations

* KOREAN_MORPH_LEXER Example: Setting Composite Attribute

2.5.8.1 KOREAN_MORPH_ LEXER Dictionaries

The KOREAN MORPH LEXER uses four dictionaries:

Table 2-27 KOREAN_MORPH_LEXER Dictionaries
]

Dictionary File

System $ORACLE HOME/ctx/data/kolx/drk2sdic.dat
Grammar SORACLE HOME/ctx/data/kolx/drk2gram.dat
Stopword SORACLE HOME/ctx/data/kolx/drk2xdic.dat
User-defined SORACLE HOME/ctx/data/kolx/drk2udic.dat

The grammar, user-defined, and stopword dictionaries should be written using the KSC 5601
or MSWIN949 character sets. You can modify these dictionaries using the defined rules. The
system dictionary must not be modified.

You can add unregistered words to the user-defined dictionary file. The rules for specifying new
words are in the file.

You can use KOREAN MORPH LEXER if your database uses one of the following character sets:
*+ KO16KSC5601

« KO16MSWIN949

e UTF8

 AL32UTF8

The KOREAN MORPH LEXER enables mixed-case searches.

2.5.8.2 KOREAN_MORPH_ LEXER Unicode Support

ORACLE

The KOREAN MORPH LEXER has the following Unicode support:

* Words in non-KSC5601 Korean characters defined in Unicode

e Supplementary characters

See Also:

For information on supplementary characters, see the Oracle Database Globalization
Support Guide

Some Korean documents may have non-KSC5601 characters in them. As the
KOREAN MORPH LEXER can recognize all possible 11,172 Korean (Hangul) characters, such
documents can also be interpreted by using the UTF8 or AL32UTF8 character sets.

2-61

Chapter 2
Lexer Types

Use the AL32UTF8 character set for your database to extract surrogate characters. By default,
the KOREAN MORPH_LEXER extracts all series of surrogate characters in a document as one
token for each series.

Limitations on Korean Unicode Support

For conversion from Hanja to Hangul (Korean), the KOREAN MORPH LEXER supports only the
4,888 Hanja characters defined in KSC5601.

2.5.8.3 KOREAN_MORPH_LEXER Attributes

When you use the KOREAN MORPH LEXER, you can specify the following attributes:

Table 2-28 KOREAN_MORPH_LEXER Attributes
e

Attribute Attribute Value

verb adjective Specify TRUE or FALSE to index verbs, adjectives, and adverbs. Default is
FALSE.

one char word Specify TRUE or FALSE to index one syllable. Default is FALSE.

number Specify TRUE or FALSE to index number. Default is FALSE.

user dic Specify TRUE or FALSE to index user dictionary. Default is TRUE.

stop_dic Specify TRUE of FALSE to use stop-word dictionary. Default is TRUE. The

stop-word dictionary belongs to KOREAN MORPH LEXER.
composite Specify indexing style of composite noun.

Specify COMPOSITE ONLY to index only composite nouns.

Specify NGRAM to index all noun components of a composite noun.

Specify COMPONENT WORD to index single noun components of composite
nouns as well as the composite noun itself. Default is COMPONENT WORD.

"KOREAN_MORPH_LEXER Example: Setting Composite Attribute"
describes the difference between NGRAM and COMPONENT WORD.

morpheme Specify TRUE or FALSE for morphological analysis. If set to FALSE, tokens
are created from the words that are divided by delimiters such as white
space in the document. Default is TRUE.

to upper Specify TRUE or FALSE to convert English to uppercase. Default is TRUE.

hanja Specify TRUE to index hanja characters. If set to FALSE, hanja characters
are converted to hangul characters. Default is FALSE.

long word Specify TRUE to index long words that have more than 16 syllables in
Korean. Default is FALSE.

japanese Specify TRUE to index Japanese characters in Unicode (only in the 2-byte
area). Default is FALSE.

english Specify TRUE to index alphanumeric strings. Default is TRUE.

2.5.8.4 KOREAN_MORPH_ LEXER Limitations

Sentence and paragraph sections are not supported with the KOREAN MORPH LEXER.

2.5.8.5 KOREAN_MORPH_LEXER Example: Setting Composite Attribute

Use the composite attribute to control how composite nouns are indexed.

ORACLE 562

Chapter 2
Lexer Types

NGRAM Example

When you specify NGRAM for the composite attribute, composite nouns are indexed with all
possible component tokens. For example, the following composite noun (information
processing institute)

A8 He|stE)

is indexed as six tokens:

Ay A shE FE AR
s R el ey R B s bl e e

Specify NGRAM indexing as follows:
begin
ctx ddl.create preference('my lexer', 'KOREAN MORPH LEXER');

ctx ddl.set attribute('my lexer', 'COMPOSITE', 'NGRAM');
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my lexer');

COMPONENT_WORD Example

When you specify COMPONENT WORD for the composite attribute, composite nouns and their
components are indexed. For example, the following composite noun (information processing
institute)

HH Az =E
is indexed as four tokens:
AR, A,

Specify COMPONENT WORD indexing as follows:

begin
ctx ddl.create preference('my lexer', 'KOREAN MORPH LEXER');

ORACLE 5 6a

Chapter 2
Lexer Types

ctx ddl.set attribute('my lexer', 'COMPOSITE', 'COMPONENT WORD');
end

To create the index:

create index koreanx on korean(text) indextype is ctxsys.context
parameters ('lexer my lexer');

2.5.9 USER_LEXER

Lexer you create to index a particular user-defined language.

Use USER LEXER to plug in your own language-specific lexing solution. This enables you to
define lexers for languages that are not supported by Oracle Text. It also enables you to define
a new lexer for a language that is supported but whose lexer is inappropriate for your
application.

This section contains the following topics.

e USER_LEXER Routines

e USER_LEXER Limitations

e USER_LEXER Attributes

* INDEX_PROCEDURE

e INPUT_TYPE

* QUERY_PROCEDURE

e Encoding Tokens as XML

e XML Schema for No-Location_ User-defined Indexing Procedure
e XML Schema for User-defined Indexing Procedure with Location

e XML Schema for User-defined Lexer Query Procedure

2.5.9.1 USER_LEXER Routines

The user-defined lexer you register with Oracle Text is composed of two routines that you must
supply:

Table 2-29 User-Defined Routines for USER_LEXER

|
User-Defined Routine Description

Indexing Procedure Stored procedure (PL/SQL) which implements the tokenization of
documents and stop words. Output must be an XML document as
specified in this section.

Query Procedure Stored procedure (PL/SQL) which implements the tokenization of
query words. Output must be an XML document as specified in this
section.

2.5.9.2 USER_LEXER Limitations

The following features are not supported with the USER LEXER:

° CTXiDOC.GIST‘and CTX DOC.THEMES

* CTX QUERY.HFEEDBACK

ORACLE 564

Chapter 2
Lexer Types

e ABOUT query operator
* CTXRULE index type

e VGRAM indexing algorithm

2.5.9.3 USER_LEXER Attributes

USER_LEXER has the following attributes:

Table 2-30 USER_LEXER Attributes

Attribute Attribute Value

INDEX PROCEDURE Name of a stored procedure. No default provided.
INPUT TYPE VARCHAR2, CLOB. Default is CLOB.

QUERY PROCEDURE Name of a stored procedure. No default provided.

2.5.9.4 INDEX_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize a document or a
stop word found in the stoplist object.

Requirements
This procedure can be a PL/SQL stored procedure.
The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or dropped after the index is created. You can
replace or drop this stored procedure after the index is dropped.

Parameters
Two different interfaces are supported for the user-defined lexer indexing procedure:

* VARCHAR?2 Interface
e CLOB Interface

Restrictions

This procedure must not perform any of the following operations:
* Rollback

« Explicitly or implicitly commit the current transaction

« Enter any other transaction control statement

e Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be in the
same order as the tokens occur in the document or stop word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all parameters.

ORACLE 5 65

Chapter 2
Lexer Types

2.5.9.5 INPUT_TYPE

Two different interfaces are supported for the User-defined lexer indexing procedure. One
interface enables the document or stop word and the corresponding tokens encoded as XML
to be passed as VARCHAR? datatype whereas the other interface uses the CL0B datatype. This
attribute indicates the interface implemented by the stored procedure specified by the

INDEX PROCEDURE attribute.

« VARCHAR? Interface
e CLOB Interface

2.5.9.5.1 VARCHAR? Interface

Table 2-31 describes the interface that enables the document or stop word from stoplist object
to be tokenized to be passed as VARCHAR?2 from Oracle Text to the stored procedure and for the
tokens to be passed as VARCHAR?2 as well from the stored procedure back to Oracle Text.

Your user-defined lexer indexing procedure should use this interface when all documents in the
column to be indexed are smaller than or equal to 32512 bytes and the tokens can be
represented by less than or equal to 32512 hytes. In this case the CLOB interface given in

Table 2-32 can also be used, although the VARCHAR? interface will generally perform faster than
the CLOB interface.

This procedure must be defined with the following parameters:

Table 2-31 VARCHAR2 Interface for INDEX_PROCEDURES
L

Parameter
Position

Parameter Parameter Description
Mode Datatype

1

ORACLE

IN VARCHAR2 Document or stop word from stoplist object to be tokenized.
If the document is larger than 32512 bytes then Oracle Text will
report a document level indexing error.

IN OUT VARCHAR? Tokens encoded as XML.

If the document contains no tokens, then either NULL must be
returned or the tokens element in the XML document returned
must contain no child elements.

Byte length of the data must be less than or equal to 32512.

To improve performance, use the NOCOPY hint when declaring this
parameter. This passes the data by reference, rather than passing
data by value.

The XML document returned by this procedure should not include
unnecessary whitespace characters (typically used to improve
readability). This reduces the size of the XML document which in
turn minimizes the transfer time.

To improve performance, index_procedure should not validate the
XML document with the corresponding XML schema at run-time.
Note that this parameter is IN OUT for performance purposes. The
stored procedure has no need to use the IN value.

2-66

Chapter 2
Lexer Types

Table 2-31 (Cont.) VARCHARZ2 Interface for INDEX_PROCEDURES

Parameter Parameter Parameter Description
Position Mode Datatype
3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text needs

the character offset and character length of the tokens as found in
the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of the tokens

as found in the document being tokenized. This implies that the
XML attributes off and len must not be used.

2.5.9.5.2 CLOB Interface

Table 2-32 describes the CLOB interface that enables the document or stop word from stoplist
object to be tokenized to be passed as CcLOB from Oracle Text to the stored procedure and for
the tokens to be passed as CLOB as well from the stored procedure back to Oracle Text.

The user-defined lexer indexing procedure should use this interface when at least one of the
documents in the column to be indexed is larger than 32512 bytes or the corresponding tokens
are represented by more than 32512 bytes.

Table 2-32 CLOB Interface for INDEX_PROCEDURE

Parameter Parameter Parameter Datatype Description

Position Mode

1 IN CLOB Document or stop word from stoplist object to be
tokenized.

2 IN OUT CLOB Tokens encoded as XML.

If the document contains no tokens, then either NULL
must be returned or the tokens element in the XML
document returned must contain no child elements.

To improve performance, use the NOCOPY hint when
declaring this parameter. This passes the data by
reference, rather than passing data by value.

The XML document returned by this procedure should not
include unnecessary whitespace characters (typically
used to improve readability). This reduces the size of the
XML document which in turn minimizes the transfer time.

To improve performance, index_procedure should not
validate the XML document with the corresponding XML
schema at run-time.

Note that this parameter is IN OUT for performance

purposes. The stored procedure has no need to use the
IN value. The IN value will always be a truncated CLOB.

3 IN BOOLEAN Oracle Text sets this parameter to TRUE when Oracle Text
needs the character offset and character length of the
tokens as found in the document being tokenized.

Oracle Text sets this parameter to FALSE when Text is not
interested in the character offset and character length of
the tokens as found in the document being tokenized. This
implies that the XML attributes off and len must not be
used.

ORACLE 2-67

Chapter 2
Lexer Types

The first and second parameters are temporary CLOBS. Avoid assigning these CL0B locators to
other locator variables. Assigning the formal parameter CLOB locator to another locator variable
causes a new copy of the temporary CLOB to be created resulting in a performance hit.

2.5.9.6 QUERY_PROCEDURE

This callback stored procedure is called by Oracle Text as needed to tokenize words in the
query. A space-delimited group of characters (excluding the query operators) in the query will
be identified by Oracle Text as a word.

Requirements
This procedure can be a PL/SQL stored procedure.
The index owner must have EXECUTE privilege on this stored procedure.

This stored procedure must not be replaced or be dropped after the index is created. You can
replace or drop this stored procedure after the index is dropped.

Restrictions

This procedure must not perform any of the following operations:
* Rollback

« Explicitly or implicitly commit the current transaction

* Enter any other transaction control statement

« Alter the session language or territory

The child elements of the root element tokens of the XML document returned must be in the
same order as the tokens occur in the query word being tokenized.

The behavior of this stored procedure must be deterministic with respect to all parameters.

Parameters

Table 2-33 describes the interface for the user-defined lexer query procedure:

Table 2-33 User-defined Lexer Query Procedure XML Schema Attributes
|

Parameter Parameter Parameter Datatype Description

Position Mode

1 IN VARCHAR2 Query word to be tokenized.

2 IN CTX ULEXER.WILDCARD TAB Character offsets of wildcard characters (% and _)
in the query word. If the query word passed in by
Oracle Text does not contain any wildcard
characters then this index-by table will be empty.
The wildcard characters in the query word must be
preserved in the tokens returned in order for the
wildcard query feature to work properly.
The character offset is 0 (zero) based. Offset
information follows USC-2 codepoint semantics.

ORACLE

2-68

Chapter 2
Lexer Types

Table 2-33 (Cont.) User-defined Lexer Query Procedure XML Schema Attributes
|

Parameter Parameter Parameter Datatype Description
Position Mode
3 IN OUT VARCHAR2 Tokens encoded as XML.

If the query word contains no tokens then either
NULL must be returned or the tokens element in
the XML document returned must contain no child
elements.

The length of the data must be less-than or equal
to 32512 bytes.

2.5.9.7 Encoding Tokens as XML

The sequence of tokens returned by your stored procedure must be represented as an XML
1.0 document. The XML document must be valid with respect to the XML Schemas given in
the following sections.

e XML Schema for No-Location_ User-defined Indexing Procedure
e XML Schema for User-defined Indexing Procedure with Location

e XML Schema for User-defined Lexer Query Procedure

Limitations

To boost performance of this feature, the XML parser in Oracle Text will not perform validation
and will not be a full-featured XML compliant parser. This implies that only minimal XML
features will be supported. The following XML features are not supported:

e Document Type Declaration (for example, <!DOCTYPE [...]>) and therefore entity
declarations. Only the following built-in entities can be referenced: It, gt, amp, quot, and
apos.

e CDATA sections.

« Comments.

e Processing Instructions.

e XML declaration (for example, <?xml version="1.0" ...?>).
* Namespaces.

e Use of elements and attributes other than those defined by the corresponding XML
Schema.

e Character references (for example ট).
* xml:space attribute.

e xml:lang attribute

2.5.9.8 XML Schema for No-Location, User-defined Indexing Procedure

ORACLE

This section describes additional constraints imposed on the XML document returned by the
user-defined lexer indexing procedure when the third parameter is FALSE. The XML document
returned must be valid with respect to the following XML Schema:

2-69

Chapter 2
Lexer Types

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="xsd:token"/>
<xsd:group ref="IndexCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l--
Enforce constraint that compMem element must be preceded by word element
or compMem element for indexing
-—>
<xsd:group name="IndexCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="xsd:token"/>
<xsd:element name="compMem" type="xsd:token" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<!-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

e The root element is tokens. This is mandatory. It has no attributes.

e The root element can have zero or more child elements. The child elements can be one of
the following elements: eos, eop, num, word, and compMem. Each of these represent a
specific type of token.

e The compMem element must be preceded by a word element or a compMem element.
* The eos and eop elements have no attributes and must be empty elements.

e The num, word, and compMem elements have no attributes. Oracle Text will normalize the
content of these elements as follows: convert whitespace characters to space characters,
collapse adjacent space characters to a single space character, remove leading and
trailing spaces, perform entity reference replacement, and truncate to 255 bytes.

Table 2-34 describes the element names defined in the preceding XML Schema.

Table 2-34 User-defined Lexer Indexing Procedure XML Schema Element Names

. ___|
Element Description

word This element represents a simple word token. The content of the element is the word
itself. Oracle Text does the work of identifying this token as being a stop word or non-
stop word and processing it appropriately.

ORACLE 70

ORACLE

Chapter 2
Lexer Types

Table 2-34 (Cont.) User-defined Lexer Indexing Procedure XML Schema Element

Names

. ___|

Element Description

num This element represents an arithmetic number token. The content of the element is
the arithmetic number itself. Oracle Text treats this token as a stop word if the stoplist
preference has NUMBERS added as the stopclass. Otherwise this token is treated the
same way as the word token.
Supporting this token type is optional. Without support for this token type, adding the
NUMERBS stopclass will have no effect.

eos This element represents end-of-sentence token. Oracle Text uses this information so
that it can support WITHIN SENTENCE queries.
Supporting this token type is optional. Without support for this token type, queries
against the SENTENCE section will not work as expected.

eop This element represents end-of-paragraph token. Oracle Text uses this information so
that it can support WITHIN PARAGRAPH queries.
Supporting this token type is optional. Without support for this token type, queries
against the PARAGRAPH section will not work as expected.

compMem Same as the word element, except that the implicit word offset is the same as the
previous word token.
Support for this token type is optional.

Examples

Document: Vom Nordhauptbahnhof und aus der Innenstadt zum Messegelande.

Tokens:

<tokens>

<word> VOM </word>

<word> NORDHAUPTBAHNHOF </word>
<compMem>NORD</ compMem>
<compMem>HAUPT </compMem>
<compMem>BAHNHOF </compMem>
<compMem>HAUPTBAHNHOF </compMem>
<word> UND </word>

<word> AUS </word>

<word> DER </word>

<word> INNENSTADT </word>
<word> ZUM </word>

<word> MESSEGELANDE </word>

<eos/>
</tokens>

Document: Oracle Database 11g Release 1

Tokens:

<tokens>

<word> ORACLE11G</word>
<word> RELEASE </word>

<num> 1 </num>

</tokens>

Document: WHERE salary<25000.00 AND job = 'F&B Manager'

Tokens:

2-71

Chapter 2
Lexer Types

<tokens>
<word> WHERE </word>
<word> salary<2500.00 </word>
<word> AND </word>
<word> job </word>
<word> F&B </word>
<word> Manager </word>
</tokens>

2.5.9.9 XML Schema for User-defined Indexing Procedure with Location

ORACLE

This section describes additional constraints imposed on the XML document returned by the
user-defined lexer indexing procedure when the third parameter is TRUE. The XML document
returned must be valid according to the following XML schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="eos" type="EmptyTokenType"/>
<xsd:element name="eop" type="EmptyTokenType"/>
<xsd:element name="num" type="DocServiceTokenType"/>
<xsd:group ref="DocServiceCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l--
Enforce constraint that compMem element must be preceeded by word element
or compMem element for document service
-—>
<xsd:group name="DocServiceCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="DocServiceTokenType"/>
<xsd:element name="compMem" type="DocServiceTokenType" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<!-- EmptyTokenType defines an empty element without attributes -->
<xsd:complexType name="EmptyTokenType"/>

<l--
DocServiceTokenType defines an element with content and mandatory attributes
-—>
<xsd:complexType name="DocServiceTokenType">
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="off" type="OffsetType" use="required"/>
<xsd:attribute name="len" type="xsd:unsignedShort" use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="OffsetType">
<xsd:restriction base="xsd:unsignedInt">
<xsd:maxInclusive value="2147483647"/>
</xsd:restriction>
</xsd:simpleType>

2-72

ORACLE

Chapter 2
Lexer Types

</x%sd:schema>

Some of the constraints imposed by this XML Schema are as follows:

e The root element is tokens. This is mandatory. It has no attributes.

e The root element can have zero or more child elements. The child elements can be one of
the following elements: eos, eop, num, word, and compMem. Each of these represent a
specific type of token.

e The compMem element must be preceded by a word element or a compMem element.
* The eos and eop elements have no attributes and must be empty elements.

* The num, word, and compMen elements have two mandatory attributes: off and len. Oracle
Text will normalize the content of these elements as follows: convert whitespace characters
to space characters, collapse adjacent space characters to a single space character,
remove leading and trailing spaces, perform entity reference replacement, and truncate to
255 bytes.

e The off attribute value must be an integer between 0 and 2147483647 inclusive.
e The len attribute value must be an integer between 0 and 65535 inclusive.

Table 2-34 describes the element types defined in the preceding XML Schema.

Table 2-35 describes the attributes defined in the preceding XML Schema.

Table 2-35 User-defined Lexer Indexing Procedure XML Schema Attributes

|
Attribute Description

off This attribute represents the character offset of the token as it appears in the
document being tokenized.

The offset is with respect to the character document passed to the user-defined
lexer indexing procedure, not the document fetched by the datastore. The
document fetched by the datastore may be pre-processed by the filter object or
the section group object, or both, before being passed to the user-defined lexer
indexing procedure.

The offset of the first character in the document being tokenized is 0 (zero).
Offset information follows USC-2 codepoint semantics.

len This attribute represents the character length (same semantics as SQL function
LENGTH) of the token as it appears in the document being tokenized.

The length is with respect to the character document passed to the user-defined
lexer indexing procedure, not the document fetched by the datastore. The
document fetched by the datastore may be pre-processed by the filter object or
the section group object before being passed to the user-defined lexer indexing
procedure.

Length information follows USC-2 codepoint semantics.

Sum of of £ attribute value and 1en attribute value must be less than or equal to the total
number of characters in the document being tokenized. This is to ensure that the document
offset and characters being referenced are within the document boundary.

Example
Document: User-defined Lexer.

