
Oracle® Database
Database Installation and Administration
Guide

19c for Fujitsu BS2000
F28348-02
January 2021

Oracle Database Database Installation and Administration Guide, 19c for Fujitsu BS2000

F28348-02

Copyright © 2007, 2021, Oracle and/or its affiliates.

Primary Author: Binika Kumar

Contributing Authors: Bharathi Jayathirtha, Walter Moser, Wolfgang Schmidt, Helmut Tronberend, Prakash
Jashnani

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Using Oracle Database Documentation xiv

Related Documents xiv

Conventions Used in this Manual xiv

Part I Concepts

1 Concepts and Architecture

1.1 About the BS2000 Operating System 1-1

1.2 About File Systems 1-1

1.3 About Processes 1-2

1.4 Memory Architecture 1-2

1.5 BS2000 User Ids 1-4

1.5.1 Installation User ID 1-4

1.5.2 DBA User ID 1-5

1.5.3 Client User IDs 1-5

1.6 Oracle Database Programs 1-5

1.6.1 Program Libraries 1-5

1.6.2 Program Environment 1-6

1.6.2.1 Oracle Environment Variables 1-6

1.6.2.2 Setting Variables in the BS2000 Program Environment 1-7

1.6.2.3 Setting Variables in the POSIX Program Environment 1-8

1.7 Physical Storage Structures 1-9

1.7.1 Files of an Oracle Database 1-10

1.7.2 Oracle Managed Files 1-10

1.7.3 Files of a Bigfile Tablespace 1-11

1.8 Parameter Files 1-12

iii

Part II Installation and Database Creation

2 Oracle Database Installation and Deinstallation

2.1 Overview of Oracle Database Installation 2-1

2.2 Planning the Installation 2-2

2.3 Oracle Database Preinstallation Requirements 2-2

2.3.1 Checking Hardware Requirements 2-2

2.3.1.1 Fujitsu BS2000 Server Lines 2-3

2.3.1.2 Memory Requirements 2-3

2.3.1.3 Disk Space Requirements 2-3

2.3.1.4 Display Requirements 2-4

2.3.2 Checking Software Requirements 2-4

2.3.2.1 Operating System and Communication System Requirements 2-5

2.3.2.2 POSIX Parameters 2-5

2.3.2.3 Package Requirements 2-6

2.3.2.4 Additional BS2000 Software Components 2-7

2.3.2.5 Compiler and CRTE Requirements for Oracle Database
Applications 2-8

2.3.2.6 Additional Software Requirements 2-8

2.3.3 About Checking Required Subsystems 2-8

2.3.4 Checking Network Setup 2-9

2.3.4.1 About Checking BCAM Timer 2-9

2.3.4.2 About Checking LWRESD 2-9

2.3.4.3 About Checking Loopback Address 2-9

2.3.4.4 About Checking the Configuration Files in the POSIX File System 2-10

2.3.5 Creating Required Operating System Users and Groups 2-10

2.3.5.1 About Creating the BS2000 Installation User ID 2-10

2.3.5.2 About Creating the POSIX Group 2-11

2.3.5.3 About Initializing the POSIX User 2-11

2.3.5.4 About Creating Users and Groups for Oracle Databases 2-12

2.3.6 Required Directories in POSIX 2-13

2.3.6.1 About Oracle Base Directory 2-13

2.3.6.2 About Oracle Inventory Directory 2-14

2.3.6.3 About Oracle Home Directory 2-15

2.3.7 Identifying or Creating Oracle Base Directory in POSIX 2-15

2.3.7.1 About Identifying an Existing Oracle Base Directory in POSIX 2-16

2.3.7.2 Expanding a File System for the Oracle Base Directory 2-17

2.3.7.3 Creating a File System for the Oracle Base Directory 2-17

2.4 About Read-Only Oracle Homes in the POSIX File System 2-18

2.4.1 Understanding Read-Only Oracle Homes 2-18

iv

2.4.1.1 About Read-Only Oracle Homes 2-18

2.4.1.2 About Oracle Base Homes 2-19

2.4.1.3 About Oracle Base Config 2-20

2.4.1.4 About orabasetab 2-20

2.4.2 About Installing a Read-Only Oracle Home in the POSIX File System 2-21

2.4.3 Determining if an Oracle Home is Read-Only 2-21

2.4.4 File Path and Directory Changes in Read-Only Oracle Homes 2-22

2.5 Installing Oracle Database 2-23

2.6 Oracle Database Postinstallation Tasks 2-25

2.7 About Installing Multiple Oracle Databases 2-26

2.8 About Removing Oracle Database Software 2-26

3 About Creating a Database

3.1 Prerequisites for Database Creation 3-1

3.2 About Creating a Non-CDB 3-1

3.2.1 Creating a Database Automatically 3-2

3.2.2 Creating a Database Manually 3-4

3.2.2.1 Creating Parameter Files for a Non-CDB 3-4

3.2.2.2 Creating the Database 3-5

3.2.2.3 About Installing Data Dictionary Views 3-6

3.2.2.4 About Installing Online Help Messages 3-6

3.2.2.5 About Installing Demo Tables 3-7

3.2.2.6 About Installing Sample Schemas 3-7

3.2.2.7 About Verifying Database Creation 3-7

3.2.2.8 About Installing Oracle Text 3-7

3.2.2.9 About Installing Java 3-7

3.3 About Creating a Multitenant Container Database 3-7

3.3.1 Creating Parameter Files for a CDB 3-8

3.3.2 About Creating a CDB 3-9

3.3.2.1 About Modifying the Initialization File for a CDB 3-9

3.3.2.2 About Modifying the ORAENV File for a CDB 3-9

3.3.2.3 Using SQL*Plus to Create a CDB 3-9

4 About Upgrading a Database

4.1 Performing Preupgrade Procedures 4-1

4.2 Performing Upgrade Procedures 4-3

4.3 Performing Postupgrade Procedures 4-5

v

5 About Upgrading Applications

5.1 Precompile and Compile Application Programs 5-1

5.2 Link Application Programs 5-1

5.3 Update ORAENV Files 5-1

Part III Database Administration

6 Administering Oracle Database

6.1 Using the SQL*Plus Utility 6-1

6.2 Startup and Parameter Files 6-1

6.2.1 The Environment Definition File ORAENV 6-1

6.2.2 The Initialization File INIT.ORA 6-2

6.2.3 The Server Parameter File SPFILE 6-2

6.2.4 About Using the Initialization File 6-2

6.3 Preparing a Remote Startup of a Database Instance Using SQL*Plus 6-3

6.4 Automatic Diagnostic Repository 6-4

6.4.1 Automatic Diagnostic Repository Directories and Files 6-5

6.4.2 ADR Command Interpreter Utility 6-6

7 Oracle Database Utilities

7.1 Basics of Oracle Database Utilities 7-1

7.1.1 The Oracle Database Environment-Definition File 7-1

7.1.1.1 Generating the Environment-Definition File 7-2

7.1.1.2 Calling the Environment Definition File 7-2

7.1.1.3 Specifying the Environment Variables 7-2

7.1.2 Oracle Runtime Libraries 7-3

7.1.3 Starting Oracle Utilities in the BS2000 Program Environment 7-3

7.1.4 Starting Oracle Utilities in the POSIX Program Environment 7-4

7.1.5 Connecting to an Oracle Database Instance 7-6

7.1.5.1 Default Connections 7-6

7.1.5.2 Accessing an Oracle Database Instance 7-7

7.1.6 Using BS2000 Files for Input and Output 7-7

7.1.6.1 Text Files 7-8

7.1.6.2 Binary Files 7-8

7.1.6.3 Default File Name Extensions 7-8

7.1.6.4 Using Link Names 7-8

7.1.6.5 Fixed Link Names 7-8

7.2 SQL*Plus 7-9

vi

7.2.1 Using SQL*Plus in the BS2000 Environment 7-9

7.2.1.1 Starting SQL*Plus in the BS2000 Environment 7-10

7.2.1.2 Interrupting a SQL*Plus Command in the BS2000 Environment 7-10

7.2.1.3 Running BS2000 Commands from SQL*Plus 7-10

7.2.1.4 Starting the BS2000 Editor 7-11

7.2.1.5 Spooling SQL*Plus Output 7-12

7.2.1.6 Specifying the Search Path for SQL Scripts in the BS2000
Environment 7-12

7.2.1.7 Starting SQL*Plus in a BS2000 command procedure 7-13

7.2.2 Using SQL*Plus in the POSIX environment 7-13

7.2.2.1 Starting SQL*Plus in the POSIX Environment 7-13

7.2.2.2 Interrupting a SQL*Plus Command in the POSIX Environment 7-14

7.2.2.3 Running Shell Commands From SQL*Plus 7-14

7.2.2.4 Using an Editor in SQL*Plus 7-14

7.2.2.5 Spooling SQL*Plus Output in the POSIX Environment 7-15

7.2.2.6 Specifying the Search Path for SQL Scripts in the POSIX
Environment 7-15

7.2.3 SQL*Plus User Profiles 7-16

7.2.3.1 The glogin.sql Global Setup File 7-16

7.2.3.2 The login.sql User Setup File 7-16

7.2.4 Using SQL*Plus Symbols 7-17

7.2.5 Sample Schemas and SQL*Plus 7-17

7.2.6 SQL*Plus Limits 7-17

7.3 The SQL*Loader 7-18

7.3.1 Starting the SQL*Loader Utility 7-18

7.3.2 Using the SQL*Loader Demonstration Files 7-18

7.4 The Export Utility 7-19

7.4.1 Starting the Export Utility 7-19

7.4.2 Exporting to Foreign Systems 7-20

7.4.2.1 Exporting Data to Tape 7-20

7.4.2.2 Transferring Data by File Transfer 7-21

7.5 The Import Utility 7-21

7.5.1 Starting the Import Utility 7-21

7.5.2 Importing from Foreign Systems 7-21

7.5.2.1 Importing File with Non-Standard Block Size 7-22

7.5.2.2 Importing Data from Tape 7-22

7.5.2.3 Transferring Data by File Transfer 7-22

7.6 The Data Pump Export Utility 7-22

7.6.1 Starting the Data Pump Export Utility 7-22

7.7 The Data Pump Import Utility 7-23

7.7.1 Starting the Data Pump Import Utility 7-23

7.8 Recovery Manager on BS2000 7-24

vii

7.9 Checking the Integrity of the Physical Data Structure 7-24

7.10 Workload Replay Client 7-25

7.10.1 About Running Workload Replay Client 7-25

7.10.2 About Troubleshooting Workload Replay Client 7-26

7.11 The Oracle Text Loader 7-27

8 Backing Up and Recovering a Database

8.1 Backing Up an Oracle Database 8-1

8.1.1 Using BS2000 Utilities to Back Up an Oracle Database 8-1

8.1.2 Performing Online Backup 8-2

8.2 Restoring an Oracle Database 8-2

8.3 About Using the Recovery Manager 8-3

9 About Unified Auditing

9.1 Enabling Unified Auditing 9-1

9.2 Disabling Unified Auditing 9-2

10

Java in the Database

10.1 Installation of a Java Enabled Database 10-1

10.2 Database character sets and Java Encodings 10-2

10.3 Java Demonstration Files 10-2

11

Oracle Text

11.1 Installing Oracle Text 11-1

11.2 Restrictions of Oracle Text on BS2000 11-1

12

XML

12.1 About XDK Installation 12-1

12.2 Features and Restrictions of XML Features on BS2000 Systems 12-1

13

Oracle Net Services

13.1 Oracle Net Protocol Support 13-1

13.1.1 About Bequeath Protocol 13-2

13.1.1.1 Overview of the Bequeath Protocol 13-2

13.1.2 About IPC Protocol Support 13-3

13.1.2.1 Overview of IPC 13-3

viii

13.1.2.2 Using the IPC Protocol 13-3

13.1.3 About TCP/IP Protocol Support 13-4

13.1.4 About TCP/IP with SSL Protocol 13-5

13.2 Oracle Network Security 13-5

13.3 Shared Server Architecture 13-7

13.4 Configuring the Network 13-8

13.4.1 About Using Easy Connect Naming Method 13-8

13.4.2 About Using the Local Naming Method 13-9

13.4.3 About Using the Directory Naming Method 13-9

13.4.4 Customizing Oracle Net Listener Configuration 13-9

13.4.5 Configuration of the Client 13-11

13.4.6 Testing the Configuration of the Client 13-11

13.5 Troubleshooting Oracle Net Services 13-12

Part IV Application Development

14

Database Applications

14.1 Overview of Database Applications 14-1

14.1.1 Architecture of the Programmatic Interfaces 14-1

14.1.2 PL/SQL Support 14-2

14.1.3 Building and Running a Programmatic Interface Application 14-2

14.2 Precompiler Applications 14-4

14.2.1 About Using Precompilers 14-4

14.2.1.1 Include Files 14-4

14.2.1.2 User-Specific Configuration Files 14-5

14.2.1.3 Input, Output, and List-files 14-5

14.2.1.4 Additional Remarks About Using Precompilers 14-5

14.2.2 Precompiler Pro*C/C++ 14-6

14.2.2.1 Starting Pro*C 14-6

14.2.2.2 Pro*C Include, System Configuration and Demo Files 14-6

14.2.2.3 SQLLIB Calls 14-7

14.2.2.4 Linking Pro*C Programs 14-7

14.2.2.5 The Pro*C SQLCPR.H Header File 14-7

14.2.2.6 UTM Applications 14-7

14.2.3 Precompiler Pro*COBOL 14-7

14.2.3.1 Starting Pro*COBOL 14-8

14.2.3.2 Pro*COBOL Include, System Configuration, and Demo Files 14-8

14.2.3.3 SQLLIB Calls 14-8

14.2.3.4 Linking Pro*COBOL Programs 14-8

14.2.3.5 openUTM Applications 14-9

ix

14.2.3.6 Additional Information About Pro*COBOL Constructs 14-9

14.3 Oracle Call Interface Applications 14-10

14.3.1 Linking OCI Applications 14-10

14.4 The Object Type Translator 14-11

14.4.1 Starting Object Type Translator 14-11

14.4.2 OTT System Configuration File 14-11

14.5 Oracle Database Applications in POSIX Program Environment 14-11

14.6 openUTM Database Applications 14-12

14.6.1 Operation of Oracle Database Using openUTM Programs 14-12

14.6.2 Distributed openUTM Files 14-13

14.6.3 DBA Responsibilities 14-13

14.6.4 Developing an Oracle Database/openUTM Application 14-14

14.6.4.1 How to Build an Oracle Database Application with openUTM 14-14

14.6.4.2 Defining an Open String 14-16

14.6.4.3 Using Precompilers with openUTM 14-19

14.6.4.4 SQL Operations 14-21

14.6.4.5 openUTM Operations 14-22

14.6.5 Troubleshooting 14-23

14.6.5.1 Trace Files 14-23

14.6.5.2 About Debugging 14-24

14.6.5.3 In-Doubt or Pending Transactions 14-24

14.6.5.4 Oracle Database Tables of the SYS User 14-25

15

External Procedures

15.1 Loading External Procedures 15-1

15.1.1 Define C Procedures 15-2

15.1.2 Set Up the Environment 15-2

15.1.3 Identify the DLL 15-4

15.1.4 Publish External Procedures 15-4

15.1.5 Run External Procedures 15-5

16

Globalization Support

16.1 Language, Territory, and Character Set 16-1

16.1.1 Oracle Database 16-1

16.1.2 Other Oracle Database Products 16-2

16.2 Supported Language Conventions 16-2

16.3 Supported Territories 16-3

16.4 Supported Character Sets 16-3

16.5 Location of Message Files 16-4

x

16.6 Linguistic Definitions 16-4

Part V Appendices

A Oracle Error Messages for BS2000

B Oracle Environment Variables

B.1 ORAENV Rules B-1

B.2 Built-in Variables B-2

B.2.1 LOGNAME B-2

B.2.2 ORAUID B-2

B.2.3 PGM B-2

B.2.4 TERM B-2

B.2.5 TSN B-2

B.3 General Variables B-3

B.3.1 CLN_BASE B-3

B.3.2 CLN_MPID B-3

B.3.3 CLN_SCOPE B-3

B.3.4 EXP_CLIB_FILE_IO B-4

B.3.5 IMP_CLIB_FILE_IO B-4

B.3.6 NLS_LANG B-4

B.3.7 OPS_JID B-4

B.3.8 ORASID B-5

B.3.9 PRINTPAR B-5

B.3.10 SQLPATH B-5

B.3.11 SSSIDPWF B-5

B.4 DBA Startup Variables B-6

B.4.1 Address and Size Specification B-6

B.4.2 BGJPAR B-7

B.4.3 BGJ_PROCEDURE B-7

B.4.4 BGJPRC_UID / BGJPRC_SID B-7

B.4.5 BGJ_LOG_JOBSTART B-7

B.4.6 sid_BGJPAR B-8

B.4.7 sid_USER B-8

B.4.8 user_ACCOUNT/ user_PASSWORD B-8

B.4.9 COM_MPID B-8

B.4.10 COM_BASE B-8

B.4.11 COM_SCOPE B-9

B.4.12 JOBID B-9

xi

B.4.13 KNL_BASE B-9

B.4.14 ORACLE_HOME B-9

B.4.15 PGA_BASE B-9

B.4.16 PGA_SIZE B-9

B.4.17 SF_PBLKSIZE B-10

B.4.18 SGA_BASE B-10

B.5 Oracle Net Services Variables B-10

B.5.1 DEFAULT_CONNECTION B-10

B.5.2 BREAK_HANDLING B-11

B.5.3 TNS_ADMIN B-11

B.5.4 TNS_BEQ_TIMEOUT B-11

B.5.5 TNS_UPDATE_IPNODE B-11

B.5.6 TNS_DH_TIMEOUT B-12

B.5.7 NT_IPC_PROTOCOL_UNIX B-12

C Initialization Parameters and the Parameter File

C.1 Example Parameter File C-1

C.2 Unsupported Parameters C-1

C.3 Additional Notes on Initialization Parameters C-1

C.3.1 BACKGROUND_DUMP_DEST C-2

C.3.2 USER_DUMP_DEST C-2

C.3.3 AUDIT_FILE_DEST C-3

C.3.4 DB_BLOCK_SIZE C-3

C.3.5 DB_FILE_MULTIBLOCK_READ_COUNT C-3

C.3.6 DB_FILES C-3

C.3.7 LOCK_SGA C-3

C.3.8 SGA_MAX_SIZE C-4

C.3.9 LOG_ARCHIVE_DEST C-4

D Troubleshooting

D.1 Problems Creating an Oracle Database D-1

D.2 Problems Starting an Oracle Database Instance D-1

D.3 Problems When Starting the Background Tasks D-2

D.4 Problems Accessing Database and Log Files D-2

D.5 Oracle Database Trace Files D-3

E File Types and Names Used by Oracle

xii

Preface

This manual provides information about installing, administering, maintenance, and
usage of Oracle Database and related products. It also provides information for
BS2000 end users of Oracle products. Certain topics in this manual apply to both
users and database administrators. This manual describes the following:

• How Oracle Database operates under BS2000

• How to install Oracle Database

• How to create or upgrade an Oracle Database

• How to administer an Oracle Database

• How to use Oracle Database utilities

• How to build and run Oracle Database applications

This section contains the following topics:

• Audience

• Documentation Accessibility

• Using Oracle Database Documentation

• Related Documents

• Conventions Used in this Manual

Audience
This manual is intended for:

• Database Administrators (DBAs)

• Users of Oracle Database

• Oracle Database Support

The reader is assumed to have a fundamental knowledge of BS2000. No attempt is
made to document features of BS2000, except as they affect or are affected by Oracle
Database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Using Oracle Database Documentation
Oracle Database products that run on BS2000 principally offer the same functionality
as Oracle Database products on other operating systems. However, because of the
diversity of operating systems, the use of applications may differ slightly between
different operating systems. As a result of this, Oracle provides two types of
documentation:

Type Meaning/Usage

Generic This is the primary Oracle Database documentation, which describes
how the product works and how it is used. Use this type of
documentation to learn about product functions and how to use any
Oracle Database product or utility.

System Specific This documentation provides the information required to use the
product on a specific operating system. Use this type of documentation
to determine whether there are any system-specific deviations from the
generic documentation.

This manual is written for users of Oracle Database for BS2000, providing them
with BS2000-specific information about using Oracle Database products. It does not
describe how to use a product unless its use is different than that is described in the
generic documentation.

Related Documents
For more information, refer to the Fujitsu documentation at:

https://bs2manuals.ts.fujitsu.com

All Oracle documentation is available at the following URL:

http://docs.oracle.com/en/

Conventions Used in this Manual
The following conventions are used in this manual:

Typographic Conventions

The following text conventions are used in this manual:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Preface

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://bs2manuals.ts.fujitsu.com
http://docs.oracle.com/en/

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Command Syntax

Item Syntax

Commands This font identifies text that must be entered exactly as shown:

set echo off

Variables Variables appear in italics. Substitute an appropriate value, for example:

arg1

Required Items Required items are enclosed in braces { }. You must choose one of the
alternatives.

DEFINE { macro1 | macro2 }

Optional Items Optional items are enclosed in square brackets [].

[options] formname [userid/password]

Repetitive Items An ellipsis, ... represents an arbitrary number of similar items.

CHKVAL fieldname value1 value2... valueN

Punctuation

The following symbols should always be entered as they appear in the command
format:

Name Symbol

ampersand &

backslash \

colon :

comma ,

double quotation
mark

"

equal sign =

hyphen -

number sign #

parentheses ()

period .

semicolon ;

single quotation mark '

Preface

xv

Part I
Concepts

This part provides the basic concepts and architecture of Oracle Database on Fujitsu
BS2000 systems. It contains the following chapter:

• Concepts and Architecture

1
Concepts and Architecture

The platform independent concepts and the architecture of Oracle Database are
described in Oracle Database Concepts.

This chapter describes the basic concepts of Oracle Database specific to Fujitsu
BS2000 systems. It includes the following topics:

• About the BS2000 Operating System

• About File Systems

• About Processes

• Memory Architecture

• BS2000 User Ids

• Oracle Database Programs

• Physical Storage Structures

• Parameter Files

1.1 About the BS2000 Operating System
Oracle Database 19c for Fujitsu BS000 runs on the BS2000 operating system. Oracle
Database uses both native BS2000 interface and the POSIX interface.

The sections in this chapter describe in detail how Oracle Database uses the program
environments, the native BS2000 and POSIX.

1.2 About File Systems
The default file system for an Oracle Database program depends on the program
environment in which the program is started.

Oracle Database 19c operates on the following file systems:

• BS2000 Data Management System (DMS), which is a flat file system.

• POSIX file system, which is hierarchically structured and consists of directories
and files.

If you start an Oracle Database utility in the BS2000 program environment, then a flat
file is located in the BS2000 DMS. If you start the same Oracle Database utility in the
POSIX shell, then a flat file is located in the POSIX file system.

A file system can be directly addressed independent of the program environment. The
prefix /BS2/ addresses the BS2000 DMS file system. A file name that starts with a
valid POSIX path, such as /home/oracle addresses the POSIX file system.

As in earlier releases, database files always reside in the BS2000 DMS file system.
For example, data files, control files, online redo log files, and archive redo log files.

1-1

Starting with Oracle Database 12c Release 1, most of the Oracle supplied SQL scripts
are installed in the POSIX file system. To run a SQL script from the ORACLE_HOME
directory in the BS2000 program environment, you must enter the fully qualified file
name.

Automatic Diagnostic Repository (ADR) requires a hierarchical file system to create a
file-based repository for database diagnostic data. So, the directories and files of ADR
reside in the POSIX file system.

During Oracle Database installation, executables, libraries, and other files are installed
in both the BS2000 DMS and in the POSIX file system. You must provide access to
the POSIX file system.

See Also:

“Oracle Database Installation and Deinstallation” for information about
access to the POSIX file system

1.3 About Processes
The concepts of Oracle Database processes are not BS2000-specific.

All processes of an Oracle Database instance, for example, server processes and
background processes, run as BS2000 tasks.

Oracle Database utilities that are started in the BS2000 program environment are
executed in the BS2000 login task. For example, SQL*Plus.

If you start an Oracle Database utility in the POSIX shell, then a new POSIX process is
created.

Client processes running in the POSIX shell connect to an instance in the same way
as clients in the BS2000 environment. The dedicated server process starts in the
BS2000 program environment as a BS2000 task.

Related Topics

• Oracle Database Concepts

1.4 Memory Architecture
The concepts of Oracle Database basic memory architecture are not BS2000-specific.

Oracle Database defines different data areas in the main memory, such as SGA and
PGA. On BS2000 systems, the SGA is realized as a shared memory pool to which all
background and server processes of an instance have read/write access. The PGA is
a local memory that is specific to an Oracle background process or a server process.

Most of the Oracle code binaries are placed in code areas in the main memory,
which reside in shared memory pools in the BS2000 user address space. These
data and code areas must reside at the same virtual addresses in all the server and
background tasks. Typically, the default values provided with Oracle Database are
sufficient. Address space planning, that is, explicit placement of Oracle Database code
or data areas may be required in some special situations when you encounter address

Chapter 1
About Processes

1-2

space conflicts. For example, dynamic subsystems may occupy the default address
ranges, which may require you to relocate Oracle Database areas.

The following Oracle environment variables control explicit placement of Oracle
Database code and data areas:

• COM_BASE

• KNL_BASE

• PGA_BASE

• SGA_BASE

The order of the areas in the address space is not significant. The xxx_BASE variable is
evaluated only during startup processing.

The first process which realizes that a shared pool does not exist creates this shared
pool. All other processes of an Oracle Database instance and server processes attach
to the existing shared memory.

The following figure is an example of the placement of data areas:

Figure 1-1 Placement of Data Areas in Background, Server and Utility Tasks

ORABGR

PGA1

COM_BASE

KNL_BASE

PGA_BASE

SGA_BASE

Task 1

Oracle
Server

PGA1

Task 2

Oracle Tools
(e.g. sqlplus)

Task 3

Shared code Core/NLS/Oracle Net Services/Oracle Client

Shared code Kernel

SGA

The xxx_BASE values must be compatible with the BS2000 value SYSBASE (defined
by BS2000 generation and delimiting the user address space).

Database application programs use a separate shared code pool for common services
such as Core, Globalization Support, and Net Services. The name of this pool is
Client Common Pool and its placement can be controlled by the ORAENV environment
variable CLN_BASE. The default value for the CLN_BASE is set to 200 MB.

CLN_BASE=200MB

In general, Oracle Database administrators must be aware of conflicts between Oracle
pool placements and other pool placements in the system.

Chapter 1
Memory Architecture

1-3

Related Topics

• Oracle Database Concepts

1.5 BS2000 User Ids
The following BS2000 user IDs are required for Oracle Database:

• Installation User ID

• DBA User ID

• Client User IDs

1.5.1 Installation User ID
The installation user ID is required for installing Oracle Database. The POSIX user,
which corresponds to the BS2000 installation user ID must be initialized with a unique
user number, group number, and a valid home directory.

A separate installation user ID is required for every Oracle Database release.
However, multiple databases using the same release must refer to the same
installation user ID.

Oracle Database software uses $ORACINST as a placeholder for the installation user ID.
During installation, ORACINST is replaced by the name of the installation user ID. In this
guide, $ORACINST is used as a proxy for the installation user ID.

The installation procedure installs Oracle Database in the BS2000 file system (DMS)
and in the POSIX file system. The BS2000 file system (DMS) contains:

• Executable programs, such as SQL*Plus.

• Load libraries, in particular, ORALOAD.LIB, from which modules are loaded for
execution.

• Files and system configuration files specifying default precompiler options.

• Object libraries required to link precompiler applications, such as PRO.LIB.

• Platform-specific installation utilities, for example BS2000 command procedures.

• Default configuration files, such as the default ORAENV file.

• Files for demo schemas and demo applications.

The POSIX file system contains:

• Oracle supplied SQL scripts.

• Binaries to run Oracle programs, such as SQL*Plus, in the POSIX shell.

• Shared objects, such as libclntsh.so.

• JAVA tools like loadjava or owm.

• Files for application development.

Chapter 1
BS2000 User Ids

1-4

Note:

Starting from Oracle Database 12c Release 1, most of the Oracle supplied
SQL scripts reside in the POSIX file system. In earlier Oracle Database
releases these scripts resided in the BS2000 DMS file system.

1.5.2 DBA User ID
The DBA user ID is used as the owner of one or more Oracle databases. This user ID
owns all the files for a specific Oracle database. The corresponding POSIX user must
be initialized with a unique user number, group number, and a valid home directory.

All BS2000 tasks of an Oracle Database instance are executed under the DBA user
ID. These tasks refer to the executable programs and libraries, which are available
under the installation user ID. These programs and libraries must not be copied into
the DBA user ID. You can use the installation user ID as a DBA user ID. However,
Oracle strongly recommends that you use separate user IDs.

Multiple databases can be created under the same or different DBA user IDs. If
the databases are created under different BS2000 user IDs, then the databases are
separated and protected from each other by the BS2000 protection mechanisms.

1.5.3 Client User IDs
The Client user ID allows a normal non-DBA user to access and use the database
through Oracle Database utilities, such as SQL*Plus, and through application
programs.

These client programs can run in the BS2000 user IDs, which are different from the
DBA user ID. They can connect to Oracle Database through Oracle Net Services
facilities.

The corresponding POSIX user must be initialized with a unique user number, group
number, and a valid home directory.

1.6 Oracle Database Programs
Oracle Database programs are stored in program libraries, known as BS2000 LMS
libraries.

The programs are loaded from these libraries for execution. They require a specific
program environment, which must be defined before execution.

The following topics are discussed:

• Program Libraries

• Program Environment

1.6.1 Program Libraries
Program libraries are required to run Oracle Database programs.

Oracle Database for Fujitsu BS2000 requires the following program libraries:

Chapter 1
Oracle Database Programs

1-5

• The ORALOAD Library

• The ORAMESG Library

The ORALOAD Library

All Oracle Database 19c programs require the ORALOAD library, which
is $ORACINST.ORALOAD.LIB by default. Oracle Database uses this library to load
executables and subroutines dynamically. The BS2000 link name ORALOAD must
identify the ORALOAD library before starting any Oracle Database program. If the link
name is missing, then you get an error message from the BS2000 loader. This link
name is set when running the ORAENV procedure in the BS2000 program environment.

BS2000 file links are not visible in the POSIX program environment. Oracle Database
programs running in the POSIX shell use an internal mechanism to locate the ORALOAD
library.

The ORAMESG library

The ORAMESG library, $ORACINST.ORAMESG.LIB, is required for dynamically loading the
binaries for the Oracle Database messages by an Oracle Database program when
required. The BS2000 link name ORAMESG must identify the ORAMESG library before
starting any Oracle Database program. If the link name is missing, then you get an
error message from the BS2000 loader. This link name is set when running the ORAENV
procedure.

BS2000 file links are not visible in the POSIX program environment. Oracle Database
programs running in the POSIX shell use an internal mechanism to locate the ORAMESG
library.

1.6.2 Program Environment
The program environment for Oracle Database can either be the native BS2000
environment or the POSIX Shell.

The default program environment for server and background tasks is the BS2000
environment. Regardless of the program environment, Oracle Database always
requires a running POSIX subsystem.

This section contains the following topics:

• Oracle Environment Variables

• Setting Variables in the BS2000 Program Environment

• Setting Variables in the POSIX Program Environment

1.6.2.1 Oracle Environment Variables
All Oracle Database programs and database applications require environment
variables.

Oracle Environment Variables contains a list of Oracle Database environment
variables that the database administrator can use. The non-DBA users must set a
few of these variables. Any DBA-specific variables that are placed in a non-DBA user’s
environment are ignored.

Chapter 1
Oracle Database Programs

1-6

1.6.2.2 Setting Variables in the BS2000 Program Environment
Oracle Database utilities and application programs running in the BS2000 program
environment use the Oracle Database environment definition file, ORAENV for setting up
the program environment.

This file is divided into two parts, an executable part to set required BS2000 file
links, and a static part for the definition of the environment variables. During program
initialization, the environment variables are read from the ORAENV file.

The procedure $ORACINST.INSTALL.P.DBA automatically creates a template for the
ORAENV file with the name sid.P.ORAENV, where sid is the instance identifier. The
generated file provides a default configuration for an Oracle Database instance. You
can edit this file to adapt it to your needs. Non-DBA users can also generate an ORAENV
file specific to their own environment.

To make the environment variables accessible, run a CALL-PROCEDURE command on
the ORAENV file for the instance that you want to use. For example, to specify the
environment variables for the instance DEMO, run the following BS2000 SDF command:

/CALL-PROCEDURE DEMO.P.ORAENV

Note:

• The database administrator must not modify the ORAENV file while an
Oracle Database is running.

• Non-DBA users may modify their ORAENV file at any time.

You can run several Oracle Database instances simultaneously on your BS2000
system, even within the same DBA user ID. A unique system identifier provides a
globally unique name for the instance so that a user can select a particular instance
by assigning the instance identifier sid to the ORACLE_SID environment variable. This is
achieved by calling the corresponding ORAENV file sid.P.ORAENV.

Alternatively the structured BS2000 SDF-P system variable SYSPOSIX can be used
to define the Oracle Database environment variables. The variable SYSPOSIX can be
declared in the SYS.SDF.LOGON.USERINCL file so that it is accessible for all programs
and procedures started in the BS2000 login task. Use the following command to
declare the variable:

/DECLARE-VARIABLE
SYSPOSIX,TYPE=*STRUCTURE(DEFINITION=*DYNAMIC),SCOPE=*TASK(STATE=*ANY)

If you want to set an environment variable with an underscore in its name, then you
must substitute the underscore with a hyphen. For example, to set ORACLE_HOME using
the SYSPOSIX system variable, use the following command:

/SET-VARIABLE SYSPOSIX.ORACLE-HOME=’/u01/app/oracle/product/19.3.0/
dbhome_1’

Chapter 1
Oracle Database Programs

1-7

See Also:

• C Library Functions for POSIX Applications for more information about
the BS2000 SDF-P system variable SYSPOSIX

• “Generating The Environment-Definition File” for more information

1.6.2.3 Setting Variables in the POSIX Program Environment
Oracle Database utilities and application programs running in the POSIX shell get the
environment variables from the POSIX environment.

All Oracle Database and BS2000 specific variables can be set in the POSIX
environment. The Oracle Database environment variable ORACLE_HOME must be set.
To run a utility for a particular instance, you must also set the Oracle Database
environment variable ORACLE_SID. The operating system environment variable PATH
must be extended by the path to the Oracle binaries $ORACLE_HOME/bin. If you do
not set any other Oracle variable in the POSIX program environment, then Oracle
Database utilities will use the default values.

The installation procedure creates a profile in the oracle_home_path directory which
can be executed to set and export the most important environment variables like
ORACLE_HOME, PATH , or LD_LIBRARY_PATH. Use the ‘.’ (dot) command to execute this
profile in the current POSIX shell:

$. oracle_home_path/.profile.oracle

Note:

The Oracle Database environment variable BGJPAR is marked as a comment
after the first installation. So, this variable will not be set when you execute
the .profile.oracle command file. If you do not set this variable, then the
following default value is used:

BGJPAR=START=IMME,CPU-LIMIT=NO,LOGGING=*NO

You can change the default value of a variable by setting this variable in the POSIX
environment. For example:

$ NLS_LANG=German_Germany.WE8BS2000
$ export NLS_LANG

You can also use the ORAENV file that you created in the BS2000 file system DMS.
Create a file with the name oraenvsid in the $ORACLE_HOME/dbs directory describing
the location and name of the ORAENV file.

Chapter 1
Oracle Database Programs

1-8

For example, to use the ORAENV file, $ORADATA.ORCL.P.ORAENV, you must create a file
with the name oraenvORCL in the $ORACLE_HOME/dbs directory that contains the name
of the BS2000 ORAENV file as follows:

$ ORACLE_HOME=/u01/app/oracle/product/19.3.0/dbhome_1
$ export ORACLE_HOME
$ echo '$ORADATA.ORCL.P.ORAENV' > $ORACLE_HOME/dbs/oraenvORCL

Set the Oracle Database environment variable ORACLE_SID and call the utility:

$ ORACLE_SID=ORCL
$ export ORACLE_SID
$ $ORACLE_HOME/bin/sqlplus /nolog

Oracle Database utilities and applications running in the POSIX shell handle the
variables of the BS2000 ORAENV file as lower-ranking variables. If a variable is set
in the POSIX environment and the same variable is defined in the ORAENV file, then
the POSIX variable is not overwritten by the ORAENV variable. For example, if the
variable, NLS_LANG is set to German_Germany.WE8BS2000 in the POSIX environment and
to American_America.WE8BS2000 in the BS2000 ORAENV file, then the variable keeps
the value German_Germany.WE8BS2000 in the environment of the Oracle Database utility
running in the POSIX shell.

Consider the following:

• You must set the ORACLE_HOME variable.

• You must set the ORACLE_SID variable to specify a particular instance.

• To access a BS2000 ORAENV file, you must create a file, oraenvsid in
the $ORACLE_HOME/dbs directory that contains the fully qualified name of your
BS2000 ORAENV file.

• The SID in the file name oraenvsid is case sensitive and must match the SID
specified in the Oracle Database environment variable ORACLE_SID.

• If an ORAENV file in the BS2000 file system is assigned to the specified ORACLE_SID,
then ensure that this file is accessible for the utility.

• In the POSIX environment, the variables of the BS2000 ORAENV file are handled as
subordinate variables.

1.7 Physical Storage Structures
This section describes some features of physical storage structures, which are specific
for Fujitsu BS2000. It includes the following topics:

• Files of an Oracle Database

• Oracle Managed Files

• File of a Bigfile Tablespace

Related Topics

• Oracle Database Concepts

Chapter 1
Physical Storage Structures

1-9

1.7.1 Files of an Oracle Database
An Oracle database is a set of operating system files that store data in persistent disk
storage.

There are different types of database files:

• data files

• temp files

• control files

• online redo log files

• archive redo log files

The database files always reside in the BS2000 DMS and have the file attribute,
FILE-STRUC=PAM. Database files cannot reside in the POSIX file system.

Both the BS2000 operating system and Oracle Database perform input and output
efficiently in units called blocks. A block is the basic unit of data storage. An Oracle
Database block can have the following size depending on the format of the BS2000
DMS pubset:

• 2K, 4K, 6K, 8K, 16K, 32K when using BS2000 2K pubset format

• 4K, 8K, 16K, 32K when using BS2000 4K pubset format

1.7.2 Oracle Managed Files
Oracle Managed Files (OMF) is a file naming strategy that enables you to specify
operations in terms of database objects rather than file names.

For example, you can create a tablespace without specifying the names of its data
files. In this way, Oracle Managed Files eliminates the need for administrators to
directly manage the operating system files in a database.

The following is a list of INIT.ORA parameters for Oracle Managed Files:

• DB_CREATE_FILE_DEST for data files, temp files, and block change tracking files.

• DB_CREATE_ONLINE_LOG_DEST_n for redo log files and control files.

• DB_RECOVERY_FILE_DEST for backups, archive log files, and flashback log files.

On BS2000, these parameters are used as a prefix for file names.

Oracle tablespace names can be up to 30 characters long. To associate an OMF
created file name with its tablespace, you must use tablespace names that are distinct
in the first eight characters. Oracle allows underscore (_) in tablespace names. Any
underscore (_) that is present is changed to hyphen (-) for use in the generated file
name.

File names for Oracle Managed Files have the following format on BS2000:

File type Format

control files destOMC.tttttttt

log files destOMLlll.tttttttt

Chapter 1
Physical Storage Structures

1-10

File type Format

permanent tablespace files, data file copies destOMD.tsn.tttttttt

temporary tablespace files destOMT.tsn.tttttttt

archive log files destOMA.Tnnn.Snnnnnn.tttttttt

data file or archivelog backup piece destOMB.Lnnn.tttttttt

rman autobackup piece destOMX.xnnnnnnn.tttttttt

block change tracking files destOMR.tttttttt

flashback log files destOMF.tttttttt

where:

• dest is the destination string (_DEST) in the OMF parameter

• tttttttt is the encoded timestamp (which looks like a random mix of letters and
numerals)

• lll is a three-digit log-group number

• tsn is up to eight characters for the tablespace name

• Tnnn is the letter "T" followed by a three-digit thread number

• Snnnnnn is the letter "S" followed by a six-digit sequence number

• Lnnn is the letter "L" followed by a three-digit incremental level

• x is the letter P, if the database has an SPFILE, or the letter T if the database does
not have an SPFILE

• nnnnnnn is a seven-byte timestamp

The maximum length of a BS2000 DMS file name is 54 characters. As a
consequence, the preceding OMF file name formats impose a limit of 39 characters
on DB_CREATE_ONLINE_LOG_DEST_n and DB_CREATE_FILE_DEST, and 29 characters on
DB_RECOVERY_FILE_DEST. This limit includes the BS2000 DMS catid and userid which
can have a maximum length of 16 characters in total.

See Also:

Oracle Database Administrator's Guide for more information about file name
formats

1.7.3 Files of a Bigfile Tablespace
A bigfile tablespace contains a single large data file or a temp file.

This single data file or temp file must reside on a BS2000 DMS pubset with the
following attributes:

LARGE_VOLUMES=*ALLOWED and LARGE_FILES=*ALLOWED

Chapter 1
Physical Storage Structures

1-11

See Also:

Files and Volumes Larger than 32 GB for more information about handling
large objects on BS2000

1.8 Parameter Files
The database parameter file INIT.ORA is used to define startup parameters for the
database and the instance.

