Contents

1 Oracle Fleet Patching and Provisioning Overview

- About Oracle Fleet Patching and Provisioning 1-1
- Fleet Patching and Provisioning Architecture 1-3
 - Oracle Fleet Patching and Provisioning Server 1-4
 - Oracle Fleet Patching and Provisioning Targets 1-4
 - Oracle Fleet Patching and Provisioning Clients 1-5
 - Oracle Fleet Patching and Provisioning Images 1-6
 - Oracle Fleet Patching and Provisioning Working Copies 1-6
- Oracle Fleet Patching and Provisioning Features 1-7

2 Oracle Fleet Patching and Provisioning Configuration

- Configuring Oracle Fleet Patching and Provisioning Server 2-1
 - Server Configuration Checklist for Oracle Fleet Patching and Provisioning 2-2
 - Oracle Fleet Patching and Provisioning Communication Ports 2-2
 - Creating a Fleet Patching and Provisioning Server 2-5
- Upgrading Oracle Fleet Patching and Provisioning Server 2-6
 - Starting Oracle FPP Server After Manually Upgrading Oracle Grid Infrastructure 2-7
- Configuring Oracle Fleet Patching and Provisioning Clients 2-7
 - Creating a Fleet Patching and Provisioning Client 2-7
 - Enabling and Disabling Fleet Patching and Provisioning Clients 2-9
 - Deleting a Fleet Patching and Provisioning Client 2-10
- Oracle Fleet Patching and Provisioning Local Mode 2-11
 - About Oracle Fleet Patching and Provisioning Local Mode 2-11
 - Patching Oracle Grid Infrastructure Using Local-Mode Configuration 2-12
 - Patching Oracle Database with the Independent Automaton 2-13

3 Managing Gold Images and Working Copies

- Adding Gold Images to the Fleet Patching and Provisioning Server 3-1
 - Image State 3-3
 - Image Series 3-3
 - Image Type 3-3
Creating Users and Assigning Roles for Fleet Patching and Provisioning
Client Cluster Users 7-5
Managing the Fleet Patching and Provisioning Client Password 7-5
Oracle Fleet Patching and Provisioning Server Auditing 7-6
Advanced Oracle Fleet Patching and Provisioning Configurations 7-6
User-Defined Actions 7-7
Oracle Fleet Patching and Provisioning Notifications 7-13
Job Scheduler for Operations 7-13
Patching Oracle Grid Infrastructure Using Batches 7-15
Gold Image Distribution Among Oracle Fleet Patching and Provisioning Servers 7-19
Error Prevention and Automated Recovery Options 7-21
Fleet Patching and Provisioning Logs and Trace Files 7-22

8 Oracle Fleet Patching and Provisioning Use Cases
Creating an Oracle Grid Infrastructure 19c Deployment 8-2
Provisioning an Oracle Database Home and Creating a Database 8-3
Provisioning a Pluggable Database 8-3
Upgrading to Oracle Grid Infrastructure 19c 8-4
Patching Oracle Grid Infrastructure and Oracle Databases Simultaneously 8-4
Patching Oracle Database 19c Without Downtime 8-5
Upgrading to Oracle Database 19c 8-7
Adding a Node to a Cluster and Scaling an Oracle RAC Database to the Node 8-8
Adding Gold Images for Fleet Patching and Provisioning 8-9
User Actions for Common Fleet Patching and Provisioning Tasks 8-10

A RHPCTL Command Reference
RHPCTL Overview A-1
Using RHPCTL Help A-2
RHPCTL Command Reference A-2
audit Commands
rhpctl delete audit A-3
rhpctl modify audit A-3
rhpctl query audit A-4
client Commands
rhpctl add client A-5
rhpctl delete client A-6
rhpctl discover client A-7
rhpctl export client A-8
rhpctl modify client A-9
rhpctl query client A-10
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhpctl update client</td>
<td>A-10</td>
</tr>
<tr>
<td>rhpctl verify client</td>
<td>A-11</td>
</tr>
<tr>
<td>credentials Commands</td>
<td>A-12</td>
</tr>
<tr>
<td>rhpctl add credentials</td>
<td>A-12</td>
</tr>
<tr>
<td>rhpctl delete credentials</td>
<td>A-13</td>
</tr>
<tr>
<td>database Commands</td>
<td>A-13</td>
</tr>
<tr>
<td>rhpctl add database</td>
<td>A-14</td>
</tr>
<tr>
<td>rhpctl addnode database</td>
<td>A-16</td>
</tr>
<tr>
<td>rhpctl addpdb database</td>
<td>A-17</td>
</tr>
<tr>
<td>rhpctl deletepdb database</td>
<td>A-19</td>
</tr>
<tr>
<td>rhpctl delete database</td>
<td>A-20</td>
</tr>
<tr>
<td>rhpctl deletenode database</td>
<td>A-21</td>
</tr>
<tr>
<td>rhpctl move database</td>
<td>A-23</td>
</tr>
<tr>
<td>rhpctl movepdb database</td>
<td>A-26</td>
</tr>
<tr>
<td>rhpctl upgrade database</td>
<td>A-28</td>
</tr>
<tr>
<td>rhpctl zdtupgrade database</td>
<td>A-30</td>
</tr>
<tr>
<td>exadata Commands</td>
<td>A-32</td>
</tr>
<tr>
<td>rhpctl update exadata</td>
<td>A-32</td>
</tr>
<tr>
<td>gihome Commands</td>
<td>A-34</td>
</tr>
<tr>
<td>rhpctl addnode gihome</td>
<td>A-34</td>
</tr>
<tr>
<td>rhpctl deletenode gihome</td>
<td>A-35</td>
</tr>
<tr>
<td>rhpctl move gihome</td>
<td>A-36</td>
</tr>
<tr>
<td>rhpctl upgrade gihome</td>
<td>A-39</td>
</tr>
<tr>
<td>image Commands</td>
<td>A-40</td>
</tr>
<tr>
<td>rhpctl add image</td>
<td>A-41</td>
</tr>
<tr>
<td>rhpctl allow image</td>
<td>A-42</td>
</tr>
<tr>
<td>rhpctl delete image</td>
<td>A-42</td>
</tr>
<tr>
<td>rhpctl deploy image</td>
<td>A-43</td>
</tr>
<tr>
<td>rhpctl disallow image</td>
<td>A-43</td>
</tr>
<tr>
<td>rhpctl import image</td>
<td>A-44</td>
</tr>
<tr>
<td>rhpctl instantiate image</td>
<td>A-46</td>
</tr>
<tr>
<td>rhpctl modify image</td>
<td>A-47</td>
</tr>
<tr>
<td>rhpctl query image</td>
<td>A-47</td>
</tr>
<tr>
<td>rhpctl promote image</td>
<td>A-48</td>
</tr>
<tr>
<td>rhpctl uninstantiate image</td>
<td>A-48</td>
</tr>
<tr>
<td>imagetype Commands</td>
<td>A-49</td>
</tr>
<tr>
<td>rhpctl add imagetype</td>
<td>A-49</td>
</tr>
<tr>
<td>rhpctl allow imagetype</td>
<td>A-50</td>
</tr>
<tr>
<td>rhpctl delete imagetype</td>
<td>A-50</td>
</tr>
<tr>
<td>rhpctl disallow imagetype</td>
<td>A-51</td>
</tr>
<tr>
<td>rhpctl modify imagetype</td>
<td>A-51</td>
</tr>
</tbody>
</table>
rhpctl query imagetype
job Commands
rhpctl delete job
rhpctl query job
osconfig Commands
rhpctl collect osconfig
rhpctl compare osconfig
rhpctl disable osconfig
rhpctl enable osconfig
rhpctl query osconfig
peerserver Commands
rhpctl query peerserver
role Commands
rhpctl add role
rhpctl delete role
rhpctl grant role
rhpctl query role
rhpctl revoke role
series Commands
rhpctl add series
rhpctl delete series
rhpctl deleteimage series
rhpctl insertimage series
rhpctl query series
rhpctl subscribe series
rhpctl unsubscribe series
server Commands
rhpctl export server
rhpctl query server
rhpctl register server
rhpctl unregister server
user Commands
rhpctl delete user
rhpctl modify user
rhpctl register user
rhpctl unregister user
useraction Commands
rhpctl add useraction
rhpctl delete useraction
rhpctl modify useraction
rhpctl query useraction
workingcopy Commands

rhpctl add workingcopy
rhpctl addnode workingcopy
rhpctl delete workingcopy
rhpctl query workingcopy
Preface

Information in Oracle Fleet Patching and Provisioning Administrator's Guide applies to Oracle Fleet Patching and Provisioning as it runs on all platforms unless otherwise noted. Where necessary, this manual refers to platform-specific documentation.

This Preface contains these topics:

• Audience
• Documentation Accessibility
• Related Documents
• Conventions

Audience

The Oracle Fleet Patching and Provisioning Administrator's Guide is intended for database administrators and system administrators who provision and maintain Oracle homes.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the Oracle resources listed in this section.

• Platform-specific Oracle Clusterware and Oracle RAC installation guides

 Each platform-specific Oracle Database gold image contains a copy of an Oracle Clusterware and Oracle RAC platform-specific installation and configuration guide in HTML and PDF formats. These installation books contain the preinstallation,
installation, and postinstallation information for the various UNIX, Linux, and Windows platforms on which Oracle Clusterware and Oracle RAC operate.

- Oracle Clusterware Administration and Deployment Guide
- Oracle Real Application Clusters Administration and Deployment Guide
- Oracle Database Administrator’s Guide
- Oracle Database Net Services Administrator’s Guide
- Oracle Database Error Messages Reference

See Also:

- Oracle Database Licensing Information User Manual to determine whether a feature is available on your edition of Oracle Database
- Oracle Database New Features Guide for a complete description of the new features in this release
- Oracle Database Upgrade Guide for a complete description of the deprecated and desupported features in this release

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Oracle Fleet Patching and Provisioning Overview

Oracle Fleet Patching and Provisioning is a software lifecycle management method for provisioning and maintaining Oracle homes.

Oracle Fleet Patching and Provisioning (Oracle FPP) enables mass deployment and maintenance of standard operating environments for databases, clusters, and user-defined software types. With Oracle Fleet Patching and Provisioning, you can also install clusters and provision, patch, scale, and upgrade Oracle Grid Infrastructure and Oracle Database 11g release 2 (11.2), and later. Additionally, you can provision applications and middleware.

Note:
Starting with Oracle Grid Infrastructure 19c, the feature formerly known as Rapid Home Provisioning (RHP) is now Oracle Fleet Patching and Provisioning (Oracle FPP).

• About Oracle Fleet Patching and Provisioning
Oracle Fleet Patching and Provisioning (FPP) is a service in Oracle Grid Infrastructure.

• Fleet Patching and Provisioning Architecture
The Fleet Patching and Provisioning architecture consists of a Fleet Patching and Provisioning Server and any number of Fleet Patching and Provisioning Clients and targets.

• Oracle Fleet Patching and Provisioning Features
Oracle Fleet Patching and Provisioning (FPP) provides various features to ease configuration and management tasks.

About Oracle Fleet Patching and Provisioning

Oracle Fleet Patching and Provisioning (FPP) is a service in Oracle Grid Infrastructure.

Note:

• Oracle does not support Oracle Fleet Patching and Provisioning on HP-UX or Windows operating systems.

• The Oracle Fleet Patching and Provisioning Server does not manage operating system images.

You can use Oracle Fleet Patching and Provisioning in either of the following modes:
• As a central server (Oracle Fleet Patching and Provisioning Server), that stores and manages standardized images, called gold images. You can deploy gold images to any number of nodes across a data center. You can use the deployed homes to create new clusters and databases, and patch, upgrade, and scale existing installations.

The server manages software homes on the cluster hosting the Oracle Fleet Patching and Provisioning Server, itself, Oracle Fleet Patching and Provisioning Clients, and can also manage installations running Oracle Grid Infrastructure 11g release 2 (11.2.0.3 and 11.2.0.4), 12c release 1 (12.1.0.2), and later releases. The server can also manage installations running no grid infrastructure.

An Oracle Fleet Patching and Provisioning Server can provision new installations and can manage existing installations without any changes to the existing installations (such as no agent, daemon, or configuration prerequisites). Oracle Fleet Patching and Provisioning Servers also include capabilities for automatically sharing gold images among peer Oracle Fleet Patching and Provisioning Servers to support enterprises with geographically distributed data centers.

• As a client (Oracle Fleet Patching and Provisioning Client), that can be managed from the central Oracle Fleet Patching and Provisioning Server or directly by running commands on the Oracle Fleet Patching and Provisioning Client, itself. As with the Oracle Fleet Patching and Provisioning Server, the Oracle Fleet Patching and Provisioning Client is a service built in to Oracle Grid Infrastructure and is available with Oracle Grid Infrastructure 12c release 2 (12.2.0.1), and later. The Oracle Fleet Patching and Provisioning Client service can retrieve gold images from the Oracle Fleet Patching and Provisioning Server, upload new images based on policy, and apply maintenance operations to itself.

For patching operations, a third option is available with Oracle Database and Oracle Grid Infrastructure 18c, and later. The procedures for updating database and grid infrastructure homes have been modularized into independent automatons that are included with Oracle Database and Oracle Grid Infrastructure, and can be run locally without any central Oracle Fleet Patching and Provisioning Server in the architecture. This provides an immediate entry point to the capabilities of Oracle Fleet Patching and Provisioning as soon as you bring up an Oracle Database or cluster.

Note:
Combined Oracle FPP patching for Oracle Grid Infrastructure and Oracle Database is not supported for standalone configurations.

Oracle Fleet Patching and Provisioning Advantages
Deploying Oracle software using Oracle Fleet Patching and Provisioning has the following advantages:

• Ensures standardization and enables high degrees of automation with gold images and managed lineage of deployed software.
• Minimizes downtime by deploying new homes as images (working copies of gold images) out-of-place, without disrupting active databases or clusters.
• Simplifies local maintenance operations by providing automatons which are invoked with a simple, consistent API across database versions and deployment models.
• Reduces maintenance risk with built-in validations and a *dry run* mode to test the operations.
• Enables you to resume or restart the commands in the event of an unforeseen issue, reducing the impact of maintenance operations.
• Minimizes and often eliminates the impact of patching and upgrades, with features that include:
 – Zero-downtime database upgrade with fully automated upgrade, executed entirely within the deployment without requiring any extra nodes or external storage.
 – Adaptive management of database sessions and OJVM during rolling patching.
 – Options for management of consolidated deployments.
• The deployment and maintenance operations enable customizations to include environment-specific actions into the automated workflow.

Fleet Patching and Provisioning Architecture

The Fleet Patching and Provisioning architecture consists of a Fleet Patching and Provisioning Server and any number of Fleet Patching and Provisioning Clients and targets.

Oracle recommends deploying the Fleet Patching and Provisioning Server in a multi-node cluster so that it is highly available.

The Fleet Patching and Provisioning Server cluster is a repository for all data, of which there are primarily three types:

• Gold images
• Working copies and clients
• Metadata related to users, roles, permissions, and identities

The Fleet Patching and Provisioning Server acts as a central server for provisioning Oracle Database homes, Oracle Grid Infrastructure homes, and other application software homes, making them available to the cluster hosting the Fleet Patching and Provisioning Server and to the Fleet Patching and Provisioning Client clusters, their targets, and non-client targets.

Users operate on the Fleet Patching and Provisioning Server or Fleet Patching and Provisioning Client to request deployment of Oracle homes or to query gold images. When a user makes a request for an Oracle home, specifying a gold image, the Fleet Patching and Provisioning Client communicates with the Fleet Patching and Provisioning Server to pass on the request. The Fleet Patching and Provisioning Server processes the request by taking appropriate action to instantiate a copy of the gold image, and to make it available to the Fleet Patching and Provisioning Client cluster using available technologies such as Oracle Automatic Storage Management Cluster File System (Oracle ACFS) and local file systems.

• **Oracle Fleet Patching and Provisioning Server**
 The Oracle Fleet Patching and Provisioning Server (FPPS) is a highly available software provisioning system that uses Oracle Automatic Storage Management (Oracle ASM), Oracle Automatic Storage Management Cluster File System (Oracle ACFS), Grid Naming Service (GNS), and other components.
• **Oracle Fleet Patching and Provisioning Targets**
Computers of which Oracle Fleet Patching and Provisioning is aware are known as targets.

• **Oracle Fleet Patching and Provisioning Clients**
The Oracle Fleet Patching and Provisioning Client is part of the Oracle Grid Infrastructure. Users operate on an Oracle Fleet Patching and Provisioning Client to perform tasks such as requesting deployment of Oracle homes and listing available gold images.

• **Oracle Fleet Patching and Provisioning Images**
You can easily copy an image of an Oracle home to a new host on a new file system to serve as an active usable Oracle home.

• **Oracle Fleet Patching and Provisioning Working Copies**
Working copy is a copy of the gold image that you use to provision the software on an Oracle Fleet Patching and Provisioning Client or target.

Oracle Fleet Patching and Provisioning Server

The Oracle Fleet Patching and Provisioning Server (FPPS) is a highly available software provisioning system that uses Oracle Automatic Storage Management (Oracle ASM), Oracle Automatic Storage Management Cluster File System (Oracle ACFS), Grid Naming Service (GNS), and other components.

The Oracle Fleet Patching and Provisioning Server primarily acts as a central server for provisioning Oracle homes, making them available to Oracle Fleet Patching and Provisioning Client and targets.

Features of the Oracle Fleet Patching and Provisioning Server:

• Efficiently stores gold images and image series for the managed homes, including separate binaries, and metadata related to users, roles, and permissions.

• Stores working copies and Oracle Fleet Patching and Provisioning Client information.

• Provides a list of available homes to clients upon request.

• Patch a software home once and then deploy the home to any Oracle Fleet Patching and Provisioning Client or any other target, instead of patching every site.

• Provides the ability to report on existing deployments.

• Deploys homes on physical servers and virtual machines.

• Notifies subscribers of changes to image series.

• Maintains an audit log of all RHPCTL commands run.

Oracle Fleet Patching and Provisioning Targets

Computers of which Oracle Fleet Patching and Provisioning is aware are known as targets.

Oracle Fleet Patching and Provisioning Servers can create new targets, and can also install and configure Oracle Grid Infrastructure on targets with only an operating system installed. Subsequently, Oracle Fleet Patching and Provisioning Server can provision database and other software on those targets, perform maintenance, scale
the target cluster, in addition to many other operations. All Oracle Fleet Patching and Provisioning commands are run on the Oracle Fleet Patching and Provisioning Server. Targets running the Oracle Fleet Patching and Provisioning Client in Oracle Clusterware 12c release 2 (12.2), and later, may also run many of the Oracle Fleet Patching and Provisioning commands to request new software from the Oracle Fleet Patching and Provisioning Server and initiate maintenance themselves, among other tasks.

Note:

The Oracle Fleet Patching and Provisioning Server communicates with Oracle Grid Infrastructure Clusters at version 12.2.0.1 and later through an Oracle Fleet Patching and Provisioning Client that can be configured and started up on the target cluster. The Oracle Fleet Patching and Provisioning Client is not supported for targets at Oracle Grid Infrastructure version 12.1 and earlier, on all versions of Oracle Restart and database standalone targets, such as database homes without an Oracle Grid Infrastructure home or Oracle Restart home.

Oracle Fleet Patching and Provisioning Clients

The Oracle Fleet Patching and Provisioning Client is part of the Oracle Grid Infrastructure. Users operate on an Oracle Fleet Patching and Provisioning Client to perform tasks such as requesting deployment of Oracle homes and listing available gold images.

When a user requests an Oracle home specifying a gold image, the Oracle Fleet Patching and Provisioning Client communicates with the Oracle Fleet Patching and Provisioning Server to pass on the request. The Oracle Fleet Patching and Provisioning Server processes the request by instantiating a working copy of the gold image and making it available to the Oracle Fleet Patching and Provisioning Client using Oracle ACFS or a different local file system.

The difference between an Oracle FPP Target and an Oracle FPP Client is that the Oracle FPP Client has Oracle Grid Infrastructure installed and the additional rhpclient component enabled. This additional rhpclient component allows the Oracle FPP Client to initiate the tasks, while on Oracle FPP Targets only the Oracle FPP Server can initiate the operations. All the remote targets managed by the Oracle FPP Servers are known as Oracle FPP Targets.

The Oracle Fleet Patching and Provisioning Client:

- Can use Oracle ACFS to store working copies of gold images which can be rapidly provisioned as local homes; new homes can be quickly created or undone using Oracle ACFS snapshots.

Note:

Oracle supports using other local file systems besides Oracle ACFS.

- Provides a list of available homes from the Oracle Fleet Patching and Provisioning Server.
• Has full functionality in Oracle Clusterware 12c release 2 (12.2) and can communicate with Oracle Fleet Patching and Provisioning Servers from Oracle Clusterware 12c release 2 (12.2), or later.

Related Topics
• Creating a Fleet Patching and Provisioning Client
 Users operate on a Fleet Patching and Provisioning Client to perform tasks such as requesting deployment of Oracle homes and querying gold images.

Oracle Fleet Patching and Provisioning Images

You can easily copy an image of an Oracle home to a new host on a new file system to serve as an active usable Oracle home.

By default, when you create a gold image using either `rhpctl import image` or `rhpctl add image`, the image is ready to provision new homes, called working copies. However, under certain conditions, you may want to restrict access to images and require someone to test or validate the image before making it available for general use.

You can also create a set of gold images on the Oracle Fleet Patching and Provisioning Server that can be collectively categorized as a gold image series which relate to each other, such as identical release versions, gold images published by a particular user, or images for a particular department within an organization.

Related Topics
• Image State
 An image state is a way to restrict provisioning of an image for users with specified roles.
• Image Series
 An image series is a convenient way to group different gold images into a logical sequence.
• Image Type
 When you add or import a gold image, you must specify an image type.

Oracle Fleet Patching and Provisioning Working Copies

Working copy is a copy of the gold image that you use to provision the software on an Oracle Fleet Patching and Provisioning Client or target.

By default, when you create a gold image using either `rhpctl import image` or `rhpctl add image`, the image is ready to provision working copies. You can use the `rhpctl add workingcopy` command to add a working copy to a client cluster.

After you create and import a gold image, you can provision software by adding a copy of the gold image (called a working copy) on the Fleet Patching and Provisioning Server, on a Fleet Patching and Provisioning Client, or a target.

Related Topics
• Image State
 An image state is a way to restrict provisioning of an image for users with specified roles.
• **Image Series**
 An image series is a convenient way to group different gold images into a logical sequence.

• **Image Type**
 When you add or import a gold image, you must specify an image type.

Oracle Fleet Patching and Provisioning Features

Oracle Fleet Patching and Provisioning (FPP) provides various features to ease configuration and management tasks.

When you manage Oracle software using Oracle Fleet Patching and Provisioning, Oracle FPP:

• Ensures standardization and enables high degrees of automation with gold images and managed lineage of deployed software.

• Minimizes the maintenance window by deploying new homes (working copies of gold images) out-of-place, without disrupting active databases or clusters.

• Simplifies local maintenance operations by providing automatons which are invoked with a simple, consistent API across database versions and deployment models.

• Reduces maintenance risk with built-in validations and a dry-run mode to ensure operations will succeed end-to-end.

• In the event of an issue, commands are resumable and restartable, further reducing the impact of maintenance operations.

• Minimizes and, in many cases, eliminates the impact of patching and upgrades, with features that include:
 – Zero-downtime database upgrade: A fully-automated upgrade executed entirely within the deployment with no extra nodes or external storage required.
 – Adaptive management of database sessions and OJVM during rolling patching.
 – Options for fine-grained management of consolidated deployments.

The deployment and maintenance operations are extensible, allowing customizations to include environment-specific actions into the automated workflow.

Oracle Fleet Patching and Provisioning Automatons

• **Zero-downtime database upgrade** automates all of the steps involved in a database upgrade to minimize or even eliminate application downtime while upgrading an Oracle database. It also minimizes resource requirements and provides a fallback path in case the upgrade must be rolled back.

• **Adaptive Oracle RAC Rolling Patching for OJVM Deployments**: In a clustered environment, the default approach for Oracle Fleet Patching and Provisioning for patching a database is Oracle RAC rolling patching. However non-rolling may be required if the patched database home contains OJVM patches. In this case, Oracle Fleet Patching and Provisioning determines whether rolling patching is possible and does so, if applicable.
• **Dry-run command evaluation**: Before running any command, Oracle Fleet Patching and Provisioning checks various preconditions to ensure the command will succeed. However, some conditions cannot be detected prior to a command running. And, while Oracle Fleet Patching and Provisioning allows a failed command to be reverted or resumed after an error condition is corrected, it is preferable to address as many potential issues as possible before the command is run. The command evaluation mode will test the preconditions for a given command, without making any changes, and report potential problems and correct them before the command is actually run.

• **Independent automatons**: Prior to Oracle Database 18c, performing any Oracle Fleet Patching and Provisioning operation (for example, switching a database home to a later version) required the presence of a central Oracle Fleet Patching and Provisioning Server. Beginning with Oracle Database 18c, key functionality can be performed independently, with no central Oracle Fleet Patching and Provisioning Server in the architecture.

Global Fleet Standardization and Management

• **Sharing gold images between peer Oracle Fleet Patching and Provisioning Servers**: Large enterprises typically host multiple data centers and, within each data center, there may be separate network segments. In the Oracle Fleet Patching and Provisioning architecture, one Oracle Fleet Patching and Provisioning Server operates on a set of targets within a given data center (or network segment of a data center). Therefore each data center requires at least one Oracle Fleet Patching and Provisioning Server.

While each data center may have some unique requirements in terms of the gold images that target servers will use, the goal of standardization is using the same gold image across all data centers whenever possible. To that end, Oracle Fleet Patching and Provisioning supports peer-to-peer sharing of gold images to easily propagate gold images among multiple Oracle Fleet Patching and Provisioning Servers.

• **Gold image drift detection and aggregation**: After you provision a software home from a gold image, you may have to apply a patch directly to the deployed home. At this point the deployed home has drifted from the gold image. Oracle Fleet Patching and Provisioning provides two capabilities for monitoring and reporting drift:
 – Oracle Fleet Patching and Provisioning compares a specific home to its parent gold image and lists any patches that are applied to the home but that are not in the gold image.
 – Oracle Fleet Patching and Provisioning compares a specific gold image to all of its descendant homes and lists the aggregation of all patches applied to those homes that are not in the gold image. This provides a build specification for a new gold image that could be applied to all of the descendants of the original gold image, such that no patches will be lost from any of those deployments.
Configuration collection and reporting: The Oracle Fleet Patching and Provisioning Server can collect and retain operating system configuration and the root file system contents of specified Oracle Fleet Patching and Provisioning Clients. If an Oracle Fleet Patching and Provisioning Client node is rendered unusable (for example, a user accidentally deletes or changes operating system configuration or the root file system), then it can be difficult to determine the problem and correct it. This feature automates the collection of relevant information, enabling simple restoration in the event of node failure.

Flexibility and Extensibility

RESTful API: Oracle Fleet Patching and Provisioning provides a RESTful API for many common operations, including provisioning, patching, upgrading, and query operations.

Customizable authentication: Host-to-host authentication in certain environments, particularly in compliance-conscious industries, such as financials and e-commerce, often uses technologies and products that are not supported, natively, by Oracle Fleet Patching and Provisioning. This feature allows integrating Oracle Fleet Patching and Provisioning authentication with the mechanisms in use at your data center.

Command scheduler: The ability to schedule and bundle automated tasks is essential for maintenance of a large database estate. Oracle Fleet Patching and Provisioning supports scheduling tasks such as provisioning software homes, switching to a new home, and scaling a cluster. Also, you can add a list of clients to a command, facilitating large-scale operations.

Configurable connectivity: As security concerns and compliance requirements increase, so do the restrictions on connectivity across the intranets of many enterprises. You can configure the small set ports used for communication between the Oracle Fleet Patching and Provisioning Server and its Clients, allowing low-impact integration into firewalled or audit-conscious environments.

Other Oracle Fleet Patching and Provisioning Features

Zero-downtime upgrade: Automation of all of upgrade steps involved minimizes or even eliminates application downtime while upgrading an Oracle Database. It also minimizes resource requirements and provides a fallback path in case you must roll back the upgrade. You can run a zero-downtime upgrade on certain versions of Oracle RAC and Oracle RAC One Node databases.
- **Provision new server pools**: The Oracle Fleet Patching and Provisioning Server can install and configure Oracle Grid Infrastructure on nodes that have no Oracle software inventory and can then manage those deployments with the full complement of Oracle Fleet Patching and Provisioning functionality.

- **Provision and manage any software home**: Oracle Fleet Patching and Provisioning enables you to create a gold image from any software home. You can then provision that software to any Oracle Fleet Patching and Provisioning Client or target as a working copy of a gold image. The software may be any binary that you will run on an Oracle Fleet Patching and Provisioning Client or target.

- **Provision, scale, patch, and upgrade Oracle Grid Infrastructure**: The Oracle Fleet Patching and Provisioning Server can provision Oracle Grid Infrastructure 11g release 2 (11.2.0.4) homes, and later, add or delete nodes from an Oracle Grid Infrastructure configuration, and can also be used to patch and upgrade Oracle Grid Infrastructure homes. In addition, there is a rollback capability that facilitates undoing a failed patch procedure. While patching Oracle Grid Infrastructure, you can use Oracle Fleet Patching and Provisioning to optionally patch any database homes hosted on the cluster.

- **Provision, scale, patch, and upgrade Oracle Database**: You can use Oracle Fleet Patching and Provisioning, you can provision, scale, and patch Oracle Database 11g release 2 (11.2.0.4), and later releases. You can also upgrade Oracle Databases from 11g release 2 (11.2.0.3) to 11g release 2 (11.2.0.4); from 11g release 2 (11.2.0.4) to 12c release 1 (12.1.0.2); and from 11g release 2 (11.2.0.4) or 12c release 1 (12.1.0.2) to 12c release 2 (12.2).

 When you provision such software, Oracle Fleet Patching and Provisioning offers additional features for creating various types of databases (such as Oracle RAC, single instance, and Oracle Real Application Clusters One Node (Oracle RAC One Node) databases) on different types of storage, and other options, such as using templates and creating container databases (CDBs). The Oracle Fleet Patching and Provisioning Server can add nodes to an Oracle RAC configuration, and remove nodes from an Oracle RAC configuration. Oracle Fleet Patching and Provisioning also improves and makes more efficient patching of database software, allowing for rapid and remote patching of the software, in most cases, without any downtime for the database.

- **Support for single-instance databases**: You can use Oracle Fleet Patching and Provisioning to provision, patch, and upgrade single-instance databases running on clusters or Oracle Restart, or on single, standalone nodes.

- **Advanced patching capabilities**: When patching an Oracle Grid Infrastructure or Oracle Database home, Oracle Fleet Patching and Provisioning offers a batch mode that speeds the patching process by patching some or all nodes of a cluster in parallel and/or a specific node order, rather than sequentially.

 For Oracle Database homes, you can define disjoint sets of nodes. Each set of nodes is updated sequentially. By defining sets with reference to the database instances running on them, you can minimize the impact of rolling updates by ensuring that services are never taken completely offline. A “smartmove” option is available to help define the sets of batches to meet this goal.

 Integration with Application Continuity is another enhancement to help eliminate the impact of maintenance. This provides the ability to gracefully drain and relocate services within a cluster, completely masking the maintenance from users.

- **Notifications**: The Oracle Fleet Patching and Provisioning Server is the central repository for the software homes available to the data center. Therefore, it is
essential that administrators throughout the data center be aware of changes to
the inventory which might impact their areas of responsibility.

Oracle Fleet Patching and Provisioning enables you and other users to subscribe
to image series events. Anyone subscribed will be notified by email of any
changes to the images available in a particular image series. Also, users can be
notified by email when a working copy of a gold image is added to or deleted from
a client.

- **Custom workflow support:** You can create actions for various Oracle Fleet
 Patching and Provisioning operations, such as importing images, adding or
deleting working copies of the gold images, and managing a software home.
 You can define different actions for each operation, and further differentiate by
 the type of image to which the operation applies. Actions that you define can be
 executed before or after the given operation, and are executed on the deployment
 the operation applies to, whether it is the Oracle Fleet Patching and Provisioning
 Server, a target that is not running an Oracle Fleet Patching and Provisioning
 Client, or a target that is running an Oracle Fleet Patching and Provisioning Client.

- **Resume failed operations:** If an operation, such as adding an image, provisioning
 a working copy of a gold image, or performing a scale, patch or upgrade fails,
 then Oracle Fleet Patching and Provisioning reports the error and stops. After
 the problem is corrected (for example, a directory permissions or ownership
 misconfiguration on a target node), you can rerun the RHPCTL command that
 failed, and it will resume from the point of failure. This avoids redoing any work
 that may have been completed prior to the failure.

- **Audit command:** The Oracle Fleet Patching and Provisioning Server records
 the execution of all Oracle Fleet Patching and Provisioning operations and also
 records their outcome (whether success or failure). An audit mechanism enables
 you to query the audit log in a variety of dimensions, and also to manage its
 contents and size.
Configuring Oracle Fleet Patching and Provisioning involves creating an Oracle Fleet Patching and Provisioning Server, adding gold images to the server, and creating working copies of gold images to provision software.

After you install and configure Oracle Grid Infrastructure, you can configure and start using Oracle Fleet Patching and Provisioning. You must create an Oracle Fleet Patching and Provisioning Server where you create and store gold images of database and other software homes.

- **Configuring Oracle Fleet Patching and Provisioning Server**
 Oracle Fleet Patching and Provisioning (Oracle FPP) Server configuration includes configuring storage, network, GIMR, and creating an Oracle FPP resource.

- **Upgrading Oracle Fleet Patching and Provisioning Server**
 Upgrade Oracle Fleet Patching and Provisioning Server to the latest release to use the new features.

- **Configuring Oracle Fleet Patching and Provisioning Clients**
 Oracle Fleet Patching and Provisioning (Oracle FPP) client configuration includes configuring network, creating client data file, and creating an Oracle FPP client.

- **Oracle Fleet Patching and Provisioning Local Mode**
 When you install Oracle Grid Infrastructure, the Oracle FPP Server is configured, by default, in the local mode to support the local switch home capability.

Configuring Oracle Fleet Patching and Provisioning Server

Oracle Fleet Patching and Provisioning (Oracle FPP) Server configuration includes configuring storage, network, GIMR, and creating an Oracle FPP resource.

- **Server Configuration Checklist for Oracle Fleet Patching and Provisioning**
 Use this checklist to check minimum server configuration requirements for Oracle Fleet Patching and Provisioning (Oracle FPP).

- **Oracle Fleet Patching and Provisioning Communication Ports**
 Configure communication ports for Oracle Fleet Patching and Provisioning Server, clients, and targets.

- **Creating a Fleet Patching and Provisioning Server**
 The Fleet Patching and Provisioning Server uses a repository that you create in an Oracle ACFS file system in which you store all the software homes that you want to make available to clients and targets.
Server Configuration Checklist for Oracle Fleet Patching and Provisioning

Use this checklist to check minimum server configuration requirements for Oracle Fleet Patching and Provisioning (Oracle FPP).

Table 2-1 Server Configuration Checklist for Oracle Fleet Patching and Provisioning

<table>
<thead>
<tr>
<th>Check</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Grid Infrastructure installation</td>
<td>Install Oracle Grid Infrastructure on a new cluster on which you want to configure Oracle FPP.</td>
</tr>
<tr>
<td>Operating System Kernel version</td>
<td>Install or upgrade the operating system kernel to a version for which an Oracle ACFS kernel module is already built.</td>
</tr>
<tr>
<td>Grid Infrastructure Management Repository configuration</td>
<td>Make sure that the Grid Infrastructure Management Repository (GIMR) is configured and running on your cluster. If GIMR was not configured as part of the Oracle Grid Infrastructure installation, then add a new GIMR to your cluster as described in Oracle Grid Infrastructure Installation and Upgrade Guide.</td>
</tr>
<tr>
<td>Oracle FPP server storage</td>
<td>Allocate a minimum of 100 GB additional disk space to the Oracle Automation Storage Management (Oracle ASM) disk group that is used by the Oracle FPP Server.</td>
</tr>
<tr>
<td>Oracle FPP server network</td>
<td>Create one Grid Naming Service Virtual IP Address (GNS VIP) without zone delegation.</td>
</tr>
<tr>
<td>Firewall</td>
<td>Make sure that the ports used by Oracle FPP Server and Client are not filtered by firewalls. Please refer to Table 2-2 Fleet Patching and Provisioning Communication Ports</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Grid Infrastructure Installation and Upgrade Guide for Linux

Oracle Fleet Patching and Provisioning Communication Ports

Configure communication ports for Oracle Fleet Patching and Provisioning Server, clients, and targets.

The Oracle Fleet Patching and Provisioning Server communicates with Oracle Fleet Patching and Provisioning Clients and targets using the following ports, several of which you can configure, as described in the below table. Additionally, differences in ports used when communicating with Oracle Fleet Patching and Provisioning Clients versus targets are noted.

Table 2-2 Oracle Fleet Patching and Provisioning Communication Ports

<table>
<thead>
<tr>
<th>Client, Target, or Both</th>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>TCP</td>
<td>22</td>
<td>SSH</td>
<td>Authentication-based operations involving clientless targets.</td>
</tr>
<tr>
<td>Client, Target, or Both</td>
<td>Protocol</td>
<td>Port</td>
<td>Purpose</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Client</td>
<td>TCP</td>
<td>22</td>
<td>SSH</td>
<td>Provisioning of Oracle Grid Infrastructure 12c release 2 (12.2.0.1) or later requires an SSH port. (Subsequent Oracle Fleet Patching and Provisioning Server/Client interactions use the JMX path.)</td>
</tr>
<tr>
<td>REST API invocation node</td>
<td>HTTPS</td>
<td>8894</td>
<td>REST invocation node</td>
<td>Oracle FPPS must allow incoming and outgoing communication from the REST invocation node REST request response. REST invocation node initiates a HTTPS connection to FPPS on this port. FPPS should allow an incoming connection and outgoing response to the REST Invocation node for the established connection.</td>
</tr>
<tr>
<td>Client</td>
<td>TCP</td>
<td>8896</td>
<td>JMX registry and server port</td>
<td>For establishing Oracle Fleet Patching and Provisioning Server communication with Oracle Fleet Patching and Provisioning Clients. You can configure this port using the <code>srvctl modify rhpserver -port port_number</code> command. Note: The preceding command requires you to restart the service.</td>
</tr>
<tr>
<td>Client</td>
<td>UDP</td>
<td>Port 53 must be open only on the FPPS to accept incoming connections from FPPC nodes and should allow outgoing communication, GNS response to be sent back FPPC.</td>
<td>GNS port</td>
<td>GNS is used for Oracle Fleet Patching and Provisioning Clients to locate the Oracle Fleet Patching and Provisioning Server. You can configure GNS with or without zone delegation.</td>
</tr>
</tbody>
</table>
Table 2-2 (Cont.) Oracle Fleet Patching and Provisioning Communication Ports

<table>
<thead>
<tr>
<th>Client, Target, or Both</th>
<th>Protocol</th>
<th>Port</th>
<th>Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>TCP</td>
<td>Specify one port for each RHPCTL command from ephemeral port range, or one port as specified with the <code>srvctl modify rhpserver -pl_port port_number</code> command. Progress listener port must be open to accept incoming connections on the server where RHPCTL is run (whether a Oracle Fleet Patching and Provisioning Server or Client).</td>
<td>Command progress listener</td>
<td>Oracle Fleet Patching and Provisioning Server opens a random port from the ephemeral range to monitor progress on the client or target, or uses the fixed port you specify with the <code>srvctl modify rhpserver -pl_port port_number</code> and multiplexes across clients/targets.</td>
</tr>
<tr>
<td>Clients running Oracle Database 18c or Oracle Database 12c release 2 (12.2.0.1) with the January 2018 RU, or later</td>
<td>TCP</td>
<td>You must have six ports for gold image provisioning on an Oracle Fleet Patching and Provisioning Client server to accept incoming connections.</td>
<td>Gold image transfers to Oracle Database 18c clients and clients with the 2018 January RU (running the <code>rhpctl add workingcopy</code> command on the Oracle Fleet Patching and Provisioning Server)</td>
<td>Transferring copies of gold images from the Oracle Fleet Patching and Provisioning Server to clients uses six ports chosen from the ephemeral range, or six ports from the range you define using the <code>srvctl modify rhpserver -port_range port_number_range</code>. In this case, specify a range to accommodate the anticipated degree of parallelism (concurrent transfers) you will use. If the <code>port_range</code> value is specified and if RHPS manages 12.2 clients, then the client must be patched to 12.2.0.1.180717OCWJUL2018 RU or later.</td>
</tr>
</tbody>
</table>
Creating a Fleet Patching and Provisioning Server

The Fleet Patching and Provisioning Server uses a repository that you create in an Oracle ACFS file system in which you store all the software homes that you want to make available to clients and targets.

Note:

When you install Oracle Grid Infrastructure, the Oracle Fleet Patching and Provisioning Server is configured, by default, in the *local* mode to support the *local switch home* capability. If you must configure the general Oracle Fleet Patching and Provisioning Server product, then you must remove the current local-mode Oracle Fleet Patching and Provisioning Server.

1. Use the Oracle ASM configuration assistant (ASMCA) to create an Oracle ASM disk group on the Fleet Patching and Provisioning Server to store software.