Tokens:

2-73

Chapter 2
Lexer Types

<tokens>
<word off="0" len="4"> USE </word>
<word off="5" len="7"> DEF </word>
<word off="13" len="5"> LEX </word>
<eos/>

</tokens>

2.5.9.10 XML Schema for User-defined Lexer Query Procedure

This section describes additional constraints imposed on the XML document returned by the
user-defined lexer query procedure. The XML document returned must be valid with respect to
the following XML Schema:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="tokens">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="num" type="QueryTokenType"/>
<xsd:group ref="QueryCompositeGroup"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<l-=
Enforce constraint that compMem element must be preceeded by word element
or compMem element for query
-->
<xsd:group name="QueryCompositeGroup">
<xsd:sequence>
<xsd:element name="word" type="QueryTokenType"/>
<xsd:element name="compMem" type="QueryTokenType" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

<l--
QueryTokenType defines an element with content and with an optional attribute
-—>
<xsd:complexType name="QueryTokenType">
<xsd:simpleContent>
<xsd:extension base="xsd:token">
<xsd:attribute name="wildcard" type="WildcardType" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="WildcardType">
<xsd:restriction base="WildcardBaseType">
<xsd:minLength value="1"/>
<xsd:maxLength value="64"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="WildcardBaseType">
<xsd:list>
<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">
<xsd:maxInclusive value="378"/>
</xsd:restriction>

ORACLE 2_-74

ORACLE

Chapter 2
Lexer Types

</xsd:simpleType>
</xsd:list>

</xsd:simpleType>

</xsd:schema>

Here are some of the constraints imposed by this XML Schema:

The root element is tokens. This is mandatory. It has no attributes.

The root element can have zero or more child elements. The child elements can be one of
the following elements: num and word. Each of these represent a specific type of token.

The compMem element must be preceded by a word element or a compMen element.

The purpose of compMem is to enable USER LEXER queries to return multiple forms for a
single query. For example, if a user-defined lexer indexes the word bank as

BANK (FINANCIAL) and BANK (RIVER), the query procedure can return the first term as a
word and the second as a compMem element:

<tokens>
<word>BANK (RIVER) </word>
<compMem>BANK (FINANCIAL) </compMem>
</tokens>

See Table 2-36, "Table 2-36" for more on the compMen element.

The num and word elements have a single optional attribute: wildcard. Oracle Text will
normalize the content of these elements as follows: convert whitespace characters to
space characters, collapse adjacent space characters to a single space character, remove
leading and trailing spaces, perform entity reference replacement, and truncate to 255
bytes.

The wildcard attribute value is a white-space separated list of integers. The minimum
number of integers is 1 and the maximum number of integers is 64. The value of the
integers must be between 0 and 378 inclusive. The intriguers in the list can be in any order.

Table 2-34 describes the element types defined in the preceding XML Schema.

Table 2-36 describes the attribute defined in the preceding XML Schema.

Table 2-36 User-defined Lexer Query Procedure XML Schema Attributes
]

Attribute Description

compMem Same as the word element, but its implicit word offset is the same as the previous

word token. Oracle Text will equate this token with the previous word token and with
subsequent compMem tokens using the query EQUIV operator.

wildcard Any % or _ characters in the query which are not escaped by the user are considered

wildcard characters because they are replaced by other characters. These wildcard
characters in the query must be preserved during tokenization in order for the wildcard
query feature to work properly. This attribute represents the character offsets (same
semantics as SQL function LENGTH) of wildcard characters in the content of the
element. Oracle Text will adjust these offsets for any normalization performed on the
content of the element. The characters pointed to by the offsets must either be % or _
characters.

The offset of the first character in the content of the element is 0. Offset information
follows USC-2 codepoint semantics.

If the token does not contain any wildcard characters then this attribute must not be
specified.

2-75

Chapter 2
Lexer Types

Examples
Query word: pseudo-%morph%
Tokens:

<tokens>

<word> PSEUDO </word>

<word wildcard="1 7"> %MORPH% </word>
</tokens>

Query word: <%>
Tokens:

<tokens>
<word wildcard="5"> <%> </word>
</tokens>

2.5.10 WORLD_LEXER

A simple lexer that can index documents in any language or mixed languages. Works with
short strings and long documents. Does not support stemming or other lexer-related attributes.

Use the WORLD LEXER to index text columns that contain documents of different languages. For
example, use this lexer to index a text column that stores English, Japanese, and German
documents.

WORLD_ LEXER differs from MULTI LEXER in that WORLD LEXER automatically detects the
language(s) of a document. Unlike MULTI LEXER, WORLD LEXER does not require you to have a
language column in your base table nor to specify the language column when you create the
index. Moreover, it is not necessary to use sub-lexers, as with MULTI LEXER. (See
"MULTI_LEXER".)

WORLD LEXER supports all database character sets, and for languages whose character sets are
Unicode-based, it supports the Unicode 5.0 standard. For a list of languages that WORLD LEXER
can work with, see "World Lexer Features".

The WORLD LEXER has the following attributes:

Table 2-37 WORLD_LEXER Attributes

]
Attribute Attribute Value

mixed case Enables mixed-case (upper- and lower-case) searches of text (for
example, cat and Cat). Allowable values are YES and NO (default).

printjoins Specify the non alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed as
alphanumeric and included with the token in the Text index. This
includes printjoins that occur consecutively. See Basic Lexer
"printjoins".

skipjoins Specify the non-alphanumeric characters that, when they appear within
a word, identify the word as a single token; however, the characters are
not stored with the token in the Text index. See Basic Lexer "skipjoins".

Rules for PRINTJOIN and SKIPJOIN Characters
Refer to "Rules for PRINTJOIN and SKIPJOIN Characters” in JAPANESE_VGRAM_LEXER.

ORACLE 576

2.6 Wordlist Type

Use the wordlist preference to enable the query options such as stemming, fuzzy matching for
your language. You can also use the wordlist preference to enable substring and prefix
indexing, which improves performance for wildcard queries with CONTAINS and CATSEARCH.

BASIC_WORDLIST
BASIC_WORDLIST Example

2.6.1 BASIC_WORDLIST

Use BASIC WORDLIST type to enable stemming and fuzzy matching or to create prefix indexes
with Text indexes.

Chapter 2
Wordlist Type

WORLD_LEXER Example
The following is an example of creating an index using WORLD LEXER.

exec ctx ddl.create preference('MYLEXER', 'world lexer');
create index doc idx on doc(data)

indextype is CONTEXT
('lexer MYLEXER

stoplist CTXSYS.EMPTY STOPLIST');

To create a wordlist preference, you must use BASIC_WORDLIST, which is the only type

Table 2-38 BASIC_WORDLIST Attributes

Attribute Attribute Values
stemmer Specify which language stemmer to use. You can specify one of the
following stemmers:
NULL (no stemming)
ENGLISH (English inflectional)
DERIVATIONAL (English derivational)
DUTCH
FRENCH
GERMAN
ITALIAN
SPANISH
AUTO (Automatic language-detection for stemming, derived from the
database session language. If the database session language is
AMERICAN or ENGLISH, then the ENGLISH stemmer is used. Does not
auto-detect JAPANESE.)
JAPANESE
ORACLE

2-77

Chapter 2
Wordlist Type

Table 2-38 (Cont.) BASIC_WORDLIST Attributes
__|

Attribute

Attribute Values

fuzzy match

fuzzy score
fuzzy numresults

substring index

prefix index

prefix min length
prefix max length

wildcard maxterms

ndata base letter

ndata alternate spelling

ndata thesaurus

ndata join particles

ORACLE

Specify which fuzzy matching cluster to use. You can specify one of the
following types:

AUTO (Automatic language detection for stemming)
CHINESE_VGRAM
DUTCH

ENGLISH

FRENCH

GENERIC

GERMAN

ITALIAN
JAPANESE_VGRAM
KOREAN

OCR

SPANISH

Specify a default lower limit of fuzzy score. Specify a number between 1
and 80. Text with scores below this number is not returned. Default is 60.

Specify the maximum number of fuzzy expansions. Use a number between
0 and 5,000. Default is 100.

Specify TRUE for Oracle Text to create a substring index. A substring index
improves left-truncated and double-truncated wildcard queries such as
%ing or %benz%. Default is FALSE.

Specify TRUE to enable prefix indexing. Prefix indexing improves
performance for right truncated wildcard searches such as TO%. Default is
FALSE.

Specify the minimum length of indexed prefixes. Default is 1. Length
information must follow USC-2 codepoint semantics.

Specify the maximum length of indexed prefixes. Default is 64. Length
information must follow USC-2 codepoint semantics.

Specify the maximum number of terms in a wildcard expansion. The
maximum value is 50000 and the default value is 20000. If you specify a
value of 0, then the number of wildcard expansions will be unbounded. Note
that when set to 0, the system may run out of memory due to the high
number of wildcard expansions.

Specify whether characters that have diacritical marks are converted to
their base form before being stored in the Text index or queried by the
NDATA operator.

FALSE (default) or TRUE
When set to FALSE, no base lettering is used.

Specify whether to enable alternate spelling for German, Danish, and
Swedish. Enabling alternate spelling allows you to index NDATA section data
and query using the NDATA operator in alternate form.

FALSE (default) or TRUE
When set to FALSE, no alternate spelling is used.

Name of the thesaurus used for alternate name expansion.

A list of colon-separated name particles that can be joined with a name that
follows them.

2-78

Chapter 2
Wordlist Type

Table 2-38 (Cont.) BASIC_WORDLIST Attributes
__|

Attribute

Attribute Values

reverse index

wildcard index

Specify whether to enable the creation of another index on $T to provide
better performance for left truncated queries. These are queries where one
or more tokens have a leading wildcard and no trailing wildcard, for
example, the %racle %atabase.

When set to TRUE, it creates a new index $V on $I on reverse
(token_ text). Default is FALSE.

Specify TRUE to enable wildcard indexing. Wildcard indexing supports fast
and efficient wildcard search for all wildcard expressions. The default value
is FALSE.

wildcard index k Specify the size of grams for the K-gram index. The value can range

between 2 and 5 and the default value is 3.

ORACLE

stemmer

Specify the stemmer used for word stemming in Text queries. When you do not specify a
value for STEMMER, the default is ENGLISH.

Specify AUTO for the system to automatically set the stemming language according to the
language setting of the database session. If the database language is AMERICAN or ENGLISH,
then the ENGLISH stemmer is automatically used. Otherwise, the stemmer that maps to the
database session language is used.

When there is no stemmer for a language, the default is NULL. With the NULL stemmer, the
stem operator is ignored in queries.

You can create your own stemming user-dictionary. See "Stemming User-Dictionaries" for
more information.

Note:
The STEMMER attribute of BASIC WORDLIST preference will be ignored if:

1. INDEX STEMS attribute of BASIC LEXER preference is set to BOKMAL, CATALAN,
CROATIAN, CZECH, DANISH, FINNISH, GREEK, HEBREW, HUNGARIAN, NYNORSK, POLISH,
PORTUGUESE, ROMANIAN, RUSSIAN, SERBIAN, SLOVAK, SLOVENIAN, SWEDISH,
ENGLISH NEW, DERIVATIONAL NEW, DUTCH NEW, FRENCH NEW, GERMAN NEW,
ITALIAN NEW, Or SPANISH NEW.

Or
2. INDEX STEMS attribute of AUTO LEXER preference is set to YES.
Or

3. The database session language causes MULTI LEXER to choose a SUB_LEXER
with the same setting as 1 or 2 above.

In these cases, the same stemmer that is used by the BASIC LEXER Or AUTO LEXER
during indexing will be used to determine the stem of the query term during query.

fuzzy_match
Specify which fuzzy matching routines are used for the column. Fuzzy matching is currently
supported for English, Japanese, and, to a lesser extent, the Western European languages.

2-79

Chapter 2
Wordlist Type

Note:

The fuzzy match attributes value for Chinese and Korean are dummy attribute
values that prevent the English and Japanese fuzzy matching routines from being
used on Chinese and Korean text.

The default for fuzzy match iS GENERIC.
Specify AUTO for the system to automatically set the fuzzy matching language according to
language setting of the session.

fuzzy_score

Specify a default lower limit of fuzzy score. Specify a number between 1 and 80. Text with
scores below this number are not returned. The default is 60.

Fuzzy score is a measure of how close the expanded word is to the query word. The higher
the score the better the match. Use this parameter to limit fuzzy expansions to the best
matches.

fuzzy_numresults

Specify the maximum number of fuzzy expansions. Use a number between 0 and 5000. The
default is 100.

Setting a fuzzy expansion limits the expansion to a specified number of the best matching
words.

substring_index

Specify TRUE for Oracle Text to create a substring index. A substring index improves
performance for left-truncated or double-truncated wildcard queries such as %ing or %benz%.
The default is false.

Limitations of substring index:

Oracle recommends using the wildcard index attribute over substring index. See
wildcard_index. Substring indexing has the following impact on indexing and disk resources:

e Index creation and DML processing is up to 4 times slower.

* Index creation with substring index enabled requires more rollback segments during
index flushes than with substring index off. Do either of the following when creating a
substring index:

— Make available double the usual rollback.
— Decrease the index memory to reduce the size of the index flushes to disk.
prefix_index

Specify yes to enable prefix indexing. Prefix indexing improves performance for right truncated
wildcard searches such as TO%. Default is NO.

Note:

Enabling prefix indexing increases index size.

Prefix indexing chops up tokens into multiple prefixes to store in the $I table. For example,
words TOKEN and TOY are normally indexed as follows in the $I table:

ORACLE 580

Chapter 2
Wordlist Type

Token Type Information
TOKEN 0 DOCID1POS 1
TOY 0 DOCID 1 POS 3

With prefix indexing, Oracle Text indexes the prefix substrings of these tokens as follows with
a new token type of 6:

Token Type Information

TOKEN 0 DOCID 1 POS 1

TOY 0 DOCID 1 POS 3

T 6 DOCID 1 POS 1 POS 3
TO 6 DOCID 1 POS 1 POS 3
TOK 6 DOCID 1 POS 1

TOKE 6 DOCID1POS 1
TOKEN 6 DOCID 1 POS 1

TOY 6 DOCID 1 POS 3

Wildcard searches such as T0% are now faster because Oracle Text does no expansion of
terms and merging of result sets. To obtain the result, Oracle Text need only examine the
(TO,6) row.

prefix_min_length

Specify the minimum length of indexed prefixes. Default is 1.

For example, setting prefix min length to 3 and prefix max length to 5 indexes all
prefixes between 3 and 5 characters long.

< Note:

A wildcard search whose pattern is below the minimum length or above the
maximum length is searched using the slower method of equivalence expansion and
merging.

prefix_max_length

Specify the maximum length of indexed prefixes. Default is 64.

For example, setting prefix min length to 3 and prefix max length to 5 indexes all
prefixes between 3 and 5 characters long.

¢ Note:

A wildcard search whose pattern is below the minimum length or above the
maximum length is searched using the slower method of equivalence expansion and
merging.

ORACLE 581

ORACLE

Chapter 2
Wordlist Type

wildcard_maxterms

Specify the maximum number of terms in a wildcard (%) expansion. Use this parameter to
keep wildcard query performance within an acceptable limit. When the wildcard query
expansion exceeds this number, Oracle Text returns the following error:

ORA-29902: error in executing ODCIIndexStart() routine
ORA-20000: Oracle Text error:
DRG-51030: wildcard query expansion resulted in too many terms

In such cases, use a more restrictive query so that it results in fewer matches or increase the
value of wildcard maxterms. You can also set wildcard maxterms to O to ignore the limit.

¢ Note:
If the value of wildcard maxterms is set as O, the query might fail and returns the

above error again if too many terms are matched by the wildcard search term.

You can also capture the above error and display your own less terse message.

Note:

Search terms with wildcard queries having only the wildcard character, for example:
%, % %, and %_, are threaded as stopwords.

Note:

wildcard maxterms is independent of the new WILDCARD INDEX option.
wildcard maxterms can be set even if WILDCARD INDEX is not used.

ndata_base_letter

Specify whether characters that have diacritical marks (umlauts, cedillas, acute accents, and
S0 on) are converted to their base form before being stored in the Text index or queried by the
NDATA operator. The default is FALSE (base-letter conversion disabled). For more information
on base-letter conversions, see "Base-Letter Conversion".

ndata_alternate_spelling

Specify whether to enable alternate spelling for German, Danish, and Swedish. Enabling
alternate spelling allows you to index NDATA section data and query using the NDATA operator
in alternate form.

When ndata base letter is enabled at the same time as ndata alternate spelling, NDATA
section data is serially transformed first by alternate spelling and then by base lettering. For
more information about the alternate spelling conventions Oracle Text uses, see "Alternate
Spelling".

ndata_thesaurus

Specify a name of the thesaurus used for alternate name expansion. The indexing engine
expands names in documents using synonym rings in the thesaurus. A user should make use
of homographic disambiguating feature of the thesaurus to distinguish common nicknames.
An example is:

2-82

ORACLE

Chapter 2
Wordlist Type

Albert
SYN Al
SYN Bert
Alfred
SYN Al
SYN Fred

A simple definition such as the above will put Albert, Alfred, Al, Bert, and Fred into the same
synonym ring. This will cause an unexpected expansion such that the expansion of Bert
includes Fred. To prevent this, you can use homographic disambiguation as in:

Albert
SYN Al (Albert)
SYN Bert (Albert)
Alfred
SYN Al (Alfred)
SYN Fred (Alfred)

This forms two synonym rings, Albert-Al-Bert and Alfred-Al-Fred. Thus, the expansion of Bert
no longer includes Fred. A more detailed example is:

begin
ctx ddl.create preference ('NDAT PREF', 'BASIC WORDLIST');
ctx_ddl.set_attribute ('NDATA PREF', 'NDATA ALTERNATE SPELLING', 'FALSE');
ctx_ddl.set_attribute ('NDATA PREF', 'NDATA BASE LETTER', 'TRUE');
ctx_ddl.set_attribute ('NDATA PREF', 'NDATA THESAURUS', 'NICKNAMES');

end;

Note:

A sample thesaurus for names can be found in the $ORACLE _HOME/ctx/sample/thes
directory. This file is drOthsnames. txt.

ndata_join_particles

Specify a list of colon-separated name particles that can be joined with a hame that follows
them. A name particle, such as da, is written separately from or joined with its following name
like da Vinci or daVinci. The indexing engine generates index data for both separated and join
versions of a name when it finds a name particle specified in this preference. The same
happens in the query processing for better recall.

reverse_index

Reverse index allows for fast searches on left-truncated search terms.

Indexed words are stored in the token table ($1) which has an index ($x) on it. Normally, if a
search term such as “%xxx” is used in a query, the $x index cannot be used. So, a full table
scan of the $1 table is necessary, which can lead to poor search performance.

Setting REVERSE _INDEX to TRUE creates an extra index ($V) on a reverse form of the tokens.
This allows for indexed lookups for left-truncated terms, leading to much better query
performance for such terms.

REVERSE INDEX speeds up searching of tokens with leading wildcards such as the second
word in the search "oracle %base". If the token has both leading and trailing wildcards such as
"oracle %bas%" this attribute will not help and the SUBSTRING INDEX option should be used
instead.

Specify the attribute as a part of the wordlist preference and set it to TRUE or FALSE. Default is
FALSE. Set this attribute using CTX DDL.SET ATTRIBUTE procedure or using ALTER INDEX
REBUILD statement as used in any wordlist preference.

Syntax

2-83

ORACLE

Chapter 2
Wordlist Type

ctx ddl.set attribute(worlist pref name, 'REVERSE INDEX', BOOLEAN);

worlist_pref_name
Specify the first argument as the wordlist preference name.

REVERSE_INDEX
Specify the wordlist preference name as REVERSE_INDEX.

BOOLEAN
The attribute can be set to TRUE or FALSE. By default, the value is FALSE.

The following example creates a wordlist preference and sets REVERSE INDEX t0 TRUE :

exec ctx ddl.create preference(‘wrdlst’, ‘BASIC WORDLIST');
exec ctx ddl.set attribute(‘wrdlst’, ‘REVERSE INDEX’, ‘TRUE’);

The following traces are added for the Reverse Index $v which can be used to track timing
and usage of this index at query time.

Trace ID Trace Name Description

37 TRACE_QRY_VV_TIME Time spent in executing
the $V cursor

38 TRACE_QRY_VF_TIME Time spent in fetching rows
from $V

39 TRACE_QRY_V_ROWS Number of rows with $V

fetched metadata

wildcard_index

Wildcard indexing supports fast and efficient wildcard search for all wildcard expressions. It is
set using CTX DDL.SET ATTRIBUTE procedure.

Setting the WILDCARD INDEX to TRUE enables wildcard indexing.

Syntax

ctx_ddl.set_attribute (<wordlist pref name>, 'WILDCARD INDEX', BOOLEAN);

wordlist_pref_name
Specify the first argument as the wordlist preference name.

WILDCARD_INDEX
Specify the wordlist preference name as WILDCARD INDEX.

BOOLEAN
The attribute can be set to TRUE or FALSE.

The following example creates a wordlist preference and sets WILDCARD INDEX t0 TRUE:

begin
ctx_ddl.create_preference('mywordlist','BASIC_WORDLIST’);
ctx ddl.set attribute('mywordlist', 'WILDCARD INDEX','TRUE');
end;

Optimization of Wildcard Index
WILDCARD INDEX can be optimized either as part of full optimize or as part of section type

optimize.
The following two examples are ways of optimizing a wildcard index:

2-84

Chapter 2
Wordlist Type

begin
ctx ddl.optimize index('idx','FULL');
end;

begin

ctx ddl.optimize index('idx', 'TOKEN TYPE',6section type=>CTX DDL.SECTION WILDCARD INDEX) ;
end;

Note:

Wildcard indexing is supported for languages which only use single-byte characters.

wildcard_index_k

The WILDCARD INDEX uses a technology known as K-grams (fixed-length substring particles).
WILDCARD INDEX K defines the size of these grams (K). The value can range between 2 and 5.
The default value is 3. Set this attribute using CTX DDL.SET ATTRIBUTE procedure or using
ALTER INDEX REBUILD statement as used in any wordlist preference.

Note:

WILDCARD INDEX must be setto TRUE before setting WILDCARD INDEX K.

The following are some considerations before changing the value of K from the default value
of 3:

* Query terms that are shorter than the value of K cannot be retrieved using K-gram
indexing.

» Decreasing the value of K increases the storage requirements and increasing the value of
K decreases the storage requirements.

