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Preface

This preface contains the following topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document provides information about how to mask and subset data for non-production
usage such as development and testing using Oracle Data Masking and Subsetting Pack
(DMS) of Oracle Enterprise Manager (EM) Database Plug-in. This document is intended for
database administrators (DBAs), database designers, application administrators, application
owners, business owners, testers, and developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information about some of the topics discussed in this document, see the following
documents in the Oracle documentation set:

• Oracle Database 2 Day DBA

• Oracle Database 2 Day + Performance Tuning Guide

• Oracle Database Administrator's Guide

• Oracle Database Concepts

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

• Oracle Database Installation Guide for Linux

• Oracle Enterprise Manager Command Line Interface

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


• Oracle Enterprise Manager Installation Guide

• Oracle Enterprise Manager Advanced Installation Guide

• Oracle Enterprise Manager Administration Guide

• Enterprise Manager Licensing Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface
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Changes in This Release for Oracle Data
Masking and Subsetting User’s Guide

This preface contains:

• Versioning of Oracle Data Masking and Subsetting

• Changes in Oracle Data Masking and Subsetting Release 13.2

• Changes in Oracle Data Masking and Subsetting Release 13.1

Versioning of Oracle Data Masking and Subsetting
The Oracle Data Masking and Subsetting version is based on the version of the Oracle
Enterprise Manager Database Plug-in.

Oracle Data Masking and Subsetting is a part of the Oracle Enterprise Manager Database
Plug-in. In general, multiple Oracle Enterprise Manager Database Plug-in versions are
released during the life cycle of the Oracle Enterprise Manager version. For example, Oracle
Enterprise Manager Database Plug-in versions 12.1.0.6 and 12.1.0.7 were released during
the life cycle of the Oracle Enterprise Manager version 12.1.0.4 and Oracle Enterprise
Manager Database Plug-in version 13.1.0.0 was released during the life cycle of the Oracle
Enterprise Manager version 13.1.

Changes in Oracle Data Masking and Subsetting Release 13.2
This section describes the features introduced in Oracle Data Masking and Subsetting
Release 13.2.

• Enhanced Support for Discovering Non-Dictionary Based Referential Relationships

• Support for Handling Object Names With Size up to 128 Bytes

• Support for Importing and Exporting the Complete Database

• Support for Retaining the Existing Schema While Importing the Subset Dump

Enhanced Support for Discovering Non-Dictionary Based Referential
Relationships

With Oracle Data Masking and Subsetting release 13.2, the ability to discover non-dictionary
based referential relationships has been enhanced. Users can now discover potential non-
dictionary based referential relationships by matching column values, in addition to column
names. For more information on using this feature, see the Creating an ADM section.

xi



Support for Handling Object Names With Size up to 128 Bytes
The repository tables in Oracle Data Masking and Subsetting are now compatible to
store the target database object names with size up to 128 bytes. Prior releases of
Oracle Data Masking and Subsetting could handle target database object names up to
30 bytes only.

Support for Importing and Exporting the Complete Database
Oracle Data Masking and Subsetting provides the flexibility to import and export the
complete database while simultaneously masking or subsetting some schemas in the
database. When a user chooses a Full database In-Export data masking option, the
tables in the masking definition are exported as masked, and the remaining tables are
exported as they are. Similarly, when a user chooses a Full database In-Export data
subsetting option, the tables in the subset definition are subsetted based on the object
rules defined in the subset definition, and the remaining tables are exported without
applying subsetting.

Support for Retaining the Existing Schema While Importing the Subset
Dump

Oracle Data Masking and Subsetting allows users to retain the original tables of the
schema by selecting the schema remap option while importing a subset dump. In prior
releases of Oracle Data Masking and Subsetting, the existing schema was being
dropped when users selected the schema remap option. For more information, see the 
Importing a Subset Dump section.

Changes in Oracle Data Masking and Subsetting Release
13.1

This section describes the features introduced in Oracle Data Masking and Subsetting
Release 13.1.

• Support for Non-Dictionary Based Referential Relationships (Application Defined
Relationships)

• Subset Data Based on Table Partitions

• Support for Application Data Modeling and Data Masking of Edition View Objects

Support for Non-Dictionary Based Referential Relationships
(Application Defined Relationships)

Oracle Data Masking and Subsetting supports non-dictionary based referential
relationships. The non-dictionary based referential relationships are application-
specific referential relationships that are not defined in the Oracle data dictionary. For
more information on using this feature, see the Application Data Modeling chapter.

Changes in This Release for Oracle Data Masking and Subsetting User’s Guide
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Subset Data Based on Table Partitions
Oracle Data Masking and Subsetting provides the ability to subset data based on partitioning.
Subsetting based on partition and sub-partition enables you to include only those rows in the
subset that belong to a particular partition or sub-partition of a table. For more information on
using this feature, see the Data Subsetting chapter.

Support for Application Data Modeling and Data Masking of Edition View
Objects

Application Data Modeling and Data Masking components have been enhanced to support
Edition Views. Support for Edition Views is essential to discover and mask applications such
as Oracle E-Business Suite 12.2 or higher, which use edition-based redefinition for patching
applications or upgrading databases, with minimal downtime.

You can create an application data model with edition views, and mark the edition view
columns as sensitive. Data Masking will mask the base column that the edition view column
is referring to.

For more information on Edition Views, see the Oracle Database Advanced Application
Developer's Guide.

Changes in Oracle Data Masking and Subsetting Release 12.1
The following are changes in Oracle Data Masking and Subsetting User's Guide Release
12.1.0.8.

• Support for Secure Shell Key-based Host Authentication

• Support for Data Masking and Subsetting in Oracle Cloud

Support for Secure Shell Key-based Host Authentication
Oracle Data Masking and Subsetting supports Secure Shell (SSH) Key-based Host
authentication to the target database host. For more information, see the Oracle Enterprise
Manager Cloud Control Security Guide.

Support for Data Masking and Subsetting in Oracle Cloud
Oracle Data Masking and Subsetting provides the ability to model, mask, and subset the
databases that are hosted in Oracle Cloud (DBaaS), in addition to the on-premise databases.
In order to mask and subset data in Oracle Cloud (DBaaS), you must register the database in
Oracle Cloud as a target for Oracle Enterprise Manager. For more information, see the 
Oracle Enterprise Manager Cloud Control Administrator's Guide.

Changes in This Release for Oracle Data Masking and Subsetting User’s Guide
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1
Introduction to Oracle Data Masking and
Subsetting

This chapter explains the basics of Oracle Data Masking and Subsetting pack by providing an
overview on:

• The Need to Mask and Subset Data

• Challenges Organization Face for Masking and Subsetting Data

• How Oracle Data Masking and Subsetting Addresses Masking/Subsetting Challenge

• Major Components of Oracle Data Masking and Subsetting

• Architecture

• Deployment Options

• Methodology

• Workflow

It is recommended that you understand the above concepts of Oracle Data Masking and
Subsetting prior to the implementation. If you are already aware of these concepts or want to
start masking and subsetting data, please refer to the chapters below this chapter:

• Start with the Before You Begin chapter to understand the privileges, roles, and storage
requirements.

• Refer to the Application Data Modeling chapter to discover and model sensitive columns.

• Refer to the Data Masking chapter to define and execute masking criteria.

• Refer to the Data Subsetting chapter to define and execute subsetting criteria.

Note:

For Oracle Data Masking and Subsetting licensing information, please refer to 
Oracle Database Licensing Guide.

The Need to Mask and Subset Data
The reasons to mask and subset data include the following:

• Limit sensitive data proliferation: The growing security threats have increased the
need to limit exposure of sensitive information. At the same time, copying production data
for non-production purposes such as test and development is proliferating sensitive data,
expanding the security and compliance boundary, and increasing the likelihood of data
breaches.

• Share what is necessary: Often, companies have to share a production data set with
internal and external parties for various reasons. For example, a Cloud application

1-1
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provider may have to extract and share information specific to their individual
subscribers on demand. Another example is a company serving a court order must
extract and share a subset of production data with the court. In several cases, it is
efficient to extract and share a portion or subset of information instead of sharing
the entire production dataset.

• Comply with data privacy laws and standards: Data privacy standards such as
PCI-DSS and European Union (EU) General Data Protection Regulation (GDPR)
emphasize on protecting sensitive information in non-production environments
because these environments are typically not as protected or monitored as
production systems. EU GDPR also mandates an individual’s right to be forgotten,
erasure, portability or rectification which requires identifying and processing a
subset of information.

• Minimize storage costs: Using the entire production data for test, development,
and QA purposes will incur additional storage costs and prolong the test and
development cycles, increasing the overall storage and operational cost.

Masking and subsetting data addresses the above use cases. Data Masking is the
process of replacing sensitive data with fictitious yet realistic looking data. Data
Subsetting is the process of downsizing either by discarding or extracting data.
Masking limits sensitive data proliferation by anonymizing sensitive production data.
Subsetting helps to minimize storage costs by deleting data or extracting a subset of
data for sharing or archival. Data Masking is also known as Static Data Masking, and
Data Subsetting is also known as Test Data Management.

Challenges Organization Face for Masking and Subsetting
Data

Organizations typically mask and subset data using custom scripts or solutions. While
these in-house solutions might work for few columns, they may not cater to large
applications with distributed databases and thousands of columns, and result in
challenges such as:

• How to locate sensitive data in the midst of numerous applications, databases,
and environments?

• How to accurately protect sensitive data as data has different shapes and forms
such as VISA, AMEX, Discoverer, Master, Social Security Numbers, and more?

• Is the protected data usable to developers, testers, and applications?

• Will the applications continue to work after masking and subsetting is done?

In addition to the above challenges, organizations may not have the resources to
develop and maintain such a solution in this ever-changing IT landscape.

How Oracle Data Masking and Subsetting Addresses
Masking/Subsetting Challenge

Oracle Data Masking and Subsetting addresses the above challenges by providing an
automated, flexible, and easy-to-use solution that masks and subsets sensitive
production data, thereby allowing data to be shared safely across non-production
environments.

Chapter 1
Challenges Organization Face for Masking and Subsetting Data
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The Oracle Data Masking and Subsetting (DMS) pack of the Oracle Enterprise Manager (EM)
helps:

• maximize the business value of data by masking sensitive information

• minimize the compliance boundary by not proliferating the sensitive production
information

• lower the storage costs on test and development environments by subsetting data

• automate the discovery of sensitive data and parent-child relationships

• provide a comprehensive library of masking formats, masking transformations, subsetting
techniques, and select application templates

• mask and subset data in-Database or on-the-file by extracting the data from a source
database

• mask and subset both Oracle and non-Oracle databases

• mask and subset Oracle Databases hosted on the Oracle cloud

• preserve data integrity during masking and subsetting and offers many more unique
features

• integrate with select Oracle testing, security, and integration products.

Figure 1-1    Oracle Data Masking and Subsetting Used in a Production and Test
Database Setup

SSN
463-62-9832

576-40-7056

518-12-6157

281-50-3106

Credit Card
3715-4691-3277-8399

5136-6247-3878-3201

3599-4570-2897-4452

5331-3219-2331-9437

SSN
463-62-9832

555-12-1234

Credit Card
3715-4691-3277-8399

5555-5555-5555-4444

100101010010010

001001000100101

010010001001010

001001000100101

101010010000000

Test/DevProduction

• Discover Sensitive Data

• Modeling Application Data

• Mask Data using Format Library

• Subset Based on Goal/Condition

• Mask/Subset in Export or on Staging

• Mask in Workload Captures and Clones

• Pre-installed in Enterprise Manager

Major Components of Oracle Data Masking and Subsetting
Oracle Data Masking and Subsetting consists of the following major components.

• Application Data Modeling

• Data Masking Format Library

• Data Masking Transformations

• Data Subsetting

• Application Templates

Chapter 1
Major Components of Oracle Data Masking and Subsetting
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Application Data Modeling
The Application Data Modeling module of the Oracle Data Masking and Subsetting
pack simplifies the effort of sensitive data discovery through automated discovery
procedures and sensitive column types. These procedures not only discover columns
holding sensitive information, but also discover the parent-child relationships between
these columns that are defined in the database.

A sensitive column type creates forensics of sensitive data elements, such as national
insurance numbers, using a combination of data patterns in column names, column
data, and columns comments. Automated discovery procedures leverage sensitive
column types to sample data in the database table columns while scanning the
database for sensitive information.

Application Data Modeling provides several out-of-the-box sensitive columns types
such as credit card numbers, social security numbers, phone numbers. Customer-
sensitive column types can be easily created using regular expressions.

Figure 1-2    Editing an Application Data Model

Related Topics

• Application Data Modeling

Chapter 1
Major Components of Oracle Data Masking and Subsetting
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Data Masking Format Library
While Application Data Modeling automates the task of sensitive data discovery and
modeling, a comprehensive library of masking formats and transformations simplify the effort
of defining a masking criteria on the sensitive columns that are discovered.

One of the key aspects of the data masking exercise is to replace the sensitive information
with fake data, without breaking the semantics and structure of the data element. The
masked data must be realistic and pass format-specific checks such as Luhn check. For
example, a masked credit card number must not only be a valid credit card number, but also
a valid VISA, Master, American Express or Discover card number. Failing to maintain this
data integrity will affect the development or test processes and may break the corresponding
application.

Oracle Data Masking and Subsetting is packed with a comprehensive library of masking
formats that covers most of the Personally Identifiable Information (PII) and Payment Card
Information (PCI). Different types of credit card numbers or national identifiers of different
countries or bank account numbers, the masking format library will meet the enterprise
needs.

In addition to the several out-of-the-box masking formats, the product provides various built-in
tools to easily create custom-masking formats. There are simple tools that generate fixed or
random numbers, strings, and dates. There are tools that facilitate substitution from lookup
tables. There are tools such as SQL Expression and User Defined Function to accommodate
complex user-defined masking logic.

Figure 1-3    Data Masking Format Library

Chapter 1
Major Components of Oracle Data Masking and Subsetting
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Data Masking Transformations
Data Masking format library and application templates accelerate the task of defining
masking rules and preserving the integrity and structure of data elements.

Depending on the business use cases, organizations may have different requirements
while mapping masking formats to sensitive columns. For example, one of the
requirements in a large distributed database environment is to generate consistent
masked outputs for the given input across multiple databases. Oracle Data Masking
and Subsetting provides sophisticated masking transformations that fit into broader
business context. If masking formats are considered as building blocks of a data
masking definition, then masking transformations align these masking formats
according to the different business requirements.

Conditional Masking

Conditional transformation provides an ability to arrange masking formats according to
different conditions. For example, consider masking a column containing unique
person identifiers. Identifiers that belong to country USA can be masked using Social
Security Number format and that belong to country UK can be masked using National
Insurance Number format.

Compound Masking

Compound transformation (also known as grouping option), masks related columns as
a group, ensuring the masked data across the related columns retain the same
relationship. For example, consider masking address fields such as city, state, and
postal codes. These values must be consistent after masking.

Deterministic/Consistent Masking

Deterministic transformation generates consistent outputs for a given input across
databases. This transformation will be helpful to maintain data integrity across
multiples applications and preserve system integrity in a single sign-on environment.
For example, consider three applications: a human capital management application, a
customer relationship management application, and a sales data warehouse. These
three applications may have key common fields such as EMPLOYEE ID that must be
masked consistently across these applications. Substitute and Encrypt masking
formats provide deterministic masking transformation.

Shuffle

Shuffle transformation shuffles fields within a column in a random fashion. This
transformation is helpful in breaking one-to-one mapping between sensitive data
elements. For example, columns containing personal health records can be shuffled
while masking health care information.

Key Based Reversible Masking (Encrypt Format)

This transformation encrypts and decrypts the original data using a secure key string.
The input data format is preserved during encryption and decryption. This
transformation uses powerful industry-standard 3DES algorithm. This transformation is
helpful when businesses need to mask and send their data to a third-party for analysis,
reporting, or any other business processing purpose. After the processed data is
received from the third-party, the original data can be recovered using the same key
string that was used to encrypt the data.

Chapter 1
Major Components of Oracle Data Masking and Subsetting
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Format Preserving Randomization (Auto Mask Format)

This transformation randomizes the data, preserving the input length, position of the
characters and numbers, case of the character (upper or lower), and special characters in the
input.

Data Subsetting
Subsetting modern enterprise class applications is a challenging task. Oracle Data Masking
and Subsetting simplifies this effort through its easy-to-define goal and condition-based
subsetting techniques. Data can be subsetted based on different goals. A goal can be relative
table size, for example, extracting 1% subset of a table containing 1 million rows. Data can
also be subsetted based on different conditions. A condition can be based on time, for
example, discarding all user records created prior to a particular year. A condition can be
based on region, for example, extracting Asia Pacific information for a new application
development. The conditions are specified using “SQL where clause”. The “SQL where
clause” also supports bind variables.

Figure 1-4    Subsetting based on a condition

Data Subsetting generates a real-time dynamic view of the application schema with before
and after storage size and the percentage of data within the tables being subsetted, including
the dependent tables. Administrators can use this view to validate the subsetting criteria even
before subsetting the data.

Application Templates
Oracle Data Masking Application Templates deliver pre-identified sensitive columns, their
relationships, and industry-standard best practice masking techniques out-of-the box for
packaged applications such as Oracle E-Business Suite and Oracle Fusion Applications. Use
the Self Update feature to get the latest masking and subsetting templates available from
Oracle.