   ```
   Grid_home/bin/asmca
   ```

 Because this disk group is used to store software, Oracle recommends a minimum of 100 GB for this disk group.

 Note:

 You must set Oracle ASM Dynamic Volume Manager (Oracle ADVM) compatibility settings for this disk group to 19.0.

2. Provide a mount path that exists on all nodes of the cluster. The Fleet Patching and Provisioning Server uses this path to mount gold images.

   ```
   mkdir -p storage_path/images
   ```

3. Check if Grid Infrastructure Management Repository (GIMR) is configured on your cluster.

   ```
   svrctl status mgmtdb
   Database is enabled
   Instance -MGMTDB is running on node myhost01
   ```

4. If GIMR is not configured on your cluster, then as the *grid* user, add a GIMR to your cluster.

 a. For Oracle Database 19c Release Update (19.6) or earlier releases:

      ```
      $ $ORACLE_HOME/bin/mgmtca createGIMRContainer [-storageDiskGroup disk_group_name]
      ```
b. For Oracle Database 19c Release Update (19.7) or later releases:

```bash
$ $ORACLE_HOME/bin/mgmtca createGIMRContainer [-
storageDiskLocation disk_location]
```

5. As the root user, add the Grid Naming Service Virtual IP Address (GNS VIP) without zone delegation.

```bash
# srvctl add gns -vip myhost-gnsvip3
# srvctl start gns
# srvctl status gns
GNS is running on node myhost01.
GNS is enabled on node myhost01.
```

6. Remove any existing local automaton from your cluster.

```bash
# srvctl stop rhpserver
# srvctl remove rhpserver
```

7. Create the Fleet Patching and Provisioning Server resource.

```bash
# Grid_home/bin/srvctl add rhpserver -storage storage_path
   -diskgroup disk_group_name
```

8. Start the Fleet Patching and Provisioning Server.

```bash
$ Grid_home/bin/srvctl start rhpserver
```

After you start the Fleet Patching and Provisioning Server, use the Fleet Patching and Provisioning Control (RHPCTL) utility to further manage Fleet Patching and Provisioning.

Related Topics

- *Oracle Automatic Storage Management Administrator's Guide*
- *RHPCTL Command Reference*

Use the Fleet Patching and Provisioning Control (RHPCTL) utility to manage Fleet Patching and Provisioning in your cluster.

Upgrading Oracle Fleet Patching and Provisioning Server

Upgrade Oracle Fleet Patching and Provisioning Server to the latest release to use the new features.

- *Starting Oracle FPP Server After Manually Upgrading Oracle Grid Infrastructure*

 If you upgrade Oracle Grid Infrastructure manually, without using Oracle Fleet Patching and Provisioning (Oracle FPP) self upgrade feature, then Oracle FPP Server does not start after the upgrade.
Starting Oracle FPP Server After Manually Upgrading Oracle Grid Infrastructure

If you upgrade Oracle Grid Infrastructure manually, without using Oracle Fleet Patching and Provisioning (Oracle FPP) self upgrade feature, then Oracle FPP Server does not start after the upgrade.

When you manually upgrade Oracle Grid Infrastructure, the file system resources are disabled and that does not allow the Oracle FPP Server to start. When file system resources are disable, you may get an error while starting the Oracle FPP Server. To resolve this error, you must first enable the file system and then start the Oracle FPP server.

1. Enable file system on all the volumes and the storage disk groups.

   ```bash
   ./srvctl enable filesystem -volume volume_name -diskgroup diskgroup_name
   ```

2. Enable the volume and the disk group on which you enabled the file system.

   ```bash
   ./srvctl enable volume -volume volume_name -diskgroup diskgroup_name
   ```

3. Start the Oracle FPP Server.

   ```bash
   ./srvctl start rhpserver
   ```

Configuring Oracle Fleet Patching and Provisioning Clients

Oracle Fleet Patching and Provisioning (Oracle FPP) client configuration includes configuring network, creating client data file, and creating an Oracle FPP client.

- **Creating a Fleet Patching and Provisioning Client**
 Users operate on a Fleet Patching and Provisioning Client to perform tasks such as requesting deployment of Oracle homes and querying gold images.

- **Enabling and Disabling Fleet Patching and Provisioning Clients**
 On the Fleet Patching and Provisioning Server, you can enable or disable a Fleet Patching and Provisioning Client.

- **Deleting a Fleet Patching and Provisioning Client**
 Use the following procedure to delete a Fleet Patching and Provisioning Client.

Creating a Fleet Patching and Provisioning Client

Users operate on a Fleet Patching and Provisioning Client to perform tasks such as requesting deployment of Oracle homes and querying gold images.

To create a Fleet Patching and Provisioning Client:

1. If there is no highly available VIP (HAVIP) on the Fleet Patching and Provisioning Server, then, as the root user, create an HAVIP, as follows:

   ```bash
   # srvctl add havip -id id -address {host_name | ip_address}
   ```
You can specify either a host name or IPv4 or IPv6 IP address. The IP address that you specify for HAVIP or the address that is resolved from the specified host name must not be in use when you run this command.

Note:

The highly available VIP must be in the same subnet as the default network configured in the Fleet Patching and Provisioning Server cluster. You can obtain the subnet by running the following command:

```
$ srvctl config network -netnum 1
```

2. On the Fleet Patching and Provisioning Server as the Grid home owner, create the client data file, as follows:

```
$ rhpctl add client -client client_cluster_name -toclientdata path
gheap
```

RHPCTL creates the client data file in the directory path you specify after the -toclientdata flag. The name of the client data file is `client_cluster_name.xml`.

Note:

The `client_cluster_name` must be unique and it must match the cluster name of the client cluster where you run step 4.

3. Copy the client data file that you created in the previous step to a directory on the client cluster that has read/write permissions to the Grid home owner on the Fleet Patching and Provisioning Client.

4. Create the Fleet Patching and Provisioning Client by running the following command as root on the client cluster:

```
# srvctl add rhpclient -clientdata path_to_client_data
   [-diskgroup disk_group_name -storage base_path]
```

If you want to provision working copies to Oracle ACFS storage on this cluster, and you have already created a disk group for this purpose, then specify this disk group in the preceding command. In this case, also specify a storage path which will be used as a base path for all mount points when creating Oracle ACFS file systems for storing working copies.
Note:

Once you configure a disk group on a Fleet Patching and Provisioning Client, you cannot remove it from or change it in the Fleet Patching and Provisioning Client configuration. The only way you can do either (change or remove) is to completely remove the Fleet Patching and Provisioning Client using the `srvctl remove client` command, and then add it back with a different disk group, if necessary. Before you remove a Fleet Patching and Provisioning Client, ensure that you remove all registered users from this cluster and all working copies provisioned on this cluster.

5. Start the Fleet Patching and Provisioning Client, as follows:

 `$ srvctl start rhpclient`

6. Check the status of the Fleet Patching and Provisioning Client, as follows:

 `$ srvctl status rhpclient`

Related Topics

• Oracle Clusterware Administration and Deployment Guide
• RHPCTL Command Reference

Use the Fleet Patching and Provisioning Control (RHPCTL) utility to manage Fleet Patching and Provisioning in your cluster.

Enabling and Disabling Fleet Patching and Provisioning Clients

On the Fleet Patching and Provisioning Server, you can enable or disable a Fleet Patching and Provisioning Client.

Fleet Patching and Provisioning Clients communicate with the Fleet Patching and Provisioning Server for all actions. You cannot run any RHPCTL commands without a connection to a Fleet Patching and Provisioning Server.

To enable or disable a Fleet Patching and Provisioning Client, run the following command from the Fleet Patching and Provisioning Server cluster:

 `$ rhpctl modify client -client client_name -enabled TRUE | FALSE`

To enable a Fleet Patching and Provisioning Client, specify `-enabled TRUE`. Conversely, specify `-enabled FALSE` to disable the client. When you disable a Fleet Patching and Provisioning Client cluster, all RHPCTL commands from that client cluster will be rejected by the Fleet Patching and Provisioning Server, unless and until you re-enable the client.
Deleting a Fleet Patching and Provisioning Client

Use the following procedure to delete a Fleet Patching and Provisioning Client.

1. Before deleting the Fleet Patching and Provisioning Client, you must first delete the working copies and users on the Fleet Patching and Provisioning Server, as follows:
 a. Query the list of working copies that have been provisioned on the Fleet Patching and Provisioning Client cluster.
 Run the following command:

 $ rhpctl query workingcopy -client client_name

 b. Delete each of the working copies listed in the output of the preceding command.
 Run the following command for each working copy and specify the name of the working copy you want to delete:

 $ rhpctl delete workingcopy -workingcopy working_copy_name

 c. Query the list of users from the Fleet Patching and Provisioning Client cluster.
 Run the following command:

 $ rhpctl query user -client client_name

 d. Delete the users listed in the output of the preceding command, as follows:
 Run the following command and specify the name of the user you want to delete and the name of the client:

 $ rhpctl delete user -user user_name -client client_name

2. On the Fleet Patching and Provisioning Client cluster, delete the client, as follows:
 a. Stop the Fleet Patching and Provisioning Client daemon.
 Run the following command:

 $ srvctl stop rhpclient

 b. Delete the Fleet Patching and Provisioning Client configuration.
Run the following command:

```bash
$ srvctl remove rhpclient
```

3. Delete the client site configuration on the Fleet Patching and Provisioning Server cluster.

Run the following command and specify the name of the client:

```bash
$ rhpctl delete client -client client_name
```

Oracle Fleet Patching and Provisioning Local Mode

When you install Oracle Grid Infrastructure, the Oracle FPP Server is configured, by default, in the local mode to support the local switch home capability.

- **About Oracle Fleet Patching and Provisioning Local Mode**
 Oracle Fleet Patching and Provisioning Server is configured in the local mode by default when you install Oracle Grid Infrastructure.

- **Patching Oracle Grid Infrastructure Using Local-Mode Configuration**
 When you install Oracle Grid Infrastructure or when you upgrade an older version to this current version, the Fleet Patching and Provisioning Server is configured automatically in local mode.

- **Patching Oracle Database with the Independent Automaton**
 The independent local-mode automaton updates Oracle Database homes, including Oracle Database single-instance databases in a cluster or standalone (with no Oracle Grid Infrastructure), an Oracle RAC database, or an Oracle RAC One Node database.

About Oracle Fleet Patching and Provisioning Local Mode

Oracle Fleet Patching and Provisioning Server is configured in the local mode by default when you install Oracle Grid Infrastructure.

The local-mode operation enables you to perform grid infrastructure and database patching operations on the local cluster in a simplified environment without having to register or deploy gold images. Deploy either the grid infrastructure or the database patched home and run the patch operation using either the `rhpctl move gihome` or `rhpctl move database` command, specifying the source and destination paths instead of working copy names.

The local mode supports Oracle Database 11g (11.2.0.4), 12c (12.1.0.2), 12c (12.2.0.1), or later in a clustered environment. In a standalone (non-clustered) environment, the database home must be Oracle Database 18c or later.

The automaton runs locally on the deployment and does not require an Oracle Fleet Patching and Provisioning Server in the architecture. (If there is an Oracle Fleet Patching and Provisioning Server in the architecture, then the automaton does not communicate with it, and the Fleet Patching and Provisioning Server cannot interact with the independent automaton.)
Patching Oracle Grid Infrastructure Using Local-Mode Configuration

When you install Oracle Grid Infrastructure or when you upgrade an older version to this current version, the Fleet Patching and Provisioning Server is configured automatically in local mode.

Note:

You must enable and start the Fleet Patching and Provisioning Server using the following commands before you can use the local-mode patching operation:

```
$ srvctl enable rhpserver
$ srvctl start rhpserver
```

To switch the Fleet Patching and Provisioning Server from local mode to the regular, central mode (to manage remote targets), you must delete the current Fleet Patching and Provisioning Server in local mode, as follows:

```
$ srvctl stop rhpserver
$ srvctl remove rhpserver
```

Proceed with the steps described in "Creating a Fleet Patching and Provisioning Server" to create the central-mode Fleet Patching and Provisioning Server.

- The independent automaton for patching Oracle Grid Infrastructure performs all of the steps necessary to switch from one home to another. Because the automaton is not aware of gold images, moving the database requires two home paths, as follows:

  ```
  $ rhpctl move gihome -sourcehome Oracle_home_path -destinationhome Oracle_home_path
  ```

Use the following `rhpctl move gihome` command parameters for the patching operation:

- `-node`: If the home you are moving is an Oracle Grid Infrastructure home installed on more than one node, then the default operation is a rolling update on all nodes. To apply a patch to just one node, specify the name of that node with this parameter.

- `-nonrolling`: If the home you are moving is an Oracle Grid Infrastructure home installed on more than one node, then the default operation is a rolling update on all nodes. To patch all nodes in a nonrolling manner, use this parameter instead of the `-node` parameter.

- `-ignorewcpatches`: By default, Fleet Patching and Provisioning will not perform the move operation if the destination home is missing any patches present in the source home. You can override this functionality by using this parameter, for example, to move back to a previous source home if you must undo an update.
Related Topics

• Creating a Fleet Patching and Provisioning Server
The Fleet Patching and Provisioning Server uses a repository that you create in an Oracle ACFS file system in which you store all the software homes that you want to make available to clients and targets.

Patching Oracle Database with the Independent Automaton

The independent local-mode automaton updates Oracle Database homes, including Oracle Database single-instance databases in a cluster or standalone (with no Oracle Grid Infrastructure), an Oracle RAC database, or an Oracle RAC One Node database.

• The independent automaton for Oracle Database patching performs all of the steps necessary to switch from one home to another. Because the automaton is not aware of gold images, moving the database requires two home paths, as follows:

```
rhpctl move database -sourcehome Oracle_home_path -desthome destination_oracle_home_path
```

Use the following `rhpctl move database` command parameters for any of the patching scenarios:

• `-dbname`: If the database home is hosting more than one database, you can move specific databases by specifying a comma-delimited list with this parameter. Databases not specified are not moved. If you do not use this parameter, then RHPCTL moves all databases.

 Note:

 If you are moving a non-clustered (single-instance) database, then, for the value of the `-dbname` parameter, you must specify the SID of the database instead of the database name.

• `-ignorewickpatches`: By default, Oracle Fleet Patching and Provisioning will not perform the move operation if the destination home is missing any patches present in the source home. You can override this functionality by using this parameter, for example, to move back to a previous source home if you must undo an update.

The following parameters apply only to clustered environments:

• `-node`: If the home you are moving is a database home installed on more than one node, then the default operation is a rolling update on all nodes. To apply a patch to just one node, specify the name of that node with this parameter.

• `-nonrolling`: If the home you are moving is a database home installed on more than one node, then the default operation is a rolling update on all nodes. To patch all nodes in a nonrolling manner, use this parameter instead of the `-node` parameter.

• `-disconnect` and `-noreplay`: Applies to single-instance Oracle Databases, and Oracle RAC, and Oracle RAC One Node database. Use the `-disconnect` parameter to disconnect all sessions before stopping or relocating services. If you choose to use
-`disconnect`, then you can choose to use the `-noreplay` parameter to disable session replay during disconnection.

-`drain_timeout`: Applies to single-instance Oracle Databases, Oracle RAC, and Oracle RAC One Node database. Use this parameter to specify the time, in seconds, allowed for session draining to be completed from each node. Accepted values are an empty string (""), 0, or any positive integer. The default value is an empty string, which means that this parameter is not set. This is applicable to older versions to maintain traditional behavior. If it is set to 0, then the stop option is applied immediately.

The draining period is intended for planned maintenance operations. During the draining period, on each node in succession, all current client requests are processed, but new requests are not accepted.

-`stopoption`: Applies to single-instance Oracle Databases, Oracle RAC, and Oracle RAC One Node database. Specify a stop option for the database. Stop options include: ABORT, IMMEDIATE, NORMAL, TRANSACTIONAL, and TRANSACTIONAL_LOCAL.

Note:
The `rhpctl move database` command is Oracle Data Guard-aware, and will not run Datapatch if the database is an Oracle Data Guard standby.

Related Topics
- `rhpctl move database`
 Moves one or more databases from a source working copy or any Oracle Database home to a patched working copy.
Managing Gold Images and Working Copies

You can add new gold images to your Oracle Fleet Patching and Provisioning Server, create working copies from the gold images, and provision Oracle homes.

- **Adding Gold Images to the Fleet Patching and Provisioning Server**
 Use RHPCTL to add gold images for later provisioning of software.

- **Provisioning Copies of Gold Images**
 Use RHPCTL to provision copies of gold images to Fleet Patching and Provisioning Servers, Clients, and targets.

- **Provisioning Oracle Grid Infrastructure Homes**
 When you create a working copy of a gold image as part of a move or upgrade operation, Fleet Patching and Provisioning configures the operating system groups in the new working copy to match those of the source software home.

- **Provisioning Oracle Database Homes**
 Use the `rhpctl add workingcopy` command to provision a working copy of a database home on a Fleet Patching and Provisioning Server, Client, or target.

Adding Gold Images to the Fleet Patching and Provisioning Server

Use RHPCTL to add gold images for later provisioning of software.

The Fleet Patching and Provisioning Server stores and serves gold images of software homes. These images must be instantiated on the Fleet Patching and Provisioning Server.

Note:

Images are read-only, and you cannot run programs from them. To create a usable software home from an image, you must create a working copy of a gold image. You cannot directly use images as software homes. You can, however, use images to create working copies (software homes).

You can import software to the Fleet Patching and Provisioning Server using any one of the following methods:
• You can import an image from an installed home on the Fleet Patching and Provisioning Server using the following command:

```
rhpctl import image -image image_name -path path_to_installed_home
[-imagetype ORACLEDBSOFTWARE | ORACLEGISOFTWARE |
ORACLEGGSOFTWARE | SOFTWARE]
```

• You can import a ZIP file of an image created from an installed home on the Fleet Patching and Provisioning Server using the following command:

```
rhpctl import image -image image_name -zip zipped_home_path
```

• You can import an image from an installed home on a Fleet Patching and Provisioning Client, using the following command run from the Fleet Patching and Provisioning Client:

```
rhpctl import image -image image_name -path path_to_installed_home
```

• You can create an image from an existing working copy using the following command:

```
rhpctl add image -image image_name -workingcopy working_copy_name
```

Use the first two commands in the preceding list to seed the image repository, and to add additional images over time. Use the third command on the Fleet Patching and Provisioning Server as part of the workflow for creating a gold image that includes patches applied to a pre-existing gold image.

The preceding three commands also create an Oracle ACFS file system in the Fleet Patching and Provisioning root directory, similar to the following:

```
/u01/rhp/images/images/RDBMS_121020617524
```

• **Image State**
 Am image state is a way to restrict provisioning of an image for users with specified roles.

• **Image Series**
 An image series is a convenient way to group different gold images into a logical sequence.

• **Image Type**
 When you add or import a gold image, you must specify an image type.

Related Topics

• **Patching Oracle Database**
 To patch an Oracle database, you move the database home to a new home, which includes the patches you want to implement.

• **RHPCTL Command Reference**
 This section describes RHPCTL command usage information, and lists and describes RHPCTL commands.
Image State

An image state is a way to restrict provisioning of an image for users with specified roles.

You can set the state of an image to TESTABLE or RESTRICTED so that only users with the GH_IMG_TESTABLE or GH_IMG_RESTRICT roles can provision working copies from this image. Once the image has been tested or validated, you can change the state and make the image available for general use by running the `rhpctl promote image -image image_name -state PUBLISHED` command. The default image state is PUBLISHED when you add a new gold image, but you can optionally specify a different state with the `rhpctl add image` and `rhpctl import image` commands.

Image Series

An image series is a convenient way to group different gold images into a logical sequence.

Fleet Patching and Provisioning treats each image as an independent entity with respect to other images. No relationship is assumed between images, even if they follow some specific nomenclature. The image administrator may choose to name images in a logical manner that makes sense to the user community, but this does not create any management grouping within the Fleet Patching and Provisioning framework.

Use the `rhpctl add series` command to create an image series and associate one or more images to this series. The list of images in an image series is an ordered list. Use the `rhpctl insertimage series` and `rhpctl deleteimage series` to add and delete images in an image series. You can also change the order of images in a series using these commands.

The `insertimage` and `deleteimage` commands do not instantiate or delete actual gold images but only change the list. Also, an image can belong to more than one series (or no series at all).

Image Type

When you add or import a gold image, you must specify an image type.

Oracle Clusterware provides the following built-in base image types:

```
ORACLEDBOFTWARE
ORACLEGISOFTWARE
ORACLEGGSOFTWARE
EXAPATCHSOFTWARE
SOFTWARE
```

Every gold image must have an image type, and you can create your own image types. A new image type must be based on one of the built-in types. The image type directs Fleet Patching and Provisioning to apply its capabilities for managing Oracle Grid Infrastructure and Oracle Database homes. Fleet Patching and Provisioning also uses image type to organize the custom workflow support framework.
Creating a Custom Image Type

Use the `rhpctl add imagetype` command to create custom image types.

For example, to create an image type called DBTEST, which is based on the ORACLEDBSOFTWARE image type:

```
$ rhpctl add imagetype -imagetype DBTEST -basetype ORACLEDBSOFTWARE
```

Note:

When you create an image type that is based on an existing image type, the new image type does not inherit any user actions (for custom workflow support) from the base type.

 Provisioning Copies of Gold Images

Use RHPCTL to provision copies of gold images to Fleet Patching and Provisioning Servers, Clients, and targets.

After you create and import a gold image, you can provision software by adding a copy of the gold image (called a working copy) on the Fleet Patching and Provisioning Server, on a Fleet Patching and Provisioning Client, or a target. You can run the software provisioning command on either the Server or a Client.

- To create a working copy on the Fleet Patching and Provisioning Server:
  ```
  $ rhpctl add workingcopy -workingcopy working_copy_name -image image_name
  ```

- To create a working copy in a local file system on a Fleet Patching and Provisioning Client:
  ```
  $ rhpctl add workingcopy -workingcopy working_copy_name -image image_name
  -storagetype LOCAL -path path_to_software_home
  ```

- To create a working copy on a Fleet Patching and Provisioning Client from the Fleet Patching and Provisioning Server:
  ```
  $ rhpctl add workingcopy -workingcopy working_copy_name -image image_name
  -client client_cluster_name
  ```
Note:

- The directory you specify in the -path parameter must be empty.
- You can re-run the provisioning command in case of an interruption or failure due to system or user errors. After you fix the reported errors, re-run the command and it will resume from the point of failure.

- **Storage Options for Provisioned Software**
 Choose one of two storage options where Fleet Patching and Provisioning stores working copies of gold images.

- **Provisioning for a Different User**
 If you want a different user to provision software other than the user running the command, then use the -user parameter of the rhpctl add workingcopy command.

- **User Group Management in Fleet Patching and Provisioning**
 When you create a working copy of a gold image as part of a move or upgrade operation, Fleet Patching and Provisioning configures the operating system groups in the new working copy to match those of the source software home (either the unmanaged or the managed home from which you move or upgrade).

Related Topics

- **Storage Options for Provisioned Software**
 Choose one of two storage options where Fleet Patching and Provisioning stores working copies of gold images.

Storage Options for Provisioned Software

Choose one of two storage options where Fleet Patching and Provisioning stores working copies of gold images.

When you provision software using the rhpctl add workingcopy command, you can choose from two storage options where Fleet Patching and Provisioning places that software:

- In an Oracle ACFS shared file system managed by Fleet Patching and Provisioning (for database homes only)
- In a local file system not managed by Fleet Patching and Provisioning

Using the rhpctl add workingcopy command with the -storagetype and -path parameters, you can choose where you store provisioned working copies. The applicability of the parameters depends on whether the node (or nodes) to which you are provisioning the working copy is a Fleet Patching and Provisioning Server, Fleet Patching and Provisioning Client, or a non-Fleet Patching and Provisioning client. You can choose from the following values for the -storagetype parameter:

- **RHP_MANAGED**: Choosing this value, which is available for Fleet Patching and Provisioning Servers and Fleet Patching and Provisioning Clients, stores working copies in an Oracle ACFS shared file system. The -path parameter is not used with this option because Fleet Patching and Provisioning manages the storage option.
Notes:

- You cannot store Oracle Grid Infrastructure homes in `RHP_MANAGED` storage.
- Oracle recommends using the `RHP_MANAGED` storage type, which is available on Fleet Patching and Provisioning Servers, and on Clients configured with an Oracle ASM disk group.
- If you provision working copies on a Fleet Patching and Provisioning Server, then you do not need to specify the `-storagetype` option because it will default to `RHP_MANAGED`.
- If you choose to provision working copies on a Fleet Patching and Provisioning Client, and you do not specify the `-path` parameter, then the storage type defaults to `LOCAL` only if there is an Oracle ASM disk group on the client. Otherwise the command will fail. If you specify a location on the client for the `-path` parameter, then the storage type defaults to `LOCAL` with or without an Oracle ASM disk group.

- **LOCAL**: Choosing this value stores working copies in a local file system that is not managed by Fleet Patching and Provisioning. You must specify a path to the file system on the Fleet Patching and Provisioning Server, Fleet Patching and Provisioning Client, or non-Fleet Patching and Provisioning client, or to the Oracle ASM disk group on the Fleet Patching and Provisioning Client.

In cases where you specify the `-path` parameter, if the file system is shared among all of the nodes in the cluster, then the working copy gets created on this shared storage. If the file system is not shared, then the working copy gets created in the location of the given path on every node in the cluster.

Note:

The directory you specify in the `-path` parameter must be empty.

Related Topics

- `rhpctl add workingcopy`
 Creates a working copy on a client cluster.

Provisioning for a Different User

If you want a different user to provision software other than the user running the command, then use the `-user` parameter of the `rhpctl add workingcopy` command.

When the provisioning is completed, all files and directories of the provisioned software are owned by the user you specified. Permissions on files on the remotely provisioned software are the same as the permissions that existed on the gold image from where you provisioned the application software.
User Group Management in Fleet Patching and Provisioning

When you create a working copy of a gold image as part of a move or upgrade operation, Fleet Patching and Provisioning configures the operating system groups in the new working copy to match those of the source software home (either the unmanaged or the managed home from which you move or upgrade).

When you create a gold image of SOFTWARE image type, any user groups in the source are not inherited and images of this type never contain user group information. When you provision a working copy from a SOFTWARE gold image using the `rhpctl add workingcopy` command, you can, optionally, configure user groups in the working copy using the `-groups` parameter.

The `rhpctl move database`, `rhpctl move gihome`, `rhpctl upgrade database`, and `rhpctl upgrade gihome` commands all require you to specify a source home (either an unmanaged home or a managed home (working copy) that you provisioned using Fleet Patching and Provisioning), and a destination home (which must be a working copy).

When you have provisioned the destination home using the `rhpctl add workingcopy` command, prior to performing a move or upgrade operation, you must ensure that the groups configured in the source home match those in the destination home. Fleet Patching and Provisioning configures the groups as part of the add operation.

When you create a gold image of either the ORACLEGISOFTWARE or the ORACLEDBSOFTWARE image type from a source software home (using the `rhpctl import image` command) or from a working copy (using the `rhpctl add image` command), the gold image inherits the Oracle user groups that were configured in the source. You cannot override this feature.

You can define user groups for ORACLEGISOFTWARE and ORACLEDBSOFTWARE working copies using the `rhpctl add workingcopy` command, depending on the image type and user group, as discussed in the subsequent sections.

This section describes how Fleet Patching and Provisioning manages user group configuration, and how the `-groups` command-line option of `rhpctl add workingcopy` functions.

ORACLEGISOFTWARE (Oracle Grid Infrastructure)

When you provision an Oracle Grid Infrastructure working copy of a gold image, the groups are set in the working copy according to the type of provisioning (whether regular provisioning or software only, and with or without the `-local` parameter), and whether you specify the `-groups` parameter with `rhpctl add workingcopy`. You can define OSDBA and OSASM user groups in Oracle Grid Infrastructure software with either the `-softwareonly` command parameter or by using a response file with the `rhpctl add workingcopy` command.

If you are provisioning only the Oracle Grid Infrastructure software using the `-softwareonly` command parameter, then you cannot use the `-groups` parameter, and Fleet Patching and Provisioning obtains OSDBA and OSASM user group information from the active Grid home.

If you use the `-local` command parameter (which is only valid when you use the `-softwareonly` command parameter) with `rhpctl add workingcopy`, then Fleet Patching and Provisioning takes the values of the groups from the command line.
(using the `-groups` parameter) or uses the default values, which Fleet Patching and Provisioning obtains from the `osdbagrp` binary of the gold image.

If none of the preceding applies, then Fleet Patching and Provisioning uses the installer default user group.

If you are provisioning and configuring a working copy using information from a response file, then Fleet Patching and Provisioning:

1. Uses the value of the user group from the command line, if provided, for OSDBA or OSASM, or both.

2. If you provide no value on the command line, then Fleet Patching and Provisioning retrieves the user group information defined in the response file.

If you are defining the OSOPER Oracle group, then, again, you can either use the `-softwareonly` command parameter or use a response file with the `rhpctl add workingcopy` command.

If you use the `-softwareonly` command parameter, then you can provide the value on the command line (using the `-groups` parameter) or leave the user group undefined.

If you are provisioning and configuring a working copy of a gold image using information from a response file, then you can provide the value on the command line, use the information contained in the response file, or leave the OSOPER Oracle group undefined.

ORACLEDBSOFTWARE (Oracle Database)

If you are provisioning a working copy of Oracle Database software and you want to define Oracle groups, then use the `-groups` command parameter with the `rhpctl add workingcopy` command. Oracle groups available in the various Oracle Database releases are as follows:

- **Oracle Database 11g release 2 (11.2)**
 - OSDBA
 - OSOPER

- **Oracle Database 12c release 1 (12.1)**
 - OSDBA
 - OSOPER
 - OSBACKUP
 - OSDG
 - OSKM

- **Oracle Database 12c release 2 (12.2) and later**
 - OSDBA
 - OSOPER
 - OSBACKUP
 - OSDG
 - OSKM
 - OSRAC

Regardless of which of the preceding groups you are defining (except for OSOPER), Fleet Patching and Provisioning takes the values of the groups from the command line (using the `-groups` parameter) or uses the default values, which Fleet Patching and Provisioning obtains from the `osdbagrp` binary of the gold image.
If any group picked up from the osdbagrp binary is not in the list of groups to which the database user belongs (given by the id command), then Fleet Patching and Provisioning uses the installer default user group. Otherwise, the database user is the user running the rhpctl add workingcopy command.

Provisioning Oracle Grid Infrastructure Homes

When you create a working copy of a gold image as part of a move or upgrade operation, Fleet Patching and Provisioning configures the operating system groups in the new working copy to match those of the source software home.

Oracle Fleet Patching and Provisioning Clients have the ability to fetch Oracle Grid Infrastructure homes from the Oracle Fleet Patching and Provisioning Server.

Oracle Grid Infrastructure homes are distributed in the form of working copies of gold images. After a working copy has been provisioned, Oracle Fleet Patching and Provisioning can optionally configure Oracle Grid Infrastructure. This gives Oracle Fleet Patching and Provisioning the ability to create an Oracle Grid Infrastructure installation on a group of one or more nodes that initially do not have Oracle Grid Infrastructure installed.

Oracle Fleet Patching and Provisioning also has commands for managing Oracle Grid Infrastructure homes, such as switching to a patched home or upgrading to a new Oracle Grid Infrastructure version. These are both single commands that orchestrate the numerous steps involved. Reverting to the original home is just as simple. Also, Oracle Fleet Patching and Provisioning can add or delete nodes from an Oracle Grid Infrastructure configuration.

- **About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and Provisioning**
 You can use Oracle Fleet Patching and Provisioning to provision and maintain your Oracle Grid Infrastructure homes.

- **Provisioning Oracle Grid Infrastructure Software**
 Fleet Patching and Provisioning has several methods to provision and, optionally, configure Oracle Grid Infrastructure and Oracle Restart grid infrastructure homes.

About Deploying Oracle Grid Infrastructure Using Oracle Fleet Patching and Provisioning

You can use Oracle Fleet Patching and Provisioning to provision and maintain your Oracle Grid Infrastructure homes.

Oracle Fleet Patching and Provisioning enables mass deployment and maintenance of standard operating environments for databases, clusters, and user-defined software types.

Oracle FPP enables you to install clusters, and provision, patch, scale, and upgrade Oracle Grid Infrastructure, Oracle Restart, and Oracle Database homes. The supported releases are 11.2.0.4, 12.1, 12.2, 18c, and later releases. You can also provision applications and middleware using Oracle Fleet Patching and Provisioning.

Oracle Fleet Patching and Provisioning is a service in Oracle Grid Infrastructure that you can use in either of the following modes:

- **Central Oracle Fleet Patching and Provisioning Server**
The Oracle Fleet Patching and Provisioning Server stores and manages standardized images, called gold images. Gold images can be deployed to any number of nodes across the data center. You can create new clusters and databases on the deployed homes and can use them to patch, upgrade, and scale existing installations.

The Oracle Fleet Patching and Provisioning Server can manage the following types of installations:

- Software homes on the cluster hosting the Oracle Fleet Patching and Provisioning Server itself.
- Installations running Oracle Grid Infrastructure 11g Release 2 (11.2.0.4) and later releases.
- Oracle Fleet Patching and Provisioning Clients running Oracle Grid Infrastructure 12c Release 2 (12.2) and later releases.
- Installations running without Oracle Grid Infrastructure.

The Oracle Fleet Patching and Provisioning Server can provision new installations, and manage existing installations, without requiring any changes to the existing installations. The Oracle Fleet Patching and Provisioning Server can automatically share gold images among peer servers to support enterprises with geographically distributed data centers.

Oracle Fleet Patching and Provisioning Client

The Oracle Fleet Patching and Provisioning Client can be managed from the Oracle Fleet Patching and Provisioning Server, or directly by executing commands on the client itself. The Oracle Fleet Patching and Provisioning Client is a service built into the Oracle Grid Infrastructure and is available in Oracle Grid Infrastructure 12c Release 2 (12.2) and later releases. The Oracle Fleet Patching and Provisioning Client can retrieve gold images from the Oracle Fleet Patching and Provisioning Server, upload new images based on the policy, and apply maintenance operations to itself.

Provisioning Oracle Grid Infrastructure Software

Fleet Patching and Provisioning has several methods to provision and, optionally, configure Oracle Grid Infrastructure and Oracle Restart grid infrastructure homes.

Fleet Patching and Provisioning can provision and configure Oracle Grid Infrastructure on one or more nodes that do not currently have a Grid home, and then configure Oracle Grid Infrastructure to form a single-node or multi-node Oracle Grid Infrastructure installation.

Use the `rhpctl add workingcopy` command to install and configure Oracle Grid Infrastructure, and to enable simple and repeatable creation of standardized deployments.

The Fleet Patching and Provisioning Server can also provision an Oracle Grid Infrastructure home to a node or cluster that is currently running Oracle Grid Infrastructure. The currently running Grid home can be a home that Fleet Patching and Provisioning did not provision (an *unmanaged* home) or a home that Fleet Patching and Provisioning did provision (a *managed* home).

You can also provision an Oracle Restart grid infrastructure to a node in the cluster.
In either case, use the \texttt{-softwareonly} parameter of the \texttt{rhpctl add workingcopy} command. This provisions but does not activate the new Grid home, so that when you are ready to switch to that new home, you can do so with a single command.

- To inform Fleet Patching and Provisioning the nodes on which to install Oracle Grid Infrastructure, and to configure Oracle Grid Infrastructure, you provide directions in a response file, as in the following example:

\[
\text{
$ rhpctl add workingcopy -workingcopy GI_HOME_11204_WCPY -image GI_HOME_11204 -responsefile /u01/app/rhpinfo/GI_11204_install.txt \\
\{authentication_option\}
$
\]

The preceding command provisions the \texttt{GI_HOME_11204_WCPY} working copy based on the \texttt{GI_HOME_11204} gold image to a target specified in the \texttt{GI_11204_install.txt} response file. In addition to identifying the target nodes, the response file specifies information about the Oracle Grid Infrastructure configuration, such as Oracle ASM and GNS parameters.

\begin{tcolorbox}
\textbf{Note:}
\begin{quote}
The oracle.install.crs.rootconfig.executeRootScript=xxx response file parameter is overridden and always set to \texttt{false} for Fleet Patching and Provisioning, regardless of what you specify in the response file.
\end{quote}
\end{tcolorbox}

- To provision an Oracle Grid Infrastructure home to a node or cluster that is currently running Oracle Grid Infrastructure:

\[
\text{
$ rhpctl add workingcopy -workingcopy GI_HOME_12201_PATCHED_WCPY -image GI_HOME_12201_PSU1 -client CLUST_002 -softwareonly
$
\]

The preceding command provisions a new working copy based on the \texttt{GI_HOME_12201_PSU1} gold image to the Fleet Patching and Provisioning Client (that is running Oracle Grid Infrastructure 12c release 2 (12.2)) named \texttt{CLUST_002}. When you provision to a target that is not running Oracle Grid Infrastructure 12c release 2 (12.2) (such as, a target running Oracle Grid Infrastructure 12c release 1 (12.1) or Oracle Grid Infrastructure 11g release 2 (11.2)), use the \texttt{-targetnode} parameter instead of \texttt{-client}.

- Specify a target node on which you want to provision an Oracle Restart grid infrastructure, as follows:

\[
\text{
$ rhpctl add workingcopy -workingcopy SIHA_GI -image goldimage -targetnode remote_node_name -responsefile Oracle_Restart_response_file \{authentication_option\}
$
\]

\section*{Related Topics}
- \textbf{Authentication Options for Oracle Fleet Patching and Provisioning Operations}\n
Some RHPCTL commands show authentication choices as an optional parameter.
Provisioning Oracle Database Homes

Use the `rhpctl add workingcopy` command to provision a working copy of a database home on a Fleet Patching and Provisioning Server, Client, or target.

- Run the `rhpctl add workingcopy` command on a Fleet Patching and Provisioning Server, similar to the following example:

```
$ rhpctl add workingcopy -image db12c -path /u01/app/dbusr/product/12.2.0/db12201
   -client client_007 -oraclebase /u01/app/dbusr/ -workingcopy wc_db122_1
```

The preceding command example creates a working copy named `wc_db122_1` on all nodes of the Fleet Patching and Provisioning Client cluster named `client_007`. The gold image `db12c` is the source of the workingcopy. The directory path locations that you specify in the command must be empty.

Related Topics
- `rhpctl add workingcopy`
Patching and Upgrading Oracle Grid Infrastructure

The Oracle Fleet Patching and Provisioning Server provides an efficient and secure platform for patching and upgrading Oracle Grid Infrastructure.

- **Patching Oracle Grid Infrastructure**
 Fleet Patching and Provisioning provides three methods to patch Oracle Grid Infrastructure software homes: rolling, non-rolling, and in batches.

- **Upgrading Oracle Grid Infrastructure**
 If you are using Fleet Patching and Provisioning, then you can use a single command to upgrade an Oracle Grid Infrastructure home.

- **Oracle Restart Patching and Upgrading**
 You can use Oracle Fleet Patching and Provisioning to patch and upgrade Oracle Restart using gold images.

Patching Oracle Grid Infrastructure

Fleet Patching and Provisioning provides three methods to patch Oracle Grid Infrastructure software homes: rolling, non-rolling, and in batches.

Patching Oracle Grid Infrastructure software involves moving the Grid home to a patched version of the current Grid home. When the patching operation is initiated by a Fleet Patching and Provisioning Server or Client, the patched version must be a working copy of a gold image. The working copy to which you are moving the Grid home can be at a lower patch level than the current home. This facilitates rollback if any problems occur after moving to the higher-level patched home.

You can also perform this operation using the independent automaton in an environment where no Fleet Patching and Provisioning Server is present. In this case, the source and destination homes are not working copies of gold images, but are two installed homes that you deployed with some method other than using Fleet Patching and Provisioning.

- **Patching Oracle Grid Infrastructure Using the Rolling Method**
 The rolling method for patching Oracle Grid Infrastructure is the default method.

- **Patching Oracle Grid Infrastructure Using the Non-Rolling Method**
 You can use the `-nonrolling` parameter with the `rhpctl move gihome` command, which restarts the Oracle Grid Infrastructure stack on all nodes in parallel.

- **Combined Oracle Grid Infrastructure and Oracle Database Patching**
 When you patch an Oracle Grid Infrastructure deployment, Fleet Patching and Provisioning enables you to simultaneously patch the Oracle Database homes on the cluster, so you can patch both types of software homes in a single maintenance operation.

- **Zero-Downtime Oracle Grid Infrastructure Patching**
 Use Fleet Patching and Provisioning to patch Oracle Grid Infrastructure without bringing down Oracle RAC database instances.
Related Topics

- rhpctl add workingcopy
- rhpctl move gihome

Patching Oracle Grid Infrastructure Using the Rolling Method

The rolling method for patching Oracle Grid Infrastructure is the default method.

You use the `rhpctl move gihome` command (an atomic operation), which returns after the Oracle Grid Infrastructure stack on each node has been restarted on the new home. Nodes are restarted sequentially, so that only one node at a time will be offline, while all other nodes in the cluster remain online.

- Move the Oracle Grid Infrastructure home to a working copy of the same release level, as follows:

  ```
  $ rhpctl move gihome -sourcewc Grid_home_1 -destwc Grid_home_2
  ```

 The preceding command moves the running Oracle Grid Infrastructure home from the current managed home (the `sourcewc`) to the patched home (`destwc`) on the specific client cluster. The patched home must be provisioned on the client.