* Wildcard query terms must have at least K consecutive non-wildcard characters to use K-
gram indexing. For example, if K value is 3, queries like “%abc%” or “%abcd%” can use K-
gram indexing. For the same K value, queries like “%ab%” cannot use K-gram indexing.

e Wildcard query terms having at least K-1 consecutive non-wildcard characters at the
beginning or end of the query term, can use K-gram indexing. For example, if K value is 3,
queries like “ab%” and “%ab” can use k-gram indexing.

The following example creates a wordlist preference and enables K-gram indexing with a K
value of 4:

begin
ctx ddl.create preference('mywordlist', 'BASIC WORDLIST');
ctx ddl.set attribute('mywordlist', 'WILDCARD INDEX','TRUE');
ctx ddl.set attribute('mywordlist', 'WILDCARD INDEX K',64);
end;

2.6.2 BASIC_WORDLIST Example

ORACLE

The following example shows the use of the BASIC WORDLIST type.

e Enabling Fuzzy Matching and Stemming
* Enabling Sub-string and Prefix Indexing

2-85

Chapter 2
Wordlist Type

e Setting Wildcard Expansion Limit

2.6.2.1 Enabling Fuzzy Matching and Stemming

The following example enables stemming and fuzzy matching for English. The preference
STEM FUZZY PREF sets the number of expansions to the maximum allowed. This preference
also instructs the system to create a substring index to improve the performance of double-
truncated searches.

begin
ctx ddl.create preference('STEM FUZZY PREF', 'BASIC WORDLIST');
ctx ddl.set attribute('STEM FUZZY PREF','FUZZY MATCH', 'ENGLISH');
ctx ddl.set attribute('STEM FUZZY PREF','FUZZY SCORE','l');
ctx ddl.set attribute('STEM FUZZY PREF','FUZZY NUMRESULTS', '5000');
ctx_ddl.set attribute('STEM FUZZY PREF','SUBSTRING INDEX', 'TRUE');
ctx ddl.set attribute('STEM FUZZY PREF','STEMMER', 'ENGLISH');

end;

To create the index in SQL, enter the following statement:

create index fuzzy stem subst idx on mytable (docs
indextype is ctxsys.context parameters ('Wordlist STEM FUZZY PREF');

2.6.2.2 Enabling Sub-string and Prefix Indexing

The following example sets the wordlist preference for prefix and sub-string indexing. For prefix
indexing, it specifies that Oracle Text create token prefixes between 3 and 4 characters long:

begin

ctxfddl.createipreference('mywordlist', 'BASIC WORDLIST');
ctx ddl.set attribute('mywordlist', 'PREFIX INDEX', 'TRUE');
ctx ddl.set attribute('mywordlist', 'PREFIX MIN LENGTH',3);
ctx ddl.set attribute('mywordlist', 'PREFIX MAX LENGTH', 4)

ctx ddl.set attribute('mywordlist', 'SUBSTRING INDEX', 'YES');

’

end;

2.6.2.3 Setting Wildcard Expansion Limit

ORACLE

Use the wildcard_maxterms attribute to set the maximum allowed terms in a wildcard
expansion.

--- create a sample table
drop table quick ;
create table quick
(
quick id number primary key,
text varchar (80)

)i

--- insert a row with 10 expansions for 'tire%'
insert into quick (quick id, text)

values (1, 'tire tirea tireb tirec tired tiree tiref tireg tireh tirei tirej');
commit;

--- create an index using wildcard maxterms=100
begin
Ctx_Ddl.Create Preference('wildcard pref', 'BASIC WORDLIST');
ctx ddl.set attribute('wildcard pref', 'wildcard maxterms', 100) ;

2-86

Chapter 2
Storage Types

end;

/

create index wildcard idx on quick(text)
indextype is ctxsys.context
parameters ('Wordlist wildcard pref') ;

--- query on 'tire%' - should work fine
select quick id from quick
where contains (text, 'tire%') > 0;

--- now re-create the index with wildcard maxterms=5
drop index wildcard idx ;

begin
Ctx_Ddl.Drop_Preference('wildcard_pref');
Ctx Ddl.Create Preference('wildcard pref', 'BASIC WORDLIST');
ctx ddl.set attribute('wildcard pref', 'wildcard maxterms', 5) ;
end;

/

create index wildcard idx on quick(text)
indextype is ctxsys.context
parameters ('Wordlist wildcard pref') ;

--- query on 'tire%' gives "wildcard query expansion resulted in too many terms"
select quick id from quick
where contains (text, 'tire%') > 0;

2.7 Storage Types

Use the storage preference to specify tablespace and creation parameters for tables
associated with a Text index. The system provides a single storage type called BASIC STORAGE:

Table 2-39 Storage Types

___|]
Type Description

BASIC_STORAGE Indexing type used to specify the tablespace and creation parameters
for the database tables and indexes that constitute a Text index.

2.71.1 BASIC_STORAGE

ORACLE

The BASIC STORAGE indexing type specifies the tablespace and creation parameters for the
database tables and indexes that constitute a Text index.

The clause you specify is added to the internal CREATE TABLE (CREATE INDEX for the

i index clause) statement at index creation. You can specify most allowable clauses, such as
storage, LOB storage, or partitioning. However, you cannot specify an index organized table
clause.

You can store Text index tables in the In-Memory Column Store (IM column store) by
specifying inmemory in the storage clause for that table. IM column store is supported for the
types of tables represented by the following storage attributes: I TABLE CLAUSE,

R _TABLE CLAUSE, G TABLE CLAUSE, O TABLE CLAUSE, D TABLE CLAUSE, SN TABLE CLAUSE, and
E_TABLE CLAUSE.

2-87

¢ See Also:

Chapter 2
Storage Types

This section contains the following topics.
BASIC_STORAGE Attributes
BASIC_STORAGE Default Behavior
BASIC_STORAGE Examples

Oracle Database SQL Language Reference for more information about how to
specify CREATE INDEX statement

Oracle Database SQL Language Reference for more information about how to
specify CREATE TABLE statement

2.7.1.1 BASIC_STORAGE Attributes

The BASIC STORAGE indexing type supports these attributes for database tables and indexes.

For search indexes, user-specific partitioning clauses are not supported with all the table and
index clauses because these indexes use system-managed partitioning.

Table 2-40 BASIC_STORAGE Attributes

Attribute

Attribute Value

big io

ORACLE

Parameter clause to improve the query performance for the CONTEXT index that is
extensively used for 10 operations. It uses SECUREFILES, and hence the
tablespace must use automatic segment space management (ASSM). This clause
mainly improves the query performance for rotational disks, where seeks are
expensive compared to serial reads. Creating an index with the BIG_I0 index
option requires the CREATE TRIGGER privilege, as a temporary trigger is created
during the indexing process.

There is not much of a query performance improvement when the data storage is
on solid state disks.

Set it to YES to enable the BIG IO index option for the CONTEXT index. The default
is NO.

Note: CREATE INDEX with BIG IO storage preference is not supported in Oracle
Autonomous Data Warehouse Cloud with Oracle Database release 18c, version
18.3 artifacts unless you grant the privilege to create a trigger to the user. You
must also disable parallel DML either at the session or system level. Run the
following SQL statements to grant the privilege to create a trigger and disable
parallel DML:

grant create trigger to user;
alter session disable parallel dml;

2-88

Chapter 2
Storage Types

Table 2-40 (Cont.) BASIC_STORAGE Attributes

|
Attribute Attribute Value

d table clause Parameter clause to specify the storage clause for the $D table.
This clause may be specified if the forward index feature is being used. The
forward index feature is used to increase the query performance while calculating
shippets.
Ifthe d table clause is manually set, then it is recommended that you choose
SecureFiles with high compression for the document blob column doc of the $D
table. If the d table clause is not set, then the document blob uses
SecureFiles by default, if the index owner's default tablespace is ASSM and the
database compatible parameter is 11.0 or higher.
The $D table is created to save a copy of a document into the index by either
specifying a save _copy column or by specifying the save copy storage attribute.

e table clause Parameter clause for dr$indexname$E table creation. Used to specify the storage
and tablespace clauses to add to the end of the internal CREATE TABLE
statement.

forward index Parameter clause to improve the performance of the following CTX DOC package
procedures:

e ctx doc.snippet

e ctx doc.highlight

° ctx doc.markup

Set it to TRUE to enable the forward index feature. This creates the $O table.
The $0 table stores the mapping information from the token offsets in the $I table
to character offsets in the indexed documents.

The default is FALSE.

g_index clause Parameter clause for the $H btree index on the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE INDEX statement.

When a CONTEXT index is created with the STAGE_ITAB index option, an

empty $G table is created with the $H btree index on it. Use the g_index clause
clause in conjunction with the STAGE_ITAB index option for improving the query
performance for the CONTEXT index that is extensively used for DML operations.

g _table clause Parameter clause for the $G table.

Specify the storage and tablespace clauses to add to the end of the internal
CREATE TABLE statement.

When a CONTEXT index is created with the STAGE_ITAB index option, an

empty $G table is created with the $H btree index on it. Use the g_table clause
clause in conjunction with the STAGE_ITAB index option for improving the query
performance for the CONTEXT index that is extensively used for DML operations.

i index clause Parameter clause for dr$indexname$X index creation. Specify storage and
B B tablespace clauses to add to the end of the internal CREATE INDEX statement.
The default clause is: 'COMPRESS 2', which instructs Oracle Text to compress
this index table.
If you choose to override the default, Oracle recommends including COMPRESS 2
in your parameter clause to compress this table, because such compression
saves disk space and helps query performance.

i rowid index clause Parameter clause to specify the storage clause for the $R index on dr$rowid
column of the $I table. Specify storage and tablespace clauses to add to the end
of the internal CREATE INDEX statement.

This clause is only used by the CTXCAT index type.

ORACLE 589

Chapter 2
Storage Types

Table 2-40 (Cont.) BASIC_STORAGE Attributes

|
Attribute Attribute Value

i table clause Parameter clause for dr$indexname$l table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE Statement.

The | table is the index data table.

Note: Oracle strongly recommends that you do not specify "disable storage in
row" for $I LOBs, as this greatly degrades the query performance.

k table clause Parameter clause for dr$indexname$K table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The K table is the keymap table.

kd index clause Parameter clause for $KD table creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE TABLE statement.

The $KD table is a btree index on top of the $K table. It facilitates a quick docid-to-
rowid (KD) mapping. Docids are used internally by Oracle Text, and ROWIDs are
used by the database.

kr index clause Parameter clause for $KR table creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE TABLE statement.

Similar to the $KD table, the $KR table is a btree index on top of the $K table. It
facilitates a quick rowid-to-docid mapping (KR) mapping. Docids are used
internally by Oracle Text and ROWIDs are used by the database.

kg table clause Parameter clause for $KG table creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE TABLE statement.

The KG table stores the k-gram index to facilitate efficient wildcard search.

kg index clause Parameter clause for $KGI index creation. Specify storage and tablespace clauses
to add to the end of the internal CREATE INDEX statement.

n_table clause Parameter clause for dr$indexname$N table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The N table is the negative list table.

o_table clause Parameter clause to specify the storage clause for the $0O table.
This clause may be specified if the forward index feature is being used. The
forward index feature is used to increase the query performance while calculating
snippets.
If the o_table clause is manually set, then it is recommended that you choose
SecureFiles with high compression for the document blob column mapping of
the $O table. If the o table clause is not set, then the document blob uses
SecureFiles by default, if the index owner's default tablespace is ASSM and the
database compatible parameter is 11.0 or higher.
The $0 table is created when the forward index feature is enabled by specifying
the forward index storage attribute. The $O table stores the mapping
information from the token offsets in the $I table to character offsets in the indexed
documents.

p_table clause Parameter clause for the substring index if you have enabled SUBSTRING INDEX
in the BASIC_WORDLIST.

Specify storage and tablespace clauses to add to the end of the internal CREATE
INDEX statement. The P table is an index-organized table so the storage clause
you specify must be appropriate to this type of table.

ORACLE 590

Chapter 2
Storage Types

Table 2-40 (Cont.) BASIC_STORAGE Attributes

|
Attribute Attribute Value

query filter cache size Parameter clause to specify the maximum size of the query filter cache in bytes.
The query filter cache is allocated out of the shared pool, so its maximum size
must be smaller than the shared pool size. When this storage preference is set at
the partition level, it is implicitly set at the index level.

The default is 0.

r table clause Parameter clause for dr$indexname$R table creation. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE statement.

The $R table is the rowid table.
The default clause is: 'LOB (DATA) STORE AS (CACHE)'
If you modify this attribute, always include this clause for good performance.

Note: When you set the COMPATIBLE database parameter to 18.1 or higher, all
Oracle Text indexes are created using the default FAST DML option, that is, the
indexes will not have the $R mapping table.

s_table clause Parameter clause for dr$indexnames$s table creation*. Specify storage and
tablespace clauses to add to the end of the internal CREATE TABLE Statement.
The default clause is nocompress.

* For performance reasons, $S table must be created on a tablespace with db
block size >= 4K without overflow segment and without a PCTTHRESHOLD clause.
If $S is created on a tablespace with db block size < 4K, or is created with an
overflow segment or with PCTTHRESHOLD clause, then appropriate errors will be
raised during CREATE INDEX.

The S table is the table that stores SDATA section values.

If this clause is specified for a storage preference in an index without SDATA, then
it will have no effect on the index, and index creation will still succeed.

save_copy Parameter clause to specify saving the document to the $D index table.

Specify this clause to use the forward index feature for increasing the query
performance while calculating snippets.

Set it to PLAINTEXT to save the copy of a document in the $D table in the plaintext
format. This improves the performance of snippet generation, since it does not
invoke the datastore or filter to fetch the text. This also improves the performance
of highlight.

Set it to FILTERED to save the copy of a document in the $D table in the filtered
(HTML) format. This improves the performance of highlight and markup, but
requires more disk space than plaintext format. It is less efficient for snippets
generation, since the HTML markup must be removed during the creation of
snippets.

The default is NONE, and the copy of a document is not saved in the $D table.

ORACLE 501

Chapter 2
Storage Types

Table 2-40 (Cont.) BASIC_STORAGE Attributes
__|

Attribute

Attribute Value

save copy max size

separate offsets

single byte

small r row

sn_table clause

sn_index clause

sd table clause

sd_index clause

sv_table clause

sv_index clause

sr table clause

sr_index clause

ORACLE

Parameter clause to specify the maximum size of a document to save in the $D
table using a basic_storage attribute.

If the document size is greater than the size specified in this attribute, the
truncated version of the document having the size specified in this attribute is
saved in the $D table.

If the $D table is using SecureFiles with compression for the document blob, then
the save copy max_size restriction is applied on the document size before
compression.

The default is 0, and the whole document is saved in the $D table irrespective of
its size.

Note: The save copy max_size parameter clause is effective only when the
save_copy parameter clause is specified.

Parameter clause to improve the query performance for the CONTEXT index that is
extensively used for IO operations, and whose queries are mainly single-word or
boolean queries.

Setitto T to enable the SEPARATE OFFSETS index option for the CONTEXT index.
The default is F.

Storage option for better performance if all the indexed data that is known in
advance is single-byte.

When set to TRUE, all the data is treated as a single-byte (8-bit) data and the
character set is irrelevant during indexing and querying. Ensure that no character
in the data set crosses the single-byte (8-bit) limit. The default is FALSE.

Storage attribute to reduce the size of $R row. It improves DML and query
performance during parallel DML and query workload. It reduces lock contention
during DMLs, thus improving the DML performance.

Parameter clause for dr$indexname$SN table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)'.

Parameter clause for dr$indexname$SNI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for dr$indexnames$SD table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)’.

Parameter clause for drSindexname$SDI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for dr$indexname$ SV table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)'.

Parameter clause for dr$indexname$SVI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for dr$indexnames$ SR table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)’.

Parameter clause for drSindexname$SRI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

2-92

Chapter 2
Storage Types

Table 2-40 (Cont.) BASIC_STORAGE Attributes

Attribute

Attribute Value

sbd table clause

sbd _index clause

sbf table clause

sbf index clause

st table clause

st _index clause

stz _table clause

stz _index clause

sids_table clause

sids_index clause

siym table clause

siym index clause

stage itab

ORACLE

Parameter clause for dr$indexname$SBD table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)’.

Parameter clause for drSindexname$SBDI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for drSindexnames$ SBF table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)'.

Parameter clause for dr$indexname$SBF1I table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for dr$indexnames$ST table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)’.

Parameter clause for drSindexname$ST1I table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for drSindexname$STZ table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)'.

Parameter clause for dr$indexname$STZI table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE INDEX statement.

Parameter clause for dr$indexname$SIDS table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: *LOB (VAL INFO) STORE AS (CACHE)’.

Parameter clause for dr$indexname$SIDSTI table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

Parameter clause for dr$indexname$SIYM table creation. Specify the storage and
tablespace clauses to add at the end of the internal CREATE TABLE statement.
The default clause is: ‘LOB (VAL INFO) STORE AS (CACHE)'.

Parameter clause for drSindexname$SIYMI table creation. Specify the storage
and tablespace clauses to add at the end of the internal CREATE INDEX
statement.

Switch to improve the query performance for the CONTEXT index that is extensively
used for DML operations.

When the STAGE ITAB index option is disabled, then when a new document is
added to the index, SYNC INDEX is called to make the documents searchable.
This creates new rows in the $I table, thus increasing the fragmentation in the $I
table. This leads to the deterioration of the query performance.

When the STAGE ITAB index option is enabled, the information about the new
documents is stored in the $G staging table, and not in the $I table. This ensures
that the $I table does not get fragmented, and thus does not deteriorate the query
performance.

When the STAGE ITAB index option is enabled, the $H btree index is also created
on the $G table. The $G table and $H btree index are equivalent to the $I table
and $X btree index.

Set stage itab to YES to enable the STAGE ITAB index option for the CONTEXT
index. The default is NO.

2-93

Chapter 2
Storage Types

Table 2-40 (Cont.) BASIC_STORAGE Attributes
__|

Attribute

Attribute Value

stage itab auto opt

stage itab max rows

stage itab parallel

u table clause

New storage option to enable automatic background optimize merge.
stage itab and stage itab auto opt must be setto TRUE to enable
automatic background optimize merge.

Setting stage itab auto opt to TRUE is not supported when
stage itab max rows is setto 0 as the zero value disables row movement from
the $G table to the $I table.

Storage option to ensure that the $G (stage itab) table fits into the KEEP pool
and also that the $G table does not get filled up too frequently. This option is also
required to ensure that $G does not grow too big and start slowing down the
query and the index synchronization performance.

When the number of rows in the $G table exceeds this setting, a process is
started to move all data from the $G table to the $I table, optimizing the data as it
is moved. Note that this may cause certain SYNC operations or commits if
SYNC(ON COMMIT) is used to take an unexpectedly long time because they may
be moving many $G rows which have been inserted by other processes. If this is
unacceptable, set stage _itab max rows to 0 and use an auto optimization job
instead.

When scheduling an auto optimization job, set stage itab max rowsto0to
disable the automatic merging that now happens through sync index.

If stage_itab max rows is not set to 0 and an attempt is made to schedule an
auto optimization job, then an error occurs.

You can set stage_itab max rows to either O or any value greater than or equal

to 1000. The default value is 1 million. Oracle recommends a value of 100K to 1
million for optimal merge performance during sync index.

With stage itab, when queries are run during heavy DML operations, Oracle
Database can issue the following error: ORA-08176 consistent read
failure; rollback data not available. In such cases, increase the size
of the UNDO tablespace and the UNDO RETENTION initialization parameter.

New storage option controls the degree of parallelism used to merge rows from
the stage itab ($G table) back to the $I table when the
stage itab max_ rows limitis hit.

The default value is 16 for the degree of parallelism.

Specify the storage and tablespace clauses to add at the end of the internal
CREATE TABLE statement. The $U table keeps track of concurrent updates.

2.7.1.2 BASIC_STORAGE Default Behavior

By default, BASIC STORAGE attributes are not set. In such cases, the Text index tables are
created in the index owner's default tablespace. Consider the following statement, entered by
user IUSER, with no BASIC STORAGE attributes set:

create index IOWNER.idx on TOWNER.tab (b) indextype is ctxsys.context;

In this example, the text index is created in TOWNER's default tablespace.

2.7.1.3 BASIC_STORAGE Examples

The following examples specify that the index tables are to be created in the foo tablespace
with an initial extent of 1K:

ORACLE

2-94

ORACLE

Chapter 2
Storage Types

begin
ctx ddl.create preference('mystore', 'BASIC STORAGE');
ctx ddl.set attribute('mystore', 'I TABLE CLAUSE',

'tablespace foo storage (initial 1K)');
ctx ddl.set attribute('mystore', 'K TABLE CLAUSE',

'tablespace foo storage (initial 1K)');
ctx ddl.set attribute('mystore', 'R TABLE CLAUSE',

'tablespace users storage (initial 1K) lob

(data) store as (disable storage in row cache)');

ctx ddl.set attribute('mystore', 'N TABLE CLAUSE',

'tablespace foo storage (initial 1K)');
ctx ddl.set attribute('mystore', 'I INDEX CLAUSE',

'tablespace foo storage (initial 1K) compress 2');
ctx ddl.set attribute('mystore', 'P_TABLE CLAUSE',

'tablespace foo storage (initial 1K)');
ctx ddl.set attribute('mystore', 'S TABLE CLAUSE',

'tablespace foo storage (initial 1K)');
ctx ddl.set attribute('mystore', 'U TABLE CLAUSE',

'tablespace foo storage (initial 1K)');end;

The following example adds to the end of the internal table that is created.

exec ctx ddl.create preference('sto', 'basic storage');
exec ctx ddl.set attribute('sto', 'e table clause', 'tablespace foo');

The following example uses query filter cache size Storage parameter for a partitioned
index:

exec ctx ddl.create preference('fcs', 'basic storage');
exec ctx ddl.set attribute('fcs', 'query filter cache size', '100000000"');

create table fc(id number primary key, txt varchar2(255))
partition by range (id)
(
partition pl values less than (25),
partition p2 values less than (50),
partition p3 values less than (75)
)i

create index fci on fc(txt) indextype is ctxsys.context
local (
partition pl,
partition p2,
partition p3) parameters('storage fcs memory 49M sync (on commit)');

The query filter cache is an index level storage preference. The storage preference for the
query filter cache can be set at partition level only if this is also set at the index level.

select count(*) from fc partition (pl) where contains (txt,'ctxfiltercache((hello))"')>0;
SINGLE_BYTE Data Indexing Storage Attribute
Syntax

ctx ddl.set attribute(storage pref name, 'SINGLE BYTE', BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SINGLE_BYTE
Specify the storage attribute name as SINGLE BYTE Or single byte.