By default, this file resides in the BS2000 DMS in the DBA user ID. It is also possible
to place this file in the POSIX file system.

In addition to the INIT.ORA file, a binary server-side initialization file SPFILE can be
created by using the CREATE SPFILE statement. This file must be created in the
BS2000 DMS in the DBA user ID.

Related Topics

• Oracle Database Reference

• Oracle Database Administrator’s Guide

Chapter 1
Parameter Files

1-12

Part II
Installation and Database Creation

This part of the document discusses the following topics:

• Oracle Database Installation and Deinstallation

• About Creating a Database

• About Upgrading a Database

• About Upgrading Applications

2
Oracle Database Installation and
Deinstallation

This chapter details the preinstallation requirements, postinstallation tasks, installation
and deinstallation of Oracle Database 19c on BS2000.

• Overview of Oracle Database Installation

• Planning the Installation

• Oracle Database Preinstallation Requirements

• About Read-Only Oracle Homes in the POSIX File System

• Installing Oracle Database

• Oracle Database Postinstallation Tasks

• About Installing Multiple Oracle Databases

• About Removing Oracle Database Software

2.1 Overview of Oracle Database Installation
You can download Oracle Database software from Oracle Software Delivery Cloud
at https://edelivery.oracle.com. The installation files are included in a Library
Maintenance System (LMS) library called staging library, which is delivered in a zip
file.

Download the zip file and extract it to a temporary location on a Windows or UNIX
system. Then upload the staging library to the BS2000 system using File Transfer
Protocol (FTP). The following sections describe the installation process for Oracle
Database on the Fujitsu BS2000 Servers. The name of the staging library reflects
the releases of Oracle Database or Oracle Database Patch Set, and the supported
hardware architecture:

• oraxxxxx.arch.lib

Where xxxxx is the release number and arch is the supported hardware
architecture. For example:

ora19300.s390.lib

Note:

ora19300.s390.lib is the name of the staging library for the base release of
Oracle Database 19c.

2-1

https://edelivery.oracle.com

2.2 Planning the Installation
The Oracle Database installation process consists of the following steps:

1. Read the release notes: Refer to Oracle Database Release Notes for Fujitsu
BS2000 before you start the installation.

2. Review the licensing information: Although the installation media in the media
pack contain many Oracle components, you are permitted to use only those
components for which you have purchased licenses. Oracle Support Services
does not provide support for components for which licenses have not been
purchased.

See Also:

Oracle Database Licensing Information User Manual for more licensing
information

3. Complete preinstallation tasks: "Oracle Database Preinstallation Requirements"
describes preinstallation tasks that you must complete before installing the
product.

4. Install the software: "Installing Oracle Database" describes how to use the
installation procedure for BS2000 to install Oracle Database 19c.

5. Complete postinstallation tasks: "Oracle Database Postinstallation Tasks"
describes recommended and required postinstallation tasks.

6. Multiple software installations: "About Installing Multiple Oracle Databases"
provides information about multiple installations of Oracle software.

7. Remove Oracle Database software: "About Removing Oracle Database
Software" describes how to remove Oracle Database software from your system.

2.3 Oracle Database Preinstallation Requirements
You must complete the following tasks before you install Oracle Database 19c for
Fujitsu BS2000:

• Checking Hardware Requirements

• Checking Software Requirements

• About Checking Required Subsystems

• Checking Network Setup

• Creating Required Operating System Users and Groups

• Required Directories in POSIX

• Identifying or Creating Oracle Base Directory in POSIX

2.3.1 Checking Hardware Requirements
The system must meet the following hardware requirements:

Chapter 2
Planning the Installation

2-2

• Fujitsu BS2000 Server Lines

• Memory Requirements

• Disk Space Requirements

• Display Requirements

2.3.1.1 Fujitsu BS2000 Server Lines
Oracle Database 19c for Fujitsu BS2000 is based on the /390 instruction set and
supports the Fujitsu BS2000 SE Servers.

This release runs on all Fujitsu BS2000 processors, in particular on the /390-based
system units of SE servers. It runs in the /390 compatibility mode on processors that
are based on Intel x86 architecture. This applies for the x86-based server units of the
SE servers (SU x86).

2.3.1.2 Memory Requirements
Oracle Database requires at least 2 GB main memory.

The address space limit for the installation user ID should be 512 MB or higher. For
the DBA user IDs, it should be at least 1024 MB.

• To determine the memory size, enter the following command:

/SHOW-SYSTEM-INFORMATION INFORMATION=*MEMORY-SIZE

• To determine the user address space limit, log in to the desired user ID and enter
the following command:

/SHOW-USER-ATTRIBUTES

If the user address space is less than the required size, then ask your BS2000 system
administrator to increase the address space limit by using the command:

/MODIFY-USER-ATTRIBUTES USER-IDENTIFICATION=user-id,ADDRESS-SPACE-
LIMIT={512|1024}

2.3.1.3 Disk Space Requirements
Oracle Database 19c requires an installation in the BS2000 file system (DMS) and in
the POSIX file system. Oracle recommends using a separate POSIX file system for
the Oracle Database software installation.

See Also:

Fujitsu guide for BS2000 mainframes POSIX Basics for Users and System
Administrators for more information about creating an additional POSIX file
system.

When the POSIX administrator or BS2000 system administrator creates a new POSIX
file system by using the POSIX installer, which can be started with the START-POSIX-

Chapter 2
Oracle Database Preinstallation Requirements

2-3

INSTALLATION command, a new POSIX container file similar to a UNIX disk partition is
allocated in the BS2000 file system. The POSIX file system is created in this container
file. If the desired mount point, for example, /u01, is not available in the root system,
then the mount point is created and the file system is mounted.

Oracle Database 19c software for Fujitsu BS2000 requires the following disk space:

• BS2000 file system:

Item Free Disk Space

Software 1.300.000 PAM pages

Staging library 1.300.000 PAM pages

Recommended (in total) 3.000.000 PAM pages

• POSIX file system:

Requirement Free Disk Space

Minimum 4 GB

Recommended 7 GB

Note:

The diagnostic data of the Automatic Diagnostic Repository (ADR) reside in
the POSIX file system. The disk space required for the ADR depends on
the number of Oracle database instances and the amount of diagnostic data.
Therefore, you may need significantly more disk space in the POSIX file
system than recommended.

The extracted files occupy about 1.300.000 PAM pages in the BS2000 file system. The
files installed in the POSIX file system will occupy about 770 MB.

The staging library does not have to reside in your installation user ID.

2.3.1.4 Display Requirements
Oracle Database supports 9750 compatible terminals. In addition, Oracle Database
supports X-terminals in the POSIX environment when you log in to POSIX using
rlogin or ssh.

The minimum resolution for Java based tools with a graphical user interface (GUI)
shipped with Oracle Database 19c is 1024 x 768 or higher.

2.3.2 Checking Software Requirements
Before installing Oracle Database, Oracle recommends that you check if your system
meets the following software requirements:

• Operating System and Communication System Requirements

• POSIX Parameters

Chapter 2
Oracle Database Preinstallation Requirements

2-4

• Package Requirements

• Additional BS2000 Software Components

• Compiler and CRTE Requirements for Oracle Database Applications

• Additional Software Requirements

2.3.2.1 Operating System and Communication System Requirements
Oracle Database 19c requires the following operating system and communication
system versions or higher:

• BS2000 OSD/BC V10.0, BS2000 OSD/BC V11.0, and higher.

• openNet Server V3.6

This includes BCAM V23.0 and Sockets V2.7.

• At least the correction package 1/2020 must be installed.

Oracle recommends that you regularly install the most current correction packages for
your BS2000 system.

You can check the version of your BS2000 system with the following command:

/SHOW-SYSTEM-INFORMATION INFORMATION=*BS2000-ID

Note:

• The correction level of the POSIX subsystem must be A45 or higher. You
can check the POSIX correction level with the following command:

/EXECUTE-POSIX-CMD CMD='uname -v'

• You can check the version of your openNet Server software by
checking the version of the software component BCAM with the following
command:

/SHOW-INSTALLATION-PATH INSTALLATION-UNIT=BCAM,LOGICAL-
IDENTIFIER=*NONE

• You can also ask your BS2000 system administrator to check the BCAM
version with the command:

/BCSHOW SHOW=BCAM

2.3.2.2 POSIX Parameters
Check the following POSIX parameters for the recommended values for Oracle
Database 19c:

Chapter 2
Oracle Database Preinstallation Requirements

2-5

Parameter Name Description Recommended Value

HDSTNI Number of hard disk server
tasks

4

NPBUF Number of physical I/O buffers 20

NPROC Maximum number of
processes

1000

NBUF Number of I/O buffers 200

MAXUP Maximum number of
processes per user

300

NOTTY Maximum number of ttys 512

NOPTY Maximum number of ptys 512

NOSTTY Maximum number of sttys 1024

DBLSTATE Initial state of POSIX loader 1

DBLPOOL Size of pool in MB for POSIX
loader

30

The POSIX administrator or the BS2000 system administrator can check the values in
the file $TSOS.SYSSSI.POSIX-BC.version, for example, version = 100|110. The values
can also be checked by using the usp POSIX command :

usp -s nproc

The POSIX administrator or the BS2000 administrator can update the value with the
following command:

usp -P parameter -v value

Note:

• If you edit the parameters in the $TSOS.SYSSSI.POSIX-BC.version file,
then you must restart the POSIX subsystem.

• The parameter values depend on the overall load of the BS2000 system
and must be adjusted to this load. The values listed previously are
minimal recommendations.

• Irrespective of the installed software component, that is, a client or a
server, Oracle Database requires a running POSIX subsystem.

2.3.2.3 Package Requirements
Oracle Database 19c requires the following POSIX packages with the specified
versions or higher:

• POSIX-SH V10.0

• JENV V8.1 or JENV V9.0

• APACHE V2.4A

• PERL V52.4A

Chapter 2
Oracle Database Preinstallation Requirements

2-6

• BCAM V23.0

Use the BS2000 command, SHOW-INSTALLATION-PATH to check the correction level of
the APACHE and Perl products. For example:

/SHOW-INSTALLATION-PATH INSTALLATION-UNIT=APACHE,LOGICAL-IDENTIFIER=*NONE
Use the following POSIX command to check the installed packages:

$ pkginfo package-name

Note:

• Ensure that all the specified packages are installed before installing
Oracle Database.

• If you don't have the required APACHE and PERL releases, please
request a correction delivery from the Fujitsu software distribution center
or contact Fujitsu support.

2.3.2.4 Additional BS2000 Software Components
Oracle Database 19c requires the following additional software with the specified
versions or higher:

• CRTE-BASYS V10.0B04 or CRTE-BASYS V11.0B04

• SDF V4.7

• SDF-P V2.5

• SDF-A V4.1

• EDT V17.0D

• LMS V3.5B

• openSM2 V19.0

• PTHREADS V1.4

Chapter 2
Oracle Database Preinstallation Requirements

2-7

Note:

• Ensure that the correction package 1/2020 or higher is installed.

• If you don't have the required release of CRTE-BASYS, then please
request a correction delivery from the Fujitsu software distribution center
or contact Fujitsu support.

• The subsystem CRTEBASY must be loaded.

• SDF-A is optional. SDF-A is only required to update the SDF user syntax
file for Oracle. If SDF-A is not available, then the SDF user syntax file
update for Oracle is skipped. If you do not update the SDF syntax file for
Oracle, then you cannot start Oracle Database utilities with BS2000 SDF
commands in UNIX-style.

• The software component PTHREADS is required by the replay client utility,
wrc.

2.3.2.5 Compiler and CRTE Requirements for Oracle Database Applications
If high-level languages, such as C or COBOL, are used to interface with the Oracle
Database, then the following versions or higher are supported:

• COBOL85 V2.3

• COBOL2000 V1.5

• CPP V3.2

• CRTE V10.0B, V11.0B, and higher

2.3.2.6 Additional Software Requirements
openUTM V6.5 or higher is required if you want to use Oracle Database in
configurations with the transaction monitor openUTM.

2.3.3 About Checking Required Subsystems
For a proper behavior, Oracle Database requires running subsytems. It is mandatory
to create the following subsytems:

• POSIX

• SOC6

• PRNGD

• CRTEBASY

Use the following BS2000 command to check the state of the subsystems:

SHOW-SUBSYSTEM-STATUS

Chapter 2
Oracle Database Preinstallation Requirements

2-8

For example:

/SHOW-SUBSYSTEM-STATUS POSIX

2.3.4 Checking Network Setup
Typically, the computer on which you want to install Oracle Database is connected to
the network as a member of a network domain. Besides the BCAM host name, the
host must have a fully qualified name (hostname.domain) that can be resolved by a
DNS. You must perform the following important checks on a BS2000 computer:

• About Checking BCAM Timer

• About Checking LWRESD

• About Checking Loopback Address

• About Checking the Configuration Files in the POSIX File System

2.3.4.1 About Checking BCAM Timer
Oracle recommends to check the BCAM connection and letter timer. Your BS2000
system administrator can display the timer values with the following command:

/SHOW-BCAM-TIMER[TIMER=*STD]

The value for the connection timer, also called CONN in the output of the STD section
must be set to a minimum of 600 seconds if you use an Oracle database server. The
value for the letter timer, also known as LETT in the STD section must be set to a large
value. The value 0 in the output indicates an infinite letter time.

2.3.4.2 About Checking LWRESD
Oracle recommends to use the Light Weight Resolver (LWRESD) for host name
resolution operations. You require BS2000 system administrator privilege for checking
and administering LWRESD. Ask your BS2000 system administrator to check if
LWRESD is running, by using the following command:

/SHOW-LWRESD-PARAMETERS

For example, the following output shows the parameter file in use:

RESOLV-FILE : :PVS1:$TSOS.SYSDAT.LWRESD.012.RESOLV.CONF

This parameter file must contain valid name server IP-addresses and a domain or a
search list of domain names.

2.3.4.3 About Checking Loopback Address
Check if the $TSOS.SYSDAT.BCAM.ETC.HOSTS file contains an entry for the loopback
address. For example:

127.0.0.1 localhost loopback # local address

Chapter 2
Oracle Database Preinstallation Requirements

2-9

2.3.4.4 About Checking the Configuration Files in the POSIX File System
Check the network configuration files, /etc/hosts and /etc/resolv.conf. These files
must be identical to the corresponding files in the BS2000 administrator user ID
TSOS. If the files are not identical, then consult your BS2000 system administrator
to synchronize the files.

2.3.5 Creating Required Operating System Users and Groups
If you are installing Oracle software on your computer for the first time, then you may
have to create several BS2000 user IDs, POSIX users, and groups. The BS2000 user
ID for the Oracle Database 19c software is called the installation user ID. The user
ID where an Oracle database is stored is called the Oracle Database Administration
(DBA) user ID.

The name of the POSIX groups can be:

• oracle

• dba

On BS2000, you can use only one group for both Oracle Database installation and
administration. You must assign the same group to both POSIX users, that is, the
installation user and the DBA user. This is because programs running in the BS2000
program environment, such as, Oracle background and server tasks, can only be
member of the primary group defined in the POSIX user attributes.

This section includes the following topics:

• About Creating the BS2000 Installation User ID

• About Creating the POSIX Group

• About Initializing the POSIX User

• About Creating Users and Groups for Oracle Databases

2.3.5.1 About Creating the BS2000 Installation User ID
The BS2000 system administrator must create an user ID under which you want the
Oracle Database 19c software to reside. This user ID is called the Oracle installation
user ID or Oracle software owner. Throughout this guide, ORACINST is used as a
proxy name for the real installation user ID. This user ID does not require any special
BS2000 privileges:

• You must not use the BS2000 system administrator user ID TSOS as an Oracle
Database installation user ID.

• The user address space limit must be set to at least 512 MB.

• During installation, all files are created with the following file attributes:

USER-ACC=ALL-USERS,ACCESS=READ

• You do not need to define write access for any file after installation.

When the BS2000 system administrator creates the installation user ID with the
following command, the corresponding POSIX user is also created:

/ADD-USER ORACINST,…

Chapter 2
Oracle Database Preinstallation Requirements

2-10

The POSIX user attributes, namely, user number, group number, login directory and
program, are assigned default values.

2.3.5.2 About Creating the POSIX Group
For installation under POSIX, the POSIX administrator or the BS2000 system
administrator must create groups in POSIX. Oracle recommends to use the group,
oracle for the Oracle software owner, and Oracle database administrator. However, if
you want to use the dba group for the Oracle database administrator, then you must
use this group for the Oracle software owner too.

• If this is not the first Oracle Database installation under POSIX, then you can
determine the group name by using the following POSIX command:

$ more /var/opt/oracle/oraInst.loc

If the oraInst.loc file exists, then the output of this command is similar to the
following:

inventory_loc=/u01/app/oraInventory
inst_group=oracle

The inst_group parameter shows the group name of your former Oracle
Database installation. In the above example, it is oracle.

• To determine if this group is defined with a unique group ID, enter the following
command:

$ grep 'oracle' /etc/group

If the output shows the group name and the group ID is greater than 100, then the
group exists.

If the group ID is 100, then you must change the ID to a distinct value greater than
100, for example, 104.

If the group cannot be found in /etc/group, then ask your POSIX administrator or
BS2000 system administrator to add the group name and a unique group number
to the /etc/group file. The administrator must use a text editor, such as edt or vi
to add a new line with the following specifications:

groupname::groupnumber:user-id[,user-id,...]

The following example shows a line in the /etc/group file for the oracle group:

oracle::104:ORACINST,ORACDBA

Add further installation user IDs and all DBA user IDs to the line with the Oracle
group.

2.3.5.3 About Initializing the POSIX User
Before using the installation user ID as a POSIX user, the POSIX administrator or
the BS2000 system administrator must initialize the POSIX user with the following
command:

/ADD-POSIX-USER USER-NAME=installation-user-id,USER-NUMBER=nnn,GROUP-
NUMBER=oracle-group-number,HOME-DIRECTORY=path[,RLOGIN-ACCOUNT=account]

Consider the following requirements:

Chapter 2
Oracle Database Preinstallation Requirements

2-11

• The USER-NAME is the installation user ID.

• The USER-NUMBER must be unique and greater than 100.

• The GROUP-NUMBER must be the number of the Oracle installation group and greater
than 100.

• The HOME-DIRECTORY must be a valid path. Do not use a path which resides in
the root or var file system. Oracle strictly recommends to create a separate file
system for the POSIX users. An example for a valid HOME-DIRECTORY is /home/
oracinst where /home is the mount point of a POSIX file system.

• The RLOGIN-ACCOUNT can be specified if you allow the remote access by using
rlogin or ssh.

2.3.5.4 About Creating Users and Groups for Oracle Databases
An Oracle database in BS2000 resides in separate BS2000 user IDs. This user ID is
called the DBA user ID and is different from the Oracle Database installation user ID.
The BS2000 system administrator must ensure that the DBA user ID has the following
attributes and privileges:

• Set the user’s address space limit to at least the following value:

ADDRESS-SPACE-LIMIT=1024

• Set the following parameters for ACCOUNT-ATTRIBUTES:

MAX-ALLOWED-CATEGORY=TP
NO-CPU-LIMIT=YES
START-IMMEDIATE=YES

Note:

You must not use the BS2000 system administrator user ID TSOS as an
Oracle database DBA user ID under any circumstances.

Oracle recommends that the BS2000 system administrator defines a separate job
class for the background and server tasks.

This job class must have the following characteristics:

TP-ALLOWED=YES
NO-CPU-LIMIT=YES
JOB-TYPE=BATCH
START=IMMEDIATELY

The POSIX user for the DBA user ID must be initialized with a unique user number
and group number. The group number must be the same as used for the Oracle
Database software owner.

If you create a new DBA user ID for a new Oracle database, then you must also
initialize the POSIX user in the same way as described in "About Initializing the POSIX
User." If you want to upgrade an existing Oracle database, then you must check if the
POSIX user is initialized for the DBA user ID using the following BS2000 command:

Chapter 2
Oracle Database Preinstallation Requirements

2-12

/SHOW-POSIX-USER-ATTRIBUTES

If the output shows default values and the directory is /home/gast, then initialize the
POSIX user using the following BS2000 command:

/ADD-POSIX-USER USER-NAME=dba-user-id,USER-NUMBER=nnn,GROUP-NUMBER=oracle-
group-number,HOME-DIRECTORY=path[,RLOGIN-ACCOUNT=account]

You can modify the POSIX user attributes of an initialized POSIX user using the
following BS2000 command:

/MODIFY-POSIX-USER-ATTRIBUTES USER-ID=dba-user-id,USER-NUMBER=nnn,GROUP-
NUMBER=oracle-group-number,DIRECTORY=path

Your POSIX administrator or BS2000 system administrator must add the new DBA
user ID to the group of the Oracle Database software owner in the /etc/group file.

The following example shows the entries for the oracle and dba groups in the etc/
group file:

oracle::504:ORAINST,ORADATA

Note:

• Ensure that the home directory does not reside in the root or var file
system.

• The USER-NUMBER must be unique and greater than 100.

• The GROUP-NUMBER must be the same as the Oracle software owner.

2.3.6 Required Directories in POSIX
The following sections describe the directories that you must identify or create in the
POSIX file system for Oracle Database:

• About Oracle Base Directory

• About Oracle Inventory Directory

• About Oracle Home Directory

2.3.6.1 About Oracle Base Directory
The Oracle base directory is a top-level directory for Oracle software installations.
Oracle recommends to use only one Oracle base directory for all software installations
with a path similar to the following:

/mount_point/app/oracbase

In this example:

• mount_point is the mount point directory for the file system that contains the
Oracle software. The examples in this guide use /u01 for the mount point
directory.

Chapter 2
Oracle Database Preinstallation Requirements

2-13

• oracbase is used as an example for a significant subdirectory name to show that
this is the Oracle base for the software installations.

• If you want to use different Oracle base directories, then you can use the operating
system user name of the Oracle software owner as the last subdirectory name.

The components /mount_point/app represent the operating system part of the path.
Before you install Oracle Database 19c, you must create the operating system part of
the path.

Note:

• The installation user ID and the installation group must have read, write,
and execute permissions to the subdirectory app.

• During Oracle Database software installation, you are prompted for a
valid Oracle base directory. You can accept the default value or enter
a new path as specified above. The installation procedure creates the
Oracle base directory as a subdirectory of the given operating system
path.

Although multiple Oracle installations require separate installation user IDs in BS2000
and separate Oracle home directories, you can always use the same Oracle base
directory. For example:

/u01/app/oracbase

See Also:

"Expanding a File System for the Oracle Base Directory" for more
information about the POSIX file system

2.3.6.2 About Oracle Inventory Directory
The Oracle Inventory directory (oraInventory) stores the inventory of all Oracle
software installed on the system. It is required and shared by all Oracle software
installations on a single computer. If you have an existing Oracle Inventory path, then
the Oracle Database installation procedure uses that Oracle Inventory.

The Oracle Database installation procedure derives the path for the Oracle Inventory
directory from the /var/opt/oracle/oraInst.loc file. If this file does not exist,
then it derives the inventory path from ORACLE_BASE and creates the Oracle Inventory
directory in the following path:

ORACLE_BASE/../oraInventory

For example, if ORACLE_BASE is set to /u01/app/oracbase, then the Oracle Inventory
directory is created in the /u01/app/oraInventory path.

The Oracle Database installation procedure creates the Oracle subdirectories and sets
the correct owner, group, and permissions for it. The operating system part of the

Chapter 2
Oracle Database Preinstallation Requirements

2-14

path, for example, /u01/app must exist and you must have read, write, and execute
permissions in the app directory.

Note:

• All Oracle software installations rely on the Oracle Inventory directory.
Ensure that you back it up regularly.

• Do not delete this directory unless you have completely removed all
Oracle software from the system.

• By default, the Oracle Inventory directory is not installed under the
Oracle base directory. This is because all Oracle software installations
share a common Oracle Inventory, so there is only one Oracle Inventory
for all software owners.

2.3.6.3 About Oracle Home Directory
The Oracle home directory is the directory where you install the software for a
particular Oracle product. When you run the Oracle installation procedure, it prompts
you to specify the path of this directory. You can accept the recommended path or
enter a new path. The directory that you specify must be a subdirectory of the Oracle
base directory. Oracle recommends that you specify a path similar to the following for
the Oracle home directory:

oracle_base_path/product/19.3.0/dbhome_1

The Oracle installation procedure creates the directory path that you specify. It also
sets the correct owner, group, and permissions. You do not have to create the
subdirectories manually.

Note:

During the installation, you must not specify an existing directory that has
predefined permissions applied to it as the Oracle home directory. If you do,
then you may experience installation failure due to file and group ownership
permission errors.

2.3.7 Identifying or Creating Oracle Base Directory in POSIX
Before you start the installation, you must either identify the operating system part
of an existing Oracle base directory or if required, create one. This section contains
information about the following topics:

• About Identifying an Existing Oracle Base Directory in POSIX

• Expanding a File System for the Oracle Base Directory

• Creating a File System for the Oracle Base Directory

Chapter 2
Oracle Database Preinstallation Requirements

2-15

Note:

You can create an Oracle base directory, even if other Oracle base
directories exist on the system.

2.3.7.1 About Identifying an Existing Oracle Base Directory in POSIX
You can identify the existing Oracle base directories as follows:

• Identifying an existing Oracle Inventory directory.

Search for the string 'inventory_loc' in the file /var/opt/oracle/oraInst.loc:

$ grep 'inventory_loc' /var/opt/oracle/oraInst.loc

If oraInst.loc exists, then the output is similar to the following:

inventory_loc=/u01/app/oraInventory

The Oracle Base directory resides on the same level in the directory tree as the
Oracle Inventory directory.

• Deriving an Oracle base directory from an existing Oracle home directory.

Enter the following command to display the contents of the /var/opt/oracle/
oratab file:

$ more /var/opt/oracle/oratab

If the oratab file exists, then it may contain lines similar to the following:

*:/u01/app/orac1020/product/10g:N
*:/u01/app/orac1120/product/dbhome:N

The directory paths specified on each line identify Oracle home directories. In the
preceding examples, Oracle base directories contain the user name of the Oracle
software owner, /u01/app/orac1020 and /u01/app/orac1120 respectively. Oracle
recommends to use a single base directory for all Oracle Database installations.
For example:

/u01/app/oracbase

Ensure that the Oracle base directory:

• Is not on the same file system as the operating system (root or var).

• Has sufficient free disk space.

To determine the free disk space on the file system where the Oracle base directory is
located, enter the following command:

$ df -k oracle_base_path

Chapter 2
Oracle Database Preinstallation Requirements

2-16

Note:

The installation procedure looks for an Oracle base directory and prompts
you to accept the suggested path or to enter a new path.

2.3.7.2 Expanding a File System for the Oracle Base Directory
If you want to install Oracle Database into an existing file system with existing Oracle
software installations, but the POSIX file system has insufficient space, then the
POSIX administrator or the BS2000 system administrator can expand the file system
with the Oracle base directory using the POSIX installer. Complete the following steps
to expand the file system using the POSIX installer:

1. Start the POSIX Installer using the following command:

/START-POSIX-INSTALLATION

2. Choose Administrate POSIX filesystems.

3. Mark the desired file system and choose expand.

4. Enter the number of PAM pages by which the file system should be expanded.

2.3.7.3 Creating a File System for the Oracle Base Directory
If you want the Oracle base directory to reside in a new POSIX file system, then the
POSIX administrator or the BS2000 system administrator must create a POSIX file
system using the POSIX installer. Complete the following steps to create a POSIX file
system using the POSIX installer:

1. Start the POSIX installer using the following command:

/START-POSIX-INSTALLATION

2. Choose Administrate POSIX filesystems and then, choose append.

3. Enter the BS2000 file name for the container of the file system.

4. Enter the number of PAM pages of the container.

The POSIX installer allocates a new POSIX container file in the BS2000 file system
and creates the POSIX file system inside this container. The POSIX installer also
prompts for a mount point for the new file system. If the mount point does not exist,
then it is created in the root system and the new file system is mounted. By default,
the owner of the new file system is SYSROOT. The administrator must at least create
the operating system part of the Oracle base directory and specify the correct owner,
group, and permissions for it with the following specifications:

/mkdir -p /mount_point/app/
chown oracle_sw_owner:oracle_installation_group /mount_point/app/
chmod 775 /mount_point/app/

Chapter 2
Oracle Database Preinstallation Requirements

2-17

For example:

mkdir -p /u01/app/
chown oracinst:oracle /u01/app/
chmod 775 /u01/app/

2.4 About Read-Only Oracle Homes in the POSIX File
System

Starting with Oracle Database 19c Release, you can install Oracle Database in a
read-only Oracle Home in the POSIX file system.

Oracle Database installation in the BS2000 file system is a read-only installation by
default. However, Oracle Database installation in the POSIX file system is a read/write
installation by default.

Understand how read-only Oracle homes work before you choose to install read-only
Oracle homes in the POSIX file system.

• Understanding Read-Only Oracle Homes

• About Installing a Read-Only Oracle Home in the POSIX File System

• Determining if an Oracle Home is Read-Only

• File Path and Directory Changes in Read-Only Oracle Homes

2.4.1 Understanding Read-Only Oracle Homes
Learn about read-only Oracle home concepts like Oracle base home, Oracle base
config, and orabasetab.

• About Read-Only Oracle Homes

• About Oracle Base Homes

• About Oracle Base Config

• About orabasetab

2.4.1.1 About Read-Only Oracle Homes
In a read-only Oracle home, all the configuration data and log files reside outside of
the read-only Oracle home.

This feature allows you to use the read-only Oracle home as a software image that
can be distributed across multiple servers. In this case the installation user ID must be
the same on the concerned servers.

Note:

An Oracle database continues to write the audit files to $ORACLE_HOME/
rdbms/audit directory until you change the destination directory specified
by the AUDIT_FILE_DEST initialization parameter.

Chapter 2
About Read-Only Oracle Homes in the POSIX File System

2-18

Apart from the traditional ORACLE_BASE and ORACLE_HOME directories, the
following directories contain files that used to be in ORACLE_HOME:

• ORACLE_BASE_HOME

• ORACLE_BASE_CONFIG

Benefits of a Read-Only Oracle Home

• Enables seamless patching and updating of Oracle databases without extended
downtime.

• Simplifies patching and mass rollout as only one image needs to be updated to
distribute a patch to many servers.

• Simplifies provisioning by implementing separation of installation and
configuration.

2.4.1.2 About Oracle Base Homes
Both, in a read-only ORACLE_HOME and read/write ORACLE_HOME, the user-
specific files, instance-specific files, and log files reside in a location known as the
ORACLE_BASE_HOME.

In a read/write ORACLE_HOME, the ORACLE_BASE_HOME path is the same
as the ORACLE_HOME directory. However, in a read-only ORACLE_HOME, the
ORACLE_BASE_HOME directory is not co-located with ORACLE_HOME but is
located at ORACLE_BASE/homes/HOME_NAME.

Where, HOME_NAME is the internal name for ORACLE_HOME.

For example, the networking directories network/admin, network/trace, and
network/log are located in the ORACLE_BASE_HOME directory. In a read/write
ORACLE_HOME the networking directories appear to be in ORACLE_HOME because
ORACLE_BASE_HOME is co-located with ORACLE_HOME, whereas in a read-only
ORACLE_HOME the networking directories are located in ORACLE_BASE/homes/
HOME_NAME.

To print the ORACLE_BASE_HOME path, run the orabasehome command from
the $ORACLE_HOME/bin directory:

$ ORACLE_HOME=/u01/app/oracbase/product/19.3.0/dbhome_1
$ export ORACLE_HOME
$ cd $ORACLE_HOME/bin
$./orabasehome

For example:

$./orabasehome
/u01/app/oracbase/homes/OraDB19Home1

Where, /u01/app/oracbase is ORACLE_BASE and OraDB19Home1 is
HOME_NAME.

Chapter 2
About Read-Only Oracle Homes in the POSIX File System

2-19

2.4.1.3 About Oracle Base Config
Both, in a read-only ORACLE_HOME and read/write ORACLE_HOME, the
configuration files reside in a location known as ORACLE_BASE_CONFIG.

In a read/write ORACLE_HOME, the ORACLE_BASE_CONFIG path is the same
as the ORACLE_HOME path because it is located at $ORACLE_HOME. However,
in a read-only ORACLE_HOME, the ORACLE_BASE_CONFIG path is the same as
ORACLE_BASE.

ORACLE_BASE_CONFIG/dbs contains the configuration files for ORACLE_HOME.
Each file in the dbs directory contains $ORACLE_SID in the path or filename so that
the directory can be shared by many different ORACLE_SIDs.

To print the ORACLE_BASE_CONFIG path, run the orabaseconfig command from
the $ORACLE_HOME/bin directory:

$ ORACLE_HOME /u01/app/oracbase/product/19.3.0/dbhome_1
$ export ORACLE_HOME
$ cd $ORACLE_HOME/bin
$./orabaseconfig

For example:

$./orabaseconfig
/u01/app/oracbase

Where, /u01/app/oracbase is ORACLE_BASE.

2.4.1.4 About orabasetab
The orabasetab file is used to define fundamental directories
based on $ORACLE_HOME: ORACLE_BASE, ORACLE_BASE_HOME and
ORACLE_BASE_CONFIG.

The orabasetab file resides in ORACLE_HOME/install/orabasetab and can be
used to determine if an ORACLE_HOME is read-only or read/write. It also defines
the ORACLE_BASE and the HOME_NAME of the Oracle home. HOME_NAME is the
internal name for ORACLE_HOME.

The last line in the orabasetab file, which starts with $ORACLE_HOME, defines the
directories for $ORACLE_HOME. The last line consists of four fields, each separated
by a colon delimiter (:).

1. The first field matches the current $ORACLE_HOME.

2. The second field defines the ORACLE_BASE for the current ORACLE_HOME.

3. The third field defines the HOME_NAME which is used in constructing the
ORACLE_BASE_HOME path in a read-only ORACLE_HOME.

4. The fourth field displays N in a read/write ORACLE_HOME and Y in a read-only
ORACLE_HOME.

In a read-only ORACLE_HOME, the ORACLE_BASE_HOME path is ORACLE_BASE/
homes/HOME_NAME and ORACLE_BASE_CONFIG is the same as ORACLE_BASE.

Chapter 2
About Read-Only Oracle Homes in the POSIX File System

2-20

In a read/write ORACLE_HOME, ORACLE_HOME, ORACLE_BASE_HOME and
ORACLE_BASE_CONFIG are all the same.

Viewing an orabasetab File

1. Log in as the Oracle installation owner user account.

2. Go to the $ORACLE_HOME/install directory.

$ cd /u01/app/oracbase/product/19.3.0/dbhome_1/install

3. View the contents of the orabasetab file.

$ cat orabasetab
#orabasetab file is used to track Oracle Home associated with
Oracle Base
/u01/app/oracbase/product/19.3.0/dbhome_1:/u01/app/
oracbase:OraDB19Home1:Y:

In this example, a Y in the fourth field at the end of the line indicates you have a
read-only Oracle home.

2.4.2 About Installing a Read-Only Oracle Home in the POSIX File
System

Starting with Oracle Database 19c, the new procedure parameter RO-ORACLE-HOME
specifies the installation type in the POSIX file system.

Set the RO-ORACLE-HOME parameter to Y if you want a read-only ORACLE_HOME
installation. Set the RO-ORACLE-HOME parameter to N if you want a read/write
ORACLE_HOME installation, which is the default installation type.

If you run the installation in the DIALOG mode and you have specified an
ORACLE_HOME directory for installing Oracle Database in the POSIX file system,
but have not specified the type of your ORACLE_HOME directory, then you will be
prompted to choose the ORACLE_HOME type in the POSIX file system.

If you run the installation in the BATCH mode and you have specified an
ORACLE_HOME directory for the installation in the POSIX file system, then you
must specify the type of your ORACLE_HOME by setting the procedure parameter RO-
ORACLE-HOME. If you have not set the parameter then the default value N is assumed
and Oracle Database will be installed in a read/write ORACLE_HOME directory.

2.4.3 Determining if an Oracle Home is Read-Only
Run the orabasehome command to determine if your Oracle home is a read/write or
read-only Oracle home.

If the output of the orabasehome command is the same as $ORACLE_HOME,
then your Oracle home is in read/write mode. If the output displays the path
ORACLE_BASE/homes/HOME_NAME, then your Oracle home is in read-only mode.

Chapter 2
About Read-Only Oracle Homes in the POSIX File System

2-21

1. Set the ORACLE_HOME environment variable:

$ ORACLE_HOME=/u01/app/oracbase/product/19.3.0/dbhome_1
$ export ORACLE_HOME

2. Go to the bin directory and run the orabasehome command:

$ cd $ORACLE_HOME/bin
$./orabasehome
/u01/app/oracbase/homes/OraDB19Home1

In this example, the Oracle home is in read-only mode.

2.4.4 File Path and Directory Changes in Read-Only Oracle Homes
Examples of hierarchical file mappings in a read-only Oracle home as compared to a
read/write Oracle home.

This example shows an Oracle Database installation, for the user oracinst,
with the ORACLE_HOME, ORACLE_BASE, ORACLE_BASE_HOME, and
ORACLE_BASE_CONFIG locations. The database files still reside in the BS2000 file
system.

This example also shows the changes in the Oracle Database software defined paths
of configuration files, log files, and other directories in a read-only Oracle home when
compared to a read/write Oracle home.

Table 2-1 Read-Only Oracle Home and Read/Write Oracle Home File Path
Examples

Directory Read-Only Oracle Home File
Path

Read/Write Oracle Home
File Path

ORACLE_HOME /u01/app/oracbase/
product/19.3.0/
dbhome_1

/u01/app/oracbase/
product/19.3.0/
dbhome_1

ORACLE_BASE /u01/app/oracbase/ /u01/app/oracbase/

ORACLE_BASE_HOME ORACLE_BASE/homes/
HOME_NAME

(or)

/u01/app/oracbase/
homes/OraDB19Home1

ORACLE_HOME

(or)

/u01/app/oracbase/
product/19.3.0/
dbhome_1

ORACLE_BASE_CONFIG ORACLE_BASE

(or)

/u01/app/oracbase/

ORACLE_HOME

(or)

/u01/app/oracbase/
product/19.3.0/
dbhome_1

Chapter 2
About Read-Only Oracle Homes in the POSIX File System

2-22

Table 2-1 (Cont.) Read-Only Oracle Home and Read/Write Oracle Home File
Path Examples

Directory Read-Only Oracle Home File
Path

Read/Write Oracle Home
File Path

network ORACLE_BASE_HOME/
network

(or)

/u01/app/oracbase/
homes/OraDB19Home1/
network

ORACLE_HOME/network

(or)

/u01/app/oracbase/
product/19.3.0/
dbhome_1/network

dbs ORACLE_BASE/dbs

(or)

/u01/app/
oracbase/dbs

ORACLE_HOME/dbs

(or)

/u01/app/oracbase/
product/19.3.0/
dbhome_1/dbs

2.5 Installing Oracle Database
Oracle Database 19c software is available in a zipped LMS library. Complete the
following steps to install Oracle Database:

1. Download the installation files from Oracle Software Delivery Cloud to a Windows
or UNIX system that has FTP access to the BS2000 system where you want to
install the software.

https://edelivery.oracle.com/

2. Unzip the zip file with a zip utility, such as WinZip, to create the staging library
oraxxxxx.s390.lib.

3. Transfer the staging library with the FTP binary into a user ID on the BS2000
system. This can either be the Oracle installation user ID or any other user ID.
Before the transfer, if you are using BS2000 FTP, preallocate the file by using the
FTP file command as shown in the example:

file
oraxxxxx.s390.lib,fcbtype=pam,blkctrl=no,blksize=(std,2),space=1300000

Use the following command if you are using FTP on the platform where you had
unzipped the file:

quote file
oraxxxxx.s390.lib,fcbtype=pam,blkctrl=no,blksize=(std,2),space=1300000

4. If you have transferred the staging library to a user ID that is not equal to the
Oracle installation user ID, then you must grant access to the staging library for all
users. Use the following command:

/MODIFY-FILE-ATTRIBUTES ORAxxxxx.S390.LIB,USER-ACCESS=*ALL-USERS

5. Log in to the installation user ID.

6. If the staging library resides in the installation user ID, then call the Oracle
installation procedure as follows:

Chapter 2
Installing Oracle Database

2-23

https://edelivery.oracle.com/

/CALL-PROCEDURE (ORAxxxxx.S390.LIB,ORAINST.PRC)

If you have stored the staging library in a different BS2000 user ID, then call the
Oracle installation procedure as follows:

/CALL-PROCEDURE (staging_userid.ORAxxxxx.S390.LIB,ORAINST.PRC),
(STAGING-UID=staging_userid)

For example:

/CALL-PROCEDURE ($FOO.ORAxxxxx.S390.LIB,ORAINST.PRC),(STAGING-
UID=$FOO)

Oracle Database installation procedure performs the following actions:

• Checks hardware and software requirements.

• Checks the available disk space for the BS2000 files and the POSIX files.

• Extracts the files from the staging library.

• Installs Oracle software in the installation user ID.

• Updates the SDF syntax files, if SDF-A is available.

• Installs Oracle Database software in the POSIX file system.

• Registers the software in the Oracle Inventory file.