Chapter 1
Major Components of Oracle Data Masking and Subsetting
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Architecture
Oracle Data Masking and Subsetting is part of the Oracle Enterprise Manager
infrastructure. Organizations using Oracle Enterprise Manager do not need to
download and install the Oracle Data Masking and Subsetting Pack separately. Oracle
Enterprise Manager provides unified browser-based user interface for administration.
All Data Masking and Subsetting objects are centrally located in the Oracle Enterprise
Manager repository, which facilitates centralized creation and administration of
Application Data Models, Data Masking and Subsetting rules or definitions. In addition
to its intuitive cloud control Graphical User Interface (GUI), Oracle Enterprise Manager
also provides Command Line Interface (EMCLI) to automate select Data Masking and
Subsetting tasks.

Figure 1-5    Architecture of the Oracle Data Masking and Subsetting

For more details on Oracle Enterprise Manager Architecture, please refer to the Oracle
Enterprise Manager Introduction Guide.

Deployment Options
Oracle Data Masking and Subsetting provides the following modes for masking and
subsetting data:

• In-Database mode directly masks and subsets data within a non-production
database with minimal or zero impact on production environments. As In-Database
mode permanently changes the data in a database, it is recommended for non-
production environments such as staging, test or development databases instead
of production databases.

• In-Export mode masks and subsets the data in near real-time while extracting the
data from a database. The masked and subsetted data that is extracted is written
to data pump export files, which can be further imported into test, development or
QA databases. In general, In-Export mode is used for production databases. In-
Export method of masking and subsetting is a unique offering from Oracle that
sanitizes sensitive information within the product perimeter.

• Heterogeneous mode Oracle Data Masking and Subsetting can mask and subset
data in non-Oracle databases. Target production data is first copied from the non-
Oracle environment into Oracle Database using an Oracle Database Gateway,
and is then masked and subsetted within the Oracle Database, and is finally
copied back to the non-Oracle environment. This approach is very similar to the
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steps used in various ETL (Extract, Transform, and Load) tools, except that the Oracle
Database is the intermediary that transforms the data. Oracle Database Gateways
enable Oracle Data Masking and Subsetting to operate on data from Oracle MySQL,
Microsoft SQLServer, Sybase SQLServer, IBM DB2 (UDB, 400, z/OS), IBM Informix, and
Teradata.

Note:

For information on licensing, please refer to Oracle Database Licensing Guide.

Methodology
Oracle Data Masking and Subsetting uses the following methodology to secure non-
production database and replace sensitive data with fictitious, but relevant data that meets
compliance requirements.

• Creating an Application Data Model— Discover sensitive data and data relationships,
and then create or assign an Application Data Model

• Selecting Masking Formats and Criteria— Create data masking definition and masking
format types and templates based on the sensitive data that is discovered

• Previewing and Validating — Secure sensitive data by previewing the masking
algorithm results and the subset reduction results

• Executing Masking Transformations— Execute In-Database or In-Export masking and
subsetting transformations and validate the data that is masked

The following figure describes the methodology used in Oracle Data Masking and Subsetting.

Figure 1-6    Methodology

Workflow
The following diagram explains the Oracle Data Masking and Subsetting workflow.
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Figure 1-7    Oracle Data Masking and Subsetting Workflow

The following steps describe the Oracle Data Masking and Subsetting Workflow:

1. Create an Application Data Model — To begin using Oracle Data Masking and
Subsetting, you must create an Application Data Model (ADM). ADMs capture
application metadata, referential relationships, and discover sensitive data from
the source database.

2. Create a Data Masking Definition — After an ADM is created, the next step is to
create a data masking definition. A masking definition includes information
regarding the table columns and the masking format for each of these columns.
The mask can be created by writing the masked data to the export file.

3. Create a Data Subsetting Definition — Create a data subsetting definition to
define the table rules and rule parameters. The subset can be created by writing
the subset data to the export file.
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2
Before You Begin

This chapter helps you prepare with the prerequisites and other important things that you
must consider before installing and using Oracle Data Masking and Subsetting.

Oracle Data Masking and Subsetting Access Rights
Prerequisites

The following privileges must be assigned to the users on Oracle Enterprise Manager
repositories to administer and view the Oracle Data Masking and Subsetting user interface
pages.

• DB_MASK_ADMIN: to manage and use data masking feature in Oracle Enterprise
Manager.

• DB_ADM_ADMIN: to manage and use the application data model feature in Oracle
Enterprise Manager.

DB_SUBSET_ADMIN: to manage and use the data subsetting feature in Oracle
Enterprise Manager

By default, Enterprise Manager administrators can access the following primary Oracle Data
Management and Subsetting pages:

• Application Data Models

• Data Subset Definitions

• Data Masking Definitions

• Data Masking Formats

This is by virtue of having the TDM_ACCESS privilege, which is included in the PUBLIC role.
The Super Administrator can revoke this privilege for designated administrators, thereby
restricting access to the TDM pages. Without the privilege, the respective menu items do not
appear in the Cloud Control console.

Additionally, Enterprise Manager provides a privilege access model that enables Super
Administrators and administrators to limit access to TDM objects to authorized users only.
The model involves the ability to grant Operator or Designer privileges to selected users.

Operator Privileges

Those granted Operator privileges can perform data masking and subsetting operations.
Privileges can be granted on TDM objects; that is, on Application Data Models (ADM), data
subsetting definitions, and data masking definitions. Operator privileges do not include the
ability to edit and delete these objects.

• ADM–a user (other than Super Administrator) with ADM Operator privileges can view an
ADM, but cannot edit and delete it, nor view its properties. To enforce this, the Edit and
Delete icons, and the Properties menu are disabled. Additionally, the Sync option on the
Create Verification Job page is disabled.
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• Data subset definition–a user (other than Super DSD Administrator) with Operator
privileges can view but not edit and delete a subset definition. To enforce this, the
Edit and Delete icons are disabled.

A user with Data Subset Definition Operator privileges can do any other operation
except for editing and deleting the data subset definition, and has the following
rights:

– Viewing the data subset definition.

– Creating a data subset to export files.

– Creating a data subset on a database.

– Saving the subset script.

• Data masking definition–a user with Data Masking Definition Operator privileges
can do any other operation except for editing and deleting the data masking
definition, and has the following rights:

– Viewing the data masking definition.

– Generating a data masking script.

– Scheduling a data masking job.

– Exporting a data masking definition.

Designer Privileges

Those granted Designer privileges can enhance, modify, and manage TDM objects.
These users can also grant and revoke Operator and Designer privileges to others.
Designer privileges imply the corresponding Operator privileges on a TDM object.

• ADM–a user with Designer privileges can perform all operations on an ADM
including delete.

• Data subset definition–a user with Designer privileges can perform all operations
on a subset definition including delete.

• Data masking definition–a user with Designer privileges can perform all operations
on a masking definition including delete.

Access Control For Oracle Data Masking and Subsetting
Objects

This section describes the procedure to grant privileges on Application Data Models,
Data Masking definitions, and Data Subsetting definitions.

• Assigning Privileges to an Existing ADM

• Granting Privileges on a Subset Definition

Storage Requirements
Although Oracle Data Masking and Subsetting objects such as data models, masking
and subsetting definitions consume a negligible amount of storage space, depending
on the amount of data being stored over a period of time, you may need to allocate
additional storage space to Oracle Enterprise Manager's repository database.
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This section details the storage recommendations for masking and subsetting.

• In-Database Masking: 3X of additional space in the user tablespace (X being the largest
table in size) 2X of additional space in temporary tablespace

• In-Export Masking: 2X additional space in the user tablespace (X being the largest table
in size) 2X of additional space in temporary tablespace Sufficient disk space to store the
generated export dump file

• In-Database Subsetting: 2X additional space in the user tablespace (X being the largest
table in size) 2X additional space in temporary tablespace

• In-Export Subsetting: X additional space in the user tablespace (X being the largest
table in size) Sufficient space to store the generated dump files

Note:

The recommended storage requirement for integrated masking and subsetting is
the sum total of the storage requirement for masking and subsetting as mentioned
above.

Security and Regulatory Compliance
Masked data is a sensible precaution from a business security standpoint, because masked
test information can help prevent accidental data escapes. In many cases, masked data is a
legal obligation. The Enterprise Manager Data Masking Pack can help organizations fulfill
legal obligations and comply with global regulatory requirements, such as Sarbanes-Oxley,
the California Database Security Breach Notification Act (CA Senate Bill 1386), and the
European Union Data Protection Directive.

The legal requirements vary from country to country, but most countries now have regulations
of some form to protect the confidentiality and integrity of personal consumer information. For
example, in the United States, The Right to Financial Privacy Act of 1978 creates statutory
Fourth Amendment protection for financial records, and a host of individual state laws require
this. Similarly, the U.S. Health Insurance Portability and Accountability Act (HIPAA) created
protection of personal medical information.

Supported Data Types
The list of supported data types varies by release.

• Grid Control, Database, and Cloud Control

– Numeric Types

The following Numeric Types can use Array List, Delete, Fixed Number, Null Value,
Post Processing Function, Preserve Original Data, Random Decimal Numbers,
Random Numbers, Shuffle, SQL Expression, Substitute, Table Column, Truncate,
Encrypt, and User Defined Function masking formats:

* NUMBER
* FLOAT
* RAW
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* BINARY_FLOAT
* BINARY_DOUBLE

– String Types

The following String Types can use Array List, Delete, Fixed Number, Fixed
String, Null Value, Post Processing Function, Preserve Original Data, Random
Decimal Numbers, Random Digits, Random Numbers, Random Strings,
Shuffle, SQL Expression, Substitute, Substring, Table Column, Truncate,
Encrypt, and User Defined Function masking formats:

* CHAR
* NCHAR
* VARCHAR2
* NVARCHAR2

– Date Types

The following Date Types can use Array List, Delete, Null Value, Post
Processing Function, Preserve Original Data, Random Dates, Shuffle, SQL
Expression, Substitute, Table Column, Truncate, Encrypt, and User Defined
Function masking formats:

* DATE
* TIMESTAMP

• Grid Control and Cloud Control

– Large Object (LOB) Data Types

The following Data Types can use Fixed Number, Fixed String, Null Value,
Regular Expression, and SQL Expression masking formats:

* BLOB

* CLOB

* NCLOB

Unsupported Objects
Oracle Data Masking and Subsetting does not support:

• external tables

• clustered tables

• long columns

• column of type “XML”; XML-type columns

• virtual columns

Note:

Masking is supported for relational tables and tables containing long
columns.
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3
Application Data Modeling

Secure Test Data Management provides Enterprise Manager the capability to enable
operations such as sensitive data discovery, data subsetting, and data masking. These
capabilities enable scanning and tagging of sensitive data and modeling of data relationships
incorporated within an Application Data Model (ADM). You must have the Oracle Data
Masking and Subsetting Pack license to use test data management features.

The following figure shows the workflow associated with an Application Data Model.

Figure 3-1    Workflow of an Application Data Model

The ADM stores the list of applications, tables, and relationships between table columns that
are either declared in the data dictionary, imported from application metadata, or user-
specified. The ADM maintains sensitive data types and their associated columns, and is used
by test data operations, such as data subsetting and data masking, to securely produce test
data. Creating an ADM is a prerequisite for data subsetting and data masking operations.

The following figure shows the Application Data Model's relationship to other test data
management components as well as the production and test environments.
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Figure 3-2    Test Data Management Architecture

You can perform several tasks related to Application Data Modeling, including the
following tasks discussed in this chapter:

• Creating an Application Data Model

• Creating and Managing Custom Sensitive Column Types

• Associating a Database to an Existing ADM

• Verifying or Synchronizing an ADM

• Importing and Exporting an ADM

• Assigning Privileges to an Existing ADM

Note:

The procedures described in this chapter are applicable to Oracle Enterprise
Manager Cloud Control 12.1 and higher only.

See Also:

• Data Subsetting, for information about data subsetting

• Masking Sensitive Data, for information about data masking

Creating an Application Data Model
Before proceeding, ensure that you have the following privileges:

• Target Privileges (applicable to all targets):

– Connect to any viewable target

– Execute Command Anywhere

– View Any Target

• Resource Privileges:
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– Job System

– Named Credential

– Oracle Data Masking and Subsetting resource privilege

Note:

The EM_ALL_OPERATOR privilege for Enterprise Manager Cloud Control users
includes all of the above privileges.

• SELECT_CATALOG_ROLE for database users

• SELECT ANY DICTIONARY privilege for database users

• EXECUTE privileges for the DBMS_CRYPTO package

Note:

When you create an Application Data Model, the PL/SQL metadata collection
packages are automatically deployed on the target database. The Database user
must have DBA privileges to auto-deploy the packages.

We recommend that you create an Application Data Model for the first time with a
highly privileged user so that all the necessary packages are deployed.
Subsequently, all other Application Data Models can be created with a less
privileged user.

Creating an ADM
To create an Application Data Model:

1. From the Application Data Modeling page, view the diagram that explains how you can
create a database for a test environment.

2. Click Create.

A pop-up window requesting general properties information appears.

3. Specify a name for the ADM to be created.

4. Select the Source Database by clicking the Select Database Target icon.

The Source Database is the source from which the metadata is extracted.

5. Select an Application Suite:

• If you select Custom Application Suite:

– By default, metadata collection is enabled for creating the ADM.

– If "Create One Application For Each Schema" is not selected, a shell ADM is
created. You must later edit the ADM to add applications and tables to it. Also,
please note that metadata collection job is not submitted, like how it is done for
the default choice.

• If you select Oracle Application Suite:
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– Oracle E-Business Suite– Provide the database credentials for APPS
user (or equivalent) , and click Submit to create the ADM.

– Oracle Fusion Applications– Provide database credentials for FUSION
user (or equivalent), and click Submit to create the ADM.

Note the following points about metadata collections:

• The metadata collection for the selected application suite populates the ADM
with the applications and tables in the suite.

• The ADM can collect metadata for one or more schemas. An ADM application
typically represents a schema. Each schema you select becomes an ADM
application, and the ADM becomes populated with the tables in the schema,
particularly in the case of custom applications. However, please note that
multiple applications can also map to a single schema, as in the case of
Fusion Applications. The actual mapping depends on the application metadata
discovered by the metadata collection job.

6. Select the following:

• Discover Dictionary Based Relationships— identifies dictionary based
referential relationships. These are referential relationships that are defined in
the Oracle data dictionary.

• Discover Non-Dictionary Based Relationships

– By Sampling Column Names — identifies the potential parent-child
relationships that are not defined as referential integrity constraints
(primary key and foreign key) in the data dictionary by matching the
column name. Column name patterns can be specified using a regular
expression.

– By Sampling Column Values — identifies the potential parent-child
relationships that are not defined as referential integrity constraints
(primary key and foreign key) in the data dictionary by matching the values
or value patterns of a column.

Users can choose from the available value patterns or specify a custom
data pattern that uses a regular expression. Oracle Data Masking and
Subsetting will match the values in the column to identify the potential
primary key and foreign key using the data pattern specified by the user,
and return the results.

The potential foreign keys are verified for containment within the potential
primary key column, that is, the values of potential foreign key must
already be present in the potential primary key. A containment test is done
to meet 90% accuracy, that is, if the foreign key column is 90% contained
in the primary key, a match is flagged. This test is done to include any
orphan rows that might be present in applications such as Oracle's E-
Business Suite and Oracle Fusion Applications.

Note:

For accurate results, ensure that you use
dbms_stats.gather_table_stats to gather the stats of all the
tables.

7. Click Continue.
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If you selected Custom Application Suite in Step 5, a Schemas pop-up is displayed. From
the Available list, select the schemas you want to include as applications in the ADM
being created.

8. Click Continue.

9. If you selected Discover Non-Dictionary Based Relationships in Step 6, click the +
icon, and specify the primary key and foreign key columns that must be matched.

10. Click Continue.

11. Specify the parameters for scheduling the metadata collection job.

You can chose to either run the metadata collection job immediately or schedule it to start
at a later time.

12. Click Submit to submit the metadata collection job.

The ADM you created appears in the Application Data Modeling page.

13. Click View Job Details to view the status and details of the metadata collection process.

14. Review the Most Recent Job Status table column to monitor the status of the metadata
collection job.

The application data model is locked and cannot be edited when the metadata is being
collected. You must wait until the status indicates that the job is complete.

Editing an ADM to View the Application Schemas and Tables
To view and edit application tables:

1. From the Application Data Modeling page, view the diagram that explains how you can
create a database for a test environment.

2. Select the Application Data Model you previously created, and then click Edit.

The Applications and Objects subpage appears, displaying the applications discovered
during the metadata collection process.
To view the tables associated with an application, click the Expand ( > ) icon.

3. To edit an application, select the application, open the Actions menu, then select Add
Application.

The Add Application pop-up window appears.

4. Specify a name for the application, a nick name/short name, description for the
application, and click the search icon to search a schema.

5. Select a schema from the list, and click OK.

6. Click OK to add the application table to the data model.

The table now appears in the Applications and Tables view.

7. To discover non-dictionary based referential relationships, click the Referential
Relationships tab, and then click Discover Non-Dictionary Based Relationships.