2-95

Chapter 2
Section Group Types

BOOLEAN
Indicate whether the attribute is set. By default, the value is FALSE. It implies that the database
character set identifies whether the documents are stored as single-byte or multi-byte.

The following example sets the storage preference and enables the single byte storage
attribute:

exec ctx ddl.create preference('mysto', 'basic storage');

ctx ddl.set attribute('mysto', 'single byte', 'TRUE');
SMALL_R_ROW Storage Attribute

Syntax

ctx ddl.set attribute(storage pref name, 'SMALL R ROW', BOOLEAN);

storage_pref_name
Specify the first argument as the storage preference name.

SMALL_R_ROW
Specify the storage attribute name as SMALL R _ROW Or small r row..

BOOLEAN
Indicate whether the attribute is set. By default, the value is TRUE.

The following example sets the storage preference and enables the small r row storage

attribute:

begin

ctx ddl.create preference('sto', 'basic storage');
ctx ddl.set attribute('sto', 'small r row', 'T',
end;

To enable or disablesmall r row feature on an existing index:

ALTER INDEX index name rebuild PARAMETERS ('replace storage sto');

By default, small r row=TRUE , however, for earlier releases, small r row=FALSE.

2.8 Section Group Types

To enter WITHIN queries on document sections, you must create a section group before you
define your sections. Specify your section group in the parameter clause of CREATE INDEX.

This section contains the following topics.

e Section Group Types for Creating a Section Group
e Section Group Examples for HTML, XML, and JSON Enabled Documents

2.8.1 Section Group Types for Creating a Section Group

To create a section group, you can specify one of the following group types with the
CTX_DDL.CREATE_SECTION_GROUP procedure.

ORACLE 596

Chapter 2
Section Group Types

Table 2-41 Section Group Types

. ___|
Type Description

NULL SECTION GROUP Use this group type when you define no sections or when you define
only SENTENCE or PARAGRAPH sections. This is the default.

BASIC SECTION_ GROUP Use this group type for defining sections where the start and end tags
are of the form <A> and .

Note: This group type does not support input such as unbalanced
parentheses, comments tags, and attributes. Use
HTML SECTION_ GROUP for this type of input.

HTML SECTION GROUP Use this group type for indexing HTML documents and for defining
sections in HTML documents.
JSON_SECTION GROUP Use this group to create a JSON enabled context index. The JSON

ENABLE attribute cannot be used with XML ENABLE. A section group
can only be marked as JSON ENABLE. If it is already marked with XML
ENABLE, then the path section group cannot be used for JSON ENABLE
and vice versa.

XML SECTION GROUP Use this group type for indexing XML documents and for defining
sections in XML documents. All sections to be indexed must be
manually defined for this group.

AUTO_SECTION_ GROUP Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. The section names derived
from XML tags are case sensitive as in XML.

Attribute sections are created automatically for XML tags that have

attributes. Attribute sections are named in the form tag@attribute.

Special sections can be added to AUTO_SECTION GROUP for WITHIN

SENTENCE and WITHIN PARAGRAPH searches. Once a sentence or

paragraph section is added to the AUTO_SECTION GROUP, sections

with corresponding tag names 'sentence’ or ‘paragraph' (case
insensitive) are treated as stop sections.

Stop sections, empty tags, processing instructions, and comments are

not indexed.

The following limitations apply to automatic section groups:

* You cannot add zone, field, sdata, or special sections to an
automatic section group.

* You can define a stop section that applies only to one particular
type; that is, if you have two different XML DTDs, both of which
use a tag called FOO, you can define (TYPE1) FOO to be stopped,
but (TYPE2) FOO to not be stopped.

* The length of the indexed tags, including prefix and namespace,
cannot exceed 64 bytes. Tags longer than this are not indexed.

PATH SECTION GROUP Use this group type to index XML documents. Behaves like the
AUTO SECTION_ GROUP.

The difference is that with this section group you can do path searching
with the INPATH and HASPATH operators. Queries are also case-
sensitive for tag and attribute names. Stop sections are not allowed.

NEWS SECTION GROUP Use this group for defining sections in newsgroup formatted documents
according to RFC 1036.

ORACLE 2-97

Chapter 2
Section Group Types

Note:

Starting with Oracle Database 18c, use of NEWS_SECTION GROUP is deprecated in
Oracle Text. Use external processing instead.

If you want to index USENET posts, then preprocess the posts to use

BASIC SECTION GROUP or HTML SECTION GROUP within Oracle Text. USENET is rarely
used commercially.

2.8.2 Section Group Examples for HTML, XML, and JSON Enabled
Documents

The examples show the use of section groups in HTML and XML documents, and in JSON
enabled documents. See Table 2-41 for a summary.

This section contains the following examples:

e Creating Section Groups in HTML Documents

* Creating Sections Groups in XML Documents

e Automatic Sectioning in XML Documents

e Creating JSON Section Groups for JSON Search Index
e Using JSON Search Index with JSON_TEXTCONTAINS
e Using JSON Search Index with JISON_EXISTS

2.8.2.1 Creating Section Groups in HTML Documents

The following statement creates a section group called htmgroup with the HTML group type.
begin

ctx ddl.create section group('htmgroup', 'HTML SECTION GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX DDL package,
such as CTX DDL.ADD SPECIAL SECTION or CTX DDL.ADD ZONE SECTION. To index your
documents, enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters ('filter ctxsys.null filter section group htmgroup');

¢ See Also:

For more information on section groups, see CTX_DDL Package

2.8.2.2 Creating Sections Groups in XML Documents

The following statement creates a section group called xmlgroup with the XML SECTION GROUP
group type.

ORACLE 508

Chapter 2
Section Group Types

begin
ctx ddl.create section group('xmlgroup', 'XML SECTION GROUP');
end;

You can optionally add sections to this group using the procedures in the CTX DDL package,
such as CTX DDL.ADD ATTR SECTION Or CTX DDL.ADD STOP SECTION. To index your documents,
enter a statement such as:

create index myindex on docs(htmlfile) indextype is ctxsys.context
parameters ('filter ctxsys.null filter section group xmlgroup');

See Also:

For more information on section groups, see CTX_DDL Package

2.8.2.3 Automatic Sectioning in XML Documents

The following statement creates a section group called auto with the AUTO SECTION GROUP
group type. This section group automatically creates sections from tags in XML documents.

begin
ctx ddl.create section group('auto', 'AUTO SECTION GROUP');

end;

CREATE INDEX myindex on docs (htmlfile) INDEXTYPE IS ctxsys.context
PARAMETERS ('filter ctxsys.null filter section group auto');

2.8.2.4 Creating JSON Section Groups for JSON Search Index

The following example creates a JSON enabled text index.

create index json ctx idx on customers (customer

_info)

indextype is ctxsys.context

parameters ('section group CTXSYS.JSON SECTION GROUP');

2.8.2.5 Using JSON Search Index with JSON_TEXTCONTAINS

The following example searches for customers having keyword "gold" in the description.

select customer info
from customers
where JSON_TEXTCONTAINS (customer info, 'S.description', 'gold');

2.8.2.6 Using JSON Search Index with JSON_EXISTS

Find JSON enabled data.

select customer info from customers
where JSON EXISTS (customer info, 'S.dataplan');

ORACLE 599

2.9 Classifier Types

Chapter 2
Classifier Types

The following classifier types are used to create preferences for CTS_CLS.TRAIN and CTXRULE

index creation:

* RULE_CLASSIFIER
« SVM_CLASSIFIER
« SENTIMENT_CLASSIFIER

¢ Note:

2.9.1 RULE_CLASSIFIER

Use the RULE_CLASSIFIER type for creating preferences for the query rule generating
procedure, CTX CLS.TRAIN and for CTXRULE creation. The rules generated with this type are
essentially query strings and can be easily examined. The queries generated by this classifier
can use the AND, NOT, or ABOUT operators. The WITHIN operator is supported for queries on field

Table 2-42 RULE_CLASSIFIER Attributes

sections only.

In Oracle Database Express Edition (Oracle Database XE), RULE_CLASSIFIER,
SVM CLASSIFIER, and SENTIMENT CLASSIFIER are not supported because the Data
Mining option is not available. This is also true for KMEAN CLUSTERING.

Table 2-42 lists the attributes for the RULE CLASSIFIER type.

Attribute Data Default Min Max Description
Type Value Value

THRESHOLD I 50 1 99 Specify threshold (in percentage) for rule
generation. One rule is output only when its
confidence level is larger than threshold.

MAX TERMS 100 20 2000 For each class, a list of relevant terms is
selected to form rules. Specify the maximum
number of terms that can be selected for each
class.

MEMORY SIZE 500 10 4000 Specify memory usage for training in MB. Larger
values improve performance.

NT THRESHOLD F 0.001 0 0.90 Specify a threshold for term selection. There are

ORACLE

two thresholds guiding two steps in selecting
relevant terms. This threshold controls the
behavior of the first step. At this step, terms are
selected as candidate terms for the further
consideration in the second step. The term is
chosen when the ratio of the occurrence
frequency over the number of documents in the
training set is larger than this threshold.

2-100

Table 2-42 (Cont.) RULE_CLASSIFIER Attributes
|
Min

Value

Attribute

Data Default

Type

Max

Value

Chapter 2
Classifier Types

Description

TERM THRESHOLD

PRUNE LEVEL

I 10

75

0

100

100

Specify a threshold as a percentage for term
selection. This threshold controls the second
step term selection. Each candidate term has a
numerical quantity calculated to imply its
correlation with a given class. The candidate
term will be selected for this class only when the
ratio of its quantity value over the maximum
value for all candidate terms in the class is
larger than this threshold.

Specify how much to prune a built decision tree
for better coverage. Higher values mean more
aggressive pruning and the generated rules will
have larger coverage but less accuracy.

2.9.2 SVM_

ORACLE

CLASSIFIER

Use the SVM_CLASSIFIER type for creating preferences for the rule generating procedure,
CTX_CLS.TRAIN, and for CTXRULE creation. This classifier type represents the Support Vector
Machine method of classification and generates rules in binary format. Use this classifier type
when you need high classification accuracy.

This type has the following attributes:

Table 2-43 SVM_CLASSIFIER Attributes

Attribute Name Data Default Min Max Description
Type Value Value

MAX DOCTERMS I 50 10 8192 Specify the maximum number of
terms representing one
document.

MAX FEATURES 3,000 1 100,000 Specify the maximum number of
distinct features.

THEME ON B FALSE NULL NULL Specify TRUE to use themes as
features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM ON B FALSE NULL NULL Specify TRUE to use stemmed
tokens as features. This only
works when turning INDEX STEM
on for the lexer.

MEMORY SIZE 500 10 4000 Specify approximate memory size

in MB.

2-101

Chapter 2
Classifier Types

Table 2-43 (Cont.) SVM_CLASSIFIER Attributes

Attribute Name Data Default Min Max Description
Type Value Value
SECTION WEIGHT 1 2 0 100 Specify the occurrence multiplier

for adding a term in a field section
as a normal term. For example,
by default, the term cat in
"<A>cat" is a field section
term and is treated as a normal
term with occurrence equal to 2,
but you can specify that it be
treated as a normal term with a
weight up to 100.

SECTION WEIGHT is only
meaningful when the index policy
specifies a field section.

2.9.3 SENTIMENT_CLASSIFIER

Use the SENTIMENT CLASSIFIER type to create a preference for sentiment analysis queries.
This classifier specifies preferences associated with a user-defined sentiment classifier
preference. You must define a preference of this type before you use the

CTX CLS.SA TRAIN MODEL procedure to train the user-defined sentiment classifier.

Table 2-44 lists the attributes for the SENTIMENT CLASSIFIER type.

Table 2-44 SENTIMENT_CLASSIFIER Attributes

Attribute Data Default Minimum Maximum Description
Type Value Value

MAX DOCTERMS | 50 10 8192 Specify the maximum number of distinct terms
representing one document

MAX FEATURES | 3000 1 100000 Specify the maximum number of distinct features
used to build a sentiment classifier

THEME ON B False Specify if themes must be extracted as features

TOKEN_ON B True Specify if tokens must be extracted as features

STEM _ON B True Specify if stemmed tokens must be extracted as
features

MEMORY SIZE | 500 10 4000 Specify the typical memory size, in MB, used to
build the sentiment classifier.

SECTION WEIGHT | 2 0 100 Specify the integer multiplier for term occurrence
within a field section

NUM_ITERATIONS | 600 Specify the maximum number of iterations for
which the sentiment classifier is run before it
converges

ORACLE

2-102

Chapter 2
Cluster Types

See Also:

Oracle Text Application Developer's Guide for an example of using the
SENTIMENT CLASSIFIER type

2.10 Cluster Types

This section describes the cluster types used for creating preferences for the
CTX_CLS.CLUSTERING procedure.

* KMEAN_CLUSTERING

Note:

In Oracle Database Express Edition (Oracle Database XE), KMEAN CLUSTERING is not
supported because the Data Mining option is not available. This is also true for
RULE CLASSIFIER and SVM CLASSIFIER.

See Also:

For more information about clustering, see "CLUSTERING" in CTX_CLS Package as
well as the Oracle Text Application Developer's Guide

2.10.1 KMEAN_CLUSTERING

The KMEAN CLUSTERING clustering type has the attributes listed in Table 2-45.

Table 2-45 KMEAN_CLUSTERING Attributes
|

Attribute Name Data Default Min Max Description
Type Value Value

MAX DOCTERMS | 50 10 8192 Specify the maximum number of
distinct terms representing one
document.

MAX FEATURES | 3,000 1 500,000 Specify the maximum number of
distinct features.

THEME ON B FALSE NULL NULL Specify TRUE to use themes as
features.

TOKEN_ON B TRUE NULL NULL Specify TRUE to use regular
tokens as features.

STEM _ON B FALSE NULL NULL Specify TRUE to use stemmed

tokens as features. This only
works when turning INDEX STEM
on for the lexer.

ORACLE 5103

Chapter 2
Stoplists

Table 2-45 (Cont.) KMEAN_CLUSTERING Attributes
|

Attribute Name Data Default Min Max Description
Type Value Value
MEMORY SIZE | 500 10 4000 Specify approximate memory
size in MB.
SECTION WEIGHT 1 2 0 100 Specify the occurrence multiplier

for adding a term in a field
section as a normal term. For
example, by default, the term cat
in "<A>cat" is a field section
term and is treated as a normal
term with occurrence equal to 2,
but you can specify that it be
treated as a normal term with a
weight up to 100.

SECTION WEIGHT is only
meaningful when the index policy
specifies a field section.

CLUSTER NUM | 200 2 20000 Specify the total number of leaf
clusters to be generated.

2.11 Stoplists

Stoplists identify the words in your language that are not to be indexed. In English, you can
also identify stopthemes that are not to be indexed. By default, the system indexes text using
the system-supplied stoplist that corresponds to your database language.

Oracle Text provides default stoplists for most common languages including English, French,
German, Spanish, Chinese, Dutch, and Danish. These default stoplists contain only stopwords.

e Multi-Language Stoplists
e Creating Stoplists
* Modifying the Default Stoplist

See Also:

For more information about the supplied default stoplists, see Oracle Text Supplied
Stoplists

2.11.1 Multi-Language Stoplists

ORACLE

You can create multi-language stoplists to hold language-specific stopwords. A multi-language
stoplist is useful when you use the MULTI LEXER to index a table that contains documents in
different languages, such as English, German.

To create a multi-language stoplist, use the CTX DLL.CREATE_STOPLIST procedure and
specify a stoplist type of MULTI STOPLIST. Add language specific stopwords with
CTX _DDL.ADD_STOPWORD .

2-104

Chapter 2
Stoplists

At indexing time, the language column of each document is examined, and only the stopwords
for that language are eliminated. At query time, the session language setting determines the
active stopwords, like it determines the active lexer when using the multi-lexer.

2.11.2 Creating Stoplists

Create your own stoplists using the CTX DLL.CREATE_STOPLIST procedure. With this
procedure you can create a BASIC STOPLIST for single language stoplist, or you can create a
MULTI STOPLIST for a multi-language stoplist.

When you create your own stoplist, you must specify it in the parameter clause of CREATE
INDEX.

To create stoplists for Chinese or Japanese languages, use the CHINESE LEXER Of
JAPANESE LEXER respectively, and update the appropriate lexicon to be
@contained_such_stopwords.

2.11.3 Modifying the Default Stoplist

The default stoplist is always named .CTXSYS.DEFAULT STOPLIST. Use the following procedures
to modify this stoplist:

e CTX_DDL.ADD_STOPWORD

e CTX_DDL.REMOVE_STOPWORD

e CTX_DDL.ADD_STOPTHEME

« CTX_DDL.ADD_STOPCLASS

When you modify CTXSYS.DEFAULT STOPLIST with the CTX DDL package, you must re-create

your index for the changes to take effect.

Dynamic Addition of Stopwords

You can add stopwords dynamically to a default or custom stoplist with ALTER INDEX . When
you add a stopword dynamically, you need not re-index, because the word immediately
becomes a stopword and is removed from the index.

Note:

Even though you can dynamically add stopwords to an index, you cannot dynamically
remove stopwords. To remove a stopword, you must use
CTX_DDL.REMOVE_STOPWORD , drop your index and re-create it.

¢ See Also:
"ALTER INDEX " in Oracle Text SQL Statements and Operators

ORACLE 5105

Chapter 2
System-Defined Preferences

2.12 System-Defined Preferences

When you install Oracle Text, some indexing preferences are created. You can use these
preferences in the parameter clause of CREATE INDEX or define your own.

The default index parameters are mapped to some of the system-defined preferences
described in this section.

¢ See Also:

For more information about default index parameters, see "Default Index
Parameters"

System-defined preferences are divided into the following categories:
» Data Storage Preferences

* Filter Preferences

e Lexer Preferences

e Section Group Preferences

e Stoplist Preferences

e Storage Preferences

* Wordlist Preferences

2.12.1 Data Storage Preferences

This section discusses the types associated with data storage preferences.

* The CTXSYS.DEFAULT DATASTORE preference uses the DIRECT_DATASTORE type. Use
this preference to create indexes for text columns in which the text is stored directly in the
column.

* The CTXSYS.FILE DATASTORE preference uses the FILE_DATASTORE type.

* The CTXSYS.URL DATASTORE preference uses the URL_DATASTORE type.

2.12.2 Filter Preferences

This section discusses the types associated with filtering preferences.

* The CTXSYS.NULL FILTER preference uses the NULL_FILTER type.

* The CTXSYS.AUTO FILTER preference uses the AUTO_FILTER type.

2.12.3 Lexer Preferences

This section discusses the types associated with lexer preferences.

e CTXSYS.DEFAULT_LEXER
» CTXSYS.DEFAULT_EXTRACT_LEXER

ORACLE 5106

Chapter 2
System-Defined Preferences

« CTXSYS.BASIC_LEXER

2.12.3.1 CTXSYS.DEFAULT_LEXER

The CTXSYS.DEFAULT LEXER default lexer depends on the language used at install time. The
following sections describe the default settings for CTXSYS.DEFAULT LEXER for each language.

e American and English Language Settings

If your language is English, this preference uses the BASIC_LEXER with the
index themes attribute disabled.

« Danish Language Settings

If your language is Danish, this preference uses the BASIC_LEXER with the following
option enabled:

— Alternate spelling (alternate_spelling attribute set to DANISH)
e Dutch Language Settings

If your language is Dutch, this preference uses the BASIC_LEXER with the following
options enabled:

— composite indexing (composite attribute set to DUTCH)
e German and German DIN Language Settings

If your language is German, then this preference uses the BASIC_LEXER with the
following options enabled:

— Case-sensitive indexing (mixed case attribute enabled)

— Composite indexing (composite attribute set to GERMAN)

— Alternate spelling (alternate spelling attribute set to GERMAN)
* Finnish, Norwegian, and Swedish Language Settings

If your language is Finnish, Norwegian, or Swedish, this preference uses the
BASIC_LEXER with the following option enabled:

— Alternate spelling (alternate_spelling attribute set to SWEDISH)
* Japanese Language Settings

If your language is Japanese, this preference uses the JAPANESE_VGRAM_LEXER.
* Korean Language Settings

If your language is Korean, this preference uses the KOREAN_MORPH_LEXER . All
attributes for the KOREAN MORPH LEXER are enabled.

e Chinese Language Settings

If your language is Simplified or Traditional Chinese, this preference uses the
CHINESE_VGRAM_LEXER.

e Other Languages

For all other languages not listed in this section, this preference uses the BASIC_LEXER
with no attributes set.

ORACLE 2-107

Chapter 2
System-Defined Preferences

See Also:

To learn more about these options, see "BASIC_LEXER"

2.12.3.2 CTXSYS.DEFAULT_EXTRACT_LEXER

The CTXSYS.DEFAULT EXTRACT LEXER preference uses AUTO_LEXER and includes all Oracle-
supplied features (rules, dictionary, etc.). CTXSYS.DEFAULT EXTRACT LEXER uses AUTO_LEXER
with the following options:

« alternate_spelling is NONE
e base_letteris NO
* mixed_case is YES

e <> printjoin is -*' <>

2.12.3.3 CTXSYS.BASIC_LEXER

The CTXSYS.BASIC LEXER preference uses the BASIC_LEXER.

2.12.4 Section Group Preferences

This section discusses the types associated with section group preferences.

e The CTXSYS.NULL SECTION GROUP preference uses the NULL SECTION GROUP type.
e The CTXSYS.HTML SECTION GROUP preference uses the HTML SECTION GROUP type.
e The CTXSYS.JSON SECTION GROUP preference uses the PATH SECTION GROUP type.
e The CTXSYS.AUTO SECTION GROUP preference uses the AUTO SECTION GROUP type.
* The CTXSYS.PATH SECTION GROUP preference uses the PATH SECTION GROUP type.
Here is the list of default section groups that are created:

* The CTXSYS.XQUERY SEC GROUP preference evaluates not only xquery full text expressions
but also the xquery range expressions.