The following is the complete syntax of the installation procedure:

/CALL-PROCEDURE ([staging_userid.]ORAxxxxx.S390.LIB,ORAINST.PRC)[,

([CMD={INSTALL|UNINSTALL}]

[,INSTALLATION-TYPE={DATABASE|CLIENT}]

[,STAGING-UID={''|staging_userid}]

[,ORACLE-BASE={*PROMPT|oracle_base_path}]

[,ORACLE-HOME={*PROMPT|oracle_home_path}]

[,RO-ORACLE-HOME={*PROMPT|Y|N}]

[,DEBUG={Y|N}])]

The following table lists the parameters, their corresponding values, and their
description that are used during Oracle Database installation:

Parameter Value Description

CMD INSTALL|UNINSTALL

default: INSTALL

Install or uninstall Oracle
Database.

INSTALLATION-TYPE DATABASE|CLIENT

default: DATABASE

Types of installation.

STAGING-UID ' '|user ID of staging library

default: ''

BS2000 user ID where the
staging library is located.

Chapter 2
Installing Oracle Database

2-24

Parameter Value Description

ORACLE-BASE *PROMPT|
oracle_base_path

default: *PROMPT

The Oracle base directory is
required for installing Oracle
Database 19c in the POSIX
file system. The default
value *PROMPT, indicates the
prompting for an Oracle base
directory.

ORACLE-HOME *PROMPT|
oracle_home_path

default: *PROMPT

The Oracle home directory is
required for installing Oracle
Database 19c in the POSIX
file system. The default
value *PROMPT indicates the
prompting for an Oracle home
directory.

RO-ORACLE-HOME *PROMPT|Y|N

default:N

Installs Oracle in the POSIX
file system in READ-ONLY
mode.

DEBUG Y|N

default: N

Debug the installation
procedures.

Installing Oracle Database in the POSIX file system requires an ORACLE_BASE and
ORACLE_HOME path. During installation you are prompted for these paths, if the
installation runs in the dialog mode and if you have not specified the parameters in
the procedure call. You can accept the suggested paths or enter new paths.You will
also be asked if ORACLE_HOME should be installed in read-only mode or read/write
mode.

The installation procedure also provides the opportunity to run the installation as a
background task. In this case, you must specify the parameters ORACLE-BASE and
ORACLE-HOME, otherwise the installation will be aborted if the INSTALLATION-TYPE is
DATABASE. If the INSTALLATION-TYPE is CLIENT and if ORACLE-BASE or ORACLE-HOME is
not specified, then the installation in the POSIX file will be skipped. If the RO-ORACLE-
HOME parameter is not specified, then the default value N will be assumed. Since
the installation takes about 250 CPU seconds, Oracle recommends that you set the
CPU-LIMIT to at least 300 seconds. You can start the installation as follows:

/ENTER-PROCEDURE (ORAxxxxx.S390.LIB,ORAINST.PRC),
(ORACLE-BASE='/u01/app/oracbase',ORACLE-HOME='/u01/app/oracbase/product/
19.0.0/dbhome_1'),LOGGING=*NO,CPU-LIMIT=300

When you run the installation as a background task, the installation process is logged
to the file INSTALL.ORAINST.LST.

2.6 Oracle Database Postinstallation Tasks
To complete the installation, the POSIX administrator or the BS2000 system
administrator must run the oracle_home_path/root.sh script as follows:

• In the BS2000 environment, use the following command:

/EXECUTE-POSIX-CMD CMD='oracle_home_path/root.sh'

For example,

Chapter 2
Oracle Database Postinstallation Tasks

2-25

/EXECUTE-POSIX-CMD CMD='/u01/app/oracbase/product/19.3.0/dbhome_1/
root.sh'

• In the POSIX environment (shell), use the following command:

sh oracle_home_path/root.sh

For example:

sh /u01/app/oracbase/product/19.3.0/dbhome_1/root.sh

If this is the first Oracle Database installation on the BS2000 server, then the root.sh
script completes the following actions:

• Creates the path, /var/opt/oracle

• Creates the file, /var/opt/oracle/oraInst.loc

• Creates an empty file, /var/opt/oracle/oratab

2.7 About Installing Multiple Oracle Databases
You can install multiple Oracle databases, based on different releases of Oracle
software. In this case, different releases of the software must be installed under
different installation user IDs and different Oracle home directories.

2.8 About Removing Oracle Database Software
To remove Oracle Database software from your computer, log in to the Oracle
installation user ID and use the installation procedure as follows:

/CALL-PROCEDURE INSTALL.P.ORAINST,(CMD=UNINSTALL)

This procedure completes the following actions:

• Removes the Oracle Database software from the POSIX file system.

• Updates the Oracle inventory.

• Removes the Oracle Database software from the BS2000 file system.

Note:

Only the files installed by the Oracle installation procedure, namely,
ORAINST.PRC are removed from the system. Files created by a user or by an
Oracle instance are retained in the Oracle home directory and the installation
user ID.

Chapter 2
About Installing Multiple Oracle Databases

2-26

3
About Creating a Database

Starting with Oracle Database 12c Release 1, you can use the Oracle Multitenant
option to configure and manage a multitenant environment. The multitenant
architecture enables an Oracle Database to function as a multitenant container
database (CDB) that includes zero, one, or many customer-created pluggable
databases (PDBs). A PDB is a portable collection of schemas, schema objects, and
nonschema objects.

This chapter describes the following:

• Prerequisites for Database Creation

• About Creating a Non-CDB

• About Creating a Multitenant Container Database

3.1 Prerequisites for Database Creation
Before you can create a database, the following prerequisites must be met:

1. Oracle Database 19c must be installed under the installation user ID.

2. The BS2000 system administrator must create a DBA user ID with the required
attributes.

See Also:

• “Oracle Database Installation and Deinstallation” for details on how
to install Oracle Database

• “About Creating Users and Groups for Oracle Databases” for details
about the attributes

3.2 About Creating a Non-CDB
A non-CDB is the traditional type of an Oracle database, which was supported in
Oracle Database releases before 12c.

Oracle Database 19c supports a non-CDB.

You can create a non-CDB either automatically or manually. Oracle recommends
that you use the automatic creation procedure outlined in the “Creating a Database
Automatically” section. Instructions on how to create a traditional database manually
are given in the “Creating a Database Manually” section.

This section describes the following topics:

• Creating a Database Automatically

3-1

• Creating a Database Manually

3.2.1 Creating a Database Automatically
Complete the following steps to create a database automatically:

1. Log in to the DBA user ID.

2. To start the automatic creation procedure, INSTALL.P.SUPER, enter the following
command:

/CALL-PROCEDURE $ORACINST.INSTALL.P.SUPER

When you run the INSTALL.P.SUPER procedure, you must specify the value of the
following keyword parameters (the default values are used if you choose not to
modify the values):

Parameter Value

BATCH Enter YES to run the procedure in the batch mode. The default is set to
YES. So, by default the procedure is run in the batch mode.

CPULIMIT Sets the CPU time limit for batch jobs. The default is 2000.

PLSQL Enter NO to suppress automatic installation of the basic PL/SQL
package. The default is YES.

VIEWS Enter NO to suppress automatic installation of the basic views (catalog,
import/export, and so on). The default is YES.

3. Answer the prompts for the following information. If you do not enter any value,
then the default values shown on the screen are used:

Parameter Value

DBASID Enter the 1 - 4 character system ID of the database you are installing.
This is a mandatory parameter.

JOBCLASS Enter the jobclass to be used for Oracle Database 19c background jobs.
This is mandatory.

Note:

The jobclass must be defined with the characteristics TP-
ALLOWED=YES and NO-CPU-LIMIT=YES.

UPDATE Enter YES if you have existing files for this SID and if you want to
update them.

SYSPW Enter the desired password for the Oracle Database user SYS.

SYSTEMPW Enter the desired password for the Oracle Database user SYSTEM.

Note: By default the SYSTEM user has the password MANAGER. For
security reasons, Oracle recommends that you change this password
immediately after installation.

Chapter 3
About Creating a Non-CDB

3-2

Parameter Value

JAVA Enter NO if you do not need a Java enabled database (thus saving
memory, CPU, and disk space resources). For more information refer to
“Java in the Database” section.

DBSIZE Enter the size of the system tablespace files in bytes, kilobytes, or
megabytes. The value you enter can have one of the following forms:

• 44M for 44 megabytes
• 44000K for 44000 kilobytes
• 10000000 for 10000000 bytes
The default is 400 MB.

AUXSIZE Enter the size of the sysaux tablespace file in bytes, kilobytes, or
megabytes. The value you enter can have one of the following forms:

• 44M for 44megabytes
• 44000K for 44000 kilobytes
• 10000000 for 10000000 bytes
The default is 300 MB.

LOGSIZE Enter the size of the log files in bytes, kilobytes, or megabytes. The
value you enter can have one of the following forms:

• 1M for 1 megabytes
• 1000K for 1000 kilobytes
• 100000 for 100000 bytes
The default is 20000 KB.

UNDOSIZE Enter the size of the undo tablespace file in bytes, kilobytes, or
megabytes. The value you enter can have one of the following forms:

• 44M for 44 megabytes
• 44000K for 44000 kilobytes
• 10000000 for 10000000 bytes
The default is 100 MB.

LOCAL Enter NO if you do not require a locally managed system tablespace.
The default is YES. If you choose a locally managed system tablespace,
then Oracle automatically creates a default temporary tablespace.

DEFTS Enter NO if you do not want to create a default permanent tablespace.
The default is YES.

TEMPTS This prompt only appears if you do not want a locally managed system
tablespace. Enter NO if you do not want a default temporary tablespace.
The default is YES.

CHARSET Enter the character set with which you want the database to be created
(the default is WE8BS2000).

For more information refer to “Globalization Support”.

NCHARSET Enter the national character set used to store data in columns
specifically defined as NCHAR, NCLOB, or NVARCHAR2. Valid values are
AL16UTF16 and UTF8. The default is AL16UTF16.

Unless specified otherwise, $ORACINST.INSTALL.P.SUPER generates and enters a
batch job which:

• Calls INSTALL.P.DBA.

• Creates the system and sysaux tablespace.

• Creates the default permanent tablespace, temporary tablespace, and undo
tablespace.

Chapter 3
About Creating a Non-CDB

3-3

• Creates the log files.

• Initializes the database.

• Runs CATALOG.SQL.

• Runs CATPROC.SQL .

• Installs the tables for online help messages.

• Installs the DEMO tables.

• Changes the system passwords if necessary.

• Calls the verification procedure.

When $ORACINST.INSTALL.P.SUPER has completed, you should have an initialized,
ready-to-use database, and a running Oracle Database instance. The results of the job
are listed in the file, L.sid.INSSUP.SYSOUT, where sid is the system ID of the database
that you just installed.

3.2.2 Creating a Database Manually
Oracle recommends that you use the automatic creation procedure outlined in
"Creating a Database Automatically". The manual creation procedure performs the
same steps as the automatic creation procedure. However, when you create a
database manually, you can perform the steps at your own pace, and also choose
which of the optional steps to perform, omit, or perform later.

This section describes the following topics:

• Creating Parameter Files for a Non-CDB

• Creating the Database

• About Installing Data Dictionary Views

• About Installing Online Help Messages

• About Installing Demo Tables

• About Installing Sample Schemas

• About Verifying Database Creation

• About Installing Oracle Text

• About Installing Java

3.2.2.1 Creating Parameter Files for a Non-CDB
Create the parameter files for the new database as follows:

1. Log in to the DBA user ID.

2. Call the BS2000 command procedure INSTALL.P.DBA. This procedure generates
parameter files for the database in the DBA user ID. When the procedure begins
you are prompted to supply a 1 to 4 character system ID for the database you are
creating.

To install the DBA files, enter the following command:

/CALL-PROCEDURE $ORACINST.INSTALL.P.DBA

This procedure prompts you for the following information:

Chapter 3
About Creating a Non-CDB

3-4

Parameter Value

DBASID Enter the 1 - 4 character system ID of the database you are creating.

JOBCLASS Enter the BS2000 jobclass to be used for background and server tasks.

The jobclass must be defined with the characteristics TP-ALLOWED=YES
and NO-CPU-LIMIT=YES.

You can also modify the following keyword parameters when invoking this
procedure:

Parameter Value

LOG Enter WRITE-TEXT (the BS2000 command name) if you want to have
install actions listed.

UPDATE Enter YES/NO to indicate whether existing files are to be updated. The
default is NO.

The $ORACINST.INSTALL.P.DBA procedure generates the following files into the
DBA user ID:

• sid.P.ORAENV: Oracle Database environment definition file

• sid.DBS.INIT.ORA: Oracle Database initialization file

where sid is the system ID for the database being created.

These files are generated by using the two corresponding files DEMO.P.ORAENV and
DEMO.DBS.INIT.ORA in the installation user ID as templates.

3.2.2.2 Creating the Database
After generating the DBA files, you must create the database. This section describes
the procedure for creating the database:

• About Modifying the Initialization File for a Non-CDB

• About Modifying the ORAENV File for a Non-CDB

• About Using SQL*Plus to Create the Database

3.2.2.2.1 About Modifying the Initialization File for a Non-CDB
Determine if you want to make any changes to parameters in the distributed
initialization file, sid.DBS.INIT.ORA (where sid is the system ID for the database).
The SGA parameters may need to be adjusted to reflect memory limitations and
the maximum number of users who can access the Oracle Database instance
concurrently. Use a BS2000 editor to make the modifications.

See Also:

Oracle Database Reference for more information about the initialization
parameters

Chapter 3
About Creating a Non-CDB

3-5

3.2.2.2.2 About Modifying the ORAENV File for a Non-CDB
Modify the environment definition file, sid.P.ORAENV, according to your specific
requirements. Remember that a number of variables are evaluated during startup only.
If you modify such a variable in the ORAENV file later on, then you may have to wait for
the next startup for the changes to take effect.

Do not explicitly set the environment variable NLS_LANG when you run Oracle supplied
SQL scripts.

3.2.2.2.3 About Using SQL*Plus to Create the Database
Remember that you must call the applicable sid.P.ORAENV procedure before calling
SQL*Plus. To execute SQL*Plus, enter the following commands:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* /NOLOG
SQL> CONNECT / AS SYSDBA
SQL> STARTUP NOMOUNT [PFILE=filename]

• /NOLOG omits being prompted for user name and password.

• CONNECT gives you a connection to an idle instance.

• The last statement starts the Oracle Database instance.

If you want to use your own copy of the initialization file (sid.DBS.INIT.ORA), then use
the PFILE=filename option, as illustrated in the previous command.

The following statement creates database and log files:

SQL> CREATE DATABASE...;

Note:

If you get an error before the first SQL> prompt, then it may be caused
by either a missing ORAENV file (or ORASID not set in the ORAENV file), or
sometimes by an address space conflict. For example, the address range
you assigned to the kernel memory pool (KNL_BASE) could be occupied by a
subsystem.

3.2.2.3 About Installing Data Dictionary Views
Run the scripts necessary to build data dictionary views, synonyms, and PL/SQL
packages. Run the following commands:

SQL> SPOOL filename
SQL> SET TERMOUT OFF
SQL> $ORACLE_HOME/rdbms/admin/catalog.sql
SQL> $ORACLE_HOME/rdbms/admin/catproc.sql

3.2.2.4 About Installing Online Help Messages
To install the Online Help facility, enter the following command:

Chapter 3
About Creating a Non-CDB

3-6

/CALL-PROCEDURE $ORACINST.INSTALL.P.HELP,(sid[,SYSTEMPW=systempw])

3.2.2.5 About Installing Demo Tables
To install demo tables, enter the following:

/CALL-PROCEDURE $ORACINST.INSTALL.P.DEMO,(sid [,SYSTEMPW=systempw])

3.2.2.6 About Installing Sample Schemas
To install sample schemas, enter the following:

/CALL-PROCEDURE $ORACINST.INSTALL.P.SAMPLES,(sid [,SYSTEMPW=systempw]
[,SYSPW=syspw])

The procedure INSTALL.P.SAMPLES installs the human resources (HR), order entry
(OE), info exchange (IX), and sales history (SH) sample schemas with the default
passwords. Product media (PM) is not supported.

3.2.2.7 About Verifying Database Creation
To verify if the demonstration database was correctly created, enter the following:

/CALL-PROCEDURE $ORACINST.INSTALL.P.VERIFY,(sid [,SYSTEMPW=systempw])

If the demonstration database was correctly created, then you see messages like the
following displayed on the screen:

*SCOTT'S TABLE EMP IS INSTALLED

3.2.2.8 About Installing Oracle Text
Installing Oracle Text is summarized in the "Oracle Text" chapter of this book.

3.2.2.9 About Installing Java
Installing Java is summarized in the "Java in the Database" chapter of this book.

3.3 About Creating a Multitenant Container Database
A multitenant container database (CDB) is a single physical database that contains
zero, one, or many user-created pluggable databases. A pluggable database (PDB)
is a portable collection of schemas, schema objects, and nonschema objects that
appears to an Oracle Net client as a non-CDB. A non-CDB is a traditional Oracle
database that cannot contain PDBs.

Starting with Oracle Database 12c Release 1, you can create a multitenant container
database (CDB).

The topics in this section describe how to create a CDB manually on Fujitsu BS2000.
As creating a CDB involves Perl scripts, you must perform some steps in the POSIX
environment. Perl is supported only in the POSIX environment of BS2000.

The following topics are discussed:

• Creating Parameter Files for a CDB

Chapter 3
About Creating a Multitenant Container Database

3-7

• About Creating a CDB

See Also:

Oracle Database Administrator’s Guide for more information about creating a
CDB

3.3.1 Creating Parameter Files for a CDB
Create the parameter files for the new database as follows:

1. Log in to the DBA user ID.

2. Call the BS2000 command procedure INSTALL.P.DBA. This procedure generates
parameter files for the database in the DBA user ID. When the procedure begins
you are prompted to supply a 1 to 4 character system ID for the database you are
creating.

To install the DBA files, enter the following command:

/CALL-PROCEDURE $ORACINST.INSTALL.P.DBA

This procedure prompts you for the following information:

Parameter Value

DBASID Enter the 1 - 4 character system ID of the database you are creating.

JOBCLASS Enter the BS2000 jobclass to be used for background and server tasks.

The jobclass must be defined with the characteristics TP-ALLOWED=YES
and NO-CPU-LIMIT=YES.

You can also modify the following keyword parameters when invoking this
procedure:

Parameter Value

LOG Enter WRITE-TEXT (the BS2000 command name) if you want to have
install actions listed.

UPDATE Enter YES/NO to indicate whether existing files are to be updated. The
default is NO.

The $ORACINST.INSTALL.P.DBA procedure generates the following files into the
DBA user ID:

• sid.P.ORAENV: Oracle Database environment definition file

• sid.DBS.INIT.ORA: Oracle Database initialization file

where sid is the system ID for the database being created.

These files are generated by using the two corresponding files DEMO.P.ORAENV and
DEMO.DBS.INIT.ORA in the installation user ID as templates.

Chapter 3
About Creating a Multitenant Container Database

3-8

3.3.2 About Creating a CDB
The procedure to create a multitenant container database (CDB) is discussed in the
following topics:

• About Modifying the Initialization File for a CDB

• About Modifying the ORAENV File for a CDB

• Using SQL*Plus to Create a CDB

3.3.2.1 About Modifying the Initialization File for a CDB
Determine if you want to make any changes to the parameters in the initialization
file, sid.DBS.INIT.ORA (where sid is the system ID for the database). The SGA
parameters may need to be adjusted to reflect memory limitations and the maximum
number of users who can access the Oracle Database instance concurrently. Use a
BS2000 editor to make the modifications.

To create a CDB, set the value for the ENABLE_PLUGGABLE_DATABASE initialization
parameter in the sid.DBS.INIT.ORA file as follows:

ENABLE_PLUGGABLE_DATABASE=TRUE

See Also:

Oracle Database Reference for an explanation of initialization parameters

3.3.2.2 About Modifying the ORAENV File for a CDB
Modify the environment definition file, sid.P.ORAENV, according to your specific
requirements. Remember that a number of variables are evaluated during startup only.
If you modify such a variable in the ORAENV file later on, then you may have to wait for
the next startup for the changes to take effect.

Do not explicitly set the environment variable NLS_LANG when you run Oracle supplied
SQL scripts.

3.3.2.3 Using SQL*Plus to Create a CDB
Complete the following steps to create a CDB using the SQL*Plus utility:

1. In the DBA user ID, change to the POSIX shell by executing the BS2000 SDF
command:

/START-POSIX-SHELL

2. Start SQL*Plus in the POSIX shell and start up the instance with the NOMOUNT
option:

$. oracle_home_path/.profile.oracle
$ ORACLE_SID=sid
$ export ORACLE_SID
$ sqlplus /nolog

Chapter 3
About Creating a Multitenant Container Database

3-9

SQL> connect / as sysdba
SQL> startup nomount;

3. Execute a SQL statement similar to the following to create CDB$ROOT and PDB$SEED
of the CDB. In the following example, a CDB with the name CDB1 is created:

SQL> CREATE DATABASE CDB1
USER SYS IDENTIFIED BY sys_password
USER SYSTEM IDENTIFIED system_password
LOGFILE 'CDB1.DBS.LOG1.DBF' SIZE 20M, 'CDB1.DBS.LOG2.DBF' SIZE 20M
DATAFILE 'CDB1.DBS.DATABASE1.DBF' SIZE 400M
SYSAUX DATAFILE 'CDB1.DBS.SYSAUX.DBF' SIZE 200M
DEFAULT TABLESPACE USERS
DATAFILE 'CDB1.DBS.USERS1.DBF' SIZE 100M AUTOEXTEND ON
DEFAULT TEMPORARY TABLESPACE TEMP
TEMPFILE 'CDB1.DBS.TEMP1.DBF' SIZE 100M AUTOEXTEND ON
UNDO TABLESPACE UNDOTBS1
DATAFILE 'CDB1.DBS.UNDO1.DBF' SIZE 100M AUTOEXTEND ON
CHARACTER SET WE8BS2000
NATIONAL CHARACTER SET AL16UTF16
EXTENT MANAGEMENT LOCAL
ENABLE PLUGGABLE DATABASE
SEED FILE_NAME_CONVERT = ('DBS','SEED');

4. The next statement installs all of the components required by a CDB. For example,
it runs the SQL scripts catalog.sql and catproc.sql in CDB$ROOT and PDB$SEED
of the CDB:

SQL> @$ORACLE_HOME/rdbms/admin/catcdb.sql

5. Exit SQL*Plus and check the spool files for error messages.

Chapter 3
About Creating a Multitenant Container Database

3-10

4
About Upgrading a Database

This chapter describes how to upgrade your existing database to Oracle Database 19c
on Fujitsu BS2000. It gives you an overview about the steps required for the upgrade
of a database and informs about actions, which are specific to the Fujitsu BS2000
platform.

Before you perform an upgrade, you must be familiar about upgrade preparation,
space and backup requirements, release differences, handling TIMESTAMP WITH TIME
ZONE data type, and other database upgrade concepts.

It is assumed that you have correctly installed Oracle Database 19c as explained in
“Oracle Database Installation and Deinstallation.”This chapter describes upgrading a
database from Oracle Database 12c Release 2 (12.2) to Oracle Database 19c. The
upgrade is done both in the normal BS2000 environment and in the POSIX shell.
Oracle recommends that you be familiar with both these environments.

This chapter includes the following topics:

• Performing Preupgrade Procedures

• Performing Upgrade Procedures

• Performing Postupgrade Procedures

Related Topics

• Oracle Database Upgrade Guide

4.1 Performing Preupgrade Procedures
You must analyze your database before upgrading it to the new release. To analyze,
run the preupgrade.jar Pre-Upgrade Information Tool from the environment of the
database that you want to upgrade. Running the Pre-Upgrade Information Tool
provides information about any issues that need to be fixed.

You must run the preupgrade.jar tool in the environment of the source database, for
example, in the Oracle Database 12c Release 2 (12.2) environment. The database
must be up and running.

The Pre-Upgrade Information Tool generates log files and fixup scripts that you can
run, to resolve issues that are flagged in the source database. These log files and
fixup scripts are generated in the POSIX file system. If ORACLE_BASE is defined, then
the generated scripts and log files are created in the $ORACLE_BASE/cfgtoollogs
directory. If ORACLE_BASE is not defined, then the generated scripts and log files are
created in the $ORACLE_HOME/cfgtoollogs directory.

Perform the following steps in the environment of the source database:

1. Log in to the DBA user ID of the source database.

2. To avoid being prompted for many overflow acknowledgements on your screen,
enter:

/MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=*NO-CONTROL

4-1

3. Change to the POSIX shell:

/START-POSIX-SHELL

4. Before you run the Pre-upgrade Information Tool, preupgrade.jar in the POSIX
shell, set the Oracle environment variables ORACLE_HOME and ORACLE_BASE by
executing the .profile.oracle file:

$. oracle_home_path_12c_R2/.profile.oracle

You must also set the ORACLE_SID environment variable to the sid of your Oracle
Database instance. Use the following commands:

$ ORACLE_SID=sid
$ export ORACLE_SID

Note:

You must remember that the variable BGJPAR might not be defined.
Oracle recommends to set the variable BGJPAR according to the value
you find in the corresponding ORAENV file , sid.P.ORAENV.

5. Run the preupgrade.jar Pre-Upgrade Information Tool:

$ $ORACLE_HOME/jdk/bin/java -jar oracle_home_path_19c/rdbms/admin/
preupgrade.jar

6. View and read through the resulting generated fixup scripts and log file, which are
located in:

• $ORACLE_BASE/cfgtoollogs/db_unique_name/preupgrade directory if
ORACLE_BASE is defined.

• $ORACLE_HOME/cfgtoollogs/db_unique_name/preupgrade directory if
ORACLE_BASE is not defined.

7. After you have reviewed the scripts, Oracle recommends that you execute
preupgrade_fixups.sql on the source database. The preupgrade_fixups.sql
script attempts to resolve issues reported by the preupgrade process. You must
manually resolve the issues that cannot be resolved automatically by a fixup script.

8. Shutdown the database and exit SQL*Plus. Use the following commands:

$ sqlplus /nolog
SQL> connect / as sysdba
SQL> shutdown immediate;
SQL> exit

9. Exit the POSIX shell:

$ exit

Chapter 4
Performing Preupgrade Procedures

4-2

Note:

Oracle recommends that you back up your Oracle database after
running the Pre-Upgrade Information Tool and shutting down the
database.

You can find regular updates of the Pre-Upgrade Information tool on
the My Oracle Support website. Refer to the My Oracle Support Note
884522.1 if you want to download and install a new release of the Pre-
Upgrade information tool. The steps described in this note are valid for
Fujitsu BS2000, too. The only difference is the procedure for unzipping
the zip file.

Transfer the zip file (with binary mode) to the POSIX file system of your
BS2000 machine. Then unzip the zip file into the $ORACLE_HOME/rdbms/
admin directory of Oracle Database 19c as follows:

$ cd $ORACLE_HOME/rdbms/admin
$ unzip -aa preupgrade_19_cbuild_nn_lf.zip -x preupgrade.jar
$ unzip preupgrade_19_cbuild_nn_lf.zip preupgrade.jar

4.2 Performing Upgrade Procedures
Use the upgrade utility, dbupgrade to upgrade Oracle Database. As shell scripts and
Perl scripts are supported only in the POSIX environment, you must change to the
POSIX shell for performing some of the procedure.

The shell script dbupgrade is a wrapper for the parallel upgrade utility catctl.pl,
which is based on Perl.

All the steps in this phase must be performed in the new Oracle Database 19c
environment. For some steps you have to change to the POSIX shell.

Perform the following upgrade steps:

1. Log in to the DBA user ID of the database to be upgraded.

2. To avoid being prompted for many overflow acknowledgements on your screen,
enter:

/MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=*NO-CONTROL

3. Enter the following command to create an Oracle Database 19c INIT.ORA file
and an Oracle Database 19c ORAENV file. The original files will be saved by
the $ORACINST.INSTALL.P.DBA procedure with the suffix .OLD. Use the following
commands:

/CALL-PROCEDURE $ORACINST.INSTALL.P.DBA,(sid,jobclass,UPDATE=YES)

4. Modify the newly created files according to your requirements. For example,
change the values of PROCESSES or DB_CACHE_SIZE in the INIT.ORA file.

5. Set the parameters in the INIT.ORA file as recommended by the Pre-Upgrade
Information Tool. Ensure that the COMPATIBLE initialization parameter is explicitly
set to 12.2.0 or higher.

Chapter 4
Performing Upgrade Procedures

4-3

https://support.oracle.com/epmos/faces/DocumentDisplay?id=884522.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=884522.1

6. Change to the POSIX shell. Use the following command:

/START-POSIX-SHELL

7. Before you run SQL*Plus in the POSIX shell you must set some environment
variables. For example, ORACLE_HOME and ORACLE_BASE. To set these variables, run
the .profile.oracle file that is located in the ORACLE_HOME directory of the Oracle
Database 19c software installation:

$. oracle_home_path_19c/.profile.oracle

8. Set the ORACLE_SID environment variable to the sid of your Oracle Database
instance:

$ ORACLE_SID=sid
$ export ORACLE_SID

Note:

Ensure that you define the BGJPAR variable. Oracle recommends to
set the BGJPAR variable to the corresponding value in the ORAENV file,
sid.P.ORAENV.

9. Start up the instance in upgrade mode as follows:

$ sqlplus /nolog
SQL> connect / as sysdba
SQL> startup upgrade
SQL> exit

10. Run the shell script for upgrade as follows:

$ $ORACLE_HOME/bin/dbupgrade -l $HOME/logs

The –l option allows you to specify the directory where you want to write the
upgrade log files.

See Also:

Oracle Database Upgrade Guide for other options of the upgrade utility,
dbupgrade.

The upgraded database is shut down after running dbupgrade.

11. Restart the instance to reinitialize the system parameters for normal operation:

$ sqlplus /nolog
SQL> connect / as sysdba
SQL> startup

12. Run the catcon.pl script to start utlrp.sql, and to recompile any remaining
stored PL/SQL and Java code. For example:

Chapter 4
Performing Upgrade Procedures

4-4

$ORACLE_HOME/perl/bin/perl catcon.pl -n 1 -e -b utlrp -l $HOME/logs -d
'''.''' utlrp.sql

When you run the command using -b utlrp, the log file utlrp0.log is generated
as the script is run. The log file provides the recompilation results.

13. Run the postupgrade_fixups.sql script. For example:

SQL> @postupgrade_fixups.sql

14. Run utlusts.sql, the Post-Upgrade Status Tool to display a summary of the
upgrade results:

SQL> @$ORACLE_HOME/rdbms/admin/utlusts.sql TEXT

If the utlusts.sql script returns errors, or shows components that do not contain
the most recent release, or do not have the VALID status, then refer to Oracle
Database Upgrade Guide for troubleshooting.

15. To query invalid objects, execute SQL queries similar to:

SQL> SELECT count(*) FROM dba_objects WHERE status='INVALID';
SQL> SELECT distinct object_name FROM dba_objects WHERE
status='INVALID';

Your database is now upgraded to Oracle Database 19c.

4.3 Performing Postupgrade Procedures
You must complete the following tasks after upgrading to Oracle Database 19c:

• Gathering Statistics

• Migrating to Unified Auditing

Gathering Statistics

Oracle recommends to gather dictionary statistics after upgrading the database.
Execute the following SQL statement:

SQL> execute dbms_stats.gather_dictionary_stats;

After an upgrade Oracle strongly recommends that you regather fixed object statistics
after you have run representative workloads. Execute the following SQL statement:

SQL> execute dbms_stats.gather_fixed_objects_stats;

Migrating to Unified Auditing

Oracle Database 19c supports Unified Auditing. After upgrading to Oracle Database
19c, the Unified Auditing option is not enabled.

Chapter 4
Performing Postupgrade Procedures

4-5

See Also:

• “About Unified Auditing” for more information about enabling Unified
Auditing

• Oracle Database Upgrade Guide for more information about migrating to
Unified Auditing

Chapter 4
Performing Postupgrade Procedures

4-6

5
About Upgrading Applications

Learn how to rebuild Application Programs in the following topics.

• Precompile and Compile Application Programs

• Link Application Programs

• Update ORAENV Files

Related Topics

• Oracle Database Upgrade Guide

5.1 Precompile and Compile Application Programs
You must change the Application code when APIs are deprecated or changed.

When you upgrade to the new release of Oracle Database software, ensure that you:

• Make the necessary code changes for APIs that are either deprecated or changed.

• Precompile and compile embedded SQL applications.

• Compile OCI applications with the new software.

• Relink the application using the libraries of the new release of Oracle Database.

By recompiling, you perform a syntax check of your application code. Some problems
in the application code that were not detected by previous releases of the Oracle
software can emerge when you precompile or compile with the new Oracle Database
software. Precompiling and compiling with the latest release of Oracle Database
software helps you to detect and correct problems in the application code that were
previously unnoticed.

5.2 Link Application Programs
Statically-linked code can be incompatible with the upgraded Oracle Software.

It is very important that you relink statically-linked applications using the libraries of the
new release of Oracle Database Software.

5.3 Update ORAENV Files
Check your ORAENV files, and if necessary, update the value of the ORAUID,
ORACLE_BASE, and ORACLE_HOME environment variables.

The ORAUID environment variable must refer to the correct Oracle Database installation
user ID and the ORACLE_HOME environment variable must refer to the corresponding
Oracle home directory in the POSIX file system. Also check other environment
variables and update them as required.

5-1

Use the INSTALL.P.USER procedure to create a template of an ORAENV file for the new
release of Oracle Database.

Chapter 5
Update ORAENV Files

5-2

Part III
Database Administration

This part discusses the following topics related to Oracle Database administration:

• Administering Oracle Database

• Oracle Database Utilities

• Backing Up and Recovering a Database

• About Unified Auditing

• Java in the Database

• Oracle Text

• XML

• Oracle Net Services

6
Administering Oracle Database

This chapter describes how to administer Oracle Database 19c for BS2000.

Common administration tasks are described in the following sections:

• Using the SQL*Plus Utility

• Startup and Parameter Files

• Preparing a Remote Startup of a Database Instance Using SQL*Plus

• Automatic Diagnostic Repository

6.1 Using the SQL*Plus Utility
SQL*Plus is the primary command-line interface to administer your Oracle database.
You can use SQL*Plus to start up and shut down the database, set database
initialization parameters, create and manage users, create and alter database objects,
and so on.

See Also:

“SQL*Plus” for more information about how to use SQL*Plus on Fujitsu
BS2000

6.2 Startup and Parameter Files
Oracle uses the following parameter files when starting the database:

1. The environment definition file ORAENV, which contains BS2000-specific
information. In the ORAENV file, identify the database that has to be started or shut
down. You can use this file to set the required environment variables.

2. The initialization file INIT.ORA or the server parameter file SPFILE, which exists in
all Oracle Database implementations and contains database-specific parameters.

This section describes the following:

• The Environment Definition File ORAENV

• The Initialization File INIT.ORA

• The Server Parameter File SPFILE

• About Using the Initialization File

6.2.1 The Environment Definition File ORAENV
The ORAENV file is identified by sid.P.ORAENV, where sid is the system identifier. The
same ORAENV file must be used by SQL*Plus in BS2000 and by all background jobs.

6-1

If you use SQL*Plus in the POSIX shell, then you must specify the requested BS2000
parameters that are set in the ORAENV file. You can set the variables in the POSIX
environment or use the facility to access the BS2000 ORAENV file as described in
“Setting Variable in the POSIX Program Environment.”

Ensure that the value for sid in the POSIX file name oraenvsid matches the
value of the environment variable ORACLE_SID. For example, if you created a POSIX
file oraenvsid with sid in uppercase, then you must set the environment variable
ORACLE_SID to exactly the same value.

$ echo '$ORADATA.ORCL.P.ORAENV' > $ORACLE_HOME/dbs/oraenvORCL
$ ORACLE_SID=ORCL
$ export ORACLE_SID
$ sqlplus /nolog
$ SQL> connect / as sysdba

See Also:

• “Oracle Environment Variables” for information about required and
optional ORAENV variables

• “Starting Oracle Utilities in the POSIX Program Environment” for more
information about how to set POSIX environment variables

6.2.2 The Initialization File INIT.ORA
To start up a database, you require the INIT.ORA parameter file. This file contains a list
of specifications for the Oracle database. The platform independent parameters set up
the instance and the database.

Related Topics

• Oracle Database Administrator’s Guide

• Oracle Database Reference

6.2.3 The Server Parameter File SPFILE
You can choose to maintain initialization parameters in a binary server parameter file.
A server parameter file is initially built from a traditional text initialization parameter file
using the CREATE SPFILE command. If you enter the following command:

CREATE SPFILE FROM PFILE;

where neither SPFILE name nor PFILE name is specified, then Oracle looks for
a text initialization file sid.DBS.INIT.ORA and creates a server parameter file
sid.DBS.SPFILE.ORA.

6.2.4 About Using the Initialization File
A default initialization file, called $ORACINST.DEMO.DBS.INIT.ORA, is distributed with
Oracle Database. During database creation, this file is copied to the DBA user ID
and renamed to sid.DBS.INIT.ORA, where sid is the 1 to 4 character system ID you
specified at the beginning of the database creation procedure.

Chapter 6
Startup and Parameter Files

6-2

Oracle determines the value of sid by retrieving the ORASID environment variable
defined in the ORAENV file for the database. When you issue the STARTUP command
without specifying the PFILE, Oracle locates the initialization parameter file by
examining file names in the following order:

1. sid.DBS.SPFILE.ORA

2. DBS.SPFILE.ORA

3. sid.DBS.INIT.ORA

If you want to use a different initialization file, then use the argument PFILE. For
example, to bring up a previously created database using an initialization file called
TEST.INIT.ORA, enter the following:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* /NOLOG

At the SQL*Plus prompt, enter:

SQL> CONNECT / AS SYSDBA
SQL> STARTUP PFILE=TEST.INIT.ORA

6.3 Preparing a Remote Startup of a Database Instance
Using SQL*Plus

This section describes the preparations that are required to start up a database
instance remotely using SQL*Plus:

1. Usually, the listener parameter file, LISTENER.ORA does not contain a static service
registration section (SID_LIST) for a database service. In case of a remote startup,
you must define this section for the desired database. For example:

SID_LIST_LISTENER = (SID_LIST =
 (SID_DESC =
 (SID_NAME = ORCL)))

The listener must be running on the computer where you want to start the
instance. The listener must statically register the instance. If the listener does not
run under the same user ID as the instance that you want to start, then you must
do one of the following:

• Use the Oracle environment variables sid_USER, user_ACCOUNT, and
user_PASSWORD to specify the required LOGON authorization parameters in the
ORAENV file of the listener.

• Use SECOS, Fujitsu's Security Control System for BS2000.

See Also:

"Configuring the Network" for more information

2. Create a password file with the Oracle utility, ORAPWD under the user ID of the
instance that you want to administer. To run the ORAPWD utility on BS2000, use the
following command:

Chapter 6
Preparing a Remote Startup of a Database Instance Using SQL*Plus

6-3

/START-EXECUTABLE (*LINK(ORALOAD),ORAPWD)
*file=password_file password=my_password entries=10

See Also:

Oracle Database Administrator’s Guide for more information about how
to use the ORAPWD utility

3. The name of the password file is derived from the SSSIDPWF environment variable.
Ensure that you add this environment variable to the ORAENV file of the instance
that you want to start:

SSSIDPWF = password_file

4. The parameter REMOTE_LOGIN_PASSWORDFILE must be set to EXCLUSIVE in the
initialization file of the instance:

REMOTE_LOGIN_PASSWORDFILE = EXCLUSIVE

5. Execute SQL*Plus on the remote computer and connect as user sys to a server
task of the instance that you want to start. The following example shows the
commands for SQL*Plus on a UNIX client. The net service name orcl_on_bs2000
is used to address the remote instance on the BS2000 computer:

sqlplus /nolog
SQL> connect sys@orcl_on_bs2000 as sysdba
Enter password:
password
Connected
SQL> startup
...

6.4 Automatic Diagnostic Repository
Automatic Diagnostic Repository (ADR) is a file-based hierarchical data store for
depositing diagnostic information produced by diagnostic framework clients. The
repository contains data describing incidents, traces, dumps, alert logs, health check
records, SQL Trace information, and other information essential for problem diagnosis.

See Also:

Oracle Database Administrator’s Guide for more information about Automatic
Diagnostic Repository

This section describes the following:

• Automatic Diagnostic Repository Directories and Files

• ADR Command Interpreter Utility

Chapter 6
Automatic Diagnostic Repository

6-4

6.4.1 Automatic Diagnostic Repository Directories and Files
Automatic Diagnostic Repository (ADR) is a directory structure that is stored outside
of the database. It is therefore available for problem diagnosis when the database is
down.

The directories and files of the Automatic Diagnostic Repository are stored in the
POSIX file system.

See Also:

Oracle Database Administrator’s Guide for information about the directory
structure

The ADR root directory is known as ADR base. Its location is set by the
DIAGNOSTIC_DEST initialization parameter. For example:

DIAGNOSTIC_DEST=/u01/app/oracbase/oradata/adr

If this parameter is omitted or left null, then the database sets the DIAGNOSTIC_DEST
parameter upon startup as follows:

• If the environment variable ORACLE_BASE is set, then the DIAGNOSTIC_DEST
parameter is set to the directory designated by ORACLE_BASE.

• If the environment variable ORACLE_BASE is not set, then the DIAGNOSTIC_DEST
parameter is set to ORACLE_HOME/log.

Within ADR base, there can be multiple ADR homes, where each ADR home is the
root directory for all diagnostic data, such as, traces, dumps, alert log, and so on, for a
particular instance of a particular Oracle product or component.

Oracle Net Services also stores diagnostic data in the ADR. The location for
diagnostic information for Oracle Net Services is set by the ADR_BASE and
ADR_BASE_listener_name parameters. These are set in the sqlnet.ora and
listener.ora Oracle Net Services parameter files.