- If the move operation fails at some point before completing, then you can rerun the operation by running the command again and the operation will resume where it left off. This enables you to fix whatever problem caused the failure and resume processing from the point of failure. Or you can undo the partially completed operation and return the configuration to its initial state, as follows:

  ```
  $ rhpctl move gihome -destwc destination_workingcopy_name -revert [authentication_option]
  ```

 You cannot use the `-revert` parameter with an un-managed home.

Notes:

- You cannot move the Grid home to a home that Fleet Patching and Provisioning does not manage. Therefore, rollback (to the original home) applies only to moves between two working copies. This restriction does not apply when using the independent automaton since it operates on unmanaged homes only.

- You can delete the source working copy at any time after moving a Grid home. Once you delete the working copy, however, you cannot perform a rollback. Also, use the `rhpctl delete workingcopy` command (as opposed to `rm`, for example) to remove the source working copy to keep the Fleet Patching and Provisioning inventory correct.

- If you use the `-abort` parameter to terminate the patching operation, then Fleet Patching and Provisioning does not clean up or undo any of the patching steps. The cluster, databases, or both may be in an inconsistent state because all nodes are not patched.
Patching Oracle Grid Infrastructure Using the Non-Rolling Method

You can use the `-nonrolling` parameter with the `rhpctl move gihome` command, which restarts the Oracle Grid Infrastructure stack on all nodes in parallel.

As with the rolling method, this is an atomic command which returns after all nodes are online.

- Use the following command to patch Oracle Grid Infrastructure in a non-rolling fashion:

```
$ rhpctl move gihome -sourcewc Grid_home_1 -destwc Grid_home_2 -nonrolling
```

Combined Oracle Grid Infrastructure and Oracle Database Patching

When you patch an Oracle Grid Infrastructure deployment, Fleet Patching and Provisioning enables you to simultaneously patch the Oracle Database homes on the cluster, so you can patch both types of software homes in a single maintenance operation.

Note:

You cannot patch both Oracle Grid Infrastructure and Oracle Database in combination, with the independent automaton.

The following optional parameters of the `rhpctl move gihome` command are relevant to the combined Oracle Grid Infrastructure and Oracle Database patching use case:

- `-auto`: Automatically patch databases along with patching Oracle Grid Infrastructure
- `-dbhomes mapping_of_Oracle_homes`: Mapping of source and destination working copies in the following format:

 `sourcewc1=destwc1,...,source_oracle_home_path=destwcN`

- `-dblist db_name_list`: Patch only the specified databases
- `-excludedblist db_name_list`: Patch all databases except the specified databases
- `-nodatapatch`: Indicates that datapatch is not be run for databases being moved

As an example, assume that a Fleet Patching and Provisioning Server with Oracle Grid Infrastructure 12c release 2 (12.2) has provisioned the following working copies on an Oracle Grid Infrastructure 12c release 1 (12.1.0.2) target cluster which includes the node test_749:

- **GI121WC1**: The active Grid home on the Oracle Grid Infrastructure 12c release 1 (12.1.0.2) cluster
- **GI121WC2**: A software-only Grid home on the Oracle Grid Infrastructure 12c release 1 (12.1.0.2) cluster
• **DB121WC1**: An Oracle RAC 12c release 1 (12.1.0.2.0) database home running database instances

• **DB121025WC1**: An Oracle RAC 12c release 1 (12.1.0.2.5) database home with no database instances (this is the patched home)

• **DB112WC1**: An Oracle RAC 11g release 2 (11.2.0.4.0) database home running database instances

• **DB112045WC1**: An Oracle RAC 11g release 2 (11.2.0.4.5) database home with no database instances (this is the patched home)

Further assume that you want to simultaneously move

• Oracle Grid Infrastructure from working copy **GI121WC1** to working copy **GI121WC2**

• Oracle RAC Database **db1** from working copy **DB121WC1** to working copy **DB121025WC1**

• Oracle RAC Database **db2** in working copy **DB112WC1** to working copy **DB112045WC1**

The following single command accomplishes the moves:

```
$ rhpctl move gihome -sourcewc GI121WC1 -destwc GI121WC2 -auto -dbhomes DB121WC1=DB121025WC1, DB112WC1=DB112045WC1 -targetnode test_749 {authentication_option}
```

Notes:

• If you have an existing Oracle home that is not currently a working copy, then specify the Oracle home path instead of the working copy name for the source home. In the preceding example, if the Oracle home path for an existing 12.1.0.2 home is `/u01/app/prod/12.1.0.2/dbhome1`, then replace `DB121WC1=DB121025WC1` with `/u01/app/prod/12.1.0.2/dbhome1=DB121025WC1`.

• If the move operation fails at some point before completing, then you can either resolve the cause of the failure and resume the operation by rerunning the command, or you can undo the partially completed operation by issuing the following command, which restores the configuration to its initial state:

```
$ rhpctl move gihome -destwc GI121WC2 -revert {authentication_option}
```

In the preceding command example, the Oracle Grid Infrastructure 12c release 1 (12.1.0.2) Grid home moves from working copy **GI121WC1** to working copy **GI121WC2**, databases running on working copy **DB121WC1** move to working copy **DB121025WC1**, and databases running on working copy **DB112WC1** move to working copy **DB112045WC1**.

For each node in the client cluster, RHPCTL:

1. Runs any configured pre-operation user actions for moving the Oracle Grid Infrastructure (`move gihome`).
2. Runs any configured pre-operation user actions for moving the database working copies (move database).

3. Stops services running on the node, and applies drain and disconnect options.

4. Performs the relevant patching operations for Oracle Clusterware and Oracle Database.

5. Runs any configured post-operation user actions for moving the database working copies (move database).

6. Runs any configured post-operation user actions for moving the Oracle Grid Infrastructure working copy (move gihome).

Related Topics

• rhpctl move gihome
 Moves the Oracle Grid Infrastructure software stack from one home to another.

Zero-Downtime Oracle Grid Infrastructure Patching

Use Fleet Patching and Provisioning to patch Oracle Grid Infrastructure without bringing down Oracle RAC database instances.

Current methods of patching the Oracle Grid Infrastructure require that you bring down all Oracle RAC database instances on the node where you are patching the Oracle Grid Infrastructure home. This issue is addressed in the Grid Infrastructure layer where by the database instances can continue to run during the grid infrastructure patching.

To enable zero-downtime Oracle Grid Infrastructure patching, use the rhpctl move gihome command in a manner similar to the following:

```
rhpctl move gihome -tgip -sourcewc source_workingcopy_name -destwc destination_workingcopy_name
```

Patching System Software Binaries

When using Zero Downtime Patching, only the binaries in the Oracle Grid Infrastructure user space are patched. Additional Oracle Grid Infrastructure OS system software, kernel modules and system commands including ACFS, AFD, OLFS, and OKA, are not updated. These commands continue to run the version previous to the patch version. After patching, the OPatch inventory displays the new patch number in the inventory; however, the running OS system software does not contain these changes. Only the OS system software that is available in the Grid Infrastructure home has been patched.

To determine the OS system software that is available in the Grid Infrastructure home, you can run the crsctl query driver activeversion -all command. To determine what OS system software is running on the system, use crsctl query driver softwareversion -all.

To update the Grid Infrastructure OS system software on a single node, you must completely stop the Grid Infrastructure software. To stop the Grid Infrastructure software, you must stop the Oracle RAC databases on the single node. After stopping the Oracle RAC databases, run root.sh -updateosfiles to update all the Grid Infrastructure OS system software on the single node.
Upgrading Oracle Grid Infrastructure

If you are using Fleet Patching and Provisioning, then you can use a single command to upgrade an Oracle Grid Infrastructure home.

Fleet Patching and Provisioning supports upgrades to Oracle Grid Infrastructure 12c release 1 (12.1.0.2) from 11g release 2 (11.2.0.3 and 11.2.0.4). Upgrading to Oracle Grid Infrastructure 12c release 2 (12.2.0.1) is supported from 11g release 2 (11.2.0.3 and 11.2.0.4) and 12c release 1 (12.1.0.2). The destination for the upgrade can be a working copy of a gold image already provisioned or you can choose to create the working copy as part of this operation.

As an example, assume that a target cluster is running Oracle Grid Infrastructure on an Oracle Grid Infrastructure home that was provisioned by Fleet Patching and Provisioning. This Oracle Grid Infrastructure home is 11g release 2 (11.2.0.4) and the working copy is named accordingly.

After provisioning a working copy version of Oracle Grid Infrastructure 12c release 2 (12.2.0.1) (named GIOH12201 in this example), you can upgrade to that working copy with this single command:

```
$ rhpctl upgrade gihome -sourcewc GIOH11204 -destwc GIOH12201
```

Fleet Patching and Provisioning is able to identify the cluster to upgrade based on the name of the source working copy. If the target cluster was running on an unmanaged Oracle Grid Infrastructure home, then you would specify the path of the source home rather than providing a source working copy name, and you must also specify the target cluster.

Note:

You can delete the source working copy at any time after completing an upgrade. Once you delete the working copy, however, you cannot perform a rollback. Also, use the `rhpctl delete workingcopy` command (as opposed to `rm`, for example) to remove the source working copy to keep the Fleet Patching and Provisioning inventory correct.

Oracle Restart Patching and Upgrading

You can use Oracle Fleet Patching and Provisioning to patch and upgrade Oracle Restart using gold images.

You can move the target of single-node Oracle Restart to an Oracle home that you provision from a gold image that includes any patches. Oracle Fleet Patching and
Provisioning ensures the copying of the configuration files, such as listener.ora, to the new Oracle home.

You can also use Oracle Fleet Patching and Provisioning to upgrade Oracle Restart using gold images. Upgrade the Oracle Restart environment by upgrading the Oracle home on the target Oracle home that you provision from a higher-level gold image. Oracle Fleet Patching and Provisioning updates the configuration and inventory settings.

Use the RHPCTL utility similar to the following to patch Oracle Restart:

```
rhpctl move gihome -sourcewc Oracle_Restart_home_1 -destwc Oracle_Restart_home_2 -targetnode Oracle_Restart_node {superuser credentials}
```

Use the RHPCTL utility similar to the following to upgrade Oracle Restart:

```
rhpctl upgrade gihome -sourcewc source_Oracle_Restart_home -destwc higher_version_Oracle_Restart_home -targetnode Oracle_Restart_node {superuser credentials}
```
Patching and Upgrading Oracle Database

The Oracle Fleet Patching and Provisioning Server provides an efficient and secure platform for patching and upgrading Oracle Database.

- Creating an Oracle Database
 Create an Oracle Database on a working copy.

- Patching Oracle Database
 To patch an Oracle database, you move the database home to a new home, which includes the patches you want to implement.

- Upgrading Oracle Database Software
 Fleet Patching and Provisioning provides two options for upgrading Oracle Database. Both options are performed with a single command.

- Zero-Downtime Upgrade
 Using Fleet Patching and Provisioning, which automates and orchestrates database upgrades, you can upgrade an Oracle RAC or Oracle RAC One Node database with no disruption in service.

Creating an Oracle Database

Create an Oracle Database on a working copy.

The Fleet Patching and Provisioning Server can add a database on a working copy that is on the Fleet Patching and Provisioning Server, itself, a Fleet Patching and Provisioning Client, or a non-Fleet Patching and Provisioning Client target. A Fleet Patching and Provisioning Client can create a database on a working copy that is running on the Fleet Patching and Provisioning Client, itself.

- After you create a working copy of a gold image and provision that working copy to a target, you can create an Oracle Database on the working copy using the `rhpctl add database` command, similar to the following command example, which creates an Oracle Real Application Clusters (Oracle RAC) database called `db12201` on a working copy called `wc_db122_1`:

  ```
  $ rhpctl add database -workingcopy wc_db122_1 -dbname db12201 -node client_007_node1,client_007_node2 -dbtype RAC -datafileDestination DATA007_DG
  ```

 The preceding example creates an administrator-managed Oracle RAC database on two nodes in a client cluster. The data file destination is an Oracle ASM disk group that was created prior to running the command. Additionally, you can create Oracle RAC One Node and non-cluster databases.
Patching Oracle Database

To patch an Oracle database, you move the database home to a new home, which includes the patches you want to implement.

Use the `rhpctl move database` command to move one or more database homes to a working copy of the same database release level. The databases may be running on a working copy, or on an Oracle Database home that is not managed by Fleet Patching and Provisioning.

When the move operation is initiated by a Fleet Patching and Provisioning Server or Client, the version moved to must be a working copy of a gold image. You can also perform this operation using the independent automaton in an environment where no Fleet Patching and Provisioning Server is present. In this case, the source and destination homes are not working copies of gold images, but are two installed homes that you deployed with some method other than using Fleet Patching and Provisioning.

The working copy to which you are moving the database can be at a lower patch level than the current database home. This facilitates rollback in the event that you encounter any problems after moving to the higher level patched home.

The working copy to which you are moving the database home can be at the same patch level as the original working copy. This is useful if you are moving a database home from one storage location to another, or if you wish to convert an unmanaged home to a managed home while staying at the same patch level.

Fleet Patching and Provisioning applies all patches out-of-place, minimizing the downtime necessary for maintenance. Fleet Patching and Provisioning also preserves the current configuration, enabling the rollback capability previously described. By default, Fleet Patching and Provisioning applies patches in a rolling manner, which reduces, and in many cases eliminates, service downtime. Use the `-nonrolling` option to perform patching in non-rolling mode. The database is then completely stopped on the old ORACLE_HOME, and then restarted to make it run from the newly patched ORACLE_HOME.

Note:

Part of the patching process includes applying Datapatch. When you move an Oracle Database 12c release 1 (12.1) or higher, Fleet Patching and Provisioning completes this step for you. When you move to a version previous to Oracle Database 12c release 1 (12.1), however, you must run Datapatch manually. Fleet Patching and Provisioning is Oracle Data Guard-aware, and will not apply Datapatch to Oracle Data Guard standbys.

Workflow for Database Patching
Assume that a database named myorcldbh is running on a working copy that was created from an Oracle Database 12c release 2 (12.2) gold image named DB122. The typical workflow for patching an Oracle Database home is as follows:

1. Create a working copy of the Oracle Database that you want to patch, in this case DB122.
2. Apply the patch to the working copy you created.
3. Test and validate the patched working copy.
4. Use the rhpctl add image command to create a gold image (for example, DB122_PATCH) from the patched working copy.

Note:
The working copy you specify in the preceding command must be hosted on the Fleet Patching and Provisioning Server in Fleet Patching and Provisioning-managed storage.

5. Delete the patched working copy with the patched Oracle Database using the rhpctl delete workingcopy command.

Note:
Do not remove directly using the `rm` command or some other method, because this does not update the Fleet Patching and Provisioning inventory information.

6. Create a working copy from the patched gold image, (DB122_PATCH).
7. Move myorcldbh to the working copy you just created.
8. When you are confident that you will not need to roll back to the working copy on which the database was running at the beginning of the procedure, delete that working copy using the rhpctl delete workingcopy command.

Patching Oracle Database in a Data Guard Environment

Oracle Fleet Patching and Provisioning Server checks if the role of the database allows the execution of `datapatch` and acts accordingly. For example, if the database role is primary, Oracle FPP runs `datapatch` at the end of the moving process, and does not run `datapatch` if the database role is physical standby.

However, Oracle FPP is not aware of the standby topology and does not check for the patching level of the working copy on the standby locations. You must ensure that the standby database is always moved to a patched working copy before moving the primary database. Also, if you move the standby database to a patched working copy and a switchover or a failover occurs before moving the primary database to the patched working copy, it is possible that `datapatch` has not been executed on the primary database. This is because both sites have been moved to the patched working copy when the role was physical standby. In this case, you must run `datapatch` manually on the primary database.

Patching Oracle Database Using Batches

Chapter 5

Patching Oracle Database

5-3
During database patching, Fleet Patching and Provisioning can sequentially process batches of nodes, with a number of nodes in each batch being restarted in parallel. This method maximizes service availability during the patching process. You can define the batches on the command line or choose to have Fleet Patching and Provisioning generate the list of batches based on its analysis of the database services running in the cluster.

Adaptive Oracle RAC-Rolling Patching for OJVM Deployments

In a clustered environment, the default approach for applying database maintenance with Fleet Patching and Provisioning is Oracle RAC rolling. However, non-rolling may be required if the new (patched) database home contains OJVM patches. In this case, Fleet Patching and Provisioning determines whether the rolling approach is possible, and rolls when applicable. (See MOS Note 2217053.1 for details.)

Related Topics

- Patching Oracle Grid Infrastructure
- Provisioning Copies of Gold Images
- Adding Gold Images to the Fleet Patching and Provisioning Server
- RHPCTL Command Reference

Upgrading Oracle Database Software

Fleet Patching and Provisioning provides two options for upgrading Oracle Database. Both options are performed with a single command.

The `rhpctl upgrade database` command performs a traditional upgrade incurring downtime. The `rhpctl zdtupgrade database` command performs an Oracle RAC or Oracle RAC One Node upgrade with minimal or no downtime.

You can use Fleet Patching and Provisioning to provision, scale, and patch Oracle Database 11g release 2 (11.2.0.4) and later releases. You can also upgrade Oracle Databases from 11g release 2 (11.2.0.4), 12c release 1 (12.1.0.2), 12c release 2 (12.2), and 18c to Oracle Database 19c. Refer to Oracle Database Upgrade Guide for information about Oracle Database direct upgrade paths.

Note:

The version of Oracle Grid Infrastructure on which the pre-upgrade database is running must be the same version or higher than the version of the database to which you are upgrading.

The destination for the upgrade can be a working copy already provisioned, or you can choose to create the working copy of gold image as part of this operation.

The pre-upgrade database can be running on a working copy (a managed home that was provisioned by Fleet Patching and Provisioning) or on an unmanaged home. In the first case, you can roll back the upgrade process with a single RHPCTL command.
Note:
You can delete the source working copy at any time after completing an upgrade. Once you delete the working copy, however, you cannot perform a rollback. Also, use the `rhpctl delete workingcopy` command (as opposed to `rm`, for example) to remove the source working copy to keep the Fleet Patching and Provisioning inventory correct.

Related Topics

- `rhpctl upgrade database`
- `rhpctl zdtupgrade database`

Zero-Downtime Upgrade

Using Fleet Patching and Provisioning, which automates and orchestrates database upgrades, you can upgrade an Oracle RAC or Oracle RAC One Node database with no disruption in service.

The zero-downtime upgrade process is resumable, restartable, and recoverable should any errors interrupt the process. You can fix the issue then re-run the command, and Fleet Patching and Provisioning continues from the error point. Oracle also provides hooks at the beginning and end of the zero-downtime upgrade process, allowing call outs to user-defined scripts, so you can customize the process.

Note:
You can use zero-downtime patching only for out-of-place patching of Oracle Grid Infrastructure 19c Release Update (RU) 19.8 or later releases with Oracle RAC or Oracle RAC One Node databases of 19c or later releases. If your Oracle RAC or Oracle RAC One Node database release is older than 19c, then the database instances stop during zero-downtime patching.

You can use the zero-downtime upgrade process to upgrade databases that meet the following criteria:

- **Database upgrade targets**: Oracle RAC and Oracle RAC One Node, with the following upgrade paths:

 - 11.2.0.4 to 12.1.0.2
 - 11.2.0.4 to 12.2
 - 11.2.0.4 to 18c
 - 12.1.0.2 to 12.2
 - 12.1.0.2 to 18c
 - 12.1.0.2 to 19c
 - 12.2 to 18c
 - 12.2 to 19c
 - 18c to 19c
• **Fleet Patching and Provisioning management**: The source database home can either be unmanaged (not provisioned by Fleet Patching and Provisioning service) or managed (provisioned by Fleet Patching and Provisioning service)

• **Database state**: The source database must be in archive log mode

Upgrading Container Databases

You can use Fleet Patching and Provisioning to upgrade CDBs but Fleet Patching and Provisioning does not support converting a non-CDB to a CDB during upgrade. To prepare for a zero-downtime upgrade, you complete configuration steps and validation checks. When you run a zero-downtime upgrade using Fleet Patching and Provisioning, you can stop the upgrade and resume it, if necessary. You can recover from any upgrade errors, and you can restart the upgrade. You also have the ability to insert calls to your own scripts during the upgrade, so you can customize your upgrade procedure.

Zero-Downtime Upgrade Environment Prerequisites

• **Server environment**: Oracle Grid Infrastructure 18c with Fleet Patching and Provisioning

• **Database hosts**: Databases hosted on one of the following platforms:
 – Oracle Grid Infrastructure 18c Fleet Patching and Provisioning Client
 – Oracle Grid Infrastructure 18c Fleet Patching and Provisioning Server
 – Oracle Grid Infrastructure 12c (12.2.0.1) Fleet Patching and Provisioning Client
 – Oracle Grid Infrastructure 12c (12.1.0.2) target cluster

• **Database-specific prerequisites for the environment**: During an upgrade, Fleet Patching and Provisioning manages replication to a local data file to preserve transactions applied to the new database when it is ready. There are two possibilities for the local data file:
 – Snap clone, which is available if the database data files and redo and archive redo logs are on Oracle ACFS file systems
 – Full copy, for all other cases

• Fleet Patching and Provisioning requires either Oracle GoldenGate or Oracle Data Guard during a zero-downtime database upgrade. As part of the upgrade procedure, Fleet Patching and Provisioning configures and manages the Oracle GoldenGate deployment.

• **Running a Zero-Downtime Upgrade Using Oracle GoldenGate for Replication**
 Run a zero-downtime upgrade using Oracle GoldenGate for replication.

• **Running a Zero-Downtime Upgrade Using Oracle Data Guard for Replication**
 Run a zero-downtime upgrade using Oracle Data Guard for replication.

• **Customizing Zero-Downtime Upgrades**
 You can customize zero-downtime upgrades using the user-action framework of Fleet Patching and Provisioning.
Running a Zero-Downtime Upgrade Using Oracle GoldenGate for Replication

Run a zero-downtime upgrade using Oracle GoldenGate for replication.

1. Prepare the Fleet Patching and Provisioning Server.

 Create gold images of the Oracle GoldenGate software in the image library of the Fleet Patching and Provisioning Server.

 ![Note:](image)

 You can download the Oracle GoldenGate software for your platform from Oracle eDelivery. The Oracle GoldenGate 12.3 installable kit contains the required software for both Oracle Database 11g and Oracle Database 12c databases.

 If you download the Oracle GoldenGate software, then extract the software home and perform a software only installation on the Fleet Patching and Provisioning Server.

 Create gold images of the Oracle GoldenGate software for both databases, as follows:

   ```
   $ rhpctl import image -image 112ggimage -path path -imagetype ORACLEGGSOFTWARE
   $ rhpctl import image -image 12ggimage -path path -imagetype ORACLEGGSOFTWARE
   ```

 In both of the preceding commands, `path` refers to the location of the Oracle GoldenGate software home on the Fleet Patching and Provisioning Server for each release of the database.

2. Prepare the target database.

 Provision working copies of the Oracle GoldenGate software to the cluster hosting the database, as follows:

   ```
   $ rhpctl add workingcopy -workingcopy GG_Wcopy_11g -image 112ggimage -user user_name -node 12102_cluster_node -path path (-root | -sudouser user_name -sudopath sudo_bin_path)
   $ rhpctl add workingcopy -workingcopy GG_Wcopy_12c -image 12ggimage -user user_name -node 12102_cluster_node -path path (-root | -sudouser user_name -sudopath sudo_bin_path)
   ```

 If the database is hosted on the Fleet Patching and Provisioning Server, itself, then neither the `--targetnode` nor `--client` parameters are required.
3. Provision a working copy of the Oracle Database 12c software home to the target cluster.

Note: You can do this preparation ahead of the maintenance window without disrupting any operations taking place on the target.

You can run the upgrade command on the Fleet Patching and Provisioning Server to upgrade a database hosted on the server, an Oracle Database 12c release 1 (12.1.0.2) target cluster, or a database hosted on a Fleet Patching and Provisioning Client 12c release 2 (12.2.0.1) or 18c. You can also run the command a Fleet Patching and Provisioning Client 18c to upgrade a database hosted on the client, itself.

Use the upgrade command similar to the following:

```
$ rhpc1 zdtupgrade database -dbname sierra -destwc DB_Wcopy_121 -ggsrwc
   GG_Wcopy_11g -gdstwc GG_Wcopy_12c -targetnode 12102_cluster_node
   -root
```

In the preceding command, `12102_cluster_node` refers to the Oracle Grid Infrastructure 12c release 1 (12.1.0.2) cluster hosting the database you want to upgrade.

Related Topics

- `rhpc1 import image`
 Creates an image on the Fleet Patching and Provisioning Server.

- `rhpc1 add workingcopy`
 Creates a working copy on a client cluster.

- `rhpc1 zdtupgrade database`

Running a Zero-Downtime Upgrade Using Oracle Data Guard for Replication

Run a zero-downtime upgrade using Oracle Data Guard for replication.

You can run the zero-downtime upgrade command using Oracle Data Guard's transient logical standby (TLS) feature. All of the steps involved are orchestrated by the zero-downtime upgrade command.
After you provision the destination database Home, the following prerequisites must be met:

- **Data Guard Broker is not enabled**
- **Flash recovery area (FRA) is configured**
- The following example of a zero-downtime upgrade using Oracle Data Guard upgrades an Oracle Database 11g release 2 (11.2.0.4), sierra, running on the target cluster, which includes a node, targetclust003, to an Oracle Database 12c release 1 (12.1.0.2) (the destination working copy, which was provisioned from a Gold Image stored on the Fleet Patching and Provisioning Server named rhps.example.com):

```
$ rhpctl zdtupgrade database -dbname sierra -destwc WC121DB4344 -clonedatadg DBDATA -targetnode node90743 -root
```

Enter user "root" password:

```
node90753.example.com: starting zero downtime upgrade operation ...
node90753.example.com: verifying patches applied to Oracle homes ...
node90753.example.com: verifying if database "sierra" can be upgraded with zero downtime ...
node90743: 15:09:10.459: Verifying whether database "sierra" can be cloned ...
node90743: 15:09:10.462: Verifying that database "sierra" is a primary database ...
node90743: 15:09:14.672: Verifying that connections can be created to database "sierra" ...
< ... >
node90743: 15:14:58.015: Starting redo apply ...
node90743: 15:15:07.133: Configuring primary database "sierra" ...

```
```
node90753.example.com: retrieving information about database "xmvotkv2d" ...
node90753.example.com: creating services for snapshot database "xmvotkv2d" ...
```
```
node90743: 15:16:02.844: Macro step 2: Backing up user environment in case upgrade is aborted ...
node90743: 15:16:02.848: Stopping media recovery for database "xmvotkv2d" ...
node90743: 15:16:05.858: Creating initial restore point "NZDRU_0000_0001" ...
< ... >
node90743: 15:16:17.611: Macro step 3: Creating transient logical standby from existing physical standby ...
node90743: 15:16:18.719: Stopping instance "xmvotkv2d2" of database "xmvotkv2d" ...
node90743: 15:16:43.187: Verifying that database "sierra" is a primary database ...
< ... >
node90743: 15:19:27.158: Macro step 4: Upgrading transient logical standby database ...
```
node90743: 15:20:27.272: Disabling service "sierrasvc" of database "xmvotkvd" ...
node90743: 16:36:54.684: Macro step 5: Validating upgraded transient logical standby database ...
node90743: 16:37:09.576: Creating checkpoint "NZDRU_0301" for database "xmvotkvd" during stage "3" and task "1" ...
node90743: 16:37:09.579: Stopping media recovery for database "xmvotkvd" ...
node90743: 16:37:10.792: Creating restore point "NZDRU_0301" for database "xmvotkvd" ...
node90743: 16:37:11.998: Macro step 6: Switching role of transient logical standby database ...
node90743: 16:37:12.002: Verifying that database "sierra" is a primary database ...
< ... >
node90743: 16:39:07.425: Macro step 7: Flashback former primary database to pre-upgrade restore point and convert to physical standby ...
node90743: 16:39:08.833: Stopping instance "sierra2" of database "sierra" ...
< ... >
node90743: 16:41:17.138: Macro step 8: Recovering former primary database ...
node90743: 16:41:19.045: Verifying that database "sierra" is mounted ...
< ... >
node90743: 17:20:21.378: Macro step 9: Switching back ...
< ... >

node90753.example.com: deleting snapshot database "xmvotkvd" ...

Customizing Zero-Downtime Upgrades

You can customize zero-downtime upgrades using the user-action framework of Fleet Patching and Provisioning.

To use the user-action framework, you can provide a separate script for any or all of the points listed in the overall process.

Table 5-1 Zero-Downtime Upgrade Plugins

<table>
<thead>
<tr>
<th>Plugin Type</th>
<th>Pre or Post</th>
<th>Plugin runs...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDTUPGRADE_DATABASE</td>
<td>Pre</td>
<td>Before Fleet Patching and Provisioning starts zero-downtime upgrade.</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>After Fleet Patching and Provisioning completes zero-downtime upgrade.</td>
</tr>
<tr>
<td>ZDTUPGRADE_DATABASE_SNAPDB</td>
<td>Pre</td>
<td>Before creating the snapshot or full-clone database.</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>After starting the snapshot or full-clone database (but before switching over).</td>
</tr>
<tr>
<td>ZDTUPGRADE_DATABASE_DBUA</td>
<td>Pre</td>
<td>Before running DBUA (after switching over).</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>After DBUA completes.</td>
</tr>
</tbody>
</table>
Table 5-1 (Cont.) Zero-Downtime Upgrade Plugins

<table>
<thead>
<tr>
<th>Plugin Type</th>
<th>Pre or Post</th>
<th>Plugin runs...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDTUPGRADE_DATABASE_SWITCHBACK</td>
<td>Pre</td>
<td>Before switching back users to the upgraded source database.</td>
</tr>
<tr>
<td></td>
<td>Post</td>
<td>After switching back users to the upgraded source database (before deleting snapshot or full-clone database).</td>
</tr>
</tbody>
</table>

- To register a plugin to be run during a zero-downtime upgrade, run the following command:

```
$ rhpctl add useraction -useraction user_action_name -actionscript script_name {-pre | -post} -optype {ZDTUPGRADE_DATABASE | ZDTUPGRADE_DATABASE_SNAPDB | ZDTUPGRADE_DATABASE_DBUA | ZDTUPGRADE_DATABASE_SWITCHBACK}
```

You can specify run-time input to the plugins using the `-useractiondata` option of the `rhpctl zdtupgrade database` command.
The Oracle Fleet Patching and Provisioning Server provides an efficient and secure platform for updating Oracle Exadata Infrastructure.

- **Updating Oracle Exadata Cell Server**
 Update Oracle Exadata Cell server or storage server by importing and deploying a new Cell server gold image.

- **Updating Oracle Exadata Database Node**
 Update Oracle Exadata Database nodes by importing and deploying a new database gold image.

- **Combined Oracle Exadata Database Node and Grid Infrastructure Update**
 With combined Oracle Exadata database node and Oracle Grid Infrastructure update you can utilize the functionality of multiple independent capabilities.

- **Updating Oracle Exadata InfiniBand Switches**
 Update Oracle Exadata InfiniBand switches by importing and deploying a new InfiniBand switch gold image.

Updating Oracle Exadata Cell Server

Update Oracle Exadata Cell server or storage server by importing and deploying a new Cell server gold image.

1. **Create an Oracle Exadata Cell server image.**
 The following command creates an Oracle Exadata Cell server image. In the example, `image` specifies the name of the Cell server image that you want to add, `imagetype` specifies `EXAPATCHSOFTWARE` for Oracle Exadata software, `version` specifies the version of the Oracle Exadata software, and `path` specifies the absolute path location of the Cell server image that you want to import.

   ```bash
   rhpctl import image -image image_name -imagetype EXAPATCHSOFTWARE -version software_version -path absolute_path
   ```

 When you import a Cell server image with this command, the `version` parameter must be the version of the Cell server software required by the `patchmgr` on the node. The `path` parameter should contain Cell server update zip files.

2. **Deploy the Oracle Exadata Cell server image to the client cluster.**
 The following command deploys an Oracle Exadata Cell server image to a client cluster. In the example, `image` specifies the name of the Oracle Exadata Cell server image that you want to deploy, `client` specifies the name of the cluster to
which you want to deploy the image, and \texttt{path} specifies the absolute path location for deploying the Oracle Exadata Cell server image on the target or client side.

\texttt{rhpctl deploy image -image image_name -client client_cluster_name -path image_file_path}

3. Evaluate the current configuration and perform pre-upgrade checks.

The following command evaluates the current configuration and performs pre-upgrade checks. In the example, \texttt{image} specifies the name of the Oracle Exadata Cell server image that you want to use for updating, \texttt{client} specifies the name of the cluster in which you want to update the Cell server, and \texttt{batches} specifies a comma-delimited list of batches of nodes where each batch is a comma-delimited list of node names enclosed in parentheses and node names are enclosed in double quotation marks (**) in the format: "(nA,nB,...),(nY,nZ)".

\texttt{rhpctl update exadata -cells -image image_name -client client_cluster_name -patchmgrargs "-ignore_alerts" -batches "(batch1), (batch2)" -eval}

4. Update Oracle Exadata Cell server with the new image.

\texttt{rhpctl update exadata -cells -image image_name -client client_cluster_name -patchmgrargs "-ignore_alerts" -batches "(batch1), (batch2)"

\section*{Updating Oracle Exadata Database Node}

Update Oracle Exadata Database nodes by importing and deploying a new database gold image.

1. Create an Oracle Exadata Database node image.

The following command creates an Oracle Exadata image. In the example, \texttt{image} specifies the name of the Oracle Exadata image that you want to add, \texttt{imagetype} specifies \texttt{EXAPATCHSOFTWARE} for Oracle Exadata software, \texttt{version} specifies the version of the Oracle Exadata software, and \texttt{path} specifies the absolute path location of the Oracle Exadata software home that you want to import.

\texttt{rhpctl import image -image image_name -imagetype EXAPATCHSOFTWARE -version software_version -path absolute_path}

When you import an Oracle Exadata software home with this command, the \texttt{version} parameter must be the version of the Oracle Exadata software required by the patchmgr on the database node. The \texttt{path} parameter should contain Oracle Exadata update zip files.

2. Deploy the Oracle Exadata Database node image to the client cluster.

The following command deploys an Oracle Exadata image to a client cluster. In the example, \texttt{image} specifies the name of the Oracle Exadata image that you want to deploy, \texttt{client} specifies the name of the cluster to which you want to deploy...
the image, and path specifies the absolute path location for deploying the Oracle Exadata software home on the target or client side.

rhpctl1 deploy image -image image_name
-client client_cluster_name -path image_file_path

The targetnode parameter is required if the node hosting the home is not a Oracle Fleet Patching and Provisioning Client. If the target node or client option is not specified, then the Oracle Exadata image is deployed to the Oracle Fleet Patching and Provisioning Server.

3. Evaluate the current configuration and perform pre-upgrade checks.

The following command evaluates the current configuration and performs pre-upgrade checks. In the example, image specifies the name of the Oracle Exadata image that you want to use for update, iso_repo specifies the image in the ISO repository, pathmgrloc specifies the patch manager location, client specifies the name of the cluster in which you want to update database nodes, and batches specifies a comma-delimited list of batches of nodes where each batch is a comma-delimited list of node names enclosed in parentheses and node names are enclosed in double quotation marks ("" in the format: "(nA,nB,...), (...nY,nZ)".

rhpctl1 update exadata -dbnodes -image image_name -iso_repo iso_image_name
-batches "(batch1),(batch2) -client client_cluster_name
-pathmgrloc patch_mgr_loc -patchmgrargs "-rolling -ignore_alerts" -eval

If the client option is not specified when issuing the command, then database node update is performed on the Oracle Fleet Patching and Provisioning Server.

4. Create a backup of the current configuration.

rhpctl1 update exadata -dbnodes -image image_name -iso_repo iso_image_name
-batches "(batch1),(batch2) -client client_cluster_name
-pathmgrloc patch_mgr_loc -patchmgrargs "-rolling -ignore_alerts"
-backup

5. Update Oracle Exadata Database node with the new image.

rhpctl1 update exadata -dbnodes -image image_name -iso_repo iso_image_name
-batches "(batch1),(batch2) -client client_cluster_name
-pathmgrloc patch_mgr_loc -patchmgrargs "-rolling -ignore_alerts"
Combined Oracle Exadata Database Node and Grid Infrastructure Update

With combined Oracle Exadata database node and Oracle Grid Infrastructure update you can utilize the functionality of multiple independent capabilities.

Patching Grid Infrastructure and updating the Exadata database nodes both require a shutdown and startup of every database instance on that node. This can take considerable time, depending on the number of applications running and the time it takes to shutdown instances and start them up. Performing both of these patching actions independently doubles the downtime on production databases. Using the combined patching feature of Oracle FPP automates both of these patching actions into a single integrated patching process that requires only one sequence of shutdown and startup of database instances on each node. The combined patching on multiple nodes in batches further brings down the overall patching window.

Oracle FPP internally uses the `patchmgr` tool to patch Exadata database nodes. The combined patching method uses an integrated flow of the inherent Oracle FPP implementation for Oracle Grid Infrastructure patching and then invokes the `patchmgr` tool to patch each Exadata database node.

To complete combined Oracle Exadata database node and Oracle Grid Infrastructure patching, you must perform the operations discussed in the following:

- Creating the Oracle Exadata Image
- Deploying the Oracle Exadata Update Image
- Combined Oracle Grid Infrastructure Move and Database Node Update

Note:

Creating and deploying an Oracle Exadata image does not require any downtime and you can perform both these operations before patching Oracle Grid Infrastructure and Oracle Exadata database. You need to create an Oracle Exadata image on the Oracle FPP server only once in a patching cycle, however, you need to deploy Oracle Exadata image, and patch Oracle Grid Infrastructure and Oracle Exadata database node on each target system.

Creating the Oracle Exadata Image

Use the `rhpctl import image` command to create the Oracle Exadata update image by copying the entire software contents from the specified path to the Oracle Fleet Patching and Provisioning Server (FPPS).

Example 6-1 Creating an Oracle Exadata Update Image

The following command creates an Oracle Exadata image. In the example, `image` specifies the name of the Oracle Exadata image that you want to add, `path` specifies the absolute path location of the Oracle Exadata software home that you want
to import, imagetype specifies EXAPATCHSOFTWARE for Oracle Exadata software, and version specifies the version of the Oracle Exadata software.

```bash
$ rhpctl import image -image EXADATAIMAGEV1 -path /tmp/ExadataPatchBundle -imagetype EXAPATCHSOFTWARE -version 19.2.2.0.0.190513.2
```

When you import an Oracle Exadata software home with this command, the version parameter must be the version of the Oracle Exadata software required by the patchmgr on the database node. The path parameter should contain Oracle Exadata update zip files.

See Also:

[see rhpctl import image for the complete syntax of the rhpctl import image command](#)

Deploying the Oracle Exadata Update Image

Use the `rhpctl deploy image` command to propagate the Oracle Exadata update image to targets.

Example 6-2 Deploying an Oracle Exadata image

The following command deploys an Oracle Exadata image to a client cluster. In the example, image specifies the name of the Oracle Exadata image that you want to deploy, client specifies the name of the cluster to which you want to deploy the image, and path specifies the absolute path location for deploying the Oracle Exadata software home on the target or client side.

```bash
$ rhpctl deploy image -image EXADATAIMAGEV1 -client CLUSTER1 -path /exadatasoftware
```

The targetnode parameter is required if the node hosting the home is not a Oracle Fleet Patching and Provisioning Client. If the target node or client option is not specified, then the Oracle Exadata image is deployed to the Oracle Fleet Patching and Provisioning Server.

See Also:

[see rhpctl deploy image for the complete syntax of the rhpctl deploy image command](#)

Combined Oracle Grid Infrastructure Move and Database Node Update

Use the `rhpctl move gihome` command to move the Oracle Grid Infrastructure software stack from one home to another while updating the Oracle Exadata database node.
Example 6-3 Moving an Oracle Grid Infrastructure home and updating a database node

The following example performs a combined Oracle Grid Infrastructure move and database node update on client cluster. In the example, sourcewc specifies the name of the source working copy, destwc specifies the name of the destination working copy to which you want to move the Oracle Grid Infrastructure home, image specifies the name of the Oracle Exadata image, batches specifies a comma-delimited list of batches of nodes where each batch is a comma-delimited list of node names enclosed in parentheses and node names are enclosed in double quotation marks (""), iso_repo specifies the image in the ISO repository, and pathmgrloc specifies the patch manager location.

```bash
$ rhpctl move gihome -sourcewc prodHomeV1 -destwc prodHomeV2 -image EXADATAIMAGEV1 -batches "(rac07box1,rac07box2,rac07box3),(rac07box4)" -patchmgrargs "-rolling -ignore_alerts" -iso_repo p28802055_192000_Linux-x86-64.zip -client prodcluster -pathmgrloc /patchMgr/dbserver_patch_19.190306
```

With each invocation of the rhpctl move gihome command, FPP patches the database node first and then patches Oracle Grid Infrastructure. This is the processing order for each node in the specified batch.

If the first batch includes more than one database node, then FPP invokes patchmgr in parallel for all the nodes. As soon as a node completes the patchmgr operation, including the post patchmgr operations, FPP starts the Oracle Grid Infrastructure patching on that node. When the Oracle Grid Infrastructure patching completes on this node, FPP then begins patching with Oracle Grid Infrastructure patching on the other nodes when the database node patching completes on those nodes.