* The CTXSYS.XQFT SEC_GROUP preference evaluates only xquery full text expressions.

2.12.5 Stoplist Preferences

This section discusses the types associated with stoplist preferences.

* The CTXSYS.DEFAULT STOPLIST stoplist preference defaults to the stoplist of your database
language.

* The CTXSYS.EMPTY STOPLIST stoplist has no words.

See Also:

For a complete list of the stop words in the supplied stoplists, see Oracle Text
Supplied Stoplists

ORACLE 5108

Chapter 2
System Parameters

2.12.6 Storage Preferences

This section discusses the types associated with storage preferences.
The CTXSYS.DEFAULT STORAGE storage preference uses the BASIC_STORAGE type.
Here are the storage preferences:

* The CTXSYS.XQFT LOW preference disables the persistence of secondary XML
representation into $D table to save index storage space.

— xml save copy = FALSE
— xml forward enable = FALSE

* The CTXSYS.XQFT MEDIUM preference enables the persistence of secondary XML
representation into $D table to reduce the time spent on post index xquery evaluation, if
needed.

— xml save copy = TRUE
— xml forward enable = FALSE

* The CTXSYS.XQFT HIGH preference enables the persistence of secondary XML
representation into $D table and forwards the index into $0 to reduce the time spent on post
index xquery and xquery full text expression evaluation, if needed.

— xml save copy = TRUE

— xml forward enable = TRUE

2.12.7 Wordlist Preferences

This section discusses the types associated with wordlist preferences.

The CTXSYS.DEFAULT WORDLIST preference uses the language stemmer for your database
language. If your language is not listed in Table 2-38, then this preference defaults to the NULL
stemmer and the GENERIC fuzzy matching attribute.

2.13 System Parameters

This section describes the Oracle Text system parameters, which are divided into the following
categories:

e General System Parameters
e Default Index Parameters

e Default Policy Parameters

¢ See Also:

"System-Defined Preferences"

ORACLE 5109

Chapter 2
System Parameters

2.13.1 General System Parameters

When you install Oracle Text, in addition to the system-defined preferences, the following
system parameters are set:

Table 2-46 General System Parameters

. ___|
System Parameter Description

MAX INDEX MEMORY This is the maximum indexing memory that can be specified in the
parameter clause of CREATE INDEX and ALTER INDEX. The maximum
value for this parameter is 256 GB.

DEFAULT INDEX MEMORY This is the default indexing memory used with CREATE INDEX and
ALTER INDEX. The default value for this parameter is 64 MB.

LOG_DIRECTORY This is the directory for CTX_OUTPUT log files.

CTX _DOC_KEY TYPE This is the default input key type, either ROWID or PRIMARY KEY, for the
CTX_DOC procedures. Set to ROWID at install time.

See Also: CTX_DOC.SET_KEY_TYPE.

View system defaults by querying the CTX_PARAMETERS view. Change defaults using the
CTX_ADM.SET_PARAMETER procedure.

2.13.2 Default Index Parameters

This section describes the index parameters that you can use when you create CONTEXT and
CTXCAT indexes.

This section contains the following topics:

e CONTEXT Index Parameters
e CTXCAT Index Parameters
e CTXRULE Index Parameters

Viewing Default Values

View system defaults by querying the CTX_PARAMETERS view. For example, to see all
parameters and values, enter the following statement:

SQL> SELECT par name, par value from ctx parameters;

Changing Default Values

Change a default value using the CTX_ADM.SET_PARAMETER procedure to name another
custom or system-defined preference to use as default.

2.13.2.1 CONTEXT Index Parameters

The following default parameters are used when you create a CONTEXT index and do not
specify preferences in the parameter clause of CREATE INDEX. Each default parameter
names a system-defined preference to use for data storage, filtering, lexing, and so on.

ORACLE 5110

Chapter 2
System Parameters

Table 2-47 Default CONTEXT Index Parameters

|
Parameter Used When Default Value

DEFAULT DATASTORE No datastore preference specified in CTXSYS.DEFAULT DATASTORE
parameter clause of CREATE INDEX.

DEFAULT FILTER FILE No filter preference specified in CTXSYS.AUTO FILTER
parameter clause of CREATE INDEX,
and either of the following conditions is
true:
* Your files are stored in external files
(BFILES) or
e Specify a datastore preference that
uses FILE DATASTORE

DEFAULT FILTER BINARY No filter preference specified in CTXSYS.AUTO FILTER
B B parameter clause of CREATE INDEX, B
and Oracle Text detects that the text
column datatype is RAW, LONG RAW, or
BLOB.

DEFAULT FILTER TEXT No filter preference specified in CTXSYS.NULL FILTER
B B parameter clause of CREATE INDEX, -
and Oracle Text detects that the text
column datatype is either LONG,
VARCHAR2, VARCHAR, CHAR, or CLOB.

DEFAULT SECTION HTML No section group specified in parameter CTXSYS.HTML SECTION GROUP
clause of CREATE INDEX, and when
either of the following conditions is true:
* Your datastore preference uses
URL DATASTORE or
* Your filter preference uses
AUTO FILTER.

DEFAULT SECTION TEXT No section group specified in parameter CTXSYS.NULL SECTION GROUP
- - clause of CREATE INDEX, and when you - -
do not use either URL_DATASTORE or
AUTO FILTER.

DEFAULT STORAGE No storage preference specified in CTXSYS.DEFAULT STORAGE
parameter clause of CREATE INDEX.

DEFAULT LEXER No lexer preference specified in CTXSYS.DERAULT LEXER
parameter clause of CREATE INDEX.

DEFAULT STOPLIST No stoplist specified in parameter CTXSYS.DEFAULT STOPLIST
clause of CREATE INDEX.

DEFAULT WORDLIST No wordlist preference specified in CTXSYS.DEFAULT WORDLIST
parameter clause of CREATE INDEX.

¢ See Also:

"System-Defined Preferences"

ORACLE 5111

2.13.2.2 CTXCAT Index Parameters

The following default parameters are used when you create a CTXCAT index with CREATE INDEX
and do not specify any parameters in the parameter string. The CTXCAT index supports only the
index set, lexer, storage, stoplist, and wordlist parameters. Each default parameter names a

system-defined preference.

Table 2-48 Default CTXCAT Index Parameters
]

Parameter

Used When

Chapter 2
System Parameters

Default Value

DEFAULT CTXCAT INDEX SET

DEFAULT CTXCAT STORAGE

DEFAULT CTXCAT LEXER

DEFAULT CTXCAT STOPLIST

DEFAULT CTXCAT WORDLIST

No index set specified in parameter
clause of CREATE INDEX.

No storage preference specified in

parameter clause of CREATE INDEX.

No lexer preference specified in

parameter clause of CREATE INDEX.

No stoplist specified in parameter
clause of CREATE INDEX.

No wordlist preference specified in

parameter clause of CREATE INDEX.

Note that while you can specify a

wordlist preference for CTXCAT indexes,

most of the attributes do not apply,

because the catsearch query language
does not support wildcarding, fuzzy, and

stemming. The only attribute that is

useful is PREFIX INDEX for Japanese

data.

n/a

CTXSYS.DEFAULT STORAGE

CTXSYS.DERAULT LEXER

CTXSYS.DEFAULT STOPLIST

CTXSYS.DEFAULT WORDLIST

¢ See Also:

"System-Defined Preferences"

2.13.2.3 CTXRULE Index Parameters

Table 2-49 lists the default parameters that are used when you create a CTXRULE index with
CREATE INDEX and do not specify any parameters in the parameter string. The CTXRULE index
supports only the lexer, storage, stoplist, and wordlist parameters. Each default parameter
names a system-defined preference.

Table 2-49 Default CTXRULE Index Parameters

Parameter

Used When

Default Value

DEFAULT CTXRULE LEXER

DEFAULT CTXRULE STORAGE

ORACLE

No lexer preference specified in

parameter clause of CREATE INDEX.

No storage preference specified in

parameter clause of CREATE INDEX.

CTXSYS.DERAULT LEXER

CTXSYS.DEFAULT STORAGE

2-112

Chapter 2
System Parameters

Table 2-49 (Cont.) Default CTXRULE Index Parameters

|
Parameter Used When Default Value

DEFAULT CTXRULE STOPLIST No stoplist specified in parameter CTXSYS.DEFAULT STOPLIST
clause of CREATE INDEX.

DEFAULT CTXRULE WORDLIST No wordlist preference specified in CTXSYS.DEFAULT WORDLIST
parameter clause of CREATE INDEX.

DEFAULT CLASSIFIER No classifier preference is specified in ~ RULE_CLASSIFIER
parameter clause.

See Also:

"System-Defined Preferences"

CTXRULE Index Limitations

The CTXRULE index does not support the following query operators:
Fuzzy

* Soundex

It also does not support the following BASIC WORDLIST attributes:

* SUBSTRING INDEX

e PREFIX INDEX

2.13.3 Default Policy Parameters

Policies in Oracle Text enable you to use document services without creating an index. For
example, the document services might be filtering to generate a plain text or HTML version of a
document, generating theme summaries or lists of themes, and highlighting.

Table 2-50 lists the default parameters when you create a policy and do not specify
preferences when using CTX_DDL.CREATE_POLICY. Each default parameter names a
system-defined preference to use for filtering, lexing, and so on.

Table 2-50 Default Policy Parameters for CTX_DDL.CREATE_POLICY

|
Parameter Used When Default Value

DEFAULT FILTER BINARY No filter preference specified for CTXSYS.AUTO FILTER
B B CREATE_POLICY, and the document B
parameter of the document service is
VARCHAR? or CLOB datatype; BLOB or
BFILE datatype.

DEFAULT FILTER TEXT No filter preference specified for CTXSYS.NULL FILTER
B - CREATE POLICY, and the document a
parameter of the document service is
VARCHAR? or CLOB datatype; BLOB or
BFILE datatype.

ORACLE 5113

Chapter 2
Token Limitations for Oracle Text Indexes

Table 2-50 (Cont.) Default Policy Parameters for CTX_DDL.CREATE_POLICY
|

Parameter Used When Default Value

DEFAULT SECTION HTML No section group specified for CTXSYS.HTML SECTION GROUP
CREATE POLICY, and when your filter
preference uses AUTO FILTER.

DEFAULT SECTION TEXT No section group specified for CTXSYS.NULL SECTION GROUP

DEFAULT LEXER

CREATE POLICY, and when you do not
use AUTO_FILTER.

No lexer preference specified for CTXSYS.DERAULT LEXER
CREATE POLICY.

DEFAULT STOPLIST No stoplist specified for CTXSYS.DEFAULT STOPLIST

CREATE POLICY.

DEFAULT WORDLIST No wordlist preference specified for CTXSYS.DEFAULT WORDLIST

CREATE POLICY.

See Also:

e "System-Defined Preferences"
e "CREATE_POLICY" for complete information

2.14 Token Limitations for Oracle Text Indexes

ORACLE

Starting with Oracle Database Release 18c, the indexed token maximum size is increased to
255 characters for single-byte character sets.

Before Oracle Database Release 18c, all Oracle Text index types except SDATA sections stored
tokens in a table column of type VARCHAR2 (64 BYTE). Starting with Oracle Database Release
18c, all Oracle Text index types except CTXCAT and CTXRULE indexes store tokens in VARCHAR?2
(255 BYTE) table column types. This change is an increase for the maximum size of an
indexed token to 255 characters for single-byte character sets. The size increase is less with
multibyte or variable-length character sets. Tokens longer than 255 bytes are truncated.
Truncated tokens do not prevent searches on the whole token string. However, the system
cannot distinguish between two tokens that have the same first 255 bytes.

¢ Note:

Before Oracle Database Release 18c, tokens that were greater than 64 bytes were
truncated to 64 bytes. After upgrading to Oracle Database Release 18c, the token
tables are increased to 255 bytes from 64 bytes. Searches with more than 64 bytes in
the search token (that is, any single word in search string) cannot find any tokens
which were truncated to 64 bytes. To avoid this problem, rebuild the index. If you
never use search tokens longer than 64 bytes, it is not necessary to rebuild the index.

SDATA sections store tokens in a table column of type VARCHAR2 (249 BYTE). CTXCAT and
CTXRULE indexes store tokens in a table column of type VARCHAR? (64 BYTE).

2-114

Oracle Text CONTAINS Query Operators

ORACLE

This chapter describes operator precedence and provides descriptions, syntax, and examples
for every CONTAINS operator.

This chapter contains the following topics:

Operator Precedence

ABOUT

ACCUMulate (_)

AND (&)

Broader Term (BT_BTG_ BTP_ BTI)
CTXFILTERCACHE
DEFINEMERGE
DEFINESCORE

EQUIlValence (=)

Fuzzy

HASPATH

INPATH

MDATA

MINUS (-)

MNOT

Narrower Term (NT_ NTG_ NTP_ NTI)
NDATA

NEAR (;)

NEAR2

NOT (~)

OR (])

Preferred Term (PT)

Related Term (RT)

SDATA

soundex (1)

stem ($)

Stored Query Expression (SQE)
SYNonym (SYN)

threshold (>)

Translation Term (TR)

3-1

Chapter 3
Operator Precedence

e Translation Term Synonym (TRSYN)
e Top Term (TT)

* weight (*)
e wildcards (% _)
¢ WITHIN

3.1 Operator Precedence

Operator precedence determines the order in which the components of a query expression are
evaluated. Text query operators can be divided into two sets of operators that have their own
order of evaluation. These two groups are described later as Group 1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to the
precedence of their operators. Operators with higher precedence are applied first. Operators of
equal precedence are applied in order of their appearance in the expression from left to right.

e Group 1 Operators

e Group 2 Operators and Characters
* Procedural Operators

* Precedence Examples

e Altering Precedence

3.1.1 Group 1 Operators

Within query expressions, the Group 1 operators have the following order of evaluation from
highest precedence to lowest:

EQUIValence (=)

NEAR ()

weight (*), threshold (>)
MINUS (-)

NOT (~)

MNOT

WITHIN

AND (&)

OR ())

10. ACCUMulate (_)

© ® N o g & 0w NP

3.1.2 Group 2 Operators and Characters

ORACLE

Within query expressions, the Group 2 operators have the following order of evaluation from
highest to lowest:

1. Wildcard Characters
2. stem ($)
3. Fuzzy

3-2

Chapter 3
Operator Precedence

4. soundex (1)

3.1.3 Procedural Operators

Other operators not listed under Group 1 or Group 2 are procedural. These operators have no
sense of precedence attached to them. They include the SQE and thesaurus operators.

3.1.4 Precedence Examples

Table 3-1 Query Expression Precedence Examples
]

Query Expression Order of Evaluation

wl | w2 &w3 (wl) | (W2 & w3)

wl & w2 | w3 (Wl & w2)| w3

2wl, w2 | w3 & w4 (?wl), (W2 | (W3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)
dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than 0OR, the query returns all
documents that contain w1 and all documents that contain both w2 and wa3.

In the second example, the query returns all documents that contain both w1 and w2 and all
documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND operator is applied to
arguments w3 and w4, then the OR operator is applied to term w2 and the results of the AND
operation, and finally, the score from the fuzzy operation on w1 is added to the score from the
OR operation.

The fourth example shows that the equivalence operator has higher precedence than the AND
operator.

The fifth example shows that the AND operator has lower precedence than the WITHIN operator.

3.1.5 Altering Precedence

ORACLE

Precedence is altered by grouping characters as follows:

e Within parentheses, expansion or execution of operations is resolved before other
expansions regardless of operator precedence.

e Within parentheses, precedence of operators is maintained during evaluation of
expressions.

< Within parentheses, expansion operators are not applied to expressions unless the
operators are also within the parentheses.

¢ See Also:

"Grouping Characters" in Special Characters in Oracle Text Queries

3-3

Chapter 3
ABOUT

3.2 ABOUT

ORACLE

Use the ABOUT operator to return documents that are related to a query term or phrase.

General Behavior

In English and French, ABOUT enables you to query on concepts, even if a concept is not
actually part of a query. For example, an ABOUT query on heat might return documents related
to temperature, even though the term temperature is not part of the query.

In other languages, using ABOUT will often increase the number of returned documents and may
improve the sorting order of results. For all languages, Oracle Text scores results for an ABOUT
query with the most relevant document receiving the highest score.

English and French Behavior

In English and French, use the ABOUT operator to query on concepts. The system looks up
concept information in the theme component of the index. Create a theme component to your
index by setting the INDEX THEMES BASIC_LEXER attribute to YES.

< Note:

You need not have a theme component in the index to enter ABOUT queries in English
and French. However, having a theme component in the index yields the best results
for ABOUT queries.

Oracle Text retrieves documents that contain concepts that are related to your query word or
phrase. For example, if you enter an ABOUT query on California, the system might return
documents that contain the terms Los Angeles and San Francisco, which are cities in
California. The document need not contain the term California to be returned in this ABOUT

query.

The word or phrase specified in your ABOUT query need not exactly match the themes stored in
the index. Oracle Text normalizes the word or phrase before performing lookup in the index.

You can use the ABOUT operator with the CONTAINS and CATSEARCH SQL operators. In the case
of CATSEARCH, you must use query templating with the CONTEXT grammar to query on the
indexed themes. See ABOUT Query with CATSEARCH in the Examples section.

3-4

ORACLE

Chapter 3

ABOUT
Syntax
Syntax Description
about(phrase) In all languages, increases the number of relevant documents returned for the

same query without the ABOUT operator. The phrase parameter can be a
single word or a phrase, or a string of words in free text format.

In English and French, returns documents that contain concepts related to
phrase, provided the BASIC LEXER INDEX THEMES attribute is set to YES at
index time.

The score returned is a relevance score.

Oracle Text ignores any query operators that are included in phrase.

If your index contains only theme information, an ABOUT operator and operand

must be included in your query on the text column or else Oracle Text returns
an error.

The phrase you specify cannot be more than 4000 characters.

Case-Sensitivity

ABOUT queries give the best results when your query is formulated with proper case. This is
because the normalization of your query is based on the knowledge catalog which is case-
sensitive.

However, you need not type your query in exact case to obtain results from an ABOUT query.
The system does its best to interpret your query. For example, if you enter a query of CISCO
and the system does not find this in the knowledge catalog, the system might use Cisco as a
related concept for look-up.

Improving ABOUT Results

The ABOUT operator uses the supplied knowledge base in English and French to interpret the
phrase you enter. Your ABOUT query therefore is limited to knowing and interpreting the
concepts in the knowledge base.

Improve the results of your ABOUT queries by adding your application-specific terminology to the
knowledge base.

¢ See Also:

"Extending the Knowledge Base" in Oracle Text Utilities

Limitations
* The phrase you specify in an ABOUT query cannot be more than 4000 characters.
e The ABOUT query operator is not supported within sections.

* The JSON TEXTCONTAINS query does not support the ABOUT operator.

Examples for ABOUT Operator
Single Words

To search for documents that are about soccer, use the following syntax:

3-5

Chapter 3
ACCUMulate (,)

'about (soccer) !

Phrases

Further refine the query to include documents about soccer rules in international competition
by entering the phrase as the query term:

'about (soccer rules in international competition)'

In this English example, Oracle Text returns all documents that have themes of soccer, rules,
or international competition.

In terms of scoring, documents which have all three themes will generally score higher than
documents that have only one or two of the themes.

Unstructured Phrases

You can also query on unstructured phrases, such as the following:
'about (japanese banking investments in indonesia)'

Combined Queries

Use other operators, such as AND or NOT, to combine ABOUT queries with word queries. For
example, enter the following combined ABoUT and word query:

'about (dogs) and cat'

Combine an ABOUT query with another ABOUT query as follows:

'about (dogs) not about (labradors)'

Note:

You cannot combine ABOUT with the WITHIN operator, as for example '"ABOUT (xyz)
WITHIN abc'.

ABOUT Query with CATSEARCH

Enter ABOUT queries with CATSEARCH using the query template method with grammar set to
CONTEXT as follows:

select pk||' ==> '||text from test
where catsearch (text,
'<query>
<textquery grammar="context">
about (California)
</textquery>
<score datatype="integer"/>
</query>',"'")>0
order by pk;

3.3 ACCUMulate (,)

Use the AccuUM operator to search for documents that contain at least one occurrence of any
query terms, with the returned documents ranked by a cumulative score based on how many
query terms are found (and how frequently).

ORACLE 26

ORACLE

Chapter 3
ACCUMulate (,)

Syntax
Syntax Description
terml,term2 Returns documents that contain term1 or term2. Ranks documents according

term1l ACCUM term2 to document term weight, with the highest scores assigned to documents that
have the highest total term weight.

ACCUMulate Scoring

ACCUMulate first scores documents on how many query terms a document matches. A
document that matches more terms will always score higher than a document that matches
fewer terms, even if the terms appear more frequently in the latter. In other words, if you
search for dog ACCUM cat, you'll find that

the dog played with the cat

scores higher than

the big dog played with the little dog while a third dog ate the dog food

Scores are divided into ranges. In a two-term ACCUM, hits that match both terms will always
score between 51 and 100, whereas hits matching only one of the terms will score between 1
and 50. Likewise, for a three-term ACCUM, a hit matching one term will score between 1 and 33;
a hit matching two terms will score between 34 and 66, and a hit matching all three terms will
score between 67 and 100. Within these ranges, normal scoring algorithms apply.

See Also:

The Oracle Text Scoring Algorithm for more information on how scores are calculated

You can assign different weights to different terms. For example, in a query of the form

soccer, Brazil*3

the term Brazil is weighted three times as heavily as soccer. Therefore, the document

people play soccer because soccer is challenging and fun

will score lower than

Brazil is the largest nation in South America

but both documents will rank below

soccer is the national sport of Brazil

Note that a query of soccer ACCUM Brazil*3 is equivalent to soccer ACCUM Brazil ACCUM
Brazil ACCUM Brazil. Because each query term Brazil is considered independent, the entire
query is scored as though it has four terms, not two, and thus has four scoring ranges. The first
Brazil-and-soccer example document shown above scores in the first range (1-25), the second
scores in the third range (51-75), and the third scores in the fourth range (76-100). (No
document scores in the second range, because any document with Brazil in it will be
considered to match at least three query terms.)