See Also:

Oracle Database Net Services Administrator's Guide for more information
about diagnostic information for Oracle Net Services

You can read the text files of the Automatic Diagnostic Repository with text editors
such as vi or edtu, or with POSIX shell commands such as cat or more.

You can investigate ADR with the ADRCI utility.

Chapter 6
Automatic Diagnostic Repository

6-5

6.4.2 ADR Command Interpreter Utility
ADR Command Interpreter (ADRCI) utility enables you to investigate problems, view
health check reports, and package first-failure diagnostic data within a command-line
environment. You can then upload the package to Oracle Support. ADRCI also
enables you to view the following:

• Names of the trace files in the ADR.

• Alert log with XML tags stripped, with and without content filtering.

You must execute the ADRCI command-line utility in the POSIX shell. Before
you start the ADRCI utility, you must set the ORACLE_HOME environment variable.
The system variable PATH must be extended by the path name of the Oracle bin
directory, $ORACLE_HOME/bin. You can set the environment variables by executing
the .profile.oracle profile in the appropriate Oracle home directory. Additional
environment variables, such as ORACLE_SID, are not required.

See Also:

• Oracle Database Utilities for more information about ADRCI

• “Starting Oracle Utilities in the POSIX Program Environment” for more
information about Oracle Database utilities

After setting these environment variables, start the ADRCI utility in the POSIX shell by
entering adrci after the POSIX shell command prompt.

Note:

You cannot start the ADRCI utility in the BS2000 program environment.
ADRCI utility must be started in the POSIX shell.

Display the current ADR base with the ADRCI show base command. The current ADR
home can be displayed with the show homes command.

Set ADR base with the set base command. You can set ADR home with the set home
command.

The show alert command shows the contents of the alert log in a text editor.

If you use a blockmode terminal, then the default editor for ADRCI on Fujitsu BS2000
is edtu. If you use an xterm terminal, after having logged in to POSIX through rlogin
or ssh, then the default editor for ADRCI is vi.

You can either select the preferred text editor by setting the environment variable
EDITOR before starting the ADRCI utility or specify your preferred text editor within
ADRCI with the ADRCI set editor command.

Chapter 6
Automatic Diagnostic Repository

6-6

Note:

The editor vi does not work on blockmode terminals and the editor edtu
does not work on xterm terminals.

With ADRCI, you can invoke Incident Packaging Service (IPS) to create packages for
incidents with the following commands:

ips create package
ips generate package

Upload the resulting zip file to Oracle Support.

Chapter 6
Automatic Diagnostic Repository

6-7

7
Oracle Database Utilities

The various Oracle Database utilities and how to use them with Fujitsu BS2000 are
discussed in the following topics:

• Basics of Oracle Database Utilities

• SQL*Plus

• The SQL*Loader

• The Export Utility

• The Import Utility

• The Data Pump Export Utility

• The Data Pump Import Utility

• Recovery Manager on BS2000

• Checking the Integrity of the Physical Data Structure

• Workload Replay Client

• The Oracle Text Loader

See Also:

Oracle Database Utilities

7.1 Basics of Oracle Database Utilities
The BS2000-specific information about Oracle Database utilities that you must use
with Oracle Database 19c for Fujitsu BS2000 are discussed in the following sections:

• The Oracle Database Environment-Definition File

• Oracle Runtime Libraries

• Starting Oracle Utilities in the BS2000 Program Environment

• Starting Oracle Utilities in the POSIX Program Environment

• Connecting to an Oracle Database Instance

• Using BS2000 Files for Input and Output

7.1.1 The Oracle Database Environment-Definition File
Every Oracle Database utility and product under BS2000 uses an Oracle Database
environment definition file, named ORAENV.

The ORAENV file is divided into the following parts:

7-1

• An executable part for BS2000 commands

• A static part for the definition of the environment variables

When processing the environment-definition file, a file link with the name ORAENV is
created to the file itself. Oracle programs use the link name ORAENV to open this
file. When reading this file, all lines with BS2000 commands (‘/’ in column one) and
comments (‘*’ in column one) will be ignored. Only the variable settings starting in
column one will be accepted.

You must generate this file before you use the Oracle Database programs as it
contains several Oracle Database environment variables. These Oracle Database
environment variables describe the operating environment for the Oracle database
and utilities.

If you do not generate the ORAENV file, then the default values are used for all
environment variables. In some cases, there are no default values for environment
variables, such as for ORASID. If you start an Oracle Database program or utility without
generating the ORAENV file first, then you cannot connect to the Oracle Database.

This section includes the following topics:

• Generating the Environment-Definition File

• Calling the Environment Definition File

• Specifying the Environment Variables

7.1.1.1 Generating the Environment-Definition File
To generate an ORAENV file, perform the following steps:

1. Call the INSTALL.P.USER procedure by entering the following command:

/CALL-PROCEDURE $ORACINST.INSTALL.P.USER

You are prompted to enter the database system identifier, SID.

2. Enter the SID. If you do not know the SID, then contact your database
administrator.

7.1.1.2 Calling the Environment Definition File
Use the BS2000 command CALL-PROCEDURE to process the ORAENV file. For example:

/CALL-PROCEDURE DEMO.P.ORAENV

7.1.1.3 Specifying the Environment Variables
To specify the environment variables, call the ORAENV file containing the environment
variables for the database you want to use.

If required, you can change the Oracle Database 19c working environment by editing
the user variables in the ORAENV file.

Chapter 7
Basics of Oracle Database Utilities

7-2

Note:

The values that you assign to user variables are specific to your task and
the database with which you work. The database administrator can also set
other variables that may affect the whole database instance. If you try to
set values for the DBA-specific variables in the ORAENV file, then they are
ignored.

See Also:

Oracle Environment Variables for a list of the variables that you can specify
in the ORAENV file

7.1.2 Oracle Runtime Libraries
The executables of Oracle Database 19c are stored in a library called ORALOAD.LIB.
Before running an Oracle program you must assign this library to the link name
ORALOAD. This link is created when the ORAENV procedure is called. If the link ORALOAD is
not defined properly, then a BLS (BS2000 loader) error message is displayed.

The ORAMESG library, $ORACINST.ORAMESG.LIB is required for Oracle messages. This
library is assigned the link name ORAMESG in the ORAENV procedure.

7.1.3 Starting Oracle Utilities in the BS2000 Program Environment
Before you start Oracle Database programs, you must call the environment definition
file.

See Also:

"Calling the Environment Definition File" for more information

Use the SDF command START-EXECUTABLE-PROGRAM or the shorter form START-
EXECUTABLE to start a program or a utility. Specify the options and operands as the
first data input line when the data prompt (*) is displayed, as shown in the following
example:

/START-EXECUTABLE (*LINK(ORALOAD),program_name)
CCM0001 enter options:
* [option_switch] [arguments]

where:

program_name is the name of the program or the utility that you want to start

option_switch is one or more of the program-dependent optional switches. If this is
used, then the switch is preceded by a dash (-).

arguments are one or more operands of the program (or utility), or the user name and
password combination, or both.

Chapter 7
Basics of Oracle Database Utilities

7-3

As soon as the program is loaded, the CCM0001 prompt is displayed and enables you to
enter the command line options. As shown in the preceding examples, you can enter
the option_switch or arguments for the program. Then the prompt of the program is
displayed. If the program is SQL*Plus, then the prompt is SQL>. You can now enter one
of the commands of the program. See the generic documentation for the utility for a
description of the valid commands.

For example, to start SQL*Plus, enter the following command:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* userid/password

To start a utility in UNIX-Style, the Oracle syntax file $ORACINST.SYSSDF.ORACLE.USER
must be activated. This is done by the MOD-SDF (MODIFY-SDF-OPTIONS) command in
the ORAENV file. Remove the comment marker '&*' and call the sid.P.ORAENV file
again. The following commands to start an Oracle utility are available:

/START-ORACLE-CM-CONTROL or /CMCTL
/START-ORACLE-CMMIGR or /CMMIGR
/START-ORACLE-EXPORT or /OEXP
/START-ORACLE-EXPDP or /EXPDP
/START-ORACLE-IMPORT or /OIMP
/START-ORACLE-IMPDP or /IMPDP
/START-ORACLE-LISTENER-CONTROL or /LSNRCTL
/START-ORACLE-ORAPWD or /ORAPWD
/START-ORACLE-SQLLOADER or /SQLLDR
/START-ORACLE-SQLPLUS or /SQLPLUS
/START-ORACLE-TNSPING or /TNSPING
/START-ORACLE-RECOVERY-MANAGER or /RMAN

Specify the parameters after the start command. Enclose the parameters within
single quotation marks, if they contain a white space or an equal sign (=) . The
following examples show how to start an utility in UNIX Style in the BS2000 program
environment:

/lsnrctl

/sqlplus /nolog

/oimp 'system/manager file=iea buffer=210000 ignore=y grants=y rows=y
full=y commit=y'

7.1.4 Starting Oracle Utilities in the POSIX Program Environment
You can run utilities like SQL*Plus both in the normal BS2000 environment and the
POSIX environment.

During Oracle Database installation, the utilities are installed within the POSIX file
system in the oracle_home_path/bin directory.

Before you start Oracle utilities in the POSIX shell, you must set the ORACLE_HOME
environment variable and extend the PATH environment variable by the path name of
the Oracle directory, oracle_home_path/bin as follows:

$ ORACLE_HOME=/u01/app/oracbase/product/19.3.0/dbhome_1
$ export ORACLE_HOME

Chapter 7
Basics of Oracle Database Utilities

7-4

$ PATH=$ORACLE_HOME/bin:$PATH
$ export PATH

Alternatively, you can execute the oracle_home_path/.profile.oracle profile, which
is created during Oracle Database installation under POSIX. This profile sets and
expands the most important variables like ORACLE_HOME and PATH.

To execute the profile, enter the following command:

$. /u01/app/oracbase/product/19.3.0/dbhome_1/.profile.oracle

Set the variable ORACLE_SID before you start an Oracle utility for a specific Oracle
Database instance. Check the related ORAENV file in the BS2000 file system for
instance specific environment variables. Set these variables in the POSIX shell before
you start the utility.

Utilities running in the POSIX shell provide the opportunity to read instance-specific
variables from the ORAENV file in the BS2000 file system. To provide access to
the BS2000 ORAENV file, you must create a file with the name, oraenvsid in the
ORACLE_HOME/dbs directory or ORACLE_BASE_CONFIG/dbs directory in a read-only
Oracle home environment. This file contains the fully qualified BS2000 file name of the
BS2000 ORAENV file. It acts as a link to the ORAENV file in the BS2000 file system.

For example, to access the ORAENV file, $ORADATA.ORCL.P.ORAENV, you must create an
oraenvORCL file in the ORACLE_HOME/dbs directory, as follows:

$ ORACLE_HOME=/u01/app/oracbase/product/19.3.0/dbhome_1
$ export ORACLE_HOME
$ echo '$ORADATA.ORCL.P.ORAENV' > $ORACLE_HOME/dbs/oraenvORCL
$ chmod 664 $ORACLE_HOME/dbs/oraenvORCL

Note:

• Utilities running in the POSIX shell handle the variables of the BS2000
ORAENV file as subordinate variables. Environment variables in the POSIX
shell take precedence over settings in the BS2000 ORAENV file.

• The sid in the file name oraenvsid is case sensitive and must match the
sid specified in ORACLE_SID.

• You must grant access to the user using the BS2000 ORAENV file, if the
POSIX user that runs the Oracle utility in the POSIX shell is different
from the BS2000 user ID where the ORAENV file is located.

If an Oracle utility uses the BEQ protocol to connect to a database, then Oracle
Net Services gets the job parameters to start a dedicated server in the BS2000
environment from the BGJPAR variable. If you do not specify this variable, then Oracle
Net Services uses default values.

Chapter 7
Basics of Oracle Database Utilities

7-5

Note:

The BGJPAR variable might not be set after the
oracle_home_path/.profile.oracle profile is run.

When using the BEQ protocol, Oracle recommends that you define the particular
BS2000 job parameters for BS2000 jobs that are started by Oracle Net Services. The
BGJPAR variable provides the option to define these parameters. You can define this
variable either in the related BS2000 ORAENV file or by explicitly setting it in the POSIX
environment to the appropriate value.

For example, to assign a bequeathed server task to a special JOB-CLASS, set the
BGJPAR variable in the POSIX environment as follows:

$ ORACLE_SID=orcl
$ export ORACLE_SID
$ BGJPAR='START=SOON,CPU-LIMIT=NO,JOB-CLASS=JCBORA,LOGGING=*NO'
$ export BGJPAR

You can start the utilities in a similar way as on other UNIX systems. For example, to
start SQL*Plus, use the following commands:

$ sqlplus /nolog
$ SQL> connect / as sysdba

7.1.5 Connecting to an Oracle Database Instance
You can connect to an Oracle Database instance using one of the following methods:

• Oracle Net Services with the Bequeath adapter.

• Oracle Net Services over TCP/IP or IPC.

Check with your database administrator if you can connect to the Oracle database
using the listed methods, as the possibilities available are dependent on how the
system has been configured. Usually, you specify the way you connect to an Oracle
Database instance as part of the logon string appended to the userid/password, and
separated from it by an at sign (@), as described in the following sections:

Related Topics

• Default Connections

• Accessing an Oracle Database Instance

7.1.5.1 Default Connections
If you do not specify a connection string, then use the DEFAULT_CONNECTION or
TWO_TASK environment variables to specify an Oracle Database Net Services connect
descriptor.

Chapter 7
Basics of Oracle Database Utilities

7-6

See Also:

“Oracle Environment Variables” for more information about the ORAENV file,
and the DEFAULT_CONNECTION and TWO_TASK environment variables.

7.1.5.2 Accessing an Oracle Database Instance
Use Oracle Net Services to access a local or a remote database instance. Use the
Oracle Net Services logon string to identify the following connection attributes for
accessing a local or a remote database:

• Protocol to be used.

• Database that you want to access.

• Type of server (whether dedicated or shared) that you want to use.

The Oracle Net Services logon string has the following structure:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* userid/password@net_service_name

where:

net_service_name specifies a service name stored in the TNSNAMES.ORA file that
identifies the TNS connect descriptor for the desired database. If you are not sure
of what you should enter, then contact your database administrator.

The following example shows a logon string to connect to a database defined in the
TNSNAMES.ORA file as SERVERX:

username-for-HR/password-for-HR@SERVERX

See Also:

“Oracle Net Services” for information about connecting to an Oracle
Database using the Bequeath adapter

7.1.6 Using BS2000 Files for Input and Output
In most cases, Oracle Database for BS2000 programs use the functions of the
C-BS2000 run-time system to access their input and output files. Oracle Database
programs can read and write SAM, ISAM, and PAM files.

This section includes the following topics:

• Text Files

• Binary Files

• Default File Name Extensions

• Using Link Names

• Fixed Link Names

Chapter 7
Basics of Oracle Database Utilities

7-7

7.1.6.1 Text Files
SAM or ISAM files store textual data. Each record is considered as a single text line. For
example, the SQL script files used by SQL*Plus and spool output files.

SQL*Loader input data is provided as SAM or ISAM files. These files may also contain
non-printable data, such as packed decimal or binary integer values. For ISAM files, the
key at the beginning of the record is generally ignored.

7.1.6.2 Binary Files
Binary data is usually stored in PAM files.

7.1.6.3 Default File Name Extensions
Under BS2000, the Oracle Database utilities add default extensions to file names only
if the last component of the specified file name is longer than three characters, or if
only one component is specified, as shown in the following table:

Original File Name Extended File Name

TEST.TEST TEST.TEST.EXT

TST TST.EXT

T.T T.T

TEST.TST TEST.TST

This is similar to the file naming conventions used with Oracle Database on a UNIX
system.

7.1.6.4 Using Link Names
In special cases, instead of specifying a file name, you can also specify the link
name of a previously issued BS2000 /SET-FILE-LINK command. Use the syntax
link=linkname in places where a file name is requested. In this way, you can override
default file attributes, preallocate file space, and so on. There are a few exceptions
where you cannot use the link=linkname notation.

When using the link=linkname notation, the default file name extensions do not work.
As a result, file name defaults derived from such notation are not valid, and you must
provide explicit names in such cases.

For example, when working with SQL*Loader, if you specify link=linkname for the
SQL*Loader control file, then you must provide explicit names for the BAD, LOG, and
DISCARD file names.

Some programs may report a syntax error when the link=linkname notation is used
on the command (options) line. In such cases, omit the parameter on the command
line and specify it instead, when you are prompted for the missing parameter.

7.1.6.5 Fixed Link Names
Oracle Database for BS2000 uses fixed link names for specific files.

Chapter 7
Basics of Oracle Database Utilities

7-8

The most important link names are as follows:

Type Meaning/Usage

ORAENV Oracle Database environment definition file.

ORALOAD The link name is mandatory and specifies the load library from which
the Oracle Database modules are loaded during processing.

ORAMESG The link name is mandatory and specifies the message library from
which Oracle message modules are loaded during execution.

Typically, you can set these link names by running the ORAENV procedure.

7.2 SQL*Plus
SQL*Plus is an interactive and a batch query tool that is installed with every Oracle
Database installation. It has a command-line user interface. SQL*Plus has its own
commands and environment, and provides access to the Oracle Database. It enables
you to enter and execute SQL, PL/SQL, SQL*Plus, and operating system commands
to perform the following:

• Format, perform calculations on, store, and print from query results

• Examine table and object definitions

• Develop and run batch scripts

• Perform database administration

This section describes how to use SQL*Plus in the BS2000 environment and in the
POSIX environment. It supplements the SQL*Plus User's Guide and Reference. It
contains the following topics:

• Using SQL*Plus in the BS2000 Environment

• Using SQL*Plus in the POSIX environment

• SQL*Plus User Profiles

• Using SQL*Plus Symbols

• Sample Schemas and SQL*Plus

• SQL*Plus Limits

7.2.1 Using SQL*Plus in the BS2000 Environment
This section describes how to use SQL*Plus in the BS2000 environment. It contains
the following topics:

• Starting SQL*Plus in the BS2000 Environment

• Interrupting a SQL*Plus Command in the BS2000 Environment

• Running BS2000 Commands from SQL*Plus

• Starting the BS2000 Editor

• Spooling SQL*Plus Output

• Specifying the Search Path for SQL Scripts in the BS2000 Environment

• Starting SQL*Plus in a BS2000 command procedure

Chapter 7
SQL*Plus

7-9

7.2.1.1 Starting SQL*Plus in the BS2000 Environment
1. To start SQL*Plus, enter:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)

*username/password

Note:

If you omit user name and password, then you will be prompted to enter
these values.

If you enter the user name only, then you will be prompted for the
password.

SQL*Plus displays the following command prompt:
SQL>

The SQL*Plus command prompt indicates that SQL*Plus is ready to accept your
commands.

2. To start SQL*Plus without connecting to a database, enter the following command:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
*/NOLOG

3. After SQL*Plus has started, you can connect to the database with the CONNECT
command as follows:

SQL> CONNECT username/password

7.2.1.2 Interrupting a SQL*Plus Command in the BS2000 Environment
Use the INTERRUPT key [K2] to interrupt the execution of a command in SQL*Plus.
For example, you can interrupt SQL*Plus if you receive a long report that you do not
want to be completely displayed on the screen. When you press the INTERRUPT
key [K2], the display of the report is stopped and the SQL*Plus command prompt is
displayed.

Note:

If you issue an INTERRUPT key when an input is requested, then you must
answer this request before interrupting the process. However, this answer
will be ignored.

7.2.1.3 Running BS2000 Commands from SQL*Plus
The SQL*Plus HOST command and the $ command enables you to run a BS2000
command without exiting from SQL*Plus.

Chapter 7
SQL*Plus

7-10

Some examples of how you can use the HOST command:

• If you enter the HOST command without any BS2000 command, then it takes you to
the BS2000 command level:

SQL> HOST
/SHOW-USER-STATUS

To return to SQL*Plus, use the BS2000 command RESUME .

• If you enter the HOST command with a BS2000 command, then the command
executes and the control returns to the SQL*Plus command level:

SQL> HOST SHOW-USER-STATUS
SQL>

The following BS2000 commands, if used with the HOST or $ command, do not return
to SQL*Plus when they have finished running:

• START-EXECUTABLE-PROGRAM

• LOAD-EXECUTABLE-PROGRAM

• START-PROGRAM

• LOAD-PROGRAM

• CALL-PROCEDURE

• HELP-SDF

• LOGOFF

7.2.1.4 Starting the BS2000 Editor
You can use the SQL*Plus EDIT command to start the BS2000 editor:

SQL> EDIT

This command:

• Writes the SQL buffer, which contains the current SQL statement, to a file called
SQLEDT.BUF in the current BS2000 user ID.

• Starts the editor EDT, which reads the SQLEDT.BUF file into the work area.

You can then edit and write to the file using the @write command. Use the @halt
command to exit the editor and return to SQL*Plus. SQL*Plus then reads the current
contents of SQLEDT.BUF back into its command buffer, from which you can execute the
SQL statement by entering a forward slash (/) at the SQL*Plus command prompt.

Note:

If you use the SQL*Plus DEFINE _EDITOR command to define a name for the
editor, then SQL*Plus ignores it when running in the BS2000 environment. It
always starts the EDT editor.

Chapter 7
SQL*Plus

7-11

You can also use the EDIT command to edit a SQL file by specifying the SQL file. For
example, if you enter the following command, then the editor EDT is called to edit the
LOGIN.SQL file:

SQL> EDIT LOGIN[.SQL]

Note that you can omit the default file name extension .SQL.

See Also:

SQL*Plus User's Guide and Reference for more details about the EDIT
command

7.2.1.5 Spooling SQL*Plus Output
When you use the SQL*Plus SPOOL command, SQL*Plus uses the default output-file
suffix, .LST.

Note:

The output generated by BS2000 operating system commands are not
spooled.

When you issue a SPOOL OUT command, SQL*Plus executes the BS2000 /PRINT
command:

/PRINT tempfile,ERASE

where tempfile is a temporary copy of the spool file. This routes the file to the central
printer. To specify any /PRINT command options, such as character sets, or routing to
a remote printer, add the following line to the ORAENV file:

PRINTPAR=options

where options is any sequence of /PRINT command options. SQL*Plus then executes
a /PRINT command, which includes these options.

See Also:

BS2000 manual User Commands (ISP Format) for more information about
these options

7.2.1.6 Specifying the Search Path for SQL Scripts in the BS2000 Environment
You can run SQL script with SQL*Plus by using the START command or the @ (at
symbol).

If SQL*Plus is executed in the BS2000 environment, it searches the SQL script in the
current BS2000 user ID. If the script is not found, then SQL*Plus searches the paths
specified by the SQLPATH environment variable. This variable is used to specify one or

Chapter 7
SQL*Plus

7-12

more file name prefixes separated by a semicolon (;), which should be applied when
searching for the SQL script file.

For example, if SQLPATH is set as follows:

SQLPATH=PRIVATE;$GLOBAL;/guest/scripts/;

then, when you enter the following command:

SQL> @filename

SQL*Plus searches for the SQL script file in the following sequence, until a matching
file name is found:

1. filename.SQL in the current BS2000 user ID in the BS2000 DMS.

2. PRIVATE.filename.SQL with the prefix PRIVATE in the current user ID in the
BS2000 DMS.

3. $GLOBAL.filename.SQL in the BS2000 user ID $GLOBAL in the BS2000 DMS.

4. /guest/scripts/filename.sql in the directory /guest/scripts/ in the POSIX file
system.

7.2.1.7 Starting SQL*Plus in a BS2000 command procedure
If you execute SQL*Plus within a BS2000 SDF command procedure, add the following
command to the procedure before the /START-EXECUTE command for SQL*Plus:

/ASSIGN-SYSDTA *SYSCMD

This forces SQL*Plus to read data from the procedure, instead of prompting at the
terminal.

7.2.2 Using SQL*Plus in the POSIX environment
You can run SQL*Plus not only in the normal BS2000 environment, but also in the
POSIX environment.

This section describes the following:

• Starting SQL*Plus in the POSIX Environment

• Interrupting a SQL*Plus Command in the POSIX Environment

• Running Shell Commands From SQL*Plus

• Using an Editor in SQL*Plus

• Spooling SQL*Plus Output in the POSIX Environment

• Specifying the Search Path for SQL Scripts in the POSIX Environment

7.2.2.1 Starting SQL*Plus in the POSIX Environment
Set the required environment variables and run SQL*Plus as described in "Starting
Oracle Utilities in the POSIX Program Environment." To connect to a database
immediately, specify the user name and password as an argument as follows:

$ sqlplus username/password[@net_service_name]

If you do not want to connect to a database, then specify /nolog as an argument:

Chapter 7
SQL*Plus

7-13

$ sqlplus /nolog

If you start SQL*Plus without any arguments, then you will be prompted for the user
name and password.

7.2.2.2 Interrupting a SQL*Plus Command in the POSIX Environment
Interrupting a SQL statement when you run SQL*Plus in the POSIX environment
depends on the terminal connected with your POSIX session.

To interrupt a SQL statement in the POSIX environment:

• Enter @@c and then press the Enter key if the POSIX shell is started on a
blockmode terminal.

• Press the Ctrl + C key combination if the POSIX shell is started by a remote
X-client through rlogin or ssh using an xterm terminal.

7.2.2.3 Running Shell Commands From SQL*Plus
The SQL*Plus HOST command and the $ command enables you to enter a POSIX shell
command, without exiting SQL*Plus.

When using the HOST command, remember the following points:

• If you enter the HOST command without any shell command, then a POSIX
subshell is started and the POSIX command prompt is displayed. To return to
SQL*Plus, you must use the exit command or the return command in the POSIX
subshell.

• If you enter the HOST command with a POSIX shell command, then the command
is executed in a subshell and then control returns to SQL*Plus.

• Use the bs2cmd POSIX shell command to execute BS2000 commands.

7.2.2.4 Using an Editor in SQL*Plus
Start a text editor in SQL*Plus with the EDIT command, to edit an SQL statement.

The default editor depends on the terminal connected with your POSIX session:

• If the POSIX shell is started on a blockmode terminal, then edtu is set as the
default editor in SQL*Plus.

• If the POSIX shell is started by a remote X-client through rlogin or ssh using an
xterm terminal, then vi is set as the default editor in SQL*Plus.

SQL*Plus provides the opportunity to define a preferred text editor with the DEFINE
_EDITOR command. In the POSIX environment you can define a preferred editor. For
example, to define the editor used by the EDIT command to be the POSIX editor edtu,
enter the following command in SQL*Plus:

DEFINE _EDITOR = edtu

Chapter 7
SQL*Plus

7-14

Note:

• The editor vi does not work on blockmode terminals.

• The editor edtu does not work on xterm terminals.

The command EDIT:

• Writes the SQL buffer, which contains the current SQL statement to a file called
SQLEDT.BUF in the current working directory in the POSIX file system.

• Starts the editor, which reads the file SQLEDT.BUF into the work area.

You can then edit and write this file using @write with edtu editor and using :w with vi
editor.

To exit the editor and return to SQL*Plus, use the @halt command with edtu and :q
with vi. SQL*Plus then reads the current contents of SQLEDT.BUF back into its
command buffer, from which the SQL statement can be run by entering slash “/” at the
SQL*Plus command prompt.

You can also use the EDIT command to edit a SQL file by specifying the name of the
SQL file. For example, if you enter the following command, then the editor is called to
edit the login.sql file:

SQL> EDIT login[.sql]

Note that you can omit the default file name extension, .sql.

7.2.2.5 Spooling SQL*Plus Output in the POSIX Environment
When using the SQL*Plus SPOOL command, SQL*Plus uses the default output-file
suffix, .lst .

The command SPOOL OUT is not supported, when you use SQL*Plus in the POSIX
environment.

7.2.2.6 Specifying the Search Path for SQL Scripts in the POSIX Environment
You can run a SQL script with SQL*Plus by using the START command or the @ (at
symbol).

If SQL*Plus is executed in the POSIX environment, it searches the SQL script in the
current working directory. If the script is not found, then SQL*Plus searches the paths
specified by the SQLPATH environment variable. This variable specifies one or more file
name prefixes separated by a semicolon (;), which should be applied when searching
for the SQL script file.

For example, if SQLPATH is set as follows:

SQLPATH=’private;/BS2/$GLOBAL;/guest/scripts/;’
export SQLPATH

then, when you enter the following command:

Chapter 7
SQL*Plus

7-15

SQL> @filename

SQL*Plus searches for the SQL script file in the following sequence, until a matching
file name is found:

1. filename.SQL in the current working directory in the POSIX file system.

2. private/filename.SQL in the subdirectory private of the current working
directory in the POSIX file system.

3. /BS2/$GLOBAL.filename.SQL in the BS2000 user ID $GLOBAL in the BS2000 DMS.

4. /guest/scripts/filename.sql in the directory /guest/scripts/ in the POSIX file
system.

7.2.3 SQL*Plus User Profiles
You can set up your SQL*Plus environment to use the same settings with each
session. There are two operating system files to do this:

• The Site Profile file, glogin.sql for site wide settings.

• The User Profile file, login.sql for user specific settings.

When a user starts SQL*Plus, the glogin.sql file is executed first followed by the
user's login.sql file. These profiles are discussed in detail in the following topics:

• The glogin.sql Global Setup File

• The login.sql User Setup File

7.2.3.1 The glogin.sql Global Setup File
The Site Profile file, glogin.sql is executed when you start SQL*Plus. This
file contains SQL statements and SQL*Plus commands that must be run at the
beginning of a SQL*Plus session. The glogin.sql file is located in the POSIX file
system, $ORACLE_HOME/sqlplus/admin. The database administrator may customize
the glogin.sql file if required.

7.2.3.2 The login.sql User Setup File
Every time you start SQL*Plus, the user profile script login.sql is executed after the
glogin.sql script. Similar to glogin.sql, this file also contains SQL statements and
SQL*Plus commands that a user wants to run at the beginning of every SQL*Plus
session.

When you start SQL*Plus in the BS2000 environment, SQL*Plus searches along the
path that is specified by the ORACLE_PATH environment variable. If there are more than
one login.sql file, then SQL*Plus executes the first login.sql file that is found. If
you specify a list of login.sql files, they must be separated by a semicolon (;). For a
customized SQL*Plus environment, each BS2000 user ID can have its own login.sql
file.

When you start SQL*Plus in the POSIX environment, SQL*Plus searches along the
path that is specified by the ORACLE_PATH environment variable . If there are more than
one login.sql file, then SQL*Plus executes the first login.sql file that is found. For a
customized SQL*Plus environment, each POSIX user can have its own login.sql file.

Chapter 7
SQL*Plus

7-16

See Also:

• "Oracle Environment Variables" for a description of the SQLPATH
environment variable

• SQL*Plus User's Guide and Reference for more information about
login.sql

The following is a sample profile file:

set echo off
set feedback 4
set pause on
set pause PLEASE ACKNOWLEDGE TO CONTINUE
set echo on

7.2.4 Using SQL*Plus Symbols
The SQL*Plus symbol used for concatenation is the vertical bar, "|" (X'4F'). For
users with German keyboards and using a 7–bit terminal character set, any key that
transmits a X'4F' (for example, "ö"), can be used.

7.2.5 Sample Schemas and SQL*Plus
The sample schemas provide a common platform for examples.

See Also:

• SQL*Plus User's Guide and Reference for more information about the
sample schemas and SQL*Plus

• "Creating a Database" for information about how to install the sample
schemas

7.2.6 SQL*Plus Limits
The limits of several SQL*Plus elements are specified in SQL*Plus User's Guide and
Reference. The following table defines BS2000 specific limits:

Item Limit

File name length 54 in the BS2000 DMS (including CATID and BS2000 user ID)

512 in the POSIX file system

LINESIZE 32767

MAXDATA 32767

Maximum number of
nested command files

12

Chapter 7
SQL*Plus

7-17

7.3 The SQL*Loader
SQL*Loader is a tool used for moving data from an external file (or files) into the tables
of an Oracle database. SQL*Loader can load data in several formats and can even
load several tables simultaneously. You can also use it to load only records that match
a particular data value.

This section includes the following topics:

• Starting the SQL*Loader Utility

• Using the SQL*Loader Demonstration Files

See Also:

Oracle Database Utilities for a detailed description of SQL*Loader and its
demonstration files

7.3.1 Starting the SQL*Loader Utility
You can start SQL*Loader either in the BS2000 environment or the POSIX
environment.

Related Topics

• Starting Oracle Utilities in the BS2000 Program Environment

• Starting Oracle Utilities in the POSIX Program Environment

7.3.2 Using the SQL*Loader Demonstration Files
The demonstration files are shipped under:

$ORACINST.RDBMS.DEMO.ULCASE*.CTL
$ORACINST.RDBMS.DEMO.ULCASE*.SQL
$ORACINST.RDBMS.DEMO.ULCASE*.DAT

To run the ULCASE1 demo, perform the following steps:

1. Run SQL*Plus and set up the table to be used in the demonstration by entering
the following commands:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* SCOTT/password
SQL> START $ORACINST.RDBMS.DEMO.ULCASE1

Note:

This example sets up the table for the user SCOTT to run the
demonstrations.

Chapter 7
The SQL*Loader

7-18

2. Start SQL*Loader to run the demonstration by entering the following command:

/START-EXECUTABLE (*LINK(ORALOAD),SQLLDR)
* SCOTT/password $ORACINST.RDBMS.DEMO.ULCASE1 ULCASE1 ULCASE1

7.4 The Export Utility
The Export utility is used to write data from an Oracle database into the BS2000 files.
Use this utility with the Import utility to back up your data and to move data between
Oracle databases.

This section includes the following topics:

• Starting the Export Utility

• Exporting to Foreign Systems

7.4.1 Starting the Export Utility
You can start the Export utility, exp either in the BS2000 environment or the POSIX
environment.

See Also:

• Starting Oracle Utilities in the BS2000 Program Environment

• Starting Oracle Utilities in the POSIX Program Environment

Export dump files, which are created in the BS2000 DMS by EXP usually have the
file structure, SAM. You can override default output file specifications by running a
SET-FILE-LINK command such as:

/SET-FILE-LINK LINK-NAME=explink,FILE-NAME=expfile,ACCESS-
METHOD=*SAM,RECORD-FORMAT=*FIXED,RECORD-SIZE=2048,BUFFER-LENGTH=*STD(1)

Then, call the EXP utility by specifying the following in response to the output file name
prompt:

LINK=explink

On a nonkey public volume set, you may need to adjust the BLKSIZE and RECSIZE
values for efficient disk-space usage (note that RECSIZE must be 16 bytes less than the
BLKSIZE on nonkey disks). Specify the RECSIZE value to match the export record size.

For example:

/SET-FILE-LINK LINK-NAME=explink,FILE-NAME=expfile,ACCESS-
METHOD=*SAM,RECORD-FORMAT=*FIXED,RECORD-SIZE=2032,BUFFER-LENGTH=2048

Chapter 7
The Export Utility

7-19

Note:

Do not use variable record size with SAM files.

When using a block size (PAM) or record size (SAM) other than 2048, you must
also specify a corresponding RECORDLENGTH parameter to EXP on the options
line.

When exporting large volumes of data, the default disk-space allocation for the output
file is inappropriate, and the program spends a significant amount of time allocating
secondary extents of disk space. If the maximum number of extents exceeds the
number that the BS2000 catalog entry can hold, then an output-file error occurs.

You can preallocate the EXP output file with the BS2000 CREATE-FILE command,
before starting the Export utility. When allocating the file, you must use a realistic
estimate for both the primary and secondary space allocations.

For example:

/CREATE-FILE LARGE.EXPORT.DMP,SPACE=(30000,30000)
/ADD-FILE-LINK LINK-NAME=EXPOUT,FILE-NAME=LARGE.EXPORT.DMP
/START-EXECUTABLE (*LINK(ORALOAD),EXP)
* system/manager
...
Export file: EXPDAT.DMP >link=expout
...

7.4.2 Exporting to Foreign Systems
You can export to foreign systems using the following methods:

• Exporting Data to Tape

• Transferring Data by File Transfer

7.4.2.1 Exporting Data to Tape
To export directly to tape:

1. Create a catalog entry for a file using the CREATE-FILE command.

2. Create a link using the ADD-FILE-LINK command. For example:

/CREATE-FILE tapefile,SUPPORT=*TAPE(VOLUME=vsn,DEVICE-TYPE=device)
/ADD-FILE-LINK
LINK-NAME=tapelink,FILE-NAME=tapefile,ACCESS-METHOD=*SAM,RECORD-
FORMAT=*FIXED,RECORD-SIZE=2048,BUFFER-LENGTH=*STD(1)

3. Set the environment variable EXP_CLIB_FILE_IO to FALSE.

4. Execute EXP by specifying the following value in response to the output file name
prompt:

LINK=tapelink

The export utility writes the output as SAM files, which simplifies export to an Oracle
database on foreign systems.

Chapter 7
The Export Utility

7-20

7.4.2.2 Transferring Data by File Transfer
If you use FTP, then ensure that you specify binary mode. This is to avoid automatic
EBCDIC-ASCII conversion.

You must use FTP on BS2000 when you want to use an export file from BS2000 as an
import file on an ASCII platform. To avoid new line (NL) insertion at block boundaries,
ensure that you provide the binary and the ftyp binary parameters.

7.5 The Import Utility
The Import utility is used to write data from the files created by the Export utility to an
Oracle database.

This section includes the following topics:

• Starting the Import Utility

• Importing from Foreign Systems

See Also:

“Known Problems, Restrictions and Workarounds” in Oracle Database
Release Notes for Fujitsu BS2000 for restrictions when using the Import
utility

7.5.1 Starting the Import Utility
You can start the Import utility, imp either in the BS2000 environment or the POSIX
environment.

See Also:

• Starting Oracle Utilities in the BS2000 Program Environment

• Starting Oracle Utilities in the POSIX Program Environment

7.5.2 Importing from Foreign Systems
Follow the guidelines listed in this section when you import data from non-BS2000
systems:

• Importing File with Non-Standard Block Size

• Importing Data from Tape

• Transferring Data by File Transfer

Chapter 7
The Import Utility

7-21

7.5.2.1 Importing File with Non-Standard Block Size
If the import file on the BS2000 operating system has a block size (BLKSIZE) not equal
to 2 KB, then you must specify the block size during import with the Import parameter
RECORDLENGTH.

7.5.2.2 Importing Data from Tape
The Import utility can read directly from tape, provided the file can be processed as
a SAM file, which is usually the case even for EXP files created on foreign systems (for
example, as a sequence of fixed 2 KB blocks).

To read a foreign export file directly:

1. Create a catalog entry for a file using the IMPORT-FILE command.

2. Create a link using the ADD-FILE-LINK command. For example:

/IMPORT-FILE SUPPORT=*TAPE(VOLUME=vsn,DEVICE-TYPE=device,FILE-
NAME=tapefile)
/ADD-FILE-LINK LINK-NAME=tapelink,FILE-NAME=tapefile

3. Set the environment variable IMP_CLIB_FILE_IO to FALSE.

4. Execute IMP by specifying the following value in response to the input file name
prompt:

LINK=tapelink

7.5.2.3 Transferring Data by File Transfer
If you use FTP, then ensure that you specify binary mode. This is to avoid automatic
ASCII-EBCDIC conversion. The received file is stored as a PAM file by the BS2000 FTP
utility and can immediately be used as an input file to IMP.

7.6 The Data Pump Export Utility
The Data Pump Export and Import are functionally similar to Export and Import
discussed in the preceding sections. However, the I/O processing for dump files is
done in the Oracle database server rather than in the client utility session.

This utility is used to write data from an Oracle database into the BS2000 files. Use
this utility with the Data Pump Import utility to back up your data and to move data
between Oracle databases.

7.6.1 Starting the Data Pump Export Utility
You can start the Data Pump Export utility, expdp either in the BS2000 environment or
the POSIX environment.

Chapter 7
The Data Pump Export Utility

7-22

See Also:

• “Starting Oracle Utilities in the BS2000 Program Environment”

• “Starting Oracle Utilities in the POSIX Program Environment”

The Data Pump Export dump files are always created in the BS2000 DMS as PAM files
with BLKSIZE=(STD,2).

To use an export file from BS2000 as an import file on an ASCII platform, use FTP as
the transfer utility on BS2000 side and indicate the binary parameter .

Note:

If you start EXPDP in UNIX-style and use the interactive-command mode [K2]
key, then the parameters must be specified when you are prompted for them,
and not on the command line.

Data Pump Export to tape is not supported.

7.7 The Data Pump Import Utility
The Data Pump Import utility is used to write data from the files created by the Data
Pump Export utility to an Oracle database.

7.7.1 Starting the Data Pump Import Utility
You can start the Data Pump Import utility impdp either in the BS2000 environment or
the POSIX environment.

The following example shows how to use the command-line mode of impdp in the
BS2000 environment:

START-EXECUTABLE (*LINK(ORALOAD),IMPDP)
* username/password [options]

If you use an export file from an ASCII platform as an import file on BS2000, then use
FTP as the transfer utility on BS2000 side and indicate the binary parameter.

Before you get the file, issue the FTP command:

file dmp-file,fcbtype=pam,blksize=(std,2),blkctrl=no

Chapter 7
The Data Pump Import Utility

7-23

Note:

If you start IMPDP in UNIX-style and use interactive-command mode [K2] key,
then the parameters must be specified when you are prompted for them, and
not on the command line.

Data Pump Import by tape is not supported.