If rebooting a node is delayed because of a patchmgr failure or a patchmgr operation timeout, the rhpctl move gihome command can be resumed after the node is back up.

See Also:

rhpctl move gihome for the complete syntax of the rhpctl move gihome command

Updating Oracle Exadata InfiniBand Switches

Update Oracle Exadata InfiniBand switches by importing and deploying a new InfiniBand switch gold image.

1. Evaluate the current configuration and perform pre-upgrade checks for InfiniBand switches.

 The following command evaluates the current configuration and performs pre-upgrade checks. In the example, image specifies the name of the Oracle Exadata InfiniBand switch image that you want to use for update, client specifies the name of the cluster in which you want to update database nodes, and
batches specifies a comma-delimited list of batches of nodes where each batch is a comma-delimited list of node names enclosed in parentheses and node names are enclosed in double quotation marks (""") in the format: "(nA,nB,...), (...nY,nZ)".

rhpctl update exadata -ibswitches -image image_name -client client_cluster_name
 -batches "(batch1), (batch2)" -eval

2. Update Oracle Exadata InfiniBand switches with the new image.

rhpctl update exadata -ibswitches -image image_name -client client_cluster_name
 -batches "(batch1), (batch2)"
Complete these postinstallation tasks after you configure Oracle Fleet Patching and Provisioning Server.

- **Oracle Fleet Patching and Provisioning Security Postinstallation Tasks**
 Perform these postinstallation tasks to make your Oracle Fleet Patching and Provisioning Server secure.

- **Advanced Oracle Fleet Patching and Provisioning Configurations**
 Use these advanced configurations of Oracle Fleet Patching and Provisioning Server to perform specialized tasks.

- **Error Prevention and Automated Recovery Options**
 Fleet Patching and Provisioning has error prevention and automated recovery options to assist you during maintenance operations.

- **Fleet Patching and Provisioning Logs and Trace Files**
 Use Oracle Fleet Patching and Provisioning logs and traces to obtain more information for identifying and debugging Oracle FPP Server and client errors.

Oracle Fleet Patching and Provisioning Security Postinstallation Tasks

Perform these postinstallation tasks to make your Oracle Fleet Patching and Provisioning Server secure.

- **Authentication Options for Oracle Fleet Patching and Provisioning Operations**
 Some RHPCTL commands show authentication choices as an optional parameter.

- **Oracle Fleet Patching and Provisioning Roles**
 An administrator assigns roles to Oracle Fleet Patching and Provisioning users with access-level permissions defined for each role.

- **Managing the Fleet Patching and Provisioning Client Password**
 The Oracle Fleet Patching and Provisioning (Oracle FPP) Client uses a password stored internally to authenticate itself with the RHP server.

- **Oracle Fleet Patching and Provisioning Server Auditing**
 The Oracle Fleet Patching and Provisioning Server records the execution of all Oracle Fleet Patching and Provisioning operations, and also records whether those operations succeeded or failed.

Authentication Options for Oracle Fleet Patching and Provisioning Operations

Some RHPCTL commands show authentication choices as an optional parameter.
Specifying an authentication option is not required when running an RHPCTL command on an Oracle Fleet Patching and Provisioning Client, nor when running an RHPCTL command on the Oracle Fleet Patching and Provisioning Server and operating on an Oracle Fleet Patching and Provisioning Client, because the server and client establish a trusted relationship when the client is created, and authentication is handled internally each time a transaction takes place. (The only condition for server/client communication under which an authentication option must be specified is when the server is provisioning a new Oracle Grid Infrastructure deployment—in this case, the client does not yet exist.)

To operate on a target that is not an Oracle Fleet Patching and Provisioning Client, you must provide the Oracle Fleet Patching and Provisioning Server with information allowing it to authenticate with the target. The options are as follows:

- Provide the **root** password (on stdin) for the target
- Provide the **sudo** user name, sudo binary path, and the password (stdin) for target
- Provide a password (either **root** or **sudouser**) non-interactively from local encrypted store (using the -cred authentication parameter)
- Provide a path to the identity file stored on the Oracle Fleet Patching and Provisioning Server for SSL-encrypted passwordless authentication (using the -auth sshkey option)

Passwordless Authentication Details

The Oracle Fleet Patching and Provisioning Server can authenticate to targets over SSH using a key pair. To enable this option, you must establish user equivalence between the **crsusr** on the Oracle Fleet Patching and Provisioning Server and **root** or a **sudouser** on the target.

Note:

The steps to create that equivalence are platform-dependent and so not shown in detail here. For Linux, see commands `ssh-keygen` to be run on the target and `ssh-copy-id` to be run on the Oracle Fleet Patching and Provisioning Server.

For example, assuming that you have established user equivalency between **crsusr** on the Oracle Fleet Patching and Provisioning Server and **root** on the target node, `nonRHPClient4004.example.com`, and saved the key information on the Oracle Fleet Patching and Provisioning Server at `/home/oracle/rhp/ssh-key/key -path`, then the following command will provision a copy of the specified gold image to the target node with passwordless authentication:

```bash
$ rhpctl add workingcopy -workingcopy db12102_160607wc1 -image db12102_160607
    -targetnode nonRHPClient4004.example.com -path /u01/app/oracle/12.1/rhp/dbhome_1
    -oraclebase /u01/app/oracle -auth sshkey -arg1 user:root -arg2 identity_file:/home/oracle/rhp/ssh-key/key
```
For equivalency between crsusr on the Oracle Fleet Patching and Provisioning Server and a privileged user (other than root) on the target, the -auth portion of the command would be similar to the following:

- auth sshkey -arg1 user:ssh_user -arg2 identity_file:path_to_identity_file_on_RHPS -arg3 sudo_location:path_to_sudo_binary_on_target

Related Topics

- `rhpctl add credentials`
- `rhpctl delete credentials`
- `rhpctl add workingcopy`
 Creates a working copy on a client cluster.

Oracle Fleet Patching and Provisioning Roles

An administrator assigns roles to Oracle Fleet Patching and Provisioning users with access-level permissions defined for each role.

Users on Oracle Fleet Patching and Provisioning Clients are also assigned specific roles. Oracle Fleet Patching and Provisioning includes basic built-in and composite built-in roles.

Basic Built-In Roles

The basic built-in roles and their functions are:

- **GH_ROLE_ADMIN**: An administrative role for everything related to roles. Users assigned this role are able to run `rhpctl verb role` commands.
- **GH_SITE_ADMIN**: An administrative role for everything related to Oracle Fleet Patching and Provisioning Clients. Users assigned this role are able to run `rhpctl verb client` commands.
- **GH_SERIES_ADMIN**: An administrative role for everything related to image series. Users assigned this role are able to run `rhpctl verb series` commands.
- **GH_SERIES_CONTRIB**: Users assigned this role can add images to a series using the `rhpctl insertimage series` command, or delete images from a series using the `rhpctl deleteimage series` command.
- **GH_WC_ADMIN**: An administrative role for everything related to working copies of gold images. Users assigned this role are able to run `rhpctl verb workingcopy` commands.
- **GH_WC_OPER**: A role that enables users to create a working copy of a gold image for themselves or others using the `rhpctl add workingcopy` command with the `-user` option (when creating for others). Users assigned this role do not have administrative privileges and can only administer the working copies of gold images that they create.
- **GH_WC_USER**: A role that enables users to create a working copy of a gold image using the `rhpctl add workingcopy` command. Users assigned this role do not have administrative privileges and can only delete working copies that they create.
• GH_IMG_ADMIN: An administrative role for everything related to images. Users assigned this role are able to run `rhpctl verb image` commands.

• GH_IMG_USER: A role that enables users to create an image using the `rhpctl add | import image` commands. Users assigned this role do not have administrative privileges and can only delete images that they create.

• GH_IMG_TESTABLE: A role that enables users to add a working copy of an image that is in the TESTABLE state. Users assigned this role must also be assigned either the GH_WC_ADMIN role or the GH_WC_USER role to add a working copy.

• GH_IMG_RESTRICT: A role that enables users to add a working copy from an image that is in the RESTRICTED state. Users assigned this role must also be assigned either the GH_WC_ADMIN role or the GH_WC_USER role to add a working copy.

• GH_IMG_PUBLISH: Users assigned this role can promote an image to another state or retract an image from the PUBLISHED state to either the TESTABLE or RESTRICTED state.

• GH_IMG_VISIBILITY: Users assigned this role can modify access to promoted or published images using the `rhpctl allow | disallow image` commands.

• GH_AUTHENTICATED_USER: Users assigned to this role can execute any operation in an Oracle Fleet Patching and Provisioning Client.

• GH_CLIENT_ACCESS: Any user created automatically inherits this role. The GH_CLIENT_ACCESS role includes the GH_AUTHENTICATED_USER built-in role.

Composite Built-In Roles

The composite built-in roles and their functions are:

• GH_SA: The Oracle Grid Infrastructure user on an Oracle Fleet Patching and Provisioning Server automatically inherits this role.

 The GH_SA role includes the following basic built-in roles: GH_ROLE_ADMIN, GH_SITE_ADMIN, GH_SERIES_ADMIN, GH_SERIES_CONTRIB, GH_WC_ADMIN, GH_IMG_ADMIN, GH_IMG_TESTABLE, GH_IMG_RESTRICT, GH_IMG_PUBLISH, and GH_IMG_VISIBILITY.

• GH_CA: The Oracle Grid Infrastructure user on an Oracle Fleet Patching and Provisioning Client automatically inherits this role.

 The GH_CA role includes the following basic built-in roles: GH_SERIES_ADMIN, GH_SERIES_CONTRIB, GH_WC_ADMIN, GH_IMG_ADMIN, GH_IMG_TESTABLE, GH_IMG_RESTRICT, GH_IMG_PUBLISH, and GH_IMG_VISIBILITY.

• GH_OPER: This role includes the following built-in roles: GH_WC_OPER, GH_SERIES_ADMIN, GH_IMG_TESTABLE, GH_IMG_RESTRICT, and GH_IMG_USER. Users assigned this role can delete only images that they have created.

Consider a gold image called G1 that is available on the Oracle Fleet Patching and Provisioning Server.

Further consider that a user, U1, on an Oracle Fleet Patching and Provisioning Client, Cl1, has the GH_WC_USER role. If U1 requests to provision an Oracle home based on the gold image G1, then U1 can do so, because of the permissions granted by the
GH_WC_USER role. If U1 requests to delete G1, however, then that request would be denied because the GH_WC_USER role does not have the necessary permissions.

The Oracle Fleet Patching and Provisioning Server can associate user-role mappings to the Oracle Fleet Patching and Provisioning Client. After the Oracle Fleet Patching and Provisioning Server delegates user-role mappings, the Oracle Fleet Patching and Provisioning Client can then modify user-role mappings on the Oracle Fleet Patching and Provisioning Server for all users that belong to the Oracle Fleet Patching and Provisioning Client. This is implied by the fact that only the Oracle Fleet Patching and Provisioning Server qualifies user IDs from an Oracle Fleet Patching and Provisioning Client site with the client cluster name of that site. Thus, the Oracle Fleet Patching and Provisioning Client CL1 will not be able to update user mappings of a user on CL2, where CL2 is the cluster name of a different Oracle Fleet Patching and Provisioning Client.

- Creating Users and Assigning Roles for Fleet Patching and Provisioning Client Cluster Users

Oracle Fleet Patching and Provisioning (Oracle FPP) enables you to create users and assign roles to them when you create an Oracle FPP client.

Creating Users and Assigning Roles for Fleet Patching and Provisioning Client Cluster Users

Oracle Fleet Patching and Provisioning (Oracle FPP) enables you to create users and assign roles to them when you create an Oracle FPP client.

When you create a Fleet Patching and Provisioning Client with the rhpctl add client command, you can use the -maproles parameter to create users and assign roles to them. You can associate multiple users with roles, or you can assign a single user multiple roles with this command.

After the client has been created, you can add and remove roles for users using the rhpctl grant role command and the rhpctl revoke role, respectively.

Managing the Fleet Patching and Provisioning Client Password

The Oracle Fleet Patching and Provisioning (Oracle FPP) Client uses a password stored internally to authenticate itself with the RHP server.

You cannot query the Oracle FPP Client password, however, if for some reason, you are required to reset this password, then you can do so, as follows, on the RHP server cluster:

1. Run the following command on the Fleet Patching and Provisioning Server cluster to generate a new password and store it in the client credential:

 `$ rhpctl modify client -client client_name -password`

2. Run the following command on the Fleet Patching and Provisioning Server cluster to generate a credential file:

 `$ rhpctl export client -client client_name -clientdata file_path`

For example, to generate a credential file for a Fleet Patching and Provisioning Client named mjk9394:

 `$ rhpctl export client -client mjk9394 -clientdata /tmp/mjk9394.xml`
3. Continuing with the preceding example, transport the generated credential file securely to the Fleet Patching and Provisioning Client cluster and then run the following command on any node in the Fleet Patching and Provisioning Client cluster:

$ srvctl modify rhpclient -clientdata path_to_mjk9394.xml

4. Restart the Fleet Patching and Provisioning Client daemon by running the following commands on the Fleet Patching and Provisioning Client cluster:

$ srvctl stop rhpclient
$ srvctl start rhpclient

Oracle Fleet Patching and Provisioning Server Auditing

The Oracle Fleet Patching and Provisioning Server records the execution of all Oracle Fleet Patching and Provisioning operations, and also records whether those operations succeeded or failed.

An audit mechanism enables administrators to query the audit log in a variety of dimensions, and also to manage its contents and size.

Advanced Oracle Fleet Patching and Provisioning Configurations

Use these advanced configurations of Oracle Fleet Patching and Provisioning Server to perform specialized tasks.

- **User-Defined Actions**
 You can create actions for various Oracle Fleet Patching and Provisioning operations, such as import image, add and delete working copy, and add, delete, move, and upgrade a software home.

- **Oracle Fleet Patching and Provisioning Notifications**
 The Oracle Fleet Patching and Provisioning Server is the central repository for the software homes available to the data center. Therefore, it is essential for administrators throughout the data center to be aware of changes to the inventory that may impact their areas of responsibility.

- **Job Scheduler for Operations**
 The Oracle Fleet Patching and Provisioning job scheduler provides you with a mechanism to submit operations at a scheduled time instead of running the command immediately, querying the metadata of the job, and then deleting the job from the repository.

- **Patching Oracle Grid Infrastructure Using Batches**
 The third patching method is to sequentially process batches of nodes, with a number of nodes in each batch being restarted in parallel.

- **Gold Image Distribution Among Oracle Fleet Patching and Provisioning Servers**
 Oracle Fleet Patching and Provisioning can automatically share and synchronize gold images between Oracle Fleet Patching and Provisioning Servers.
User-Defined Actions

You can create actions for various Oracle Fleet Patching and Provisioning operations, such as import image, add and delete working copy, and add, delete, move, and upgrade a software home.

You can create actions for various Oracle Fleet Patching and Provisioning operations, such as import image, add and delete working copy of a gold image, and add, delete, move, and upgrade a software home. You can define different actions for each operation, which can be further differentiated by the type of image to which the operation applies. User-defined actions can be run before or after a given operation, and are run on the deployment on which the operation is run, whether it be an Oracle Fleet Patching and Provisioning Server, an Oracle Fleet Patching and Provisioning Client (12c release 2 (12.2), or later), or a target that is not running an Oracle Fleet Patching and Provisioning Client.

User-defined actions are shell scripts which are stored on the Oracle Fleet Patching and Provisioning Server. When a script runs, it is given relevant information about the operation on the command line. Also, you can associate a file with the script. The Oracle Fleet Patching and Provisioning Server will copy that file to the same location on the Client or target where the script is run.

For example, perhaps you want to create user-defined actions that are run after a database upgrade, and you want to define different actions for Oracle Database 11g and 12c. This requires you to define new image types, as in the following example procedure.

1. Create a new image type, (DB11IMAGE, for example), based on the ORACLEDBOFTWARE image type, as follows:

 `$ rhpctl add imagetype -imagetype DB11IMAGE -basetype ORACLEDBOFTWARE`

 When you add or import an Oracle Database 11g gold image, you specify the image type as DB11IMAGE.

2. Define a user action and associate it with the DB11IMAGE image type and the upgrade operation. You can have different actions that are run before or after upgrade.

3. To define an action for Oracle Database 12c, create a new image type (DB12IMAGE, for example) that is based on the ORACLEDBOFTWARE image type, as in the preceding step, but with the DB12IMAGE image type.

 Note:

 If you define user actions for the base type of a user-defined image type (in this case the base type is ORACLEDBOFTWARE), then Oracle Fleet Patching and Provisioning performs those actions before the actions for the user-defined image type.

You can modify the image type of an image using the `rhpctl modify image` command. Additionally, you can modify, add, and delete other actions. The following
two tables, Table 7-1 and Table 7-2, list the operations you can customize and the parameters you can use to define those operations, respectively.

Table 7-1 Oracle Fleet Patching and Provisioning User-Defined Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Parameter List</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORT_IMAGE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_PATH, RHP_PATHOWNER, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ADD_WORKINGCOPY</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY, RHP_PATH, RHP_STORAGETYPE, RHP_USER, RHP_NODES, RHP_ORACLEBASE, RHP_DBNAME, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ADD_DATABASE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY, RHP_CLIENT, RHP_DBNAME, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>DELETE_WORKINGCOPY</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY, RHP_CLIENT, RHP_PATH, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>DELETE_DATABASE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY, RHP_CLIENT, RHP_DBNAME, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>MOVE_GIHOME</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH, RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>MOVE_DATABASE</td>
<td>This user action is run for each database involved in a patching operation. If the run scope is set to ALLNODES, then the script is run for each database on every cluster node. If the run scope is set to ONENODE, then the script is run for each database on the node on which the patch was applied to the database.</td>
</tr>
<tr>
<td>UPGRADE_GIHOME</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH, RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>Operation</td>
<td>Parameter List</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>UPGRADE_DATABASE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH,</td>
</tr>
<tr>
<td></td>
<td>RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_DBNAME,</td>
</tr>
<tr>
<td></td>
<td>RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ADDNODE_DATABASE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY,</td>
</tr>
<tr>
<td></td>
<td>RHP_CLIENT, RHP_DBNAME, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE,</td>
</tr>
<tr>
<td></td>
<td>RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>DELETENODE_DATABASE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY,</td>
</tr>
<tr>
<td></td>
<td>RHP_CLIENT, RHP_DBNAME, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE,</td>
</tr>
<tr>
<td></td>
<td>RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ADDNODE_GIHOME</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY,</td>
</tr>
<tr>
<td></td>
<td>RHP_CLIENT, RHP_PATH, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE,</td>
</tr>
<tr>
<td></td>
<td>RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>DELETENODE_GIHOME</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY,</td>
</tr>
<tr>
<td></td>
<td>RHP_CLIENT, RHP_PATH, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE,</td>
</tr>
<tr>
<td></td>
<td>RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ADDNODE_WORKINGCOPY</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_WORKINGCOPY,</td>
</tr>
<tr>
<td></td>
<td>RHP_CLIENT, RHP_PATH, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_IMAGE, RHP_IMAGETYPE,</td>
</tr>
<tr>
<td></td>
<td>RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ZDTUPGRADE_DATABASE</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH,</td>
</tr>
<tr>
<td></td>
<td>RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_SRCGGWC,</td>
</tr>
<tr>
<td></td>
<td>RHP_SRCGGPATH, RHP_DSTGGWC, RHP_DSTGGPATH, RHP_DBNAME,</td>
</tr>
<tr>
<td></td>
<td>RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ZDT_UPGRADE_DATABASE_SNAPDB</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH,</td>
</tr>
<tr>
<td></td>
<td>RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_SRCGGWC,</td>
</tr>
<tr>
<td></td>
<td>RHP_SRCGGPATH, RHP_DSTGGWC, RHP_DSTGGPATH, RHP_DBNAME,</td>
</tr>
<tr>
<td></td>
<td>RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
<tr>
<td>ZDTUPGRADE_DATABASE_DBUA</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH,</td>
</tr>
<tr>
<td></td>
<td>RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_SRCGGWC,</td>
</tr>
<tr>
<td></td>
<td>RHP_SRCGGPATH, RHP_DSTGGWC, RHP_DSTGGPATH, RHP_DBNAME,</td>
</tr>
<tr>
<td></td>
<td>RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST,</td>
</tr>
<tr>
<td></td>
<td>RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
</tbody>
</table>
Table 7-1 (Cont.) Oracle Fleet Patching and Provisioning User-Defined Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Parameter List</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDTUPGRADE_DATABASE_SWITCHBACK</td>
<td>RHP_OPTYPE, RHP_PHASE, RHP_SOURCEWC, RHP_SOURCEPATH, RHP_DESTINATIONWC, RHP_DESTINATIONPATH, RHP_SRCGGWC, RHP_SRCGGPATH, RHP_DSTGGWC, RHP_DSTGGPATH, RHP_DBNAME, RHP_IMAGE, RHP_IMAGETYPE, RHP_PROGRESSLISTENERHOST, RHP_PROGRESSLISTENERPORT, RHP_VERSION, RHP_CLI, RHP_USERACTIONDATA</td>
</tr>
</tbody>
</table>

Table 7-2 User-Defined Operations Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHP_OPTYPE</td>
<td>The operation type for which the user action is being executed, as listed in the previous table.</td>
</tr>
<tr>
<td>RHP_PHASE</td>
<td>This parameter indicates whether the user action is executed before or after the operation (is either PRE or POST).</td>
</tr>
<tr>
<td>RHP_SOURCEWC</td>
<td>The source working copy name for a patch of upgrade operation.</td>
</tr>
<tr>
<td>RHP_SOURCEPATH</td>
<td>The path of the source working copy home.</td>
</tr>
<tr>
<td>RHP_DESTINATIONWC</td>
<td>The destination working copy name for a patch or upgrade operation.</td>
</tr>
<tr>
<td>RHP_DESTINATIONPATH</td>
<td>The path of the destination working copy home.</td>
</tr>
<tr>
<td>RHP_SRCGGWC</td>
<td>The name of the version of the Oracle GoldenGate working copy from which you want to upgrade.</td>
</tr>
<tr>
<td>RHP_SRCGGPATH</td>
<td>The absolute path of the version of the Oracle GoldenGate software home from which you want to upgrade.</td>
</tr>
<tr>
<td>RHP_DESTGGWC</td>
<td>The name of the version of the Oracle GoldenGate working copy to which you want to upgrade.</td>
</tr>
<tr>
<td>RHP_DESTGGPATH</td>
<td>The absolute path of the version of the Oracle GoldenGate software home to which you want to upgrade.</td>
</tr>
<tr>
<td>RHP_PATH</td>
<td>This is the path to the location of the software home. This parameter represents the path on the local node from where the RHPCTL command is being run for an IMPORT_IMAGE operation. For all other operations, this path is present on the site where the operation is taking place.</td>
</tr>
<tr>
<td>RHP_PATHOWNER</td>
<td>The owner of the path for the gold image that is being imported.</td>
</tr>
<tr>
<td>RHP_PROGRESSLISTENERHOST</td>
<td>The host on which the progress listener is listening. You can use this parameter, together with a progress listener port, to create a TCP connection to print output to the console on which the RHPCTL command is being run.</td>
</tr>
<tr>
<td>RHP_PROGRESSLISTENERPORT</td>
<td>The port on which the progress listener host is listening. You can use this parameter, together with a progress listener host name, to create a TCP connection to print output to the console on which the RHPCTL command is being run.</td>
</tr>
</tbody>
</table>
Table 7-2 (Cont.) User-Defined Operations Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHP_IMAGE</td>
<td>The image associated with the operation. In the case of a move operation, it will reflect the name of the destination image.</td>
</tr>
<tr>
<td>RHP_IMAGETYPE</td>
<td>The image type of the image associated with the operation. In the case of a move operation, it will reflect the name of the destination image.</td>
</tr>
<tr>
<td>RHP_VERSION</td>
<td>The version of the Oracle Grid Infrastructure software running on the Oracle Fleet Patching and Provisioning Server.</td>
</tr>
<tr>
<td>RHP_CLI</td>
<td>The exact command that was run to invoke the operation.</td>
</tr>
<tr>
<td>RHP_STORAGETYPE</td>
<td>The type of storage for the home (either LOCAL or RHP_MANAGED)</td>
</tr>
<tr>
<td>RHP_USER</td>
<td>The user for whom the operation is being performed.</td>
</tr>
<tr>
<td>RHP_NODES</td>
<td>The nodes on which a database will be created.</td>
</tr>
<tr>
<td>RHP_ORACLEBASE</td>
<td>The Oracle base location for the provisioned home.</td>
</tr>
<tr>
<td>RHP_DBNAME</td>
<td>The name of the database to be created.</td>
</tr>
<tr>
<td>RHP_CLIENT</td>
<td>The name of the client cluster.</td>
</tr>
<tr>
<td>RHP_DATAPATCH</td>
<td>This parameter is set to TRUE at the conclusion of the user action on the node where the SQL patch will be run after the move database operation is complete.</td>
</tr>
<tr>
<td>RHP_USERACTIONDATA</td>
<td>This parameter is present in all of the operations and is used to pass user-defined items to the user action as an argument during runtime.</td>
</tr>
</tbody>
</table>

Example of User-Defined Action

Suppose there is an image type, APACHESW, to use for provisioning and managing Apache deployments. Suppose, too, that there is a Gold Image of Apache named apacheinstall. The following example shows how to create a user action that will run prior to provisioning any copy of our Apache Gold Image.

The following is a sample user action script named addapache_useraction.sh:

```bash
$ cat /scratch/apacheadmin/addapache_useraction.sh
#!/bin/sh

#refer to arguments using argument names
touch /tmp/SAMPLEOUT.txt;
for i in "$@"
do
  export $i
done

echo "OPTYPE = $RHP_OPTYPE" >> /tmp/SAMPLEOUT.txt;
echo "PHASE = $RHP_PHASE" >> /tmp/SAMPLEOUT.txt;
echo "WORKINGCOPY = $RHP_WORKINGCOPY" >> /tmp/SAMPLEOUT.txt;
echo "PATH = $RHP_PATH" >> /tmp/SAMPLEOUT.txt;
echo "STORAGETYPE = $RHP_STORAGETYPE" >> /tmp/SAMPLEOUT.txt;
```
The script is registered to run at the start of `rhpctl add workingcopy` commands. The add working copy operation aborts if the script fails.

The following command creates a user action called `addapachepre`:

```
$ rhpctl add useraction -optype ADD_WORKINGCOPY -pre -onerror ABORT -useraction addapachepre -actionscript /scratch/apacheadmin/addapache_useraction.sh -runscope ONENODE
```

The following command registers the user action for the `APACHESW` image type:

```
$ rhpctl modify imagetype -imagetype APACHESW -useractions addapachepre
```

The registered user action is invoked automatically at the start of commands that deploy a working copy of any image of the `APACHESW` type, such as the following:

```
$ rhpctl add workingcopy -workingcopy apachecopy001 -image apacheinstall -path /scratch/apacheadmin/apacheinstallloc -sudouser apacheadmin -sudopath /usr/local/bin/sudo -node targetnode003 -user apacheadmin -useractiondata "sample"
```

The sample script creates the `/tmp/SAMPLEOUT.txt` output file. Based on the example command, the output file contains:

```
$ cat /tmp/SAMPLEOUT.txt
OPTYPE = ADD_WORKINGCOPY
PHASE = PRE
WORKINGCOPY = apachecopy001
PATH = /scratch/apacheadmin/apacheinstallloc
STORAGETYPE =
USER = apacheadmin
NODES = targetnode003
ORACLEBASE =
DBNAME =
```
PROGRESSLISTENERHOST = mds11042003.my.example.com
PROGRESSLISTENERPORT = 58068
IMAGE = apacheinstall
IMAGETYPE = APACHESW
RHPVERSION = 12.2.0.1.0
CLI = rhpcntl__add__workingcopy__-image__apacheinstall__-_path__/scratch/
apacheadmin
 /apachestallalloc__-_node__targetnode003__-_useractiondata__sample__
 -_sudopath__/usr/local/bin/sudo__-_workingcopy__apachecopy__-
 user__apacheadmin__
 -_sudouser__apacheadmin__USERACTIONDATA = sample
$

Notes:

- In the preceding output example empty values terminate with an equals
 sign (=).
- The spaces in the command-line value of the RHP_CLI parameter are
 replaced by two underscore characters (__) to differentiate this from
 other parameters.

Oracle Fleet Patching and Provisioning Notifications

The Oracle Fleet Patching and Provisioning Server is the central repository for
the software homes available to the data center. Therefore, it is essential for
administrators throughout the data center to be aware of changes to the inventory
that may impact their areas of responsibility.

You can create subscriptions to image series events. Oracle Fleet Patching and
Provisioning notifies a subscribed role or number of users by email of any changes
to the images available in the series, including addition or removal of an image. Each
series may have a unique group of subscribers.

Also, when a working copy of a gold image is added to or deleted from a target,
the owner of the working copy and any additional users can be notified by email. If
you want to enable notifications for additional Oracle Fleet Patching and Provisioning
events, you can create a user-defined action as described in the next section.

Job Scheduler for Operations

The Oracle Fleet Patching and Provisioning job scheduler provides you with a
mechanism to submit operations at a scheduled time instead of running the command
immediately, querying the metadata of the job, and then deleting the job from the
repository.

The Oracle Fleet Patching and Provisioning job scheduler includes the following
features:

- Enables you to schedule a command to run at a specific point in time by providing
 the time value
• Performs the job and stores the metadata for the job, along with the current status of the job
• Stores the logs for each of the jobs that have run or are running
• Enables you to query job details (for all jobs or for specific jobs, based on the user roles)
• Deletes jobs
• Authorizes the running, querying, and deleting of jobs, based on role-based access for users

Use the \(-\text{schedule} \ \text{timer_value}\) command parameter with any of the following RHPCTL commands to schedule certain Rapid Hope Provisioning operations:

• \(\text{rhpctl add workingcopy}\)
• \(\text{rhpctl import image}\)
• \(\text{rhpctl delete image}\)
• \(\text{rhpctl add database}\)
• \(\text{rhpctl move gihome}\)
• \(\text{rhpctl move database}\)
• \(\text{rhpctl upgrade database}\)
• \(\text{rhpctl addnode database}\)
• \(\text{rhpctl deletenode database}\)
• \(\text{rhpctl delete workingcopy}\)

For example:

$ \text{rhpctl add workingcopy} \ -\text{workingcopy} \ 18_3 \ -\text{image} \ 18_3_Base \ -\ oraclebase \ /u01/app/oracle \ -\text{schedule} \ 2016-12-21T19:13:17+05$

All commands are run in reference with the time zone of the server, according to the ISO-8601 value, and RHPCTL displays the command result by specifying the same time zone.

Command Results

RHPCTL stores any command that is run from the command queue on the Oracle Fleet Patching and Provisioning Server. When you query a command result by specifying the command identifier, then RHPCTL returns the path to the job output file, along with the results.

Job Operation

When you run an RHPCTL command with the \(-\text{schedule}\) parameter, the operation creates a job with a unique job ID that you can query to obtain the status of the job.

Job Status

At any point in time, a job can be in any of the following states:

EXECUTED | TIMER_RUNNING | EXECUTING | UNKNOWN | TERMINATED
EXECUTED: The job is complete.

TIMER_RUNNING: The timer for the job is still running.

EXECUTING: The timer for the job has expired and the job is running.

UNKNOWN: There is an unexpected failure due to issues such as a target going down, nodes going down, or any resource failures.

TERMINATED: There is an abrupt failure or the operation has stopped.

Related Topics
• rhpctl delete job
• rhpctl query job

Patching Oracle Grid Infrastructure Using Batches

The third patching method is to sequentially process batches of nodes, with a number of nodes in each batch being restarted in parallel.

This method maximizes service availability during the patching process. When you patch Oracle Grid Infrastructure 12c release 2 (12.2.x) software homes, you can define the batches on the command line or choose to have Fleet Patching and Provisioning generate the list of batches based on its analysis of the database services running in the cluster.

There are two methods for defining batches:
• User-Defined Batches
• Fleet Patching and Provisioning-Defined Batches

User-Defined Batches

When you use this method of patching, the first time you run the `rhpctl move gihome` command, you must specify the source home, the destination home, the batches, and other options, as needed. The command terminates after the first node restarts.

To patch Oracle Grid Infrastructure using batches that you define:

1. Define a list of batches on the command line and begin the patching process, as in the following example:

 $ rhpctl move gihome -sourcewc wc1 -destwc wc2 -batches "(n1), (n2,n3),(n4)"

 The preceding command example initiates the move operation, and terminates and reports successful when the Oracle Grid Infrastructure stack restarts in the first batch. Oracle Grid Infrastructure restarts the batches in the order you specified in the `-batches` parameter.

 In the command example, node `n1` forms the first batch, nodes `n2` and `n3` form the second batch, and node `n4` forms the last batch. The command defines the source working copy as `wc1` and the patched (destination) working copy as `wc2`.

 Chapter 7
 Advanced Oracle Fleet Patching and Provisioning Configurations

 7-15
Notes:

You can specify batches such that singleton services (policy-managed singleton services or administrator-managed services running on one instance) are relocated between batches and non-singleton services remain partially available during the patching process.

2. You must process the next batch by running the `rhpctl move gihome` command, again, as follows:

```
$ rhpctl move gihome -destwc wc2 -continue
```

The preceding command example restarts the Oracle Grid Infrastructure stack on the second batch (nodes n2 and n3). The command terminates by reporting that the second batch was successfully patched.

3. Repeat the previous step until you have processed the last batch of nodes. If you attempt to run the command with the `-continue` parameter after the last batch has been processed, then the command returns an error.

 If the `rhpctl move gihome` command fails at any time during the above sequence, then, after determining and fixing the cause of the failure, rerun the command with the `-continue` option to attempt to patch the failed batch. If you want to skip the failed batch and continue with the next batch, use the `-continue` and `-skip` parameters. If you attempt to skip over the last batch, then the move operation is terminated.

 Alternatively, you can reissue the command using the `-revert` parameter to undo the changes that have been made and return the configuration to its initial state.

 You can use the `-abort` parameter instead of the `-continue` parameter at any point in the preceding procedure to terminate the patching process and leave the cluster in its current state.
Notes:

- Policy-managed services hosted on a server pool with one active server, and administrator-managed services with one preferred instance and no available instances cannot be relocated and will go OFFLINE while instances are being restarted.
- If a move operation is in progress, then you cannot initiate another move operation from the same source home or to the same destination home.
- After the move operation has ended, services may be running on nodes different from the ones they were running on before the move and you will have to manually relocate them back to the original instances, if necessary.
- If you use the `-abort` parameter to terminate the patching operation, then Fleet Patching and Provisioning does not clean up or undo any of the patching steps. The cluster, databases, or both may be in an inconsistent state because all nodes are not patched.
- Depending on the start dependencies, services that were offline before the move began could come online during the move.

Fleet Patching and Provisioning-Defined Batches

Using Fleet Patching and Provisioning to define and patch batches of nodes means that you need only run one command, as shown in the following command example, where the source working is `wc1` and the destination working copy is `wc2`:

```
$ rhpctl move gihome -sourcewc wc1 -destwc wc2 -smartmove -saf Z+ [-eval]
```

There is no need for you to do anything else unless you used the `-separate` parameter with the command. In that case, the move operation waits for user intervention to proceed to the next batch, and then you will have to run the command with the `-continue` parameter after each batch completes.

If the move operation fails at some point before completing, then you can either rerun the operation by running the command again, or you can undo the partially completed operation, as follows:

```
$ rhpctl move gihome -destwc destination_workingcopy_name -revert [authentication_option]
```

You can use the `-revert` parameter with an un-managed home.

The parameters used in the preceding example are as follows:

- `-smartmove`: This parameter restarts the Oracle Grid Infrastructure stack on disjoint sets of nodes so that singleton resources are relocated before Oracle Grid Infrastructure starts.
Note:
If the server pool to which a resource belongs contains only one active server, then that resource will go offline as relocation cannot take place.

The `-smartmove` parameter:
- Creates a map of services and nodes on which they are running.
- Creates batches of nodes. The first batch will contain only the Hub node, if the configuration is an Oracle Flex Cluster. For additional batches, a node can be merged into a batch if:
 * The availability of any non-singleton service, running on this node, does not go below the specified service availability factor (or the default of 50%).
 * There is a singleton service running on this node and the batch does not contain any of the relocation target nodes for the service.
- Restarts the Oracle Grid Infrastructure stack batch by batch.

• Service availability factor (`-saf` N): You can specify a positive number, as a percentage, that will indicate the minimum number of database instances on which a database service must be running. For example:
 - If you specify `-saf 50` for a service running on two instances, then only one instance can go offline at a time.
 - If you specify `-saf 50` for a service running on three instances, then only one instance can go offline at a time.
 - If you specify `-saf 75` for a service running on two instances, then an error occurs because the target can never be met.
 - The service availability factor is applicable for services running on at least two instances. As such, the service availability factor can be 0% to indicate a non-rolling move, but not 100%. The default is 50%.
 - If you specify a service availability factor for singleton services, then the parameter will be ignored because the availability of such services is 100% and the services will be relocated.

• `-eval`: You can optionally use this parameter to view the auto-generated batches. This parameter also shows the sequence of the move operation without actually patching the software.

Related Topics
• `rhpctl move gihome`
 Moves the Oracle Grid Infrastructure software stack from one home to another.
Gold Image Distribution Among Oracle Fleet Patching and Provisioning Servers

Oracle Fleet Patching and Provisioning can automatically share and synchronize gold images between Oracle Fleet Patching and Provisioning Servers.

In the Oracle Fleet Patching and Provisioning architecture, one Oracle Fleet Patching and Provisioning Server manages a set of Oracle Fleet Patching and Provisioning Clients and targets within a given data center or network segment of a data center. If you have more than one data center or a segmented data center, you must have more than one Oracle Fleet Patching and Provisioning Server.

In the Oracle Fleet Patching and Provisioning architecture, one Oracle Fleet Patching and Provisioning Server manages a set of Oracle Fleet Patching and Provisioning Clients and targets within a given data center or network segment of a data center. If you have more than one data center or a segmented data center, then you must have more than one Oracle Fleet Patching and Provisioning Server to facilitate large-scale standardization across multiple estates.

Oracle Fleet Patching and Provisioning Servers retain the ability to create and manage gold images private to their scope, so local customizations are seamlessly supported.

You must first establish a peer relationship between two Oracle Fleet Patching and Provisioning Servers. Registration uses the names of the Oracle Fleet Patching and Provisioning Server clusters. The names of the two clusters can be the same but there is one naming restriction: an Oracle Fleet Patching and Provisioning Server, such as FPPS_1, cannot register a peer Oracle Fleet Patching and Provisioning Server if that peer has the same name as an Oracle Fleet Patching and Provisioning Client or target within the management domain of FPPS_1.

The following steps show how you can establish a peer relationship between two Oracle Fleet Patching and Provisioning Servers. Note that super user or root credentials are not required in this process.

1. On the first Oracle Fleet Patching and Provisioning Server (FPPS_1), create a file containing the server configuration information.

 $ rhpctl export server -serverdata file_path

2. Copy the server configuration file created on FPPS_1 to a second Oracle Fleet Patching and Provisioning Server (FPPS_2).

3. On the second Oracle Fleet Patching and Provisioning Server (FPPS_2), complete the registration of FPPS_2.

 $ rhpctl register server -server FPPS_1_cluster_name -serverdata server_cfg_file_copied_from_FPPS_1

4. On FPPS_2, create a file containing the server configuration information.

 $ rhpctl export server -serverdata file_path

5. Copy the server configuration file created on FPPS_2 to FPPS_1.
6. On the first Oracle Fleet Patching and Provisioning Server (FPPS_1), complete the registration of FPPS_1.

 $ rhpctl register server -server FPPS_2_cluster_name
 -serverdata server_cfg_file_copied_from_FPPS_2

After you register an Oracle Fleet Patching and Provisioning Server as a peer, the following command displays the peer (or peers) of the server:

 $ rhpctl query peerserver

You can inspect the images on a peer Oracle Fleet Patching and Provisioning Server, as follows:

 $ rhpctl query image -server server_cluster_name

The preceding command displays all images on a specific peer Oracle Fleet Patching and Provisioning Server. Additionally, you can specify a peer server along with the -image image_name parameter to display details of a specific image on a specific peer server.

An Oracle Fleet Patching and Provisioning Server can have multiple peers. Oracle does not support chained relationships between peers, however, such as, if FPPS_1 is a peer of FPPS_2, and FPPS_2 is also a peer of FPPS_3, then no relationship is established or implied between FPPS_1 and FPPS_3, although you can make them peers if you want.

Retrieve a copy or copies of gold images from a peer Oracle Fleet Patching and Provisioning Server, as follows:

 $ rhpctl instantiate image -server server_cluster_name

Running the rhpctl instantiate image command activates an auto-update mechanism. From that point on, when you create gold images on a peer Oracle Fleet Patching and Provisioning Server, such as FPPS_2, they are candidates for being automatically copied to the Oracle Fleet Patching and Provisioning Server that performed the instantiate operation, such as FPPS_1. Whether a new gold image is automatically copied depends on that relevance of the image to any instantiate parameters that you may include in the command:

- **-all**: Creates an automatic push for all gold images created on FPPS_2 to FPPS_1
- **-image image_name**: Creates an automatic push for all new descendant gold images of the named image created on FPPS_2 to FPPS_1. A descendant of the named image is an image that is created on FPPS_2 using the rhpctl add image command.
- **-series series_name**: Creates an automatic push for all gold images added to the named series on FPPS_2 to FPPS_1
- **-imagetype image_type**: Creates an automatic push for all gold images created of the named image type on FPPS_2 to FPPS_1

To stop receiving updates that were established by the rhpctl instantiate image command, run rhpctl uninstantiate image and specify the peer Oracle Fleet
Patching and Provisioning Server and one of the following: all, image name, image series name, or image type.