3-7

Chapter 3
AND (&)

Example for ACCUM Operator

set serveroutput on;
DROP TABLE accumtbl;
CREATE TABLE accumtbl (id NUMBER, text VARCHAR2 (4000));

INSERT INTO accumtbl VALUES (1, 'the little dog played with the big dog
while the other dog ate the dog food');
INSERT INTO accumtbl values (2, 'the cat played with the dog');

CREATE INDEX accumtbl idx ON accumtbl (text) indextype is ctxsys.context;

PROMPT dog ACCUM cat
SELECT SCORE (10) FROM accumtbl WHERE CONTAINS (text, 'dog ACCUM cat', 10)
> 0;

PROMPT dog*3 ACCUM cat
SELECT SCORE (10) FROM accumtbl WHERE CONTAINS (text, 'dog*3 ACCUM cat', 10)
> 0;

This produces the following output. Note that the document with both dog and cat scores
highest.

dog ACCUM cat

ID SCORE(10)
1 6
2 52

dog*3 ACCUM cat

ID SCORE(10)
1 53
2 76

Related Topics
weight (*)

3.4 AND (&)

ORACLE

Use the AND operator to search for documents that contain at least one occurrence of each of
the query terms.

The AND operator returns documents that contain all of the query terms, while OrR operator
returns documents that contain any of the query terms.

Syntax

Syntax Description

terml&term2 Returns documents that contain term1 and term2. Returns the minimum score of
term1 and term2 its operands. All query terms must occur; lower score taken.

Example for AND Operator

To obtain all the documents that contain the terms blue and green and red, enter the following
query:

3-8

Chapter 3
Broader Term (BT, BTG, BTP, BTI)

'blue & green & red'

In an AND query, the score returned is the score of the lowest query term. In this example, if the
three individual scores for the terms blue, green, and red is 10, 20 and 30 within a document,
the document scores 10.

Related Topics
OR ())

3.5 Broader Term (BT, BTG, BTP, BTI)

ORACLE

Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the term that
has been defined in a thesaurus as the broader or higher level term for a specified term. They
can also expand the query to include the broader term for the broader term and the broader
term for that broader term, and so on up through the thesaurus hierarchy.

Syntax
Syntax Description
BT (term[(qualifier)][,level][,thes]) Expands a query to include the term defined in the thesaurus
as a broader term for term.
BTG(term[(qualifier)][,level][,thes]) Expands a query to include all terms defined in the thesaurus
as broader generic terms for term.
BTP(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader partitive terms for term.
BTI(term[(qualifier)][,level][,thes]) Expands a query to include all the terms defined in the
thesaurus as broader instance terms for term.
term

Specify the operand for the broader term operator. Oracle Text expands term to include the
broader term entries defined for the term in the thesaurus specified by thes. For example, if
you specify BTG(dog), the expansion includes only those terms that are defined as broader
term generic for dog. You cannot specify expansion operators in the term argument.

The number of broader terms included in the expansion is determined by the value for level.

qualifier

Specify a qualifier for term, if term is @ homograph (word or phrase with multiple meanings,
but the same spelling) that appears in two or more nodes in the same hierarchy branch of
thes.

If a qualifier is not specified for a homograph in a broader term query, the query expands to
include the broader terms of all the homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the broader terms
for the specified term. For example, a level of 1 in a BT query returns the broader term entry, if
one exists, for the specified term. A level of 2 returns the broader term entry for the specified
term, as well as the broader term entry, if one exists, for the broader term.

The level argument is optional and has a default value of one (1). Zero or negative values for
the level argument return only the original query term.

3-9

Chapter 3
CTXFILTERCACHE

thes

Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

Note:

If you specify thes, then you must also specify level.

Examples for Broader Term Operators

The following query returns all documents that contain the term tutorial or the BT term defined
for tutorial in the DEFAULT thesaurus:

'BT (tutorial) '

When you specify a thesaurus name, you must also specify level as in:
'BT (tutorial, 2, mythes)'

Broader Term Operator on Homographs

If machine is a broader term for crane (building equipment) and bird is a broader term for crane
(waterfowl) and no qualifier is specified for a broader term query, the query

BT (crane)
expands to:

'{crane} or {machine} or {bird}'

If waterfowl is specified as a qualifier for crane in a broader term query, the query

BT (crane{ (waterfowl) })

expands to the query:

'{crane} or {bird}"

Note:

When specifying a qualifier in a broader or narrower term query, the qualifier and its
notation (parentheses) must be escaped, as is shown in this example.

Related Topics

CTX_THES.BT in CTX_THES Package for more information on browsing the broader terms in
your thesaurus

3.6 CTXFILTERCACHE

Oracle Text provides a cache layer called query filter cache that can be used to cache the
query results. Query filter cache is sharable across queries. Thus, the cached query results
can be reused by multiple queries, improving the query response time. The CTXFILTERCACHE

ORACLE 310

ORACLE

Chapter 3
CTXFILTERCACHE

operator is used to specify which query results or part of query results to cache in the query
filter cache.

CTXFILTERCACHE only supports CONTEXT grammar queries. CONTAINER queries like
template queries are not supported. If you execute it with a template query, then errors are
raised.

Caution:

Before using CTXFILTERCACHE, yOou must run PURGE recyclebin as follows:

SQL> PURGE recylebin;

See Oracle Database Administrator's Guide for complete information about purging
objects in the recycle bin.

Syntax

ctxfiltercache ((query text) [, save score] [, topN])

query_text
Specify the query whose results need to be stored in the cache.

save_score
Specify TRUE if you want to cache all the query results along with their scores in the cache.
The default is FALSE. In this case, a score of 100 is returned for each query result, and these
scores are not stored in the cache. Only the query results are stored in the cache.

Specify FALSE when you want to reuse the query results and not their scores in other queries.
This is particularly useful when you use the query text as a filter, such as a security filter,
where the relevance of the cached part of the query does not affect the relevance of the query
as a whole. Thus, when used with the AND operator (which returns a lower score of its
operands), a score of 100 does not affect the score of a query as a whole.

topN

Specify TRUE if you want only the highest scoring query results to be stored in the cache.
Oracle Text internally determines how many highest scoring query results to store in the
cache. This helps in reducing the memory consumption of the cache.

Note:

If you specify TRUE for topN, then save score should also be TRUE.

Examples for CTXFILTERCACHE
Stored Query Results and TopN Examples
The following example stores the query results of the common predicate query in the cache:

select * from docs where contains(txt, 'ctxfiltercache((common predicate), FALSE)')>0;

Here, save score is FALSE, and hence the score of 100 is returned for each query result, and
the scores are not stored in the cache.

3-11

ORACLE

Chapter 3
CTXFILTERCACHE

In the following example, the cached results of the common predicate query are reused by the
new_query query.

select * from docs where contains(txt, 'new query & ctxfiltercache((common predicate),
FALSE) ") >0;

Set save score to TRUE as shown in the following example to store all the query results of the
common_predicate query, along with the actual scores, in the cache.

select * from docs where contains(txt, 'ctxfiltercache((common predicate), TRUE)')>0;

Set topN to TRUE if you want to store only the highest scoring query results of the
common_predicate query in the cache as described in the following example.

select id, score(l) from docs where contains(txt, 'ctxfiltercache((common predicate),
TRUE, TRUE)', 1)>0 order by score(l) desc;

Set topN to TRUE for the main part of the query and FALSE for the filter part, when the score is
relevant only for the main part of the query. The following example shows a query with two
ctxfiltercache clauses. It performs a free-text search for "cat AND dog" and then applies a
security filter to the search operation. Results of both the parts of this query are separately
cached so that they can be reused, but the score is relevant only for the first part of the query.

select id, score(l) from docs where contains(txt, 'ctxfiltercache((cat AND dog), TRUE,
TRUE) AND ctxfiltercache((john WITHIN allowedUsers), FALSE, FALSE)', 1) > 0;

Cached Score Example

CTXFILTERCACHE stores one query result for score at a time in the cache. Hence, two similar
gueries executed serially are considered the same query, and there is only one such query
stored in the cache.

The following examples, query A and query B, show two similar queries. The hit score for A is
100, and the hit score for B is 5. Assume the cache is empty and you execute query A first. The
computed score 100 is stored in the cache for this query. When you execute query B
subsequently now, the cache contains the stored score of 100, and therefore, query B returns
the cached score of 100. Conversely, if you execute query B before query A, then the cached
computed score that gets returned is 5.

Query A:

select /*+ DOMAIN INDEX SORT */ id, score(l) as ORADD from mydocs where contains
(txt ,'ctxfiltercache ((DEFINEMERGE
(((definescore (Oracle, relevance)), (definescore (Java,discrete)))
,OR, ADD
)),T,T)',1)>0 order by score(l) desc;

Query B:

select /*+ DOMAIN INDEX SORT x/ id, score(l) as ORAVG from docs where contains
(txt ,'ctxfiltercache ((DEFINEMERGE
(((definescore (Oracle, relevance)), (definescore (Java,discrete)))
,OR, AVG
)),T,T)',1)>0 order by score(l) desc;

Notes
The query filter cache is an index level storage preference.

The storage preference for the query filter cache can be set at partition level only if this is also
set at index level. If a filter cache preference is set at partition level without any filter cache

3-12

ORACLE

Chapter 3
CTXFILTERCACHE

preference being set at index level, then an error is thrown as follows: "lllegal syntax for index,
preference, source or section name."

Note that CTXFILTERCACHE is not utilized with:
e INPATH/HASPATH queries
e First query after syncindex for NDATA and SDATA

When topN is FALSE, the CTXFILTERCACHE operator can be either a top-level operator or a child
of the following operators:

e AND

° ACCUM
e NOT

e OR

e THRESHOLD (left side operand only)
e WEIGHT (left side operand only)

When topN is TRUE:

 The ctxfiltercache operator can be either a top-level operator or a child of the following
operators:

— AND
— THRESHOLD (left side operand only)
— WEIGHT (left side operand only)

* TopN is enabled only when the ctxfiltercache operator is used with the order key
ORDER BY SCORE(n) DESC and Oracle hint DOMAIN INDEX SORT for global index.
Additionally, for a partitioned index, be sure to have partition pruning in your query.
Otherwise, although topN is set to TRUE, normal mode will be used instead of topN mode.

Note:

The ctxfiltercache operator only supports a CONTEXT grammar query. This
means that container queries like template queries are not supported.

If ctxfiltercache is used with a query template, then the following type of error will
occur:

ERROR at line 1:

ORA-29902: error in executing ODCIIndexStart () routine
ORA-20000: Oracle Text error:

DRG-50900: text query parser error on line 1, column 8
DRG-50905: invalid score threshold <textquery

An example of a query that results in this error is as follows:

select score(l), id, txt from tdrbgfc45 where contains (txt,
'ctxfiltercache ((Kquery><textquery>near2((a,b,c,d))
</textquery><score datatype="FLOAT"/>

</query>),true)', 1)>0 order by id;

3-13

Chapter 3
DEFINEMERGE

To use ctxfiltercache you must specify a size for the query filter cache using the basic
storage attribute query filter cache size. The default size is 0, which means that
ctxfiltercache is disabled by default.

The view ctx_filter cache statistics provides various statistics about the query filter
cache.

The query filter cache does not differentiate queries that only vary in how the score is
computed. Score is never computed on the fly within the query filter cache. See "Cached Score
Example" for an illustration of how this works.

Related Topics

"CTX_FILTER_CACHE_STATISTICS" for more information about the
ctx filter cache statistics view

"BASIC_STORAGE" for more information about the query filter cache size basic storage
attribute

3.7 DEFINEMERGE

ORACLE

Use the DEFINEMERGE operator to define how the score of child nodes of the AND and OR should
be merged.

The DEFINEMERGE operator can be used as operand(s) of any operators that allow AND or OR as
operands. The score can be merged in three ways: picking the minimum value, picking the
maximum value, or calculating the average score of all child nodes.

Use DEFINESCORE before using DEFINEMERGE.

Syntax

DEFINEMERGE (((text queryl), (text_queryZ), ..) , operator, merge method)

Syntax Description

text_queryl1,2 ... Defines the search criteria. These parameters can have any value that is valid for
the AND/OR operator.

operator Defines the relationship between the two text query parameters.

merge_method Defines how the score of the text_query should be merged. Possible values: MIN,
MAX, AVG, ADD

Example for DEFINEMERGE Operator

'DEFINEMERGE (((dog , cat) , (blue or green)), AND, MIN)'

Queries for the expression "dog AccuM cat" and "blue OR green," using the default scoring
schemes and then using the minimum score of the two as the merged-score.

'DEFINEMERGE (((DEFINESCORE (dog, DISCRETE)) , (cat)), AND, MAX)'

Queries for the term "dog" using the DISCRETE scoring, and for the term "cat" using the default
relevant scoring, and then using the maximum score of the two as the merged-score.

Example 3-1 DEFINEMERGE and text_query

The following examples show only the text query part of a CONTAINS query:

3-14

Chapter 3
DEFINESCORE

'DEFINEMERGE (((dog), (cat)), OR, AVG)'

Queries for the term "dog" or "cat," using the average relevance score of both terms as the
merged score.

Related Topic
DEFINESCORE.

3.8 DEFINESCORE

ORACLE

Use the DEFINESCORE operator to define how a term or phrase, or a set of term equivalences
will be scored. The definition of a scoring expression can consist of an arithmetic expression of
predefined scoring components and numeric literals.

DEFINEMERGE can be used after DEFINESCORE.

Syntax

DEFINESCORE (query term, scoring expression)

query_term
The query term or phrase. Expressions containing the following operators are also allowed:
Operators Operators
ABOUT EQUIV (=)
Fuzzy Soundex (!)
Stem ($) Wildcards (%)
SDATA MDATA

scoring_expression
An arithmetic expression that describes how the query term should be scored. This operand
is a string that contains the following components:

e Arithmetic operators: + - * /. The precedence is multiplication and division (*, /) first
before addition and subtraction (+, -).

e Grouping operators: (). Parentheses can be used to alter the precedence of the
arithmetic operators.

* Absolute function: ABS (n) returns the absolute value of n; where n is any expression that
returns a number.

e Logarithmic function: L0G (n) returns the base-10 logarithmic value of n ; where n is any
expression that returns a number.

« Predefined scoring components: Each of the following scoring components returns a
value of 0 - 100, depending on different criteria:

Name Description

DISCRETE If the term exists in the document, score = 100.
Otherwise, score = 0.

OCCURRENCE Score based on the number of occurrences.

RELEVANCE Score based on the document's relevance.

3-15

ORACLE

Chapter 3
DEFINESCORE

Name Description

COMPLETION Score based on coverage. Documents will score
higher if the ratio between the number of the
matching terms and the number of all terms in the
section (counting stop words) is higher. The
COMPLETION scoring is only applicable when used
with the WITHIN operator to search in zone
sections.

IGNORE Ignore the scoring of this term. This component
should be used alone. Otherwise, the query will
return a syntax error. If the scoring of the only
term in the query is set to IGNORE, then all the
matching documents should be returned with the
same score of 100.

Note:

For numeric literals, any number literal can be used that conforms to the SQL pattern
of number literal, and is within the range of the double precision floating point
(-3.4e38 t0 3.4e38).

scoring_expression Syntax

<Exp> i= <Exp> + <Term> | <Exp> - <Term> | <Term>

<Term> 1= <Term> * <Factor> | <Term> / <Factor> | <Factor>

<Factor> := <<NumericLiterals >>| DISCRETE | OCCURRENCE | RELEVANCE |
COMPLETION | IGNORE | (<Exp>) | -<Factor> | Abs(<Exp>) | Log(<Exp>)

Examples for DEFINESCORE Operator

'DEFINESCORE (dog, OCCURRENCE)'

Queries for the word dog, and scores each document using the occurrence score. Returns the
score as integer.

'DEFINESCORE (Labradors are big dog, RELEVANCE)'

Queries for the phrase Labradors are big dogs, and scores each document using the relevance
score.

'cat and DEFINESCORE (dog, IGNORE)'

Queries for the words dog and cat, using only the default relevance score of cat as the overall
score of the document. Returns the score as integer.

'"DEFINESCORE (dog, IGNORE)'

Queries for the word dog, and returns all documents with the word dog. The result is the same
as if all documents get a score of 100. Returns the score as integer.

'DEFINESCORE (dog, ABS (100-RELEVANCE))'

Queries for the word dog, and scores each document using the absolute value of 100 minus
the relevance score. Returns the score as integer.

3-16

ORACLE

Chapter 3
DEFINESCORE

'cat and DEFINESCORE (dog, RELEVANCE*5 - OCCURRENCE)'

Returns a syntax error: Two predefined components are used.

When DEFINESCORE is used with query templates, the scoring expression overrides the
values specified by the template. The following example queries for "dog" and "cat," scores
"cat" using OCCURRENCE (COUNT) and scores "dog" based on RELEVANCE.

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Limitations

» If the ABOUT operator is used in query term, the OCCURRENCE and COMPLETION scoring will
not be applicable. If used, the query will return a syntax error.

e The IGNORE score cannot be used as right hand of the minus operator. If used, then a
syntax error will occur.

e The COMPLETION score is only applicable if the DEFINESCORE is used with a WITHIN operator
to search in zone sections, for example:

'DEFINESCORE (dog, COMPLETION) within zonesection'

otherwise, the query will return a syntax error.
e For the left hand operand of WITHIN:

— All nodes must use the same predefined-scoring component. (If not specified, then the
predefined scoring iS RELEVANCE.)

— If the nodes use DISCRETE or COMPLETION, then only the AND and OR operator is allowed
as the left hand children of WITHIN.

— If the nodes use DISCRETE or COMPLETION, then WITHIN will use the max score of all
section instances as the score.

— If the nodes use RELEVANCE or OCCURRENCE, then WITHIN will use the summation of the
score of all section instances as the score.

* Only one predefined scoring component can be used in the scoring expression at one
time. If more than one predefined scoring component is used, then a syntax error will
occur.

See Also:

Oracle Database SQL Language Reference

Notes

e The DEFINESCORE operator, the absolute function, the logarithmic function, and the
predefined scoring components are case-insensitive.

* The query termand the scoring expression parameters are mandatory.

3-17

Chapter 3
EQUIValence (=)

The final score of the DEFINESCORE operator will be truncated to be in the 0 — 100 range. If
the data type is INTEGER, then the score is rounded up.

The intermediate data type of the scoring value is a double precision float. As a result, the
value is limited to be in the -3.4e38 to 3.4e38 range. If the intermediate scoring of any
document exceeds the value, then the score will be truncated. If an integer scoring is
required, then the score will always be rounded up after the score is calculated.

The DEFINESCORE operator can be used as an operand of the following operators:
— AND

— NOT

— INPATH

— THRESHOLD

— WITHIN

- SQE

- OR

— DEFINEMERGE

- MINUS

— WEIGHT

- ACCUM

For example, the following statement is valid:

DEFINESCORE ('dog', OCCURRENCE) AND DEFINESCORE ('cat', RELEVANCE)

Queries for the term "dog" using occurrence scoring, and the term "cat" using relevance
scoring.

If DEFINESCORE is used as a parameter of other operators, then an error will be returned.
For example, the following example returns an error:

SYN (DEFINESCORE ('cat', OCCURRENCE))

When used with query templates, the scoring expression overrides the values specified
by the template. For example,

<query>
<textquery grammar="CONTEXT" lang="english">
DEFINESCORE (dog, RELEVANCE) and cat
</textquery>
<score datatype="INTEGER" algorithm="COUNT"/>
</query>

Queries for "dog" and "cat", scores "cat" using OCCURRENCE (COUNT), and scores "dog
based on RELEVANCE.

Related Topic
DEFINEMERGE.

3.9 EQUIValence (=)

ORACLE

Use the EQUIV operator to specify an acceptable substitution for a word in a query.

3-18

Chapter 3

Fuzzy
Syntax
Syntax Description
terml=term2 Specifies that term?2 is an acceptable substitution for terml. Score calculated

term1 equiv term2 as the sum of all occurrences of both terms.

Example for EQUIV Operator

The following example returns all documents that contain either the phrase alsatians are big
dogs or labradors are big dogs:

'labradors=alsatians are big dogs'
Operator Precedence

The EQUIV operator has higher precedence than all other operators except the expansion
operators (fuzzy, soundex, stem).

3.10 Fuzzy

ORACLE

Use the fuzzy operator to expand queries to include words that are spelled similarly to the
specified term. This type of expansion is helpful for finding more accurate results when there
are frequent misspellings in your document set.

The fuzzy syntax enables you to rank the result set so that documents that contain words with
high similarity to the query word are scored higher than documents with lower similarity. You
can also limit the number of expanded terms.

Unlike stem expansion, the number of words generated by a fuzzy expansion depends on
what is in the index. Results can vary significantly according to the contents of the index.

Supported Languages

Oracle Text supports fuzzy definitions for English, French, German, Italian, Dutch, Spanish,
Portuguese, Japanese, OCR, and auto-language detection.

Stopwords

If the fuzzy expansion returns a stopword, the stopword is not included in the query or
highlighted by CTX DOC.HIGHLIGHT or CTX DOC.MARKUP.

Base-Letter Conversion

If base-letter conversion is enabled for a text column and the query expression contains a
fuzzy operator, Oracle Text operates on the base-letter form of the query.

Syntax

fuzzy(term, score, numresults, weight)

Parameter Description

term Specify the word on which to perform the fuzzy expansion. Oracle Text
expands term to include words only in the index. The word needs to be at
least 3 characters for the fuzzy operator to process it.

3-19

Chapter 3

HASPATH

Parameter Description

score Specify a similarity score. Terms in the expansion that score below this number
are discarded. Use a number between 1 and 80. The default is 60.

numresults Specify the maximum number of terms to use in the expansion of term. Use a
number between 1 and 5000. The default is 100.

weight Specify WEIGHT or W for the results to be weighted according to their similarity
scores.

Specify NOWEIGHT or N for no weighting of results.