Adding and Removing Tables From the Application Schema
To add or remove tables from the application schema:

1. From the Application Data Modeling page, select the Application Data Model you
previously created, and then click Edit.
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The Applications and Objects subpage appears, displaying the applications and
objects found during metadata collection.
To see the tables for an application, click the expand ( > ) icon.

2. To add a table, click Add Application.

The Add Application pop-up window appears.

3. Specify a name for the application, a nick name/short name, description for the
application, and click the search icon to search a schema.

The Search and Select pop-up appears, displaying all of the tables from the
selected schema that are not assigned to an application.

4. Select an unassigned table, then click OK.

The table name now appears in the Add Application pop-up.

5. After selecting a Table Type, click OK.

The table now appears in the Applications and Objects view.

6. To remove a table, select the table from the Application and Objects view, and
click Remove.

Viewing the Referential Relationships
To view referential relationships:

1. From the Application Data Modeling page, select the model you created, then click
Edit.

The Applications and Objects subpage appears, displaying the applications found
during metadata collection.
To view the tables for an application, click the expand ( > ) icon.

2. Click the Referential Relationships tab.

The following types of referential relationships are supported:

• Dictionary-defined

This is the referential relationship that the metadata collection extracted,
resulting from primary key and foreign key relationship. You can remove
relationship from the ADM if desired.

• Non-Dictionary Based

This is the referential relationship that is not defined in the Oracle data
dictionary, and is achieved by matching the column names and column values
of potential foreign keys with column names and column values of potential
primary keys along with their data types. You must evaluate the potential non-
dictionary based referential relationships listed here, and if you consider these
relationships valid, select the relationship, and click Add to ADM to add it to
the Application Data Model.

• Imported from template

If there are application templates available from the vendor of the enterprise
application, for example, Oracle Fusion Applications or Oracle E-Business
Suite, then the ADM can be created from the application vendor-supplied
template by using the Import action on the ADM home page.

• User-defined
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3. Open an application view by selecting it, then use the chevron icon (>) to view the parent
and dependent key relationships, or select Expand All from the View menu to view all
relationships.

Adding and Removing Referential Relationships
To manually add a referential relationship:

1. From the Application Data Modeling page, select the model you created, then click Edit.

The Applications and Objects subpage appears, displaying the applications and objects
found during metadata collection.
To view the tables and objects for an application, click the expand ( > ) icon.

2. From the Referential Relationships tab, open the Actions menu, then select Add
Referential Relationship.

The Add Referential Relationship pop-up window appears.

3. Select the requisite Parent Key and Dependent Key information.

4. In the Columns Name list, select a dependent key column to associate with a parent key
column.

5. Click OK to add the referential relationship to the ADM.

The new dependent column now appears in the referential relationships list.

Performing Sensitive Data Discovery

To discover sensitive columns:

1. From the Application Data Modeling page, select the model you created, then click the
Edit .

The Applications and Objects subpage appears, displaying the applications and objects
found during metadata collection. To view the tables for an application, click the expand
( > ) icon.

2. From the Sensitive Columns tab, open the Actions menu, then select Create Sensitive
Column Discovery Job.

The Parameters pop-up appears.

3. Select the applications and sensitive column types.

The sensitive column types you select is processed for each application to search for
columns that match the type.

4. Click Continue.

The schedule pop-up window appears.

5. Specify the required information, schedule the job, then click Submit when you have
finished.

The Sensitive Columns subpage reappears.

6. Click Save and Return to return to the Application Data Modeling home page.

Modifying the Sensitive Column Type

To modify the sensitive column type:
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1. From the Application Data Modeling page, select the model you created, then click
the Edit.

The Applications and Objects subpage appears, displaying the applications and
objects found during metadata collection. To view the tables for an application,
click the expand ( > ) icon.

2. Click the Sensitive Columns tab.

This view shows the sensitive columns that have already been identified.

3. Select the sensitive column for which you want to change the type.

4. Open the Actions menu, then select Set Sensitive Column Type.

The Set Sensitive Column Type pop-up window appears.

5. Select the new type and click OK.

Viewing the Discovery Results
To view the sensitive column discovery results:

1. From the Application Data Modeling page, select the model you created, then click
Edit.

The Applications and Objects subpage appears, displaying the applications found
during metadata collection.
To view the tables for an application, click the expand ( > ) icon.

2. Select the Sensitive Columns tab, then click Discovery Results to view the
discovery results.

Setting Sensitive Status on the Discovery Results
To set sensitive status on the discovery results:

1. When the Most Recent Job Status column indicates that the job is Successful,
select the ADM, then click Edit.

2. Select the Sensitive Columns tab, then click Discovery Results to view the job
results.

3. To set the sensitive status of any column, select the row for the column you want
to define, open the Set Status menu, then select either Sensitive or Not
Sensitive.

4. Click OK to save and return to the Sensitive Columns tab.

The sensitive columns you defined in the previous step now appear in the list.

5. Click Save and Return to return to the Application Data Modeling page.

Adding and Removing Sensitive Columns
To add/remove sensitive columns:

1. From the Application Data Models page, select an ADM, then click Edit.

2. Select the Sensitive Columns tab, then click Add.

The Add Sensitive Column pop-up appears.
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3. Provide the required information and an optional Sensitive Column Type, then click OK.

The sensitive column now appears in the table for the Sensitive Columns tab.

Creating and Managing Custom Sensitive Column Types
After you have successfully created an ADM, the next task is to create either a new sensitive
column type or one based on an existing type.

To create a sensitive column type:

1. From the Actions menu of the Application Data Models page, select Sensitive Column
Types.

The Sensitive Column Types page appears.

2. Click Create.

The Create Sensitive Column Type pop-up appears.

3. Specify a required name and regular expressions for the Column Name, Column
Comment, and Column Data search patterns.

• The Or Search Type means that any of the patterns can match for a candidate
sensitive column.

• The And Search Type means that all of the patterns must match for a candidate
sensitive column.

If you do not provide expressions for any of these parameters, the system does not
search for the entity.

4. Click OK.

The sensitive column appears in the table in the Sensitive Column Types page.

To create a sensitive column type based on an existing type:

1. From the Actions menu of the Application Data Models page, select Sensitive Column
Types.

The Sensitive Column Types page appears.

2. Select either a sensitive column type you have already defined, or select one from the
out-of-box types that the product provides.

3. Click Create Like.

The Create Sensitive Column Type pop-up appears.

4. Specify a required name and alter the existing expressions for the Column Name,
Column Comment, and Column Data search patterns to suit your needs.

5. Click OK.

The sensitive column appears in the table in the Sensitive Column Types page.

Associating a Database to an Existing ADM
After you have created an Application Data Model (ADM), you can select additional
databases to be associated databases of an ADM, as explained in the following procedure.
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To associate a database to an ADM:

1. From the Application Data Models page, select an ADM, select Actions, then
Associated Databases.

This dialog lists all of the databases associated with this ADM and the schemas
assigned to each application per database. You can add more databases that give
you a choice of data sources when subsetting and databases to mask during
masking.

2. Click Add, then select a database from the pop-up.

The selected database now appears in the Database section of the Associated
Databases dialog.

3. To change a schema, select the associated database on the left, select the
application on the right for which the schema is to be changed, then click Select
Schema.

4. Select the missing schema from the list in the pop-up, then click Select.

Related Topics

• Creating an ADM

Verifying or Synchronizing an ADM
After you have created an Application Data Model (ADM), the Source Database Status
column can indicate Valid, Invalid, Needs Verification, or Needs Upgrade.

• Invalid status–Verify the source database to update the referential relationships in
the application data model with those found in the data dictionary, and to also
determine if each item in the application data model has a corresponding object in
the database.

• Needs Verification status–You have imported an Oracle supplied template and
you must verify the ADM before you can use it. This is to ensure that necessary
referential relationships from data dictionary are pulled into the ADM.

• Needs Upgrade status–You have imported a pre-12c masking definition, so you
now need to upgrade the ADM.

To verify a source database:

1. Select the ADM to be verified, indicated with an Invalid status.

2. From the Actions menu, select Verify.

3. Select the source database with the Invalid status, then click Create Verification
Job.

4. Specify job parameters in the Create Verification Job pop-up, then click Submit.

5. After the job completes successfully, click the source database and note the object
problems listed.

6. Fix the object problems, rerun the Verification Job, then check that the Source
Database Status is now Valid.
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Importing and Exporting an ADM
You can share Application Data Models (ADM) with other Enterprise Manager environments
that use a different repository by exporting an ADM, which can subsequently be imported into
the new repository.

An exported ADM is by definition in the XML file format required for import. You can edit an
exported ADM XML file prior to import. When exporting an ADM for subsequent import, it is
best to have one that uses most or all of the features—applications, tables, table types,
referential relationships, sensitive columns. This way, if you are going to edit the exported file
prior to import, it is clear which XML tags are required and where they belong in the file.

• Importing an ADM

• Exporting an ADM

Note:

There are EMCLI verbs to export and import an ADM if you want to perform these
operations remotely or script them.

Importing an ADM
There are two methods of import:

• Importing an ADM XML File from your Desktop

• Importing an ADM XML file from the Software Library

Importing an ADM XML File from your Desktop
1. From the Application Data Models page, select the ADM you want to import.

2. From the Actions menu, select Import, then select File from Desktop.

3. In the pop-up that appears, specify a name for the ADM, the source database you want
to assign to the ADM, and location on your desktop from which you want to import the
ADM.

4. Click OK.

The ADM now appears on the Application Data Models page.

Importing an ADM XML file from the Software Library
1. From the Application Data Models page, select the ADM you want to import.

2. From the Actions menu, select Import, then select File from Software Library.

3. In the Export File from Software Library pop-up that appears, select the desired ADM
XML file on the left, then specify a name and the source database you want to assign to
the ADM on the right.

4. Click Import.

The ADM now appears on the Application Data Models page.
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After importing an ADM, you may want to discover sensitive columns or run a
verification job. In the process of performing these tasks, the PL/SQL metadata
collection packages are automatically deployed on the target database. The Database
user must have DBA privileges to auto-deploy the packages.

Exporting an ADM
There are three methods of export:

• Exporting an ADM as an XML File to Your Desktop

• Exporting an ADM

• Exporting an ADM to a Transparent Sensitive Data Protection Catalog

Exporting an ADM as an XML File to Your Desktop
1. From the Application Data Models page, select the ADM you want to export.

2. From the Actions menu, select Export, then select Selected Application Data
Model.

3. In the File Download pop-up that appears, click Save.

4. In the Save As pop-up that appears, navigate to a file location and click Save.

The system converts the ADM into an XML file that now appears at the specified
location on your desktop.

Exporting an ADM
1. From the Actions menu, select Export, then select File from Software Library.

2. From the Actions menu, select Export, then select File from Software Library.

3. In the Export File from Software Library pop-up that appears, select the desired
ADM and click Export.

4. In the File Download pop-up that appears, click Save.

5. In the Save As pop-up that appears, navigate to a file location and click Save.

The system converts the ADM into an XML file that now appears at the specified
location on your desktop.

Exporting an ADM to a Transparent Sensitive Data Protection Catalog
1. From the Application Data Models page, select the ADM you want to export.

2. From the Actions menu, select Export, then select Export to TSDP Catalog.

3. The Application Data Models page displays a table of associated databases.
Select a database and click the Export Sensitive Data button.

4. In the Export Sensitive Data pop-up that appears, provide credentials for the
selected database and click OK.

A message appears on the Application Data Models page confirming that the
sensitive data was copied to the database.

For detailed information on TSDP, see Oracle Database Security Guide.
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Assigning Privileges to an Existing ADM
You can grant privileges on an Application Data Model that you create so that others can
have access. To do so, you must be an Enterprise Manager Administrator with at least
Designer privileges on the ADM.

To assign privileges to an existing ADM:

1. From the Enterprise menu, select Quality Management, then select Application Data
Models.

2. Select the ADM to which you want to grant privileges.

3. From the Actions menu, select Grant, then select one of the following:

• Operator–to grant Operator privileges on the ADM to selected roles or
administrators, which means the grantees can view and copy but not edit and delete
the definition.

• Designer–to grant Designer privileges on the ADM to selected roles or
administrators, which means the grantees can view, edit, and delete the definition.

4. In the dialog that opens, select the type (administrator or role, or both). Search by name,
if desired. Make your selections and click Select.

The selected names now have privileges on the ADM.

5. Use the Revoke action if you want to deny any privileges that were previously granted.
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4
Data Masking

This chapter provides conceptual information about the components that comprise Oracle
Data Masking, and procedural information about performing the task sequence, such as
creating masking formats and masking definitions. Data masking presupposes that you have
created an Application Data Model (ADM) with defined sensitive columns.

The procedures in this chapter are applicable to Oracle Enterprise Manager Cloud Control
12.1 and higher only. You must have the Oracle Data Masking and Subsetting Pack license to
use data masking features.

Note:

Performing masking on an 11.2.0.3 database that uses Database Plug-in 12.1.0.3
and higher requires that the database patch #16922826 is applied for masking to
run successfully. The Mask-In Export feature (also known as At Source masking)
works with Oracle Database 11.1 and higher.

Overview of Oracle Data Masking
Enterprises run the risk of breaching sensitive information when copying production data into
non-production environments for the purposes of application development, testing, or data
analysis. Oracle Data Masking helps reduce this risk by irreversibly replacing the original
sensitive data with fictitious data so that production data can be shared safely with non-
production users. Accessible through Oracle Enterprise Manager, Oracle Data Masking
provides end-to-end secure automation for provisioning test databases from production in
compliance with regulations.

Data Masking Concepts
Data masking (also known as data scrambling and data anonymization) is the process of
replacing sensitive information copied from production databases to test non-production
databases with realistic, but scrubbed, data based on masking rules. Data masking is ideal
for virtually any situation when confidential or regulated data needs to be shared with non-
production users. These users may include internal users such as application developers, or
external business partners such as offshore testing companies, suppliers and customers.
These non-production users need to access some of the original data, but do not need to see
every column of every table, especially when the information is protected by government
regulations.

Data masking enables organizations to generate realistic and fully functional data with similar
characteristics as the original data to replace sensitive or confidential information. This
contrasts with encryption or Virtual Private Database, which simply hides data, and the
original data can be retrieved with the appropriate access or key. With data masking, the
original sensitive data cannot be retrieved or accessed.
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Names, addresses, phone numbers, and credit card details are examples of data that
require protection of the information content from inappropriate visibility. Live
production database environments contain valuable and confidential data—access to
this information is tightly controlled. However, each production system usually has
replicated development copies, and the controls on such test environments are less
stringent. This greatly increases the risks that the data might be used inappropriately.
Data masking can modify sensitive database records so that they remain usable, but
do not contain confidential or personally identifiable information. Yet, the masked test
data resembles the original in appearance to ensure the integrity of the application.

Roles of Data Masking Users
The following types of users participate in the data masking process for a typical
enterprise:

• Application database administrator or application developer

This user is knowledgeable about the application and database objects. This user
may add additional custom database objects or extensions to packaged
applications, such as the Oracle E-Business suite.

• Information security administrator

This user defines information security policies, enforces security best practices,
and also recommends the data to be hidden and protected.

Related Oracle Security Offerings
Besides data masking, Oracle offers the following security products:

• Virtual Private Database or Oracle Label Security — Hides rows and data
depending on user access grants.

• Transparent Data Encryption — Hides information stored on disk using encryption.
Clients see unencrypted information.

• DBMS_CRYPTO — Provides server packages that enable you to encrypt user data.

• Database Vault — Provides greater access controls on data.

Agent Compatibility for Data Masking
Data masking supports Oracle Database 9i and newer releases. If you have a version
prior to 11.1, you can use it by implementing the following workaround.

Replace the following file...

AGENT_HOME/sysman/admin/scripts/db/reorg/reorganize.pl

... with this file:

OMS_HOME/sysman/admin/scripts/db/reorg/reorganize.pl

Format Libraries and Masking Definitions
To mask data, the Data Masking Pack provides two main features:

• Masking format library

Chapter 4
Format Libraries and Masking Definitions

4-2



The format library contains a collection of ready-to-use masking formats. The library
consists of format routines that you can use for masking. A masking format can either be
one that you create, or one from the list of Oracle-supplied default masking formats.

As a matter of best practice, organizations should create masking formats for all
commonly regulated information so that the formats can be applied to the sensitive data
regardless of which database the sensitive data resides in. This ensures that all sensitive
data is consistently masked across the entire organization.

• Masking definitions

A masking definition defines a data masking operation to be implemented on one or more
tables in a database. Masking definitions associate table columns with formats to use for
masking the data. They also maintain the relationship between columns that are not
formally declared in the database using related columns.

You can create a new masking definition or use an existing definition for a masking
operation. To create a masking definition, you specify the column of the table for which
the data should be masked and the format of masked data. If the columns being masked
are involved in unique, primary key, or foreign key constraints, data masking generates
the values so that the constraints are not violated. Masking ensures uniqueness per
character using decimal arithmetic. For example, a 5-character string generates a
maximum of only 99999 unique values. Similarly, a 1-character string generates a
maximum of only 9 unique values.

You would typically export masking definitions to files and import them on other systems.
This is important when the test and production sites reside on different Oracle
Management Systems or on entirely different sites.