Related Topics

• Starting Oracle Utilities in the BS2000 Program Environment

• Starting Oracle Utilities in the POSIX Program Environment

7.8 Recovery Manager on BS2000
On BS2000, Recovery Manager does not support tapes. Disks are the only backup
media.

As a workaround, use the Recovery Manager output as a first level storage to be
migrated by BS2000 subsystem HSMS (Hierarchical Storage Management System) to
tapes. However, it is the administrator's responsibility to ensure the cooperation of the
two systems.

The following is an example of a Recovery Manager command in the BS2000
environment:

/START-EXECUTABLE (*LINK(ORALOAD),RMAN)
*target "dba1/dba1@i1" catalog "dba2/dba2@i2" cmdfile "b.dat" log "b.log"

7.9 Checking the Integrity of the Physical Data Structure
To check the physical data structure integrity of offline databases, use the DBVERIFY
command-line utility. You can start the DBVERIFY utility dbv, either in the BS2000
environment or the POSIX environment.

The following examples shows how to use dbv in the BS2000 environment:

/START-EXECUTABLE (*LINK(ORALOAD),DBV)
file=orcl.dbs.database1.dbf blocksize=4096 feedback=100

The following example shows how to use dbv in the POSIX environment:

$ dbv file=/BS2/orcl.dbs.database1.dbf blocksize=4096 feedback=100

Chapter 7
Recovery Manager on BS2000

7-24

See Also:

• "Starting Oracle Utilities in the BS2000 Program Environment"

• "Starting Oracle Utilities in the POSIX Program Environment"

• Oracle Database Utilities for more information about the DBVERIFY
program

7.10 Workload Replay Client
The Workload Replay Client (WRC) is a multithreaded program where each thread
submits a workload from a captured session.

An executable program, wrc is located in the $ORACLE_HOME/bin directory. The specific
characteristics of the Workload Replay Client (WRC) on BS2000 is discussed in the
following topics:

• About Running Workload Replay Client

• About Troubleshooting Workload Replay Client

Related Topics

• Oracle DatabaseTesting Guide

7.10.1 About Running Workload Replay Client
On BS2000 the WRC is built as a PTHREADS application with default options which
enable the application to run out of the box. The user can modify these options for
its own needs. The PTHREADS options are stored in the WRC.OPTFILE file, which is
created by the installation procedure with the most important options in the installation
user ID.

For a proper execution of the WRC, the WRC.OPTFILE file must reside in the BS2000
filesystem of the user ID where you run the WRC. Oracle recommends that you copy
the WRC.OPTFILE file to the BS2000 filesystem of the desired user ID. The WRC itself
can only be started in the POSIX shell.

/COPY-FILE $ORACINST.WRC.OPTFILE,WRC.OPTFILE,SAME

Before you can run the WRC you must prepare your database for testing as described
in the Oracle Database Testing Guide. The captured data must be stored in the POSIX
file system. If your database is ready for a workload replay, then you can run the WRC.

Start a POSIX shell, run the profile oracle_home_path/.profile.oracle, set an
ORACLE_SID and start the WRC as described in the Oracle Database Testing Guide.

For example:

/START-POSIX-SHELL
$./u01/app/oracle/product/19.3.0/dbhome_1/.profile.oracle
$ ORACLE_SID=orcl

Chapter 7
Workload Replay Client

7-25

$ export ORACLE_SID
$ wrc system/password@test mode=replay replaydir=./replay

See Also:

• Oracle Database Testing Guide to prepare your database for testing

• Oracle Database Testing Guide for more information about starting WRC

7.10.2 About Troubleshooting Workload Replay Client
You need not modify the parameters of the WRC.OPTFILE except when there are
problems with the WRC application. The following table shows the parameters defined
in the WRC.OPTFILE. Modify the parameter values carefully:

Parameter Value Description

APPLL $ORACINST.ORALOAD.LIB Application Load Library

SCHPO *STD|FIFO|RR

Default: *STD

Defines the thread scheduling
policy: Standard, First In First
Out, or Round Robin.

BUSYC Integer 1…2147483647

Default: 100

Number of retries to get a lock.

MINRT Integer 0…59

Default: 1

Minimum number of resource
tasks.

MAXRT Integer 0…59

Default: 1

Maximum number of resource
tasks.

MSESZ Integer 1…2147483647

Default: 262144

Number of bytes reserved for
the main stack.

ILCS7 Integer 1…2147483647

Default: 262144

Default size of a stack for a
thread.

SHAMS Integer 1…2147483647

Default: 131072

Number of memory pages
reserved for the application
memory pool.

To get information about the running WRC, call the procedure ITH-SHOW from the
SYSPRC library of the PTHREADS installation:

/CALL-PROCEDURE $TSOS.SYSPRC.PTHREADS.014(ITH-SHOW)

This utility produces an output similar to the following:

/CALL-PROCEDURE $TSOS.SYSPRC.PTHREADS.014(ITH-SHOW)
% BLS0523 ELEMENT 'ITHSHOW', VERSION 'V01.4A10', TYPE 'L' FROM LIBRARY
':BUG2:$
TSOS.SYSLNK.PTHREADS.014' IN PROCESS
% BLS0524 LLM 'ITHSHOW', VERSION 'V01.4A10' OF '2013-11-30 03:17:44'
LOADED
% BLS0551 COPYRIGHT (C) 2013 Fujitsu Technology Solutions. ALL RIGHTS

Chapter 7
Workload Replay Client

7-26

RESERVED
STARTED AT 2016-04-20-145816 BY POSIX (running)
LLM = WRC (prelinked)
MAIN = IC@#MAIN
APPLL = :POR5:$ORA12102.ORALOAD.LIB
RUNTL = :BUG2:$TSOS.SYSLNK.PTHREADS.014
PTHvers = 01.4A21 2016-02-10 18:55:31
FDs = 5 (3 ORIG FDs, 2 RESO FDs)
Threads = 5 (1 user threads, 4 system threads)
TYPE TSN PID JOB-TYPE PRI CPU-USED CPU-MAX
ACCOUNT#
ORIG 1D4U 2902 (X'0B56') 3 DIALOG *0 240 3.0365 32767 FSC
 waiting for new requests
RESO 1D48 2917 (X'0B65') 3 DIALOG *0 240 0.0450 32767 FSC
 executing request
THRE 1D49 2918 (X'0B66') 3 DIALOG *0 240 0.2478 32767 FSC

Here you find the TSNs of the tasks involved in the WRC application. You can connect
to the WRC application when you choose the TSN of the ORIG task as the input for the
parameter TSN of the ITH-START procedure in the following format:

/CALL-PROCEDURE $TSOS.SYSPRC.PTHREADS.014(ITH-START),(TSN=1D4U)

When you see the double slash prompt you can type SHOW-PTHREADS-STATUS to show
the status of the running WRC application or CANCEL-THREADED-PROGRAM to cancel the
application. If the ORIG task is already terminated, then you can terminate all other
tasks of the WRC application. In the BS2000 environment, use the following system
command:

/CANCEL-JOB JOB-IDENTIFICATION=tsn

In the POSIX environment use the shell command kill to abort pending processes.
You must use the signal SIGABRT (6) or SIGTERM (15) to notify the target process:

$ kill -6 pid

7.11 The Oracle Text Loader
This utility imports and exports text data. .

You can start the Oracle Text Loader utility ctxldr either in the BS2000 environment
or the POSIX environment.

See Also:

Oracle Text for installing Oracle Text

The following examples show how to use ctxldr in the BS2000 environment:

/START-EXECUTABLE (*LINK(ORALOAD),CTXLDR)
*-USER username/password [options]

Chapter 7
The Oracle Text Loader

7-27

The following example shows how to use ctxldr in the POSIX environment:

$ ctxldr -USER username/password [options]

Related Topics

• Oracle Text Reference

• Starting Oracle Utilities in the BS2000 Program Environment

• Starting Oracle Utilities in the POSIX Program Environment

Chapter 7
The Oracle Text Loader

7-28

8
Backing Up and Recovering a Database

This chapter supplements the generic Oracle Database documentation set with
information about backup and recovery. It includes the following topics:

• Backing Up an Oracle Database

• Restoring an Oracle Database

• About Using the Recovery Manager

Refer to the following Oracle manuals for detailed information about database backup
and recovery:

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

• Oracle Database Backup and Recovery User’s Guide

You can choose among many methods and Oracle tools for backup and recovery. You
may use the Import and Export Utilities for logical backup and recovery. For physical
backup and recovery you may use Recovery Manager (RMAN) or operating system
utilities.

This chapter describes some BS2000 specific issues if you apply user-managed
backup and recovery with SQL*Plus and BS2000 utilities.

8.1 Backing Up an Oracle Database
You can use one of the following methods to back up an Oracle Database:

• Using BS2000 Utilities to Back Up an Oracle Database

• Performing Online Backup

8.1.1 Using BS2000 Utilities to Back Up an Oracle Database
You can back up an Oracle database using BS2000 operating system utilities (for
example, ARCHIVE or the /COPY-FILE command).

Use the following steps to back up an Oracle database:

1. While the database is running, collect the names of all the files, which make up the
Oracle database. You can determine the names of the log and database files by
entering the following commands:

/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* /NOLOG
SQL> CONNECT / AS SYSDBA
SQL> SELECT * FROM V$DATAFILE;
SQL> SELECT * FROM V$LOGFILE;

2. To ensure that all Oracle database files are synchronized at the time of the
backup, shut down Oracle database using SQL*Plus.

8-1

3. Back up all the database files and log files using the BS2000 ARCHIVE utility or
the BS2000 /COPY-FILE command. You should always back up all the files at the
same time.

4. Restart Oracle Database using SQL*Plus.

8.1.2 Performing Online Backup
You can perform an online backup of the database or individual tablespaces by using
either:

• The BS2000 ARCHIVE utility together with Oracle Database INSTALL.C.OPNBACK
utility.

• The BS2000 PERCON utility.

The ARCHIVE method is faster, and is described in this section.

Before you can perform an online (hot) backup of individual tablespaces, you must
ensure that the ARCHIVE utility can back up open files.

The following BS2000 command ensures that ARCHIVE can back up open files:

/START-EXECUTABLE $ORACINST.INSTALL.C.OPNBACK
*filename

The INSTALL.C.OPNBACK utility calls the BS2000 macro CATAL, which sets the OPNBACK
file attribute to YES. For the CATAL macro to work, the database must be shut down or
the tablespace in question must be offline. You enter this command once for each file.
For example, before adding it to a tablespace, not on the occasion of each backup.

You must never back up database files online without first setting the tablespace
to backup mode. If you do not follow this step, then the resulting backup files are
inconsistent. To perform an online backup of individual tablespaces or data files, use
the following procedure:

1. Enter the following command:

SQL> ALTER TABLESPACE name BEGIN BACKUP;

2. Back up the files of the tablespace using the BS2000 ARCHIVE utility. Ensure that
the OLS parameter of ARCHIVE is set to YES.

3. Enter the following command:

SQL> ALTER TABLESPACE name END BACKUP;

Note:

The preceding SQL*Plus commands operate on tablespaces, while the
ARCHIVE utility operates on data files.

8.2 Restoring an Oracle Database
An Oracle Database can be restored offline from backups, using the following steps:

Chapter 8
Restoring an Oracle Database

8-2

1. Copy all the database files and the log files from the backup. You may use
the BS2000 ARCHIVE utility or the BS2000 /COPY-FILE command. Files must be
restored with their original name.

To determine the name of all data files, query the V$DATAFILE table while the
Oracle database is running. Enter the following command when the SQL prompt is
displayed:

SQL> SELECT FILE#,NAME FROM V$DATAFILE;

The following is an example of the result that is displayed:

FILE# NAME
------ -------------------------
1 :pvs:$dbauserid.sid.DBS.DATABASE1.DBF
2 :pvs:$dbauserid.sid.DBS.DATABASE2.DBF

2 ROWS SELECTED.

You can determine the name of the log files in a similar way:

SQL> SELECT GROUP#,MEMBER FROM V$LOGFILE;

The following is an example of the result that is displayed:

GROUP# MEMBER
------ -------------------------
1 :pvs:$dbauserid.sid.DBS.LOG1.DBF
2 :pvs:$dbauserid.sid.DBS.LOG2.DBF

2 ROWS SELECTED.

2. Under the DBA user ID, ensure that the ORASID environment variable identifies the
Oracle database, which is to be restored.

3. Use the SQL*Plus STARTUP command to start the Oracle database.

8.3 About Using the Recovery Manager
In addition to the BS2000 utilities, you can also use Oracle Recovery Manager
(RMAN) to back up and restore a database.

See Also:

"Recovery Manager on BS2000" for more information

Chapter 8
About Using the Recovery Manager

8-3

9
About Unified Auditing

Unified auditing enables you to capture audit records from a variety of sources.

The unified audit trail, which resides in a read-only table in the AUDSYS schema in
the SYSAUX tablespace, makes this information available in an uniform format in the
UNIFIED_AUDIT_TRAIL data dictionary view.

When the database is writable, audit records are written to the unified audit trail. If the
database is not writable, then audit records are written to new format operating system
files in the POSIX file system in the $ORACLE_BASE/audit/$ORACLE_SID directory.

This chapter contains the following topics:

• Enabling Unified Auditing

• Disabling Unified Auditing

See Also:

Oracle Database Security Guide for more details

9.1 Enabling Unified Auditing
The Unified Auditing option is not enabled after you install Oracle Database. You can
find if your database has been migrated to unified auditing by querying the V$OPTION
dynamic view. Query the VALUE column of the V$OPTION dynamic view as follows with
SQL*Plus:

SQL> SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

If the output for the VALUE column is TRUE, then pure unified auditing is already enabled
in your database. If unified auditing has not been enabled, then the output is FALSE.

To enable the Unified Auditing option, relink the ORAKNL binary in the ORALOAD
library $ORACINST.ORALOAD.LIB. Relinking is done by calling a BS2000 command
procedure.

After shutting down all databases and stopping all listeners, log in to the installation
user ID $ORACINST. Enter the following BS2000 command to enable Unified Auditing:

/CALL-PROCEDURE INSTALL.P.UNIAUD-ON

Restart the databases and listeners in your DBA user IDs. After restarting, all the
databases run with Unified Auditing.

9-1

9.2 Disabling Unified Auditing
To disable the Unified Auditing option, relink the ORAKNL binary in the ORALOAD
library $ORACINST.ORALOAD.LIB. Relinking is done by calling a BS2000 command
procedure.

After shutting down all databases and stopping all listeners, log in to the installation
user ID $ORACINST. Enter the following BS2000 command to disable Unified Auditing:

/CALL-PROCEDURE INSTALL.P.UNIAUD-OFF

Restart the databases and listeners in your DBA user IDs. After restarting, all
databases run without the Unified Auditing option.

Chapter 9
Disabling Unified Auditing

9-2

10
Java in the Database

This chapter describes BS2000-specific features for Java in the database. This
chapter includes:

• Installation of a Java Enabled Database

• Database character sets and Java Encodings

• Java Demonstration Files

See Also:

Oracle Java documentation set for more information

10.1 Installation of a Java Enabled Database
When you call $ORACINST.INSTALL.P.SUPER and set the JAVA parameter to YES, you
get a database that meets the Java requirements.

When you enable Java in an existing Oracle database, you can use the Java related
parts of this procedure as an example and modify it according to your needs. For
example, you can increase dbsize, shared_pool_size, run initjvm.sql, and so on.

Where can files related to Java reside and how should they be encoded?

It is not absolutely straightforward where files used by Java must be stored and how
they should be encoded. In general, files can reside either in the native BS2000 or in
the POSIX file system. However, there are exceptions.

The following table gives an overview of the file types, location, default encoding, and
encoding modifications for APIs or statements:

Statement or API File type Place Default
encoding

Encoding
modification

CREATE JAVA CLASS
USING BFILE

.class BS2000 PAM
file or POSIX

Binary Not applicable

CREATE JAVA
RESOURCE USING
BFILE

.properties BS2000 PAM
file or POSIX

ascii None, that is,
there is no
means to change
the default
encoding.

CREATE JAVA SOURCE
USING BFILE

.java, .sqlj BS2000 PAM
file or POSIX

DB charset None, that is,
there is no
means to change
the default
encoding.

10-1

Statement or API File type Place Default
encoding

Encoding
modification

CREATE JAVA SOURCE
AS

.sql Part of
statement

Session
character set
specified in
NLS_LANG

NLS_LANG

CALL
DBMS_JAVA.LOADJAVA

*, .jar, .zip POSIX DB charset Option encoding
in loadjava call

java.io-package * POSIX DB charset Depends on the
classes used

You can create BS2000 PAM files in ASCII by transferring files with the File Transfer
Protocol (FTP) from an ASCII platform to BS2000 in binary mode.

Related Topics

• Oracle Database Java Developer’s Guide

10.2 Database character sets and Java Encodings
As far as I/O is concerned, the Oracle JAVAVM uses the database character set
as the system property file.encoding. Therefore, the following Oracle Database on
Fujitsu BS2000 database character sets have been added to the list of supported Java
encodings:

WE8BS2000
WE8BS2000E
EE8BS2000
CE8BS2000
CL8BS2000
WE8BS2000L5

These encodings are not known to any other Java implementation.

The system property file.encoding, however, does not apply to Java property files.
Property files always use the encoding 8859_1. The system property file.encoding
is used when compiling a source file. You can change this default by either setting
the encoding option of the dbms_java.loadjava procedure or by using the following
procedure:

dbms_java.set_compiler_option('','encoding',...)

See Also:

Oracle Database SQLJ Developer’s Guide for more details about property
files

10.3 Java Demonstration Files
A simple Java demonstration program running in the server is shipped under:

$ORACINST.JAVAVM.DEMO.HELLO.SQL

Chapter 10
Database character sets and Java Encodings

10-2

An example with database connection using the server-side internal driver is shipped
under:

$ORACINST.JAVAVM.DEMO.EMPLOYEE.JAVA
$ORACINST.JAVAVM.DEMO.CREATE.SQL
$ORACINST.JAVAVM.DEMO.RUN.SQL

Chapter 10
Java Demonstration Files

10-3

11
Oracle Text

Oracle Text provides indexing, word and theme searching, and viewing capabilities for
text in query applications and document classification applications.

This chapter describes how to install and run Oracle Text and the restrictions of this
option on BS2000. It includes the following topics:

• Installing Oracle Text

• Restrictions of Oracle Text on BS2000

11.1 Installing Oracle Text
Oracle Text is not installed when you create a database. To install Oracle Text, you
must complete the following steps:

1. Start SQL*Plus. To avoid being prompted for many overflow acknowledgements
on the screen, set OVERFLOW-CONTROL=*NO-CONTROL:

/MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL=*NO-CONTROL
/START-EXECUTABLE (*LINK(ORALOAD),SQLPLUS)
* /nolog
connect / as sysdba
spool catctx.log
@$ORACLE_HOME/ctx/admin/catctx.sql CTXSYS SYSAUX TEMP NOLOCK;

where CTXSYS is the password for ctxsys, SYSAUX is the default tablespace for
ctxsys, TEMP is the temporary tablespace for ctxsys, and LOCK|NOLOCK specifies
whether the ctxsys user account is locked or not.

2. If you are working with US english texts, then install the appropriate language-
specific default preferences:

connect CTXSYS/CTXSYS
@$ORACLE_HOME/ctx/admin/defaults/drdefus.sql;

If you are not working with US english texts, then open the drdef*.sql script
in the $ORACLE_HOME/ctx/admin/defaults directory according to the preferred
language, set the attributes, and run the script.

Before you set the attributes, refer to "Restrictions of Oracle Text on BS2000."

3. Type exit when finished.

11.2 Restrictions of Oracle Text on BS2000
The following restrictions apply for Oracle Text on Fujitsu BS2000:

• Index themes are not supported.

• INSO filters, which are licensed on special platforms only, are not supported.

• ctxkbtc, which is a knowledge base utility is not supported.

11-1

• URL_DATASTORE objects are not supported.

Note:

FILE_DATASTORE objects may reside on native BS2000 DMS as PAM files or
on the POSIX file system.

Chapter 11
Restrictions of Oracle Text on BS2000

11-2

12
XML

This chapter describes BS2000 specific topics of XML such as installation, features,
and restrictions. It contains the following topics:

• About XDK Installation

• Features and Restrictions of XML Features on BS2000 Systems

See Also:

• Oracle XML Developer's Kit Programmer's Guide

• Oracle XML DB Developer’s Guide

• Oracle Database XML C API Reference

• Oracle Database XML C++ API Reference

• Oracle Database XML Java API Reference

12.1 About XDK Installation
The Jar files for the XML SQL utility, xsu12.jar and xdb.jar, and the XML Parser,
xmlparserv2.jar are already loaded in the database when you create a database as
explained in "About Creating a Database."

12.2 Features and Restrictions of XML Features on BS2000
Systems

The following table provides an overview of the XML features that are available for the
programming languages on BS2000:

An empty field means that the feature is not supported.

N/A means means that it is not applicable.

XML Feature Availability for
Java

Availability for C Availability for
C++

Availability for
PL/SQL

Parser Yes Yes

XSLT Processor Yes Yes

Class Generator N/A N/A

XSQL N/A N/A N/A

Transviewer
Beans

N/A N/A N/A

12-1

XML Feature Availability for
Java

Availability for C Availability for
C++

Availability for
PL/SQL

XML-SQL Utility Yes N/A N/A Yes

Schema
Processor

Yes N/A

When you use PL/SQL instead of Java, you must consider the following behavior:

• PL/SQL file input is only possible from POSIX and with ASCII data format.

• PL/SQL file output is written to POSIX with ASCII data format.

• For INSERT/UPDATE/DELETE operations the XML document must not contain <?
xml ... encoding=WE8BS2000 ...>.

When using the JAVA-interfaces, you must ensure the right character set of the data.

If you have an ASCII platform with JDK, then you can also use XML components and
operate on the BS2000 Oracle database using a JDBC connection.

See Also:

Java in the Database for more information about the encoding considerations

Chapter 12
Features and Restrictions of XML Features on BS2000 Systems

12-2

13
Oracle Net Services

This chapter describes Oracle Net Services and its implementation in the BS2000
and POSIX program environment. It supplements the Oracle Database Net Services
Administrator's Guide with BS2000-specific information about the following topics:

• Oracle Net Protocol Support

• Oracle Network Security

• Shared Server Architecture

• Configuring the Network

• Troubleshooting Oracle Net Services

13.1 Oracle Net Protocol Support
Oracle Net Services supports network communication between a client application and
a remote or a local database running on a variety of operating systems.

Oracle Net Services allows the database servers and the client applications, or servers
acting as clients, to run on separate systems and provides a means for moving data
between the nodes on a network. For example, a UNIX or Windows user can run
applications that access and manipulate data in a remote Oracle database running on
a BS2000 system.

Oracle Net Services is also used for inter-process communication, if a client and the
requested database service are running on the same machine.

As mentioned in the Concepts and Architecture chapter, Oracle programs can run in
both the BS2000 and the POSIX program environment. Depending on the program
environment, the Oracle protocol adapter uses different socket implementations, such
as, the BS2000 sockets and the POSIX sockets. This causes differences in the
protocols used for the local inter-process communication.

Oracle Net Services supports the following network protocols:

• TCP/IP (version 4 and version 6)

• TCP/IP with SSL

• ISO Domain (in the BS2000 program environment only)

• Unix Domain (in the POSIX program environment and optionally in the BS2000
program environment)

Oracle Net Services automatically detects the program environment and uses the
appropriate sockets implementation. You can also specify Oracle Net Services
to use the POSIX sockets instead of the BS2000 sockets. Use the variable
NT_IPC_PROTOCOL_UNIX to switch to the POSIX sockets with the Unix Domain protocol
for local communication:

NT_IPC_PROTOCOL_UNIX={TRUE|FALSE} Default: FALSE

13-1

The POSIX sockets provide a smarter handling of the hand-off mechanism, which is
required for the support of the Database Resident Connection Pooling (DRCP) feature.
To ensure the use of the correct protocol for inter-process communication in both
program environments, you must set the variable to the same value in both the POSIX
and the BS2000 program environment.

This section contains the following topics:

• About Bequeath Protocol

• About IPC Protocol Support

• About TCP/IP Protocol Support

• About TCP/IP with SSL Protocol

Note:

The InterProcess Communication (IPC) protocol requires the same socket
implementation for both the client and the server.

13.1.1 About Bequeath Protocol
The Bequeath technique enables clients to connect to a database without using the
network listener. Oracle's Bequeath protocol internally spawns a server process for
each client application. It does the same operation that a remote network listener does
for the connection locally.

The Bequeath (BEQ) protocol is available in both program environments so that a
client running in the POSIX shell can connect via the BEQ protocol to a server
running in the BS2000 program environment. Ensure that the environment variable
NT_IPC_PROTOCOL_UNIX has the same value in both program environments.

You can also use the POSIX sockets in the BS2000 program environment. In this case
Oracle Net Services uses the protocol PF_UNIX for local connections and for handing
off a connection.

By default, Oracle Net Services uses the BS2000 sockets in the BS2000
program environment, which is, NT_IPC_PROTOCOL_UNIX=FALSE. If you configure
Oracle Net Services to use POSIX sockets in the BS2000 program environment,
that is if NT_IPC_PROTOCOL_UNIX=TRUE, then ensure that the environment variable
NT_IPC_PROTOCOL_UNIX is set to the same value for both the client and the local server.

13.1.1.1 Overview of the Bequeath Protocol
The Bequeath protocol:

• Does not use a network listener. Therefore, listener configuration is not required.

• Automatically spawns a dedicated server.

• Is used for local connections where an Oracle Database client application, such as
SQL*Plus, communicates with an Oracle Database instance running on the same
computer.

Chapter 13
Oracle Net Protocol Support

13-2

• Only works in the Dedicated Server mode. It cannot be used in the Shared Server
mode.

Note:

If clients are running in a user ID that is different from the DBA user ID, then
Oracle recommends using a net service name to connect through a listener
to the destination database.

13.1.2 About IPC Protocol Support
This section introduces Oracle's Inter Process Communication (IPC) protocol support
for inter-process calls. It is used to map the functionality of IPC to Oracle's Protocol
Support Layer. Oracle Utilities and products running in the POSIX shell cannot use the
IPC protocol if the variable NT_IPC_PROTOCOL_UNIX is set to FALSE.

It includes the following topics:

• Overview of IPC

• Using the IPC Protocol

13.1.2.1 Overview of IPC
On BS2000 systems, the IPC protocol is used for local inter-process communication.
The Oracle Protocol Support for IPC uses the ISO functionality of the BS2000 sockets
if NT_IPC_PROTOCOL_UNIX=FALSE. If POSIX sockets are also used in the BS2000
program environment, that is, if NT_IPC_PROTOCOL_UNIX=TRUE, then the Oracle Protocol
Support for IPC uses the UNIX protocol family.

The client process initiates its IPC connection with the remote process by specifying a
KEY that describes the listening process. Once the connection is established, the two
communicating processes send and receive data through a continuous byte stream.

13.1.2.2 Using the IPC Protocol
The IPC protocol enables applications to integrate with the Inter Process
Communication method on a local host. The following is the syntax for using IPC
protocol:

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=alphanumeric)
)
)

where:

PROTOCOL specifies the supported protocol. For IPC, the value is IPC.

KEY specifies the listen endpoint. A string of at most 32 characters: [a...z], [A...Z],
[0...9], '.', '-', '_', '$'

Chapter 13
Oracle Net Protocol Support

13-3

The following is an example of an IPC ADDRESS that specifies a server on a local
host:

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=ORCL)
)
)

Note:

If the IPC protocol is specified by a utility or user application running in the
POSIX shell and if NT_IPC_PROTOCOL_UNIX=FALSE, then Oracle Net Services
fails to use the IPC protocol. The following error message is displayed:

TNS-12557: TNS:protocol adapter not loadable

13.1.3 About TCP/IP Protocol Support
This section introduces Oracle's TCP/IP (Transmission Control Protocol/Internet
Protocol) protocol support, which is used to map the functionality within TCP/IP to
Oracle's Protocol Support Layer.

The specific TCP/IP connection parameters are part of the ADDRESS keyword-value
pair. The three TCP/IP–specific parameters can be entered in any order within the
ADDRESS construct. The syntax used by Oracle's TCP/IP protocol support is:

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=hostname)
 (PORT=port#)
)
)

where:

PROTOCOL specifies the supported protocol. For TCP/IP, the value is TCP.

HOST specifies the host name or the host's IP address.

PORT specifies the TCP/IP port number.

The following is an example of the TCP/IP ADDRESS specifying a client on the
sales-server host:

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=sales-server)
 (PORT=1521)

Chapter 13
Oracle Net Protocol Support

13-4

)
)

Related Topics

• Oracle Database Net Services Administrator's Guide

13.1.4 About TCP/IP with SSL Protocol
The TCP/IP with Secure Socket Layer (SSL) protocol is supported in this release. SSL
provides authentication, encryption, and data integrity using public key infrastructure
(PKI). SSL stores authentication data, such as certificates and private keys, in an
Oracle Wallet.

The connection parameters for TCP/IP with SSL protocol are the same as TCP/IP
except for the protocol, which is TCPS:

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCPS)
 (HOST=hostname)
 (PORT=port#)
)
)

where:

• PROTOCOL specifies the supported protocol. For TCP/IP with SSL protocol, the
value is TCPS.

• HOST specifies the host name or the host's IP address.

• PORT specifies the TCP/IP with SSL protocol port number.

The following is an example of the TCP/IP with SSL protocol ADDRESS specifying a
client on the sales-server host:

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCPS)
 (HOST=sales-server)
 (PORT=2484)
)
)

Related Topics

• Oracle Database Net Services Administrator's Guide

13.2 Oracle Network Security
This section describes how to configure the data integrity and the cryptographic
services of Oracle Network Security for Fujitsu BS2000.

Chapter 13
Oracle Network Security

13-5

For using either the data integrity, or the cryptographic services, or both, you must
specify the appropriate parameters in the SQLNET.ORA file.

Use the following parameters to specify whether a service (example: crypto-
checksumming or encryption) should be active:

SQLNET.CRYPTO_CHECKSUM_CLIENT
SQLNET.CRYPTO_CHECKSUM_SERVER
SQLNET.ENCRYPTION_CLIENT
SQLNET.ENCRYPTION_SERVER

Each of the preceding parameters defaults to REJECTED.

Each of the preceding parameters can have one of the following values:

Value Meaning

ACCEPTED Enables the security service if the other side of the connection
specifies REQUESTED or REQUIRED and there is a compatible
algorithm available on the other side. It is inactive otherwise.

REJECTED Disables the security service, and the connection fails if the
other side specifies REQUIRED.

REQUESTED Enables the security service if the other side specifies
ACCEPTED, REQUESTED, or REQUIRED and there is a
compatible algorithm available on the other side. It is inactive
otherwise.

REQUIRED Enables the security service, and the connection fails if the
other side specifies REJECTED or if there is no compatible
algorithm on the other side.

Use the following parameters to control the algorithms that are made available for
each service on each end of a connection:

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER
SQLNET.ENCRYPTION_TYPES_CLIENT
SQLNET.ENCRYPTION_TYPES_SERVER

The value of each of these parameters can be either a list of algorithm names in
parenthesis separated by commas or a single algorithm name.

Type Values

Crypto checksum types MD5, SHA1,SHA256, SHA384, SHA512

Encryption types 3DES112, 3DES168, AES128, AES192, AES256, DES, DES40,
RC4_40, RC4_56, RC4_128, RC4_256

Related Topics

• Oracle Database Net Services Administrator's Guide

• Oracle Database Net Services Reference

• Oracle Database Security Guide

Chapter 13
Oracle Network Security

13-6

13.3 Shared Server Architecture
The initialization parameters that control the shared server architecture are as follows:

• LOCAL_LISTENER

• DISPATCHERS

• MAX_DISPATCHERS

• SHARED_SERVERS

• MAX_SHARED_SERVERS

• SHARED_SERVER_SESSIONS

• CIRCUITS

The shared server architecture and the dedicated server architecture can work
concurrently in an instance. Provide information in the connect descriptor to indicate
whether a connecting application should use the shared server or the dedicated server
architecture. By default, the listener process uses the shared server architecture. If
you want the application to use the dedicated server architecture, then you must
set USE_DEDICATED_SERVER=ON in the SQLNET.ORA file or specify a net service name
with the parameter SERVER in the used naming method. The SQLNET.ORA parameter
USE_DEDICATED_SERVER=ON overwrites the SERVER parameter.

The following example shows how to reference a dedicated server in a shared server
configuration by using a specially defined net service name:

FINANCE_DED=(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=sales-server)
 (PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.example.com)
 (SERVER=dedicated)))

To choose between using the shared server and the dedicated server architecture, you
must consider the CPU overhead versus resource allocation, such as, tasks, memory,
and so on. Use the shared server architecture if many clients work only occasionally
with an Oracle database. Use the dedicated server architecture if only a few clients
work intensively with an Oracle database. Before you decide, consider using the
information in the following shared server dynamic tables:

• V$DISPATCHER

• V$QUEUE

• V$SHARED_SERVERS

• V$SHARED_SERVER_MONITOR

Chapter 13
Shared Server Architecture

13-7

See Also:

• Oracle Database Net Services Administrator's Guide and Oracle
Database Administrator’s Guide for detailed information about the
shared server architecture

• Oracle Database Net Services Reference for more information on how to
reference a dedicated server in a shared server configuration

• Oracle Database Administrator’s Guide for more information about
shared server dynamic tables

13.4 Configuring the Network
You can either use the Easy Connect Naming Method to connect to the database
or the Local Naming Method. When you use the Local Naming Method, Oracle
recommends to configure clients for the use of service names that are easy to
remember aliases for database addresses and match the address preconfigured in
each system's LISTENER.ORA file. The client uses these addresses to connect to the
network listener, which routes the connection request to the required service. During a
connection, a client passes the service name to which it wants to connect.

The LISTENER.ORA file identifies and controls the behavior of the network listener that
listens for services on the system. This file includes:

• Network listener descriptors and addresses

• Services the listener is listening for

• Various control parameters

Client configuration is accomplished by creating a list of net service names
with addresses of network destinations through the local naming parameter file
TNSNAMES.ORA or an LDAP compliant directory server.

• About Using Easy Connect Naming Method

• About Using the Local Naming Method

• About Using the Directory Naming Method

• Customizing Oracle Net Listener Configuration

• Configuration of the Client

• Testing the Configuration of the Client

13.4.1 About Using Easy Connect Naming Method
The Easy Connect naming method, can be used to connect to a database without
the need to configure service names in the TNSNAMES.ORA configuration file. For using
the Easy Connect naming method, ensure that EZCONNECT is listed in the client's
configuration file parameter for naming adaptors NAMES.DIRECTORY_PATH.

Easy Connect naming is suitable for small and simple environments.

Chapter 13
Configuring the Network

13-8

See Also:

Oracle Database Net Services Administrator's Guide for more information
about the Easy Connect naming method

13.4.2 About Using the Local Naming Method
Local naming refers to the method of resolving a service name to a network
address by using information configured on each individual client in a TNSNAMES.ORA
configuration file. For using the local naming, ensure that TNSNAMES is listed in the
client's configuration file parameter for naming adaptors NAMES.DIRECTORY_PATH.

Local naming is most appropriate for simple distributed networks with a small number
of services that change infrequently.

13.4.3 About Using the Directory Naming Method
Directory Naming refers to the method of resolving a service name to a network
address by using a directory server. For using a directory server, ensure that
LDAP is listed in the client's configuration file parameter for naming adaptors
NAMES.DIRECTORY_PATH and that the target address of the directory server is
configured in the LDAP.ORA parameter file. For example:

LDAP.ORA Network Configuration File: network.admin.ldap.ora
DEFAULT_ADMIN_CONTEXT = ""
DIRECTORY_SERVERS= (ldap_server:389:636)
DIRECTORY_SERVER_TYPE = Your Internet Directory Type

Where DIRECTORY_SERVER_TYPE specifies the type of the directory server that is being
used. It can have the following values:

• oid for Oracle Internet Directory

• ad for Microsoft Active Directory

See Also:

Oracle Database Net Services Administrator's Guide and Oracle Database
Net Services Reference for more information

13.4.4 Customizing Oracle Net Listener Configuration
Before starting the listener, you must set up the configuration file LISTENER.ORA. This
file includes the address of the listener and various control parameters used by
the listener. When a listener accepts a connection request of a client, it routes the
connection to a database server. In case of a dedicated server, the listener starts the
server using the bequeath protocol and inherits the connection. Therefore, the listener
should run in the DBA user ID of the Oracle database.

Usually the listener runs in the same DBA user ID as the Oracle database instance. If
you have Oracle database instances running in different DBA user IDs, then you can
configure a single listener to support all database services. In this case the listener

Chapter 13
Configuring the Network

13-9

must know the LOGON authorization parameters, USER-ID, ACCOUNT, and PASSWORD
of the foreign DBA user ID where Oracle database server tasks must be started.
Use the Oracle environment variables sid_USER, user_ACCOUNT, and user_PASSWORD
as described in the following table to specify the required LOGON authorization
parameters:

Parameter Meaning

BGJPAR Parameters for ENTER jobs

sid_BGJPAR Parameters for ENTER jobs identified by SID

sid_USER The user ID under which the job should run

user_ACCOUNT Account of the target user ID

user_PASSWORD Password of the target user ID

Note:

In order to avoid storing a password in the ORAENV file, you can use SECOS,
which is Fujitsu's Security Control System for BS2000. SECOS supports the
facility to grant the listener’s user ID the right to start batch jobs in the DBA
user ID. Thus the environment variable sid_USER is the only variable that
must be set.

The following example of an ORAENV file configured for a central listener process shows
how the parameters work. The listener can share this ORAENV file with an instance,
which runs under the same user ID. For a better understanding, we assume that the
listener and the instances DEM0 and DEM1 are running under the user ID ORACDEM1
while the instance DEM2 is running under the user ID ORACDEM2. Define the following
parameters:

BGJPAR=J-C=JCBORA,START=IMME,CPU-LIMIT=NO,LOGGING=*NO
DEM1_BGJPAR=J-C=JCBDEM1,START=IMME,CPU-LIMIT=NO
DEM2_USER=ORACDEM2
ORACDEM2_ACCOUNT=01234
ORACDEM2_PASSWORD=ORACLE

The listener always runs the same sequence to look up the parameters sid_BGJPAR
and sid_USER. If the value for sid_BGJPAR is not found, then the listener uses the
value given by the parameter BGJPAR. If a user ID is given by sid_USER, then the
listener tries to get the processing admission from the parameters user_ACCOUNT and
user_PASSWORD. For the given ORAENV, you get the following scenarios for the listener:

• The listener should start a server for the instance DEM0. Because the parameters
DEM0_BGJPAR and DEM0_USER are not defined the listener starts the server for the
instance DEM0 under the user ID ORACDEM1 with the start parameters defined by
BGJPAR.

• If a server for the instance DEM1 must be started, then the listener looks for the
parameters DEM1_BGJPAR and DEM1_USER. In this case the parameter DEM1_BGJPAR
can be evaluated, whereas, the evaluation of DEM1_USER failed because this
parameter is not defined. Therefore, the listener adds the start parameters "J-
C=JCBDEM1,START=IMME,CPU-LIMIT=NO" to the ENTER-PROCEDURE command and
starts the job under the user ID ORACDEM1.

Chapter 13
Configuring the Network

13-10

• Now a server for instance DEM2 must be started. The listener looks for the
parameters DEM2_BGJPAR and DEM2_USER. The parameter DEM2_BGJPAR is not
defined so that the listener uses the start parameters defined by BGJPAR. On
the other hand the parameter DEM2_USER can be evaluated successfully and
returns the value ORACDEM2. Now the listener tries to get the processing admission
by evaluating the parameters ORACDEM2_ACCOUNT and ORACDEM2_PASSWORD. The
listener starts the server job under the user ID ORACDEM2 with the ENTER-PROCEDURE
parameters "J-C=JCBORA,START=IMME,CPU-LIMIT=NO,LOGGING=*NO".

Start the listener using the Listener Control Utility LSNRCTL:

/CALL-PROCEDURE sid.P.ORAENV
/START-EXECUTABLE (*LINK(ORALOAD),LSNRCTL)

When the enter options prompt is displayed, press ENTER to get to the LSNRCTL
prompt. Enter the following command to start the listener:

LSNRCTL> START listener-name

See Also:

Oracle Database Net Services Administrator's Guide

13.4.5 Configuration of the Client
Configuration of network clients involves adding or editing parameters in the client
configuration file SQLNET.ORA and, depending on the used naming method, in the
configuration file LDAP.ORA or TNSNAMES.ORA.

See Also:

Oracle Database Net Services Reference for more information about the
configuration parameters

13.4.6 Testing the Configuration of the Client
After you have verified the network connections, verify the connections to the desired
Oracle Database systems using the TNSPING utility:

/CALL-PROCEDURE sid.P.ORAENV
/START-EXECUTABLE (*LINK(ORALOAD),TNSPING)

When the enter options prompt displays, enter the net service name for the
database service that you have specified in the naming service. If everything works
fine, then a message similar to the following is returned:

TNS Ping Utility for BS2000: Version 19.0.0.0 -
Production on 11-MAR-2020 10:28:12
Used parameter files: network.admin.sqlnet.ora
Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = sales-server)(PORT = 3055)))

Chapter 13
Configuring the Network

13-11

(CONNECT_DATA = (SERVICE_NAME = sales.us.example.com)))
OK (30 msec)

Related Topics

• Oracle Database Net Services Administrator's Guide

13.5 Troubleshooting Oracle Net Services
The following is a list of error messages and steps to fix the errors:

1. Listener could not be started. LSNRCTL returns the following error message:

LSNRCTL> start
Starting /BS2/$ORACINST.tnslsnr: please wait...