Examples for Fuzzy Operator
Consider the CONTAINS query:

...CONTAINS (TEXT, 'fuzzy(government, 70, 6, weight)', 1) > 0;

This query expands to the first six fuzzy variations of government in the index that have a
similarity score over 70.

In addition, documents in the result set are weighted according to their similarity to
government. Documents containing words most similar to government receive the highest
score.

Skip unnecessary parameters using the appropriate number of commas. For example:

'fuzzy (government,,,weight)’'

Backward Compatibility Syntax

The old fuzzy syntax from previous releases is still supported. This syntax is as follows:

Parameter Description

?term Expands term to include all terms with similar spellings as the specified term.
Term needs to be at least 3 characters for the fuzzy operator to process it.

3.11 HASPATH

ORACLE

Use the HASPATH operator to find all XML, documents that contain a specified section path. You
can also use this operator to do section equality testing.

Your index must be created with the PATH SECTION GROUP for this operator to work.

Syntax
Syntax Description
HASPATH(path) Searches an XML document set and returns a score of

100 for all documents where path exists. Separate parent
and child paths with the / character. For example, you can
specify A/B/C.

See example.

3-20

ORACLE

Chapter 3
HASPATH

Syntax Description

HASPATH(A="value") Searches an XML document set and returns a score of

100 for all documents that have the element A with
content value and only value.

See example.

Using Special Characters with HASPATH and INPATH

The following rules govern the use of special characters with regard to both the HASPATH and
INPATH operators:

Left-brace ({) and right-brace (}) characters are not allowed inside HASPATH or INPATH
expressions unless they are inside the equality operand enclosed by double quotes. So
both '"HASPATH ({/A/B})"' and 'HASPATH (/2/ {B}) " will return errors. However, 'HASPATH (/
A[B="{author}"])" will be parsed correctly.

With exception of the backslash (\), special characters, such as dollar sign ($), percent sign
(%), underscore (), left brace ({), and right brace (}), when inside the equality operand
enclosed by double or single quotes, have no special meaning. (That is, no stemming,
wildcard expansion, or similar processing will be performed on them.) However, they are
still subject to regular text lexing and will be translated to whitespace, with the exception of
characters declared as printjoins. A backslash will still escape any character that
immediately follows it.

For example, if the hyphen (-) and the double quote character (") are defined as printjoins
in a lexer preference, then:

— The string B_TEXT inside HASPATH (/A[B="B_TEXT") will be lexed as the phrase B
TEXT.

— The string B-TEXT inside HASPATH (/A[B="B-TEXT") will be lexed as the word B-TEXT.

— The string B'TEXT inside HASPATH (/A [B="B'TEXT") will be lexed as the word B"TEXT.
You must use a backslash to escape the double quote between B and TEXT, or you
will get a parsing error.

— The string {B_TEXT} inside HASPATH (/A[B="{B_TEXT}") will be lexed as a phrase B
TEXT.

Examples for HASPATH Operator

Path Testing

The query

HASPATH (A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

without the query having to reference dog at all.

Section Equality Testing

The query

dog INPATH A

finds

3-21

Chapter 3
INPATH

<A>dog

but it also finds

<A>dog park

To limit the query to the term dog and nothing else, you can use a section equality test with the
HASPATH operator. For example,

HASPATH (A="dog")
finds and returns a score of 100 only for the first document, and not the second.

Limitations

Because of how XML section data is recorded, false matches might occur with XML sections
that are completely empty as follows:

<A><C></C><D><E></E></D>

A query of HASPATH (A/B/E) or HASPATH (A/D/C) falsely matches this document. This type of
false matching can be avoided by inserting text between empty tags.

False matches might also occur when the document has empty elements but has values in
attributes, as in the following example document:

<Test>

<Client id="1">
<Info infoid="1"/>

</Client>

<Client id="2">
<Info infoid="2"/>
</Client>

</Test>

When searching with the following query, the query returns the document shown in the
example, which is a false match.

The following query was used to return the example document, which is a false match:

SELECT main detail logging id, t.xml data.getstringval() xml data FROM
TEST XMLTYPE t

WHERE CONTAINS (t.xml data,

'"HASPATH (/Test/Client [@1d="1"]/Info[Rinfoid="2"])") > 0;

3.12 INPATH

ORACLE

Use the INPATH operator to do path searching in XML documents. This operator is like the
WITHIN operator except that the right-hand side is a parentheses enclosed path, rather than a
single section name.

Your index must be created with the PATH SECTION GROUP for the INPATH operator to work.

Syntax
The INPATH operator has the following syntax:

Top-Level Tag Searching

3-22

Chapter 3
INPATH

Syntax

Description

term INPATH (/A)
term INPATH (A)

Returns documents that have term within the <A> and
 tags.

Any-Level Tag Searching

Syntax

Description

term INPATH (//A)

Returns documents that have term in the <A> tag at any
level. This query is the same as 'term WITHIN A’

Direct Parentage Path Searching

Syntax

Description

term INPATH (A/B)

Returns documents where term appears in a B element
which is a direct child of a top-level A element.

For example, a document containing

<A>term
is returned.
Single-Level Wildcard Searching
Syntax Description

term INPATH (A/*/B)

Returns documents where term appears in a B element
which is a grandchild (two levels down) of a top-level A
element.

For example a document containing
<A><D>term</D>
is returned.

Multi-level Wildcard Searching

Syntax

Description

term INPATH (A/*/B/*/*IC)

Returns documents where term appears in a C element
which is 3 levels down from a B element which is two
levels down (grandchild) of a top-level A element.

Any-Level Descendant Searching

Syntax

Description

term INPATH(A//B)

Returns documents where term appears in a B element
which is some descendant (any level) of a top-level A
element.

Attribute Searching

ORACLE

3-23

Chapter 3
INPATH

Syntax

Description

term INPATH (//A/@B)

Returns documents where term appears in the B attribute
of an A element at any level. Attributes must be bound to
a direct parent.

Descendant/Attribute Existence Testing

Syntax

Description

term INPATH (A[B])

term INPATH (A[.//B])

term INPATH (//A[@B])

Returns documents where term appears in a top-level A
element which has a B element as a direct child.

Returns documents where term appears in a top-level A
element which has a B element as a descendant at any
level.

Finds documents where term appears in an A element at
any level which has a B attribute. Attributes must be tied
to a direct parent.

Attribute Value Testing

Syntax

Description

term INPATH (A[@B = "value"])

term INPATH (A[@B != "value"])

Finds all documents where term appears in a top-level A
element which has a B attribute whose value is value.

Finds all documents where term appears in a top-level A
element which has a B attribute whose value is not value.

Tag Value Testing

Syntax

Description

term INPATH (A[B = "value"))

Returns documents where term appears in an A tag which
has a B tag whose value is value.

NOT Testing

Syntax

Description

term INPATH (A[NOT(B)])

Finds documents where term appears in a top-level A
element which does not have a B element as an
immediate child.

AND and OR Testing

Syntax

Description

term INPATH (A[B and C])

term INPATH (A[B and @C="value"]])

term INPATH (A [B OR CJ)

Finds documents where term appears in a top-level A
element which has a B and a C element as an immediate
child.

Finds documents where term appears in a top-level A
element which has a B element and a C attribute whose
value is value.

Finds documents where term appears in a top-level A
element which has a B element or a C element.

ORACLE

3-24

ORACLE

Chapter 3

INPATH
Combining Path and Node Tests
Syntax Description
term INPATH (A[@B = "value")/C/D) Returns documents where term appears in aD element

which is the child of a C element, which is the child of a
top-level A element with a B attribute whose value is
value.

Nested INPATH
Nest the entire INPATH expression in another INPATH expression as follows:

(dog INPATH (//A/B/C)) INPATH (D)

When you do so, the two INPATH paths are completely independent. The outer INPATH path
does not change the context node of the inner INPATH path. For example:

(dog INPATH (A)) INPATH (D)

never finds any documents, because the inner INPATH is looking for dog within the top-level tag
A, and the outer INPATH constrains that to document with top-level tag D. A document can
have only one top-level tag, so this expression never finds any documents.

Case-Sensitivity

Tags and attribute names in path searching are case-sensitive. That is,
dog INPATH (A)

finds <a>dog</2> but does not find <a>dog. Instead use

dog INPATH (a)

Using Special Characters with INPATH

See "Using Special Characters with HASPATH and INPATH" for information on using special
characters, such as the percent sign (%) or the backslash (\), with INPATH.

Examples for INPATH Operator
Top-Level Tag Searching
To find all documents that contain the term dog in the top-level tag <A>:

dog INPATH (/A)

or

dog INPATH (R)

Any-Level Tag Searching
To find all documents that contain the term dog in the <A> tag at any level:

dog INPATH(//A)

This query finds the following documents:

<A>dog

and

3-25

Chapter 3
INPATH

<C><A>dog</C>

Direct Parentage Searching

To find all documents that contain the term dog in a B element that is a direct child of a top-
level A element:

dog INPATH (A/B)

This query finds the following XML document:

<A>My dog is friendly.<A>

but does not find:

<C>My dog is friendly.</C>

Tag Value Testing

You can test the value of tags. For example, the query:

dog INPATH (A[B="dog"])

Finds the following document:

<A>dog

But does not find:

<A>My dog is friendly.

Attribute Searching

You can search the content of attributes. For example, the query:

dog INPATH(//A/@B)

Finds the document

<C> </C>

Attribute Value Testing

You can test the value of attributes. For example, the query

California INPATH (//A[@B = "home address"])

Finds the document:

San Francisco, California, USA

But does not find:

San Francisco, California, USA

Path Testing

You can test if a path exists with the HASPATH operator. For example, the query:
HASPATH (A/B/C)

finds and returns a score of 100 for the document

<A><C>dog</C>

ORACLE 396

Chapter 3
MDATA

without the query having to reference dog at all.

Limitations
Testing for Equality
The following is an example of an INPATH equality test.

dog INPATH (A[@B = "foo"])

The following limitations apply for these expressions:

* Only equality and inequality are supported. Range operators and functions are not
supported.

e The left hand side of the equality must be an attribute. Tags and literals here are not
enabled.

e The right hand side of the equality must be a literal. Tags and attributes here are not
allowed.

e The test for equality depends on your lexer settings. With the default settings, the query

dog INPATH (A[@B= "pot of gold"])

matches the following sections:

dog

and

dog

because lexer is case-insensitive by default.

dog

because of and is are default stopwords in English, and a stopword matches any stopword
word.

dog

because the underscore character is not a join character by default.

3.13 MDATA

ORACLE

Use the MDATA operator to query documents that contain MDATA sections. MDATA sections are
metadata that have been added to documents to speed up mixed querying.

MDATA queries are treated exactly as literals. For example, with the query:

MDATA (price, $1.24)

the $ is not interpreted as a stem operator, nor is the . (period) transformed into whitespace. A
right (close) parenthesis terminates the MDATA operator, so that MDATA values that have close
parentheses cannot be searched.

Syntax

MDATA (sectionname, value)

3-27

Chapter 3
MDATA

sectionname
The name of the MDATA section(s) to search. MDATA will also search DATE or numerical equality
if the sectionname parameter is mapped to a FILTER BY column of DATE or some numerical

type.

value

The value of the MDATA section. For example, if an MDATA section called Booktype has been
created, it might have a value of paperback.

For MDATA operator on MDATA sections that are mapped to a DATE FILTER BY column, the MDATA
value must follow the Date format: YYYY-MM-DD HH24:MI:SS. Otherwise, the expected rows will
not be returned. If the time component is omitted, it will default to 00:00:00, according to SQL
semantics.

Example for MDATA Operator

Suppose you want to query for books written by the writer Nigella Lawson that contain the
word summer. Assuming that an MDATA section called AUTHOR has been declared, you can
query as follows:

SELECT id FROM idxidocs
WHERE CONTAINS (text, 'summer AND MDATA (author, Nigella Lawson)')>0

This query will only be successful if an AUTHOR tag has the exact value Nigella Lawson (after
simplified tokenization). Nigella or Ms. Nigella Lawson will not work.

Notes
MDATA query values ignore stopwords.

The MDATA operator returns an unlimited number of results or 0, depending on whether the
document is a match. You can set the maximum.

The MDATA operator is not supported for CTXCAT and CTXRULE indexes.

Table 3-2 shows how MDATA interacts with some other query operators:

Table 3-2 MDATA and Other Query Operators

Operator Example Allowed?

AND dog & MDATA(a, b) yes

OR dog | MDATA(a, b) yes

NOT dog ~ MDATA(a, b) yes

MINUS dog - MDATA(a, b) yes

ACCUM dog , MDATA(a, b) yes

PHRASE MDATA(a, b) dog no

NEAR MDATA(a, b) ; dog no

WITHIN, HASPATH, INPATH MDATA(a, b) WITHIN c no

Thesaurus MDATA(a, SYN(b)) no

expansion MDATA(a, $b) no (syntactically allowed, but the
MDATA(a, b%) inner operator is treated as literal
MDATA(a, 1b) texy

MDATA(a, ?b)

ORACLE 308

Chapter 3
MINUS ()

Table 3-2 (Cont.) MDATA and Other Query Operators

Operator Example Allowed?
ABOUT ABOUT(MDATA(a,b)) no (syntactically allowed, but the
MDATA(ABOUT(a)) inner operator is treated as literal
text)

When MDATA sections repeat, each instance is a separate and independent value. For instance,
the document

<AUTHOR>Terry Pratchett</AUTHOR><AUTHOR>Douglas Adams</AUTHOR>

can be found with any of the following queries:

MDATA (author, Terry Pratchett)
MDATA (author, Douglas Adams)
MDATA (author, Terry Pratchett) and MDATA (author, Douglas Adams)

but not any of the following:

MDATA (author, Terry Pratchett Douglas Adams)
MDATA (author, Terry Pratchett & Douglas Adams)
MDATA (author, Pratchett Douglas)

Related Topics
"ADD_MDATA"
"ADD_MDATA_SECTION"

¢ See Also:

Oracle Text Application Developer's Guide for information about section searching

3.14 MINUS (-)

ORACLE

Use the MINUS operator to lower the score of documents that contain unwanted noise terms.
MINUS is useful when you want to search for documents that contain one query term but want
the presence of a second term to cause a document to be ranked lower.

Syntax

Syntax Description

terml-term2 Returns documents that contain term1. Calculates score by subtracting the
term1 minus term?2 score of term2 from the score of term1. Only documents with positive score

are returned.

Example for MINUS Operator

Suppose a query on the term cars always returned high scoring documents about Ford cars.
You can lower the scoring of the Ford documents by using the expression:

'cars - Ford'

3-29

Chapter 3
MNOT

In essence, this expression returns documents that contain the term cars and possibly Ford.
However, the score for a returned document is the score of cars minus the score of Ford.

Related Topics
"NOT ()"

3.15 MNOT

The Mild Not (MNOT) operator is similar to the NOT and MINUS operators. The Mild Not operator
returns hits where the the left child is not contained by the right child. Both children can only be
TERM Or PHRASE nodes.

The semantics can be illustrated with a query of "term1 mnot term1 term2", where the hits for
"term1 term2" will be filtered out. For example:

* A document with only term1 will be returned, with score unchanged.
* A document with only term1 term2 will not be returned.

* A document with term1 term1 term2 will be returned, but the score will be calculated using
just the first term1 hit.

The behavior described in the third bullet is different from the behavior of NOT, which does not
return this type of document.

The MNOT operator is more specific than the MINUS operator, in that the left child must be
contained by the right child. If it is not, the Mild Not operator ignores the right child. Also, for
Mild Not, the right child is a true filter, that is, it does not simply subtract the scores of left child
and right child.

The MNOT operator has precedence lower than NOT and higher than WITHIN.

Syntax

Syntax Description

terml1 mnot term1 term2 Returns docs that contain term1 unless it is part of
the phrase term1 term2.

term1 mnot term2 Returns all documents that contain term1. It will be

the same query as just term1.

Example for MNOT Operator
The children of the MNOT operator must be a TERM or PHRASE.

SELECT * FROM docs
WHERE CONTAINS (txt, 'terml mnot terml term2') >0

Related Topic
"NOT ()"

ORACLE 330

Chapter 3
Narrower Term (NT, NTG, NTP, NTI)

3.16 Narrower Term (NT, NTG, NTP, NTI)

Use the narrower term operators (NT, NTG, NTP, NTI) to expand a query to include all the terms
that have been defined in a thesaurus as the narrower or lower level terms for a specified term.

They can also expand the query to include all of the narrower terms for each narrower term,
and so on down through the thesaurus hierarchy.

Syntax
Syntax Description
NT(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower terms for term.
NTG(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower generic terms for term.
NTP(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower partitive terms for term.
NTI(term[(qualifier)][,level][,thes]) Expands a query to include all the lower level terms defined
in the thesaurus as narrower instance terms for term.
term

Specify the operand for the narrower term operator. term is expanded to include the narrower
term entries defined for the term in the thesaurus specified by thes. The number of narrower
terms included in the expansion is determined by the value for 1evel. You cannot specify
expansion operators in the term argument.

qualifier

Specify a qualifier for term, if term is @ homograph (word or phrase with multiple meanings,
but the same spelling) that appears in two or more nodes in the same hierarchy branch of
thes.

If a qualifier is not specified for a homograph in a narrower term query, the query expands to
include all of the narrower terms of all homographic terms.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the narrower terms
for the specified term. For example, a level of 1 in an NT query returns all the narrower term
entries, if any exist, for the specified term. A level of 2 returns all the narrower term entries for
the specified term, as well as all the narrower term entries, if any exist, for each narrower
term.

The level argument is optional and has a default value of one (1). Zero or negative values for
the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

ORACLE 331

Chapter 3
NDATA

Note:

If you specify thes, then you must also specify level.

Examples for Narrower Term Operators

The following query returns all documents that contain either the term cat or any of the NT
terms defined for cat in the DEFAULT thesaurus:

'NT (cat) '

If you specify a thesaurus name, then you must also specify level as in:

'NT (cat, 2, mythes)'

The following query returns all documents that contain either fairy tale or any of the narrower
instance terms for fairy tale as defined in the DEFAULT thesaurus:

'NTI (fairy tale)'

That is, if the terms cinderella and little mermaid are defined as narrower term instances for
fairy tale, Oracle Text returns documents that contain fairy tale, cinderella, or little mermaid.

Notes

Each hierarchy in a thesaurus represents a distinct, separate branch, corresponding to the four
narrower term operators. In a narrower term query, Oracle Text only expands the query using
the branch corresponding to the specified narrower term operator.

Related Topic

CTX_THES.NT in CTX_THES Package for more information on browsing the narrower terms
in your thesaurus

3.17 NDATA

ORACLE

Use the NDATA operator to find matches that are spelled in a similar way or where rearranging
the terms of the specified phrase is useful.

It is helpful for finding more accurate results when there are frequent misspellings (or
inaccurate orderings) of name data in the document set. This operator can be used only on
defined NDATA sections. The NDATA syntax enables you to rank the result set so that documents
that contain words with high orthographic similarity are scored higher than documents with
lower similarity.

Normalization

A lexer does not process NDATA query phrases. Users can, however, set base letter and
alternate spelling attributes for a particular section group containing NDATA sections. Query
case is normalized and non-character data (except for white space) is removed (for example,
numerical or punctuation).

Syntax

ndata (sectionname, phrase [,order][,proximity][,threshold])

3-32

ORACLE

Chapter 3

NDATA
Parameter Default Value Parameter Description
Name
sectionname Specify the name of a defined NDATA sections to query (that is,

section name)

phrase Specify the phrase for the name data query.

The phrase parameter can be a single word or a phrase, or a
string of words in free text format.

The score returned is a relevant score.

Oracle Text ignores any query operators that are included in
phrase.

The phrase should be a minimum of two characters in length and
should not exceed 4000 characters in length.

order NOORDER Specify whether individual tokens (terms) in a query should be
matched in-order or in any order. The order parameter provides a
primary filter for matching candidate documents.

ORDER or O - The query terms are matched in-order.

NOORDER 0 N [DEFAULT] - The query terms are matched in any
order.

proximity NOPROXIMITY Specify whether the proximity of terms should influence the
similarity score of candidate matches. That is, if the proximity
parameter is enabled, non-matching additional terms between
matching terms reduces the similarity score of candidate matches.

PROXIMITY or P - The similarity score influenced by the proximity
of query terms in candidate matches.

NOPROXIMITY or N [DEFAULT] - The similarity score is not
influenced by the proximity of query terms in candidate matches.

threshold 20 Starting with Oracle Database 12c Release 2 (12.2), you can
provide a threshold value as part of the NDATA operator. Specify a
threshold value for percentage of matching grams. The section
values containing low percentage of matching grams are ignored.
If the threshold value is 20, sections with less than 20% of
matching grams are ignored. If this value is lowered, fewer
sections are ignored and this leads to a better recall. This
threshold value promotes recall over precision as the value is
lowered. For example:

NDATA (author, LAST First, x, proximity, 10)

Examples for NDATA Operator

An NDATA query on an indexed surname section name that matches terms in the query phrase
in any order without influencing the similarity score by the proximity of the jones and smith
terms has the form:

SELECT entryid, SCORE (1) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, jones smith)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query phrase
in any order and in which similarity scores are influenced by the proximity of the jones and
smith terms has the form:

SELECT entryid, SCORE (1) FROM people WHERE
CONTAINS (idx _column, 'NDATA (surname, jones smith,,proximity)',1)>0;

3-33

Chapter 3
NEAR (;)

An NDATA query on an indexed surname section name that matches terms in the query phrase
in-order without influencing the similarity score by the proximity of the jones and smith terms
has the form:

SELECT entryid, SCORE (1) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, jones smith, order)',1)>0;

An NDATA query on an indexed surname section name that matches terms in the query phrase
in-order and in which similarity scores are influenced by the proximity of the jones and smith
terms has the form:

SELECT entryid, SCORE (1) FROM people WHERE
CONTAINS (idx_column, 'NDATA (surname, jones smith, order, proximity)',1)>0;

Notes

The NDATA query operator does not provide offset information. As such, it cannot be used as a
child of WITHIN, NEAR(;), or EQUIV (=), and NDATA sections are ignored by CTX DOC.HIGHLIGHT,
CTX_DOC.SNIPPET, and CTX DOC.MARKUP.