See Also:

The online help topic "Creating a Data Masking Definition" as well as the help for
each Data Masking page

Recommended Data Masking Workflow
The following figure shows that the production database is cloned to a staging region and
then masked there. During the masking process, the staging and test areas are tightly
controlled like a production site.
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Figure 4-1    Data Masking Workflow

Data masking is an iterative and evolving process handled by the security
administrator and implemented by the database administrator. When you first
configure data masking, try out the masking definition on a test system, then add a
greater number of columns to the masking definition and test it to make sure it
functions correctly and does not break any application constraints. During this process,
you should exercise care when removing all imbedded references to the real data
while maintaining referential integrity.

After data masking is configured to your satisfaction, you can use the existing
definition to repeatedly mask after cloning. The masking definition, however, would
need to evolve as new schema changes require new data and columns to be masked.

After the masking process is complete, you can distribute the database for wide
availability. If you need to ship the database to another third-party site, you are
required to use the Data Pump Export utility, and then ship the dump file to the remote
site. However, if you are retaining the masked data in-house, see "Data Masking Task
Sequence".

You can also perform inline, or at the source, data masking while creating a subset
definition.

Related Topics

• Creating a Data Subset Definition
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Data Masking Task Sequence
The task sequence in this section demonstrates the data masking workflow and refers you to
additional information about some of the tasks in the sequence. Before reviewing this
sequence, note that there are two options for completing this process:

• Exporting/importing to another database

You can clone the production database to a staging area, mask it, then export/ import it to
another database before delivering it to in-house testers or external customers. This is
the most secure approach.

• Making the staging area the new test region

You can clone the production database to a mask staging area, then make the staging
area the new test region. In this case, you should not grant testers SYSDBA access or
access to the database files. Doing so would compromise security. The masked database
contains the original data in unused blocks and in the free list. You can only purge this
information by exporting/importing the data to another database.

The following basic steps guide you through the data masking process, with references to
other sections for supporting information.

1. Review the application database and identify the sources of sensitive information.

2. Define mask formats for the sensitive data. The mask formats may be simple or complex
depending on the information security needs of the organization.

3. Create a masking definition to associate table columns and edition view objects to these
mask formats. Data masking determines the database foreign key relationships and adds
foreign key columns to the mask.

4. Save the masking definition and generate the masking script.

5. Verify if the masked data meets the information security requirements. Otherwise, refine
the masking definition, restore the altered tables, and reapply the masking definition until
the optimal set of masking definitions has been identified.

6. Clone the production database to a staging area, selecting the masking definition to be
used after cloning. Note that you can clone using Oracle Enterprise Manager, which
enables you to add masking to the Oracle Enterprise Manager clone workflow. However,
if you clone outside of Oracle Enterprise Manager, you must initiate masking from Oracle
Enterprise Manager after cloning is complete. The cloned database should be controlled
with the same privileges as the production system, because it still contains sensitive
production data.

After cloning, make sure you change the passwords as well as update or disable any
database links, streams, or references to external data sources. Back up the cloned
database, or minimally the tables that contain masked data. This can help you restore the
original data if the masking definition needs to be refined further.

7. After masking, test all of your applications, reports, and business processes to ensure
they are functional. If everything is working, you can export the masking definition to keep
it as a back-up.

8. After masking the staging site, make sure to drop any tables named MGMT_DM_TT before
cloning to a test region. These temporary tables contain a mapping between the original
sensitive column value and the mask values, and are therefore sensitive in nature.
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During masking, Oracle Enterprise Manager automatically drops these temporary
tables for you with the default "Drop temporary tables created during masking"
option. However, you can preserve these temporary tables by deselecting this
option. In this case, you are responsible for deleting the temporary tables before
cloning to the test region.

9. After masking is complete, ensure that all tables loaded for use by the substitute
column format or table column format are going to be dropped. These tables
contain the mask values that table column or substitute formats will use. It is
recommended that you purge this information for security reasons.

10. Clone the database to a test region, or use it as the new test region. When cloning
the database to an external or unsecured site, you should use Export or Import.
Only supply the data in the database, rather than the database files themselves.

11. As part of cloning production for testing, provide the masking definition to the
application database administrator to use in masking the database.

Related Topics

• Creating New Masking Formats

• Using Oracle-supplied Predefined Masking Formats

• Masking with an Application Data Model and Workloads

• Cloning the Production Database

• Deterministic Masking Using the Substitute Format

Defining Masking Formats
A masking definition requires one or more masking formats for any columns included
in the masking definition. When adding columns to a masking definition, you can either
create masking formats manually or import them from the format library. It is often
more efficient to work with masking formats from the format library.

Creating New Masking Formats
This section describes how to create new masking formats using Enterprise Manager.

To create a masking format in the format library:

1. From the Enterprise menu, select Quality Management, then Data Masking
Formats. Alternatively, if you are in the Database home page, select Data
Masking Format Library from the Schema menu.

The Format Library appears with predefined formats that Oracle Enterprise
Manager provides.

2. Click Create.

The Create Format page appears, where you can define a masking format.

See Also:

The online help for information on page user controls
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3. Provide a required name for the new format, select a format entry type from the Add list,
then click Go.

A page appears that enables you to provide input for the format entry you have selected.
For instance, if you select Array List, the subsequent page enables you to enter a list of
values, such as New York, New Jersey, and New Hampshire.

4. Continue adding additional format entries as needed.

5. When done, provide an optional user-defined or post-processing function, then click OK
to save the masking format.

The Format Library page reappears with your newly created format displayed in the
Format Library table. You can use this format later to mask a column of the same
sensitive type.

See Also:

The online help for information on the Format Library and Create Format pages

Related Topics

• Providing User-Defined and Post-Processing Functions

Providing User-defined and Post-processing Functions
If desired, you can provide user-defined and post-processing functions on the Create Format
page. A user-defined choice is available in the Add list, and a post-processing function field is
available at the bottom of the page.

• User-defined functions

To provide a user-defined function, select User Defined Function from the Add list, then
click Go to access the input fields.

A user-defined function passes in the original value as input, and returns a mask value.
The data type and uniqueness of the output values must be compatible with the original
output values. Otherwise, a failure occurs when the job runs. Combinable, a user-defined
function is a PL/SQL function that can be invoked in a SELECT statement. Its signature is
returned as:

Function udf_func (rowid varchar2, column_name varchar2, original_value varchar2) 
returns varchar2;

– rowid is the min (rowid) of the rows that contain the value original_value 3rd
argument.

– column_name is the name of the column being masked.

– original_value is the value being masked.

That is, it accepts the original value as an input string, and returns the mask value.

Both input and output values are varchar2. For instance, a user-defined function to mask
a number could receive 100 as input, the string representation of the number 100, and
return 99, the string representation of the number 99. Values are cast appropriately when
inserting to the table. If the value is not castable, masking fails.

• Post-processing functions
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To provide a post-processing function, enter it in the Post Processing Function
field.

A post-processing function has the same signature as a user-defined function, but
passes in the mask value the masking engine generates, and returns the mask
value that should be used for masking, as shown in the following example:

Function post_proc_udf_func (rowid varchar2, column_name varchar2, 
mask_value varchar2) returns varchar2;

– rowid is the min (rowid) of the rows that contain the value mask_value.

– column_name is the name of the column being masked.

– mask_value is the value being masked.

Using Masking Format Templates
After you have created at least one format, you can use the format definition as a
template in the Create Format page, where you can implement most of the format
using a different name and changing the entries as needed, rather than needing to
create a new format from scratch.

To create a new format similar to an existing format, select a format on the Format
Library page and click Create Like. The masking format you select can either be one
you have previously defined yourself, or one from the list of out-of-box masking
formats. You can use these generic masking format definitions for different
applications.

For instructional details about the various Oracle-supplied predefined masking format
definitions and how to modify them to suit your needs, see "Using Oracle-supplied
Predefined Masking Formats".

Providing User-Defined and Post-Processing Functions

If desired, you can provide user-defined and post-processing functions on the Create
Format page. A user-defined choice is available in the Add list, and a post-processing
function field is available at the bottom of the page.

• User-defined functions

To provide a user-defined function, select User Defined Function from the Add
list, then click Go to access the input fields.

A user-defined function passes in the original value as input, and returns a mask
value. The data type and uniqueness of the output values must be compatible with
the original output values. Otherwise, a failure occurs when the job runs.
Combinable, a user-defined function is a PL/SQL function that can be invoked in a
SELECT statement. Its signature is returned as:

Function udf_func (rowid varchar2, column_name varchar2, original_value 
varchar2) return varchar2;

– rowid is the min (rowid) of the rows that contain the value original_value 3rd
argument.

– column_name is the name of the column being masked.

– original_value is the value being masked.
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That is, it accepts the original value as an input string, and returns the mask value.

Both the input and output values are varchar2. For instance, a user-defined function to
mask a number could receive 100 as input, the string representation of the number 100,
and return 99, the string representation of the number 99. Values are cast appropriately
when inserting to the table. If the value is not castable, masking fails.

• Post-processing functions

To provide a post-processing function, enter it in the Post Processing Function field.

A post-processing function has the same signature as a user-defined function, but
passes in the mask value the masking engine generates, and returns the mask value that
should be used for masking, as shown in the following example:

Function post_proc_udf_func (rowid varchar2, column_name varchar2, mask_value 
varchar2) return varchar2;

– rowid is the min (rowid) of the rows that contain the value mask_value.

– column_name is the name of the column being masked.

– mask_value is the value being masked.

Using Oracle-supplied Predefined Masking Formats
Enterprise Manager provides several out-of-box predefined formats. All predefined formats
and built-in formats are random. The following sections discuss the various Oracle-supplied
format definitions and how to modify them to suit your needs:

• Patterns of Format Definitions

• Category Definitions

See Also:

"Installing the DM_FMTLIB Package" for information on installing the DM_FMTLIB
package so that you can use the predefined masking formats

Patterns of Format Definitions
All of the format definitions adhere to these typical patterns:

• Generate a random number or random digits.

• Perform post-processing on the above-generated value to ensure that the final result is a
valid, realistic value.

For example, a valid credit card number must pass Luhn's check. That is, the last digit of any
credit card number is a checksum digit, which is always computed. Also, the first few digits
indicate the card type (MasterCard, Amex, Visa, and so forth). Consequently, the format
definition of a credit card would be as follows:

• Generate random and unique 10-digit numbers.

• Using a post-processing function, transform the values above to a proper credit card
number by adding well known card type prefixes and computing the last digit.

This format is capable of generating 10 billion unique credit card numbers.
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Category Definitions
The following sections discuss different categories of these definitions:

• Credit Card Numbers

• United States Social Security Numbers

• ISBN Numbers

• UPC Numbers

• Canadian Social Insurance Numbers

• North American Phone Numbers

• UK National Insurance Numbers

• Auto Mask

By default, these mask formats are also available in different format styles, such as a
hyphen ( - ) format. If needed, you can modify the format style.

Credit Card Numbers

Out of the box, the format library provides many different formats for credit cards. The
credit card numbers generated by these formats pass the standard credit card
validation tests by the applications, thereby making them appear like valid credit card
numbers.

Some of the credit card formats you can use include:

• MasterCard numbers

• Visa card numbers

• American Express card numbers

• Discover Card numbers

• Any credit card number (credit card numbers belong to all types of cards)

You may want to use different styles for storing credit card numbers, such as:

• Pure numbers

• 'Space' for every four digits

• 'Hyphen' ( - ) for every four digits, and so forth

To implement the masked values in a certain format style, you can set the
DM_CC_FORMAT variable of the DM_FMTLIB package. To install the package, see
"Installing the DM_FMTLIB Package".

United States Social Security Numbers
Out of the box, you can generate valid U.S. Social Security (SSN) numbers. These
SSNs pass the normal application tests of a valid SSN.

You can affect the format style by setting the DM_SSN_FORMAT variable of the DM_FMTLIB
package. For example, if you set this variable to ‘-', the typical social security number
would appear as ‘123-45-6789'.
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ISBN Numbers
Using the format library, you can generate either 10-digit or 13-digit ISBN numbers. These
numbers adhere to standard ISBN number validation tests. All of these ISBN numbers are
random in nature. Similar to other format definitions, you can affect the "style" of the ISBN
format by setting values to DM_ISBN_FORMAT.

UPC Numbers
Using the format library, you can generate valid UPC numbers. They adhere to standard tests
for valid UPC numbers. You can affect the formatting style by setting the DM_UPC_FORMAT
value of the DM_FMTLIB package.

Canadian Social Insurance Numbers
Using the format library, you can generate valid Canadian Social Insurance Numbers (SINs).
These numbers adhere to standard tests of Canadian SINs. You can affect the formatting
style by setting the DM_CN_SIN_FORMAT value of the DM_FMTLIB package.

North American Phone Numbers
Out of the box, the format library provides various possible U.S. and Canadian phone
numbers. These are valid, realistic looking numbers that can pass standard phone number
validation tests employed by applications. You can generate the following types of numbers:

• Any North American phone numbers

• Any Canadian phone number

• Any U.S.A. phone number

UK National Insurance Numbers
Using the format library, you can generate valid unique random UK National Insurance
Numbers (NINs). These numbers adhere to standard tests of UK NINs. A typical national
insurance number would appear as 'GR 12 56 34 RS'.

Auto Mask
This format scrambles characters and numbers into masked characters and numbers and
while retaining the format and length of the data, including special characters; for example,
'ABCD_343-ddg' masked as 'FHDT_657-tte'.

Installing the DM_FMTLIB Package
The predefined masking formats use functions defined in the DM_FMTLIB package. This
package is automatically installed in the DBSNMP schema of your Enterprise Manager
repository database. To use the predefined masking formats on a target database (other than
the repository database), you must manually install the DM_FMTLIB package on that database.

To install the DM_FMTLIB package:

1. Locate the following scripts in your Enterprise Manager installation:
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$PLUGIN_HOME/sql/db/latest/masking/dm_fmtlib_pkgdef.sql
$PLUGIN_HOME/sql/db/latest/masking/dm_fmtlib_pkgbody.sql

Where PLUGIN_HOME can be any of the locations returned by the following SQL
SELECT statement, executed as SYSMAN:

select PLUGIN_HOME from gc_current_deployed_plugin where 
plugin_id='oracle.sysman.db' and destination_type='OMS'; 

2. Copy these scripts to a directory in your target database installation and execute
them using SQL*Plus, connected as a user that can create packages in the
DBSNMP schema.

You can now use the predefined masking formats in your masking definitions.

3. Select and import any predefined masking format into a masking definition by
clicking the Import Format button on the Define Column Mask page.

Providing a Masking Format to Define a Column
When you create a masking definition ("Masking with an Application Data Model and
Workloads"), you will be either importing a format or selecting one from the available
types in the Define Column Mask page. Format entry options are as follows:

• Array List

Accepts a list of values as input and maps each value in the list to a value in the
input column. The number of values in the list should be greater than or equal to
the number of distinct values in the masked column. The values in the user-
provided list are ordered randomly before mapping them to the original column
values. For example, if the original column contains values [10,20,30,40,50] and
the Array List specified by the user is [99,100,101,102,103], the first masking run
could produce the mapping [10,101], [20,103], [30,100], [40,99], [50,102] and a
different masking run can produce [10,100], [20,99], [30,101], [40,102], [50,103].

A mapping table is created. The CTAS that creates the mapping table queries
from:

1. The original table to fetch the column values being masked and a row number
for each column value. The row number is derived from the Oracle-supplied
ROW_NUMBER function.

2. The user-passed list of values — values in the user-passed array list are
converted into a table-like record set using the SQL TABLE function. A row
number is also retrieved corresponding to each value in the record set. The
row number is derived from the ROWNUM pseudo column. The values in the
record set are randomly ordered using DBMS_RANDOM.VALUE function.

3. The mapping table CTAS then joins the row numbers in both sub-queries to
map the original value (from sub-query in step 1 above) and a value from the
user-list (sub-query in step 2 above). Multiple executions of the CTAS will
create a mapping table with different original-masked value mappings because
of the random ordering of the user list in step 2.

• Delete

Deletes a row based on a condition. If the condition matches, then the row is
deleted on the target. A mapping table is created. The “DELETE_VAL” column in
the mapping table is set to 1 for rows that are candidates to be deleted. For

Chapter 4
Defining Masking Formats

4-12



example, we are masking the SALARY column and the masking definition has conditions
on the EMPID column and formats defined as:

EMPID < 100 
      DELETE 
EMPID < 200
        RANDOM NUMBER [Start Value:1 End Value:100]
DEFAULT
        PRESERVE

The mapping table will have the DELETE_VAL column set to 1 for SALARY rows with
EMPID < 100. DELETE_VAL for all other rows is set to 0. The final masking CTAS SQL
which joins the original table and the mapping table to create the masked table filters out
rows with DELETE_VAL set to 1. Therefore, the rows in the original table that match the
join condition are effectively “deleted”.

• Encrypt

The Encrypt masking format encrypts column data using Triple DES (3DES). The format
of the column data after encryption is similar to that of the original values. For example, if
you mask nine-digit numbers, the encrypted values also have nine digits. Encrypt is a
deterministic and reversible masking format. It is helpful when businesses need to mask
and send their data to a third party for analysis, reporting, or any other business
processing purpose. After the processed data is received from the third party, the original
data can be recovered (decrypted) using the same seed value that was used to encrypt
the data.