End the peer relationship, as follows, on any one of the Oracle Fleet Patching and Provisioning Servers:

```
$ rhpctl unregister server -server server_cluster_name
```

Related Topics

- rhpctl export server
- rhpctl register server
- rhpctl query peerserver
- rhpctl query image
- rhpctl instantiate image
- rhpctl uninstantiate image
- rhpctl unregister server

Error Prevention and Automated Recovery Options

Fleet Patching and Provisioning has error prevention and automated recovery options to assist you during maintenance operations.

During maintenance operations, errors must be avoided whenever possible and, when they occur, you must have automated recovery paths to avoid service disruption.

Error Prevention

Many RHPCTL commands include the `-eval` parameter, which you can use to run the command and evaluate the current configuration without making any changes to determine if the command can be successfully run and how running the command will impact the configuration. Commands that you run using the `-eval` parameter run as many prerequisite checks as possible without changing the configuration. If errors are encountered, then RHPCTL reports them in the command output. After you correct any errors, you can run the command again using `-eval` to validate the corrections.

Running the command successfully using `-eval` provides a high degree of confidence that running the actual command will succeed.

You can test commands with the `-eval` parameter outside of any maintenance window, so the full window is available for the maintenance procedure, itself.

Automated Recovery Options

During maintenance operations, errors can occur either in-flight (for example, partway through either an `rhpctl move database` or `rhpctl move gihome` command) or after a successful operation (for example, after an `rhpctl move database` command, you encounter performance or behavior issues).

In-Flight Errors

Should in-flight errors occur during move operations:

- Correct any errors that RHPCTL reports and rerun the command, which will resume running at the point of failure.
If rerunning the command succeeds and the move operation has a post-operation user action associated with it, then the user action is run. If there is a pre-operation user action, however, then RHPCTL does not rerun the command.

- Run a new move command, specifying only the destination from the failed move (working copy or unmanaged home), an authentication option, if required, and use the -revert parameter. This will restore the configuration to its initial state.
 No user actions associated with the operation are run.
- Run a new move command, specifying only the destination from the failed move (working copy or unmanaged home), an authentication option if required, and the -abort parameter. This leaves the configuration in its current state. Manual intervention is required at this point to place the configuration in a final state.
 No user actions associated with the operation are run.

Post-Update Issues

Even after a successful move operation to a new database or Oracle Grid Infrastructure home, you still may need to undo the change and roll back to the prior home. You can do this by rerunning the command with the source and destination homes reversed. This is, effectively, a fresh move operation performed without reference to the previous move operation.

Note:

For the independent automons, the source and destination homes are always unmanaged homes (those homes not provisioned by Fleet Patching and Provisioning). When the move operation is run on a Fleet Patching and Provisioning Server or Fleet Patching and Provisioning Client, the destination home must be a managed home that was provisioned by Fleet Patching and Provisioning.

Fleet Patching and Provisioning Logs and Trace Files

Use Oracle Fleet Patching and Provisioning logs and traces to obtain more information for identifying and debugging Oracle FPP Server and client errors.

The following log and trace files are generated during Oracle FPP Server and client operations. These are the key log and trace files of interest for diagnostic purposes:

- $ORACLE_BASE/crsdata/$HOSTNAME/rhp/rhpserver.log.{n}
 Contains a detailed log of the actions that occur for the Oracle FPP Server operations. The log file numbers are updated automatically, and .0 is always the most recent log file.
- $ORACLE_BASE/crsdata/$HOSTNAME/rhp/srvmhlp/lhn_.log.0
 Contains a detailed log of the actions that occur during the Oracle FPP helper operations.
- $ORACLE_BASE/crsdata/$HOSTNAME/rhp/logs/catalina.out
 Contains a detailed log of the actions that occur during the Java Application Server operations.
- /u01/app/grid.diag/crs/fpps/crs/trace
Contains a detailed log of the actions that occur during the Oracle Grid Infrastructure operations. Oracle Fleet Patching and Provisioning is part of the Oracle Grid Infrastructure stack and thus Cluster Ready Services daemon (CRSD) log and trace files can be useful to debug stop and start errors of the Oracle FPP Server or client.

- `$ORACLE_BASE/cfgtoollogs/dbca`
 Contains a detailed log of the actions that occur during the Oracle Database deployment.

- `$ORACLE_BASE/cfgtoollogs/dbua`
 Contains a detailed log of the actions that occur during the Oracle Database upgrade.

You can also use the Trace File Analyzer (TFA) to collect Oracle FPP logs and traces by using the `-rhp` flag. For example:

```
$ tfactl diagcollect -rhp
```
Oracle Fleet Patching and Provisioning Use Cases

Review these topics for step-by-step procedures to provision, patch, and upgrade your software using Oracle Fleet Patching and Provisioning.

Oracle Fleet Patching and Provisioning is a software lifecycle management solution and helps standardize patching, provisioning, and upgrade of your standard operating environment.

- Creating an Oracle Grid Infrastructure 19c Deployment
 Provision Oracle Grid Infrastructure software on two nodes that do not currently have a Grid home, and then configure Oracle Grid Infrastructure to form a multi-node Oracle Grid Infrastructure installation.

- Provisioning an Oracle Database Home and Creating a Database
 This procedure provisions Oracle Database 19c software and creates Oracle Database instances.

- Provisioning a Pluggable Database
 You can provision a pluggable database (PDB) on an existing container database (CDB) running in a provisioned database working copy.

- Upgrading to Oracle Grid Infrastructure 19c
 This procedure uses Fleet Patching and Provisioning to upgrade your Oracle Grid Infrastructure cluster from 18c to 19c.

- Patching Oracle Grid Infrastructure and Oracle Databases Simultaneously
 This procedure patches Oracle Grid Infrastructure and Oracle Databases on the cluster to the latest patch level without cluster downtime.

- Patching Oracle Database 19c Without Downtime
 This procedure explains how to patch Oracle Database 19c with the latest patching without bringing down the database.

- Upgrading to Oracle Database 19c
 This procedure describes how to upgrade an Oracle database from Oracle Database 18c to 19c with a single command, using Fleet Patching and Provisioning, both for managed and unmanaged Oracle homes.

- Adding a Node to a Cluster and Scaling an Oracle RAC Database to the Node
 You can add a node to your two-node cluster by using Fleet Patching and Provisioning to add the node, and then extend an Oracle RAC database to the new node.

- Adding Gold Images for Fleet Patching and Provisioning
 Create gold images of software home and store them on the Fleet Patching and Provisioning Server, to use later to provision Oracle homes.

- User Actions for Common Fleet Patching and Provisioning Tasks
 You can use Fleet Patching and Provisioning user actions to perform many tasks, such as installing and configuring any type of software and running scripts.
Creating an Oracle Grid Infrastructure 19c Deployment

Provision Oracle Grid Infrastructure software on two nodes that do not currently have a Grid home, and then configure Oracle Grid Infrastructure to form a multi-node Oracle Grid Infrastructure installation.

Before You Begin

Provide configuration details for storage, network, users and groups, and node information for installing Oracle Grid Infrastructure in a response file. You can store the response file in any location on the Fleet Patching and Provisioning Server.

You can provision an Oracle Standalone Cluster, Oracle Application Clusters, Oracle Domain Services Cluster, or Oracle Member Clusters. Ensure that the response file has the required cluster configuration details.

Ensure that you have storage, network, and operating system requirements configured as stated in the Oracle Grid Infrastructure Installation Guide.

Procedure

• From the Fleet Patching and Provisioning Server, run the command:

```bash
$ rhpctl add workingcopy -workingcopy GI19c -image GI_HOME_19c -responsefile /u01/app/rhpinfo/GI_19c_install.rsp {authentication_option}
```

GI19c is the working copy based on the image GI_HOME_19c
/u01/app/rhpinfo/GI_19c_install.rsp is the response file location.

Cluster Verification Utility checks for preinstallation configuration as per requirements. Fleet Patching and Provisioning configures Oracle Grid Infrastructure.

Oracle Grid Infrastructure 19c is provisioned as per the settings in the same response file.

During provisioning, if an error occurs, the procedure stops and allows you to fix the error. After fixing the error, you can resume the provisioning operation from where it last stopped.

Watch a video Video
Provisioning an Oracle Database Home and Creating a Database

This procedure provisions Oracle Database 19c software and creates Oracle Database instances.

Procedure

1. From the Fleet Patching and Provisioning Server, provision the Oracle Database home software:

 $ rhpctl add workingcopy -image db19c -path /u01/app/dbusr/product/19.0.0/db19c
 -client client_001 -oraclebase /u01/app/dbusr/ -workingcopy db19wc

 The command provisions the working copy db19wc to the specified path on the cluster client_001, from the image db19c.

2. Create the database instance:

 $ rhpctl add database -workingcopy db19wc -dbname db -dbtype RAC

 The command creates an Oracle RAC database instance db. You can use the add database command repeatedly to create more instances on the working copy.

Watch a video Video

Provisioning a Pluggable Database

You can provision a pluggable database (PDB) on an existing container database (CDB) running in a provisioned database working copy.

After you create a working copy of a gold image, provision that working copy to a target, and create a database as a multitenant CDB, you can add a PDB to the CDB using the rhpctl addpdb database command.

- The following command example creates a PDB called pdb19c on a CDB called raccdb19c, which is on a working copy called wc_db19c:

 $ rhpctl addpdb database -workingcopy wc_db19c -dbname raccdb19c
 -pdbname pdb19c

- Use the rhpctl deletepdb database command to delete a PDB from an existing CDB on a working copy.

 The following command example deletes a PDB called pdb19c on a CDB called raccdb19c, which is on a working copy called wc_db19c:

 $ rhpctl deletepdb database -workingcopy wc_db19c -dbname raccdb19c
 -pdbname pdb19c
Upgrading to Oracle Grid Infrastructure 19c

This procedure uses Fleet Patching and Provisioning to upgrade your Oracle Grid Infrastructure cluster from 18c to 19c.

Before You Begin

To upgrade to Oracle Grid Infrastructure 19c, your source must be Oracle Grid Infrastructure 11g release 2 (11.2.0.3 or 11.2.0.4), Oracle Grid Infrastructure 12c release 2 (12.1.0.2 or 12.2.0.1), or Oracle Grid Infrastructure 18c.

Ensure that groups configured in the source home match those in the destination home.

Ensure that you have an image GI_HOME_19c of the Oracle Grid Infrastructure 19c software to provision your working copy.

GI_18c is the active Grid Infrastructure home on the cluster being upgraded. It is a working copy because in this example, Fleet Patching and Provisioning provisioned the cluster. Fleet Patching and Provisioning can also upgrade clusters whose Grid Infrastructure homes are unmanaged that is, homes that Fleet Patching and Provisioning did not provision.

Procedure

1. Provision a working copy of the Oracle Grid Infrastructure 19c software:

 $ rhpctl add workingcopy -workingcopy GI9c -image GI_HOME_19c {authentication_option}

 GI19c is the working copy based on the image GI_HOME_19c.

2. Upgrade your target cluster to the GI19c working copy:

 rhpctl upgrade gihome -sourcewc GI18c -destwc GI19c

 Rapid Home Provisioning identifies the cluster to upgrade based on the name of the source working copy, and upgrades to the working copy GI19c.

Patching Oracle Grid Infrastructure and Oracle Databases Simultaneously

This procedure patches Oracle Grid Infrastructure and Oracle Databases on the cluster to the latest patch level without cluster downtime.

Before You Begin

In this procedure, Oracle Grid Infrastructure 19c is running on the target cluster. Working copy GI_HOME_19c_WCPY is the active Grid home on this cluster. Working copy DB_HOME_19c_WCPY runs an Oracle RAC 19c Database with running database instance db1. Working copy DB_HOME_19c_WCPY runs an Oracle RAC 18c Database with running database instance db2.
Ensure that you have images GI_HOME_19c_PSU1, DB_HOME_19c_PSU1, DB_HOME_18c_PSU5 with the required patches for Oracle Grid Infrastructure and Oracle RAC Database on the Fleet Patching and Provisioning Server.

The groups configured in the source home must match with those in the destination home.

Procedure

1. Prepare target Oracle homes as follows:
 a. Provision software-only Grid home on the cluster to be patched:

 $ rhpctl add workingcopy -workingcopy GI_HOME_19c_PATCHED_WCPY -image GI_HOME_19c_PSU1 -client CLUSTER_005 -softwareonly

 b. Provision each release Database home, without database instances, to be patched:

 $ rhpctl add workingcopy -workingcopy DB_HOME_19c_PATCHED_WCPY -image DB_HOME_19c_PSU1
 $ rhpctl add workingcopy -workingcopy DB_HOME_18c_PATCHED_WCPY -image DB_HOME_18c_PSU5

2. Patch Oracle Grid Infrastructure and all Oracle RAC Databases on node1 as follows:

 $ rhpctl move gihome -sourcewc GI_HOME_19c_WCPY -destwc GI_HOME_19c_PATCHED_WCPY -auto -dbhomes DB_HOME_18c_WCPY=DB_HOME_18c_PATCHED_WCPY, DB_HOME_19c_WCPY=DB_HOME_19c_PATCHED_WCPY -targetnode node1 {authentication_option}

When you run the command, you move your active Oracle Grid Infrastructure from working copy GI_HOME_19c_WCPY to GI_HOME_19c_PATCHED_WCPY, Oracle RAC Database db1 from DB_HOME_19c_WCPY to DB_HOME_19c_PATCHED_WCPY, and Oracle RAC Database db2 from DB_HOME_18c_WCPY to DB_HOME_18c_PATCHED_WCPY.

Patching Oracle Database 19c Without Downtime

This procedure explains how to patch Oracle Database 19c with the latest patching without bringing down the database.

Before You Begin

You have an Oracle Database db19c that you want to patch to the latest patch level.

Ensure that the working copy db19c_psu based on the image DB19c_PSU contains the latest patches and is available.

Procedure

From the Fleet Patching and Provisioning Server, run one of the following commands as per your source and destination database:
1. To patch an Oracle Database home managed by Fleet Patching and Provisioning, and there exist working copies of the source and destination databases, run:

```
  rhpctl move database -sourcewc db19c -patchedwc db19c_psu
```

- db19c is the source working copy of the database being patched
- db19c_psu is the working copy of the Oracle Database software with patches applied, based on the image DB19c_PSU.

2. To patch an unmanaged Oracle Database home (source working copy does not exist because the Oracle home is not managed by Fleet Patching and Provisioning), run:

```
  rhpctl move database -sourcehome /u01/app/orabase/product/19.0.0/dbhome_1 
     -patchedwc db19c_psu -targetnode node1
```

- targetnode specifies the node on which the database to be upgraded is running, because the source Oracle Database is on a 19c cluster.
- /u01/app/orabase/product/19.0.0/dbhome_1 is the path of the database being patched
- db19c_psu is the working copy of the Oracle Database software with patches applied, based on the image DB19c_PSU.

Use the saved gold image for standardized patching of all your databases of release 19c to the same patch level.

3. If for some reason, you want to rollback the patches applied to a managed Oracle Database home, run:

```
  rhpctl move database -sourcewc db19c_psu 
     -patchedwc db19c -ignorewcpatches
```

- db19c is the working copy of the unpatched database to which you want to roll back.
- db19c_psu is the working copy of the Oracle Database software with patches applied, based on the image DB19c_PSU.

For all Oracle Databases, you can also specify these additional options with the move database command:

- **-keepplacement:** For admin-managed Oracle RAC Databases (not Oracle RAC One Node Database), Fleet Patching and Provisioning retains the services on the same nodes after the move.
- **-disconnect:** Disconnects all sessions before stopping or relocating services.
- **-drain_timeout:** Specify the time, in seconds, allowed for resource draining to be completed for planned maintenance operations. During the draining period, all current client requests are processed, but new requests are not accepted. This option is available only with Oracle Database 12c release 2 (12.2) or later.
- **-stopoption:** Stops the database.
- **-nodatapatch:** Ensures datapatch is not run for databases you are moving.
Watch a video Video

Upgrading to Oracle Database 19c

This procedure describes how to upgrade an Oracle database from Oracle Database 18c to 19c with a single command, using Fleet Patching and Provisioning, both for managed and unmanaged Oracle homes.

Before you Begin

• To upgrade to Oracle Database 19c, your source database must be either Oracle Database 11g release 2 (11.2.0.3 or 11.2.0.4), Oracle Database 12c release 1 (12.1.0.2 or 12.2.0.1), or Oracle Database 18c.

• Oracle Grid Infrastructure on which the pre-upgrade database is running must be of the same release or later than the database release to which you are upgrading.

• The source Oracle home to be upgraded can be a managed working copy, that is, an Oracle home provisioned using Fleet Patching and Provisioning, or an unmanaged home, that is, an Oracle home not provisioned using Fleet Patching and Provisioning. If you are upgrading an unmanaged Oracle home, provide the complete path of the database for upgrade.

Procedure to Upgrade Oracle Database using Fleet Patching and Provisioning

• From the Fleet Patching and Provisioning Server, run one of the following commands as per your source and destination database:

1. To upgrade an Oracle home managed by Fleet Patching and Provisioning, and there exist working copies of the source and destination databases, run:

 $ rhpctl upgrade database -dbname test_database -sourcewc db18c -destwc db19c {authentication_option}

 test_database is the name of the database being upgraded.

 db18c is the source working copy of the pre-upgrade database.

 db19c is the working copy of the upgraded Oracle Database software.

2. To upgrade an unmanaged Oracle home (source working copy does not exist because the Oracle home is not managed by Fleet Patching and Provisioning), run:

 $ rhpctl move database -sourcehome /u01/app/orabase/product/18.0.0/dbhome_1 -destwc db19c -targetnode node1 {authentication_option}

 /u01/app/orabase/product/18.0.0/dbhome_1 is the path of the database being upgraded.

 db19c is the working copy of the upgraded Oracle Database software.

 targetnode specifies the node on which the database to be upgraded is running, because the source Oracle Database is on a 18c cluster.
The upgraded database is now managed by Fleet Patching and Provisioning. You can ensure that your database is patched to the latest level, using Fleet Patching and Provisioning.

Note:
During upgrade, if an error occurs, the procedure stops and allows you to fix the error. After fixing the error, you can resume the upgrade operation from where it last stopped.

Watch a video [Video]

Related Topics
- **rhpctl upgrade database**
 Upgrades a database to the version of the destination working copy.
- **rhpctl move database**
 Moves one or more databases from a source working copy or any Oracle Database home to a patched working copy.

Adding a Node to a Cluster and Scaling an Oracle RAC Database to the Node

You can add a node to your two-node cluster by using Fleet Patching and Provisioning to add the node, and then extend an Oracle RAC database to the new node.

Before You Begin
In this procedure, Oracle Grid Infrastructure 19c is running on the cluster. Working copy **GI_HOME_19c_WCPY** is the active Grid home on this cluster.

The Oracle RAC database home runs on the working copy **DB_HOME_19c_WCPY**.

Ensure that you have storage, network, and operating system requirements configured for the new node as stated in *Oracle Grid Infrastructure Installation Guide*.

Procedure

1. From the Fleet Patching and Provisioning Server, run the following command to add a node to the existing Oracle Grid Infrastructure working copy:

   ```
   rhpctl addnode gihome -workingcopy GI_HOME_19c_WCPY -newnodes n3:n3-vip {authentication_option}
   ```

 The command extends the cluster by adding node3.

2. Add instances to the administrator-managed Oracle RAC database on the new node:

   ```
   rhpctl addnode database -workingcopy DB_HOME_19c_WCPY -dbname db321 -node n3 {authentication_option}
   ```
The command extends the database home on the node3 and creates database db321 on this node.

Related Topics
• rhpctl addnode gihome
• rhpctl addnode database

Adding Gold Images for Fleet Patching and Provisioning

Create gold images of software home and store them on the Fleet Patching and Provisioning Server, to use later to provision Oracle homes.

Before You Begin

The Oracle home to be used for creating the gold image can be on the Fleet Patching and Provisioning Server, or Fleet Patching and Provisioning Client, or any target machine that the Fleet Patching and Provisioning Server can communicate with.

Procedure

Create gold images of Oracle homes in any of the following ways and store them on the Fleet Patching and Provisioning server:

1. Import an image from an installed Oracle home on the Fleet Patching and Provisioning Server:

 rhpctl import image -image db19c -path /share/software/19c/dbhome -imagetype ORACLEDBSOFTWARE

 The gold image of imagetype Oracle Database 19c software is created and stored on the Fleet Patching and Provisioning Server.

 You can also create gold images of Oracle Grid Infrastructure or any other software by specifying -imagetype as ORACLEGISOFTWARE, ORACLEGGSOFTWARE, or SOFTWARE respectively.

2. Import an image from an installed Oracle home on a Fleet Patching and Provisioning Client by running the following command from the Fleet Patching and Provisioning Client:

 rhpctl import image -image db19c -path /u01/app/dbusr/product/19.0.0/

 The command creates and adds the image db19c based on the local Oracle home installed in the specified path.

 Note:

 You cannot directly use images as software homes. Use images to create working copies of software homes.
User Actions for Common Fleet Patching and Provisioning Tasks

You can use Fleet Patching and Provisioning user actions to perform many tasks, such as installing and configuring any type of software and running scripts.

Deploying a Web Server

The following procedure demonstrates automated deployment of Apache Web Server using Fleet Patching and Provisioning:

1. Create a script to install Apache Web server, as follows:
 a. On the Fleet Patching and Provisioning Server, download and extract the Apache Web server installation kit.
 b. Create the script to install, configure, and start the Apache Web server.

2. Register the script as a user action with Fleet Patching and Provisioning by running the following command on the Fleet Patching and Provisioning Server:

 rhpctl useraction -useraction apachestart -actionscript /user1/useractions/apacheinstall.sh -post -optype ADD_WORKINGCOPY -onerror ABORT

 The preceding command adds the apachestart user action for the action script stored in the specified directory. As per the specified properties, the user action runs after the ADD_WORKINGCOPY operation and aborts if there is any error.

3. Create an image type and associate the user action with the image type, as follows:

 rhpctl add imagetype -imagetype apachetype -basetype SOFTWARE -useraction "apachestart"

 The preceding command creates a new image type called apachetype, a derivative of the basic image type, SOFTWARE, with an associated user action apachestart.

4. Create a gold image of the image type, as follows:

 rhpctl import image -image apacheinstall -path /user1/apache2219_kit -imagetype apachetype

 The preceding command creates a gold image, apacheinstall, with the script for Apache Web server installation, in the specified path, based on the imagetype you created earlier.

 To view the properties of this image, run the rhpctl query image -image apacheinstall command.
5. Deploy a working copy of the gold image on the target, as follows:

```
rhpctl add workingcopy -workingcopy apachecopy -image apacheinstall -path /user1/apacheinstallloc -sudouser user1 -sudopath /usr/local/bin/sudo -node node1 -user user1 -useractiondata "/user1/apachehome:1080:2.2.19"
```

Fleet Patching and Provisioning provisions the software to the target and runs the `apachestart` script specified in the user action. You can provide the Apache Web server configuration details such as port number with the `useractiondata` option. If the target is a Fleet Patching and Provisioning Client, then you need not specify `sudo` credentials.

Registering Multiple Scripts Using a Single User Action

Run multiple scripts as part of a user action plug-in by registering a wrapper script and bundled custom scripts. The wrapper script extracts the bundled scripts, which are copied under the directory of the wrapper script, and then runs those extracted scripts as necessary, similar to the following procedure:

1. The following command creates a user action called `ohadd_ua`, and associates a wrapper script, `wc_add.sh`, with a zip file containing other scripts:

```
rhpctl add useraction -useraction ohadd_ua -actionscript /scratch/crsusr/wc_add.sh -actionfile /scratch/crsusr/pack.zip -pre -runscope ALLNODES -optype ADD_WORKINGCOPY
```

The wrapper script, `wc_add.sh`, extracts the `pack.zip` file into the script path, a temporary path to which the user action scripts are copied. The wrapper script can invoke any scripts contained in the file.

2. The following command creates an image type, `sw_ua`, for the `ohadd_ua` user action:

```
rhpctl add imagetype -imagetype sw_ua -useractions ohadd_ua -basetype SOFTWARE
```

3. The following command creates an image called `swimgua` from the software specified in the path:

```
rhpctl import image -image swimgua -path /tmp/custom_sw -imagetype sw_ua
```

4. The following command adds a working copy called `wcua` and runs the `wc_add.sh` script:

```
rhpctl add workingcopy -workingcopy wcua -image swimgua -client targetcluster
```
RHPCTL Command Reference

Use the Fleet Patching and Provisioning Control (RHPCTL) utility to manage Fleet Patching and Provisioning in your cluster.

This appendix contains reference information for Fleet Patching and Provisioning commands, including utility usage information and a comprehensive listing of the RHPCTL commands.

- RHPCTL Overview
 RHPCTL is a command-line utility with which you perform Oracle Fleet Patching and Provisioning operations and manage Oracle Fleet Patching and Provisioning Servers and Clients.

- Using RHPCTL Help
 You can use the content sensitive help with RHPCTL to get uses and syntax information of various commands.

- RHPCTL Command Reference
 This section describes RHPCTL command usage information, and lists and describes RHPCTL commands.

RHPCTL Overview

RHPCTL is a command-line utility with which you perform Oracle Fleet Patching and Provisioning operations and manage Oracle Fleet Patching and Provisioning Servers and Clients.

RHPCTL uses the following syntax:

```
rhpctl command object [parameters]
```

In RHPCTL syntax:

- `command` is a verb such as `add`, `delete`, or `query`
- `object` (also known as a noun) is the target or object on which RHPCTL performs the command, such as client or image.
- `parameters` extend the use of a preceding command combination to include additional parameters for the command. Specify parameters as `-keyword value`. If the `value` field contains a comma-delimited list, then do not use spaces between the items in the list.

You can use RHPCTL commands to perform several Oracle Fleet Patching and Provisioning operations, including:

- Oracle Fleet Patching and Provisioning Client operations, such as creating an Oracle Fleet Patching and Provisioning Client configuration.
- Role operations, such as adding and deleting roles, and granting and revoking roles for users.
• Site operations, such as obtaining configuration information for Oracle Fleet Patching and Provisioning Servers.
• Image operations, such as adding, deleting, and importing images.
• Image series operations, such as adding and deleting image series.
• Working copy operations, such as adding and deleting working copies.

Using RHPCTL Help

You can use the content sensitive help with RHPCTL to get uses and syntax information of various commands.

To see help for all RHPCTL commands, from the command line enter:

```
rhpctl -help
```

To see the command syntax and a list of parameters for each RHPCTL command, from the command line enter:

```
rhpctl command (or verb) object (or noun) -help
```

RHPCTL Command Reference

This section describes RHPCTL command usage information, and lists and describes RHPCTL commands.

• audit Commands
 Use commands with the `audit` keyword to delete, modify, and query audit records.

• client Commands
 Use commands with the `client` keyword to add, delete, and manage Oracle Fleet Patching and Provisioning clients.

• credentials Commands
 Use commands with the `credentials` keyword to add credentials to and delete credentials from the Oracle Cluster Registry (OCR).

• database Commands
 Use commands with the `database` keyword to add, delete, move, and upgrade databases.

• exadata Commands
 Use commands with the `exadata` keyword to patch an Oracle Exadata system.

• gihome Commands
 Use commands with the `gihome` keyword to add or delete nodes to Oracle Grid Infrastructure home and, move and upgrade Oracle Grid Infrastructure home.

• image Commands
 Use commands with the `image` keyword to add, delete, import, and manage gold images.

• imagetype Commands
 Use commands with the `imagetype` keyword to add, delete, modify, and manage an image type.

• job Commands
 Use commands with the `job` keyword to delete or query schedule jobs.
• osconfig Commands
 Use commands with the `osconfig` keyword to backup, compare, and manage operating system configuration information.

• peerserver Commands
 Use commands with the `peerserver` keyword to display information for a peer server.

• role Commands
 Use commands with the `role` keyword to add, delete, and manage roles.

• series Commands
 Use commands with the `series` keyword to add, delete, subscribe, and manage a series.

• server Commands
 Use commands with the `server` keyword to export, register, unregister, and query Oracle Fleet Patching and Provisioning Server.

• user Commands
 Use commands with the `user` keyword to delete, modify, register, and unregister users.

• useraction Commands
 Use commands with the `useraction` keyword to add, delete, and modify user actions.

• workingcopy Commands
 Use commands with the `workingcopy` keyword to create, update, extend, and delete working copies.

audit Commands

Use commands with the `audit` keyword to delete, modify, and query audit records.

• `rhpctl delete audit`
• `rhpctl modify audit`
• `rhpctl query audit`

rhpctl delete audit

Deletes the Fleet Patching and Provisioning audit records.

Syntax

```
rhpctl delete audit [-to timestamp]
```

Usage Notes

Optionally, you can specify a date up to which audit records will be deleted, in the format `YYYY-MM-DD`. Otherwise, this command deletes all audit records.

rhpctl modify audit

Modifies the maximum number of audit records to store.
Syntax

`rhpctl modify audit -maxrecord number`

Usage Notes

Specify the maximum number of audit records to store.

rhpctl query audit

Displays the Fleet Patching and Provisioning audit records.

Syntax

```
rhpctl query audit [[-operation {add | delete | modify | grant | revoke | move | verify | discover | upgrade | allow | disallow | deleteimage | insertimage | promote | addnode | deletenode | register | unregister | export | import | query | subscribe | unsubscribe}] [-entity {client | role | audit | image | imagetype | useraction | series | workingcopy | database | server | user | audit | imagetype | useraction}] [-user user_name] [-client cluster_name] [-from timestamp -to timestamp] [-before timestamp -since timestamp -first number -last number] [-record record_id -config]
```

Parameters

Table A-1 rhpctl query audit Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`-operation {add</td>
<td>delete</td>
</tr>
</tbody>
</table>
Table A-1 (Cont.) rhpctl query audit Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-entity {client</td>
<td>Specify the entity for which you want an audit query.</td>
</tr>
<tr>
<td>role</td>
<td>image</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Optionally, you can choose to run a query audit on a particular user who performed Fleet Patching and Provisioning operations.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can choose to run a query audit on a particular client cluster where Fleet Patching and Provisioning operations were performed.</td>
</tr>
<tr>
<td>-from timestamp -to timestamp</td>
<td>Optionally, you can specify a time interval for which to run an audit query. Timestamps must be in the format YYYY-MM-DD.</td>
</tr>
<tr>
<td>-before timestamp</td>
<td>Optionally, you can specify a time before which to run an audit query. Timestamp must be in the format YYYY-MM-DD.</td>
</tr>
<tr>
<td>-since timestamp</td>
<td>Optionally, you can specify a time after which to run an audit query. Timestamp must be in the format YYYY-MM-DD.</td>
</tr>
<tr>
<td>-first number</td>
<td>Optionally, you can specify a number of the first audit records for a given time.</td>
</tr>
<tr>
<td>-last number</td>
<td>Optionally, you can specify a number of the last audit records for a given time.</td>
</tr>
<tr>
<td>-record record_id</td>
<td>Optionally, you can specify a particular audit record ID.</td>
</tr>
<tr>
<td>-config</td>
<td>You can choose this parameter to show the maximum record configuration.</td>
</tr>
</tbody>
</table>

client Commands

Use commands with the client keyword to add, delete, and manage Oracle Fleet Patching and Provisioning clients.

- rhpctl add client
 Adds a Fleet Patching and Provisioning Client to the Fleet Patching and Provisioning Server configuration.
- rhpctl delete client
- rhpctl discover client
- rhpctl export client
- rhpctl modify client
 Modifies a Fleet Patching and Provisioning Client.
- rhpctl query client
- rhpctl update client
- rhpctl verify client
rhpctl add client

Adds a Fleet Patching and Provisioning Client to the Fleet Patching and Provisioning Server configuration.

Syntax

```
rhpctl add client -client cluster_name [-toclientdata path] [-targetnode node_name]
    {-sudouser sudo_user_name -sudopath sudo_binary_location | -root |
     -cred cred_name} | -auth plugin_name [-arg1 name1:value1...]
    [-maproles role=user_name[,role=user_name[,...]]]
    [-version version]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-client client_name</td>
<td>Specify the name of the cluster in which you want to create the client.</td>
</tr>
<tr>
<td>-toclientdata path</td>
<td>Optionally, you can specify the path to the XML file that is created by the Fleet Patching and Provisioning Server (specific to the client cluster), which contains the information the client needs to configure its connection to the server.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a node in a remote cluster that has no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-sudouser sudo_user_name</td>
<td>If you choose to use the -targetnode parameter, then you must choose either sudo or root to access the remote node.</td>
</tr>
<tr>
<td>-sudopath sudo_binary_location</td>
<td>If you choose sudo, then you must use the -sudouser parameter and specify a user name to run super-user operations, and a path to the location of the sudo binary.</td>
</tr>
<tr>
<td>-cred cred_name</td>
<td>Optionally, you can choose to specify a credential name to associate the user and password credentials to access a remote node.</td>
</tr>
<tr>
<td>-auth plugin_name</td>
<td>Alternative to -sudouser, -root, or -cred, you can use -auth to specify an authentication plugin to access a remote node.</td>
</tr>
<tr>
<td>[-arg1 name1:value1...]</td>
<td>You can specify either built-in roles or roles that you have defined, and you can assign multiple uses to each role. Use commas to separate multiple roles and users.</td>
</tr>
<tr>
<td>-maproles role=user_name[,...]</td>
<td>Optionally, you can specify the version of the credentials file format, such as 18.0.0.0.0.</td>
</tr>
<tr>
<td>-version version</td>
<td></td>
</tr>
</tbody>
</table>

Usage Notes

- Only clusters running Oracle Grid Infrastructure 12c release 2 (12.2) or later can be configured and added as Fleet Patching and Provisioning Clients. Clusters running earlier versions of Oracle Grid Infrastructure, and servers running no Oracle Grid Infrastructure, can be managed directly by the Fleet Patching and Provisioning Server.
• You can only run this command on the Fleet Patching and Provisioning Server.

Examples

To add a client to the Fleet Patching and Provisioning Server:

```
$ rhpctl add client -client ClientCluster3 -toclientdata Grid_home/RHPserver/info
```

rhpctl delete client

Deletes a specific Fleet Patching and Provisioning Client from the configuration.

Syntax

```
rhpctl delete client -client cluster_name [-force]
```

Usage Notes

• Specify the name of the client cluster that you want to delete from the configuration.

• You must stop the Fleet Patching and Provisioning Client before you run this command or use the `-force` option.

Example

To delete the Fleet Patching and Provisioning Client `ClientCluster3`:

```
$ rhpctl delete client -client ClientCluster3
```

rhpctl discover client

Validates the input provided and discovers parameters on the given nodes, and generates a response file that you can use for configuring Oracle Clusterware. After completing this command, use page A-11 to validate the response file and prepare the target nodes for Oracle Clusterware deployment.

Syntax

```
rhpctl discover client -image image_name -generatepath response_file_path
   {-responsefile response_file_name | -clusternodes node_list -client cluster_name
      -oraclehome oracle_home_path} {-root | -sudouser sudo_username
      -sudopath sudo_binary_path | -cred cred_name | -auth plugin_name
      [-arg1 name1:value1...] [user gi_user_name]
      [-scan scan_name]}
```
Parameters

Table A-3 rhpctl discover client Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the Oracle Grid Infrastructure Gold Image which the resulting response file will support.</td>
</tr>
<tr>
<td>-generatepath</td>
<td>Specify a file path where the response file that RHPCTL generates will be copied. The RHPCTL command generates name of the response file and displays it while the command is running.</td>
</tr>
<tr>
<td>response_file_path</td>
<td></td>
</tr>
<tr>
<td>-responsefile</td>
<td>If you have a partially complete response file and you want it to be completed with reference to the target nodes, then specify the response file name using this parameter. Note: The response file must include the node list, client name, and Oracle home path.</td>
</tr>
<tr>
<td>response_file_name</td>
<td></td>
</tr>
<tr>
<td>-clusternodes</td>
<td>Specify a comma-delimited list of nodes on which you plan to provision Oracle Clusterware (using the resulting response file) in the following format: node_name:node_vip[:node_role][,node_name:node_vip[:node_role]...]</td>
</tr>
<tr>
<td>node_list</td>
<td></td>
</tr>
<tr>
<td>-client client_name</td>
<td>Specify the name of the target cluster to be probed.</td>
</tr>
<tr>
<td>-oraclehome</td>
<td>Specify the location of the Oracle home.</td>
</tr>
<tr>
<td>oracle_home_path</td>
<td></td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser</td>
</tr>
<tr>
<td>sudo_username</td>
<td></td>
</tr>
<tr>
<td>-sudopath</td>
<td></td>
</tr>
<tr>
<td>sudo_binary_path</td>
<td></td>
</tr>
<tr>
<td>-cred cred_name</td>
<td></td>
</tr>
<tr>
<td>-auth plugin_name</td>
<td></td>
</tr>
<tr>
<td>[-arg1 name1:value1...]</td>
<td></td>
</tr>
<tr>
<td>-user gi_user_name</td>
<td>Specify the name of the Oracle Grid Infrastructure installation user.</td>
</tr>
<tr>
<td>-scan scan_name</td>
<td>Specify the SCAN name.</td>
</tr>
</tbody>
</table>

rhpctl export client

Exports data from the repository on the Fleet Patching and Provisioning Server to a client data file.

Syntax

rhpctl export client -client client_name -clientdata file_path
Parameters

Table A-4 rhpctl export client Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-client cluster_name</td>
<td>Specify the name of the client cluster that you want to export.</td>
</tr>
<tr>
<td>-clientdata file_path</td>
<td>Specify the path to the location of the client data file.</td>
</tr>
</tbody>
</table>

Usage Notes

You can only run this command on the Fleet Patching and Provisioning Server.

Example

To export repository data from a Fleet Patching and Provisioning Client named mjk9394 to a client data file, /tmp/mjk9394.xml:

```
$ rhpctl export client -client mjk9394 -clientdata /tmp/mjk9394.xml
```

rhpctl modify client

Modifies a Fleet Patching and Provisioning Client.

Syntax

```
rhpctl modify client -client cluster_name [-enabled {TRUE | FALSE}] [-maproles role=user_name[+user_name...] [,role=user_name[+user_name...],...]]] [-password]
```

Parameters

Table A-5 rhpctl modify client Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-client cluster_name</td>
<td>Specify the name of the client cluster that you want to modify.</td>
</tr>
<tr>
<td>-enabled {TRUE</td>
<td>FALSE}</td>
</tr>
<tr>
<td>-maproles role=user_name[+user _name...] [,,...]</td>
<td>You can modify either built-in roles or roles that you have defined, and you can assign multiple uses to each role. When you use the -maproles parameter, use a plus sign (+) to map more than one user to a specific role. Separate additional role/user pairs with commas.</td>
</tr>
</tbody>
</table>
Table A-5 (Cont.) rhpctl modify client Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-password</td>
<td>Optionally, you can specify a password to recreate the Fleet Patching and Provisioning Client credentials.</td>
</tr>
</tbody>
</table>

Example

To disable a Fleet Patching and Provisioning Client named RHPClient001:

```
$ rhpctl modify client -client RHPClient001 -enabled FALSE
```

rhpctl query client

Displays the configuration information of a specific Fleet Patching and Provisioning Client cluster.

Syntax

```
rhpctl query client [-client cluster_name]
```

Usage Notes

Specify the name of the client cluster in which the Fleet Patching and Provisioning Client resides for which you want to display the configuration information.

Example

This command displays output similar to the following:

```
/rhpctl query client -client mbcluster-13
Site: mbcluster-13
Fleet Patching and Provisioning Client Version: 12.2.0.1.0
Enabled: true
Host from which RHPC last registered: rhpserver01.example.com
Port number last registered by RHPC: 8896
RHP Enabled: true
Standalone: false
Managed: true
```

rhpctl update client

Updates an image on the Fleet Patching and Provisioning Client.

Syntax

```
rhpctl update client -image image_name [-targetnode node_name]
```

<table>
<thead>
<tr>
<th>-batches 'node_name'</th>
<th>-root</th>
</tr>
</thead>
</table>
Parameters

Table A-6 rhpctl update client Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image that you want to update.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Specify the name of the node on which you want to update the Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-batches 'node_name'</td>
<td>Alternative to specifying a target node, you can specify batches of nodes.</td>
</tr>
</tbody>
</table>

Note: If you use this parameter for Oracle Database Appliance nodes, then run the command twice, in succession, specifying any one Oracle Database Appliance node for the first run, and another Oracle Database Appliance node for the second run.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-root</td>
<td>You must specify this parameter if you use either the -targetnode or -batches parameters.</td>
</tr>
</tbody>
</table>

Usage Notes

You can only run this command from a Fleet Patching and Provisioning Server.

Examples

The following example uses the -targetnode parameter:

$ rhpctl update client -image ODA1 -targetnode rac07box1 -root

The two following examples use the -batches parameter:

$ rhpctl update client -image ODA1 -batches 'rac07box1' -root
$ rhpctl update client -image ODA1 -batches 'rac07box2' -root

rhpctl verify client

Validates the input provided and creates or completes and verifies the values in a response file that you can use to configure Oracle Clusterware.

Syntax