TNS-12547: TNS:lost contact
TNS-12560: TNS:protocol adapter error
TNS-00517: Lost contact
BS2000 Error: 145: Connection timed out
LSNRCTL>

• Ensure that the subsystem POSIX is up and running.

• Ensure that the BCAM Light Weight Resolver LWRESD is properly configured and
running.

2. Listener could not open the log file.

• Check the listener.log file in the ADR subdirectory for tnslsnr. For
example:

/u01/app/oracle/diag/tnslsnr/hostname/listener/trace/listener.log

• If ADR is disabled, then check if the listener.log file in the BS2000 file
system, for example, NETWORK.LOG.LISTENER.LOG, is accessible and readable.

• Verify the listener log file in the BS2000 file system using the BS2000 SDF
command REPAIR-DISK-FILES.

• If you are not able to fix the listener log file, then delete the file.

3. A client reports ORA-12545: Connect failed because target host or object does not
exist

• Check the naming service, if the host name is well known in the TCP/IP
network.

• Use a Fully Qualified Domain Name (hostname.domain)

• Ensure that the BCAM Light Weight Resolver LWRESD is properly configured and
running.

4. A client reports ORA-12535: TNS operation timed out

• If you use the IPC protocol, then check the Connection Timeout parameter of
BCAM (use the BCSHOW command). This parameter should be set to at least 600
seconds.

5. A client reports ORA-03113: end-of-file on communication channel

• Check if the SQLNET.EXPIRE_TIME parameter is set for the server. If the
parameter is set, then check the BCAM LETTER-TIMER using the BCSHOW
command. If the LETTER-TIME is less than the SQLNET.EXPIRE_TIME, then the

Chapter 13
Troubleshooting Oracle Net Services

13-12

data that is sent by the server to see if the client is running may not be read
during their lifetime, which is limited by the LETTER-TIME. As a result, the client
logs a broken pipe in the SQLNET.LOG file:

ns main err code: 12547
ns (2) err code: 12560
nt main err code: 517
nt (2) err code: 32
nt OS err code: 0x0040002c

You can solve this problem by setting the LETTER-TIMER to infinite.

Chapter 13
Troubleshooting Oracle Net Services

13-13

Part IV
Application Development

This part summarizes topics for application developers:

• Database Applications

• External Procedures

• Globalization Support

14
Database Applications

This chapter contains the following topics:

• Overview of Database Applications

• Precompiler Applications

• Oracle Call Interface Applications

• The Object Type Translator

• Oracle Database Applications in POSIX

• openUTM Database Applications

14.1 Overview of Database Applications
Oracle Programmatic Interfaces are tools for application designers who want to
use SQL statements to access an Oracle database from within high-level language
programs. The following types of programmatic interfaces are available:

• The Precompiler Interface, which is a programming tool that enables you to embed
SQL statements in high-level language source code.

• The Oracle Call Interface (OCI), that enables to create high-level language
applications that use function calls to access an Oracle database and control all
phases of SQL statement execution.

On BS2000, the Oracle Database precompilers support programs written in C, C++,
and COBOL programming languages.

This section contains the following topics:

• Architecture of the Programmatic Interfaces

• PL/SQL Support

• Building and Running a Programmatic Interface Application

See Also:

• Oracle Database Programmer's Guide to the Oracle Precompilers for
detailed information about Oracle Precompilers

• Pro*C/C++ Programmer's Guide or Pro*COBOL Programmer's Guide

14.1.1 Architecture of the Programmatic Interfaces
All precompiler and Oracle Call Interface (OCI) applications are linked with a small
stub module. This stub module dynamically loads the SQL runtime system of the

14-1

Oracle Database precompilers from the ORALOAD library. Programs written in the
following languages can be combined:

• Pro*C/C++

• Pro*COBOL (COBOL85 and COBOL2000)

Note:

OCI C and OCI COBOL programs cannot be combined; any attempt to do
so results in execution errors. The entries into Oracle Database used by OCI
C and OCI COBOL (for example, OLOGON) have identical names but different
argument lists. For OCI COBOL, all arguments are by reference, that is, the
parameter list contains all pointers. For OCI C, the numeric arguments are by
value.

Oracle Database precompilers generate different SQLLIB function names for different
languages. The following names are used:

• SQ0XXX: COBOL

• sq2xxx: C

14.1.2 PL/SQL Support
The precompilers support PL/SQL. When using PL/SQL, you must specify
SQLCHECK=FULL or SQLCHECK=SEMANTICS on the precompiler option line. The default
is SQLCHECK=NONE. When requesting SQLCHECK, the precompiler must connect to a
database. So, ensure that you provide the necessary connection information. (You
may also want to set the DEFAULT_CONNECTION variable in the ORAENV file).

When SQLCHECK=SEMANTICS or SQLCHECK=FULL is specified, you must also specify
USERID=username/password.

See Also:

Oracle Database PL/SQL Language Reference

14.1.3 Building and Running a Programmatic Interface Application
To build and run a programmatic interface application, perform the following steps:

1. Edit your source code, including embedded SQL, as outlined in the generic
precompiler documentation.

2. Precompile the source with the corresponding precompiler.

Chapter 14
Overview of Database Applications

14-2

Note:

You must use WE8BS2000 as client character set during precompilation
(set in ORAENV file). Any other character set might lead to problems with
the concatenation sign ("||").

You do not need to precompile if you build an OCI C or an OCI COBOL
application.

3. Compile the application.

4. Link the application, including the stub module PROSTUB from
the $ORACINST.PRO.LIB library.

5. Call the environment definition file. Refer to "Calling the Environment-Definition
File" for details.

6. Run the application with the START-EXECUTABLE command. The supporting Oracle
Database module is dynamically loaded from the ORALOAD library.

7. You can find sample BS2000 procedures for precompiling, compiling, and
linking in the installation user ID: $ORACINST.P.PROC, $ORACINST.P.PROCOB,
and $ORACINST.P.PROLNK.

Figure 14-1 illustrates the sequence of events outlined in the preceding numbered list
and how the programmatic interfaces use the program libraries.

Figure 14-1 Usage of Program Libraries by Programmatic Interfaces

TCP/IP
Network

Database
Server

Application
(user precompiler /
OCI program including language
runtime and ILCS)

PROSTUB
(Oracle Server stub module)

RDBMS

Oracle
Net

Client

ORAPRO module

ORACLN module
(including OracleNet)

linked from
$ORACINST.PRO.LIB

loaded from
$ORACINST.ORALOAD.LIB

loaded from
$ORACINST.ORALOAD.LIB

Chapter 14
Overview of Database Applications

14-3

For more information, see the specific notes for the programmatic interfaces in this
chapter.

14.2 Precompiler Applications
Learn about precompiler applications in this section. It includes the following topics:

• About Using Precompilers

• Precompiler Pro*C/C++

• Precompiler Pro*COBOL

14.2.1 About Using Precompilers
Oracle Database precompilers on BS2000 support LMS libraries for the files
mentioned in this section. This section includes the following topics:

• Include Files

• User-Specific Configuration Files

• Input, Output, and List-files

• Additional Remarks About Using Precompilers

This functionality helps saving disk resources and provides clarity by grouping files in
different libraries.

All LMS library elements that you use must be of element type "S”. The precompilers
generate elements of type "S" if libraries are used. When you use LMS library
elements, the precompilers build temporary files with the prefix "#T.”, which are deleted
when the preprocessing completes successfully.

When you use LMS library elements, the element name that you specify must be the
full element name including the suffix. The precompilers do not append the suffix to the
element name.

14.2.1.1 Include Files
All standard include files are shipped in the LMS library, $ORACINST.PRO.INCLUDE.LIB.
You must specify this LMS library or a user-defined include library for the EXEC SQL
INCLUDE statements. Use the INCLUDE precompiler option, as follows:

* INCLUDE=$ORACINST.PRO.INCLUDE.LIB \
* INCLUDE=mylibrary

where mylibrary is the BS2000 file name of the user-defined library, such as
PROC.INCLIB.

Note:

The order in which you specify the different INCLUDE options affects the
performance of precompilation. You should place the commonly used files
before the rarely used ones.

Chapter 14
Precompiler Applications

14-4

14.2.1.2 User-Specific Configuration Files
You can also specify a user-specific configuration file as an LMS-element using the
following syntax:

* CONFIG=my_config_lib[config_element]

where my_config_lib is the BS2000 file name of the configuration library and
config_element is the full name of the element.

You must use brackets when specifying the configuration element, as shown in the
following example.

* CONFIG=CONFIG.LIB[PROCOB.CFG]

14.2.1.3 Input, Output, and List-files
Besides using BS2000 files, you can also use the LMS library elements for
precompiler I/O using the INAME, ONAME, and LNAME options.

If you do not specify a library file name and an element, then the Oracle Database
precompilers generate BS2000 ISAM files by default. The only option that you must
enter is the INAME option. This can be either a BS2000 file name, or a library file name
and the name of an element from the LMS library.

For example:

* INAME=my_input_lib[my_element] \
* ONAME=my_output_lib[my_element] \
* LNAME=my_list_lib[my_element] \

where my_input_lib is the BS2000 file name of the particular library and my_element
is the name of the element including the specific suffix.

Note:

You must use brackets when specifying the LMS library element.

In the following example, Pro*C generates an output file with the name SAMPLE.C as
the ONAME option has been omitted:

* INAME=INPUT.LIB[SAMPLE.PC] \
* LNAME=LIST.LIB[SAMPLE.LST]

14.2.1.4 Additional Remarks About Using Precompilers
The following are some additional remarks on this release of Oracle Database 19c for
Fujitsu BS2000:

• Only compilers and compiler versions supporting the ILCS Standard Linkage are
supported. If the Oracle Database detects a call from a user program not using
the Standard Linkage conventions, then it terminates the task and displays the
message number 5002 or 5003.

Chapter 14
Precompiler Applications

14-5

• If ONAME is not specified when starting a precompiler, then the precompiler
generates a default name, which consists of the last part of INAME with the
relevant suffix. For example, if the name of the C program you want to compile
is MYPROG.PERS.TEST.PC, and if ONAME is omitted, then Pro*C generates an output
file with the name TEST.C.

• If you work with float variables, then you may encounter rounding problems. The
workaround is to declare the float variables as double variables instead.

14.2.2 Precompiler Pro*C/C++
This section describes the procedure for using Pro*C/C++. It includes the following
topics:

• Starting Pro*C

• Pro*C Include, System Configuration and Demo Files

• SQLLIB Calls

• Linking Pro*C Programs

• The Pro*C SQLCPR.H Header File

• UTM Applications

14.2.2.1 Starting Pro*C
To start the Pro*C precompiler, enter the following:

/START-EXECUTABLE (*LINK(ORALOAD),PROC)
* INAME=myprog.PC ONAME=myprog.C [options]

where:

myprog is the name of the C program.

options specifies Pro*C options. For a list and description of the valid options, see
Pro*C/C++ Programmer's Guide.

Note:

You must use a separate precompiler option INCLUDE for each path you want
to specify, unlike as described in Pro*C/C++ Programmer's Guide. A list as
allowed for the option SYS_INCLUDE may cause the precompiler to loop.

14.2.2.2 Pro*C Include, System Configuration and Demo Files
The Pro*C include files, demo files, and system configuration files are shipped under:

$ORACINST.PRO.INCLUDE.LIB
$ORACINST.C.DEMO.*.PC
$ORACINST.UTM.DEMO.*.PC
$ORACINST.CONFIG.PCSCFG.CFG

An example of a BS2000 procedure for precompilation and compilation is included in
the Oracle Database software under the name $ORACINST.P.PROC.

Chapter 14
Precompiler Applications

14-6

14.2.2.3 SQLLIB Calls
If you want to program explicit C calls to SQLLIB functions, then you must call sq2xxx
instead of sqlxxx. For example, call sq2cex instead of sqlcex.

14.2.2.4 Linking Pro*C Programs
To link a Pro*C program, you need:

• The common runtime environment, CRTE.

• The Pro* library $ORACINST.PRO.LIB, which contains the stub module, PROSTUB.

To link your program, you must create your user-specific link procedure. An example
of such a link procedure is included in the Oracle Database software with the
name, $ORACINST.P.PROLNK.

14.2.2.5 The Pro*C SQLCPR.H Header File
If you are making calls to Pro*C functions, such as sq2cls() or sq2glm(), then you
can include the SQLCPR.H file into the C programs to verify that the functions calls are
correct.

In the Pro*C programs, add the following line:

EXEC SQL INCLUDE SQLCPR

as you would for SQLCA or SQLDA.

14.2.2.6 UTM Applications
You can use Pro*C to write UTM program units.

See Also:

openUTM Database Applications

14.2.3 Precompiler Pro*COBOL
This section describes the procedure for using Pro*COBOL. It includes the following
topics:

• Starting Pro*COBOL

• Pro*COBOL Include, System Configuration, and Demo Files

• SQLLIB Calls

• Linking Pro*COBOL Programs

• openUTM Applications

• Additional Information About Pro*COBOL Constructs

Chapter 14
Precompiler Applications

14-7

14.2.3.1 Starting Pro*COBOL
To start the Pro*COBOL precompiler, enter the following commands:

/START-EXECUTABLE (*LINK(ORALOAD),PROCOB)
* INAME=myprog.PCO ONAME=myprog.COB [options]

where:

myprog specifies the COBOL program.

options specifies the Pro*COBOL options.

Note:

The Pro*COBOL option MAXLITERAL defaults to 180, and not 256, as shown
in the Pro*COBOL Programmer's Guide. The option FORMAT=TERMINAL is not
supported.

See Also:

Pro*COBOL Programmer's Guide for PRO*COBOL options

14.2.3.2 Pro*COBOL Include, System Configuration, and Demo Files
The Pro*COBOL include files, demo files, and system configuration files are shipped
under:

$ORACINST.PRO.INCLUDE.LIB
$ORACINST.COBOL.DEMO.*.PCO
$ORACINST.UTM.DEMO.*.PCO
$ORACINST.CONFIG.PCBCFG.CFG

An example of a BS2000 procedure for precompilation and compilation is included in
your Oracle Database software under the name $ORACINST.P.PROCOB2000.

14.2.3.3 SQLLIB Calls
If you want to program explicit COBOL calls to SQLLIB functions, then call SQ0XXX
instead of SQLXXX. For example, call SQ0ADR instead of SQLADR.

14.2.3.4 Linking Pro*COBOL Programs
To link a Pro*COBOL program, you need:

• The common runtime environment, CRTE.

• The Pro* Library $ORACINST.PRO.LIB, which contains the stub module, PROSTUB.

• Unicode, which is only supported with COBOL2000. This might generate calls to
the BS2000-Macro NLSCNV. To resolve the GNLCNV entry, use the BS2000 XHCS
library.

Chapter 14
Precompiler Applications

14-8

See Also:

Fujitsu BS2000 manual XHCS for more information about the GNLCNV entry

To link your program, you must create your own user-specific link procedure. An
example of such a link procedure is included in your Oracle Database software with
the name, $ORACINST.P.PROLNK.

14.2.3.5 openUTM Applications
You can use Pro*COBOL to write openUTM (Universal Transaction Monitor) program
units. Pro*C and Pro*COBOL program units can be combined in an openUTM
application.

See Also:

openUTM Database Applications for more information

14.2.3.6 Additional Information About Pro*COBOL Constructs

When using Pro*COBOL, be careful about the following constructs with paragraphs
and EXEC statements, because the precompiler generates a paragraph heading for the
code generated from these EXEC statements:

Before precompiling After precompiling

COB-LABEL1. COB-LABEL1.

. .

. .

EXEC SQL.... SQL-LABEL1.

. .

. .

COB-LABEL2. COB-LABEL2.

Before precompiling, the statement PERFORM COB-LABEL1 runs the code in paragraph
COB-LABEL1 until the COB-LABEL2 heading is reached. However, the precompiler
generates a paragraph heading, SQL-LABEL1, for the code generated from the EXEC
SQL statement.

As a result, after precompiling, PERFORM COB-LABEL1 runs the code in the paragraph
COB-LABEL1 until the SQL-LABEL1 heading is reached. The workaround for this problem
is to use SECTIONS or to run PERFORM COB-LABEL1 THRU COB-LABEL2.

A COPY statement as the first statement in WORKING-STORAGE SECTION may result in a
wrong code generation if copied structures must be continued by non-copied code.
This is because the precompiler generates its data definitions before the first data
definition of the source program. To avoid this, insert a FILLER definition as the first line
in WORKING-STORAGE SECTION, as follows:

Chapter 14
Precompiler Applications

14-9

01 FILLER PIC X

14.3 Oracle Call Interface Applications
On Fujitsu BS2000, the Oracle Call Interface (OCI) supports the programming
languages, C and COBOL.

When you use the set of host language calls that comprise the Oracle Call Interface,
you can access the data in an Oracle database by programs written in the C and
COBOL programming languages.

Note:

The precompiler products from Oracle offer a higher level interface to the
Oracle Database. A single precompiler call is translated to several OCI calls.
As the precompilers are easy to use, and in a few cases offer more or
different functionality than OCI, you may prefer to use the precompilers for
some applications.

See Also:

Oracle Call Interface Programmer's Guide for more information about OCI
calls

14.3.1 Linking OCI Applications
To link OCI programs, you need:

• The common runtime environment, CRTE.

• The Pro* Library $ORACINST.PRO.LIB, which contains the stub modules OCI$COB
and PROSTUB.

When linking OCI COBOL programs, OCI$COB must always be included before
PROSTUB.

To link your program, you must create your own user-specific link procedure. An
example of such a link procedure is included in your Oracle Database software with
the name $ORACINST.P.PROLNK.

For example, to link your program, call the BS2000 procedure as follows:

/CALL-PROCEDURE $ORACINST.P.PROLNK,dir,module,TYPE=OCIC

or:

/CALL-PROCEDURE $ORACINST.P.PROLNK,dir,module,TYPE=OCICOB

where, the module to be linked is stored in dir.LIB.

The OCI include files and demo files are shipped under:

Chapter 14
Oracle Call Interface Applications

14-10

$ORACINST.RDBMS.DEMO.OCI.LIB
$ORACINST.RDBMS.DEMO.*.C
$ORACINST.RDBMS.DEMO.*.COB

14.4 The Object Type Translator
This section describes how to use the Object Type Translator (OTT) on BS2000. It
includes the following topics:

• Starting Object Type Translator

• OTT System Configuration File

14.4.1 Starting Object Type Translator
The Object Type Translator (OTT) is based on Java and can only be started in the
POSIX environment. You must use the JDBC thin driver to connect to the database.
The connect string is specified in the url option, as follows:

url=jdbc:oracle:thin:@hostname:port:sid

In the following example, OTT will connect to the database with the service identifier
orcl, on the host myhost, that has a TCP/IP listener on port 1521.

For example:

ott userid=username-for-scott/password-for-scott
url=jdbc:oracle:thin:@myhost:1521:orcl intype=demoin.typ
outtype=demoout.typ code=c hfile=demo.h

See Also:

Pro*C/C++ Programmer's Guide for more information about Object Type
Translator

14.4.2 OTT System Configuration File
The OTT system configuration file is installed with the Oracle Database software, with
the following name:

$ORACLE_HOME/precomp/admin/ottcfg.cfg

14.5 Oracle Database Applications in POSIX Program
Environment

You can run application programs either in the BS2000 program environment or in
the POSIX program environment. This section describes how you can build Oracle
database applications that can run in the POSIX program environment.

You must precompile and compile the Pro* application or OCI application as described
in the previous chapters.

Chapter 14
The Object Type Translator

14-11

When linking the application, you must include the stub module PROSTUBX from
the $ORACINST.PROX.LIB library instead of PROSTUB and you must add the following
lines in the BS2000 procedure for linking:

/SET-FILE-LINK BLSLIB01,$.SYSLNK.CRTE.POSIX
/SET-FILE-LINK BLSLIB02,$.SYSLIB.POSIX-SOCKETS.version_number
/SET-FILE-LINK BLSLIB03,$.SINLIB.POSIX-BC.version_number

Note:

The $.SYSLNK.CRTE.POSIX library must be the first library in the search order
for the resolution of external references. Oracle recommends a search order
as mentioned above.

To start an Oracle Database application in the POSIX environment by using BS2000
SDF commands, set the BS2000 SDF-P variable SYSPOSIX.PROGRAM-ENVIRONMENT to
SHELL.

You can set additional POSIX environment variables by using the BS2000 SDF-P
variable SYSPOSIX.

The following example shows how to set the SDF-P variable SYSPOSIX to run an
application in the POSIX environment:

/DECL-VAR SYSPOSIX,TYPE=*STRUCT(DEF=*DYN),SCOPE=*TASK(STATE=*ANY)
/SET-VAR SYSPOSIX.PROGRAM-ENVIRONMENT='SHELL'
/SET-VAR SYSPOSIX.ORACLE-HOME='oracle_home_path'
/SET-VAR SYSPOSIX.ORACLE-SID='oracle_sid'

14.6 openUTM Database Applications
This section describes how to use the BS2000 transaction monitor openUTM for
coordinated interoperation with Oracle Database 19c. The following topics are
covered:

• Operation of Oracle Database Using openUTM Programs

• Distributed openUTM Files

• DBA Responsibilities

• Developing an Oracle Database/openUTM Application

• Troubleshooting

14.6.1 Operation of Oracle Database Using openUTM Programs
Universal Transaction Monitor (openUTM) controls the execution of user programs that
can be used from a large number of terminals at the same time.

An openUTM application consists of a structured sequence of processing stages that
are supplied with access rights for the specific user. These stages, in turn, consist of
openUTM transactions that are carried out either in their entirety, or not at all.

Chapter 14
openUTM Database Applications

14-12

If several users use openUTM at the same time, then simultaneous access to the
shared database is also usually required. The database/data communications system
(DB/DC system), Oracle Database/openUTM, synchronizes access by openUTM
applications to Oracle Database, and ensures that the database and the transaction
monitor are always in a shared consistent state. In the event of a system failure,
the DB/DC system performs an automatic recovery, which ensures that the database
remains in a consistent state that is synchronized with openUTM.

Synchronization of Oracle Database and openUTM is done through the XA interface.
The XA interface is an X/Open interface for the coordination between database
systems and transaction monitors.

See Also:

Oracle Database Development Guide for a description of the concepts of the
XA interface

14.6.2 Distributed openUTM Files
When you install Oracle Database, as described in Oracle Database Installation and
Deinstallation , openUTM related software and files are installed in the installation user
ID. The distributed openUTM files include:

• XAO.LIB

This file contains the connection module for the XA interface.

• The following files provide examples of procedures and programs:

UTM.DEMO.P.COMPILE.C
UTM.DEMO.P.COMPILE.COBOL
UTM.DEMO.P.KDCDEF
UTM.DEMO.P.KDCROOT
UTM.DEMO.P.PROBIND
UTM.DEMO.P.PROSTRT
UTM.DEMO.CSELEMP.PC
UTM.DEMO.SELDEP.PCO
UTM.DEMO.SELEMP.PCO
UTM.DEMO.UPDEMP.PCO
UTM.DEMO.ERRSQL.C
UTM.DEMO.ERRTXT.C

14.6.3 DBA Responsibilities
This section describes the responsibilities of the DBA or the administrator of the
openUTM application.

The administrator of the openUTM application must define the open string for the XA
interface with help from the application developer. This open string must be included in
the openUTM start parameters.

The DBA must ensure that the data dictionary view DBA_PENDING_TRANSACTIONS
exists. The DBA must also grant the SELECT privilege to the data dictionary view
DBA_PENDING_TRANSACTIONS for all Oracle users specified in the XA open string. Use
the following example to grant the SELECT privilege to user scott:

Chapter 14
openUTM Database Applications

14-13

grant select on DBA_PENDING_TRANSACTIONS to scott;

The Oracle users are identified in the open string with the item Acc.

See Also:

"Defining an Open String" for more information

14.6.4 Developing an Oracle Database/openUTM Application
Oracle Database 19c on BS2000 supports openUTM V6.5 or higher. openUTM
supports the XA interface. Oracle Database 19c on BS2000 coordinates with
openUTM through this XA interface.

This section includes the following topics:

• How to Build an Oracle Database Application with openUTM

• Defining an Open String

• Using Precompilers with openUTM

• SQL Operations

• openUTM Operations

14.6.4.1 How to Build an Oracle Database Application with openUTM

The main steps involved in developing an Oracle Database application for coordinated
inter-operation with openUTM are as follows:

• Building the openUTM program units

• Defining the configuration

• Translating the KDCROOT table module and openUTM program units

• Linking the openUTM application program

• Starting the openUTM application

Building the openUTM program units

Refer to the openUTM manual Programming Applications with KDCS for COBOL, C,
and C++.

Defining the configuration

Refer to the following openUTM manuals:

• Generating Applications

• Administering Applications

An Oracle Database/openUTM application requires the following information for
execution:

• Information about the application

• Username/password with access protection

Chapter 14
openUTM Database Applications

14-14

• Information about the terminal and communication partners

• Information about the transaction codes (TAC’s)

These properties collectively form the configuration, which is stored in the KDCFILE file.
The configuration definition is carried out by the KDCDEF utility.

This section gives the descriptions for openUTM KDCDEF control statements that are
important for connecting to the Oracle database. They are:

• DATABASE

When the Oracle Database/openUTM application is generated, you must specify
that openUTM communicates with the Oracle Database. Enter the following
command to specify openUTM communication with the database:

DATABASE TYPE=XA,ENTRY=XAOSWD

where TYPE=XA specifies the use of the XA interface and ENTRY=XAOSWD specifies
the name of the XA switch for the Oracle database (for dynamic registration).

• OPTION

If you specify the corresponding GEN operand in the OPTION command, then the
KDCDEF utility also produces the source-code for the KDCROOT table module.

• MAX

Another important operand is APPLIMODE, which is specified in the MAX command.
This determines the restart behavior after a system failure. The syntax of MAX is as
follows:

MAX APPLINAME=name[,APPLIMODE={S[ECURE]|F[AST]}]
[,ASYNTASKS=number][...]

APPLIMODE=SECURE means that openUTM continues after an application
malfunction with a coordinated warm-start of the openUTM application and the
Oracle database.

If you specify APPLIMODE=FAST, then openUTM application restart is not executed,
as openUTM does not store the restart information. In the event of an error, the
application starts from scratch. Transactions that are still open after an openUTM-
application malfunction are rolled back automatically.

See the UTM.DEMO.P.KDCDEF file for an example procedure for building the KDCFILE and
the KDCROOT table module.

Translating the KDCROOT table module and openUTM program units

The source of the KDCROOT table module must be compiled with the BS2000
Assembler and the openUTM program units must be compiled with the corresponding
programming language compilers. See the example procedure UTM.DEMO.P.KDCROOT
for the compilation of the KDCROOT table module.

Linking the openUTM application program

The openUTM application program is produced by linking the KDCROOT table module
with the openUTM program units.

You must include the stub module XAOSTUB:

INC-MOD LIB=$ORACINST.XAO.LIB,ELEM=XAOSTUB

Chapter 14
openUTM Database Applications

14-15

Note:

Instead of writing the linking procedure, you should use the example
procedure UTM.DEMO.P.PROBIND and apply modifications as needed.

To write your own linking procedure, study the example carefully before
writing.

Starting the openUTM application

An example procedure for starting the openUTM application is in the
UTM.DEMO.P.PROSTRT file.

When starting the openUTM application, you must specify the start parameters for
both openUTM and Oracle Database.

The openUTM start parameters are described in the openUTM manual Using
openUTM Applications on BS2000 Systems.

The start parameter for using the XA interface for coordinated inter-operation with
Oracle Database is:

.RMXA RM="Oracle_XA",OS="<ORACLE open string>"

14.6.4.2 Defining an Open String
This section describes how to construct an open string and includes the following
topics:

• Required Fields

• Optional Fields

• Examples

The transaction monitor uses this string to connect to the database. The maximum
number of characters in an open string is 256. Construct the string as follows:

Oracle_XA{+required_fields...}[+optional_fields...]

where the required_fields are:

• Acc=P/user/access_info

• SesTm=session_time_limit

and the optional_fields are:

• DB=db_name

• MaxCur=maximum_no_of_open_cursors

• SqlNet=connect_string

• DbgFl=value_from_1_to_15

Chapter 14
openUTM Database Applications

14-16

Note:

• You can enter the required fields and optional fields in any order when
constructing the open string.

• All field names are case-insensitive, although their values may or may
not be case-sensitive depending on the system.

• You cannot use the "+" character as part of the actual information string.

14.6.4.2.1 Required Fields
The required fields for the open string are:

Item Meaning

Acc Specifies user access information.

P Indicates that explicit user and password information is provided.

user Specifies the Oracle Database user name.

access_info Specifies the Oracle Database password.

For example, Acc=P/username-for-scott/password-for-scott indicates that the
user and password information is provided.

Ensure that the user has the SELECT privilege on the DBA_PENDING_TRANSACTIONS table
in the previous example.

Note:

For security reasons, openUTM supports the placeholders *UTMUSER and
*UTMPASS for user and access_info. The values for these openUTM
placeholders are specified through the openUTM KDCDEF generation. When
the xa_open call is executed, openUTM replaces these placeholders with the
generated values. Using these placeholders is mandatory in openUTM V6.4,
but it is optional in openUTM V6.5.

Item Meaning

SesTm Specifies the maximum amount of time a transaction can be inactive
before it is automatically deleted by the system.

session_time_limit Specifies the maximum time limit in seconds between the start of a
global transaction and the commit or roll back of this transaction.

14.6.4.2.2 Optional Fields
Optional fields for the open string are described in the following table:

Item Meaning

DB Specifies the database name.

Chapter 14
openUTM Database Applications

14-17

Item Meaning

db_name Indicates the name used in Oracle Database precompilers to identify
the database.

Application programs that use only the default database for the Oracle
Database precompiler, that is, application programs that do not use the
AT clause in their SQL statements, must omit the DB=db_name clause
in the open string.

Note: This default database is specified in the ORAENV file by the
environment variable ORASID.

Applications that use explicitly–named databases should indicate that
database name in their DB=db_name field.

For example, DB=payroll indicates that the database name is payroll
and that the application program uses that name in AT clauses.

For more information about precompilers, refer to the section "Using Precompilers with
openUTM" later in this chapter.

Item Meaning

MaxCur Specifies the number of cursors to be allocated when the
database is opened. It serves the same purpose as the
precompiler option maxopencursors.

maximum_no_of_open_cursors Specifies the number of open cursors.

For example, MaxCur=5 indicates that the process should try to keep five open cursors
cached.

See Also:

Oracle Database Programmer's Guide to the Oracle Precompilers for more
information about maxopencursors

Item Meaning

SqlNet Specifies the SQL*Net connect string.

connect_string Specifies the string that is used to open a connection to the database.
This can be any supported Oracle Net Services connect string.

For example:

SqlNet=MADRID_FINANCE indicates an entry in TNSNAMES.ORA. For more information,
refer to Oracle Net Services in this guide.

Item Meaning

DbgFl Specifies if debugging should be enabled (debug flag). For more
information refer to “About Debugging” section in this chapter.

14.6.4.2.3 Examples
This section contains examples of open strings for the XA interface.

Chapter 14
openUTM Database Applications

14-18

Note:

If the string is longer than one line, then refer to the openUTM documentation
for information about how to split the string.

For the bequeath protocol of Oracle Net Services:

Oracle_XA+Acc=P/username-for-scott/password-for-scott+SesTm=0+DbgFl=15

For other protocols of Oracle Net Services:

Oracle_XA+SqlNet=MADRID_FINANCE+Acc=P/username-for-scott/password-for-
scott+SesTm=0
Oracle_XA+DB=finance+SqlNet=MADRID_FINANCE+Acc=P/username-for-scott/password-for-
scott
+SesTM=0

The optional fields LogDir, Loose_Coupling, SesWT, and Threads are not supported.

See Also:

Oracle Database Development Guide for more information about the fields in
the open string

14.6.4.3 Using Precompilers with openUTM
You can choose from the following options when interfacing with precompilers:

• Using Pro*C with the Default Database

• Using Pro*C with a Named Database

Run all the precompiler programs with the option release_cursor set to no.
Precompiler programs may be written in C or COBOL. The precompiler Pro*C is used
in the examples.

14.6.4.3.1 Using Pro*C with the Default Database
If Pro*C applications access the default database, then ensure that the DB=db_name
field used in the open string is not present. The absence of this field indicates the
default connection as defined in the ORAENV file, and only one default connection is
allowed for each process.

The following is an example of an open string identifying a default Pro*C connection:

Oracle_XA+SqlNet=MADRID_FINANCE+Acc=P/username-for-scott/password-for-
scott+SesTm=0

Here, DB=db_name is absent, indicating an empty database identifier string.

The following is the syntax of a select statement:

EXEC SQL SELECT ENAME FROM EMP;

Chapter 14
openUTM Database Applications

14-19

14.6.4.3.2 Using Pro*C with a Named Database
If Pro*C applications access a named database, then include the DB=db_name field in
the open string. Any database you refer to must reference the same db_name specified
in the corresponding open string.

An application may access the default database, as well as one or more named
databases, as shown in the following examples.

For example, if you want to update an employee's salary in one database, the
department number deptno in another, and the manager information in a third
database, then you must configure the following open strings in the transaction
manager:

Oracle_XA+SqlNet=MADRID_FINANCE1+Acc=P/username-for-scott/password-for-
scott+SesTm=0

Oracle_XA+DB=MANAGERS+SqlNet=MADRID_FINANCE2+Acc=P/username-for-scott/
password-for-scott+SesTm=0

Oracle_XA+DB=PAYROLL+SqlNet=MADRID_FINANCE3+Acc=P/username-for-scott/
password-for-scott+SesTm=0

There is no DB=db_name field in the first open string.

In the application program, enter declarations such as:

EXEC SQL DECLARE PAYROLL DATABASE;
EXEC SQL DECLARE MANAGERS DATABASE;

Again, the default connection corresponding to the first open string that does not
contain the db_name field, does not require a declaration.

When performing the update, enter statements similar to the following:

EXEC SQL AT PAYROLL update emp set sal=4500 where empno=7788;
EXEC SQL AT MANAGERS update emp set mgr=7566 where empno=7788;
EXEC SQL update emp set deptno=30 where empno=7788;

There is no AT clause in the last statement because it refers to the default database.

You can use a character host variable in the AT clause, as shown in the following
example:

EXEC SQL BEGIN DECLARE SECTION;
db_name1 CHARACTER(10);
db_name2 CHARACTER(10)
EXEC SQL END DECLARE SECTION;
.
.
set db_name1 = 'PAYROLL'
set db_name2 = 'MANAGERS'
.
.
EXEC SQL AT :db_name1 UPDATE...
EXEC SQL AT :db_name2 UPDATE...

Chapter 14
openUTM Database Applications

14-20

See Also:

Pro*COBOL Programmer's Guide and Pro*C/C++ Programmer's Guide that
discusses concurrent logons

Note:

• openUTM applications must not create Oracle database connections of
their own. Therefore, an openUTM user is not allowed to issue CONNECT
statements within an openUTM program. Any work performed by them
would be outside the global transaction, and may confuse the connection
information given by openUTM.

• SQL calls must not occur in the openUTM start exit routine, however
may occur in the conversation exit routine “Vorgangs-Exit”.

14.6.4.4 SQL Operations
UTM application program units must use embedded SQL. Calls to the Oracle Call
Interface (OCI) are not allowed.

The following SQL operations are discussed:

• CONNECT

• COMMIT

• ROLLBACK

• SAVEPOINT

• Cursor Operations

• Dynamic SQL

• PL/SQL

• Autocommit

14.6.4.4.1 CONNECT
A connection is implicitly established when the UTM task is started. This connection
uses the data specified in the open string. Additional explicit CONNECT operations
issued by the program units are not allowed.

14.6.4.4.2 COMMIT
An explicit COMMIT statement is not allowed in UTM program units. The openUTM
automatically issues a COMMIT statement at PEND RE, PEND FI, PEND SP, or PEND FC
operation.

Chapter 14
openUTM Database Applications

14-21

14.6.4.4.3 ROLLBACK
An explicit ROLLBACK statement is not allowed in UTM program units. The openUTM
automatically issues a ROLLBACK statement on encountering a PEND ER, PEND RS, PEND
FR, or RSET operation.

14.6.4.4.4 SAVEPOINT
The SAVEPOINT statement is not allowed in UTM program units.

14.6.4.4.5 Cursor Operations
A cursor is valid only until a PEND is executed. Because of a possible task change
during a PEND KP, PEND PA, or PEND PR, you cannot perform operations on a previously
filled cursor such as OPEN or FETCH after a PEND KP, PEND PA, or PEND PR.

However, you can open and fetch a new cursor after PEND KP. The alternative to
using PEND KP is to use the PGWT-call, which waits until it receives an input from the
terminal, or to assign the same TACCLASS to subsequent programs after a PEND PA or
PR operation.

See Also:

The openUTM manual, Programming Applications with KDCS for COBOL, C
and C++

14.6.4.4.6 Dynamic SQL
You may use dynamic SQL as described in Oracle Database Programmer's Guide to
the Oracle Precompilers.

14.6.4.4.7 PL/SQL
COMMIT, ROLLBACK, CONNECT, and SAVEPOINT statements are not allowed in PL/SQL
programs running under UTM.

14.6.4.4.8 Autocommit
Avoid autocommit operations as they violate the synchronization between Oracle
Database and UTM transactions. Take precautions when using the DDL operations,
as these often contain implicit autocommits.

For example, DDL statements such as, CREATE TABLE, DROP TABLE, and CREATE INDEX
are not allowed in a global transaction because they force the pending work to be
committed.

14.6.4.5 openUTM Operations
This section describes the Oracle Database-specific points that you must consider
when using UTM operations. It describes the effect of the PEND (Program Unit End),
and RSET (Reset) operations of openUTM. These operations represent the common
synchronization points between openUTM and the Oracle Database.

Chapter 14
openUTM Database Applications

14-22

The following openUTM operations are discussed:

• RSET and PEND RS

• PEND ER and PEND FR

• PEND KP, PEND PR, and PEND PA

• PEND RE, PEND FI, PEND SP, and PEND FC

When you issue a PEND call, UTM calls the Oracle Database internally through the XA
interface for synchronization. When the PEND takes place:

• The user dialog/transaction is detached from the executing task.

• Any resource that is still attached to the user is released.

14.6.4.5.1 RSET and PEND RS
Resetting a UTM transaction implies rolling back the Oracle Database transaction.

14.6.4.5.2 PEND ER and PEND FR
When using these calls to terminate a UTM transaction, the Oracle Database
transaction is also rolled back.

14.6.4.5.3 PEND KP, PEND PR, and PEND PA
These operations only end a UTM dialog step without affecting the corresponding
Oracle Database transaction.

14.6.4.5.4 PEND RE, PEND FI, PEND SP, and PEND FC
These PEND calls cause an implicit COMMIT to be executed. All cursors that are not
explicitly closed, are closed.

14.6.5 Troubleshooting
This section discusses how to recover data if there are problems or a system failure.
Both trace files and recovering pending transactions are discussed in the following
sections:

• Trace Files

• About Debugging

• In-Doubt or Pending Transactions

• Oracle Database Tables of the SYS User

14.6.5.1 Trace Files
The Oracle XA library logs any error and tracing information to its trace file. This
information is useful in supplementing the XA error codes. For example, it can indicate
whether an open failure is caused by an incorrect open string, failure to find the Oracle
Database instance, or a login authorization failure. The trace file is created in the
BS2000 user ID, where the openUTM application runs. The name of the trace file is:

ORAXALOG.pid-db_name-date.TRC

Chapter 14
openUTM Database Applications

14-23

where

pid is the process identifier (TSN).

db_name is the database name you specified in the open string field DB=db_name.

date is the date when the trace file is created.

14.6.5.1.1 Trace File Examples
Examples of trace files are discussed in this section.

The following example shows a trace file for an application's task with the TSN 1234
that was opened on April 2nd 1999. The DB field for this application was not specified
in the open string when the resource manager was opened

ORAXALOG.1234-NULL-990402.TRC

The following example shows a trace file that was created on December 15th 1998 by
the BS2000 task with the TSN 5678. The DB field was specified as FINANCE in the open
string when the resource manager was opened.

ORAXALOG.5678-FINANCE-981215.TRC

Each entry in the trace file contains information that looks similar to:

1032.2: xa_switch rtn ORA-22

where 1032 is the time when the information is logged, 2 is the resource manager
identifier, xa_switch is an internal identifier of the Oracle XA library, and ORA-22 is the
returned Oracle database information.

14.6.5.2 About Debugging
You can specify the DbgFl (debug flag) in the open string.

Depending on the debugging level (low:DbgFl=1, high:DbgFl=15), you can get more or
less debug entries in the trace file ORAXALOG.pid-db_name-date.TRC.

See Also:

Oracle Database Development Guide for more information

14.6.5.3 In-Doubt or Pending Transactions
In-doubt or pending transactions are transactions that have been prepared but not
yet committed in the database. Generally, openUTM resolves any in-doubt or pending
transaction. However, the Database Administrator may have to override an in-doubt
transaction when working with UTM-F, that is, APPLIMODE=FAST. For example, when
the in-doubt transaction is:

• Locking data that is required by other transactions.

• Not resolved in a reasonable amount of time.

Chapter 14
openUTM Database Applications

14-24

Note:

Overriding in-doubt transactions can cause inconsistency between openUTM
and the database. For example, if the DB transaction is committed by
the Database Administrator and the openUTM application rolls back the
transaction in the warm-start phase, then the Oracle Database cannot roll
this committed transaction back, therefore, causing an inconsistency.