You provide a regular expression to mask character or numeric type column. The
specified regular expression must match all the original values in the column. If a value
does not match the regular expression exactly, the masking format may no longer
produce one-to-one mapping. Therefore, to ensure uniqueness, all the values must
match the regular expression. The encrypted values also match the specified regular
expression. Encrypt supports encryption of strings of fixed widths. It supports a subset of
the regular expression language and does not support * or + syntax in regular
expressions.

You also provide a seed value that is used to generate a key for encryption and
decryption. The seed value has to be provided at the time of submitting a data masking
job. It can be any string containing alphanumeric characters.

If your masking definition has a sensitive column using Encrypt, you are shown the
decrypt option while submitting a data masking job. Choosing this option, you can decrypt
the encrypted column values.

• Fixed Number

This format does not use a lookup or a mapping table. It assigns a fixed number value to
a string/number column.

The type of column applicable to this entry is a NUMBER column or a STRING column. For
example, if you mask a column that has a social security number, one of the entries can
be Fixed Number 900. This format is combinable.

• Fixed String

This format does not use a lookup or a mapping table. It assigns a fixed string value to a
string column.
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The type of column applicable to this entry is a STRING column. For example, if you
mask a column that has a License Plate Number, one of the entries can be Fixed
String CA. This format is combinable.

• Null Value

Masks the column with a value of NULL. It does not use a lookup or a mapping
table.

Note:

Fixed number/string and null value formats are implemented through
mapping tables when a column is masked through multiple formats. For
example, mapping table is used when SALARY is masked with fixed
number for EMPID<100 and with random numbers for EMPID>100.
Similar to the encrypt format, no mapping table is created when the
column does not have a combination of formats. In the example, no
mapping table is created when only fixed number is used to mask
SALARY for all EMPID values. In this case, the formats are implemented
inline in the final masking SQL.

• Post-Processing Function

The format allows users to use a custom function to process column values after
they are masked using standard data masking formats. For example, the SALARY
column can be masked with a SQL expression first, and a post processing function
can be applied on the masked values to add a currency symbol, like ‘$’. The
function has a fixed signature:

function post_proc_func(rowid varchar2, column_name
varchar2, mask_value varchar2) returns varchar2;
The ROWID input allows a user to fetch column values from the masked table.
The function could these values to mask the input column value, basically to
transform the column further after a standard format is applied on the column. This
format creates a mapping table. The post processing function gets invoked as part
of the mapping table CTAS SQL. The input to the mask_value argument of the
function is the masked value of the original column. For example, say we are
masking the SALARY column and the mask definition has conditions on the
EMPID column and formats are defined this way:

EMPID < 100 
      RANDOM NUMBERS [START:100000 END: 10000000]
      POST PROCESSING FUNCTION ppf 
EMPID < 200
        FIXED NUMBER 100000
DEFAULT
        PRESERVE

• Preserve Original Data

Preserves the original column value. Used in conditional masking with a
combination of other formats where only a subset of values needs to be masked
based on a condition.

• Random Dates

Chapter 4
Defining Masking Formats

4-14



The format creates a mapping table. The mapping table CTAS contains code to generate
random dates within a user specified date range. A random date is generated using the
following logic:

TO_DATE(start_date','YYYY-DD-MM HH24:MI:SS') + 
mask_util.genrnd(0, <#of days between the specified date range>)

• Random Decimal Numbers

If used as part of a mixed random string, these have limited usage for generating unique
values. This masking format generates unique values within the specified range. For
example, a starting value of 5.5 and ending value of 9.99 generates a decimal number
ranging from 5.5 to 9.99, both inclusive. This masking format is combinable.

• Random Digits

This format generates unique values within the specified range. For example, for a
random digit with a length of [5,5], an integer between [0, 99999] is randomly generated,
left padded with '0's to satisfy the length and uniqueness requirement. This is a
complementary type of random number, which will not be padded. When using random
digits, the random digit pads to the appropriate length in a string. It does not pad when
used for a number column. This format is combinable.

Data masking ensures that the generated values are unique, but if you do not specify
enough digits, you could run out of unique values in that range.

• Random Numbers

If used as part of a mixed random string, these have limited usage for generating unique
values. This format generates unique values within the specified range. For example, a
starting value of 100 and ending value of 200 generates an integer number ranging from
100 to 200, both inclusive. Note that Oracle Enterprise Manager release 10.2.0.4.0 does
not support float numbers. This format is combinable.

• Random Strings

This format generates unique values within the specified range. For example, a starting
length of 2 and ending length of 6 generates a random string of 2 - 6 characters in length.
This format is combinable.

• Regular Expression

The format uses a lookup table. No mapping table is created. The PL/SQL function that
implements the format is invoked directly from the final CTAS which creates the masked
table. The lookup table has two columns to store the regular expression and the
replacement value specified by the user. The SQL REGEXP_REPLACE function is used to
implement this format.

The function has the signature:

regexp_replace(column_value, regex, replacement_val);
For example, phone numbers in the format nnn.nnn.nnnn can be masked using a regex
[1-9]{3}[.][0-9]{3}[.][0-9]{4} with a replacement value ***.***.****. The format
invokes the regexp_replace for each regexp-replacement value pair. If the phone
number column was masked using regular expression:

EMPID < 100
  Regular Expression      Regex: [1-9]{3}[.][0-9]{3}[.][0-9]{4}  
Replacement Value: 999.444.555
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  Regular Expression      Regex: [9]{3}[.][4]{3}[.][5]{4}       
Replacement Value: ***.***.***

Each column value matching the first regular expression is first replaced with
999.444.555, this value then matches the second regular expression and is
replaced with ***.***.***. The example is not a real world use case. The
behavior probably is a side effect of how the format is implemented, the real use
case of specifying multiple regular expression formats to mask a column is to
handle cases when the data in the column could match multiple regular
expressions. For example:

EMPID < 100
  Regular Expression      Regex: [1-9]{3}[.][0-9]{3}[.][0-9]{4}  
Replacement Value: ***.***.****
  Regular Expression      Regex: [1-9]{3}[.][0-9]{3}[.][0-9]{3}  
Replacement Value: ***.***.***

can be used to mask column values that store 10 digit - nnn.nnn.nnnn - or 9 digit -
nnn.nnn.nnn - phone numbers.

• Shuffle

This format does not use a lookup or a mapping table. The final CTAS which
creates the mapping table includes a sub query to order the column contents
randomly using the DBMS_RANDOM.VALUE function. If shuffle is used with a
grouping column, the PARTITION clause is used to partition by the grouping column
and the column is ordered randomly within each partition. The implementation is
similar to that of Array List and Table Column. The random ordering for the shuffle
format occurs on the column being “shuffle masked”, whereas in Array List, it is on
the user-passed list, and in Table Column, the ordering is on the user-specified
column.

• Substitute

The format creates a mapping table. It uses a user specified “substitution” table as
a source for masked values. The format uses the Oracle supplied hash based
partitioning function ORA_HASH to map a column value to its mask value in a
lookup (substitution) table. Processing involves querying the substitution table to
get a count of distinct values in the mask column. This count – say n - is then used
as the max_bucket parameter of ORA_HASH to hash the original column values into
n buckets. For example, if we are masking EMPLOYEE.SALARY and using
SUBST.SUB_COL column as the substitution column, we first get the count of distinct
values in SUB_COL. The mapping table CTAS then queries:

1. The original column, EMPLOYEE.SALARY
2. The user provided substitution table to fetch all the distinct values in

SUBST.SUB_COL and also fetches the ROWNUM associated with each row

The CTAS SQL then joins 1 and 2 using ORA_HASH and equating its output to the
ROWNUM from step 2. The SELECT part of the CTAS SQL is listed below. max_bckt is
the count of distinct values in the substitution column SUBST.SUB_COL:

select s.orig_val,
       a0.new_val
from ( select orig_val
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       from (select "SALARY" orig_val
             from "TESTU"."EMPLOYEE") 
       group by orig_val) s,
     (select rownum rn, 
             SUB_COL new_val 
      from (select distinct SUB_COL
            from TESTU.SUBST
            order by SUB_COL)) a0
 where ora_hash(s.orig_val, max_bckt, seed)+1 = a0.rn

• SQL Expression

The format does not create a mapping table. It allows a user to use a SQL Expression for
masking a column. Data masking uses this expression to generate masked values to
replace the original values. The expression is invoked directly from the masking CTAS
SQL. The SQL Expression can consist of one or more values, operators, and SQL
functions that evaluates to a value. It can also contain substitution columns (columns
from the same table as the masked column). Some examples of valid expressions:

1.    dbms_random.string('u', 8) || '@company.com'
2.    %first_name% || '.' || %last_name% || '@company.com'
3.    dbms_lob.empty_clob()
4.    custom_mask_clob(%CLOB_COL%)
5.    (case when %PARTY_TYPE%='PERSON' then %PERSON_FIRST_NAME%|| ' ' ||
%PERSON_LAST_NAME% else (select dbms_random.string('U', 10) from dual) 
end)
6.    select MASK_ZIPCODE from data_mask.DATA_MASK_ADDR where ADDR_SEQ = 
ora_hash( %ZIPCODE% , 1000, 1234)

• Substring

The format creates a mapping table. The mapping table CTAS invokes the Oracle
SUBSTR function on the input column. The format accepts a start position and length as
input, extracts that data from the input column using SUBSTR, and uses that as a mask
value.

• Table Column

The format creates a mapping table. The format maps original column values to column
values in a user specified table. The processing is similar to the array list format. The
values in the user specified table are randomly ordered using DBMS_RANDOM.VALUE before
mapping each value to the original column. Unlike the Substitute format, the format is not
deterministic since the substitution column is randomly ordered.

• Truncate

The format truncates all rows in a table. It does not create a mapping table. If one of the
columns in a table is masked using this format, so no other mask formats can be
specified for any of the other columns.

• User Defined Function

The format creates a mapping table. The return value of the user defined function is used
to mask the column. The function is invoked as part of the mapping table CTAS. The
function has a fixed signature:

function userdef_func(rowid varchar2, col_name varchar2, orig_val varchar2) 
returns varchar2;Function udf_func (rowid varchar2, column_name varchar2, 
original_value varchar2) return varchar2;
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Deterministic Masking Using the Substitute Format
You may occasionally need to consistently mask multiple, distinct databases. For
instance, if you run HR, payroll, and benefits that have an employee ID concept on
three separate databases, the concept may be consistent for all of these databases, in
that an employee's ID can be selected to retrieve the employee's HR, payroll, or
benefits information. Based on this premise, if you were to mask the employee's ID
because it actually contains his/her social security number, you would have to mask
this consistently across all three databases.

Deterministic masking provides a solution for this problem. You can use the Substitute
format to mask employee ID column(s) in all three databases. The Substitute format
uses a table of values from which to substitute the original value with a mask value. As
long as this table of values does not change, the mask is deterministic or consistent
across the three databases.

See Also:

The online help for Define Column Mask page for more information on the
Substitute format 

Masking with an Application Data Model and Workloads
Before creating a masking definition, note the following prerequisites and advisory
information:

• Ensure that you have the following minimum privileges for data masking:

– Target Privileges (applicable to all targets):

* Connect to any viewable target

* Execute Command Anywhere

* View Any Target

– Resource Privileges:

* Job System

* Named Credential

* Oracle Data Masking and Subsetting resource privilege

Note:

The EM_ALL_OPERATOR privilege for Enterprise Manager Cloud
Control users includes all of the above privileges.

– SELECT_CATALOG_ROLE for database users

– SELECT ANY DICTIONARY privilege for database users

– EXECUTE privileges for the DBMS_CRYPTO package
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• Ensure the format you select does not violate check constraints and does not break any
applications that use the data.

• For triggers and PL/SQL packages, data masking recompiles the object.

• Exercise caution when masking partitioned tables, especially if you are masking the
partition key. In this circumstance, the row may move to another partition.

• Data Masking does not support clustered tables, masking information in object tables,
XML tables, and virtual columns. Relational tables are supported for masking.

• If objects are layered on top of a table such as views, materialized views, and PL/SQL
packages, they are recompiled to be valid.

If you plan to mask a test system intended for evaluating performance, the following practices
are recommended:

• Try to preserve the production statistics and SQL profiles after masking by adding a pre-
masking script to export the SQL profiles and statistics to a temporary table, then
restoring after masking completes.

• Run a SQL Performance Analyzer evaluation to understand the masking impact on
performance. Any performance changes other than what appears in the evaluation report
are usually related to application-specific changes on the masked database.

To create a masking definition:

1. From the Enterprise menu, select Quality Management, then Data Masking
Definitions.

The Data Masking Definitions page appears, where you can create and schedule new
masking definitions and manage existing masking definitions.

2. Click Create to go to the Create Masking Definition page.

A masking definition includes information regarding table columns and the format for
each column. You can choose which columns to mask, leaving the remaining columns
intact.

3. Provide a required Name, Application Data Model, and Reference Database.

When you click the search icon and select an Application Data Model (ADM) name from
the list, the system automatically populates the Reference Database field.

• Optional: Check Ensure Workload Masking Compatibility if you want to mask Capture
files and SQL Tuning Sets.

When you enable this check box, the masking definition is evaluated to determine if
the SQL Expression format or conditional masking is being used. If either is in use
when you click OK, the option becomes unchecked and an error message appears
asking you to remove these items before selecting this option.

Note:

Before proceeding to the next step, one or more sensitive columns must
already be defined in the Application Data Model. See "Creating and
Managing Custom Sensitive Column Types" for more information.

4. Click Add to go to the Add Columns page, where you can choose which sensitive
columns in the ADM you want to mask.
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The results appear in the Columns table. Primary key and foreign key columns
appear below the sensitive columns.

5. Use filtering criteria to refine sensitive column results. For example, perhaps you
want to isolate all columns that have order in the name (column name=order%).
You first may have to expose the filter section (Show Filters).

6. Use the disable feature to exclude certain columns from masking consideration. All
columns are enabled by default. You can disable selected or all columns. You can
also search for a subset of columns (column name=order%) to disable. The Status
column on the right changes to reflect a column's disabled state. Note that a
column's disabled state persists on export of a data masking definition.

7. Optional. Click the edit icon in the Format column to review and edit the masking
format.

8. Expand Show Advanced Options and decide whether the selected default data
masking options are satisfactory.

9. Click OK to save your definition and return to the Data Masking Definitions page.

At this point, super administrators can see each other's masking definitions.

10. Select the definition and click Generate Script. The schedule job dialog opens.
You may have to log in to the database first.

Complete the schedule job dialog by providing the required information, then click
Submit.

11. A message appears denoting that the job was submitted successfully and you
return to the Data Masking Definitions page, where the status is "Generating
Script." Click View Job Details to open the job summary page.

When the job completes, click Log Report to check whether sufficient disk space
is available for the operation, and to determine the impact on other destination
objects, such as users, after masking. If any tables included in the masking
definition have columns of data type LONG, a warning message may appear.

12. When the status on the Data Masking Definitions page is "Script Generated,"
select the script and choose from the following actions:

• Clone Database–to clone and mask the database using the Clone Database
wizard (this requires a Database Lifecycle Management Pack license).

• Save Script–to save the entire PL/SQL script to your desktop.

• Save Mask Bundle–to download a zip file containing the SQL files generated
as part of the At source masking script generation option. You can then extract
and execute the script to create a masked dump of the database.

• View Script–to view the PL/SQL script, which you can edit and save. You can
also view errors and warnings, if any, in the impact report.

• Storage Requirement Report–to view the space required for intermittent
objects during masking.

Note:

For accurate storage estimates, ensure that you use
dbms_stats.gather_table_stats to gather the stats of all the tables
participating in the masking process.
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Click Go to execute the selected action.

13. If you are already working with a test database and want to directly mask the data in this
database, click Schedule Job.

• Provide the requisite information and desired options. You can specify the database
at execution time to any database. The system assumes that the database you select
is a clone of the source database. By default, the source database from the ADM is
selected.

• Click Submit.

The Data Masking Definitions page appears. The job has been submitted to
Enterprise Manager and the masking process appears. The Status column on this
page indicates the current stage of the process.

Note that you can also perform data masking at the source as part of a data subsetting
definition. See "Creating a Data Subset Definition" for more information.

Adding Columns for Masking
Use this page to add one or more columns for masking and automatically add foreign key
columns. Select the database columns you want to mask from the corresponding schema.
After you select the columns, you specify the format used to mask the data within.

Note:

You need to add at least one column in the masking definition. Otherwise, you
cannot generate a script that creates an impact report that provides information
about the objects and resources examined and lists details of any warnings or
errors detected.

1. Enter search criteria, then click Search.

The sensitive columns you defined in the ADM appear in the table below.

2. Either select one or more columns for later formatting on the Create Masking Definition
page, or formatting now if the data types of the columns you have selected are identical.

3. Optional: if you want to mask selected columns as a group, enable Mask selected
columns as a group. The columns that you want to mask as a group must all be from the
same table.

Enable this check box if you want to mask more than one column together, rather than
separately. When you select two or more columns and then later define the format on the
Define Group Mask page, the columns appear together, and any choices you make for
format type or masking table apply collectively to all of the columns.

After you define the group and return to this page, the Column Group column in the table
shows an identical number for each entry row in the table for all members of the group.
For example, if you have defined your first group containing four columns, each of the
four entries in this page will show a number 1 in the Column Group column. If you define
another group, the entries in the page will show the number 2, and so forth. This helps
you to distinguish which columns belong to which column groups.