```
rhpctl verify client -image image_name -responsefile response_file_name
   [-clusternodes node_list] [-root] [-sudouser sudo_username -sudopath sudo_binary_path] [-cred cred_name] [-auth plugin_name [-arg1 name1:value1...]]
   [-user gi_user_name] [-client cluster_name] [-scan scan_name]
   [-oraclehome oracle_home_path] [-ignorewarn] [-fixup [-setupSSH]]
```
Parameters

Table A-7 rhpctl verify client Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image.</td>
</tr>
<tr>
<td>-responsefile response_file_name</td>
<td>Specify a response file to be used to provision Oracle Grid Infrastructure.</td>
</tr>
<tr>
<td>-clusternodes node_list</td>
<td>Specify a comma-delimited list of nodes on which Oracle Clusterware will be provisioned in the following format: node_name:node_vip[:node_role] [,node_name:node_vip[:node_role]...]</td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser sudo_username</td>
</tr>
<tr>
<td>-sudopath</td>
<td>sudo_binary_path</td>
</tr>
<tr>
<td>-cred</td>
<td>cred_name</td>
</tr>
<tr>
<td>-auth plugin_name [-arg1 name1:value1...]</td>
<td>Alternative to -sudouser, -root, or -cred, you can use -auth to specify an authentication plugin to access a remote node.</td>
</tr>
<tr>
<td>-user gi_user_name</td>
<td>Specify the name of the Oracle Grid Infrastructure installation user.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Specify the name of the cluster you want to verify.</td>
</tr>
<tr>
<td>-scan scan_name</td>
<td>Specify the SCAN name.</td>
</tr>
<tr>
<td>-oraclehome oracle_home_path</td>
<td>Specify the location of the Oracle home.</td>
</tr>
<tr>
<td>-ignorewarn</td>
<td>Use this parameter to ignore warnings during validation.</td>
</tr>
<tr>
<td>-fixup [-setupSSH]</td>
<td>Use this parameter to run a fixup script, which automatically applies changes to the nodes to satisfy changes that CVU recommends. Optionally, you can use the -setupSSH parameter to set up passwordless SSH user equivalence on the remote nodes for the provisioning user.</td>
</tr>
</tbody>
</table>

credentials Commands

Use commands with the credentials keyword to add credentials to and delete credentials from the Oracle Cluster Registry (OCR).

- rhpctl add credentials
- rhpctl delete credentials

rhpctl add credentials

Adds credentials to the Oracle Cluster Registry (OCR).
Syntax

```
rhpctl add credentials -cred cred_name {-root | -sudouser sudo_user_name
- sudopath sudo_binary_location}
```

Parameters

Table A-8 rhpctl add credentials Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-cred cred_name</td>
<td>Specify a credential name to associate the user and password credentials to access a remote node.</td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser sudo_user_name -sudopath sudo_binary_location</td>
</tr>
</tbody>
</table>

Usage Notes

After you add credentials they can be used in the `--cred cred_name` parameter of other commands to avoid those commands prompting for a password.

rhpctl delete credentials

Deletes credentials from the Oracle Cluster Registry (OCR).

Syntax

```
rhpctl delete credentials -cred cred_name
```

Usage Notes

Specify only the name of the credentials you want to delete.

database Commands

Use commands with the `database` keyword to add, delete, move, and upgrade databases.

- `rhpctl add database`
 Creates a database using a specific working copy.
- `rhpctl addnode database`
- `rhpctl addpdb database`
- `rhpctl deletepdb database`
- `rhpctl delete database`
 Deletes a database that was created on a working copy.
- `rhpctl deletenode database`
rhpctl move database
Moves one or more databases from a source working copy or any Oracle Database home to a patched working copy.

rhpctl movepdb database
rhpctl upgrade database
Upgrades a database to the version of the destination working copy.

rhpctl zdtupgrade database

rhpctl add database

Creates a database using a specific working copy.

Syntax

```
rhpctl add database -workingcopy workingcopy_name
   { -gimr | -dbname unique_db_name {-node node_list | -serverpool pool_name [-pqpool pool_name | -newpqpool pool_name -pqcardinality cardinality] | -newpool pool_name -cardinality cardinality [-pqpool pool_name | -newpqpool pool_name -pqcardinality cardinality]} [-dbtype {RACONENODE | RAC | SINGLE}] [-dbtemplate file_path | image_name:relative_file_path] [-cdb] [-dbname pdb_prefix [-numberOfPDBs pdb_count]] [{-sudouser user_name -sudopath sudo_binary_path | -root | -cred cred_name | -auth plugin_name [-arg1 name1:value1:...]}] [-targetnode node_name] [-ignoreprereq] [-fixup]} [-datafileDestination datafileDestination_path] [-useractiondata user_action_data] [-eval] [-schedule {timer_value | NOW}]}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>workingcopy workingcopy_name</code></td>
<td>Specify the name of an existing working copy for the database that you want to add.</td>
</tr>
<tr>
<td><code>gimr</code></td>
<td>Perform the operations required for a Grid Infrastructure Management Repository (GIMR) database.</td>
</tr>
<tr>
<td><code>dbname unique_db_name</code></td>
<td>Specify the unique name of the database (DB_UNIQUE_NAME without DB_DOMAIN) that you are adding.</td>
</tr>
</tbody>
</table>
| `datafileDestination datafileDestination_path` | Specify the data file destination location or the name of the Oracle Automatic Storage Management (Oracle ASM) disk group.
Note: You cannot specify a disk group for Oracle Database versions before Oracle Database 11g release 2 (11.2). |
Table A-9 (Cont.) rhpctl add database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-node node_list</td>
<td>Specify a node or comma-delimited list of several nodes on which to create the database.</td>
</tr>
<tr>
<td>-serverpool server_pool_name</td>
<td>Specify the name of an existing server pool.</td>
</tr>
<tr>
<td>-pqpool server_pool_name</td>
<td>Specify the name of an existing server pool.</td>
</tr>
<tr>
<td>Note: This parameter is only applicable in an Oracle Flex Cluster environment and refers to server pools (either already defined, as in this case, or to be created when you use the -newpqpool parameter) running on non-Hub Nodes.</td>
<td></td>
</tr>
<tr>
<td>-newpqpool server_pool_name</td>
<td>Optionally, you can create a new server pool to be used for parallel queries. Specify a name for the new server pool.</td>
</tr>
<tr>
<td>Note: This parameter is only applicable in an Oracle Flex Cluster environment because it refers to server pools running on non-Hub Nodes.</td>
<td></td>
</tr>
<tr>
<td>-pqcardinality cardinality</td>
<td>If you create a new server pool, then you must specify a cardinality value for the server pool.</td>
</tr>
<tr>
<td>Note: This parameter is only applicable in an Oracle Flex Cluster environment.</td>
<td></td>
</tr>
<tr>
<td>-newpool server_pool_name</td>
<td>Optionally, you can create a new server pool. Specify a name for the new server pool.</td>
</tr>
<tr>
<td>-cardinality cardinality</td>
<td>If you create a new server pool, then you must specify a cardinality value for the server pool.</td>
</tr>
<tr>
<td>-dbtype {RACONENODE</td>
<td>RAC</td>
</tr>
<tr>
<td>-dbtemplate file_path</td>
<td>Specify the absolute file path to a database template or the relative path to the image home directory on a Fleet Patching and Provisioning Server.</td>
</tr>
<tr>
<td>image_name:relative_file_path</td>
<td>Specify the absolute file path to a database template or the relative path to the image home directory on a Fleet Patching and Provisioning Server.</td>
</tr>
<tr>
<td>-cdbg</td>
<td>Optionally, use this parameter to create a database as a container database.</td>
</tr>
<tr>
<td>-pdbname pdb_prefix</td>
<td>If you are creating one or more pluggable databases, then specify a pluggable database name prefix.</td>
</tr>
<tr>
<td>-numberofPDBs pdb_count</td>
<td>Specify the number of pluggable databases you want to create.</td>
</tr>
<tr>
<td>-sudouser user_name -sudopath sudo_binary_path</td>
<td>If you choose to use the -targetnode parameter, then you must choose either sudo or root to access the remote node.</td>
</tr>
<tr>
<td>-root</td>
<td>If you choose sudo, then you must specify a user name to run super-user operations, and a path to the location of the sudo binary.</td>
</tr>
<tr>
<td>-cred cred_name</td>
<td>Optionally, you can choose to specify a credential name to associate the user and password credentials to access a remote node.</td>
</tr>
<tr>
<td>-auth plugin_name [-arg1 name1: value1...]</td>
<td>Alternative to -sudouser, -root, or -cred, you can use -auth to specify an authentication plugin to access a remote node.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a node in a remote cluster that has no Oracle Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-ignoreprereq</td>
<td>Ignore prerequisites.</td>
</tr>
<tr>
<td>-fixup</td>
<td>Execute a fixup script. This option is valid for Oracle Grid Infrastructure and database provisioning.</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
</tbody>
</table>
Table A-9 (Cont.) rhpctl add database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-schedule {timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td></td>
<td>2018-07-25T19:13:17+05</td>
</tr>
<tr>
<td></td>
<td>If NOW is specified or the option is omitted, then the job is scheduled immediately.</td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
</tbody>
</table>

Usage Notes

If you choose to use the -schedule parameter, then you must run this command on the Fleet Patching and Provisioning Server.

Authentication plugins enable the easy addition of authentication methods without changes in command line interfaces (CLIs). For information about authentication options, refer to Authentication Options for Oracle Fleet Patching and Provisioning Operations.

Examples

To create a database on a working copy named prodhome:

$ rhpctl add database -workingcopy prodhome -dbname proddb -datafileDestination /acfs/proddata -serverpool prodpool1 -dbtype RAC

Note:

You can create multiple databases on a working copy.

rhpctl addnode database

Adds instances to an administrator-managed Oracle RAC database.

Syntax

rhpctl addnode database -workingcopy workingcopy_name
-dbname unique_db_name -node node_list
[-root | -cred cred_name | -sudouser sudo_user_name
- sudopath sudo_binary_location | -auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2 ...]]]
[-useractiondata user_action_data] [-eval] [-schedule timer_value]
Parameters

Table A-10 rhpctl addnode database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy</td>
<td>Specify the name of a working copy.</td>
</tr>
<tr>
<td>workingcopy_name</td>
<td>Specify the unique name of the database (DB_UNIQUE_NAME without DB_DOMAIN) that you are adding.</td>
</tr>
<tr>
<td>-dbname</td>
<td>Specify the unique name of the database (DB_UNIQUE_NAME without DB_DOMAIN) that you are adding.</td>
</tr>
<tr>
<td>unique_db_name</td>
<td>Specify the unique name of the database (DB_UNIQUE_NAME without DB_DOMAIN) that you are adding.</td>
</tr>
<tr>
<td>-node node_list</td>
<td>Specify a node or comma-delimited list of several nodes on which to create the database.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td>-useractiondata</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
<tr>
<td>-schedule timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td></td>
<td>2018-07-25T19:13:17+05</td>
</tr>
</tbody>
</table>

Usage Notes

- If the specified working copy is not installed on the nodes in the node list, then you must first run rhpctl addnode workingcopy.
- If the working copy is on a Fleet Patching and Provisioning Client or on the Fleet Patching and Provisioning Server, then credentials are not required. This is true whether you run the command on the Server or the Client. Credentials are required when you run the command on the Server and the working copy is on a target that is not a Fleet Patching and Provisioning Client.
- If you choose to use the -schedule parameter, then you must run this command on the Fleet Patching and Provisioning Server.

rhpctl addpdb database

Adds a pluggable database to an existing container database on a working copy. After you create a working copy of a gold image and provision that working copy to a target, and create a database as a multitenant container database, you can add a pluggable database to the container database on the working copy.
Syntax

```
rhpctl addpdb database -workingcopy workingcopy_name -cdbname cdb_name
   | -pdbname new_pdb_name [-pdbDatafileDestination
   | pdb_datafile_destination_path]
   | [ -root | -cred cred_name | -auth plugin_name [-arg1 name1:value1...]
   | | -sudouser user_name -sudopath sudo_binary_path] [-targetnode
   | node_name]
   | [-useractiondata user_action_data] [-schedule timer_value]
```

Parameters

Table A-11 rhpctl addpdb database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy workingcopy_name</td>
<td>Specify the name of an existing working copy for the pluggable database that you want to add.</td>
</tr>
<tr>
<td>-cdbname cdb_name</td>
<td>Specify the name of the multitenant container database to which you want to add the pluggable database.</td>
</tr>
<tr>
<td>-pdbname new_pdb_name</td>
<td>Specify a name for the pluggable database you are adding.</td>
</tr>
<tr>
<td>-pdbDatafileDestination pdb_datafile_destination</td>
<td>Optionally, you can specify the path to the data file destination location for the pluggable database.</td>
</tr>
</tbody>
</table>
| -root | -cred cred_name | -auth plugin_name [-arg1 name1:value1...]
| | | -sudouser user_name -sudopath sudo_binary_path | If you choose to use the -targetnode parameter, then you must choose either sudo or root to access the remote node. If you choose sudo, then you must specify a user name to run super-user operations, and a path to the location of the sudo binary. Optionally, you can choose to specify a credential name to associate the user and password credentials to access a remote node. Alternative to -sudouser, -root, or -cred, you can use -auth to specify an authentication plugin to access a remote node. |
| -targetnode node_name | Optionally, you can specify the name of a node in the cluster on which you want to run this operation. |
| -useractiondata user_action_data | Optionally, you can pass a value to the useractiondata parameter of the user action script. |
| -schedule timer_value | Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example: 2018-07-25T19:13:17+05 |

Usage Notes

The working copy can be on Fleet Patching and Provisioning Server, a Fleet Patching and Provisioning Client, or a non-Fleet Patching and Provisioning Client target.
Example
The following example creates a pluggable database called pdb183 on a container database called racdb183 on a working copy called wc_db183:

$ rhpctl addpdb database -workingcopy wc_db183 -cdbname racdb183 -pdbname pdb183

rhpctl deletepdb database

Deletes a pluggable database to an existing container database on a working copy.

Syntax

rhpctl deletepdb database -workingcopy workingcopy_name -cdbname cdb_name
-pdbname pdb_name
[-root | -cred cred_name | -auth plugin_name [-arg1 name1:value1...]
| -sudouser user_name -sudopath sudo_binary_path] [-targetnode node_name]
[-useractiondata user_action_data] [-schedule timer_value]

Parameters

Table A-12 rhpctl deletepdb database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy workingcopy_name</td>
<td>Specify the name of an existing working copy for the pluggable database that you want to delete.</td>
</tr>
<tr>
<td>-cdbname cdb_name</td>
<td>Specify the name of the multitenant container database from which you want to delete the pluggable database.</td>
</tr>
<tr>
<td>-pdbname pdb_name</td>
<td>Specify the name of the pluggable database you want to delete.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a node in the cluster on which you want to run this operation.</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
</tbody>
</table>
Table A-12 (Cont.) rhpctl deletepdb database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-schedule timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td></td>
<td>2018-07-25T19:13:17+05</td>
</tr>
</tbody>
</table>

Usage Notes

The working copy can be on Fleet Patching and Provisioning Server, a Fleet Patching and Provisioning Client, or a non-Fleet Patching and Provisioning Client target.

Examples

The following example deletes a pluggable database called pdb183 from a container database called raccdb183 on a working copy called wc_db183:

```bash
$ rhpctl deletepdb database -workingcopy wc_db183 -cdbname raccdb183 -pdbname pdb183
```

rhpctl delete database

Deletes a database that was created on a working copy.

Note:

If the database is hosted on a working copy that is on the Oracle Fleet Patching and Provisioning Server or on an Oracle Fleet Patching and Provisioning Client, then credentials are not required. This is true whether you run the command on the Server or the Client. Credentials are required when you run the command on the Server and the working copy is on a target that is not an Oracle Fleet Patching and Provisioning Client.

Syntax

```bash
rhpctl delete database -workingcopy workingcopy_name -dbname unique_db_name
    [-sudouser sudo_user_name -sudopath sudo_binary_path | -root | -cred cred_name | -auth plugin_name [-arg1 name1:value1...]]
    [-targetnode node_name]
    [-useractiondata user_action_data]
    [-schedule {timer_value | NOW}]
```
Parameters

Table A-13 rhpctl delete database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy</td>
<td>Specify a name for the working copy for the database that you want to delete.</td>
</tr>
<tr>
<td>workingcopy_name</td>
<td></td>
</tr>
<tr>
<td>-dbname</td>
<td>Specify the unique name of the database (DB_UNIQUE_NAME without DB_DOMAIN) that you are deleting.</td>
</tr>
<tr>
<td>unique_db_name</td>
<td></td>
</tr>
<tr>
<td>-sudouser user_name</td>
<td>If you choose to use the -targetnode parameter, then you must choose either sudo or root to access the remote node.</td>
</tr>
<tr>
<td>-sudopath</td>
<td></td>
</tr>
<tr>
<td>sudo_binary_path</td>
<td>If you choose sudo, then you must specify a user name to run super-user operations, and a path to the location of the sudo binary.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred</td>
</tr>
<tr>
<td>node_name</td>
<td>Optionally, you can choose to specify a credential name to associate the user and password credentials to access a remote node.</td>
</tr>
<tr>
<td>-useractiondata</td>
<td>Alternative to -sudouser, -root, or -cred, you can use -auth to specify an authentication plugin to access a remote node.</td>
</tr>
<tr>
<td>user_action_data</td>
<td></td>
</tr>
<tr>
<td>-schedule</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td>timer_value</td>
<td>NOW</td>
</tr>
<tr>
<td>-force</td>
<td></td>
</tr>
<tr>
<td>-failover</td>
<td></td>
</tr>
<tr>
<td>-drain_timeout timeout</td>
<td>If NOW is specified, then the job is scheduled immediately.</td>
</tr>
<tr>
<td>-stopoption stop_option</td>
<td></td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td></td>
</tr>
<tr>
<td>-schedule timer_value</td>
<td></td>
</tr>
<tr>
<td>-eval</td>
<td></td>
</tr>
</tbody>
</table>

rhpctl deletenode database

Deletes an instance, which contracts an administrator-managed Oracle RAC database.

Syntax

rhpctl deletenode database -workingcopy working_copy_name -dbname unique_db_name
- node node_list { -root | -sudouser sudo_username -sudopath sudo_binary_path
| -cred cred_name | -auth plugin_name [-arg1 name1:value1...] [-force] [-failover] [-drain_timeout timeout] [-stopoption stop_option]
[-useractiondata user_action_data] [-schedule timer_value] [-eval]
Parameters

Table A-14 rhpctl deletenode database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy</td>
<td>Specify the name of a working copy.</td>
</tr>
<tr>
<td>-dbname</td>
<td>Specify the unique name of the database (DB_UNIQUE_NAME without DB_DOMAIN) that you are deleting.</td>
</tr>
<tr>
<td>-node</td>
<td>Specify a node or comma-delimited list of several nodes from which to delete the database instance.</td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser</td>
</tr>
<tr>
<td>-cred</td>
<td>-auth</td>
</tr>
<tr>
<td>-force</td>
<td>Use -force to remove the instance after forcibly stopping the instance.</td>
</tr>
<tr>
<td>-failover</td>
<td>Optionally, you can use this parameter to attempt to have services running on the instance that want to delete fail over to another instance.</td>
</tr>
<tr>
<td>-drain_timeout</td>
<td>Optionally, you can use -drain_timeout to specify the time, in seconds, allowed for resource draining to be completed. Accepted values are an empty string (""), 0, or any positive integer. The default value is an empty string, which means that this parameter is not set. If it is set to 0, then draining occurs, immediately. The draining period is intended for planned maintenance operations. During the draining period, all current client requests are processed, but new requests are not accepted.</td>
</tr>
<tr>
<td>-stopoption</td>
<td>Optionally, you can specify a stop option for the database. Options include: ABORT, IMMEDIATE, NORMAL, TRANSACTIONAL, and TRANSACTIONAL_LOCAL.</td>
</tr>
<tr>
<td>-useractiondata</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>-schedule</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
</tbody>
</table>

Usage Notes

- If the working copy is on a Fleet Patching and Provisioning Client or on the Fleet Patching and Provisioning Server, then credentials are not required. This is
true whether you run the command on the Server or the Client. Credentials are required when you run the command on the Server and the working copy is on a target that is not a Fleet Patching and Provisioning Client.

- If you choose to use the `-schedule` parameter, then you must run this command on the Fleet Patching and Provisioning Server.

rhpctl move database

Moves one or more databases from a source working copy or any Oracle Database home to a patched working copy.

Syntax

```bash
rhpctl move database -patchedwc workingcopy_name
  (-sourcewc workingcopy_name | -sourcehome Oracle_home_path [-oraclebase Oracle_base_path]
   [-client cluster_name])
  [-dbname db_name_list | -excludedblist db_name_list]
  [-nonrolling | -skipprereq] | -forcerolling | -batches list_of_batches | -smartmove
  [-saf availability] [-separate]
  [-eval]
  [-ignoremissingpatches patch_name1 [patch_name2...]]
  [-ignorewcpatches] [-keepplacement]
  [-disconnect [-noreplay]] [-drain_timeout time] [-stopoption stop_option]
  [-nodatapatch] [-targetnode node_name] [-notify [-cc user_list]]
  [-continue [-skip] | -revert | -abort]
  [-root | -cred cred_name | -sudouser sudo_user_name
   -sudopath sudo_binary_location |
   -auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2...]]]
  [schedule {timer_value | NOW}]
  [-useractiondata user_action_data]
  [-dbsinparallel <number_of_instances>] [-raconetimeout <timeout>]
```

Parameters

Table A-15 **rhpctl move database Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-patchedwc workingcopy_name</code></td>
<td>Specify the name of the working copy to where you want to move the database.</td>
</tr>
<tr>
<td><code>-sourcewc workingcopy_name</code></td>
<td>Specify the name of the working copy from which the database is to be moved.</td>
</tr>
<tr>
<td><code>-sourcehome Oracle_home_path</code></td>
<td>Alternatively, you can specify the source Oracle home path.</td>
</tr>
<tr>
<td><code>-oraclebase Oracle_base_path</code></td>
<td>Specify the <code>ORACLE_BASE</code> path for provisioning the Oracle database home (required only for ORACLEDBSOFTWARE image type).</td>
</tr>
<tr>
<td><code>-client cluster_name</code></td>
<td>Specify the name of the client cluster.</td>
</tr>
</tbody>
</table>
Table A-15 (Cont.) rhpctl move database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dbname db_name_list</td>
<td>Specify the unique names of the databases (DB_UNIQUE_NAME without DB_DOMAIN) that you want to move to the patched working copy. Note: If you are moving a non-clustered (single-instance) database, then, for the value of the -dbname parameter, you must specify the SID of the database instead of the database name.</td>
</tr>
<tr>
<td>-excludedblist db_name_list</td>
<td>Alternative to using the -dbname parameter, you can use the -excludedblist parameter to patch all databases except specific databases.</td>
</tr>
<tr>
<td>-nonrolling [-skippreq]</td>
<td>Optionally, you can choose one of the three following methods to move a database:</td>
</tr>
<tr>
<td></td>
<td>• Use the -nonrolling parameter to move the database in a non-rolling mode. By default, databases move in a rolling mode. Use the -skippreq option to skip the prerequisite checks and start the database in upgrade mode for patching.</td>
</tr>
<tr>
<td></td>
<td>• Use the -forcerolling parameter to force the Oracle home to move in rolling mode.</td>
</tr>
<tr>
<td></td>
<td>• Use the -batches parameter to specify a comma-delimited list of batches of nodes (where each batch is a comma-delimited list of node names enclosed in parentheses) enclosed in double quotation marks (""') in the format: "(nA,nB,...),(...,nY,nZ)".</td>
</tr>
<tr>
<td></td>
<td>• Alternatively, use the -smartmove parameter. Use the -saf availability parameter to specify a service availability factor, which is the minimum percentage of instances on which a service must remain running during the move. Use the -separate parameter to process batches separately. When you use this parameter, the move command returns after each batch. The move operation for the first batch must specify the source home and other parameters that apply to all batches (such as -nonrolling and -keepplacement). Control subsequent batches using the -continue, -skip, and -abort parameters.</td>
</tr>
<tr>
<td>-eval</td>
<td>Use the -eval parameter to print auto-generated batches of nodes and sequence of moves without actually performing the move operation.</td>
</tr>
<tr>
<td>-ignoremissingpatches patch_name1 [,patch_name2...]</td>
<td>Perform the move and/or upgrade even though the specified patches, which are present in the source path or working copy, may be missing from the destination path or working copy.</td>
</tr>
<tr>
<td>-ignorewcpatches</td>
<td>Optionally, you can use this parameter to ignore if a patched working copy is missing some patches which are present in the source path or working copy.</td>
</tr>
<tr>
<td>-keepplacement</td>
<td>Use this parameter to ensure that services of administrator-managed Oracle RAC or Oracle RAC One Node databases are running on the same instances before and after the move operation.</td>
</tr>
<tr>
<td>-disconnect [-noreplay]</td>
<td>Optionally, use the -disconnect parameter to disconnect all sessions before stopping or relocating services. If you choose to use -disconnect, then you can choose to use the -noreplay parameter to disable session replay during disconnection.</td>
</tr>
<tr>
<td>-drain_timeout timeout</td>
<td>Specify the time, in seconds, allowed for resource draining to be completed. Accepted values are an empty string (""'), 0, or any positive integer. The default value is an empty string, which means that this parameter is not set. If it is set to 0, then draining occurs, immediately. The draining period is intended for planned maintenance operations. During the draining period, all current client requests are processed, but new requests are not accepted.</td>
</tr>
</tbody>
</table>
Table A-15 (Cont.) rhpctl move database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-stopoption stop_option</td>
<td>Optionally, you can specify a stop option for the database. Options include: ABORT, IMMEDIATE, NORMAL, TRANSACTIONAL, and TRANSACTIONAL_LOCAL.</td>
</tr>
<tr>
<td>-nodatapatch</td>
<td>Use this parameter to indicate not to run datapatch for databases you are moving.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a node in a remote cluster that has no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-notify [-cc user_list]</td>
<td>Optionally, you can supply a list of users to whom email notifications of the move will be sent, in addition to the owner of the working copy.</td>
</tr>
<tr>
<td>-continue [-skip]</td>
<td>If a batch-mode rhpctl move database command fails at any point, then, after correcting the cause of the error, you can rerun the command with the -continue parameter to attempt to patch the failed batch. If you want to skip the failed batch and continue with the next batch, use the -continue and -skip parameters together. If you attempt to skip over the last batch, then the move operation is terminated.</td>
</tr>
<tr>
<td>-revert</td>
<td>If a batch-mode or non-batch-mode rhpctl move database command fails, then you can rerun the command with the -revert parameter to undo the changes that have been made, and return the configuration to its initial state.</td>
</tr>
<tr>
<td>-abort</td>
<td>If a batch-mode or non-batch-mode rhpctl move database command fails, then you can rerun the command with the -abort parameter to terminate the patching process and leave the cluster in its current state.</td>
</tr>
<tr>
<td>-root [-cred cred_name] [-sudouser sudo_user_name] [-sudopath sudo_binary_location] [-auth plugin_name plugin_args]</td>
<td>If you choose to use the -targetnode parameter, then you must choose either root, a credential name, sudo, or an authentication plugin to access the remote node. Choose -root to perform super user operations as root. Alternatively, you can choose either to specify a credential name to associate the user name and password credentials to access a remote node, to perform super user operations as a sudo user by specifying a sudo user name and the path to the sudo binary, or to use an authentication plugin to access the remote node.</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>-schedule {timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format. For example: 2018-07-25T19:13:17+05 If NOW is specified, then the job is scheduled immediately.</td>
</tr>
<tr>
<td>-dbsinparallel number_of_instances</td>
<td>Number of database instances that can be started in parallel on a given node.</td>
</tr>
<tr>
<td>-raconetimeout timeout</td>
<td>RAC One Node database relocation timeout in minutes.</td>
</tr>
</tbody>
</table>

Usage Notes

- You can obtain context sensitive help for specific use cases for the rhpctl move database command, as follows:

```
$ rhpctl move database -help [EXISTING_PATCHEDWC | NEW_PATCHEDWC | SRCHOME | SINGLEINSTANCEDB | ROLLING | NONROLLING | BATCHES | SMARTMOVE]
```
If you choose to use the -schedule parameter, then you must run this command on the Fleet Patching and Provisioning Server.

Examples

To move all the databases running from one working copy to another in a rolling fashion:

$ rhpctl move database -sourcewc prodHomeV1 -patchedwc prodHomeV2 -client prodcluster

In the preceding example, the patched working copy, prodHomeV2, must exist.

To move all databases running on a non-managed Oracle home at /u01/app/product/12.1.0/dbhome to a working copy named myDB12Home1:

$ rhpctl move database -sourcehome /u01/app/product/12.1.0/dbhome -oraclebase /u01/app/product/12.1.0/obase -patchedwc myDB12Home1

To move a database named SampleDB from a working copy named myDB12Home1 to a working copy named myDB12Home1patched (any other databases running on myDB12Home1 are not affected by this move):

$ rhpctl move database -sourcewc myDB12Home1 -patchedwc myDB12Home1patched -dbname SampleDB

To move all databases running on a working copy named myDB12Home1 to a working copy named myDB12Home1patched:

$ rhpctl move database -sourcewc myDB12Home1 -patchedwc myDB12Home1patched

To move a non-clustered (single-instance) database with a SID of SID101 running on a patched working copy named myDB12Home1patched:

$ rhpctl move database -patchedwc myDB12Home1patched -sourcehome /u01/app/oracle/product/12.2.0/db_1 -targetnode vm02 -dbname SID101 -sudouser oracle -sudopath /usr/bin/sudo

The preceding examples are the basic form of the command. You can also move groups of databases in batches. The batch operations also support management of session connections and recovery options.

rhpctl movepdb database

Moves one or more pluggable databases from a source, single-instance container database, to a destination, single-instance container database. The source and destination single-instance container databases can be running in a provisioned database working copy. The working copy can be on the Fleet Patching and Provisioning Server, a Fleet Patching and Provisioning Client, or a non-Fleet Patching and Provisioning Client target, which is a target without a Fleet Patching and Provisioning Client configured and running. The destination single-instance container
database can be at a higher patch level, which facilitates patching of a pluggable database to a higher patch level.

Syntax

rhpctl movepdb database -sourcecdb source_cdb_name -destcdb destination_cdb_name
 [-pdbname pdb_name_list | -excludepdblist pdb_name_list]
 [-root | -cred cred_name | -sudouser sudo_user_name
 -sudopath sudo_binary_location | -auth plugin_name [-arg1 name1:value1
 [-arg2 name2:value2 ...]]] [-client client_name | -targetnode
 node_name]
 [-useractiondata user_action_data] [-schedule timer_value]

Parameters

Table A-16 rhpctl movepdb database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-sourcecdb</td>
<td>Specify the name of the Oracle Multitenant container database from which you want to move the pluggable database.</td>
</tr>
<tr>
<td>-destcdb</td>
<td>Specify the name of the multitenant container database to which you want to move the pluggable database.</td>
</tr>
<tr>
<td>-pdbname</td>
<td>Specify a comma-separated list of names of pluggable databases that you want to move.</td>
</tr>
<tr>
<td>-excludepdblist</td>
<td>Specify a list of pluggable databases that you want to excluded from the move operation.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td>-client client_name</td>
<td>-targetnode node_name</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
</tbody>
</table>
Table A-16 (Cont.) rhpctl movepdb database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-schedule timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example: 2019-01-07T19:13:17+05</td>
</tr>
<tr>
<td></td>
<td>You can also specify NOW to schedule the operation, immediately.</td>
</tr>
</tbody>
</table>

Usage Notes

You can only use this command if both the source and destination single-instance container databases are on the same node.

Examples

To move a pluggable database from a source single-instance container database to a destination single-instance container database:

```
rhpctl movepdb database -sourcecdb srccdb -pdbname pdb1,pdb2,pdb3 -destcdb dstcdb
```

rhpctl upgrade database

Upgrades a database to the version of the destination working copy.

Syntax

```
rhpctl upgrade database [-sourcewc source_workingcopy_name | -sourcehome oracle_home_path
  [-oraclebase Oracle_base_path] [{-client cluster_name | -targetnode node_name}]]
  [-root | -cred cred_name | -sudouser sudo_username -sudopath path_to_sudo_binary
  | -auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2 ...]]]
  [-destwc destination_workingcopy_name [-image image_name [-path where_path]]]
  -dbname unique_db_name [-useractiondata user_action_data] [-eval [-preupg] 
  [-schedule timer_value]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-sourcewc</code> <code>source_workingcopy_name</code></td>
<td>Specify the name of the source working copy from which you want to upgrade the database.</td>
</tr>
<tr>
<td><code>-sourcehome</code> <code>oracle_home_path</code></td>
<td>Alternative to specifying the name of the source working copy, you can specify the path to the source Oracle home.</td>
</tr>
<tr>
<td><code>-oracelbase</code> <code>oraclebase_path</code></td>
<td>If you use the <code>-sourcehome</code> parameter, then you can, optionally, specify a different <code>ORACLE_BASE</code> from the source Home.</td>
</tr>
<tr>
<td><code>-client cluster_name</code> <code>-targetnode node_name</code></td>
<td>Specify either the name of the client cluster or the name of a node in a remote cluster with no Fleet Patching and Provisioning Client on which to provision a working copy.</td>
</tr>
<tr>
<td>`-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td><code>-destwc</code> <code>destination_workingcopy_name</code> <code>-image image_name</code> <code>-path where_path</code></td>
<td>Specify the name of the destination working copy to which the database is to be upgraded. If the destination working copy does not exist, then specify the gold image from which to create it, and optionally, the path to where to provision the working copy.</td>
</tr>
<tr>
<td><code>-dbname unique_db_name</code></td>
<td>Specify the name of the database you are upgrading.</td>
</tr>
<tr>
<td><code>-useractiondata user_action_data</code></td>
<td>Optionally, you can pass a value to the <code>useractiondata</code> parameter of the user action script.</td>
</tr>
<tr>
<td><code>-eval</code></td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
<tr>
<td><code>-schedule timer_value</code></td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td></td>
<td>2018-07-25T19:13:17+05</td>
</tr>
</tbody>
</table>

Usage Notes

If you choose to use the `-schedule` parameter, then you must run this command on the Fleet Patching and Provisioning Server.
Example

The following example upgrades a database, testy, from Oracle Database 11g, which is on working copy db112mbcl43 to Oracle Database 12c, which is on working copy db12102mbcl43, both of which reside on the remote node bposvr141:

$ rhpctl upgrade database -dbname testy -sourcewc db112mbcl43 -destwc db12102mbcl43 -root -targetnode bposvr141

rhpctl zdtupgrade database

Enables zero downtime database upgrade for Oracle RAC and Oracle RAC One Node databases.

Syntax

rhpctl zdtupgrade database -dbname unique_db_name -destwc destination_workingcopy_name
 [-sourcewc source_workingcopy_name | -sourcehome oracle_home_path]
 -ggsrcwc golden_gate_source_workingcopy_name
 -ggdstwc golden_gate_dest_workingcopy_name
 [-clonedatadg diskgroup_name [-cloneredodg diskgroup_name]
 [-clonerecodg diskgroup_name]]
 [clonedatafs acfs_mountpoint [-clonerecofs acfs_mountpoint]]
 [-rmanlocation backup_location]
 [-targetnode node_name]
 [-root | -cred cred_name | -sudouser sudo_user_name
 -sudopath sudo_binary_location]
 [-auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2 ...]]]
 [-eval]
 [-ignoreprereq]
 [-useractiondata user_action_data]
 [-dbuaargs dbua_arguments]

Parameters

Table A-18 rhpctl zdtupgrade database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dbname unique_db_name</td>
<td>Specify the unique name of the database that you want to upgrade.</td>
</tr>
<tr>
<td>-destwc destination_workingcopy_name</td>
<td>Specify the name of the destination working copy to which the database is to be upgraded.</td>
</tr>
<tr>
<td>-sourcewc source_workingcopy_name</td>
<td>Optionally, you can specify the name of the source working copy from which you want to upgrade the database.</td>
</tr>
<tr>
<td>-sourcehome oracle_home_path</td>
<td>Alternative to specifying the name of the source working copy, you can specify the path to the source Oracle home.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>-ggsrcwc</td>
<td>Specify the name of the Oracle GoldenGate source working copy.</td>
</tr>
<tr>
<td>golden_gate_source_w</td>
<td>workingcopy_name</td>
</tr>
<tr>
<td>-ggdstwc</td>
<td>Specify the name of the Oracle GoldenGate destination working copy.</td>
</tr>
<tr>
<td>golden_gate_dest_w</td>
<td>workingcopy_name</td>
</tr>
<tr>
<td>-clonedatadg diskgroup_name</td>
<td>Optionally, you can specify the name of an Oracle ASM disk group to use as a data file location for the cloned database.</td>
</tr>
<tr>
<td>-cloneredodg diskgroup_name</td>
<td>Optionally, you can specify the name of an Oracle ASM disk group to use as a redo log location for the clones database.</td>
</tr>
<tr>
<td>-clonerecodg diskgroup_name</td>
<td>Optionally, you can specify the name of an Oracle ASM disk group to use as a recovery area for the cloned database.</td>
</tr>
<tr>
<td>clonedatafs acfs_mountpoint</td>
<td>(Optional) You can specify the mount point of an Oracle Automatic Storage Management Cluster File System (Oracle ACFS) to use as a data file location for the cloned database.</td>
</tr>
<tr>
<td>-cloneredofs acfs_mountpoint</td>
<td>(Optional) You can specify the mount point of an Oracle ACFS file system to use as redo log location for the clone database.</td>
</tr>
<tr>
<td>-clonerecofs acfs_mountpoint</td>
<td>(Optional) You can specify the mount point of an Oracle ACFS file system to use as recovery area for the clone database.</td>
</tr>
<tr>
<td>-rmanlocation backup_location</td>
<td>Optionally, you can specify the source RMAN backup location.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a node in a remote cluster with no Fleet Patching and Provisioning Client on which to provision a working copy.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td>eval</td>
<td>(Optional) You can specify eval to evaluate the Zero Downtime Upgrade operation to see if it can succeed, but does not perform the operation.</td>
</tr>
<tr>
<td>-ignoreprereq</td>
<td>(Optional) You can use this parameter to instruct the zdtupgrade database command to ignore system prerequisites during the upgrade.</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can use this parameter to specify a value to be passed to the useractiondata parameter of a useraction script</td>
</tr>
</tbody>
</table>
Table A-18 (Cont.) rhpctl zdtupgrade database Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dbuaargs</td>
<td>(Optional) If you do not specify the AutoUpgrade Utility for the upgrade with the -autoup parameter, so that Database Upgrade Assistant (DBUA) is used for the upgrade, then you can specify arguments to pass to DBUA. If you specify -autoup, then this argument is not available. For example, if the user account with which you are running Zero Downtime Upgrade If your account does not have SYSDBA privileges, or you do not have operating system authentication set up, then you can use the following syntax to connect, where mydb is your Oracle Database SID, username is a user name with SYSDBA privileges, and password is that user name’s password: -sysDBAUserName -username -sysDBAPassword -password</td>
</tr>
</tbody>
</table>

exadata Commands

Use commands with the exadata keyword to patch an Oracle Exadata system.

• rhpctl update exadata

rhpctl update exadata

Patches an Oracle Exadata system.

Syntax

Parameters

Table A-19 rhpctl update exadata Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dbnodes</td>
<td>Specifies to patch Exadata database nodes.</td>
</tr>
<tr>
<td>-patchmgrloc</td>
<td>Specifies the patch manager location.</td>
</tr>
<tr>
<td>-iso_repo</td>
<td>Specifies the ISO image name.</td>
</tr>
<tr>
<td>-backup</td>
<td>Performs backup of the Exadata database server.</td>
</tr>
</tbody>
</table>
Table A-19 (Cont.) rhpctl update exadata Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-batches list_of_batches</td>
<td>Optionally, you can specify a comma-delimited list of batches of nodes where each batch is a comma-delimited list of node names enclosed in parentheses and node names are enclosed in double quotation marks (""') in the format: "(nA,nB,...),(...nY,nZ)".</td>
</tr>
<tr>
<td>-continue</td>
<td>Update Oracle Exadata on the next batch of nodes.</td>
</tr>
<tr>
<td>-abort</td>
<td>Abort the ongoing update operation.</td>
</tr>
<tr>
<td>-cells</td>
<td>Specifies to patch storage servers.</td>
</tr>
<tr>
<td>-cellnodes</td>
<td>List of cell nodes in the format Ba,...,Bz</td>
</tr>
<tr>
<td>-ibswitches</td>
<td>Specifies to patch the InfiniBand Network Fabric switches.</td>
</tr>
<tr>
<td>-ibnodes</td>
<td>List of IB switch nodes in the format Ba,...,Bz</td>
</tr>
<tr>
<td>-downgrade</td>
<td>Specify this option to downgrade the InfiniBand Network Fabric switches.</td>
</tr>
<tr>
<td>-image</td>
<td>Specify the name of an Oracle Exadata image.</td>
</tr>
<tr>
<td></td>
<td>This image should have already been deployed to all the database nodes of the target machine.</td>
</tr>
<tr>
<td>-fromnode</td>
<td>Specify the name of the source node.</td>
</tr>
<tr>
<td>-patchmgrargs</td>
<td>Optionally specify the patch manager arguments in double quoted string.</td>
</tr>
<tr>
<td>-client client_name</td>
<td>Specify the name of the cluster in which you want to update database nodes.</td>
</tr>
<tr>
<td>-rollback</td>
<td>Specify this option to roll back the patch.</td>
</tr>
<tr>
<td>-schedule {timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td></td>
<td>2020-07-25T19:13:17+05</td>
</tr>
<tr>
<td></td>
<td>If NOW is specified or the option is omitted, then the job is scheduled immediately</td>
</tr>
<tr>
<td>-eval</td>
<td>Evaluate the command without actually running the command.</td>
</tr>
</tbody>
</table>

Usage Notes

Use the rhpctl update exadata command to perform only database node patching.

See Also:

Combined Oracle Exadata Database Node and Grid Infrastructure Update for information about Oracle Exadata database node patching

Example

The following example performs database node patching on a client cluster.