14.6.5.4 Oracle Database Tables of the SYS User
The following tables of the SYS user contain transactions generated by regular Oracle
Database applications and Oracle Database/openUTM applications:

• DBA_2PC_PENDING

• DBA_2PC_NEIGHBORS

• DBA_PENDING_TRANSACTIONS

• V$GLOBAL_TRANSACTION

See Also:

For detailed information about how to use these tables, refer to the sections
in the Oracle Database Administrator’s Guide that discuss failures during
two-phase commit and manually overriding in-doubt transactions

For transactions generated by Oracle Database/openUTM applications, the following
column information applies specifically to the DBA_2PC_NEIGHBORS table:

• The DBID column is always xa_orcl.

• The DBUSER_OWNER column is always db_namexa.oracle.com.

Remember that the db_name is always specified as DB=db_name in the open string.
If you do not specify this field in the open string, then the value of this column is
NULLxa.oracle.com for transactions that are generated by Oracle Database/openUTM
applications.

For example, use the following sample SQL statement to find out more information
about in-doubt transactions that are generated by Oracle Database/openUTM
applications.

SELECT * FROM DBA_2PC_PENDING p, DBA_2PC_NEIGHBORS n
WHERE p.LOCAL_TRAN_ID = n.LOCAL_TRAN_ID AND n.DBID = 'xa_orcl';

Chapter 14
openUTM Database Applications

14-25

15
External Procedures

This chapter describes how to create an environment on BS2000, where external C
procedure calls can operate. External JAVA methods are not supported on BS2000.

This chapter complements the chapter about External Procedures in the Oracle
Database Development Guide.

Note:

The default configuration for external procedures does not require a network
listener to work with Oracle Database and the extproc agent. The extproc
agent is spawned directly by Oracle Database and eliminates the risks that
the extproc agent might be spawned by Oracle Listener unexpectedly. This
default configuration is recommended for maximum security.

You can change the default configuration for external procedures and have
the extproc agent spawned by Oracle Listener. To do this, you must perform
additional network configuration steps.

Having the extproc agent spawned by Oracle Listener is necessary if you
use:

The AGENT clause of the LIBRARY specification or the AGENT IN clause of the
PROCEDURE specification such that you can redirect external procedures to
a different extproc agent.

15.1 Loading External Procedures
This section complements the corresponding part in Oracle Database Development
Guide. It shows how to use an external C procedure stored in a dynamic load library
(DLL) with Oracle on BS2000. In this context a DLL is specified as a LMS library in the
BS2000 environment or a shared object in the POSIX environment.

Perform the following steps to load external procedures:

• Define C Procedures

• Set Up the Environment

• Identify the DLL

• Publish External Procedures

• Run External Procedures

15-1

15.1.1 Define C Procedures
Define the C procedures using one of the prototypes.

Refer to Oracle Database Development Guide for the prototypes. Compile the C
procedures either in the BS2000 environment or in the POSIX program environment.

BS2000 Program Environment

Compile the program using the BS2000 C/C++ compiler. The created LLM object
must be stored in a LMS library. You must consider the default settings LOWER-CASE-
NAMES=*NO and SPECIAL-CHARACTERS=*CONVERT-TO-DOLLAR of the C/C++ compiler
option MODULE-PROPERTIES. These default settings cause the conversion of all
lowercase letters in the entry names to uppercase and of all underscores (_) in the
entry names to dollar signs ($).

POSIX Program Environment

Use the POSIX installation of the BS2000 C/C++ compiler to compile the program
in the POSIX shell. You must consider that on default lower case letters in entry
names will be translated to upper case letters and underscores in entry names will be
translated to dollar signs. Use the option –K llm_case_lower,llm_keep to retain lower
case letters and underscore characters when entry names are generated.

The example shows how to compile the source C_concat.c:

$ /usr/bin/cc -c -K llm_case_lower,llmcase_lower -B
extended_external_names -D_OSD_POSIX –I
/u01/app/oracle/product/19.3.0/dbhome_1/rdbms/public C_concat.c

Use the tool genso to generate a shared object. The following example illustrates how
to create the shared object C_utils.so for the C procedure,

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)

in the source file C_concat.c :

$ /usr/bin/genso -o lib/C_utils.so C_concat.o

Refer to Oracle Database Development Guide for the C code example.

15.1.2 Set Up the Environment

When you use the default configuration for external procedures, Oracle Database
spawns extproc directly. You need not make configuration changes for listener.ora
and tnsnames.ora. Define the environment variables to be used by external
procedures in the file extproc.ora located at $ORACLE_HOME/hs/admin using this
syntax:

SET name=value (environment_variable_name=value)

Chapter 15
Loading External Procedures

15-2

If the load library is a BS2000 LMS library you must set the variable EXTPROC_DLLS to
ANY, For example:

SET EXTPROC_DLLS=ANY

If the load library is a POSIX shared object you can set the variable EXTPROC_DLLS
as described in Oracle Database Development Guide. If you have not specified
the full qualified file path for the shared object then you must set the variable
LD_LIBRARY_PATH. Following is an example of an extproc.ora file for the shared object
file C_utils.so, which resides in the /home/oracle/lib directory:

SET EXTPROC_DLLS=ONLY:C_utils.so
SET LD_LIBRARY_PATH=/home/oracle/lib

To change the default configuration for external procedures and have your extproc
agent spawned by Oracle Listener, configure your listener.ora and tnsnames.ora as
follows. The listener.ora file must have the following entries:

EXTPLSNR=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=ipc)(KEY=extp))))

SID_LIST_EXTPLSNR=
 (SID_LIST=
 (SID_DESC=
 (SID_NAME=ep_agt1)
 (ORACLE_HOME=/u01/app/oracbase/product/19.3.0/dbhome_1)
 (ENVS=”EXTPROC_DLLS=ANY LD_LIBRARY_PATH=/home/oracle/lib”)
 (ORACLE_SID=extp)
 (PROGRAM= extproc)))

Assign the environment variables to be used by external procedures to the parameter
ENVS. When extproc.ora is in use, it precedes the same environment variables of
ENVS in listener.ora file.

The tnsnames.ora file must have the following entry:

extproc_agent=
 (DESCRIPTION=
 (ADDRESS=PROTOCOL=ipc)(KEY=extp))
 (CONNECT_DATA=
 (PRESENTATION=RO)
 (SID=ep_agt1)))

Now, you can start the extproc listener.

Chapter 15
Loading External Procedures

15-3

See Also:

• Oracle Database Development Guide

• Oracle Database Data Cartridge Developer's Guide

• Oracle Database Net Services Administrator's Guide

15.1.3 Identify the DLL

The objects in the DLL contain the functions called as external procedures. When
extproc is loaded, these functions are dynamically linked to the program. Use the
CREATE LIBRARY statement to create a schema object called an alias library, which
represents the DLL. The name of the DLL must match the filename specified in the
value of the extproc.ora variable EXTPROC_DLLS.

CREATE LIBRARY [schema_name.]library_name
 {IS | AS} 'file_path'
 [AGENT 'agent_link'];

For the default configuration you must not specify the parameter AGENT. An example
for a BS2000 LMS library is as follows:

CREATE LIBRARY C_utils AS '[$extp_userid.]C.UTILS.MODLIB';

An example for a POSIX shared object is:

CREATE LIBRARY C_utils AS '[path/]C_utils.so';

If you want to change the default configuration for external procedures and have your
extproc spawned by an Oracle Listener, then you must define a database link which is
used with the AGENT parameter of the CREATE LIBRARY statement.

CREATE DATABASE LINK agent_link USING 'extproc_agent';
CREATE OR REPLACE LIBRARY C_utils IS 'C.UTILS.MODLIB' agent
'agent_link';

See Also:

Oracle Database Development Guide

15.1.4 Publish External Procedures
Oracle Database can use only external procedures that are published through a
call specification, which maps names, parameter types, and return types for your C
external procedures to their SQL counterparts. It is written like any other PL/SQL

Chapter 15
Loading External Procedures

15-4

stored procedure except that, in its body, instead of declarations and a BEGIN END
block, you code the AS LANGUAGE clause.

The following example illustrates how you can publish an External Procedure as a
PL/SQL function:

CREATE OR REPLACE FUNCTION plsToC_concat_func (
 str1 IN VARCHAR2,
 str2 IN VARCHAR2)
RETURN VARCHAR2 AS LANGUAGE C
NAME "concat"
LIBRARY C_utils
WITH CONTEXT
PARAMETERS (
CONTEXT,
str1 STRING,
str1 INDICATOR short,
str2 STRING,
str2 INDICATOR short,
RETURN INDICATOR short,
RETURN LENGTH short,
RETURN STRING);

See Also:

Oracle Database Development Guide

15.1.5 Run External Procedures
Calling an external C procedure depends on the type of publishing the external
procedure as a PL/SQL procedure, package, or function.

An example of how to publish the external C procedure as a PL/SQL function is
described in the Oracle Database Development Guide.

You can also run this function within a select statement as follows:

select plsToC_concat_func('hello ', 'world') from DUAL;

If your external procedure writes messages to STDOUT, then you can find these
messages in the L.sid.EXTP.SYSOUT.tsn file. Set the environment variable BGJOUT
to KEEP to avoid the cleanup of the L.sid.EXTP.SYSOUT.tsn file.

Chapter 15
Loading External Procedures

15-5

16
Globalization Support

This chapter describes the globalization support available with Oracle Database 19c
for Fujitsu BS2000, with information about the following:

• Language, Territory, and Character Set

• Supported Language Conventions

• Supported Territories

• Supported Character Sets

• Location of Message Files

• Linguistic Definitions

Character set tables and country and regional information, such as, date format,
names of months, and so on, are dynamically loaded at run time. This reduces the
actual storage requirements and allows new languages to be added in the future
without the need to relink all applications.

The files containing character set information are created in the current BS2000 user
ID. The names of these files have the following format:

O193NLS.LXnnnnn.NLB

These files are for internal use only. You should not make changes to them. If you
need a character set, language, or a territory code that is not present, then contact
Oracle Support Services to check for any updates.

Note:

User-defined character sets as documented in Oracle Database
Globalization Support Guide are not supported in this release.

16.1 Language, Territory, and Character Set
To choose a language, a territory, and a character set that you want to work with,
you must perform separate procedures for Oracle Database and the supported Oracle
Database utilities. This section includes the following topics:

• Oracle Database

• Other Oracle Database Products

16.1.1 Oracle Database
For Oracle Database, the database administrator sets the NLS_LANGUAGE and
NLS_TERRITORY parameters in the initialization files.

16-1

See Also:

Oracle Database Globalization Support Guide for more information

16.1.2 Other Oracle Database Products
For the supported Oracle Database products, you can choose a language, a territory,
and a character set by setting the value of the NLS_LANG environment variable. Set this
environment variable in the ORAENV file or in the POSIX shell as follows:

NLS_LANG=language_territory.characterset

where:

language is any supported language.

territory is any supported territory.

characterset is the character set required by your terminal.

For example:

NLS_LANG=German_Germany.D8BS2000

16.2 Supported Language Conventions
Oracle Database 19c for Fujitsu BS2000 provides support for language conventions,
such as names of days and months, for the following languages:

• American English: american (default)

• Czech: czech

• Danish: danish

• Dutch: dutch

• Finnish: finnish

• French: french

• German: german

• Hungarian: hungarian

• Italian: italian

• Norwegian: norwegian

• Polish: polish

• Portuguese: portuguese

• Slovak: slovak

• Spanish: spanish

• Swedish: swedish

• Russian: russian

• Turkish: turkish

Chapter 16
Supported Language Conventions

16-2

16.3 Supported Territories
Oracle Database Globalization Support provides support for territory conventions,
such as start day of the week, for the following territories:

• America: america (default)

• Czech Republic: czech republic

• Denmark: denmark

• Finland: finland

• France: france

• Germany: germany

• Hungary: hungary

• Italy: italy

• The Netherlands: the netherlands

• Norway: norway

• Poland: poland

• Portugal: portugal

• Spain: spain

• Sweden: sweden

• CIS: CIS

• Slovakia: slovakia

• Turkey: turkey

• United Kingdom: united kingdom

16.4 Supported Character Sets
Oracle Database 19c supports the following character sets for servers and clients
under BS2000:

Name Description Usage

US8BS2000 Siemens 9750-62 EBCDIC 8-
bit

American

D8BS2000 Siemens 9750-62 EBCDIC 8-
bit

German

F8BS2000 Siemens 9750-62 EBCDIC 8-
bit

French

E8BS2000 Siemens 9750-62 EBCDIC 8-
bit

Spanish

DK8BS2000 Siemens 9750-62 EBCDIC 8-
bit

Danish

S8BS2000 Siemens 9750-62 EBCDIC 8-
bit

Swedish

Chapter 16
Supported Territories

16-3

Name Description Usage

WE8BS2000 Siemens EBCDIC.DF.04-1 8-
bit

West European (= ISO
8859/1)

CL8BS2000 Siemens EBCDIC.EHC.LC 8-
bit

Latin/Cyrillic-1 (= ISO 8859/5)

WE8BS2000L5 Siemens EBCDIC.DF.04-9 8-
bit

WE & Turkish (= ISO 8859/9)

EE8BS2000 Siemens EBCDIC.EHC.L2 8-
bit

East European (= ISO 8859/2)

CE8BS2000 Siemens EBCDIC.DF.04-2 8-
bit

Central European (= ISO
8859/2)

WE8BS2000E Siemens EBCDIC.DF.04-F 8-
bit

West European with Euro
symbol (= ISO 8859/15)

The character sets WE8BS2000, CL8BS2000, WE8BS2000L5, EE8BS2000,
CE8BS2000, and WE8BS2000E are the recommended database character sets. The
other character sets must only be used as the client character sets.

The character set WE8BS2000E must be used as a database character set to store
the euro symbol in the database or to use the euro symbol as the dual currency
symbol.

In addition to these supported character sets, if you are connecting to Oracle
Database installations with a non-BS2000 character set, then those servers can use
any of the character sets as listed in Oracle Database Globalization Support Guide.

Note:

A Unicode database character set is not supported on BS2000. To store
Unicode characters in the database, you must use Unicode datatypes NCHAR,
NVARCHAR2, and NCLOB. During database creation you can specify either
AL16UTF16 or UTF8 as the national character set for these data types.

See Also:

Oracle Database Globalization Support Guide for more information about
Unicode support

16.5 Location of Message Files
All message files are located in ORAMESG.LIB in the installation user ID.

16.6 Linguistic Definitions
All the linguistic definitions listed in Oracle Database Globalization Support Guide
except the Unicode Collation Algorithm (UCA) collations are available.

Chapter 16
Location of Message Files

16-4

Part V
Appendices

Appendices contain supplemental material for this document.

The following topics are discussed:

• Oracle Error Messages for BS2000

• Oracle Environment Variables

• Initialization Parameters and the Parameter File

• Troubleshooting

• File Types and Names Used by Oracle

A
Oracle Error Messages for BS2000

This appendix lists error messages, causes, and corrective actions that are specific
to operation of Oracle Database for Fujitsu BS2000. The messages shown in this
appendix may be accompanied by additional text when displayed on screen. This text
identifies the function that detected the problem, and can include internal status codes,
BS2000 SOSD error code, or both. These error codes can be helpful to the Oracle
Support Services Representative in determining the cause of a problem. The BS2000
SOSD error code indicates that the error originated in the operating system code. The
error code is displayed in hexadecimal, and is structured as follows:

BS2000 SOSD error 0x8xxxyyyy from mmmmmmmm : text

Where:

• xxx identifies the function reporting the error.

• yyyy details the error. It is either an internal code of the function, or a compacted
return code of a BS2000 system macro (see subsequent section).

• mmmmmmmm is the name of the function.

• text, if present, explains the error code. Often it says "RC FROM zzzzz MACRO".

A BS2000 system macro return code is condensed into the 2-byte value yyyy as
follows:

• For system macros that return a code bb0000aa, yyyy is bbaa

• For I/O calls, yyyy is the DMS error code

• In all other cases, yyyy contains the right halfword of the return code of the
BS2000 macro.

Sometimes, for example, in the early stages of initialization when the message
components are not yet available, the Oracle Database cannot issue a regular Oracle
message. If this occurs, then Oracle Database calls the ILCS task termination routine,
or it issues a TERM macro directly, giving the message number as the user termination
code. You can use this message number to find the explanation in this appendix.

ORA-05000: ORACLE termination routine called
Cause: The termination routine of the Oracle Database run-time system has been
called due to a fatal error.

Action: If you do not know why the Oracle Database program terminated, or how to
resolve this problem, then contact the Oracle Support Services Representative.

ORA-05001: Unsupported BS2000 Version
Cause: The active version of the BS2000 operating system is not supported by this
Oracle Database release.

Action: Upgrade to a more recent BS2000 version.

A-1

ORA-05002: Fatal error: called from non-ILCS program
Cause: In a precompiler or OCI application, the Oracle Database is called from a
program that does not run in an ILCS environment. The Oracle Database does not
support non-ILCS programs

Action: Ensure that the application program runs in an ILCS mode. Some
programming languages, for example, FOR1, PL/I, require specific options for ILCS.
Refer to the Fujitsu documentation for further information.

ORA-05003: Fatal error: ILCS PCD cannot be verified
Cause: In a precompiler or OCI application, Oracle Database is called with a save
area that is marked as an ILCS save area but does not point to a proper PCD (ILCS
global area). The problem is either that memory has been overwritten, or that Oracle
Database is called from a program that does not run in an ILCS environment. Oracle
Database does not support non-ILCS programs.

Action: Ensure that the application program runs in an ILCS mode. Some
programming languages, for example, FOR1, PL/I, require specific options for ILCS.
Refer to the Fujitsu documentation for further information.

ORA-05004: Fatal error: stack overflow, extension failed
Cause: A call to a function required an extension of the current call stack segment.
This extension failed and the corresponding ILCS routine returned the error.

Action: Ensure that the address space limit of the BS2000 user ID is sufficient and
that there is no temporary memory saturation. Then re-run the program. If you need
further help, then contact the Oracle Support Services Representative.

ORA-05005: Error: IT0INITS called in PROLOD
Cause: This is an internal error and should not occur.

Action: Contact the Oracle Support Services Representative.

ORA-05006: sltga already initialized
Cause: The initialization routine for the sltga is called more than once.

Action: Check if more than one stub modules (PROSTUB, XAOSTUB) are linked to the
application.

ORA-05007: failed to load OSNTAB
Cause: This message is usually preceded by a BS2000 BLS-nnnn message. The
most likely reason is that the ORALOAD library cannot be found.

Action: Contact the Database Administrator about the ORALOAD library. If you cannot
identify the cause of the problem, then contact the Oracle Support Services
Representative.

ORA-05008: failed to load requested network driver
Cause: This message is usually preceded by a BS2000 BLS-nnnn message. The most
likely reason is that the ORALOAD library cannot be found.

Action: Contact the Database Administrator about the ORALOAD library. If you cannot
identify the cause of the problem, then contact the Oracle Support Services
Representative.

A-2

ORA-05010: bad filename length
Cause: Buffer overflow while building/translating a file name. This could be caused by
specifying an excessively long file name in the ORAENV file.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05011: bad file size
Cause: This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05012: bad block size
Cause: This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05013: bad filename parse
Cause: A file name being analyzed is not well-formed for Oracle Database purposes.

Action: Correct the file name and re-run the program.

ORA-05014: sfcopy: non-matching block size
Cause: In a partial database file copy, source and target file have different block sizes.
This may indicate an internal error and should not normally occur.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05015: text file open failed
Cause: An Oracle Database text or command file cannot be opened. One of the
following could cause this error: the file name is wrong, the file has not been properly
initialized, or the file is not accessible.

Action: Correct the problem and restart the Oracle Database. If this occurs when
you issued the STARTUP command, then check the initialization file for the correct
specification of the database files.

ORA-05016: text file close failed
Cause: Attempt to close an Oracle Database file has failed. This is an internal error
and should not normally occur.

Action: Contact your Oracle Support Services Representative.

ORA-05017: file open failed
Cause: An Oracle Database database file cannot be opened. Either the file name is
wrong, the file has not been properly initialized, or the file is not accessible.

Action: Correct the problem and restart the Oracle Database. If this occurred when
you issued the STARTUP command, then check the initialization file for the correct
specification of the database files.

ORA-05018: file seek failed
Cause: This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

A-3

ORA-05019: file write failed
Cause: An I/O error occurred while writing to an Oracle Database file.

Action: If the error cannot be identified as one caused by a disk malfunction, then
either contact the System Administrator, or contact the Oracle Support Services
Representative.

ORA-05020: write block outside of file
Cause: An attempt was made to write a block of an Oracle Database file that does not
exist. For example, block number < 1 or > file size. This is an internal error and should
not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05021: file read failed
Cause: An I/O error occurred while reading an Oracle Database file.

Action: If the error cannot be identified as one caused by a disk malfunction, then
either contact the System Administrator, or contact the Oracle Support Services
Representative.

ORA-05022: read block outside of file
Cause: An attempt was made to read a block of an Oracle Database file that does not
exist. For example, block number < 1 or > file size. This is an internal error and should
not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05023: file close failed
Cause: The attempt to close an Oracle Database file failed. This is an internal error
and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05025: sfccf:file mismatch. Trying to reuse a file with different size
Cause: When trying to reuse a database file, the file size specified differs from the
actual size of the existing file.

Action: Specify the correct file size (remember to subtract one logical block for the
implicit header block), or leave the size unspecified, or use a different file name if you
want to create a larger or smaller database file.

ORA-05026: file does not exist
Cause: An attempt was made to access a database file, which no longer exists.

Action: Contact the Database Administrator who may know why this error has
occurred. If the Database Administrator cannot find the cause of the problem, then
contact the Oracle Support Services Representative.

ORA-05027: file does exist
Cause: When attempting to create a new file, this error occurs if the file is found and
is not empty.

Action: If the error occurred in a create database, then retry with the reuse option.
Otherwise use a different file name or check whether the file can be erased.

A-4

ORA-05028: file is not a dbfile
Cause: The database, or log, or control, file to be opened does not contain the proper
identification for such a file.

Action: Check for wrong file specification.

ORA-05029: illegal use-option
Cause: Internal error. Function sfccf was called with an illegal option.

Action: Contact the Oracle Support Services Representative.

ORA-05030: SID not defined
Cause: When the system id was required, typically, to substitute the "?" in names, for
example, in file names set by the initialization file, it was not yet defined. This could be
caused by a missing ORAENV file or a missing ORASID in that file.

Action: Ensure that the ORAENV file definition is correct and re-run the program.

ORA-05031: SID translation failure
Cause: The system id is syntactically incorrect.

Action: Ensure that the ORASID definition is correct and re-run the program.

ORA-05032: bad name parse
Cause: The translation of a file name, or other name containing variable parts, failed.
The error may be caused by a wrong specification in the ORAENV file.

Action: Ensure that the ORAENV variable assignments are correct. If you cannot
identify the cause of the problem, then contact the Oracle Support Services
Representative.

ORA-05033: bad environment values
Cause: One or more of the values specified in the ORAENV file are invalid.

Action: Ensure that you specified legal values in the ORAENV file, refer to the Oracle
Environment Variables in this guide for further information.

ORA-05034: bad seal
Cause: Internal error. An internal file control structure is found to be corrupt.

Action: Contact the Oracle Support Services Representative.

ORA-05035: host command not executed
Cause: A BS2000 command, argument of a HOST or #HOST command, is invalid or too
long.

Action: Enter a valid HOST command.

ORA-05036: bad user id (length)
Cause: Internal buffer overflow while building a file name from variable components.

Action: Ensure that the ORAUID value specified in the ORAENV file is correct. If you
cannot identify the cause of the problem, then contact the Oracle Support Services
Representative.

A-5

ORA-05037: /CANCEL command not executed
Cause: A background job could not be canceled. The background task may have
already been terminated.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05038: SID has illegal length
Cause: The system identifier specified in either the ORAENV file or as part of a connect
string exceeds 4 characters in length.

Action: Specify a correct value.

ORA-05039: Recursive entry to ssodrv
Cause: Oracle Database kernel has been reentered at the top. This should not
happen.

Action: Ensure that the user program does not incorrectly call Oracle Database
functions from within an interrupt handling routine (signal routine, contingency). If you
cannot identify the cause of the problem, then contact the Oracle Support Services
Representative.

ORA-05040: no more dynamic memory
Cause: Request memory failed in file-management components. This is probably
caused by a user address space that is too small.

Action: Ensure that the address space limit of the BS2000 user ID is sufficient and
that there is no temporary memory saturation. Then re-run the program. If you need
further help, then contact the Oracle Support Services Representative.

ORA-05046: Archive control string error
Cause: The archive file name or control parameters are incorrect.

Action: Correct the parameters.

ORA-05050: PGA (fixed part) could not be allocated
Cause: Probable operating system error or internal error.

Action: Contact the Oracle Support Services Representative.

ORA-05051: cannot allocate var. PGA
Cause: During creation of the PGA, required dynamic memory could not be allocated.

Action: Verify that the user address space is large enough and that if an application
program produced the error, the program is not consuming excessive memory.
Otherwise contact the Oracle Support Services Representative.

ORA-05052: error deleting var. PGA
Cause: During deletion of the PGA, dynamic memory could not be released. This is
an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05053: invalid or missing PGA_BASE
Cause: An invalid value for the PGA_BASE parameter has been specified in the ORAENV
file.

A-6

Action: Use the default value for the PGA_SIZE environment variable. If this does not
solve the problem, then contact the Oracle Support Services Representative.

ORA-05054: invalid or missing PGA_SIZE
Cause: An invalid value for the PGA_SIZE environment variable has been specified in
the ORAENV file. You should never need to change the default value for the PGA_SIZE
environment variable.

Action: Use the default value for the PGA_SIZE environment variable. If this does not
solve the problem, then contact the Oracle Support Services Representative.

ORA-05055: address range for PGA (fixed part) is not free
Cause: The address range described by the PGA_BASE and PGA_SIZE ORAENV
variables is not available for allocation. This may be due to overlapping PGA, SGA,
and KERNEL areas, or to an application program, which has occupied memory in this
area. If you did not specify a value for PGA_BASE, the default may be inappropriate for
the case.

Action: Refer to Memory Architecture for further information.

ORA-05056: no more context space
Cause: During processing of a SQL statement, dynamic memory could not be
allocated. This could happen when very complex requests are being processed and
there is not enough memory available.

Action: Verify that the user address space is large enough and that the application
program, if the error occurred when you were using an application program,
is not using excessive memory. Otherwise, contact the Oracle Support Services
Representative.

ORA-05058: assert failed: SGA not mapped
Cause: This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05059: assert failed: not in kernel
Cause: This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05060: SGA not created
Cause: After you run the STARTUP command, the SGA shared memory pool could not
be created.

Action: Verify that you are not trying to start the database while it is running and
that the database system id is not being used for two different databases. Otherwise,
contact the Oracle Support Services Representative.

ORA-05061: SGA attach failed
Cause: Connection to the SGA shared memory pool could not be established. This
may have happened if you used the wrong system id, or if the database you expected
to be running is not running.

Action: Verify that it is not one of the preceding causes (check with the Database
Administrator). Otherwise, contact the Oracle Support Services Representative.

A-7

ORA-05063: SGA base invalid
Cause: An invalid value has been specified for the SGA_BASE parameter in the ORAENV
file.

Action: This value is not normally needed. If specified, it must be a value giving the
full virtual address for the SGA memory pool. Correct the value and run the STARTUP
command.

ORA-05064: cannot allocate SGA
Cause: After creating the memory pool, the REQMP to allocate the space failed. This
might be an operating system error.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05065: SGA not deleted
Cause: When attempting to detach from the SGA, the DISMP system macro returned
an error.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05066: SGA address space conflict
Cause: The SGA cannot be placed at the requested address range, because the
range is already partly used. The SGA start address is defined by the ORAENV variable,
SGA_BASE; its size is determined by various initialization file parameters such as
processes, buffers, and so on.

Action: Refer to “Memory Architecture” and adjust the relevant initialization file and
ORAENV variables. Check the address space limit of the DBA user ID. Contact the
System Administrator to find out about shared subsystems and their placement in the
address space. Ensure that you do not overlap with the Oracle Database kernel.

ORA-05067: SGA: address space saturation
Cause: When the SGA is being allocated, the operating system reported that the
virtual address space is saturated.

Action: Contact the System Administrator about paging area size and current overall
system load.

ORA-05068 SGA still active, should not be
Cause: When the SGA is being created during startup, it is found that the SGA
memory pool is still in use, although the databases should be shut down. This may be
caused by a hanging user task, or a network server task.

Action: Check for such hanging tasks. Cancel these tasks, and then restart the
database.

ORA-05069: Unexpected SGA memory pool problem
Cause: The ENAMP macro returned an unexpected error code.

Action: Contact the Oracle Support Services Representative.

ORA-05070: cannot enable TPA ser.item
Cause: Probable operating system error.

A-8

Action: Contact the Oracle Support Services Representative.

ORA-05071: cannot ENQ on TPA ser.item
Cause: Probable operating system error.

Action: Contact the Oracle Support Services Representative.

ORA-05072: cannot enable post/wait item
Cause: Probable operating system error.

Action: Contact the Oracle Support Services Representative.

ORA-05073: error in post
Cause: An inter-process communication operation failed.

Action: Check that the database and all required background tasks are running
correctly. If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05074: error in wait
Cause: An inter-process communication operation failed.

Action: Check that the database and all required background tasks are running
correctly. If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05075: error in task table manager
Cause: Internal error.

Action: Contact the Oracle Support Services Representative.

ORA-05076: error setting spid
Cause: Probable operating system error.

Action: Contact the Oracle Support Services Representative.

ORA-05077: cannot enable HIA event
Cause: Probable operating system error. The HIA (Here I Am) event item is used to
check the successful start of an Oracle Database process.

Action: Contact the Oracle Support Services Representative.

ORA-05078: create process failure
Cause: When you issued the STARTUP command, a background job could not be
started successfully.

Action: Check for the job scheduling problems and that any BGJPAR entry in the ORAENV
file is correct. If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05079: internal asynchronous IO error
Cause: This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

A-9

ORA-05107: POSIX environment variable <variablename> not defined
Cause: The specified environment variable is not defined.

Action: Define and export the requested variable in your profile.

ORA-05108: failed to process BS2000 command <bs2-command>
Cause: The BS2000 command processor cannot execute the command.

Action: Test the logged command in the POSIX shell using the POSIX command,
bs2cmd.

ORA-05109: failed to initialize environment for POSIX
Cause: An application running under the POSIX shell cannot create links to required
files in the BS2000 file system.

Action: Check if the environment variables required for Oracle Database applications
under POSIX are set properly.

ORA-05110: cannot attach to memory pool
Cause: Invalid pool ID parameter xxx_MPID or operating system error.

Action: Check the ORAENV parameter xxx_MPID, at most 4 characters of the set [A...Z],
[0...9]), or contact the Oracle Support Services Representative.

ORA-05111: error attaching to memory pool
Cause: This error mostly occurs due to an address space conflict. The two low
significant bytes of the SOSD error show the return code of the ENAMP macro. For
example, 1804.

Action: Refer to the manual Executive Macros of the Fujitsu BS2000 operating system
released on the Fujitsu manual server.
This manual contains a description of the SOSD error. This problem usually can be
resolved by using a higher base address.

ORA-05112: error creating memory pool
Cause: This error mostly occurs due to an address space conflict. The two low
significant bytes of the SOSD error show the return code of the ENAMP macro. For
example, 1804.

Action: Refer to the manual Executive Macros of the Fujitsu BS2000 operating system
released on the Fujitsu manual server.
This manual contains a description of the SOSD error. This problem usually can be
resolved by using a higher base address

ORA-05114: bad pool base
Cause: An invalid value for the base address parameter of the shared pool, that is,
CLN_BASE, COM_BASE, and so on has been specified in the ORAENV file.

Action: If this value is specified, it must be a value giving the full virtual address for the
base address of a memory pool. Correct the value and restart the database.

ORA-05116: cannot load shared code into pool
Cause: Shared code could not be loaded into the specified memory pool. The two low
significant bytes of the SOSD error show the main return code of the BIND macro, for
example, x'0198'.

A-10

Action: Refer to the manual Executive Macros of the Fujitsu BS2000 operating system
released on the Fujitsu manual server for a description of the SOSD error.

ORA-05117: cannot attach to socket subsystem
Cause: An application could not be bound to the sockets subsystem. Generally this
message is preceded by a BLS-nnnn message from the operating system.

Action: Use the BS2000 command 'SHOW-SUBSYSTEM-STATUS SOC6' to verify that the
sockets subsystem SOC6 is created.

ORA-05118: ORACLE PCD slot not accessible
Cause: The current task is trying to attach to the ORACLE PCD slot but cannot find
this slot.
This is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05119: module verification failed
Cause: The version of the shared loaded module does not match the version of the
connection module on the user side.

Action: Mostly this error occurs with user applications. In this case re-link the
application with the Oracle Database release in use.

ORA-05120: waiting for shared module to be loaded timed out
Cause: This is an internal error and should not normally occur.

Action: Set the environment Variable OSDDBG=INI and re-start the program. The
error and the involved memory pool name will be logged. Ask your BS2000 system
administrator if the associated memory pool is locked by a foreign task or user.

ORA-05121: waiting for initialization of shared module timed out
Cause: This is an internal error and should not normally occur.

Action: Set the environment Variable OSDDBG=INI and re-start the program. The
error and the involved memory pool name will be logged. Ask your BS2000 system
administrator if the associated memory pool is locked by a foreign task or user.

ORA-05126: Missing IT0PCD address
Cause: The ILCS run-time link-library is probably missing.

Action: Contact the System Administrator.

ORA-05161: TCP/IP can't perform asynchronous test on break socket.
Cause: Select on break socket failed.

Action: Contact the System Administrator about TCP/IP networking problems. If the
error persists, contact the Oracle Support Services Representative.

ORA-05165: function not supported
Cause: Either Oracle Database or BS2000 does not support this function.

Action: None.

ORA-05167: Defect in data buffer
Cause: This is an internal error and should not normally occur.

A-11

Action: Contact the Oracle Support Services Representative.

ORA-05170: SID not defined (ORAENV file missing?)
Cause: The system identifier, data base name, is not defined when needed during
Oracle Database program initialization. A missing ORAENV file or a missing ORASID
entry in that file could cause this error.

Action: Ensure that the ORAENV file definition is correct and re-run the program.

ORA-05173: bad kernel size
Cause: An invalid value for the KNL_SIZE parameter has been specified in the ORAENV
file.

Action: You should not normally need to specify this variable, as the default value is
correct. Contact the Oracle Support Services Representative.

ORA-05174: bad kernel base
Cause: An invalid value for the KNL_BASE parameter has been specified in the ORAENV
file.

Action: If this value is specified, then it must be a value giving the full virtual address
for the kernel memory pool. Correct the value and restart the database.

ORA-05175: Kernel address space conflict
Cause: The Oracle Database kernel cannot be placed at the requested address
range, because the range is already used. The kernel start address is defined by the
ORAENV parameter, KNL_BASE.

Action: Refer to Memory Architecture and adjust the relevant initialization file and
ORAENV parameters. Check the address space limit of the DBA user ID. Contact the
System Administrator to learn about shared subsystems and their placement in the
address space.

ORA-05176: Kernel: address space saturation
Cause: When the Oracle Database kernel memory pool was being allocated, the
operating system signalled that the virtual address space is currently saturated.

Action: Contact the System Administrator about paging area size and current overall
system load.

ORA-05177: Unexpected Kernel memory pool problem
Cause: The ENAMP macro returned an unexpected error code.

Action: Refer to the ENAMP macro description in the BS2000 documentation for
possible reasons. If you cannot identify the cause of the problem, then contact the
Oracle Support Services Representative.

ORA-05178: Kernel module not yet initialized
Cause: The current task is trying to attach to an Oracle Database kernel which is not
yet completely initialized. This can only happen if you try to connect to a database,
which is just being started.

Action: Retry after a while. Remember that it may take a few minutes until a database
is fully running and ready for the users. If the error persists, then check this issue with
the Database Administrator.

A-12

ORA-05181: load/init problem with PRO/OCI interface
Cause: The user-side stub module could not load the PRO/OCI module. In this case,
the message is usually preceded by a BS2000 BLS-nnnn message, or the loaded
module is incompatible with the version of the stub module.

Action: Ensure that the ORALOAD link name exists and points to the current ORALOAD
library. Re-link the application with the current link libraries.

ORA-05191: symbol translation error for kernel memory pool
Cause: The logical name translation for the kernel memory pool failed. Normally, this
indicates an invalid system id, ORASID in the ORAENV file.

Action: Ensure that the ORAENV file definition is correct. Otherwise, contact the Oracle
Support Services Representative.

ORA-05192: cannot create/attach kernel memory pool
Cause: The memory pool for the Oracle Database kernel code could not be enabled.
In a user program, a possible cause is that the user program already allocates part of
the address range needed for the memory pool.

Action: Ensure that the user program does not request storage excessively, and
that any SGA_BASE and KNL_BASE parameters in the ORAENV file are consistent. If you
cannot identify the cause of the problem, then contact the Oracle Support Services
Representative.

ORA-05193: Symbol translation error for kernel module or load library
Cause: The logical-name translation for the kernel module or load library failed. This
is an internal error and should not normally occur.

Action: Contact the Oracle Support Services Representative.

ORA-05194: cannot load kernel
Cause: The kernel could not be loaded into the kernel memory pool. In most cases,
this message is preceded by a BLS-nnn message from the operating system.

Action: Ensure that the ORALOAD link name identifies the correct ORALOAD library, and
that the ORAENV variable, KNL_MODULE, names one of the possible kernels. Then re-
issue the STARTUP command. If you cannot identify the cause of the problem, then
contact the Oracle Support Services Representative.

ORA-05195: bad or missing kernel connector
Cause: The loaded kernel could not verify its user-side connector module. This can
occur if you use an incorrect kernel version.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

ORA-05198: associated internal OSD error code %d
Cause: This message precedes ORA-05199, if there is more information available.
The first 4 hexadecimal digits can often identify the module, and the last 4
hexadecimal digits are usually a condensed version of an associated system macro
code. This code can be helpful in diagnosing the problem.

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

A-13

ORA-05199: ORACLE ABNORMAL EXIT
Cause: A fatal error occurred, which prevents continuation of execution. In many
cases, a preceding message explains the error. The system causes the program
execution to stop (TERM ABNORMAL with DUMP is displayed).

Action: If you cannot identify the cause of the problem, then contact the Oracle
Support Services Representative.

A-14

B
Oracle Environment Variables

This appendix describes variables that can be specified in the ORAENV file, the
structured system variable SYSPOSIX, or the POSIX shell. Oracle parameters, such
as ORACLE_SID and NLS_LANG, may be specified in the ORAENV file, system variable
SYSPOSIX, or POSIX shell. If you use a ORAENV file, then you must follow the ORAENV
rules for specifying environment variables as described in the following sections. If
you use the system variable SYSPOSIX, then you must follow the rules to set a SDF-P
variable. For example, if the variable name contains an underscore '_' , then you must
use a hyphen '-' instead of the underscore. In the POSIX shell, you must follow the
UNIX rules to set and export the environment variables.

This appendix contains the following topics:

• ORAENV Rules

• Built-in Variables

• General Variables

• DBA Startup Variables

• Oracle Net Services Variables

See Also:

"Oracle Envrionment Variables" for more details

B.1 ORAENV Rules
Consider the following general rules when you create or modify ORAENV files:

• All lines which begin with a slash or asterisk (/ or *) are ignored.

• All variable names must be written in uppercase.

• Spaces must not be included immediately before and after the equals sign (=).

• Do not enclose values in quotation marks unless you want the quotation marks to
be part of the value.

• Errors in variable names are not recognized. This means that the value of any
variable whose name is typed incorrectly is not modified.

• There is only limited checking of variable assignments. An incorrect value may
generate an error message, but may also be interpreted as a null value.

• When variable assignments refer to other variables, BS2000 command file
substitution syntax applies. Substitution takes place when the variable is stored
in the local environment.

For example:

B-1

ORAUID=$ORACINST
SQLPATH=&ORAUID..RDBMS.ADMIN

assigns the value $ORACINST.RDBMS.ADMIN to the variable SQLPATH. If ORAUID is
changed, then SQLPATH automatically reflects the new value.

• The sequence of items in the ORAENV file is not generally significant. If an item
occurs more than once, then the first occurrence is used.

• If a value is not specified for a variable, then the default value is used, if it exists.

B.2 Built-in Variables
The following variables are always defined, and may be referenced in other variable
assignments:

• LOGNAME

• ORAUID

• PGM

• TERM

• TSN

B.2.1 LOGNAME
The LOGNAME variable always contains the current BS2000 user ID. Do not alter the
value of this variable by assigning a different value to it in the ORAENV file.

B.2.2 ORAUID
This variable specifies the BS2000 user ID where the Oracle Database programs,
installation, and demonstration files are installed. The initial value is derived from the
ORALOAD link name (the user ID part of the ORALOAD library name). This value is usually
correct, but if necessary, you can override it by assigning a different value to it in the
ORAENV file.

Format: ORAUID=$userid or ORAUID=/BS2/$userid

B.2.3 PGM
The PGM variable contains the program name specified in the BS2000 command
START-EXECUTABLE. You cannot alter the value of this variable by assigning a different
value to it in the ORAENV file.

B.2.4 TERM
The TERM variable contains the terminal type. The default value is SNI9750. This
default value is usually correct, but if necessary, you can override it by assigning a
different value to it in the ORAENV file.