Chapter 4
Masking with an Application Data Model and Workloads

4-21



4. Either click Add to add the column to the masking definition, return to the Create
Masking Definition page and define the format of the column later, or click Define
Format and Add to define the format for the column now.

The Define Format and Add feature can save you significant time. When you
select multiple columns to add that have the same data type, you do not need to
define the format for each column as you would when you click Add. For instance,
if you search for Social Security numbers (SSN) and the search yields 100 SSN
columns, you could select them all, then click Define Format and Add to import
the SSN format for all of them.

5. Do one of the following:

• If you clicked Add in the previous step:

You will eventually need to define the format of the column in the Create
Masking Definition page before you can continue. When you are ready to do
so, click the icon in the page Format column for the column you want to
format. Depending on whether you decided to mask selected columns as a
group on the Add Columns page, either the Define Column mask or Define
Group mask appears. Read further in this step for instructions for both cases.

• If you clicked Define Format and Add in the previous step and did not check
Mask selected columns as a group:

The Define Column Mask page appears, where you can define the format for
the column before adding the column to the Create Masking Definition page,
as explained below:

– Provide a format entry for the required Default condition by either selecting
a format entry from the list and clicking Add, or clicking Import Format,
selecting a predefined format on the Import Format page, then clicking
Import.

The Import Format page displays the formats that are marked with the
same sensitive type as the masked column.

– Add another condition by clicking Add Condition to add a new condition
row, then provide one or more format entries as described in the previous
step.

– When you have finished formatting the column, click OK to return to the
Create Masking Definition page.

• If you clicked Define Format and Add in the previous step and checked Mask
selected columns as a group:

The Define Group Mask page appears, where you can add format entries for
group columns that appear in the Create Masking Definition page, as
explained below:

– Select one of the available format types. For complete information on the
format types, see the online help for the Defining the Group Masking
Format topic.

– Optionally add a column to the group.

– When you have finished formatting the group, click OK to return to the
Create Masking Definition page.

The results appear in the Columns table. The sensitive columns you
selected earlier now appear on this page. Primary key and foreign key
columns appear below the sensitive columns.
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Selecting Data Masking Advanced Options
The following options on the Masking Definitions page are all checked by default, so you
need to uncheck the options that you do not want to enable:

• Data Masking Options

• Random Number Generation

• Pre- and Post-mask Scripts

Data Masking Options
The data masking options include:

• Disable redo log generation during masking

Masking disables redo logging and flashback logging to purge any original unmasked
data from logs. However, in certain circumstances when you only want to test masking,
roll back changes, and retry with more mask columns, it is easier to uncheck this box and
use a flashback database to retrieve the old unmasked data after it has been masked.
You can use Enterprise Manager to flashback a database.

Note:

Disabling this option compromises security. You must ensure this option is
enabled in the final mask performed on the copy of the production database.

• Refresh statistics after masking

If you have already enabled statistics collection and would like to use special options
when collecting statistics, such as histograms or different sampling percentages, it is
beneficial to turn off this option to disable default statistics collection and run your own
statistics collection jobs.

• Drop temporary tables created during masking

Masking creates temporary tables that map the original sensitive data values to mask
values. In some cases, you may want to preserve this information to track how masking
changed your data. Note that doing so compromises security. These tables must be
dropped before the database is available for unprivileged users.

• Decrypt encrypted columns

This option decrypts columns that were previously masked using Encrypt format. To
decrypt a previously encrypted column, the seed value must be the same as the value
used to encrypt.

Decrypt only recovers the original value if the original format used for the encryption
matches the original value. If the originally encrypted value did not conform to the
specified regular expression, when decrypted, the encrypted value cannot reproduce the
original value.

• Use parallel execution when possible

Oracle Database can make parallel various SQL operations that can significantly improve
their performance. Data Masking uses this feature when you select this option. You can
enable Oracle Database to automatically determine the degree of parallelism, or you can
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specify a value. For more information about using parallel execution and the
degree of parallelism, see the Oracle Database Data Warehousing Guide.

• Recompile invalid dependent objects after masking

The masking process re-creates the table to be masked and as a consequence, all
existing dependent objects (packages, procedures, functions, MViews, Views,
Triggers) become invalid. You can specify that the masking process recompile
these invalid objects after creating the table, by selecting the check box.
Otherwise, invalid objects are not recompiled using utl_comp procedures at the
end of masking.

If you choose this option, indicate whether to use serial or parallel execution. You
can enable Oracle Database to automatically determine the degree, or you can
specify a value. For more information about using parallel execution and the
degree of parallelism, see the Oracle Database Data Warehousing Guide.

Random Number Generation
The random number generation options include:

• Favor Speed

The DBMS_RANDOM package is used for random number generation.

• Favor Security

The DBMS_CRYPTO package is used for random number generation. Additionally, if
you use the Substitute format, a seed value is required when you schedule the
masking job or database clone job.

Pre- and Post-mask Scripts
When masking a test system to evaluate performance, it is beneficial to preserve the
object statistics after masking. You can accomplish this by adding a pre-masking script
to export the statistics to a temporary table, then restoring them with a post-masking
script after masking concludes.

Use the Pre Mask Script text box to specify any user-specified SQL script that must
run before masking starts.

Use the Post Mask Script text box to specify any user-specified SQL script that must
run after masking completes. Since masking modifies data, you can also perform
tasks, such as rebalancing books or calling roll-up or aggregation modules, to ensure
that related or aggregate information is consistent.

The following examples show pre- and post-masking scripts for preserving statistics.

This example shows a pre-masking script for preserving statistics.

variable sts_task  VARCHAR2(64);

/*Step :1 Create the staging table for statistics*/

exec dbms_stats.create_stat_table(ownname=>'SCOTT',stattab=>'STATS');
 
/* Step 2: Export the table statistics into the staging table. Cascade results 
in all index and column statistics associated with the specified table being 
exported as well. */
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exec
dbms_stats.export_table_stats(ownname=>'SCOTT',tabname=>'EMP',
partname=>NULL,stattab=>'STATS',statid=>NULL,cascade=>TRUE,statown=>'SCOTT');
exec
dbms_stats.export_table_stats(ownname=>'SCOTT',tabname=>'DEPT',
partname=>NULL,stattab=>'STATS',statid=>NULL,cascade=>TRUE,statown=>'SCOTT');

/* Step 3: Create analysis task */
3. exec :sts_task := DBMS_SQLPA.create_analysis_task(sqlset_name=>
'scott_test_sts',task_name=>'SPA_TASK', sqlset_owner=>'SCOTT');
 
/*Step 4: Execute the analysis task before masking */
exec DBMS_SQLPA.execute_analysis_task(task_name => 'SPA_TASK', 
execution_type=> 'explain plan', execution_name  => 'pre-mask_SPA_TASK'); 

This example shows a post-masking script for preserving statistics.

*Step 1: Import the statistics from the staging table to the dictionary tables*/
 
exec
dbms_stats.import_table_stats(ownname=>'SCOTT',tabname=>'EMP',
partname=>NULL,stattab=>'STATS',statid=>NULL,cascade=>TRUE,statown=>'SCOTT');
exec
dbms_stats.import_table_stats(ownname=>'SCOTT',tabname=>'DEPT',
partname=>NULL,stattab=>'STATS',statid=>NULL,cascade=>TRUE,statown=>'SCOTT');
 
/* Step 2: Drop the staging table */
 
exec dbms_stats.drop_stat_table(ownname=>'SCOTT',stattab=>'STATS');

/*Step 3: Execute the analysis task before masking */
exec DBMS_SQLPA.execute_analysis_task(task_name=>'SPA_TASK', 
execution_type=>'explain plan', execution_name=>'post-mask_SPA_TASK');
 
/*Step 4: Execute the comparison task */
exec DBMS_SQLPA.execute_analysis_task(task_name =>'SPA_TASK', 
execution_type=>'compare', execution_name=>'compare-mask_SPA_TASK'); 

See Also:

"Masking a Test System to Evaluate Performance" for a procedure that explains
how to specify the location of these scripts when scheduling a data masking job

Scheduling a Script Generation Job
To schedule a script generation job:

1. Select the masking definition to generate a script for, then click Generate Script.

2. Change the default job name to something meaningful, if desired, and provide an optional
job description.

3. Select a reference database from the drop-down list.

4. Select a script generation option:

• Mask In-Database–to replace sensitive data in-place with masked data on a
specified database (usually copied from production). Use this option only in non-
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production environments. This differs from the Actions menu option Clone
Database, which clones the database and then masks the data.

• Mask In-Export–to export masked data from the specified source database
(usually production) using Oracle Data Pump. This option is safe to run in a
production environment as it does not modify customer data. Note, however,
that this option creates temporary tables that get dropped when the masking
operation completes.

Note that you can choose both options; that is, a script to mask the database
directly and a script to create a masked dump.

5. Specify credentials to log in to the reference database.

6. Specify to start the job immediately or at a later specified date and time, then click
Submit.

A message confirms that the job has been scheduled. Refresh the page to see the
job results.

Scheduling a Data Masking Job
To set up the data masking job and schedule its execution:

1. Select the masking definition for which a script has been generated, then click
Schedule Job.

2. Change the default job name if desired and enter an optional job description.

3. Select a database from the drop-down menu and indicate your preference:

• Mask In-Database–to replace sensitive data in-place with masked data on a
specified database (usually copied from production). Use this option only in
non-production environments. This differs from the Actions menu option
Clone Database, which clones the database and then masks the data.

Note:

You must enable the check box indicating that the selected target is
not a production database in order to proceed.

• Mask In-Export–to export masked data from the specified source database
(usually production) using Oracle Data Pump. This option is safe to run in a
production environment as it does not modify customer data. Note, however,
that this option creates temporary tables that get dropped when the masking
operation completes.

Your selections affect the check box text that appears below the radio buttons as
well as other regions on the page.

4. Proceed according to your selections in Step 3:

• Data Mask Options–Provide the requisite information as follows:

– After script generation completes, the data masking script is stored in the
Enterprise Manager repository. By default, the data masking job retrieves
the script from the repository and copies it to the $ORACLE_HOME/dbs
directory on the database host, using a generated file name. The Script
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File Location and Name fields enable you to override the default location and
generated file name.

– Workloads–Select options to mask SQL tuning sets and capture files, as
appropriate. Browse to the file location where you want to capture the files.

– Detect SQL Plan Changes Due to Masking–Run the SQL Performance Analyzer
to assess the impact of masking. Provide a task name and browse to the
corresponding SQL tuning set.

• Data Export Options–Provide the requisite information as follows:

– Specify a directory where to save the mask dump. The drop-down list consists of
directory objects that you can access. Alternatively, you can select a custom
directory path. Click the check box if you want to speed the process by using an
external directory. Recommended default: DATA_FILE_DIR.

– Specify appropriate values if you want to override the defaults: enter a name for
the export file; specify a maximum file size in megabytes; specify the maximum
number of threads of active execution operating on behalf of the export job. This
enables you to consider trade-offs between resource consumption and elapsed
time.

– Specify whether to export only the masked data or the entire database along with
the masked data.

– Select whether to enable dump file compression and encryption. Enter and
confirm an encryption password, if appropriate. Log file generation is selected by
default.

5. Specify credentials to log in to the database host.

6. Specify credentials to log in to the reference database.

7. Choose one of the following options to create temporary objects:

• Optimize storage using default settings — compresses the temporary objects and
stores it

• Optimize storage using recommended settings — creates a temporary
tablespace to store the compressed mapping tables

• Optimize storage using custom setting
Create temporary objects in a custom tablespace — creates the temporary
objects in the tablespace that is specified in Step 8.

Create temporary objects and copy of table being masked in a custom
tablespace — creates the temporary objects and a copy of the original table that is
being masked in the tablespace specified in step 8.

Note:

This option might increase the masking time considerably as it requires to
make a copy of the original table, and then move both the temporary
objects and the copy of the original table to the custom tablespace.

8. If you chose custom settings in Step 5, select a custom tablespace where the objects
must be created.

9. Specify to start the job immediately or at a later specified date and time, then click
Submit.
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A message confirms that the job has been scheduled. Refresh the page to see the
job results.

Estimating Space Requirements for Masking Operations
Here are some guidelines for estimating space requirements for masking operations.
These estimates are based on a projected largest table size of 500GB. In making
masking space estimates, assume a "worst-case scenario."

• For in-place masking:

– 2 * 500GB for the mapping table (the mapping table stores both the original
and the masked columns. Worse case is every column is to be masked).

– 2 * 500GB to accommodate both the original and the masked tables (both
exist in the database at some point during the masking process).

– 2 * 500GB for temporary tablespace (needed for hash joins, sorts, and so
forth).

Total space required for the worst case: 3TB.

• For at-source masking:

– 2 * 500GB for the mapping table (as for in-place masking).

– 2 * 500GB for temporary tablespace (as for in-place masking).

– Sufficient file system space to accommodate the dump file.

Total space required for the worst case: 2TB plus the necessary file system space.

In either case, Oracle recommends that you set the temp and undo tablespaces to
auto extend.

You can specify a tablespace for mapping tables during script generation. If you do not
specify a tablespace, the tables are created in the tablespace of the executing user.
Note that space estimations are provided during script generation, with resource
warnings as appropriate. There are some situations, for example when using the
shuffle format, that do not require a mapping table. In these cases, updates to the
original table happen in-line.

Adding Dependent Columns
Dependent columns are defined by adding them to the Application Data Model. The
following prerequisites apply for the column to be defined as dependent:

• A valid dependent column should not already be included for masking.

• The column should not be a foreign key column or referenced by a foreign key
column.

• The column data should conform to the data in the parent column.

If the column does not meet these criteria, an "Invalid Dependent Columns" message
appears when you attempt to add the dependent column.

Masking Dependent Columns for Packaged Applications
The following procedure explains how to mask data across columns for packaged
applications in which the relationships are not defined in the data dictionary.
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To mask dependent columns for packaged applications:

1. Go to Data Discovery and Modeling and create a new Application Data Model (ADM)
using metadata collection for your packaged application suite.

When metadata collection is complete, edit the newly created ADM.

2. Manually add a referential relationship:

a. From the Referential Relationships tab, open the Actions menu, then select Add
Referential Relationship.

The Add Referential Relationship pop-up window appears.

b. Select the requisite Parent Key and Dependent Key information.

c. In the Columns Name list, select a dependent key column to associate with a parent
key column.

d. Click OK to add the referential relationship to the ADM.

The new dependent column now appears in the referential relationships list.

3. Perform sensitive column discovery.

When sensitive column discovery is complete, review the columns found by the discovery
job and mark them sensitive or not sensitive as needed.

When marked as sensitive, any discovery sensitive column also marks its parent and the
other child columns of the parent as sensitive. Consequently, it is advisable to first create
the ADM with all relationships. ADM by default, or after running drivers, may not contain
denormalized relationships. You need to manually add these.

For more information about sensitive column discovery, see Performing Sensitive Data
Discovery.

4. Go to Data Masking and create a new masking definition.

5. Select the newly created ADM and click Add, then Search to view this ADM's sensitive
columns.

6. Select columns based on your search results, then import formats for the selected
columns.

Enterprise Manager displays formats that conform to the privacy attributes.

7. Select the format and generate the script.

8. Execute the masking script.

Enterprise Manager executes the generated script on the target database and masks all
of your specified columns.

Importing a Data Masking Template
You can import and re-use a previously exported data masking definition saved as an XML
file to the current Enterprise Manager repository. You also can import an Oracle-supplied data
masking definition from the Software Library.

Importing a Previously Exported Masking Definition

Note the following advisory information:

• The XML file format must be compliant with the masking definition XML format.
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• Verify that the name of the masking definition to be imported does not already
exist in the repository, and the source database name identifies a valid Enterprise
Manager target.

• Verify that the value in the XML file to be imported refers to a valid database
target.

1. From the Data Masking Definitions page, click Import.

The Import Masking Definition page appears.

2. Specify a name for the masking definition and select the ADM to associate with
the template. The Reference Database is automatically provided.

3. Browse for the XML file, or specify the name of the XML file, then click Continue.

The Data Masking Definitions Page reappears and displays the imported definition
in the table list for subsequent viewing and masking.

Importing a Data Masking Template from the Software Library

The Self Update feature ensures that the latest Oracle-supplied data masking
templates are available in the Software Library. You can also check for updates. Go to
the Self Update page and check for Test Data Management updates. If present,
download and apply them so that they are available in the Software Library.

1. On the Data Masking Definitions page, click Import from Software Library.

The Import Masking Definition page appears.

2. Select a masking template in the Software Library list.

3. Specify a name for the masking definition and select the ADM to associate with
the template. The Reference Database is automatically provided.

4. Click Continue.

The Data Masking Definitions Page reappears and displays the imported definition
in the table list for subsequent viewing and masking.

You can also export a data masking definition from the Software Library.

1. On the Data Masking Definitions page, click Export from Software Library.

2. Select a masking template in the Software Library list.

3. Click Export.

Save the template file for import into a different repository.

Cloning the Production Database
When you clone and mask the database, a copy of the masking script is saved in the
Enterprise Manager repository and then retrieved and executed after the clone
process completes. Therefore, it is important to regenerate the script after any schema
changes or modifications to the production database.