```
$ rhpctl update exadata image -image EXADATAIMAGEV1
        -iso_repo p28802055_192000_Linux-x86-64.zip -patchmgrloc /patchMgr/dbserver_patch_19.190306
        -patchmgrargs "-ignore_alerts" -client CLIENT1 -batches "(rac07box1)"
```
gihome Commands

Use commands with the `gihome` keyword to add or delete nodes to Oracle Grid Infrastructure home and, move and upgrade Oracle Grid Infrastructure home.

- `rhpctl addnode gihome`
- `rhpctl deletenode gihome`
- `rhpctl move gihome`
 Moves the Oracle Grid Infrastructure software stack from one home to another.
- `rhpctl upgrade gihome`

rhpctl addnode gihome

Adds one or more nodes to an Oracle Grid Infrastructure installation.

Syntax

```
rhpctl addnode gihome {-workingcopy workingcopy_name | -client cluster_name}
  -newnodes node_name:node_vip[:node_role]
    [,node_name:node_vip[:node_role]...]  
    {-root | -cred cred_name | -sudouser sudo_user_name 
      -sudopath sudo_binary_location | 
      -auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2 ...]]}
    [-targetnode node_name] [-force] [-setupssh] [-useractiondata user_action_data]  
    [-eval] [-schedule timer_value]  
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-workingcopy workingcopy_name</code></td>
<td>Specify the name of the working copy of the active Oracle Grid Infrastructure home that you want to install and configure on the specified node.</td>
</tr>
<tr>
<td><code>-client cluster_name</code></td>
<td>Alternatively, you can specify the name of the client cluster to which to add cluster nodes.</td>
</tr>
</tbody>
</table>
| `-node node_list` | Specify a comma-delimited list of nodes on which Oracle Clusterware will be provisioned in the following format: `node_name:node_vip[:node_role]
 [,node_name:node_vip[:node_role]...]` |
| `-root | -cred cred_name | -sudouser sudo_user_name | -sudopath sudo_binary_location | -auth plugin_name plugin_args | You must choose either root, a credential name, sudo, or an authentication plugin to access the remote node. Choose `-root` to perform super user operations as root. Alternatively, you can choose either to specify a credential name to associate the user name and password credentials to access a remote node, to perform super user operations as a sudo user by specifying a sudo user name and the path to the sudo binary, or to use an authentication plugin to access the remote node. |
Table A-20 (Cont.) rhpctl addnode gihome Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-targetnode</td>
<td>Optionally, you can specify the name of a node in a remote cluster that has no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>node_name</td>
<td></td>
</tr>
<tr>
<td>-force</td>
<td>Optionally, you can use this parameter to forcibly add nodes ignoring any previously failed add-node operation.</td>
</tr>
<tr>
<td>-setupssh</td>
<td>Sets up passwordless SSH user equivalence on the remote nodes for the provisioning user.</td>
</tr>
<tr>
<td>-useractiondata</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>user_action_data</td>
<td></td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
<tr>
<td>-schedule</td>
<td>Optionally, you can schedule a time to run this command in ISO-8601 format. For example: 2018-01-21T19:13:17+05.</td>
</tr>
<tr>
<td>timer_value</td>
<td></td>
</tr>
</tbody>
</table>

Usage Notes

- You can specify the target for the operation using the working copy name or, if the target is a Fleet Patching and Provisioning Client, then using the client cluster name.
- You must provide either root credentials, a credential name, a sudo user, or an authentication plugin.
- A target node is required if the target cluster is an Oracle Clusterware 11g release 2 (11.2) or 12c release 1 (12.1) cluster and must be the node name of an existing cluster node.

rhpctl deletenode gihome

Removes one or more nodes from an Oracle Grid Infrastructure installation.

Syntax

```
 rhpctl deletenode gihome { -workingcopy workingcopy_name | -client cluster_name }
 -node node_list {-root | -sudouser sudo_username -sudopath sudo_binary_path
 -cred cred_name | -auth plugin_name [-arg1 name1:value1... ]
 [-targetnode node_name] [-useractiondata user_action_data] [-eval]
```

Parameters

Table A-21 rhpctl deletenode gihome Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy</td>
<td>Specify the name of a working copy of the Oracle Grid Infrastructure home that you want to remove from the specified node.</td>
</tr>
<tr>
<td>workingcopy_name</td>
<td></td>
</tr>
</tbody>
</table>
Table A-21 (Cont.) rhpctl deletenode gihome Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-client cluster_name</td>
<td>Alternatively, you can specify the name of the client cluster from which to remove cluster nodes.</td>
</tr>
<tr>
<td>-node node_list</td>
<td>Specify a comma-delimited list of node names from which to delete Oracle Grid Infrastructure.</td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser</td>
</tr>
<tr>
<td>sudo_username</td>
<td>If you choose sudo, then you must specify a user name to run super-user operations, and a path to the location of the sudo binary.</td>
</tr>
<tr>
<td>-sudopath</td>
<td>Optionally, you can choose to specify a credential name to associate the user and password credentials to access a remote node.</td>
</tr>
<tr>
<td>-cred cred_name</td>
<td>Alternative to –sudouser, –root, or –cred, you can use –auth to specify an authentication plugin to access a remote node.</td>
</tr>
<tr>
<td>-auth plugin_name</td>
<td></td>
</tr>
<tr>
<td>[-arg1 name1:value1...]</td>
<td></td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Name of a node in a remote cluster with no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
</tbody>
</table>

Usage Notes

• You can specify the target for the operation using the working copy name or, if the target is a Fleet Patching and Provisioning Client, then using the client cluster name.
• You must provide either root credentials or a sudo user.
• A target node is required if the target cluster is an Oracle Clusterware 11g release 2 (11.2) or 12c release 1 (12.1) cluster and must be the node name of an existing cluster node.

rhpctl move gihome

Moves the Oracle Grid Infrastructure software stack from one home to another.

Syntax

rhpctl move gihome {-destwc destination_workingcopy_name | -desthome destination_oracle_home_path} {}
{(-sourcewc source_workingcopy_name | -sourcehome oracle_home_path)
[-targetnode target_node_name] [-ignorewcpatches] [-nonrolling]
[-keepplacement] [-auto -dbhomes mapping_of_Oracle_homes [-dblist db_name_list]
| -excludedblist db_name_list] [-nodatapatch] [-disconnect]
[-stopoption stop_option] [-drain_timeout timeout]
[-batches list_of_batches | -smartmove [-sf availability]]
[-schedule timer_value] | -continue | -revert | -abort}
[-root | -cred cred_name | -sudouser sudo_username -sudopath
path_to_sudo_binary
 | -auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2 ...]]
[-cleanpids]
[-useractiondata user_action_data] [-schedule timer_value] [-eval]

Parameters

Table A-22 rhpctl move gihome Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-destwc</td>
<td>Specify the name of the destination working copy to which you want to move Oracle Grid Infrastructure.</td>
</tr>
<tr>
<td>-desthome</td>
<td>Alternative to specifying the name of the destination working copy, you can specify the path to the destination for the move of an Oracle home when you are moving the Oracle Grid Infrastructure home.</td>
</tr>
<tr>
<td>-sourcewc</td>
<td>If you want to move Oracle Grid Infrastructure from a working copy, then specify the name of the source working copy from which you want to move the Grid home.</td>
</tr>
<tr>
<td>-sourcehome</td>
<td>If you are moving Oracle Grid Infrastructure from an unmanaged (not provisioned by Fleet Patching and Provisioning) Oracle home, then specify the path to the Oracle home from which you want to move Oracle Grid Infrastructure.</td>
</tr>
<tr>
<td>-targetnode</td>
<td>Name of a node in a remote cluster with no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-ignorewcpatches</td>
<td>Use this parameter to ignore if the patched working copy is missing some patches which are present in the source path or working copy.</td>
</tr>
<tr>
<td>-nonrolling</td>
<td>Use this parameter to move the Oracle home in a non-rolling fashion.</td>
</tr>
<tr>
<td>-keepplacement</td>
<td>Specify this parameter to ensure that services of administrator-managed Oracle RAC or Oracle RAC One Node databases are running on the same instances before and after the move operation.</td>
</tr>
<tr>
<td>-auto -dbhomes</td>
<td>Specify this parameter to automatically patch databases when you patch Oracle Grid Infrastructure.</td>
</tr>
</tbody>
</table>
| -dblist | Optionally, you can specify the unique names of the databases (DB_UNIQUE_NAME without DB_DOMAIN) on which you want to perform the patching operation.
 Note: If you are moving a non-clustered (single-instance) database, then, for the value of the -dbname parameter, you must specify the SID of the database instead of the database name. |
| -excludedblist | Alternative to using the -dbname parameter, you can use the -excludedblist parameter to patch all databases except specific databases. |
| -nodatapatch | Optionally, you can use this parameter to indicate not to run datapatch for databases being moved.
<p>| -disconnect | Optionally, you can use this parameter to disconnect all sessions before stopping or relocating services. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-stopoption</td>
<td>Optionally, you can choose one of the following stop options for the database: ABORT, IMMEDIATE, NORMAL, TRANSACTIONAL, or TRANSACTIONAL_LOCAL.</td>
</tr>
<tr>
<td>stop_option</td>
<td></td>
</tr>
<tr>
<td>-drain_timeout</td>
<td>Optionally, you can use this parameter to specify a service drain timeout, in seconds.</td>
</tr>
<tr>
<td>session_drain_time</td>
<td></td>
</tr>
<tr>
<td>-batches</td>
<td>Optionally, you can specify a comma-delimited list of batches of nodes (where each batch is a comma-delimited list of node names enclosed in parentheses) enclosed in double quotation marks (""), in the format: "(nA,nB,...),(,...,nY,nZ)".</td>
</tr>
<tr>
<td>list_of_batches</td>
<td></td>
</tr>
<tr>
<td>-smartmove</td>
<td>Alternatively, you can use the -smartmove parameter to auto-generate a list of batches of nodes and move databases by restarting instances after each batch.</td>
</tr>
<tr>
<td>-saf</td>
<td>Optionally, you can use the -saf parameter to specify the service availability factor, which is the minimum percentage of instances on which a service must remain running during the move.</td>
</tr>
<tr>
<td>availability</td>
<td></td>
</tr>
<tr>
<td>-schedule</td>
<td>Optionally, you can schedule a time to run this command in ISO-8601 format. For example: 2018-01-21T19:13:17+05.</td>
</tr>
<tr>
<td>timer_value</td>
<td></td>
</tr>
<tr>
<td>-continue</td>
<td>Use this parameter to continue restarting the Oracle Clusterware stack on the next batch of nodes.</td>
</tr>
<tr>
<td>-revert</td>
<td>Use this parameter to revert back to before the move operation.</td>
</tr>
<tr>
<td>-abort</td>
<td>Use this parameter to abort an ongoing move operation.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred</td>
</tr>
<tr>
<td></td>
<td>If you choose to use the -targetnode parameter, then you must choose either root, a credential name, sudo, or an authentication plugin to access the remote node.</td>
</tr>
<tr>
<td></td>
<td>Choose -root to perform super user operations as root. Alternatively, you can choose either a credential name to associate the user name and password credentials to access a remote node, to perform super user operations as a sudo user by specifying a sudo user name and the path to the sudo binary, or to use an authentication plugin to access the remote node.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-cleanpids</td>
<td>When using a persistent home path for both the source and destination working copies, specify -cleanpids to ensure processes are stopped completely on the source home.</td>
</tr>
<tr>
<td>-useractiondata</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>user_action_data</td>
<td></td>
</tr>
<tr>
<td>-schedule</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example: 2018-07-25T19:13:17+05.</td>
</tr>
<tr>
<td>timer_value</td>
<td></td>
</tr>
<tr>
<td>-eval</td>
<td>Use this parameter to evaluate the rhpctl move gihome command and print automatically generated batches of nodes and the sequence of moves without actually running the command.</td>
</tr>
</tbody>
</table>
Usage Notes

If you choose to use the `-schedule` parameter, then you must run this command on the Fleet Patching and Provisioning Server.

Example

Assume there is a target cluster running Oracle Grid Infrastructure 12c release 1 (12.1.0.2) from a working copy named `grid12102wcpy`, and one of the nodes in the cluster is named `bposvr141`. After provisioning the patched working copy, called `grid12102PSU` (using the `-softwareonly` parameter with the `rhpctl add workingcopy` command), move the Grid home to the patched working copy, as follows:

```
rhpctl move gihome -sourcewc grid12102wcpy -destwc grid12102PSU -root -targetnode bposvr141
```

rhpctl upgrade gihome

Upgrades the Oracle Grid Infrastructure from a source working copy or source home path to a destination working copy.

Syntax

```
rhpctl upgrade gihome {-sourcewc source_workingcopy_name | -sourcehome oracle_home_path -targetnode target_node_name} -destwc destination_workingcopy_name {-root | -sudouser sudo_user_name -sudopath sudo_binary_location} -cred cred_name | -auth plugin_name [-arg1 name1:value1...] [-arg2 name2:value2 ...]} [-ignoreprereq] [-useractiondata user_action_data] [-eval] [-batches list_of_batches] [-abort | -continue] [-schedule {timer_value | NOW}]```

**Parameters**

**Table A-23  rhpctl upgrade gihome Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-sourcewc</code> <code>source_workingcopy_name</code></td>
<td>Specify the name of the source working copy from which the Oracle Grid Infrastructure home needs to be upgraded.</td>
</tr>
<tr>
<td><code>-sourcehome</code> <code>oracle_home_path</code></td>
<td>Alternative to specifying the name of the source working copy, you can specify the path to the unmanaged Oracle Grid Infrastructure home.</td>
</tr>
<tr>
<td><code>-targetnode</code> <code>target_node_name</code></td>
<td>In addition to specifying the source Oracle Grid Infrastructure home, you must also specify a node that is in a remote cluster that has no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td><code>-destwc</code> <code>destination_workingcopy_name</code></td>
<td>Specify the name of the destination working copy to which the Oracle Grid Infrastructure home is to be upgraded.</td>
</tr>
</tbody>
</table>
Table A-23  (Cont.) rhpctl upgrade gihome Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`-root</td>
<td>-sudouser`</td>
</tr>
<tr>
<td><code>sudo_username</code></td>
<td>If you choose <code>sudo</code>, then you must specify a user name to run super-user operations, and a path to the location of the <code>sudo</code> binary.</td>
</tr>
<tr>
<td><code>sudo_binary_path</code></td>
<td>Optionally, you can choose to specify a credential name to associate the user and password credentials to access a remote node.</td>
</tr>
<tr>
<td><code>-cred </code></td>
<td>Alternative to <code>-sudouser</code>, <code>-root</code>, or <code>-cred</code>, you can use <code>-auth</code> to specify an authentication plugin to access a remote node.</td>
</tr>
<tr>
<td><code>-auth plugin-name</code></td>
<td>Use an authentication plugin to access the remote node.</td>
</tr>
<tr>
<td><code>[-arg1 name1:value1 [-arg2 name2:value2 ...]]</code></td>
<td>Optionally provide a list of arguments to the plugin.</td>
</tr>
<tr>
<td><code>-ignoreprereq</code></td>
<td>Use this parameter to ignore the CVU prerequisite checks.</td>
</tr>
<tr>
<td><code>-schedule</code></td>
<td>Optionally, you can schedule a time to run this command in ISO-8601 format. For example: 2018-01-21T19:13:17+05. If <code>NOW</code> is specified, then the job is scheduled immediately.</td>
</tr>
<tr>
<td><code>[-timer_value </code></td>
<td><code>$NOW$</code></td>
</tr>
<tr>
<td><code>-useractiondata</code></td>
<td>Value to be passed to <code>useractiondata</code> parameter of the useraction script.</td>
</tr>
<tr>
<td><code>user_action_data</code></td>
<td>Evaluate without executing the command.</td>
</tr>
<tr>
<td><code>-eval</code></td>
<td>List of batches of nodes in the format: &quot;$ (Ba),..., (Bz)&quot;.</td>
</tr>
<tr>
<td><code>-batches</code></td>
<td>Abort the ongoing move operation or continue restarting the CRS stack on the next batch of nodes.</td>
</tr>
<tr>
<td>`-abort</td>
<td>-continue`</td>
</tr>
</tbody>
</table>

image Commands

Use commands with the `image` keyword to add, delete, import, and manage gold images.

- `rhpctl add image`
  - Use the `rhpctl add image` command to create an image from an existing working copy and add it to the list of existing images on the Fleet Patching and Provisioning Server configuration.

- `rhpctl allow image`

- `rhpctl delete image`
  - Deletes a specific image.

- `rhpctl deploy image`

- `rhpctl disallow image`

- `rhpctl import image`
  - Creates an image on the Fleet Patching and Provisioning Server.

- `rhpctl instantiate image`

- `rhpctl modify image`
rhpctl add image

Use the `rhpctl add image` command to create an image from an existing working copy and add it to the list of existing images on the Fleet Patching and Provisioning Server configuration.

Syntax

```
rhpctl add image -image image_name -workingcopy working_copy_name
 [-imagetype image_type] [-series series_name] [-state {TESTABLE | RESTRICTED | PUBLISHED}]
```

Parameters

<table>
<thead>
<tr>
<th>Command Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image that you want to add.</td>
</tr>
<tr>
<td>-workingcopy working_copy_name</td>
<td>Specify the name of the working copy from which to create the image.</td>
</tr>
<tr>
<td>-imagetype image_type</td>
<td>Specify the software type. <code>ORACLEDATABASESOFTWARE</code> (default) for Oracle Database software, <code>ORACLEGISOFTWARE</code> for Oracle Grid Infrastructure software, <code>ORACLEGGSOFTWARE</code> for Oracle GoldenGate software, <code>LINUXOS</code> for Linux operating system ISO, or <code>SOFTWARE</code> for all other software. If you use custom image types, then specify the name of your image type.</td>
</tr>
<tr>
<td>-series series_name</td>
<td>If you want to add an image to an image series, then specify the name of an image series.</td>
</tr>
<tr>
<td>-state {TESTABLE</td>
<td>RESTRICTED</td>
</tr>
</tbody>
</table>

Usage Notes

🔗 See Also:

Patching Oracle Database for details about how to use this command in the workflow for creating patched Oracle Database software homes

Example

An example of this command is:

```
$ rhpctl add image -image DB12201_PATCH -workingcopy temp_wcopy_db12201_patch
```
rhpctl allow image

Allows access to an image by a user or a role.

Syntax

rhpctl allow image -image image_name [-user user_name [-client cluster_name] | -role role_name]

Parameters

Table A-25  rhpctl allow image Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image to which you want to allow access.</td>
</tr>
<tr>
<td>-user user_name [-client cluster_name</td>
<td>-role role_name</td>
</tr>
<tr>
<td></td>
<td>• A user for which you want to allow access to the image and, optionally, the cluster name of the client cluster with the user.</td>
</tr>
<tr>
<td></td>
<td>• The role for which you want to allow access to the image.</td>
</tr>
</tbody>
</table>

Examples

To allow access to an image named PRODIMAGE:

$ rhpctl allow image -image PRODIMAGE -user mjk -client GHC1

rhpctl delete image

Deletes a specific image.

Syntax

rhpctl delete image -image image_name [-schedule timer_value]

Usage Notes

• Specify the name of the image you want to delete
• Optionally, you can use the -schedule parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:

  2018-07-25T19:13:17+05

  If you choose to use this parameter, then you must run this command on the Fleet Patching and Provisioning Server.
• This command will fail if the image belongs to one or more series
• This command will fail if there are any provisioned working copies based on this image
Example
The following example deletes an image named PRODIMAGEV0:

$ rhpctl delete image -image PRODIMAGEV0

rhpctl deploy image
Deploys an image to a specific node in a client cluster.

Syntax

rhpctl deploy image -image image_name [-targetnode node_name
   {-sudouser sudo_user_name -sudopath sudo_binary_path | -root}]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image you want to deploy.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a node to which you want</td>
</tr>
<tr>
<td></td>
<td>to deploy the image. This parameter is required if the node hosting</td>
</tr>
<tr>
<td></td>
<td>the home is not a Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-sudouser sudo_user_name</td>
<td>If you use the -targetnode parameter, then you must specify</td>
</tr>
<tr>
<td>-sudopath sudo_binary_path</td>
<td>either sudo or root to perform super user operations.</td>
</tr>
<tr>
<td>-root</td>
<td></td>
</tr>
</tbody>
</table>

Usage Notes
You can only run this command from a Fleet Patching and Provisioning Server.

Example
The following example deploys an Oracle Database Appliance image to a node:

$ rhpctl deploy image -image ODA1 -targetnode racgbox1 -root

rhpctl disallow image
Disallows access to an image by a user or a role.

Syntax

rhpctl disallow image -image image_name [-user user_name [-client client_name]
   | -role role_name]
Parameters

Table A-27  rhpctl disallow image Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image to which you want to disallow access.</td>
</tr>
<tr>
<td>-user user_name [-client client_name</td>
<td>-role role_name</td>
</tr>
<tr>
<td></td>
<td>• A user for which you want to disallow access to the image and, optionally, the cluster name of the client cluster with the user.</td>
</tr>
<tr>
<td></td>
<td>• The role for which you want to disallow access to the image.</td>
</tr>
</tbody>
</table>

Examples

To disallow access to an image:

```bash
$ rhpctl disallow image -image PRODIMAGE -user mjk -client GHC1
```

rhpctl import image

Creates an image on the Fleet Patching and Provisioning Server.

Use the `rhpctl import image` command to create an image by copying the entire software contents from the specified path to the Fleet Patching and Provisioning Server.

Syntax

```bash
rhpctl import image -image image_name (-path path | -zip zipped_home_path) [-imagetype image_type] [-version software_version] [-pathowner user_name] [-state {TESTABLE | RESTRICTED | PUBLISHED}] [-client cluster_name] [-targetnode node_name [-sudouser sudo_user_name -sudopath sudo_binary_path | -root]] [-useractiondata user_action_data] [-schedule timer_value]
```

Parameters

Table A-28  rhpctl import image Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image that you want to add.</td>
</tr>
<tr>
<td>-path path</td>
<td>Specify the absolute path location of the software home that you want to import (for Oracle Database images, this is the ORACLE_HOME).</td>
</tr>
</tbody>
</table>
Table A-28  (Cont.) rhpctl import image Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-zip</td>
<td>Specify the absolute path of the compressed software home to be imported (a ZIP or TAR file).</td>
</tr>
<tr>
<td>zipped_home_path</td>
<td></td>
</tr>
</tbody>
</table>

**Note:**
Do not use this option when importing an image from another platform. This option works only on the same platform, for example, if you are on a Linux platform, then you can use the -zip option to import an image only from another Linux system.

| -imagetype          | Specify the software type. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, ODAPATCHSOFTWARE, for engineered systems (Oracle Data Appliance), or SOFTWARE for all other software. For a custom image type, use the image type name. |
| image_type          |                                                                                               |

| -version            | Optionally, you can specify the version of the software you are importing.                     |
| software_version    |                                                                                               |

| -pathowner user_name| Specify the user with read access to the files and directories under the specified path.     |
| user_name           |                                                                                               |

**Note:** This parameter is applicable only for non-Oracle database software homes.

| -state {TESTABLE | RESTRICTED | PUBLISHED} | Specify whether the state of the image is testable, restricted, or published. |
| state             |                                                                                               |

| -client cluster_name| Specify the name of the client cluster.                                                        |
| cluster_name       |                                                                                               |

| -targetnode node_name| Specify the name of the node from which you want to import the image. This parameter is required if the node hosting the home is not an Fleet Patching and Provisioning Client. |
| node_name           |                                                                                               |

| -sudouser sudo_user_name | -sudopath sudo_binary_path | -root | If you use the -targetnode parameter, then you must specify either sudo or root to perform super user operations. |
| sudouser             | sudopath                  | root   |                                                                                               |

| -useractiondata user_action_data| Optionally, you can pass a value to the useractiondata parameter of the user action script. |
| user_action_data     |                                                                                               |

| -schedule timer_value| Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example: |
| timer_value          |                                                                                               |

2018-07-25T19:13:17+05

**Usage Notes**

- You can only run this command on a Fleet Patching and Provisioning Server.
When you import an Oracle Database or Oracle Grid Infrastructure software home, the version of the home must be one of the versions that Fleet Patching and Provisioning supports for provisioning and patching.

Examples

The following example imports an image:

```bash
$ rhpctl import image -image PRODIMAGEV1 -path /u01/app/product/12.1.0/dbhome -pathowner orcl
```

The following example imports an engineered system image:

```bash
$ rhpctl import image -image ODA1 -imagetype ODAPATCHSOFTWARE -path /tmp/ODAPatchBundle -version 12.1.2.8.0
```

**rhpctl instantiate image**

Requests copies of gold images from a peer Fleet Patching and Provisioning Server.

**Syntax**

```
rhpctl instantiate image -server server_cluster_name {-image image_name | -series series_name | -imagetype image_type | -all}
```

**Parameters**

**Table A-29  rhpctl instantiate image Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-server server_cluster_name</td>
<td>Specify a Fleet Patching and Provisioning Server cluster from which you want to request images.</td>
</tr>
<tr>
<td>-image image_name</td>
<td>You can request copies of gold images from a peer Fleet Patching and Provisioning Server, specifically, by image name, series name, or image type. Alternatively, you can use the -all parameter to request copies of all gold images from the peer Fleet Patching and Provisioning server. If you choose to request images by image type, then specify ORACLEDBSOFTWARE (default) for Oracle Database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, ORACLEGGSOFTWARE for Oracle GoldenGate software, and SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>-series series_name</td>
<td></td>
</tr>
<tr>
<td>-imagetype image_type</td>
<td></td>
</tr>
<tr>
<td>-all</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Notes**

- User actions associated with an image being copied are not themselves copied.
- Groups configuration of a gold image is replicated in copies sent to peers.
- Copies of gold images are in the PUBLISHED state.
rhpctl modify image

Modifies the configuration details of an image.

Syntax

```
rhpctl modify image -image image_name -imagetype image_type
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image that you want to modify.</td>
</tr>
<tr>
<td>-imagetype image_type</td>
<td>You can modify the software type. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEG ISOFTWARE for Oracle Grid Infrastructure software, or SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
</tbody>
</table>

rhpctl query image

Displays the configuration of an existing image.

Syntax

```
rhpctl query image {[-image image_name [-dbtemplate]] | [[-imagetype image_type]
 [-version version] [-platform platform] [-drift]]}
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name [-dbtemplate]</td>
<td>Specify the name of the image you want to query. Optionally, you can use the -dbtemplate parameter to display template file names in the default template directory.</td>
</tr>
<tr>
<td>-imagetype image_type</td>
<td>Specify the software type. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, or SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>-version version</td>
<td>Use this parameter to specify the version of the image software you are querying.</td>
</tr>
<tr>
<td>-platform platform</td>
<td>Use this parameter to specify the operating system platform to which the image corresponds.</td>
</tr>
<tr>
<td>-drift</td>
<td>List the bug fixes not included in the golden image.</td>
</tr>
</tbody>
</table>
Usage Notes

• If you use the -version parameter, then the version must have five fields, such as 12.1.0.2.4.

• If you use the -platform parameter, then you can use Linux_AMD64, Linux_S390, Linux_PPC, IBM_AIX_PPC64, HP_IA64, Linux_Itanium, Solaris_SPARC64, Linux_LOP, and Intel_Solaris_AMD64

rhpctl promote image

Promotes an image.

Syntax

```
rhpctl promote image -image image_name -state {TESTABLE | RESTRICTED | PUBLISHED}
```

Parameters

Table A-32  rhpctl promote image Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Specify the name of the image that you want to promote.</td>
</tr>
<tr>
<td>-state {TESTABLE</td>
<td>Specify one of the following as the name of the state of the image:</td>
</tr>
<tr>
<td></td>
<td>RESTRICTED</td>
</tr>
<tr>
<td>TESTABLE:</td>
<td>RESTRICTED:</td>
</tr>
<tr>
<td>PUBLISHED:</td>
<td></td>
</tr>
</tbody>
</table>

Example

To promote an image named PRODIMAGE:

```
$ rhpctl promote image -image PRODIMAGE -state RESTRICTED
```

rhpctl uninstantiate image

Stops updates for previously requested images from a peer Fleet Patching and Provisioning Server.

Syntax

```
rhpctl uninstantiate image -server server_cluster_name { -image image_name
| -series series_name | -imagetype image_type | -all}
```
Parameters

Table A-33  rhpctl uninstantiate image Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-server server_cluster_name</td>
<td>Specify a Fleet Patching and Provisioning Server cluster from which you want to stop updates.</td>
</tr>
<tr>
<td>-image image_name</td>
<td>You can update from a peer Fleet Patching and Provisioning Server, specifically, by image name, series name, or image type. Alternatively, you can use the -all parameter to stop updates from the peer Fleet Patching and Provisioning server. If you choose to stop updates by image type, then specify ORACLEDDBSOFTWARE (default) for Oracle Database software, ORACLEGRIDSOFTWARE for Oracle Grid Infrastructure software, ORACLEGGSOFTWARE for Oracle GoldenGate software, and SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>-series series_name</td>
<td></td>
</tr>
<tr>
<td>-imagetype image_type</td>
<td></td>
</tr>
<tr>
<td>-all</td>
<td></td>
</tr>
</tbody>
</table>

imagetype Commands

Use commands with the imagetype keyword to add, delete, modify, and manage an image type.

- rhpctl add imagetype
  Configures a new image type and its associated user actions.
- rhpctl allow imagetype
- rhpctl delete imagetype
- rhpctl disallow imagetype
- rhpctl modify imagetype
- rhpctl query imagetype

rhpctl add imagetype

Configures a new image type and its associated user actions.

Syntax

rhpctl add imagetype -imagetype image_type -basetype {SOFTWARE | ORACLEDDBSOFTWARE | ORACLEGRIDSOFTWARE | ORACLEGGSOFTWARE} [-useractions user_action_list]

Parameters

Table A-34  rhpctl add imagetype Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-imagetype image_type</td>
<td>Specify the name of the image type you are creating.</td>
</tr>
</tbody>
</table>
**Table A-34  (Cont.)** rhpctl add imagetype Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-basetype {SOFTWARE  ORACLEGISOFTWARE ORACLEDBSOFTWARE ORACLEGGSOFTWARE}</td>
<td>Specify a base image type on which the image type you are creating is based. Use ORACLEDBSOFTWARE (default) for Oracle Database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, ORACLEGGSOFTWARE for Oracle GoldenGate software, and SOFTWARE for all other software.</td>
</tr>
<tr>
<td>-useractions</td>
<td>Specify a comma-delimited list of names of user actions</td>
</tr>
</tbody>
</table>

**Example**

To add a new image type:

```
rhpctl add imagetype -imagetype DB122_PATCH_TYPE -basetype ORACLEDBSOFTWARE
```

**rhpctl allow imagetype**

Grants access to an image type to a user or a role.

**Syntax**

```
rhpctl allow imagetype -imagetype image_type {-user user_name [-client cluster_name] | -role role_name}
```

**Parameters**

**Table A-35  rhpctl allow imagetype Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-imagetype image_type</td>
<td>Specify the name of the image type to which you are granting access. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, or SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user to whom you are granting access to the image type. Either this parameter or the -role parameter is required.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can specify the name of the client cluster to which the operating system user belongs, if you choose to use the -user parameter.</td>
</tr>
<tr>
<td>-role role_name</td>
<td>Alternative to the -user parameter, you can specify a particular role to which to grant access to the image.</td>
</tr>
</tbody>
</table>

**rhpctl delete imagetype**

Deletes an existing image type.
Syntax

rhpctl delete imagetype -imagetype image_type

Usage Notes

Specify an image type to delete. You cannot delete any of the built-in image types.

rhpctl disallow imagetype

Revoke access to an image type from a user or a role.

Syntax

rhpctl disallow imagetype -imagetype image_type { -user user_name [-client cluster_name] | -role role_name }

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-imagetype image_type</td>
<td>Specify the name of the image type from which you are revoking access. Use ORACLEDBOFTWARE (default) for Oracle database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, or SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user from whom you are revoking access to the image type. Either this parameter or the -role parameter is required.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can specify the name of the client cluster to which the operating system user belongs, if you choose to use the -user parameter.</td>
</tr>
<tr>
<td>-role role_name</td>
<td>Alternative to the -user parameter, you can specify a particular role from which to revoke access to the image.</td>
</tr>
</tbody>
</table>

rhpctl modify imagetype

Modifies the configuration of an image type.

Syntax

rhpctl modify imagetype -imagetype image_type -useractions user_action_list
Parameters

Table A-37   rhpctl modify imagetype Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-imagetype</td>
<td>Specify the name of the image type you want to modify. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, ORACLEGGSOFTWARE for Oracle GoldenGate software, or SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>-useractions</td>
<td>Specify a comma-delimited list of names of user actions</td>
</tr>
</tbody>
</table>

rhpctl query imagetype

Displays the configuration of an image type.

Syntax

rhpctl query imagetype -imagetype image_type

Usage Notes

Specify the name of the image type you want to query. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEGISOFTWARE for Oracle Grid Infrastructure software, ORACLEGGSOFTWARE for Oracle GoldenGate software, or SOFTWARE for all other software. For a custom image type, use the image type name.

job Commands

Use commands with the job keyword to delete or query schedule jobs.

- rhpctl delete job
- rhpctl query job

rhpctl delete job

Deletes a specific scheduled job from the repository.

Syntax

rhpctl delete job [-jobid job_id] [-force]
Parameters

Table A-38  rhpctl delete job Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-jobid job_id</td>
<td>Optionally, you can specify the job ID value for the job you want to delete that you obtained while scheduling the job. If you choose not to use this parameter, then RHPCTL deletes all jobs.</td>
</tr>
<tr>
<td>-force</td>
<td>Use this parameter to forcibly delete a job.</td>
</tr>
</tbody>
</table>

Usage Notes

You must run this command on the Fleet Patching and Provisioning Server.

Example

To delete a job with a job ID of 1:

```bash
$ rhpctl delete job -jobid 1
```

rhpctl query job

Queries the current status of a scheduled job with a specific job ID.

Syntax

```
rhpctl query job [-jobid job_id] [-status {EXECUTED | TIMER_RUNNING | EXECUTING | UNKNOWN | TERMINATED }] [-client client_name] [-user user_name] [-since timer_value] [-summary] [-eval] [-migrate]
```

Parameters

Table A-39  rhpctl query job Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-jobid job_id</td>
<td>Optionally, you can specify the job ID value for the job you want to query. The job ID is obtained while scheduling the job. If you choose this parameter, then the only other option you can specify is -summary. If you do not choose this parameter, then all jobs are queried.</td>
</tr>
</tbody>
</table>
Table A-39  (Cont.) rhpctl query job Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-status {EXECUTED</td>
<td></td>
</tr>
<tr>
<td>TIMER_RUNNING</td>
<td>EXECUTING</td>
</tr>
<tr>
<td>TERMINATED }</td>
<td>Optionally, you can specify any of the following states of a job that you want to query:</td>
</tr>
<tr>
<td></td>
<td>• EXECUTED: The job is complete.</td>
</tr>
<tr>
<td></td>
<td>• TIMER_RUNNING: The timer for the job is still running.</td>
</tr>
<tr>
<td></td>
<td>• EXECUTING: The timer for the job has expired and is running.</td>
</tr>
<tr>
<td></td>
<td>• UNKNOWN: There is an unexpected failure due to issues such as a target going down, nodes going down, or any resource failures.</td>
</tr>
<tr>
<td></td>
<td>• TERMINATED: There is an abrupt failure or the operation has stopped.</td>
</tr>
<tr>
<td>-client client_name</td>
<td>Optionally, you can specify the name of a client cluster for which you want to query jobs.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Optionally, you can specify the user name of the user for whom a software home is being provisioned.</td>
</tr>
<tr>
<td>-since timer_value</td>
<td>Optionally, you can specify a date from which to query the jobs, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td></td>
<td>2018-07-25T19:13:17+05</td>
</tr>
<tr>
<td>-summary</td>
<td>Optionally, you can use this parameter to return only job details.</td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to query only evaluation jobs.</td>
</tr>
<tr>
<td>-migrate</td>
<td>Optionally, you can use this parameter to query only migration jobs.</td>
</tr>
</tbody>
</table>

Usage Notes

You must run this command on the Fleet Patching and Provisioning Server.

Example

To query a specified scheduled job:

$ rhpctl query job -jobid 1

This command returns output similar to the following:

Job ID: 1
User: fred
Client: fredlinux4
Scheduled job command: "rhpctl import image -image DB-Image1
 -imagetype ORACLEDBSOFTWARE -path /ade/fred_linux4/esw1 -schedule
Current status: EXECUTED
Job execution start time: 2018-07-27 05:39:14
osconfig Commands

Use commands with the osconfig keyword to backup, compare, and manage operating system configuration information.

- `rhpctl collect osconfig`
- `rhpctl compare osconfig`
- `rhpctl disable osconfig`
- `rhpctl enable osconfig`
- `rhpctl query osconfig`

**rhpctl collect osconfig**

Collects a backup of the operating system configuration for a cluster.

**Syntax**

```
rhpctl collect osconfig -client cluster_name [-targetnode node_name] [-sudouser sudo_user_name -sudopath sudo_binary_location | -root]
```

**Parameters**

**Table A-40  rhpctl collect osconfig Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-client cluster_name</code></td>
<td>Specify the name of the client cluster.</td>
</tr>
<tr>
<td><code>-targetnode node_name</code></td>
<td>Optionally, you can specify the name of a particular node in a cluster from which to collect configuration information.</td>
</tr>
<tr>
<td><code>-sudouser sudo_user_name</code></td>
<td>If you use the <code>-targetnode</code> parameter, then you must specify either sudo or root to perform super user operations.</td>
</tr>
<tr>
<td><code>-sudopath</code></td>
<td></td>
</tr>
<tr>
<td><code>-root</code></td>
<td></td>
</tr>
</tbody>
</table>

**rhpctl compare osconfig**

Compares operating system configurations for a specific cluster.
Syntax

rhpctl compare osconfig -client cluster_name -node node_name -id1 identifier -id2 identifier

Parameters

Table A-41  rhpctl compare osconfig Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-client</td>
<td>Specify the name of the client cluster in which you want to compare</td>
</tr>
<tr>
<td></td>
<td>operating system configurations.</td>
</tr>
<tr>
<td>-node</td>
<td>Specify the name of a node in a remote cluster.</td>
</tr>
<tr>
<td>-id1</td>
<td>Specify an identifier of an operating system configuration to be</td>
</tr>
<tr>
<td></td>
<td>considered as a reference.</td>
</tr>
<tr>
<td>-id2</td>
<td>Specify an identifier of an operating system configuration to be</td>
</tr>
<tr>
<td></td>
<td>compared.</td>
</tr>
</tbody>
</table>

rhpctl disable osconfig

Disables a scheduled backup of the operating system configuration and gives the option to delete all collected configuration backups.

Syntax

rhpctl disable osconfig [-client cluster_name] [-clean]

Usage Notes

- Optionally, you can specify a client cluster name on which you want to disable collection of operating system configuration information.
- Optionally, you can use the -clean parameter to delete all operating system configuration backups.

rhpctl enable osconfig

Enable operating system configuration information collection for the client cluster.

Syntax

rhpctl enable osconfig -client cluster_name [-retaincopies count] [-start timer_value] [-frequency collect_frequency] [-collectnow [-targetnode node_name |-sudouser sudo_user_name -sudopath sudo_binary_location |-root)] [-force]
Parameters

Table A-42  rhpctl enable osconfig Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-client cluster_name</td>
<td>Specify the name of the client cluster.</td>
</tr>
<tr>
<td>-retaincopies count</td>
<td>Optionally, you can specify the number of scheduled backups you want to be maintained. The default value is 37.</td>
</tr>
<tr>
<td>-start timer_value</td>
<td>Optionally, you can specify a start date and time to run configuration collection according to the following example: 2018-07-23T00:00:00-07</td>
</tr>
<tr>
<td>-frequency collect_frequency</td>
<td>Optionally, you can specify the configuration collection interval in number of days.</td>
</tr>
<tr>
<td>-collectnow</td>
<td>Optionally, you can use this parameter to collect configuration information, immediately.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify the name of a particular node in a cluster from which to collect configuration information.</td>
</tr>
<tr>
<td>-sudo_user_name</td>
<td>If you use the -targetnode parameter, then you must specify either sudo or root to perform super user operations.</td>
</tr>
<tr>
<td>sudo_binary_path</td>
<td></td>
</tr>
<tr>
<td>-sudopath root</td>
<td></td>
</tr>
<tr>
<td>-force</td>
<td>Optionally, you can use this parameter to forcibly modify the count for the -retaincopies parameter previously set.</td>
</tr>
</tbody>
</table>

rhpctl query osconfig

Provides historic operating system configuration collection information, such as the collection schedule, retention count, scheduled job for periodic collection, and collection data.

Syntax

rhpctl query osconfig -client client_name

Usage Notes

Provide the name of the client cluster that you want to query operating system configuration collection information.

Example

This command returns output similar to the following:

$ rhpctl query osconfig -client rhpdemocluster

OSConfig Enabled: true
Collection start time: "00:00:00"
Collection frequency: "1"
retaincopies count: "35"
OSConfig periodic Job ID: "38"
peerserver Commands

Use commands with the `peerserver` keyword to display information for a peer server.

- `rhpctl query peerserver`

rhpctl query peerserver

Displays information for a registered peer Fleet Patching and Provisioning Server.

Syntax

```
rhpctl query peerserver [-server server_cluster_name [-serverPolicy]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-server server_cluster_name</code></td>
<td>Optionally, you can specify the name of the Fleet Patching and Provisioning Server cluster for which you want to view the information.</td>
</tr>
<tr>
<td><code>-serverPolicy</code></td>
<td>Optionally, you can specify the image policy for the peer Fleet Patching and Provisioning Server for which you want to view the information.</td>
</tr>
</tbody>
</table>

role Commands

Use commands with the `role` keyword to add, delete, and manage roles.