The NDATA operator is not supported in the CTXCAT grammar. You can use it with other
operators, including OrR and query templates. You cannot use other query operators inside the
NDATA operator.

A use case of the NDATA operator may involve finding a particular entry based on an
approximate spelling of a person's full-name and an estimated date-of-birth. Supposing the
entries' date-of-births are stored as an SDATA section, user-defined scoring's alternate scoring
template can be used to combine the scores of the full-name's NDATA section data and the
date-of-birth's SDATA section data.

The name john smith is queried for the section specified by the fullname section name.
Altering the NDATA operator's score based on the closeness of the SDATA section's date-of-birth
to the date 08-NOV-2012 modifies the ranking of matching documents as follows:

<query>
<textquery grammar="CONTEXT" lang="english">
NDATA (fullname, john smith)
</textquery>
<score algorithm="COUNT" normalization expr =
"doc_score- (DATE (8-NOV-2012) -sdata:dob) "/>
</query>

Restrictions

The NDATA query operator does not work with CTX_DOC Package procedures. Attempting to
use NDATA with CTX_DOC procedures will return an error stating that this is not supported.

3.18 NEAR ()

Use the NEAR operator to return a score based on the proximity of two or more query terms.

Oracle Text returns higher scores for terms closer together and lower scores for terms farther
apart in a document. If a word or term appears more than once in a NEAR query, then the word
must appear more than once in the document in order to match.

ORACLE 332

Chapter 3
NEAR (;)

Note:
The NEAR operator works with only word queries. You cannot use NEAR in ABOUT
queries.
Syntax
NEAR ((wordl,word2, ...,wordn) [, max span [, order [, minreqd]]])

Backward compatibility syntax:

wordl; word?2

word1-n
Specify the terms in the query separated by commas. The query terms can be single words or
phrases and may make use of other query operators (see "NEAR with Other Operators").

max_span

Optionally specify the number of words separating the start and end words of a clump. The
default is 100. Oracle Text returns an error if you specify a number greater than 100.

A clump is the smallest group of words in which all query terms occur. All clumps begin and
end with a query term.

For near queries with two terms, max_span is the maximum distance allowed between the two
terms. For example, if the document contains “The cat sat on the dog” then you can find cat
within 3 words of dog by using the following query:

'near ((dog, cat, 3)'

If the document contains “The cat and the rabbit sat on the dog” then you can find cat, dog,
and rabbit within 6 words by using the following query:

'near ((cat, dog, rabbit), 6)'

Note:

The search term rabbit is still included in the max_span calculation. If you specify a
max_span of 5 then you cannot find rabbit. Stopwords are also included in the span
calculation.

order

Specify TRUE for Oracle Text to search for terms in the order you specify. The default is FALSE.
For example, to search for the words monday, tuesday, and wednesday in that order with a
maximum clump size of 20, enter the following query:

'near ((monday, tuesday, wednesday), 20, TRUE)'

ORACLE .

ORACLE

Chapter 3
NEAR (;)

Note:

To specify order, then you must always specify a number for max_span.

Oracle Text might return different scores for the same document when you use identical query
expressions that have the order flag set differently. For example, Oracle Text might return
different scores for the same document when you enter the following queries:

'near ((dog, cat), 50, FALSE)'
'near ((dog, cat), 50, TRUE)'

minreqd

Specify the minimum number of query terms that must be present near each other within a
given span, for a document to qualify as a match. You must specify a number greater than 1. If
the number of terms that must be near each other for a match is not specified, all terms must
match. For example, the following query matches documents that contain clusters of words
pertaining to fish:

'near ((fish, shark, ocean, scales, fishing), 10, FALSE, 3)'

Here, only three of the query terms must be within a distance of 10 from each other for a
match.

NEAR Scoring

The scoring for the NEAR operator combines frequency of the terms with proximity of terms. For
each document that satisfies the query, Oracle Text returns a score between 1 and 100 that is
proportional to the number of clumps in the document and inversely proportional to the
average size of the clumps. This means many small clumps in a document result in higher
scores, because small clumps imply closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as seven,
generally need fewer clumps in a document to score 100 than do queries with few terms, such
as two.

A clump is the smallest group of words in which all query terms occur. All clumps begin and
end with a query term. Define clump size with the max span parameter, as described in this
section.

The size of a clump does not include the query terms themselves. So for the query NEAR ((DOG,
CAT), 1), dog cat will be a match, and dog ate cat will be a match, but dog sat on cat will not
be a match.

NEAR with Other Operators

You can use the NEAR operator with other operators such as AND and OR. Scores are calculated
in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah where the
terms lion and tiger are within 10 words of each other, enter the following query:

'near((lion, tiger), 10) AND cheetah'

The score returned for each document is the lower score of the near operator and the term
cheetah.

You can also use the equivalence operator to substitute a single term in a near query:

'near ((stock crash, Japan=Korea), 20)'

3-36

ORACLE

Chapter 3
NEAR (;)

This query asks for all documents that contain the phrase stock crash within twenty words of
Japan or Korea.

The following NEAR syntax is now valid:

SELECT * FROM docs WHERE CONTAINS (txt, 'near((aterml aterm2 ... aterml
OR bterml bterm2 ... btermJ
OR cterml cterm?2 ... ctermK, dterm))') >0

There can be any number of ORs in a given NEAR child, and the OR can appear in any of the
NEAR children.

The NEAR within NEAR feature allows users to use nested proximity queries. Starting with Oracle
Database 12c¢ Release 2 (12.2), the distance between phrases is measured from the closest
words in the phrases. For example, if the document contains the phrases ~ Lorem ipsum dolor
sit amet’ and ~ Sed ut perspiciatis unde omnis’, rather than measuring the distance of these
two phrases as the distance between "Lorem’ and "Sed’, the first two words in the phrases, the
distance is measured from "amet’ and ‘Sed’. The distance between phrases is the so-called
Hausdorff measure.

SELECT * FROM docs
WHERE CONTAINS (txt, 'near((near((terml, term2),5), term3), 100)')>0

This query returns documents where terml and term2 are near within a 5 token window, and
the phrase containing terml and term2 is within a 100 token window from term3. The distance
between term3 and the phrase containing terml and term2 is computed based on the
Hausdorff measure.

Mixing the semicolon and NEAR syntax is not supported and throws an error. That is, the
queries "near ((a;b,c),3)" or "near((a,b));c" will be disallowed.

The following operators also work with NEAR and ; :

e EQUIV

* All expansion operators that produce words, phrases, or EQUIV. These include:
— soundex
- fuzzy
— wildcards

— stem

Backward Compatibility NEAR Syntax

You can write near queries using the syntax of previous Oracle Text releases. However, in a
nested NEAR query, the semicolon operator cannot be used as the inner NEAR. That is, the
query 'near (((a;d), f),3) ' produces a syntax error. The semicolon operator can be used as
the outermost NEAR in a nested NEAR query.

For example, to find all documents where lion occurs near tiger, write:
'lion near tiger'

or with the semi-colon as follows:

'lion;tiger’

This query is equivalent to the following query:

'near((lion, tiger), 100, FALSE)'

3-37

Chapter 3
NEAR2

Note:

Only the syntax of the NEAR operator is backward compatible. In the example, the
score returned is calculated using the clump method as described in this section.

Highlighting with the NEAR Operator

When you use highlighting and your query contains the near operator, all occurrences of all
terms in the query that satisfy the proximity requirements are highlighted. Highlighted terms
can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. I like chocolate served
in a waffle cone, and vanilla served in a cup with caramel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
<<chocolate>> served in a waffle cone, and <<vanilla>> served in a cup with
caramel syrup.

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
chocolate served in a waffle cone, and vanilla served in a cup with caramel syrup.

See Also:

CTX_DOC Package for more information about the procedures for highlighting

Section Searching and NEAR
Use the NEAR operator with the WITHIN operator for section searching as follows:

'near ((dog, cat), 10) WITHIN Headings'

When evaluating expressions such as these, Oracle Text looks for clumps that lie entirely
within the given section.

In this example, only those clumps that contain dog and cat that lie entirely within the section
Headings are counted. That is, if the term dog lies within Headings and the term cat lies five
words from dog, but outside of Headings, this pair of words does not satisfy the expression and
is not counted.

3.19 NEARZ

ORACLE

Use the NEAR2 operator to perform position—based scoring and length normalization to help
improve relevancy.

The NEAR2 operator divides a document into segments based on the given query. Then, it
classifies each segment based on the primary features and scores them based on the
secondary features. The primary features that are used are as follows:

3-38

ORACLE

Chapter 3
NEAR2

* Phrase Hits

e Partial Phrase Hits

e Ordered Near Hits

* Unordered Near Hits
e AND Hits

The secondary features are as follows:

e Excess Span
e Start Position

e Longest Partial Phrase

Syntax

NEAR2 ((wordl, wordZ2,...,wordn),max_span, phrase weight,
partial phrase weight, ordered near weight, unordered near weight, and weight)

All or none of the weights must be provided. When the weights are provided, the NEAR2
operator works in the weighted-average mode. The weights are integers between 0 and 10.

word1-n

Specify the terms in the query separated by commas. The query terms can be single words or
phrases and can use other query operators (see "NEAR with Other Operators"). Only the word
list is mandatory.

max_span
Optionally, specify the size of the biggest clump. The default is 50. Oracle Text returns an error
if you specify a number greater than 50.

A clump is the smallest group of words in which all query terms occur. All clumps begin and
end with a query term.

For near queries with two terms, max_span is the maximum distance allowed between the two
terms. For example, to query on dog and cat where dog is within 6 words of cat, enter the
following query:

'near ((dog, cat), 6)'

phrase_weight
Determine the weight of the phrase primary feature when in weighted-average mode. This is a
qualitative weight, which is mapped to an internal weight.

partial_phrase_weight
Determine the weight of the partial phrase primary feature when in weighted-average mode.
This is a qualitative weight.

ordered_near_weight
Determine the weight of the ordered near primary feature when in weighted-average mode.
This is a qualitative weight.

unordered_near_weight
Determine the weight of the unordered near primary feature when in weighted-average mode.
This is a qualitative weight.

3-39

3.20 NOT

Chapter 3
NOT (~)

and_weight
Determine the weight of the AND primary feature when in weighted average mode. This is a

gualitative weight.

Use the NOT operator to search for documents that contain one query term and not another.

Syntax

Syntax Description

terml~term2 Returns documents that contain term1 and not term2.

terml not term2

Examples for NOT Operator

To obtain the documents that contain the term animals but not dogs, use the following
expression:

'animals ~ dogs'

Similarly, to obtain the documents that contain the term transportation but not automobiles or
trains, use the following expression:

'transportation not (automobiles or trains)'

Note:

The NOT operator does not affect the scoring produced by the other logical operators.

Related Topics
"MINUS (-)"

3.21 OR (|)

ORACLE

Use the OR operator to search for documents that contain at least one occurrence of any of the
query terms. The OR operator returns documents that contain any of the query terms, while the

AND operator returns documents that contain all query terms.

Syntax

Syntax Description

Returns documents that contain term1 or term2. Returns the
maximum score of its operands. At least one term must exist; higher

score taken.

termljterm2
terml or term2

Examples for OR Operator

To obtain the documents that contain the term cats or the term dogs, use either of the following
expressions:

3-40

Chapter 3
Preferred Term (PT)

'cats | dogs'
'cats OR dogs'

Scoring

In an OR query, the score returned is the score for the highest query term. In the example, if the
scores for cats and dogs is 30 and 40 within a document, the document scores 40.

Related Topics
"AND (&)"

3.22 Preferred Term (PT)

Use the preferred term operator (PT) to replace a term in a query with the preferred term that
has been defined in a thesaurus for the term.

Syntax

Syntax Description

PT(term[,thes]) Replaces the specified word in a query with the preferred term for term.
term

Specify the operand for the preferred term operator. term is replaced by the preferred term
defined for the term in the specified thesaurus. However, if no PT entries are defined for the
term, term is not replaced in the query expression and term is the result of the expansion.
You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. As a result, a thesaurus named
DEFAULT must exist in the thesaurus tables before using any of the thesaurus operators.

Example for PT Operator

The term automobile has a preferred term of car in a thesaurus. A PT query for automobile
returns all documents that contain the word car. Documents that contain the word automobile
are not returned.

Related Topics

CTX_THES.PT in CTX_THES Package form more information on browsing the preferred terms
in your thesaurus

3.23 Related Term (RT)

ORACLE

Use the related term operator (RT) to expand a query to include all related terms that have
been defined in a thesaurus for the term.

Syntax
Syntax Description
RT(term[,thes]) Expands a query to include all the terms defined in the thesaurus as a

related term for term.

3-41

Chapter 3
SDATA

term

Specify the operand for the related term operator. term is expanded to include term and all the
related entries defined for term in thes.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. As a result, a thesaurus named
DEFAULT must exist in the thesaurus tables before using any of the thesaurus operators.

Example for RT Operator

The term dog has a related term of wolf. An RT query for dog returns all documents that
contain the word dog and wolf.

Related Topics

CTX_THES.RT in CTX_THES Package for more information on browsing the related terms in
your thesaurus

3.24 SDATA

ORACLE

Use the SDATA operator to perform tests on SDATA sections and columns, which contain
structured data values.

SDATA sections speed up mixed querying and ordering. This operator provides structured
predicate support for CONTAINS, which extends non-SQL interfaces such as count hits or the
result set interface.

SDATA operators should only be used as descendants of AND operators that also have non-
SDATA children.

SDATA queries perform on string or numeric literals, and on date strings. The string literal and
date string are enclosed within single or double quote characters. The numeric value is not
enclosed in quote characters, and must conform to the SQL format of NUMBER. For example:

CONTAINS (text, "dog and SDATA (category = ''news'')")>0 ...
SDATA (rating between 1.2 and 3.4)

SDATA (author LIKE 'FFORDES%')

SDATA (date >='2005-09-18")

Closed parentheses are permitted, as long as they are enclosed in single or double quotes.

The SDATA operator can be used in query templates.

Syntax

Syntax Operators

SData := "SDATA" "(" SDataPredicate ")"

SDataPredicate = section_name SDataTest

SDataTest := <SDataSingleOp SDataLiteral> | SDataBetweenOp | <"is" ("not")? "null">
SDataSingleOp = e = S S = | <> | Mlike™) SDataliteral

3-42

ORACLE

Chapter 3

SDATA
Syntax Operators
SDataBetweenOp = "between" SDatal.iteral "and" SDataLiteral
SDatalLiteral = numeric_literal | "™ string_literal "™ | ™" date_string ""
section_name
The name of the SDATA section(s) on which to search and perform the test, or check.
SDatal.iteral
The value of the SDATA section. This must be either a string literal, numeric literal, or a date
string.

The SDATA operator returns a score of 100 if the enclosed predicate returns TRUE, and returns
0 otherwise. In the case of a NULL value, the SDATA operator returns a score of 0 (since in SQL
it would not return TRUE).

Multi-valued semantics are not defined, as multi-valued SDATA sections are not supported.
Comparison of strings is case sensitive. The BINARY collation is always used.

Note:

For the SDATA operator on SDATA sections that are mapped to a DATE FILTER BY
column, the SDATA value must follow the Date format: YYYY-MM-DD Or YYYY-MM-DD
HH24:MI:Ss. Otherwise, the expected rows will not be returned. If the time
component is omitted, it will default to 00:00:00, according to SQL semantics. This
Date format is always used, regardless of the setting of the NLS_DATE_FORMAT
environment variable.

Example for SDATA Operator

Suppose that you want to query for books in the fiction category that contain the word summer.
Assuming that an SDATA section called CATEGORY has been declared, you can query as follows:

SELECT id FROM idx docs
WHERE CONTAINS (text, 'summer AND SDATA (category = "fiction")')>0

Restrictions

* An error is raised if the section name is not a defined SDATA section. The source of the
section (for example, tag versus column) is not important.

* The syntax precludes RHS SDATA and expressions.
° SDATA operators cannot be children of WITHIN, INPATH, HASPATH, Or NEAR.

e The data type of the named SDATA section must be compatible with the literal provided
(and the operator, for example, LIKE) or an error is raised.

e SDATA operators are not supported in CTXRULE query documents.

e SDATA operators have no effect on highlighting.

Notes

Stoplists do not affect string-value SDATA sections, that is, if a stopword is present within an
SDATA section, then the token will still be indexed and can be queried using the SDATA operator.

3-43

Chapter 3
soundex ()

Oracle recommends using SDATA operators only as descendants of AND operators that also
have non-spATA children. Essentially, use SDATA operators as secondary (that is, checking or
non-driving) criteria. For instance, "find documents with DOG that also have price > 5", rather
than "find documents with rating > 4". Other usage may operate properly, but may not have
optimal performance.

The following examples are consistent with recommended use:

dog & SDATA(foo = 5)
The SDATA is a child of an AND operator that also has non-SDATA children.
dog & (SDATA(foo = 5) | SDATA(x = 1))

Although the SDATA operators here are children of Or, they are still descendants of an AND
operator with non-SDATA children.

The following examples show use that is not recommended:

SDATA (foo = 5)

Here, SDATA is the only criteria and, therefore, the driving criteria.

dog | SDATA (bar = 9)

The SDATA in this example is a child of an OR operator rather than an AND.

SDATA (foo = 5) & SDATA(bar = 7)

While both SDATA operators in this example are descendants of AND, this AND operator does not
have non-spaTA children.

3.25 soundex (!)

ORACLE

Use the soundex (!) operator to expand queries to include words that have similar sounds; that
is, words that sound like other words.

This function enables comparison of words that are spelled differently, but sound alike in
English. The SOUNDEX operator algorithm uses heuristic methods, so results may vary based on
your query words.

Syntax
Syntax Description
lterm Expands a query to include all terms that sound the same as the

specified term (English-language text only).

Example for Soundex (!) Operator

SELECT ID, COMMENT FROM EMP RESUME
WHERE CONTAINS (COMMENT, '!SMYTHE') > 0 ;

ID COMMENT

23 Smith is a hard worker who..

3-44

Chapter 3
stem ($)

Language

Soundex works best for languages that use a 7-bit character set, such as English. It can be
used, with lesser effectiveness, for languages that use an 8-bit character set, such as many
Western European languages.

If you have base-letter conversion specified for a text column and the query expression
contains a soundex operator, then Oracle Text operates on the base-letter form of the query.

3.26 stem ($)

Use the stem ($) operator to search for terms that have the same linguistic root as the query
term.

If you use the BASIC LEXER to index your language, stemming performance can be improved
by using the index_stems attribute.

The Oracle Text stemmer, licensed from XSoft Division of Xerox Corporation, supports the
following languages with the BASIC_LEXER: English, French, Spanish, Italian, German, and
Dutch.

Japanese stemming is supported with the JAPANESE_LEXER.
Specify your stemming language with the BASIC_WORDLIST wordlist preference.

Syntax
Syntax Description
$term Expands a query to include all terms having the same stem or

root word as the specified term.

Examples for Stem ($) Operator

Input Expands To

$scream scream screaming screamed
$distinguish distinguish distinguished distinguishes
$guitars guitars guitar

$commit commit committed

$cat cat cats

$sing sang sung sing

Behavior with Stopwords

If stem returns a word designated as a stopword, the stopword is not included in the query or
highlighted by CTX QUERY.HIGHLIGHT Or CTX QUERY.MARKUP.

Related Topics

For more information about enabling the stem operator with BASIC_LEXER, see
"BASIC_LEXER" in Oracle Text Indexing Elements

ORACLE 345

Chapter 3
Stored Query Expression (SQE)

3.27 Stored Query Expression (SQE)

Use the SQE operator to call a stored query expression created with the
CTX QUERY.STORE_SQE procedure.

Stored query expressions can be used for creating predefined bins for organizing and
categorizing documents or to perform iterative queries, in which an initial query is refined using
one or more additional queries.

Syntax
Syntax Description
SQE(SQE_name) Returns the results for the stored query expression

SQE_name.

Examples for SQE Operator
To create an SQE named disasters, use CTX_QUERY.STORE_SQE as follows:
begin

ctx query.store sqge('disasters', 'hurricane or earthquake or blizzard');
end;

This stored query expression returns all documents that contain either hurricane, earthquake
or blizzard.

This SQE can then be called within a query expression as follows:

SELECT SCORE (1), docid FROM news
WHERE CONTAINS (resume, 'sqge(disasters)', 1)> 0
ORDER BY SCORE (1) ;

Limitations

Up to 100 stored query expressions (SQESs) can be stored in a single Text query. If a Text
guery has more than 100 SQEs, including nested SQEs, then the query fails and error
DRG-50949 is raised.

Related Topic
"STORE_SQE"

3.28 SYNonym (SYN)

ORACLE

Use the synonym operator (SYN) to expand a query to include all the terms that have been
defined in a thesaurus as synonyms for the specified term.

Syntax
Syntax Description
SYN(term[,thes]) Expands a query to include all the terms defined in the thesaurus as

synonyms for term.

3-46

Chapter 3
threshold (>)

term

Specify the operand for the synonym operator. term is expanded to include term and all the
synonyms defined for term in thes.

You cannot specify expansion operators in the term argument.

thes

Specify the name of the thesaurus used to return the expansions for the specified term. The
thes argument is optional and has a default value of DEFAULT. A thesaurus named DEFAULT
must exist in the thesaurus tables if you use this default value.

Examples for SYN Operator

The following query expression returns all documents that contain the term dog or any of the
synonyms defined for dog in the DEFAULT thesaurus:

'SYN (dog) '

Compound Phrases in Synonym Operator

Expansion of compound phrases for a term in a synonym query are returned as AND
conjunctives.

For example, the compound phrase temperature + measurement + instruments is defined in a
thesaurus as a synonym for the term thermometer. In a synonym query for thermometer, the
query is expanded to:

{thermometer} OR ({temperature}é&{measurement}é&{instruments})

Related Topics

CTX_THES.SYN in CTX_THES Package for more information on browsing the synonym terms
in your thesaurus

3.29 threshold (>)

Use the threshold operator (>) in two ways:

e atthe expression level
e atthe query term level

The threshold operator at the expression level eliminates documents in the result set that score
below a threshold number.

The threshold operator at the query term level selects a document based on how a term scores
in the document.

Syntax

Syntax Descript