To clone and optionally mask the masking definition's target database:

1. From the Data Masking Definitions page, select the masking definition you want to
clone, select Clone Database from the Actions list, then click Go.

The Clone Database: Source Type page appears.
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The Clone Database wizard appears, where you can create a test system to run the
mask.

2. Specify the type of source database backup to be used for the cloning operation, then
click Continue.

3. Proceed through the wizard steps as you ordinarily would to clone a database. For
assistance, refer to the online help for each step.

4. In the Database Configuration step of the wizard, add a masking definition, then select
the Run SQL Performance Analyzer option as well as other options as desired or
necessary.

5. Schedule and then run the clone job.

Masking a Test System to Evaluate Performance
After you have created a data masking definition, you may want to use it to analyze the
performance impact from masking on a test system. The procedures in the following sections
explain the process for this task for masking only, or cloning and masking.

Using Only Masking for Evaluation
To use only masking to evaluate performance:

1. From the Data Masking Definitions page, select the masking definition to be analyzed,
then click Schedule Job.

The Schedule Data Masking Job page appears.

2. At the top of the page, provide the requisite information.

The script file location pertains to the masking script, which also contains the pre- and
post-masking scripts you created in "Pre- and Post-mask Scripts".

3. In the Encryption Seed section, provide a text string that you want to use for encryption.

This section only appears for masking definitions that use the Substitute or Encrypt
formats. The seed is an encryption key used by the encryption/hash-based substitution
APIs, and makes masking more deterministic instead of being random.

4. In the Workloads section:

a. Select the Mask SQL Tuning Sets option, if desired.

If you use a SQL Tuning Set that has sensitive data to evaluate performance, it is
beneficial to mask it for security, consistency of data with the database, and to
generate correct evaluation results.

b. Select the Capture Files option, if desired, then select a capture directory.

When you select this option, the contents of the directory is masked. The capture file
masking is executed consistently with the database.

5. In the Detect SQL Plan Changes Due to Masking section, leave the Run SQL
Performance Analyzer option unchecked.

You do not need to enable this option because the pre- and post-masking scripts you
created, referenced in step 2, already execute the analyzer.

6. Provide credentials and scheduling information, then click Submit.
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The Data Masking Definitions page reappears, and a message appears stating
that the Data Masking job has been submitted successfully.

During masking of any database, the AWR bind variable data is purged to protect
sensitive bind variables from leaking to a test system.

7. When the job completes successfully, click the link in the SQL Performance
Analyzer Task column to view the executed analysis tasks and Trial Comparison
Report, which shows any changes in plans, timing, and so forth.

Using Cloning and Masking for Evaluation
Using both cloning and masking to evaluate performance is very similar to the
procedure described in the previous section, except that you specify the options from
the Clone Database wizard, rather than from the Schedule Data Masking Job page.

To use both cloning and masking to evaluate performance:

1. From the Data Masking Definitions page, select the masking definition you want to
clone, select Clone Database from the Actions list, then click Go.

The Clone Database: Source Type page appears.

The Clone Database wizard appears, where you can create a test system to run
the mask.

2. Specify the type of source database backup to be used for the cloning operation,
then click Continue.

3. Proceed through the wizard steps as you ordinarily would to clone a database. For
assistance, refer to the online help for each step.

4. In the Database Configuration step of the wizard, add a masking definition, then
select the Run SQL Performance Analyzer option as well as other options as
desired or necessary.

Note:

The format of the Database Configuration step appears different from the
Schedule Data Masking Job page discussed in "Using Only Masking for
Evaluation", but select options as you would for the Schedule Data
Masking Job page.

5. Continue with the wizard steps to complete and submit the cloning and masking
job.

Upgrade Considerations
Upgrading data masking definitions from 10 or 11 Grid Control to 12c Cloud Control
assumes that you have completed the following tasks:

• Upgraded Enterprise Manager to 12c

• Downloaded the latest database plug-in using Self Update and deployed the plug-
in to OMS and Management Agent
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Completing these tasks automatically upgrades the masking definitions and creates for each
a shell Application Data Model (ADM) that becomes populated with the sensitive columns
and their dependent column information from the legacy mask definition. The ADM, and
hence data masking, then remains in an unverified state, because it is missing the dictionary
relationships.

Proceed as follows to complete the masking definition upgrade:

1. From the Enterprise menu, select Quality Management, then select Data Discovery
and Modeling.

2. For each shell ADM (verification status is Needs Upgrade), do the following:

a. Select the ADM in the table.

b. From the Actions menu, select Upgrade and Verify.

c. Schedule and submit the job.

When the job completes, verification status should be Valid.

3. From the Enterprise menu, select Quality Management, then select Data Masking
Definitions.

4. For each upgraded masking definition, do the following:

a. Open the masking definition for editing.

b. In Advanced Options, select the "Recompile invalid dependent objects after
masking" option, with Parallel and Default settings.

c. Click OK to save your changes.

5. Next, schedule a script generation job for each upgraded masking definition.

You can now resume masking with the upgraded data masking definitions.

See Also:

"Adding Dependent Columns" for information on dependent columns

Consider these other points regarding upgrades:

• You can combine multiple upgraded ADMs by exporting an ADM and performing an
Import Content into another ADM.

• An upgraded ADM uses the same semantics as for upgrading a legacy mask definition
(discussed above), in that you would need to perform a validation.

• An 11.1 Grid Control E-Business Suite (EBS) masking definition based on an EBS
masking template shipped from Oracle is treated as a custom application after the
upgrade. You can always use the approach discussed in the first bulleted item above to
move into a newly created EBS ADM with all of the metadata in place. However, this is
not required.

Using the Shuffle Format
A shuffle format is available that does not preserve data distribution when the column values
are not unique and also when it is conditionally masked. For example, consider the Original
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Table (Table 4-1) that shows two columns: EmpName and Salary. The Salary column
has three distinct values: 10, 90, and 20.

Table 4-1     Original Table (Non-preservation)

EmpName Salary

A 10

B 90

C 10

D 10

E 90

F 20

If you mask the Salary column with this format, each of the original values is replaced
with one of the values from this set. Assume that the shuffle format replaces 10 with
20, 90 with 10, and 20 with 90 (Table 4-2).

Table 4-2    Mapping Table (Non-preservation)

EmpName Salary

10 20

90 10

20 90

The result is a shuffled Salary column as shown in the Masked Table (Table 4-3), but
the data distribution is changed. While the value 10 occurs three times in the Salary
column of the Original Table, it occurs only twice in the Masked Table.

Table 4-3    Masked Table (Non-preservation)

EmpName Salary

A 20

B 10

C 20

D 20

E 10

F 90

If the salary values had been unique, the format would have maintained data
distribution.

Using Group Shuffle
Group shuffle enables you to perform a shuffle within discrete units, or groups, where
there is a relationship among the members of the group. Consider the case of shuffling
the salaries of employees. Table 4-4 illustrates the group shuffle mechanism, where
employees are categorized as managers (M) or workers (W), and salaries are shuffled
within job category.
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Table 4-4    Group Shuffle Using Job Category

Employee Job Category Salary Shuffled Salary

Alice M 90 88

Bill M 88 90

Carol W 72 70

Denise W 57 45

Eddie W 70 57

Frank W 45 72

Using Conditional Masking
To demonstrate how conditional masking can handle duplicate values, add to Table 4-4
another job category, assistant (A), where the employee in this category, George, earns the
same as Frank. Assume the following conditions:

• If job category is M, replace salary with a random number between 1 and 10.

• If job category is W, set salary to a fixed number (01).

• Default is to preserve the existing value.

Applying these conditions results in the masked values shown in Table 4-5:

Table 4-5    Using Job Category for Group Shuffle

Employee Job Category Salary Conditional Result

Alice M 90 5

Bill M 88 7

Carol W 72 01

Denise W 57 01

Eddie W 70 01

Frank W 45 01

George A 45 45

Conditional masking works when there are duplicate values provided there are no dependent
columns or foreign keys. If either of these is present, a "bleeding condition" results in the first
of two duplicate values becoming the value of the second. So, in the example, George's
salary is not preserved, but becomes 01.

Using Data Masking with LONG Columns
When data masking script generation completes, an impact report appears. If the masking
definition has tables with columns of data type LONG, the following warning message is
displayed in the impact report:

The table <table_name> has a LONG column. Data Masking uses "in-place" UPDATE 
to mask tables with LONG columns. This will generate undo information and the
original data will be available in the undo tablespaces during the undo 
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retention period. You should purge undo information after masking the data. 
Any orphan rows in this table will not be masked.
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5
Data Subsetting

This chapter covers the Integrated Subset and Mask capability, where you perform data
masking and subsetting in a single taskflow and outlines a number of scenarios to
demonstrate the process. You must have the Oracle Data Masking and Subsetting Pack
license to use data subsetting features.

Note:

Data subsetting is supported only in Oracle Database versions 10.1 and higher. The
procedures in this chapter are applicable only to Oracle Enterprise Manager Cloud
Control 12.1 and higher.

Creating a Data Subset Definition
The procedure described in this section enables you to create a subset database, after which
you can perform other tasks, such as editing the properties of the subset definition or
exporting a subset definition.

The interface also allows you to perform inline, or at the source, masking while creating the
subset definition.

Before proceeding, ensure that you have the following privileges:

• EM_ALL_OPERATOR for Enterprise Manager Cloud Control users

Note:

The EM_ALL_OPERATOR privilege is not required, if you have the following
privileges:

Target Privileges (applicable to all targets):

– Connect to any viewable target

– Execute Command Anywhere

– View Any Target

Resource Privileges:

– Job System

– Named Credential

– Oracle Data Masking and Subsetting resource privilege

• SELECT_ANY_DICTIONARY privilege for database users
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• To perform an in-place delete operation, the DBA user must be granted
EXECUTE_ANY_TYPE privilege.

• To subset tables that have Virtual Private Database (VPD) policies, the user
performing subsetting must be granted Exempt Access Policy privilege.

To create a data subset definition:

1. From the Enterprise menu, select Quality Management, then Data Subsetting
Definitions.

2. Open the Actions menu in the Data Subsetting Definitions page, then select
Create, or just click the Create icon.

3. Define the data subset definition properties:

a. Provide the requisite information in the General pop-up that appears, then
click Continue.

You can select any source database associated with the Application Data
Model.

If you are performing masking within the subset definition, you must select the
same ADM and target used in creating the masking definition.

b. Provide a job name, credentials, and specify a schedule in the Schedule
Application Detail Collection pop-up that appears, then click Submit.

If you want to use new credentials, choose the New Credentials option.
Otherwise, choose the Preferred Credentials or Named Credentials option.

The space estimate collection job runs, and then displays the Data Subset
Definitions page. Your definition appears in the table, and the Most Recent Job
Status column should indicate Scheduled, Running, or Succeeded, depending on
the schedule option selected and time required to complete the job.

4. Select the definition within the table, open the Actions menu, then select Edit.

The Database Login page appears.

5. Select either Named Credentials or New Credentials if you have not already set
preferred credentials, then click Login.

6. In the Applications subpage of the Edit page, move applications from the Available
list to the Selected list as follows:

• If you intend only to mask the data (no subsetting), select all applications.

• If you intend only to subset the data (no masking), select specific applications
as appropriate.

• If you intend both to subset and mask the data, the applications selected must
include those that the masking definitions require.

The names of application suites, applications, or application modules are
maintained in the Application Data Model.

7. Click the Object Rules tab.
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Note:

If you are masking only, set the Default Object Rows option to include all rows
and skip to Step 13. The Column Mask Rules tab, Rule Parameters tab, and
additional features on the Object Rules tab pertain specifically to subsetting.

You can add rules here to define the data to include in the subset.

8. Select Actions, then Create to display the Object Rule pop-up, or just click the Create
icon.

a. Select the application for which you want to provide a rule.

Associate the rule with all objects, a specific object, or a specific type of object.

b. If you select All Objects, in the Rows to Include section, select all rows or some rows
by specifying a percentage portion of the rows.

c. If you select Specified as the object type, the tables from the selected Application
appear in the drop-down list.

In the Rows to Include section, select all rows, or some rows by specifying a
percentage portion of the rows. For finer granularity, you could specify a Where
clause, such as where region_id=6.

If the selected table is partitioned, click Add/Remove Partitions to choose the
partitions and sub-partitions from which the objects must be included in the subset.

d. In the Include Related Rows section, do one of the following:

• Select Ancestor and Descendant Objects

This rule impacts the parent and child columns, and ensures that referential
integrity is maintained, and that child columns are also selected as part of the
subset.

• Select Ancestor Objects Only

This option will be disabled if the global rule is set to “Include All Rows”, and will
be enabled if it is set to “Include No Rows”. This rule only impacts the parent
columns, and ensures that referential integrity is maintained.

Select Descendant Objects Only

This option will be disabled if the global rule is set to “Include No Rows”, and will
be enabled if it is set to “Include All Rows”.

In Oracle Data Masking and Subsetting release 13.2, users can now set the rule
scope to “Include Related Rows” with global rule scope set to “Include All Rows” and
vice versa, and all unrelated tables are processed using the global rule “Include All
Rows” .

If you disable the Include Related Rows check box, referential integrity might not be
maintained. However, you can define additional rules on the related tables to restore
the referential integrity. You can disable this check box whether or not you specify a
Where clause.

e. If you want to specify a Where clause, go to the next step. Otherwise, skip to Step 9.

f. Provide a rule parameter, if desired, for the clause.
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For instance, if you specify a particular value for an employee ID as
employee_id=:emp_id, you could enter query values for the default of 100:

• Select the Rows Where button and enter employee_id=:emp_id.

• Click OK to save the rule and return to the Object Rules tab.

If this is a new rule, a warning appears stating that "Rule parameters
corresponding to the bind variables 'emp_id' should be created before
generating subset."

• Select the table rule, click the Rule Parameters tab, then click Create.

The Rule Parameter Properties pop-up appears.

• Enter emp_id for the Name and 100 for the Value.

Note:

The colon ( : ) preceding emp_id is only present in the Where
clause, and not required when creating a new rule parameter.

• Click OK to save the properties, which now appear in the Rule
Parameters tab.

• Skip to Step 10.

9. Click OK to save the rule and return to the Object Rules tab.

The new rule is displayed in the list. The related objects are displayed in the table
below. Related rows from the objects are included in the subset to provide
referential integrity in the subset database.

10. In the Related Objects section of the Object Rules tab, you can manage the size
of the subset by controlling the levels of ancestors and descendants within the
subset. Notice that each node in the table has a check box. By default, all nodes
are included in the subset, as indicated by the check mark. Deselect the check box
to exclude a node from the subset. The deselection option is disabled for parent
rows (the join columns to the right identify parent and child rows). In addition, you
can make these other refinements to subset content:

• Click Allow Excluding Parent Objects. This enables the check marks that
were grayed out. You can now selectively exclude parent rows from the subset
by deselecting the check box.

• Select a node within the table and click Add Descendants to include related
rows. In the dialog that opens, make appropriate selections and click OK.

As you make these refinements, columns on the right reflect the effect on space
estimates for the subset. The Related Objects section also denotes the processing
order of the ancestor and descendant tables, including the detailed impact of
including each object. When you are done with the refinements, go to the Space
Estimates tab to see a finer granularity of the impact on the overall size of the
subset.

11. In the Default Object Rows section of the Object Rules tab, choose whether you
want to include or exclude the objects not affected by the defined rules in the
subset.

When you select the Include All Rows option, all of the rows for the object are
selected as part of the subset.
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This is a global rule and applies to the entire subset. You can only select the Include All
Rows option when all of the rules have a scope of None. A scope of None is established
when you uncheck the Include Related Rows option in the Object Rule pop-up.

Note:

For a subset definition that has column rules (see Step 12), be sure to use
object rules to include the corresponding objects. You can use the Default
Object Rows option to include all objects not affected by object rules, if
required.

12. Optional: Click the Column Mask Rules tab to perform inline masking as part of the
subset definition.

a. Click Create and enter search criteria to filter on columns within the schema. These
would typically be vertical columns such as CLOB AND BLOB columns.

Note:

If you are using column mask rules instead of masking definitions (see Step
13), you can select no more than 10 columns in a given table. This
restriction applies to the export method but not to the in-place delete
method.

Click OK.

b. Select a row or rows in the column search results and click Manage Masking
Formats.

c. In the pop-up dialog, select a masking format and value to apply to the columns. For
multiselection, the same format must be appropriate for all columns. If you select
multiple columns, ensure that the column rule format you choose is applicable to the
selected columns. Use the columns (flags) not null and unique to enforce
compliance.

Click OK to apply the masking format to the columns.

13. Optional: Click the Data Masking Definitions tab to include masking definitions as part
of the subsetting operation or to perform at the source data masking only.

a. Click Add.

b. In the pop-up dialog, enter search criteria to retrieve appropriate definitions. Be sure
to select the desired radio button (All or Any). All formats except compound masking
are supported for inline masking.

Note:

No single table within a masking definition can have more than 10 masked
columns if you are using the export method. The restriction does not apply
to the in-place delete method.
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Click OK.

The search results appear in the data masking table.

14. Click the Space Estimates tab.

• Note the value in the Estimated Subset Size MB column. The space estimates
depend on optimizer statistics, and the actual distribution of data can only be
calculated if histogram statistics are present.