- `rhpctl add role`
- `rhpctl delete role`
  Deletes a role from the list of existing roles on the Fleet Patching and Provisioning Server configuration.
- `rhpctl grant role`
- `rhpctl query role`
- `rhpctl revoke role`
rhpctl add role

Creates roles and adds them to the list of existing roles on the Fleet Patching and Provisioning Server configuration.

See Also:

Fleet Patching and Provisioning Roles

Syntax

rhpctl add role -role role_name -hasRoles roles

Parameters

Table A-44  rhpctl add role Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-role role_name</td>
<td>Specify a name for the role that you want to create.</td>
</tr>
</tbody>
</table>
Table A-44  (Cont.) rhpctl add role Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-hasRoles roles</td>
<td>Specify a comma-delimited list of roles to include with the new role.</td>
</tr>
<tr>
<td></td>
<td>GH_ROLE_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_AUDIT_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_USER_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_SITE_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_WC_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_WC_OPER</td>
</tr>
<tr>
<td></td>
<td>GH_WC_USER</td>
</tr>
<tr>
<td></td>
<td>GH_IMG_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_IMG_USER</td>
</tr>
<tr>
<td></td>
<td>GH_SUBSCRIBE_USER</td>
</tr>
<tr>
<td></td>
<td>GH_SUBSCRIBE_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_IMGTYPE_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_IMGTYPE_ALLOW</td>
</tr>
<tr>
<td></td>
<td>GH_IMGTYPE_OPER</td>
</tr>
<tr>
<td></td>
<td>GH_SERIES_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_SERIES_CONTRIB</td>
</tr>
<tr>
<td></td>
<td>GH_IMG_TESTABLE</td>
</tr>
<tr>
<td></td>
<td>GH_IMG_RESTRICT</td>
</tr>
<tr>
<td></td>
<td>GH_IMG_PUBLISH</td>
</tr>
<tr>
<td></td>
<td>GH_IMG_VISIBILITY</td>
</tr>
<tr>
<td></td>
<td>GH_JOB_USER</td>
</tr>
<tr>
<td></td>
<td>GH_JOB_ADMIN</td>
</tr>
<tr>
<td></td>
<td>GH_AUTHENTICATED_USER</td>
</tr>
<tr>
<td></td>
<td>GH_CLIENT_ACCESS</td>
</tr>
<tr>
<td></td>
<td>GH_ROOT_UA_CREATE</td>
</tr>
<tr>
<td></td>
<td>GH_ROOT_UA_ASSOCIATE</td>
</tr>
<tr>
<td></td>
<td>GH_ROOT_UA_USE</td>
</tr>
<tr>
<td></td>
<td>GH_OPER</td>
</tr>
<tr>
<td></td>
<td>GH_CA</td>
</tr>
<tr>
<td></td>
<td>GH_SA</td>
</tr>
<tr>
<td></td>
<td>OTHER</td>
</tr>
</tbody>
</table>

**Usage Notes**

- You can only run this command on the Fleet Patching and Provisioning Server.
- You must be assigned the GH_ROLE_ADMIN role to run this command.

**Example**

To add a role on the Fleet Patching and Provisioning Server:
```
$ rhpctl add role -role hr_admin -hasRoles GH_WC_USER,GH_IMG_USER
```

**rhpctl delete role**

Deletes a role from the list of existing roles on the Fleet Patching and Provisioning Server configuration.
Syntax

rhpctl delete role -role role_name

Usage Notes

• Specify the name of the role that you want to delete
• You cannot delete any built-in roles
• You can only run this command on the Fleet Patching and Provisioning Server

Example

To delete a role from the Fleet Patching and Provisioning Server:

$ rhpctl delete role -role hr_admin

rhpctl grant role

Grants a role to a client user or to another role.

Syntax

rhpctl grant role {-role role_name {-user user_name [-client cluster_name] | -grantee role_name}} | {{-client cluster_name} [-maproles role=user_name[+user_name...] [,role=user_name[+user_name...]][...]}[,...]}

Parameters

Table A-45  rhpctl grant role Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-role role_name</td>
<td>Specify the name of the role that you want to grant clients or users.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify the name of a user. The user name that you specify must be in the</td>
</tr>
<tr>
<td></td>
<td>form of user@rhpclient, where rhpclient is the name of the Fleet Patching</td>
</tr>
<tr>
<td></td>
<td>and Provisioning Client. Optionally, you can specify the name of the client</td>
</tr>
<tr>
<td></td>
<td>cluster to which the user belongs.</td>
</tr>
<tr>
<td>-grantee role_name</td>
<td>Use this parameter to specify a role to which you want to grant another role.</td>
</tr>
<tr>
<td>[-client cluster_name]</td>
<td>You can map either built-in roles or roles that you have defined to either</td>
</tr>
<tr>
<td></td>
<td>users on a specific client cluster or to specific users. When you use the</td>
</tr>
<tr>
<td></td>
<td>-maproles parameter, use a plus sign (+) to map more than one user to a</td>
</tr>
<tr>
<td></td>
<td>specific role. Separate additional role/user pairs with commas.</td>
</tr>
</tbody>
</table>
Example

The following example grants a role, ABC, to four specific users.

```
$ rhpctl grant role -role ABC -maproles
ABC=mjk@rhpc1+dc@rhpc1+aj@rhpc1+jc@rhpc1
```

rhpctl query role

Displays the configuration information of a specific role.

Syntax

```
rhpctl query role [-role role_name]
```

Usage Notes

- Specify the name of the role for which you want to display the configuration information
- You can only run this command on the Fleet Patching and Provisioning Server

Example

This command returns output similar to the following:

```
$ rhpctl query role -role GH_CA

Role name: GH_CA
Associated roles: GH_IMGTYPE_ADMIN, GH_IMGTYPE_ALLOW, GH_IMGTYPE_OPER,
GH_IMG_ADMIN,
GH_IMG_PUBLISH, GH_IMG_RESTRICT, GH_IMG_TESTABLE, GH_IMG_VISIBILITY,
GH_SERIES_ADMIN,
GH_SERIES_CONTRIB, GH_SUBSCRIBE_ADMIN, GH_WC_ADMIN
Users with this role: rhpusr@rwsdcVM13
```

rhpctl revoke role

Revokes a role from a client user.

Syntax

```
rhpctl revoke role [-role role_name] [-user user_name
[-client cluster_name] | -grantee role_name]
| {[-client cluster_name] -maproles role=user_name[+user_name...]
[,-role=user_name[+user_name...][+]...])
```
### Parameters

#### Table A-46  rhpctl revoke role Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-role role_name</td>
<td>Specify the name of the role from which you want to revoke clients or users.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify the name of a user and, optionally, a client cluster from which you want to revoke a role.</td>
</tr>
<tr>
<td>[-client cluster_name]</td>
<td>The user name that you specify must be in the form of user@rhpclient, where rhpclient is the</td>
</tr>
<tr>
<td></td>
<td>name of the Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-grantee role_name</td>
<td>Specify the grantee role name.</td>
</tr>
<tr>
<td>[-client client_name]</td>
<td>maproles</td>
</tr>
<tr>
<td></td>
<td>You can map either built-in roles or roles that you have defined to specific users. Use a plus sign (+) to map more than one user to a specific role. Separate additional role/user pairs with commas. Optionally, you can also specify a client cluster.</td>
</tr>
</tbody>
</table>

### series Commands

Use commands with the `series` keyword to add, delete, subscribe, and manage a series.

- `rhpctl add series`  
  Adds a series to the Fleet Patching and Provisioning Server configuration.

- `rhpctl delete series`  
  Deletes a series from the Fleet Patching and Provisioning Server configuration.

- `rhpctl deleteimage series`  
  
- `rhpctl insertimage series`  
  Inserts an existing image into a series.

- `rhpctl query series`  
  
- `rhpctl subscribe series`  
  
- `rhpctl unsubscribe series`  

### rhpctl add series

Adds a series to the Fleet Patching and Provisioning Server configuration.

#### Syntax

```
rhpctl add series -series series_name [-image image_name]
```

#### Parameters

#### Table A-47  rhpctl add series Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-series series_name</td>
<td>Specify a name for the series that you want to add.</td>
</tr>
</tbody>
</table>
Table A-47  (Cont.) rhpctl add series Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-image image_name</td>
<td>Optionally, you can specify the name of a configured image. This image becomes the first in the series.</td>
</tr>
</tbody>
</table>

Example

To add a series:

```bash
$ rhpctl add series -series DB12_series
```

rhpctl delete series

Deletes a series from the Fleet Patching and Provisioning Server configuration.

Syntax

```bash
rhpctl delete series -series series_name [-force]
```

Usage Notes

- Specify the name of the series that you want to delete.
- Use -force to delete an image series even if the series includes images.
- Before deleting an image series, you must first remove all images from the series by using the rhpctl deleteimage series command.
- This command does not delete images, only series.

Example

The following example deletes a series called PRODDBSERIES:

```bash
$ rhpctl delete series -series PRODDBSERIES
```

rhpctl deleteimage series

Deletes an image from a series.

Syntax

```bash
rhpctl deleteimage series -series series_name -image image_name
```
Parameters

Table A-48  rhpctl deleteimage series Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-series  series_name</td>
<td>Specify the name of the series from which you want to delete an image.</td>
</tr>
<tr>
<td>-image  image_name</td>
<td>Specify the name of the image that you want to delete from a series.</td>
</tr>
</tbody>
</table>

Example

The following command deletes an image called PRODIMAGEV0 from a series called PRODDBSERIES:

$ rhpctl deleteimage series -series PRODDBSERIES -image PRODIMAGEV0

rhpctl insertimage series

Inserts an existing image into a series.

Note:

> A single image can belong to one or more series.

Syntax

rhpctl insertimage series -series  series_name -image  image_name
[  -before  image_name]

Parameters

Table A-49  rhpctl insertimage series Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-series  series_name</td>
<td>Specify the name of the series into which you want to insert an image.</td>
</tr>
<tr>
<td>-image  image_name</td>
<td>Specify the name of the image that you want to insert into a series.</td>
</tr>
<tr>
<td>-before  image_name</td>
<td>Optionally, you can specify the name of an image before which you want to insert the new image.</td>
</tr>
</tbody>
</table>
Example
To insert an image into a series:

```
rhpctl insertimage series -series DB12_series -image DB12102_PSU
```

**rhpctl query series**
Displays the configuration of a series.

**Syntax**
```
rhpctl query series [-series series_name | -image image_name]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-series series_name</code></td>
<td>Specify the name of the series for which you want to display the configuration.</td>
</tr>
<tr>
<td><code>-image image_name</code></td>
<td>Alternatively, you can specify the name of a configured image.</td>
</tr>
</tbody>
</table>

**Usage Notes**
If you do not specify a series or an image by name, then CRSCTL returns information for all series.

**Example**
This command returns output similar to the following:

```
$ rhpctl query series
Image series: DB12_series
Image series: GRID_series
Image series: DB112_series
```

**rhpctl subscribe series**
Subscribes a specific user to an image series.

**Syntax**
```
rhpctl subscribe series -series series_name [-user user_name [-client cluster_name]]
```
Parameters

Table A-51  rhpctl subscribe series Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-series series_name</td>
<td>Specify the image series to which you want to subscribe a user.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user to whom you are subscribing the image series.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can specify the name of the client cluster to which the operating system user belongs.</td>
</tr>
</tbody>
</table>

rhpctl unsubscribe series

Unsubscribes a user from an image series.

Syntax

rhpctl unsubscribe series -series series_name [-user user_name [-client cluster_name]]

Parameters

Table A-52  rhpctl unsubscribe series Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-series series_name</td>
<td>Specify the image series from which you want to unsubscribe a user.</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user from whom you are unsubscribing the image series.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can specify the name of the client cluster to which the operating system user belongs.</td>
</tr>
</tbody>
</table>

server Commands

Use commands with the server keyword to export, register, unregister, and query Oracle Fleet Patching and Provisioning Server.

- rhpctl export server
- rhpctl query server
  Displays the configuration of a server.
- rhpctl register server
- rhpctl unregister server

rhpctl export server

Exports data from the repository to a Fleet Patching and Provisioning Server data file.
Syntax

rhpctl export server -server peer_server_name -serverdata file_path

Usage Notes

- Specify the name of a peer server cluster.
- Specify the path to the file containing the Fleet Patching and Provisioning Server data.

rhpctl query server

Displays the configuration of a server.

Syntax

rhpctl query server

Usage Notes

This command has no parameters.

Example

This command displays output similar to the following:

$ ./rhpctl query server

Fleet Patching and Provisioning Server (RHPS): rhps-myserver
Storage base path: /u01/app/RHPImages
Disk Groups: RHPDATA
Port number: 8896

rhpctl register server

Registers the specific Fleet Patching and Provisioning Server as a peer server.

Syntax

rhpctl register server -server server_cluster_name -serverdata file
 [-root | -cred cred_name | -sudouser sudo_username -sudopath
 path_to_sudo_binary
    | -auth plugin_name [-arg1 name1:value1 [-arg2 name2:value2 ...]]


Parameters

Table A-53  rhpctl register server Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-server</td>
<td>Specify the name of the Fleet Patching and Provisioning Server cluster that you want to register.</td>
</tr>
<tr>
<td>server_cluster_name</td>
<td></td>
</tr>
<tr>
<td>-serverdata file</td>
<td>Specify the path to the file containing the Fleet Patching and Provisioning Server data.</td>
</tr>
<tr>
<td>-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td>-sudouser</td>
<td></td>
</tr>
<tr>
<td>sudo_user_name</td>
<td></td>
</tr>
<tr>
<td>-sudopath</td>
<td></td>
</tr>
<tr>
<td>sudo_binary_location</td>
<td></td>
</tr>
<tr>
<td>-auth plugin_name</td>
<td></td>
</tr>
<tr>
<td>plugin_args</td>
<td></td>
</tr>
</tbody>
</table>

rhpctl unregister server

Unregisters a specific Fleet Patching and Provisioning Server as a peer server.

Syntax

rhpctl unregister server -server server_cluster_name

Usage Notes

Specify the name of the Fleet Patching and Provisioning Server you want to unregister as a peer.

user Commands

Use commands with the user keyword to delete, modify, register, and unregister users.

- rhpctl delete user
- rhpctl modify user
- rhpctl register user
- rhpctl unregister user

rhpctl delete user

Deletes a user from the Fleet Patching and Provisioning repository.

Syntax

rhpctl delete user -user user_name [-client cluster_name]
Parameters

Table A-54  rhpctl delete user Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-user user_name</td>
<td>Specify the name of the user you want to delete from a Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can specify the name of the client cluster from which you want to delete from a specific user.</td>
</tr>
</tbody>
</table>

Usage Notes

- You can delete non built-in users only if that user does not own any working copies.
- If the user created an image or image series, then you can still delete the user, but the creator of the image or image series is changed to `internal-user@GHS`.
- If the user was the owner of an image series, then you can delete the user, but the owner of the image series will be changed to `internal-user@GHS`. You can still use the affected image series as normal, such that you can still provision a working copy from the affected image series, and you can still insert or delete images from the affected image series.

Example

The following example deletes the user named scott on the server cluster from the Fleet Patching and Provisioning repository:

```
$ rhpctl delete user -user scott
```

rhpctl modify user

Modifies the email address of a specific user.

Syntax

```
rhpctl modify user -user user_name -email email_address [-client client_name]
```

Parameters

Table A-55  rhpctl modify user Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user whose email address you want to modify.</td>
</tr>
<tr>
<td>-email email_address</td>
<td>Specify the email address of the operating system user in the RFC 822 format.</td>
</tr>
<tr>
<td>-client client_name</td>
<td>Optionally, you can specify the name of the client cluster to which the operating system user belongs.</td>
</tr>
</tbody>
</table>
rhpctl register user

Registers an email address for a specific user.

Syntax

rhpctl register user -user user_name -email email_address [-client client_name]

Parameters

Table A-56  rhpctl register user Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user whose email address you want to register.</td>
</tr>
<tr>
<td>-email email_address</td>
<td>Specify the email address of the operating system user in the RFC 822 format.</td>
</tr>
<tr>
<td>-client client_name</td>
<td>Optionally, if you run the command on the Fleet Patching and Provisioning Server, then you can specify the name of the client cluster to which the operating system user belongs. Otherwise, the command applies to a user on the cluster (either the Fleet Patching and Provisioning Server or Client) where the command is run.</td>
</tr>
</tbody>
</table>

Example

An example of this command is:

```
$ rhpctl register user -user scott -email scott@example.com
```

rhpctl unregister user

Unregisters an email address for a specific user.

Syntax

rhpctl unregister user -user user_name [-client client_name]

Parameters

Table A-57  rhpctl unregister user Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-user user_name</td>
<td>Specify an operating system user whose email address you want to unregister.</td>
</tr>
<tr>
<td>-client client_name</td>
<td>Optionally, you can specify the name of the client cluster to which the operating system user belongs.</td>
</tr>
</tbody>
</table>
useraction Commands

Use commands with the `useraction` keyword to add, delete, and modify user actions.

- `rhpctl add useraction`
- `rhpctl delete useraction`
- `rhpctl modify useraction`
- `rhpctl query useraction`

**rhpctl add useraction**

Configures a user action and its associated script and action file.

**Syntax**

```
rhpctl add useraction -useraction user_action_name -actionscript script_name
 [-actionfile file_name] [-pre | -post] [-optype option]
 [-onerror {ABORT | CONTINUE}] [-runscope {ONENODE | ALLNODES | AUTO}]
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-useraction user_action_name</td>
<td>Specify the name of the user action you want to add.</td>
</tr>
<tr>
<td>-actionscript script_name</td>
<td>Associate a specific action script to run with the user action.</td>
</tr>
<tr>
<td>-actionfile file_name</td>
<td>Optionally, you can specify an action file that is required by the user action.</td>
</tr>
<tr>
<td>-pre</td>
<td>-post</td>
</tr>
</tbody>
</table>
### Table A-58 (Cont.) rhpctl add useraction Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-optype option</code></td>
<td>Optionally, you can specify the operation for which the user action is configured. Options include:</td>
</tr>
<tr>
<td></td>
<td>IMPORT_IMAGE</td>
</tr>
<tr>
<td></td>
<td>ADD_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>DELETE_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>ADD_DATABASE</td>
</tr>
<tr>
<td></td>
<td>DELETE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>MOVE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>MOVE_GIHOMEDS</td>
</tr>
<tr>
<td></td>
<td>UPGRADE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>UPGRADE_GIHOMEDS</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_GIHOMEDS</td>
</tr>
<tr>
<td></td>
<td>DELETENODE_GIHOMEDS</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>DELETENODE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE_SNAPDB</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE_DBUA</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE_SWITCHBACK</td>
</tr>
<tr>
<td>`-onerror {ABORT</td>
<td>CONTINUE}`</td>
</tr>
<tr>
<td>`-runscope {ONENODE</td>
<td>ALLNODES</td>
</tr>
</tbody>
</table>

### rhpctl delete useraction

Deletes an existing user action configuration.

**Syntax**

```
rhpctl delete useraction -useraction user_action_name
```

**Usage Notes**

Specify the name of a user action you want to delete.

### rhpctl modify useraction

Modifies the configuration of the specified user action name.
Syntax

rhpctl modify useraction -useraction user_action_name [-actionscript script_name]
[-actionfile file_name] [-pre | -post] [-optype option]
[-onerror {ABORT | CONTINUE}] [-runscope {ONENODE | ALLNODES | AUTO}]

Parameters

Table A-59  rhpctl modify useraction Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-useraction</td>
<td>Specify the name of the user action you want to modify.</td>
</tr>
<tr>
<td>user_action_name</td>
<td></td>
</tr>
<tr>
<td>-actionscript</td>
<td>Optionally, you can specify an action script to run.</td>
</tr>
<tr>
<td>script_name</td>
<td></td>
</tr>
<tr>
<td>-pre</td>
<td>-post</td>
</tr>
<tr>
<td>-optype option</td>
<td>Optionally, you can specify the operation for which the user action is configured. Options include:</td>
</tr>
<tr>
<td></td>
<td>IMPORT_IMAGE</td>
</tr>
<tr>
<td></td>
<td>ADD_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>DELETE_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>ADD_DATABASE</td>
</tr>
<tr>
<td></td>
<td>DELETE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>MOVE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>MOVE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>UPGRADE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>UPGRADE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>DELETENODE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>DELETENODE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE_SNAPDB</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE_DBUA</td>
</tr>
<tr>
<td></td>
<td>ZDTUPGRADE_DATABASE_SWITCHBACK</td>
</tr>
<tr>
<td>-onerror {ABORT</td>
<td>CONTINUE}</td>
</tr>
<tr>
<td>-runscope {ONENODE</td>
<td>ALLNODES</td>
</tr>
</tbody>
</table>
rhpctl query useraction

Displays the configuration of a user action.

Syntax

```
rhpctl query useraction [-useraction user_action_name | -imagetype image_type]
 [-optype option]
```

Parameters

Table A-60  rhpctl query useraction Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-useraction</td>
<td>Specify the name of the user action you want to query.</td>
</tr>
<tr>
<td>user_action_name</td>
<td></td>
</tr>
<tr>
<td>-imagetype</td>
<td>Alternatively, you can specify the software type. Use ORACLEDBSOFTWARE (default) for Oracle database software, ORACLEGRIDSOFTWARE for Oracle Grid Infrastructure software, and SOFTWARE for all other software. For a custom image type, use the image type name.</td>
</tr>
<tr>
<td>image_type</td>
<td></td>
</tr>
<tr>
<td>-optype</td>
<td>Optionally, you can specify the operation for which to run the query. Options include:</td>
</tr>
<tr>
<td>option</td>
<td>IMPORT_IMAGE</td>
</tr>
<tr>
<td></td>
<td>ADD_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>DELETE_WORKINGCOPY</td>
</tr>
<tr>
<td></td>
<td>ADD_DATABASE</td>
</tr>
<tr>
<td></td>
<td>DELETE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>MOVE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>MOVE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>UPGRADE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>UPGRADE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>DELETENODE_GIHOME</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>DELETENODE_DATABASE</td>
</tr>
<tr>
<td></td>
<td>ADDNODE_WORKINGCOPY</td>
</tr>
</tbody>
</table>

workingcopy Commands

Use commands with the `workingcopy` keyword to create, update, extend, and delete working copies.

- `rhpctl add workingcopy`
  Creates a working copy on a client cluster.
- `rhpctl addnode workingcopy`
- `rhpctl delete workingcopy`
  Deletes an existing working copy.
- `rhpctl query workingcopy`
  Displays the configuration information of an existing working copy.

**rhpctl add workingcopy**

Creates a working copy on a client cluster.

**Syntax**

To add a working copy to a client cluster:

```
rhpctl add workingcopy -workingcopy workingcopy_name
 {-image image_name | -series series_name}
 [-oraclebase oracle_base_path] [-path where_path]
 [-storagetype {LOCAL | RHP_MANAGED}] [-user user_name]
 [-client cluster_name] [-ignoreprereq | -fixup]
 [-responsefile response_file_path] [-clusternodes node_list]
 [-groups group_list] [-root | -cred cred_name | -sudouser
 sudo_username
 -sudopath path_to_sudo_binary | -auth plugin_name [-arg1
 name1:valuel
 [-arg2 name2:value2 ...]]]
 [-notify [-cc users_list]] [-asmclientdata data_path]
 [-gnsclientdata data_path] [-clustermanifest data_path] [-
 softwareonly]
 [-local] [-inventory inventory_path] [-targetnode target_node_name]
 [-agpath read_write_path -aupath gold_image_path] [-setupsrh]
 [-useractiondata user_action_data] [-eval] [-schedule timer_value]
 [-checkwcpatches -sourcehome source_home_path] [-scan scan_name]
 [-diskDiscoveryString disk_discovery_string] [-fromnode node_name]
 [-unkey] [-smtpfrom "address"] [-smtpto "addresses"] [-precheckonly]
 [-modifyatprereq] [-resetforce] [-force] [-help options]
```

**Parameters**

**Table A-61  rhpctl add workingcopy Command Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy workingcopy_name</td>
<td>Specify a name for the working copy that you want to create.</td>
</tr>
<tr>
<td>{-image image_name</td>
<td>-series series_name)</td>
</tr>
<tr>
<td>-oraclebase oracle_base_path</td>
<td>Specify an ORACLE_BASE path for provisioning an Oracle Database or Oracle Grid Infrastructure home. You can specify either an existing directory or a new directory.</td>
</tr>
<tr>
<td>Note: This parameter is required only for the ORACLEDATABASE and ORACLEGRIDIMAGE image types.</td>
<td></td>
</tr>
<tr>
<td>-inventory inventory_path</td>
<td>Specify the location of the Oracle Inventory directory.</td>
</tr>
</tbody>
</table>
Table A-61  (Cont.) rhpctl add workingcopy Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-path absolute_path</td>
<td>Specify the absolute path for provisioning the software home on the client side (this location must be empty). For Oracle Database images, this becomes the ORACLE_HOME.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This parameter is required for LOCAL storage types, and is invalid for RHP_MANAGED.</td>
</tr>
<tr>
<td>-storagetype {LOCAL</td>
<td>RHP_MANAGED}</td>
</tr>
<tr>
<td>-user user_name</td>
<td>Specify the name of the user that will own the working copy being provisioned. If you do not specify this parameter, then the working copy is owned by the user running the command. If you are provisioning to a remote cluster, then the user name must be a valid user on the remote cluster. The user ID need not be the same between the two clusters, but the user name must exist on both.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You cannot use -user simultaneously with the -softwareonly parameter.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Specify the name of the client cluster.</td>
</tr>
<tr>
<td>-ignoreprereq</td>
<td>-fixup</td>
</tr>
<tr>
<td>-responsefile response_file_path</td>
<td>Specify a response file to use when you provision Oracle Grid Infrastructure.</td>
</tr>
<tr>
<td>-clusternodes node_name:node_vip[:node_role] [node_name:node_vip[:node_role]]...</td>
<td>Specify a comma-delimited list of cluster node information on which to provision Oracle Clusterware.</td>
</tr>
</tbody>
</table>
Table A-61  (Cont.) rhpctl add workingcopy Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| -groups "OSDBA| Specify a comma-delimited list of Oracle groups, enclosed in OSOPER| OSASM| OSBACKUP| OSDG| OSKM| OSRAC=group_name[,].."
|                 | double quotation marks (""), that you want to configure in the working copy.                   |
|                 | For example:                                                                                    |
|                 | -groups "OSDBA=dba,OSOPER=oper"                                                                 |

When you create a gold image from a source home or working copy, the gold image inherits the groups configured in the source. When you create a working copy from that gold image using rhpctl add workingcopy, by default, the new working copy inherits the same groups as the gold image.

If you use the -groups parameter on the command line, then:

- Groups configured in the gold image that you do not specify on the command line are inherited by the working copy.
- Groups configured in the gold image that you also specify on the command line are set to the value that you specify on the command line (command line parameters override the gold image).
- Groups that you specify on the command line that are not in the gold image are added to the configured groups in the gold image (the command line adds new groups).

**Notes:**
- When you move or upgrade a source home (unmanaged or working copy), the groups in the destination working copy must match those of the source home.
- You cannot use -groups simultaneously with the -softwareonly parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-root</td>
<td>-cred cred_name</td>
</tr>
<tr>
<td></td>
<td>If you choose to use the -targetnode parameter, then you must choose either root, a credential name, sudo, or an authentication plugin to access the remote node.</td>
</tr>
<tr>
<td></td>
<td>Choose -root to perform super user operations as root. Alternatively, you can choose either to specify a credential name to associate the user name and password credentials to access a remote node, to perform super user operations as a sudo user by specifying a sudo user name and the path to the sudo binary, or to use an authentication plugin to access the remote node.</td>
</tr>
<tr>
<td>-notify [-cc user_list]</td>
<td>Specify this parameter to have email notifications sent to the owner of the working copy. Optionally, you can include a list of additional users who will receive notifications.</td>
</tr>
<tr>
<td>-asmclientdata data_path</td>
<td>Specify the path to a file that contains Oracle ASM client data.</td>
</tr>
<tr>
<td>-gnsclientdata data_path</td>
<td>Specify the path to a file that contains the Grid Naming Service (GNS) data.</td>
</tr>
<tr>
<td>-clustermanifest data_path</td>
<td>Optionally, you can specify the location of cluster manifest file. You can use this parameter when the Fleet Patching and Provisioning Server is on a domain services cluster and you are creating a member cluster.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-local</td>
<td>Use this parameter to provision only Oracle Grid Infrastructure software on the local node.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> You can only use this parameter in conjunction with the -softwareonly parameter, and only when running the rhpctl add workingcopy command on a Fleet Patching and Provisioning Server.</td>
</tr>
<tr>
<td>-softwareonly</td>
<td>Use this parameter to provision only Oracle Grid Infrastructure software.</td>
</tr>
<tr>
<td>-targetnode</td>
<td>Specify the name of a node in a remote cluster with no Fleet Patching and Provisioning Client on which you want to provision a working copy.</td>
</tr>
<tr>
<td>target_node_name</td>
<td></td>
</tr>
<tr>
<td>-agpath</td>
<td>Use -agpath to specify the path to the read-write, site-specific configuration changes to set the persistent home path, and use -aupath to specify the path for the read-only gold image to set the persistent home path.</td>
</tr>
<tr>
<td>read_write_path</td>
<td></td>
</tr>
<tr>
<td>-aupath</td>
<td></td>
</tr>
<tr>
<td>gold_image_path</td>
<td></td>
</tr>
<tr>
<td>-setupssh</td>
<td>Use this parameter to set up passwordless SSH user equivalence on the remote nodes for the provisioning user.</td>
</tr>
<tr>
<td>-useractiondata</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>user_action_data</td>
<td></td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
<tr>
<td>-schedule</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
<tr>
<td>timer_value</td>
<td>2018-07-25T19:13:17+05</td>
</tr>
<tr>
<td>-checkwcpatches</td>
<td>Optionally, you can use the -checkwcpatches and -sourcehome parameters to compare patches in a specific source home path with the patches in the working copy you want to add.</td>
</tr>
<tr>
<td>-sourcehome</td>
<td>source_home_path</td>
</tr>
<tr>
<td>-scan</td>
<td>Optionally, you can use this parameter to specify a SCAN name.</td>
</tr>
<tr>
<td>scan_name</td>
<td></td>
</tr>
<tr>
<td>-diskDiscoveryString</td>
<td>Optionally, you can use this parameter to specify a disk discovery string.</td>
</tr>
<tr>
<td>disk_discovery_string</td>
<td></td>
</tr>
<tr>
<td>-fromnode</td>
<td>Optionally, you can specify a database server node name from where the patch manager is to be run.</td>
</tr>
<tr>
<td>node_name</td>
<td></td>
</tr>
<tr>
<td>-unkey</td>
<td>Optionally, you can use this parameter to remove passwordless SSH access to the Oracle Exadata patch nodes from the database server node from where the patch manager is run before exit.</td>
</tr>
<tr>
<td>-smtpfrom &quot;address&quot;</td>
<td>Optionally, you can specify an email address enclosed in double quotation marks (&quot;&quot;&quot;) from which Fleet Patching and Provisioning sends patch manager notifications.</td>
</tr>
<tr>
<td>-smtpto &quot;addresses&quot;</td>
<td>Optionally, you can specify several email address enclosed in double quotation marks (&quot;&quot;) to which Fleet Patching and Provisioning sends patch manager notifications.</td>
</tr>
<tr>
<td>-precheckonly</td>
<td>Optionally, you can use this parameter to run only the patching precheck operations.</td>
</tr>
</tbody>
</table>
### Table A-61  (Cont.) rhpctl add workingcopy Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-modifyatprereq</td>
<td>Optionally, you can use this parameter to run the <code>patchmgr -precheck</code> command with the <code>-modify_at_prereq</code> option for database nodes.</td>
</tr>
<tr>
<td>-resetforce</td>
<td>Optionally, you can use this parameter to run the <code>patchmgr -reset_force</code> command before cell patching.</td>
</tr>
<tr>
<td>-force</td>
<td>Optionally, you can use this parameter to run the <code>patchmgr upgrade</code> command with the <code>-force</code> option for ibswitches.</td>
</tr>
</tbody>
</table>

#### Usage Notes

- You can obtain context sensitive help for specific use cases for the `rhpctl add workingcopy` command, as follows:

  ```sh
 $ rhpctl add workingcopy -help [REMOTEPROVISIONING | STORAGETYPE | ADMINDB | GRIDHOMEPROV | SWONLYGRIDHOMEPROV | STANDALONEPROVISIONING | GGHOMEPROVISIONING]
  ```

- If you choose to use the `-schedule` parameter, then you must run this command on the Fleet Patching and Provisioning Server.

#### Examples

- To create a working copy on a client cluster for yourself or another user:

  ```bash
 rhpctl add workingcopy -workingcopy workingcopy_name (-image image_name | -series series_name) -oraclebase oracle_base_path -client cluster_name [-user user_name]
  ```

- To create a working copy on storage that you specify:

  ```bash
 rhpctl add workingcopy -workingcopy workingcopy_name (-image image_name | -series series_name) -oraclebase oracle_base_path -storagetype (LOCAL | RHP_MANAGED) [-path absolute_path]
  ```

- To create and configure a working copy of Oracle Grid Infrastructure:

  ```bash
 rhpctl add workingcopy -workingcopy workingcopy_name (-image image_name | -series series_name) (-root | -cred cred_name | -sudouser sudo_user_name -sudopath sudo_binary_path) -responsefile response_file_path [-clusternodes node_information] [-user user_name] [-oraclebase oracle_base_path] [-path absolute_path] [-asmclientdata data_path] [-gnsclientdata
```
- To provision a software-only working copy of Oracle Grid Infrastructure:

```bash
rhpctl add workingcopy -workingcopy workingcopy_name {-image image_name | -series series_name} -softwareonly -path Grid_home_path -oraclebase oracle_base_path [-local | -client cluster_name | -node client_node_name | -root | -cred cred_name | -sudouser sudo_user_name -sudopath sudo_binary_path] -targetnode node_name
```

- To provision a working copy on a node or a cluster where Fleet Patching and Provisioning does not exist:

```bash
rhpctl add workingcopy -workingcopy workingcopy_name {-image image_name | -series series_name} -oraclebase oracle_base_path -user user_name -node node_name [-path absolute_path] [-root | -cred cred_name | -sudouser sudo_user_name -sudopath sudo_binary_path]...
```

### Note:

If you are provisioning Oracle database software to a Fleet Patching and Provisioning Client that has been configured with an Oracle ASM disk group, then do not specify the `-path` parameter, so as to enable the Fleet Patching and Provisioning Client to use storage provided by Fleet Patching and Provisioning.

If the Fleet Patching and Provisioning Client is not configured with an Oracle ASM disk group, then specify the `-storagetype` parameter with `LOCAL`, in addition to specifying the `-path` parameter.

---

**rhpctl addnode workingcopy**

Extends an Oracle RAC database to another node or nodes in a cluster.

**Syntax**

```bash
rhpctl addnode workingcopy -workingcopy workingcopy_name -node node_list [-targetnode node_name { -root | -sudouser sudo_username -sudopath sudo_binary_path } | -cred cred_name | -auth plugin_name [-arg1 name1:value1...]} -setupssh] [-ignoreprereq] [-useractiondata user_action_data] [-eval]
```
Parameters

Table A-62  rhpctl addnode workingcopy Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy</td>
<td>Specify the name of a working copy that contains the Oracle database you want to extend.</td>
</tr>
<tr>
<td>workingcopy_name</td>
<td></td>
</tr>
<tr>
<td>-node node_list</td>
<td>Specify a node or a comma-delimited list of nodes to which you want to extend the database.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify a node on which to run this command.</td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser sudo_username -sudopath sudo_binary_path</td>
</tr>
<tr>
<td>-cred cred_name</td>
<td></td>
</tr>
<tr>
<td>-auth plugin_name</td>
<td></td>
</tr>
<tr>
<td>-arg1 name1: value1...</td>
<td></td>
</tr>
<tr>
<td>-ignoreprereq</td>
<td>Use this parameter to ignore the CVU prerequisite checks.</td>
</tr>
<tr>
<td>-setupssh</td>
<td>Sets up passwordless SSH user equivalence on the remote nodes for the provisioning user.</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>-eval</td>
<td>Optionally, you can use this parameter to evaluate the impact of this command on the system without actually running the command.</td>
</tr>
</tbody>
</table>

Usage Notes

- If you are extending a policy-managed database, then the database automatically starts on the new nodes.
- If you are extending an administrator-managed database, then you must also run the rhpctl addnode database command to start the instance.
- If the target cluster is an Oracle Clusterware 11g release 2 (11.2) or 12c release 1 (12.1) cluster, then you must provide either root credentials or provide a sudo user. You must also specify a target node that must be the node name of one of the cluster nodes.

rhpctl delete workingcopy

Deletes an existing working copy.

Syntax

```
rhpctl delete workingcopy -workingcopy workingcopy_name [-notify [-cc user_list]] [-force]
 [[-targetnode node_name] [-root | -sudouser sudo_user_name -sudopath sudo_binary_path -cred cred_name | -auth plugin_name [-arg1 name1: value1...]]]
```
name1:value1...}}

[-useractiondata user_action_data] [-schedule timer_value]

Parameters

Table A-63 rhpctl delete workingcopy Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy workingcopy_name</td>
<td>Specify the name of a working copy that you want to delete.</td>
</tr>
<tr>
<td>-notify [-cc user_list]</td>
<td>Name of a node in a remote cluster with no Fleet Patching and Provisioning Client.</td>
</tr>
<tr>
<td>-targetnode node_name</td>
<td>Optionally, you can specify a particular node from which you want to delete a working copy.</td>
</tr>
<tr>
<td>-force</td>
<td>Use this parameter to forcibly delete the database working copy.</td>
</tr>
<tr>
<td>-root</td>
<td>-sudouser sudo_username</td>
</tr>
<tr>
<td>-sudopath</td>
<td>sudo_binary_path</td>
</tr>
<tr>
<td></td>
<td>cred cred_name</td>
</tr>
<tr>
<td></td>
<td>-auth</td>
</tr>
<tr>
<td>-useractiondata user_action_data</td>
<td>Optionally, you can pass a value to the useractiondata parameter of the user action script.</td>
</tr>
<tr>
<td>-schedule timer_value</td>
<td>Optionally, you can use this parameter to schedule a time to run this operation, in ISO-8601 format, as in the following example:</td>
</tr>
</tbody>
</table>

2018-07-25T19:13:17+05

Usage Notes

- This command will not delete the working copy if there are any databases configured on it. Use the -force option to override this.
- This command will not delete the working copy if there are any running databases on it. The -force option will not override this.
- This command does not delete the Oracle base that was created when you ran rhpctl add workingcopy.
- If you choose to use the -schedule parameter, then you must run this command on the Fleet Patching and Provisioning Server.

Examples

To delete a working copy:

$ rhpctl delete workingcopy -workingcopy wc1
rhpctl query workingcopy

 Displays the configuration information of an existing working copy.

 Syntax

 rhpctl query workingcopy [-workingcopy workingcopy_name [-metadataonly] | [-image image_name ] [-client cluster_name] [-drift] ]

 Parameters

 Table A-64  rhpctl query workingcopy Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-workingcopy</td>
<td>Specify the name of a working copy for which you want to display the configuration information.</td>
</tr>
<tr>
<td>workingcopy_name</td>
<td></td>
</tr>
<tr>
<td>-metadataonly</td>
<td>Use this parameter only when you use the -workingcopy parameter to query only the metadata of the working copy, which is located in the repository and not run OPatch or connect to the target to query for extra information.</td>
</tr>
<tr>
<td>-image image_name</td>
<td>Alternatively, you can specify the name of a configured image you want to query. Note: If you specify an image name, then RHPCTL lists all the working copies based on that image.</td>
</tr>
<tr>
<td>-client cluster_name</td>
<td>Optionally, you can specify a client cluster on which to query working copies.</td>
</tr>
<tr>
<td>-drift</td>
<td>List the bug fixes not included in the golden image.</td>
</tr>
</tbody>
</table>