B.2.5 TSN
The TSN variable contains the task sequence number of the current task. You cannot
alter the value of this variable by assigning a different value to it in the ORAENV file.

B-2

B.3 General Variables
The following variables are for general use by Oracle DBAs and users:

• CLN_BASE

• CLN_MPID

• CLN_SCOPE

• EXP_CLIB_FILE_IO

• IMP_CLIB_FILE_IO

• NLS_LANG

• OPS_JID

• ORASID

• PRINTPAR

• SQLPATH

• SSSIDPWF

B.3.1 CLN_BASE
This variable specifies the address of the shared memory pool for the client-side
shared code of Oracle Database, which is used by customer written database
applications.

Format:

CLN_BASE=address

Default:

200M

B.3.2 CLN_MPID
This variable specifies the identification of the shared memory pool for the client-
side shared code of Oracle Database, which is used by customer written database
applications.

Format:

CLN_MPID=sid

Default:

CLN_MPID=&ORASID

B.3.3 CLN_SCOPE

This variable specifies the scope of the shared memory pool for the client-side shared
code of Oracle Database, which is used by customer written database applications.
The valid values are:

B-3

Value Description

T The use of the memory pool is limited to the calling task.

U All Oracle Database client tasks within the same BS2000 user ID as the
calling task are participants of the shared memory pool.

G All Oracle Database client tasks in the system are participants.

Format:

CLN_SCOPE={T|U|G}

Default:

CLN_SCOPE=G

B.3.4 EXP_CLIB_FILE_IO
This variable should be set to FALSE when you use the Export utility to overcome a
problem with the C library functions, when an export file is written to tape.

Format: EXP_CLIB_FILE_IO=FALSE

Default: EXP_CLIB_FILE_IO=TRUE

B.3.5 IMP_CLIB_FILE_IO
This variable should be set to FALSE when you use the Import utility to overcome a
problem with the C library functions, when an import file is read from tape.

Format: IMP_CLIB_FILE_IO=FALSE

Default: IMP_CLIB_FILE_IO=TRUE

B.3.6 NLS_LANG
This variable specifies the language, territory, and character set. For example:

NLS_LANG=GERMAN_GERMANY.D8BS2000

Format: NLS_LANG=language_territory.character-set

Default: NLS_LANG=AMERICAN_AMERICA.WE8BS2000

B.3.7 OPS_JID
This variable is used for concatenation with the OS_AUTHENT_PREFIX, refer to the
initialization parameter. The default value concatenates the value of the parameter
OS_AUTHENT_PREFIX with the BS2000 user ID. Using OPS_JID, you can specify that the
BS2000 jobname is used instead. This is useful when many users are sharing a single
BS2000 user ID.

Format: OPS_JID=userid/jobname

Default: userid

B-4

B.3.8 ORASID
This variable defines the database that is used if no database identification is given at
connect time.This variable is a synonym of the ORACLE_SID variable.

Format: ORASID=sid (sid is a characterstring where 1 <= length <= 4)

Note:

Oracle recommends that you use the ORACLE_SID variable.

B.3.9 PRINTPAR
This variable specifies optional variables for the /PRINT command internally issued by
the SPOOL OUT statement in SQL*Plus. Using this variable, the user can modify the
spooled job, and, for example, route the job to a remote printer, add print options for
laser printers, and so on. The BS2000 /PRINT command for spool files is issued as
follows:

/PRINT temporary_spoolfile,&PRINTPAR

Format: PRINTPAR=print-options

B.3.10 SQLPATH
This variable specifies a path where SQL*Plus looks for SQL scripts. Elements of the
path are separated by semicolons (;). For example:

SQLPATH=PRIVATE;$ORACINST

This assignment causes SQL*Plus to look for filename.SQL, then for
PRIVATE.filename.SQL, and finally for $ORACINST.filename.SQL.

Format: SQLPATH=search-path

Default: SQLPATH=&ORACLE_HOME/rdbms/admin;&ORAUID..RDBMS.DEMO

B.3.11 SSSIDPWF
This variable specifies the password file.

Format: SSSIDPWF=password-file

See Also:

"Administering Oracle Database " for more information

B-5

B.4 DBA Startup Variables
The following variables are used during database and network startup. They
supplement (and in some cases provide defaults for) variables specified in the
initialization file.

To ensure that the variables are consistent, Oracle recommends that database startup
and shutdown, background tasks, and server tasks refer to the same ORAENV file.

Note:

The default values listed in the following sections are built-in defaults, some
of them are overridden by settings in the shipped DEMO.P.ORAENV.

The following DBA startup variables include:

• Address and Size Specification

• BGJPAR

• BGJ_PROCEDURE

• BGJPRC_UID / BGJPRC_SID

• BGJ_LOG_JOBSTART

• sid_BGJPAR

• sid_USER

• user_ACCOUNT/ user_PASSWORD

• COM_MPID

• COM_BASE

• COM_SCOPE

• JOBID

• KNL_BASE

• ORACLE_HOME

• PGA_BASE

• PGA_SIZE

• SF_PBLKSIZE

• SGA_BASE

B.4.1 Address and Size Specification
Several variables described in this section define memory addresses and sizes. The
notations used to specify these items are as follows:

• A number with no modifiers is interpreted as a decimal number

• A number followed by K or M is interpreted as a decimal number multiplied by
1024 or 1048576 (1024*1024) respectively

B-6

• A number enclosed in single quotation marks and preceded by the letter X is
interpreted as a hexadecimal number

For example, the following example sets the KNL_BASE variable to 8 MB:

KNL_BASE=8M
KNL_BASE=8388608
KNL_BASE=X'800000'

B.4.2 BGJPAR
This variable specifies the parameters for the BS2000 command ENTER-PROCEDURE,
which is used for starting BS2000 jobs for the Oracle Database background and server
processes. You can specify most of the parameters that are allowed for the BS2000
command ENTER-PROCEDURE in this variable. The ENTER-PROCEDURE command is used
to submit jobs as follows:

.jobname ENTER-PROCEDURE jobfile,&BGJPAR

Format: BGJPAR=parameters

Note:

The BGJPAR variable is set up by the installation procedure.

B.4.3 BGJ_PROCEDURE
This variable specifies the name of the ENTER-PROCEDURE command for starting
background jobs.

Format: BGJ_PROCEDURE=filename

Default: BGJ_PROCEDURE=(&ORAUID..ORALOAD.LIB,ENTER.PRC)

B.4.4 BGJPRC_UID / BGJPRC_SID
These variables specify the user ID and sid of the file for the background enter jobs. If
you want to use a special enter job file, then the parameters must be set to the desired
userid and sid.

Format:

BGJPRC_UID=$userid
BGJPRC_SID=sid

B.4.5 BGJ_LOG_JOBSTART
This variable specifies whether the operating system message that a new job was
accepted should be logged on SYSOUT or not.

Format: BGJ_LOG_JOBSTART=Y/N

Default: BGJ_LOG_JOBSTART=N

B-7

B.4.6 sid_BGJPAR
This variable specifies the parameters, which are used by the ENTER-PROCEDURE
command to start a server process for the instance specified by SID.

Format: sid_BGJPAR=parameters

Syntax: sid is a string of a maximum of 4 alphanumeric characters

parameters are the parameters for the ENTER-PROCEDURE command as described in the
BS2000 Commands manual.

B.4.7 sid_USER
This variable specifies the BS2000 user ID where the instance identified by sid
resides.

Format: sid_USER=userid

Syntax: sid is a string of a maximum of 4 alphanumeric characters

userid is a string of a maximum of 8 alphanumeric characters, which follows the
naming rules of a BS2000 user ID.

B.4.8 user_ACCOUNT/ user_PASSWORD
user_ACCOUNT or user_PASSWORD define credentials of a BS2000 user ID, which is used
by the ENTER-PROCEDURE command to start a process.

Format: user_ACCOUNT=account

user_PASSWORD=password

Syntax: user is a string of a maximum of 8 alphanumeric characters, which follows
the rules of a BS2000 user ID and must match a BS2000 user ID defined by the
parameter sid_USER.

account is a string of a maximum of 8 alphanumeric characters, which follows the
naming rules for a BS2000 account number.

password is a string of a maximum of 8 alphanumeric characters, which follows the
naming rules for a BS2000 password.

B.4.9 COM_MPID
This parameter specifies the identification of the shared code pool of the Oracle
database instance for some common Oracle Database software components.

Format: COM_MPID=sid

Default: COM_MPID=&ORASID

B.4.10 COM_BASE
This parameter specifies the address of the shared code pool of the Oracle database
instance for some common Oracle Database software components.

B-8

Format: COM_BASE=address

Default: Release Dependent

B.4.11 COM_SCOPE
This variable specifies the scope of the shared memory pool for the server-side shared
code of Oracle Database

The valid values are:

T - The use of the memory pool is limited to the calling task.

U - All Oracle Database tasks within the same BS2000 user ID as the calling task are
participants of the shared memory pool.

G - All Oracle Database tasks in the system are participants.

Format: COM_SCOPE={T|U|G}

Default: COM_SCOPE=G

B.4.12 JOBID
This variable is used internally in identifying the background tasks and generating
task-specific names. You must never specify values for this variable.

B.4.13 KNL_BASE
This variable specifies the base address of the shared memory pool for the Oracle
Database kernel module. This must be an integral number of megabytes.

Format: KNL_BASE=address

Default: Release Dependent

B.4.14 ORACLE_HOME
The Oracle home directory is the directory in the POSIX file system, which contains
the installation of the software for a particular Oracle product.

Format: ORACLE_HOME=/path-name

B.4.15 PGA_BASE
This variable specifies the base address of the fixed part of the PGA. The PGA is
task-specific, but must be located at a fixed memory address so that the kernel can
access it. The base address must lie on a 64 KB boundary.

Format: PGA_BASE=address

Default: Release Dependent

B.4.16 PGA_SIZE
This variable specifies the size of the fixed part of the PGA. This variable must not be
changed from its default value.

B-9

Format: PGA_SIZE=size

Default: Release Dependent

B.4.17 SF_PBLKSIZE
This variable specifies the physical blocksize of redo log files.

Format: SF_PBLKSIZE=2K|4K

Default: 2 KB

Note:

This variable cannot be changed after database creation.

B.4.18 SGA_BASE
This variable specifies the base address of the shared memory pool for the SGA of an
Oracle Database instance. The base address must lie on a megabyte boundary.

Format: SGA_BASE=address

Default: Release Dependent

Note:

There is no corresponding SGA_SIZE variable; the size of the SGA memory
pool is calculated when the database is started.

B.5 Oracle Net Services Variables
The following are the Oracle Net Services variables:

• DEFAULT_CONNECTION

• BREAK_HANDLING

• TNS_ADMIN

• TNS_BEQ_TIMEOUT

• TNS_UPDATE_IPNODE

• TNS_DH_TIMEOUT

• NT_IPC_PROTOCOL_UNIX

B.5.1 DEFAULT_CONNECTION
This variable provides a default host string for connect requests where no host string
is specified. If you connect to the same database always, then it may be convenient to

B-10

specify this variable. This value must contain everything you would otherwise specify
after the "@" character. This variable is a synonym of the TWO_TASK variable.

Format: DEFAULT_CONNECTION=host-string

Example:

DEFAULT_CONNECTION=TNS:
(DESCRIPTION=
(ADDRESS=
(PROTOCOL=TCP)
(HOST=MADRID)
(PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=PROD)))

B.5.2 BREAK_HANDLING
This variable deactivates the signal routine for user interrupts, which sends a break
over the network. An interrupt can be released by pressing the [K2] key.

Format:

BREAK_HANDLING=ON|OFF

Default:

BREAK_HANDLING=ON

B.5.3 TNS_ADMIN
This variable specifies the path to the Oracle Net Services configuration files, for
example, LISTENER.ORA, TNSNAMES.ORA, and SQLNET.ORA. The configuration files can
be stored in the BS2000 DMS or POSIX file system. Depending on the target file
system, the path can be a BS2000 user ID or a POSIX directory.

If TNS_ADMIN is not defined, then the default search path is NETWORK.ADMIN, when the
program runs in the BS2000 environment.

When the program runs in the POSIX program environment, the default search path
for TNS_ADMIN is $ORACLE_HOME/network/admin.

Format: TNS_ADMIN=$userid|/posix_path

B.5.4 TNS_BEQ_TIMEOUT
This variable specifies the time a parent process waits until it establishes a connection
to a child process.

Format: TNS_BEQ_TIMEOUT=lifetime (in seconds)

Default: TNS_BEQ_TIMEOUT=180

B.5.5 TNS_UPDATE_IPNODE
This variable forces the Oracle Net software to change the server's IP-Node name to
an IP-Node address.

B-11

Format: TNS_UPDATE_IPNODE=TRUE/FALSE

Default: TNS_UPDATE_IPNODE=FALSE

B.5.6 TNS_DH_TIMEOUT
If a listener has accepted a connection request which must be handed off to a server,
then this variable specifies the time the listener waits for a response from the server.

Format: TNS_DH_TIMEOUT=sec

Default: TNS_DH_TIMEOUT=10

B.5.7 NT_IPC_PROTOCOL_UNIX
Specifies whether to use the POSIX sockets protocol PF_UNIX for local IPC
communication or the BS2000 sockets protocol PF_ISO.

Format: NT_IPC_PROTOCOL_UNIX={TRUE|FALSE}

Default: NT_IPC_PROTOCOL_UNIX=FALSE

Note:

There are some differences in the BEQ adapter when using POSIX sockets.
A client using BS2000 sockets with PF_ISO for IPC cannot connect through
IPC or BEQ adapter to a server that uses the PF_UNIX protocol.

B-12

C
Initialization Parameters and the Parameter
File

Every time SQL*Plus starts an Oracle Database instance, it uses a set of parameters
which specify the characteristics of the instance's operation. These parameters
are kept in a file, typically named sid.DBS.INIT.ORA.This topic lists unsupported
parameters, and lists other parameters that you may need to change to customize
the Oracle Database for the system.

This topic contains the following sections:

• Example Parameter File

• Unsupported Parameters

• Additional Notes on Initialization Parameters

See Also:

Oracle Database Reference for general descriptions of the parameters

C.1 Example Parameter File
The $ORACINST.DEMO.DBS.INIT.ORA parameter file is created during Oracle Database
installation. You can copy and edit this as a text file.

C.2 Unsupported Parameters
The following initialization file parameters, described in the generic documentation are
not supported in Oracle Database 19c for Fujitsu BS2000:

• MAX_DUMP_FILE_SIZE

• OS_ROLES

• AUDIT_SYSLOG_LEVEL

• MEMORY_MAX_TARGET

• MEMORY_TARGET

Specifying these parameters in the initialization file results in an Oracle Database error
during startup. The workaround is to remove such lines from the file.

C.3 Additional Notes on Initialization Parameters
This section contains additional information about the following initialization
parameters:

• BACKGROUND_DUMP_DEST

C-1

• USER_DUMP_DEST

• AUDIT_FILE_DEST

• DB_BLOCK_SIZE

• DB_FILE_MULTIBLOCK_READ_COUNT

• DB_FILES

• LOCK_SGA

• SGA_MAX_SIZE

• LOG_ARCHIVE_DEST

C.3.1 BACKGROUND_DUMP_DEST
This parameter specifies the path name (directory or prefix), where debugging trace
files for the background processes, such as, LGWR, DBWn, and so on are written during
Oracle operations. Furthermore, it specifies the path name for the alert file. The default
value for this parameter is the current BS2000 user ID of the Oracle background
processes. You can specify a prefix for the trace and alert files in the following format:

BACKGROUND_DUMP_DEST=BDD

You can also specify a POSIX directory for this parameter.

Note:

The BACKGROUND_DUMP_DEST parameter is deprecated in Oracle Database
12c Release 1.

This parameter is ignored by the new diagnosability infrastructure introduced
in Oracle Database 11g, which places trace and core files in a location
controlled by the DIAGNOSTIC_DEST initialization parameter.

C.3.2 USER_DUMP_DEST
This parameter specifies the path name (directory or prefix), where the server writes
the debugging trace files on behalf of a user process. The default value for this
parameter is the current BS2000 user ID of the Oracle Database processes.

You can specify a prefix for the trace files as follows:

USER_DUMP_DEST=UDD

You can also specify a POSIX directory for this parameter.

C-2

Note:

The USER_DUMP_DEST parameter is deprecated in Oracle Database 12c .

This parameter is ignored by the new diagnosability infrastructure introduced
in Oracle Database 11g, which places trace and core files in a location
controlled by the DIAGNOSTIC_DEST initialization parameter.

C.3.3 AUDIT_FILE_DEST
This parameter specifies the operating system directory into which the audit trail
is written when the AUDIT_TRAIL initialization parameter is set to os, xml, or
xml,extended. You must specify a POSIX directory for this parameter. The first
default value for this parameter is ORACLE_BASE/admin/ORACLE_SID/adump. The second
default value, which is used if the first default value does not exist or is unusable, is
ORACLE_HOME/rdbms/audit. Remember that regardless of whether database auditing is
enabled, Oracle Database on Fujitsu BS2000 always records some database-related
actions into the operating system audit file, such as, instance startup, shutdown, and
connections with administrator privileges.

Note:

In an Oracle Database that has been migrated to unified auditing, the setting
of this parameter has no effect.

C.3.4 DB_BLOCK_SIZE
This parameter can have one of the following values:

• 2K, 4K, 6K, 8K, 16K, 32K, if you use BS2000 2K pubset format.

• 4K, 8K, 16K, 32K, if you use BS2000 4K pubset format.

C.3.5 DB_FILE_MULTIBLOCK_READ_COUNT
The maximum value of this parameter is 128K/DB_BLOCK_SIZE, which in most cases is
also the recommended value. Setting this parameter beyond this limit has no effect.

C.3.6 DB_FILES
The maximum value for this parameter is 65533 for BS2000.

C.3.7 LOCK_SGA
This parameter is ignored in Oracle Database 12c for Fujitsu BS2000. Buffers in the
SGA are page-fixed only during I/O operations. Otherwise, the SGA on BS2000 is
pageable.

C-3

C.3.8 SGA_MAX_SIZE
This parameter should not be specified for Fujitsu BS2000. Because the SGA is
not permanently page-fixed as it is on some other systems, there is little benefit in
reserving SGA expansion space with the SGA_MAX_SIZE parameter. It defaults to the
actual SGA size.

C.3.9 LOG_ARCHIVE_DEST
This parameter can indicate a pubset, such as LOG_ARCHIVE_DEST=:PUB1: to store all
the archived redo logs on a special media.

C-4

D
Troubleshooting

This topic describes problems that you may encounter when using Oracle Database
19c on BS2000, and provides you with information about how to diagnose and
overcome such problems.

To solve a problem, identify the type of the problem and locate the relevant information
in this topic. Examine each of the listed points to find the cause of the problem. Carry
out the suggested solution, and try again. The event log file described in this document
may help you to diagnose the problem.

This appendix contains the following topics:

• Problems Creating an Oracle Database

• Problems Starting an Oracle Database Instance

• Problems When Starting the Background Tasks

• Problems Accessing Database and Log Files

• Oracle Database Trace Files

See Also:

Oracle Error Messages for BS2000 in this guide and Oracle Database Error
Messages Reference for information about specific messages

D.1 Problems Creating an Oracle Database
You should always use the BS2000 procedure INSTALL.P.SUPER to create a new
database, because this is the easiest way to get a correct instance. If you encounter
problems during this process, then study the diagnostic output, correct, and run the
respective part manually, or remove the partially created database, and rerun the
whole process.

Also, check the following:

• If the BS2000 user ID has sufficient PUBLIC-SPACE-LIMIT for the corresponding
pubset.

• If enough disk space is available on the pubset that is used to create the
databases.

• If the disk space fragmentation is too high.

D.2 Problems Starting an Oracle Database Instance
This topic contains information related to problems that you may encounter when
starting an Oracle Database instance.

D-1

• If you get an ORA-05032 error with no extra information, then check the following:

If you attempt to start an instance and the startup fails, you might get an
ORA-05032 message and not much information. This indicates that a problem
occurred in a very early stage of the startup, when Oracle Database error stack
and backtracking mechanism were not yet active. If this is the case, then you
should check the following:

– If you called the ORAENV procedure prior to calling SQL*Plus.

– If you specified a correct and unique ORASID value in the ORAENV file

– If there potential address range conflicts:

The address ranges assigned to the kernel memory pool, the SGA, and the
PGA, in each task, could be partially occupied by shared BS2000 subsystems
also used in the instance. Contact the System Administrator to find out
how the subsystems are arranged. Then change the corresponding xxx_BASE
environment variables in the ORAENV file to relocate the Oracle Database areas
to suitable address ranges.

– If the user address space is large enough:

A small address space limit may not leave enough space for Oracle Database
requirements.

– If a previous startup attempt failed, leaving invalid background, server, or user
tasks:

If the Oracle Database has not been shut down properly, then the old
background tasks or server tasks may hang and may still be connected to
the SGA of the old instance. This inhibits the creation of a new SGA. You may
get a message indicating shutdown in progress.

Cancel the remaining background, server, and user tasks. Exit SQL*Plus,
which is required to release shared memory pools of the old instance and
retry.

D.3 Problems When Starting the Background Tasks
If you get a timeout message when starting the background tasks, then check the
following points:

• If the background tasks are blocked in the BS2000 job queue. This may occur due
to a system overload or an insufficient task priority.

The background tasks must always be started with the IMMEDIATE option and
preferably in a reserved BS2000 jobclass. Check the BGJPAR environment variable
and the user attributes of the BS2000 user ID. Cancel any background tasks that
have already started.

• If no background task can be found using the /SHOW-USER-STATUS command, then
the jobs have probably been aborted. Check the job outputs.

D.4 Problems Accessing Database and Log Files
If you have problems opening, closing, reading, or writing a database or log file, then
check the following points:

• If the file exists.

D-2

• If the file is accessible to the program that is trying to open it.

• If there is a hardware problem.

• If you specified the correct block size.

If you specified the ORAENV environment variable, SF_PBLKSIZE, at database creation,
then you must continue to use the same specification whenever you run an ALTER
DATABASE statement.

D.5 Oracle Database Trace Files
Whenever an Oracle database encounters an exception, it writes a trace or a dump
file. Verify this trace file for more detailed information about the issue. You may need
to send the trace file to the Oracle Support Services Representative, if you cannot
resolve the issue.

D-3

E
File Types and Names Used by Oracle

The following is a list of file types and names used by Oracle Database on BS2000:

sid.DBS.xxx.DBF

Database files such as sid.DBS.CONTROL.DBF, sid.DBS.DATABASE1.DBF, or
sid.DBS.LOG1.DBF contain the entire Oracle database including data dictionary, user
tables, log files, and so on.

sid.DBS.INIT.ORA

Parameter file used when an instance is started.

sid.P.ORAENV

Environment definition file, which defines the program environment. You must run this
file before starting an instance or an application:

/CALL-PROCEDURE sid.P.ORAENV

S.E.tsn.YYYY-MM-DD.hh.mm.ss

Temporary ENTER-PROCEDURE file for starting the background processes.

S.OUT.tsn.YYYY-MM-DD.hhmmss.number

Temporary files of background processes containing the runtime information. After
a task is successfully completed, these files are removed. These files can help in
diagnosis.

L.sid.xxxx.SYSOUT.tsn

Run-time listing documenting the start of a background process. When a process
finishes, orderly listings are removed, except the SDF-P variable BGJOUT is set to KEEP
in sid.P.ORAENV for diagnosis purposes. xxxx corresponds with the identifier of Oracle
background jobs.

Oracle Net Services LOG files

All errors encountered in Oracle network products are appended to a log file.

See Also:

Oracle Database Net Services Administrator's Guide for more information
about Oracle Net Services log files

E-1

T.sid.INSTALL.E.SUPER

Temporary file created by the BS2000 procedure INSTALL.P.SUPER. You can remove
this file after a successful Oracle Database installation.

T.sid.INSTALL.E.SUPER.72

Temporary file created by the BS2000 procedure INSTALL.P.SUPER. You can remove
this file after a successful Oracle Database installation.

L.sid.xxx.LOG

Log file created by the BS2000 procedure INSTALL.P.SUPER, for example,
L.sid.CATALOG.LOG. You can remove this file after a successful Oracle Database
installation.

ORAXALOG.tsn-NULL-YYMMDD.TRC

This file is used to trace errors when openUTM is used with Oracle Database. This file
is created only when an error occurs or when tracing is turned on. You can replace
NULL by a db_name when specified in the open string.

E-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Using Oracle Database Documentation
	Related Documents
	Conventions Used in this Manual

	Part I Concepts
	1 Concepts and Architecture
	1.1 About the BS2000 Operating System
	1.2 About File Systems
	1.3 About Processes
	1.4 Memory Architecture
	1.5 BS2000 User Ids
	1.5.1 Installation User ID
	1.5.2 DBA User ID
	1.5.3 Client User IDs

	1.6 Oracle Database Programs
	1.6.1 Program Libraries
	1.6.2 Program Environment
	1.6.2.1 Oracle Environment Variables
	1.6.2.2 Setting Variables in the BS2000 Program Environment
	1.6.2.3 Setting Variables in the POSIX Program Environment

	1.7 Physical Storage Structures
	1.7.1 Files of an Oracle Database
	1.7.2 Oracle Managed Files
	1.7.3 Files of a Bigfile Tablespace

	1.8 Parameter Files

	Part II Installation and Database Creation
	2 Oracle Database Installation and Deinstallation
	2.1 Overview of Oracle Database Installation
	2.2 Planning the Installation
	2.3 Oracle Database Preinstallation Requirements
	2.3.1 Checking Hardware Requirements
	2.3.1.1 Fujitsu BS2000 Server Lines
	2.3.1.2 Memory Requirements
	2.3.1.3 Disk Space Requirements
	2.3.1.4 Display Requirements

	2.3.2 Checking Software Requirements
	2.3.2.1 Operating System and Communication System Requirements
	2.3.2.2 POSIX Parameters
	2.3.2.3 Package Requirements
	2.3.2.4 Additional BS2000 Software Components
	2.3.2.5 Compiler and CRTE Requirements for Oracle Database Applications
	2.3.2.6 Additional Software Requirements

	2.3.3 About Checking Required Subsystems
	2.3.4 Checking Network Setup
	2.3.4.1 About Checking BCAM Timer
	2.3.4.2 About Checking LWRESD
	2.3.4.3 About Checking Loopback Address
	2.3.4.4 About Checking the Configuration Files in the POSIX File System

	2.3.5 Creating Required Operating System Users and Groups
	2.3.5.1 About Creating the BS2000 Installation User ID
	2.3.5.2 About Creating the POSIX Group
	2.3.5.3 About Initializing the POSIX User
	2.3.5.4 About Creating Users and Groups for Oracle Databases

	2.3.6 Required Directories in POSIX
	2.3.6.1 About Oracle Base Directory
	2.3.6.2 About Oracle Inventory Directory
	2.3.6.3 About Oracle Home Directory

	2.3.7 Identifying or Creating Oracle Base Directory in POSIX
	2.3.7.1 About Identifying an Existing Oracle Base Directory in POSIX
	2.3.7.2 Expanding a File System for the Oracle Base Directory
	2.3.7.3 Creating a File System for the Oracle Base Directory

	2.4 About Read-Only Oracle Homes in the POSIX File System
	2.4.1 Understanding Read-Only Oracle Homes
	2.4.1.1 About Read-Only Oracle Homes
	2.4.1.2 About Oracle Base Homes
	2.4.1.3 About Oracle Base Config
	2.4.1.4 About orabasetab

	2.4.2 About Installing a Read-Only Oracle Home in the POSIX File System
	2.4.3 Determining if an Oracle Home is Read-Only
	2.4.4 File Path and Directory Changes in Read-Only Oracle Homes

	2.5 Installing Oracle Database
	2.6 Oracle Database Postinstallation Tasks
	2.7 About Installing Multiple Oracle Databases
	2.8 About Removing Oracle Database Software

	3 About Creating a Database
	3.1 Prerequisites for Database Creation
	3.2 About Creating a Non-CDB
	3.2.1 Creating a Database Automatically
	3.2.2 Creating a Database Manually
	3.2.2.1 Creating Parameter Files for a Non-CDB
	3.2.2.2 Creating the Database
	3.2.2.2.1 About Modifying the Initialization File for a Non-CDB
	3.2.2.2.2 About Modifying the ORAENV File for a Non-CDB
	3.2.2.2.3 About Using SQL*Plus to Create the Database

	3.2.2.3 About Installing Data Dictionary Views
	3.2.2.4 About Installing Online Help Messages
	3.2.2.5 About Installing Demo Tables
	3.2.2.6 About Installing Sample Schemas
	3.2.2.7 About Verifying Database Creation
	3.2.2.8 About Installing Oracle Text
	3.2.2.9 About Installing Java

	3.3 About Creating a Multitenant Container Database
	3.3.1 Creating Parameter Files for a CDB
	3.3.2 About Creating a CDB
	3.3.2.1 About Modifying the Initialization File for a CDB
	3.3.2.2 About Modifying the ORAENV File for a CDB
	3.3.2.3 Using SQL*Plus to Create a CDB

	4 About Upgrading a Database
	4.1 Performing Preupgrade Procedures
	4.2 Performing Upgrade Procedures
	4.3 Performing Postupgrade Procedures

	5 About Upgrading Applications
	5.1 Precompile and Compile Application Programs
	5.2 Link Application Programs
	5.3 Update ORAENV Files

	Part III Database Administration
	6 Administering Oracle Database
	6.1 Using the SQL*Plus Utility
	6.2 Startup and Parameter Files
	6.2.1 The Environment Definition File ORAENV
	6.2.2 The Initialization File INIT.ORA
	6.2.3 The Server Parameter File SPFILE
	6.2.4 About Using the Initialization File

	6.3 Preparing a Remote Startup of a Database Instance Using SQL*Plus
	6.4 Automatic Diagnostic Repository
	6.4.1 Automatic Diagnostic Repository Directories and Files
	6.4.2 ADR Command Interpreter Utility

	7 Oracle Database Utilities
	7.1 Basics of Oracle Database Utilities
	7.1.1 The Oracle Database Environment-Definition File
	7.1.1.1 Generating the Environment-Definition File
	7.1.1.2 Calling the Environment Definition File
	7.1.1.3 Specifying the Environment Variables

	7.1.2 Oracle Runtime Libraries
	7.1.3 Starting Oracle Utilities in the BS2000 Program Environment
	7.1.4 Starting Oracle Utilities in the POSIX Program Environment
	7.1.5 Connecting to an Oracle Database Instance
	7.1.5.1 Default Connections
	7.1.5.2 Accessing an Oracle Database Instance

	7.1.6 Using BS2000 Files for Input and Output
	7.1.6.1 Text Files
	7.1.6.2 Binary Files
	7.1.6.3 Default File Name Extensions
	7.1.6.4 Using Link Names
	7.1.6.5 Fixed Link Names

	7.2 SQL*Plus
	7.2.1 Using SQL*Plus in the BS2000 Environment
	7.2.1.1 Starting SQL*Plus in the BS2000 Environment
	7.2.1.2 Interrupting a SQL*Plus Command in the BS2000 Environment
	7.2.1.3 Running BS2000 Commands from SQL*Plus
	7.2.1.4 Starting the BS2000 Editor
	7.2.1.5 Spooling SQL*Plus Output
	7.2.1.6 Specifying the Search Path for SQL Scripts in the BS2000 Environment
	7.2.1.7 Starting SQL*Plus in a BS2000 command procedure

	7.2.2 Using SQL*Plus in the POSIX environment
	7.2.2.1 Starting SQL*Plus in the POSIX Environment
	7.2.2.2 Interrupting a SQL*Plus Command in the POSIX Environment
	7.2.2.3 Running Shell Commands From SQL*Plus
	7.2.2.4 Using an Editor in SQL*Plus
	7.2.2.5 Spooling SQL*Plus Output in the POSIX Environment
	7.2.2.6 Specifying the Search Path for SQL Scripts in the POSIX Environment

	7.2.3 SQL*Plus User Profiles
	7.2.3.1 The glogin.sql Global Setup File
	7.2.3.2 The login.sql User Setup File

	7.2.4 Using SQL*Plus Symbols
	7.2.5 Sample Schemas and SQL*Plus
	7.2.6 SQL*Plus Limits

	7.3 The SQL*Loader
	7.3.1 Starting the SQL*Loader Utility
	7.3.2 Using the SQL*Loader Demonstration Files

	7.4 The Export Utility
	7.4.1 Starting the Export Utility
	7.4.2 Exporting to Foreign Systems
	7.4.2.1 Exporting Data to Tape
	7.4.2.2 Transferring Data by File Transfer

	7.5 The Import Utility
	7.5.1 Starting the Import Utility
	7.5.2 Importing from Foreign Systems
	7.5.2.1 Importing File with Non-Standard Block Size
	7.5.2.2 Importing Data from Tape
	7.5.2.3 Transferring Data by File Transfer

	7.6 The Data Pump Export Utility
	7.6.1 Starting the Data Pump Export Utility

	7.7 The Data Pump Import Utility
	7.7.1 Starting the Data Pump Import Utility

	7.8 Recovery Manager on BS2000
	7.9 Checking the Integrity of the Physical Data Structure
	7.10 Workload Replay Client
	7.10.1 About Running Workload Replay Client
	7.10.2 About Troubleshooting Workload Replay Client

	7.11 The Oracle Text Loader

	8 Backing Up and Recovering a Database
	8.1 Backing Up an Oracle Database
	8.1.1 Using BS2000 Utilities to Back Up an Oracle Database
	8.1.2 Performing Online Backup

	8.2 Restoring an Oracle Database
	8.3 About Using the Recovery Manager

	9 About Unified Auditing
	9.1 Enabling Unified Auditing
	9.2 Disabling Unified Auditing

	10 Java in the Database
	10.1 Installation of a Java Enabled Database
	10.2 Database character sets and Java Encodings
	10.3 Java Demonstration Files

	11 Oracle Text
	11.1 Installing Oracle Text
	11.2 Restrictions of Oracle Text on BS2000

	12 XML
	12.1 About XDK Installation
	12.2 Features and Restrictions of XML Features on BS2000 Systems

	13 Oracle Net Services
	13.1 Oracle Net Protocol Support
	13.1.1 About Bequeath Protocol
	13.1.1.1 Overview of the Bequeath Protocol

	13.1.2 About IPC Protocol Support
	13.1.2.1 Overview of IPC
	13.1.2.2 Using the IPC Protocol

	13.1.3 About TCP/IP Protocol Support
	13.1.4 About TCP/IP with SSL Protocol

	13.2 Oracle Network Security
	13.3 Shared Server Architecture
	13.4 Configuring the Network
	13.4.1 About Using Easy Connect Naming Method
	13.4.2 About Using the Local Naming Method
	13.4.3 About Using the Directory Naming Method
	13.4.4 Customizing Oracle Net Listener Configuration
	13.4.5 Configuration of the Client
	13.4.6 Testing the Configuration of the Client

	13.5 Troubleshooting Oracle Net Services

	Part IV Application Development
	14 Database Applications
	14.1 Overview of Database Applications
	14.1.1 Architecture of the Programmatic Interfaces
	14.1.2 PL/SQL Support
	14.1.3 Building and Running a Programmatic Interface Application

	14.2 Precompiler Applications
	14.2.1 About Using Precompilers
	14.2.1.1 Include Files
	14.2.1.2 User-Specific Configuration Files
	14.2.1.3 Input, Output, and List-files
	14.2.1.4 Additional Remarks About Using Precompilers

	14.2.2 Precompiler Pro*C/C++
	14.2.2.1 Starting Pro*C
	14.2.2.2 Pro*C Include, System Configuration and Demo Files
	14.2.2.3 SQLLIB Calls
	14.2.2.4 Linking Pro*C Programs
	14.2.2.5 The Pro*C SQLCPR.H Header File
	14.2.2.6 UTM Applications

	14.2.3 Precompiler Pro*COBOL
	14.2.3.1 Starting Pro*COBOL
	14.2.3.2 Pro*COBOL Include, System Configuration, and Demo Files
	14.2.3.3 SQLLIB Calls
	14.2.3.4 Linking Pro*COBOL Programs
	14.2.3.5 openUTM Applications
	14.2.3.6 Additional Information About Pro*COBOL Constructs

	14.3 Oracle Call Interface Applications
	14.3.1 Linking OCI Applications

	14.4 The Object Type Translator
	14.4.1 Starting Object Type Translator
	14.4.2 OTT System Configuration File

	14.5 Oracle Database Applications in POSIX Program Environment
	14.6 openUTM Database Applications
	14.6.1 Operation of Oracle Database Using openUTM Programs
	14.6.2 Distributed openUTM Files
	14.6.3 DBA Responsibilities
	14.6.4 Developing an Oracle Database/openUTM Application
	14.6.4.1 How to Build an Oracle Database Application with openUTM
	14.6.4.2 Defining an Open String
	14.6.4.2.1 Required Fields
	14.6.4.2.2 Optional Fields
	14.6.4.2.3 Examples

	14.6.4.3 Using Precompilers with openUTM
	14.6.4.3.1 Using Pro*C with the Default Database
	14.6.4.3.2 Using Pro*C with a Named Database

	14.6.4.4 SQL Operations
	14.6.4.4.1 CONNECT
	14.6.4.4.2 COMMIT
	14.6.4.4.3 ROLLBACK
	14.6.4.4.4 SAVEPOINT
	14.6.4.4.5 Cursor Operations
	14.6.4.4.6 Dynamic SQL
	14.6.4.4.7 PL/SQL
	14.6.4.4.8 Autocommit

	14.6.4.5 openUTM Operations
	14.6.4.5.1 RSET and PEND RS
	14.6.4.5.2 PEND ER and PEND FR
	14.6.4.5.3 PEND KP, PEND PR, and PEND PA
	14.6.4.5.4 PEND RE, PEND FI, PEND SP, and PEND FC

	14.6.5 Troubleshooting
	14.6.5.1 Trace Files
	14.6.5.1.1 Trace File Examples

	14.6.5.2 About Debugging
	14.6.5.3 In-Doubt or Pending Transactions
	14.6.5.4 Oracle Database Tables of the SYS User

	15 External Procedures
	15.1 Loading External Procedures
	15.1.1 Define C Procedures
	15.1.2 Set Up the Environment
	15.1.3 Identify the DLL
	15.1.4 Publish External Procedures
	15.1.5 Run External Procedures

	16 Globalization Support
	16.1 Language, Territory, and Character Set
	16.1.1 Oracle Database
	16.1.2 Other Oracle Database Products

	16.2 Supported Language Conventions
	16.3 Supported Territories
	16.4 Supported Character Sets
	16.5 Location of Message Files
	16.6 Linguistic Definitions

	Part V Appendices
	A Oracle Error Messages for BS2000
	B Oracle Environment Variables
	B.1 ORAENV Rules
	B.2 Built-in Variables
	B.2.1 LOGNAME
	B.2.2 ORAUID
	B.2.3 PGM
	B.2.4 TERM
	B.2.5 TSN

	B.3 General Variables
	B.3.1 CLN_BASE
	B.3.2 CLN_MPID
	B.3.3 CLN_SCOPE
	B.3.4 EXP_CLIB_FILE_IO
	B.3.5 IMP_CLIB_FILE_IO
	B.3.6 NLS_LANG
	B.3.7 OPS_JID
	B.3.8 ORASID
	B.3.9 PRINTPAR
	B.3.10 SQLPATH
	B.3.11 SSSIDPWF

	B.4 DBA Startup Variables
	B.4.1 Address and Size Specification
	B.4.2 BGJPAR
	B.4.3 BGJ_PROCEDURE
	B.4.4 BGJPRC_UID / BGJPRC_SID
	B.4.5 BGJ_LOG_JOBSTART
	B.4.6 sid_BGJPAR
	B.4.7 sid_USER
	B.4.8 user_ACCOUNT/ user_PASSWORD
	B.4.9 COM_MPID
	B.4.10 COM_BASE
	B.4.11 COM_SCOPE
	B.4.12 JOBID
	B.4.13 KNL_BASE
	B.4.14 ORACLE_HOME
	B.4.15 PGA_BASE
	B.4.16 PGA_SIZE
	B.4.17 SF_PBLKSIZE
	B.4.18 SGA_BASE

	B.5 Oracle Net Services Variables
	B.5.1 DEFAULT_CONNECTION
	B.5.2 BREAK_HANDLING
	B.5.3 TNS_ADMIN
	B.5.4 TNS_BEQ_TIMEOUT
	B.5.5 TNS_UPDATE_IPNODE
	B.5.6 TNS_DH_TIMEOUT
	B.5.7 NT_IPC_PROTOCOL_UNIX

	C Initialization Parameters and the Parameter File
	C.1 Example Parameter File
	C.2 Unsupported Parameters
	C.3 Additional Notes on Initialization Parameters
	C.3.1 BACKGROUND_DUMP_DEST
	C.3.2 USER_DUMP_DEST
	C.3.3 AUDIT_FILE_DEST
	C.3.4 DB_BLOCK_SIZE
	C.3.5 DB_FILE_MULTIBLOCK_READ_COUNT
	C.3.6 DB_FILES
	C.3.7 LOCK_SGA
	C.3.8 SGA_MAX_SIZE
	C.3.9 LOG_ARCHIVE_DEST

	D Troubleshooting
	D.1 Problems Creating an Oracle Database
	D.2 Problems Starting an Oracle Database Instance
	D.3 Problems When Starting the Background Tasks
	D.4 Problems Accessing Database and Log Files
	D.5 Oracle Database Trace Files

	E File Types and Names Used by Oracle