• Whenever you add new rules, recheck the space estimates for updated
values.

• Data in the Space Estimates subpage is sorted with the largest applications
appearing at the top.

Note:

Space estimates are accurate only if “dbms_stats.gather_table_stats” is
used. Also, space estimates do not reflect the effect of data masking, if
used.

If you provide a Where clause and subsequent rule parameter properties, the
Space Estimates subpage is updated with the value contained in the Rule
Parameters tab.

15. Optional: click the Pre/Post Subset Script tab.

• You can specify a pre-subset script to run on the subset database before you
select subset data.

• You can specify a post-subset script to run on the subset database after you
assemble the subset data.

• Either script type runs on the source database.

Note:

Ensure that the PL/SQL block defined the pre-susbset or post-subset
script includes a “/” at the end.

16. Click Return.

The definition is complete and displayed in the Data Subsetting Definitions table.

You can now proceed with script generation. Alternatively, you may want to save the
script for future use. In either case, you must decide whether to export data to a dump
file or delete data from a target database.
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Tip:

If you have a very large database of 4 terabytes, for instance, and you want to
export a small percentage of the rows, such as 10%, it is more advantageous to use
the export method. Using the in-place delete method would require 3.6 terabytes of
data, which would not perform as quickly as the export method.

The in-place delete method is recommended when the amount of data being
deleted is a small percentage of the overall data size.

There is an EMCLI verb if you want to perform an in-place delete remotely or script
it.

Generating a Subset Script
To prepare and submit a job to generate a subset script:

1. Select the definition within the table, open the Actions menu, then select Generate
Subset.

The Generate Subset pop-up appears.

2. Select a target database that is either the same target database you used to create the
subset model, or similar to this database regarding the table schema and objects.

3. Decide if you want to create a subset by writing subset data to export files, or by deleting
data from a target database.

Note:

Choosing to delete data creates an in-place subset by removing or deleting
unwanted data from a cloned copy of the production database, rather than a
production database. Only data satisfying the rules are retained. You should
never use this option on a production database.

Select either Named Credentials or New Credentials if you have not already set preferred
credentials.

If you have defined any parameters from the Rule Parameters tab, they appear in the
table at the bottom. You can change a parameter value by clicking on the associated field
in the Value column.

4. Click Continue to access the Parameters pop-up. The contents of the pop-up depend on
whether you chose the export or delete option in the previous step.

For Writing Subset Data to Export Files, provide the requisite information, then click
Continue to schedule the job.

• Specify a subset directory where to save the export dump. The drop-down list
consists of directory objects for which you have access. Alternatively, you can select
a custom directory path. Click the check box if you want to speed the process by
using an external directory. Recommended default: DATA_PUMP_DIR.

• Specify appropriate values if you want to override the defaults: enter a name for the
export file; specify a maximum file size in megabytes; specify the maximum number
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of threads of active execution operating on behalf of the export job. This
enables you to consider trade-offs between resource consumption and
elapsed time.

• Specify whether you want to export only the subsetted data or the entire
database along with the subsetted data.

• Select whether to enable dump file compression and encryption. Enter and
confirm an encryption password, if appropriate. Log file generation is selected
by default.

For Deleting Data From a Target Database, provide the requisite information,
then click Continue to schedule the job.

• Specify a subset directory where to save the subset scripts. The drop-down list
consists of directory objects for which you have access. Alternatively, you can
select a custom directory path. Recommended default: DATA_FILE_DIR.

• You must enable the check box indicating that the selected target is not a
production database in order to proceed.

5. Click Continue to review the estimated storage requirement for generating the
subset script.

Note:

If the required storage for generating the susbset script is much more
than the available space, allocate the necessary space to ensure that
you have enough space to proceed with generating the subset script.

6. Specify a name for the subset job, and provide a description. Schedule the job to
run immediately or at a later point of time, then click Submit.

The Data Subset Definitions page reappears, and the Most Recent Job Status
column shows that the subset job is running, and subsequently that it has
succeeded.

After performing this procedure, you can now create a subset database with the
generated export files at any time.

Saving a Subset Script
To prepare and submit a job to save a subset script:

1. Select the definition within the table, open the Actions menu, then select Save
Subset Script. The Subset Mode pop-up appears.

2. Select a target database that is either the same target database you used to
create the subset model, or similar to this database regarding the table schema
and objects.

3. Decide if you want to create a subset by writing subset data to export files, or by
deleting data from a target database.

Choosing to delete data creates an in-place subset by removing/deleting
unwanted data from a cloned copy of the production database, rather than a
production database. Only data satisfying the rules are retained. You should never
use this option on a production database.
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Select either Named Credentials or New Credentials if you have not already set preferred
credentials.

If you have defined any parameters from the Rule Parameters tab, they appear in the
table at the bottom. You can change a parameter value by clicking on the associated field
in the Value column.

4. Click Continue to access the Parameters pop-up. The contents of the pop-up depend on
whether you chose the export or delete option in the previous step.

For Writing Subset Data to Export Files, provide the requisite information, then click
Continue to schedule the job.

• Specify a subset directory where to save the export dump. The drop-down list
consists of directory objects for which you have access. Alternatively, you can select
a custom directory path. Click the check box if you want to speed the process by
using an external directory. Recommended default: DATA_PUMP_DIR.

• Specify appropriate values if you want to override the defaults: enter a name for the
export file; specify a maximum file size in megabytes; specify the maximum number
of threads of active execution operating on behalf of the export job. This enables you
to consider trade-offs between resource consumption and elapsed time.

• Specify whether to export only the subsetted data or the entire database along with
the subsetted data.

• Select whether to enable dump file compression and encryption. Enter and confirm
an encryption password, if appropriate. Log file generation is selected by default.

For Deleting Data From a Target Database, provide the requisite information, then click
Continue to schedule the job.

• Specify a subset directory where to save the subset scripts. The drop-down list
consists of directory objects for which you have access. Alternatively, you can select
a custom directory path. Recommended default: DATA_FILE_DIR.

• You must enable the check box indicating that the selected target is not a production
database in order to proceed.

5. Click Continue. A progress indicator tracks script generation. When complete, the Files
table lists the results of script generation.

6. Click Download. In the File Download pop-up that appears, click Save.

7. In the Save As pop-up that appears, navigate to a file location and click Save.

The file containing the scripts (SubsetBundle.zip) now appears at the specified location
on your desktop.

To run the saved script at a later time:

1. Port the ZIP file to the target database and extract it to a directory on which you have the
requisite privileges.

2. Change directory to where you extracted the files.

3. Execute the following script from the SQL command line:

subset_exec.sql

Note that if you want to change generated parameter settings, you can do so by editing
the following file in a text editor prior to executing the script:

subset_exec_params.lst
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Importing and Exporting Subset Templates and Dumps
A subset template is an XML file that contains the details of the subset, consisting of
the application, subset rules, rule parameters, and pre-scripts or post-scripts. When
you create a subset definition and specify that you want to write subset data to export
files, the export files become a template that you can subsequently import for reuse.
You would import the template to perform subset operations on a different database.

Typically, the workflow is that you would first import a previously exported ADM
template, which is another XML file, while creating an ADM. You would then import the
related subset template while creating a data subset definition. You could alternatively
select an existing ADM (skipping the import ADM flow) while importing the subset
template.

Note:

There are EMCLI verbs to export and import subset definitions and subset
dumps if you want to perform these operations remotely or script them.

Importing a Subset Definition
There are three methods of import:

• Importing a Subset Definition XML File From Your Desktop

• Importing a Subset Dump

• Importing a Subset Definition XML File From the Software Library

Importing a Subset Definition XML File From Your Desktop

1. From the Actions menu, select Import, then select File from Desktop.

2. In the pop-up that appears:

a. Specify a name for the subset definition.

b. The ADM on which the subset is based.

c. A source database.

d. The location on your desktop from which you want to import the subset
definition.

e. Click Continue.

3. In the pop-up that appears:

a. Enter a descriptive job name (or accept the default).

b. Provide credentials.

c. Schedule the job.

d. Click Submit.
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After the job runs successfully, the imported subset appears in the list of subsets in the table
on the Data Subset Definitions page.

Importing a Subset Dump

1. From the Actions menu, select Import, then select Subset Dump.

2. In the pop-up that appears:

a. Select a target database.

b. Provide database and host credentials, then click Login.

c. Specify the location of the dump file, which can be in a selected directory on the
target database or at a custom path on the target. Note that if the original export
action used an external location for the dump files, the location must be specified as
well.

d. Click Continue.

3. In the pop-up that appears:

a. Select whether to import both metadata and data, or data only. If data only, indicate if
you want to truncate, that is, overlay existing data or append to existing data.

b. Enable OID transform during type or object creation to create a new OID.

Creating a new OID will break the REF columns that point to the object.

c. Specify whether to use the default tablespace on the target database or remap the
tablespaces from the existing tablespace to another tablespace.

d. Perform tablespace remapping as necessary.

e. Specify whether you want to retain the existing tables in the destination schema or
drop the existing tables in the destination schema.

f. Perform schema remapping as necessary.

g. Select log file options.

h. Click Continue.

4. In the pop-up that appears:

a. Enter a descriptive job name (or accept the default).

b. Schedule the job.

c. Click Submit.

The job reads the dump files and loads the data into the selected target database.

Importing a Subset Definition XML File From the Software Library
1. From the Actions menu, select Import, then select File from Software Library.

2. In the Import Data Subset Definition from Software Library pop-up that appears:

a. Selected the desired subset definition XML file on the left.

b. Provide the ADM properties on the right.

c. Click Continue.
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3. In the pop-up that appears:

a. Enter a descriptive job name (or accept the default).

b. Provide credentials.

c. Schedule the job.

d. Click Submit.

After the job runs successfully, the imported subset appears in the list of subsets in the
table on the Data Subset Definitions page.

Exporting a Subset Definition
There are two methods of export:

• Exporting a Subset Definition as an XML File to Your Desktop

• Exporting a Subset Definition From the Software Library

Exporting a Subset Definition as an XML File to Your Desktop

1. From the Data Subset Definitions page, select the subset definition you want to
export.

2. From the Actions menu, select Export, then select Selected Subset Definition.

3. In the File Download pop-up that appears, click Save.

4. In the Save As pop-up that appears, navigate to a file location and click Save.

The system converts the subset definition into an XML file that now appears at the
specified location on your desktop.

Exporting a Subset Definition From the Software Library

1. From the Actions menu, select Export, then select File from Software Library.

2. In the Export Subset Definition from Software Library pop-up that appears, select
the desired subset definition and click Export.

3. In the File Download pop-up that appears, click Save.

4. In the Save As pop-up that appears, navigate to a file location and click Save.

The system converts the subset definition into an XML file that now appears at the
specified location on your desktop.

After the job runs successfully, the subset template appears in the list of subsets in the
table on the Data Subset Definitions page.

Creating a Subset Version of a Target Database
After a subset is defined, analyzed, and validated, you can execute the subset
operation to create a subset version of the source data.

The procedure assumes the following prerequisites:
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• A subset definition already exists that contains the rules needed to subset the database.

• You have the requisite privileges to extract the data from the source and create the
subset version in a target database. Depending on the subset technique, different levels
of file or database privileges may be created. The required privileges include:

– Target Privileges (applicable to all targets):

* Connect to any viewable target

* Execute Command Anywhere

* View Any Target

– Resource Privileges:

* Job System

* Named Credential

* Oracle Data Masking and Subsetting resource privilege

Note:

The EM_ALL_OPERATOR privilege for Enterprise Manager Cloud Control users
includes all of the above privileges.

– SELECT_CATALOG_ROLE for database users

– SELECT ANY DICTIONARY privilege for database users

– DBA privileges on a database for target database users

• Additionally, to perform an in-place delete operation, the DBA user must be granted the
EXECUTE_ANY_TYPE privilege

To create a subset version of a target database:

1. Create a subset operation by selecting a subset definition and associating it with a source
database.

Enterprise Manager validates the subset definition against the source database and flags
schema differences. Note that this association may be different from the original
association that an application developer may have created.

2. Edit the definition to remap the defined schema to a test schema.

You are prompted to connect to a database, whereupon the database is associated with
the subset definition. This also enables you to remap the vendor-provided schema names
to actual schema names in the database.

3. Select one of the various subset creation techniques:

• Data Pump dump file followed by a Data Pump import

• In-place delete, in which rows in the specified database not matching the rule
conditions are deleted

• In-transit subset creation or refresh

Enterprise Manager generates the appropriate response file (that is, SQL script, Data
Pump script, or OS script), checks the target system for appropriate privileges to be able
proceed with the operation, and estimates the size of the target.
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4. After reviewing the analysis, submit the subset process.

Enterprise Manager executes the subset process and summarizes the results of
the execution.

Synchronizing a Subset Definition with an Application Data
Model

Changes to an ADM, adding referential relationships or deleting tables, for example,
can render a subset definition stale. The Subset Definitions page clearly indicates this
condition with a lock icon next to the subset name and an invalid status. Also, most
menu items on the Actions menu are disabled. To revert the status to valid and unlock
the subset definition, you have to synchronize the definition with its associated ADM.

1. On the Subset Definitions page, select the locked subset definition.

2. From the Actions menu, select Synchronize.

3. Complete the job submission dialog, then click Submit.

When the job completes, the subset definition is unlocked and available for use.

Granting Privileges on a Subset Definition
You can grant privileges on a subset definition that you create so that others can have
access. To do so, you must be an Enterprise Manager Administrator with at least
Designer privileges on the subset definition.

1. From the Enterprise menu, select Quality Management, then select Data
Subset Definitions.

2. Select the subset definition to which you want to grant privileges.

3. From the Actions menu, select Grant, then select as follows:

• Operator–to grant Operator privileges on the subset definition to selected
roles or administrators, which means the grantees can view and copy but not
edit the definition.

• Designer–to grant Designer privileges on the subset definition to selected
roles or administrators, which means the grantees can view and edit the
definition.

4. In the dialog that opens, select the type (administrator or role, or both). Search by
name, if desired. Make your selections and click Select.

Those selected now have privileges on the subset definition.

5. Use the Revoke action if you want to deny privileges previously granted.

See "Oracle Data Masking and Subsetting Access Rights" for more information on
privileges within the test data management area.

About Inline Masking and Subsetting
You can reduce the size of the database simultaneous with masking sensitive data.
This serves the dual purpose of obscuring exported production data while greatly
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reducing hardware costs related to storing large masked production databases for testing.

Note:

Inline masking is available only with Oracle Database 11g and higher releases.

The benefits of integrating data masking with subsetting include the following:

• Prepare the test system in a single flow

• Avoid the necessity of maintaining large-size masked databases for test purposes

• Exported data in the form of a dump file can be imported into multiple databases without
exposing sensitive data

• Subsetting is enhanced by ability to discard columns containing chunks of large data

You can select one or more data masking definitions during subset creation. The masking
definitions must be based on the same ADM as the current subset definition. At the same
time, you can significantly reduce the subset size by defining column rules to set CLOB and
BLOB columns to null (or another supported format such as Fixed String, Fixed Number).

You generate a subset in two ways:

• Export Dump–if masking definitions are part of the subset model, mapping tables are
created during generation, and the resulting dump contains masked values

• In-Place Delete–subsetting is performed on a cloned copy of the production database; if
data masking is part of the subset model, pregenerated masking scripts are executed on
the target sequentially

Advantages of inline masking include the following:

• Sensitive data never leaves the production environment and thus is not exposed (Export
Dump option).

• There is no need to temporarily store data in a staging area.

• Exported data can subsequently be imported into multiple environments.

• You can define table rules to export only a subset of data, and can further trim the volume
by using column rules to eliminate large vertical columns.

• You can mask the same data in different ways and import into different test databases.

• You can use the provisioning framework to create multiple copies of trimmed down,
referentially intact databases containing no sensitive data (in-place delete), or import a
dump file into multiple databases (export dump).

The section "Creating a Data Subset Definition" includes instructions for combining data
subsetting and data masking within the process of creating a subset definition. See Data
Masking,for information on data masking and creating a data masking definition.

Inline Masking and Subsetting Scenarios
The scenarios described below assume that an Application Data Model (ADM) exists for a
production (or test) database in which sensitive column details are captured. The steps
outlined are at a high level. See "Masking with an Application Data Model and Workloads" for
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details on creating a masking definition; see "Creating a Data Subset Definition" for
details on creating and editing a subset definition.

Lifecycle Management
This section discusses the lifecycle management of Application Data Models, Data
Masking, and Data Subsetting definitions.

In the event of an Enterprise Manager user being dropped or modified, the user can
reassign the Application Data Model, data masking and data subsetting definitions to
another user in the system. However, if the user doesn’t reassign the Application Data
Model, data masking and data subsetting definitions to another user, these definitions
are automatically reassigned to the SYSMAN user.

When you try to reassign the Application Data Model, data masking and data
subsetting definitions to another user in the system, and if the reassigned user already
has a definition with the same name, the original definitions are renamed.

For example: User A has an Application Data Model, ADM1, and user B also has an
Application Data Model, named ADM1. If user B is being dropped, and you choose to
assign its definitions to user A, the original definition ADM1 is renamed to ADM1_B,
The original definitions with the same name are renamed by suffixing "_" and adding
the user name that is being dropped. After the reassignment, user A will now have
both definitions ADM1 and ADM1_B.
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